

Joomla!
Development
A Beginner’s Guide

2

...1. Introduction 9
...The Problem 9

...The Solution 10

..Coding? 10

................................What Can You Learn From This Book? 11

...How to Start? 11

................................2. Prepare Your Workstation 14
..Source Code Editors 15

.......................Integrated Development Environments (IDE) 16

.............................What Are Professional Developers Using? 16

...Lamp Software Bundle 17

..Other Tools 18

...What Do I Need? 18

..........................3. Write Your Own Component 20
.....................................Model-View-Controller Architecture 21

..........Is It Necessary to Build A Component From Scratch? 21

...How to Start? 22

....................................The Cocoate Real Estate Component 23

...4. Step 1 - The Basics 25
...Frontend and Backend 26

...Files and Installation 27

...Discover Extension 27

...Install Extension 27

..The Code 28

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 3

..........5. Step 2 - Database, Backend, Languages 35
..........Cocoate Real Estate (CRE) Version 0.0.2 Screenshots 35

...CRE Version 0.0.2 Files 39

..............................Database Table cocoaterealestate_objects 40

..................................Models, Tables, Fields, Language Files 42

..Controllers 51

...Views in Frontend and Backend 53

...6. The Cool Stuff 63
....................................What Is Missing in Our Component? 64

.......................................The Future of Cocoate Real Estate 65

...The Deal 65

.................................7. Write Your Own Module 66
...mod_contact_list.xml 69

...mod_contact_list.php 73

...helper.php 74

..tmpl/default.php 77

.....................language/en-GB/en-GB_mod_contact_list.ini 78

................language/en-GB/en-GB_mod_contact_list.sys.ini 78

...index.html 78

....................................Packaging the Module for Installation 79

...................................8. Write Your Own Plugin 80
..Example 81

..............9. Write Your Own Template Overrides 86
..More Information on Overrides 90

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 4

..............10. Write Your Own Layout Alternative 91
..............................Example for Module Alternative Layouts 92

..Alternative Menu Items 94

..Read More: 94

11. Write Your Own App Using Joomla! Platform96
..History 96

...Using the Joomla Platform 98

...A Web App 102

..Multiple Web Apps 105

..More Resources 106

.......................................12. Common Mistakes 107
.............................Radek Suski's List of Common Mistakes 108

.......................................YOUR List of Common Mistakes 112

13. Publish Your Extension to the Joomla! Extension
..Directory 113

..Publish Your Extension 115

...14. What Is Git? 119
...Centralised Repository 119

..Commit 120

...Merge 120

..Versions 120

..Distributed Revision Control 120

..Decentralised Workflow 121

.....................................Dictator and Lieutenants Workflow 121

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 5

..The Name and the History 122

...GitHub 122

...Joomla! and GitHub 122

...How to Start? 122

..More to Read About Git 123

....................15. Contribute Code to the Project 124
..My Findings 124

...Joomla! Leadership 125

..................................Contribute Code In a Technical Way 127

..Propose New Features 128

..More to Read: 129

...........16. Localisation Using OpenTranslators 132
i18n & L10n - why they matter to Joomla extension Developers 133

...Transifex 135

..OpenTranslators 136

.Setting up your project with Transifex & OpenTranslators138

..Volunteer Translators & you 142

..Conclusion 145

17. Running a Business Around Joomla! Extensions 147
.....................The 4 Major Roles of An Extension Business 148

...1. Product 148

...2. Business Model 149

...3. Support 152

...4. Promotion 153

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 6

.................................5. Hard Work and Discipline Pays Off 154

...18. What Is PHP? 155

..Where Is My PHP? 156

..Hello World 158

...Variables 159

..Functions 160

..Parameters 160

..Control Structures 161

..Classes 167

....19. What Is Object-Oriented Programming? 171

.......Classes, Objects, Instances, Properties and Behaviours 172

..Attributes/Properties 173

..Instantiation 173

..Methods, Behaviours 174

..Access Rights 176

...................How to Use the OOP Paradigm in A Website? 176

...Why MooTools? 179

..Demos 179

...Joomla! and MooTools 180

...A Tooltip Example 182

...Customised Tooltips with CSS 183

..Multiple Customised Tooltips 186

..Resources 187

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 7

Advertisement

The Art of Joomla vision
Our vision is the Art of Joomla family of web sites to be the centre of excellence for

learning the art of developing with Joomla.

The Art of Joomla mission
Our mission is to provide a useful and relevant knowledge base, spanning beginner

and advanced topics, for the benefit of the Joomla community at large, for people that
want to become great Joomla developers and for people that want to learn to customise
the web sites that they rely on.

Behind the Art of Joomla
The Art of Joomla web sites is backed by an Australian company called New Life in

IT Pty Ltd. This is the consulting company run by long-term contributor to, and co-
founder of Joomla, Andrew Eddie.

http://learn.theartofjoomla.com/

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 8

1. Introduction

Photo: http://www.flickr.com/photos/npobre/2601582256/ (CC BY 2.0)

Using Joomla! is easy. To configure it, you usually use your browser and the Joomla!
user interface in front- and backend.

Enhancing Joomla! with additional features is easy, too. You download the desired
extension, install it, configure it and use it.

THE PROBLEM
Sometimes you have a request and no idea how to implement it. You searched the

Joomla! extension directory but found nothing, no extension that fits your needs.

Let’s say you want to start your own real estate business and no extension is on the
market that makes you happy because your idea of selling houses is unique!

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 9

THE SOLUTION
If there is no predefined solution for your problem you have three possibilities to solve

it

1. Think about your problem whether it is honestly that unique. Explore existing real
estate solutions and take your time to play around with them. You can learn a lot from
existing solutions and maybe you realise that it is possible to use a ready-made
solution. That means no coding.

2. Use one of the upcoming content construction kits for Joomla! to implement your
individual solution. That means no coding, too.

3. If you have a budget, think about outsourcing and pay others for coding.

4. Or ... start to code! Write your desired extension yourself.

CODING?
When configuring Joomla! via the administrator interface, you already have used

different kinds of ‘code’.

Visual Code

The visual code is the design of check boxes, options and text fields, different editors,
which makes it possible to configure options and add, edit and delete content.

Structural Code

The structural code in Joomla! are words like templates, categories, options, articles, menu
items, modules, styles and many more. You have to know the meaning of these codes,
otherwise you are lost.

‘Real Code’

This is what this book is about!

You probably know all these abbreviations like PHP, CSS, JavaScript, HTML, JDOC,
XML, and so on. Besides the other meanings mentioned above, the verb ‘to code’ means
to me writing commands into text files, which make sense in a given context. The ‘only’
challenge you have to face is to learn what all these different commands and contexts are
about and how to write them in a way so they work as expected, and are secure, flexible,
reliable, fast, and easy to understand.

No one that I know knows all the details of the above-mentioned abbreviations. Some
people tend to like Java Script, some PHP, some CSS and some nothing at all.

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 10

WHAT CAN YOU LEARN FROM THIS BOOK?
Even if you have never touched a text file with code inside and even if you have no

idea at the moment what I am talking about, try to read a few chapters. I don’t want to
say you’ll get enlightened but I think it’s just interesting to see the relationships between
all these bits and pieces in Joomla!

In the next chapters, I want to cover the main concepts in Joomla! to be able to
enhance it with self-made extensions.

HOW TO START?
You need to know many things which have no direct relationship to Joomla!

The Story of mod_coco_bookfeed module
I'll give you a typical example how things happen sometimes.

In the past couple of months people asked me more and more often whether it is possible
to place a link to the download of our free books on their website.

They wanted to have the cover of the book in various sizes, the title, the amounts of
file downloads and, in the administration interface, a choice of the book to present and so
on ...

Saturday, November 12 2011

I started to play around thinking of a solution which offers code to embed but that
doesn't work well for the display and the counting of the amount of downloads in the
widget, so I decided to create a Joomla! module for that purpose.

Here Is the Story So Far

• I installed a local Joomla! 1.7 on my machine to play around

• I created the structure by copying an existing Joomla! module

• I created a file on our server (cocoate.com) with the necessary data

• I found a possibility to access the server file in the Joomla! module, implemented the
features, tested everything and it seemed to work

• I wrote a blog entry and asked for testers (Book Feeds Joomla! Module) 1

• I got immediately the following feedback:

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 11

1 http://cocoate.com/node/10189

• the way I deal with the server file doesn't work on all servers (jwillin)2

• ot2sen3 enhanced the module with language files and send it to me via email

Wow, that was all in less than 24 hours and it seemed to be possible to work together
on that module!

1. For a healthy collaboration I decided to create a project on GitHub (https://
github.com/hagengraf/mod_coco_bookfeed)4

2. I decided to describe the story of this little module here in the introduction

3. I thought about a further development of the module

In this little example you see a lot of what is necessary and what you need to know
when starting with programming in Joomla! You need to know something about Web
servers, Editors, local server environment, live server environment, Joomla!, PHP, HTML,
XML, Joomla! modules, GIT and, of course, about your possible collaborators.

The following chapters try to cover all or hopefully most of the steps you need to
know when you want to start with Joomla! development.

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 12

2 http://twitter.com/#!/jwillin

3 http://twitter.com/#!/ot2sen

4 https://github.com/hagengraf/mod_coco_bookfeed

Advertisement

Hosting Platform: Get the power of a dedicated server without the cost. As Joomla!’s
official host for the demo.joomla.org site, we launch over 22,000 new Joomla! sites a
month on our platform-as-a-service. We own and manage our own cloud data center,
enterprise servers, and fiber connections. We optimize our platform for fast-loading
Joomla! sites that can scale to accommodate a large number of concurrent connections.

Support: Our support team answers support tickets quickly and professionally.
Manage tickets in our online support panel, or call and talk to us live (for Standard
hosting plans & above). Prefer forum support? We’ve got that too. A Knowledgebase of
how-to articles? Check. Our support team is here to make sure you succeed.

Business tools: You need more than just a professional web presence to run your
business. You need email addresses customized to your domain name. You need software
that allows your team to collaborate, and software that allows you to analyze and make
informed decisions. CloudAccess.net gives you all that with Google Apps and Google
Analyics, included with all paid hosting plans.

Development: Whether you need a Joomla! partner to help build custom Joomla!
templates or build applications, we have both the frontend and backend coders who can
turn your vision into reality.

Joomla! KickStart package

Let us build the framework for your Joomla! site. Free with paid hosting plan, or go
Pro for just $79.

http://www.cloudaccess.net/

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 13

2. Prepare Your Workstation

Photo: http://www.flickr.com/photos/lenore-m/2514975647/ (CC BY 2.0)

In former times, people usually used one workstation to work and all the other devices
(if they had one or more) for something different. Today, the situation is changing because
of the amount of 'other devices' and the way they are used. Internet access is available in
many places and it is often not that easy to distinguish between work and 'the rest'.

You probably have a kind of personal computer and that is your 'workstation'. This
doesn’t have to be the latest version. Even if you have an older PC, it is easily possible to
develop for Joomla!.

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 14

Joomla! extensions consist of source code. Source code is text written in a computer
programming language. It needs to be written and it needs to be edited. Therefore you
need a source code editor. It can be a standalone application or it may be built into an
integrated development environment (IDE).

SOURCE CODE EDITORS
Many people start their career as a developer with easy code in simple editors. Each

operating system comes with a plain text editor. So often the 'hello world' example is
created with

• Windows: Notepad5

• OSX: TextEdit6

• Linux: VI7

You can use these editors for your very first steps. It is also useful to know the basic
behaviour and commands of these editors if you have to edit source code on another
machine than yours (e.g. your live server). Especially in the case of VI it is important to
know how to insert and delete text and how to save the edited file (Basic VI Commands 8).

After the first steps, you'll notice that it would be nice to have more features like
splitting the screen to see more than one file, 'fold' the source code to have a better
overview or search in all files of a folder and more unlimited other features.

When you are in that stage, have a look at more advanced editors like

• Windows: Notepad++9,

• OSX: TextWrangler10,

• Linux: KDE Advanced Text Editor11,

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 15

5 http://en.wikipedia.org/wiki/Notepad_(software)

6 http://en.wikipedia.org/wiki/Textedit

7 http://en.wikipedia.org/wiki/Vi

8 http://www.cs.colostate.edu/helpdocs/vi.html

9 http://en.wikipedia.org/wiki/Notepad++

10 http://en.wikipedia.org/wiki/Notepad++

11 http://en.wikipedia.org/wiki/Kate_(text_editor)

INTEGRATED DEVELOPMENT ENVIRONMENTS (IDE)
Joomla! is using the model view controller (MVC) concept as the key concept in

developing extensions. Using that concept, you have to write a lot and, therefore, you
soon wish to have something which enables you to be more productive. Thus, an IDE like
Eclipse12 or Komodo13 can be useful.

This is a 45 minutes webinar about using Eclipse14

WHAT ARE PROFESSIONAL DEVELOPERS USING?
I asked a question in Facebook15 and got a lot of answers (Figure 1)

Figure 1: Facebook Question

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 16

12 http://en.wikipedia.org/wiki/Eclipse_(software)

13 http://www.activestate.com/komodo-ide

14 http://community.joomla.org/blogs/community/828-webinar-using-eclipse-for-
joomla-development.html

15 http://www.facebook.com/questions/10150247434712168

A few quotes from Joomla! developers:

Most Notepad++ and Netbeans (Brian Rønnow, Denmark)

Switched almost completely to PHPStorm but some smaller things
I still do in TextMate. Some older projects are still under Coda
control. (Achim Fischer, Germany)

For dev I use eclipse, for quick edits I'll use Coda. (Chad
Windnagle, USA)

notepad++ and Eclipse (Ronni K. G. Christiansen, Denmark)

Notepad++ and Netbeans :) (Jeremy Wilken, USA)

I find Quanta Plus awesomely handy. Mind that I mostly use it for
web page editing. Of all the editors I could find in the Canonical
repositories I liked Quanta Plus the most. It would take much time
to list all that I like about it so I won't do it here. :-) (Alexey
Baskinov, Russia)

For development basically only Eclipse. For quick edits also,
Komodo Edit (Radek Suski, Germany)

It depends on which file / which purpose of editing. Zend Studio
and Notepad++ are my choice. (Viet Vu, Vietnam)

LAMP SOFTWARE BUNDLE
LAMP is an acronym for a solution stack of free, open source software, originally

coined from the first letters of Linux (operating system), Apache HTTP Server, MySQL
and Perl/PHP/Python, principal components to build a viable general purpose web
server.

The exact combination of software included in a LAMP package may vary, especially
with respect to the web scripting software, as PHP may be replaced or supplemented by
Perl and/or Python. Similar terms exist for essentially the same software suite (AMP)
running on other operating systems.

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 17

Suitable for beginner's are XAMPP16, available for Windows, OSX and Linux,
WampServer17 for Windows and MAMP18 for OSX. They are all easy-to-install Apache
Web server distributions containing the latest MySQL Database and PHP script language
and they are really very easy to install and to use - just download, extract and start.

OTHER TOOLS
As browsers, you need the usual suspects: Internet Explorer, Chrome, Firefox, Opera,

Safari. You need to verify your results in all these web browsers.

All of these browsers offer the possibility to install additional plugins such as Firebug19
and Webdeveloper20.

WHAT DO I NEED?
As already mentioned before, start with the editor of your choice and install a Lamp

Software Bundle that fits your needs. Install a fresh copy of Joomla! without example
data.

• Editor

• Lamp Software Bundle

• The actual Joomla! Version 1.7/2.5

For this book I am using OSX as the operating system, TextWrangler and MAMP. As
a browser, I use mainly Firefox with the plugin Firebug.

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 18

16 http://www.apachefriends.org/

17 http://www.wampserver.com/

18 http://www.mamp.info/

19 http://getfirebug.com/

20 http://chrispederick.com/work/web-developer/

Advertisement

Codingfish Limited is a small software development company located in Fulda,
Germany (100 km northeast of Frankfurt). Small means it is actually me running the
business. I am the founder and director of Codingfish Limited.

Codingfish Limited was founded in December 2007. When I had to choose a name
for the new company, I thought it would be a good idea just to say what I am doing. I am
coding software (Coding) and my lastname is Fischer (english: Fisher) so I took the "fish"
from it. There it is: Codingfish. Sometimes things are really simple :-)

Because I have a lot of experience in managing online communities (italobikes.com is
online since 2000), Codingfish Limited is specialized on Content Management Systems
(CMS) and Online Communities.

If you would like to contact me, you can find me on Facebook, LinkedIn and Xing.
Feel free to add me to your contact list. Of course you may also send me a good old
email.

Achim Fischer aka Codingfish

http://www.codingfish.com

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 19

3. Write Your Own

Component

Photo: http://www.flickr.com/photos/59937401@N07/5857777188/ (CC BY

2.0)

Writing a component from scratch is hard work. Usually people that build websites
with Joomla! search the Joomla! extension directory for existing components that fit their
needs and usually they find something useful.

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 20

If not, they have to hire someone to write a component for their special needs or do it
by themselves.

In this chapter we want to build a component for a real estate agency. It should
contain house listings and detailed descriptions of the houses on the frontpage and a
possibility to manage these listing in the backend. We have to think about the fields, the
permissions, the image upload and many other requirements, too.

A typical Joomla! component like the web links component consists of 30+ files for
the frontend and 30+ files for the backend. Every page in a Joomla! website contains the
output of exactly one component.

MODEL-VIEW-CONTROLLER ARCHITECTURE
Joomla! is build on the model-view-controller architecture (MVC) which was first

described for user interfaces of a programming language called Smalltalk in 1979.

Today MVC is the de facto standard in software development.

It comes in different flavours, control flow is generally as follows:

• The user interacts with the user interface in some way (for example, by clicking a submit
button).

• The controller handles the event from the user interface, and converts it into an
appropriate user action, understandable for the model.

• The controller notifies the model of the user action, possibly resulting in a change in the
model's state. (For example, the controller updates the user's house listing.)

• A view queries the model in order to generate an appropriate user interface (for
example, the view lists the house listings). The view gets its own data from the model.

• The user interface waits for further user interactions, which restarts the control flow
cycle.

Joomla! MVC Implementation
In Joomla!, the MVC pattern is implemented using three classes: JModel, JView and
JController. You can watch a good introduction to MCV by Andrew Eddy on YouTube21.

IS IT NECESSARY TO BUILD A COMPONENT FROM
SCRATCH?

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 21

21 http://www.youtube.com/watch?v=BpZJpl2rf0U

A few years ago, building a component from scratch was the only way to enhance Joomla!
core. Today we have several content construction kit components (CCK) available22. After
installing one of these CCK components, you are able to configure additional content
types with additional fields. The configuration is mostly easy but you depend on an
additional Joomla! component that is the base of your use case.

I am a user and I want a simple directory for my website.

Don't waste time with developing the component, download a CCK component and
configure what you need.

I am a company with a use case that will not change in the next five years and I
haven’t found the right component in the JED. The company has no IT
department with developers.

Try to solve your problem with a CCK component. If it doesn't work, start with your own
component.

I am a company with a use case that will not change in the next five years and I
haven’t found the right component in the JED. The company has an IT
department with developers.

Let the IT department come together and discuss it. Try out CCK components and
individual component development.

I am a developer and I want to create components. I want to sell them online.

Well, you have to learn it :)

HOW TO START?
I did a little research using Google, Joomla.org and the usual suspects. I found two very
detailed tutorials on How to write an MVC component. The first one is from Christophe
Demko, France 23, and the second one is from Rune V. Sjøen, Norway24. There are more
tutorials available.

Another interesting approach for component development is to create a whole
component automatically, based on your desires.

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 22

22 http://extensions.joomla.org/extensions/news-production/content-construction

23 http://docs.joomla.org/Developing_a_Model-View-
Controller_(MVC)_Component_for_Joomla!1.6

24 http://docs.joomla.org/User:Rvsjoen/tutorial/Developing_an_MVC_Component

• A project on GitHub called jFoobar25 started by Amy Stephen:
JFoobar Component Builder builds a fully functioning Joomla Component, complete with ACL, Views,
Models, and Controllers for the Administrator and Site. You can customise your Component for your site
building needs by defining new data and customising the Layouts.

• A company called Not Web Design™ offers a component creator26 as a paid service
that will create all the necessary files based on your desired configuration. By using the
paid pro version, you can create your own list and form views with custom fields,
potentially saving you several days of work.

Try to build your own component from scratch to get an idea and afterwards try out both
builders to check whether they are useful for you.

THE COCOATE REAL ESTATE COMPONENT
Based on the tutorials mentioned above, I will build a Real Estate component in I am not
sure right now how many steps.

We need more or less three types of applications in one component.

• Site
The site application, also called frontend, is the area of your site that guests and users
see. It is used for displaying content. The components of the site application live in
the /components folder in your Joomla! root.

• Administrator
The administrator application, also called backend, is the administration area of your
site. Where logged in managers and administrators can manage the site. The
components of the administrator application live in the /administrator/components folder
in your Joomla! root.

• Installation and Update
To install an update for your component, we need xml files for configuration and meta
data, sql files with database queries and, later on, an update server to provide new
versions of the component.

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 23

25 https://github.com/Niambie/jfoobar

26 http://www.notwebdesign.com/joomla-component-creator

Advertisement

J and Beyond is back and bigger than ever on May 18 - 20 2012 so make sure you
block the dates in your calendar, renew your passport and get ready for three days of
intense Joomla, fun and beer. This year we will be in the beautiful historic spa town of
Bad Nauheim at the Dolce Hotel - on Elvis Presley Platz. On the approach to the venue
you can leave your message at the Memorial to Elvis who served in the US Army right
here. We've listened to the feedback from last year about travel issues, especially for those
flying, and you will be glad to hear that Bad Nauheim is only 40km from Frankfurt
Airport, Europe's largest. For those of you that wish to bring your partners the Hotel has
a health spa and you will enjoy the short walk to the park and historic buildings of Bad
Nauheim.

http://jandbeyond.org/

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 24

4. Step 1 - The Basics

Photo: http://www.flickr.com/photos/22280677@N07/2994098078 (CC BY 2.0)

Let's collect a few facts about the first step to our Real Estate component. A component
has to have a unique name and the easiest way to achieve that is to use your name or your
company's name in the beginning.

