

X
POWER
TOOLS

®

Chris Tyler

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

X Power Tools®

by Chris Tyler

Copyright © 2008 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Andy Oram
Production Editor: Mary Brady
Copyeditor: Mary Brady
Proofreader: Laurel Ruma

Indexer: Ellen Troutman-Zaig
Cover Designer: Marcia Friedman
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:

December 2007: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. X Power Tools, the image of a power sander, and related trade dress are trademarks
of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information
contained herein.

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN-10: 0-596-10195-3
ISBN-13: 978-0-596-10195-4

[M]

iii

Table of Contents

Preface . ix

Part I The X Server

1. Introduction to the X Window System 3
1.1 The X Window System 3
1.2 The History of X 4
1.3 The Renaissance: New X Versus Old X 4
1.4 X by Any Other Name 6
1.5 Seven Layers of an X-based GUI 6
1.6 Where Is the Server? 9
1.7 Why Windows Look and Act Differently 9
1.8 Toolkits and Desktop Environments 10
1.9 The Role of Freedesktop.org 11

1.10 Display Hardware 11
1.11 Displays, Screens, and Xinerama 19
1.12 Display Specifications 20
1.13 TCP/IP Ports 21
1.14 Local Connection Mechanisms 21
1.15 Server Extensions 22
1.16 Where to Draw the Line: Kernel Versus User-Space Drivers 24

2. Starting a Local X Server . 25
2.1 One Size Doesn’t Fit All 25
2.2 Virtual Terminals 25
2.3 Starting a Raw X Server Manually 26

iv Table of Contents

2.4 Using a Display Manager to Start the X Server 27
2.5 Enabling or Disabling the Display Manager at Boot Time 28
2.6 What Started the Display Manager? 30
2.7 Starting Multiple X Servers Using a Display Manager 31
2.8 Starting Additional X Servers on Demand Using

a Display Manager 33
2.9 Starting an X Server with Clients Only When Needed 35

2.10 Switching VTs from the Shell Prompt 36
2.11 Starting X Within X 36
2.12 No Mouse! 37
2.13 Bailing Out: Zapping X 39
2.14 Terminating X Automatically 39

3. Basic X.org Configuration . 40
3.1 What Is There to Configure? 40
3.2 Why Only root Can Configure the X Server 40
3.3 Places Your Configuration Could Hide 41
3.4 Let the X Server Configure Itself 43
3.5 The xorg.conf Configuration File 44
3.6 Optional Sections in the xorg.conf Configuration File 49
3.7 Configuring the Pointer Device 51
3.8 Configuring a Two-Button Mouse 52
3.9 Configuring a Mouse with a Scrollwheel 53

3.10 Configuring a Synaptics TouchPad 53
3.11 Enabling DPMS 54
3.12 Configuring Video Card Driver Options 56
3.13 LightSteelBlue and Other Color Names 58
3.14 Configuring a Monitor’s Scan Rates 59
3.15 Reading Server Log Files 62
3.16 Configuring the Default Depth of a Screen 64
3.17 Configuring the Resolution of a Screen 65

4. Advanced X.org Configuration . 67
4.1 Multi-Screen Configuration 67
4.2 Xinerama Configuration 68
4.3 Differences Between Multi-Screen and Xinerama Modes 69
4.4 Positioning Screens 71
4.5 Overlapping Xinerama 72
4.6 Scrolling Virtual Screens and Xinerama 74

Table of Contents v

4.7 Using Multiple Outputs from One Video Card 77
4.8 Parallel Pointing Devices 79
4.9 Parallel Keyboards 81

4.10 Using X with GPM or MOUSED 83

5. Using the X Server . 85
5.1 Interacting with the X Server 85
5.2 Changing Resolution On-the-Fly 85
5.3 Changing the Resolution and the Screen Size Dynamically 86
5.4 Using the Middle Mouse Button 87
5.5 Using the Clipboard 88
5.6 Keyboard Focus 90
5.7 Keyboard and Mouse Grabs 90

Part II X Clients

6. X Utility Programs . 95
6.1 The Unused Toolbox 95
6.2 Determine the Display Configuration 96
6.3 Getting Window Information 97
6.4 Viewing Server Settings 100
6.5 Control That Bell! 101
6.6 Adjusting the Keyboard Repeat Rate 102
6.7 Adjusting the Mouse Acceleration 103
6.8 Playing with the Lights 104
6.9 Killing a Rogue Client 105

6.10 Examining Part of the Display in Detail 105
6.11 Script a Screen Dump 107
6.12 Preventing the Screen from Blanking During Presentations 108
6.13 Eye Candy: xscreensaver 109
6.14 Redrawing the Screen 111

7. Running X Clients . 112
7.1 Running X Clients 112
7.2 Background Operation 112
7.3 Geometry 113
7.4 Split Personality: Running Nongraphical Applications 115

vi Table of Contents

8. Session Managers, Desktop Environments,
 and Window Managers . 118

8.1 X and Desktop Environments 118
8.2 Session Managers 119
8.3 Virtual Desktops 120
8.4 Starting GNOME 123
8.5 Starting KDE 126
8.6 Starting Xfce 128
8.7 Using a Window Manager Alone 129

Part III Colors, Fonts, and Keyboards

9. Color . 135
9.1 RGB and Other Color Systems 135
9.2 Visuals 136
9.3 Gamma 138
9.4 Color Management Systems 140

10. Core Fonts: Fonts the Old Way . 142
10.1 Old Fonts Versus New Fonts 142
10.2 Configuring the Font Path 143
10.3 Using a Font Server 145
10.4 Font Names 146
10.5 Installing and Removing Fonts 148

11. Pango, Xft, Fontconfig, and Render: Fonts
 the New Way . 150

11.1 Client-Side Fonts 150
11.2 Adding and Removing Fonts Manually 151
11.3 Adding and Removing Fonts Using GNOME 151
11.4 Adding and Removing Fonts Using KDE 153
11.5 Fontconfig Font Names 155
11.6 Fontconfig Utilities 156
11.7 Installing the Microsoft Fonts 157
11.8 Rendering Options 157

Table of Contents vii

12. Keyboard Configuration . 161
12.1 Keyboards and XKB 161
12.2 The Location of XKB Files 162
12.3 XKB Components 162
12.4 Selecting an XKB Keymap Using Rules 163
12.5 Using Keyboard Groups 166
12.6 Setting the Keymap in the xorg.conf File 167
12.7 Setting the Keymap from the Command Line 168
12.8 Setting the Keymap Using a Keyboard Configuration File 169
12.9 Compiling Keyboard Maps 169

12.10 Viewing or Printing a Keyboard Layout 170

Part IV Using X Remotely

13. Remote Access . 175
13.1 Network Transparency 175
13.2 Displaying on a Remote Server 175
13.3 Enabling Remote Sessions 176
13.4 Accessing a Remote Session on a Specific Host 178
13.5 Accessing a Remote Session on Any Available Host 178
13.6 Accessing a Remote Session from a List of Available Sessions 179
13.7 The Three Challenges of Remote Access 181
13.8 Host-Based Access Control 182
13.9 xauth and Magic Cookies 183

13.10 The X Security Extension 186
13.11 Low-Bandwidth X (LBX) 187
13.12 X Tunneling with SSH 188
13.13 Using Public Keys with SSH 190
13.14 Using Passphrase Protection of SSH Keys 191
13.15 OpenSSH and the SECURITY Extension 192

14. Using VNC . 193
14.1 The VNC System 193
14.2 So Many VNC Versions! 194
14.3 Xvnc Basics 195
14.4 The vncserver Script 196

viii Table of Contents

14.5 Using the VNC Viewers 197
14.6 Using Standing VNC Servers 198
14.7 Configuring the Xvnc Web Server 199
14.8 Customizing the VNC Java Applet Web Page 199
14.9 Starting VNC On Demand Using xinetd 202

14.10 Starting VNC On Demand Using inetd 204
14.11 Using the Java Applet with On-Demand VNC Servers 204
14.12 Accessing VNC Securely Using SSH 205
14.13 Embedding an X Application in a Web Page 206
14.14 Using KDE and Gnome Remote DesktopAccess Tools 210
14.15 Using the VNC Extension to the X.Org Server 212
14.16 Using VNC to Share a Presentation 213
14.17 Bypassing a Firewall 215

Part V Special Configurations

15. Building a Kiosk . 219
15.1 What Is a Kiosk, and Why Do I Want One? 219
15.2 Selecting Kiosk Hardware 219
15.3 Configure X for a Kiosk 221
15.4 Controlling the Keyboard 222
15.5 Controlling the Mouse 223
15.6 Starting a Single Fullscreen Application 224
15.7 Network Status Monitoring 225
15.8 Using xscreensaver to Reset a Kiosk 228
15.9 Refining the Kiosk Appearance 229

15.10 Putting It All Together: Scripting a Kiosk 230
15.11 Booting a Kiosk 232
15.12 Creating a Video Wall 233

Index . 237

ix

Preface

This is a book about the X Window System, a technology that continues to amaze
observers in many ways. It was released as open source software before that term was
formally defined, it’s more than 20 years old but has an installed base that is grow-
ing daily, and it maintains compatibility with decades-old software while still taking
full advantage of the very latest hardware.

This software is so versatile and can be used in so many different ways that it’s not
easy to cover it in a traditional book format—so this book is written in the Power
Tools format, as a collection of short, independent articles that are extensively cross-
referenced.

This book is written for experienced computer users who need to manage, config-
ure, and support the X Window System, whether on a single laptop, a network of
hundreds of remote displays, or a public-access kiosk.

How This Book Is Organized
Each article in this book is numbered by its chapter number and section number—so
3.2 is the second article in Chapter 3. There are 15 chapters.

Part I: The X Server
Chapter 1, Introduction to the X Window System

Covers the origin, history, and structure of the X Window System.

Chapter 2, Starting a Local X Server
Outlines how the X server can be executed in different ways to meet a wide vari-
ety of needs.

Chapter 3, Basic X.org Configuration
Deals with the server configuration file for the most widely deployed X Server.

x Preface

Chapter 4, Advanced X.org Configuration
Covers multiple-device configuration: multiple screens, multiple mice, or multi-
ple keyboards.

Chapter 5, Using the X Server
Describes keyboard sequences and mouse actions that directly affect the X
Server.

Part II: X Clients
Chapter 6, X Utility Programs

Discusses the often ignored but very useful utility programs that are distributed
with the X Window System.

Chapter 7, Running X Clients
Deals with starting X clients—programs that draw on the display.

Chapter 8, Session Managers, Desktop Environments, and Window Managers
Covers software that works with the X Window System to provide a full-fledged
graphical user interface and desktop environment.

Part III: Colors, Fonts, and Keyboards
Chapter 9, Color

Describes how color is represented and managed within X.

Chapter 10, Core Fonts: Fonts the Old Way
Explains the traditional font system available in all versions of the X Window
System.

Chapter 11, Pango, Xft, Fontconfig, and Render: Fonts the New Way
Gives the detail of the new client-side font rendering used in almost all new X-
based applications.

Chapter 12, Keyboard Configuration
Deals with the configuration of keyboards for the global environment, where the
user may use several different languages with different character sets.

Part IV: Using X Remotely
Chapter 13, Remote Access

Covers the safe and effective use of X’s powerful remote-display capabilities.

Chapter 14, Using VNC
Explores the incredibly flexible Virtual Network Computer cross-platform dis-
play technology, which can be used with X in many powerful ways.

Preface

Preface xi

Part V: Special Configurations
Chapter 15, Building a Kiosk

Discusses how public-access GUI systems can be built using X Window
technology.

Conventions Used in This Book
The following typographical conventions are used in this book:

Plain text
Indicates menu titles, menu options, menu buttons, and keyboard modifiers
(such as Alt and Ctrl)

Italic
Indicates new terms, URLs, email addresses, filenames, file extensions, path-
names, directories, commands, and Unix utilities

Constant width
Indicates options, variables, values, the contents of files, and the output from
commands

Constant width bold
Shows commands or other text that should be typed literally by the user, as well
as important lines of code.

Constant width italic
Shows text that may be replaced with user-supplied values to adapt a command
to a particular circumstance

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example

xii Preface

code does not require permission. Incorporating a significant amount of example
code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “X Power Tools, by Chris Tyler.
Copyright 2008 O’Reilly Media Inc., 978-0-596-10195-4.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

We’d Like to Hear from You
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any addi-
tional information. You can access this page at:

http://www.oreilly.com/catalog/9780596101954

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our web site at:

http://www.oreilly.com

Safari® Books Online
When you see a Safari® Books Online icon on the cover of your
favorite technology book, that means the book is available online
through the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you
easily search thousands of top tech books, cut and paste code samples, download
chapters, and find quick answers when you need the most accurate, current informa-
tion. Try it for free at http://safari.oreilly.com.

mailto:permissions@oreilly.com
http://www.oreilly.com/catalog/9780596101954/
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://safari.oreilly.com

Preface

Preface xiii

Acknowledgments
Thank you to the X developers for creating such a powerful and enduring technol-
ogy, engineered from the beginning with sufficient flexibility to withstand changes
that could not be forseen.

I’d like to thank Andy Oram, David Brickner, and Isabel Kunkle from O’Reilly for
working with me on this book. I’d also like to thank Matt Frye, Jim McQuillan, and
Josh More for their detailed technical review; and my colleague John Selmys at Sen-
eca College for his review and feedback on the early chapters.

My deep gratitude to my loving wife Diane and my girls Saralyn and Laura for their
patience and understanding as I started this book, interrupted it to write another,
and then resumed work on this volume. It’s been a long haul, and I couldn’t have
done it without their love and support.

And most importantly, I give my humble thanks to God for His love—may any skill
or understanding that He has given me be used to His glory.

Part I

I.The X Server

3

Chapter 1

1
Introduction to the X Window

System

1.1 The X Window System
The X Window System is a portable, network-based display system. That short defini-
tion contains three of the keys to X’s success:

Portable
The X Window System is primarily used on Unix, Linux, and BSD systems, but
it can also be used on Microsoft Windows, Mac OS X, and many other sys-
tems—in fact, it can be used on just about any modern operating system. It sup-
ports a wide range of hardware, from PDAs and standalone terminals to
multimonitor workstations and information displays. Technology may be mixed
and matched to suit user preferences, needs, and budget.

Network-based
Programs can display anywhere on the network, and windows from programs
running on machines several time zones apart can be displayed side-by-side on
one screen. With X, users have complete freedom to work wherever they want.

Display system
X is not a graphical user interface (GUI), but it provides a solid foundation for
building one. GUI developers can escape from dealing with the intricacies of the
display hardware and focus on user interface design, and legacy applications
written for decades-old X-based GUIs will continue to work with modern ones.

Although most users of Unix (or Linux, or FreeBSD, or Darwin) often take X for
granted, a good understanding of how it works opens up a world of possibilities,
from speeding up remote access to building personal video recorders to configuring
multiuser computers and information kiosks.

In this book, I assume that you have used X and that you have a basic understanding
of Unix. This chapter introduces some of the history and basic concepts of X as well
as the hardware technology used in modern displays; this sets the stage for the rest of
the book, which uses a hands-on approach.

1.2

4 Chapter 1: Introduction to the X Window System

1.2 The History of X
X originated at MIT in 1984. It was a part of Project Athena, a campus-wide, cross-
platform system, and it was loosely based on the W Window System from Stanford.

Before long, Unix vendors started to gain an interest in X. They realized that X would
make it easier to port graphical applications to new hardware, which in turn would
attract independent software vendors (ISVs)—and the more software became avail-
able, the more systems would be sold.

After a brief flirtation with restrictive licenses, version 11 of the X Window system
was released in 1987 under the MIT license, and a vendor-neutral group called The X
Consortium was formed to manage development. This was one of the earliest exam-
ples of an open source project. In fact, it predates the term open source by more than
a decade. Each vendor used the sample code from the X Consortium as a starting
point and implemented a server tuned for their particular display hardware and oper-
ating system.

Control of X passed from group to group until 1999, when X.org was established by
The Open Group to manage the technology. Unfortunately, official work on X had
almost come to a standstill by that point.

However, one particular implementation of X for PCs, named X386, piqued the
interest of many developers in 1992. When distribution of a commercial version of
X386 began, the open source version was renamed XFree86 (say both names aloud
to realize the pun). Eventually, most X innovations were made within the XFree86
project rather than coming from the official guardians of the X standard.

But internal politics and a rigid organizational structure took their toll on the The
XFree86 Project, Inc, and after a license dispute in 2003, some key developers
decided that they’d had enough. They moved development back to the almost-
defunct X.org, formed The X.org Foundation, and shifted work into high gear. Most
open source operating system distributions adopted the X.org server in 2004.

In the end, active X development wound up where it had started, the successor to the
XFree86 project replaced the sample implementation of X technology, and a revital-
ized developer community started to once again steadily advance the state of the
technology.

1.3 The Renaissance: New X Versus Old X
I recently skimmed through the 1994 book X User Tools, by Linda Mui and Valerie
Quercia (O’Reilly), and the 1993 UnixWare user documentation. It was a fun and
nostalgic stroll down memory lane, because the X Window System I used in the
early-to-mid 90s was very different from X today. Many of the changes have been
introduced so gradually that it’s only by looking at old screen dumps that I realize
how far we’ve come.

1.3

1.3 The Renaissance: New X Versus Old X 5

I have started to think of X development in terms of two eras: Old X (1984–1996)
and New X (2000–present). Old X was characterized by the development of the core
protocols, essential extensions, and Xt-based toolkits. New X development was
kicked off by the release of the RENDER extension in 2000, which, along with Xft,
OpenGL, the COMPOSE extension, and non-Xt toolkits (Qt and KDE), is causing
large portions of the core X protocol to fall into disuse. Between these two eras, X
development almost came to a standstill.

Here is a summary of some of the key differences in the technology of the two eras:

Element Old X New X

Fonts Bitmapped fonts and scalable fonts
without anti-aliasing, rendered by
the core font capabilities in the
server.

Scalable fonts with full anti-
aliasing, managed on the client
side by fontconfig, and displayed
by the Xft library using the REN-
DER extension.

Desktop environments No standard desktop environments
(though HP Vue morphed into CDE
and made a late appearance). Con-
sequently, window managers
played a much larger role than they
do today. Panel bars were rare—
icons for minimized windows sat
directly on the desktop (or, some-
times, in a separate icon box win-
dow). Clients were usually started
through root-window menus or by
typing commands in an xterm.

Two widely used desktop environ-
ments (KDE and Gnome) and a
lightweight desktop (Xfce) with
well-integrated root desktop,
menu, and panel-bar operation.

Toolkits and configuration Lots of Xt-based toolkits, including
Motif, OpenLook, and the Athena
Widgets. All of the toolkits could be
configured through resources.

Xt has almost completely fallen
into disuse; Qt and GTK+ have
captured developer mindshare.
Each provides their own configura-
tion systems. freedesktop.org has
coordinated shared standards for
desktop menu entries and icons.

Display hardware Entry-level desktop displays starting
at 0.45 megapixels (800 × 600) and
ranging up to 1.25 megapixels on
the high end, with a typical resolu-
tion of 75 dots per inch (dpi). Com-
mon color capabilities ranged from
monochrome to 256-color palettes,
with very few high-end systems
providing full-color capabilities. Pal-
ette management issues were a
major headache. 3D hardware was
rare and very expensive. LCD dis-
plays were rare except on laptops,
which seldom exceed 0.75 mega-
pixels (1024 × 768).

24-bit palette-free color with 3D
capabilities, and hardware accel-
eration is standard issue. 0.75
megapixel resolution (1024 × 768)
is considered entry level; high-end
systems have multimegapixel dis-
plays at resolutions up to 200 dpi.
1.25 megapixel and higher laptop
displays are common.

Hand-held systems sport resolu-
tions of 320 × 400 and up.

1.4

6 Chapter 1: Introduction to the X Window System

1.4 X by Any Other Name
The X Window System goes by many different names, and sometimes this is a source
of confusion. According to the manpage, X should be referenced using one of these
names:

• X

• X Window System

• X Version 11

• X Window System, Version 11

• X11

Notice that “X Windows” is not on that list; this omission was originally due to con-
cern about confusion with Microsoft’s Windows product line.

This has been used as a shibboleth for many years; anyone referring to “X Win-
dows” was considered an outsider or a beginner. Fortunately, this pedantry is wan-
ing, but you should probably avoid saying “X Windows” if you find yourself in the
company of an industry old-timer.

The version number is almost never mentioned in modern usage, since the previous
versions were experimental, and Version 11 has been in use for almost two decades
(though the release number keeps going up).

The dominance of the X.org implementation has led a number of people to refer to X
itself as Xorg or X dot org.

1.5 Seven Layers of an X-based GUI
It is Unix tradition to assemble solutions out of many small programs rather than to
use a single, monolithic program. This approach gives more flexibility, since these
smaller building blocks may be combined in different ways to meet different needs.

GUIs based on the X Window System follow this same philosophy—they’re built in
layers that can be mixed and matched as needed.

Figure 1-1 shows a simple model of the seven layers found in most X-based GUIs.

Client appearance Low-resolution, high-contrast (to
work with the display hardware)
with minimal customizability.

Shading, gradients, and fine visual
details take good advantage of
hardware capabilities. Themes
provide extensive opportunities for
easy customization.

Element Old X New X

1.5

1.5 Seven Layers of an X-based GUI 7

Elements at the top of the diagram are the most visible and important to the user,
and the components at the bottom of the diagram are the least visible. From the bot-
tom up, these layers are:

Network Transport
Enables the other layers to communicate. This layer almost always consists of
TCP/IP plus a faster connection scheme for local clients (Section 1.14), but
many older or proprietary network transports can be used, including IPX/SPX
and DecNET.

X Window Server
Consists of the software that manages the display (which normally consists of a
keyboard, video screen, and mouse) and runs on the computer connected to the
display hardware. All of the layers above the X server are considered clients of
that server and may be located anywhere on the local network, or even over the
Internet.

Figure 1-1. The layers of an X-based GUI

Application Clients - User Productivity
OpenOffice.org, Firefox, Gimp

Desktop Environment - Application and
File Management
Gnome/KDE panels, desktop icon managers

Window and Compositing Manager -
Placement and Controls Of Windows
Compiz, Metacity, kwin

Session Manager
gnome-session, ksmserver

Display Manager - Local X Server Startup
and User Authentication
gdm, kdm, xdm

X Window Server - Display Hardware Management
Xorg

Network Transports - Client -Server Connections
TCP/IP, Unix domain sockets

Toolkits
GTK, Qt, Moif, Xaw

1.5

8 Chapter 1: Introduction to the X Window System

Display manager
Enables a user to log in to the system graphically. Most display managers ask the
user to type his user ID and password, but it’s possible to use almost any authen-
tication scheme, including biometric scanning.

Session manager
Tracks application state across login sessions, starting standard clients such as
the window manager and desktop environment components, restarting applica-
tions that were active at the end of a previous session, and optionally restarting
applications if they crash.

Window and Compositing manager
Manages window placement and provides window decorations. This includes win-
dow title bars, borders, and controls for common operations such as resizing,
maximizing, minimizing, moving, and closing windows. When the COMPOSITE
extension is available, the window manager also acts as the compositing manager.
The X developers tried separating them, but in order to work really well, the com-
positing manager needs access to information about the windows that only a win-
dow manager knows. A window manager is considered to be a special class of
client, and only one can be active on a display at a time.

Desktop environment
One or more programs that provide a desktop paradigm for the user. This may
include menus to start programs, trays or panels to indicate currently running
programs, icons that represent files or programs on the desktop background,
docked applets, and other useful tools and utilities.

Application clients
Programs that enable the user to perform useful work. They are spreadsheets,
word processors, web browsers, media players, video editors, and so forth.

Toolkits
Programming libraries that are used to simplify the task of writing clients that
communicate with an X server. Toolkits are not a layer per se, but they do sup-
port and simplify the construction of the client layers.

The software used in any layer can be changed without affecting the other layers. For
example, you can switch from the XDM display manager to the GDM display man-
ager without making any changes to the other layers.

The bottom two layers (Network Transport and X Server) are mandatory; the other
layers are optional. This provides a lot of flexibility in the way that the GUI operates.

For example, the user of an automated teller machine doesn’t need to log in with a
user ID, to move or resize windows, or to manage files and start programs, so the
display manager, window manager, and desktop environment layers are not needed;
the ATM application can directly take control of the entire display space.

1.7

1.7 Where Is the Server? 9

Or, if X is started after the user logs in (Section 2.9), the user has already been
authenticated, so the display manager is not needed and may be left out.

1.6 Where Is the Server?
In most network terminology, the client system is the one that is on your desktop, in
your hand, or on your lap, and the server is the computer in the closet down the hall.

But in X terminology, the computer in front of you runs the server, and the client
programs may be located on the computer in the closet.

As confusing as this may seem at first, it makes sense if you think in terms of the
resource being served. A file server is located where the files are stored; a print server
is located at the printer; and a display server is located at the display.

The specific resources managed by an X server include video cards and monitors,
pointing devices (such as mice, trackpads, and touchscreens), and keyboards. These
are each located at the physical machine running the X server.

1.7 Why Windows Look and Act Differently
The programs that access and use display resources are the clients. They may be on
the same computer as the server, or they may be located down the hall, or they may
be on the other side of the planet.

One of the early tenets of the X Window developers was that X should provide a
mechanism for implementing a GUI, but should not impose any policy on how that
GUI should operate. This has been both a blessing and a curse throughout the his-
tory of X.

Since X does not define policy, the look and feel of applications has been left up to
application and toolkit developers, and there is a tremendous variation between pro-
grams. The advantage is freedom to experiment and innovate; the disadvantage is
confusion for users.

On one of my systems, I have three different calculators available: xcalc, kcalc, and
gnome-calculator, as shown in Figure 1-2.

As you can see from this screen dump, each calculator looks different: the fonts, col-
ors, button sizes, menu options, icons, and status bar vary from program to pro-
gram. They also use different visual effects when buttons are pressed.

Fortunately, the toolkit developers have assumed responsibility for many policy
issues, and programs based on the same toolkit generally operate in a consistent way.
Programs using different toolkits still behave differently, but the most popular tool-
kits have converged in their look and feel; notice the similarities between the 3D but-
tons and the fonts used by kcalc (center) and gnome-calculator (right).

1.8

10 Chapter 1: Introduction to the X Window System

One more thing to note in Figure 1-2: each window’s title bar, border, and window
controls are the same—because they are being drawn by the window manager, not
the individual application programs.

1.8 Toolkits and Desktop Environments
There are three main toolkits currently in use, and desktop environments have been
based upon each one:

Most of these desktop environments are distributed with a display manager, win-
dow manager, and some application clients, but you can mix and match compo-
nents from different environments. The use of one desktop environment does not
prevent you from using applications built with another toolkit or distributed with
another desktop environment, so you can use KDE along with GTK+ apps, or Xfce
with Motif applications.

Almost all new development is now based on the GTK+ and Qt toolkits, primarily
because they are open source (http://opensource.org) and therefore more accessible to
developers.

However, Motif continues to be an important toolkit for legacy applications,
especially in some financial and scientific niche markets. Motif and OpenMotif are

Figure 1-2. xcalc, kcalc, and gnome-calculator

Toolkit

Original
programming
language License Open source

Desktops built
with this toolkit

GTK+ C GPL Yes Gnome, Xfce

Qt C++ GPL Yes KDE

Motif/OpenMotif C Open Group Master
Software License/Open
Group Public License

No CDE

http://opensource.org

1.10

1.10 The Role of Freedesktop.org 11

essentially the same product, distributed under different licenses. While the Open
Group Public License does permit OpenMotif to be freely distributed, this is for use
only with open source operating systems such as FreeBSD or Linux, so the license
does not meet the Open Source Definition (http://opensource.org/docs/osd) or the
Debian Free Software Guidelines (DFSG, http://www.debian.org/social_
contract#guidelines). Therefore, Motif is not included in most open source operating
systems. The Open Group has stated that it intends to switch to a more open license,
but it has been slow to do so; meanwhile, the LessTif project (http://www.lesstif.org)
has reimplemented most of Motif’s functionality under the GPL.

Motif is the last widely used toolkit based upon the X Intrinsics Toolkit (Xt), an
object-oriented library written in C. In addition to Motif, there were widget (user-
interface object) sets from the Athena project (Xaw), 3D versions of the Athena wid-
gets (Xaw3d), Sun’s OpenLook (Olit), Motif-OpenLook crossover widgets (Moolit),
and others. All of these have fallen into disuse, but you may encounter them in older
programs from time to time.

1.9 The Role of Freedesktop.org
There’s more to a desktop than just a display—there’s also sound, filesystem integra-
tion, on-the-fly hardware discovery, and much more. All of these bases must be cov-
ered in order to produce a desktop environment that can compete with commercial
offerings such as Microsoft Windows or Mac OS X.

Recognizing this, developers have rallied around freedesktop.org, creating an infor-
mal consensus-building forum for desktop-oriented technologies. Freedesktop.org
(the web site address is the same as the project’s name) hosts much of the work of
the revitalized X.org project, coordinates standards between Gnome and KDE, and
supports the development of complimentary technologies such as D-BUS and HAL.

freedesktop.org’s lightweight organization and focus on collaboration have made it
the centerpiece for most desktop-oriented open source software development.

1.10 Display Hardware
Let’s take a look at the hardware typically managed by an X server. It generally has
the following components:

• Zero or more pointing devices (mice, trackballs, touchscreens).

• Zero or more keyboards.

• One or more video cards, each connected to one or more monitors.

The entire collection of hardware is called a display and is managed as a single unit,
intended to be used by one person. It is possible to have multiple displays connected
to one computer, but a separate X server needs to be run for each display.

http://opensource.org/docs/osd
http://www.debian.org/social_contract#guidelines
http://www.debian.org/social_contract#guidelines
http://www.lesstif.org
http://freedesktop.org

1.10

12 Chapter 1: Introduction to the X Window System

Pointing Devices
Pointing devices fall into two general categories: relative and absolute:

Relative pointing devices
These send only movement information to the display. A new pointer position is
calculated by taking the previous pointer position and updating it with the indi-
cated movement. Mice, trackpads, and trackballs fall into this category.

Absolute pointing devices
These send an exact screen position to the display. Touchscreens, graphics tab-
lets, and light pens are all absolute devices.

It is possible to have multiple pointing devices connected to one display. This is com-
mon on laptops; some have two built-in pointing devices, and some users add a tra-
ditional mouse to compliment a built-in pointing device. The devices act in parallel,
and any can be used to move the pointer on the screen (Section 4.8).

A display is rarely configured without a pointing device, but this may be done for an
information-only display that does not permit user interaction.

Pointing devices are connected to the computer using a USB, PS/2, serial, or blue-
tooth connection. The data rate is very low, so USB pointing devices always run at
low speed (1.5 Mbps) even when they are certified to USB 2.0 standards. PS/2 and
serial interfaces are electrically identical but have different connectors; you can buy
adapters to convert one to the other.

A few years ago, there were dozens of communication protocols used by mice. Fortu-
nately, almost all mice now use an extended version of the PS/2 mouse protocol,
regardless of how they are connected, though graphics tablets, touch screens, and the
other more exotic pointing devices still use unique protocols.

By far the most popular pointing technology is now the optical mouse. Invented by
Agilent (formerly HP), an optical mouse contains a simple high-speed monochrome
video camera, a Digital Signal Processor (DSP), and interface electronics, all on a sin-
gle chip. The video camera acquires images of the desk or mousepad at the mini-
mum rate of 1,500 frames per second, and the DSP compares each frame with the
previous frame to detect movement. When movement is detected, it is communi-
cated with the host computer through the interface electronics, which may be serial-
or radio-frequency-based (RF). Buttons and a rotary encoder for the scrollwheel
round out the unit. Although optical mice outperform mechanical mice in most envi-
ronments, they require a slightly textured or speckled surface to work well (hence,
the sudden popularity of speckled and woodgrain patterns on office furniture instead
of the solid colors popular a few years ago). I’ve found that they may be sensitive to
bright light at a low angle (such as sunlight at sunrise or sunset), which may cause
them to skip or temporarily stop functioning.

1.10

1.10 Display Hardware 13

The memory and raw processing capability of many modern optical
mice exceeds that of the first computer used to run Unix!

Keyboards
Like mice, keyboards are sometimes used in parallel. This is most common on lap-
tops, where an add-on numeric keypad may be used along with the built-in key-
board, or a larger external keyboard is used in preference to the internal one.

Keyboards typically have PS/2 or USB connectors; USB versions always operate at
low speed (1.5 Mbps). The keyboard sends a scancode corresponding to a button
location when that button is pressed, and sends another code when that button is
released. This permits the system to detect how long buttons are held down and in
what combination.

In order to convert these scancodes into characters, the system needs to know which
symbol is associated with which key. This is done through a keyboard map. Since
most English North American keyboards have a standard layout, one standard key-
board map usually suffices; but outside of English North America, additional sym-
bols will appear, either supplementing or replacing the English North American
symbols. For example, a U.K. keyboard layout will include symbols for the Euro and
pound.

The layout of the basic roman letter symbols will also vary; in North America, the
top row starts with QWERTY; in Germany, it often starts QWERTZ; and in France,
AZERTY. Nonroman alphabets obviously have their own distinctive layouts as well,
but typically provide some way to type roman letters for email addresses, URIs, and
code.

Some languages use large numbers of accented characters. Keyboards set up for these
languages often use dead keys, which don’t actually type a character, but which cause
the following character to be accented. This handling is performed by the system and
not by the processor in the actual keyboard, so the operation of dead keys can be
reconfigured as needed. A compose key is a special type of dead key that builds a
character based on two subsequent keypresses. So, the user might press compose, /,
c to produce the cent symbol (¢) or compose, c, comma to produce the letter c with a
cedilla (ç).

The most complex keyboard input methods are required for Asian languages, which
have very large alphabets of ideographs (idea-pictures). Input methods for Asian lan-
guages typically involve entering several keystrokes to phonetically or structurally
describe the desired character; if this does not narrow down the selection to a single
glyph, then the final selection is performed graphically. Although these input meth-
ods require multiple keystrokes per character, each character conveys more mean-
ing, so the average typing speed can be similar to that attained in languages with
smaller alphabets.

1.10

14 Chapter 1: Introduction to the X Window System

Most keyboards contain a simple microprocessor and a serial or USB interface, and
have three LEDs to indicate keyboard status.

Monitors
All video systems work by scanning dots (or pixels—picture elements) from left to
right, top to bottom on the display. For each pixel on a color display, three pieces of
information are sent: the individual brightness levels for the red, green, and blue
(RGB) components of that dot. The monitor combines the appropriate amount of
red, green, and blue light to form the specified color on the screen. Additional sig-
nals are used to synchronize the horizontal and vertical scanning so that pixels are
drawn in the correct position.

Cathode ray tube (CRT)

CRT monitors draw pixels by shooting electron beams at colored phosphor dots
coated onto the inside of the front glass panel, which then glow. It takes a significant
amount of energy to create the electron beams, and X-rays are produced as a side
effect. In order to shield the user from these X-rays, a significant amount of lead is
embedded into the glass of the CRT. Large electromagnets are used to bend the elec-
tron beams as the display is scanned.

CRTs are a proven, reliable, and inexpensive technology, and they present a clear
image over a wide range of viewing angles. However, their large size, the use of lead
in their construction, their high energy usage, and concern over X-ray and electro-
magnetic radiation has caused many people to consider alternatives.

Liquid crystal display (LCD)

LCDs use light-gates made out of tiny liquid cells adjacent to a polarizing filter. By
applying an electric current to the liquid, it can be polarized, allowing more or less
light to flow through the light gate. Each pixel is made up of three liquid crystal cells,
each with a colored filter—one each for red, green, and blue. Fluorescent lights or
white LEDs placed behind the LCD panel provide illumination.

LCDs use less power and space than CRTs, but have a narrower range of acceptable
viewing angles, may wash out in bright light, and typically have a less durable front
surface than CRTs. Some graphic artists prefer CRTs, claiming that they reproduce a
wider range of colors with greater accuracy.

To display images of different resolutions on a CRT, the width of the electron beams
is changed, making the pixels larger or smaller. On an LCD, each pixel has a defined
location and size, so using a resolution other than the “native” resolution of the dis-
play requires some hardware pixels to show a blended color representing a portion of
two or more pixels from the image. This results in an undesirable blurring, soften-
ing, or blocky presentation of the image, so it is always best to run an LCD at its
native resolution.

1.10

1.10 Display Hardware 15

Other flat-panel technologies

Other flat-panel technologies available include:

Plasma displays
These use charged gases to produce an image that is bright and that can be very
large, but that has a high power consumption and whose brightness diminishes
over time, so this type of display’s market share is diminishing as large-format
LCD manufacturing becomes feasible.

Organic Light-Emitting Diode (OLED) displays
These are “printed” onto a flexible substrate. They are currently used on some
cell phones and portable music players and hold promise for large, inexpensive
display panels once manufacturing issues are refined.

Electronic paper (or electronic ink) technology displays
These use thousands of tiny cells that can be placed in a particular color state
and then stay in that state until changed. There are several different approaches
to cell construction, but all electronic paper displays are reflective and use ambi-
ent light to illuminate the display. This results in a familiar experience for the
user and offers very low power consumption for displays that rarely change.
Electronic paper displays are used on some cell phones and e-book readers, and
may eventually be used for certain types of monitors, signs, and even billboards.

Video projectors

A video projector can also be considered a type of monitor. Projectors either use
LCD technology or thousands of tiny mirrors mounted directly on a Digital Light
Processor (DLP) chip. This is coupled with a high-power light, projection lenses, a
cooling system, and control electronics.

The control electronics in video projectors are usually more sophisticated than the
circuits found in CRT or LCD monitors:

• Images can be flipped left to right (for rear-projection applications) or top to bot-
tom (for upside-down ceiling mounts).

• Keystone correction permits the sides of the image to be slanted (and the top of
the image to be made smaller than the bottom, or vice versa) so that the image
will appear rectangular when projected onto the screen at an angle.

• Image scaling and multiple video inputs enable a clear picture to be projected
despite huge variations in the resolution, quality, and speed of the incoming
signals.

Video timing

When dealing with video signals, timing is everything. In order to display a stable
picture and accurately locate each dot during the scanning process, the timing of the
video signal must be very precise.

1.10

16 Chapter 1: Introduction to the X Window System

The speed of the video signal is dictated by the screen resolution and refresh (scan)
rate. Resolution is defined in terms of horizontal and vertical pixels; scan rate is
expressed in Hertz (Hz), or cycles per second. A scan rate of 70 Hz or higher is rec-
ommended for CRTs in order to reduce eyestrain for the user; the refresh rate is not
as important for most LCD displays, because the decay time (the time it takes a pixel
to change color) is longer.

The length of cable that may be used to connect a video monitor to a video card is
directly limited by the scan rate. A cable stores a small amount of energy between
conductors; this quality is called capacitance, and it limits the cable’s ability to han-
dle fast signals. The longer the cable, or the poorer the insulator, the more energy is
stored. This restricts the maximum refresh rate that can be used without noticeable
image degradation.

Monitor connections

Monitors connect to a video card using one of these standard connection schemes:

Television
All of the color, luminosity (brightness), and synchronization information is
encoded into a single composite analog electrical signal. This type of signal is
most useful for connecting to consumer video equipment such as a VCR or tele-
vision; the standard connector is a coaxial “RCA” plug.

One variation on a television video signal is S-Video, which separates the lumi-
nance and chroma (color) information onto separate wires; many video cards
that have a “TV Out” feature use this type of connector. In Europe, a rectangu-
lar SCART connector is standard and may include a composite signal.

VGA
An analog connection scheme that uses varying voltages on three separate pins
to control the RGB levels. Additional pins are used for synchronization and
device probing. The most common physical connector for VGA signals is an
HD15—a high density, 15-pin mini D-shaped connector. “VGA” comes from
video graphics array, which is the name of the original IBM graphics card that
used this connector.

Digital Visual Interface (DVI)
A modern connector that supports analog signals, digital signals, or both. DVI-D
includes digital signals only; DVI-I includes both; and the unofficial DVI-A con-
nector includes analog only.

DVI-I and DVI-A can be connected to VGA equipment through a simple
adapter. Where possible, though, the digital signal should be used for greater
accuracy and clarity.

DVI-D supports dual-channel connections for high-resolution displays (above
1.25 megapixels) and may use high-bandwidth digital content protection (HDCP)
signal encryption.

1.10

1.10 Display Hardware 17

High Definition Multimedia Interface (HDMI)
HDMI provides an easy-to-use single connector that incorporates a DVI-D com-
patible digital video signal and digital audio. It is common on high-definition
television equipment and monitors, but so far is not used often on computers.
HDCP may be used with HDMI. There are two connectors in use: Type A,
which supports single-channel connections, and Type B, which has additional
conductors to carry a dual-channel signal.

DisplayPort
An alternative to HDMI that provides a similar pure-digital audio and video sig-
nal with optional HDCP encryption. While HDMI was intended as a consumer
specification for entertainment devices, DisplayPort initially targets computer
systems. The Video Electronics Standard Association (VESA) backs the Display-
Port standard and has established compliance testing programs for it, which will
ensure interoperability of DisplayPort devices. Offering support for color depths
beyond 24 bits per pixel (16 million colors) and the potential of an easy future
upgrade to fiber optic connection, DisplayPort is a strong specification. But, it is
late to market, and it may be difficult to unseat entrenched standards such as
HDMI.

Video Cards
The circuitry that drives the monitor is contained on a video card or integrated into
the system motherboard.

There are four main components in a video card, as illustrated in Figure 1-3:

Memory
An area of memory set aside to keep track of the image on the screen (the
framebuffer) and other video-related data such as pixmaps, save-unders, and
images that will be composed into the framebuffer by the GPU.

Historically, successive generations of video cards have swung back and forth
between using a reserved area of main system memory for the framebuffer and
using a completely separate bank of physical memory. Any memory over and
above the memory used for the framebuffer may be used for fonts, off-screen
rendering, save-unders (remembering what is underneath windows), and tex-
ture maps.

Graphics processing unit (GPU)
Performs graphics operations such as block moves, line drawing, area fills, shad-
ing, and texture mapping independently from the system’s CPU. Most modern
GPUs handle 3D operations, although some of the lower-end devices (typically
built into motherboards) have very weak 3D performance.

Bus interface
Connects the host system bus to the memory and GPU. PCI Express (PCI-E) is
the preferred connection path on most new systems; an accelerated graphics port
(AGP) or legacy PCI interface may also be used.

1.10

18 Chapter 1: Introduction to the X Window System

Video controller
Generates the video signal by repeatedly scanning the framebuffer and convert-
ing the pixel information into the format required at the video connector. If an
analog connection is used, multiple digital-to-analog converters (DACs) are
incorporated to convert the digital brightness values into varying voltages; the
DACs speed often limits the maximum refresh rate available at a given resolu-
tion. Some graphics systems with DVI, HDMI, or DisplayPort connectors incor-
porate encryption chips between the video controller and the video connector.

Signal encryption
This optional circuit encrypts the signal for content protection using HDCP or a
competing protocol.

The screen image can be represented in the framebuffer in one of two ways:

• The RGB information for each pixel can be stored in successive memory loca-
tions. On modern video cards, 8 bits (1 byte) of informaton is stored for each
RGB channel, resulting in a total of 24 bits (3 bytes) of memory used for each
pixel. This permits 224 = 16 million colors to be used simultaneously on the dis-
play. It is also fairly common to use 8, 15, or 16 bits per pixel, and less common
(on specialized cinema-oriented hardware) to use 12 or 16 bits per RGB channel
for a total of 36 to 48 bits per pixel.

Figure 1-3. The components of a video card

Signal encryption

Memory

Framebuffer

GPU

Monitor

Bus interface

Video controller
(CRTC)

Computer bus (PCI-e, AGP, or PCI)

1.11

1.11 Displays, Screens, and Xinerama 19

• A color code for each pixel can be stored. This results in a “paint-by-number”
scheme, where the video controller looks up each color code in a palette or
lookup table to determine the RGB value. For example, the color code 3, when
stored in the memory location for a given pixel, would instruct the video con-
troller to look up entry number 3 in the palette and use whatever color is stored
there.

Palette-based color is rarely used on modern PCs, but is common on smaller devices
such as PDAs and cell phones. It may seem absurd to talk about PDAs and phones in
a book about X, but they now have sufficient computing power to viably run an X
server!

The size of a framebuffer in bytes is:

WidthInPixels * HeightInPixels * BytesPerPixel

Therefore, a 1280 × 1024 display with 3 bytes (24 bits) per pixel of color information
would take:

1280 x 1024 x 3 = 3932160 bytes = 3.75 MB

Note that since most modern CPUs deal with memory in 32-bit words, many 24-bit
video modes actually devote 32 bits to each pixel to simplify manipulation of the
data. This wastes 8 bits per pixel, but the resulting increase in speed makes it worth-
while. If the video card in the preceding example used 32 bits per pixel, the memory
required would be 5 MB.

1.11 Displays, Screens, and Xinerama
In X terminology, a display comprises the user interface for one person. That usually
means one keyboard, pointer, video card, and monitor, but for some applications,
more video “real estate” is required. Thus, a display can have multiple video cards
and monitors, perhaps with different capabilities and resolutions—but this is where
the terminology gets tricky.

All of a display’s video cards and monitors can be combined to act like one giant
video monitor. This approach is called Xinerama (Section 4.9) as a tribute to the old
Cinerama multiprojector wide-screen movie format. Xinerama permits windows to
span monitors and works especially well on multipanel LCD displays, video walls, or
video projectors.

Alternately, a display’s video cards and monitors may be configured as separate
screens. Each screen is individually addressable, so windows can be directed to dis-
play on a specific screen. It is not possible to move windows between screens nor to
have windows span screens, but the mouse pointer can be moved between screens.
The use of screens predates Xinerama, but it is still useful for some dual-monitor
applications, such as presentations where one monitor is used for control and setup
and the second monitor displays live output to the audience. By using a two-screen

1.12

20 Chapter 1: Introduction to the X Window System

configuration instead of Xinerama, windows from the control screen will be pre-
vented from straying onto the publicly-visible display.

Some window managers, such as the LessTif version of the Motif Window Manager
MWM, are not capable of managing multiple screens and will only register them-
selves as the window manager for one screen. On the other hand, some toolkits are
not aware of Xinerama, so dialogs that are intended to be positioned in the center of
a display always display in the middle of the Xinerama display—and therefore
always span across monitors in a dual-monitor Xinerama configuration (which is
very, very annoying).

Each display (regardless of the number of screens involved) is managed by exactly
one X server process.

1.12 Display Specifications
Since X clients can connect to a display anywhere on the network, it is necessary to
have some way of specifying the display to be used. This is done using a display
specification (or displayspec).

A displayspec takes this form:

host:display[.screen]

The following list describes each element in a displayspec:

host
The name or network address of the system running the X server. This may be:

• A DNS hostname or IP address

• Blank, or the word unix, indicating a local host connection (Section 1.14)

• A DecNET, IPX/SPX, or other machine designation (extremely rare)

display
The display number, greater than or equal to zero

screen
An optional screen number within the display; screens are numbered starting at
zero

Here are some examples:

:0
Display 0 on the local computer, connected by a local connection scheme

localhost:3
Display 3 on the local computer, connected by TCP/IP

stealth.oreilly.net:2
Display 2 on the TCP/IP host stealth.oreilly.net

1.14

1.14 TCP/IP Ports 21

172.250.12.7:4.3
Display 4, screen 3 on the host with IPv4 address 172.250.12.7

The displayspec can be passed to clients as an option value:

$ xclock -display displayspec

However, it is more common and convenient to use the DISPLAY environment vari-
able. If you are using a shell that follows the Bourne syntax (sh, bash, ksh, zsh, or
ash), you can set and export the DISPLAY variable like this:

$ export DISPLAY=displayspec

If you are a csh aficionado, use:

% setenv DISPLAY displayspec

Once the DISPLAY variable has been set, any new clients started will connect to the
specified display by default. (Command-line options take precedence over the
DISPLAY variable.)

1.13 TCP/IP Ports
Each X display uses a unique TCP/IP port so that multiple servers on the same sys-
tem do not conflict. All of the screens managed by one display are accessed through
the same port; screen selection is accomplished through the X protocol.

The standard port for an X server is 6000+display, so display :0 uses port 6000, and
display :15 uses port 6015. Since these port numbers are over 1024, the kernel per-
mits anyone to open them—so you don’t need to be root to run an X server. Large
display numbers may conflict with other services (such as IRC at port 6667), so it is
best to keep display numbers under 100.

1.14 Local Connection Mechanisms
TCP/IP is a great network transport, but it’s overkill for connecting programs run-
ning on the same computer. Most X servers provide a faster alternative for local
connections.

Unfortunately, there are at least five different local connection schemes in use,
including Unix domain sockets, named pipes, and various types of Streams pipes.
Open source operating systems use Unix domain sockets without exception.

A displayspec with a blank host field will automatically select the default local con-
nection scheme; if the default isn’t a Unix domain socket, then some systems permit
a host value of unix to force a domain socket to be used.

Unix domain sockets for the X server are created in /tmp/.X11-unix and are named
according to the display number (therefore, /tmp/.X11-unix/X0 is the Unix domain
socket for local display :0).

1.15

22 Chapter 1: Introduction to the X Window System

After a local connection has been established, the client and server can negotiate the
use of shared memory for faster communication of large blocks of data; this requires
the MIT SHM extension.

Binaries compiled for one platform but executed on another may not interpret a
blank hostname field in the displayspec correctly. For example, binaries compiled for
SCO Unix may default to a Streams mechanism. When running under Linux using
the iBCS compatibility layer, this will cause a problem, because Linux doesn’t sup-
port Streams. In this case, a hostname value of unix should force the use of Unix
domain sockets; as a last resort, the TCP/IP local loopback mechanism can be used
by specifying a hostname of localhost (however, this incurs the extra overhead of the
TCP/IP stack—twice).

1.15 Server Extensions
The X11 protocol was designed to be enhanced by adding extensions to the X server.
Clients can query the server to find out what extensions are available. This has
enabled many features to be added through the years without significant changes to
the core protocol (which explains why we’re still using version 11!).

Extensions may be compiled in to the X server, or they may be loaded as modules.
Because their presence is optional, the X server can be slimmed down for use on
small machines by building it with a smaller set of extensions.

Here are some of the key extensions in widespread use (upper- and lowercase names
are those reported by the extensions themselves using xdpyinfo (Section 6.2):

MIT-BIG-REQUESTS
Permits client requests over 256 Kb, necessary to draw complex images.

MIT-SHM
Offers shared memory for local communication of images.

Composite
Enables off-screen rendering of windows, which are then combined (compos-
ited) into the final screen image by hardware under control of a compositing
manager. This is usually integrated into the window manager. During composi-
tion, images can be distorted, blended, and resized, so the extension provides an
easy way to add drop shadows, window transparency, icons, and thumbnails
that are “live,” smooth window resizing, and many other 2D and 3D visual
effects.

DAMAGE
Informs a client when one part of the display has been updated. Reduces unnec-
essary drawing and improves the efficiency of applications such as VNC (Sec-
tion 14.1).

1.15

1.15 Server Extensions 23

DPMS
Displays Power Management Signalling. Enables the X server to reduce monitor
power consumption when not in use (Section 3.11).

GLX
OpenGL extension for X11. Enables clients to send OpenGL 3D commands to
the X server, which then passes them on to 3D video hardware (or performs the
3D operations in software if necessary—which is very slow!).

LBX
Low-Bandwidth X. Used with lbxproxy to reduce bandwidth requirements and
latency for remote clients (Section 13.11).

MIT-SCREEN-SAVER
The eye-candy extension! MIT-SCREEN-SAVER informs screensavers when to
start and stop (Section 14.3).

RANDR
Stands for rotate and resize. Notifies clients when the display is resized to a new
resolution or rotated (useful on tablet PCs and LCDs on pivot mounts) and
enables the hot-plugging of monitors (Section 5.2).

RECORD
Permits X events to be recorded for later analysis or playback. Used to automate
application testing and provide macro facilities.

RENDER
Provides a digital image composition model. Render simplifies tasks such as
alpha blending (combining partially transparent images) and high-quality anti-
aliased text display (Section 11.1).

SECURITY
Divides clients into two categories—trusted and untrusted—and prevents
untrusted clients from accessing data held for trusted clients. Properly used, this
can reduce the risk of compromise due to actions such as keystroke logging (to
steal passwords) or remote screen dumping (to view sensitive information dis-
played on the screen). ssh now supports this extension (Section 13.10).

SHAPE
Enables nonrectangular windows. The xeyes and oclock clients provide a good
demonstration of this capability.

SYNC
Makes it possible to synchronize the X display with external events—for exam-
ple, keeping a movie soundtrack synchronized with the picture.

XInputExtension
Provides support for specialized input devices such as graphics tablets, dial
boxes/control surfaces, and 3D trackballs.

1.16

24 Chapter 1: Introduction to the X Window System

XKEYBOARD
Enables complex keyboard mapping and configuration (Section 12.1).

XTEST
Extends the X protocol to simplify performance benchmarking.

XINERAMA
Single-screen, multimonitor support (Sections 1.11 and 4.2).

XVideo
Enables video streams, such as those from a video camera or TV tuner card, to
be converted, transformed, and then overlaid on the X display. This is done with
hardware support and can dramatically improve video performance (Section
4.1).

XVideo-MotionCompensation
Utilizes hardware support for video decompression—useful for DVD viewing
and other MPEG video playback.

1.16 Where to Draw the Line: Kernel Versus User-
Space Drivers

The operating system kernel is usually responsible for managing all of the system
hardware, and normal user-space programs access hardware only through the OS.
This clear-cut distinction between the kernel and user-space programs has been very
difficult to maintain when implementing X servers.

The problem is that video cards vary enormously in terms of their GPU capabilities
and general architecture. It’s hard to create a simple, well-defined interface between
a video driver in the kernel and an X server in user-space that will work well for all
video cards, though several attempts have been made. And of course the X server is
too large and complex to safely place it directly into the kernel.

As it stands now, most kernel/X server combinations—including Linux with the
X.org server—pretty much give the X server free reign when it comes to video card
access, though some of the card drivers (such as the NVIDIA closed-source driver)
use a small kernel module to assist them.

This will likely change in the future. The X server may eventually operate as one (of
perhaps many) OpenGL clients, removing direct hardware access from the X server
entirely. The Xgl server provides a preliminary implementation of this approach.

25

Chapter 2

2
Starting a Local X Server

2.1 One Size Doesn’t Fit All
An X server can be started in different ways to suit different types of use. In this
chapter, we’ll examine the techniques available for starting X and discuss the best
approach for some common scenarios, including:

• Presenting a graphical login display (Section 2.4)

• Configuring a home system with two graphical login displays, so that two peo-
ple can alternately use it without disturbing each others’ work (Section 2.7)

• Starting X on a server system only when it is really needed, in order to conserve
system resources for more important uses (Section 2.9)

• Starting an X server that is displayed within another X server (Section 2.11)

We’ll also take a look at how to use Virtual Terminals (Sections 2.2 and 2.10), how
to simulate a mouse when a bad configuration leaves you without one (Section 2.12),
and how to terminate X (Sections 2.13 and 2.14).

2.2 Virtual Terminals
Linux, FreeBSD, and many other modern Unix kernels support a virtual terminal
(VT) (or virtual console) capability, which provides independent virtual video cards.
The monitor, keyboard, mouse, and physical video card are associated with only one
VT at a time, and each virtual video card can be in a different display mode—some
may be in character mode while others are in graphical mode. This enables multiple
X servers and nongraphical sessions to be active at the same time.