• The human readable name for the component is "Cocoate Real Estate".

• The machine readable name for the component is cocoaterealestate (While writing
this component example I learned that it is better to avoid underscores in file names).

• The folders the component lives in are called com_cocoaterealestate

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 25

• It has one view called object. This view should display listings of houses later on.

• We need the possibility of creating a menu item to access the component

• We want to have a menu item in the backend that displays coming soon.

FRONTEND AND BACKEND
In "extension speech" the frontend is called site and the backend is called admin.

If you have a menu item on your page that leads to your component and a user clicks on
this link,

• Joomla! evaluates the URL path: /index.php?option=com_cocoaterealestate

• It searches the database components table for a component called cocoaterealestate.

• It looks for a folder called com_cocoaterealestate in the site folder components.

• In this folder it looks for a file called cocoaterealestate.php.

• It interprets this file.

The same happens in the admin area. If a manager or an administrator clicks the menu
item,

• Joomla! evaluates the URL path: /administrator/index.php?option=com_cocoaterealestate

• It searches the database components table for a component called cocoaterealestate.

• It looks for a folder called com_cocoaterealestate in the admin folder administrator/
components.

• In this folder it looks for a file called cocoaterealestate.php.

• It interprets this file.

Because we have to build two applications in one component with the same name, we
have to have a structure. To interpret in the right way, you need several files in the site
folder.

• cocoaterealestate.xml – The XML file with all the information for the installer

• cocoaterealestate.php – The starting point of your component

• controller.php – The C in MVC, the controller

• views/object/view.html.php – The file which gets the data from the model (the M in MVC)
and prepares it for the view (the V in MVC)

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 26

• views/object/tmpl/default.php – A default template for the component area of the page. It
is possible to override this default template with the installed Joomla! template.

We need the same structure in the admin interface. Both applications are totally
separate.

FILES AND INSTALLATION
Each extension needs a record in the extension table of the database. Without this record
it doesn't exist in the "eyes" of the Joomla! CMS and it is not possible to use the extension,
even when all files are in the right place. The database record will usually be created
when you install the component.

But how to start. You have to write the component first :)

As always you have two possibilities.

DISCOVER EXTENSION
Since Joomla! 1.6 there is a discover option in the Extension Manager. You can place the
files of your component in the right folders and click the discover option in the extension
manager. It will read the components .xml file and update the extension table. The
component is ready to use.

Your files should be placed like this. A file index.html has to be placed in each folder for
security reasons.

/component/com_cocoaterealestate/cocoaterealestate.php

/component/com_cocoaterealestate/controller.php

/component/com_cocoaterealestate/index.html

/component/com_cocoaterealestate/view/object/view.html.php

/component/com_cocoaterealestate/view/object/index.html

/component/com_cocoaterealestate/view/object/tmpl/default.php

/component/com_cocoaterealestate/view/object/tmpl/default.xml

/component/com_cocoaterealestate/view/object/tmpl/index.html

/component/com_cocoaterealestate/view/index.html

/administrator/components/com_cocoaterealestate/cocoaterealestate.php

/administrator/components/com_cocoaterealestate/cocoaterealestate.xml

/administrator/components/com_cocoaterealestate/index.html

INSTALL EXTENSION

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 27

The other way is to install your extension via the Joomla! Extension Manager. In this case
you have to place the files outside of Joomla!, compress them to a zip archive and upload
it to the installer. After installation, the component is ready to use.

Your files should be placed like this. A file index.html has to be placed in each folder for
security reasons.

/site/cocoaterealestate.php

/site/controller.php

/site/index.html

/site/view/object/view.html.php

/site/view/object/index.html

/site/view/object/tmpl/default.php

/site/view/object/tmpl/default.xml

/site/view/object/tmpl/index.html

/site/view/index.html

/administrator/cocoaterealestate.php

/administrator/cocoaterealestate.xml

/administrator/index.html

You find the example component for download on our website27.

THE CODE
In total we need 7 files with code and the index.html file.

File: index.html
If a visitor navigates his browser directly to a folder of the component, it would be
possible, depending on the configuration of the web server, that he would see a directory
of that folder. To avoid that you have to place a file called index.html in each folder
(Listing 1). This requirement is a moot point (The files of wrath28) but it is still necessary
to get listed in the Joomla! Extension Directory.

<!DOCTYPE html><title></title>

Listing 1: index.html

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 28

27 http://cocoate.com/jdev/component/step-1

28 http://www.dionysopoulos.me/blog/the-files-of-wrath

File: /administrator/cocoaterealestate.php
This is the file, which is executed when you click the component in the administration
area (Figure 1). It can contain "everything" :)

Figure 1: Output in Backend
Coming soon!

Listing 2: /administrator/cocoaterealestate.php

File: /administrator/cocoaterealestate.xml
The .xml file contains meta data and the information where to put the files. You can see
parts of the data in Figure 2.

Figure 2: XML Data in Extension Manager
<?xml version="1.0" encoding="utf-8"?>

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 29

<extension type="component" version="1.7.0" method="upgrade">

 <name>Cocoate Real Estate</name>

 <!-- The following elements are optional and free of formatting
constraints -->

 <creationDate>November 2011</creationDate>

 <author>Hagen Graf</author>

 <authorEmail>hagen@cocoate.com</authorEmail>

 <authorUrl>http://cocoate.com</authorUrl>

 <copyright>2006-2011 cocoate.com - All rights reserved</copyright>

 <license>GPL 2</license>

 <!-- The version string is stored in the components table -->

 <version>0.0.1</version>

 <!-- The description is optional and defaults to the name -->

 <description>House listings on your website.</description>

 <!-- Note the folder attribute: This attribute describes the folder

 to copy FROM in the package to install therefore files copied

 in this section are copied from "site/" in the package -->

 <files folder="site">

 <filename>index.html</filename>

 <filename>cocoaterealestate.php</filename>

 <filename>controller.php</filename>

 <folder>views</folder>

 </files>

 <administration>

 <menu>Cocoate Real Estate</menu>

 <!-- Note the folder attribute: This attribute describes the
folder

 to copy FROM in the package to install therefore files
copied

 in this section are copied from "admin/" in the package -->

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 30

 <files folder="admin">

 <filename>index.html</filename>

 <filename>cocoaterealestate.php</filename>

 </files>

 </administration>

</extension>

Listing 3: /administrator/cocoaterealestate.xml

File: /site/cocoaterealestate.php
The defined ('_JEXEC') or die; statement has to be for security reasons at the top of
each .php file. This statement checks to see if the file is being called from within a Joomla!
session (Listing 4).

// No direct access to this file

defined('_JEXEC') or die;

// Import of the necessary classes

jimport('joomla.application.component.controller');

// Get an instance of the controller prefixed by CocoateRealEstate

$controller = JController::getInstance('CocoateRealEstate');

// Perform the Request task

$controller->execute(JRequest::getCmd('task'));

// Redirect if set by the controller

$controller->redirect();

Listing 4: /site/cocoaterealestate.php

File: /site/controller.php
This is the controller, the C of MVC. At the moment there is nothing to control, so the
file remains empty (Listing 5)

defined('_JEXEC') or die;

jimport('joomla.application.component.controller');

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 31

class CocoateRealEstateController extends JController

{

}

Listing 5: /site/controller.php

File: /site/view/object/view.html.php

Views are the V in MVC and they are separated in various views. The
name of the folder is the name of the view. In our case we'll need a
listing of all houses and a detailed page for one object. The views are
separated in files for collecting the necessary data from the model
(which will come later too) and the template file with the markup. In
Listing 4 you see the data collection for the objects list.

// No direct access to this file

defined('_JEXEC') or die;

jimport('joomla.application.component.view');

class CocoateRealEstateViewObject extends JView

{

 function display($tpl = null)

 {

 // Assign data to the view

 $this->item = 'Cocoate Real Estate';

 // Display the view

 parent::display($tpl);

 }

}

Listing 6: /site/view/object/view.html.php

File: /site/view/object/tmpl/default.php
This is the template file with the markup (Listing 7). This file can be copied to and
overwritten by the main Joomla! template.

// No direct access to this file

defined('_JEXEC') or die;

?>

<h1><?php echo $this->item; ?></h1>

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 32

Listing 7: /site/view/object/tmpl/default.php

File: /site/view/object/tmpl/default.xml
This is the configuration file for the menu item Manager (Figure 3, Listing 8)

Figure 3: XML Data in Menu Manager
<?xml version="1.0" encoding="utf-8"?>

<metadata>

 <layout title="Cocoate Real Estate">

 <message>Object</message>

 </layout>

</metadata>

Listing 8: /site/view/object/tmpl/default.xml

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 33

Advertisement

You can sponsor th i s
chapter
http://cocoate.com/jdev/

ad

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 34

http://cocoate.com/jdev/ad
http://cocoate.com/jdev/ad
http://cocoate.com/jdev/ad
http://cocoate.com/jdev/ad

5. Step 2 - Database,

Backend, Languages

After the basics we want to achieve more.

We want to have a fully functioning component with a backend for adding, editing and
deleting objects and we want to have separated language files, of course, to have the
possibility to localise our component. In general this is not complicated but we have to
create many files and it is easy to get lost in folders, filenames and methods.

I want you to start with a few screenshots to give you an idea of what I am talking about :)

COCOATE REAL ESTATE (CRE) VERSION 0 .0 .2
SCREENSHOTS

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 35

The component consists more or less of two components. One is responsible for the
Frontend (site) and one for the administration area (admin). It is still a simple component
without eye candy, ACL, additional JavaScript and all the other fancy stuff but it will be a
robust foundation to discover more.

Site
For the moment we only want to have the possibility to create a link to one object (Figure
1). Later on we will enhance that.

Figure 1: One listing in the frontend

Admin
To be able to create the menu link for the site we need a menu item type (Figure 2).

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 36

Figure 2: Menu Item Type

After we choose the menu item Type we have to select the object we want to present.
There will be an option list consisting of different fields fetched from the database. This
step is important because in our first try we just wrote the text in an xml file. Here the
option list is created dynamically, depending on the content of our database table (Figure
3).

Figure 3: Dynamic Parameters

To add, edit and delete objects we need an overview page like in Figure 4. We need a
headline, a toolbar with Icons, checkboxes and of course content.

Figure 4: Backend Table

When you click on the title link you should be directed to an edit form. In this edit form,
we need a different toolbar, fields and of course labels and description to help the user to

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 37

understand what should be done (Figure 5). The form should appear, too, when the New
icon is clicked! After saving, there should be a message for the user.

Figure 5: Edit Form

In the case of edit, it should be possible to tick the checkbox of the row and click the icon
edit. If nothing is checked and the edit icon is clicked there should be a message (Figure 6)

Figure 6: Message that Nothing Is Checked

And last but not least, it should be possible to delete the freshly added object.

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 38

CRE VERSION 0.0.2 FILES
In this step we need a lot of additional files. If you still work with a "simple" text editor it
can become a bit confusing. I propose that you install the example component29 and go
through all the files.

It is important to keep in mind that the folder structure in the installation package differs
from the folder structure in the Joomla! CMS.

Please take your time and have a look at the folder structure in the ZIP file (Figure 7) and
the file structure in the CMS after installing (Figure 8).

Figure 7: Folder Structure in Installation Package

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 39

29 http://cocoate.com/jdev/component/step-2 at the bottom of the chapter

Figure 8: Folder Structure in Joomla! CMS

DATABASE TABLE COCOATEREALESTATE_OBJECTS
We need to store our listings somewhere and I had a chicken and egg30 problem when I
wrote the chapter. Of course I wrote two files for installing and uninstalling the table
cocoaterealestate_objects (Listing 1, Listing 2) but initially I built the table manually using
phpMyAdmin.

After the code was complete, it was possible to install the component and the two files are
executed from the installing and uninstalling process.

The files contain pure SQL commands and consequently the extension is .sql. To keep it
"simple" I structured the table in a simple way with fields for title, image, description, city,
zip, country and price. Keep in mind that the drop command at the top of the install file
can accidentally delete existing data. Depending on your update plans it can be useful or
dangerous :).

DROP TABLE IF EXISTS `#__cocoaterealestate_objects`;

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 40

30 http://en.wikipedia.org/wiki/Chicken_or_the_egg

CREATE TABLE `#__cocoaterealestate_objects` (

 `id` int(10) unsigned NOT NULL AUTO_INCREMENT,

 `uid` int(10) unsigned NOT NULL DEFAULT '0',

 `created` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP,

 `published` tinyint(1) unsigned NOT NULL DEFAULT '0',

 `ordering` int(10) unsigned NOT NULL DEFAULT '0',

 `image` varchar(255) NOT NULL DEFAULT '',

 `meta_descr` varchar(250) DEFAULT NULL,

 `meta_keys` varchar(250) DEFAULT NULL,

 `title` varchar(200) NOT NULL DEFAULT '',

 `description` text,

 `city` varchar(100) NOT NULL DEFAULT '',

 `zip` varchar(50) NOT NULL DEFAULT '',

 `country` varchar(100) NOT NULL DEFAULT '',

 `price` int(10) NOT NULL DEFAULT '0',

 PRIMARY KEY (`id`)

) ENGINE=MyISAM DEFAULT CHARSET=utf8 AUTO_INCREMENT=3 ;

INSERT INTO `#__cocoaterealestate_objects` VALUES(1, 42, '2011-11-29
1 5 : 3 9 : 1 0 ' , 1 , 0 , ' h t t p : / / f a r m 4 . s t a t i c f l i c k r . c o m /
3100/2724105775_4d039b4127.jpg', NULL, NULL, 'First House', 'Sed id leo
metus, ut mollis mi. Etiam malesuada ornare felis, vel imperdiet eros
cursus sollicitudin. Nulla viverra, neque sodales porttitor accumsan,
felis purus varius libero, eu posuere odio risus ac nisl. Proin quis
eros ipsum, sit amet pretium eros? Proin at purus cras amet.\r\n',
'Fitou', '11510', 'France', 85000);

INSERT INTO `#__cocoaterealestate_objects` VALUES(2, 42, '2011-11-29
1 5 : 3 9 : 1 0 ' , 1 , 0 , ' h t t p : / / f a r m 6 . s t a t i c f l i c k r . c o m /
5298/5489897350_eaf091d99b.jpg', NULL, NULL, 'Second House', 'bumsclabe
laber Sed id leo metus, ut mollis mi. Etiam malesuada ornare felis, vel
imperdiet eros cursus sollicitudin. Nulla viverra, neque sodales
porttitor accumsan, felis purus varius libero, eu posuere odio risus ac
nisl. Proin quis eros ipsum, sit amet pretium eros? Proin at purus cras
amet.\r\n', 'Fitou', '11510', 'France', 100000);

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 41

Listing 1: /administrator/components/com_cocoaterealestate/sql/install.mysql.utf8.sql

DROP TABLE IF EXISTS `#__cocoaterealestate_objects`;

Listing 2: /administrator/components/com_cocoaterealestate/sql/uninstall.mysql.utf8.sql

MODELS, TABLES, FIELDS, LANGUAGE FILES
Besides the database table itself, we need a table class and various models to manage the
needs of our component.

Table Class
The table class lives in the administration area of the CMS in /administrator/components/
com_cocoate_realestate/tables/objects.php (Listing 3). You define as many tables as you need.
The name of the class consists of a prefix (CocoateRealEstateTable) and of the virtual name
of the table (Objects). An instance of this class represents a row in the db table which
means one house listing.

<?php

// No direct access to this file

defined('_JEXEC') or die;

jimport('joomla.database.table');

class CocoateRealEstateTableObjects extends JTable

{

 var $id = null;

 var $title = null;

 var $city = null;

 var $price = null;

 var $published = 0;

 function __construct(&$db)

 {

 parent::__construct('#__cocoaterealestate_objects', 'id', $db);

 }

}

?>

Listing 3: /administrator/components/com_cocoate_realestate/tables/objects.php

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 42

Model - Frontend
The cool thing is that we can create a link for a single object (Figure 1). Therefore we need
a model for ONE row (one object/house listing). It is important to distinguish between a
single house listing and list/table of house listings. In Joomla! we call the model file in a
singular way, if we want to have ONE item (object.php) and in the plural way if we want a
list of items (objects.php). The name of the model has to be similar to the name of the view
folder.

In our case the name of the view folder is object so we call the model file object.php too
(Listing 4).

<?php

// No direct access to this file

defined('_JEXEC') or die('Restricted access');

jimport('joomla.application.component.modelitem');

class CocoateRealEstateModelObject extends JModelItem

{

 protected $item;

 public function getItem()

 {

 if (!isset($this->item)) {

 $id = JRequest::getInt('id');

 // Get a TableObject instance

 $table = $this->getTable('Objects', 'CocoateRealEstateTable');

 // Load the object

 $table->load($id);

 // Assign the data

 $this->item['id'] = $table->id;

 $this->item['image'] = $table->image;

 $this->item['title'] = $table->title;

 $this->item['city'] = $table->city;

 $this->item['zip'] = $table->zip;

 $this->item['country'] = $table->country;

 $this->item['price'] = $table->price;

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 43

 }

 return $this->item;

 }

}

?>

Listing 4: /components/com_cocoate_realestate/models/object.php

Model/Field - Backend
The view related to the object model needs a kind of relationship to this model. This is
done by an entry in an xml file called /components/cocoaterealestate/views/object/tmpl/
default.xml (Listing 5). The important attribute is addfieldpath. The WORDS IN CAPITAL
LETTERS are variables for language files.

<?xml version="1.0" encoding="utf-8"?>

<metadata>

 <layout title="COM_COCOATEREALESTATE_OBJECT_VIEW_DEFAULT_TITLE">

 <message>COM_COCOATEREALESTATE_OBJECT_VIEW_DEFAULT_DESC</message>

 </layout>

 <fields name="request" addfieldpath="/administrator/components/
com_cocoaterealestate/models/fields">

 <fieldset name="request">

 <field

 name="id"

 type="object"

 extension="com_cocoaterealestate"

 label="COM_COCOATEREALESTATE_OBJECT_FIELD_OBJECT_LABEL"

 description="COM_COCOATEREALESTATE_OBJECT_FIELD_OBJECT_LABEL"

 required="true"

 />

 </fieldset>

 </fields>

</metadata>

Listing 5: /components/cocoaterealestate/views/object/tmpl/default.xml

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 44

Language Files
Language files have nothing to do with models but I want to mention them now because
we need them and I already have used language variables (THE ONES WITH
CAPITAL LETTERS).

The language file for the frontend would be /language/en-GB/en-GB.com_cocoaterealestate.ini.
The name for the German language file would be /language/de-DE/de-
DE.com_cocoaterealestate.ini. At the moment we need no text strings for the frontend.

The two language files for the backend are stored in the folder /administrator/language/en-
GB/. One is called en-GB.com_cocoaterealestate.sys.ini (Listing 6) and the other one is called en-
GB.com_cocoaterealestate.ini (Listing 7). The sys.ini file will be used during the installation
process, in the extension manager and in the menus. It contains a lot less translation
strings and this file is loaded in scenarios where the loaded component is not
com_cocoaterealestate itself, but minimal translation is still needed.

COM_COCOATEREALESTATE="Cocoate Real Estate"

COM_COCOATEREALESTATE_DESCRIPTION="House listings on your website."

COM_COCOATEREALESTATE_OBJECT_VIEW_DEFAULT_TITLE="Single object"

COM_COCOATEREALESTATE_OBJECT_VIEW_DEFAULT_DESC="This view displays a
single object"

COM_COCOATEREALESTATE_MENU="Cocoate Real Estate"

Listing 6: /administratorlanguage/en-GB/en-GB.com_cocoaterealestate.sys.ini

COM_COCOATEREALESTATE_OBJECT_FIELD_OBJECT_DESC="This object will be
displayed"

COM_COCOATEREALESTATE_OBJECT_FIELD_OBJECT_LABEL="Object"

COM_COCOATEREALESTATE_OBJECT_HEADING_ID="ID"

COM_COCOATEREALESTATE_OBJECT_HEADING_OBJECT="Object"

COM_COCOATEREALESTATE_OBJECT_HEADING_TITLE="Title"

COM_COCOATEREALESTATE_OBJECT_HEADING_COUNTRY="Country"

COM_COCOATEREALESTATE_OBJECT_HEADING_CITY="City"

COM_COCOATEREALESTATE_OBJECT_HEADING_IMAGE="Image"

COM_COCOATEREALESTATE_OBJECT_HEADING_ZIP="ZIP"

COM_COCOATEREALESTATE_OBJECT_HEADING_PRICE="Price"

COM_COCOATEREALESTATE_MANAGER_OBJECTS="CocoateRealEstate manager"

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 45

COM_COCOATEREALESTATE_MANAGER_OBJECT_NEW="CocoateRealEstate manager:
New Object"

COM_COCOATEREALESTATE_MANAGER_OBJECT_EDIT="CocoateRealEstate manager:
Edit Object"

COM_COCOATEREALESTATE_N_ITEMS_DELETED_1="One object deleted"

COM_COCOATEREALESTATE_N_ITEMS_DELETED_MORE="%d objects deleted"

COM_COCOATEREALESTATE_OBJECT_DETAILS="Object Details"

COM_COCOATEREALESTATE_OBJECT_FIELD_TITLE_LABEL="Title"

COM_COCOATEREALESTATE_OBJECT_FIELD_TITLE_DESC="Title"

COM_COCOATEREALESTATE_OBJECT_FIELD_IMAGE_LABEL="Image"

COM_COCOATEREALESTATE_OBJECT_FIELD_IMAGE_DESC="Please paste a URL"

COM_COCOATEREALESTATE_OBJECT_FIELD_ZIP_LABEL="ZIP"

COM_COCOATEREALESTATE_OBJECT_FIELD_ZIP_DESC="Enter ZIP code"

COM_COCOATEREALESTATE_OBJECT_FIELD_CITY_LABEL="City"

COM_COCOATEREALESTATE_OBJECT_FIELD_CITY_DESC="City"

COM_COCOATEREALESTATE_OBJECT_FIELD_COUNTRY_LABEL="Country"

COM_COCOATEREALESTATE_OBJECT_FIELD_COUNTRY_DESC="Country"

COM_COCOATEREALESTATE_OBJECT_FIELD_PRICE_LABEL="Price"

COM_COCOATEREALESTATE_OBJECT_FIELD_PRICE_DESC="Enter price"

Listing 7: /administratorlanguage/en-GB/en-GB.com_cocoaterealestate.ini

Models, Fields and Forms - Backend
The parameter field for choosing the right object for the menu link needs a relationship to
the model. Therefore we create a folder fields inside of the models folder. In this folder we
store the structure of the parameter field and call it object.php (Listing 8).