To switch virtual terminals on Linux, press Ctrl-Alt-Fx (where Fx is a function key
from F1 through F12, corresponding to a virtual terminal from VT1 to VT12; you
can also use Alt-Fx if the current VT is in character mode). When you are connected
to a virtual terminal that isn’t running an X server, you can use Alt-LeftArrow to go
to the previous VT and use Alt-RightArrow to switch to the next VT. Some Linux

2.3

26 Chapter 2: Starting a Local X Server

distributions also configure the Windows key to advance to the next VT; you can
also switch virtual terminals using the switchto or chvt commands (Section 2.10).

By default, most Linux distributions boot up with six nongraphical logins on VT1–
VT6 and one X server running on VT7.

FreeBSD provides a very similar VT capability, except that the VTs are numbered
starting at zero, and the key combination to switch VTs when in character mode is
Alt-Fx. Virtual terminals are numbered one off from Alt keys, because there is no F0
key. Therefore, if you’re on VT3 in character mode and press Alt-F1, the kernel will
take you to VT0.

System V Release 4.x systems such as UnixWare use Alt-SysReq followed by Fx to
switch virtual terminals.

Although most kernels support more than 12 virtual terminals, this
capability is rarely used because you can’t usually use the keyboard to
go directly to higher-numbered VTs.

2.3 Starting a Raw X Server Manually
The simplest way to start an X server is also the least-used technique: simply type the
name of the server at a shell prompt:

$ X

Most Unix command and program names are lowercase, but the X
server is an exception. You must enter “X” as a capital letter.

X is actually a symbolic link to the installed server binary, which is named Xorg if
you’re using the X.org server, XFree86 if you’re using the XFree86 server, and so on.

If an X server is already running on display :0, you will get an error message, because
the network port will already be in use. In that case, you can give the new X server a
different display number:

$ X :1

By default, the X server will start on the first unused VT (usually VT8). You can
request a specific VT by specifying it on the command line:

$ X :1 vt10

You can also specify that a particular configuration file should be used, or a particu-
lar ServerLayout within a configuration file:

$ X :1 -config configFile
$ X :1 -layout layoutName

2.4

2.4 Using a Display Manager to Start the X Server 27

The downside to starting the X server this way is that no clients are started. Until you
start some manually, you’ll be left staring at a blank screen with only a mouse
pointer to amuse yourself.

You can start the X server and a client at the same time like this:

$ X :1 -terminate & sleep 2 ; DISPLAY=:1 xterm

The -terminate option will cause the X server to exit when the last client discon-
nects, and the sleep 2 option ensures that the X server has time to start before the
xterm client attempts to connect to it—not usually required, but it’s good practice to
ensure that your commands will work reliably. Note that this command line does
not start a window manager or a desktop environment, so you will not be able to
move or resize the xterm window, start additional programs (except by typing in the
terminal), or set the keyboard focus.

The advantage of starting X directly is that you have precise control over the X server
startup options and the list of clients displayed, which is perfect for a kiosk.

2.4 Using a Display Manager to Start the X
Server

One of the possible layers of an X-based GUI is a display manager, which is the
graphical equivalent of the login program. It is usually configured to start one or
more local X servers to present a greeter dialog that collects the user’s name and
password. Once the user is authenticated, the display manager starts some preconfig-
ured clients—typically a session manager that goes on to start a window manager
and desktop environment such as KDE or GNOME. Many display managers let you
select a session type, which will in turn activate a specific desktop environment.
When the user exits the client(s), the process starts over again.

Three display managers are in common use. The biggest difference between them is
the toolkit upon which they are built:

• GDM: GNOME Display Manager (built on GTK)

• KDM: KDE Display Manager (Qt)

• XDM: X Display Manager (Xt)

KDM and GDM offer some advanced features not present in the older XDM pro-
gram, such as a picture-based face browser and the ability to select the desktop envi-
ronment that will be loaded once the user authenticates.

You may be able to recognize the display manager used on your system by its appear-
ance, since each toolkit has a distinctive look. Alternately, you can search the pro-
cess table to see what’s running, using the following:

$ ps -e | grep '[gkx]dm'

2.5

28 Chapter 2: Starting a Local X Server

If you prefer BSD-style arguments, or if your version of ps permits
these arguments only, use ps ax in place of ps -e.

2.5 Enabling or Disabling the Display Manager
at Boot Time

Many commercial Unix systems and Linux distributions borrow a boot technique
pioneered in Unix System V: the use of runlevels to start and stop software sets.

Table 2-1 lists the standard runlevels.

Runlevel s or S is a special case: it’s used internally by init and normally shouldn’t be
entered directly by the user, who can enter runlevel 1 for single-user mode instead.
But it has a special quality: it’s the only runlevel that does not require /etc/inittab and
is therefore useful in emergency recovery situations.

When you boot a Linux or Unix system into runlevel 5 (the default for most distribu-
tions except Debian/Ubuntu when an X Window server is installed), the display
manager will start automatically. To prevent this, you can boot your system into run-
level 3 by editing the kernel boot parameters, either temporarily or permanently.

To temporarily change the boot into a different runlevel if you are using the grub
bootloader, take the following steps:

1. At the start of the system boot process, access the boot menu (you may or may
not need to press a key to do this—watch the screen prompts closely), highlight
the menu entry you wish to use, and press A (to append kernel arguments).

Table 2-1. The standard runlevels observed by most System V Unix variants and Linux

Runlevel Description

0 Halt

s, S Single-user mode: no per-runlevel scripts executed; /etc/inittab not required (emer-
gency use only)

1 Single-user maintenance mode

2 Multiuser, nonnetworked mode (the default runlevel for Debian-based systems,
including Ubuntu, but rarely used on other systems)

3 Multiuser, networked mode

4 Unused

5 Multiuser, networked mode with local graphical login

6 Reboot

7, 8, 9, a, b, c Unused

2.5

2.5 Enabling or Disabling the Display Manager at Boot Time 29

2. You will be taken into an editor mode that lets you adjust the kernel boot argu-
ments. Add the number 3 at the end of the argument line and press Enter to
boot.

If you are using a system that uses Xen virtualization, the kernel entry
specifies the hypervisor instead of the Linux kernel. To edit the kernel
boot parameters, press E (for Edit) at the main grub menu, which will
display the details of your boot configuration. Select the module line
that specifies the kernel file and press E. Add the desired runlevel (3) at
the end of this line and press Enter to save your change, then press B to
boot.

Or, if you are using the LILO bootloader:

1. At the start of the system boot process, access the LILO: prompt, then type the
name of the boot configuration you wish to use (the Tab key will display the list
of possibilities) and append the number 3 at the end (for example, linux 3).

2. Press Enter to boot.

You can change the runlevel of system after it has been booted by executing the init
or telinit command with the desired runlevel:

$ init 3

To return to the graphical login state, switch to runlevel 5:

$ init 5

Permanently changing the default runlevel requires editing /etc/initab. The runlevel is
controlled by this line:

id:5:initdefault:

Change the second field to 3 to disable the automatic start-up of the display
manager:

id:3:initdefault:

When you boot into any runlevel that does not start X automatically, you can start
the display manager manually by typing the command name at a root shell prompt:

gdm

By default, Debian-based systems (including Ubuntu) start the display
manager in all runlevels. You can easily disable the startup of the dis-
play manager in runlevel 3 by executing these commands:

update-rc.d -f gdm remove
update-rc.d gdm start 31 2 4 5 . stop 31 1 3 .

2.6

30 Chapter 2: Starting a Local X Server

2.6 What Started the Display Manager?
Depending on your system configuration, the display manager may be started
directly by init, or through an init script. It’s useful to know how the display man-
ager starts so that you can make changes and so that you know what will happen if
the display manager exits (or crashes!).

Started Directly by init
In some Linux distributions, the display manager is directly started by init. For exam-
ple, in Fedora’s /etc/inittab, you will find this entry:

Run xdm in runlevel 5
x:5:respawn:/etc/X11/prefdm -nodaemon

In the second line, the second field specifies that this command is executed only in
runlevel 5, and the third field directs that it is to be respawned (executed again) if it
exits.

The script /etc/X11/prefdm will execute /usr/sbin/autologin to automatically log in one
user if that feature has been set up. Otherwise, it will start one of the display manag-
ers (GDM, KDM, or XDM) depending on the specification in /etc/sysconfig/desktop.
If that file does not exist, then the first display manager found in alphabetical order
will be used.

Since init has been set up to respawn the display manager automatically, it is rela-
tively easy to load and test changes to the display manager configuration file—just
kill the display manager! If you’re using XDM or KDM, you can kill the display man-
ager by name:

killall xdm

Killing the display manager will also kill all the display manager’s child
processes, including X servers—so if you do this through the graphi-
cal interface, expect your session to disappear!

GDM is a wrapper script for gdm-binary, so if your system uses GDM, you’d have to
kill the display manager with the following:

killall gdm-binary

Alternately, you can restart GDM immediately using its restart script:

gdm-restart

Or you can specify that a restart should take place as soon as everyone is logged out:

gdm-safe-restart

2.7

2.7 Starting Multiple X Servers Using a Display Manager 31

In FreeBSD, the display manager is started by init but the configuration information
is in /etc/ttys instead of /etc/inittab:

ttyv8 "/usr/sbin/xdm -nodaemon" xterm on secure

The fourth field can have a value of on or off to enable or disable the display
manager.

Started by an init Script
Some Linux distributions use startup scripts to execute the display manager. For
example, on a SUSE system, the display manager is started by /etc/rc.d/rc5.d/S17xdm
(which is a symbolic link to /etc/rc.d/xdm).

Similar to the prefdm script used by Fedora, this script finds your preferred display
manager using a configuration file—in this case, /etc/sysconfig/displaymanager—or it
uses XDM if that file is missing.

Since this is a regular init script, it is executed only once at startup; when the display
manager terminates, it will not be restarted. After editing the display manager config-
uration file, you can reinvoke the XDM init script using the restart option to put your
changes into effect:

/etc/X11/xdm restart

Or you can use the SUSE shortcut:

rcxdm restart

2.7 Starting Multiple X Servers Using a Display
Manager

On a home computer, it can be useful to configure the display manager to start two
or more X servers. You can then flip between them using the virtual terminal mecha-
nism (Section 2.2).

A few years ago, I used this configuration on my home computer, so that when I
wasn’t using it, other members of my family could change VTs and log in without
disturbing my work. When they finished, I would just switch back to my VT and
continue where I left off. (Now I’ve extended this configuration by adding additional
video cards, keyboards, mice, and monitors so we can log in simultaneously.)

Starting Multiple X Servers Using XDM (or Early Versions of
KDM)
XDM and older versions of KDM (pre-3.4) use the Xservers file to configure the
number of servers started by the display manager. The location of this file varies; try
/etc/X11/xdm/Xservers or /opt/kde3/share/config/kdm/Xservers.

2.7

32 Chapter 2: Starting a Local X Server

This is a fairly standard Xservers file:

$Xorg: Xserv.ws.cpp,v 1.3 2000/08/17 19:54:17 cpqbld Exp $
#
Xservers file, workstation prototype
#
This file should contain an entry to start the server on the
local display; if you have more than one display (not screen),
you can add entries to the list (one per line). If you also
have some X terminals connected that do not support XDMCP,
you can add them here as well. Each X terminal line should
look like:
XTerminalName:0 foreign
#
:0 local /usr/bin/X

Lines that start with # are comments. The active line, at the bottom, specifies that
display 0 is a local X server, and gives the command line to be used to start that X
server.

To start additional X servers, simply add lines at the bottom of this file:

:1 local /usr/bin/X :1 vt8
:2 local /usr/bin/X :2 vt9

Although it’s not strictly necessary to specify the VT on these lines, it’s a good idea,
because then you will confidently know which display is paired with which VT.

If you wish to specify a different configuration file for one of the X servers, you can
add a -config argument to the command:

:3 local /usr/bin/X -config configgile :3 vt10

This must all appear on a single line in the configuration file.

Starting Multiple X Servers Using KDM
If you’re using KDE 3.4 or higher, the local X server configuration is controlled by
the kdmrc file (/etc/X11/xdm/kdmrc or /opt/kde3/share/config/kdm/kdmrc). In the
[General] section of that file, you can specify a list of local displays to be started by
adding a StaticServers key:

StaticServers=:0,:1,:2

If this line is missing, the default is to start only display :0.

Starting Multiple X Servers Using GDM
GDM is configured using two files; the first specifies default values, which may be
overwritten when GDM is updated, and the second provides local values, which are
never overwritten. The name and location of these files varies; on an Ubuntu system,
the defaults are in /etc/gdm/gdm.conf and the local settings are in /etc/gdm/gdm-
custom.conf, while on a Fedora system, the defaults are in /usr/share/gdm/
defaults.conf and the local settings are in /etc/gdm/custom.conf.

2.8

2.8 Starting Additional X Servers on Demand Using a Display Manager 33

There are two sections in the GDM default configuration file that deal with local X
servers. The first defines the command to be used to start a new server, and it looks
like this:

[server-Standard]
name=Standard server
command=/usr/bin/X
flexible=true

The name field is for your reference only. The last line enables GDM to start addi-
tional servers on-the-fly when instructed to do so by the gdmflexiserver command
(Section 2.8).

Once it has been defined, the configuration is associated with a display number by a
servers section elsewhere in the file:

[servers]
0=Standard

This will start a single server with a display number of :0. To configure GDM to ini-
tially start additional servers with the same configuration, add a servers section to the
local configuration file:

[servers]
0=Standard
1=Standard
2=Standard

If you wish to use a different configuration for a specific display, you can add a new
configuration section to the local configuration file:

[server-LowRes]
name=Low-Resolution Server
command=/usr/bin/X -config /etc/X11/xorg.conf-lowres
flexible=false

Then specify that configuration for one of your displays:

[servers]
0=Standard
1=Standard
2=Standard
3=LowRes

GDM automatically adds an argument to the X server command to specify the dis-
play to be used.

2.8 Starting Additional X Servers on Demand
Using a Display Manager

Recent versions of both GDM and KDM are capable of starting additional X servers
on demand. This is useful when you occasionally want to use multiple X servers but

2.8

34 Chapter 2: Starting a Local X Server

don’t want the extra overhead when a single X server only is in use. The GNOME
developers call these additional servers flexible servers; the KDE folks call them
reserve servers.

Starting Additional X Servers Using gdmflexiserver
The GDM display manager provides a command-line utility, gdmflexiserver, which
communicates with a running gdm process and instructs it to start a new X server.

Assuming that you have flexible=true in at least one of your GDM server configura-
tions (Section 2.6)—which is the default—the GNOME menu contains a New Login
option on the System group. If you’re not running GNOME, don’t have a New Login
option on the menu. If you prefer to use a shell prompt, simply run gdmflexiserver:

$ gdmflexiserver

If more than one X server is already active, you will be given the option of switching
to an existing session or starting a new one; otherwise, a new X server will be started
and a new session login prompt will appear automatically.

Your existing X session will be locked automatically (via the screensaver) and can be
unlocked with your password when you switch back to the original VT. If you don’t
want this automatic locking, add the -l option to the preceding command line.

gdmflexiserver can also start a nested X server (using Xnest) and present a session
login prompt there:

$ gdmflexiserver -n

Starting Additional X Servers Using KDM
Although it doesn’t provide a command-line interface, KDM can start new sessions.
Before you can use this, you must edit the kdmrc file. In the [General] section, add a
line that specifies some reserve servers:

ReserveServers=:3,:4,:5

If you also have a StaticServers line (Section 2.7), make sure that no display num-
bers appear in both lists.

In order to start a reserve server, you must be running KDE as the desktop environ-
ment (this isn’t a given, since you can run any desktop using any display manager).
Select “Start new Session” from the Switch User menu group on the K Menu, and a
new X server will start with a session login prompt. If you lock your session (either
using the menu option or by configuring session locking for the KDE screensaver), a
“Start new Session” button will appear on the locked-screen password dialog as well.

You can switch between open sessions—including character-mode VT logins—by
using the Switch User options on the K Menu or screensaver password dialogs (as an
alternative to using the switch-VT key combinations (Section 2.2).

2.9

2.9 Starting an X Server with Clients Only When Needed 35

2.9 Starting an X Server with Clients Only When
Needed

Systems used primarily as network servers don’t need to have an X server running all
the time and should be configured to boot into runlevel 3. This saves some memory
that is best used for network services. However, it’s handy to run an X server when
performing administration on a server system; for example, to start a web browser to
search for documentation.

The xinit utility can be used to start an X server with specified clients, but the startx
wrapper script provides a friendlier interface. After logging in at a character-based
login prompt, simply execute:

$ startx

startx permits you to specify which client is to be started as well as any options for
the X server. A double-dash (--) is used to separate the client arguments (left) from
the X server options (right).

You can explicitly specify a client to be started:

$ startx /usr/bin/xterm -bg yellow -geometry 180x50

Or you can specify the X server options to be used. If an X server is already running
on display :0, for example, you could specify that display :1 should be used for the
new server:

$ startx -- :1

Or you can specify both the client to be started and some server options:

$ startx /usr/bin/xterm -bg yellow -geometry 180x50 -- :1 -config /etc/testconfig

When specifying a client for startx, the client command pathname
must begin with a single dot or a slash; otherwise, it will be treated as
an argument to the default client (typically xterm). Likewise, you can
specify the pathname of the X server on the righthand side of the dou-
ble-dash by using a pathname that starts with a dot or slash; if you
omit the dot or slash, the value is treated as an argument to the stan-
dard X server (which is specified in ~/.xserverrc on a user-by-user basis
or /etc/X11/xinit/xserverrc as the system-wide default). For example,
Xorg would be interpreted as an argument to the standard X server,
while ./Xorg or /usr/local/test/Xorg would be interpreted as the name of
an alternate X server.

To start multiple clients, create a shell script and specify that shell
script on the startx command line.

startx is usually used without any arguments. It will start an X server with a default
set of clients. The clients are specified in the script ~/.xinitrc in your home directory,

2.10

36 Chapter 2: Starting a Local X Server

if it exists; otherwise, /etc/X11/xinit/xinitrc is used. Most distributions ship with the
default script configured to start a desktop environment (KDE or GNOME).

Some SVR4x configurations and Fedora use a system-wide xinitrc
script, which in turn looks for a script named ~/.Xclients. If present,
the ~/.Xclients file is used to start a customized list of clients. Note that
~/.xinitrc takes precedence over ~/.Xclients (also note the difference in
capitalization).

2.10 Switching VTs from the Shell Prompt
The Linux switchto or chvt command permits you to change the currently displayed
virtual terminal. If you are logged into VT1 in character mode, you can change to an
X server running on VT7:

$ switchto 7

Or:

$ chvt 7

You can run this using your normal user permissions from a character-mode VT.
However, you must use root privilege to run switchto/chvt from a X session:

switchto 1

You can log in from another machine and run this command even when you can’t
switch VTs using the keyboard. I’ve used it to remotely change the VT of a new
Linux user while talking her through a problem on the phone (she had accidentally
switched to VT4 and couldn’t get back to her X session).

2.11 Starting X Within X
It can be a nuisance to continually switch VTs when testing an X setup. An alterna-
tive is Xnest, an X server that does not drive a video card. Instead, Xnest displays its
output in a window on another X server’s display.

The screen dump in Figure 2-1 is from a Fedora system and shows Xnest displaying a
KDE session in a window within a GNOME session.

To start Xnest on the current display, use the following:

$ Xnest :1

It is necessary to specify the display number to prevent conflicts with the existing
display.

To start Xnest with a particular client, you can use the startx script:

$ startx /usr/bin/startkde -- /usr/bin/Xnest :1

2.12

2.12 No Mouse! 37

Since Xnest does not directly interact with any real hardware, you can set the screen
size to any arbitrary value using the -geometry option. You can also test a multi-
screen display using the -scrns option. To start Xnest with two screens of 600 × 400
pixels, use the following:

$ Xnest -scrns 2 -geometry 600x400 :1

The Xnest server has not been updated for several years, so it does not
include current extensions such as RENDER. This may cause newer
applications to operate poorly or to completely fail.

Xnest works by forwarding requests made of the nested server to the parent server.
An alternative approach is offered by Xephyr, a server that renders onto an X image
displayed in a window. The net effect is similar, but Xephyr can support extensions
that are not provided by the parent server. It can also be used to build a multiseat
solution.

2.12 No Mouse!
When testing and configuring an X server, it’s not uncommon to find yourself with-
out a working mouse. If your keyboard is working, though, there is a way to cope.

Figure 2-1. A KDE session in a window within a Gnome session

2.12

38 Chapter 2: Starting a Local X Server

The X.org server (and some others) provides mouse keys capability, which permits
the mouse pointer to be moved using the keypad. To toggle mouse keys mode on or
off, press Shift-NumLock.

In this mode, the keypad buttons perform mouse actions, as illustrated in Figure 2-2.

The operation of the mouse buttons requires an explanation:

• Pressing the 5 key is equivalent to clicking a mouse button once.

• Pressing the 5 key twice in a row or pressing the + key is equivalent to double-
clicking a mouse button.

• Pressing the 0 key holds a mouse button down (useful for drag operations), and
the . (period) key releases it.

• The /, *, and - keys don’t actually send a button click; they are used to select
which mouse button will be simulated by the 5, +, and 0 keys. Pressing / will
select left button clicks; pressing * will select middle button clicks; and pressing
- will select right button clicks. The selected button remains in effect until a new
one is chosen.

Microsoft Windows and Mac OS each provide a similar mouse keys
capability, but use a different hotkey sequence to enable/disable it.

In addition to rescuing mouse users when the rodent is uncooperative, mouse keys
can be used as an accessibility tool, enabling the mouse pointer to be controlled
using a mouth stick or a headpointer, or typing aid.

Figure 2-2. Mouse actions on the keyboard

/ * –

7 8 9 +

4 5 6

1 2 3

0 .

Left
button

Middle
button

Right
button

Double
click

Button
click

Hold
button

Release
button

2.14

2.14 Bailing Out: Zapping X 39

This feature may be difficult or impossible to use on laptop comput-
ers that are not equipped with a numeric keypad.

2.13 Bailing Out: Zapping X
Most X servers are configured with a keystroke combination that will bail out of the
X server with no questions asked: Ctrl-Alt-Backspace. This is called zapping the X
server.

This key combination should not be used lightly: since it immediately terminates the
X server, client connections will be closed without warning, and most clients will
subsequently terminate themselves. Any work-in-progress may be lost, and files may
be left in an indeterminate state. Nonetheless, when the server is hopelessly messed
up, zapping it may be your only available option short of a hard reset—and it is safe
to do when no clients are connected.

Because this key combination can be dangerous, the X.org server permits you to dis-
able it using the DontZap directive in xorg.conf configuration file.

2.14 Terminating X Automatically
By default, an X server will reset and continue running when the last client discon-
nects. The reset clears out the server memory, preventing new clients from accessing
data from a previous session. This is an important security precaution.

For many applications it’s desirable to have the X server exit when the last client dis-
connects. This is configured by adding the -terminate option to the X command line:

$ X -terminate

40

Chapter 3

3
Basic X.org Configuration

3.1 What Is There to Configure?
An X server manages a number of devices: keyboards, pointing devices, video cards,
and monitors. The X server configuration determines how the display will be set
up—which devices, in which operating modes, in which combination will be used.

For a simple configuration with one mouse, keyboard, monitor, and video card,
using a reasonable resolution and scan rate, configuration is pretty straightforward.
In fact, the X server can configure itself in the absence of a configuration file, or it
can generate a default a basic configuration file (Section 3.4). But as soon as a spe-
cial resolution or scan rate is desired or if multiple devices of the same kind are used,
the complexity of the configuration can rise quickly. If there are two screens, the
server needs to know which is on the left and which is on the right; if there are multi-
ple mice, the server needs to know which ones you want it to manage.

Most distributions automatically generate a reasonable configuration file when they
are installed, and also provide graphical tools for adjusting the configuration. How-
ever, none of these tools provides complete control over all of the configuration
options—and if the display is misconfigured and unusable, it’s hard to bring up a
graphical tool to correct the problem!

This chapter covers the configuration of the X.org server. Since this
was forked from the XFree86 server, the configuration process is
largely the same for both versions, except for minor differences in
command-line options and filenames and features that have been
added since the fork.

3.2 Why Only root Can Configure the X Server
Only the superuser, root, is permitted to configure the X.org server. This seems to be
a serious limitation for a desktop system, but there are two critical reasons for it.

3.3

3.3 Places Your Configuration Could Hide 41

Since the X server pretty much has free reign over the hardware, it is possible to craft
a malicious driver that would manage more than the display—it could manage other
devices, snoop on system activity, or damage data. Any user who is given permission
to configure the X server could install such a malicious driver; allowing a normal user
to configure the server could permit a Trojan program to install a bad driver.

It’s also possible to lock up the system by misconfiguring the X server. Worse yet, it’s
possible in some very rare cases to permanently damage the display hardware!

3.3 Places Your Configuration Could Hide
The X.org server configuration file is named xorg.conf. If you’re using XFree86, the
configuration file is named XF86Config. But where is the file located?

According to the X server manpage, it could be in any of 13 different locations:

• /etc/X11/cmdline

• /usr/X11R6/etc/X11/cmdline

• /etc/X11/$XORGCONFIG

• /usr/X11R6/etc/X11/$XORGCONFIG

• /etc/X11/xorg.conf-4

• /etc/X11/xorg.conf

• /etc/xorg.conf

• /usr/X11R6/etc/X11/xorg.conf.hostname

• /usr/X11R6/etc/X11/xorg.conf-4

• /usr/X11R6/etc/X11/xorg.conf

• /usr/X11R6/lib/X11/xorg.conf.hostname

• /usr/X11R6/lib/X11/xorg.conf-4

• /usr/X11R6/lib/X11/xorg.conf

Where cmdline is the filename specified in the -config option on the server com-
mand line, $XORGCONFIG is the filename stored in the environment variable of the
same name, and hostname is the computer’s network hostname (as displayed by the
hostname command). Unless you are the root user, the pathname given for cmdline or
$XORGCONFIG must be relative and cannot contain a reference to a parent directory (it
may not contain “..”).

Translated into English, this means the following happens:

1. First priority is given to the filename specified on the command line, if present—
but that filename must exist in the /etc/X11 or /usr/X11R6/etc/X11 subtrees.
Those directories are normally writable only by root, so the configuration must
be installed by the superuser.

3.3

42 Chapter 3: Basic X.org Configuration

2. The next possibility is a filename specified by the environment variable
XORGCONFIG. The same directory limitations exist as above. To set this variable,
use one of these lines (according to the shell you’re using):

$ export XORGCONFIG=filename
% setenv XORGCONFIG filename

3. Next, /etc/X11 is searched, first for xorg.conf-4 and then xorg.conf. The
xorg.conf-4 filename is a holdover from the XFree86 3.x to 4.x transition, when
many users had both versions installed on their systems; if a different configura-
tion was desired for the 4.x server, it was placed in the -4 configuration file.

4. /etc is next on the list, but only xorg.conf is sought in that directory.

5. /usr/X11R6/etc/X11 is searched. This directory may be a network share, so a
machine-specific configuration file is sought first using the hostname as a suffix
(xorg.conf-hostname). If the hostname isn’t present, the X server looks for
xorg.conf-4 and then xorg.conf.

6. /usr/X11R6/lib/X11 is searched, using the same filenames as step 5.

When executing the X server as the root user, additional paths are
searched:

• cmdline is searched before step 1. This may be relative or abso-
lute.

• $XORGCONFIG is searched before step 2. This may be relative or
absolute.

• ~/xorg.conf is searched before step 3.

This permits the root user to specify any arbitrary pathname in
cmdline or $XORGCONFIG—useful when testing a new configuration file
(Section 3.4).

The standard configuration file location for most systems is /etc/X11/xorg.conf.

To find out with certainty which configuration file the server is using, check the
server logfile (Section 3.15).

If no configuration file can be found, the server will attempt to automatically gener-
ate a temporary configuration using the script getconfig.pl.

If you encounter a system that is using XFree86:

• The command-line configuration option is named -xf86config
instead of -config.

• The environment variable is named $XF86CONFIG instead of
$XORGCONFIG.

• The default filename is XF86Config-4 or XF86Config instead of
xorg.conf-4 or xorg.conf.

• The standard configuration filename is /etc/X11/XF86Config.

3.4

3.4 Let the X Server Configure Itself 43

3.4 Let the X Server Configure Itself
The X.org server can, in most cases, probe, guess, and assume enough about the dis-
play configuration to start without a configuration file. Even better, it can generate a
basic configuration file, if you specify the -configure option on the server command
line:

X -configure

If you’re already running the X server, you can specify an alternate display number
(such as :1) on the command line:

X -configure :1

 but it’s probably best to attempt autoconfiguration when there is no server active.

The X server will gather as much information as possible by probing the hardware,
and will then write the configuration file to /root/xorg.conf.new.

You can test the configuration file by manually specifying it on the command line:

X -config /root/xorg.conf.new

If the server appears to start and then immediately exits, while display-
ing the message Fatal server error: failed to initialize core devices, then
your configuration may be fine except for the pointer device. Try tell-
ing the X server to continue even if the pointer cannot be opened:

X -config /root/xorg.conf.new -allowMouseOpenFail

You can temporarily use mouse keys (Section 2.12) to move the mouse
cursor. If the rest of the configuration is OK, you can correct the
mouse pointer configuration (Section 3.7).

To exit from the server, zap it using Ctrl-Alt-Backspace (Section 2.13).

It’s a good idea to save any working xorg.conf file before overwriting it
with a new one, in case you find that you need to revert to a previous
version:

cp /etc/X11/xorg.conf /etc/X11/xorg.conf.original

You can keep as many versions of this file as seem practical (on many
systems, you’ll see multiple versions, such as xorg.conf.original,
xorg.conf.low-res, xorg.conf.videoprojector, and so forth).

If the server appears to work properly and you wish to use it as the default configura-
tion, install it by copying it to /etc/X11/xorg.conf:

cp /root/xorg.conf.new /etc/X11/xorg.conf

3.5

44 Chapter 3: Basic X.org Configuration

Even if the automatically generated configuration doesn’t work, it is
usually easier to start with that file and fine-tune it than to write a con-
figuration file from scratch.

3.5 The xorg.conf Configuration File
The xorg.conf configuration file is divided into five basic sections (and there are eight
optional sections; see Section 3.6). Knowing the purpose of each of these sections is
the key to understanding the xorg.conf file.

ServerLayout
Defines how the screens and input devices are combined to form a display
configuration.

Screen
Combines one video card (or Device in xorg.conf terminology) and one Monitor
to form a screen. This section also defines the color depth and resolution(s) to be
used on that screen.

Monitor
Describes the characteristics of the monitor—whether it supports DPMS and
what scan rates are permissible.

Device
Configures the video card.

InputDevice
Contains configuration information for an input device. There are usually at
least two of these sections—one for a pointing device and one for a keyboard.

These sections are arranged in the hierarchy shown in Figure 3-1.

Figure 3-1. Hierarchy of sections in the X server configuration file

Server
layout

Input device Input device
Screen Screen

Monitor Device Monitor Device

3.5

3.5 The xorg.conf Configuration File 45

Each Screen section brings together a Monitor and Device section, and each
ServerLayout section brings together one or more Screen sections with two or more
InputDevice sections.

Multiple ServerLayout sections are used to handle alternate configurations—for
example, a laptop configuration file could have one server layout for use on the road
and a different server layout for use at the office.

A basic configuration looks like this (the order of the sections may vary):

Sample xorg.conf file

Section "ServerLayout"
 Identifier "Default Layout"
 Screen 0 "Screen0" 0 0
 InputDevice "Mouse0" "CorePointer"
 InputDevice "Keyboard0" "CoreKeyboard"
EndSection

Section "Screen"
 Identifier "Screen0"
 Device "Videocard0"
 Monitor "Monitor0"
 DefaultDepth 24
 SubSection "Display"
 Depth 8
 Modes "1280x1024" "1024x768" "800x600"
 EndSubSection
 SubSection "Display"
 Depth 24
 Modes "1280x1024" "1024x768" "800x600"
 EndSubSection
EndSection

Section "Monitor"
 Identifier "Monitor0"
EndSection

Section "Device"
 Identifier "Videocard0"
 Driver "nv"
EndSection

Section "InputDevice"
 Identifier "Keyboard0"
 Driver "keyboard"
EndSection

Section "InputDevice"
 Identifier "Mouse0"
 Driver "mouse"
 Option "Device" "/dev/input/mice"
EndSection

3.5

46 Chapter 3: Basic X.org Configuration

Notice that each section starts with the keyword Section followed by a quoted string
describing the type of section, and that each section ends with the keyword
EndSection. Lines beginning with # are comments.

The Identifier line in each section provides a name that is used when referencing
that section from another section. The identifiers assigned by X -configure are pretty
vague, but these can be changed to anything that makes sense; for example, in a two-
screen configuration, you could name the monitors left and right or CRT and
VideoProjector if that makes the file more readable.

The following sections offers brief descriptions of the main options in each code
section.

ServerLayout
The ServerLayout section of the file is optional—at least for most simple configura-
tions—but it is almost always present in a configuration file. This is the ServerLayout
section from our sample configuration:

Section "ServerLayout"
 Identifier "Default Layout"
 Screen 0 "Screen0" 0 0
 InputDevice "Mouse0" "CorePointer"
 InputDevice "Keyboard0" "CoreKeyboard"
EndSection

The entries in this section are:

Identifier
The name given to this particular layout. This can be selected when the X server
is started by specifying -layout identifier as a command-line option.

Screen
Associates a screen with the display. To associate multiple screens with the dis-
play, use multiple Screen lines. The arguments are the screen number, the Screen
section identifier, and the position of the screen (which is really only useful when
using multiple screens together); see Section 4.4.

InputDevice
Associates an InputDevice section with this display. The arguments are the
InputDevice identifier, followed by the device type in double quotes. The device
type must be CorePointer, CoreKeyboard, or SendCoreEvents (or the equivalent
AlwaysCore). CorePointer and CoreKeyboard indicate the primary pointer and key-
board devices; SendCoreEvents identifies optional secondary devices, which
should be used in parallel with the primary devices.

Option
Any options that can be specified in the ServerFlags section may also be given
here. The difference is that options in the ServerFlags section apply to all lay-
outs, but options within a ServerLayout section apply only to one particular lay-
out. Options in this section override options of the same names in the
ServerFlags section.

3.5

3.5 The xorg.conf Configuration File 47

Screen
Here is our sample Screen section:

Section "Screen"
 Identifier "Screen0"
 Device "Videocard0"
 Monitor "Monitor0"
 DefaultDepth 24
 SubSection "Display"
 Depth 8
 Modes "1280x1024" "1024x768" "800x600"
 EndSubSection
 SubSection "Display"
 Depth 24
 Modes "1280x1024" "1024x768" "800x600"
 EndSubSection
EndSection

There are three basic, required entries here:

Identifier
The name of the screen, for reference from the ServerLayout section or the -screen
command-line option.

Device
A cross-reference to a particular video card’s Device section identifier.

Monitor
A cross-reference to a Monitor section identifier.

These entries are not required but are commonly used:

DefaultDepth
The default color depth (bits per pixel) to be used. This can be overridden from
the X server command line using the -depth option. Standard values are 8, 15,
16, and 24; I recommend using 24 on all modern video cards.

SubSection "Display"
Specifies the available resolutions and other details for the display setup on this
screen. This usually includes just two entries and is closed off with the keyword
EndSubSection. The two entries are described as follows:

Depth
The color depth (bits per pixel) for this SubSection. The SubSection with a
depth that matches the server’s color depth (which is usually the one speci-
fied in the DefaultDepth entry) is the one used by the server.

Modes
A list of available video modes. The first entry in the list is the default mode.
Most video modes are named with the resolution they provide (e.g.,
"640x480"). To find out which modes are available for a particular monitor
and video card, consult the X server log file (Section 3.15).

3.5

48 Chapter 3: Basic X.org Configuration

Monitor
The Monitor section is often quite simple:

Section "Monitor"
 Identifier "Monitor0"
EndSection

In this example, the Monitor section contains only an Identifier entry. This will work
fine if the actual monitor capabilities can be probed, which is the case for most mod-
ern monitors and some laptop screens. However, this will not work if the monitor is
not on when the X server is started, the monitor does not report its capabilities, or spe-
cial video hardware is in use, such as a splitter to connect both a monitor and a video
projector, or a keyboard/video/mouse (KVM) switch. In those cases, the scan rates that
the monitor can accept must be specified in this section (Section 3.14).

Because older monitors could be permanently (and sometimes spectacularly) dam-
aged by sending a signal with the wrong scan rate, the X server is conservatively pro-
grammed and will exit rather than guess what scan rate to use.

Device
The Device section needs only two basic entries:

Section "Device"
 Identifier "Videocard0"
 Driver "nv"
EndSection

The entries are:

Identifier
The name given to this video card, which is referenced by a Screen section.

Driver
The name of the device driver to use. This is determined automatically by scan-
ning the PCI and AGP buses when you run the server with the -configure
option. To see the X server’s view of the buses, use the -scanpci option:

$ X :1 -scanpci

I used display :1 here to avoid conflicting with display :0 if it’s already running.
If you also have display :1 in use, choose a different display number.

In some cases, two or more drivers may work with one video card; the automatic
configuration is usually the best choice, but there are times when you may want to
override the configuration and choose a different driver manually.

Driver parameters may be specified in this section with Option entries (Section 3.12).

If you have a video card and don’t know which driver to use (or you
don’t have the right driver), use the vesa driver, which will enable
basic operation with almost any modern video card at resolutions up
to 800 × 600 and 16-bit color depths.

3.6

3.6 Optional Sections in the xorg.conf Configuration File 49

InputDevice
In old configuration files, you may find Keyboard and Pointer sections instead of
InputDevice sections. These section names are still recognized but may eventually be
phased out, so they should be avoided.

Our sample configuration file has two InputDevice sections:

Section "InputDevice"
 Identifier "Keyboard0"
 Driver "keyboard"
EndSection

Section "InputDevice"
 Identifier "Mouse0"
 Driver "mouse"
 Option "Device" "/dev/input/mice"
EndSection

There are three entries used here:

Identifier
The name of the section, so it can be referenced from a ServerLayout section or
from the -pointer and -keyboard command-line options.

Driver
The name of the device driver, which is usually keyboard or mouse. Some special-
ized input devices use their own device driver, such as synaptics for Synaptics
TouchPads (Section 3.10).

Option "Device"
Specifies the device pathname. For the default BIOS-controlled keyboard(s)
(whether PS/2 or USB), the device does not have to be specified. /dev/input/mice
is a special Linux device that merges input from all available mice into a single
stream.

3.6 Optional Sections in the xorg.conf
Configuration File

In addition to the basic, standard sections of the xorg.conf file, there are eight
optional sections. Here is a brief synopsis:

Extensions
These are options to enable or disable individual server extensions. Not all
extensions can be controlled in this section; it was introduced to manage the
Composite extension. To enable or disable an extension in this section, treat the
extension name as a boolean option name (Option "Composite" "on").

3.6

50 Chapter 3: Basic X.org Configuration

Files
This is a list of various filenames and paths to be used by the server. The most
common entries are:

FontPath
A comma-separated list of directories containing fonts (Section 10.2), or a
font server specification (Section 10.3).

RGBPath
The pathname of the color name database (Section 3.13), which permits col-
ors to be referenced by name instead of color code. The filename extension
should be left off.

ServerFlags
These are flags that control the overall server operation. These flags control Zap
(Section 2.13), Zoom (Section 5.2), and VT switching (Section 2.2) operations
from the keyboard as well as enabling and disabling server features such as Xin-
erama (Section 4.2) and DPMS activations times (Section 3.11).

Module
This lists modules that should be loaded in addition to any device drivers; these
are typically used to provide optional extensions (some extensions are built
directly into the X server). The only entries permitted in this section are Load,
which loads the specified module, and SubSection, which specifies options for a
given module.

Mode or ModeLine
This describes the video modes in terms of scan rate, start/stop positions, and
signal options. The server will consider using any video modes listed here that
are supported by the hardware (monitor scan rate, framebuffer size, and DAC
speed).

It is a bit tricky to construct a valid mode. Fortunately, the server has built-in
entries for the common modes defined by the Video Electronics Standard
Association (VESA), so it is no longer necessary to specify modes except for spe-
cial cases (such as TV-out or ultra-high resolutions) above 2048 × 1536.

DRI
This offers configuration information for the Direct Render Interface, which
shares 3D hardware access with applications. DRI is accessed through the device
nodes /dev/dri/cardN. Two options are used here:

Group
Specifies the group that should own the DRI device nodes. To limit DRI
access to specific users, create a group for this purpose and place the
selected users in that group (either by editing the /etc/group file or by using
the appropriate command-line tools, such as groupadd and usermod -G under
Linux).

3.7

3.7 Configuring the Pointer Device 51

Mode
Specifies the file permission mode for the DRI device nodes. Using a value of
0666 will enable every user of the system to access DRI (which is not neces-
sarily safe, but is the default).

VideoAdaptor
This is used to configure video streams for the Xv extension. I’ve never seen this
section used.

Vendor
This is vendor-specific configuration information. This is rarely used, except that
some distribution-specific configuration tools use this section to identify that
they created the configuration file.

3.7 Configuring the Pointer Device
X -configure does a very basic job of configuring the mouse pointer. It assumes that
/dev/mouse is a symbolic link to the actual mouse device.

On a Linux system, the physical mouse is usually connected to one of these devices:

/dev/psaux
The PS/2 mouse port.

/dev/input/mice
All USB mice merged together.

/dev/input/mouseN
A specific USB mouse (N is the mouse number starting at zero).

/dev/ttySN
A serial port (N is the serial port number starting at zero; the DOS/Windows
device COM1: is /dev/ttyS0).

For USB mice under NetBSD/OpenBSD, use the device /dev/umsN (N is the mouse
number, starting at zero).

You can create the /dev/mouse symlink with the command:

ln -s /dev/mousedevice /dev/mouse

However, some distributions (such as Ubuntu) are starting to use a volatile /dev
directory—one that is not saved on disk, but created on-the-fly when the system is
booted. The symbolic link would need to be created every time the system is started.

In this case, your best choice would be to change the device entry in the InputDevice
section of the configuration file. Here is an automatically generated configuration:

Section "InputDevice"
 Identifier "Mouse0"
 Driver "mouse"
 Option "Device" "/dev/mouse"
EndSection

3.8

52 Chapter 3: Basic X.org Configuration

Change the last argument of the Option "Device" entry to the device you wish to use:

 Option "Device" "/dev/input/mice"

Almost all mice now use a variation of the PS/2 protocol and can be detected and
managed automatically. Some very old mice may need to have the mouse protocol
specified; this can be set with an Option "Protocol" entry.

3.8 Configuring a Two-Button Mouse
The X Window system supports mice with almost any number of buttons. Most X
users prefer mice with three or more buttons, since many X applications permit past-
ing with the middle mouse button (Section 5.4)—a great timesaver.

If you have a two-button mouse, you can configure the server to interpret the simul-
taneous press of both buttons as a middle mouse click. To set this up, add the
Emulate3Buttons option to the mouse’s InputDevice section:

Section "InputDevice"
 Identifier "Mouse0"
 Driver "mouse"
 Option "Device" "/dev/input/mice"
 Option "Emulate3Buttons" "On"
EndSection

Most mice equipped with scrollwheels have a middle button switch
attached to the scrollwheel. Simply press the scrollwheel in to click the
middle button.

As long as the mouse buttons are pressed within 50 milliseconds (1/20 of a second)
of each other, a middle click will be registered instead. If you find it difficult to press
them almost simultaneously, you can adjust the time factor with the Emulate3Timeout
option:

Option "Emulate3Timeout" "250"

That would set the threshold for detection of simultaneous presses to 250 milli-
seconds, or one quarter of a second.

If you use one of the rocker navigation extensions with Firefox—which
lets you navigate through your history by pressing the left and right
mouse buttons in rapid succession—you’ll probably want to turn
Emultate3Buttons off to prevent your rocker gestures from being inter-
preted as a middle-button click.

3.10

3.10 Configuring a Mouse with a Scrollwheel 53

3.9 Configuring a Mouse with a Scrollwheel
In order to use the scrollwheel with most applications, you will need to configure the
X server to translate scrollwheel motion into button clicks on mouse buttons 4 and 5.

This is set up with an entry in the InputDevice section:

Option "ZAxisMapping" "4 5"

If you have two scrollwheels, you can configure the second scrollwheel to generate
button clicks on buttons 6 and 7, which some applications interpret as left/right
scrolling (or history navigation in a browser):

Option "ZAxisMapping" "4 5 6 7"

You can test your configuration using xev.

You may also need to specify the IMPS/2 (Intellimouse) protocol to
enable the use of a scrollwheel:

Option "Protocol" "IMPS/2"

3.10 Configuring a Synaptics TouchPad
Many laptops use a Synaptics TouchPad (or an Alps GlidePoint, which can use the
same driver). By default, a TouchPad will emulate a PS/2 mouse, so it should work
fine with the default driver; but if you change the Driver entry in the InputDevice sec-
tion of xorg.conf to synaptic, you can use its advanced features. It’s also a good idea
to turn on the SHMConfig option, which enables you to change the TouchPad options
on-the-fly using synclient;if your TouchPad has two buttons, enable the
Emulate3Buttons option as well:

Section "InputDevice"
 Identifier "Mouse0"
 Driver "synaptics"
 Option "Emulate3Buttons" "on"
 Option "SHMConfig" "on"
EndSection

Note that the synaptics driver appears to operate fine without a device entry!

When you restart the X server, the synaptics driver’s default configuration will per-
mit you to do the following:

• Click the left mouse button by tapping one finger in the middle area or by tap-
ping the upper-left corner.

• Drag with the left mouse button by tapping and then dragging one finger (touch-
release-touch, then drag).

• Click the middle mouse button by tapping two fingers in the middle area or by
tapping the upper-right corner.

• Click the right mouse button by tapping three fingers in the middle area or by
tapping the lower-right corner.

3.11

54 Chapter 3: Basic X.org Configuration

• Scroll up and down by running your finger up and down the right side (if sup-
ported by your application).

• Scroll left and right by running your finger across the bottom (if supported by
your application). Some web browsers, such as Firefox, use this for history navi-
gation (left for previous page, right for next page).

Not all of these options are supported by all TouchPad models.

This driver is incredibly customizable; it can be permanently configured through
options in the InputDevice section of the configuration file or temporarily configured
on-the-fly using the synclient program.

I find that the default options work well for most people. If you find that the vertical
and horizontal scrolling features are driving you crazy, you can disable them by set-
ting VertScrollDelta and HorizScrollDelta option values to 0:

Section "InputDevice"
 Identifier "Mouse0"
 Driver "synaptics"
 Option "Emulate3Buttons" "on"
 Option "SHMConfig" "on"
 Option "VertScrollDelta" "0"
 Option "HorizScrollDelta" "0"
EndSection

The Synaptics driver has been maintained separately from the X.org
(and XFree86) servers for some time. Multiple efforts have been made
to relicense it in a way that is compatible with the X.org license (BSD-
style), and it appears that it may be managed as part of the X.org
server project soon. Until that happens, information about the driver
is maintained at http://web.telia.com/~u89404340/touchpad/.

3.11 Enabling DPMS
DPMS is a VESA standard that conserves energy by using the horizontal and vertical
sync signals to select one of four power states.

These are the four states defined by VESA, with maximum power levels defined by
the EPA’s Energy Star program and typical turn-on times:

State name H-sync V-sync
Maximum power used (Energy
Star - Tier 2, January 2006)

Typical time to
On state

On Active Active 28 W per megapixel ---

Standby Off Active Not specified; typically less than
22 W per megapixel

<5 seconds

http://web.telia.com/~u89404340/touchpad/

3.11

3.11 Enabling DPMS 55

A few extremely old monitors cannot handle having just one of the
sync signals turned off. These monitors could be permanently dam-
aged or pose a fire hazard if used with DPMS. However, almost all
monitors in use today support DPMS.

In a CRT-based monitor, energy savings are accomplished by turning off the elec-
tron beam, electromagnets, and cathode heater. LCD monitors don’t have these
energy-hungry components, so most LCD monitors treat all three energy-saving
modes in the same way: by turning the display off entirely.

These four states are selected automatically by the X server according to the length of
time since the last user input. When the server detects mouse or keyboard activity,
the display state is changed to On.

DPMS is enabled on a monitor-by-monitor basis by adding an option to the Monitor
section of the config file:

Option "DPMS"

Once that is done, the length of time before the Standby, Suspend, and Off states are
activated is specified in the ServerFlags or ServerLayout sections:

Option "StandbyTime" "8"
Option "SuspendTime" "12"
Option "OffTime" "16"

The times specified are in minutes. There’s also a similar-but-unrelated BlankTime
option, which controls when the screensaver will blank the screen, but that doesn’t
save any energy.

Unfortunately, the Gnome and KDE environments change these set-
tings at desktop startup to values entered to their control panels, so
there is little value in setting these times in the xorg.conf file when
using these desktops, except that the xorg.conf settings may have effect
before a user is logged in.

It’s possible to change these times on-the-fly or disable DPMS entirely using xset,
which is handy during software demonstrations. xset also permits you to immedi-
ately enter a particular state, which is mainly useful for testing.

The optimal setting for each of the DPMS timeouts depends on the application. For
example, the timeout on a point-of-sale (PoS) terminal could be fairly low, because in
normal operation, the user will interact with the display almost continuously.

Suspend Active Off Max 2 W <10 seconds

Off Off Off Max 1 W <30 seconds

State name H-sync V-sync
Maximum power used (Energy
Star - Tier 2, January 2006)

Typical time to
On state

3.12

56 Chapter 3: Basic X.org Configuration

However the timeout for a lecture hall podium projector should probably be set
much higher because the keyboard and mouse might not be touched for significant
periods, even though many people could be studying the image.

Ideally, the timeouts should be set so that the screen does not blank during normal
use, but does go into a power-saving mode when the display is legitimately unused.

Selecting very short timeouts for DPMS may actually reduce hardware
life, especially for the fluorescent tubes used to illuminate many LCD
screens. A minimum setting of 8–10 minutes is safe for most hard-
ware. (Some newer LCD screens are illuminated with LEDs, which can
be turned on and off without consequence.)

3.12 Configuring Video Card Driver Options
Many of the X.org video card drivers are designed to work with a particular video
chipset, but different video cards may use a chipset in different ways. For example, a
chipset might support a TV-out connection, but a low-end video card based on that
chipset may not have TV-out circuitry on the card. Likewise, the amount of video
memory and the speed of the DACs may vary considerably.

In most cases, these card-to-card differences can be automatically detected, but most
of the video drivers provide configuration options so that their operation can be opti-
mized and so that features can be turned off if a card compatibility issue arises.

A manpage is provided listing the options supported by each video driver, but an eas-
ier way to find out what options are supported by a specific driver is to run X -
configure and then examine the Device section of the generated file. The options
available for the selected driver will be listed, or commented-out. For example, these
entries are automatically added to the xorg.conf file when the ati driver is selected:

 ### Available Driver options are:-
 ### Values: <i>: integer, <f>: float, <bool>: "True"/"False",
 ### <string>: "String", <freq>: "<f> Hz/kHz/MHz"
 ### [arg]: arg optional
 #Option "accel" # [<bool>]
 #Option "crt_display" # [<bool>]
 #Option "composite_sync" # [<bool>]
 #Option "hw_cursor" # [<bool>]
 #Option "linear" # [<bool>]
 #Option "mmio_cache" # [<bool>]
 #Option "panel_display" # [<bool>]
 #Option "probe_clocks" # [<bool>]
 #Option "reference_clock" # <freq>
 #Option "shadow_fb" # [<bool>]
 #Option "sw_cursor" # [<bool>]

The options marked [<bool>] accept an optional boolean value: "true", "1", "on",
"yes", or no value to turn the option on; "false", "0", "off", or "no" to turn the

3.12

3.12 Configuring Video Card Driver Options 57

option off. You can also turn an option off by prepending no to the option name and
omitting the value. Underscores and spaces in the option name are ignored, and
option names and values are case-insensitive.

Therefore you could turn the accel option on with any of these entries:

Option "accel"
Option "Accel"
Option "accel" "True"
Option "accel" "true"
Option "ACCEL" "TRUE"
Option "accel" "1"
Option "accel" "yes"
Option "accel" "on"

You could turn off the accel option with any of these entries:

Option "noaccel"
Option "NoAccel"
Option "no_accel"
Option "No Accel"
Option "accel" "False"
Option "accel" "false"
Option "accel" "FALSE"
Option "accel" "0"
Option "accel" "no"
Option "accel" "off"

Instead of <bool>, options may be marked as accepting another type of value:

<integer>
This accepts an integer in decimal, hexadecimal, or octal format.

<real>
This accepts a floating-point number.

<string>
A group of characters.

<frequency>
A floating-point value or a range or values separated by a dash, suffixed by Hz, k,
kHz, M, or MHz. (If omitted, a reasonable unit is assumed based on the context—
for example, Hz for vertical refresh rates and kHz for horizontal sync rates.)

Two options are common to most of the video drivers:

accel
Turns on video acceleration using the GPU. If the driver (or chip revision!) has
bugs, accelerated drawing my be incorrect—for example, lines may not join
together properly or drawing artifacts such as dots, line segments, or improperly
filled areas may be visible. Turning off acceleration may fix these problems, but
the main CPU is much slower at performing graphics operations than the GPU,
so performance will take a significant hit. The default for most drivers is to turn
acceleration on.

3.13

58 Chapter 3: Basic X.org Configuration

hw_cursor or sw_cursor
Selects whether the mouse cursor will be handled in hardware or in software.
Hardware cursor handling uses the sprite or overlay capabilities of the graphics
card to superimpose the image of the mouse cursor on the main image. Software
cursor handling requires the server to save the pixels that will be covered by the
cursor, and then draw in the cursor. When the cursor is moved, the original pix-
els are restored, and then the process is repeated at the new cursor location.
Obviously, software cursor handling is much slower and may result in cursor
flickering, but it may be required for certain buggy chipsets and exotic video
modes. hw_cursor and sw_cursor are the opposite of each other, and only one
should be enabled.

Fortunately, newer video cards are getting progressively better at reporting their
capabilities to software, so the need for driver options is steadily diminishing.

3.13 LightSteelBlue and Other Color Names
Video hardware uses varying amounts of red, green, and blue light to generate color.
On most video cards, this is specified as color triplets—three values representing the
amount of each color.

Color triplets are easy for the server to understand, but miserable for humans. It’s
much easier for us to understand a color name such as orange than a color triplet
such as (255,165,0). X provides a mechanism for cross-referencing color names to
triplets, enabling you to use color names in command options and configuration
files.

The Files section of the server configuration file usually includes an RGBPath entry.
This specifies the location of a file that maps color names to color triplets; the file is
traditionally named rgb.txt, and most distributions place it in /usr/share/X11/. Some
other servers use a compiled version of this database, named rgb.db.

Several versions of this file have been in existence, but the current one has been in
use for many years. This current rgb.txt file contains 752 entries, with 232 duplicate
names, yielding 520 unique colors. Here is a sample of some of the 87 blues:

240 248 255 AliceBlue
 25 25 112 MidnightBlue
100 149 237 CornflowerBlue
 70 130 180 SteelBlue
176 196 222 LightSteelBlue
173 216 230 LightBlue
176 224 230 PowderBlue
138 43 226 BlueViolet

The first three fields in each line are the red, green, and blue components, each
expressed as a fraction of 255 (24-bit color)—so 255 255 255 is white, and 0 0 0 is
black.

3.14

3.14 Configuring a Monitor’s Scan Rates 59

Some colors have numbered variations:

135 206 255 SkyBlue1
126 192 238 SkyBlue2
108 166 205 SkyBlue3
 74 112 139 SkyBlue4
202 225 255 LightSteelBlue1
188 210 238 LightSteelBlue2
162 181 205 LightSteelBlue3
110 123 139 LightSteelBlue4

And there’s also 100 shades of gray (spelled gray as well as grey) numbered from 0
(black) to 100 (white):

 0 0 0 gray0
 0 0 0 grey0
 3 3 3 gray1
 3 3 3 grey1
 ...
252 252 252 gray99
252 252 252 grey99
255 255 255 gray100
255 255 255 grey100

You can add colors to this file, but it’s not recommended—using custom color
names is not portable. However, you’re free to use any of these color names any-
where that a color code is needed, such as for a background color for the screen, and
you can be confident that the name will be recognized by any X server.

To access the color names through the X server, use the following command:

$ showrgb

This permits you to view the exact names that have been loaded into the server with-
out knowing the rgb.txt file location.

The colors from the rgb.txt file have been used in many places. They
were even incorporated into the Netscape browser at an early stage—
which is why color names such as LightSteelBlue are understood by
Mozilla browsers to this day and can be used in HTML and CSS:

<head bgcolor="LightSteelBlue">
<div style="color: grey25">

3.14 Configuring a Monitor’s Scan Rates
VESA has defined a probing technology for video monitors called the Display Data
Channel (DDC). The early versions of this standard enabled the monitor to send data
to the video card to describe the monitor’s capabilities; later versions of the standard
also permit you to control the monitor settings using the computer.

DDC makes monitor configuration automatic. But there are three common situa-
tions where it can’t be used. These are described next.

3.14

60 Chapter 3: Basic X.org Configuration

• When the monitor is not on or connected when the X server starts up

• When using a monitor that doesn’t support DDC (obviously!), which includes
some laptop panels and old monitors

• When you’re using a device in between the monitor and the video card (such as
some KVM switches), video splitters (to drive multiple monitors from one video
output), or signal boosters (to connect a monitor at a distance)

For example, when I’m teaching, my computer drives both a monitor and a class-
room video projector. Since these devices have different capabilities, the video split-
ter does not connect the video card’s DDC pins to either device.

In these cases, you need to specify the horizontal and vertical sync frequencies that
will work with the monitor. This is done by adding two entries to the Monitor sec-
tion of the configuration file:

HorizSync 31.5 - 90.0
VertRefresh 59.0 - 75.0

The frequency range specified on the VertRefresh line is in Hz (cycles per second).

Almost all CRT monitors handle a 60-Hz refresh rate, and most modern CRT moni-
tors support refresh rates up 75 Hz, which reduces eyestrain. It’s debatable whether
pushing the refresh rate over 75 Hz can be perceived as improving the image, and it’s
almost certain that refresh rates over 85 Hz have no benefit to most users.

Until recently, scan rates on LCD panels didn’t make as much difference as the scan
rates on CRTs, since the liquid crystal cells were too slow to appreciably change their
state between scans, even at 60 Hz. Ever-improving LCD response times mean that
scan rate may become as much of an issue as with CRTs; fortunately, most current
LCDs support 75-Hz refresh rates.

To see if the refresh rate is low (~60 Hz) on a CRT, place a mostly
white image on the screen. Stand back a meter (3 feet) from the screen
and look about 60 cm (2 feet) above the screen. The image on the
screen will be in the lower periphery of your vision. You will be able to
see visible flicker if the refresh rate is low.

Repeat the experiment with the refresh rate set to 75 Hz, and you’ll
see why users complain about eyestrain and headaches at the lower
speeds.

This experiment will usually fail on an LCD.

The HorizSync range is specified in kHz (thousands of cycles per second).

You should avoid guessing at the HorizSync and VertRefresh values; look them up in
the monitor manual or on the manufacturer’s web site. As a last resort, perform a
general web search to find the values. On some monitors—especially older ones—
you can cause serious damage by using the wrong frequency. Once you know the
correct values, do yourself a favor and mark it on the back of the monitor.

3.14

3.14 Configuring a Monitor’s Scan Rates 61

If you are using a video splitter to connect two monitors, use the intersection of the
two monitors’ frequency ranges. Pick the higher of the two lower range limits, and
the lower of the two upper range limits.

For example, if you are connecting a video monitor and a projector, and the moni-
tor has a HorizSync range of 31.5–90.0 while the projector supports 28.0–84.0, use
31.5–84.0 in your config file.

If you cannot find documentation for your monitor and must calculate a frequency
range, be conservative! Here is a quick-and-dirty formula that lets you calculate an
approximate horizontal frequency, generally within 1 kHz:

HorizSync = VertRefresh * (VerticalResolution + 40) / 1000

In this formula, VerticalResolution is the height of the selected resolution, in pixels.
What’s the 40 doing in there? Well, it provides some time for the vertical retrace,
when the CRT beam is repositioned from the bottom to the top of the display.

This formula does not work for double-scan and interlaced modes.

It’s important not to restrict the X server too tightly. If you want to use a VertRefresh
rate of exactly 60.0, you may find that no modes are available that exactly match that
frequency, and the X server will be unable to start. But, if you relax the range by just
1 Hz to 59.0–61.0, the server is much more likely to find a workable configuration
(Section 3.15).

Let’s suppose that you have a monitor for which you don’t have any documenta-
tion—but you’re fairly confident that it can support a resolution 1024 × 768 at a 75
Hz refresh rate, and you want to use it at only that resolution. First, calculate the
approximate HorizSync rate:

HorizSync = VertRefresh * (VerticalResolution + 40) / 1000
HorizSync = 75 * (768 + 40) / 1000
HorizSync = 60.68

Let’s go plus or minus 1 kHz on this HorizSync value, and plus or minus 1 Hz on the
VertRefresh value to give the server some wiggle room:

HorzSync 59.6 - 61.6
VertRefresh 74.0 - 76.0

When we fire up the server and check the log file (Section 3.15), we find that the
server has found three VESA standard modes that fits our frequency ranges:

(**) NVIDIA(0): Validated modes for display device DFP-0:
(**) NVIDIA(0): Default mode "1024x768": 78.8 MHz, 60.1 kHz, 75.1 Hz
(**) NVIDIA(0): Default mode "640x384": 51.5 MHz, 60.2 kHz, 75.0 Hz (D)
(**) NVIDIA(0): Default mode "512x384": 39.4 MHz, 60.1 kHz, 75.1 Hz (D)

3.15

62 Chapter 3: Basic X.org Configuration

The first (selected) default mode is the one that the server will initially use (notice
that the refresh rate is 75.1 Hz, so this mode would not have been found if we’d
specified a refresh rate of exactly 75 Hz). The two other modes are double-scan
modes, as indicated by the (D) at the end of the line, which can be selected using the
RANDR extension (Section 5.3).

3.15 Reading Server Log Files
At startup, the server will output some diagnostic information to standard output. It
will log a more detailed version of that information in /var/log/
Xorg.displaynumber.log. This log is a key source of information when debugging a
configuration setup.

The log file includes, in order:

1. Version and build information for the server, so you know which version is in
use.

2. OS Kernel version information.

3. A marker legend. Many of the lines in the file are marked with two characters in
parenthesis, indicating the source of the information or type of message dis-
played in that line. These markers are vitally important, since the various sources
of information can override one another and interact in unexpected ways. The
marker legend explains what these symbols mean:

(--) Probed
The information was discovered by directly querying the hardware.

(**) From config file
The information was pulled from entries in the configuration file.

(==) Default setting
Since no applicable overriding values were found, the compiled-in default
setting was used.

(++) From command line
The value was given as an option value on the X server command line.

(!!) (II) Notice or informational
No error is indicated—the data is printed only for your information.

(WW) Warning
Something may be wrong, but the server can continue. The warning lines
can be very helpful when tracking down server quirks, such as requested
modules not loading or extensions not initializing properly.

(EE) Error
The server cannot continue, so it aborts.

3.15

3.15 Reading Server Log Files 63

(NI) Not implemented
A valid configuration references a feature that is not yet implemented.

(??) Unknown
Rarely seen!

4. The filenames of the logfile and configuration file. Check this line to ascertain
that the server is using the correct configuration file (or you could waste hours
modifying the wrong file!).

5. The server layout hierarchy used. This portion of the log file contains a little
ASCII-art diagram of the selected ServerLayout and child sections. In this exam-
ple, the ServerLayout was selected because it was the only one in the file, as indi-
cated by the (==) marker; if it was selected because it was specified in a –layout
command-line option, it would be marked with (++). The other sections were
selected due to internal references in the configuration file, as indicated by the
(**) markers:

(==) ServerLayout "Default Layout"
(**) |-->Screen "Screen0" (0)
(**) | |-->Monitor "Monitor0"
(**) | |-->Device "Card0"
(**) |-->Input Device "Mouse0"
(**) |-->Input Device "Keyboard0"
(**) |-->Input Device "Synaptics"

6. Any auxilliary files and paths that have been configured, including the RGBPath
and FontPath.

7. Any modules loaded. Some of these are specified in the Modules section of the
configuration file, some are loaded by other modules, and some are loaded by
default.

8. Extension initialization. Note that both built-in and module-based extensions
are initialized.

9. InputDevice initialization results.

During device initialization, the video driver will go through all of the possible
modes—the built-in VESA modes plus any added by the configuration file—and test
them to see whether they can be used with the hardware configuration. Most will be
discarded for one reason or another. Here is a log excerpt showing five modes being
rejected for various reasons:

(II) NVIDIA(0): Not using default mode "2560x1600"
 (bad mode clock/interlace/doublescan)
(II) NVIDIA(0): Not using default mode "1280x800"
 (hsync out of range)
(II) NVIDIA(0): Not using default mode "1920x1440"
 (width too large for virtual size)
(II) NVIDIA(0): Not using default mode "1024x768"
 (vrefresh out of range)
(WW) NVIDIA(0): Not using mode "960x720"
 (height 1440 is larger than EDID-specified maximum 1050)

3.16

64 Chapter 3: Basic X.org Configuration

The acronym EDID refers to Extended Display Identification Data, which is the for-
matted data block retrieved from the monitor through DDC probing.

Once the mode list has been narrowed down through this process of elimination, the
remaining validated modes are logged:

(**) NVIDIA(0): Validated modes for display device DFP-0:
(**) NVIDIA(0): Default mode "1400x1050": 155.8 MHz, 81.5 kHz, 74.8 Hz
(**) NVIDIA(0): Default mode "1280x1024": 135.0 MHz, 80.0 kHz, 75.0 Hz
(**) NVIDIA(0): Default mode "1024x768": 78.8 MHz, 60.1 kHz, 75.1 Hz
(**) NVIDIA(0): Default mode "800x600": 49.5 MHz, 46.9 kHz, 75.0 Hz
(**) NVIDIA(0): Default mode "640x480": 31.5 MHz, 37.5 kHz, 75.0 Hz

For each validated mode, the log shows the resolution, the dot clock (the speed at
which pixels are sent to the display), the HorizSync value, and the VertRefresh value.
Note that the mode 1024x768 shows up in both the list of rejected modes and the list
of validated modes; the rejected entry was at a higher scan rate than the validated
entry (unfortunately, the log file does not state the rejected scan rate value).

If any modes are listed in the Modes entry in the Display subsection of a Screen sec-
tion (Section 3.16), those modes only are used to set up the display. This enables you
to select just the modes you want out of all of the valid modes.

At least one validated mode is required for the server to start up successfully. If mul-
tiple modes pass the validation, they can be accessed through the RANDR extension
(Section 5.3); any modes that are listed in a Display subsection of a Screen section
can also be accessed through hotkeys (Section 5.2).

The level of log detail can be adjusted using the -logverbose level command-line
option, where level is a number from 0 to 9. The default is level 3; higher levels
introduce a bit more detail, notably the actual contents of the EDID decoded into
readable strings.

3.16 Configuring the Default Depth of a Screen
Many video drivers will default to an 8-bit color depth, but most video hardware
supports (and users want) a 24-bit depth.

The desired depth is specified in the Screen section of the configuration file:

DefaultDepth 24

You can override this by specifying a different value on the command line using the
-depth option.

The color depth affects the available visuals (Section 9.2). These are the most com-
monly used depths:

4-bit
16 colors using a StaticColor visual.

3.17

3.17 Configuring the Resolution of a Screen 65

8-bit
256 colors using a PsudeoColor visual.

16-bit
65,536 colors using a TrueColor visual. Sixteen-bit values fit nicely into 2 bytes,
but there are 3 colors channels (red, green, and blue), and 16 doesn’t divide
evenly by 3. The red and blue channels are usually assigned 5 bits and the green
channel is assigned 6, because the human eye seems to be slightly more sensitive
to variations in green than in red or blue. Some hardware will actually assign 5
bits per channel (32,768 colors).

24-bit
Just over 16 million colors using a TrueColor visual. Since most modern proces-
sors perform 32-bit writes, the 24 bit values will usually be contained in a 32-bit
word.

48-bit
About 28 trillion colors using a TrueColor visual. This requires specialized and
expensive hardware, and you won’t notice the extra colors on a desktop moni-
tor—but 48-bit color is used for film production (such as in Hollywood).

Current display hardware is optimized for 24-bit processing; some GPUs will also
accelerate 16-bit operations.

However, 24-bit data (stored into 32-bit words) can be managed more easily than 16-
bit data on 32-bit hardware. Changing one 24-bit pixel requires a single write; but
changing one 16-bit pixel (where 2 pixels are stored in each 32-bit word) requires a
read of the current pixel value, an AND operation to clear out the old value of the
affected pixel while keeping the value of the unaffected pixel, an OR operation to
insert the new pixel value, and then a write to memory. And that’s the best case sce-
nario—a 16-bit left-rotation may be required if the target pixel is stored in the high-
order bits of the 32-bit word.

3.17 Configuring the Resolution of a Screen
Although you can usually set the screen resolution using xrandr, you can also
directly specify it by creating a subsection in the Screen section of the configuration
file:

SubSection "Display"
 Depth 24
 Modes "1280x1024" "800x600"
EndSubSection

There can be one section for each possible color depth.

The first mode listed in the Modes entry that will work with the screen’s hardware will
be the default resolution for the display. The user can change resolution using hot-
keys (Section 5.2).

3.17

66 Chapter 3: Basic X.org Configuration

When the user changes resolution, only the displayed resolution changes, not the
size of the screen image. If the screen is configured with a resolution of 1280 × 1024
and the user switches to a display resolution of 800 × 600, only about one-third of
the desktop will be visible on the display. You can scroll the display around this vir-
tual desktop using the mouse; when you touch the edge of the screen, it will scroll
automatically.

This can be useful if you want to temporarily zoom in on part of the screen. It is also
the preferred configuration of some vision-impaired users, who need a low display
resolution but like a large desktop size.

By default, the virtual screen size is the largest size specified in the Modes entry,
which works with the hardware. The virtual screen size is reported in the log file
(Section 3.15).

Note that a Modes entry does not have to list the highest resolution as the first
(default) entry. The virtual screen size will be set to resolution of the largest valid
mode.

Alternately, you can specify a specific virtual screen size in the Display subsection:

Virtual 2048 1536
Viewport 0 0

The Virtual entry specifies the size of the virtual screen in pixels. In this example,
we’re configuring a huge 3-megapixel virtual screen. Any display modes larger than
the specified size will be disabled (unlikely in this case!).

The Viewport entry specifies the starting point of the upper-left corner of the
physical screen within the virtual screen; the value of 0 0 given here will position
the physical screen in the upper-left corner of the virtual screen. The default is to
show the center of the virtual screen, but that’s not always the best choice, since
desktop menus and panels are usually displayed on the edge of the screen so the
initial display may look deceptively empty.

67

Chapter 4

4
Advanced X.org Configuration

4.1 Multi-Screen Configuration
Some people just can’t get enough—at least when it applies to screen space. Many
users can productively benefit from more screen space than a single monitor can
provide.

It’s fairly easy to configure the X.org server to support multiple screens on one dis-
play, if you have the hardware. In fact, if you get the X server to configure itself, it
will do a reasonable job of setting up a multi-screen configuration if it detects multi-
ple video cards and monitors.

To configure or tune a multi-screen setup by hand, take the following steps:

1. Create two (or more) normal Screen sections and the corresponding Device and
Monitor sections in the xorg.conf file. Ensure that each screen has a unique iden-
tifier; in the following example, I’ve used the identifiers ScreenA, ScreenB, and
ScreenC.

2. Add both screen sections to the ServerLayout section, numbering the screens
starting at 0:

Section "ServerLayout"
 Identifier "Multiscreen layout"
 Screen 0 "ScreenA" 0 0
 Screen 1 "ScreenB" Below "ScreenA"
 Screen 2 "ScreenC" RightOf "ScreenA"
 InputDevice "Mouse0" "CorePointer"
 InputDevice "Keyboard0" "CoreKeyboard"
EndSection

Notice that Screen0 is positioned to 0 0, but Screen1 and Screen2 are positioned rela-
tive to Screen0. The positioning keywords available are Above, Below, RightOf, and
LeftOf; the keyword is followed by the quoted name of one of the other screens.
(There are also other ways of positioning screens; see Section 4.4.)

4.2

68 Chapter 4: Advanced X.org Configuration

When you start the X server, you will be able to move the mouse pointer between
screens according to the layout given. In this example, the mouse pointer will start in
the middle of screen 0. Moving it to the right will cause it to appear on screen 2;
moving it back to the left will return it to screen 0, and moving it further to the left
will make it appear on screen 1.

In this type of multi-screen configuration, a window can appear only on one screen
and cannot be moved from screen to screen. These limitations can be overcome
using a Xinerama configuration (Section 4.2) instead of a multi-screen configuration.

One advantage of multi-screen mode is that, since the screen number can be speci-
fied in a displayspec, you can easily cause new clients to appear on a particular
screen. If the screen number is not specified for a new window, it will appear on
screen 0.

If the preceding configuration was used on the host blue.example.com display :0, you
could specify that a window should open on the righthand screen by using the dis-
playspec:

blue.example.com:0.1

Or, for local clients:

:0.1

4.2 Xinerama Configuration
Xinerama mode is similar to multi-screen mode, but it merges several video cards
and monitors into one big screen. This permits you to move windows between moni-
tors and even span monitors. Xinerama is the most common multiple-monitor con-
figuration and the most useful for many applications.

The X.org server won’t configure Xinerama automatically, but it’s fairly easy to con-
vert a working multi-screen configuration:

1. Ensure that all of the screens have the same color depth. Each Screen section of
the configuration file should contain a DefaultDepth entry with the same depth
value (typically 24 bits per pixel):

DefaultDepth 24

2. Add this line to the ServerFlags or ServerLayout sections of the configuration
file:

Option "Xinerama"

You can configure any number of screens into a Xinerama display, as long as you can
physically fit the video cards into the system (without shorting them out, overload-
ing the power supply, or overheating). If you want to configure a display that has

4.3

4.3 Differences Between Multi-Screen and Xinerama Modes 69

more screens than you have video card slots, you can use DMX to combine displays
on multiple computers into a single, virtual Xinerama display.

Thin-bezel LCD screens, which have a minimal border surrounding the active LCD
area, are ideal for creating monitor arrays for use with Xinerama. They can be physi-
cally positioned close together, and their light weight, low-power consumption, and
low-heat output make dense placement easier.

For a graphics artist who may prefer a CRT display, it may be better to use a large
flat-screen CRT for image preview and editing flanked by LCDs or smaller CRTs for
menus, tool palettes, and office productivity software such as email.

The meaning of screen becomes a bit cloudy when dealing with Xin-
erama. Each monitor and video card is a called a screen in the configu-
ration file, but the merged image area that spans all of the monitors is
called a screen in the displayspec and the X protocol. Wherever there
might be confusion, I’ll use the term hardware screen to denote a mon-
itor and video card, and the term Xinerama screen to mean the merged
image area.

4.3 Differences Between Multi-Screen and
Xinerama Modes

There are advantages and disadvantages to both Xinerama and multi-screen modes.

When using a multi-screen configuration, each screen stands on its own, and the
only relationship between the screens is that one window manager, mouse, and key-
board is used with all three. But when using Xinerama, the hardware screens are
merged into one logical Xinerama screen; a single, rectangular Xinerama screen is
created that is large enough to contain all of the areas displayed the hardware
screens.

If the monitors are different sizes, then there will be portions of this rectangle that
are inaccessible—part of the Xinerama screen, but not part of any hardware screen,
as shown in Figure 4-1.

Since these areas will not be displayed on any monitor, it is possible to temporarily
lose your mouse pointer (or entire windows) in them. You can’t do that on a multi-
screen configuration, because multi-screen mode doesn’t have inaccessible areas—
the mouse pointer position is warped so that it’s always visible on one of the screens.

The behavior of window managers and desktops also varies significantly between the
Xinerama and multi-screen modes, as shown in Table 4-1.

4.3

70 Chapter 4: Advanced X.org Configuration

Figure 4-1. Inaccessible areas in a Xinerama screen

Table 4-1. Differences in desktop and window manager behavior between Xinerama and multi-
screen modes

Desktop
or window manager Xinerama mode Multi-screen mode

Gnome (using Metacity) Xinerama-aware: maximizing a win-
dow causes it to fill one monitor
only, and dialogs are centered on
the monitor. Wallpapers can be
scaled or tiled to fill the whole
screen (across all of the monitors).
One menu and panel bar appears,
on screen 0.

Panel bars appear on screen 0 only.
Wallpaper images are repeated on
all screens.

KDE (using kwm) Ximerama-aware, same as Gnome. Panel bars and K-menus repeated
on each screen. Wallpaper images
appear on screen 0 only; selected
background colors or gradients
appear on other screens.

MWM (Lesstif version) Unaware that the screen is not phys-
ically one large display. Maximizing
a window causes it to span all moni-
tors, and centered dialogs are cen-
tered in the whole Xinerama screen
(which may cause them to span
monitors or even appear in an inac-
cessible area), instead of being cen-
tered on a monitor.

Client windows opened using the
root menus open in the correct
screen. Maximizing a window
causes it to fill one screen only.

twm Manages whole screen as though it
were one physical display.

Manages only screen 0.

Multi-screen

Xinerama

Inaccessible areas

4.4

4.4 Positioning Screens 71

So when is each mode useful?

Xinerama is probably the best bet if you’re using multiple screens just to get more
real estate—for example, if you have multiple monitors side-by-side on a desk or
arranged with monitor arms or frames in a rectangular array.

Multi-screen operation is a good choice when the screens serve different purposes,
such as when one screen is connected to a projector and the other is used for display
management, or one screen is used for a customer-facing point-of-sale display and
the other is used for a staff-facing display.

4.4 Positioning Screens
If you have two or more monitors, you can place them one above the other, side by
side, or diagonally. Even a simple side-by-side arrangement can take different forms,
especially when the monitors are different sizes: do the tops of the monitors line up,
or the bottoms? Or is the side of the smaller monitor centered at the side of the larger
monitor?

Figure 4-2 illustrates a few of the many possibilities for two monitors of different
sizes.

You can use three different methods to describe position information in Screen
entries within a ServerLayout section:

• You can use an absolute X-Y pixel position within the Xinerama screen. Increas-
ing X values go to the right, and increasing Y values go down.

Figure 4-2. Two-screen Xinerama layouts

1
2

1
2

1

2
12

4.5

72 Chapter 4: Advanced X.org Configuration

Three 1024x768 video projectors. ProjectorA is at the top, ProjectorB
is below that, and ProjectorC is at the bottom. Each projector
and is aligned on the left side. Note that the Absolute keyword
is optional (and not supported by old versions of the server).
Screen 0 "ProjectorA" 0 0
Screen 1 "ProjectorB" Absolute 0 768
Screen 2 "ProjectorC" Absolute 0 1536

• You can use the Above, Below, LeftOf, or RightOf keywords. This will cause the
top or left side of the screens to be aligned. For example:

ProjectorB is to the right of ProjectorA. The tops of all
projectors are aligned. Note that we don't need to know the
resolution of the projectors - the the positions are
calculated by the X server.
Screen 0 "ProjectorA" 0 0
Screen 1 "ProjectorB" RightOf "ProjectorA"
Screen 2 "ProjectorC" LeftOf "ProjectorA"

• You can use the Relative keyword and specify a position relative to the upper-left
corner of another screen using X-Y pixel coordinates:

ProjectorB is directly above ProjectorC on the left.
ProjectorA is centered between them on the right.
Screen 0 "ProjectorA" 0 0
Screen 1 "ProjectorB" Relative "ProjectorA" -1024 -384
Screen 2 "ProjectorC" Relative "ProjectorA" -1024 384

When using Xinerama, screen position affects how windows that span screens will
be presented, where inaccessible areas are located, and where the cursor appears
when you move from one screen to another.

When using a multi-screen configuration, screen position affects only how the mouse
cursor moves from screen to screen.

4.5 Overlapping Xinerama
Hardware screens in a Xinerama configuration are usually set up to be adjacent—but
they don’t have to be. The screens can overlap, as shown in Figure 4-3.

One of the simplest uses of overlapping layouts is to drive two monitors with the
same image without using a video splitter. The ServerLayout for this configuration
looks like this:

Section "ServerLayout"
 Identifier "layout0"
 Screen 0 "Screen0" 0 0
 Screen 1 "Screen1" 0 0 # Same origin as screen 0
 InputDevice "Mouse0" "CorePointer"
 InputDevice "Keyboard0" "CoreKeyboard"
 Option "SingleCard" "true"
EndSection

4.5

4.5 Overlapping Xinerama 73

Overlapping layouts can also be used to creatively solve some tricky display prob-
lems. For example, the presentation program OpenOffice.org Impress does not have
a dual-screen display feature (as of version 2.0). This missing feature is vital for cer-
tain live presentations, because it permits an operator to preview and select the next
slide to appear using a control screen that is not visible to the audience. This is used
in churches to handle unexpected changes in the flow of the service—such as a
songleader deciding to repeat a chorus—and it is used in business meetings to jump
directly to appropriate slides during Q&A sessions.

Until this feature is added to Impress, overlapping Xinerama windows provide a par-
tial solution. When operating with the default user interface layout, Impress pro-
vides a display with three panes: a slide preview, an enlarged image of the current
slide, and a task plane with layouts that can be applied to slides.

By configuring the X server to display the control screen at high resolution (such as
1440 × 1050 or 1280 × 1024) and the projector screen at a lower resolution (800 ×
600), with the projector screen positioned as a subset of the control screen, it is pos-
sible to simulate two-screen operation. Figure 4-4 shows the contents of the control
screen, and Figure 4-5 shows the contents of the projector screen using this configu-
ration. The presentation operator can preview the next slide to be displayed using
the Impress slide pane without disturbing the projected image.

To configure this operation, set the resolution of the two screens, and then offset the
projector within the control screen. In this ServerLayout section, I placed the projec-
tor screen 200 pixels below and to the right of the upper-left corner of the control
screen:

Section "ServerLayout"
 Identifier "layout0"

Figure 4-3. Overlapping Xinerama layouts

A. Overlapping B. Two resolutions, common origin

C. Subset D. Same image on two video cards

4.6

74 Chapter 4: Advanced X.org Configuration

 Screen 0 "Screen0" 0 0
 # Screen 1 is 200 pixels down and to the right
 Screen 1 "Screen1" 200 200
 InputDevice "Mouse0" "CorePointer"
 InputDevice "Keyboard0" "CoreKeyboard"
EndSection

This configuration assumes multiple video cards. However, some video cards with
multiple outputs—including laptops—can be configured for Xinerama operation
using driver-specific options.

It’s possible to configure multi-screen mode with overlapping screens,
but I don’t know of any situation where this would be useful.

4.6 Scrolling Virtual Screens and Xinerama
The virtual screen facility permits a screen to exceed the size of a physical display,
which results in a physical display that scrolls around the virtual screen. It is possi-
ble to combine this with Xinerama, but the results are pretty strange.

Figure 4-4. The control screen at 1400 × 1050

4.6

4.6 Scrolling Virtual Screens and Xinerama 75

Figure 4-6 shows the relationship between virtual screens, physical screens, and the
Xinerama screen. In this example, the virtual size of screen 0 is the same as the physi-
cal size of screen 1, but the resolution of the physical screen 0 is lower.

The mouse pointer will still cause the screen 0 to scroll until the right edge of the vir-
tual screen is encountered, at which point the mouse will move onto the adjacent
screen 1.

I find the visual effect disorienting, and it’s even worse if more than one screen is
configured to scroll. I can’t think of a good use for this configuration!

Figure 4-5. The projected screen (an 800 × 600 subset of the control screen)

Figure 4-6. Xinerama and scrolling virtual screens

Physical
screen

0

Virtual screen 0

Screen 1

Xinerama screen 0

4.6

76 Chapter 4: Advanced X.org Configuration

However, it might be useful to configure two Xinerama screens of the same size,
where one screen is completely displayed on a monitor and the other screen is a vir-
tual screen with a smaller physical screen, as shown in Figure 4-7.

In this configuration, the monitor on screen 1 will show the entire screen, while the
monitor on screen 0 will show a scrolling enlargement of one portion of the dis-
play—potentially useful for people with visual impairment. Unfortunately, Xin-
erama will only display the mouse cursor on one monitor at a time, and unless the
cursor is on the scrolling screen, there is no way to scroll it. Since the mouse cursor
will appear on the lowest-numbered screen, the scrolling screen must be configured
as screen 0.

Some of the drivers that permit the simultaneous use of two video out-
puts from one video card (Section 4.7) enable the mouse pointer to
appear on both monitors simultaneously when using an overlapping
configuration.

The Screen and ServerLayout sections for this configuration look like this:

Section "ServerLayout"
 Identifier "XFree86 Configured"
 Screen 0 "Screen0" 0 0
 Screen 1 "Screen1" 0 0
 InputDevice "Mouse0" "CorePointer"
 InputDevice "Keyboard0" "CoreKeyboard"
 Option "Xinerama"
EndSection

Section "Screen" # Scrolling, magnified display
 Identifier "Screen1"

Figure 4-7. A scrolling physical screen within a virtual screen, overlapping another screen

Physicalscreen0Virtualscreen 0

Screen1

4.7

4.7 Using Multiple Outputs from One Video Card 77

 Device "Card1"
 Monitor "Monitor1"
 DefaultDepth 24
 SubSection "Display"
 Depth 24
 Virtual 1280 1024 # Virtual size to scroll around
 # Do not specify a viewport -- center around the cursor
 Modes "640x480"
 EndSubSection
EndSection

Section "Screen" # Full-screen display
 Identifier "Screen0"
 Device "Card0"
 Monitor "Monitor0"
 DefaultDepth 24
 SubSection "Display"
 Depth 24
 Modes "1280x1024"
 EndSubSection
EndSection

4.7 Using Multiple Outputs from One Video Card
Many current video cards support multiple video outputs: dual VGA, DVI and VGA,
VGA and TV-out, and laptop panel and VGA are all common combinations. Some of
the X.org drivers support the simultaneous use of both outputs; this works by allo-
cating a large framebuffer and then positioning the rectangles that will be output to
each video connection within that framebuffer.

This sounds a lot like Xinerama, because it is! However, there are a few differences
between using multiple outputs on one card and using multiple video cards, as out-
lined in Table 4-2.

This capability is available in a number of drivers: the NVIDIA closed-source driver
NVIDIA, the ATI open source driver radeon, and the ATI closed-source driver fglrx.
All of these drivers have some limitations; for example, the NVIDIA driver, when

Table 4-2. Differences between using multiple outputs from one video card and using Xinerama
mode on multiple cards

Multiple outputs on one video card Xinerama with multiple video cards

Mouse cursor Appears on both monitors if overlapping Appears on one monitor at a time

Configuration file One Screen section (with driver-
specific options in the Device section)

Two Screen sections

3D capabilities Available on both monitors (if supported
at all)

Dependent on the combination of cards
and drivers; many configurations will
not support all features on all cards.

4.7

78 Chapter 4: Advanced X.org Configuration

used on a laptop, will always configure an external monitor as primary (screen 0),
and the ATI drivers permit only general monitor positioning (you can specify that
one monitor is to the right of another, but you can’t indicate a difference in their ver-
tical alignment).

xrandr 1.2 can reconfigure and add outputs on-the-fly, enabling full
Xinerama configuration while the server is running. This feature is not
yet supported by many of the drivers or desktop environments, but it
promises incredible flexibility—for example, new monitors could
automatically work as soon as they are plugged in. You can experi-
ment with this dynamic reconfiguration capability using the xrandr
utility.

Although the configuration process is similar for each card, the option names vary.
Here is a description the process for the options that you will need in the Device
section:

1. Enable the driver:

2. Set the second monitor’s horizontal synchronization and vertical refresh rates
(the first monitor’s rates are set with the normal HSync and VRefresh entries):

3. Set the relative CRT positions:

NVIDIA Option "TwinView"

radeon Option "MergedFB"

fglrx Option "DesktopSetup" "0x00000200" if connector 1 is connected to the
monitor on the left, or Option "DesktopSetup" "0x00000201" if connector 1
is connected to the monitor on the right

NVIDIA Option "SecondMonitorHorizSync" "range"

Option "SecondMonitorVertRefresh" "range"

radeon Option "CRT2HSync" "range"

Option "CRT2VRefresh" "range"

fglrx Option "HSync2" "range"

Option "VRefresh2" "range"

NVIDIA Option "TwinViewOrientation" "position" where position is Above,
Below, LeftOf, or RightOf; or use the MetaModes option (see step 4)

radeon Option "CRT2Position" "position" where position is Above, Below,
LeftOf, or RightOf

fglrx Controlled by the DesktopSetup option

4.8

4.8 Parallel Pointing Devices 79

4. Set the CRT modes to be used on each monitor:

5. Choose whether or not to enable hints through the Xinerama extension.

If hints are enabled, clients can get information about the monitors from the X
server, which will in most cases result in more intelligent operation of the win-
dow managers—for example, maximized windows will fill one monitor instead
of both, and dialogs will be centered in one monitor instead of being centered in
the virtual screen (which may cause them to span monitors, or—in rare cases—
end up in an inaccessible area). You should not enable both this option and the
X server’s normal Xinerama handling at the same time.

The second monitor does not require a Monitor section in the configu-
ration file.

You can find specific configuration information for the radeon driver from man radeon,
and for the NVIDIA closed-source driver from /usr/share/doc/NVIDIA_GLX-1.0/
README.txt.

4.8 Parallel Pointing Devices
It’s often convenient to have multiple pointing devices that work in parallel—such as
a TouchPad and a mouse. This gives the user the flexibility to use whichever device is

NVIDIA Option "MetaModes" "modes", where modes are pairs of values separated by
commas. For example, "800 × 600,1024 × 768" would configure 800 × 600
resolution on the first monitor and 1280 × 1024 resolution on the second
monitor. You can indicate the absolute monitor position within the screen by
specifying the X and Y coordinates in the form +X+Y after the resolution;
"800x600+150+200,1280x1024+0+0" would specify that the first monitor dis-
played an 800 × 600 subset of the image on the second monitor, starting at the
screen coordinate (150,200). To enable the user to switch between metamodes
using the server’s zoom keys, separate multiple configurations with a semico-
lon: "800x600,1024x768;640x480,1024x768".

radeon Option "MetaModes" "modes", where modes are pairs of values separated by
dashes. “800x600-1024x768” configures 800 × 600 on the first monitor and
1280 × 1024 on the second monitor. To enable the user to switch between
metamodes using the server’s zoom keys, separate multiple configurations with
a space: "800x600-1024x768 640x480-1024x768".

fglrx Configured by the driver based on available modes.

NVIDIA Option "TwinViewXineramaInfo" "bool" where bool is On or Off. This option
is enabled by default.

radeon Option "MergedXinerama" "bool" where bool is On or Off. This option is
enabled by default.

fglrx Xinerama extensions are not available.

4.8

80 Chapter 4: Advanced X.org Configuration

most convenient for the task at hand; perhaps input is easier with a keyboard-
mounted TouchPad, but surfing is easier with a mouse.

If youre using Linux, there is a very simple way to configure multiple mice: simply
specify /dev/input/mice as the pointer input device. This will merge input from the
PS/2 and all USB mice.

However, if you’re not using Linux, have serial mice, or wish to configure each
device separately (for example, to enable the special features of a Synaptics Touch-
Pad), you will need to create multiple InputDevice sections, then reference each of
them through an InputDevice entry in the ServerLayout.

The first, primary InputDevice entry must have the argument CorePointer. Other
devices must have the argument SendCoreEvents (or the synonym, AlwaysCore):

Section "ServerLayout"
 Identifier "XFree86 Configured"
 Screen 0 "Screen0" 0 0
 InputDevice "Mouse0" "CorePointer" # Main pointer
 InputDevice "Synaptics" "SendCoreEvents" # Secondary pointer
 InputDevice "Keyboard0" "CoreKeyboard"
EndSection
Section "InputDevice"
 Identifier "Mouse0"
 Driver "mouse"
 Option "Device" "/dev/input/mouse0"
EndSection
Section "InputDevice"
 Identifier "Synaptics"
 Driver "synaptics"
 # Device will be discovered automatically
EndSection

Alternately, the CorePointer and SendCoreEvents values can be moved from the
ServerLayout section to the InputDevice section; this syntax is used in configuration
files generated by the automatic configuration tools on Debian systems:

Section "ServerLayout"
 Identifier "XFree86 Configured"
 Screen 0 "Screen0" 0 0
 InputDevice "Mouse0"
 InputDevice "Synaptics"
 InputDevice "Keyboard0" "CoreKeyboard"
EndSection
Section "InputDevice"
 Identifier "Mouse0"
 Driver "mouse"
 Option "Device" "/dev/input/mouse0"
 Option "CorePointer" # Main pointer
EndSection
Section "InputDevice"

4.9

4.9 Parallel Keyboards 81

 Identifier "Synaptics"
 Driver "synaptics"
 Option "SendCoreEvents" # Secondary pointer
 # Device will be discovered automatically
EndSection

The X server will fail if no pointer device can be opened. You can override this
behavior with an AllowMouseOpenFail option entry in the ServerFlags (or
ServerLayout) section:

Section "ServerFlags"
 Option "AllowMouseOpenFail" "Yes"
EndSection

You can also specify the option -allowMouseOpenFail on the X server command line.

It’s also possible to merge the input from two or more mice using
GPM or MOUSED (Section 4.10).

4.9 Parallel Keyboards
The X server normally gets keyboard input from the VT on which it is running. On
some systems, including Linux and some versions of Solaris, the input from multiple
keyboard devices is merged by the kernel (with help from the hotplug subsystem).
Therefore, no configuration is required to set up additional parallel keyboards.

Instead of relying on this default behavior, you can specify a specific device in the
keyboard InputDevice section. This is potentially useful if you want input from only
one of several attached keyboards, if you wish to use different layouts for different
keyboards, or if you’re using a system that does not merge keyboard input. How-
ever, the keyboard device interfaces don’t present data in the same form as the VT
interfaces, so they can’t be used with the X server’s normal keyboard driver.

The solution? Use the endev keyboard driver.

To use a keyboard with this patch, you need to identify the keyboard either by name
or by physical connection. You can get the name and physical connection values for
current devices by examining /proc/bus/input/devices. The keyboard entries in this file
will look like this:

I: Bus=0011 Vendor=0001 Product=0001 Version=ab41
N: Name="AT Translated Set 2 keyboard"
P: Phys=isa0060/serio0/input0
H: Handlers=kbd event0
B: EV=120013
B: KEY=4 2000000 3802078 f840d001 f2ffffdf ffefffff ffffffff fffffffe
B: MSC=10
B: LED=7

I: Bus=0003 Vendor=0566 Product=2802 Version=0211

4.9

82 Chapter 4: Advanced X.org Configuration

N: Name="MONTEREY USB K/B WITH ACPI"
P: Phys=usb-0000:00:1d.1-1/input0
H: Handlers=kbd event4
B: EV=12000b
B: KEY=ff 10000 7 ff87207a c14057ff febeffdf ffefffff ffffffff fffffffe
B: ABS=100 0
B: LED=7

I: Bus=0003 Vendor=0566 Product=2802 Version=0211
N: Name="MONTEREY USB K/B WITH ACPI"
P: Phys=usb-0000:00:1d.1-1/input1
H: Handlers=kbd event5
B: EV=3
B: KEY=1f0000 0 0 c000 100000 0 0 0

This system has a standard PS/2 keyboard attached, as shown in the first block, plus
a USB keyboard, shown in the last two blocks. The USB keyboard is shown twice
because it presents two keyboard interfaces to the system: the first one for standard
keys, and the second one for additional multimedia keys, such as volume control,
mute, scroll, and dedicated application buttons.

In each case, the device name is specified on the N: line, after Name=, and the physical
connection is specified on the P: line, after Phys=.

The physical connection of a USB device will change every time the USB arrange-
ment is disturbed—for example, when the keyboard is unplugged and moved to a
different USB port, or a hub is added between the keyboard and the system. If you
have just one keyboard of a particular type, it’s best to identify it by device name, so
that it can be found regardless of which port you plug it into. However, if you need
to specify one keyboard out of several identical ones, you have no choice but to use
the physical connection name.

Here is an InputDevice section configured to accept input only from a USB keyboard
(taken from the /proc/bus/input/devices output above), specifying the evdev protocol
and using the DevPhys option to specify the physical connection:

Section "InputDevice"
 Identifier "USB Keyboard"
 Driver "kbd"
 Option "Protocol" "evdev"
 Option "DevPhys" "usb-0000:00:1d.1-1/input0"
EndSection

To specify a keyboard by name, use the DevName option:

Section "InputDevice"
 Identifier "USB Keyboard"
 Driver "kbd"
 Option "Protocol" "evdev"
 Option "DevName" "MONETEREY USB K/B WITH ACPI"
EndSection

4.10

4.10 Using X with GPM or MOUSED 83

Both the DevName and DevPhys options accept wildcards:

* Matches zero or more characters

? Matches any one character

This permits you to specify device names such as *KEYBOARD* or physical connections
such as usb-*/input0 for maximum flexibility with hot-plugged devices.

Once you have the InputDevice sections set up, you can include references to them in
the ServerLayout section. Similar to parallel mice (Section 4.8), the primary key-
board must be identified as a CoreKeyboard in the ServerLayout or InputDevice sec-
tions; secondary keyboards must have the SendCoreEvents option:

Section "ServerLayout"
 Identifier "XFree86 Configured"
 Screen 0 "Screen0" 0 0
 InputDevice "Mouse0"
 InputDevice "Synaptics"
 InputDevice "AT Keyboard" "CoreKeyboard"
 InputDevice "USB Keyboard0" "SendCoreEvents"
EndSection

The X server will fail if no keyboard can be found.

4.10 Using X with GPM or MOUSED
Both Linux and FreeBSD provide daemons that permit a mouse to be used on text
consoles. The X server mouse configuration may need to be changed if you are using
these daemons.

GPM Under Linux
The General Purpose Mouse (GPM) daemon on Linux automatically detects the
mode of current VT; when it is in a graphic mode, it stops processing mouse events.
When the VT returns to text mode, GPM resumes processing.

For serial, PS/2, and USB mice, this works well. A few very old mice use a separate
adapter, either on a standalone ISA/PCI card or built into the video card. The kernel
drivers for these bus mice cannot be opened by more than one program at a time, so
if GPM is in use, the X server won’t be able to get input from the mouse.

GPM provides a solution: for these types of mice, it can repeat all of the mouse data
on a different device interface whenever the VT is in graphic mode. This permits the
X server to get the mouse input without opening the mouse device a second time.

To use GPM in this mode, configure the X server to use the mouse device /dev/
gpmdata in the pointer InputDevice section:

4.10

84 Chapter 4: Advanced X.org Configuration

Section "InputDevice"
 Identifier "Mouse0"
 Driver "mouse"
 Option "Device" "/dev/gpmdata"
EndSection

You must ensure that the gpm command is invoked with the -R (repeat) option:

$ gpm -R

If GPM is started at boot time by your system’s init scripts, you may be able to add
this option by editing a configuration file. For example, on Fedora systems, you can
add the -R to the OPTIONS setting in /etc/sysconfig/mouse; on older Red Hat systems,
adjust the OPTIONS setting in /etc/sysconfig/gpm; and on SUSE systems, edit the GPM_
PARAM setting in /etc/sysconfig/mouse.

Only one copy of GPM should be run at a time. To use GPM with multiple mice, use
the -M option. If you use -M and -R together, GPM will repeat the data from both
mice on /dev/gpmdata, so you do not need to mention the second mouse in the X
server configuration file.

MOUSED Under FreeBSD
The FreeBSD MOUSED daemon provides mouse capabilities for text-mode VTs. It
always reads the mouse device, regardless of whether the VT is in text mode or
graphic mode, and it repeats the mouse data on /dev/sysmouse.

To use MOUSED with X, configure the pointer InputDevice section of the X configu-
ration file to read from /dev/sysmouse:

Section "InputDevice"
 Identifier "Mouse0"
 Driver "mouse"
 Option "Device" "/dev/sysmouse"
EndSection

The sysmouse data protocol is automatically detected by the X mouse driver and
does not need to be specified.

To use multiple mice on FreeBSD, start multiple instances of the MOUSED daemon,
one for each mouse you wish to use; the data from all of the daemons will be merged
and presented on /dev/sysmouse.

85

Chapter 5

5
Using the X Server

5.1 Interacting with the X Server
When you use an X-based GUI, almost all of your interaction is with client pro-
grams and not with the X server itself. However, there are a few keystroke combina-
tions that are directly recognized by the server, and there are some features of the X
server—such as the clipboard—that are accessible from a number of clients. This
chapter covers the use of these features.

5.2 Changing Resolution On-the-Fly
The X.org and XFree86 X servers permit you to change between selected resolutions
dynamically. The virtual screen size does not change, so any resolution that is lower
than the virtual resolution will result in a scrolling screen:

• To go forward in the list of resolutions, press Ctrl-Alt-Plus (on the keypad).

• To go backward in the list of resolutions, press Ctrl-Alt-Minus (on the keypad).

The resolutions are taken from the Modes entry in the X server configuration (Screen
section, Display subsection), or the modes reported by your monitor during prob-
ing. For example, your Modes entry might look like this:

Modes "1280x1024" "1024x768" "800x600" "640x480"

In this case, Ctrl-Alt-Plus will reduce the resolution in steps to 640 × 480, then cause
it to jump to 1280 × 1024; Ctrl-Alt-Minus will increase it in steps to 1280 × 1024,
then jump to 640 × 480.

This feature, called zooming, is useful for temporarily magnifying one part of the
screen to inspect fine details in the user interface or to read small text. It can be dis-
abled with a ServerLayout entry:

Option "DontZoom"

5.3

86 Chapter 5: Using the X Server

Zooming does not inform clients that the resolution has changed, so nothing is
redrawn on the screen. However, the scrolling effect caused by having a virtual reso-
lution higher than the physical resolution can be really annoying.

5.3 Changing the Resolution and the Screen
Size Dynamically

Although zooming (Section 5.2) has its place, it’s often more useful to change both
the screen resolution and the virtual screen size simultaneously to eliminate scroll-
ing. Besides the resolution, it can be desirable to change the orientation between
landscape and portrait modes (useful on PDAs, tablet PCs, and pivoted monitors)
and to change the refresh rate (handy when switching monitors on-the-fly).

The Rotate and Resize (RANDR) extension (Section 1.15) provides these capabili-
ties. When instructed, the server will change the resolution, orientation, and refresh
rate of the screen. Clients can use the RANDR extension to request notification of
changes in the screen geometry, and then take appropriate action when such notifi-
cation is received; for example, the desktop environment will change the position
and size of panel bars and desktop icons, and the window manager will resize maxi-
mized windows and reposition other windows so that they stay on the screen.

To signal the server to change resolution, a special client is required. A command-
line client called xrandr is provided with most X distributions.

To see the available modes, simply execute the command xrandr (a --query or -q
argument is optional):

$ xrandr
 SZ: Pixels Physical Refresh
*0 1400 x 1050 (301mm x 232mm) *75 70 60
 1 1280 x 1024 (301mm x 232mm) 75 60
 2 1280 x 960 (301mm x 232mm) 60
 3 1280 x 800 (301mm x 232mm) 75 70 60
 4 1152 x 864 (301mm x 232mm) 75 70 60
 5 1280 x 768 (301mm x 232mm) 75 70 60
...(lines deleted)...
 22 424 x 240 (301mm x 232mm) 75 70
 23 320 x 240 (301mm x 232mm) 75 73 60
Current rotation - normal
Current reflection - none
Rotations possible - normal left inverted right
Reflections possible - none

The resolution and refresh rate currently in use are marked with an asterisk.

To change the resolution, use the -s option and provide one of the size codes (the
first column of output shown in the preceding code) or the resolution. For example,
to change to 1280 × 800 resolution, enter either of these commands:

5.4

5.4 Using the Middle Mouse Button 87

$ xrandr -s 3
$ xrandr -s 1280x800

To change the orientation, use the -o option:

$ xrandr -o orientation

where orientation is normal, left, inverted, or right, or the corresponding number
0, 1, 2, or 3.

To change the refresh rate, use the -r option with the refresh rate in Hz (only certain
values are permitted at each resolution; see the output of xrandr -q earlier). To select
a 70 Hz refresh rate:

$ xrandr -r 70

Some displays permit reflection—mirroring the image left-to-right or top-to-bottom.
This can be useful for rear projection applications. The -x and -y options control ver-
tical and horizontal reflection: if they are present, then the image will be reflected.

Most drivers do not provide reflection capability. Some provide rota-
tion only when enabled in the X server configuration file; for example,
the closed-source NVIDIA driver requires the entry Option
"RandRRotation" to be added to the Device section of the configura-
tion file to enable rotation using RANDR.

KDE provides an applet, krandr, which can be added to your panel bar. Clicking on
the krandr icon will present a list of available resolutions, rotations, reflections, and
refresh rates; simply click on the value you wish to use. A similar program named
gnome-display-properties is included in Gnome.

5.4 Using the Middle Mouse Button
The Mac GUI was designed to work optimally with a one-button mouse; Microsoft
Windows was designed for two buttons; and the X Window System works best with
at least three buttons.

By convention, the middle mouse button pastes currently selected text; this works in
almost all X applications. Selected text is text that you’ve highlighted by holding the
primary mouse button while dragging your mouse.

Copying text is therefore a matter of highlighting it, then clicking the middle button
wherever you want to paste it. In many cases, this is far more convenient and pro-
ductive than using the clipboard (which is also available; see Section 5.5). This tech-
nique can be used to paste information from a web page into an email message, from
a terminal window into a word processor (which is how many of the examples got
into the text of this book), or from part of a web form to another part of the same
form.

5.5

88 Chapter 5: Using the X Server

The middle-button behavior is exploited by most X-based web browsers to offer
users certain conveniences:

• Middle-clicking on a blank or text portion of a web page (not over a link) will
paste selected text as a URI, and the browser will go to that location. Therefore,
to go to a URI mentioned in a README file, just highlight the URI and then
middle-click in your browser.

• Since many browsers will automatically perform a search if plain words are
entered where a URI is expected, you can search by simply highlighting any
words (anywhere!) and then middle-clicking in your browser.

• When a link is clicked with the middle mouse button, most X-based browsers
will open the link target in a new window or tab instead of replacing the current
page; this can be configured in the browser’s preference settings.

If you have a scrollwheel, your middle mouse button is probably connected to it;
pressing the scrollwheel will click the middle mouse button. If you’re using a two-
button mouse, you can configure it so that simultaneously pressing the left and right
mouse buttons results in a middle mouse click (Section 3.8).

5.5 Using the Clipboard
Most modern GUIs, both X-based and non-X-based, have a clipboard mechanism,
allowing you to copy or cut data from one document and paste it into another.
Table 5-1 outlines the standard clipboard operations.

Cut, copy, and paste operations may also be invoked from most programs’ edit or
context menus.

Because X is networked-based, the program placing data onto the clipboard and the
program receiving the data from the clipboard may not be on the same computer—
in fact, they may not be in the country. They may also have different capabilities as
far as the types of data which they understand.

Table 5-1. Standard clipboard operations in X-based GUIs

Operation
Keyboard
shortcut Memory aid Description

Copy Ctrl-C C for Copy Copies the current selection to the
clipboard.

Cut Ctrl-X X looks like Scissors Removes the current selection from the
document or file being edited and
places it on the clipboard.

Paste Ctrl-V V looks like an arrow
(indicating paste location)

Places the current clipboard data into
the document or file being edited. If
there is a current selection, the selec-
tion is overwritten with the clipboard
data.

5.5

5.5 Using the Clipboard 89

So where is the actual clipboard? There isn’t one!

Data is kept by the client that performed the cut or copy operation, and the clip-
board contents and available formats are advertised to other clients through the X
server. For example, the Firefox web browser may advertise that clipboard data is
available in both text/plain and text/html formats.

When a program is ready to receive clipboard data, usually in response to a paste
operation invoked by the user, it requests it from the other client through the X
server. The data is formatted into the requested data type and then sent to the
requesting client.

If you’re pasting from Firefox into OpenOffice, for example, text attributes such as
bold, italic, and color can be determined from the HTML markup and preserved; but
if you’re pasting into the programmer’s editor Nedit, the text/plain format is used
instead, and the HTML tags are not included in the pasted text.

The design of this mechanism has several implications:

• The pasting speed is limited by network performance (practically speaking, this
has an impact only for very large amounts of data or slow network connections).

• You can’t paste from the clipboard after the program that placed data on the
clipboard exits (for example, if you use the Copy function in Mozilla, and then
exit Mozilla, you won’t be able to paste into another application. The data will
be lost.)

• Data that is placed on the clipboard but not pasted is never transferred over the
network.

• Data is pasted in the best format that both programs can handle.

• Only one item may be on the clipboard at a time.

A clipboard manager is a client that accumulates clipboard selections. This serves
two purposes: it lets the user preview and select from several selections, and it keeps
the clipboard data around after the source client—the program that placed the data
on the clipboard—terminates.

Both of these features are valuable, but unfortunately, using a clipboard manager
also has two disadvantages: all data placed on the clipboard is copied over the net-
work, regardless of whether it is ever used, and data stored by the clipboard man-
ager is converted into a single format (usually the lower common denominator—the
most basic format for a particular type of data).

Three clipboard managers are available:

xclipboard
The clipboard manager traditionally distributed with X. xclipboard handles
plain text only.

5.6

90 Chapter 5: Using the X Server

Klipper
The KDE clipboard manager. Installed by default with KDE, klipper does not
interfere with the more recent clipboard action as long as the source client (the
one supplying the data) stays running, which lets you do an immediate cut/copy
and paste with content negotiation. All other paste operations are in one format
only (e.g., when pasting text, formatting and attributes will be lost).

Gnome-clipboard-manager
The Gnome equivalent of klipper. This project was discontinued in 2004 but the
software is still available

Various projects on freedesktop.org are focused in improving the clipboard system.

Although the clipboard mechanism can be used with all types of data—including
images, sound, and video—very few applications support data types other than text.
For a simple example of pasting an image, you can copy an image from Firefox and
paste it into OpenOffice.

Pasting with the clipboard and pasting using a middle mouse click
(Section 5.4) work in an almost identical manner: the X server facili-
tates the data transfer directly from the source client (select/cut/copy)
to the destination client (paste). The only real difference is that when
the data is advertised through the X server, selected data—used for
middle mouse paste—is tagged as being the PRIMARY selection,
while data that has been cut or copied to the clipboard is tagged as
being the CLIPBOARD selection. (Yes, there is also a SECONDARY
selection, but it’s almost never used.)

5.6 Keyboard Focus
Most modern GUIs (whether X-based or not) use a click-to-focus policy: to connect
the keyboard to a window, click on it. The window that currently has focus is indi-
cated by a different titlebar or window border.

But as with everything else, X provides mechanism but not policy. In this case, the
policy is enforced by the window manager.

The alternative to click-to-focus is focus-follows-pointer: whichever window is under
the pointer receives focus. This policy is the default for twm and is a configurable
option under many window managers. It’s also the default when no window man-
ager is active, so if you’re experimenting with running clients directly on a raw X
server (Section 2.3), you’ll need to keep one eye on the mouse cursor when typing.