<?php

defined('_JEXEC') or die;

jimport('joomla.form.helper');

JFormHelper::loadFieldClass('list');

class JFormFieldObject extends JFormFieldList

{

 protected $type = 'Object';

 protected function getOptions()

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 46

 {

 $db = JFactory::getDBO();

 $query = $db->getQuery(true);

 $query->select('id,title,price,city');

 $query->from('#__cocoaterealestate_objects');

 $db->setQuery((string)$query);

 $titles = $db->loadObjectList();

 $options = array();

 if($titles){

 foreach($titles as $title)

 {

 $options[] = JHtml::_('select.option', $title->id, $title->id.'
'.$title->city.' '.$title->title.' '.money_format('%i', $title-
>price));

 }

 }

 $options = array_merge(parent::getOptions(), $options);

 return $options;

 }

}

Listing 8: /administrator/components/com_cocoate_realestate/models/fields/object.php

In the backend, we have an overview page (Figure 4) and a form for editing and adding a
single object (Figure 5). For that reason we need two models - object.php and objects.php
(Listing 9 and Listing 10)

<?php

// No direct access to this file

defined('_JEXEC') or die;

jimport('joomla.application.component.modeladmin');

class CocoateRealEstateModelObject extends JModelAdmin

{

 public function getForm($data = array(), $loadData = true)

 {

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 47

 // Get the form.

 $form = $this->loadForm('com_cocoaterealestate.object', 'object',
array('control' => 'jform', 'load_data' => $loadData));

 return $form;

 }

 protected function loadFormData()

 {

 // Check the session for previously entered form data.

 $ d a t a = J F a c t o r y : : g e t A p p l i c a t i o n () -
>getUserState('com_cocoaterealestate.edit.object.data', array());

 if(empty($data)){

 $data = $this->getItem();

 }

 return $data;

 }

 public function getTable($name = 'Objects', $prefix =
'CocoateRealEstateTable', $options = array())

 {

 return parent::getTable($name, $prefix, $options);

 }

}

Listing 9: /administrator/components/com_cocoate_realestate/models/object.php

<?php

// No direct access to this file

defined('_JEXEC') or die;

jimport('joomla.application.component.modellist');

class CocoateRealEstateModelObjects extends JModelList

{

 protected function getListQuery()

 {

 // Create a new query object.

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 48

 $db = JFactory::getDBO();

 $query = $db->getQuery(true);

 // Select some fields

 $query->select('id,title,city,country,price');

 // From the realestate table

 $query->from('#__cocoaterealestate_objects');

 return $query;

 }

}

?>

Listing 10: /administrator/components/com_cocoate_realestate/models/objects.php

To add an object/listing we need a form. Forms are located in the model folder, too. The
extension for form files is .xml and the name is the same as the name of the view where
the form is needed. In our case, the name is again objects (Listing 11).

<?xml version="1.0" encoding="utf-8"?>

<form>

 <fieldset>

 <field

 name="id"

 type="hidden"

 />

 <field

 name="title"

 type="text"

 label="COM_COCOATEREALESTATE_OBJECT_FIELD_TITLE_LABEL"

 description="COM_COCOATEREALESTATE_OBJECT_FIELD_TITLE_DESC"

 size="40"

 class="inputbox"

 default=""

 />

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 49

 <field

 name="image"

 type="text"

 label="COM_COCOATEREALESTATE_OBJECT_FIELD_IMAGE_LABEL"

 description="COM_COCOATEREALESTATE_OBJECT_FIELD_IMAGE_DESC"

 size="40"

 class="inputbox"

 default=""

 />

 <field

 name="zip"

 type="text"

 label="COM_COCOATEREALESTATE_OBJECT_FIELD_ZIP_LABEL"

 description="COM_COCOATEREALESTATE_OBJECT_FIELD_ZIP_DESC"

 size="40"

 class="inputbox"

 default=""

 />

 <field

 name="city"

 type="text"

 label="COM_COCOATEREALESTATE_OBJECT_FIELD_CITY_LABEL"

 description="COM_COCOATEREALESTATE_OBJECT_FIELD_CITY_DESC"

 size="40"

 class="inputbox"

 default=""

 />

 <field

 name="country"

 type="text"

 label="COM_COCOATEREALESTATE_OBJECT_FIELD_COUNTRY_LABEL"

 description="COM_COCOATEREALESTATE_OBJECT_FIELD_COUNTRY_DESC"

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 50

 size="40"

 class="inputbox"

 default=""

 />

 <field

 name="price"

 type="text"

 label="COM_COCOATEREALESTATE_OBJECT_FIELD_PRICE_LABEL"

 description="COM_COCOATEREALESTATE_OBJECT_FIELD_PRICE_DESC"

 size="40"

 class="inputbox"

 default=""

 />

 </fieldset>

</form>

Listing 11: /administrator/components/com_cocoate_realestate/models/forms/objects.xml

CONTROLLERS
The controllers are necessary to be able to decide what to do next. If you click the “New”
icon to add a house listing, a controller has to find the right way what to do next. In total
we use four controllers at the moment.

• One for the frontend (/component/com_cocoaterealestate/controller.php - listing 12)

• One generic controller with a default option (in our case objects) for the backend (/
administrator/component/com_cocoaterealestate/controller.php - listing 13)

• Two controllers for the backend for the list view (/administrator/component/
com_cocoaterealestate/controllers/objects.php - listing 14) and for the single view (/administrator/
component/com_cocoaterealestate/controllers/object.php - listing 15).

/component/com_cocoaterealestate/controller.php
This controller does nothing at the moment. It simply has to be there (Listing 12).

<?php

// No direct access to this file

defined('_JEXEC') or die;

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 51

jimport('joomla.application.component.controller');

class CocoateRealEstateController extends JController

{

}

Listing 12: /administrator/component/com_cocoaterealestate/controller.php

/administrator/component/com_cocoaterealestate/controller.php
The controller has to be there, too, but in this case we have two views, so one of must be
the default view. The controller sets the default view to objects.

<?php

// No direct access to this file

defined('_JEXEC') or die;

jimport('joomla.application.component.controller');

class CocoateRealEstateController extends JController

{

 function display($cachable = false)

 {

 // Set default view if not set

 JRequest::setVar('view', JRequest::getCmd('view', 'objects'));

 parent::display($cachable);

 }

}

?>

Listing 13: /administrator/component/com_cocoaterealestate/controller.php

administrator/component/com_cocoaterealestate/controllers/
objects.php
<?php

// No direct access to this file

defined('_JEXEC') or die;

jimport('joomla.application.component.controlleradmin');

class CocoateRealEstateControllerObjects extends JControllerAdmin

{

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 52

 public function getModel($name = 'Object', $prefix =
'CocoateRealEstateModel') {

 $model = parent::getModel($name, $prefix, array('ignore_request' =>
true));

 return $model;

 }

}

Listing 14 /administrator/component/com_cocoaterealestate/controllers/objects.php

administrator/component/com_cocoaterealestate/controllers/
object.php
This controller has to be there but can remain empty.

<?php

// No direct access to this file

defined('_JEXEC') or die;

jimport('joomla.application.component.controllerform');

class CocoateRealEstateControllerObject extends JControllerForm

{

}

Listing 15 /administrator/component/com_cocoaterealestate/controllers/object.php

VIEWS IN FRONTEND AND BACKEND
In our example we have three views:

The object view in the frontend (Figure 1) displaying a single object. It consists of three
files:
/component/com_cocoaterealestate/views/object/view.html.php (Listing 16)
/component/com_cocoaterealestate/views/object/tmpl/default.php (Listing 17)
/component/com_cocoaterealestate/views/object/tmpl/default.xml (Listing 18) (I already mentioned
that file above)

The objects view in the backend (Figure 4) displays a list of objects/houses. It consists of
five files:
/administrator/component/com_cocoaterealestate/views/object/view.html.php (Listing 19)
/administrator/component/com_cocoaterealestate/views/object/tmpl/default.php (Listing 20)
/administrator/component/com_cocoaterealestate/views/object/tmpl/default_body.php (Listing 21)

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 53

/administrator/component/com_cocoaterealestate/views/object/tmpl/default_foot.php (Listing 22)
/administrator/component/com_cocoaterealestate/views/object/tmpl/default_head.php (Listing 23)

The object view in the backend (Figure 5) displays the form. It consists of two files:
/administrator/component/com_cocoaterealestate/views/object/view.html.php (Listing 24)
/administrator/component/com_cocoaterealestate/views/object/tmpl/edit.php (Listing 25)

The structure of the views are very important. The view.html.php collects the data from
the model and provides it as variables for the "real" template called default.php. The
default.php is made for designers and it is overridable by any Joomla! template (Read
more in Chapter Template Overrides). It should contain only markup enriched with PHP
variables.

<?php

// No direct access to this file

defined('_JEXEC') or die;

jimport('joomla.application.component.view');

class CocoateRealEstateViewObject extends JView

{

 protected $item;

 function display($tpl = null)

 {

 // Assign data to the view

 //$this->item = 'Cocoate Real Estate';

 $this->item = $this->get('item');

 // Display the view

 parent::display($tpl);

 }

}

Listing 16: /component/com_cocoaterealestate/views/object/view.html.php

<?php

// No direct access to this file

defined('_JEXEC') or die;

?>

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 54

<h1><?php echo $this->item['title']; ?></h1>

<img src="<?php echo $this->item['image']; ?>">

 <?php echo $this->item['zip']; ?>

 <?php echo $this->item['city']; ?>,

 <?php echo $this->item['country']; ?>

 <?php echo $this->item['price']; ?> €

<pre>

<?php

// uncomment the next line to see the array

// print_r($this->item); ?>

</pre>

Listing 17: /component/com_cocoaterealestate/views/object/tmpl/default.php

<?xml version="1.0" encoding="utf-8"?>

<metadata>

 <layout title="COM_COCOATEREALESTATE_OBJECT_VIEW_DEFAULT_TITLE">

 <message>COM_COCOATEREALESTATE_OBJECT_VIEW_DEFAULT_DESC</message>

 </layout>

 <fields name="request" addfieldpath="/administrator/components/
com_cocoaterealestate/models/fields">

 <fieldset name="request">

 <field

 name="id"

 type="object"

 extension="com_cocoaterealestate"

 label="COM_COCOATEREALESTATE_OBJECT_FIELD_OBJECT_LABEL"

 description="COM_COCOATEREALESTATE_OBJECT_FIELD_OBJECT_LABEL"

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 55

 required="true"

 />

 </fieldset>

 </fields>

</metadata>

Listing 18: /component/com_cocoaterealestate/views/object/tmpl/default.xml

<?php

// No direct access to this file

defined('_JEXEC') or die;

jimport('joomla.application.component.view');

class CocoateRealEstateViewObjects extends JView

{

 function display($tpl = null)

 {

 // Get data from the model

 $items = $this->get('Items');

 $pagination = $this->get('Pagination');

 // Assign data to the view

 $this->items = $items;

 $this->pagination = $pagination;

 // Set the toolbar

 $this->addToolBar();

 // Display the template

 parent::display($tpl);

 }

 protected function addToolBar()

 {

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 56

JToolBarHelper::title(JText::_('COM_COCOATEREALESTATE_MANAGER_OBJECTS')
);

 JToolBarHelper::deleteListX('', 'objects.delete');

 JToolBarHelper::editListX('object.edit');

 JToolBarHelper::addNewX('object.add');

 }

}

?>

Listing 19: /administrator/component/com_cocoaterealestate/views/object/view.html.php

<?php

// No direct access to this file

defined('_JEXEC') or die;

JHtml::_('behavior.tooltip');

?>

< f o r m a c t i o n = " < ? p h p e c h o J R o u t e : : _ (' i n d e x . p h p ?
option=com_cocoaterealestate'); ?>" method="post" name="adminForm">

 <table class="adminlist">

 <thead><?php echo $this->loadTemplate('head');?></thead>

 <tfoot><?php echo $this->loadTemplate('foot');?></tfoot>

 <tbody><?php echo $this->loadTemplate('body');?></tbody>

 </table>

 <div>

 <input type="hidden" name="task" value="" />

 <input type="hidden" name="boxchecked" value="0" />

 <?php echo JHtml::_('form.token'); ?>

 </div>

</form>

Listing 20: /administrator/component/com_cocoaterealestate/views/object/tmpl/default.php

<?php

// No direct access to this file

defined('_JEXEC') or die;

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 57

?>

<?php foreach($this->items as $i => $item): ?>

 <tr class="row<?php echo $i % 2; ?>">

 <td><?php echo $item->id; ?></td>

 <td><?php echo JHtml::_('grid.id', $i, $item->id); ?></td>

 <td>

 < a h r e f = " < ? p h p e c h o J R o u t e : : _ (' i n d e x . p h p ?
option=com_cocoaterealestate&task=object.edit&id=' . $item->id); ?>">

 <?php echo $item->title; ?>

 </td>

 <td><?php echo $item->city; ?></td>

 <td><?php echo $item->country; ?></td>

 <td><?php echo $item->price; ?></td>

 </tr>

<?php endforeach; ?>

Listing 21: /administrator/component/com_cocoaterealestate/views/object/tmpl/default_body.php

<?php

// No direct access to this file

defined('_JEXEC') or die;

?>

<tr>

 <td colspan="6"><?php echo $this->pagination->getListFooter(); ?></
td>

</tr>

Listing 22: /administrator/component/com_cocoaterealestate/views/object/tmpl/default_foot.php

<?php

// No direct access to this file

defined('_JEXEC') or die;

?>

<tr>

 <th width="5">

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 58

 <?php echo JText::_('COM_COCOATEREALESTATE_OBJECT_HEADING_ID'); ?>

 </th>

 <th width="20">

 <input type="checkbox" name="toggle" value="" onclick="checkAll(<?php
echo count($this->items); ?>);" />

 </th>

 <th>

 <?php echo JText::_('COM_COCOATEREALESTATE_OBJECT_HEADING_TITLE'); ?>

 </th>

 <th>

 <?php echo JText::_('COM_COCOATEREALESTATE_OBJECT_HEADING_CITY'); ?>

 </th>

 <th>

 < ? p h p e c h o
JText::_('COM_COCOATEREALESTATE_OBJECT_HEADING_COUNTRY'); ?>

 </th>

 <th>

 <?php echo JText::_('COM_COCOATEREALESTATE_OBJECT_HEADING_PRICE'); ?>

 </th>

</tr>

Listing 23: /administrator/component/com_cocoaterealestate/views/object/tmpl/default_head.php

<?php

// No direct access to this file

defined('_JEXEC') or die;

jimport('joomla.application.component.view');

class CocoateRealEstateViewObject extends JView

{

 public function display($tpl = null)

 {

 // get the Data

 $form = $this->get('Form');

 $item = $this->get('Item');

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 59

 // Assign the Data

 $this->form = $form;

 $this->item = $item;

 // Set the toolbar

 $this->addToolBar();

 // Display the template

 parent::display($tpl);

 }

 protected function addToolBar()

 {

 JRequest::setVar('hidemainmenu', true);

 $isNew = ($this->item->id == 0);

 J T o o l B a r H e l p e r : : t i t l e ($ i s N e w ?
J T e x t : : _ (' C O M _ C O C O A T E R E A L E S T A T E _ M A N A G E R _ O B J E C T _ N E W ') :
JText::_('COM_COCOATEREALESTATE_MANAGER_OBJECT_EDIT'));

 JToolBarHelper::save('object.save');

 JToolBarHelper::cancel('object.cancel', $isNew ?
'JTOOLBAR_CANCEL' : 'JTOOLBAR_CLOSE');

 }

}

Listing 24: /administrator/component/com_cocoaterealestate/views/object/view.html.php

<?php

// No direct access to this file

defined('_JEXEC') or die;

JHtml::_('behavior.tooltip');

?>

< f o r m a c t i o n = " < ? p h p e c h o J R o u t e : : _ (' i n d e x . p h p ?
option=com_cocoaterealestate&layout=edit&id='.(int) $this->item->id); ?
>"

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 60

 method="post" name="adminForm" id="object-form">

 <fieldset class="adminform">

 < l e g e n d > < ? p h p e c h o
JText::_('COM_COCOATEREALESTATE_OBJECT_DETAILS'); ?></legend>

 <ul class="adminformlist">

 <?php foreach($this->form->getFieldset() as $field): ?>

 <?php echo $field->label;echo $field->input;?>

 <?php endforeach; ?>

 </fieldset>

 <div>

 <input type="hidden" name="task" value="object.edit" />

 <?php echo JHtml::_('form.token'); ?>

 </div>

</form>

Listing 25: /administrator/component/com_cocoaterealestate/views/object/tmpl/edit.php

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 61

Advertisement

Joomla! development, template design, logo design, general artwork and deisgn for
both print and internet.

Why not contact me personally info@jonathon-laming.co.uk or via info@digital-
flo.com

http://digital-flo.com/

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 62

http://digital-flo.com
http://digital-flo.com

6. The Cool Stuff

Photo: http://www.flickr.com/photos/lexgs40099/56656498/ CC-BY-2.0

Congrats!

The component exists and it was a challenge to build it. It is far from "ready to use" but I
think you have now a clearer image of the structure behind a component.

At this stage, it would be good to think, for example, about using an IDE. I wrote the last
chapter using Textwrangler as editor and I got lost in all these files. In the meantime, I
installed Eclipse :)

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 63

WHAT IS MISSING IN OUR COMPONENT?
Well, that depends on your needs.

From a Joomla! perspective, everything is possible. From a client’s perspective, you usually
have to keep in mind that there is a limited budget!

But let's have a short list of missing features (feel free to add more in a comment31).

• Managing the Portfolio in the Backend
When we have hundreds of listings, how do we manage them?

• Permissions
Who can add, edit and delete house listings?

• Validation
If so many people are working on our platform, we have to validate their input to avoid
failures.

• Image Upload
How to upload the images in a convenient way?

• Search
We need a possibility to search for houses.

• Categories
Joomla! offers nested categories in Core.
Let's use them to categorise our house listings!

• Component Settings
What are the common settings for the component, e.g. the currency of the prices?

• Updates
Joomla! provides an Update mechanism for your extension.

• Going Big
Do we have more than one sales agent? If so, we need an additional "agent" table and a
relationship between the objects and the agents.

• Going Mobile
How to bring the house listing to the customer’s mobile device?

• Going Social
How to post the house listing to social media?

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 64

31 http://cocoate.com/node/10216

• Working Together
Should we start a real estate community :)?

I stop here because this list will get endless.

THE FUTURE OF COCOATE REAL ESTATE
Maybe I am wrong but I think, for a beginner, you have seen enough to start on your own
component development.

Now you can decide whether you want to try it or not. Have a look at my proposed
tutorials in chapter Write your own Component.

THE DEAL
Let's make a deal between you and me!

I try to implement some of the tasks above, and when I finished a task I will write an
additional chapter about it.

You try to implement tasks as well, maybe a totally different task, and contribute it to the
Cocoate Real Estate version on GitHub32.
I hope that it will grow and become the best Real Estate component in the Joomlaverse :)

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 65

32 https://github.com/hagengraf/com_cocoaterealestate

7. Write Your Own Module
written by Andrea Tarr - tarrconsulting.com

Photo: http://www.flickr.com/photos/45131642@N00/5987288907/ CC-BY-2.0

Modules are the "sidebar" content and widgets. They often work off of existing
content and databases. An example would be a Latest Articles module with a list of the
most recently added articles. As you will see in this chapter, to get full advantage of
Joomla you take advantage of the Joomla framework contained in the libraries/joomla
folder. Joomla uses object oriented PHP so much of what you find in the libraries/joomla
folder is files of classes. By including these in your programme you let Joomla do your
heavy lifting for you.

Joomla programmes by convention. It assumes you will structure your programme
and name your files and classes in a certain way. This is one area where you don't want to
be too creative.

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 66

Backend modules are contained in the administrator/modules folder and frontend
modules are in the modules folder. Within those folders, each module has its own folder
which starts with mod_.

The example we'll be working through is a Contact List, which in this example will be
used to display a list of branches. The code is in a file attachment at the end of this
tutorial. This is what the module will look like on the frontend (Figure 1):

Figure 1: Module Displayed in the Frontend

In the backend you will be able to select the category and how many contacts to
display (Figure 2). (The backend screenshot in this tutorial is using the Hathor
administrative template.)

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 67

Figure 2: Module Options on the Backend

There are six main files, some in subfolders, in the module/mod_contact_list folder. In
addition to these files, each folder should contain a dummy index.html file33.

Path File Purpose

modules/mod_contact_list mod_contact_list.xml Define the module and
parameters

modules/mod_contact_list mod_contact_list.php Main processing file -
the controller

modules/mod_contact_list helper.php Helper functions to get
the data - the model

modules/mod_contact_list/tmpl default.php T h e H T M L f o r
displaying the module - the
view

modules/mod_contact_list/language/en-
GB

en-GB_mod_contact_list.ini English language file

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 68

33 Download the example module from http://cocoate.com/jdev/module

Path File Purpose

modules/mod_contact_list/language/en-
GB

e n -
GB_mod_contact_list.sys.ini

English language file
for system strings

MOD_CONTACT_LIST.XML
The mod_contact_list.xml file defines the module, what version of Joomla it runs on,

the files it uses and the parameters to be used. This file is necessary for the module to be
installed. This is the first part of the file, which gives the basic description of the module:

<?xml version="1.0" encoding="UTF-8"?>

< e x t e n s i o n t y p e = " m o d u l e " v e r s i o n = " 1 . 7 " c l i e n t = " s i t e "
method="upgrade">

 <name>MOD_CONTACT_LIST</name>

 <author>Andrea Tarr</author>

 <creationDate>November 2011</creationDate>

 <copyright>Copyright (C) 2011 Tarr Consulting. All rights
reserved.</copyright>

 <license>GNU General Public License version 2 or later</
license>

 <authorEmail>atarr@tarrconsulting.com</authorEmail>

 <authorUrl>www.tarrconsulting.com</authorUrl>

 <version>1.0</version>

 <description>MOD_CONTACT_LIST_XML_DESCRIPTION</description>

The <extension> tag defines the type as module, the minimum version of Joomla and
whether this is a frontend module (0) or a backend module (1). The method "upgrade"
indicates that if a module folder with the same name is found, it will be assumed to be an
earlier version of the same program that can be updated. If you use "install", any
duplicated folder will prevent installation. The <name> and <description> tags are using
language strings that will be translated in the language file. The language files will be
explained later in this tutorial.

The next part lists the files. During the installation, these are the files that will be
copied. If you have extra files in the zip file you are installing, they will be ignored. If you
list a file that is not in the zip file, the module will not install.

 <files>

 <filename>mod_contact_list.xml</filename>

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 69

 <filename module="mod_contact_list">mod_contact_list.php</
filename>

 <filename>index.html</filename>

 <filename>helper.php</filename>

 <folder>tmpl</folder>

 <folder>language</folder>

 </files>

The main calling file is signified with the module attribute. The <folder> tag will copy
all the files and subfolders in that folder.

The next section defines the parameters that you see on the right column in the
backend. This section is enclosed in a <config> tag. The group of parameters is in a
<fields> tag with the name attribute of "params". Each of the sliders is defined with a
separate <fieldset>. First are the Basic parameters, where we choose the category and
number of articles:

 <config>

 <fields name="params">

 <fieldset name="basic">

 <field

 name="catid"

 type="category"

 extension="com_contact"

 multiple="true"

 default=""

 size="10"

 label="JCATEGORY"

description="MOD_CONTACT_LIST_FIELD_CATEGORY_DESC" >

 </field>

 <field

 name="count"

 type="text"

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 70

 default="5"

 label="MOD_CONTACT_LIST_FIELD_ITEMS_LABEL"

description="MOD_CONTACT_LIST_FIELD_ITEMS_DESC" />

 </fieldset>

Each of the individual parameters are in a <field> tag. The name attribute is used to
get the parameter in your programme. The type attribute defines what type of field this is.
Each of the types are defined in the Joomla framework. Common types used are text, list,
editor, text area, category, calendar, radio, checkbox, checkboxes, media, folder list, and
file list (full list34). You can also create your own types 35. The label and description
attributes use a language string found in either the global language files or in the specified
extension language files.

The following Advanced parameters are the stock parameters which you should put
on all your modules unless you don't want users to have these standard capabilities. All
except for the moduleclass_sfx will work automatically just by including this code. For the
moduleclass_sfx to work you need to add <?php echo $moduleclass_sfx; ?> to the class tag in the
HTML layout where you want to allow the user to define a special class.

 <fieldset

 name="advanced">

 <field

 name="layout"

 type="modulelayout"

 label="JFIELD_ALT_LAYOUT_LABEL"

 description="JFIELD_ALT_MODULE_LAYOUT_DESC" />

 <field

 name="moduleclass_sfx"

 type="text"

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 71

34 http://docs.joomla.org/Standard_form_field_types

35 http://docs.joomla.org/Creating_a_custom_form_field_type

 label="COM_MODULES_FIELD_MODULECLASS_SFX_LABEL"

description="COM_MODULES_FIELD_MODULECLASS_SFX_DESC" />

 <field

 name="cache"

 type="list"

 default="1"

 label="COM_MODULES_FIELD_CACHING_LABEL"

 description="COM_MODULES_FIELD_CACHING_DESC">

 <option

 value="1">JGLOBAL_USE_GLOBAL</option>

 <option

value="0">COM_MODULES_FIELD_VALUE_NOCACHING</option>

 </field>

 <field

 name="cache_time"

 type="text"

 default="900"

 label="COM_MODULES_FIELD_CACHE_TIME_LABEL"

description="COM_MODULES_FIELD_CACHE_TIME_DESC" />

 <field

 name="cachemode"

 type="hidden"

 default="itemid">

 <option

 value="itemid"></option>

 </field>

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 72

 </fieldset>

Finish off the file by closing the tags:

 </fields>

 </config>

</extension>

MOD_CONTACT_LIST.PHP
The mod_contact_list.php is the main processing file for your program. It works as

the controller in a Model-View-Controller structure. In the same way that we separate
content from presentation and behaviour by having separate files for HTML/CSS/
JavaScript, we separate the control of the program the data (model) and the display
(view). The file starts out by checking to see that the file is being called by Joomla and not
directly:

<?php

/**

 * Contact List

 *

 */

// no direct access

defined('_JEXEC') or die;

All your php files should start with this code.

We will be putting our data retrieval code in the helper.php file, so we need to include
that file. It contains a class definition, so we need to use the require_once. The
dirname(__FILE__) brings in the path of the current file so it can be used as the path for
the helper.php file. Remember that a class definition doesn't actually do anything at the
time it is included.

// Include the class of the syndicate functions only once

require_once(dirname(__FILE__).'/helper.php');

Next we will get the data by doing a static call to the class defined in the helper.php file
and putting the result into $list. The $params is an object that contains all the parameters
defined in the xml file.

// Static call to the class

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 73

$list = modContactListHelper::getList($params);

The next line just does a bit of housekeeping. We will be using the module class suffix
parameter in the layout to construct a class, so we want to do some sanitising first. By
putting it here, we ensure that it is done even if a designer does a template override.

$ m o d u l e c l a s s _ s f x = h t m l s p e c i a l c h a r s ($ p a r a m s -
>get('moduleclass_sfx'));

Finally, we call the framework module processor which will put everything together
and pass back the HTML to be displayed based on the layout file (tmpl/default.php). Since
this is done as an include, any variables are still in scope.

require(JModuleHelper::getLayoutPath('mod_contact_list'));

This is the end of the file. Do not include a closing ?> tag. The practice in Joomla! is
to skip all closing php tags because characters after the php tag, including some control
characters, trigger sending HTML headers prematurely, which causes errors.

HELPER.PHP
We are using the helper.php file to retrieve the data. We start the php file in the

standard manner:

<?php

// no direct access

defined('_JEXEC') or die;

We want to list the contacts in the Joomla contact table in given categories. Since we
are using a table from a component that is defined in the standard Joomla way, we can use
existing model definitions in our program. To do that we include the part of the Joomla
framework that processes component models and do a static call to include the models
from the com_contact component.

jimport('joomla.application.component.model');

JModel::addIncludePath(JPATH_ADMINISTRATOR.'/components/com_contact/
models', 'ContactModel');

Now it's time to define the class definition. This class has no properties and getList() is
the only method:

class modContactListHelper

{

 /**

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 74

 * Retrieves the list of contacts

 *

 * @param array $params An object containing the module
parameters

 * @access public

 */

 public function getList($params)

 {

The function starts by getting the global information, which is retrieved by a static call
to the Application. This is what replaces the old global $mainframe from earlier Joomla
programming.

 $app = JFactory::getApplication();

Next we get the database connection:

 $db = JFactory::getDbo();

Now we need to create a model object from the contacts. We use a static call to JModel
telling it the component (Contacts) and the class prefix (ContactModel). Processing the model
sets states to remember what state the model is in (like what the filters are set to) . When
you are creating a module, you usually don't want to affect any states that the main
component is in, so the ignore_request tells it to not remember the state from this
processing.

 // Get an instance of the generic contact model

 $model = JModel::getInstance('Contacts', 'ContactModel',
array('ignore_request' => true));

Next we set the application parameters in the model:

 $appParams = JFactory::getApplication()->getParams();

 $model->setState('params', $appParams);

Then we set the filters based on the module parameters. The list.start is set to 0 to
start at the beginning and we set the end based on the count parameter that we entered in
the module parameters. The filter.published set to 1 says to only get published contacts.
The list.select lists the fields to return.

 $model->setState('list.start', 0);

 $model->setState('list.limit', (int) $params->get('count',
5));

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 75

 $model->setState('filter.published', 1);

 $model->setState('list.select', 'a.id, a.name, a.catid' .

 ', a.address, a.suburb, a.postcode, a.state,
a.telephone ' .

 ', a.published, a.access, a.ordering, a.language'.

 ', a.publish_up, a.publish_down');

The next filter is for the ACL to make sure that only contacts that are allowed to be
seen are chosen for display.

 $access = !JComponentHelper::getParams('com_contact')-
>get('show_noauth');

 $ a u t h o r i s e d =
JAccess::getAuthorisedViewLevels(JFactory::getUser()->get('id'));

 $model->setState('filter.access', $access);

Then we filter for the category based on the parameter that we entered in the module
parameters. Note that this is an array since we allowed multiples when we defined the
parameter in the xml file.

 $model->setState('filter.category_id', $params-
>get('catid', array()));

The last filters are for the language and to set the order of the contacts in the list.

 $ m o d e l - > s e t S t a t e (' f i l t e r . l a n g u a g e ' , $ a p p -
>getLanguageFilter());

 $model->setState('list.ordering', 'ordering');

 $model->setState('list.direction', 'ASC');

Finally, we call the getItems() method in the $model object. Since we are using the
getItems() method from the contacts component we don't need to write it ourselves. We
can just use the one that already exists. All we needed to do was define the state of the
filters. Then we return the list we just retrieved and close out the function and class.
Notice that again we don't include a closing php tag

 $items = $model->getItems();

 return $items;

 }

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 76

}

TMPL/DEFAULT.PHP
Now all we need to do is write the HTML that will display the list of information we

have gathered. By separating out the HTML and putting it into a layout file in the tmpl
folder we allow designers to use template overrides to change the HTML as they need.
This file starts out as the other php files have: with the check to be sure that only Joomla
has called it.

<?php

/**

 * Contact List Module Entry Point

 */

// no direct access

defined('_JEXEC') or die; ?>

Next we put the HTML to display the list. It's a good idea to enclose the whole thing
in a <div> with a class to identify the module type so that designers (or you) can add
styling just for this module. This is also a good place to add the module class suffix.
Putting the php code immediately following the module type class gives designer the most
options.

<div class="contact_list<?php echo $moduleclass_sfx; ?>">

Finally, we create an unordered list and loop through $list to display each of the lines.
We then close up the enclosing div to end the file.

<?php foreach ($list as $item) :?>

 <h4><?php echo htmlspecialchars($item->name); ?></h4>

 <p><?php echo nl2br(htmlspecialchars($item->address)); ?
>

 <?php echo htmlspecialchars($item->suburb); ?>,

 <?php echo htmlspecialchars($item->state); ?>

 <?php echo htmlspecialchars($item->postcode); ?>

 <?php echo htmlspecialchars($item->telephone); ?></p>

<?php endforeach; ?>

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 77

</div>

LANGUAGE/EN-GB/EN-GB_MOD_CONTACT_LIST.INI
This is the main language file for the module. You put the language keys in your

programme in all caps with a prefix of MOD_CONTACT_LIST. Assign the language
string to be used with an equal sign and double quotes around the string. This is a
different structure from 1.5. This new structure, which is much faster, does not allow
blanks in the language key. This is an ini file, so you don't use the jexec or die at the
beginning.

; Note : All ini files need to be saved as UTF-8 - No BOM

MOD_CONTACT_LIST="Contact List"

MOD_CONTACT_LIST_FIELD_CATEGORY_DESC="Select Contacts from a
specific Category or Categories."

MOD_CONTACT_LIST_FIELD_ITEMS_DESC="The number of Contacts to display
within this module"

MOD_CONTACT_LIST_FIELD_ITEMS_LABEL="Number of Contacts"

MOD_CONTACT_LIST_XML_DESCRIPTION="The Contact List will display a
fixed number of contacts from a specific category or categories."

LANGUAGE/EN-GB/EN-GB_MOD_CONTACT_LIST.SYS.INI
The last file is the sys.ini language file. This file is just used on the Install and Update

screens in the backend and only needs these keys. Those two screens have to access many
extensions each of which could have large language files. By including short sys.ini files for
each extension, the performance is improved.

; Note : All ini files need to be saved as UTF-8 - No BOM

MOD_CONTACT_LIST="Contact List"

MOD_CONTACT_LIST_XML_DESCRIPTION="The Contact List will display a
fixed number of contacts from a specific category or categories."

MOD_CONTACT_LIST_LAYOUT_DEFAULT="Default"

INDEX.HTML
You should put an index.html file in the root and in each folder/subfolder in your

module to prevent the public from being able to get a list of the files by entering a
directory in the address bar. The file can be as simple as:

<!DOCTYPE html><title></title>

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 78

PACKAGING THE MODULE FOR INSTALLATION
Since we've already created the xml file, the only thing you need to do to create an

installation package is to zip up the files and folders in the module folder. Be sure to just
zip the folders and files in the mod_contact_list folder and not to include the top level
mod_contact_list folder itself.

If your files are already in Joomla! site you can use the Extensions -> Extension Manager -
> Discover to install the module instead. Click on the Discover Icon to look for extension
files that aren't installed. When your module shows up, check mark the box next to it and
click Install.

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 79

8. Write Your Own Plugin

Photo: http://www.flickr.com/photos/39747297@N05/5229733647/ CC-BY-2.0

A plugin is a kind of Joomla! extension.

The plug-in becomes active when a predefined event occurs. An event could occur e.g.
when the event on ContentPrepare happens. That means while Joomla! prepares the
content to be displayed our plug-in adds something to the preparations. Think of the core
plug-in page break. If the event is fired, the plug-in gets active. If it finds the pattern <hr
class="system-pagebreak" /> in the text, it will implement the page break.

Joomla! has eight plug-in types: authentication, content, editors-xtd, editors,
extension, search, system and user. These are also the names of the sub directories where
the plug-in files are located. For example, plug-ins with a type of authentication are

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 80

located in the directory plugins/authentication. A plug-in has to be installed via the
extension manager.

Joomla provides for every type of plug-in predefined events, e.g. the content events

• onAfterDisplay

• onAfterContentSave

• onAfterDisplayTitle

• onAfterDisplayContent

• onPrepareContent

• onBeforeDisplay

• onBeforeContentSave

• onBeforeDisplayContent

• onContentPrepareForm

• onContentPrepareData

You find all the existing events in the Joomla! plug-in documentation36.

Every extension can define its own events and this allows other extensions to respond
to their events and make extensions extensible (Figure 1).

Figure 2: Plug-In, Component

EXAMPLE
To show a very easy example, we want to display a text string above the article text

(Figure 2).

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 81

36 http://docs.joomla.org/Plugin

Figure 2: Example Plug-In

To implement our task we have to write a content plug-in that I called cocoateaddtext.
We only need two files, the .xml file with the metadata (Listing 1) and a php file for our
code (Listing 2) 37.

<?php

defined('_JEXEC') or die;

jimport('joomla.plugin.plugin');

class plgContentCocoateAddText extends JPlugin

{

 public function onContentPrepare($context, &$article, &$params,
$limitstart=0)

 {

 $article->text = "My special text".$article-
>text ;

 return true;

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 82

37 Download the example plugin from http://cocoate.com/jdev/plugin

 }

}

Listing 1: /plugins/content/cocoateaddtext/cocoateaddtext.php

<?xml version="1.0" encoding="utf-8"?>

<extension version="1.7" type="plugin" group="content">

 <name>PLG_CONTENT_COCOATEADDTEXT</name>

 <author>Hagen Graf</author>

 <creationDate>Dec 2011</creationDate>

 <copyright> :) </copyright>

 <license>GNU General Public License version 2 or later; see
LICENSE.txt</license>

 <authorEmail>info@cocoate.com</authorEmail>

 <authorUrl>www.cocoate.com</authorUrl>

 <version>1.0</version>

 <description>PLG_CONTENT_COCOATEADDTEXT_XML_DESCRIPTION</
description>

 <files>

 <filename plugin="cocoateaddtext">cocoateaddtext.php</
filename>

 <filename>index.html</filename>

 </files>

</extension

Listing 2: /plugins/content/cocoateaddtext/cocoateaddtext.xml

After creating these files, you have to "discover" and install the plug-in - Extensions ->
Extension-Manager -> Discover (Figure 3)

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 83

Figure 3: Discover and Install the Plug-in

After activating the plug-in manager, your frontpage articles will look like the ones in
the screenshot in Figure 2.

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 84

Advertisement

The Art of Joomla vision

Our vision is the Art of Joomla family of web sites to be the centre of excellence for
learning the art of developing with Joomla.

The Art of Joomla mission

Our mission is to provide a useful and relevant knowledge base, spanning beginner
and advanced topics, for the benefit of the Joomla community at large, for people that
want to become great Joomla developers and for people that want to learn to customise
the web sites that they rely on.

Behind the Art of Joomla

The Art of Joomla web sites is backed by an Australian company called New Life in
IT Pty Ltd. This is the consulting company run by long-term contributor to, and co-
founder of Joomla, Andrew Eddie.

http://learn.theartofjoomla.com/

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 85

http://learn.theartofjoomla.com
http://learn.theartofjoomla.com

9. Write Your Own Template

Overrides

Photo: http://www.flickr.com/photos/needoptic/5789554613 CC-BY-2.0

Imagine you are planning a Joomla! site with three different components. When you
install the components they all come with predefined views to display their content. The
views are created by the component developers and worst case is, that you have three
different approaches to interface design on your site.

Of course, your client wants to have a unique template design and now you have to
tweak the existing component views with additional CSS classes, different HTML tags or
write a complete new markup.

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 86

You could change the code of the component. However, it is not good for your
reputation because with the next component update, your changes would be gone!

This is the situation where template overrides enter the game.

Template overrides are basically a solution for the

Every time you hack core, God kills a kitten38

problem. Even if there is no God available in your mind, and even if it's not core but
component code, please, think of the kittens!

Let's assume you are a customer that uses our wonderful Cocoate Real Estate
component.

Your idea of displaying the house listing is totally different from mine. Let's change it!

The component has a default template layout for each view. We want to change the
frontend view, which is stored in the file /components/com_cocoaterealestate/views/object/tmpl/
default.php. This file makes the page look the way it looks (Figure 1) and it is built around
data which was collected in the file /components/com_cocoaterealestate/views/object/
views.html.php.

Figure 1: Default Object View

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 87

38 http://www.flickr.com/photos/hagengraf/2802915470/

For our example we are using the beez_20 template as a base. In reality you probably
would start creating your own template but it would be too much at this point to describe
the necessary steps so let's use the existing beez_20. Even if there is a Joomla! core update,
your overridden files will not get lost.

Copy the file

/components/com_cocoaterealestate/views/object/tmpl/default.php

to

/templates/beez2/html/com_cocoaterealestate/object/default.php.

The template folder structure is like this:

• /templates - the folder contains all templates

• /templates/beez_20 - the folder contains the beez2 template

• /templates/beez_20/html - the folder contains the template overrides

• /templates/beez_20/html/com_cocoaterealestate - the folder contains the template
overrides for one component

• /templates/beez_20/html/com_cocoaterealestate/object - the folder contains the template
overrides for one view of the component

Uncomment or insert the last 5 lines of code (Listing 1).

<?php

// No direct access to this file

defined('_JEXEC') or die;

?>

<h1><?php echo $this->item['title']; ?></h1>

<img src="<?php echo $this->item['image']; ?>">

 <?php echo $this->item['zip']; ?>

 <?php echo $this->item['city']; ?>,

 <?php echo $this->item['country']; ?>

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 88

 <?php echo $this->item['price']; ?> €

<pre>

<?php

print_r($this->item);

?>

</pre>

Listing 1: /templates/beez_20/html/com_cocoaterealestate/object/default.php

The PHP function print_r() shows the content of the array $this->item. To make the
output more readable I added it between <pre> </pre> tagsan. When you reload your
page you see now all the data. You can use the listing below for your individual template
(Figure 2).

Figure 1: Overridden view Step 1

Yes, you should see the content of the array

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 89

Array

(

 [id] => 1

 [image] => http://farm4.staticflickr.com/3100/27241...

 [title] => First House

 [city] => Fitou

 [zip] => 11510

 [country] => France

 [price] => 85000

)

Depending on the component the array could be much bigger and more complex. In
our case it is very simple.

Now you can pick the values you need and build your desired markup around.

Example: If you want to have the price in a <div> Tag with a special class it could
look like this:

<div class="myprice>

<?php echo $this->item['price']; ?>

</div>

It is possible to use any kind of PHP statements in this file but it would be much better
if the component developer offers all the necessary fields in the array so that you are able
to concentrate on the markup.

MORE INFORMATION ON OVERRIDES
• http://docs.joomla.org/How_to_override_the_output_from_the_Joomla!_core

• http://docs.joomla.org/Understanding_Output_Overrides

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 90

10. Write Your Own Layout

Alternative

Photo: http://www.flickr.com/photos/pumpkincat210/4264425603/ CC-BY-2.0

Alternative layouts are a possibility for extension developers to avoid the necessity of
creating template overrides and for template designer a chance to offer different layouts
for existing modules and components.

Imagine, a component would come with three alternative layouts for an article.
Sometimes it is a 'normal article', sometimes it should look like a product, and sometimes
like a book page. Or a template would offer different layouts for the core login module.
You only have to choose which layout you would like to use.

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 91

It is possible to create alternative layouts for

• components

• categories

• modules

The way of implementing the alternative layouts is exactly the same for components,
modules and categories.

EXAMPLE FOR MODULE ALTERNATIVE LAYOUTS
You can provide one or more additional layouts to any module.

Depending on your needs you can place the layout directly in the modules view folder
or in the template.