5.7 Keyboard and Mouse Grabs
Instead of using focus to get data from the keyboard, an application can grab the
keyboard, receiving all keystrokes that are typed. It’s also possible for a client to grab

5.7

5.7 Keyboard and Mouse Grabs 91

the mouse. This is used far more often than may first be apparent; for example, drop-
down menus involve a mouse grab, making everything except the menu insensitive
to mouse clicks. If you click outside of the menu, the menu code will release the grab
and remove the menu. Mouse grabs are also used for modal dialogs that grab the
entire screen (but not for modal dialogs that do not interfere with other applica-
tions); for example, when logging out of KDE or GNOME, a confirmation dialog is
presented to the user, which takes precedence over all other activity—all keystrokes
and mouse activity is processed by the confirmation dialog. This forces the user to
deal with the confirmation dialog before performing any other task.

Keyboard grabbing presents a security risk, because an application could use a grab
to receive keystrokes it otherwise wouldn’t. This is potentially a concern when enter-
ing passwords or PIN numbers into applications.

The xterm terminal program (Section 7.4) provides a Secure Keyboard feature that
can be used to defend against this type of attack. It ensures that you are typing into
the xterm window and that no other application can access your keystrokes. It works
by grabbing the keyboard itself; the foreground and background colors in the xterm
window are reversed as long as the keyboard grab is active.

To enable Secure Keyboard mode, hold the Ctrl key and press and hold mouse but-
ton 1 (generally the left mouse button, but this is configurable). A pop-up menu will
appear, as shown in Figure 5-1; the first option enables the Secure Keyboard mode.

Figure 5-1. The Secure Keyboard menu option in xterm

5.7

92 Chapter 5: Using the X Server

While Secure Keyboard mode is active, you won’t be able to type into any other win-
dow, regardless of focus. The menu option acts like a toggle; select it again to release
the keyboard grab.

Another problem with keyboard and mouse grabs is that a buggy or malicious client
application can hang after grabbing these resources, thus making it impossible to end
the grab or use other clients. X provides an escape hatch so you don’t have to kill the
X server. You can configure the X.org server to provide a key combination that
releases keyboard and mouse grabs, and another key combination that kills the cli-
ent performing a keyboard or mouse grab. To enable this feature, add these entries to
your X server configuration file’s ServerFlags or ServerLayout section:

Option "AllowDeactivateGrabs"
Option "AllowClosedownGrabs"
Option "HandleSpecialKeys" "Always"

AllowDeactivateGrabs enables the Ctrl-Alt-Keypad Divide key combination, which
releases all keyboard and mouse grabs. AllowClosedownGrabs enables Ctrl-Alt-Keypad
Multiply, which terminates any clients with keyboard or mouse grabs. The
HandleSpecialKeys entry ensures that these keys will be processed by the server
regardless of the keyboard map currently installed.

You can easily check that these key combinations are working by starting an xterm
and placing it in Secure Keyboard mode. Ctrl-Alt-Keypad Divide should cause the
xterm to come out of reverse video mode and permit you to type into other applica-
tions. On the other hand, pressing Ctrl-Alt-Keypad Multiply terminates the xterm.

There is one situation where keyboard grabs shouldn’t be overridden: when a lock-
ing screensaver is in use. If the screensaver’s keyboard grab can be released, a user
could then change VTs; if the X session was started from a shell prompt using the
startx command, it could be terminated with Ctrl-C, and the user would then have
access to a full shell prompt. An API has been written to guard against this, but it
doesn’t work with xscreensaver (Section 6.13) because of permission issues, and it
won’t work with older screensavers at all.

Therefore, a locking screensaver used in an X session started from a command
prompt allows a sophisticated user to bypass password protection if the
AllowDeactivateGrabs or AllowClosedownGrabs features are enabled.

Part II

II.X Clients

95

Chapter 6

6
X Utility Programs

6.1 The Unused Toolbox
The standard X distribution contains a number of command-line utilities to config-
ure and administer the X server. These tools have been collected over many years,
and some have a very old look and feel to them. Indeed, many have been superseded
by tools built into modern desktop environments. Nonetheless, they continue to be
extremely useful for system administrators. The articles in this chapter will intro-
duce you to the more useful tools in this toolbox.

In addition to the tools discussed in this chapter, the utilities available from X.org
include:

xev (Section 15.4)
For testing input events

xkbsetmap (Section 12.7) and xmodmap (Section 15.4)
For setting the keymap

xlsfonts (Section 10.4), xfontsel (Section 10.4), mkfontdir (Section 10.5), and
mkfontscale (Section 10.5)

For dealing with old-style fonts

x11perf, x11perfcomp, and xmark
For testing and benchmarking a X server

xsm (Section 8.2)
For session management

glxinfo, xtrapinfo, and xvinfo
For getting information about specific extensions

6.2

96 Chapter 6: X Utility Programs

6.2 Determine the Display Configuration
xdpyinfo is an X client that gathers information about the display and outputs it to
standard output. This very simple program is invaluable when debugging an X server
setup.

xpyinfo must be run from a terminal program (Section 7.4) or have its output redi-
rected to be useful. It is used like this:

$ xdpyinfo
name of display: :0.0
version number: 11.0
vendor string: The X.Org Foundation
vendor release number: 60802000
X.Org version: 6.8.2
maximum request size: 16777212 bytes
motion buffer size: 256
bitmap unit, bit order, padding: 32, LSBFirst, 32
image byte order: LSBFirst
number of supported pixmap formats: 7
supported pixmap formats:
 depth 1, bits_per_pixel 1, scanline_pad 32
 depth 4, bits_per_pixel 8, scanline_pad 32
 depth 8, bits_per_pixel 8, scanline_pad 32
 depth 15, bits_per_pixel 16, scanline_pad 32
 depth 16, bits_per_pixel 16, scanline_pad 32
 depth 24, bits_per_pixel 32, scanline_pad 32
 depth 32, bits_per_pixel 32, scanline_pad 32
keycode range: minimum 8, maximum 255
focus: window 0x2a0001c, revert to Parent
number of extensions: 34
 BIG-REQUESTS
 DAMAGE
...snipped...
 XKEYBOARD
 XTEST
 XVideo
 XVideo-MotionCompensation
default screen number: 0
number of screens: 1

screen #0:
 dimensions: 1400x1050 pixels (301x232 millimeters)
 resolution: 118x115 dots per inch
 depths (7): 24, 1, 4, 8, 15, 16, 32
 root window id: 0x113
 depth of root window: 24 planes
 number of colormaps: minimum 1, maximum 1
 default colormap: 0x20
 default number of colormap cells: 256
 preallocated pixels: black 0, white 16777215
 options: backing-store NO, save-unders NO
 largest cursor: 64x64

6.3

6.3 Getting Window Information 97

 current input event mask: 0xfa2033
 KeyPressMask KeyReleaseMask EnterWindowMask
 LeaveWindowMask ButtonMotionMask StructureNotifyMask
 SubstructureNotifyMask SubstructureRedirectMask FocusChangeMask
 PropertyChangeMask ColormapChangeMask
 number of visuals: 80
 default visual id: 0x21
 visual:
 visual id: 0x21
 class: TrueColor
 depth: 24 planes
 available colormap entries: 256 per subfield
 red, green, blue masks: 0xff0000, 0xff00, 0xff
 significant bits in color specification: 8 bits
 visual:
 visual id: 0x22
 class: DirectColor
 depth: 24 planes
 available colormap entries: 256 per subfield
 red, green, blue masks: 0xff0000, 0xff00, 0xff
 significant bits in color specification: 8 bits
...snipped...

I’ve highlighted the most useful general information in this output: the X server ver-
sion number, the list of available extensions, and the root information for each
screen (including the monitor size, resolution, dots per inch, and color depth).

This information can be used to confirm that your X server configuration file is being
processed properly. It can also be used to quickly examine the configuration of a dis-
play without digging into the server configuration file—and it works with all X serv-
ers, regardless of the vendor.

6.3 Getting Window Information
X provides a utility named xwininfo for obtaining basic information about a win-
dow, including its size, location, visibility, color depth, ID, and name.

When run without arguments, xwininfo permits you to interactively select the
window to be used:

$ xwininfo

xwininfo: Please select the window about which you
 would like information by clicking the
 mouse in that window.
...User selects a window with the mouse...
xwininfo: Window id: 0x363809e "chris@concord2:~"

 Absolute upper-left X: 464
 Absolute upper-left Y: 20
 Relative upper-left X: 6
 Relative upper-left Y: 20

6.3

98 Chapter 6: X Utility Programs

 Width: 737
 Height: 898
 Depth: 24
 Visual Class: TrueColor
 Border width: 0
 Class: InputOutput
 Colormap: 0x20 (installed)
 Bit Gravity State: NorthWestGravity
 Window Gravity State: NorthWestGravity
 Backing Store State: NotUseful
 Save Under State: no
 Map State: IsViewable
 Override Redirect State: no
 Corners: +464+20 -79+20 -79-106 +464-106
 -geometry 80x58-73+0

I’ve highlighted the most useful information in the output. Window id, on the first
line, can be used as an argument for other commands, such as xwd (Section 6.11).
Map State indicates whether the window is currently visible or not, and the last line
shows the geometry argument (Section 7.4) that could be used on a command line to
open the window with the same size and position.

Instead of interactively selecting the window for which you wish to display informa-
tion, you can select a window by ID (using the -id option). However, this is not
often useful, because you usually won’t know the ID until you’ve used xwininfo.

Somewhat more useful is the -root option, which tells you about the root window of
a screen:

$ xwininfo -root
xwininfo: Window id: 0x93 (the root window) (has no name)
 Absolute upper-left X: 0
 Absolute upper-left Y: 0
 Relative upper-left X: 0
 Relative upper-left Y: 0
 Width: 1280
 Height: 1024
 Depth: 24
 Visual Class: TrueColor
 Border width: 0
 Class: InputOutput
 Colormap: 0x20 (installed)
 Bit Gravity State: NorthWestGravity
 Window Gravity State: NorthWestGravity
 Backing Store State: NotUseful
 Save Under State: no
 Map State: IsViewable
 Override Redirect State: no
 Corners: +0+0 -0+0 -0-0 +0-0
 -geometry 1280x1024+0+0

6.3

6.3 Getting Window Information 99

The -children option displays information about the child windows, and the -tree
option recursively displays information about child windows and all of their
descendants. Since X treats all windows as part of a hierarchy, using -root and -tree
together displays information about all of the windows on the screen:

$ xwininfo -root -tree
xwininfo: Window id: 0x93 (the root window) (has no name)

 Root window id: 0x93 (the root window) (has no name)
 Parent window id: 0x0 (none)
 311 children:
 0x9ff528 (has no name): () 749x414+492+0 +492+0
 1 child:
 0x3620ec2 "chris@concord2:~": ("gnome-terminal" "Gnome-terminal")
 737x388+6+20 +498+20
 5 children:
 0x3620eea (has no name): () 15x362+722+26 +1220+46
 0x3620ece (has no name): () 722x362+0+26 +498+46
 0x3620ee3 (has no name): () 737x26+0+0 +498+20
 6 children:
 0x3620ee9 (has no name): () 40x24+240+1 +738+21
 0x3620ee8 (has no name): () 31x24+203+1 +701+21
 0x3620ee7 (has no name): () 64x24+133+1 +631+21
 0x3620ee6 (has no name): () 42x24+85+1 +583+21
 0x3620ee5 (has no name): () 37x24+42+1 +540+21
 0x3620ee4 (has no name): () 35x24+1+1 +499+21
 0x3620ecd (has no name): () 10x10+0+0 +498+20
 0x3620ec3 (has no name): () 1x1+-1+-1 +497+19
 0x5600006 "screensaver": ("xscreensaver" "XScreenSaver")
 1280x1024+0+0 +0+0
...lines skipped...

The output tells us that the gnome-terminal program has 11 child windows; these are
not necessarily full-blown application windows, but they may include user interface
elements such as pop-up dialogs and menus. Not all of the child windows will be
mapped (visible onscreen) at the same time.

The screensaver window is an example of an unmapped window. At 1280 × 1024, it’s
large enough to cover the entire screen; xscreensaver simply maps this window—
making it visible—when the screensaver activates and unmaps it when the screen-
saver deactivates.

The information displayed for each window includes the window ID, the window
name, the application name, and the window geometry.

xwininfo also provides options to display other information about the selected win-
dow; many of the options are primarily of use to the application developer.

6.4

100 Chapter 6: X Utility Programs

xwininfo reveals interesting details about how window managers dif-
fer in the way that they implement virtual desktops. Some leave the
windows in their original position but unmap (hide) them; others
leave them mapped but position them off the screen. This difference
explains why some window managers—such as fvwm2—permit you
to position your viewable desktop so that it arbitrarily spans virtual
desktops, but others—such as Metacity—require the viewable and vir-
tual desktops to be aligned.

6.4 Viewing Server Settings
There are a number of X server configuration settings that can be changed on-the-fly.
The xset utility enables you to view and change these settings.

To find the current settings, run xset with the q (query) option:

$ xset q
Keyboard Control:
 auto repeat: on key click percent: 0 LED mask: 00000002
 auto repeat delay: 500 repeat rate: 30
 auto repeating keys: 00ffffffdffffbbf
 fadfffffffdfe5ff
 ffffffffffffffff
 ffffffffffffffff
 bell percent: 50 bell pitch: 400 bell duration: 100
Pointer Control:
 acceleration: 3/1 threshold: 3
Screen Saver:
 prefer blanking: yes allow exposures: yes
 timeout: 0 cycle: 0
Colors:
 default colormap: 0x20 BlackPixel: 0 WhitePixel: 16777215
Font Path:
 /home/chris/.gnome2/share/cursor-fonts,unix/:7100,
 /home/chris/.gnome2/share/fonts
Bug Mode: compatibility mode is disabled
DPMS (Energy Star):
 Standby: 600 Suspend: 600 Off: 1200
 DPMS is Enabled
 Monitor is On
Font cache:
 hi-mark (KB): 5120 low-mark (KB): 3840 balance (%): 70
File paths:
 Config file: /etc/X11/xorg.conf
 Modules path: /usr/lib/xorg/modules/extensions/nvidia,/usr/lib/xorg/modules
 Log file: /var/log/Xorg.0.log

The main difference between xdpyinfo and xset is that, for the most part, xdpyinfo
displays unchangeable server information, while the settings displayed by xset can be
adjusted while the server is running.

6.5

6.5 Control That Bell! 101

The xset command holds the key to a number of runtime adjustments to the X
server. Here are some of them:

• Changing the X bell (Section 6.5)

• Setting the keyboard repeat options (Section 6.6)

• Accelerating the mouse (Section 6.7)

• Keeping the screen from blanking (Section 6.12)

• Adjusting the font path (Section 10.2)

6.5 Control That Bell!
X includes a very basic bell facility—actually, more of a beep than a bell. The term
bell comes from old teletype terminals, which (in the fashion of typewriters before
them) actually contained a bell that could be triggered remotely.

The xset command allows you to change the pitch, volume, and duration of the X
bell. Any application can trigger the bell, and most terminal programs (Section 7.4)
do so when an ASCII BEL character (code 7) is received.

On PC hardware, the bell is usually implemented through the system speaker instead
of a sound card, since almost every PC has a speaker installed. On some newer lap-
tops (and desktops), the speaker output is routed through the sound card mixer and
is sent to the main audio outputs, but many machines still use a separate built-in
speaker for the bell.

Your desktop, therefore, might have a 15 cent speaker in the system unit under the
desk, packed full of dust and competing with multiple system fans to be heard.
There’s no way to really control the bell volume, because the PC’s speaker circuit
simply clocks out a 5-volt square wave of adjustable frequency.

To set the bell, use the b subcommand provided by xset:

$ xset b volume pitch duration

Where volume is the volume level from 0–100%, pitch is in Hertz, and duration is in
milliseconds. The X.org server will actually shorten the duration based on the vol-
ume setting, in a feeble attempt to make up for the lack of hardware volume control.

The default bell settings in the X.org server are 50% volume, 400 Hz, and 100 ms,
which are reasonable for most purposes. If you can’t hear the bell, try 100%, 1,200
Hz, and 100 ms:

$ xset b 100 1200 100

If you don’t like the result, just experiment; given the cheap speaker, you’ll probably
want to stay in the 100 Hz–14,000 Hz range.

6.6

102 Chapter 6: X Utility Programs

You can leave out any of the numeric arguments to xset b starting at the end; if you
leave them all out, the settings reset to the defaults. To turn off the bell entirely, use
the following:

$ xset b off

The X bell mechanism provides a trivial way to give audio feedback in a script; this
can be useful for various quick-and-dirty applications.

For example, it can be difficult to position Wi-Fi antennas optimally. Here is a sim-
ple Linux shell script that, when run in a terminal window, gives audible feedback on
Wi-Fi link quality using the X bell. This lets you know what effect your antenna
adjustments are having without looking at the screen, which is particularly helpful
when you are adjusting an access point in one room to improve reception in another
room—just turn up the volume on your laptop to maximum and listen as you fiddle:

#!/bin/bash
#
iwbeep :: beep with a pitch that corresponds to the current
link quality reported by iwconfig

while true # Loop forever
do
 # Get the current link quality from iwconfig
 q=$(/usr/sbin/iwconfig 2>&1|sed -n "s/^.*Link Quality:\([0-9]\+\).*$/\1/p")

 # Calculate a tone based on the quality. Experiment!
 ((b= (q * 3 / 2) ** 2 + 100))

 # Set the bell tone, display the quality, then sound the bell.
 xset b 100 $b
 echo -e "$q\a"
done

Warning: this script sounds like a deranged electronic bagpipe player!

It should also be possible to enable a keyclick sound through the PC
speaker using the c subcommand of xset, but this does not appear to
be implemented in X.org.

6.6 Adjusting the Keyboard Repeat Rate
Keyboard repeat is a useful option; it lets you enter a row of dashes, or repeatedly
move the cursor, simply by holding a key down. But if the keyboard repeats too eas-
ily or too quickly, it can be very annoying. The X server permits keyboard repeat to
be individually enabled on a key-by-key basis, and the delay before keys start repeat-
ing as well as the rate at which they repeat can be adjusted. These parameters are
adjusted using xset.

6.7

6.7 Adjusting the Mouse Acceleration 103

You can turn keyboard repeat off with the -r or r off options:

$ xset r off
$ xset -r

Likewise, you can turn it on with r or r on:

$ xset r on
$ xset r

To enable repeat for a specific key, find the keycode value using xev and use that as
an argument:

$ xset r 65 # spacebar will repeat
$ xset -r 65 # spacebar will not repeat

To adjust the repeat rate, the XKB extension must be loaded (which is the default for
most X servers). Execute xset with the r subcommand followed by the word rate,
the length of time in milliseconds that the key must be held down before it starts
repeating, and finally the repeat rate in Hz (with a maximum of 255).

For example, to repeat keys at the rate of 10 characters per second, starting 1 second
after a key is held down, enter the following code:

$ xset r rate 1000 10

To reset the repeat rate to the default settings:

$ xset r rate

The default settings are a 660 ms delay and a 25 Hz repeat rate.

Setting the repeat delay too low and the repeat rate too high may make
it impossible to type!

6.7 Adjusting the Mouse Acceleration
It’s important to be able to finely control the pointer position, but it’s also impor-
tant to be able to move the pointer quickly. Mouse acceleration multiplies pointer
motion when a preset rate threshold is exceeded; this permits the pointer position to
be finely controlled when moving the mouse slowly, but to be moved large distances
when the mouse is moved quickly.

The two parameters used to adjust the mouse acceleration are the acceleration
factor—the number by which the pointer motion is multiplied—and the threshold,
which must be exceeded before acceleration is applied. The acceleration factor is a
straight integer or a fraction (integer/integer); the threshold is expressed as the min-
imum number of pixels the mouse must move in one sample period.

The default acceleration factor is 2, and the default threshold is 4, so moving more
than 4 pixels in a sample period will cause the movement to be doubled. This may

6.8

104 Chapter 6: X Utility Programs

seem heavy or sluggish to some people; most users seem to prefer acceleration fac-
tors in the range of 2–6 but can easily adjust to values up to 10 or higher.

To change the acceleration parameters, use the m subcommand of xset; for example,
to set an acceleration factor of 5 and a threshold of 4:

$ xset m 5 4

To reset to the default values:

$ xset m

KDE and GNOME each provide their own tools for setting the mouse
acceleration, which adjust the same two parameters.

6.8 Playing with the Lights
Most keyboards have LEDs indicating NumLock, CapsLock, and ScrollLock status.
This is useful information, but most users leave NumLock on and CapsLock off, and
never do anything with ScrollLock, so may be more useful to use the LEDs to dis-
play other information.

In order to use the keyboard LEDs for other information when using
the X.org server and the XKB extension, you will need to enable con-
trol of the LEDs from clients. Include this entry in the keyboard
InputDevice section of the server configuration file, specifying the list
of LEDs you wish to control in the last argument:

 Options "Xleds" "1 2 3"

Recent versions of the X.org server do not permit control of LEDs 1
and 2 (NumLock and CapsLock). Only LED 3 (ScrollLock) can be
altered.

The LEDs are turned on or off using the led subcommand of xset:

$ xset led # all controllable LEDs on
$ xset -led # all controllable LEDs off
$ xset led 3 # LED 3 on (ScrollLock)
$ xset -led 3 # LED 3 off

Here is a simple script to light the ScrollLock LED whenever you have email:

#!/bin/bash
#
mailled :: light the scroll lock LED when we have mail
#
while sleep 1
do

6.10

6.10 Killing a Rogue Client 105

 if [-s $MAIL]
 then
 xset led 3
 else
 xset -led 3
 fi
done

This script can be executed in the background by a line in your shell profile:

mailled &

6.9 Killing a Rogue Client
The xkill utility enables you to kill an X client by clicking on it. Actually, it doesn’t
kill the client process, but it does kill the connection between the X server and the
client. In most cases, that’s enough to cause the client to terminate; in any case, it
gets it off the screen.

xkill is usually run without any arguments:

$ xkill

The mouse cursor will change to a skull-and-crossbones or a type of crosshair,
depending on the version of xkill installed. Click on the offending window to kill it;
middle-click to abort xkill.

KDE will invoke an internal version of xkill when you press Ctrl-Alt-
ESC, turning the cursor into a skull-and-crossbones. Pressing Ctrl-Alt-
ESC again will turn off xkill mode.

6.10 Examining Part of the Display in Detail
xmag is a simple utility that magnifies part of the display and displays the color code
of selected pixels. Start it without any arguments:

$ xmag

The cursor will change into an upper-left frame (). Click on the upper-left corner of
the area you wish to magnify. A magnification window will appear, as shown in
Figure 6-1.

Click on any pixel to see its color code and screen coordinates. The color codes are
reported in 64-bit hexadecimal format, so white is reported as (ffff, ffff, ffff). To
convert to 24-bit format, just take the first 2 hexadecimal digits from each group of 4
digits; for example, if the reported color is (3e3e, 4444, a9a9), then the 24-bit X color
code is #3e44a9.

You can increase or decrease the magnification by changing the xmag window size.

6.10

106 Chapter 6: X Utility Programs

The buttons at the top of the window perform some useful operations:

close
Closes this window.

replace
Enables you to select a new region for magnification.

new
Opens another window.

select
Selects the magnified area (just like highlighting a portion of text in a text edi-
tor); a middle mouse click in another program, such as OpenOffice.org, will
paste the image. There is no way to place the image on the clipboard (except by
pasting into another program and then copying onto the clipboard from that
program).

paste
Pastes the current selection (not the current clipboard contents) into the image
display portion of the xmag window.

xmag is perfect for finding out the color code for a mystery color in a photograph or
a web page, for examining fine details of a user interface rendering, or for examining
anti-aliased character displays.

Figure 6-1. An xmag window

6.11

6.11 Script a Screen Dump 107

6.11 Script a Screen Dump
It’s often useful to make a screen dump (or screen shot), which is a copy of what is on
the screen. KDE, GNOME, and the Gimp all provide facilities for doing this, but
some applications require a classic tool that is distributed with X itself.

The X window dump (xwd) tool takes a snapshot of the current screen, a manually
selected window or a window designated by its numeric ID, and outputs the image
to standard output or to a file. What I find useful about xwd is that it can be used in
a shell script.

By default, xwd will present a crosshair cursor for you to manually select a window:

$ xwd >file

You can select the entire root window (the whole screen) with the -root option:

$ xwd -root >file

This works well for getting screenshots of Compiz special effects in
action.

You can also specify a particular window by ID. You can obtain the ID from the
xwininfo command:

$ xwd -id IdNumber >file

The image format used by xwd is unique. A utility named xwud (for X window un-
dump) is provided to display window dump files:

$ xwud <file

The xwd image format can also be opened by the Gimp, ImageMagick (convert and
display programs), and the NetPBM utilities (xwdtopnm).

Several of these tools can be combined to automate the process of creating periodic
screen dumps:

#!/bin/bash
Produce a screen dump periodically and save as a JPEG

DELAY=5 # seconds between screen dumps
DIR=/tmp/screen # directory to hold screen dumps
I=0 # current image number

mkdir -p ${DIR}

while sleep $DELAY
do
 xwd -root | xwdtopnm | cjpeg >${DIR}/screendump.${I}.jpg
 ((I++))
done

6.12

108 Chapter 6: X Utility Programs

Variations on this script could easily update a web page or create an animation dem-
onstrating how to do a task.

xwd clearly demonstrates that an X client can access on-screen data
displayed by another client. This poses a serious security risk, which
can be somewhat reduced by the use of the SECURITY extension; see
Section 13.10 (and, of course, you should never open your X server up
to unrestricted network access!).

6.12 Preventing the Screen from Blanking During
Presentations

DPMS (Section 3.11) is a great tool for saving energy and heat. However, having the
screen blank at an inopportune moment—the middle of a presentation, or the most
exciting point in a movie—can be very frustrating!

Some applications that may be used for long periods without keyboard or mouse
activity, such as mplayer, automatically disable the screensaver and DPMS, but many
presentation and media player applications do not (surprisingly, this includes some
widely used applications such as OpenOffice.org Impress, MagicPoint, and Xine).

xset can adjust screensaver and DPMS settings. The dpms subcommand can turn
DPMS on or off:

$ xset +dpms # dpms on
$ xset -dpms # dpms off

You can also immediately go to one of the four DPMS states:

$ xset dpms force state

Where state is on, standby, suspend, or off.

To set the DPMS times, supply three numeric arguments, representing the number of
seconds of inactivity before the standby, suspend, and off states are entered. For
example, to set the server to switch to DPMS standby mode after 10 minutes of inac-
tivity, suspend after 15 minutes, and off after 20 minutes, enter the following:

$ xset dpms 600 900 1200

The dpms timeouts are configured in minutes in the xorg.conf file, but
in seconds when using the xset command.

xset can likewise turn the X server’s built-in screensaver on or off using the s sub-
command (this is separate from the xscreensaver program; see Section 6.13):

$ xset s on # screensaver on
$ xset s off # screensaver off

6.13

6.13 Eye Candy: xscreensaver 109

$ xset s default # screensaver back to default rules
$ xset s time chg # screensaver times

The screensaver time arguments, time and chg, set the time before the screensaver
kicks in and the time before the screensaver image changes, respectively.

It’s very easy to write a script to turn off DPMS before starting an application and
to turn it on again afterward. This script also checks to see whether xscreensaver
(Section 6.13) is running, and if it is, exits xscreensaver for the duration of the
application:

#!/bin/bash
xset -dpms s off # disable dpms and X server screensaver

determine if xscreensaver is running
if killall -signal 0 xscreensaver >/dev/null 2>&1
then
 xscreensaver-command -exit # exit current xscreensaver
 xscreensaver="yes" # remember it was running
fi

"$@" # run the application specified on the command line

re-start xscreensaver if necessary
if ["$xscreensaver"]
then
 xscreensaver -nosplash &
fi

xset +dpms s default # dpms and screensaver re-enabled

If this script is saved in the file noblank, you could use it with xine to show a movie
uninterrupted:

$ noblank xine MovieFile

6.13 Eye Candy: xscreensaver
Most security applications rate poorly for fun and overall coolness. xscreensaver, on
the other hand, is all about fun—in the form of eye candy—and it can help tighten
up security, too.

Will a screensaver actually save your screen? Not really; to reduce wear and tear on
your monitor, you’re probably better off shutting it down using DPMS (Section
3.11). But xscreensaver can express your personality, create a bit of pizzaz, and as a
bonus, lock your workstation when it’s left idle.

The xscreensaver package is made up of four programs:

xscreensaver
The server process, which runs in the background waiting until a set amount of
time has passed since the last keyboard or mouse input was received.

6.13

110 Chapter 6: X Utility Programs

xscreensaver-command
A command-oriented client for the server.

xscreensaver-demo
An interactive client for the server, which lets you preview the screensaver.

graphics demos or hacks
Programs that provide the interesting visual effects for the screensaver; these
exist as individual files in /usr/share/xscreensaver.

To begin using xscreensaver, start the server in the background—this can be done in
a startup script file, such as ~/.xinitrc:

$ xscreensaver &

The configuration will be retrieved from ~/.xscreensaver. You can change the config-
uration using xscreensaver-demo:

$ xscreensaver-demo

You can also control the xscreensaver server using xscreensaver-command followed
by options indicating the action you wish the server to perform. These are the most
common and useful options:

-exit
Terminates the server.

-restart
Restarts the server with the same options used when it was initially invoked.
This reloads the configuration file and is useful when you have changed the ~/
.xscreensaver file manually (or copied one from another account).

-activate
-deactivate

Immediately enables or disables the screen saver, respectively.

-watch
Prints screensaver events to the screen as they happen; useful for logging and to
trigger other events that should take place when the screensaver is activated
(such as causing a kiosk to revert to its initial state; see Section 15.8).

For example, this command will cause xscreensaver to start immediately, as though
the display had been left idle for a long period of time:

$ xscreensaver-command -activate

Note that xscreensaver will set the server’s DPMS timeouts to the values contained in
~/.xscreensaver when started. This will override the DPMS settings in the X server
configuration file (Section 3.11) or previously set with xset (Section 6.12).

6.14

6.14 Redrawing the Screen 111

To help secure the display when it’s idle, you can configure xscreensaver to lock the
display; the login password is required to unlock it. But beware: this provides little
protection if the X server was started from a character-mode VT (Section 2.9). The
user can disable keyboard grabs (Section 5.7), and then switch VTs using the key-
board (Section 2.2).

If you’re using X in a customer-accessible setting—perhaps at the point of sale or on
a receptionist’s computer—a screensaver can reduce the risk that a customer will
view private or sensitive information. You may as well use the opportunity to convey
a message; several of the graphics hacks, such as fontglide, enable you used to present
text in an interesting manner. Hiding sensitive information on idle displays may be
required in regulated industries such as healthcare in some jurisdictions.

Current versions of GNOME and KDE, by default, do not use
xscreensaver. Instead, they provide their own screensaver utilities.

6.14 Redrawing the Screen
Once in a while, a bug in a client program (or, in rare cases, a buggy video card
driver) will cause it to leave artifacts in its windows—dots, lines, or partial images
that shouldn’t be there. If you encounter such a misbehaving application, you can
clean up the screen image by running xrefresh, which causes every client to redraw
itself:

$ xrefresh

xrefresh has no effect on composited displays.

112

Chapter 7

7
Running X Clients

7.1 Running X Clients
Running an X client is generally a fairly simple proposition, but it is different from
running a character application. This chapter covers:

• Running clients in the background (Section 7.2)

• Requesting a certain window size and position (Section 7.3)

• Running nongraphical programs on an X display (Section 7.4)

Displayspecs (Section 1.12) are a closely related topic.

7.2 Background Operation
Most X applications don’t need to interact with the user through the standard input
and output; therefore, when starting them from a shell prompt, you may as well put
them into the background. Simply add an ampersand to the end of the command
name:

$ kcalc &

If you close the terminal from which you started the client, the client will (in almost
all cases) be terminated. To avoid this, use the nohup command:

$ nohup kcalc &

Some error messages may be sent to standard error, which may not be
visible when the client is run in the background. When debugging the
operation of a client, it may be necessary to redirect stdout and stderr
to a file:

$ nohup kcalc >kcalc.log 2>&1 &

7.3

7.3 Geometry 113

7.3 Geometry
In X Window parlance, geometry refers to the size and position of windows. Clients
may request a particular geometry when placing a new window, but the window
manager can override the request and force another geometry.

The units used for window size vary by application. Terminal windows, for exam-
ple, are usually sized in text rows and columns (for example, 80 × 24 or 132 × 44);
many applications, such as Firefox, are sized in pixels; and others, such as the Gimp,
use arbitrary units of the programmer’s choosing.

The xwininfo command (Section 6.3) will display information about a window’s cur-
rent geometry:

$ xwininfo
xwininfo: Please select the window about which you
 would like information by clicking the
 mouse in that window.
...User clicks on a terminal window...
xwininfo: Window id: 0x36059c4 "chris@concord2:~"

 Absolute upper-left X: 485
 Absolute upper-left Y: 59
 Relative upper-left X: 6
 Relative upper-left Y: 20
 Width: 710
 Height: 538
 Depth: 24
 Visual Class: TrueColor
 Border width: 0
 Class: InputOutput
 Colormap: 0x20 (installed)
 Bit Gravity State: NorthWestGravity
 Window Gravity State: NorthWestGravity
 Backing Store State: NotUseful
 Save Under State: no
 Map State: IsViewable
 Override Redirect State: no
 Corners: +485+59 -85+59 -85-427 +485-427
 -geometry 77x34-79+39

Note that the geometry specification (or simply, geometry) is 77x34-79+39, but the
width is 710 pixels and the height is 538 pixels!

The geometry specification is in this form:

WIDTHxHEIGHT XPOSITION YPOSITION

where the following definitions are true:

WIDTH
The window width in the increments used by the application.

7.3

114 Chapter 7: Running X Clients

HEIGHT
The vertical height of the window in the increments used by the application.

XPOSITION
YPOSITION

The horizontal and vertical coordinates of the upper-left corner of the window
frame, including any window border, title bar, or other ornamentation added by
the window manager. If these numbers start with a plus sign (+), then they are
relative to the upper-left corner of the screen; if they start with a minus sign (-),
then they are relative to the lower-right corner of the screen.

Therefore, the geometry shown in the earlier example, 77x34-79+39, is interpreted as
meaning that the window should be 77 units high and 34 units wide, and the upper-
left corner of the window should be 79 pixels left from the right side of the screen
and 39 pixels down from the top of the screen.

You can use both + and - on the same geometry positioning expres-
sion. The first sign indicates the starting corner (upper-left or lower-
right), and the second is used to indicate the sign of the value. There-
fore, a geometry specification of 200x200+-100+50 specifies a window
size of 200 × 200, and a window starting off the screen 100 pixels to
the left of the screen’s left edge and 50 pixels from the top.

But what is the unit of measure for the size? We can determine that by giving
xwininfo the -size option:

$ xwininfo -size

xwininfo: Please select the window about which you
 would like information by clicking the
 mouse in that window.
...User selects the window...
xwininfo: Window id: 0x36059c4 "chris@concord2:~"

 Normal window size hints:
 Program supplied minimum size: 53 by 58
 Program supplied base size: 17 by 28
 Program supplied x resize increment: 9
 Program supplied y resize increment: 15
 Program supplied minimum size in resize increments: 5 by 3
 Program supplied base size in resize increments: 1 by 1
 Program supplied window gravity: NorthWestGravity
 No zoom window size hints defined

Here we can clearly see that the window has set the size increment to 9 pixels hori-
zontally and 15 pixels vertically. Therefore the width of the window is 77*9=693 pix-
els, and the height is 34*15=510 pixels. We can also see that the minimum window
size is 5*9=45 pixels, and the minimum height is 3*15=45 pixels.

7.4

7.4 Split Personality: Running Nongraphical Applications 115

Many applications allow you to specify the geometry on the command line. The
option is -geometry for applications that use Xt-based toolkits (Athena and Motif), or
it’s --geometry for GTK+ and Qt-based applications.

These commands all open up a 25-line, 80-character-wide terminal window, located
100 pixels below the top of the screen and 50 pixels to the right of the left edge of the
screen:

$ gnome-terminal --geometry 80x25+50+100 # GTK+
$ konsole -geometry 660x475+50+100 # Qt
$ xterm -geometry 80x25+50+100 # Xt

Notice that the konsole size is specified in pixels, which the xterm and gnome-
terminal sizes are specified in characters.

7.4 Split Personality: Running Nongraphical
Applications

From before X was released up to a few years ago, character terminals were in wide-
spread use. These devices had a character-only display, typically 80 columns wide by
24 or 25 rows high, and a keyboard. Each model of terminal varied in its display
capabilities—some had color, some offered varying font sizes for 132- and 40-
column display modes, and some could draw underlined and bold text—and in its
keyboard layout. These terminals were typically connected to the host computer
through a serial cable, which required as little as 3 wires and could be over 100
meters long (300 foot). Modems, designed to work with serial interfaces, could be
used to extend this distance over the dial-up telephone network.

Many applications have been written with a character-based interface intended for
use with a terminal. Standard utilities such as cp, mv, and ls, and server programs
such as Apache just write plain text to standard output and standard error; other
programs—including many editors (vi, Emacs, Joe, and Pico) and applications such
as Midnight Commander and Pine—take over the full terminal screen, sending
sequences of control characters to position text and control the display attributes.

These full-screen programs use a curses library, which looks up the terminal type in a
database to determine its capabilities, the codes used to control those capabilities,
and the special codes that may be received from the keyboard (for example, when a
function key is pressed). The terminal type is retrieved from the environment vari-
able TERM.

In addition to controlling the terminal using curses, character applications also con-
trol the characteristics of the serial line connected to the terminal, such as whether
characters that are typed are echoed back to the display (which is the case when
using a shell) or not (when entering a password). These attributes are configured
using the operating system’s termios interface.

7.4

116 Chapter 7: Running X Clients

X by itself is incompatible with all character-based applications. The X server does
not provide a termios interface and cannot be configured to understand the types of
control codes emitted by curses.

In order to bridge this gulf and use character-based programs with X, it is necessary
to use a two-sided application that presents a termios interface on one side and is a
client to an X server on the other side. This application must translate incoming X
events: keypress events are translated into ASCII sequences, window closure is trans-
lated into a modem hangup signal (SIGHUP), and so forth. Likewise, it must emu-
late termios operations such as echo management and translate curses code
sequences into the appropriate X protocol commands.

These applications are known as terminal emulators. The granddaddy of them all is
xterm, which has been distributed with X11 since it was first released. Various termi-
nal emulators have been developed to extend or improve on xterm, including rxvt,
wterm, and eterm. Each of the major desktop environments also includes a terminal
emulator: GNOME has gnome-terminal and KDE has konsole.

Most of the Unix/Linux terminal emulators used with X understand the same codes
as the original xterm program, and therefore are usually used with the TERM environ-
ment variable set to xterm (since the xterm codes are based on those used by the
DEC VT102 terminal, which were later standardized in ANSI X3.64, the value vt102
or ansi is sometimes used).

In addition to the ASCII-based terminal emulators discussed here,
most X installations also include x3270, which is an IBM EBCDIC-
based terminal emulator that is used with mainframes. Another com-
mon emulation is IBM 5250, which is also EBCDIC-based and is used
with IBM i-Series systems (formerly AS/400s).

As shown in Table 7-1, xterm, konsole, and gnome-terminal have similar command-
line options to set the terminal window name, the TERM variable value, and the pro-
gram to be executed on the terminal-interface side (the default is the $SHELL). These
programs may be extensively customized using resources (in the case of xterm) or
named settings profiles (in the case of gnome-terminal and konsole).

Table 7-1. Basic command-line options for common terminal emulators

Description xterm gnome-terminal konsole

Program to be executed -e -e -e

Window title -T -t -T

TERM environment variable value -tn value (TERM value is
always xterm)

--tn value

7.4

7.4 Split Personality: Running Nongraphical Applications 117

These three commands all run vi in a terminal window with the title set to Vi Editor:

$ xterm -T "Vi Editor" -e vi
$ gnome-terminal -t "Vi Editor" -e vi
$ konsole -T "Vi Editor" -e vi

Note that the window title can be changed by emitting a control code sequence. The
sequence is:

ESC] 0 ; text BEL

where ESC and BEL are the corresponding ASCII codes (27 and 7 in decimal, 033
and 007 in octal, 0x21 and 0x7 in hexadecimal), and text is the text that should be
presented in the title bar. Therefore, to set the title to My Window, you could execute
the following:

$ echo -e "\033]0;My Window\007\c"

When using bash, you can set the PROMPT_COMMAND environment variable to a com-
mand that should be executed before each prompt is printed. This is often set to
show useful information, such as the current directory, using a command such as
this:

$ export PROMPT_COMMAND='echo -e "\033]0;${PWD}\007\c"'

You can also set the title bar in the prompt:

$ export PS1="\e]0;\$USER@\$HOST: \$PWD\a$ "

If you’re using csh, the cwdcmd, precmd, and postcmd aliases enable you to execute a
command after each directory change, before each prompt is printed, or after each
command is entered, respectively. To update the window title to the current direc-
tory after each directory change:

% alias cwdcmd 'echo -n "^[]0;$cwd^G"'

To enter the ^[in this line, press Ctrl-V, ESC; to enter ^G, press Ctrl-V, Ctrl-G. Or, if
you’re using tcsh and have echo_style set to both, you can type \e in place of ^[and
\a in place of ^G.

118

Chapter 8

8
Session Managers, Desktop
Environments, and Window
Managers
8.1 X and Desktop Environments
When the X Window System was first released, no desktop environment was avail-
able. Even when Motif was released in 1989, it did not include a desktop environ-
ment; although a few proprietary desktops were available, none of them gained
widespread acceptance.

If you look back at X screen dumps taken in the late 1980s or early 1990s, you will
find that in most cases there were no panel bars, application launching menus, or
window lists. Instead, applications were launched from file-management windows
containing icons or from root menus invoked by clicking on the root (background)
window, and icons representing minimized programs sat directly on the root win-
dow or in icon boxes. This was possible because most of the window managers
evolved (out of necessity) basic root-menu and icon-box capabilities.

By the mid-1990s, system vendors recognized the need for a desktop manager, and in
1995, the Open Software Foundation (OSF) introduced the Motif-based Common
Desktop Environment (CDE), based upon HP’s Vue environment.

Today the dominant desktop environments are GNOME and KDE. CDE continues
to be the default desktop on AIX and HP/UX systems, though IBM offers both
GNOME and KDE for AIX. Sun Solaris 10 includes both CDE and GNOME.

As an alternative to GNOME or KDE, Xfce provides a GTK+-based desktop environ-
ment that uses only about one-third the memory of GNOME. Xfce’s window man-
ager, xfwm, was the first to include a compositing manager, which made it the first
production-quality desktop with integrated support for drop shadows and transpar-
ent windows when used with the COMPOSITE extension.

All of the modern desktop environments are actually program suites, which include
programs to manage the panel(s), desktop background, files, and program-launching
menus; a session manager and a window manager; and a selection of panel applets
and utilities including calculators, clocks, and monitors. In order to ensure that these

8.2

8.2 Session Managers 119

programs function well together, inter-process communications servers, notification
agents, object request brokers, and other tools get drawn into the mix. It’s not
uncommon for KDE or GNOME to consume over 60 MB of memory just to start up.

On the other hand, some window managers have been extended to include program-
launching and panel-management features and can serve as minimalist desktop
environments. The main difference is that with window managers, most of the heavy
lifting is done by a single program.

In this chapter, we’ll look at session managers (Section 8.2) and virtual desktops
(Section 8.3)—both standard features in today’s desktops—and then examine the
startup sequences for the following:

• GNOME (Section 8.4)

• KDE (Section 8.5)

• Xfce (Section 8.6)

In each case we’ll look at how the window manager can be changed and at addi-
tional applications that start when the user logs in.

We’ll also examine how a system can be set up to use only a window manager with-
out a full desktop environment (Section 8.7).

8.2 Session Managers
An X session is roughly equivalent to a character-mode login. A session manager (SM)
is responsible for saving and restoring the session state; this allows the user to log out
and later log in, and to find—more or less—the same programs running. The state
information can include the window position, open files, cursor position, and so
forth. If the session manager finds that no previous session has been saved, a default
session can be started.

Session managers use the X Session Management Protocol (XSMP), which is built on
top of the Inter-Client Exchange (ICE) protocol. This is distinct from the X11 proto-
col and uses different (and variable) ports.

At the beginning of a session, the SM starts clients that have a saved state. To enable
communication with the session manager, clients are passed a connection string in
the SESSION_MANAGER environment variable. This takes one of two forms, depending
on whether TCP/IP or Unix domain sockets are used:

tcp/hostname:port
local/hostname:path

Where hostname is a suitable hostname (usually a fully qualified domain name
(FQDN), but possibly a hostname within the local domain, an IP address, or an alias
such as localhost), port is a TCP/IP port number, and path is the pathname of a
Unix domain socket.

8.3

120 Chapter 8: Session Managers, Desktop Environments, and Window Managers

When an XSMP-aware client starts, it connects to the SM and introduces itself. The
SM assigns a unique ID number, and the client informs the SM of the command line
that will start it with the same ID number. It’s also possible for clients to ask to be
restarted if they terminate unexpectedly, or to save their state and ask to be restarted
in the next session even if they are not running at the end of the current session. Cli-
ents may also provide a command line that will discard the current session informa-
tion, so that (for example) disk space used to store the session state will free up if the
user doesn’t want to restore the session.

When a user logs out of her session (and indicates that she wants to save the session,
if given the option), the SM sends a message to all registered clients to tell them to
save their state. The clients can optionally communicate with the user at this point,
which permits the client to ask the user for the filename under which data should be
saved. When the next session starts, the SM uses the command that was specified by
the client to restart it with the same ID.

Note that the session manager does not save the actual state of the client (other than
the ID number). It’s up to the client to save its state. This is typically done with hid-
den files in the user’s home directory, but the programmer can choose another
method. It’s up to the application programmer to decide how much state informa-
tion is saved; some programs may save only the name of the currently open file,
while others may save many details such as the window size and position, cursor
position, and undo history.

KDE and GNOME each provide session managers. The standard X distribution also
provides a session manager, known as xsm, but it is perhaps more of a proof-of-con-
cept than a workable session manager for daily use.

XSMP was released as part of X11R6. X11R5 used a simpler session
management mechanism, which is now regarded as broken.

8.3 Virtual Desktops
Many of the current window managers provide virtual desktop or workspace capabil-
ity—the ability to access a desktop space that is a multiple of the screen size. For
example, a window manager configured with four virtual desktops would permit you
to move with the mouse or keyboard from one of the four desktops to another.

Virtual desktops provide a simple, easily understood mechanism for organizing large
numbers of windows. It’s not uncommon to see users group related applications on
different desktops—email and messaging on one, web browsing on another, photo
management or writing on a third—and then jump between them.

Most window managers or desktop environments that provide virtual desktops also
provide a pager (or workspace switcher, or desktop switcher), which permits the user

8.3

8.3 Virtual Desktops 121

to see the size and position of windows on each desktop and to switch desktops by
clicking on one. Some pagers also permit you to drag windows from one virtual desk-
top to another.

The GNOME desktop switcher, shown in Figure 8-1, shows the typical appearance
of most pagers; when this example was taken, there were 22 windows on 6 virtual
desktops (some are hidden under other windows).

Resource-wise, virtual desktops are a freebie. This is because they are an illusion cre-
ated by the window manager.

Studying the output of xwininfo gives the secret away. There are two different ways
to create virtual desktops:

mapping
Windows are mapped (made visible) or unmapped (hidden) according to
whether the desktop they are “on” is the current desktop.

positioning
Windows are positioned relative to the current desktop; if they are on a desktop
to the right of the current desktop, then they are positioned to the right of the
visible screen area, off the screen.

Figure 8-2 shows three virtual desktops as imagined by the user and as displayed in a
pager. There are three separate application windows shown on the three desktops:
kcalc, Firefox, and OpenOffice.org.

If the user makes the center desktop current, and the window manager is using map-
ping to create the virtual desktop illusion, then the actual window placement will be
as shown in Figure 8-3. Any window not on the current desktop is unmapped (hid-
den), as shown here with a dotted outline.

Figure 8-1. The GNOME desktop switcher

Figure 8-2. User’s view of three virtual desktops

kcalc

firefox

OOo

8.3

122 Chapter 8: Session Managers, Desktop Environments, and Window Managers

If the window manager is instead using window positioning to create the virtual
desktop illusion, the window positions will be as shown in Figure 8-4. Windows that
are not on the current desktop are still mapped, but are positioned off-screen.

When the virtual desktop illusion is created by window positions, it is possible to
have the current desktop positioned between virtual desktops, so that parts of two or
more virtual desktops are visible simultaneously (however, this precludes easily set-
ting different backgrounds on each virtual desktop). It’s also possible to have win-
dows span virtual desktops. A window manager in this system has to update the
position of all of the windows when changing desktops. The fvwm2 window man-
ager uses this approach.

If the virtual desktop illusion is created by mapping and unmapping windows, less
information needs to be updated when switching desktops, and it becomes possible
to set the desktop background on a per-desktop basis. This approach is used by the
KDE (kwin) and GNOME (Metacity) window managers; kwin allows the use of per-
desktop background images.

Windows managed on multiple virtual desktops do not take significantly more
resources than windows managed on a single desktop (unless you’re using multiple
background images), but virtual desktops may encourage users to keep more appli-
cations open at one time.

Virtual desktops may be combined with Xinerama (Section 4.2) and
scrolling virtual screens (Section 4.6)—but since each of these tech-
niques alters the user’s perception of the display space, using them
together may overload the user’s mental model of the display and may
leave him disoriented and unproductive.

Figure 8-3. Actual window positions (dotted outlines represent unmapped windows)

Figure 8-4. Actual window position created by positioning windows off-screen

kcalc
firefox

OOo

kcalc

firefox

OOo

8.4

8.4 Starting GNOME 123

8.4 Starting GNOME
GNOME is started through its session manager, gnome-session, which may be
directly called from the command line if the DISPLAY variable has been set to point to
a running X server:

$ gnome-session

When started, gnome-session will look up the current session name in the ~/.gnome2/
session-options file, and then look for that session in ~/.gnome2/session. If that file
can’t be found, gnome-session uses the default session in /usr/share/gnome/
default.session as a system-wide default session definition.

A standard GNOME session includes these standard GNOME clients:

• The window manager (gnome-wm)

• The panel manager (gnome-panel)

• The Nautilus file manager, which also manages desktop icons

• gnome-volume-manager, which monitors the desktop bus (DBUS) for new
devices and media and performs specific actions when they are found (for exam-
ple, mounting a device, starting a media player, or loading images from a
camera)

Other applications may also be started.

GNOME is usually used with the Metacity window manager, but it can be used with
others. In order to provide some flexibility, gnome-wm is a script that can be custom-
ized to use a different window manager. You can select a specific window manager
by placing its name in the WINDOW_MANAGER environment variable, or you can place line
setting that variable near the top of the gnome-wm script:

WINDOW_MANAGER=mwm

Using a window manager other than Metacity or Compiz sometimes
results in a much longer startup time for GNOME.

To start an X server and the GNOME desktop by hand:

$ export DISPLAY=:1
$ X $DISPLAY &
$ gnome-session

You can specify a specific session name by using the --choose-session option:

$ gnome-session --choose-session SessionName

Alternately, you can also specify that the default.session file be used by specifying the
--failsafe option.

8.4

124 Chapter 8: Session Managers, Desktop Environments, and Window Managers

When the user exits from the GNOME desktop, he is presented with a dialog as
shown in Figure 8-5; this dialog may have options for reboot, shutdown, or hiberna-
tion in some cases. The checkbox labeled Save Current Settings controls whether the
session is saved—if that box is checked, and the user clicks the OK button, then
the current clients are queried using XSMP, and the session information is written
to ~/.gnome2/session using the session name supplied with the --choose-session
option (or default, if no name was specified). Otherwise, the contents of ~/.gnome2/
session are not disturbed.

You can edit the default session definition (/usr/share/gnome/default.session) using a
standard text editor. Here is the Fedora version of default.session:

This is the default session that is launched if the user doesn't
already have a session.
The RestartCommand specifies the command to run from the $PATH.
The Priority determines the order in which the commands are started
(with Priority = 0 first) and defaults to 50.
The id provides a name that is unique within this file and passed to the
app as the client id which it must use to register with gnome-session.
The clients must be numbered from 0 to the value of num_clients - 1.

[Default]
num_clients=5
0,id=default0
0,Priority=60
0,RestartCommand=pam-panel-icon --sm-client-id default0
1,id=default1
1,Priority=10
1,RestartCommand=gnome-wm --default-wm gnome-wm --sm-client-id default1
2,id=default2
2,Priority=40
2,RestartCommand=gnome-panel --sm-client-id default2
3,id=default3
3,Priority=40
3,RestartCommand=nautilus --no-default-window --sm-client-id default3
4,id=default4
4,Priority=40
4,RestartCommand=gnome-volume-manager --sm-client-id default4

Figure 8-5. The gnome-session logout dialog

8.4

8.4 Starting GNOME 125

Notice that there are five clients in this session, as indicated by the num_clients entry.
These clients are numbered from 0 to 4, and the client number appears as the first
comma-delimited field on each line.

The clients are started in order based on the Priority entry for each client, with lower-
numbered clients going first. If the Priority is omitted, it defaults to 50. These prior-
ity values are used to ensure that, for example, the window manager starts before the
panel client, so that the virtual desktop switcher applet in the panel (which talks to
the window manager) can initialize without any errors.

The client ID value (defaultN) is a placeholder and will be updated by the SM when
the client registers with it. The id line informs gnome-session about the client ID in
use; the options in the RestartCommand entry pass the same information to the client.
Once the client connects to the SM, the id value is changed to a concatenation of the
IP address, current time, process ID, and a sequence number. This is (in almost all
cases) a globally unique identifier.

The actual command used to start each client is listed in the RestartCommand entry.
It’s called the RestartCommand because the session manager is trying to restore a saved
session by restarting clients that were running in a previous session.

You can easily add entries. For example, to set a system-wide default of starting Evo-
lution when the GNOME desktop starts, append these lines to the end of the file:

5,id=default7
5,Priority=60
5,RestartCommand=evolution --sm-client-id default7

You would also need to change the num_clients entry:

num_clients=6

In order to successfully start GNOME using gnome-session when another session
manager is running—for example, to start GNOME when KDE is already active (not
all that useful, but interesting for testing!)—you will need to remove the SESSION_
MANAGER variable first:

$ unset SESSION_MANAGER
$ gnome-session

Some systems start gnome-smproxy to handle session management for
X11R5 clients (which used a protocol that predates XSMP). This has
been reported to be a source of problems, and it may be a good idea to
disable it—the worst thing that will happen is that X11R5 applica-
tions may not be subject to session management. X11R5 applications
that actually recognize and preserve session information are few and
far between.

8.5

126 Chapter 8: Session Managers, Desktop Environments, and Window Managers

8.5 Starting KDE
KDE uses a very different approach to initialization. Although KDE does have a ses-
sion manager, it does not start many of the KDE components. Instead, most of the
startup sequence is initiated by a script named startkde (imagine that, a KDE pro-
gram that doesn’t start with k!):

$ startkde

Since startkde is a script, you can simply open it in a text editor to read or modify it.

startkde runs through a number of sanity checks, verifying that there is sufficient
temporary disk space available, the home directory is writable, and so forth. Finally,
it starts kdeinit, which starts a number of processes; some of these are normal binary
programs, and some are KDE loadable modules (KLMs). KLMs may load faster than
traditional binaries and are typically found in /usr/lib/kde3.

These are some of the key processes:

kwin
The KDE window manager.

dcopserver
The desktop communication server, which facilitates interprocess communica-
tion between the the various KDE components.

ksmserver
The KDE session manager.

klauncher
The KDE service initializer. This does not start desktop applications, but starts
background services on request.

kcminit
The desktop service launcher. Programs started by kcminit are generally used to
load users’ hardware preferences.

Many of these background processes are like daemons, but are executed once per
active display per logged-in user. In other words, if four users are logged into KDE
desktops, and one of those users is logged in on two displays, then five copies of
these background programs will be executed.

The startkde script will use a different window manager if one is defined in the KDEWM
environment variable. This is useful if you’re starting KDE using startx (Section
2.9)—for example:

$ KDEWM=mwm startx

You can also set this variable near the top of the startkde script itself. This line would
specify mwm as the window manager in place of kwin:

KDEWM=mwm

8.5

8.5 Starting KDE 127

Note that both KDE and GNOME use a full-screen window on top of
the normal root window, and some window managers (such as mwm)
will re-parent that window and add a normal window border, a title
bar, and controls to it. Visually, this is very confusing!

The ksmserver process in turn starts the desktop session, using three sources of
information:

• The files /usr/share/autostart/*.desktop, which follow the format for .desktop files.
The execution of the programs identified in these files may be sequenced using
X-KDE-autostart-after. A program can be started conditionally, based on prefer-
ence settings, using a X-KDE-autostart-condition entry.

• The per-user session files in ~/.kde/share/config/session/.

• The information in ~/.kde/share/config/ksmserverrc, which includes traditional
session management data such as client IDs and the command lines used to
restart clients. This information is cross-referenced by client ID into ~/.kde/share/
config/session/kwin_*.

The /usr/share/autostart/*.desktop files are started regardless of the per-user session
configuration, and these files in turn launch the foundational KDE applications
including kdesktop and the KDE panel manager kicker, as well as less-critical applica-
tions such as ktip (the tip-of-the-day program).

To add an additional program to the standard, system-wide startup sequence, create
an additional desktop file in /usr/share/autostart/. For example, here is a minimal
desktop file to start the Evolution PIM client (yes, Evolution is a GNOME applica-
tion—mix ‘n’ match is one of the joys of X); this file should be saved as /usr/share/
autostart/evolution.desktop:

[Desktop Entry]
Encoding=UTF-8 # Character set used in this file
Name=Evolution # Program name
GenericName=Evolution PIM # Description
Exec=evolution # Command to be executed
Icon=evolution # Icon name
Type=Application # This is an application program
Terminal=false # Don't start in a terminal

If you want this client to start only for a particular user instead of for all users, then
place the file in ~/.kde/Autostart/ instead of /usr/share/autostart, and kdeinit will start
it instead of ksmserver.

Like GNOME, KDE will save the state of the session when the user logs out; how-
ever, the user is not given the option to avoid saving the session (unless she aborts
the session, perhaps by zapping the server; see Section 2.13).

8.6

128 Chapter 8: Session Managers, Desktop Environments, and Window Managers

8.6 Starting Xfce
Xfce is a lightweight desktop environment based on GTK+; it is particularly well
suited to systems with limited resources and to remote access (for example, through
VNC; see Section 14.1). Xfce was originally built on top of the XForms toolkit (not
the web specification!), which was the source of its name.

Xfce is started using the startxfce4 script. Unlike gnome-session or startkde, the
startxfce4 script will attempt to start an X server—via xinit—if one isn’t already run-
ning (which it assumes is the case if the DISPLAY environment variable is unset):

$ startxfce4

startxfce4 does some sanity checks and basic setup, and then starts the session man-
ager xfce4-session.

The user’s session information is taken from ~/.cache/sessions/ if it exists; otherwise,
it’s taken from the [Failsafe Session] section of /etc/xdg/xfce4-session/xfce4-
session.rc.

Here is the default xfce4-session.rc file with the [Failsafe Session] section
highlighted:

Id: xfce4-session.rc 4690 2004-10-06 14:03:11z benny $
#
Default xfce4-session configuration file.
#
Copyright (c) 2003-2004 Benedikt Meurer <benny@xfce.org>
All rights reserved.
#
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
...(comment lines lines snipped)...

[General]
SessionName=Default
SessionName[de]=Standard

Disable management of remote clients by default. The user
has to explicitly enable this for security reasons.
DisableTcp=True

This the default session launched by xfce4-session if the
user hasn't saved any session yet or creates a new session.
[Failsafe Session]
Count=4
Client0_Command=xfwm4
Client0_PerScreen=False
Client1_Command=xfce4-panel
Client1_PerScreen=True
Client2_Command=xftaskbar4

8.7

8.7 Using a Window Manager Alone 129

Client2_PerScreen=True
Client3_Command=xfdesktop
Client3_PerScreen=False

Default splash screen selection.
[Splash Screen]
Engine=mice

The Count entry specifies the number of clients in the session, and each client has two
lines: ClientN_Command, which specifies the command line used to start the client, and
ClientN_PerScreen, which specifies whether the command should be run on each
screen in the display.

To change the default window manager, simply edit the Client0_Command line:

Client0_Command=mwm

To add additional clients to the default session, add additional Client lines:

Client4_Command=evolution
Client4_PerScreen=False

Then change the Count line to reflect the new total:

Count=5

If the user has already saved session information, you can clear it out to force a fail-
safe session to be used at next login:

rm ~user/.cache/sessions/*

Xfce gives the user the option of saving the session when the logout icon on the panel
is clicked, as shown in Figure 8-6. This updates the ~/.cache/session directory.

8.7 Using a Window Manager Alone
Sometimes a full-blown desktop environment can be overkill, particularly on a
machine with limited memory or CPU resources, or when the user will be limited to
a small range of tasks (such as certain kiosk [Section 15.1] designs).

Figure 8-6. Xfce Session logout dialog

8.7

130 Chapter 8: Session Managers, Desktop Environments, and Window Managers

Although there are dozens of window managers available, the granddaddy of them
all is twm, which has been distributed with X since Release 4. twm was the first of the
re-parenting window managers, which wrap each window in a larger window to add
a border and title bar, and its code formed the foundation for many other window
managers.

twm is still distributed with X. Most OS distributions also include additional window
managers; Table 8-1 lists some common ones that are not part of a desktop environ-
ment. Remember that window managers included with desktop environments, such as
kwin and Metacity, can also be used independently of those environments.

When using a window manager by itself, you need to ensure that one or more cli-
ents are automatically started for the user, or that the window manager is configured
with a program-launching menu. Here is a very simple script that will start an X
server along with a window manager and selected clients:

#!/bin/sh
Start an X server with specific clients

=== CONFIGURATION VARIABLES

Table 8-1. Common window managers

Window
manager
(binary) Name

Virtual
desktop
capability Themes Notes

enlightenment Enlightenment Y Y Image-intensive window
manager, evolving into a
desktop environment.

fvwm (fvwm2) F Virtual Window
Manager

Y N No one remembers what
the F stands for (per-
haps “Favorite”?).

icewm IceWM Y Y Designed to be light-
weight and fast.

mwm Motif Window
Manager

N N Available as part of Motif,
OpenMotif, or Lesstif.

twm Tab Window
Manager

N N Original re-parenting
manager. Default opera-
tion is significantly differ-
ent from most other
WMs.

vtwm Virtual Tab Win-
dow Manager

Y N Enhanced version of twm
with virtual desktop
capability.

wmaker WindowMaker Y Y Look and feel similar to
NextStep.

8.7

8.7 Using a Window Manager Alone 131

Display number
NEWDISPLAY=":8"

X server command line (can use Xnest for testing)
Warning!: -ac disables access control
XSERVER="Xnest -terminate -ac"

Window manager binary name (twm, mwm, etc).
WM=mwm

Clients to be started, space-separated
CLIENTS="/usr/bin/evolution /usr/local/bin/firefox"

=== END OF CONFIGURATION VARIABLES

unset SESSION_MANAGER

Start X server
$XSERVER $NEWDISPLAY &

This is performed after server is started in
case we're using Xnest

export DISPLAY="$NEWDISPLAY"

Wait for ports to be opened
sleep 2

Start window manager
$WM&

Start clients
for NAME in $CLIENTS
do
 $NAME&
done

Note that this script has been configured to use Xnest for testing purposes; change
the XSERVER environment variable to make it start a normal hardware-driving X
server:

XSERVER="X -terminate"

Note that the X server won’t terminate until the last client dies—and the last client is
usually the window manager. The default root menu for mwm, for example, includes
an option to exit, which must be selected to exit the X server. If you’re building a
kiosk, you can use a more robust solution (Section 15.10).

You can modify the script above to work as an ~/.xinitrc script, for use with startx
(Section 2.9), if you remove the X server startup:

#!/bin/sh
Start an X server with specific clients

8.7

132 Chapter 8: Session Managers, Desktop Environments, and Window Managers

=== CONFIGURATION VARIABLES

Window manager binary name (twm, mwm, etc).
WM=mwm

Clients to be started, space-separated
CLIENTS="/usr/bin/evolution /usr/local/bin/firefox"

=== END OF CONFIGURATION VARIABLES

Start clients
for NAME in $CLIENTS
do
 $NAME&
done

Start window manager - server will be terminated
when the window manager exits
$WM

Since xinit/startx will shut down the X server when the ~/.xinitrc script terminates,
the last client—in this case, the window manager—should be run in the foreground
(that is, without an ampersand), preventing the script from ending until you exit
from the window manager.

You can test this .xinitrc using Xnest through startx (using display :8 in this
example):

$ startx -- /usr/bin/Xnest -ac :8

To start those clients on a regular X server, leave out the server binary:

$ startx -- :8

Part III

III.Colors, Fonts, and
Keyboards

135

Chapter 9

9
Color

9.1 RGB and Other Color Systems
Almost all modern color computer displays display colors by combining varying
amount of red, green, and blue (RGB) light. These three colors stimulate the eye’s
color receptors and approximate the sensation of viewing various colors; for exam-
ple, orange light with a wavelength of about 600 nm cannot be produced by a com-
puter screen, but emitting a modest amount of green light, a large amount of red
light, and no blue light will provoke a sensation in the eyes of most viewers that will
be indistinguishable from the sensation of viewing orange light.

Throughout X, color is spelled without a u, reflecting the American
origins of the system. However, for those of us raised in Canada, the
U.K., or any of the other commonwealth countries, that u is a hard
habit to break, and it can lead to all sorts of mischief including syntax
errors—so check your u at the door!

Since the perceived colors are created by the addition of three different wavelengths
of light, this RGB color is considered to be an additive color system. The red, green,
and blue colors used are called additive primaries.

Computer printers, on the other hand, use a subtractive color system. The white
paper reflects all visible wavelengths almost evenly; the dyes or pigments deposited
on the paper absorb certain colors, effectively subtracting undesired wavelengths
from the light reflected by the paper. The colors used (subtractive primaries) are the
complements of red, green, and blue: cyan, magenta, and yellow. To make it easier
(and cheaper) to modulate the intensity of light, black is usually also used; since the
color code for black is K, this color system is usually called CMYK (cyan, magenta,
yellow, black).

Color spaces are the mathematical models that allow colors to be represented using a
particular color system. For example, sRGB is a standardized RGB color space

9.2

136 Chapter 9: Color

created in 1995 by HP and Microsoft and endorsed by many companies and organi-
zations for use on consumer computer electronics such as monitors, digital cameras,
and printers. The W3C has endorsed the sRGB standard for use on the Web. (http://
www.w3.org/Graphics/Color/sRGB is referenced in specifications such as the HTML
4.01 at http://www.w3.org/TR/html4/.)

There are many other ways of describing color in addition to the RGB and CYMK
schemes; the International Commission on Illumination, or Commission Internationale
de l’Eclairage (CIE), is the international authority on these matters and has defined
several very precise color spaces.

The range of colors that can be represented by a particular color space is called its
gamut. Disparity between the gamuts of sRGB and CMYK color spaces is a source of
continual frustration to graphic designers and computer artists, because printed
images can never perfectly match screen images.

It’s important to keep in mind that we’re dealing with the perception of color, since
there are few absolutes when dealing with the human eye. Consider a projection
screen: when first unrolled, most people will tell you that the screen is white. But if
you use a video projector to project a presentation slide with a few bright words onto
the screen and ask the viewers what color the background is, those same people will
tell you that the background is black, despite the fact that it is just as brightly lit as
when they said it was white!

9.2 Visuals
When you use xdpyinfo to view the properties of an X server, you will see a number
of visuals listed:

 number of visuals: 80
 default visual id: 0x21
 visual:
 visual id: 0x21
 class: TrueColor
 depth: 24 planes
 available colormap entries: 256 per subfield
 red, green, blue masks: 0xff0000, 0xff00, 0xff
 significant bits in color specification: 8 bits
 visual:
 visual id: 0x22
 class: DirectColor
 depth: 24 planes
 available colormap entries: 256 per subfield
 red, green, blue masks: 0xff0000, 0xff00, 0xff
 significant bits in color specification: 8 bits
...Lines snipped...

These visuals are methods of managing pixel color on the display. There are seven
types of visuals available, as shown in Table 9-1; the number after each visual class

http://www.w3.org/Graphics/Color/sRGB
http://www.w3.org/Graphics/Color/sRGB
http://www.w3.org/TR/html4/

9.2

9.2 Visuals 137

name is the visual class number used by the X protocol. The output from xdpyinfo
shows the visual class along with information about the size of the colormaps, the
order of the RGB color information within the pixel color (controlled by the mask),
and the size of each color component (significant bits).

A colormap (or palette) is a numbered list of colors; a good analogy is that of a paint-
by-number kit, where the number given for each area in the image is looked up in the
colormap to determine the color to paint. In a similar way, the StaticColor and
PseudoColor visuals interpret each pixel’s value in the video framebuffer as a color
number which is looked up in the colormap; the color specified by the red, green,
and blue values in the colormap is drawn on the screen. A StaticColor visual uses
preset colors (such as the 16 VGA colors) while a PseudoColor visual allows the col-
ors to be adjusted.

Changing a PseudoColor colormap entry will cause all pixels that are displayed in that
color to immediately change. This feature is sometimes used by older games to pro-
duce fade-out and flashing effects.

TrueColor and DirectColor visuals store an actual RGB value in the video frame-
buffer. The individual red, green, and blue components are looked up in separate
colormaps, or color lookup tables (CLUT), to determine the value of the signal to
send to the monitor on the screen. TrueColor uses nonwritable colormaps to ensure
linear intensity changes, while DirectColor uses a writable colormap to provide
color-correction capabilities.

Most current desktop and notebook systems use a 24-bit RGB visual (DirectColor/
TrueColor), but small-form-factor devices such as phones, PDAs, and tablets may use
a more restrictive visual due to memory and power constraints.

Table 9-1. X visuals

Monochrome
visual class

Color visual
class

Colormap
details

Typical number
of panes Notes

StaticGray (0) StaticColor (2) Nonwritable 1-16

GrayScale (1) PseudoColor (3) Writable 4-16

— TrueColor (4) Separate map for
each RGB chan-
nel; nonwritable
(linear ramp)

24 Most commonly
used visual on
modern displays

— DirectColor (5) Separate map for
each RGB chan-
nel; writable

24

— ARGB (6) Same as True-
Color

32 Alpha channel
enables variable
transparency;
used with COM-
POSITE extension

9.3

138 Chapter 9: Color

When using 24-bit RGB values on a 32-bit system, multiple (sometimes partial) pix-
els occupy each memory word. This slows write speed by a factor of 75 to 90% and
is so inefficient that many 24-bit systems actually devote 32 bits of framebuffer mem-
ory to each pixel; this wastes 8 bits per pixel (25% of the memory) but significantly
speeds up write operations.

ARGB visuals use that extra 8 bits of data to represent transparency. This informa-
tion is used by the COMPOSITE extension when building the screen image from the
component images.

The default visual class—the class of the root window—is usually determined by the
X server based on the number of bits per pixel, but it can be requested on the X
server command line using the -cc option and a visual class number from
Table 10-1:

$ X -cc 3 -depth 24

In many cases, the X server will ignore the -cc option (or, as the Xserver manpage
politely notes, this option is “Not obeyed by all servers”).

Your X sever may have an astounding number of TrueColor or
DirectColor visuals defined; these are intended for use as OpenGL
contexts.

9.3 Gamma
Cathode ray tubes, which were the first video output devices available and the earli-
est form of computer display monitor, have a nonlinear response to input. Output
luminance is approximately equal to the input value (in the range 0–1) raised to a
power of 2.2 (of course, the monitor’s brightness and contrast controls will also
come into play, offsetting and amplifying this value). The exponent in this transfer
function is called the gamma value.

Non-CRT monitors such as LCD panels, plasma displays, and projectors all process
the input to produce roughly the same gamma curve as a CRT. In order to compen-
sate for the this curve, video cameras are designed with a gamma of approximately
0.4; most digital images (such as those from digital cameras) are also adjusted to
assume a nonlinear output curve.

sRGB assumes an effective monitor gamma of 2.2. If your monitor’s gamma value is
incorrect, images will not be displayed as accurately as possible; gamma correction
can be applied to the X server’s output to compensate.

The XFREE86-VIDMODE Extension enables the dynamic adjustment of the gamma
correction settings. As the name implies, this is an extension that originated with
XFree86 and has been inherited by the X.org project; since this is an extension to the
X11 protocol, not all servers will be equipped with it.

9.3

9.3 Gamma 139

A basic client program for displaying and adjusting the X server’s gamma value is
xgamma. Used by itself, it will display the current gamma correction factors:

$ xgamma
-> Red 1.000, Green 1.000, Blue 1.000

To set the correction factors, use the -gamma option to set the same value for all chan-
nels, or use -rgamma, -ggamma, or -bgamma to adjust just one channel:

$ xgamma -gamma 1.5152
-> Red 2.000, Green 1.000, Blue 1.000
<- Red 1.515, Green 1.515, Blue 1.515
$ xgamma -rgamma 2
-> Red 1.000, Green 1.000, Blue 1.000
<- Red 2.000, Green 1.000, Blue 1.000

The values marked -> show the previous gamma settings; the values marked <- are
the new settings.

Note that the gamma values are passed to the server with three decimal places.

For systems with multiple displays, you can apply a specific gamma correction to a
single display by running xgamma with the -display option. When you’re using a
Xinerama display, you may need to set the gamma for just one monitor, but you
can’t specify the screen in the displayspec (because Xinerama counts all of the physi-
cal screens as part of one logical screen). The -screen option lets you specify the
physical screen to be queried or adjusted:

$ xgamma -display :0.0 -screen 2 -gamma 1.3
-> Red 1.000, Green 1.000, Blue 1.000
<- Red 1.300, Green 1.300, Blue 1.300

Values set with xgamma are temporary—they will be reset when the X server is reset
or restarted. To permanently set the gamma correction factors when using the X.org
server, use a Gamma entry in the Monitor section of the xorg.conf file:

Section "Monitor"
 Identifier "Monitor0"
 VendorName "Samsung"
 ModelName "205BW"
 HorizSync 28.0 - 55.0
 VertRefresh 55.0 - 70.0
 Option "DPMS"
 Gamma 1.21 1.30 1.22
EndSection

The arguments to the Gamma entry are separate red, green, and blue gamma values;
you can instead write a single value that will be applied equally to all channels.

But what values should you set? That’s a difficult question, because the answer
depends on that material being displayed, the monitor hardware, and lighting condi-
tions. In most cases, you’ll want your display’s effective gamma to be around 2.2 (as
defined in the sRGB specification), but it’s hard to know what correction factor will
give that to you.

9.4

140 Chapter 9: Color

To answer this question, Norman Koren has produced a set of web-based charts that
let you test and adjust your monitor’s gamma by eye. These charts are available at
http://www.normankoren.com/makingfineprints1A.html.

The GAMMApage software available from Paul Sherman at http://www.pcbypaul.com/
software/GAMMApage.html uses Norman Koren’s charts to provide an interactive tool
for gamma adjustment.

9.4 Color Management Systems
For most purposes, the color accuracy provided by modern computer systems and
peripherals as shipped from the manufacturer is sufficient. But higher-accuracy color
reproduction is critical for certain types of work, including professional photogra-
phy, graphic design, and fashion. A color management system (CMS) uses a numeric
model of an output device to accurately map between a color space and that device.
The device model is called a profile; the International Color Consortium (ICC) man-
ages and promotes specifications for vendor-neutral, cross-platform color profiles.

In X11R5, the X Color Management System (Xcms) was introduced, based on tech-
nology provided by Tektronics. Xcms was primarily concerned with loading display
color correction tables into the root window properties, and then using these proper-
ties within client programs to adjust the colors drawn on the screen—but Xcms was
poorly documented and never really caught on, and it did not use ICC profiles.

Two open source projects now provide color management capability for X:

Argyll (http://www.argyllcms.com/)
A set of command-line tools for calibrating displays, printers, and scanners, and
for setting the CLUT for displays, as well as client-side libraries for color space
conversion.

LittleCMS (http://www.littlecms.com/)
A very compact color management library designed for use by applications. It
supports color management for displays, printers, and scanners using color pro-
file files, but it does not include tools for generating those profiles.

LittleCMS is used by many open source applications (including CinePaint [Holly-
wood’s version of the Gimp], the Gimp version 2.3 and higher, Scribus, XSane, and
digiKam), and it is becoming the de facto standard for client-side color management.

In most applications that use LittleCMS, color management will be
disabled by default. You will need to enable color management in each
application and select the correct profiles for your devices.

http://www.normankoren.com/makingfineprints1A.html
http://www.pcbypaul.com/software/GAMMApage.html
http://www.pcbypaul.com/software/GAMMApage.html
http://www.argyllcms.com/
http://www.littlecms.com/

9.4

9.4 Color Management Systems 141

Profiles for LittleCMS may be supplied by the manufacturer, loaded from a tool used
in another operating system, or created with Lprof (http://lprof.sourceforge.net/),
which is an open source profile editor that can produce rough monitor profiles using
subjective tests.

To produce very accurate color profiles, you will need a color target (for input cali-
bration—such as scanners and cameras) or a colorimeter (for output calibration—
such as printers and monitors). Color targets are fairly readily available, but colorim-
eters that work with X11-based systems are quite rare. (And, colorimeters are gener-
ally expensive, often costing as much as the monitor or printer being calibrated.)

http://lprof.sourceforge.net/

142

Chapter 10

10
Core Fonts: Fonts the Old Way

10.1 Old Fonts Versus New Fonts
Once of the main differences between Old X and New X (Section 1.3) is the way that
fonts are handled. The old font system is often called Core Fonts, because it manages
fonts using requests defined in the X core protocols (as opposed to extensions; see
Section 1.15). Fonts are managed by the server, and clients instruct the server when
and where to draw each glyph (character image). The actual font information can
come from files accessible to the server or from a font server, and they may be in any
of several different formats.

The problem with core fonts is that they are monochrome only, meaning they are one
color. This produces a staircase effect on diagonal lines called aliasing. The effect is
very visible in the enlarged font sample shown in Figure 10-1, despite the fact that
this font has been designed to minimize diagonal lines (note the use of vertical lines
in the lowercase y character). The effect is particularly pronounced on small fonts or
low-resolution displays.

The solution to aliasing is to use intermediate colors—grays if rendering the font
black-on-white—to smooth out the staircase effect, as shown in Figure 10-2.

The new font system, discussed in Chapter 11, enables the display of antialiased
fonts. Although most modern applications use the new system, there are many leg-
acy applications that use the old font system, and it will be a long time before we’re
in a position to scrap the old in favor of the new.

Figure 10-1. Enlargement of a monochrome font showing aliasing; note the staircase effect on
diagonal lines.

10.2

10.2 Configuring the Font Path 143

This chapter discusses the configuration and installation of core fonts, including:

• Using a font server (Section 10.3)

• Specifying a font by name or by qualities (Section 10.4)

• Installing and removing fonts (Section 10.5)

Adjusting font paths is discussed in Section 11.1.

10.2 Configuring the Font Path
Core fonts are managed by the X server. A font path is used to specify the locations
that should be searched for a particular font. These locations can include locally
accessible directories—either on local storage or mounted across the network—or
font servers on the network (Section 10.3).

If you’re using an X.org server, the initial font path is taken from FontPath entries in
the Files section of the configuration file. Here is an example:

Section "Files"
 ModulePath "/usr/lib/xorg/modules"
 FontPath "unix/:7100"
 FontPath "/usr/share/X11lib/fonts/misc"
 FontPath "/usr/share/X11lib/fonts/TTF"
 FontPath "/usr/share/X11lib/fonts/Type1"
 FontPath "/usr/share/X11lib/fonts/CID"
 FontPath "/usr/share/X11lib/fonts/75dpi"
 FontPath "/usr/share/X11lib/fonts/100dpi"
EndSection

The first entry specifies a font server. The format for font server entries is:

protocol/[host]:port[/catalog]

protocol is the network protocol: unix for Unix domain sockets (local connections)
or tcp for TCP/IP network connections; host is the hostname (blank for Unix
domain sockets); port is the port number (usually 7100); and catalog is the list of
font catalogs or collections to be used, separated by + symbols (the default is to use
all available font catalogs on the font server).

The earlier example, unix/:7100, specifies a font server on port 7100 on the local
computer. The Unix domain socket is /tmp/.font-unix/fs7100. To specify a font server
on the host red, using the standard port number and accessing two catalogs of fonts
named drafting and design, the font server specification would be:

tcp/red:7100/drafting+design

Figure 10-2. Enlargement of an antialiased font. Note the gray pixels smoothing out the image.

10.2

144 Chapter 10: Core Fonts: Fonts the Old Way

The most commonly used font server, xfs, supports only one catalog
named all.

The other FontPath entries in the earlier configuration file specify directory names on
the local filesystem. The directories shown in the example are some of the tradi-
tional ones, used to separate fonts into groups according to type:

75dpi, 100dpi
Bitmapped fonts designed for use with 75-dpi and 100-dpi screens.

TTF or TrueType
Scalable fonts in the Microsoft/Apple TrueType format.

Type1, CID
Scalable fonts in the Adobe Type 1 or Character Identifier (CID) formats. CID is
an enhanced version of Type 1, which is well suited to large character sets.

misc
Various bitmapped fonts, most with character cell spacing (for use with termi-
nal programs) or symbol character sets.

Bitmapped fonts describe each glyph as a pattern of pixels in a particular size, and
cannot be smoothly scaled to other sizes. Scalable fonts describe each glyph as a pat-
tern of lines and arcs (curves) that can be scaled to any desired size and rendered into
a bitmap.

Instead of specifying the font path in the server configuration file, you can specify it
on the X server command line using the -fp option:

$ X -fp tcp/purple:7100

To view the font path on a running server, use the xset command with the -q (query)
option:

$ xset -q
...(Output snipped)...
Font Path:
 /home/chris/.gnome2/share/cursor-fonts,
 unix/:7100,/home/chris/.gnome2/share/fonts,
 /usr/share/X11/fonts/75dpi
...(Output snipped)...

To remove an entry from the font path, use the -fp argument:

$ xset -fp /usr/share/X11/fonts/75dpi/

To add an entry, use +fp (add at the front of the font path—search first) or fp+ (add
at the end of the font path—search last). Some examples are as follows:

$ xset +fp unix/:7100
$ xset fp+ /usr/share/X11/fonts/localfonts/

10.3

10.3 Using a Font Server 145

To ignore the current font path and set a new value, use the fp= argument (note the
space after fp= and the comma between elements):

$ xset fp= unix/:7100,/usr/share/X11/fonts/TT/

10.3 Using a Font Server
Font server technology was added to X so that catalogs of fonts could easily be made
available to large numbers of desktop systems. Large font catalogs can be gigabytes
in size, and centralized font storage can result in significant storage savings over rep-
licated local font storage. The use of a font server for scalable fonts also reduces the
size of the X server, and enables fonts to be rendered in parallel with X server tasks
on a multi-processor system.

Although several font servers have been written, the xfs font server distributed with
X is the one most commonly used. Some operating systems and distributions set up
xfs by default, while others prefer local font directories; for example, Fedora uses xfs,
while SUSE and Debian/Ubuntu install with a file-based configuration.

xfs has a configuration file, usually located at /etc/X11/fs/config. Here is the Fedora
version:

#
xfs font server configuration file
#

allow a max of 10 clients to connect to this font server
client-limit = 10

when a font server reaches its limit, start up a new one
clone-self = on

alternate font servers for clients to use
#alternate-servers = foo:7101,bar:7102

where to look for fonts
catalogue = /usr/share/X11/fonts/misc:unscaled,
 /usr/share/X11/fonts/75dpi:unscaled,
 /usr/share/X11/fonts/100dpi:unscaled,
 /usr/share/X11/fonts/Type1,
 /usr/share/X11/fonts/TTF,
 /usr/share/fonts/default/Type1,

in 12 points, decipoints
default-point-size = 120

75 x 75 and 100 x 100
default-resolutions = 75,75,100,100

use lazy loading on 16 bit fonts
deferglyphs = 16

10.4

146 Chapter 10: Core Fonts: Fonts the Old Way

Log errors via syslog.
use-syslog = on

For security, don't listen to TCP ports by default.
no-listen = tcp

The most important settings are catalogue, which lists the directories searched by
the font server, and no-listen, which disables a network protocol. In this example,
the font server is configured so that it will not listen to TCP/IP, so only local connec-
tions (through Unix domain sockets) are enabled.

To start xfs by hand, simply run it in the background (root privilege is not required):

$ xfs &

If you are going to use xfs in your standard configuration, it is best to enable the xfs
init script, at least for runlevel 5 (and for runlevel 3 if you plan to start X by hand).

The font fixed must be found in order for the X server to start up suc-
cessfully (though recent builds of the X.org server have this font com-
piled in to the server binary). If you specified the font server as the
only source of fonts for the X server, xfs must be started before the X
server in the boot sequence so that the fixed font can be found.

10.4 Font Names
Core fonts are named and selected using the X Logical Font Description (XLFD) syn-
tax. This is a set of 14 fields starting with a dash and separated by dashes; the fields
and their meaning are listed in Table 10-1.

Table 10-1. XLFD font name fields

Field Name Description Example

1 FOUNDRY The name of the organization supply-
ing the font (some fonts are available
in slightly different form from multiple
vendors).

adobe, bitsteam, xfree86

2 FAMILY_NAME The basic font face name. courier, helvetica

3 WEIGHT_NAME A subjective description of the font
weight.

bold, demibold, normal

4 SLANT A slant code; most commonly i for
italic, r for roman (no slant), or o for
oblique.

i, r, o

5 SETWIDTH_NAME A subjective description of the font
width.

semicondensed, normal,
wide

6 ADD_STYLE_NAME Additional subjective font description
text.

sans, ja

10.4

10.4 Font Names 147

You can see the font name for all installed fonts using the xlsfonts command:

$ xlsfonts
-adobe-courier-bold-o-normal--0-0-100-100-m-0-iso10646-1
-adobe-courier-bold-o-normal--0-0-100-100-m-0-iso8859-1
-adobe-courier-bold-o-normal--0-0-100-100-m-0-iso8859-14
...(lines snipped)...
-b&h-luxi serif-medium-r-normal--0-0-0-0-p-0-iso8859-9
-b&h-luxi serif-medium-r-normal--0-0-0-0-p-0-microsoft-cp1252
-bitstream-bitstream charter-bold-i-normal--0-0-0-0-p-0-adobe-standard
-bitstream-bitstream charter-bold-i-normal—0-0-0-0-p-0-iso10646-1
...(lines snipped)...
-sony-fixed-medium-r-normal--24-170-100-100-c-120-jisx0201.1976-0
-sony-fixed-medium-r-normal--24-230-75-75-c-120-iso8859-1
-sony-fixed-medium-r-normal--24-230-75-75-c-120-jisx0201.1976-0
-sun-open look cursor-----0-0-75-75-p-0-sunolcursor-1
-sun-open look cursor-----12-120-75-75-p-160-sunolcursor-1

7 PIXEL_SIZE Body height of the font in pixels, or 0
for scalable fonts.

0, 20, 46

8 POINT_SIZE Body height of the font in decipoints
(1 decipoint equals 1/722.7" or 0.035
mm).

120, 180, 240

9 RESOLUTION_X Integer indicating the horizontal
screen resolution for which the font
was designed in dots per inch, or 0
for scalable fonts.

0, 75, 100

10 RESOLUTION_Y Integer indicating the vertical screen
resolution for which the font was
designed in dots per inch, or 0 for
scalable fonts.

0, 75, 100

11 SPACING P for proportional, M for monospaced,
or C for character-cell (typewriter-
style).

P, C

12 AVERAGE_WIDTH Average (mean) width of all of the
glyphs in the font, in units of 0.1 pix-
els.

95, 240

13 CHARSET_REGISTRY The entity or standard that defines the
character set encoding.

iso8859, microsoft

14 CHARSET_ENCODING A specific character encoding speci-
fied by the entity or standard in
CHARSET_REGISTRY. For example, if
CHARSET_REGISTRY is iso9959 and
CHARSET_ENCODING is 15, then the
font is encoded with ISO 8859-15
(also called Latin-9—used for West-
ern European languages, including
the Euro symbol).

1, 2, 15, cp1252

Table 10-1. XLFD font name fields (continued)

Field Name Description Example

10.5

148 Chapter 10: Core Fonts: Fonts the Old Way

-sun-open look glyph-----0-0-75-75-p-0-sunolglyph-1
...(lines snipped)...
-taipei-ming-medium-r-normal--20-200-75-75-c-200-big5-0
-taipei-ming-medium-r-normal--24-240-75-75-c-240-big5-0
-vga-fixed-medium-r-normal--24-230-75-75-c-120-iso8859-1
-xfree86-cursor-medium-r-normal--0-0-0-0-p-0-adobe-fontspecific

To select a font, create a name that has the desired values in each field; use an aster-
isk for any field you don’t care about. Some examples are shown in Table 10-2.

The easiest way to come up with a font name is to do it interactively using the
xfontsel command:

$ xfontsel

This will display a font selection window as shown in Figure 10-3. Each of the 14
XLFD fields is represented by a pull-down menu containing possible values. As you
select values, incompatible options in other fields are disabled. For example, if you
select bitstream for the foundry, any font families supplied by other foundries—such
as Adobe’s Helvetica and B&H’s Luxi—are disabled (grayed out) in the font family
menu. Clicking on the Select button will make the current font name the PRIMARY
selection so that it can be pasted into another application with the middle mouse
button (Section 5.4).

To use a font by name with an application that uses core fonts, use the application’s
command-line options:

$ xterm -font -bitstream-terminal-medium-*-*-*-18-*-*-100-c-*-iso8859-*

You can also specify the font for Xt-based applications as a resource.

10.5 Installing and Removing Fonts
Both xfs and the X server expect a font directory file named fonts.dir to be present in
each directory of fonts. This font directory is a text file that cross-references font
names to filenames.

Table 10-2. Examples of font name patterns

Description XLFD value

Charter font, medium weight, no slant, 18 point -*-charter-medium-r-*-*-*-180-*-*-*-*-*-*

Helvetica font, bold, oblique (slanted), 24 point -*-helvetica-bold-o-*-*-*-240-*-*-*-*-*-*

Any 14-pixel-tall font with character-cell spacing
(suitable for use with a terminal)

-*-*-*-*-*-*-14-*-*-*-c-*-*-*

Any medium-weight, unslanted, sans-serif font,
12 points tall with proportional spacing and
iso8859-15 encoding

-*-*-medium-r-*-sans-*-120-*-*-p-*-
iso8859-15

Luxi sans font, medium weight, unslanted, scal-
able, Windows1252 encoding

-*-luxi sans-medium-r-*-*-*-0-*-*-*-*-
microsoft-cp1252

10.5

10.5 Installing and Removing Fonts 149

A fonts.dir file for nonscalable fonts can be made directly by the mkfontdir program;
simply run it in a directory containing fonts:

cd /usr/share/X11/fonts/100dpi
mkfontdir

For scalable fonts, it’s necessary to run mkfontscale first, which creates the fonts.scale
file. This file can be checked for accuracy and corrected if necessary (since some scal-
able font files may not contain sufficient information to build an accurate XLFD
name) before mkfontdir is run:

cd /usr/share/X11/fonts/
mkfontscale
mkfontdir

Adding core fonts is simply a matter of copying the font files to a directory, running
mkfontscale (if required), then running mkfontdir.

If the directory is not already in the font path and you’re using a font server, adjust
the configuration file /etc/X11/fs/config and restart the font server; otherwise, add to
the font path through the X server configuration file or xset command:

$ xset fp+ /newfontdirectory

Removing fonts is also straightforward: just delete the unwanted fonts and then run
mkfontscale and mkfontdir.

Figure 10-3. xfontsel core font selection program

150

Chapter 11

11
Pango, Xft, Fontconfig, and
Render: Fonts the New Way

11.1 Client-Side Fonts
Since 2000, font handling has moved from the server to the client, where it is pow-
ered by three components:

RENDER
An X server extension that enables rapid rendering of anti-aliased glyphs (char-
acter pictures)

Fontconfig
A library (and two utilities) for font configuration and matching

Xft or Pango
Libraries that provide high-quality client-side font rendering

Note that fontconfig and Xft/Pango both run on the client side; the server-side piece
of the puzzle, RENDER, simply improves performance—if it is not present, Xft/
Pango will draw text using core protocol requests (which is slower than using
RENDER and also slower than using core fonts, but still fast enough on modern
hardware to provide good user interface response).

Qt3 uses Xft, and GTK+-2 uses Pango for text display; most older toolkits use core
fonts (Section 10.1). A modern desktop system, running a mix of GNOME and KDE
applications, a Mozilla-based browser, and OpenOffice.org will be using the new
rendering libraries almost exclusively for text display.

11.3

11.3 Adding and Removing Fonts Manually 151

11.2 Adding and Removing Fonts Manually
In most configurations, fontconfig scans /usr/share/fonts, one or more of the font
directories in /usr/share/X11/fonts/ and ~/.font when it is initialized at the time an
application starts. Any changes to the fonts contained in those directories are
detected automatically, so adding fonts is simply a matter of placing files into those
directories, and removing fonts is simply a matter of deleting them.

For example, if you have a compressed tar file named /tmp/newfonts.tgz containing
TrueType fonts, and you wish to install these fonts for your own private use, you
could use these commands:

$ cd ~/.fonts
$ tar xvzf /tmp/newfonts.tgz "*.ttf" "*.TTF"

Or, to install those fonts so that they are accessible system-wide:

cd /usr/share/fonts
mkdir newfonts
cd newfonts
tar xvzf /tmp/newfonts.tgz "*.ttf" "*.TTF"

To delete all of your personal fonts:

$ rm -rf ~/.fonts/*

To delete the system-wide fonts just installed:

rm -rf /user/share/fonts/newfonts

Changes will take effect the next time the affected application is started.

11.3 Adding and Removing Fonts Using GNOME
GNOME’s Nautilus file manager has a special URI for viewing and managing fonts.
To access it:

1. Start Nautilus—use the My Computer or Home desktop icons or panel bar
icons, or any folder on the Places menu.

2. Select Open Location... from the File menu in Nautilus, or press Ctrl-L. An
Open Location dialog will appear.

3. Enter the URI fonts:/ and press Enter.

11.3

152 Chapter 11: Pango, Xft, Fontconfig, and Render: Fonts the New Way

You can also access this window by running this command:

$ nautilus fonts:/

The Nautilus font display is shown in Figure 11-1. The appearance will vary depend-
ing on the currently selected view.

The lower- and uppercase letter A of each font are displayed, if the font has those
characters; double-clicking on a font (or right-clicking and selecting Open with
Gnome Font Viewer) will display some basic information about the font—including
the license, file size, and font style—along with an extended font sample
(Figure 11-2).

To install fonts into your personal font directory (~/.fonts), simply drag and drop
them into the Nautilus font display. The fonts may not show up immediately in the
display, but they will be installed.

A personal font can be deleted in the same way that a file is deleted using Nautilus:
drag it from the Nautilus window to the trashcan, or right-click on it and select
“Move to Trash.”

Nautilus does not permit you to install or delete system-wide fonts.
However, Konqueror does (Section 11.4), and it is possible to run
Konqueror within a GNOME session.

Figure 11-1. Fonts display in GNOME’s Nautilus file manager

11.4

11.4 Adding and Removing Fonts Using KDE 153

11.4 Adding and Removing Fonts Using KDE
KDE’s Konqueror file and web browser enables you to view, install, and delete fonts
from both the system-wide font directories and your personal font directory. To
access this mode:

1. Start Konqueror, using the Home or Web Browser panel icons, or the K Menu.

2. Enter fonts:/ into the location field.

You can also access the Konqueror font display by running this
command:

$ konqueror fonts:/

The window will show icons labeled Personal and System; double-click on the group
you wish to see, and the display shown in Figure 11-3 will appear. The appearance
may vary depending on the Konqueror display options you have selected.

Double-clicking on a font presents the KFontView window shown in Figure 11-4,
showing an extended font sample. Clicking on the T icon enables you to change the
sample sentence; the default sentence is a pangram that contains each of the 26 let-
ters in the Latin alphabet.

Figure 11-2. GNOME font viewer

11.4

154 Chapter 11: Pango, Xft, Fontconfig, and Render: Fonts the New Way

Figure 11-3. Konqueror system font display

Figure 11-4. KFontView window

11.5

11.5 Fontconfig Font Names 155

To add fonts, simply drag-and-drop them into the font window. If you drop them
into the system font window, you will be prompted to enter the root password.

To delete a font, treat it like a file: drag-and-drop it onto the trashcan or right-click
and select Delete. As with installation, you will be prompted for the root password if
the font is from the system font window.

You can also install and remove fonts through the KDE Control Panel.

11.5 Fontconfig Font Names
Fontconfig uses a font-naming scheme which is more user friendly than XLFD font
names (Section 11.4). Font names consist of a font family; optionally, you can have a
font size separated from the font family by a dash; and optionally, you can have a list
of additional name and value pairs specifying additional properties, linked by equal
signs and separated by colons.

For matching purposes, you can specify multiple values for the font name or size,
separated by commas; the first matching value will be selected.

Table 11-1 lists some font names expressed using this notation.

For a complete list of font properties that can be used in font names, see the docu-
mentation on the Fontconfig web site at http://fontconfig.org. Note that many of the
properties mentioned in the documentation are not used; on most systems, style is
the only property specified for most of the fonts.

Recent versions of xterm have support for client-side font rendering and can be used
to test a Fontconfig font name. The command-line option to use is -fa (it stands for
font face):

$ xterm -fa utopia:style=italic
$ xterm -fa Helvetica,Arial,Swiss-18

Table 11-1. Fontconfig font names

Font name Meaning

Courier-12 Courier face, 12-point size

Utopia:style=italic Utopia face in Italics

Helvetica,Arial,Swiss-12 Helvetica, Arial, or Swiss face (preferred in that order); 12 point size

Fixed-12,16,10 Fixed face in 12-, 16-, or 10-point size (preferred in that order)

http://fontconfig.org

11.6

156 Chapter 11: Pango, Xft, Fontconfig, and Render: Fonts the New Way

If the selected font does not use character-cell spacing, xterm will add considerable
spacing between characters.

11.6 Fontconfig Utilities
Since Fontconfig is a library, users don’t directly interact with it. However, there are
two helpful little utilities provided with the library: fc-list and fc-cache.

fc-list lists the fonts available through Fontconfig. Executed without any arguments,
it lists all of the fonts to standard output:

$ fc-list
KacstTitle:style=KacstTitle
KacstTitleL:style=KacstTitleL
KacstArt:style=KacstArt
...(Lines snipped)...
Frank Ruehl CLM:style=Bold Oblique
URW Bookman L:style=Demi Bold Italic
Yehuda CLM:style=Light
fxd:style=Bold Italic

Sorting the lines will group them by face:

$ fc-list|sort
Aharoni CLM:style=Bold
Aharoni CLM:style=Bold Oblique
Aharoni CLM:style=Book
Aharoni CLM:style=Book Oblique
...(Lines snipped)...
Yehuda CLM:style=Bold
Yehuda CLM:style=Light

When a font name is provided as an argument, only matching fonts are displayed:

$ fc-list utopia
Utopia:style=Bold Italic
Utopia:style=Bold
Utopia:style=Italic
Utopia:style=Regular

The other utility provided is fc-cache, which generates (or updates) cache files in
each font directory. These files are named fonts.cache and speed the startup of appli-
cations that use Fontconfig. Run this command as root to generate font cache files
for system fonts, or as a user to generate them for the fonts in ~/.fonts:

fc-cache
$ fc-cache

11.8

11.8 Installing the Microsoft Fonts 157

11.7 Installing the Microsoft Fonts
Web pages and documents created on Microsoft systems often use fonts that are dis-
tributed with Windows. For a time, Microsoft made these fonts available free of
charge on its web site; although they are no longer available directly from Microsoft,
you can get them from Fontconfig.org under Microsoft’s fairly simple licensing
terms. So, if your distribution does not include these fonts, you can easily add them.

Installing these fonts makes it possible to view Word and Excel documents and web
pages created under Windows as they were originally designed. Mozilla, Firefox,
OpenOffice, and other applications can all use these.

Before installing these fonts, you need to review and agree to the terms of the license
agreement at http://fontconfig.org/webfonts/Licen.TXT, and you also need to obtain a
copy of the cabextract program to extract the fonts from archives created in
Microsoft’s proprietary CAB format. cabextract can be found in many repositories,
or it can be obtained directly from the project web page: http://www.kyz.uklinux.net/
cabextract.php.

Once you’ve agreed to the license terms and installed cabextract, download and
install the fonts:

wget http://fontconfig.org/webfonts/webfonts.tar.gz
tar xvzf webfonts.tar.gz
cd msfonts
cabextract *.exe
mkdir /usr/share/fonts/microsoft
cp *.[tT]* /usr/share/fonts/microsoft
cd ..
rm -rf msfonts
fc-cache

11.8 Rendering Options
Font rendering can be tuned to adjust the amount of CPU time used and to suit user
preferences and the display hardware in use. Although Fontconfig permits configura-
tion of rendering using /etc/fonts/local.conf, rendering is usually configured through
GNOME or KDE.

The GNOME configuration window is accessed from the menu entry Desktop ➝

Preferences ➝ Font and is shown in Figure 11-5. The KDE rendering configuration
panel is accessed through the KDE Control Panel under Appearance & Themes ➝

Fonts and is shown in Figure 11-6.

http://fontconfig.org/webfonts/Licen.TXT
http://www.kyz.uklinux.net/cabextract.php
http://www.kyz.uklinux.net/cabextract.php

11.8

158 Chapter 11: Pango, Xft, Fontconfig, and Render: Fonts the New Way

In both cases, you can enable or disable antialiasing, adjust the level of antialiasing
hinting, and set subpixel order.

On an older system with a slow CPU and/or low memory resources, turning off anti-
aliasing can make enough of a performance difference to turn an unbearably slow
system into one that performs reasonably.

When antialiasing is enabled, the hinting level can be set according to user preference.

Subpixel hinting is, by and large, useful only on LCDs. It involves treating each of
the RGB color elements in a pixel as a partial pixel. Figure 11-7 shows an enlarged
diagonal line border between black and white regions on an LCD screen, rendered
using subpixel hinting.

Figure 11-5. GNOME font rendering preferences tool

11.8

11.8 Rendering Options 159

Note that each pixel is comprised of a red, green, and a blue element; on this dis-
play, they are arranged horizontally in R-G-B order. In the first row, there is one
white pixel. In the second row, there is a white pixel followed by one-third of a white
pixel—which, in this case, means a red pixel. The third row consists of a white pixel
followed by two-thirds of a pixel—a red and green pixel, which displays as yellow.
The fourth row contains two white pixels.

It seems odd that a color pixel would be perceived as a partial pixel, but it works
because the color pixel is a continuation of the R-G-B element pattern on the line.

Figure 11-6. KDE font rendering preferences tool

11.8

160 Chapter 11: Pango, Xft, Fontconfig, and Render: Fonts the New Way

In order for subpixel hinting to work properly, the font renderer needs to know the
arrangement of the subpixel elements on the display. This information is not docu-
mented for most LCD monitors, so the only way to determine the correct value is by
using a large magnifying glass, or (more commonly) by experimenting to see what
looks best.

Figure 11-7. Subpixel hinting on an LCD panel

R G B

R G B

R G B

R G B

R G

R

R G B

161

Chapter 12

12
Keyboard Configuration

12.1 Keyboards and XKB
Keyboard configuration is a more complicated issue than it might at first appear.
There are many different keyboards sold, each with a different number or arrange-
ment of keys. Each of these keyboard models may be sold in different markets, with
different key caps installed, and users may want their keyboard to operate in specific
ways.

Together, this means that there are thousands of possible keyboard configurations.
The XKB extension tries to simplify this by combining a small number of keyboard
selection parameters to compose a particular configuration. The final configuration
is called a keyboard map.

In addition to keys that type characters or perform actions directly, a keyboard map
almost always includes modifiers—such as Alt, Ctrl, and Shift—which change the
operation of the other keys. It may also contain dead keys, which don’t actually type
anything but cause the following character to be accented, so that pressing ´ by itself
doesn’t type an apostrophe (unless you type it twice), but pressing ´ then A types á.

The keyboard map can also include a compose key, which is pressed before a two-
key sequence to generate special characters (for example, pressing Compose-/-C
yields the cent symbol [¢]; Compose-O-R yields the registered trademark symbol
[®]; and Compose-comma-C yields a C with cedilla [Ç]).

In these days of international communication, many users need to communicate in
more than one language, so many keymaps have more than one keyboard group
defined, with a key or key combination to temporarily switch or to cycle through the
groups. Each keyboard group corresponds to one layout. Keyboard LEDs (particu-
larly the ScrollLock LED) may be assigned to indicate the current group.

To load a keymap into the X server, you need to know how to specify that keymap
(Sections 12.3 and 12.4), and you need to know how you can use that specification
in a file or as command arguments (Sections 12.6, 12.7, and 12.8).

12.2

162 Chapter 12: Keyboard Configuration

XKB has a special reputation in the X world for being under-
documented. This reputation is not wholly deserved—there are other
components of X that have less documentation—but for such a
sophisticated system, the documentation is definitely thin.

12.2 The Location of XKB Files
XKB data is stored in a large number of files located in a directory tree. That tree may
be located in any one of several different locations, as described next:

• In systems up to X11R6.9, the XKB data is usually in /usr/X11R6/lib/X11/xkb.

• In Debian and Ubuntu Linux, it is in /etc/X11/xkb.

• In SUSE and Fedora Linux, it is in /usr/share/X11/xkb.

12.3 XKB Components
XKB keymaps are compiled from five components:

keycodes
Provides a description of the scancodes that the hardware can produce. On PCs,
these codes are fairly standard, but other (and older) hardware families—such as
those produced by Unix workstation vendors—may use very different scancode
values.

types
Configures the modifiers that work with various key types. For example, this
component configures the NumLock modifier to work with the keys on the
numeric keypad—but the NumLock modifier has no effect on alphabetic keys.
Each type of key (alphabetic, keypad, function key, and so forth) may have mul-
tiple levels accessed by various combinations of modifiers; for example, alpha-
betic keys on U.S. layouts produce different characters on each of two levels
(unshifted and shifted) and have additional meaning when used with Ctrl or Alt
modifiers. Many European layouts have an additional levels accessed with the
AltGr (alternate graphic) modifier, which is not present in U.S. layouts.

compat
Configures compatibility handling for programs that are not aware of the XKB
extension. By now, almost all programs in widespread use are XKB-aware.

symbols
Defines the key symbol produced by the current keyboard state (a combination
of group, modifiers, and preceding keystrokes) and current keystroke.

geometry
Describes the physical layout of the keyboard. This information may be used to
draw a picture of the keyboard for documentation or an on-screen representa-
tion of the keyboard (which is useful for a very few applications such as typing
tutorials). The geometry information is used by very few clients.

12.4

12.4 Selecting an XKB Keymap Using Rules 163

Each component is specified by a filename or by a filename followed by a section name
in parentheses. For example, the default keymap for the X.org server is defined as:

keycodes: xfree86+aliases(qwerty)
types: complete
compat: complete
symbols: pc(pc105)+latin
geometry: pc(pc105)

It’s really tedious to determine which component values should be used, so XKB pro-
vides a rule-based system (Section 12.4) that combines more natural criteria deter-
mine the components to be used.

12.4 Selecting an XKB Keymap Using Rules
Rule-based keymap selection is much easier and more common than component-
based selection. Rule-based selection uses five parameter values: Rules, Model,
Layout, Variant, and Option.

The Rules value dictates the possible values for each of the other four parameters.
For example, if the Rules value is sun, you can specify the Model type4, but that
model name is not available if you are using the xorg rules.

The five parameters are described here:

Rules
Selects the rules used to compose the keyboard map based on the other para-
meters. The possible values for this parameter are listed in the text file rules/
rules.lst or the multilanguage XML file rules/rules.xml (typically xorg.lst and
xorg.xml). The .lst (or .xml) files are an essential reference when configuring a
keyboard using XKB. As distributed, the possible values for this parameter are
xorg (or base, the default), sun, sgi, and xfree98 (for computers that conform to
the Japanese PC98 standard). XFree86 systems use the value xfree86 in place of
xorg.

Model
Indicates the actual keyboard model installed. There are generic model numbers
(such as pc105) for run-of-the-mill keyboards, and special model numbers for
specific multimedia, wireless, and ergonomic keyboards.

Layout
Specifies the arrangement of keys on the keyboard. Usually, this corresponds to
the labels on the physical key caps, but this is not a hard rule—you can use a
French keyboard with a German layout, for example. The layout also specifies
how modifiers work (such as Shift, Alt, and Ctrl), the operation of any dead
keys, and the location of the compose key (if any).

12.4

164 Chapter 12: Keyboard Configuration

Variant
Selects variations on the keyboard layout. This is commonly used to enable or
disable deadkeys or use modified layouts (such as Dvorak).

Options
Applies options to the keyboard, such as special modifier behavior, compose
keys, and keys and indicators for switching between layout groups.

To find available values, look in the .lst file. Here is the top of rules/xorg.lst:

! model
 pc101 Generic 101-key PC
 pc102 Generic 102-key (Intl) PC
 pc104 Generic 104-key PC
 pc105 Generic 105-key (Intl) PC
 dell101 Dell 101-key PC
 dellm65 Dell Precision M65
 everex Everex STEPnote
 flexpro Keytronic FlexPro
 microsoft Microsoft Natural

The line starting with! identifies the section for a particular parameter: model in this
case. The first word on each of the following lines is a possible value for that parame-
ter, and the rest of the line is a comment describing that value. Therefore, a value of
pc105 for the XKB model parameter specifies a generic 105-key PC keyboard.

The same data is present in rules/xorg.xml, with translations of the descriptions. This
is the top of the file, with some translations removed:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE xkbConfigRegistry SYSTEM "xkb.dtd">
<xkbConfigRegistry>
 <modelList>
 <model>
 <configItem>
 <name>pc101</name>
 <description>Generic 101-key PC</description>
 <description xml:lang="af">Generies 101-sleutel PC</description>
 <description xml:lang="fr">PC générique 101 touches</description>
 <description xml:lang="hu">általános 101 gombos PC</description>
 <description xml:lang="it">Generica 101 tasti PC</description>
 <description xml:lang="nl">Algemeen 101-toetsen PC</description>
...lines snipped...
 </configItem>

The XML file can be easily parsed by a GUI configuration program, but it is so ver-
bose that it’s hard to browse by hand, so the .lst may be better for direct reading.

In addition to the model values, the .lst and .xml files contain values for the Layout,
Variant, and Option parameters. This is the top part of the Layout section:

! layout
 us U.S. English
 ad Andorra

12.4

12.4 Selecting an XKB Keymap Using Rules 165

 af Afghanistan
 ara Arabic
 al Albania
 am Armenia
 az Azerbaijan
 by Belarus
 be Belgium
 bd Bangladesh
 in India
 ba Bosnia and Herzegovina
 br Brazil
 bg Bulgaria
 mm Myanmar
 ca Canada
...lines snipped...