• If you are the developer of that module you should put the different layouts to the
module view template (Figure 1). Afterwards you can choose the layout you want to
display in the module options (Figure 2).

• If you are the developer/designer of a template you should put the different layouts to
the template overrides folder html. There, you have to create a folder with the same
name as the module and a subfolder for the view. It is the same folder that you use for
template overrides. Obviously the file name has to be something other than default.php
as this one has already been reserved for template overrides. And please do not use an
underscore _ in the file name. For reasons I don't really know, it is sometimes not
working. Afterwards, you can choose the alternative layout in the module option (Figure
3).

You can even translate the file name shown in the module options using the language
files by adding the line

TPL_BEEZ_20_MOD_LOGIN_LAYOUT_MYBEEZLAYOUT="My Login Layout"

to the file /templates/beez_20/langauge/en-GB/en-GB.tpl_beez_20.sys.ini, it will translate
the file name "mybeezlayout.php" to "Alt Login Layout".

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 92

Figure 1: Alternative Layout in the Module Folder

Figure 2: Alternative layout in module options

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 93

Figure 3: Alternative Layout for Module from beez_20 template

ALTERNATIVE MENU ITEMS
In addition to the alternative layout, menu item types can be added to the layout and

the option items of that article can be controlled by defining them in an xml file with the
same name as the alternative layout file. The presence of an XML file makes an
alternative layout a menu item. For example, to create an alternative menu item called
"mylayout" for an article you would create two files in the templates/beez_20/html/
com_content/article folder called mylayout.php and mylayout.xml. If you wanted to include
more layout files, you would add these files with underscores in the file names.

Menu item layouts take priority over component or category alternative
layouts.

The XML file uses the same format as the core menu item XML files. This allows you
not only to create a customised layout for this menu item, it also allows you to create
customised parameters. For example, you could hide some parameters or add new
parameters.

READ MORE:
http://docs.joomla.org/Layout_Overrides_in_Joomla_1.6

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 94

Advertisement

JoomlaShine Templates and Extensions for Joomla!

We believe
The quality at the first place

JoomlaShine products are carefully tested on major web platforms.

Continuously improved code

We don’t write the old code again and again. Instead, we are focusing on continuous
learning and improvement.

Designed for users

We put the full control of product in one place. You don’t need to have special
programmers’ skills to have our product working properly.

Customer Service matters

Whether you have general or technical questions, our support team is there for you.
Just drop us a line.

The product should be affordable

You don’t have to spend thousands of bucks building professional website anymore.
Our product is affordable with clear license policy.

http://www.joomlashine.com/

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 95

11. Write Your Own App

Using Joomla! Platform

Photo: http://www.flickr.com/photos/papalars/691515009/ CC-BY-2.0

The term Joomla! platform is quite new. It was introduced with the release of Joomla!
1.6 in January 2011.

HISTORY
Since the beginning of Mambo/Joomla!, there are files called mambo.php and joomla.php

in the CMS package.

In Joomla! 1.0 these files contain 6,153 lines of code. These files also include a few
other files and they were just "big". They were a reservoir for code which was used by
core and third party extensions.

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 96

The files grew and grew, and over time it became jPlatform, a kind of operating
system for Joomla!, and the CMS as a sort of application that runs on it.

Since Joomla! 1.6 the platform has been separated from the CMS.

The Joomla! platform is the framework on top of which the Joomla! CMS operates.

The idea of this separation was born after the launch of Joomla! 1.0 in the year 2005
and it took nearly six years to implement it. It will change the way developers, architects
and service providers deal with Joomla! in the future.

Many companies and organisations have requirements that go beyond what is
available in the basic Joomla! CMS package. Think of integrated e-commerce systems,
complex business directories or reservation systems.

Let’s have a closer look.

Numbering
What confuses me most when I heard of it for the first time was the numbering. But I

found a very simple answer to that.
The numbering scheme for the platform consists of the year number followed by a
sequence number, so 11.1 was the first release in 2011. The next release was 11.2.
The first release in 2012 will be numbered 12.1.

Release Cycle
Every three months a new version of the Joomla! platform will be released.

Package Content
The platform package consists of the files stored in the folder /libraries and /media

and has no graphical user interface.
The platform source code is stored in the Git version control system GitHub.

code: https://github.com/joomla/joomla-platform

members: https://github.com/joomla/joomla-platform/network/members

Advantages and Benefits of the Separation
1. It allows developers to use the Joomla! Platform independently of the CMS.

This means that you’ll have the choice between different CMSs on top of the Joomla!
platform in the future. This is really revolutionary! Joomla! is the only system in the
world which provides that.

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 97

There is still one core CMS provided by the Joomla! project but other projects like
Molajo could use the Joomla! platform as a base, too.

2. It allows developers to contribute / add features more quickly.
In the past it was very frustrating to experience that good code wasn’t always included
into Joomla! core. With the Joomla! platform stored on GitHub, it is very easy to fork
it for your own purpose and it is easy, too, to integrate your code in the main branch.

3. 3-month release cycle.
With this short release cycle it is possible to add features into the platform much
quicker than into the CMS. This is useful for extension developers to add core
features which are necessary for their extension.

4. It encourages recruitment of more developers, including larger corporations, who
may have not, otherwise, contribute.
This point is crucial and it will work when the responsible team for the platform starts
embracing these new faces!

USING THE JOOMLA PLATFORM
First of all you have to download the platform.

You find the latest version on GitHub (https://github.com/joomla/joomla-platform).

• Manual: http://developer.joomla.org/manual/

• Coding Standards: http://developer.joomla.org/standards/

Afterwards you have to extract the file in your public web server directory (htdocs) and
create a folder for your applications (cli).

In the folder /docs you find the documentation and the coding standard of the
platform. The files are in docbook format and it's a bit tricky to view them. Elkuku39
provides a public filter for the documentation where you can download the docs as pdf40.

Test Your Environment
The Joomla! platform provides no graphical user interface (GUI) in a browser like the

Joomla! CMS so we have to use the command line interface (CLI) for our very first steps.

Depending on the operating system and the LAMP stack you are using it can be
possible that PHP isn't installed correctly. You can check by entering the command php -

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 98

39 http://twitter.com/#!/elkuku

40 http://elkuku.github.com/joomla-platform/

version in your command line interface (Terminal in OSX41, Command Prompt in
Windows 42, Shell in all ..ix systems43). I am using OSX and MAMP and the result looks
like this

web hagengraf$ php -version

PHP 5.3.6 with Suhosin-Patch (cli) (built: Sep 8 2011 19:34:00)

Copyright (c) 1997-2011 The PHP Group

Zend Engine v2.3.0, Copyright (c) 1998-2011 Zend Technologies

Hello World
To start simple we begin with the “hello world” example. Create a file hello.php and put

it into /cli (Listing 1).

<?php

define('_JEXEC', 1);

// Import of necessary class file

require_once ('../libraries/import.php');

// Load JCli class

jimport('joomla.application.cli');

// Extend JCli class

class HelloWorld extends JCli

{

 // overwrite method

 public function execute()

 {

 // print something

 $this->out('Hello World');

 }

}

// Call of the static method executed in the derived class
HelloWorld?

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 99

41 http://en.wikipedia.org/wiki/Terminal_(Mac_OS_X)

42 http://en.wikipedia.org/wiki/Command_Prompt

43 http://en.wikipedia.org/wiki/Unix_shell

JCli::getInstance('HelloWorld')->execute();

?>

Listing 1: hello.php

Execute your shiny new app with the command php hello.php and the result will look
like this

cli hagengraf$ php hello.php

Hello World

cli hagengraf$

Well, to be honest, I was happy when I saw the result for the first time but it didn't
blow me away :).

Let's do another example

Your Last Tweets
Do you have a twitter account? Let's create an interactive app using the Joomla!

platform and read the last tweets (listing 2)

<?php

define('_JEXEC', 1);

require_once '../libraries/import.php';

jimport('joomla.application.cli');

class TwitterFeed extends JCli

{

 //Get Latest Tweet

 function latest_tweet($username, $count = 5)

 {

 $url = "http://twitter.com/statuses/user_timeline/$username.xml?
count=$count";

 $xml = simplexml_load_file($url) or die("could not
connect");

 $text = '';

 foreach($xml->status as $status)

 {

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 100

 $text .= $status->text . '

';

 }

 return $text;

 }

 public function execute()

 {

 $this->out('What is your twitter handle?');

 $username = $this->in();

 $this->out('How many tweets to view?');

 $count = $this->in();

 $tweet = $this->latest_tweet($username, $count);

 $this->out($tweet);

 }

 protected function fetchConfigurationData()

 {

 return array();

 }

}

JCli::getInstance('TwitterFeed')->execute();

Listing 2: twitter.php

When you launch the app with php twitter.php it will ask you for a twitter user name
and how many tweets you want to see. Then it will display the tweets!

cli hagengraf$ php twitter.php

What is your twitter handle?

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 101

hagengraf

How many tweets to view?

5

Did you know? Member for 8 years 7 weeks :) http://t.co/
L8tzB2kz #drupal #wordpress

@brianronnow can you give me the wrong link, then I will
update it

@brianronnow oh sorry :) the correct answer is 243 pages

@brianronnow the last update was 2 days before JDay Denmark

We are getting more advanced :)

The handling has still the feeling of being involved in a movie like War Games44 from
the eighties but hey, it uses twitter, asks for input and shows me tweets on a command line
- wow!

A WEB APP
The difference between our first examples and an application which runs in a browser

is the use of HTML code. If we print out the HTML code it can be rendered to a web
page via a browser.

In our first web app we just want to show the base path of the application and the
actual date. The output in the browser should be like this:

My Web Application
The current URL is http://localhost/jplatform/
The date is 2011-11-21 15:03:11

To try this out we need two files, an index.php file and an application.php file in the
includes folder. If you want to create one web application based on one Joomla! platform
you have to place the index.php in the root directory of the Joomla! platform and the
application.php in a new folder called includes.

- build

- docs

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 102

44 http://en.wikipedia.org/wiki/WarGames

- includes

-- application.php

- libraries

- media

- tests

index.php

The index.php consist of the following statements (Listing 3). Code is collected from
different parts of the platform and in the end your app is launched with the statement
command $app->render();.

<?php

if (file_exists(dirname(__FILE__) . '/defines.php'))

{

 include_once dirname(__FILE__) . '/defines.php';

}

// Define some things. Doing it here instead of a file because this

// is a super simple application.

define('JPATH_BASE', dirname(__FILE__));

define('JPATH_PLATFORM', JPATH_BASE . '/libraries');

define('JPATH_MYWEBAPP',JPATH_BASE);

// Usually this will be in the framework.php file in the

// includes folder.

require_once JPATH_PLATFORM.'/import.php';

// Now that you have it, use jimport to get the specific packages
your application needs.

jimport('joomla.environment.uri');

jimport('joomla.utilities.date');

//It's an application, so let's get the application helper.

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 103

jimport('joomla.application.helper');

$client = new stdClass;

$client->name = 'mywebapp';

$client->path = JPATH_MYWEBAPP;

JApplicationHelper::addClientInfo($client);

// Instantiate the application.

// We're setting session to false because we aren't using a database

// so there is no where to store it.

$config = Array ('session'=>false);

$app = JFactory::getApplication('mywebapp', $config);

// Render the application. This is just the name of a method you

// create in your application.php

$app->render();

?>

Listing 3: index.php

You find the code for the application in listing 4.

<?php

// no direct access

defined('JPATH_PLATFORM') or die;

final class JMyWebApp extends JApplication

{

 /**

 * Display the application.

 */

 public function render()

 {

 echo '<h1>My Web Application</h1>';

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 104

 echo 'The current URL is '.JUri::current().'
';

 echo 'The date is '. JFactory::getDate('now');

 }

}

?>

Listing 4: /includes/application.php

If you are used to the Joomla! CMS you can use all bits and pieces you already know
and build your own application.

I took the three examples from the Joomla! documentation page45 and in the end I
was impressed by the possibility of building something completely new based on the
Joomla! code.

MULTIPLE WEB APPS
In our first example we installed exactly one web app (myapp) on one Joomla!

platform. If that suits you, everything is fine. Imagine you have several apps you want to
run on one Joomla! platform installation. For this purpose you need an additional
bootstrap.php file (listing 5) and the following directory structure:

- build

- docs

- libraries

- media

- tests

- cli <- only if you have cli apps

- web <- the folder for the web apps

-- myapp <- the folder of one app

--- includes

---- application.php

--- index.php

-- anotherapp <- the folder of another app

--- includes

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 105

45 http://docs.joomla.org/How_to_create_a_stand-alone_application_using_the_Joomla!
_Platform

---- application.php

--- index.php

- bootstrap.php

The file bootstrap.php consists of one line of code and is necessary to show your web
app the way to the Joomla! library folder.

<?php

require dirname(dirname(__FILE__)).'/jplatform/libraries/
import.php';

Listing 5: bootstrap.php

MORE RESOURCES
There is a place on GitHub where examples are collected (https://github.com/

joomla/joomla-platform-examples).

They are prepared in the multiple apps structure I described above.

You can download, extract and execute the examples in your Joomla! platform folder.

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 106

12. Common Mistakes

Photo: http://www.flickr.com/photos/mike9alive/3630395512 CC-BY-2.0

Starting to develop software is hard. There are so many concepts, ideas, best practices,
frameworks and dependencies.

You are usually so happy when your programme simply works. One code statement
isn't that complicated. And the "Hello World" example always works well, but when you
try to solve "real" problems, you are often lost and after a while you start trying everything
to get it to work.

It was the same for me when I wrote this book.

I had so many situations where I didn't know "What is the correct way!".

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 107

And often there is no "correct way". People answered my questions concerning coding
often with

Well, it depends on ... You can do it like this or like that, but be careful, there
can be side effects ...

November 13th, I saw this tweet46 from Radek Suski:

If I see this: http://wklej.org/id/624970/ I think we really need some kind
of certification authority for Joomla! developers. #Fail

I asked him whether we could write a chapter on that topic and two weeks later I got
his list of common mistakes.

RADEK SUSKI'S LIST OF COMMON MISTAKES
Getting Data from Request

Most common mistake make by novice Joomla! programmers is the method of how
they’re getting variables from the HTTP Request:

$id = $_REQUEST['id'];

That way, besides the fact that it’s not validated, it also isn't determined from what
kind of request exactly the data has been taken.
If you are developing a new Joomla! extension you should be certain which way the data
is being delivered. For example, if these data are being sent from a form, it's most
probable, that these data have been sent via the POST method.

In this case, it would be more appropriated this way:

$id = $_POST['id'];

However, this variable still isn’t validated. Fortunately, the Joomla! framework provides
an input class used to manage retrieving data from the HTTP request.

$jInput = JFactory::getApplication()->input;

// From GET

$id = $jInput->get->get('id', 0, 'INT');

// From POST

$id = $jInput->post->get('id', 0, 'INT');

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 108

46 http://twitter.com/#!/RadekSu/status/135740923949756416

As you can see these data are also being validated as an integer variable.
There are also more validation filters available. For more information please visit: http://
docs.joomla.org/JInput_Background_for_Joomla_Platform

Connecting to the Database
If you need to connect to the database you may have used a method like this:

$dbConn = mysql_connect('address', 'login', 'password');

$db = mysql_select_db('table', $dbConn);

$ q u e r y = " S E L E C T ` d a t a ` F R O M ` j o s _ m y _ t a b l e ` W H E R E
`name`='{$myName}'";

$results = mysql_query($query);

First of, all it will not work like this in Joomla! because you don’t know the database
name nor the credentials for the db connection. And you don’t really have to.
Here is how it works in Joomla!

// get database object

$db = JFactory::getDbo();

// get new query

$query = $db->getQuery(true);

// what to select

$query->select('data');

// from which table

// do not use fixed db prefix - the #__ will be replaced with the
right one

$query->from('#__my_table');

// what is the condition

// do not forget to escape any variable you're passing to the SQL-
Query

$query->where('name=' . $db->escape($myName));

// set the query

$db->setQuery($query);

// and load result

$results = $db->loadResult();

For more information please visit: http://docs.joomla.org/JDatabase

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 109

Files Operations
Because Joomla! has implemented an FTP-Layer to avoid possible problems on not

properly configured servers, it is not recommended to read, and especially to write into a
file directly using the native PHP functions. Also, file operations, like creating a new file,
copying it, creating a new directory, should be implemented through Joomla! core
methods.

So instead of:

$content = "My content";

file_put_contents($content, 'my_file.txt');

mkdir('new_folder');

copy('my_file.txt', 'new_folder/my_file.txt');

Use:

jimport('joomla.filesystem.file');

jimport('joomla.filesystem.folder');

$content = "My content";

JFile::write('my_file.txt', $content);

JFolder::create('new_folder');

JFile::copy('my_file.txt', 'new_folder/my_file.txt');

Loading Styles and Scripts
If you would like to add JavaScript or CSS files or CSS declarations the method to do

this in Joomla! is quite simple.

// get current document instance

$document = JFactory::getDocument();

// add CSS style declaration

$document->addStyleSheet('media/css/my_style.css');

// add some CSS inline declaration

$document->addStyleDeclaration('div#myDiv { border-style:
solid; }');

// add script file

$document->addScript('media/js/my_script.js');

// add inline script declaration

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 110

$ d o c u m e n t - > a d d S c r i p t D e c l a r a t i o n (' f u n c t i o n f o o (i d)
{ alert(id) }');

For more information please visit: http://docs.joomla.org/Category:JDocument

Sending Emails
As Joomla! supports already different methods for email communication, it is not

recommended to send emails directly using the PHP core functions.

This is the method you probably know:

$to = 'nobody@example.com';

$subject = 'the subject';

$message = 'Lorem ipsum dolor sit amet, consectetur adipiscing
elit.';

$headers = 'From: webmaster@example.com' . "\r\n" .

 'Reply-To: webmaster@example.com' . "\r\n" .

 'X-Mailer: PHP/' . phpversion();

mail($to, $subject, $message, $headers);

And here is how you should do this in Joomla!

$mailer = JFactory::getMailer();

$mailer->setSender(array('webmaster@example.com', 'John Doe'));

$mailer->addRecipient('nobody@example.com');

$mailer->setSubject('the subject');

$mailer->setBody('Lorem ipsum dolor sit amet, consectetur
adipiscing elit.');

$mailer->Send();

In my opinion the Joomla! method is much more elegant. For more information
please visit: http://docs.joomla.org/How_to_send_email_from_components

Handling User State Information
While developing a script, we sometimes need to store some user state information

like, for example, selected ordering, chosen preferences, and so on. Normally, we tend to
use HTTP cookies for storing such data. However, cookies are quite limited in its
functionality and newest HTML5 techniques are not fully supported at the moment.
The Joomla! framework provides an excellent method for this problem. Besides that, the
nice feature of this functionality is that we don’t have to worry about the type of the data
we want to store. So we can store a string, an array or even an object.

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 111

$app = JFactory::getApplication();

// store state data

$app->setUserState('my_id', $myVar);

// get stored data

$var = $app->getUserStateFromRequest('my_id', 'my_id_in_request',
0, 'int');

Also, please note that the “getUserStateFromRequest” method will update the user
state variable, if a HTTP request (GET or POST) contains the “my_id_in_request”
index, so you basically don’t even need to set the state manually.

Fo r m o r e i n f o r m a t i o n p l e a s e v i s i t : h t t p : / / d o c s . j o o m l a . o r g /
How_to_use_user_state_variables

YOUR LIST OF COMMON MISTAKES
I would love to add more of these tips to the list. If you know one, please post it as a

comment47 or contact me48.

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 112

47 http://cocoate.com/jdev/common-mistakes

48 http://cocoate.com/contact

13. Publish Your Extension to

the Joomla! Extension

Directory

To offer your extension to millions of Joomla! users you can use the Joomla! extension
directory (JED). The JED is the place where you find more than 8,000 extensions to
enhance the possibilities of Joomla! core. After registering on the JED website, every user
is allowed to submit an extension.

The directory is maintained by a team of volunteers 49. The JED has its own area in
the Joomla! forums called Extensions.Joomla.org - Feedback/Information50.

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 113

49 http://extensions.joomla.org/component/content/article/30

50 http://forum.joomla.org/viewforum.php?f=262

The team also provides a ticket-based support for community members with listings in the
JED. They are using a Joomla! help desk component51 to manage the support tickets.

The directory itself is built using the Joomla! extension Mosets Tree52. It is structured
by categories in three levels. The whole category tree is used as a menu on the site.

You can search the directory using the easy "one field search" or you can use the
advanced search with the possibility to filter by various parameters (Figure 1).

Figure 1: Advanced Search in the JED

Besides the search, you have a few charts and lists like

• New Extensions

• Recently Updated Extensions

• Most Favoured Extensions

• Editors' Picks

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 114

51 http://www.imaqma.com/joomla/helpdesk-component.html

52 http://extensions.joomla.org/extensions/233/details

• Popular Extensions

• Most Rated Extensions

• Top Rated Extensions

• Most Reviewed

• Hot Extensions: An Extension will be shown as ‘Hot’ when it has an average of 150
views or more per day.

PUBLISH YOUR EXTENSION
To have an authentic chapter about the publishing experience, I did it by myself and

tried to publish a module.

To publish your extension on the JED, you have to register on the site via the Joomla!
way of registration or via Facebook login.

If you want to know all the details about the publishing process, it is probably best to
have a cup of tea or coffee and read this document: Publishing to JED53.

Where is the Submit Button?
You will not find a submit button or link on the frontpage. It is necessary to navigate

to the appropriate category for your extension. In the category page you'll find the submit
button.

The Submit Form
In the submit form you will be asked for:

• A description

• Links to your project homepage, the download URL, the demo URL, the
documentation URL, a license page on your site, if you are submitting a commercial
extension and a support forum URL

• The version, the license, the type of the extension

• The developer’s name and email address

You have to add the zipped file of the extension and an image for the listing.

Hurry up with filling in the form fields, otherwise you get a message like this after
submission

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 115

53 http://docs.joomla.org/Publishing_to_JED

Your session has expired. Please log in again.