The value in the first line, us, is the default layout. Obviously, there are multiple lay-
outs that may be used in the United States, or Brazil, or Canada; these Layout values
specify only the default layout, which is usually the most common. To specify
another layout, the Variant parameter is added:

! variant
 intl us: International (with dead keys)
 alt-intl us: Alternative international (former us_intl)
 dvorak us: Dvorak
 dvorak-l us: Left handed Dvorak
 dvorak-r us: Right handed Dvorak
 rus us: Russian phonetic
 ps af: Pashto
 uz af: Southern Uzbek
 azerty ara: azerty
 azerty_digits ara: azerty/digits
 digits ara: digits
 qwerty ara: qwerty
...lines snipped...

In this section of the file, the second column specifies the layout with which each
variant may be used. For example, the dvorak variant will work with the us layout,
but not the af layout.

The variant parameter is optional, and defaults to no variant.

The last section of the .lst file contains possible values for the Option parameter. Here
are some common option values from the xorg.lst file:

! option
...lines snipped...
 ctrl Ctrl key position
 ctrl:nocaps Make CapsLock an additional Ctrl.
 ctrl:swapcaps Swap Ctrl and CapsLock.
 ctrl:ctrl_ac Ctrl key at left of 'A'
 ctrl:ctrl_aa Ctrl key at bottom left
 ctrl:ctrl_ra Right Ctrl key works as Right Alt.
...lines snipped...

12.5

166 Chapter 12: Keyboard Configuration

 Compose key Compose key position
 compose:ralt Right Alt is Compose.
 compose:rwin Right Win-key is Compose.
 compose:menu Menu is Compose.
 compose:rctrl Right Ctrl is Compose.
 compose:caps Caps Lock is Compose.
...lines snipped...

Option values can be specified as a comma-delimited list, so ctrl:nocaps,compose:
menu would configure the CapsLock key as an additional control key and the Menu
key as a compose key.

12.5 Using Keyboard Groups
In today’s globally connected environment, many users need to enter text in two or
more languages, and these languages often require different keyboard layouts. XKB
accommodates this need by providing up to four keyboard layout groups, along with
mechanisms to switch between them and to indicate which group is active. Each
group is effectively a keyboard layout that may be selected on-the-fly.

Groups are specified by listing multiple comma-delimited values for the layout and
variant parameters. For example, these parameters specify group 1 as the interna-
tional (intl) variant of the us layout, and group 2 as a ca (Canadian) layout with no
variant:

rules: xorg
model: pc105
layout: us,ca
variant: intl,

The option parameter is used to specify which keys are used to switch between
groups. These are the possible switching keys listed in the xorg.list file:

grp:switch R-Alt switches group while pressed.
grp:lswitch Left Alt key switches group while pressed.
grp:lwin_switch Left Win-key switches group while pressed.
grp:rwin_switch Right Win-key switches group while pressed.
grp:win_switch Both Win-keys switch group while pressed.
grp:rctrl_switch Right Ctrl key switches group while pressed.
grp:toggle Right Alt key changes group.
grp:lalt_toggle Left Alt key changes group.
grp:caps_toggle CapsLock key changes group.
grp:shift_caps_toggle Shift+CapsLock changes group.
grp:shifts_toggle Both Shift keys together change group.
grp:alts_toggle Both Alt keys together change group.
grp:ctrls_toggle Both Ctrl keys together change group.
grp:ctrl_shift_toggle Ctrl+Shift changes group.
grp:ctrl_alt_toggle Alt+Ctrl changes group.
grp:alt_shift_toggle Alt+Shift changes group.
grp:menu_toggle Menu key changes group.
grp:lwin_toggle Left Win-key changes group.
grp:rwin_toggle Right Win-key changes group.

12.6

12.6 Setting the Keymap in the xorg.conf File 167

grp:lshift_toggle Left Shift key changes group.
grp:rshift_toggle Right Shift key changes group.
grp:lctrl_toggle Left Ctrl key changes group.
grp:rctrl_toggle Right Ctrl key changes group.

Note that the values marked with switch select group 2 while pressed, switching
back to group 1 when the keys are released. This makes them usable only for 2-group
configurations where group 1 is in effect most of the time. Entries marked toggle
step through the available groups; if only two groups are defined, then toggle keys
act like CapsLock—press once to switch, press again to switch back.

Since the Windows and Menu keys are often unused, they make good
choices for switch or toggle keys. If you do not need to write in all-
caps, the CapsLock key may also make a good toggle.

There are also options to display the group status on keyboard LEDs:

grp_led:num NumLock LED shows alternative group.
grp_led:caps CapsLock LED shows alternative group.
grp_led:scroll ScrollLock LED shows alternative group.

Since the ScrollLock LED rarely displays useful information, it is a good candidate
for a group indicator.

Unfortunately, the LEDs operate very simply: they are off when group 1 is active,
and on when any other group is active—it’s not possible to determine from the LEDs
whether the alternative group is 2, 3, or 4.

A bug in some versions of the X.org server causes a new group LED
setting to be added to a previous group LED setting instead of replac-
ing it. For example, if you specify grp_led:scroll and later specify
only grp_led:caps, then both the ScrollLock and CapsLock LEDs will
light together when group 2, 3, or 4 is active.

To select the menu key as the group toggle and the ScrollLock LED as the group
indicator, specify both option values in a comma-separated list:

rules: xorg
model: pc105
layout: us,ca
variant: intl,
option: grp:menu_toggle,group. grp_led:scroll

12.6 Setting the Keymap in the xorg.conf File
If you’re using the X.org server, the XKB keymap may be specified in the keyboard
InputDevice section of the xorg.conf file, using a series of Option directives. Each
options name is a concatenation of Xkb and a component or parameter name.

12.7

168 Chapter 12: Keyboard Configuration

To specify an XKB keyboard map using rules, any combination of XkbRules,
XkbModel, XkbLayout, XkbVariant, and XkbOption options may be specified:

Section "InputDevice"
 Identifier "Keyboard0"
 Driver "kbd"
 Option "XkbRules" "xorg"
 Option "XkbModel" "pc105"
 Option "XkbLayout" "us,ca"
 Option "XkbVariant" "intl,"
 Option "XkbOption" "grp:menu_toggle,grp_led:scroll"
EndSection

You may also specify the keymap using components, using the XkbKeycodes,
XkbTypes, XkbCompat, XkbSymbols, and XkbGeometry option names:

Section "InputDevice"
 Identifier "Keyboard0"
 Driver "kbd"
 Option "XkbKeycodes" "xfree86+aliases(qwerty)"
 Option "XkbTypes" "complete"
 Option "XkbCompat" "complete+ledscroll(group_lock)"
 Option "XkbSymbols" "pc(pc105)+us(intl)+ca:2+group(menu_toggle)"
 Option "XkbGeometry" "pc(pc105)"
EndSection

12.7 Setting the Keymap from the Command Line
The setxkbmap command enables you to change the keymap at any time. The
options -rules, -model, -layout, -variant, and -option are used to specify the
parameters:

$ setxkbmap -rules xorg -model pc105 -layout us,ca -variant intl, \
 -option grp:menu_toggle,grp_led:scroll

If you specify the -v option, setxkbmap will print a list of the components used:

$ setxkbmap -rules xorg -model pc105 -layout us,ca -variant intl, \
 -option grp:menu_toggle,grp_led:scroll
keycodes: xfree86+aliases(qwerty)
types: complete
compat: complete+ledscroll(group_lock)
symbols: pc(pc105)+us(intl)+ca:2+group(menu_toggle)
geometry: pc(pc105)

If you want only to see the components listed and do not wish to actually set the key-
board map, use the -print option. The output will be formatted for input to
xkbcomp, which is the keymap compiler (Section 12.9):

$ setxkbmap -print -rules xorg -model pc105 -layout us,ca -variant intl, \
 -option grp:menu_toggle,grp_led:scroll
xkb_keymap {
 xkb_keycodes { include "xfree86+aliases(qwerty)" };
 xkb_types { include "complete" };

12.9

12.9 Setting the Keymap Using a Keyboard Configuration File 169

 xkb_compat { include "complete+ledscroll(group_lock)" };
 xkb_symbols { include "pc(pc105)+us(intl)+ca:2+group(menu_toggle)" };
 xkb_geometry { include "pc(pc105)" };
};

You can also configure the keymap using components. Using the values from the
output above, the xkbsetmap command would look like this:

$ setxkbmap -keycodes "xfree86+aliases(qwerty)" \
 -types "complete" \
 -compat "complete" \
 -symbols "pc(pc105)+us(intl)+ca:2+group(menu_toggle)" \
 -geometry "pc(pc105)"

12.8 Setting the Keymap Using a Keyboard
Configuration File

One xorg.conf configuration file may be shared between several server instances: for
example, on a Linux system, you can start two (or more) X servers running on differ-
ent virtual terminals and switch between them. You may want to use a common
xorg.conf file for both servers, but specify different keyboard configurations.

You can do this by creating a per-server keyboard configuration file. These files are
placed in the root of the XKB tree (Section 12.2) and are named d-config.keyboard,
where d is the display number—so the configuration file for display :0 would be /etc/
X11/xkb/X0-config.keyboard or /usr/share/X11/xkb/X0-config.keyboard.

This file contains name and value pairs, one per line, delimited by equal signs. The
names may be component names or parameter names. For example:

rules = xorg
model = pc105
layout = us
variant = intl

Each keyboard configuration file may also specify how AccessX controls work as well
as explain that some parameters are usually adjusted using xset (Section 6.4), such as
the bell pitch and volume and the keyboard repeat rate, but these are rarely used.

Many of XKBs features are poorly documented, but the keyboard con-
figuration file is probably the worst—it is really documented only in
the XKB source code. Ivan Pascal has made some notes about this fea-
ture at http://pascal.tsu.ru/en/xkb/config.html.

12.9 Compiling Keyboard Maps
XKB keyboard maps are compiled before use. Generally, the X server calls the
xkbcomp program to compile the map based on information that either is in the

http://pascal.tsu.ru/en/xkb/config.html

12.10

170 Chapter 12: Keyboard Configuration

server configuration file, in the keyboard configuration file, or passed to the server
from setxkbmap.

The manpage for setxkbmap notes that it may fail if it is run on a system that has dif-
ferent XKB components than the server does, because xkbcomp may not find the
components specified by setxkbmap. In that case, you may run xkbcomp on the cli-
ent side:

$ setxkbmap -layout ca -print | xkbcomp - $DISPLAY

This will automatically upload the keymap to the server after compilation.

It is also possible to save a compiled keymap—but this is depreciated in favor of
rules-based configuration.

12.10 Viewing or Printing a Keyboard Layout
If you’re using a keyboard layout that doesn’t match they physical keycaps on your
keyboard, it may be useful to print (or view) a picture of the layout. The xkbprint
program uses the XKB geometry component to generate Postscript or Encapsulated
Postscript images of keyboard layouts.

The simplest way to run xkbprint is to provide a displayspec for the keymap source
as well as a destination filename:

$ xkbprint $DISPLAY keyboard.ps

This will generate a single Postscript file containing an image of the first two levels of
the first keyboard group, as shown in Figure 12-1.

Figure 12-1. xkbprint output with no options, loading the keymap directly from the X server

12.10

12.10 Viewing or Printing a Keyboard Layout 171

If you defined more than two levels, use the -ll option to select the starting level;
this is most commonly used to specify that the image should start with level 3, which
causes the third and fourth level to be included:

$ xkbprint -ll 3 $DISPLAY keyboard.ps

In a similar way, you can select the starting group with -lg:

$ xkbprint -lg 2 $DISPLAY keyboard.ps

When reading the keymap from the server, xkbprint will show only one keyboard
image. However, if you use a compiled keymap as input, xkbprint will draw multiple
keyboard groups as separate images, which is usually ideal for a reference sheet. You
can obtain the current keymap from the server and place it in a file using xkbcomp:

$ xkbcomp -xkm $DISPLAY -o keymap.xkm
$ xkbprint keymap.xkm keyboard.ps

The output is shown in Figure 12-2.

Figure 12-2. xkbprint output from a keyboard map file loaded from the X server

12.10

172 Chapter 12: Keyboard Configuration

An additional page can be generated, showing the keyboard layout of the third and
fourth levels, shown in Figure 12-3.

$ xkbprint -ll 3 keymap.xkm keyboard.ps

Figure 12-3. xkbprint output from a compiled keymap file, showing levels 3 and 4

Part IV

IV.Using X Remotely

175

Chapter 13

13
Remote Access

13.1 Network Transparency
The manpage for X calls it a portable, network-transparent window system. The
phrase network-transparent refers to the location-independence of the clients and
server—the client may be on the same machine as the server or on machines spread
all over the planet, as long as he has a network connection to the server.

In this chapter, we’ll examine how to use remote clients and entire sessions, and the
security and performance implications involved in remote access.

Remote access always involves two or more hosts, and when discussing this topic, it
can be easy to confuse which machine is which. Throughout this chapter, I’ve
adopted the convention of calling the computer on which the X server is running
blue, and the computer on which the remote client is running red. The machine
name is embedded into the shell prompt in the examples: blue$ is the shell prompt
for the X server machine, and red$ is the shell prompt for the client machine.

As virtualization and partitioning technologies such as Xen, Solaris
compartments, and VMware grow into widespread use, X’s network
transparency gains new value. The ability to display windows from dif-
ferent machine partitions side-by-side on one display provides an
important productivity boost for system administrators.

13.2 Displaying on a Remote Server
Causing an X client to display on a remote server is fairly straightforward: simply use
the displayspec (Sections 1.12 and 7.1) to point to the desired server when starting
the client.

Let’s assume that the X display number on blue is :0 and the client you want to run
on red is xclock.

13.3

176 Chapter 13: Remote Access

For ease of experimentation, turn off access controls on blue—of course, don’t do
this on a production machine without understanding the consequences:

blue$ xhost +
access control disabled, clients can connect from any host

Now the client can simply be started on red, using the displayspec blue:0:

red$ xclock -display blue:0

The xclock window will appear on blue’s display.

For this to work, you may need to check your firewall settings, both
on your router/switch and on the host running the X server. On a
Linux system, iptables -L will show you the current firewall rules; you
can configure the settings with your distribution’s tools (such as lokkit
or Yast) or use the iptables command.

Telling a client to display across the network in this way does not address any of the
three remote access challenges (Section 13.7): no attempt is made to reduce network
bandwidth or latency requirements, no authentication is performed, and the data can
be readily intercepted on the network.

SUSE uses KDM as the default display manager and has configured it
so that the local X servers accept connections only through Unix
domain sockets and not through TCP/IP. This prevents the use of
remote clients. To enable remote connections, remove the -nolisten
tcp options from /opt/kde3/share/config/kdm and restart KDM.

13.3 Enabling Remote Sessions
Display managers—such as XDM, GDM, and KDM—manage local X displays, but
are also capable of managing remote displays through a protocol called X Display
Manager Control Protocol (XDMCP).

XDMCP enables a user to remotely log in to a server using a graphical authentica-
tion dialog. After the user has logged in, a normal session is started (including the
window manager, desktop environment, and so forth), as though the user was using
a local X server.

XDMCP uses both TCP and UDP on port 177. It is disabled by default in most distri-
butions and must be enabled before remote session can be used; the procedure to
enable it varies according to the display manager in use.

13.3

13.3 Enabling Remote Sessions 177

XDM
XDMCP is enabled or disabled by an entry in the xdm-config file (typically located at
/etc/X11/xdm/xdm-config). The entry of interest is DisplayManager.requestPort, usu-
ally configured like this:

DisplayManager.requestPort: 0

To enable XDMCP, change the port number to 177:

DisplayManager.requestPort: 177

You should also check your Xaccess file (usually /etc/X11/xdm/xaccess) to ensure that
it has two lines like this:

*
* CHOOSER BROADCAST

The first line enables any X server to connect directly to this XDMCP server (Section
13.4), and the second line enables indirect queries (Section 13.6).

Finish by restarting XDM.

KDM
KDM uses the kdmrc file (usually /etc/X11/xdm/kdmrc or /opt/kde3/share/config/kdm/
kdmrc) to control remote sessions. In this file, there is an [XDMCP] section, which typi-
cally looks like this:

[Xdmcp]
Enable=false

To enable XDMCP, simply change the value to true:

[Xdmcp]
Enable=true

The Xaccess file must be set up in the same way as for XDM.

Finally, restart KDM.

GDM
GDM’s support for remote sessions is controlled by an entry in the [xdmcp] section of
the local GDM configuration file (/etc/gdm/gdm-custom.conf or /etc/X11/gdm/
custom.conf):

[xdmcp]
Enable=false
HonorIndirect=false

13.4

178 Chapter 13: Remote Access

To enable XDMCP, change the Enable line to true; it’s also recommended that you
enable HonorIndirect so that you can use indirect queries (Section 13.6):

[xdmcp]
Enable=true
HonorIndirect=true

Then restart GDM.

13.4 Accessing a Remote Session on a Specific
Host

To access a remote session, command-line options are passed to the X server, which
cause it to contact a remote system using XDMCP. The remote system, in turn, will
draw an authentication screen using the standard X protocol.

To access a remote session on red using an X server on blue, start the X server with
the option -query red:

blue$ X :8 -query red

The X server will attempt to contact the XDMCP server on red, and if successful, a
session login prompt will appear on the display. This is called a direct query because
a specific XDMCP server is contacted directly.

The advantage of directly querying a host in this way is that less network traffic is
generated than when using the broadcast (Section 13.5) or indirect (Section 13.6)
mechanisms.

13.5 Accessing a Remote Session on Any
Available Host

Querying a specific host for a remote session works fine as long as you know the
name of the host and that host is up—but if you’re a guest on a network, or you
want to connect to any of several hosts that provide similar services, you’ll want to
use a broadcast query.

This is even simpler to do than direct queries; just use the -broadcast option on the
X server command line:

blue$ X :8 -broadcast

The X server will perform a XDMCP broadcast using UDP and present a session
authentication prompt from the first server that responds.

This approach is particularly useful for load balancing. You can set up a bank of
servers with identical services and files (typically sharing the home directories using
NFS) and configure all of your users to connect using XDMCP broadcasts. Available

13.6

13.6 Accessing a Remote Session from a List of Available Sessions 179

servers only will respond; any server that is down or heavily loaded will not respond
to broadcast requests.

The downside to this approach is that every X server will broadcast an XDMCP
query, and every XDMCP server will respond. If you have 1,000 X servers and 50
XDMCP servers and the desktops are all turned on between 8:55 and 9:05 in the
morning, there will be 1,000 broadcast queries and up to 50,000 replies in a 10-
minute period. That would not be overwhelming to most networks but it is a signifi-
cant amount of traffic.

13.6 Accessing a Remote Session from a List
of Available Sessions

There is a compromise approach between direct XDMCP queries (Section 13.4) and
XDMCP broadcasts (Section 13.5): a single host is designated as the host that
decides which X server should connect to which XDMCP server. By default, that one
system will broadcast a query to the network and present a graphical chooser to the
user. When the user selects one of the available hosts, the X server and XDMCP
server directly communicate, and the user is presented with an authentication dialog.

This technique is called an indirect query and is invoked with the -indirect host
option on the X server command line. If the indirect host is red, you can send it an
indirect query like this:

blue$ X :8 -indirect red

The appearance of the chooser display—the menu from which the user selects a
host—varies according to the display manager in use on the indirect host. Figures
13-1 through 13-3 show the appearance of the standard choosers from XDM, GDM,
and KDM hosted on a Fedora system.

Notice that in each case, the user is able to select a host by clicking on it. The host-
name and status message come from each XDMCP host and may be customized; the
host picture, if any, comes from the indirect host.

When the user selects a host, the indirect host instructs the X server to connect to
that host, which it does directly. From that point on, the indirect host is not involved
in any communication between the X server and the XDMCP host. However, if the
XDMCP host’s authentication dialog includes a Disconnect option, that option will
cause the connection to the indirect host to be re-activated, and the host menu to
once again be displayed.

Although the default configuration for all common display managers is to discover
the list of hosts for the chooser list by broadcast, it is also possible to configure the
chooser to present a list of selected hosts only. Those hosts will still be queried to
ensure that they are accepting XDMCP connections, and only hosts that are avail-
able are shown in the chooser’s list.

13.6

180 Chapter 13: Remote Access

It is also possible to replace the chooser with a program or script that selects the tar-
get host using any criteria you care to code. For example, you could select the host
on a round-robin basis, according to the time of day (East coast server early in the
day, West coast server late in the day), or according to the user’s IP address.

Figure 13-1. Standard xdm chooser

Figure 13-2. Standard gdm chooser

13.7

13.7 The Three Challenges of Remote Access 181

Using an indirect XDMCP query has several advantages over direct queries (Section
13.4) and broadcasts (Section 13.5): the user can select the host they wish to use,
and the hosts can be discovered by broadcast without each X server system generat-
ing broadcast traffic. However, there is a single point of failure. iI the indirect host is
down, the indirect query will fail. If a large number of X servers rely on a single indi-
rect host, it may be wise to configure multiple machines to serve in that role with a
failover system such as Heartbeat (http://www.linux-ha.org/).

13.7 The Three Challenges of Remote Access
Three are three challenges that any X remote access solution must address; one
affects performance, and the remaining two affect security:

Network bandwidth and latency
Bandwidth refers to the overall network data-delivery rate; latency refers to the
round-trip delay. X requires moderate network bandwidth and low latency to
deliver an effective user interface.

Figure 13-3. Standard kdm chooser

http://www.linux-ha.org/

13.8

182 Chapter 13: Remote Access

Access control
Since unauthorized clients can access the screen (in the same way that xwd [Sec-
tion 6.11] does), it’s possible for a malicious client to snoop around your display
and collect personal information, such as your bank account number and bal-
ance if displayed in a browser window. Therefore, it’s important to ensure that
only authorized clients can connect and perform certain operations.

Privacy
Even if data can’t be snooped on-screen, raw X protocol traffic can be captured
on the network and analyzed to re-create the screen image (and user actions).
Some form of encryption must be employed to circumvent this danger.

Many different programs, protocols, and techniques have been developed to address
these issues, with varying degrees of success. In the remainder of this chapter, we’ll
examine a number of remote display techniques in the light of these three challenges.

13.8 Host-Based Access Control
You can allow or disallow client connections based on the IP address of the client’s
host. The xhost program manages host-based access control.

Running xhost by itself displays the current status:

blue$ xhost
access control enabled, only authorized clients can connect

The output indicates that host-based control is active, but since no hosts are listed,
no hosts are authorized to connect.

You can grant access to a host by IP address or by name (which must resolve to an IP
address), using the + symbol:

blue$ xhost +red
red being added to access control list
blue$ xhost +172.16.97.251
172.16.97.251 being added to access control list

The output of xhost (by itself) will now reflect the added hosts:

blue$ xhost
access control enabled, only authorized clients can connect
INET:172.16.97.251
INET:red

You can remove hosts with the - symbol:

blue$ xhost -172.16.97.251
blue$ xhost
access control enabled, only authorized clients can connect
INET:red

13.9

13.9 xauth and Magic Cookies 183

To disable access control altogether and permit any client to connect to the X server,
use + by itself as an option:

blue$ xhost +
access control disabled, clients can connect from any host

Obviously, this is quite dangerous! But, I must admit, it’s convenient when you’re
experimenting on a private, secure network. To re-enable access control, use a dash
by itself as the option:

blue$ xhost -
access control enabled, only authorized clients can connect

It’s possible to invoke the X server with access control entirely disabled—as though
xhost + had been executed—using the -ac option:

blue$ X -ac

Host-based access control does not address network bandwidth and latency issues
nor does it address privacy. It also suffers from two significant drawbacks:

• It grants access permission to all users of a particular host.

• It’s relatively easy to spoof IP addresses.

These two faults led to the development of magic cookies (Section 13.9).

13.9 xauth and Magic Cookies
X provides a simple shared-secret access control protocol known as MIT-MAGIC-
COOKIE-1.

Magic cookies or tokens are simply secret numbers. If a client attempting to connect
to an X server knows the correct magic cookie value, it is permitted to connect; if it
doesn’t have the right number, the connection is denied.

Magic cookies are stored in the file ~/.Xauthority and are cross-referenced to particu-
lar displays. This file is stored in a binary format and cannot be usefully viewed as
text.

When a local client is executed, it takes the target displayspec, cross-references that
against the ~/.Xauthority file to get the appropriate magic cookie, and then presents
that magic cookie to the server. If the permission mode on the ~/.Xauthority file
allows reading only by the owner, then other users on the local machine will not be
able to read the token value and connect to the X server.

The xauth command is used to manipulate the ~/.Xauthority file; it can operate inter-
actively, accepting commands one-at-a-time from a user, or commands can be given
as arguments. The examples in this article all use arguments.

13.9

184 Chapter 13: Remote Access

To see the current magic cookies and the display associated with each token, use the
xauth list command:

blue$ xauth list
blue/unix:0 MIT-MAGIC-COOKIE-1 63fa4c416da8b8c5b4d3ae32b3206486
blue:0 MIT-MAGIC-COOKIE-1 63fa4c416da8b8c5b4d3ae32b3206486
green:3 MIT-MAGIC-COOKIE-1 35abebfef1c159b75783a4f33e2610fd
orange:1 MIT-MAGIC-COOKIE-1 b6577a2f2b7af4d82a1321779468cd0f

In this case, there are two entries for the local machine blue: the first one is for Unix
domain socket connections, and the second is for TCP/IP connections. The token
value is identical (63fa4c416da8b8c5b4d3ae32b3206486 in each case). The syntax for
the Unix domain socket in the xauth output (blue/unix:0 in this example) is slightly
different from a normal displayspec (which would be :0). The last two entries in the
output above are for displays on other hosts.

You may see some entries that use the XDM-AUTHORIZATION-1 protocol; this is a
variation on the magic cookie scheme that doesn’t pass the token across the network
in plaintext, and it is used by display managers.

You can view the magic cookie for one display by specifying a displayspec:

blue$ xauth list :0
blue/unix:0 MIT-MAGIC-COOKIE-1 63fa4c416da8b8c5b4d3ae32b3206486

If a client on red is going to connect to display :0 on blue, the magic cookie for that
display needs to be placed into the ~/.Xauthority file on red. Sharing the home direc-
tories via NFS will take care of this automatically; otherwise, this can be done with
xauth’s add command, which accepts a displayspec, protocol, and token value as
arguments:

red$ xauth add blue:0 MIT-MAGIC-COOKIE-1 63fa4c416da8b8c5b4d3ae32b3206486
red$ xauth list blue:0
blue:0 MIT-MAGIC-COOKIE-1 63fa4c416da8b8c5b4d3ae32b3206486

It’s a pain typing in MIT-MAGIC-COOKIE-1 all the time, so xauth permits you to substi-
tute the period character (.); therefore, the preceding add command could be rewrit-
ten as:

red$ xauth add blue:0 . 63fa4c416da8b8c5b4d3ae32b3206486

You can also use xauth to create an extract file, which can be sent to another
machine and merged into the ~/.Xauth file there:

blue$ xauth extract extractfile blue:0

...transfer extractfile from the host blue to red using the file
tranfer mechanism of your choice...

red$ xauth merge extractfile

13.9

13.9 xauth and Magic Cookies 185

Obviously, transporting cookies between hosts is a big nuisance.
Don’t despair; the process can be automated using SSH (Section
13.12).

Once the magic cookie has been copied to the remote machine (red), clients started
there will be able to successfully connect to the X server regardless of the current
host-based authentication settings (Section 13.8).

To remove a magic cookie from a ~/.Xauthority file, use the remove command:

red$ xauth remove blue:0

Initial cookies are generated by the display manager or by the program starting the X
server (such as startx). If you wish to start an X server in your own script and use
magic cookies for access control, use the mcookie command to make a cookie and
then use xauth to store it in ~/.Xauthority before starting the X server. Here is an
example:

#!/bin/bash
Start an X server with a magic cookie

export DISPLAY=:8 # Choose a display number
xauth add $DISPLAY . $(mcookie) # Create cookie, save in ~/.Xauthority
X -terminate $DISPLAY & # Start the X server
SERVERPID=$! # Remember the server process ID

Run any clients here...
mwm &
kcalc &
soffice &

wait $SERVERPID # Wait for server to finish
xauth remove $DISPLAY # Remove the cookie from the file

If your system doesn’t have mcookie, you can make a random cookie from a hash of
random data—just change the first xauth line to read:

xauth add $DISPLAY . $(dd if=/dev/random bs=10k count=1 2>/dev/null|
 md5sum|cut -c1-32)

Magic cookies are read by the X server from ~/.Xauthority only when the server starts
up. Clients are subject to access control only when they first connect to the server;
once connected, they can remain connected for any length of time without further
access control checks.

Magic cookies do not address network bandwidth and latency issues, and they are a
weak solution to the access control problem. The most significant issue with using
magic cookies for access control is that they are passed across the network in plain
text, and if the network traffic is intercepted, the magic cookie will be compromised.
It can also be compromised if ~/.Xauthority can be read by an attacker.

13.10

186 Chapter 13: Remote Access

If you are using Kerberos on your network, you can use the user-to-
user authentication scheme to manage X access control. See the
manpage for Xsecurity (Section 13.10) for more information.

13.10 The X Security Extension
Both host-based and magic cookie access control grant X server access on an all or
nothing basis. A finer level of control is obviously desirable in some situations.

The X Security Extension (SECURITY) was introduced in 1996 but is only entering
widespread use now, a decade later. It permits clients to be divided into two catego-
ries: trusted and untrusted. Trusted clients are permitted to use the entire X protocol;
untrusted applications are limited in what they do—for example, they are prohib-
ited from accessing window images of trusted clients, so xwd (Section 6.11) cannot
usefully be used as an untrusted client.

Although having only two categories of applications doesn’t provide much granular-
ity of control, it strikes a pragmatic balance between functionality and complexity.
The simplicity of this approach helps ensure that it is actually used, and used
correctly.

SECURITY enables the X server itself to generate magic cookies, and those magic
cookies can be associated with attributes. The two commonly used attributes are:

trust status
Either trusted or untrusted.

timeout
A time in seconds. If there are no connected clients authorized with the magic
cookie for that length of time, then the cookie is invalidated.

(There is also a group attribute, but this is intended to be used with the Application
Group extension, which is defunct.)

Any client that is trusted can ask the X server to create a new cookie. To create a new
cookie from the command line, use the xauth command generate, which accepts a
displayspec and a protocol as arguments. Optionally, you can include the keywords
trusted or untrusted and the keyword timeout followed by a value in seconds. Here
are some examples that generate tokens for display :2 on blue:

$ xauth generate blue:2 . # Untrusted, 60 second timeout.
$ xauth generate blue:2 . trusted timeout 300 # Trusted, 5 minute timeout
$ xauth generate blue:2 . timeout 0 # Untrusted, no timeout

The simplest way to use SECURITY is to leave the original, trusted magic cookie in
place for local connections, and to generate a nonexpiring, untrusted key for remote
TCP/IP connections. Running this command on the local display will set up the
token for remote clients:

$ xauth generate "$(hostname -f):$DISPLAY" . untrusted timeout 0

13.11

13.11 Low-Bandwidth X (LBX) 187

Some versions of hostname don’t accept the -f (fully qualified domain
name) option.

Xauth will place the new magic cookie into the ~/.Xauthority file, leaving the local
token unchanged.

One problem with the generate command is that it replaces any existing token (for
the given display) with the newly generated value; therefore, the xauth list com-
mand will show only the most recently generated token for each displayspec.

To get around this problem, you can use the -f option to xauth, which enables you
to specify an alternate authority file. To generate two untrusted keys and place them
in separate files, you could use:

$ xauth -f ~/.Xauthority1 generate blue:2 . untrusted
$ xauth -f ~/.Xauthority2 generate blue:2 . untrusted

You can then query a specific authority file to get the token:

$ xauth -f ~/.Xauthority1 list blue:2

These tokens can be transferred to different remote machines as needed.

Effective use of the X Security extension mildly improves the basic cookie scheme to
improve privacy, but the gains are minimal.

13.11 Low-Bandwidth X (LBX)
X provides a mechanism that is supposed to reduce bandwidth and latency require-
ments for X applications and that is called LBX—but it doesn’t make any appreciable
difference for most applications. Nonetheless, it’s interesting to know how it works
and why it’s fallen into disuse.

LBX was part of the ill-fated Broadway remote-access initiative, and it consists of two
parts:

LBXproxy
A proxy server that runs on the client host. X clients connect to LBXproxy
instead of the X server; LBXproxy then communicates with the server, using
compression and caching in an attempt to reduce traffic.

The LBX Extension
If data is being compressed on one end of the connection, it must be decom-
pressed at the other end. The LBX extension to the X server provides the other
end of the link.

Before attempting to use LBX, confirm that your server supports it. You can grep the
output of xdpyinfo (Section 6.2):

blue$ xdpyinfo|grep LBX

13.12

188 Chapter 13: Remote Access

Assuming the LBX extension is present—it is on most servers, though it may be
dropped from the standard X distribution soon—you can set up the lbxproxy. This
example sets up the proxy to receive X client connections directed to local display :5,
and to forward the connections to the X server blue:2:

red$ lbxproxy -display blue:2 :5

Once lbxproxy is running, you should direct clients on the remote machine to con-
nect to the lbxproxy instead of the X server. Setting the DISPLAY variable is the most
convenient way to do this:

red$ export DISPLAY=:5

If you’re using cookies, you’ll notice that clients won’t be able to connect to
lbxproxy, even if they can successfully connect to the X server:

red$ xclock
Xlib: connection to ":5.0" refused by server
Xlib: No protocol specified

Error: Can't open display: :5

This happens because the magic cookie is cross-referenced against the server display-
spec in ~/.Xauthority instead of against the client displayspec. To correct the prob-
lem, make a copy of the server’s magic cookie (associated with blue:2 in this
example) and cross-referenced it to lbxproxy’s display number (:5). The following
command will automate the process:

red$ xauth add :5 . $(xauth list blue:2|sed "s/.*-1//")

Why doesn’t lbxproxy make much difference? Its compression algorithm is weak,
and the volume of cacheable data is insufficient to matter much.

There are some alternative packages available that work in a similar manner but offer
somewhat better compression; the Differential X Protocol Compressor (dxpc) is one,
but it must be executed on both the server host and client host.

However, in many cases, good general compression on the network link appears to
be as effective as a proxy compression tool.

13.12 X Tunneling with SSH
Secure Shell (SSH) provides a simple and effective way to run X clients on a remote
machine, addressing all three challenges of remote access. This is by far the pre-
ferred approach to running remote X clients.

At its most basic level, SSH provides remote shell access, acting like a secure version
of telnet. But SSH also provides tunneling capability, which creates a listening port
on one end of the connection and forwards any TCP/IP connections through the
encrypted channel to a designated port on the remote host (or any system directly

13.12

13.12 X Tunneling with SSH 189

reachable from the remote host). Going one step further, SSH provides an enhanced
version of the tunneling facility specifically for X traffic.

To connect to a remote host using SSH, simply specify a username (chris in this
example) and host (red) in this format:

blue$ ssh chris@red

You may be prompted for your password on the remote host; you will then receive a
shell prompt on that system.

X tunneling (called X11 forwarding in the SSH documentation) may be enabled or
disabled by default, depending on the system configuration; to force it on, use the -X
(uppercase) option:

blue$ ssh -X chris@red

You can use the -x (lowercase) option to force X11 forwarding off:

blue$ ssh -x chris@red

When an X11 forwarding connection is established, SSH generates a new magic
cookie using the SECURITY extension (Sections 13.10 and 13.15), caches that on the
originating machine, sets up the tunnel to the remote system, places a dummy magic
cookie value in the remote ~/.Xauthority file, and sets the DISPLAY variable to point to
the remote end of the tunnel. It then monitors traffic coming through the tunnel and
changes any occurrence of the dummy cookie to the actual cookie.

This ensures that:

• The cookie value is never passed unencrypted over the network.

• If the remote ~/.Xauthority file is compromised, the cookie will not work for
other connection paths to the server.

• All of the X traffic going through the tunnel is encrypted so it is protected against
snooping.

Therefore, once you have connected to a remote system using SSH with X11 for-
warding turned on, you can start X clients.

It’s also possible to specify the name of the client directly on the SSH command line.
For example, to run kcalc on blue:

blue$ ssh -X chris@red kcalc

In this case, no interactive remote shell will be started.

As they would say on late-night infomercials: “But wait—there’s more!” SSH also
has a compression feature, which is enabled with the -C option:

blue$ ssh -X -C chris@red kcalc

Although this is a simple data-stream compression (like gzip), it provides at least as
much benefit as LBX (Section 13.11) in most use cases.

13.13

190 Chapter 13: Remote Access

Use the SSH compression option even if your network connection is
already compressed (for example, when using a modem), because
compression is much more effective when applied before encryption.

13.13 Using Public Keys with SSH
SSH provides a simple way of starting a remote X client with a single command (Sec-
tion 13.12). It’s often convenient to place an SSH command in a .desktop file so that
a menu option or icon will invoke a remote client automatically.

The user would probably not be aware that the application was running remotely—
except that she will be prompted for a password each time she clicks on the icon.

It’s possible to configure SSH to use public key cryptography for authentication
instead of passwords. This eliminates the password prompt altogether and makes
remote client execution beautifully seamless.

Public key cryptography and the intricacies of SSH are fascinating sub-
jects, and I cannot do them justice in a few short articles. For detailed
information on SSH, consult SSH, The Secure Shell: The Definitive
Guide by Daniel J. Barrett et al. (O’Reilly).

There are several versions of SSH in use, but the most widely used is the open source
OpenSSH package. It is included with BSD systems (where it originated) as well as
most Linux distributions and some commercial Unix systems.

To set up public key authentication using OpenSSH (once again, I’m using blue to
mean the host on which the X server is running, and red to mean the host on which
the X client will be run):

1. On blue, create a public key, pressing ENTER to accept the default values for the
various prompts:

blue$ ssh-keygen -t rsa
Generating public/private rsa key pair.
Enter file in which to save the key (/home/chris/.ssh/id_rsa): ENTER
Enter passphrase (empty for no passphrase): ENTER
Enter same passphrase again: ENTER
Your identification has been saved in /home/chris/.ssh/id_rsa.
Your public key has been saved in /home/chris/.ssh/id_rsa.pub.
The key fingerprint is:
aa:bb:cc:dd:ee:ff:aa:bb:cc:dd:ee:ff:aa:bb:cc:dd chris@blue

2. Append the contents of the file ~/.ssh/id_rsa.pub on blue to ~/.ssh/authorized_
keys on red:

blue$ ssh chris@red "cat >>~/.ssh/authorized_keys" <~/.ssh/id_rsa.pub
chris@red's password:

13.14

13.14 Using Passphrase Protection of SSH Keys 191

3. Ensure that ~/.ssh/authorized_keys on red has 0600 permission:
blue$ ssh chris@red chmod 0600 ~/.ssh/authorized_keys
chris@red's password:

4. Confirm that you can log in to the remote system without a password using
SSH:

blue$ ssh red
red$

You can use the same public key with as many systems as you want; simply repeat
step 2 for each additional system.

The -v option to ssh is very useful when debugging connection prob-
lems. You can specify -v up to three times to increase the verbosity of
the debugging information. Likewise, to debug the server side, stop
the sshd daemon and run it from a shell using one to three -d (debug)
options.

13.14 Using Passphrase Protection of SSH Keys
Using SSH without public key authentication results in a password request for
each new SSH connection, but using SSH with public key authentication is only as
secure as the ~/.ssh/id_rsa file. If that file is compromised—by a trojan program,
account compromise, or even a stolen copy of a system backup—the accounts on
other hosts will also be compromised. The challenge is balancing convenience
against vulnerability.

SSH provides a solution to this problem too (of course!). Your private key file can be
protected by a passphrase, and the ssh-agent program can be set up to request the
passphrase only once per session, regardless of how many SSH connections are later
established. If the private key file is stolen, it will be useless without the passphrase.

To set up a passphrase on your private key when using OpenSSH, execute ssh-keygen
with the -p option. I used TOPsecret as the passphrase in this example:

blue$ ssh-keygen -p
Enter file in which the key is (/home/chris/.ssh/id_rsa): ENTER
Key has comment '/home/chris/.ssh/id_rsa'
Enter new passphrase (empty for no passphrase): TOPsecret
Enter same passphrase again: TOPsecret
Your identification has been saved with the new passphrase.

If you make only this change, then you will be prompted for your passphrase every
time you use ssh to connect to red:

blue$ ssh red
Enter passphrase for key '/home/chris/.ssh/id_rsa': TOPsecret
red$

13.15

192 Chapter 13: Remote Access

To set things up so that you are only prompted for the passphrase once per session,
execute ssh-agent and ssh-add during session startup. There are many different
places you can place these two commands—startx, xinitrc, ~/.kde/env/ssh.sh, and
others—but the easiest place to put them is probably at the end of your shell startup
script (~/.bash_profile for bash users, ~/.profile for sh, ksh, ash, and zsh users, or ~/
.login for csh users).

The two lines to add are:

eval $(ssh-agent)
ssh-add

(Users with a genuine old-school Bourne shell—both of you!—should substitute
`ssh-agent` for $(ssh-agent).)

Or, for CSH users:

eval `ssh-agent -c`
ssh-add

These two lines will be executed when you log in using character mode or start a ses-
sion using a display manager. Ssh-agent will be started in daemon mode, and will
then pass environment variables back to your login shell to tell later SSH clients how
to connect to it; ssh-add then instructs ssh-agent to load your private keys, at which
point you will be prompted for any necessary passphrases. The password prompt
will appear as text or in a dialog box as appropriate.

13.15 OpenSSH and the SECURITY Extension
Recent versions of OpenSSH support the SECURITY Extension and can generate
untrusted magic cookies on-the-fly. The -X option has been changed to use untrusted
cookies by default.

Some other versions of SSH may use +X instead of -Y.

To use OpenSSH with trusted cookies, use the -Y option:

blue$ ssh -Y chris@red xwd -root >demo.xwd

SSH may be configured to use trusted connections all of the time.
Check the ForwardX11Trusted option in /etc/ssh/ssh_config—it
should be set to no if you wish to use untrusted clients.

193

Chapter 14

14
Using VNC

14.1 The VNC System
VNC (Virtual Network Computer) is a low-bandwidth cross-platform display sys-
tem. It can be used to control and display a Windows XP desktop from a Mac, a
Linux desktop from a Windows 2000 machine, or a Mac desktop from a Solaris
workstation.

The VNC protocol is named RFB, for Remote Frame Buffer. In VNC terminology, the
system on which the desktop is running is the server, and the system used to access
the desktop is called the viewer (or client). Binary viewers are available for most plat-
forms, including Windows, Mac OS X, Linux, Palm, Windows Mobile, and Sym-
bian. There are also several Java viewers that can be run as web applets—therefore,
allowing VNC access from any web-enabled browser.

This chapter covers some of the many ways in which VNC may be used in an X-
based environment. In addition to the red (X client) and blue (X server) hostnames
used in previous chapters, I’ll use green to refer to the system on which the VNC cli-
ent software is running.

Xvnc contains a very simple web server, which can be used to serve a Java applet ver-
sion of the VNC viewer. This permits users to connect to the server from any Java-
enabled browser—no special client is needed. The reason that the web server is built
into Xvnc is so that the appropriate JavaScript parameters can be substituted into the
web page before it is served.

Windows and Mac OS are both designed as single-user systems, so in those environ-
ments the VNC server software takes control of the one and only desktop. In an X
environment, there are many more possibilities:

• The Xvnc server provides remote desktops without a local desktop display. In
essence, Xvnc acts as a protocol converter, providing an X server on one side and
a VNC server on the other side. This enables many remote users to work simul-
taneously, and also permits users to disconnect from and reconnect to a running
session (even from another location). One standing server must be preconfig-
ured for each remote user (Sections 14.4 and 14.6).

14.2

194 Chapter 14: Using VNC

• Xvnc can be started on demand using inetd/xinetd. This permits any number of
remote users to log in to the system without preconfiguring standing servers, and
no resources will be used when there are no remote users connected. However,
users will not be able to disconnect and reconnect (Sections 14.9 and 14.10).

• Xvnc can initiate a connection to a remote viewer or use SSH to create a secure
tunnel to a remote machine. These techniques simplify connections to fire-
walled or clustered server hosts (Sections 14.12 and 14.17).

• A Java viewer can be combined with Xvnc, inetd/xinetd and a glue script to
embed one specific X application into a web page (Section 14.13).

• A VNC server that operates as an X client provides the same capabilities as the
VNC server extension. It does not require server configuration and can be
started only when needed, but it does not permit the remote user to start a new
session—he can only connect after the local user has authenticated. Gnome’s
vino and KDE’s krfb are examples of this type of X client/VNC server (Section
14.14).

• The VNC server can be an X server extension, operating in the same way as the
Windows or Mac servers, where the remote and local displays are the same. This
is a good solution for remote support, because the user can demonstrate a prob-
lem to the support technician, and the support technician can demonstrate a
procedure to the user (Section 14.15).

14.2 So Many VNC Versions!
VNC was originally developed by the Oracle and Olivetti Research Lab in Cam-
bridge, U.K., and released under the General Public License (GPL). The lab was
eventually purchased by AT&T; when the lab was closed and the VNC project dis-
continued, a number of the original authors started their own company: RealVNC
(http://realvnc.com). In the meantime, a fork of VNC was created, called TightVNC
(http://tightvnc.com).

The number of VNC-related projects has proliferated to the point that there are now
more than 75 listed on SourceForge (http://sourceforge.net). Some commercial prod-
ucts are also based on this technology (including several from RealVNC).

The RealVNC and TightVNC products are the most commonly deployed. These
friendly competitors keep leapfrogging each other, and both versions continue to
advance at a aggressive pace. Many Unix systems and Linux distributions contain
one or the other (for example, Fedora includes the RealVNC software, and SUSE
includes TightVNC). The server is called Xvnc in both cases.

Does it matter which one you use? Not really. Either RealVNC or TightVNC will
work fine for most projects, so start with the one included with your OS or distribu-
tion. If you find yourself in need of a feature that that version does not have, then
that’s the time to go hunting.

http://realvnc.com
http://tightvnc.com
http://sourceforge.net

14.3

14.3 Xvnc Basics 195

14.3 Xvnc Basics
The Xvnc server is based on XFree86/X.org and therefore accepts most of the same
command-line arguments, such as the display number, access control options, termi-
nation options, and XDMCP query commands. It does not use a xorg.conf-style con-
figuration file because there is no hardware to configure; instead, the display depth
and virtual screen size are specified on the command line. Table 14-1 lists the com-
mand-line options that may be used with Xvnc. These are in addition to those
accepted by the XFree86/X.org server.

Table 14-1. Xvnc command-line options in addition to X.org options

RealVNC TightVNC Description
-depth bits -depth bits Color depth of the display. Some VNC clients

(such as the TightVNVC binary viewer) will negoti-
ate the color depth based on the performance of
the network connection; for those clients, set the
color depth high (24). For other clients, set the
color depth to a low value (such as 8) for low-
speed or congested network connections.

-geometry XxY -geometry XxY Size of the virtual display.

-rfbport port -rfbport port TCP/IP port for RFB protocol (default is
5900+display).

-httpport port -httpport port TCP/IP port for built-in web server.

-http dir -http dir Directory containing HTTP files (used for serving
the Java applet version of the VNC client). Files in
this directory include both the applet and the
HTML page into which the applet is embedded.

-nevershared -nevershared Display is never shared between incoming clients
(regardless of client-side settings).

-disconnectclients -dontdisconnect Do (don’t) disconnect old clients when a new one
connects. If disconnection is specified along with
-nevershared, then new connections will close
old ones (sometimes handy if you connect from
one computer, then go to another and connect
from there). If disconnection is not permitted and
-nevershared is specified, then one connection
is permitted only and other connections will be
rejected.

-inetd -inetd Required when Xvnc is launched from inetd/
xinetd.

-desktop name -desktopname name Name of the desktop as reported to clients.

-passwdfile file
-rfbauth file

-rfbauth file Name of the password file for incoming connec-
tions (passwords are managed with vncpasswd).

14.4

196 Chapter 14: Using VNC

For example, to start up a VNC server with an 800 × 600 display and 24-bit color
depth on display :5, while protecting the connection with a password and displaying
a session prompt from the host red:

blue$ Xvnc -query red -once -rfbauth ~/myvncpasswd -geometry 800x600 -depth 24 :5

This server will send the XDMCP query immediately and will listen on port 5905 for
incoming RFB connections. Before this command is run, the password file must be
created with vncpasswd:

blue$ vncpasswd ~/myvncpasswd
Password: secret
Verify: secret

The password file is read at authentication time, not when the server is started, so it
can be changed on-the-fly while the server is running and the change will take effect
immediately.

14.4 The vncserver Script
The vncserver script is a wrapper for Xvnc, designed to be run by users. It provides a
password-protected, persistent server; the user may connect to the server, discon-
nect, move to a different machine, and reconnect.

This script first checks to see whether the password file ~/.vnc/password exists; if not,
it runs vncpasswd to create it, prompting the user for the password value. It then
searches for a free display number and sets the display geometry and depth to match
the current screen size and depth (on the display on which the script is run, if one is
present). The server number is reported to stdout, and Xvnc is started along with the
clients specified in ~/.vnc/xstartup (default settings are copied to this file if it is not
already present). The internal mini-web server in Xvnc is also activated by default.

The default clients started by xstartup are pretty lame, so you will probably want to
change ~/.vnc/xstartup to read the following:

$!/bin/sh
unset SESSION_MANAGER
/etc/X11/xinit/xinitrc

These lines are present in the default RealVNC version of the xstartup file, but are
commented out; they will start a normal session for your system (typically KDE or
Gnome). Instead of /etc/X11/xinit/xinitrc, you can specify a desktop startup com-
mand such as startkde or gnome-session.

Setting a solid-color desktop background and using a visually simple
window theme may improve remote display performance. A light-
weight window manager/desktop environment such as Xfce (Section
8.6) may work better than KDE or Gnome on slow or congested net-
work connections.

14.5

14.5 Using the VNC Viewers 197

Running vncserver is straightforward, and may be done from a remote shell prompt
(for example, via SSH). This is the output when vncserver is run for the first time:

blue$ vncserver

You will require a password to access your desktops.

Password: secret
Verify: secret

New 'blue:4 (chris)' desktop is blue:4

Creating default startup script /home/chris/.vnc/xstartup
Starting applications specified in /home/chris/.vnc/xstartup
Log file is /home/chris/.vnc/blue:4.log

To kill the RealVNC version of vncserver, use the -kill option with the display num-
ber reported by the server:

blue$ vncserver -kill :4

To kill the TightVNC version, kill Xvnc by name:

blue$ killall Xvnc

vncserver understands the same options as Xvnc. Some versions of this script access
default values for command-line options from the configuration file /etc/vnc.conf. If
your system does not use /etc/vnc.conf, you can modify the default configuration val-
ues by editing the actual vncserver script using a text editor. Most of the defaults are
contained in global variables defined near the start of the script; for example, to
change the default screen size from 1024 × 768 to 800 × 600 and the default color
depth from 16 to 24 bits, change the geometry and depth variables:

#
Global variables. You may want to configure some of these for your site.
#

$geometry = "800x600";
$depth = 16;
$vncJavaFiles = (((-d "/usr/share/vnc/classes") && "/usr/share/vnc/classes") ||
 ((-d "/usr/local/vnc/classes") && "/usr/local/vnc/classes"));
$vncUserDir = "$ENV{HOME}/.vnc";
$xauthorityFile = "$ENV{XAUTHORITY}" || "$ENV{HOME}/.Xauthority";

14.5 Using the VNC Viewers
To connect to a server from another system, execute vncviewer and specify the host
and display:

green$ vncviewer blue:4
Password: secret

14.6

198 Chapter 14: Using VNC

If you leave the connection information (host and display number) out, you will be
prompted for it; if the vncviewer command is not run from a terminal, the host/dis-
play prompt and the password prompt will be presented graphically. The viewers for
other platforms operate in the same way.

To connect to a nonstandard port number, specify host::port (note
the double colon) instead of host:display—for example, to connect to
a server running on port 6120 on blue, use:

green$ vncviewer blue::6120

You can also connect to the Xvnc web server at port 5800+display using any Java-
enabled web browser; since the server in this example is on display :4, the port num-
ber will be 5804:

green$ firefox http://blue:5804/

The web server will send you a predefined HTML page containing an embedded Java
applet; the applet geometry and the port number of the RFB connection will be sub-
stituted into the HTML page by Xvnc.

The X version of vncviewer is the exact counterpart of Xvnc—it’s a client to both
VNC and X, whereas Xvnc is server to both VNC and X.

The KDE Remote Desktop Connection (krdc) and Gnome-oriented
Terminal Server Client (tsclient) programs offer a graphical method of
connecting to a VNC server as well as a Windows Terminal Server.
You can also create desktop or panel icons to connect to frequently
used VNC servers.

14.6 Using Standing VNC Servers
Although the vncserver script permits any user to easily start a VNC server, it is
sometimes desirable to have VNC servers start up automatically when the system
boots. Users can connect to those servers remotely and then later disconnect, recon-
necting at will from any location. For example, users can start a task from work, dis-
connect, reconnect from an Internet cafe to check on the progress of the task,
disconnect, and then finally connect from home to finish the operation. However,
since they remain logged in while disconnected, it’s imperative that password protec-
tion be used on the VNC server.

Although standing servers can be started with any clients, it is easiest and most com-
mon to start them with a connection to a display manager, which will then start a
normal session. This requires that XDMCP be enabled (Section 13.3).

Before enabling standing servers, create password files using vncpasswd. I recom-
mend placing these in the directory /etc/vncpasswd.d:

14.8

14.8 Configuring the Xvnc Web Server 199

blue# mkdir /etc/vncpasswd.d
blue# vncpasswd /etc/vncpasswd.d/p0
Password: secret0
Verify: secret0
blue# vncpasswd /etc/vncpasswd.d/p1
Password: secret1
Verify: secret1
blue# vncpasswd /etc/vncpasswd.d/p2
Password: secret2
Verify: secret2

Entries to start standing VNC servers can then be added to /etc/inittab:

v0:5:respawn:/usr/bin/Xvnc -rfbauth /etc/vncpasswd.d/p0 -query localhost :20
v1:5:respawn:/usr/bin/Xvnc -rfbauth /etc/vncpasswd.d/p1 -query localhost :21
v2:5:respawn:/usr/bin/Xvnc -rfbauth /etc/vncpasswd.d/p2 -query localhost :22

Note that these servers are started only in runlevel 5. I’ve used display numbers :
20 through :22 here to avoid conflict with local displays and ssh port forwarding
(Section 14.12).

These servers will default to 1024 × 768 pixels in size, with 16-bit color depth. You
can override these defaults with the -geometry and -depth options (Section 14.3).

14.7 Configuring the Xvnc Web Server
To make remote sessions available to users through browsers, Xvnc reads a set of
HTML and Java files. When running Xvnc, add the -httpd argument to indicate
where the files are stored. Typically, this is /usr/share/vnc/classes, so you could
execute:

blue$ Xvnc -httpd /usr/share/vnc/classes -rfbauth pwfile -query localhost :8

The HTTP port defaults to 5800+display. This example uses display :8, so the Java
applet could be viewed at:

green$ firefox http://blue:5808/

The HTTP port can be overridden and set to any arbitrary value using the -httpport
option:

blue$ Xvnc -httpd /usr/share/vnc/classes -httpport 1900 \
 -rfbauth pwfile -query localhost :8

In this case, the URI becomes http://blue:1900/.

14.8 Customizing the VNC Java Applet Web Page
The default web page included with the Xvnc server is very simple. There are two
versions: the version included with the current TightVNC and older RealVNC Java
viewer embeds the viewer applet into the web page, whereas the newer version of the
RealVNC Java viewer opens in a separate window.

http://blue:1900/

14.8

200 Chapter 14: Using VNC

You can customize the web page by adding a company logo, instructive text, or links
to other pages (perhaps even a link to a binary viewer software for higher perfor-
mance). It’s not a bad idea to rewrite it into standard XHTML at the same time. The
default page included with the TightVNC distribution, usually installed as /usr/share/
vnc/classes/index.vnc, looks like this:

<!--
 index.vnc - default HTML page for TightVNC Java viewer applet, to be
 used with Xvnc. On any file ending in .vnc, the HTTP server embedded in
 Xvnc will substitute the following variables when preceded by a dollar:
 USER, DESKTOP, DISPLAY, APPLETWIDTH, APPLETHEIGHT, WIDTH, HEIGHT, PORT,
 PARAMS. Use two dollar signs ($$) to get a dollar sign in the generated
 HTML page.

 NOTE: the $PARAMS variable is not supported by the standard VNC, so
 make sure you have TightVNC on the server side, if you're using this
 variable.
-->

<HTML>
<TITLE>
$USER's $DESKTOP desktop ($DISPLAY)
</TITLE>
<APPLET CODE=VncViewer.class ARCHIVE=VncViewer.jar
 WIDTH=$APPLETWIDTH HEIGHT=$APPLETHEIGHT>
<param name=PORT value=$PORT>
$PARAMS
</APPLET>

TightVNC site
</HTML>

Notice the presence of the $USER, $DESKTOP, $DISPLAY, $APPLETWIDTH, $APPLETHEIGHT,
$PORT, and $PARAMS variables, which will be replaced by appropriate values by Xvnc.

Rewitten in XHTML with a company logo, company title, and links to the Windows
vncviewer and a help page, the file looks like this:

<?xml version='1.0' encoding='UTF-8'?>
<!DOCTYPE html PUBLIC
 '-//W3C//DTD XHTML 1.0 Transitional//EN'
 'http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd'>

<html xmlns='http://www.w3.org/1999/xhtml' xml:lang='en'>
 <head>
 <title>
 Foo Corporation - Remote Employee Access
 </title>
 </head>
 <body>

14.8

14.8 Customizing the VNC Java Applet Web Page 201

 <applet code="VncViewer.class" archive="VncViewer.jar"
 width="$APPLETWIDTH" height="$APPLETHEIGHT">
 <param name="PORT" value="$PORT" />
 </applet>
 <p>
 Windows VNC viewer program.
 Help!
 </p>
 </body>
</html>

The Java applets accept parameters, using the <param ...> tag as shown earlier. The
TightVNC applet seems to be a little more flexible than the RealVNC applet (and is
certainly better-documented); these are some of the key parameters:

PORT
Port to connect to (not the display number). Usually set to $PORT when using
Xvnc’s built-in web server.

PASSWORD
Password in plain text. Dangerous to use, since anyone can see the password
using the View Source option in the browser; however, this can also be used to
specify that there is no password and the user should not be asked for one.

RESTRICTED COLORS
Set to No for 24-bit color, or Yes for 8-bit color (default).

VIEW ONLY
Set to Yes to disable sending keyboard and mouse events to the remote system,
or No for normal operation.

SHARE DESKTOP
Controls whether a shared or exclusive connection is requested. This parameter
interacts with the -disconnectclients or -dontdisconnect options given to the
server (see Table 14-1). Possible values are Yes (request a shared connection) or
No (request an exclusive connection).

OPEN NEW WINDOW
Set to Yes, this opens a new window for the VNC display; set to No, it embeds the
display in the web page.

SHOW CONTROLS
Displays control buttons at the top of the screen (Yes/No).

OFFER RELOGIN
Presents a reconnection button in the event of a disconnection (Yes/No).

SHOW OFFLINE DESKTOP
Controls whether the desktop image remains visible after disconnection from the
server (Yes) or the image is erased (No).

14.9

202 Chapter 14: Using VNC

For example, to configure the applet to run in 24-bit mode, request an exclusive con-
nection to the server, and disable the controls at the top of the applet, use this code
in your index.vnc file:

 <applet code="VncViewer.class" archive="VncViewer.jar"
 width="$APPLETWIDTH" height="$APPLETHEIGHT">
 <param name="PORT" value="$PORT" />
 <param name="RESTRICTED COLORS" value="No" />
 <param name="SHARE DESKTOP" value="No" />
 <param name="SHOW CONROLS" value="No" />
 </applet>

TightVNC’s Xvnc can generate some of the param tags based on the server settings;
insert the variable $PARAM into your code after your last <param ...> tag and before
the closing </applet> tag.

14.9 Starting VNC On Demand Using xinetd
Instead of using standing VNC servers, it’s possible to use inetd/xinetd to start Xvnc
only when an incoming connection request is made. This has a number of advan-
tages over standing servers:

• Any (reasonable) number of VNC servers can be used, without configuring in
advance how many servers should be started.

• Servers are started only when needed, and terminated when not in use, so no
system resources are used unnecessarily.

• All of the servers use the same port number, so all the users have the same con-
nection details (simplifying support).

• Since it’s not possible to connect to a logged-in session, no VNC passwords are
required—you can use display manager authentication alone.

• X display numbers are automatically assigned.

The downside to this approach is that it is not possible to disconnect from the server
and reconnect at a later time or from another location and pick up where you left off.

To configure xinetd and Xvnc to work together, you must first select at least one port
number. It’s often useful to define a few port numbers for different VNC server reso-
lutions. These numbers should be appended to the end of the /etc/services file along
with service names of your choice; in this example, I’m using port 5940 (VNC dis-
play number 40) for 800 × 600 resolution, 5941 for 1024 × 768, and 5942 for 1280 ×
1024:

VNC servers started by xinetd
vnc-800x600 5940/tcp
vnc-1024x768 5941/tcp
vnc-1280x1024 5942/tcp

14.9

14.9 Starting VNC On Demand Using xinetd 203

It’s also a good idea to create a unique user for these services, so that damage to the
system is limited if a vulnerability in Xvnc is found and exploited. The following
command suffices to add a new user on most Linux/Unix systems:

blue# useradd vnc

Once this has been done, corresponding service files can be added to /etc/xinetd/
xinetd.d. Here is the file for the 800 × 600 service, placed in /etc/xinetd/xinetd.d/vnc-
800x600:

default: on
description: Local Xvnc sessions @ 800x600 resolution via xinetd
service vnc-800x600
{
 flags = REUSE
 socket_type = stream
 wait = no
 user = vnc
 server = /usr/bin/Xvnc
 # The following two lines must be one line in the file.
 server_args = -inetd -query localhost -once -terminate
 -depth 24 -geometry 800x600 -securitytypes none
 log_on_failure += USERID
 disable = no
}

Note that the server_args line, which has been broken into two lines
here due to space constraints, must be a single line in the file.

The service files for the other resolutions are identical, except that the three occur-
rences of 800x600 are replaced by 1024x768 or 1280x1024.

Notice that the -securitytypes argument is used to disable VNC passwords (since
the user must log in through the display manager’s login dialog); to enable VNC
passwords, replace -securitytypes none with -rfbauth passwordfile.

Assuming that your display manager has xdmcp enabled, you can now enable the
servers by instructing xinetd to reload its configuration file. On Fedora systems, this
can be done using the service script:

blue# service xinetd reload

Or you can manually signal xinetd to reload the configuration:

blue# killall -HUP xinetd

You can then connect to xinetd using a VNC viewer, and a copy of Xvnc will be
started for you automatically:

green$ vncviewer blue:40

14.10

204 Chapter 14: Using VNC

Each time you connect with a VNC viewer, you will see the display manager’s
authentication dialog. All of the connections share the same VNC display number,
but a different X display number—the Xvnc server automatically assigns the X dis-
play number by successively attempting to open ports starting at 6000 and going up
to 6099. If it doesn’t find an available port by that point, your server is probably too
heavily loaded to handle another connection anyway!

Recent versions of SUSE Linux ship with a configuration that is simi-
lar to the one described here, but that is disabled by default. To enable
on-demand VNC service in SUSE, edit /etc/xinetd.d/vnc, change the
disabled=yes lines to disabled=no, and restart xinetd (you’ll also need
to enable XDMCP if you haven’t already done so). 800 × 600 resolu-
tion will be available on port 5901, 1024 × 768 on port 5902, and 1280
× 1024 on port 5903.

14.10 Starting VNC On Demand Using inetd
If you are using a system that has a traditional inetd server instead of xinetd, the con-
figuration for the on-demand VNC servers is slightly different. After setting up the
vnc user and the /etc/services entries as you would for xinetd, append these entries to
the /etc/inetd.conf file (each of these three entries must be contained on a single line):

vnc-800x600 stream tcp nowait vnc /usr/bin/Xvnc -inetd -query localhost -once -
terminate -depth 24 -geometry 800x600 -securitytypes none

vnc-1024x768 stream tcp nowait vnc /usr/bin/Xvnc -inetd -query localhost -once -
terminate -depth 24 -geometry 1024x768 -securitytypes none

vnc-1280x1024 stream tcp nowait vnc /usr/bin/Xvnc -inetd -query localhost -once -
terminate -depth 24 -geometry 1280x1024 -securitytypes none

To activate the new services, signal inetd to reload its configuration:

blue# killall -HUP inetd

14.11 Using the Java Applet with On-Demand
 VNC Servers

When Xvnc is configured to work with xinetd or inetd, the server is started when an
incoming RFB connection is detected. This connection is initiated by the viewer pro-
gram. But if you’re using the Java viewer applet along with the Xvnc web server, then
the applet is served by Xvnc...which hasn’t started yet! It’s the classic chicken-and-
egg problem.

The solution is to serve the web page and Java applet from a normal web server. In
order to run as an applet in the default Java security model, the VNC server will have
to be on the same system as the web server.

14.12

14.12 Accessing VNC Securely Using SSH 205

To configure this using Apache:

1. Create a new subdirectory within your Apache DocumentRoot (or any directory
served by Apache):

blue$ mkdir vnc

2. Copy the VNC Java applet files to that directory:
blue$ cp /usr/share/vnc/classes/* vnc

3. Rename the index.vnc file to index.html and hardcode any values that would nor-
mally be substituted if the page was served by the Xvnc web server—so, all of
the strings starting with $. For the applet HEIGHT, use the height of the Xvnc
server geometry, plus 20 pixels for the Java applet’s controls (which will appear
at the top of the display). For example, to adjust the TightVNC version of the
page for use with an 800 × 600 server on port 5940:

<HTML>
<TITLE>
VNC Remote Acces
</TITLE>
<APPLET CODE=VncViewer.class ARCHIVE=VncViewer.jar
 WIDTH=800 HEIGHT=620>
<param name=PORT value=5940>
</APPLET>

TightVNC site
</HTML>

4. You can now access the Java applet page at http://blue/vnc/ (adjust the URI if
you placed the VNC directory in a location other than the DocumentRoot).

14.12 Accessing VNC Securely Using SSH
VNC addresses two of the three remote access challenges (Section 13.7): access con-
trol and network bandwidth and latency. It doesn’t protect your data in transit,
although it does avoid sending VNC passwords in plain text across the network.

To use VNC securely, it is necessary to add an encryption layer. There are several
ways to do this, but the most common is to tunnel the RFB protocol through an SSH
tunnel.

Most binary VNC viewers can automatically start an SSH client to create a tunnel.
This is done with the -via argument:

green$ vncviewer -via user@blue localhost:40

vncviewer will launch ssh with the appropriate arguments to log in to blue with the
user ID vncuser and open a pipe from green to blue. The VNC server contacted is
specified as localhost:40, but since that is written from the perspective of the remote
end of the connection, localhost refers to the host blue.

14.13

206 Chapter 14: Using VNC

The standard Java viewers do not provide SSH tunneling capability.
An SSH-enhanced version of the TightVNC Java applet is available
from the SSHTools project at http://sourceforge.net/projects/sshtools/—
however, that project is not currently being maintained.

14.13 Embedding an X Application in a Web Page
Web applications have traditionally been designed around page-based interaction:
the server sends a page, the user fills in a form or clicks on a link, and then the server
sends another page. Ajax and similar approaches provide a more interactive
approach, but sometimes it would be ideal if we could embed remote access to a sin-
gle existing application into a web page—for example, an interactive database
lookup application or a system monitoring tool. With a little scripting, VNC can do
the job.

Figure 14-1 shows an example: xboard and gnuchess embedded in a web page.

Any graphical X client can be embedded into a web page this way as long as Xvnc
runs on the same host as the web server in order to conform to the default Java
applet security model. Embedding the program requires you to define the embedded
program as a service on the host.

First, to set up the web page, create a subdirectory that is served by your web server
and place the VNC Java applet files in that subdirectory:

blue$ mkdir /ApacheDocumentRoot/chess
blue$ cp /usr/share/vnc/classes/* /ApacheDocumentRoot/chess

Create an index page (index.html) in that directory, and have it contain <applet ...>
and <param ...> tags for the Java VNC viewer applet:

<?xml version='1.0' encoding='UTF-8'?>
<!DOCTYPE html PUBLIC
 '-//W3C//DTD XHTML 1.0 Transitional//EN'
 'http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd'>

<html xmlns='http://www.w3.org/1999/xhtml' xml:lang='en'>
 <head>
 <title>
 VNC Embedded Application Demo
 </title>
 </head>
 <body>
 <div style="float: right">
 <applet code="VncViewer.class" archive="VncViewer.jar"
 width="348" height="437">
 <param name="port" value="5930" />
 <param name="password" value="" />
 <param name="show controls" value="no" />
 </applet>

http://sourceforge.net/projects/sshtools/

14.13

14.13 Embedding an X Application in a Web Page 207

 </div>

 <h1>Chess!</h1>

 <p>Welcome to the <i>GNUChess</i> web demo!</p>

 <p>Enjoy a game of chess against our computer -
 or set the Mode to "Two Machines" to watch our
 computer play against itself.</p>

 <p>For <i>GNUChess</i> documentation, refer
 to the GNUChess webpage at
 <a href="http://www.gnu.org/software/chess/"
 >http://www.gnu.org/software/chess/</p>
 </body>
</html>

In this example, I’ve used the TightVNC Java applet. I’ve used the parameters to
specify the port 5930, set the password to blank (so that the applet does not ask for a

Figure 14-1. An X application embedded in a web page

14.13

208 Chapter 14: Using VNC

password to be entered), and disabled the controls at the top of the applet. The
applet width and height have been matched to the size of the application window.

The next step is to configure xinetd/inetd for this new service. Append a service entry
to /etc/services:

vnc-gnuchess 5930/tcp

Match the port number to the port number used in the applet parameters in
index.html.

It’s also a good idea to create a new user for this service, so that you can limit access
through this service (and identify any files created by it):

blue# useradd vnc-gnuchess

Next, create a service in /etc/xinetd.d/—use the service name as the filename (/etc/
xinetd.d/vnc-gnuchess):

default: on
description: gnuchess via Xvnc
service vnc-gnuchess
{
 flags = REUSE
 socket_type = stream
 wait = no
 user = vnc-gnuchess

 server = /usr/local/bin/vnc-gnuchess
 log_on_failure += USERID
 disable = no
}

If you’re using inetd instead of xinetd, add an entry to /etc/inetd.conf instead:

vnc-gnuchess stream tcp nowait vnc-gnuchess /usr/local/bin/vnc-gnuchess

Finally, create a script which will start Xvnc, determine the display provided by that
copy of Xvnc, and then connect the client (gnuchess in this example) to that display:

#!/bin/bash
#
/usr/local/bin/vnc-gnuchess :: start Xvnc and gnuchess
#
This script is called by xinetd.

SCRIPTPID=$$

Create an .Xauthority file if necessary
export XAUTHORITY=/home/$(whoami)/.Xauthority

if [! -f $XAUTHORITY]
then
 COOKIE=$(mcookie)
 for ((D=0;D<100;D++))
 do

14.13

14.13 Embedding an X Application in a Web Page 209

 xauth -q add :$D . $COOKIE >/dev/null 2>&1
 done
fi

Run commands to set up the client in the background
(
 # Wait for the Xvnc server to start (may not be required)
 sleep 1

 # Get the PID of the Xvnc server
 XVNCPID=$(ps --ppid $SCRIPTPID|grep Xvnc|sed -n "s/^ *\([0-9]*\) .*$/\1/p")

 # Get the display specification from the port number
 # identified by netstat
 DISPLAY=:$(/bin/netstat -ap 2>/dev/null|
 sed -n "s=^[^:]*:60\([0-9][0-9]\).*LISTEN *${XVNCPID}/Xvnc.*$=\1=p" \
 2>/dev/null|head -1|sed "s/^0//")
 export DISPLAY

 # Start the client - 'nice' lowers the priority because gnuchess
 # tends to use the CPU heavily.
 nice /usr/bin/xboard -geometry 346x435+0+0 -size small >/dev/null 2>&1

)&

Start the VNC server - must be foreground for socket connection to work
/usr/bin/Xvnc -terminate -inetd -securitytypes none -depth 24 -geometry 348x437

Tidy up - when the VNC server dies, kill all child processes
kill 0
sleep 3
kill -KILL 0

The key is the subshell code within the parenthesis: this code determines the Xvnc
PID by finding a child of the parent script with Xvnc as the program name, and then
using netstat to discover which TCP/IP port in the 6000–6099 range has been opened
by that copy of Xvnc. The port number is manipulated to get the display number,
and then the client is started, instructed to connect to that display.

This code is needed because when inetd is used to start Xvnc, it automatically picks
the X display number but does not communicate that number to X client pro-
grams—because it’s intended to be used with an XDMCP query or broadcast.

The .Xauthority file has entries for all displays from :0 to :99 because we don’t know
what the final display number will be. The file is shared among all of the Xvnc serv-
ers for this service. The client and server both pick up the .Xauthority filename from
the XAUTHORITY environment variable.

Finally, you can access the web page with the embedded application using a Java-
enabled browser—in this example, the URI is:

http://blue/chess/

14.14

210 Chapter 14: Using VNC

Be very careful about providing remote access to local applications! In
the example given here, xboard offers load and save options on its File
menu. If the vnc-gnuchess user is inadvertently given write access to an
important file, it could be obliterated by an accidental or malicious
save performed by a remote user. If you are using a client that pro-
vides any file operations, you should run it in a chroot jail. Although
you can password-protect web pages, the web page can be bypassed
by using a binary VNC viewer to directly access the Xvnc port. Using a
VNC password file (with the -rfbauth option) and matching the
<param password="..."> tag in the HTML can help reduce this vulnera-
bility—only users with access to the web page will have the password
for VNC access.

You can take this concept and extend it as far as you want, perhaps incorporating
elements of a kiosk configuration (see Section 15.1). For example, if you want to give
live software demos of complex applications on the Web, you could require users to
register through a web-based facility, and then create a chroot jail specifically for
each user’s instance of the program. The application could be started with a simple
window manager such as mwm or fvwm, and the user could create, save, and open
files, but not start any other applications; when the user finishes the demo, the
chroot environment could be destroyed automatically.

14.14 Using KDE and Gnome Remote Desktop
 Access Tools

Both KDE and Gnome provide X clients that are VNC servers. These tools read the X
desktop continuously, using the DAMAGE extension (Section 1.15) in order to iden-
tify the areas of the display that have changed, and then present that information to
remote VNC displays. These programs are similar to the x0vncserver program pro-
vided by RealVNC, and produce an effect similar to the VNC servers used on Win-
dows and Macintosh systems where the only desktop display is shared to a remote
user.

The KDE desktop sharing tool is named KRfb and is configured through the KDE
Control Center; it’s under Internet & Network ➝ Desktop Sharing. The configura-
tion dialog is shown in Figure 14-2.

KRfb can be used in two ways: through invitations, which are temporary passwords
valid for one hour, and by allowing uninvited connections, which act like normal
VNC connections and may optionally be password-protected.

To manage invited connections, click on the Create & Manage Invitations button;
you will be shown the current invitations and given options for creating new invita-
tions, creating and emailing them, and deleting them. The invitation system is ideal
for some support applications when you want to permit temporary remote access.

14.14

14.14 Using KDE and Gnome Remote Desktop Access Tools 211

If the “Allow uninvited connections” checkbox is selected, users will be able to con-
nect without one of the temporary passwords generated by the invitation system.
You can still impose a password by entering one in the password field.

It’s possible to allow both invited and uninvited connections at the same time; how-
ever, only one connection can be active at a time (other connection attempts are
denied), and KRfb takes a few seconds to reset when a connection is dropped before
it will accept new ones.

If any invitations are outstanding or if uninvited connections are enabled and the
“Confirm uninvited connections before accepting” checkbox is selected, the local
user will be prompted with a confirmation dialog before the remote connection is
accepted. This will prevent connections to an unattended KRfb system from succeed-
ing, so check the configuration if you intend to use KRfb unattended.

Some versions of KRfb have a bug in the XRLE encoding that may pre-
vent clients from connecting. Specifying hextile encoding on the viewer
command line will work around the problem and enable the connec-
tion to succeed:

green$ vncviewer -preferredencoding hextile blue:0

Figure 14-2. KRfb configuration in the KDE Control Center

14.15

212 Chapter 14: Using VNC

Gnome’s remote access tool is named Vino and is configured using the Remote Desk-
top preference, as shown in Figure 14-3.

Vino does not have the invitation mechanism present in KRfb, but the other features
are basically the same. Vino does permit multiple simultaneous connections, and
there is no reset time after a disconnection. Vino ignores the client’s request for an
exclusive connection—so there is no way to “bump” an existing connection as you
can with other VNC servers (which is useful if you forget to disconnect from one
location and later connect from another).

14.15 Using the VNC Extension to the X.Org
 Server

VNC is also available as an extension for the standard X.org server. This extension
makes the image on the X display available to VNC clients; unlike KRfb or Vino
(which are started by the session manager), the VNC extension is present whenever
the X server is running, which means that you can authenticate using the display
manager through VNC and start a new session. The server extension also provides
better performance.

RealVNC includes a loadable X module for the X.org server; it installs as /usr/lib/
xorg/modules/extensions/libvnc.so.

Figure 14-3. Vino configuration dialog

14.16

14.16 Using VNC to Share a Presentation 213

To use the VNC extension module, add an entry to the Modules section of the X
server configuration file:

Section "Module"
 Load "vnc"

 ...Other Modules...
EndSection

If you execute X -configure when the vnc.so module is present, an entry for it should
be created automatically. You can confirm that the VNC extension is loaded by
examining the output of xdpyinfo (Section 6.2).

You must add a SecurityTypes option entry to the Screen section to turn VNC pass-
words on or off; without this option, all RFB connections will be rejected.

If you want passwords turned off—which is unwise, unless you’re on a very secure,
closed network—set SecurityTypes to None:

Section "Screen"
 Option "SecurityTypes" "None"

 ...Remainder of Screen section...
EndSection

Otherwise, to use passwords, create a VNC password file using vncpasswd:

blue# vncpasswd /etc/vncpasswd
Password: bigsecret
Verify: bigsecret

Then add these two entries to the Screen section:

Section "Screen"
 Option "SecurityTypes" "VncAuth"
 Option "PasswordFile" "/etc/vncpasswd"

 ...Remainder of Screen section...
EndSection

Almost any option accepted by the Xvnc server can be passed to the VNC extension by
adding Option entries in the Screen section. For example, to specify that the incoming
VNC connections should be accepted on port 5907 (VNC display number :7):

Section "Screen"
 Option "SecurityTypes" "VncAuth"
 Option "PasswordFile" "/etc/vncpasswd"
 Option "RFBport" "5907"

...Remainder of Screen section...
EndSection

14.16 Using VNC to Share a Presentation
About two years ago, I led a introductory workshop on the use of LAMP (Linux,
Apache, MySQL, and Perl/PHP). I had prepared some slides, but knew that during
some parts of the presentation the slides would be obscured by live demos. The par-
ticipants would also be performing hands-on experimentation and would have to

14.16

214 Chapter 14: Using VNC

refer to the slides, so I needed some way of enabling them to see the slides regardless
of what I was doing on the screen. Although my presentation software (MagicPoint)
had a web-based follow-along mode, it didn’t scale well enough for this workshop.

The solution I used was to start an Xvnc server with a geometry smaller than my
screen size and to run the presentation software on that display. I then used a VNC
viewer to display that window on my screen, and I provided each of the participant
workstations with an icon that started a VNC viewer on the workstation with appro-
priate arguments to prevent updates (so they could see the current slide, but not ter-
minate the presentation or change the slide).

This is the script used on the podium computer:

#!/bin/bash
#
govnc :: start a VNC server with mgp inside
use index.mgp as the slideset
use display 20 for VNC

VNCDISPLAY=20 # VNC display number
HOST='' # VNC hostname
SLIDESET="index.mgp" # slide set to be used
MGPARGS="-t210" # mgp arguments, if desired (e.g., -G, -t)
GEOMETRY="800x600" # mgp geometry

If an Xvnc server is already running, this will silently fail
Xvnc -securitytypes none -geometry $GEOMETRY \
 -depth 24 :$VNCDISPLAY >/dev/null 2>&1 &
sleep 1

Kill the existing mgp and vncviewer processes
killall mgp vncviewer

Start a new mgp and vncviewer process
DISPLAY=$HOST:$VNCDISPLAY mgp $MGPARGS $SLIDESET &
MGPPID=$!

vncviewer $HOST:$VNCDISPLAY&

echo "MGP Process ID: $MGPPID" >/tmp/x

Kill the server and viewer when mgp dies
wait $MGPPIG
killall Xvnc vncviewer

On the client machines, the script looked like this:

#!/bin/bash
#
showvnc :: start a VNC viewer to follow podium presentation

VNCDISPLAY=20 # VNC display number
HOST='blue' # VNC hostname

exec vncviewer -viewonly $HOST:$VNCDISPLAY

14.17

14.17 Bypassing a Firewall 215

It would also be possible to use the Java VNC viewer and give out the URI to partici-
pants at the start of the presentation if they’re using their own equipment (such as
wireless laptops).

14.17 Bypassing a Firewall
Firewalls can pose a problem when using VNC. By far, the simplest and most secure
way to get around a firewall when using VNC is through SSH tunneling (Section
14.12).

But if the machine you’re connecting to is a cluster of computers—or if SSH is not
configured—then SSH is not an option. However, you may be able to create the con-
nection if you reverse the direction: make the VNC server connect to the VNC
viewer.

To set up the viewer side of a reverse connection, run vncviewer with the -listen
argument. You can specify a port, or omit it and use the default of 5500 like this:

green$ vncviewer -listen

The server side is then set up in two steps. First, start the Xvnc server; here I’m speci-
fying display :1 and instructing the server to connect to the display manager on red:

blue$ Xvnc -query red :1

If you’re using a recent version of RealVNC, use the vncconfig command to instruct
the VNC server to connect to the viewer:

blue$ vncconfig -display :1 -connect blue:5500

If you’re using TightVNC or an older version of RealVNC, the command is
vncconnect:

blue$ vncconnect -display :1 blue:5500

The port can be omitted if the default (5500) is used.

Part V

V.Special Configurations

219

Chapter 15

15
Building a Kiosk

15.1 What Is a Kiosk, and Why Do I Want One?
A kiosk is a publicly accessible computer display dedicated to a specific task or group
of tasks. Here are some examples:

• An electronic catalog station in a library

• An automated teller machine

• A ticket-vending machine

• A video wall

• A browsing and word-processing system in an Internet café

Many of these applications—including the library card catalog and ticket-vending
machine—are most easily developed and deployed using a restricted, browser-based
interface.

Kiosks differ from normal user-interface configurations in the way that they are man-
aged. Many kiosks do not offer normal windows, and instead run a single applica-
tion that takes up the entire display; others offer a limited selection of applications in
a normal window environment. The user-interface hardware may also be more lim-
ited than in a desktop configuration—for example, there may be no keyboard—and
it may be more rugged: a trackball or touchscreen to control the pointer instead of a
mouse.

In all cases, a kiosk configuration will strictly limit what the user can do and be
robust enough that it will handle most error situations without intervention. This
chapter covers configuring a kiosk using standard applications and tools.

15.2 Selecting Kiosk Hardware
If your kiosk will be used only by selected, trusted users (e.g., staff) or in a light-duty
environment (Internet café), you may be able to get by with regular PC hardware.

15.2

220 Chapter 15: Building a Kiosk

For any other purpose, you will probably want to invest in specialized hardware.
Kiosk hardware is usually similar to desktop hardware but is typically more rugged
and is often mounted in a custom-built case. Obviously, the wide range of kiosk
applications means that there is also a wide range of possible kiosk hardware config-
urations: what is suitable for a vending machine is not suitable for an Internet café.

Monitor
Although LCDs have long life, low-power consumption, and a flat surface, they usu-
ally have a soft plastic surface that is not sufficiently durable for public operation.
Therefore, many kiosks use an LCD display covered by a glass, acrylic, or polycar-
bonate sheet, or a traditional CRT display. Since most kiosks are used from a stand-
ing position, the display may be farther from the user than a normal desktop display.
Because some users may have visual impairment, it is best to use a large, bright, high-
contrast display. The monitor should be positioned to accommodate users of many
different heights, including people in wheelchairs.

For some applications such as public information displays or video walls, you may
want to consider using a rear-projection screen and one or more LCD or DLP video
projectors.

Pointer
Mice are inappropriate for most kiosks, because the cord and position sensor are sus-
ceptible to damage. When the kiosk application requires pointer positioning (not
always the case), a touchscreen, touchpad, or trackball are usually used.

Keyboard
Some kiosk applications require a full keyboard. Keyboards are susceptible to dirt,
abraded labels, and liquids; to deal with this, some kiosk builders use cheap key-
boards that can be replaced inexpensively, while others choose rugged keyboards
that resist liquids and can be easily cleaned. The keyboard can be mounted behind a
metal or acrylic panel cut to shape.

If your application does not require a full keyboard, you may be able to use a USB
numeric keypad instead; these are commonly marketed for use with laptops.

There are a number of companies that make custom keycaps for use with keyboards
or keypads; you can order standard sets of specialized symbols, blank keycaps (for
unused keys on the keyboard), or custom legends. Another possibility is mounting
heavy-duty pushbuttons adjacent to the screen and wiring those pushbuttons in par-
allel with the keys on a keypad or keyboard; the application can then present soft
keys—on-screen options that can be selected by pressing one of the adjacent buttons.

15.3

15.3 Configure X for a Kiosk 221

For applications that require only limited keyboard input, consider using a touch-
screen and presenting the keyboard on-screen when necessary.

Avoid using a touchscreen for password or PIN entries, since it’s too
easy for someone else to view (or video-record) the password as it
being entered.

System Unit, Power Supply, and Ventilation
Most kiosks have an inner and outer case; the outer case is visible to the user and
takes the form of a vending machine, podium, recessed wall unit, or whatever is
suited to the application. The inner case is usually a standard or rackmount PC chas-
sis. Because kiosks may run without inspection for weeks or months at a time, it is
wise to select a basic but rugged chassis with a good power supply and extra fans for
the system unit. Easily washed air filters which are oversized (in case they become
partially clogged) will help prolong the life of the unit, and airflow through the outer
case or cabinet of the kiosk should also be carefully planned. Ventilation louvers
should be positioned to allow good airflow while eliminating the possibility of liq-
uids or foreign objects reaching internal components (an internal baffle can prove
helpful). A good UPS with temperature monitoring is highly recommended. Depend-
ing on the application, the external power supply cable, network cable, and (if neces-
sary) alarm cables may need to be armored.

15.3 Configure X for a Kiosk
Configuring X for a kiosk involves removing features to limit what the user can do.
The three main configuration entries for this can be placed in the ServerFlags
section:

Section "ServerFlags"
 Option "DontZoom"
 Option "DontZap"
 Option "DontVTSwitch"
EndSection

This prevents the user from changing the display resolution, terminating the X
server, or switching virtual terminals.

During the development and testing of the kiosk, you may want to store the kiosk X
configuration in a separate file (such as /etc/X11/xorg.kiosk.conf) so that the default X
server retains its original configuration. To start X with the kiosk configuration, sup-
ply the -config argument on the command line:

blue$ X -config /etc/X11/xorg.kiosk.conf

15.4

222 Chapter 15: Building a Kiosk

15.4 Controlling the Keyboard
Many programs have special functions that can be invoked using function keys, Alt-
or Ctrl-key combinations, or Alt-Ctrl-Shift-modified mouse clicks. To prevent the
users from accessing these functions, you can modify the keyboard map using the X
Keyboard Extension or the xmodmap command. In most cases, the xmodmap com-
mand provides the simplest solution.

Here is an xmodmap file that will disable the Ctrl, Alt, and CapsLock keys as well as
function keys F1–F12:

! clear unneeded modifier keys
clear CTRL
clear mod1
clear mod2
clear mod3
clear mod4
clear mod5
clear lock

! clear the function keys (F1-F12)
keysym 0xffbe =
keysym 0xffbf =
keysym 0xffc0 =
keysym 0xffc1 =
keysym 0xffc2 =
keysym 0xffc3 =
keysym 0xffc4 =
keysym 0xffc5 =
keysym 0xffc6 =
keysym 0xffc7 =
keysym 0xffc8 =
keysym 0xffc9 =

To use this file, pass the filename (/usr/local/kiosk/xmodmap.txt in this case) to
xmodmap as an argument:

$ xmodmap /usr/local/kiosk/xmodmap.txt

To disable other keys, discover the keycode by running the xev utility, then add addi-
tional lines to clear out the key symbols (also called keysyms) associated with that
keycode. For example, to disable the A key, run xev and press the A key. xev will
output a message like this on stdout:

KeyPress event, serial 29, synthetic NO, window 0x3a00001,
 root 0x119, subw 0x0, time 342476839, (176,174), root:(1062,320),
 state 0x10, keycode 38 (keysym 0x61, a), same_screen YES,
 XLookupString gives 1 bytes: (61) "a"
 XmbLookupString gives 1 bytes: (61) "a"
 XFilterEvent returns: False

KeyRelease event, serial 29, synthetic NO, window 0x3a00001,
 root 0x119, subw 0x0, time 342476939, (176,174), root:(1062,320),

15.5

15.5 Controlling the Mouse 223

 state 0x10, keycode 38 (keysym 0x61, a), same_screen YES,
 XLookupString gives 1 bytes: (61) "a"

From this output you can see that the keysym for A is 0x0061; append a line to the
xmodmap file disabling that key:

keysym 0x0061 =

15.5 Controlling the Mouse
The middle and left mouse buttons can be used to access special features of some
programs. For example, if you highlight a URI in Firefox and press the middle mouse
button on a nonlink portion of a web page, the browser will load the page at that
URI. Likewise, the right mouse button provides a pop-up menu of features that you
may not want your users to access, such as saving onto the local filesystem.

You can configure which physical mouse buttons generate which button event using
xmodmap. Normally, button 1 generates a button 1 event, button 2 generates a but-
ton 2 event, and so forth.

To change the mouse button mapping, first find out how many mouse buttons are
configured by your X server:

$ xmodmap -pp
There are 5 pointer buttons defined.

 Physical Button
 Button Code
 1 1
 2 2
 3 3
 4 4
 5 5

In normal operation, buttons 1–3 correspond to the left, middle, and right mouse
buttons; button 4 and 5 are scrollwheel up and down; and buttons 6 and 7 are scroll-
wheel left and right (for mice that have two scrollwheels, a tiltable scrollwheel, or
buttons on the side of the mouse and typically used for browser history navigation).

You can use the xmodmap pointer command to specify the button event code for
each physical button:

$ xmodmap -e "pointer = 1 10 11 4 5"

You must specify a code for each button defined on the mouse (five for this mouse).

In this example, button 1 (left button) and buttons 4 and 5 (scrollwheel up and
down) retain their original meaning, but button 2 will generate a button 10 event,
and button 3 will generate a button 11 event, both of which are ignored by most
applications. This effectively disables buttons 2 and 3.

15.6

224 Chapter 15: Building a Kiosk

If you are using xmodmap to change the keyboard, you can append the pointer line
to the end of the xmodmap input file:

pointer = 1 10 11 4 5

Some applications may not use the pointer mapping set by xmodmap and may con-
tinue to recognize all of the mouse buttons. In that case, you can disable all but the
first mouse button by using the Buttons option in the mouse’s InputDevice section of
the X server configuration file:

Section "InputDevice"
 Identifier "Mouse0"
 Driver "mouse"
 Option "Buttons" "1"
 Option "Protocol" "IMPS/2"
 Option "Device" "/dev/input/mice"
EndSection

15.6 Starting a Single Fullscreen Application
For a kiosk that runs only one application, it makes sense to omit the window man-
ager and just start that one application in fullscreen mode.

For many applications, this can be done with a command-line geometry specifica-
tion; on a 1024 × 768 screen, this opens a full-screen xclock:

$ xclock -geometry 1024x768+0+0

It is common to use a web browser as a kiosk application. Unfortunately, most of the
current generation of web browsers ignores command-line geometry specifications,
and, although they have a fullscreen mode, this mode is not accessible from the com-
mand line. In that case, it may be necessary to use a browser extension or chrome
file; alternately, you can use JavaScript to invoke a full-screen browser window, using
a file such as this:

<?xml version='1.0' encoding='UTF-8'?>
<!DOCTYPE html PUBLIC
 '-//W3C//DTD XHTML 1.0 Transitional//EN'
 'http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd'>

<html xmlns='http://www.w3.org/1999/xhtml' xml:lang='en'>
 <head>
 <title>Kiosk Startup</title>
 </head>
 <body>
 <script language="JavaScript">
 window.open('http://yellow/','master','width=1024,height=768,menubar=no');
 </script>
 </body>
</html>

15.7

15.7 Network Status Monitoring 225

This script requires that pop-up blocking be disabled in the browser.

Insert the desired URI, width, and height into the window.open line, save the file
locally (e.g., at /usr/local/kiosk/index.html) and then invoke the browser with the
script:

$ firefox file:/usr/local/kiosk/index.html

This will start a second window on top of the first, with a 1024 × 768 geometry and
no menu bar. Since no window manager is running, the user cannot close, minimize,
or move the top window to return to the first window. To disable the status bar, nav-
igation bar, and other user interface features on a browser such as Mozilla or Fire-
fox, start the browser normally and deselect those features using the View menu,
then exit the browser. The browser configuration files will automatically be updated
with your preferences.

You may also be able to configure a kiosk mode for a browser using
the browser’s chrome capability, theming, or an extension.

15.7 Network Status Monitoring
Impaired or broken kiosk operation can be very frustrating to users, so automatic
monitoring (and notification) of network status may help prevent users from taking
out their frustration on your hardware.

If you’re using a browser as your kiosk application, you can use a command such as
wget to periodically poll the server and determine whether it is available. For exam-
ple, if the main index page for the kiosk is http://yellow/, you could check whether
the remote server is prepared to serve that page with this command:

blue$ wget http://yellow/ --spider -t 1

The exit status will be 0 if the page is available, or 1 if it is not. The --spider argu-
ment instructs wget to check the page availability (using the HTTP HEAD command)
rather than retrieve the page (using HTTP GET), therefore reducing the amount of
data transferred over the network.

If you’re using another network-based service, you can use any other appropriate
tool (such as ping for general server connectivity, showmount -e for NFS servers, or a
netcat or a Perl script for a custom service) to test whether the service the kiosk
needs is available.

15.7

226 Chapter 15: Building a Kiosk

Using the wget command, we can create a script that will place a message on the
kiosk display when the remote server becomes unavailable and removes it when the
remote server comes back online:

#!/bin/bash
#
monitor.sh :: monitor server availability, warn user if service unavailable
#

=== Configuration variables

Seconds between service availability tests
SECONDS=15

Command to test the server availability
CHECK="wget http://yellow/ --spider -t 1"

URIs for warning message (should be file://...) and kiosk's homepage
WARN="file:/usr/local/kiosk/outage_warning.html"
HOMEPAGE="http://yellow/"

=== End of configuration variables

STATE="UP"
while sleep $SECONDS
do

 $CHECK
 RESULT=$?

 case "$STATE" in
 "UP")
 if ["$RESULT" -ne "0"]
 then
 firefox -remote "openurl($WARN)"
 STATE="DOWN"
 fi
 ;;

 "DOWN")
 if ["$RESULT" -eq 0]
 then
 firefox -remote "openurl($HOMEPAGE)"
 STATE="UP"
 fi
 ;;
 esac

done

This script uses the Firefox -remote argument to instruct a running instance of Fire-
fox to load a local error message page ($WARN) or the kiosk’s home page on the
remote server ($HOMEPAGE) when connectivity to the remote server is lost or restored.

15.7

15.7 Network Status Monitoring 227

If you’re setting up a kiosk that uses an application other than a browser, substitute
another command to check that the remote server is accessible and replace the
browser messages with a graphic image that will fill the screen when the server is
down:

#!/bin/bash
#
monitor.sh :: monitor server availability, warn user if service unavailable
#

=== Configuration variables

Seconds between service availability tests
SECONDS=15

Command to test the server availability
CHECK="ping yellow"

File containing a full-screen warning image
WARN="file:/usr/local/kiosk/outage_warning.tiff"

=== End of configuration variables

STATE="UP"
while sleep $SECONDS
do

 $CHECK
 RESULT=$?

 case "$STATE" in
 "UP")
 if ["$RESULT" -ne "0"]
 then
 xloadimage -fullscreen $WARN
 STATE="DOWN"
 fi
 ;;

 "DOWN")
 if ["$RESULT" -eq 0]
 then
 killall xloadimage
 # Add any application-reset commands here
 STATE="UP"
 fi
 ;;
 esac

done

15.8

228 Chapter 15: Building a Kiosk

If xloadimage is not included with your distribution/system, you can
obtain it from ftp://ftp.x.org/R5contrib/ or use a similar application
such as ImageMagick’s display. Note that both xloadimage and display
can be exited by pressing Q, so they may not be appropriate for desk-
tops that are equipped with a full keyboard (but will work fine on
kiosks that have only a keypad, soft keys, or a pointer device).

15.8 Using xscreensaver to Reset a Kiosk
It’s often desirable to reset a kiosk after a period of inactivity. For example, if a kiosk
is presenting a library catalog, it should return to the library home page after a few
minutes of idle time.

Although there are many ways to detect kiosk inactivity, xscreensaver (Section 6.13)
already contains the required logic and can be easily put to use.

xscreensaver uses various graphics hacks to present screensaver effects—whether
bouncing cows, fractals, or floating text. You can add, as an additional hack, a script
that simply resets your kiosk application and deactivates the screensaver, or you can
create a script that resets your application and then executes an existing graphics
hack.

To simply reset your application and the disable the screensaver, create a script like
this:

#!/bin/bash
#
kiosk-reset :: xscreensaver 'hack' to reset the kiosk

Reset the kiosk application (Firefox browser in this case)
firefox -remote 'openURL(http://yellow/)' &

Deactivate the screensaver to return to normal display mode
/usr/bin/xscreensaver-command -deactivate

The location of the xscreensaver command varies between operating
systems/distributions.

Name this script kiosk-reset, add execute permission, and save it in /usr/libexec/
xscreensaver (or whatever location is used by your version of xscreensaver).

Next, add a line configuring this hack into /usr/share/X11/app-defaults/XScreenSaver,
in the *programs section:

*programs:
 "Kiosk reset" /usr/libexec/xscreensaver/kiosk-reset \n\
 "Qix (solid)" /usr/libexec/xscreensaver/qix -root -solid -segments 100 \n\

ftp://ftp.x.org/R5contrib/

15.9

15.9 Refining the Kiosk Appearance 229

If you have an existing ~/.xscreensaver file, delete it so that the changes to /usr/share/
X11/app-defaults/XScreenSaver are detected.

Use the xscreensaver-demo application to configure xscreensaver, specifying the
length of idle time before the screensaver should kick in and denoting Kiosk reset as
the one and only screensaver to be used.

The script above will reset the Firefox browser to the specified page, and then
resume normal operation; however, the screen will go black briefly when
xscreensaver kicks in.

Instead of this unpolished blanking effect, it may be better to run one of the existing
hacks to present a message to users while the kiosk is idle; for example, the
GLslideshow hack can very attractively zoom around and cross-fade between prod-
uct images, or fontglide can present advertising messages or announcements in an
attention-getting manner.

To invoke another hack from your script, you need to find the command line for that
hack; this can most easily be done by copying (or modifying) the command line for
the hack from /usr/share/X11/app-defaults/XScreenSaver, or configuring the hack
using the Settings feature in /usr/share/X11/app-defaults/XScreenSaver and then using
the Advanced tab to view the command line.

Replace the xscreensaver-command line in the earlier kiosk-reset script with the com-
mand line for your selected hack:

#!/bin/bash
#
kiosk-reset :: xscreensaver 'hack' to reset the kiosk

Reset the kiosk application (Firefox browser in this case)
firefox -remote 'openURL(http://yellow/)' &

Execute an existing xscreensaver hack
exec /usr/libexec/xscreensaver/phosphor -program 'echo -e "\fX Power Tools
\nby Chris Tyler\nO\'Reilly Media, 2007\n\nEverything you ever wanted\nto know
about X - and then\n some\n-Slashdot Anonymous Coward\n\nTouch the mouse to
begin..."' -root

15.9 Refining the Kiosk Appearance
The default X cursor (which is a thick X, visible whenever an application has not
taken overridden the default cursor shape) and the root window appearance (either
solid black or a stippled grayscale pattern) are ugly. You can control both using the
xsetroot command:

blue$ xsetroot -cursor_name left_ptr -solid steelblue

left_ptr is the name of the standard, northwest-pointing arrow cursor; to see other
possible cursor names, read /usr/include/X11/cursorfont.h. To see the cursor shapes,

15.10

230 Chapter 15: Building a Kiosk

use the X font display program, and match up the character numbers (seen at the top
of the window when you click on a shape) with the numbers in /usr/include/X11/
cursorfont.h:

$ xfd -fn cursor

The -solid argument takes a color name (Section 3.13) or a color code (hex digits in
the form #rrbbgg) as its argument.

15.10 Putting It All Together: Scripting a Kiosk
The core of most kiosk systems is a script (or group of scripts) that start the X server,
kiosk applications, and any related services, and then monitor the kiosk application,
restarting the X sever or applications when necessary.

Here is an example of a basic kiosk script, combining the ideas from the other arti-
cles in this chapter:

#!/bin/bash
#
kiosk.sh :: start a web browser in Kiosk mode
#

--- Configuration variables
export DISPLAY=":1"
BROWSER="/usr/bin/mozilla"
STARTPAGE="file:/usr/local/kiosk/index.html"
HOMEPAGE="http://yellow/"
WARN="file:/usr/local/kiosk/outage_warning.html"
XSERVER="/usr/bin/X"
XMODMAP="/usr/bin/xmodmap /usr/local/kiosk/xmodmap.txt"
SCREENSAVER="/usr/bin/xscreensaver -nosplash"
SCREENSETUP="xsetroot -cursor_name left_ptr -solid blue"
SECONDS="15"
CHECK="wget $HOMEPAGE --spider -t 1"
--- End of configuration variables

while true
do

 # Step 1: Start the X server, allowing local connections only
 $XSERVER $DISPLAY -nolisten tcp -ac -terminate &
 XPID=$!

 # Step 2: Start the screensaver
 $SCREENSAVER &

 # Step 3: Adjust the keymapping, pointer configuration, mouse shape,
 # and root window color
 $XMODMAP
 $SCREENSETUP

15.10

15.10 Putting It All Together: Scripting a Kiosk 231

 # Step 4: Start the browser
 $BROWSER $STARTPAGE &
 BROWSERPID=$!

 # Step 5: Start the network monitoring code
 (
 sleep 10 # Give the browser a chance to start

 STATE="UP"
 while sleep $SECONDS
 do

 $CHECK
 RESULT=$?

 case "$STATE" in
 "UP")
 if ["$RESULT" -ne "0"]
 then
 firefox -remote "openurl($WARN)"
 STATE="DOWN"
 fi
 ;;

 "DOWN")
 if ["$RESULT" -eq 0]
 then
 firefox -remote "openurl($HOMEPAGE)"
 STATE="UP"
 fi
 ;;
 esac

 done
)&

 # Step 6: Wait until the application dies
 wait $BROWSERPID

 # Step 7: Kill everything and start over
 killall -KILL $BROWSERPID $XPID

done

The core of the script is a loop, which will restart the kiosk if it stops. The X server is
started without access controls, but only local connections are accepted; in most
cases, that should be sufficient to prevent external clients from connecting.

After the X server is started, the screensaver is started. This is done first to ensure
that the X server always has a connected client, so that it does not reset prema-
turely—or terminate in this case, due to the -terminate option on the X command
line. This enables the script to run xmodmap without the server resetting and clear-
ing out the xmodmap settings as soon as it’s done. The script then runs the browser

15.11

232 Chapter 15: Building a Kiosk

program—which could just as easily be any other full-screen program of your choos-
ing—and then the network monitoring code in the background.

Finally, the script monitors the application (Firefox) to see if it terminates—which
shouldn’t happen, but many programs have slow memory leaks or other problems
that may cause them to fail after extended periods of use. An X server failure should
automatically cause the application to terminate. Nonetheless, the script watches for
this condition, and rather than leave anything to chance, it kills off all of the child
processes and restarts all of them.

Note that display :1 is used here; this facilitates testing of the kiosk script while dis-
play :0 is active on the system.

15.11 Booting a Kiosk
Most kiosk systems boot directly into the configured kiosk application. This can eas-
ily be configured and tested on a system that supports runlevels.

Traditionally, runlevel 4 is unused, so it is a perfect candidate for a kiosk mode. It’s
easiest to start off by copying the scripts for a working runlevel. On a Fedora system,
you could copy the runlevel 5 configuration with this command:

blue$ cp -l /etc/rc.d/rc5.d /etc/rc.d/rc4.d

Other systems may use other directories; for example, Debian/Ubuntu uses /etc/rc4.d
and /etc/rc5.d.

Next, disable all unnecessary services (this will depend on the kiosk application). For
example, to delete the bluetooth services:

blue# chkconfig bluetooth off

It is a good idea to leave ssh enabled, so that you can log in to the
kiosk remotely for diagnostic and maintenance work.

You can also use your system- or distribution-specific configuration tools, but they
will have the same effect: deleting symlinks from the directory for runlevel 4.

You will then need to modify /etc/inittab to disable character-mode logins in runlevel
4. Here are the affected lines:

Run gettys in standard runlevels
1:2345:respawn:/sbin/mingetty tty1
2:2345:respawn:/sbin/mingetty tty2
3:2345:respawn:/sbin/mingetty tty3
4:2345:respawn:/sbin/mingetty tty4
5:2345:respawn:/sbin/mingetty tty5
6:2345:respawn:/sbin/mingetty tty6

15.12

15.12 Creating a Video Wall 233

In each line, the character 4 in the second field must be removed:

Run gettys in standard runlevels
1:235:respawn:/sbin/mingetty tty1
2:235:respawn:/sbin/mingetty tty2
3:235:respawn:/sbin/mingetty tty3
4:235:respawn:/sbin/mingetty tty4
5:235:respawn:/sbin/mingetty tty5
6:235:respawn:/sbin/mingetty tty6

Finally, append a line to this file to configure init to start the kiosk script (and
respawn it if it dies) only in runlevel 4:

ks:4:respawn:/usr/local/kiosk/kiosk.sh

Whenever you change /etc/inittab, you must inform init of the change:

init q

You can then test the kiosk mode by switching into from your current runlevel:

init 4

Once you are confident that the kiosk is properly configured, you can change the
default system boot runlevel by changing the initdefault line in /etc/inittab. To tem-
porarily boot into runlevel 3 or 5 for maintenance, append the desired runlevel to the
boot parameters (Section 2.5).

Remember to add a password to the boot manager configuration
before deploying the kiosk, in order to prevent unauthorized booting
into any runlevel other than 4.

15.12 Creating a Video Wall
Video walls—huge grids of monitor or projection screens set up to show large
images—are always impressive. Xinerama can be used to create displays that span as
many screens as you have video cards, but typical PC motherboard design limits you
to six or seven video cards. For larger displays, DMX provides a way of merging dis-
plays from multiple hosts into one giant display.

DMX stands for Distributed Multihead X. The DMX server, Xdmx, is an X server that
uses other X servers as screens. This permits you to combine almost any number of
monitors into one giant display.

To use Xdmx in its most basic form, start it with two or more -display arguments, a
display number for the Xdmx server itself and any other standard X server options:

blue$ Xdmx -display blue:0 -display red:0 -ac +xinerama :35

In this example, the Xdmx server is display :35, and it uses blue:0 (left) and red:0
(right) as screens in a Xinerama configuration with no access control. If blue:0 and
red:0 are both 800 × 600 in size, then the Xdmx server will have a display resolution
of 1600 × 600 pixels.

15.12

234 Chapter 15: Building a Kiosk

In order to configure the spatial relationship of the constituent displays/screens,
Xdmx provides a configuration file option. A simple config file looks like this:

virtual testconfig 1600x600 {
 display blue:0 800x600 @0x0;
 display red:0 800x600 @800x0;
}

The file consists of one or more configurations, each of which consists of the key-
word virtual, a name assigned to this configuration, and a list of displays enclosed
in braces. Each display entry starts with the keyword display followed by the dis-
playspec (Section 1.12), display geometry, and the position of that display within the
Xdmx display space. Semicolons separate the display entries. This example is the
same as the Xdmx command shown earlier, and it configures two 800 × 600 displays
into one 1600 × 600 display.

The configuration file is used with the -configfile option to Xdmx:

blue$ Xdmx -configfile dmxconfigfile -ac +xinerama :35

If the config file includes multiple configurations, select one with the -config option:

blue$ Xdmx -configfile dmxconfigfile -config testconfig -ac +xinerama :35

If you’re going to configure multiple screens on each host, I recommend that the
screens be configured using Xinerama at the host level, so that Xdmx has only one
entry for each display. For example, to build a 16-monitor grid where four 800 × 600
monitors are controlled by each of four hosts (host0 through host3), the four moni-
tors on each host should be configured using Xinerama (Section 4.2) to present a sin-
gle 3200 × 600 display (one row of the grid). The Xdmx configuration would then
look like this:

virtual grid 3200x2400 {
 display host0:0 3200x600 @0x0;
 display host1:0 3200x600 @0x600;
 display host2:0 3200x600 @0x1200;
 display host3:0 3200x600 @0x1800;
}

Xdmx will take its input from the first display specified, unless the -input option is
used. The argument to -input can be any of the backend (hardware) displays in the
configuration, or it can be a separate X server, in which case a DMX Console is
drawn that shows outlines of the various backend displays and an outline of each
window. Figure 15-1 shows a DMX Console window; note that there are inaccessi-
ble areas in this Xinerama configuration.

There are several things to keep in mind when configuring DMX:

• Performance will be degraded by the simple fact that multiple X servers will be
processing the command and reply streams and the amount of network traffic
that will be generated.

15.12

15.12 Creating a Video Wall 235

• Xvideo and XVideo-MotionCompensation extensions will not be available
through DMX. Video and animation will have to be drawn using traditional X
operations or through the RENDER extension. If you’re using mplayer, this can
be configured using the -vo x11 option.

• GLX is available through DMX if all of the backend displays support it.

• DRI will not be available.

There is a graphical configuration tool that is shipped with Xdmx
named xdmxconfig, but the configuration files generated by that pro-
gram may need editing before they are used. Specifically, some ver-
sions will insert slash characters which the Xdmx server will parse
incorrectly. Deleting the slashes will clear up the problem.