If everything went well, you see your freshly submitted extension in a pending state
(Figure 2).

Figure 2: My Extension in Pending State

The Email Confirmation
After submitting you'll receive a nicely styled email with a lot of information. The

most useful information for me was

What are some common errors that many developers miss and prevent publishing?

The most common errors are:

• Download link does not point to download/product page

• Domain or images use the Joomla Trademark and is not registered/approved

• Extension is commercial but has not included a link to the Terms or Conditions

• Developer attempts to restrict the usage of the extension in some way

• Security standards are not followed (index.html in all folders, usage of JEXEC
commands)

• GPL Notices are missing in PHP/XML

And as it is written here I forgot the index.html in one folder :)

Edit Your Submission

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 116

After fixing my zip file with the additional index.html I was looking whether it is
possible to edit my submission and it is!

Behind the link My Page in the JED you find your submitted extension. If you click on
the pending approval link, the submission form opens again and you can edit all the fields.

How Long Do I Have to Wait Now?
Well that is hard. In my case there was the following notice:

Your extension is currently in queue awaiting review and approval by JED
editors.

There are a total of 197 extensions to go through before we review your
extension for approval.

Your listing was submitted on 22 November 2011. Listing approval time may
be up to 21 days. You may not contact the JED Team inquiring about your
approval as all listings will show error codes when reviewed and not approved.
If you have questions concerning error codes you receive, please enter a support
ticket.

...

Waiting

...

One month later

...

12/26/2011 6:51 pm I received an email from team@extensions.joomla.org

Your new Listing named "Cocoate Book Feed" has been
approved!

Download and install it immediately :) 54

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 117

54 http://extensions.joomla.org/extensions/social-web/social-display/external-widgets/
19117

Advertisement

You can sponsor this book
http://cocoate.com/jdev/

ad

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 118

http://cocoate.com/jdev/ad
http://cocoate.com/jdev/ad
http://cocoate.com/jdev/ad
http://cocoate.com/jdev/ad

14. What Is Git?

Photo: http://www.flickr.com/photos/caseorganic/5798251460/ CC-BY-2.0

If you try to develop software with more than one developer involved, you run
immediately into problems. While working, developers change something and all the
other developers involved in that project need to update it in some way. If the changes
were not that good, there should also be a possibility to rollback to a previous state or to
restore the code in other ways. The problems even get harder when the developers are
spread in different time zones all over the world.

CENTRALISED REPOSITORY
The first solution to that problem is a centralised repository. This repository is

managed by a revision/version control system. Changes are usually identified by a
number and are called revisions. For example, an initial set of files is revision 1. When the
first change is made, the resulting set is revision 2, and so on. Each revision is associated
with a timestamp and the person making the change. Revisions can be compared,
restored, and with some types of files, merged (Figure 1).

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 119

Figure 1: Centralised Workflow (Image https://github.com/schacon/whygitisbetter)

COMMIT
There are different strategies to work with different versions of code. One important

word in this context is commit. Commits are operations which tell the revision control
system you want to make a group of changes you have been making final and available to
all users. Depending on the strategy of the system, commits are "atomic" or "file based".
There are pros and cons for each strategy.

MERGE
If you have a big team of developers it is often the case that they are working on the

same source code file. After a commit, the old and the new file have to be merged. This is
easily possible in text files and nearly impossible in media files (images, sound, video).

VERSIONS
Most projects have different versions of the software like a stable branch and a

development branch. Therefore, it is necessary to have a kind of tagging feature in the
system.

DISTRIBUTED REVISION CONTROL
The repository is still central (the blessed repository), but in a distributed model the

developer is allowed to have different versions/branches on the local workstation. The
developer can decide whether the branches are public or local. This feature has a few
advantages.

It is possible to

• create a branch, try out an idea, play around with it (commit, switch back), then merge
it to the central repository.

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 120

• have branches from different states of the software

DECENTRALISED WORKFLOW
Depending on the size of the project, there has to be one person (integration manager)

that pulls the changes of the developers in to the central repository (Figure 2).

Figure 2: Decentralised Workflow (Image https://github.com/schacon/whygitisbetter)

DICTATOR AND LIEUTENANTS WORKFLOW
If the project is bigger, like it’s the case for Joomla!, another level of hierarchy is used.

The first integrators (lieutenants) are running a subsystem to merge in all the changes.
Afterwards the next integrator (the boss or the dictator), which is only able to merge the
changes of the subsystem, is responsible for the central repository (Figure 3).

Figure 3: Dictator and Lieutenants Workflow (Image https://github.com/schacon/

whygitisbetter)

Software like GIT is called distributed revision control system (DRCS). Distributed
version control or decentralised version control (DVCS) keeps track of software revisions

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 121

and allows many developers to work on a given project without necessarily being
connected to a common network.

THE NAME AND THE HISTORY
Git was initially designed and developed by Linus Torvalds for Linux kernel

development. The name git is British English slang for a stupid or unpleasant person.

I'm an egotistical bastard, and I name all my projects after myself. First Linux,
now git.

GITHUB
GitHub is a web-based hosting service for the Git revision control system. GitHub

offers both commercial plans and free accounts for open source projects. GitHub is a kind
of Facebook or Google+ for developers, you will love it.

JOOMLA! AND GITHUB
In 2011, the Joomla! CMS and the Joomla Platform moved to GitHub - https://

github.com/joomla

HOW TO START?
Just create a user on GitHub and download the GitHub client to manage your local

branches. In your local GitHub client you have to sign in and can start creating
repositories. Try it - it's easy and fun (Figure 4)

Figure 4: Git Client (OSX)

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 122

MORE TO READ ABOUT GIT
• Joomla! Documentation: Working with Git and GitHub55

• My first Pull Request56

• Why Git is Better than X57

• Pro Git58

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 123

55 http://docs.joomla.org/Working_with_git_and_github

56 http://docs.joomla.org/Working_with_git_and_github/My_first_pull_request

57 http://whygitisbetterthanx.com/

58 http://progit.org/book/

15. Contribute Code to the

Project

Someone has to write the code for Joomla! But how to contribute?

First of all, the code of the CMS and the Platform is stored here https://github.com/
joomla

The Joomla! project runs a developer site with a focus on providing information and road
maps to all the resources available for developers interesting in extending the Joomla!
CMS, writing applications for the Joomla! Platform or helping to improve the Joomla!
codebase - http://developer.joomla.org/.

After searching and reading, I realised that a newbie like you (and me too) is simply lost :)

MY FINDINGS
For me it was hard to find my way into contributions and it seems that there is no clear
defined way how to contribute code. Maybe there is one, but I didn't find it :(I asked a

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 124

few people59 and I got various answers, so I decided to write up my experiences. First of
all, I wanted to understand the structure behind the project. So let's try to figure that out.
When you read the chapter things can be different. I wrote it in Dec. 13-16th, 2011.

JOOMLA! LEADERSHIP
The Joomla! Leadership Team60 is made up of the leaders of the Joomla! Production and
the Joomla! Community Workgroups. In case of code contribution we want to have a
closer look at the Production Workgroup.

Production Working Group
• Task: Create software that is free, secure and of high-quality—encompasses everything

that goes into the final product, not just code but also documentation,
internationalization and localisation efforts of all types.

• Leaders: Chris Davenport, Christophe Demko, Mark Dexter, Andrew Eddie, Louis
Landry, Ian MacLennan, Sam Moffatt, Omar Ramos, Ron Severdia, Jean-Marie
Simonet, Andrea Tarr

• Responsibilities: Core code development, patches, Joomla! Labs, Joomla! Bug
Squad, localisation, internationalization, Joomla! Documentation, security, Google
Summer of Code

• Public Discussion Group61

Source62

Production Leadership Team (PLT)
The PLT is part of the Production Working Group63. Members are

• Christophe Demko

• Mark Dexter

• Sam Moffat

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 125

59 http://twitter.com/hagengraf/status/146907151917527040

60 http://www.joomla.org/about-joomla/the-project/leadership-team.html

61 http://groups.google.com/group/joomla-wg-production

62 http://www.joomla.org/about-joomla/the-project/project-teams.html

63 http://www.joomla.org/about-joomla/the-project/leadership-team.html

• Omar Ramos

• Ron Serverdia

• Andrea Tarr

The PLT itself consists of a development and a bug squad team.

I tried to figured out who are these people and how are processes organised.

I started to draw a kind of a map about that development team. It is of course not 100 %
correct but this is how I understood it (Figure 1).

Figure 1: First Draft of the Structure

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 126

A very good overview over the current situation was given by Louis Landry at the Joomla!
day in South Africa August 2011 64. Watch it - You will learn a lot!

Development Team
This team sometimes also is referred to as core-committers. Some of the members are
also core-team members, but the term "core-committer" refers to team members who
have full commit access to the Joomla! code base. The development work group aims at
the development of a cutting edge, state of the art Web Content Management application
framework. This workgroup is the driving force behind new versions, and building it.
Along with the other working groups we try to realise this ambition (Source65).

Bug Squad Team
The Job of the Bug Squad Team is to identify and fix bugs in Joomla!.

I discovered a webinar recorded in June 2009 by Mark Dexter (Leader of the
Development Bug Squad Group). It is a bit outdated in terms of Joomla! versions but I
think it shows in a very nice way the idea of the Joomla! Bug Squad. For me it was a bit
complicated to watch because it was in a "strange" format and I had to download and
install additional software, so I decided to convert it and put it on Vimeo66. You find the
original recording on http://docs.joomla.org/Webinar:_Overview_of_Tracker_Process.

CONTRIBUTE CODE IN A TECHNICAL WAY
Nowadays Joomla! is stored on GitHub. You can fork the repository, browse through the
code, change something and do a so called pull request.

You can see all the open requests at https://github.com/joomla/joomla-cms/pulls.
Someone has to review and merge the requests to the core. You can even see the changes
that are made in this pull request.

Example: okonomiyaki3000 wants someone to merge 3 commits into joomla:master from
okonomiyaki3000:master (Figure 2)

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 127

64 http://vimeo.com/32799900

65 http://docs.joomla.org/Development_Team

66 http://vimeo.com/33649720

Figure 2: Diff view of a Pull Request in GitHub

So now, anyone who is interested in that topic can comment and it is possible to have a
public discussion. There is an app that collects all the pull requests against the Joomla!
CMS and Platform and starts automated testing. At the end a member of the described
infrastructure team above, has to decide and merge this request into the core - with one
click of the merge button!

IT WAS NEVER EASIER TO CONTRIBUTE TO THE JOOMLA! PROJECT! TRY
IT!

A good description of how you can make a pull request is documented here http://
docs.joomla.org/Working_with_git_and_github/My_first_pull_request.

PROPOSE NEW FEATURES
It is absolutely necessary to talk about new features. The best way to do that is the mailing
list. All posts are public and as an example here is a proposal for a new feature. You can
read the message and the discussion afterwards (A notification centre for Joomla!67) (Figure
3) and you can even try it by yourself and potentially get involved on GitHub68.

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 128

67 http://groups.google.com/group/joomla-dev-platform/msg/0e0e5d39340f079f

68 https://github.com/juliopontes/joomla-notification-center

Figure 3: Proposal for a new feature in Joomla!

PLEASE COMMENT69 IF YOU HAVE MORE LINKS, HINTS, IDEAS - I AM
STILL LOOKING ...

MORE TO READ:
• http://docs.joomla.org/Development_Working_Group

• http://docs.joomla.org/Welcome_to_the_Bug_Squad

• http://docs.joomla.org/Bug_Squad

• http://docs.joomla.org/Bug_Squad_Checklist_For_Adding_New_Members

• http://docs.joomla.org/Bug_Tracking_Process

• http://docs.joomla.org/Patch_submission_guidelines

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 129

69 http://cocoate.com/jdev/contribute

• http://docs.joomla.org/Learn_more_about_patch_files

• http://docs.joomla.org/Creating_a_patch

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 130

Advertisement

You can sponsor this book
http://cocoate.com/jdev/

ad

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 131

http://cocoate.com/jdev/ad
http://cocoate.com/jdev/ad
http://cocoate.com/jdev/ad
http://cocoate.com/jdev/ad

16. Localisation Using

OpenTranslators

Photo: http://www.flickr.com/photos/opentranslators

'OpenTranslators' is a new name in the Joomla! Universe. This chapter will explain
the goal of this Joomla! Community Project and how Developers can make use of our
expertise to improve the product they offer to the end users of Joomla CMS & Platform.

As one of the biggest CMS projects, Joomla! is used by millions of users all over the
world. Whilst the official language of the Joomla Project is English (British English en-GB),
the users whose native language isn’t English outnumber the English speaking users.

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 132

Because of this, localisation (adapting a product to specific languages, cultures or groups
of people) is very important.

Joomla itself is already being translated into many languages. This is done by the
many hard-working volunteers in the different language teams 70. Thanks to their efforts,
the CMS is now available in many different languages.

For many of the extension Developers, however, the situation is different. It can be a
big challenge for them to get their extensions translated. The smaller extension
Developers can sometimes experience problems with finding Translators and managing
their translations. To help our extension Developers, whose work we appreciate a lot, the
OpenTranslators project has been started. We are here to help you increase the usability
of your product, by bringing translators and developers together. We do this because the
value of an extension translation shouldn’t be underestimated. Both the Developer and
the Community will benefit from such a translation.

In this chapter, we are going to share with you how OpenTranslators can help you, as
a Developer. This chapter will explain how OpenTranslators works, what tools we use,
why we believe that localisation is important and how both Developers and Translators
will benefit from collaborating with us - and each other.

I18N & L10N - WHY THEY MATTER TO JOOMLA EXTENSION
DEVELOPERS

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 133

70 http://community.joomla.org/translations.html

As a Developer your focus obviously is on creating the code that turns your brilliant idea
into a functional extension to be used in Joomla! CMS.

While creating this unique extension of yours, it may not even have come into
consideration that, beyond the feature set you wish to share with the world, not all users of
the many world languages share your preferred native language.

You could be a native English speaker and just haven´t considered that your potential
audience might not read a single word of English. These potential users or customers,
you will then never get in contact with.

But there is a solution to that, and it is right there at your fingertips. Make use of the built
in internationalisation (i18n71) features of Joomla, the so called JText classes of the Joomla
framework. With little effort you can ensure your extension has full i18n support and is
prepared for localisation (L10n72). In return, Translators of any language can now share
back their translations easily, without having to know PHP code, focussing solely on their
main skill, which is translating. These combined will widen your reach and make your
extension truly available to all potential users.

How to use the JText in your extension is explained in Chapter Step 2 - Database, Backend,
Languages, Listing 5

i18n explained in the Joomla context
Since the release of Joomla 1.5, Joomla has had full support for i18n. This was done by
choosing UTF-8 as standard, which enabled support for extended character sets. This
means that Joomla core now can be fully translated and localised into any language, from
the standard en-GB British source language set.

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 134

71 http://en.wikipedia.org/wiki/I18n

72 http://en.wikipedia.org/wiki/L10n

Considerations and what to look out for when making your extension i18n aware:

• Any string of text that are presented to the user, has to be translatable (ie: no hard
coded strings)

• Think 'multilingual' when designing the visual of your extension user interface. Ask
yourself if this short word in English might have corresponding words of more
characters in other languages

• Remember that many users have a LTR (Left To Right) preference, while you are
possibly designing in RTL (Right To Left)

L10n explained in the Joomla context:
A part of making your extension fully i18n aware is also to remember to have L10n in
mind. Localisation has a great effect on how users experience your extension. There are
local and cultural aspects to consider. Localisation is the part where you allow the
Translator, the integrator or the end user to make your extension fully adapt to these local
needs.

• Considerations and what to look out for when making your extension L10n aware:

• Ensure that local 'specials' like currency are adjustable and part of the i18n. Hard
coded values could end up making your extension useless in parts of the world

• Make any text in images translateable. For example you could have image indicators
showing ‘New’ or ‘Updated’ provided as part of your extension design. If possible make
these into text so that it can be translated rather than the user having to replace them
with their own images - or at least make the images selectable, instead of hard coded

• Think colours and their different meaning across the world. Various colours signal
different things in different parts of the world. Let it be easy to localise visuals

Links and further reading about i18n and L10n:
• Joomla Documentation: Localisation73

• Colour Meanings by Culture74

TRANSIFEX

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 135

73 http://docs.joomla.org/Localisation

74 http://www.globalization-group.com/edge/resources/color-meanings-by-culture/

Transifex is a turn-key solution to facilitate your product's translation, with the help of a
wide community of translators and a great set of management tools. It is simple, fast and
effective.

OPENTRANSLATORS
OpenTranslators is a Translation Project initiated by a multilingual volunteer team of

Joomla! Community Members. We offer to work with our Joomla! Developers to 'give
back' translations as a thank you for adding so much to Joomla! We aim to make these
Joomla! extensions available in many languages by encouraging Translators of all
experience levels to join our Translation Teams.

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 136

Well done. You have built your first Joomla extension. No doubt you are
excited and want to share it with the Joomla world. But the user interface (the
parameters etc) is written in English (en-GB) - those language .ini files need
to be translated! This is where OpenTranslators can help you.

A little history
In the Joomla Project there is a very skilled group of Translators75 who produce (currently
4976) localised translations of Joomla core. Until OpenTranslators began, each extension
developer had to 'find' their own translators, usually from the users of that extension. This
has worked particularly well for the larger, more popular extensions but has been difficult
for the less publicised bulk of circa 8000 Joomla Extensions.

As more modern methods of translating have become available, enabling Translators to
efficiently and easily work on or offline, a group of Joomla Community members
identified this need and the OpenTranslators Project began end August 2011.

OpenTranslators chose to use Transifex, itself an Open Source Project being actively
developed, as the platform for our translation hub. The core team of OpenTranslators, a
team bringing Joomla development expertise added to extensive multi-lingual experience,
joined with, and now are sponsored by, the Transifex Project and with a website, http://
opentranslators.org , the task of growing the Translation Teams began.

The ultimate goal of OpenTranslators is to help create a vibrant, active and experienced
Community of Translators who volunteer to translate Joomla related projects, who give
suggestions and feedback to the Extension/Project Developers and who will encourage
and mentor new Translators to join the OpenTranslators' initiative as well as the Joomla
Core Translation Teams - all of which will help make Joomla and it's extensions available
worldwide in many different languages.

Note: perhaps think of OpenTranslators as a ‘dating agency’! We introduce
Developers to Translators and vice versa. We do not control your project - that is
your job - but we will offer advice and help if you need it.

OpenTranslators Today - December 2011
OpenTranslators has created and maintains a growing pool of experienced volunteer
Translators. All Extension Developers and Joomla related projects can tap into this pool

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 137

75 http://community.joomla.org/translations.html

76 http://community.joomla.org/translations/joomla-16-translations.html

simply by adding their project to Transifex without the need to manage hundreds of
Translators individually.

With their understanding of the principle of a 'Volunteer Community of shared
Translators', some of the most popular extensions for example redCOMPONENT
(including redSHOP), NoNumber Extensions (including Advanced Module Manager)
and StackIdeas (including EasyBlog) and many more (link to projects for translation)
associated their translation projects and actively encouraged their existing Translators to
join OpenTranslators. Together with the generosity of many volunteer Translators, the
Translation Teams are growing both in the number of Translators and the diversity of
language; bringing with them extended experience of technical translations and most
with either developer or user experience of Joomla.

One of the great advantages of Transifex is that all translations can be done ‘in the open’
and, with the latest version of Transifex, Team Co-ordinators can nominate experienced
Translators to proofread completed translations which will ensure quality translations are
provided for your extension. Combined with Translation Memory77, which offers
Translators previous translations of strings, these translations will bring a consistency
across all extension translations which was unachievable before.

Take a look at some of the OpenTranslators projects on Transifex, look at
their resources, see what information they provide. Check out the
translations and look at them from a Translator’s view... and then learn how
to add your own extension project so it truly can be shared with the world!

SETTING UP YOUR PROJECT WITH TRANSIFEX &
OPENTRANSLATORS

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 138

77 http://en.wikipedia.org/wiki/Translation_memory

Photo: http://www.flickr.com/photos/dannychoo/5076700146 (CC BY-SA 2.0)

In the previous paragraphs, we have introduced you to OpenTranslators and our vision
on localisation and translations. We have also introduced you to Transifex - the platform
we use to enable collaboration between you and the translators.

In this section we will focus on your tasks. We’ll explain what you will need to do to set up
your project, and what things you have to look out for while doing so. Keep in mind that
our website has detailed manuals for developers - we’re always working on improving
them for your benefit.

This section will focus on the following areas:

1. Making contact with OpenTranslators

2. Working with the Transifex website

3. Setting up your project in Transifex

4. Using the Transifex client to maintain your translation files

5. Tips and tricks regarding Transifex, it’s client, and translation files in general

We know you’re busy and might be eager to get started, so let’s carry on
straight away!

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 139

Making contact with OpenTranslators
You can get in touch with OpenTranslators at any point during (or after) your setup. But
in general, we recommend to get in touch with us before you get started. When you do,
we can help you get started by pointing you in the right direction to make sure you make
a good start! It is most important that you alert us at some point when you assign your
project to use OpenTranslators.

You can contact OpenTranslators using Twitter @opentranslators78, Google+79,
Facebook80 or through our website81.

Working with the Transifex site
As we mentioned before, we use the Transifex platform82 to enable extension translations.
Before you can get started with a project, you will need to register on Transifex. This is a
simple process. Registering on Transifex is free - just like using Transifex is free for Open
Source GPL licensed extensions.

Tip: If you don’t already have a well known username, it is better to register
with your real name or even better, both. We often use Twitter for
communication so it is a good idea to add your Twitter username to your
Transifex Profile.

Setting up a project
Once you are registered on Transifex, you can set up your first project. We have described
the steps on our website, in our developer 'how to' 83. You can choose to use either the
Basic or the Advanced method to set up your project - the outcome will be the same.
When setting up the project, keep the following in mind:

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 140

78 https://twitter.com/opentranslators

79 https://plus.google.com/b/103517388838387157233/

80 http://www.facebook.com/OpenTranslators

81 http://opentranslators.org

82 https://www.transifex.net/

83 http://opentranslators.org/en/how-to

• Licence type: When creating the project, you will be asked to choose the licence type
for your project. Make sure to use “Other Open source” as your extension is licensed
under (any version) of GPL

• Access Control: To assign your project(s) to the OpenTranslators’ translator teams,
you will need to set your Access Control to “Outsourced access” and select
OpenTranslators

• Tag your project: Your project should be tagged with “OpenTranslators” without
quotes. This will make it easier for our Translators to find your project and identify it as
one that has been assigned to them. You can find this option under “Edit your project”.
You can see the list of projects currently tagged with OpenTranslators here84. You can
also add your own name as tag here and any other tags you want

• Use Bing or Google Translate for automated translations: If you have an API
key you can enable either one (or both) of the “automated translations” options.
Enabling this option requires an API key. Translators can then use these tools to
automatically translate strings for speed and accuracy where appropriate. More
information85

• Other Tools: If you have two or more extensions, enable Translation Memory86.

Using the Transifex client
The Transifex Client87 is a command line tool that will allow you to easily and quickly
manage your source files and the translations. This tool will be essential to you, as it will
save you a lot of time when you use it. Using the client, you will be able to push
translations to Transifex and pull translations to your desktop, svn or Github.

Note: 'pushing' translations could be seen as uploading them, while 'pulling'
them is similar to downloading them. You can also perform these actions
manually on the site. A more detailed explanation can be found in the Client
documentation.

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 141

84 https://www.transifex.net/projects/tag/opentranslators/

85 http://blog.transifex.net/2011/12/auto-translate-updates/

86 http://help.transifex.net/intro/projects.html#translation-memory-exchange-tmx-files

87 http://help.transifex.net/features/client/index.html

If you need additional help on using the client, you can ask your question on our forum
and one of your fellow developers will be able to help you out.

Making the translations ready for use in Joomla!
Of course, the goal of the translations is that you make them available to your users. You
can choose to package the translation files in your extension package, or offer them
separately as installable language packs. But before you are there, you might need to make
some small changes to the files you download from Transifex.

The translation files Transifex outputs (for instance by using the pull function from the
client discussed above), will probably need a little tweaking here and there to make them
100% suitable for Joomla. We have already documented some tips and posted them in
our Tips and Tricks subforum. If you run into problems or have tips of your own, you
can share them using the forum and we will make sure our experienced Developers will
look at your post.

Links and further reading about your project on Transifex:
• Pseudo-translations for extension testing88

• Transifex 1.2 released December 201189

• Webhooks 90

• Transifex Glossary91

In this section, we have covered some of the tools at your disposal. However, we didn’t
mention one key element to make your translations happen - the volunteers who will be
translating your extensions in their native language. The next part will explain how you
can 'use' them and how Translators work.

VOLUNTEER TRANSLATORS & YOU

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 142

88 http://help.transifex.net/intro/projects.html?#pseudo-translation-files

89 http://help.transifex.net/server/releases/1.2.html

90 http://help.transifex.net/intro/projects.html?#webhooks

91 http://help.transifex.net/glossary.html#glossary

http://opentranslators.org/en/forum/10-tips-and-tricks
http://opentranslators.org/en/forum/10-tips-and-tricks

How Developers can ‘use’ Translators through OpenTranslators on
Transifex
All language teams are shared between all projects assigned to OpenTranslators. This
means Developers will have access to continuously growing teams of Translators, all
experienced in translating Joomla related products. This is especially beneficial for
Developers who currently don’t have a long-standing or well structured system, or any
translation system at all. Developers new to translations will benefit from
OpenTranslators’ pool of Translators and might bring in some new Translators to
increase this pool for others.

Developers who already have a system in place have nothing to lose in trying out
OpenTranslators. Your already existing teams would join ours, in a true Open Source
spirit, making collaboration and experience our strengths.

Our Translation Teams are available and accepting new Translators and ideas to improve
our already efficient ‘modus operandis’.

Getting feedback from Translators
Different language teams will opt for different strategies, for example:

• individual Translators can provide feedback by sending a private message through the
Transifex messaging system

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 143

• Translators can provide feedback using the ‘suggestions’ tab when translating a string
on Transifex

• posting on OpenTranslators’ forum

• posting related articles

• sending tweets, either directly to the extension developer or via @OpenTranslators

• when our English (en) Proofreading Team is structured it will help non-native English
speaking developers with their en-GB files

Interacting with Translators at the OpenTranslators’ forum
Our OpenTranslators forum92 is the perfect place for interaction between Translators,
Co-ordinators and Developers. Each project or suite of projects is allocated its own forum
and it is a place where everyone can and will benefit from everyone’s input, feedback and
collaboration, making it easier for newcomers to find and learn from the knowledge
available to all.

Encouraging and motivating Translators by ‘giving back’
To encourage Translators to maintain the translation of a project, most commercial
extension Developers offer their Translators a copy of the product they’re maintaining
(limiting it to for example 1-3 freebies per language team)

Other ways to say ‘thank you’ and to encourage Translators are to:

• make sure you actually take and use the translations

• make a blog post or article on your website about the Translators who have contributed
to the translation of your extensions

• send out a ‘thank you’ tweet, post on Facebook and Google+

• make sure you keep in touch with your translators by posting in OpenTranslators’
forum or your own forum, especially regarding new releases/changes etc

• use one of OpenTranslators’ banners93 on your site

...but mostly just remember that the Translators are volunteers and that
localisation is not possible without them

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 144

92 http://opentranslators.org/en/forum

93 http://opentranslators.org/en/opentranslators-media-kit

CONCLUSION

OpenTranslators is a project by and for Joomla! Community members, which brings
together Translators and Developers. Localisation is our passion, and we’d like nothing
more than to help Developers like you help themselves and their clients / community
members by having your extensions translated in as many languages as possible.

If you are interested in tapping into our translation experience and our translator pool
(currently over 260 translators in over 50 language teams) we welcome you to join us.
Collaborating with OpenTranslators is free, simple and fun. If we’ve sparked your
interest, we recommend you check out our site, take a tour on Transifex, read our
manuals or say “Hello” on our site, or the social media site of your choice. We look
forward to hearing from you!

from your fellow Joomla! Community Members, the OpenTranslators Team.

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 145

Advertisement

SourceCoast focuses on social networking extensions for Joomla. Our
most popular extension, JFBConnect, is used on thousands of Joomla
powered sites including the Joomla Extension Directory itself. In late 2011,
we released JLinked, our newest extension for LinkedIn integration.

http://www.sourcecoast.com/

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 146

http://www.sourcecoast.com
http://www.sourcecoast.com

written by Alex Andreae

17. Running a Business

Around Joomla! Extensions

Photo: http://www.flickr.com/photos/73024773@N07/6589595017 (sourcecoast)

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 147

Over three years ago, I left a full-time job and decided to do Joomla! development full-
time, starting SourceCoast94 with a business partner. At first, we started doing custom
client work: Joomla! installations, site setups, content insertion, site structure, etc.
However, early on, we realised that we enjoyed the extension creation and support portion
more than the client back-and-forth. What we didn’t know was the best way to start
turning extension development into a business.

In 2008 and 2009, we went to multiple Joomla-related events and attended every session
we could on how to create a business around Joomla! extensions. While all the sessions
were great, they all focused most on the GPL aspect of Joomla!, what its requirements
were, and ways you could go about ‘selling’ your services. However, each discussion
stopped right where the actual business setup, structure, how to manage extensions and
users, and everything else I wanted to know should have been.

So, this chapter is our attempt to contribute back what we’ve learned initially by
observing other developers and, eventually, by trial and error on our own. Hopefully, it
will provide a general overview of the day-to-day tasks that we go through in the
development, support, promotion, and continuing operations of SourceCoast.

THE 4 MAJOR ROLES OF AN EXTENSION BUSINESS
At SourceCoast, there are 4 major areas that we focus on: Product, Support, Business
Model/Pricing, and Promotion. This excludes some of the more mundane things, such as
bookkeeping and accounting, but as we progressively manage to get each of those 4 areas
executing better, our business has thrived.

1. PRODUCT
The most important thing when running an extension business is obviously having a good
product. There are many ways to come up with ideas for extensions, but there are no
guarantees that it will gain the traction needed to turn it into a full-blown business.

For us, our main product, JFBConnect (a Facebook integration tool for Joomla!) 95 was
originally proposed by a client of ours. They wanted to add a Facebook Login button to
their site to make logging in simpler for their users. We started development on the
extension right away, and by the time we had the initial prototype, the client decided to go
in a different direction. In an effort to make a little money back from our time investment,

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 148

94 http://www.sourcecoast.com/

95 http://www.sourcecoast.com/jfbconnect/

and because we thought it was a great idea in a non-filled market, we decided to start
selling it. The extension was basic, but was a great starting point.

When starting out, first and foremost, you need to start small. Yes, it'd be great if you
could make the 'next' shopping cart that handles all currencies, all shipping, and a slew of
other things. However, it's unreasonable to assume you can do this when: you're still small,
you're not making any money off of the new product yet, and you're not getting feedback
yet from your users. If you shoot too big to start, you'll end up hurting yourself in the long
run, if you even make it that far. You need early adopters that want a lower price and less
features, so that you can go on to add more features, bug-squash, get more customers and
eventually, even raise prices.

2. BUSINESS MODEL
Once you have an extension that you think has a market and is worth selling, the next,
and possibly most difficult thing for developers, is actually starting a business around it.
Pricing is the first step in this process, and there are a ton of different ideas on how to
price something the best:

• Free "Community" version with paid support

• Free "Community" version with a supported 'pro' version

• Paid version only, with support

In all cases above, the paid version is on some 'subscription' period basis. Once you plan
to include support for a payment, you must set a time limit on the duration. After that
period is over, since the extension is GPL, the user is free to continue using it. However, if
they want support or need an upgrade (if not available as a free version), they'll need to
re-subscribe. A duration based on a time period, a version number, or something similar
is critical or else you could end up supporting some users forever. A 'lifetime' subscription
sounds like a great selling point, but it will burn you in the long run.

At SourceCoast, we have a simple philosophy for our commercial extensions: We don't
offer 'community', or free, versions. For us, offering a free version of your extension
devalues the overall experience, and it causes a lot more problems than (ideally) it would
solve. What we've seen and heard from other developers we've spoken with is that when
they have a free version, it generally causes the following issues:

• 'xyz' is a necessity! - Users have their own ideas of what should be in the free and
pro versions. If you dictate something is pro-only, some users will be very upset that
such a feature isn't included in their version.

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 149

• Users don't read the feature list first - If it's free, they'd rather just install and try
it before understanding the features and limitations. This is a poor overall experience
for the users, doesn't give your extension a fair shot, and may end up hurting you in
reviews.

• Extra time costs - If you have a free and pro version, you're increasing your effort by
developing, packaging, and testing both versions. That time could be better spent on
one, better version.

• It's harder to sell the upgrade - When a user is going from free with 50 features,
it's harder to sell them the extra 25 features. When they're paying for all 75 features,
they feel like they're getting more (for the same price!)

• Free can give the wrong experience - If a user runs into issues with the free
version, but there's no support, how can they trust that paying will solve their issue?

While there are some huge extensions out there that offer free versions, it's simply not
how we could operate on our budget and on a team of only 2 developers. That's not to
say our way is right for everyone, it's just what works for us.

Pricing
Now that you've decided on a model for your extensions, you actually need to determine
the price. Again, from our experience, and contrary to what you might expect, there's one
equation that we firmly believe in when it comes to pricing:

Higher Price == Happier Customers

It may sound crazy at first, but ideally, you can get the same amount of total money, from
less users. While you may think you want tons of users, think of the benefits that you, and
your customers, gain from a higher price and less users:

Lower overall support - For a small team, this gives you more time to focus on those users
that need support. The support section details this more, but support will be *the* most
critical aspect of your business.

More time to develop - Less support allows for more time for other things: documentation
and development.

Users think before they buy! - Again, if your extension is free or promises the world for
$5, users will buy without hesitation. If a user's experience isn't great, regardless of the
price, they won't be happy.

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 150

Paying customers understand value - If you've ever read some reviews on the JED, they're
wildly inconsistent. Some users bash free extensions. Others lump praise on overpriced
extensions that under-deliver. When you price it correctly, you at least get the users that
understand that free isn't always better. Those are the users you want. They'll understand
that a bug-fix may take 2 days or that conflicts occur. Unreasonable users are not good
customers. Unreasonable users a lot of the time only use free (or the cheapest) extensions.
Let them use something else.

Of course, higher price doesn't mean an exorbitant price. Every market is different. Look
at your competitors. Look at their features. Look at their price. When we started with
JFBConnect, it was $15 for a minimal set of features. That was a 'high' price in a non-
existent market at the time and for an extension that didn't do much, in all honesty. As
features were added, we steadily increased the price from $15 to $20, $30, and are now at
$50 for a 6-month subscription.

Refund Policy
When we first started out, we had the same feeling we hear from so many other
developers: It's GPL, you can't give refunds or users will steal your stuff ! Because of this,
we, like many other extension clubs, had a strict no-refund policy. It made sense. It's GPL
software. There are no license checks. There is no way to return the extension if a user
gets a refund. How could we possibly allow for refunds? There are 2 great answers:
Chargebacks and customer trust.

Chargebacks are the bane of any digital seller. When a user purchases a product through
PayPal (or any other merchant), if they dispute those charges, you are responsible for
proving you shipped the product or delivered something to them. Download logs and IP
addresses almost never work as proof, and a no-return policy doesn't either, so what do
you do? Nothing. And what happens? The merchant decides against you, refunds the
money to the user and also hits you with a $20-$60 chargeback fee. This is a fee from the
credit card companies for doing a dispute against the vendor.

Without a refund policy, this is the course of unhappy users. It not only nullifies their sale
and leaves you with an unhappy customer, it ends up costing you extra money!

Users want to be assured that you have faith in your product and are willing to offer a
refund if it doesn't fit their needs. Having a refund policy breaks down just about all
barriers to the sale and builds that customer trust.

Our Results of a 30-Day Refund Policy

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 151

At the end of August 2010, we increased our rates by 60%, going from $30 to $50 on a 6-
month subscription and $50 to $85 on a 1-year. At the same time, we instituted a 30-day
money back guarantee. At that point, dollar volume of sales had been increasing about
20% month. In September, sales were up by 13%, and in the following months, they
returned to a 15-25% monthly increase on average. The overall picture was that a 60%
increase in pricing did not have a substantial impact on income. Additionally, it directly
led to less customers, which from a support and development standpoint, was a great win
for us.

It's impossible to say that our refund policy was the main reason the pricing increase
didn't affect our overall revenue. Since then, however, SourceCoast has seen only one
chargeback in the last year, whereas we would have received one or two a month
previously, saving us about $20-50 in fees. Refunds have consistently stayed below 5% of
sales, and generally are under 1% of total subscriptions every month. Even with those
refunds, we've ensured that anyone who tries to use our extension is happy, which is great
for good-will and publicity. If a user is unhappy, you want to ease them so they don't
complain publicly about the extension or your business. Let them simply request a refund
and go on their way.

3. SUPPORT
Far and away the most critical aspect of an extension is the support you provide for it.
Even if your extension has all the bells and whistles possible, and even if it's extremely
simple to use, users will run into issues. Server configurations, Joomla! settings, extension
conflicts, you name it. Not all will be your extension's fault directly, but most users won't
know that, won't understand it when you tell them, and most of all, won't care. They paid
for your product - they, rightfully, will expect you to help resolve the problem however you
can. It can't be overstated that your customers overall happiness will come from the
support they receive. Without happy customers, you will receive poor reviews and lose out
on essential word-of-mouth promotion, thus hurting your overall business.

There are multiple facets of support, and providing great support doesn't mean you have
to be strapped to your computer all day answering questions (though you will need to be
at times). To do support correctly, you need to be prepared for your users support needs
beforehand, through documentation, and also at the time of need through "tech support".

Documentation
Very few, if any, people like writing documentation. When done right, having great
documentation will make your users happier and save you an immense amount of time.
Documentation is all-encompassing. Your extension itself should have clear descriptions

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 152

of parameters and what each setting will do. There should be installation and
configuration guides for every feature of your extension that users can skim through.
There needs to be common support questions answering issues that you hear commonly
from your users (server, configuration, conflict, styling, etc), or anticipated questions for a
new release. Depending on your extension, there could possibly be 'advanced' guides for
using some of the function calls or information on how to extend some of the
functionality.

Above all, remember that documentation is an ongoing process. With each release, you
should evaluate what information you have available and revise it where necessary.

Tech Support
Will your users read your documentation? For installation and configuration, probably.
For support, probably not. When they come with questions, you need to be ready.

SourceCoast uses a forum-based technical support area, because it allows users to try to
find their own answers. If you use a ticket-based system, questions and answers are
hidden, which results in many repeated questions. Forums aren't perfect, and your
method of tech support will depend on your needs.

Once you start getting tech support questions, the process should be simple. If your
documentation is perfect, you'll be able to simply point them to their answer, instead of
repeating the same answer for each user. If the answer isn't readily available, figure out
the solution help that user. Then, determine if this is a question that may be asked again
or has been asked before, and if so, document it for later reference.

If you've already written a detailed response, and it's fresh in your mind, that's the time to
document it!

4. PROMOTION
Once you have an extension available, you need to get the word out about it. This can
always be a daunting process, and there's no perfect way to do it. The main point of
promotion isn't necessarily to make a sale immediately. It's to make sure your brand is
known and that when a user needs to purchase from you, they already feel familiar with
your company or brand. Promotion is a long term endeavour, and like everything else,
needs to be refined with time. The following are just a few critical, yet free, ways to
promote your products.

Joomla! Extension Directory

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 153

This is the most obvious, but can't be overstated. Being listed here doesn't guarantee
success. However, without a JED listing, potential users will question why you're not listed,
and may find other competitors that are. In addition, the reviews received here are
moderated and a great way for prospective users to get an unbiased opinion before their
purchase.

Blog
Use a blog to post about new updates, what you're working on, sites that started using
your extension, or just about anything related to your products. Some users will subscribe
to your feed to stay up-to-date. More importantly, you can submit your blog to Joomla!
content aggregators like Joomla! Connect96 and Joomla! Reader97. Each blog post can
reach thousands of users, and each one of them is a potential customer!

Social Networking
Facebook, Twitter, etc. - you know the drill. Like your blog posts, tweet about updates.
Use the LinkedIn Share button to post your content to professional network. Whatever
social channels you have at your disposal, use them. They're free and they can hit a huge
audience with just a little effort.

5. HARD WORK AND DISCIPLINE PAYS OFF
It's extremely generic to say, but hard work, dedication to your users, and constantly
refining your process is the key to success. While everything above has worked for us, it's
taken us years to get to this point. It's also possible that different choices along the way
could have worked out better. Use the above as a guide for your own business, but don't
feel it's etched in stone.

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 154

96 http://connect.joomla.org/

97 http://joomlareader.com/

18. What Is PHP?

Photo: http://www.flickr.com/photos/myhsu/3040774379 CC-BV-2.0

PHP is a general-purpose server-side scripting language originally designed for web development to produce
dynamic web pages. For this purpose, PHP code is embedded into the HTML source document and
interpreted by a web server with a PHP processor module, which generates the web page document. It also
has evolved to include a command-line interface capability and can be used in standalone graphical
applications.

PHP was originally created by Rasmus Lerdorf in 1995. The main implementation of PHP is now
produced by The PHP Group and serves as the de facto standard for PHP as there is no formal
specification. PHP is free software released under the PHP License which is incompatible with the GNU
General Public License due to restrictions on the usage of the term PHP.

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 155

While PHP originally stood for "Personal Home Page", it is now said to stand for "PHP: Hypertext
Preprocessor", a recursive acronym98.

The last stable version of PHP is 5.3.8 which was published in August 2011.

Joomla! is written in PHP. Thousands of files contain PHP code which was written over
the last years. Joomla! consists of more than 500.000 lines of PHP code. It would need
244 person-years to develop it! (Joomla! estimated cost99)

When Joomla! was founded, the developers used mainly PHP 4.x which was very
common these days. It was and partly is a challenge to rewrite the legacy code to use as
many as possible features of PHP 5.x

Let's have a short overview of PHP. If you ever had a programming course in school, you
will remember most of the statements. If you are totally new, just have a look and try to
understand the code. The example files are attached at the end of this page. It is a very
good idea to try the examples on your own machine.

WHERE IS MY PHP?
If you use a LAMP bundle, PHP is inbuilt. Usually it is a binary file, tied to the Apache
Web server as a module. When you start the Web server, PHP is ready to run. PHP has
feature called phpInfo. It shows the configuration of everything which is related to your
PHP interpreter. In MAMP, you can click on phpInfo to see that page (Figure 1).

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 156

98 http://en.wikipedia.org/wiki/Php

99 http://www.ohloh.net/p/joomla/estimated_cost

Figure 1: phpinfo via MAMP

It is very easy to produce the same output on your own. Just create an empty file with the
name phpinfo.php (the name doesn't matter, could be also joomlarocks.php) in your editor and
type in this code (Listing 1).

<?php

phpinfo();

?>

Listing 1: phpinfo.php

Place the file in the /htdocs folder access it via http://localhost/ and click on the filename
(Figure 2).

Figure 2: Webserver Directory

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 157

Attention:

Depending on the the LAMP bundle you are using

• the domain localhost is tied to various ports. The default setting in MAMP e.g. is port
8888 and you have to write http://localhost:8888. Check your port in the documentation.
If it is port 80 it is the default port of "the internet" and it is not necessary to write it.
http://localhost:80 is the same then http://localhost.

• you usually see a directory when accessing http://localhost. This is a configuration of
your Apache web server. If you don't see a directory, create an additional folder in /
htdocs e.g. php and access it via http://localhost/php. If you still do not see a directory,
access the file directly via http://localhost/php/phpinfo.php and search for a solution in the
documentation of your LAMP bundle.