Figure 15-1. DMX Console for keyboard and mouse input

237

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Symbols
& (ampersand), background operation of

commands, 112
* (asterisk), mouse key, 38
(hash mark) beginning comment lines, 32
- (minus) mouse key, 38
+ (plus sign) mouse key, 38
/ (slash) mouse key, 38

Numbers
0 key (mouse key), 38
32-bit systems, 19

using 24-bit RGB values, 138
5 key (mouse keys), 38

A
Above keyword (screen positioning), 72
absolute pointing devices, 12
absolute X-Y pixel position (screens), 71
accelerated graphics port (AGP), 17
acceleration

accel option (video driver), 57
mouse, 103

acceleration factor, 103
accented characters, 13
access control, 182

host-based, 182
magic cookies and xauth utility, 183–185
SECURITY extension, 186
tunneling with SSH, 188

additive color systems, 135

additive primaries, 135
AGP (accelerated graphics port), 17
AGP bus, scanning, 48
AIX and HP/UX systems, CDE desktop, 118
aliasing (monochrome fonts), 142
AllowClosedownGrabs option, 92
AllowDeactivateGrabs option, 92
AllowMouseOpenFail option, 81
Alt, Ctrl, and Shift keys, 161
AlwaysCore argument, 80
analog connection, video cards, 18
antialiasing, 142

enabling/disabling or adjusting, 158
Apache web server, configuring Java applet

VNC servers, 205
applet tags (Java VNC viewer), 202, 206
application clients, 8
ARGB visuals, 138
Argyll (color management system), 140
ASCII-based terminal emulators, 116
Asian languages, keyboard input

methods, 13
Athena project widgets, 11
ATI drivers, 56

closed-source driver fglrx, multiple
outputs, 77

open-source driver radeon, multiple
outputs, 77

audio feedback scripts, 102
autologin, 30
AZERTY keyboards, 13

238 Index

B
background operation, 112
bandwidth, 181

LBX (low-bandwidth X), 187
bash shell, PROMPT_COMMAND

environment variable, 117
bell facility, 101

audio feedback scripts, 102
Below keyword (screen positioning), 72
binaries (compiled for one platform but

executed on another), 22
BIOS-controlled keyboard(s), 49
bitmapped fonts, 144
bluetooth connection, pointing devices, 12
boolean values, video device driver

options, 56
booting the system

enabling or disabling display manager, 28
kiosks, 232
runlevels, 28

bootloaders
grub, changing into different runlevel, 28
LILO, changing runlevel, 29

Bourne syntax, exporting DISPLAY
variable, 21

broadcast queries, 178
build information, 62
bus interface, 17
bus mice, kernel drivers, 83
Buttons option (InputDevice section), 224

C
CAB format archives, 157
cabextract program, 157
calculators, 118

xcalc, kcalc, and gnome-calculator, 9
CapsLock, NumLock, and ScrollLock

LEDs, 104
cathode ray tube (see CRT monitors)
CDE (Common Desktop Environment), 118

Motif/OpenMotif toolkit, 10
character mode (display), 25
character terminals, 115
character-based applications, 115–117

using with X, 116
choosers (display managers), 179
chroot environment, 210
chvt command, 36
click-to-focus policy, 90
client appearance, 6
client system, 9

clients
application, 8
GNOME session, 125
preconfigured, started by display

manager, 27
running X clients, 112–117

background operation, 112
geometry (window), 113–115
nongraphical applications, 115–117

saving state, session manger and, 120
starting X server with, on need basis, 35
trusted and untrusted, 23
Xfce sessions, 129
xterm client connecting to X server, 27

clipboard, 88–90
clipboard managers, 89
clocks, 118
cmdline file, 41
CMS (color management system), 140
CMYK (cyan, magenta, yellow, black) color

system, 135
code examples from this book, xi
color, 135–141

CMS (color management system), 140
color code of selected pixels in the

display, 105
gamma, 138–140
monochrome fonts, 142
perception of color, 136
RGB and other color systems, 135
video cards, 18
visuals, 136–138

color depth
commonly used depths, 64
default depth of a screen, 47, 64
Xinerama configuration, 68

color lookup tables (CLUT), 137
color spaces, 135

gamut, 136
color targets, 141
color triplets, 58
colorimeters, 141
colormaps, 137
command line, configuration file for X.org

server, 41
comments, 32
Commission Internationale de l’Eclairage

(CIE), 136
Common Desktop Environment (CDE), 118

Motif/OpenMotif toolkit, 10
compat (XKB keymaps), 162
compose key, 13, 161

Index 239

Composite extension, 22
transparency information (ARGB

visuals), 138
composite signals, 16
compositing manager, 8
compression

lbxproxy and, 188
SSH, 189

-config argument, x command, 32
configuration, toolkits and, 5
configuration, X.org server, 40–66

changing resolution dynamically, 85
color names, 58
differences between Xinerama and

multi-screen modes, 69–71
enabling DPMS, 54
gamma correction factors, 139
location of configuration file, 41
monitor scan rates, 59–62
mouse with a scrollwheel, 53
multiple outputs from single video

card, 77–79
multi-screen, 67
overlapping Xinerama, 72–74
parallel keyboards, 81
parallel pointing devices, 79
pointer device, 51
positioning screens, 71–72
reading server log files, 62–64
resolution of a screen, 65
scrolling virtual screens and Xinerama, 74
self configuration, 43
Synaptics TouchPad, 53
two-button mouse, 52
using X with GPM or MOUSED, 83
video card driver options, 56
Xinerama, 68
xorg.conf file, 44–46

InputDevice section, 49
Monitor section, 48
optional sections, 49
Screen section, 47
ServerLayout section, 46

connections, devices on the system, 82
consoles, virtual (see virtual terminals)
copy, cut, or paste operations

clipboard, 88
copying and pasting text, 87

core fonts, 142–149
configuring the font path, 143–145
font names, 146–148

patterns in font names, 148
selecting a font with xfontsel, 148

installing and removing fonts, 148
old X versus new X, 142
types or groups of fonts, 144
using a font server, 145

CoreKeyboard option, 83
CorePointer argument, 80
CRT (cathode ray tube) monitors, 14

energy savings, 55
gamma, 138
kiosk applications, 220
refresh rates, 60
use with Xinerama, 69

cryptography (public-key), using with
SSH, 190

passphrase protecting SSH keys, 191
csh shell

cwdcmd, precmd, and postcmd
aliases, 117

exporting DISPLAY variable, 21
CSV (comma-delimited values), keyboard

groups, 166
Ctrl key, 161
Ctrl-Alt-Backspace keystroke combination,

bailing out of X server, 39
Ctrl-Alt-Keypad Divide, 92
Ctrl-Alt-Keypad Multiply, 92
curses library, controlling the terminal, 115
cursors, default in X, 229
cyan, magenta, yellow, black (CMYK color

system), 135

D
DACs (digital-to-analog converters), 18
DAMAGE extension, 22, 210
data types, clipboard operations and, 90
d-config.keyboard files, 169
dcopserver (KDE), 126
DDC (Display Data Channel), 59
dead keys, 13
Debian Free Software Guidelines (DFSG), 11
Debian Linux, starting display manager, 29
default.session file, 124
-depth (command-line) option, 64
depth of a screen (see color depth)
depth variable (vncserver), 197
desktop environments, 10, 118

differences between multi-screen and
Xinerama modes, 69–71

layer in X-based window GUIs, 8
Old versus New X, 5
started by display manager, 27

240 Index

desktop environments (continued)
using window managers

independently, 129–132
virtual desktops, 120–122

desktop switcher, 120
desktop-oriented open source software

development, 11
/dev/mouse symlink, 51
development eras for X, Old versus New, 5
Device section (xorg.conf), 44, 48

video card configuration, multiple
outputs, 78

video card driver options, 56
devices file, 81
DevName option, 82
DevPhys option, 82
Differential X Protocol Compressor

(dxpc), 188
Digital Light Processor (DLP) chips, 15
Digital Signal Processor (DSP), 12
digital visual interface (DVI) connections

(monitors), 16
digital-to-analog converters (DACs), 18
direct queries, 178
Direct Render Interface (DRI), xorg.conf, 50
DirectColor visuals, 137
display, 3, 7

configuration (xdpyinfo command), 96
configuring for Xdmx, 234
cross-platform display system (see VNC)
defined, 19
magnifying and examining (xmag), 105
pixel color, managing, 136
screens and Xinerama, 19
TCP/IP ports, 21

Display Data Channel (DDC), 59
DISPLAY environment variable, 21
display hardware, 5

components, 11
(see also hardware)

display managers, 8
chooser, hosts for indirect queries, 179
enabling/disabling at boot time, 28
knowing how it starts, 30

direct starts with init, 30
managing remote displays, 176

GDM, 177
KDM, 177
XDM, 177

started by an init script, 31

starting additional X servers on
demand, 33

using gdmflexiserver, 34
using KDM, 34

starting by typing command name at root
shell prompt, 29

starting multiple X servers, 31
using GDM, 32
using XDM or earlier KDM

versions, 31
starting the X server, 27
switching, X GUI layers and, 8

display modes, 25
display number, 20

kiosk script testing, 232
specifying with startx, 35
specifying with Xnest, 36
Unix domain sockets, 21
VNC standing servers, 199
vncviewer, 198
Xvnc started with inetd, 209

Display Power Management Signaling (see
DPMS)

display specifications (or displayspec), 20
Display subsection (Screen)

Modes entry, 65, 85
Viewport entry, 66
virtual screen size, 66

DisplayPort connectors, 17
displayspec, 175
DMX Console, 234
DMX (Distributed Multihead X)

considerations when configuring, 234
Xdmx server, 233

dot clock, 64
double-dash (--), separating client arguments

with startx, 35
DPMS (Display Power Management

Signaling)
DPMS extension, 23
enabling, 54
preventing unwanted screen

blanking, 108
DRI (Direct Render Interface), xorg.conf, 50
drivers, video card, 48

multiple output capability, 77
DSP (Digital Signal Processor), 12
DVI (digital visual interface) connections, 16
dxpc (Differential X Protocol

Compressor), 188

Index 241

E
EDID (Extended Display Identification

Data), 64
editor mode, 29
editors

terminals, use of, 115
vi, running in a terminal window, 117

electromagnetic radiation in CRTs, 14
electronic paper (or electronic ink)

displays, 15
Emulate3Buttons option, 52

Synaptics TouchPad, 53
Emulate3Timeout option, 52
encryption, video signal, 18
energy savings, 54
English North American keyboards, 13
/etc/X11/xorg.conf file, 42
Evolution client

starting with GNOME desktop, 125
starting with KDE desktop, 127

Extended Display Identification Data
(EDID), 64

extensions to the X server, 22
key extensions in widespread use, 22

F
failover systems, 181
fc-cache utility, 156
fc-list utility, 156
Fedora Linux

default.session, 124
GDM configuration files, 32
prefdm script, 31
xfs font server, 145

fglrx (ATI closed-source driver), 77
Files section (xorg.conf), 50

FontPath entries, 143
RGBPath entry, 58

Firefox browsers
clipboard data, 89
monitoring in kiosk script, 232
resetting to specified page in kiosks, 229

Firefox -remote argument, 226
firewall, bypassing when using VNC, 215
flat-panel technologies (display), 15
focus, 90
focus-follows-pointer, 90
font servers, 145

specifying server in FontPath entries, 143
xfs font server, 145

fontconfig, 150
configuration of rendering, 157
fc-cache utility, 156
fc-list utility, 156
font names, 155

online documentation of font
properties, 155

Microsoft fonts, obtaining and
installing, 157

fontglide hack, 111, 229
FontPath, 63
fonts

core, 142–149
configuring the font path, 143–145
installing and removing, 148
naming and selecting, 146–148
types or groups, 144
using a font server, 145

new, 150–160
adding and removing manually, 151
adding and removing with KDE, 153
client-side fonts, 150
fontconfig font names, 155
fontconfig utilities, 156
installing Microsoft fonts, 157
rendering options, 157–160

Old versus New X, 5
fonts.cache files, 156
fonts.dir file, 148
forwarding (X11), 189
framebuffer, 17

screen image representations, 18
size in bytes, 19

FreeBSD
display manager, 31
MOUSED daemon, 84
virtual terminal (VT) capabilities, 26

freedesktop.org, 5, 11
fully qualified domain name (FQDN), 119
fvwm2 window manager, 122

G
gamma, 138–140

gamma correction, 138
setting permanently for X.org

server, 139
testing and adjusting monitor

gamma, 140
xgamma client program, 139

GAMMApage software, 140
gamut (color spaces), 136

242 Index

gdm command, 29
GDM display manager

chooser, 180
remote sessions, 177
started by init, killing and restarting, 30
starting additional X servers with

gdmflexiserver, 34
starting multiple X servers, 32
toolkit, 27

gdm-binary, killing the display manager, 30
gdmflexiserver command, 33

starting additional X servers, 34
geometry, 113–115

command-line specification for fullscreen
kiosk application, 224

vncserver variable, 197
XKB keymaps, 162

geometry specification, 113
getconfig.pl script, 42
global variables, vncserver script, 197
GLslideshow hack, 229
GLX extension, 23
glyphs, 142
GNOME, 5, 118

desktop switcher, 121
display manager (see GDM display

manager)
font rendering preferences tool, 157
GTK+ toolkit, 10
Metacity window manager, 122
Nautilus file manager, URI for fonts, 151
remote access tool (Vino), 212
session manager, 120
starting through its session

manager, 123–125
client information, 125
editing default session, 124
exiting session, 124
manually, with X server, 123
when another session manager is

running, 125
window managers, 123

gnome-calculator, 9
Gnome-clipboard-manager, 90
gnome-display-properties, 87
gnome-terminal, 116

basic command-line options, 116
geometry specifications, 115

GPM (General Purpose Mouse), 83
gpmdata file, 83

GPU (graphics processing unit), 17
grabbing, keyboard, 90
grabbing, mouse, 90
graphical mode (display), 25

returning to, 29
graphics processing unit (GPU), 17
groups, keyboard layout, 166
grub bootloader, changing runlevel, 28
GTK+ toolkit, 5, 10

geometry specification on command
line, 115

Xfce lightweight desktop
environment, 128

GUIs (graphical user interfaces)
differences in windows’ behavior and

appearance, 9
display system versus, 3
layers of an X-based GUI, 6

H
HandleSpecialKeys option, 92
hardware

access to, kernel vs. user-space drivers, 24
bell implementation on PC, 101
display, 5

components, 11
keyboards, 13
kiosks, 219–221
monitors, 14–17

connections, 16
video signal timing, 15

pointing devices, 12
video cards, 17–19

HDMI (high definition multimedia
interface), 17

Heartbeat (failover system), 181
high-bandwidth digital content protection

(HDCP), 16
hinting (antialiasing), 158
horizontal and vertical sync frequencies, 60

calculating horizontal frequency, 61
log file information, 64
relaxing range restrictions, 61

HorizScrollDelta and VertScrollDelta
options, 54

host (displayspec), 20
blank or unix value, 21

hostnames, 119
system running VNC client software, 193

Index 243

hosts
access control based on, 182
remote access

accessing session on a specific
host, 178

X server and client, 175
vncviewer, 198

-httpd argument (Xvnc), 199
-httpport option (Xvnc), 199
hw_cursor and sw_cursor options (video card

driver), 58

I
ICC (International Color Consortium), 140
ICE (Inter-Client Exchange) protocol, 119
ID value (GNOME session clients), 125
identifiers (xorg.conf sections), 46
ideographs, 13
id_rsa file, 191
independent software vendors (ISVs), 4
index page (index.html), 206
indirect queries, 179–181
inetd

configuring for new VNC service, 208
starting VNC on demand, 204
Xvnc started with, display number, 209

init command
configuring to start kiosk script, 233
display manager starts, 30
runlevels, changing, 29
s or S runlevel, 28
startup scripts to start display

manager, 31
initialization script (KDE), 126
inittab file

changing default runlevel, 29
disabling character-mode logins in

runlevel 4, 232
entries to start standing VNC servers, 199
initdefault line, 233

inner and outer case (kiosks), 221
input devices, specialized, 23
InputDevice section (xorg.conf), 44, 49

accepting input only from a USB
keyboard, 82

Buttons option, 224
CorePointer and SendCoreEvents

entries, 80
Emulate3Buttons option, 52
GPM mouse, 83
mouse with a scrollwheel, 53

MOUSED, using, 84
specifying specific keyboard, 81
Synaptic TouchPad configuration, 53
Xkb keyboard map, specifying, 167

interaction with the X server, 85
Inter-Client Exchange (ICE) protocol, 119
International Color Consortium (ICC), 140
International Commission on

Illumination, 136
invitations (KRfb), 210

J
Java applets (VNC)

customizing viewer applet web
page, 199–202

using viewer applet with on-demand VNC
servers, 204

X application embedded in a web
page, 206–210

Java viewers (VNC), 193
JavaScript, invoking a full-screen browser

window, 224

K
kcalc, 9
kcminit, 126
KDE desktop environment, 5, 118

adding and removing fonts with
Konqueror, 153

display manager (see KDM display
manager)

font rendering preferences tool, 159
krandr program, 87
kwin window manager, 122
Qt toolkit, 10
remote desktop access tool (KRfb), 210
session manager, 120
starting, 126–127

adding program to standard,
system-wide startup, 127

ksmserver process starting the desktop
session, 127

saving session state at logout, 127
starting a reserve server, 34

KDE loadable modules (KLMs), 126
KDM display manager, 27

chooser, 181
killing, 30
remote sessions, 177
starting addition X servers, 34
starting multiple X servers, 31, 32

244 Index

kdmrc file, 32, 177
specifying reserve servers, 34

kernel (Linux)
boot arguments, adjusting, 29
OS Kernel version, 62
user-space drivers versus, for video card

access, 24
key symbols (keysyms), 222
keyboard groups, 161, 166
keyboard maps, 161
keyboard/mouse/video (KVM) switches, 60
keyboards, 9, 13

association with virtual terminal, 25
focus and, 90
grabbing, 90
groups, using, 166
kiosk applications, 220

controlling the keyboard, 222
LEDs, using to display other

information, 104
parallel, 81
repeat rate, adjusting, 102
viewing or printing keyboard

layout, 170–172
XKB extension, 161–172

compiling keyboard maps, 169
components, 162
location of files, 162
rule-based keymap selection, 163–166
setting keymap from command

line, 168
setting keymap in xorg.conf, 167
setting keymap using configuration

file, 169
XKEYBOARD extension, 24

keycodes (XKB keymaps), 162
keymaps (XKB)

components, 162
setting from command line, 168
setting keymap in xorg.conf file, 167
(see also keyboards; XKB extension)

keypress events, translation to ASCII
sequences, 116

keystroke combination (Ctrl-Alt-Backspace)
to bail out of X server, 39

killing X clients (xkill), 105
kiosks, 219–235

booting, 232
configuring X for, 221
controlling the keyboard, 222
controlling the mouse, 223
creating a video wall, 233–235

monitoring of network status, 225–228
refining appearance, 229
resetting using xscreensaver, 228
scripting a kiosk (example), 230–232
selecting hardware, 219–221

keyboard, 220
monitor, 220
pointer, 220
system unit, power supply, and

ventilation, 221
starting a single fullscreen

application, 224
klauncher, 126
Klipper, 90
KLMs (KDE loadable modules), 126
konsole, 116

basic command-line options, 116
geometry specifications, 115

Koren, Norman, 140
krandr applet, 87
ksmserver, 126

starting the desktop session, 127
KVM (keyboard/mouse/video) switches, 60
kwin window manager, 122

L
latency, 181

LBX (low-bandwidth X), 187
layout identifier, 46
LBX (low-bandwidth X), 23, 187
LBXproxy, 187
lbxproxy

limitations of, 188
setting up, 188

LCDs (liquid crystal displays), 14
energy savings, 55
font rendering, subpixel hinting, 158
gamma, 138
kiosk applications and, 220
scan rates, 60
thin-bezel, use with Xinerama, 69

LEDs, keyboard, 104
group status, displaying, 167

LeftOf keyword (screen positioning), 72
LessTif project, 11
LessTif version, Motif Window Manager

(MWM), 20
LILO bootloader, 29
Linux

booting into runlevels, 28
GPM, using, 83
mouse pointers, 51

Index 245

RealVNC and TightVNC, 194
shell script for audible feedback with bell

on WiFi link quality, 102
startup scripts to execute the display

manager, 31
switching virtual terminals, 25
switchto or chvt command, 36
virtual terminal (VT) capabilities, 26

liquid crystal displays (see LCDs)
LittleCMS, 140
local connections, 21
locking screensavers, keyboard grabs and, 92
log files, reading server log files, 62–64
-logverbose level command-line option, 64
look and feel of applications, 9
low-bandwidth X (see LBX)
Lprof (profile editor), 141
ls utility, 115

M
Mac OS, VNC server, 193
Macintosh, mouse, 87
magic cookies, 183–185

attributes, 186
cross-referencing server to lbxproxy, 188
removing, 185
use in SSH tunneling, 189

magnifying part of the display (xmag), 105
map, keyboard, 13
Map State (windows), 98
mapping and unmapping windows, 121

desktop background images, 122
markers (server log files), 62
mcookie command, 185
media players, 8
memory, video cards, 17
Metacity window manager, 122
mice

adjusting mouse acceleration, 103
association with virtual terminal, 25
configuring a mouse with a

scrollwheel, 53
configuring two-button mouse, 52
controlling on a kiosk, 223
focus in widows, 90
grabbing the mouse, 90
middle mouse button, using, 87
using on text consoles, 83
(see also pointing devices)

Microsoft fonts, 157

MIT (Massachusetts Institute of
Technology), 4

MIT-BIG-REQUESTS extension, 22
MIT-MAGIC-COOKIE-1 protocol, 183
MIT-SCREEN-SAVER extension, 23
MIT-SHM extension, 22
mkfontscale and mkfontdir, 149
Mode or ModeLine section (xorg.conf), 50
modes

multiscreen and Xinerama, 69–71
video modes for a monitor or video

card, 47
Modes entry (Display subsection of

Screen), 64, 65, 85
modifier keys, 161
Module section (xorg.conf), 50

VNC extension module, 213
Monitor section (xorg.conf), 44, 48

DPMS option, 55
Gamma entry, 139

monitors, 9, 14–17, 118
association with virtual terminal, 25
connections, 16
CRT (cathode ray tube), 14
gamma, 138
kiosk applications, 220
LCD (liquid crystal display), 14
other flat-panel technologies, 15
reducing wear and tear, 109
scan rates, configuring, 59–62
single-screen, multimonitor

(Xinerama), 24
video cards, 17–19
video projectors, 15
video signal timing, 15

monochrome fonts, 142
Motif-OpenLook crossover widgets

(Moolit), 11
Motif/OpenMotif toolkit, 10
mouse keys capability, X servers, 37
MOUSED (under FreeBSD), using

with X, 84
mplayer, configuring for DMX, 235
multiple displays, gamma correction, 139
multi-screen configuration, 67
multi-screen mode, differences from

Xinerama mode, 69–71
mv utility, 115
mwm window manager, 131

246 Index

N
named pipes, 21
native resolution of LCDs, 14
Nautilus file manager (GNOME), 151
nested servers (Xnest), 36
NetBSD/OpenBSD, USB mice, 51
netcat utility, 225
network bandwidth and latency, 181

LBX (low-bandwidth X), 187
tunneling with SSH, 188

network protocol, 143
network status monitoring (kiosks), 225–228
network transparency, 175
Network Transport layer, 7
network-based display system, 3
New X (2000–present), 5
nohup command, 112
nongraphical logins (on Linux), 26
nonroman alphabets, keyboard layouts, 13
NumLock, CapsLock, and ScrollLock

LEDs, 104
NVIDIA drivers, 24

closed-source driver, multiple output
capability, 77

closed-source driver, online configuration
information, 79

O
Off (power state), 55
Old X (1984–1996), 5
OLED (Organic Light-Emitting Diode)

displays, 15
On (power state), 54
The Open Group, 4
Open Software Foundation (OSF), CDE

desktop, 118
open source, 4

color management capability for X, 140
Motif/OpenMotif and, 11

OpenGL extension for X11 (GLX), 23
OpenLook (Olit), 11
OpenMotif toolkit, 10
OpenSSH, 190

passphrase protection of SSH keys, 191
SECURITY extension support, 192

operating systems
font servers and, 145
open source, 11

use of Unix domain sockets, 21
termios interface, 115
VNC viewers, 193

optical mouse, 12
Option entries (Screen section xorg.conf),

VNC extension, 213
Organic Light-Emitting Diode (OLED)

displays, 15
overlapping layouts (screens), 72–74

P
pagers, 120
palette-based color, 19
Pango, 150
param tags (Java VNC viewer applet), 201,

206
generating from server settings, 202

passphrase protection of SSH keys, 191
pasting

currently selected text, 87
magnified display area into another

program, 106
(see also copy, cut, or paste

operations), 88
paths

font path, 143–145
Unix domain socket, 119

PCI and AGP buses, scanning, 48
PCI Express (PCI-E), 17
perception of color, 136
performance benchmarking, XTEST, 24
permissions, code examples from this

book, xi
plasma displays, 15

gamma, 138
pointing devices, 9, 12

configuring the mouse pointer, 51
kiosk applications, 220
parallel, 79

portable, network-based display system, 3
portable, network-transparent window

system, 175
ports

different port numbers for VNC server
resolutions, 202

HTTP port for Xvnc web server, 199
TCP/IP port number, 119
TCP/IP, used by X displays, 21

positioning windows (virtual desktop), 121
power states, 54
prefdm script, 30
Priority entry (GNOME session clients), 125
privacy issues (remote access), 182

tunneling with SSH, 188

Index 247

process table, searching for running
processes, 27

profiles (color), 140
color targets for input and output

calibration, 141
for LittleCMS, 141

projectors, 15
connected to video monitor, scan

rates, 61
gamma, 138
kiosk applications, 220

PROMPT_COMMAND environment
variable, 117

proxy servers, LBX proxy, 187
ps command, 27
PS/2 connections

keyboards, 13
pointing devices, 12

PS/2 protocol, 52
PseudoColor visuals, 65, 137
public key cryptography

passphrase protection of SSH keys, 191
using with SSH, 190

Q
Qt toolkit, 5, 10
Qt-based toolkits, geometry specification on

command line, 115
QWERTY keyboards, 13
QWERTZ keyboards, 13

R
radeon driver, 77

configuration information, 79
radio-frequency-based (RF) electronics, 12
RANDR (Rotate and Resize) extension, 23,

86
RealVNC, 194

Java applet web page, 199
killing vncserver, 197
loadable X module for the X.org

server, 212
vncconfig command, 215
xstartup file, 196

RECORD extension, 23
reflection, 87
refresh rates, 16, 60
refreshing screens, 111
Relative keyword (screen positioning), 72
relative pointing devices, 12
releasing keyboard and mouse grabs, 92

remote access, 175–192
access control

host-based, 182
magic cookies and xauth, 183–185
SECURITY extension, 186

accessing a remote session on a specific
host, 178

accessing remote session from list of
available sessions, 179–181

bandwidth and latency requirements,
reducing, 187

challenges of, 181
client display on a remote server, 175
enabling remote sessions, 176
network transparency, 175
OpenSSH and the SECURITY

extension, 192
passphrase protection of SSH keys, 191
tunneling with SSH, 188
using public keys with SSH, 190

RENDER extension, 23, 150
rendering fonts, 157–160
repeat rate (keyboard), 102
reserve servers, specifying in kdmrc file, 34
resolution

changing dynamically, 85
configuring screen resolution, 65
desktop displays, 5
display setup for a screen, 47
LCDs, 14
overlapping Xinerama, control screen, 73
video signal timing and, 16
VNC server, port numbers for, 202

resources
managed by an X server, 9
windows managed on multiple virtual

desktops, 122
RestartCommand entry (GNOME session

clients), 125
restarting GDM, 30
RF (radio-frequency-based) electronics, 12
RFB (Remote Frame Buffer) protocol, 193

tunneling through an SSH tunnel, 205
RGB color system, 135

24-bit RGB visuals, 137
information for each screen pixel, 18
pixel colors, 137
sRGB standard, 135

monitor gamma, 138
rgb.db file, 58
RGBPath, 58, 63
rgb.txt file, 58

248 Index

RightOf keyword (screen positioning), 72
roman alphabet keyboards, 13
root (superuser), 40
root window, 98

default visual class, 138
refining appearance in kiosk, 229

/root/xorg.conf.new, 43
Rotate and Resize (RANDR) extension, 23,

86
rules-based keymap selection

(XKB), 163–166
Layout parameter, 163
Model parameter, 163
Options parameter, 164
Rules parameter, 163
rules/xorg.lst and .xml files, Layout

parameter values, 164
rules/xorg.lst and .xml files, Variant

parameter values, 165
rules/xorg.lst file, 164
rules/xorg.lst file, Option parameter

values, 165
rules/xorg.xml file, 164
Variant parameter, 164

runlevels, 28
changing for system after booting, 29
kiosk application, 232
permanently changing the default, 29
VNC standing servers, 199

S
s or S runlevel, 28
safe-restart of GDM, 31
scalable fonts, 144
scan rates for monitors, 59–62
scancodes, 13
screen (displayspec), 20
screen dumps, 107
Screen section (xorg.conf), 44, 47

creating for multi-screen setup, 67
DefaultDepth option, 64
Display subsection, Modes entry, 64, 85
PasswordFile option for VNC

passwords, 213
SecurityTypes option, 213

screens, 19
configuring default color depth, 64
differences between multi-screen and

Xinerama modes, 69–71
multiple screen configuration, 67
overlapping layout in Xinerama, 72–74
positioning, 71–72

redrawing, 111
scrolling virtual screens and Xinerama, 74

screensavers
built-in screensaver, turning on/off, 108
keyboard grabs and, 92
MIT-SCREEN-SAVER extension, 23
xscreensaver, 109

scrolling virtual screens, 74
ScrollLock, NumLock, and CapsLock

LEDs, 104
scrollwheels (mouse), 53

clicking middle mouse button, 88
Secure Keyboard feature, 91
security

keyboard grabbing and, 91
screensavers, 111

SECURITY extension, 23, 186
OpenSSH and, 192

SecurityTypes option (Screen section), 213
SendCoreEvents option

parallel pointing devices, 80
secondary keyboards, 83

serial connections, pointing devices, 12
server extensions, summary listing, 22
server settings (xset utility), 100–105
ServerFlags section (xorg.conf), 50

AllowMouseOpenFail option, 81
kiosk configuration, 221
Standby, Suspend, and Off states, 55

ServerLayout section (xorg.conf), 44, 46
AllowMouseOpenFail option, 81
CorePointer and SendCoreEvents

values, 80
releasing keyboard and mouse grabs, 92
Screen sections for multi-screen setup, 67
server log file information, 63
Standby, Suspend, and Off states, 55

servers, 9, 25–39
common scenarios for local X server, 25
enabling/disabling display manager at

boot, 28
extensions, 22
interaction with X server, 85
kernel versus user-space drivers, 24
mouse keys capability, 37
standard port for X server, 21
starting a raw X server manually, 26
starting an X server with a display

manager, 27
starting multiple X servers with display

managers, 31
using GDM, 32

Index 249

using KDM, 32
XDM and older KDM versions, 31

starting with clients only when
needed, 35

starting X servers on demand with display
managers, 33

using gdmflexiserver, 34
using KDM, 34

starting X within X, 36
terminating X automatically, 39
zapping the X server, 39

service initializer (KDE), 126
service launcher (KDE), 126
services file

VNC gnuchess, 208
VNC services information, 202, 204

session managers, 8, 119
GNOME, 123–125
gnome-session, 123
KDE (ksmserver), 126

starting desktop sessions, 127
session name, specifying for GNOME, 123
session type, 27
SESSION_MANAGER environment

variable, 119
sessions

enabling remote sessions, 176
starting new on KDE, 34

setxkbmap command, 168
keyboard map compilation, 170

SHAPE extension, 23
shell prompts

starting the X server, 26
switchto or chvt command, 36

shells
exporting DISPLAY variable, 21
prompts and window title bars, 117
startup script, executing ssh-agent and

ssh-add, 192
Sherman, Paul, 140
Shift key, 161
SHMConfig option, 53
showmount -e command, 225
showrgb command, 59
signal boosters, 60
signal encryption, 18
simultaneous mouse button presses, 52
single-screen, multimonitor support, 24
size (window), unit of measure, 114
sleep 2 option (X server), 27
small-form-factor devices, visuals, 137
source client (clipboard), 89

SourceForge, VNC projects, 194
spreadsheets, 8
SSH (Secure Shell)

accessing VNC securely, 205
bypassing firewall when using VNC, 215
passphrase protection of public/private

keys, 191
tunneling with, 188
using public keys with, 190

ssh utility
-C (compression) option, 189
connection to a remote host, specifying

username, 189
-X option, 189
-x option, 189
-Y option, 192

ssh-agent and ssh-add, executing during
session startup, 192

ssh-keygen command
-p option, 191
-t option, 190

Standby (power state), 54
startkde script, 126

using different window manager, 126
startx command, 35

-- (double-dash) before client
arguments, 35

display number, specifying, 35
specifying a client, 35
starting KDE, window manager, 126
starting Xnest with a particular client, 36
~/.xinitrc script, using, 131

startxfce4 script, 128
StaticColor visuals, 64, 137
StaticServers line (kdmrc), 34
Streams pipes, 21
subtractive color systems, 135
subtractive primaries, 135
superuser (root), 40
SUSE Linux

display manager startup, 31
rcxdm restart command, 31

Suspend (power state), 55
switchto or chvt command, 36
symbols (XKB keymaps), 162
symlinks

deleting in kiosk script, 232
/dev/mouse, 51

synaptics driver, 53
Synaptics TouchPad, 53
sysmouse file, 84

250 Index

T
TCP/IP

local loopback mechanism, 22
network transport layer in X-based

GUIs, 7
ports, 21
session manager connection string, 119

television connections (monitors), 16
telinit command, changing runlevels, 29
TERM environment variable, 115

settings, 116
terminal emulators, 116
terminals

character, 115
full-screen programs, 115
(see also virtual terminals)

-terminate option, 27
terminating clients with keyboard or mouse

grabs, 92
termios interface, 115
text mode VTs, using with X, 83
TightVNC, 194

Java applet web page, 200
key parameters, 201

Java VNC viewer applet, 207
killing Xvnc, 197
vncconnect command, 215

timeout attribute (magic cookies), 186
timeouts, DPMS, 55
title bars, borders, and controls for

windows, 8
toggle keys, 167
tokens, 183

(see also magic cookies)
toolkits, 5, 8, 10

display managers, 27
geometry, 115
look and feel of applications, 9

touchscreens (see pointing devices)
trackballs (see pointing devices)
transparency, 138
TrueColor visuals, 65, 137
trusted and untrusted clients, 23, 186
trusted magic cookies, 186

using with OpenSSH, 192
ttys file, 31
tunneling

RFB protocol through SSH tunnel, 205
SSH, bypassing firewall when using

VNC, 215

SSH capabilities, 188
X tunneling (X11 forwarding), 189

twm window manager, 130
types (XKB keymaps), 162

U
Ubuntu Linux

GDM configuration files, 32
volatile /dev directory, 51

UK keyboard layout, 13
uninvited connections (KRfb), 210
Unix domain sockets, 21

font server entry, xorg.conf, 143
session manager connection string, 119

Unix System V, using runlevels to start or
stop software sets, 28

Unix systems
booting into runlevel, 28
RealVNC and TightVNC, 194

UnixWare systems, switching virtual
terminals, 26

untrusted clients, 23, 186
untrusted magic cookies, 186

generation by OpenSSH, 192
URI for viewing and managing fonts

(GNOME Nautilus), 151
USB connections

keyboards, 13
physical connection, 82
pointing devices, 12

USB mice, 51
user, creating for VNC services, 203

gnuchess, 208
user-space drivers, kernel driver vs. for video

cards, 24
utilities, 95–111

screensaver and DPMS settings, 108
xdpyinfo (display information), 96
xkill, 105
xmag, 105
xrefresh, 111
xscreensaver, 109
xset, 100–105

adjusting keyboard repeat rate, 102
adjusting mouse acceleration, 103
controlling the bell, 101
keyboard LEDs, adjusting, 104

xwd (X Window Dump), 107
xwininfo, 97–100

Index 251

V
Vendor section (xorg.conf), 51
versions

logfile information on X version, 62
version 11 (X Windows), 6

vertical retrace (CRT), 61
VertScrollDelta and HorizScrollDelta

options, 54
VESA (Video Electronics Standard

Association), 17, 54
DDC (Display Data Channel), 59

VGA connections (monitors), 16
vi, running in a terminal window, 117
video cameras

gamma, 138
optical mouse, 12

video cards, 9, 17–19
association with virtual terminal, 25
driver options, 56

accel option, 57
hw_cursor or sw_cursor, 58
value types, 57

kernel versus user-space drivers, 24
memory, 17
multiple outputs from single card, 77–79
overlapping Xinerama layout, 74
screen image representation in

framebuffer, 18
video controller, 18
video decompression, 24
video editors, 8
Video Electronics Standard Association (see

VESA)
video graphics array, 16
video modes, 47

testing with hardware configuration, log
file information, 63

video projectors (see projectors)
video signals, timing, 15
video splitters, 60
video streams, 24
video wall, creating, 233–235
VideoAdaptor section (xorg.conf), 51
viewers (VNC), 193

customizing Java applet web
page, 199–202

starting SSH client to create a tunnel, 205
using, 197

Viewport entry (Display subsection of
Screen), 66

Vino (GNOME remote access tool), 212

virtual desktops, 120–122
created by mapping and unmapping

windows, 122
created by window positions, 122
creating, 121
positioning windows, 121
resource use, 122

Virtual Network Computer (see VNC)
virtual screen size, 66
virtual screens

resolution, 85
scrolling virtual screens and Xinerama, 74

virtual terminals (VTs), 25
changing on home system, 31
specifying for multiple X server

startups, 32
starting X server on, 26
switching from shell prompt with

switchto or chvt command, 36
switching on different systems, 26
switching on Linux, 25
text mode, 83

visibility of windows (Map State), 98
visuals, 136–138

24-bit RGB, 137
colormaps, 137
default visual class, 138
RGB color information, 137
summary of types, 137

VNC (Virtual Network Computer), 193–215
accessing securely using SSH, 205
bypassing a firewall, 215
configuring the Xvnc web server, 199
customizing Java applet web

page, 199–202
embedding X application in a web

page, 206–210
extension to X.org server, 212
Java applet on-demand VNC servers, 204
options in X environment, 193
starting on demand using inetd, 204
starting on demand using

xinetd, 202–204
using KDE and Gnome remote desktop

access tools, 210
using standing VNC servers, 198
using to share a presentation, 213
using viewers, 197
versions, 194
vncserver script, 196
Xvnc basics, 195

vnc.conf file, 197

252 Index

vncconfig command, 215
vncconnect command, 215
vncpasswd script, 196, 198, 213
vncpasswd.d directory, 198
vncserver script, 196

command-line options, 197
-kill option, 197
modifying default configuration

values, 197
running, 197

vncviewer script, 197
-listen argument, 215
-via argument, 205
X version, 198

volume, pitch and duration (bell), 101
VTs (see virtual terminals)

W
web browsers, 8

clipboard data, 89
fullscreen, for kiosk application, 224
Java-enabled, connecting to Xvnc web

server, 198
middle-mouse button, using, 88

web page, embedding X application
in, 206–210

web page for this book, xii
wget command, 225

network status monitoring script for a
kiosk, 226

widget sets, 11
WiFi antennas, positioning, 102
wildcards (DevName and DevPhys), 83
window decorations, 8
window managers, 8, 118

differences in multi-screen and Xinerama
modes, 69–71

differing implementation of virtual
desktops, 100

drawing of title bar, border, and window
controls, 10

GNOME, 123
KDE, defining with KDEWM

environment variable, 126
KDE (kwin), 126
managing multiple screens, 20
started by display manager, 27
using without desktop

environment, 129–132
listing of common window

managers, 130
startup script, 130

virtual desktops, 120–122
Xfce, changing default, 129

window positioning, creating virtual desktop
illusion, 122

windows
basic information about

(xwininfo), 97–100
events, translation to ASCII

sequences, 116
focus, 90
geometry, clients and, 113–115
nonrectangular, 23
why they look and act differently, 9

Windows systems
Microsoft fonts, 157
mouse, 87
VNC server, 193
X System product line, 6

word processors, 8
workspace capability, 120
workspace switcher, 120

X
X Color Management System (Xcms), 140
X command

-ac (access control) option, 183
-allowMouseOpenFail option, 81
-config argument, 32
-config argument, starting X with kiosk

configuration, 221
-configure option, 43
-scanpci option, 48
-terminate option, 39

The X Consortium, 4
X Display Manager Control Protocol (see

XDMCP)
X Display Manager (Xt), 27
X Intrinsics Toolkit (Xt), 11
X Keyboard Extension, 222
X Logical Font Description (XLFD), 146
X Security Extension (see SECURITY

extension)
X Server layer, 7
X Session Management Protocol

(XSMP), 119
X tunneling, 189
X Window System, ix

history, 4
layers of an X-based GUI, 6
name variations, 6
new versus old X, 4
server, 9

Index 253

X Windows, 6
X11 forwarding, 189
X386, 4
Xaccess file, 177
xauth utility, 183–185

creating an extract file, 184
generate command, 186
list command, 184
MIT-MAGIC-COOKIE-1, substituting .

(period) for, 184
remove command, 185

.Xauthority file, 209
xcalc, 9
xclipboard, 89
xclock application, fullscreen, 224
Xcms (X Color Management System), 140
XDM display manager

chooser, 180
killing, 30
remote sessions, 177
starting multiple X servers, 31
startup by init script, 31
Xt toolkit, 27

XDM-AUTHORIZATION-1 protocol, 184
xdm-config file, 177
XDMCP (X Display Manager Control

Protocol), 176–181
broadcasts, 178
direct queries, 178
enabling on GDM, 177
enabling on KDM, 177
enabling on XDM, 177
indirect queries, 179–181
Xvnc started with inetd, 209

Xdmx, 233
-configfile option, 234
configuration file, 234
-display arguments, 233
-input option, 234

xdmxconfig utility, 235
xdpyinfo utility, 96

grep for LBX support, 187
visuals, 136

Xephyr, 37
XF86Config file, 41
Xfce desktop, 10, 118

starting, 128
saving the session at logout, 129
user’s session information, 128

xfce4-session.rc file, 128
xfd (X font display), 230
xfontsel command, 148

XFree86, 4
changing resolution dynamically, 85
configuration file, 42
server binary, 26

XFREE86-VIDMODE Extension, 138
xfs font server, 145

starting manually, 146
Xft, 150
xgamma utility, 139
xhost utility, 182

adding hosts with the + symbol, 182
disabling access control altogether with +

symbol, 183
re-enabling access control with the -

symbol, 183
removing hosts with the - symbol, 182

Xinerama, 19
configuration, 68
differences between multi-screen mode

and, 69–71
gamma correction, setting, 139
multiple outputs from one video card

versus, 77
multiple screen configuration for

Xdmx, 234
overlapping layout, 72–74
scrolling virtual screens, 74

XINERAMA extension, 24
xinetd

configuring for new VNC service, 208
starting VNC on demand, 202–204

xinitrc scripts, 35
using with startx, 132

XInputExtension, 23
XKB extension, 24, 161–172

compiling keyboard maps, 169
components, 162
location of files, 162
rule-based keymap selection, 163–166
setting keymap from command line, 168
setting keymap using keyboard

configuration file, 169
setting the keymap in xorg.conf, 167
viewing or printing keyboard

layout, 170–172
xkbcomp program, 169

obtaining keymap and placing in a
file, 171

xkbprint program, 170–172
xkill utility, 105
xloadimage utility, 227
xmag utility, 105

254 Index

xmodmap utility, 222
appending pointer line to input file, 224
pointer command, 223
-pp option, 223
running without server resetting, 231

Xnest, 36
-geometry option, 37
starting with startx, 131

The X.org Foundation, 4
X.org, 4, 11

dominance of X implementation, 6
X.org server

default keymap, 163
installed server binary, 26
utilities, 95
VNC extension, 212
(see also configuration, X.org server;

servers)
xorg.conf file

location of, 41
optional sections, 49
specifying Xkb keyboard map, 167
(see also configuration, X.org server)

xorg.conf-4 file, 42
XORGCONFIG environment variable, 42
$XORGCONFIG file, 41
xrandr command, 65, 86

-o (orientation) option, 87
-r (refresh) option, 87
-s (size) option, 86

X-ray and electromagnetic radiation in
CRTs, 14

xrefresh utility, 111
xscreensaver, 109

checking and turning off for application
duration, 109

graphics demos or hacks, 110
programs in package, 109
resetting a kiosk, 228
server DPMS timeouts, 110

xscreensaver-command, 110
xscreensaver-demo, 110

kiosk reset screensaver, 229
XSERVER environment variable, 131
Xservers file, 32
xset utility, 55, 100–105

bell, controlling, 101
dpms subcommand, 108
fp+ (add at the end of the font path),

144, 149

+fp (add at the front of the font
path), 144

fp= argument (setting new font
path), 145

-fp (font path) argument, 144
keyboard repeat rate, 102
led subcommand, 104
mouse acceleration, 103
-q (query) option, 144
runtime adjustments to X server, 101
screensaver and DPMS settings, 108
screensaver (built-in), turning on/off, 108

xsetroot command, 229
xsm (session manger), 120
XSMP-aware clients, connection to session

manager, 120
Xt-based toolkits, 5

geometry, 115
xterm, 116

basic command-line options, 116
-fa (font face) command-line option, 155
geometry specifications, 115

XTEST extension, 24
XVideo extension, 24, 235
XVideo-MotionCompensation, 24, 235
Xvnc, 193, 195

command-line options, 195, 197
configuring the web server, 199
connecting to web server at port

5800+display, 198
customizing VNC Java applet web

page, 199–202
starting server with -query option, 215
startup script for gnuchess service, 208
TightVNC Java applet web page,

generating param tags, 202
xwd (X Window Dump) utility, 107
xwininfo, 97–100

-children option, 99
current window geometry, 113
-root option, 98
-size option, 114
-tree option, 99

xwud utility, 107

Z
zapping the X server, 39
zooming, 85

About the Author
Chris Tyler is a computer consultant, author, and professor in the School of Computer
Studies at Seneca College in Toronto, where he teaches courses on open source soft-
ware development, Linux system administration, and the X Window system. Chris has
been using, configuring, and administering graphical interfaces based on X since 1993.
He is the author of Fedora Linux: A Complete Guide to Red Hat’s Community Distri-
bution (O’Reilly). He also blogs from time to time on the O’Reilly Network
(http://oreillynet.com) and on his personal web site (http://chris.tylers.info). Chris is the
main author of the Fedora Daily Package (http://dailypackage.fedorabook.com).

Colophon
The image on the cover of X Power Tools is a power sander. A power sander is an
electric tool that is used to smooth surfaces of wood and wood finishes. When using
a power sander, it is wise to always make sure to take basic safety precautions. For
example, tie back long hair so there is no chance of it being caught in the machinery,
wear goggles to protect your eyes from sawdust, and cover your ears to protect them
from the loud sound and from the sawdust as well.

The cover image is a photograph taken by Frank Deras. The cover font is Adobe ITC
Garamond. The text font is Linotype Birka; the heading font is Adobe Helvetica
Neue Condensed; and the code font is LucasFont’s TheSans Mono Condensed.

	Table of Contents
	Preface
	How This Book Is Organized
	Part I: The X Server
	Part II: X Clients
	Part III: Colors, Fonts, and Keyboards
	Part IV: Using X Remotely
	Part V: Special Configurations

	Conventions Used in This Book
	Using Code Examples
	We’d Like to Hear from You
	Safari® Books Online
	Acknowledgments

	Part I
	Introduction to the X Window System
	1.1 The X Window System
	1.2 The History of X
	1.3 The Renaissance: New X Versus Old X
	1.4 X by Any Other Name
	1.5 Seven Layers of an X-based GUI
	1.6 Where Is the Server?
	1.7 Why Windows Look and Act Differently
	1.8 Toolkits and Desktop Environments
	1.9 The Role of Freedesktop.org
	1.10 Display Hardware
	Pointing Devices
	Keyboards
	Monitors
	Cathode ray tube (CRT)
	Liquid crystal display (LCD)
	Other flat-panel technologies
	Video projectors
	Video timing
	Monitor connections

	Video Cards

	1.11 Displays, Screens, and Xinerama
	1.12 Display Specifications
	1.13 TCP/IP Ports
	1.14 Local Connection Mechanisms
	1.15 Server Extensions
	1.16 Where to Draw the Line: Kernel Versus User- Space Drivers

	Starting a Local X Server
	2.1 One Size Doesn’t Fit All
	2.2 Virtual Terminals
	2.3 Starting a Raw X Server Manually
	2.4 Using a Display Manager to Start the X Server
	2.5 Enabling or Disabling the Display Manager at Boot Time
	2.6 What Started the Display Manager?
	Started Directly by init
	Started by an init Script

	2.7 Starting Multiple X Servers Using a Display Manager
	Starting Multiple X Servers Using XDM (or Early Versions of KDM)
	Starting Multiple X Servers Using KDM
	Starting Multiple X Servers Using GDM

	2.8 Starting Additional X Servers on Demand Using a Display Manager
	Starting Additional X Servers Using gdmflexiserver
	Starting Additional X Servers Using KDM

	2.9 Starting an X Server with Clients Only When Needed
	2.10 Switching VTs from the Shell Prompt
	2.11 Starting X Within X
	2.12 No Mouse!
	2.13 Bailing Out: Zapping X
	2.14 Terminating X Automatically

	Basic X.org Configuration
	3.1 What Is There to Configure?
	3.2 Why Only root Can Configure the X Server
	3.3 Places Your Configuration Could Hide
	3.4 Let the X Server Configure Itself
	3.5 The xorg.conf Configuration File
	ServerLayout
	Screen
	Monitor
	Device
	InputDevice

	3.6 Optional Sections in the xorg.conf Configuration File
	3.7 Configuring the Pointer Device
	3.8 Configuring a Two-Button Mouse
	3.9 Configuring a Mouse with a Scrollwheel
	3.10 Configuring a Synaptics TouchPad
	3.11 Enabling DPMS
	3.12 Configuring Video Card Driver Options
	3.13 LightSteelBlue and Other Color Names
	3.14 Configuring a Monitor’s Scan Rates
	3.15 Reading Server Log Files
	3.16 Configuring the Default Depth of a Screen
	3.17 Configuring the Resolution of a Screen

	Advanced X.org Configuration
	4.1 Multi-Screen Configuration
	4.2 Xinerama Configuration
	4.3 Differences Between Multi-Screen and Xinerama Modes
	4.4 Positioning Screens
	4.5 Overlapping Xinerama
	4.6 Scrolling Virtual Screens and Xinerama
	4.7 Using Multiple Outputs from One Video Card
	4.8 Parallel Pointing Devices
	4.9 Parallel Keyboards
	4.10 Using X with GPM or MOUSED
	GPM Under Linux
	MOUSED Under FreeBSD

	Using the X Server
	5.1 Interacting with the X Server
	5.2 Changing Resolution On-the-Fly
	5.3 Changing the Resolution and the Screen Size Dynamically
	5.4 Using the Middle Mouse Button
	5.5 Using the Clipboard
	5.6 Keyboard Focus
	5.7 Keyboard and Mouse Grabs

	Part II
	X Utility Programs
	6.1 The Unused Toolbox
	6.2 Determine the Display Configuration
	6.3 Getting Window Information
	6.4 Viewing Server Settings
	6.5 Control That Bell!
	6.6 Adjusting the Keyboard Repeat Rate
	6.7 Adjusting the Mouse Acceleration
	6.8 Playing with the Lights
	6.9 Killing a Rogue Client
	6.10 Examining Part of the Display in Detail
	6.11 Script a Screen Dump
	6.12 Preventing the Screen from Blanking During Presentations
	6.13 Eye Candy: xscreensaver
	6.14 Redrawing the Screen

	Running X Clients
	7.1 Running X Clients
	7.2 Background Operation
	7.3 Geometry
	7.4 Split Personality: Running Nongraphical Applications

	Session Managers, Desktop Environments, and Window Managers
	8.1 X and Desktop Environments
	8.2 Session Managers
	8.3 Virtual Desktops
	8.4 Starting GNOME
	8.5 Starting KDE
	8.6 Starting Xfce
	8.7 Using a Window Manager Alone

	Part III
	Color
	9.1 RGB and Other Color Systems
	9.2 Visuals
	9.3 Gamma
	9.4 Color Management Systems

	Core Fonts: Fonts the Old Way
	10.1 Old Fonts Versus New Fonts
	10.2 Configuring the Font Path
	10.3 Using a Font Server
	10.4 Font Names
	10.5 Installing and Removing Fonts

	Pango, Xft, Fontconfig, and Render: Fonts the New Way
	11.1 Client-Side Fonts
	11.2 Adding and Removing Fonts Manually
	11.3 Adding and Removing Fonts Using GNOME
	11.4 Adding and Removing Fonts Using KDE
	11.5 Fontconfig Font Names
	11.6 Fontconfig Utilities
	11.7 Installing the Microsoft Fonts
	11.8 Rendering Options

	Keyboard Configuration
	12.1 Keyboards and XKB
	12.2 The Location of XKB Files
	12.3 XKB Components
	12.4 Selecting an XKB Keymap Using Rules
	12.5 Using Keyboard Groups
	12.6 Setting the Keymap in the xorg.conf File
	12.7 Setting the Keymap from the Command Line
	12.8 Setting the Keymap Using a Keyboard Configuration File
	12.9 Compiling Keyboard Maps
	12.10 Viewing or Printing a Keyboard Layout

	Part IV
	Remote Access
	13.1 Network Transparency
	13.2 Displaying on a Remote Server
	13.3 Enabling Remote Sessions
	XDM
	KDM
	GDM

	13.4 Accessing a Remote Session on a Specific Host
	13.5 Accessing a Remote Session on Any Available Host
	13.6 Accessing a Remote Session from a List of Available Sessions
	13.7 The Three Challenges of Remote Access
	13.8 Host-Based Access Control
	13.9 xauth and Magic Cookies
	13.10 The X Security Extension
	13.11 Low-Bandwidth X (LBX)
	13.12 X Tunneling with SSH
	13.13 Using Public Keys with SSH
	13.14 Using Passphrase Protection of SSH Keys
	13.15 OpenSSH and the SECURITY Extension

	Using VNC
	14.1 The VNC System
	14.2 So Many VNC Versions!
	14.3 Xvnc Basics
	14.4 The vncserver Script
	14.5 Using the VNC Viewers
	14.6 Using Standing VNC Servers
	14.7 Configuring the Xvnc Web Server
	14.8 Customizing the VNC Java Applet Web Page
	14.9 Starting VNC On Demand Using xinetd
	14.10 Starting VNC On Demand Using inetd
	14.11 Using the Java Applet with On-Demand VNC Servers
	14.12 Accessing VNC Securely Using SSH
	14.13 Embedding an X Application in a Web Page
	14.14 Using KDE and Gnome Remote Desktop Access Tools
	14.15 Using the VNC Extension to the X.Org Server
	14.16 Using VNC to Share a Presentation
	14.17 Bypassing a Firewall

	Part V
	Building a Kiosk
	15.1 What Is a Kiosk, and Why Do I Want One?
	15.2 Selecting Kiosk Hardware
	Monitor
	Pointer
	Keyboard
	System Unit, Power Supply, and Ventilation

	15.3 Configure X for a Kiosk
	15.4 Controlling the Keyboard
	15.5 Controlling the Mouse
	15.6 Starting a Single Fullscreen Application
	15.7 Network Status Monitoring
	15.8 Using xscreensaver to Reset a Kiosk
	15.9 Refining the Kiosk Appearance
	15.10 Putting It All Together: Scripting a Kiosk
	15.11 Booting a Kiosk
	15.12 Creating a Video Wall

	Index