As you see, PHP programming starts very simple :) Any PHP script is built out of a series
of statements.

HELLO WORLD
If you haven't done it so far, please create a folder called php in the htdocs folder of your
server. Let's start with the hello world example (Listing 2).

<?php

print('Hello World');

// or

echo 'hello World';

?>

Listing 2: hello.php

The PHP interpreter only executes PHP code within its delimiters. Anything outside the
delimiters is not processed by PHP. Delimiters are configurable but the most common
delimiters are <?php to open and ?> to close PHP sections. If you think of creating PHP
codes for a website a more realistic example would be something like listing 3. In this
listing you can see the typical mixture of HTML (HTML5) and PHP.

<!DOCTYPE html>

<html>

<head>

 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

 <title>Your Website</title>

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 158

</head>

<body>

<header>

 <nav>

 Your menu

 </nav>

</header>

<section>

 <article>

 <header>

 <h2>Article title</h2>

 <p>Posted on <time datetime="<?php echo gmdate("Y-m-d\TH:i:s") ?
>"><?php echo date(DATE_RFC822);?></time> by Author</p>

 </header>

 <p>... some text</p>

 </article>

</section>

</body>

</html>

Listing 3: hello_html5.php

PHP is not complicated. The biggest problem is to figure out the right syntax and the
concepts in general.

VARIABLES
A variable is a symbolic name for a piece of data. The idea behind it is to have a name or
a kind of a 'pointer' for this data to be able to use it in a script. The data of the variable
may change in one script (Listing 4).

<?php

$date = date('Y-m-d')

print($date);

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 159

// or

echo $date;

?>

Listing 4: variable.php

FUNCTIONS
PHP has a lot of inbuilt functions like print() or phpinfo(). But the real power comes with
self made functions that are tailored to your needs. In listing 5 you see an example of a self
made function. In your browser the result will be this sentence The date is 2011-11-02.

<?php

// this is the function

function writeDate()

{

 echo date('Y-m-d');

}

// this is the main script

echo "The date is ";

writeDate();

?>

Listing 5: function.php

PARAMETERS
It is possible to use parameters in functions and of course in several other places. In the
example in Listing 6, I use two parameters. The first parameter is the format of the date
($format) and the second parameter is the punctuation ($punctuation). Parameters can be
used as variables in functions.

<?php

// this is the function

function writeDate($format, $punctuation)

{

 echo '- '.$format.' the display will be ';

 echo ''.date($format).'' . $punctuation.'
';

}

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 160

// this is the main script

echo 'If you write something like:
 ';

writedate('Y-m-d',',');

writedate('H:i:s',',');

writedate('m.d.y','.');

writedate('l jS \of F Y h:i:s A','.');

?>

Listing 6: parameter.php

In your browser it will look like:

If you write something like:

- Y-m-d the display will be 2011-11-02,

- H:i:s the display will be 18:32:33,

- m.d.y the display will be 11.02.11.

- l jS \of F Y h:i:s A the display will be Wednesday 2nd of November 2011
06:32:33 PM.

Return Values
Sometimes you want to outsource some code to a different place, for example a
calculation. One possibility is to use a function. The code of the function is always the
same but the return value depends on the given parameter.

<?php

function add($x,$y)

{

 $result=$x+$y;

 return $result;

}

echo "13 + 27 = ".add(13,27);

?>

CONTROL STRUCTURES
PHP provides the usual suspects:

If Else

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 161

If an expression is true like $a >$b execute a statement. If not ... else ... than execute
another statement.

<?php
if ($a > $b) {

 echo "a is greater than b";

} else {

 echo "a is NOT greater than b";

}

?>

If Elseif
In this construct it is possible to ask twice if ... elseif ...else.

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 162

<?php
if ($a > $b) {

 echo "a is bigger than b";

} elseif ($a == $b) {

 echo "a is equal to b";

} else {

 echo "a is smaller than b";

}

?>

While
The while loop executes the statement as long as the while expression is TRUE.

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 163

<?php

$i = 1;

while ($i <= 10){

 echo $i;

 $i++;

}

?>

Foreach
Foreach iterates over arrays and only works with arrays. An array is a list of values.

<?php

$a = array(1, 2, 3, 17);

foreach ($a as $v) {

 echo "Current value of \$a: $v.\n";

}

?>

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 164

http://www.php.net/array
http://www.php.net/array

Switch
The switch statement is similar to a series of if statements on the same expression. If you
want to compare the same variable (or expression) with many different values, the switch
statement is more elegant than a number of if statements.

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 165

<?php

switch ($i) {

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 166

 case 0:

 echo "i equals 0";

 break;

 case 1:

 echo "i equals 1";

 break;

 case 2:

 echo "i equals 2";

 break;

}

?>

CLASSES
The main difference between PHP4 and PHP5 was the rewritten object model. See
chapter What is Object Oriented Programming for more information on this topic. A
basic example would look like Listing 7.

<?php

class Car {

 public $colour;

 public $brand;

 public $image;

 public function __construct($colour, $brand, $image) {

 $this->colour = $colour;

 $this->brand = $brand;

 $this->image = $image;

 }

 public function startEngineMethod() {

 return 'image .'"> The ' . $this->colour . "
" . $this->brand . " starts its engine.";

 }

}

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 167

$her_car = new Car('red', 'Ferrari', 'http://farm4.static.flickr.com/
3004/2541945935_422339cbef_t.jpg'); //Photo by exfordy (CC BY 2.0)

$his_car = new Car('blue', 'Smart', 'http://farm1.static.flickr.com/
66/222092351_c9b93d3286_t_d.jpg'); // Photo by cocoate (CC BY 2.0)

$other_car= new Car('','Volkswagen', 'http://farm4.static.flickr.com/
3040/2746837856_7acb6535c0_t_d.jpg'); // Photo by Glen Edelson (CC BY
2.0)

echo $her_car->startEngineMethod(); // prints "The red Ferrari starts
its engine."

echo '<hr />';

echo $his_car->startEngineMethod(); // prints "The green Triumph starts
its engine."

echo '<hr />';

echo $other_car->startEngineMethod(); // prints "The Volkswagen starts
its engine."

?>

Listing 7: class.php

The result in the browser will look like in Figure 3

Figure 3: Output of class.php

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 168

By far the best reference for PHP is the documentation on php.net100. If you are curious,
play around and try out as much as you can101.

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 169

100 http://php.net/

101 Download the example files on http://cocoate.com/jdev/php

Advertisement

VMX.Pro - Joomla Consulting and Development

VMX.Pro offers all kind of Joomla! Development and Consulting-Services but is
specialized in Joomla! ecommerce with projects all over the world.

VM-Expert.com - Joomla Ecommerce Experts

With VM-Expert.com they offer professional support and development for the leading
ecommerce system for Joomla!: Virtuemart.

http://www.vm-expert.com/

http://www.vmx-pro.de/

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 170

19. What Is Object-Oriented

Programming?

Photo: http://www.flickr.com/photos/hagengraf/5915246260 CC-BY-2.0

Object-oriented programming (OOP) is a programming paradigm using "objects" – data structures
consisting of data fields and methods together with their interactions – to design applications and computer
programs. Programming techniques may include features such as data abstraction, encapsulation,
messaging, modularity, polymorphism, and inheritance. Many modern programming languages now
support OOP, at least as an option102.

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 171

102 http://en.wikipedia.org/wiki/Object-oriented_programming

Translated - the OOP paradigm wants to picture structures and relationships between
objects like in the real world!

Some people think it is the best idea on earth since sliced bread, others say, it is the most
overrated and overhyped programming paradigm on earth.

As always, the truth is somewhere in the middle.

CLASSES, OBJECTS, INSTANCES, PROPERTIES AND
BEHAVIOURS
Before we dive into the dry stuff, let's be clear about the basics of OOP.

• A class is a concept of an object

• An object is an instance of a class

• An instance has properties (or attributes) and behaviours (or methods) defined by the
class

Have a look around where you are sitting at the moment, maybe you see something like
Figure 1.

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 172

Figure 1: Classes and Objects

In OOP a class is a blueprint for an object/instance. In our example the class girl is the
general blueprint for all girls and the class boy for all the boys. We have only two classes
(blueprints) and all girls and boys (objects) are based on them.

class girl {

}

class boy {

}

ATTRIBUTES/PROPERTIES
Each girl and each boy have attributes. These attributes are often called properties. The
precise meaning of these terms depends often on what language/system/universe we are
talking about. In HTML, an attribute is the part of a tag with a kind of a key and a value
and property doesn't mean anything, for example. Often, an attribute is used to describe
the mechanism or real-world thing. A property is used to describe the model. In the
example class we use the properties $eyecolor and $name.

class girl {

 //properties

 public $eyecolor;

 public $name;

}

class boy {

 //properties

 public $eyecolor;

 public $name;

}

When you see the source code you'll notice that our girl and boy classes are quite similar.
We know that both are different in many ways but for these examples I don't want to go
in deeper details :)

INSTANTIATION

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 173

The "birth" of our girl and boy object is called instantiation. The object itself can be
called instance too.

class girl {

 //properties

 public $eyecolor;

 public $name;

}

class boy {

 //properties

 public $eyecolor;

 public $name;

}

//Instantiation

$harold = new girl('brown', 'Harold Chasen');

$maude = new boy('grey', 'Maude Chardin');

The word new calls a special method, the constructor method. In this method, all values
given by parameters are configured for exactly this instance. These values are unique for
each instance.

We created $harold and $maude! Each should have a name and an eye colour. They are
kind of "born" :)

METHODS, BEHAVIOURS
Now that we have created two instances, it would be nice to give them a few skills, like the
ability to speak, to run, to think ... you name it. These skills are called methods in OOP.
Methods define the behaviour of instances. In the code example, a method looks
technically like a function. This wording is special to PHP because PHP was not object
oriented from the beginning. Luckily, in other languages, a method is usually called
method.

class girl {

 //properties

 public $eyecolor;

 public $name;

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 174

 //constructor is called while instantiation

 public function __construct($eyecolor, $name) {

 $this->eyecolor = $eyecolor;

 $this->name = $name;

 }

 //method

 public function sayName() {

 return 'My name is '. $this->name;

 }

}

class boy {

 //properties

 public $eyecolor;

 public $name;

 //constructor is called while instantiation

 public function __construct($eyecolor, $name) {

 $this->eyecolor = $eyecolor;

 $this->name = $name;

 }

 //method

 public function sayName() {

 return 'My name ist '. $this->name;

 }

}

//Instantiation

$harold = new girl('brown', 'Harold Chasen');

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 175

$maude = new boy('grey', 'Maude Chardin');

ACCESS RIGHTS
In front of the word function you see the word public. Public is an access right. Even if our
instances are virtual, they need public and private areas. A public method can be called
from "outside" of the class, a private method only from "inside" of the class. In our
example, the method sayName is public. That means, someone can call $harold->sayName()
and Harold will do so. The reality of human beings is a bit more complicated. Harold
would have to learn a language first and then he would need a "decision" method (or a
brain method), whether he wants to answer or not. Harold’s method of speaking would
be a private one in reality, called by the "decision" method because only Harold or to be
more precise Harold’s "decision" method should decide whether he wants to speak or not.

//Instantiation

$harold = new boy('brown', 'Harold Chasen');

//Method call

$harold->sayName()

The result of this little script would be "My name is Harold Chasen".

HOW TO USE THE OOP PARADIGM IN A WEBSITE?
In our example, we have one or more classes. These classes could be stored in one file or
in separate files. It's up to you. Let's say, we create a file girl.php and a file boy.php with
the inherent method. These classes have no user interface. The methods will be called by
another script.

If someone is visiting your website he may decide to create a user account. He fills in a
form and clicks on the register button. Values like the name will be transferred to the
method and this is the time where the instantiation will occur. Harold and Maude could
be users of our websites afterwards.

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 176

Advertisement

There's more than meets the eye in New York City. But perfect for the camera lens.
From Times Square to Central Park, from the Brooklyn Bridge to Battery Park, New York
Photo Safaris are one-of-kind photography classes designed for small groups & individuals
who want to learn how to capture the life and allure that's distinctly the Big Apple. While
using New York City as both backdrop and classroom, these photography workshops
provide unique photographic opportunities to sharpen your photography skills and
capture memories for a lifetime. Groups are small, so you’ll get hands on instruction from
an experienced professional. These classes are also a great way to go on a Safari
Manhattan style. New York City Photo Safaris are similar to walking tours with an added
bonus of a photography class.

http://newyorkcityphotosafari.com

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 177

http://newyorkcityphotosafari.com
http://newyorkcityphotosafari.com

20. What Is MooTools?

http://mootools.net/

MooTools is a JavaScript Framework. The name MooTools is derived from My Object-
Oriented Tools and that the object orientation is probably one reason why the Joomla!
project leaders decided to use MooTools as the inbuilt default JavaScript Framework in
Joomla!.

Compared to native JavaScript, a framework like MooTools has significant advantages.

• It follows object-oriented practices and the "Don't repeat yourself" (DRY) principle. It offers
amazing effects and enhancements to the Document Object Model (DOM), enabling
developers to easily add, modify, select, and delete DOM elements.

• It supports storing and retrieving information with element storage.

• It offers built-in functions for manipulation of CSS, native JavaScript objects and Ajax
requests.

• It provides an Application Programming Interface (API) as well as a custom downloads
module allowing developers to download and use only the modules and dependencies
they need for a particular app.

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 178

If you do not fully understand all of the advantages, don't be scared. One other
advantage of the combination Joomla! and MooTools is, that it is not necessary to know
JavaScript in all its facets to use a great part of the MooTools magic. You learn and
understand more and more JavaScript by using the MooTools functions regularly.

WHY MOOTOOLS?
To face one of the biggest questions at the beginning of this chapter, I want to talk shortly
about jQuery - the "other" JavaScript Framework.

Because of the fact that MooTools is already inbuilt in the Joomla! CMS you are not facing the
challenging task of picking the right framework to use. A few years ago there were many JavaScript
frameworks on the market and they were widely used. Since the decision of Microsoft to use and support
jQuery as "their" JavaScript Framework for Visual Studio and other projects in the year 2008 each other
JavaScript framework has to explain why it exists :) In the case of MooTools, there is a very clear and
honest website in different languages available dedicated to the topic jQuery vs MooTools103. If you really
need jQuery in Joomla!, it is possible and other developers do so (jQuery++ Integrator104).

DEMOS
It is interesting to read what's possible but it's always better to see the possibilities live in a
web browser. For this purpose the MooTools team provides a demo site105.

You can explore demonstrations from different parts of the framework. In Figure 1 you
see the Drag and Drop example in an e-commerce use case. It is possible to drag t-shirts
into a cart.

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 179

103 http://jqueryvsmootools.com/

104 http://extensions.joomla.org/extensions/core-enhancements/scripts/12995

105 http://mootools.net/demos

Figure 1: Drag and Drop example on MooTools.net

All the examples are based on MooTools without the Joomla! CMS. You can see the
source code in an online editor.

JOOMLA! AND MOOTOOLS
Joomla! uses MooTools in many places and usually you do not have to write JavaScript
Code to use it in your extensions.

It starts with the installer. Maybe you already noticed the little wheel that appears when
you install Joomla! go from step to step. It's made with the help of MooTools (Figure 2).

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 180

Figure 2: MooTools in the Joomla! Installer

Other examples in Joomla! are the slider and the tabs in the default beez_20 Template
located on position-4, and position-8 (Figure 3, Figure 4).

Figure 3: MooTools in Beez Slider

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 181

Figure 4: MooTools in Beez Tabs

You find more examples by strolling through the Joomla! administration interface.

A TOOLTIP EXAMPLE
To make life easier for developers who want to use the basic MooTools effects, the
JavaScript Code is encapsulated in Joomla classes. You do not need any know-how of
JavaScript to use them.

Let's have a look at the tooltips. I am sure you have noticed the Joomla! tooltips in the
backend (Figure 5).

Figure 5: Tooltips in Joomla! backend

First I want to have a tooltip when hovering over the sponsoring link of the example
module (mod_coco_bookfeed106). To integrate a tooltip I only need one additional line of
code on top of the template file default.php.

JHTML::_('behavior.tooltip');

JHTML is a class with a static method that creates the tooltip. If you are curious, you can
find the source code of the behaviour class and long comments in /libraries/joomla/html/

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 182

106 https://github.com/hagengraf/mod_coco_bookfeed

html/behaviour.php as part of the Joomla! platform. The method is looking for a the HTML
attribute class with the value hasTip. So as second step we have to add this attribute
class="hasTip" in the desired link.

<a class="hasTip"

 title="YOURTITLE::YOURTITLE"

 href="http://cocoate.com/sponsoring"

 target="_blank">

 YOURLINKDESCRIPTION

If it finds the class it will append the tooltip like in Figure 6. It simply work without any
knowledge of MooTools.

Figure 6: Tooltips in example module

It's also possible to connect tooltips to text with the span attribute.

<span class="hasTip"

 title="YOURTITLE::YOURTITLE">

 Hover on this text to see the tooltip

CUSTOMISED TOOLTIPS WITH CSS

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 183

If you want to customise the design of the default tooltip, you have to insert CSS code.
Let's enhance our tooltip.

You should store the CSS statements in an external file and put them in a folder /css in
your extension (Listing 1).

/* Tooltips */

.tip-wrap {

 float: left;

 border: 5px solid #417FCC;

 max-width: 200px;

 border-radius: 5px;

-moz-border-radius: 5px;

-webkit-border-radius: 5px;

}

.tip-title {

 padding: 3px;

 margin: 0;

 background: #fff;

 font-size: 120%;

 font-weight: bold;

}

.tip-text {

 font-size: 110%;

 padding:3px;

 background: #fff;

 border-radius: 5px;

-moz-border-radius: 5px;

-webkit-border-radius: 5px;

}

Listing 1: /modules/mod_coco_bookfeed/css/mod_coco_bookfeed.css

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 184

You can load the file in the view of your extension (mostly named default.php) with the
following code

// Add a reference to a CSS file

// The default path is 'media/system/css/'

$css_filename = 'mod_coco_bookfeed.css';

$css_path = 'modules/mod_coco_bookfeed/css/';

JHTML::stylesheet($css_filename, $css_path);

Tooltips Structure
To be able to write the correct CSS statements you need the structure of the tooltips in
Joomla! 1.7

<div class="tip-wrap">

 <div class="tip-top"></div>

 <div class="tip">

 <div class="tip-title"></div>

 <div class="tip-text"></div>

 </div>

 <div class="tip-bottom"></div>

</div>

The result will look different like in Figure 7.

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 185

Figure 7: Customised Tooltip

MULTIPLE CUSTOMISED TOOLTIPS
If you want to have different styled tooltips you need an additional class as a trigger for
JHTML and of course different CSS statements.

Let's say your customised tooltips should appear when a class called hasCustomTip is
used in an HTML tag (remember the trigger for the default tooltips is hasTip). To
manage the different CSS classes you have to add a third parameter to the JHTML class.
Here are the two lines you need.

$toolTipArray = array('className'=>'custom');

JHTML::_('behavior.tooltip', '.hasCustomTip', $toolTipArray);

In your CSS file you need the additional custom classes.

/* Custom Tooltips */

.custom .tip-wrap {

 float: left;

 border: 5px solid #417FCC;

 max-width: 200px;

 border-radius: 5px;

 -moz-border-radius: 5px;

 -webkit-border-radius: 5px;

}

.custom .tip-title {

 padding: 3px;

 margin: 0;

 background: red;

 font-size: 120%;

 font-weight: bold;

}

.custom .tip-text {

 font-size: 110%;

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 186

 padding:3px;

 background: #fff;

 border-radius: 5px;

 -moz-border-radius: 5px;

 -webkit-border-radius: 5px;

}

The default HTML looks like this

<span

 class="hasTip"

 title="hasTip Title::This is using the default class 'hasTip'.">

 hasTip hover text

The customised HTML uses the other trigger class.

<span

 class="hasCustomTip"

 title="hasCustomTip Title::This is using the customised class
'hasCustomTip'.">

 hasCustomTip hover text

You can configure as many different styles as you need.

RESOURCES
This was just a short example to introduce MooTools. See also

• http://mootorial.com/

• http://api.joomla.org/Joomla-Platform/HTML/JHtml.html

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 187

Advertisement

cocoate.com

is the publisher of this book and an independent management consultancy, based in
France and working internationally.
Specialised in three areas – Consulting, Coaching and Teaching – cocoate.com develops
web based strategies for process and project management and public relations; provides
customised trainings for open source content management systems Drupal, Joomla! and
WordPress, in the area of management and leadership skills and develops educational
projects with the focus on non-formal learning.

The European educational projects focus on the promotion of lifelong learning with
the goal of social integration. Particular emphasis is placed on learning methods in order
to learn how to learn, the conception and realisation of cross-generational learning
strategies and local community development.

http://cocoate.com

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 188

http://cocoate.com
http://cocoate.com

Advertisement

Spend Your Holidays in Southern France

We were captive to the charm of this old French village from the beginning and that's
why we live and work in Fitou. We restored an old village house into holiday apartments
because we like to host guests and share with them our love for this region.

Fitou is situated in the South of France, between Perpignan and Narbonne and is a
typical French wine village having guarded the distinctive architectural village houses.

The region around Fitou is known for its wine and is as diverse as it can be, situated
not too far from the Pyrenees (one hour drive) and Spain. The Mediterranean climate
allows you to enjoy the freshness of the Mediterranean sea at one of the beautiful beaches
enclosing the Étang from March until October, as Languedoc-Roussillon is the sunniest
area in France. The country of Cathar offers not only old castles and abbeys but also the
historical Canal du Midi.

Our apartments can be rented during the whole year. The apartments are part of an
old traditional stone house in the heart of Fitou. They have been carefully restored and
modernised, respecting architectural aspects and conforming to the neighbouring houses.
Feel free to discover our apartments and the region surrounding them!

http://fimidi.com

Joomla! Development - A Beginner’s Guide

Saturday, 31 December 2011 Page 189

http://fimidi.com
http://fimidi.com

