
Extended Window Manager Hints

X Desktop Group

Final version 1.3

Table of Contents

Introduction
Version
What is this spec?
Language used in this specification
Prerequisites for adoption of this specification

Non-ICCCM features
Additional States
Modality
Large Desktops
Sticky windows
Virtual Desktops
Pagers
Taskbars
Activation
Animated iconification
Window-in-window MDI
Layered stacking order
Scope of this spec

Root Window Properties (and Related Messages)
_NET_SUPPORTED
_NET_CLIENT_LIST
_NET_NUMBER_OF_DESKTOPS
_NET_DESKTOP_GEOMETRY
_NET_DESKTOP_VIEWPORT
_NET_CURRENT_DESKTOP
_NET_DESKTOP_NAMES
_NET_ACTIVE_WINDOW
_NET_WORKAREA
_NET_SUPPORTING_WM_CHECK
_NET_VIRTUAL_ROOTS
_NET_DESKTOP_LAYOUT
_NET_SHOWING_DESKTOP

Other Root Window Messages
_NET_CLOSE_WINDOW
_NET_MOVERESIZE_WINDOW
_NET_WM_MOVERESIZE
_NET_RESTACK_WINDOW
_NET_REQUEST_FRAME_EXTENTS

Application Window Properties
_NET_WM_NAME

Extended Window Manager Hints http://standards.freedesktop.org/wm-spec/wm-spec-1.3.html

1 de 37 30/09/12 10:42

_NET_WM_VISIBLE_NAME
_NET_WM_ICON_NAME
_NET_WM_VISIBLE_ICON_NAME
_NET_WM_DESKTOP
_NET_WM_WINDOW_TYPE
_NET_WM_STATE
_NET_WM_ALLOWED_ACTIONS
_NET_WM_STRUT
_NET_WM_STRUT_PARTIAL
_NET_WM_ICON_GEOMETRY
_NET_WM_ICON
_NET_WM_PID
_NET_WM_HANDLED_ICONS
_NET_WM_USER_TIME
_NET_FRAME_EXTENTS

Window Manager Protocols
_NET_WM_PING
_NET_WM_SYNC_REQUEST

Implementation notes
Desktop/workspace model
File Manager desktop
Implementing enhanced support for application transient windows
Urgency
Fixed size windows
Pagers and Taskbars
Window Geometry
Window-in-Window MDI
Killing Hung Processes
Stacking order
Source indication in requests

References
Copyright
Contributors
Change history

Changes since 1.2
Changes since 1.1
Changes since 1.0
Changes since 1.0pre5
Changes since 1.0pre4
Changes since 1.0pre3
Changes since 1.0pre2
Changes since 1.0pre1
Changes since 1.9f
Changes since 1.9e
Changes since 1.9d
Changes since 1.9c
Changes since 1.9b

Introduction

Extended Window Manager Hints http://standards.freedesktop.org/wm-spec/wm-spec-1.3.html

2 de 37 30/09/12 10:42

Version

This is Final version 1.3 of the Extended Window Manager Hints (EWMH) spec,
updated May 13, 2005. The canonical home for this document is
http://www.freedesktop.org, which also contains directions for reporting bugs or
contributing to future versions.

What is this spec?

This spec defines interactions between window managers, applications, and the
utilities that form part of a desktop environment. It builds on the Inter-Client
Communication Conventions Manual [ICCCM], which defines window manager
interactions at a lower level. The ICCCM does not provide ways to implement many
features that modern desktop users expect. The GNOME and KDE desktop projects
originally developed their own extensions to the ICCCM to support these features;
this spec replaces those custom extensions with a standardized set of ICCCM
additions that any desktop environment can adopt.

Language used in this specification

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119.

The key words "Window Manager" refer to a window manager which is adopting this
specification. "Pager" refers to desktop utility applications, including pagers and
taskbars. "Application" refers to other clients. "Clients" refers to Pagers and
Applications ie. all X clients, except for the Window Manager.

Prerequisites for adoption of this specification

Window Managers and Clients which aim to fulfill this specification MUST adhere to
the ICCCM on which this specification builds. If this specification explicitly modifies
the ICCCM Window Managers and Clients MUST fulfill these modifications.

Non-ICCCM features

There is a number of window management features or behaviors which are not
specified in the ICCCM, but are commonly met in modern window managers and
desktop environments.

Additional States

The ICCCM allows window managers to implement additional window states, which
will appear to clients as substates of NormalState and IconicState. Two commonly
met examples are Maximized and Shaded. A window manager may implement these
as proper substates of NormalState and IconicState, or it may treat them as
independent flags, allowing e.g. a maximized window to be iconified and to re-appear
as maximized upon de-iconification.

Extended Window Manager Hints http://standards.freedesktop.org/wm-spec/wm-spec-1.3.html

3 de 37 30/09/12 10:42

Maximization

Maximization is a very old feature of window managers. There was even a
ZoomedState in early ICCCM drafts. Maximizing a window should give it as much of
the screen area as possible (this may not be the full screen area, but only a smaller
'workarea', since the window manager may have reserved certain areas for other
windows). A window manager is expected to remember the geometry of a maximized
window and restore it upon de-maximization. Modern window managers typically
allow separate horizontal and vertical maximization.

With the introduction of the Xinerama extension in X11 R6.4, maximization has
become more involved. Xinerama allows a screen to span multiple monitors in a freely
configurable geometry. In such a setting, maximizing a window would ideally not
grow it to fill the whole screen, but only the monitor it is shown on. There are of
course borderline cases for windows crossing monitor boundaries, and 'real'
maximization to the full screen may sometimes be useful.

Shading

Some desktop environments offer shading (also known as rollup) as an alternative to
iconification. A shaded window typically shows only the titlebar, the client window is
hidden, thus shading is not useful for windows which are not decorated with a
titlebar.

Modality

The WM_TRANSIENT_FOR hint of the ICCCM allows clients to specify that a toplevel
window may be closed before the client finishes. A typical example of a transient
window is a dialog. Some dialogs can be open for a long time, while the user
continues to work in the main window. Other dialogs have to be closed before the
user can continue to work in the main window. This property is called modality. While
clients can implement modal windows in an ICCCM compliant way using the globally
active input model, some window managers offer support for handling modality.

Large Desktops

The window manager may offer to arrange the managed windows on a desktop that is
larger than the root window. The screen functions as a viewport on this large desktop.
Different policies regarding the positioning of the viewport on the desktop can be
implemented: The window manager may only allow the viewport position to change in
increments of the screen size (paging) or it may allow arbitrary positions (scrolling).

To fulfill the ICCCM principle that clients should behave the same regardless whether
a window manager is running or not, window managers which implement large
desktops must interpret all client-provided geometries with respect to the current
viewport.

Implementation note

There are two options for implementing a large desktop: The first is to keep the

Extended Window Manager Hints http://standards.freedesktop.org/wm-spec/wm-spec-1.3.html

4 de 37 30/09/12 10:42

managed windows (or, if reparenting, their frames) as children of the root window.
Moving the viewport is achieved by moving all managed windows in the opposite
direction.

The second alternative is to reparent all managed windows to a dedicated large
window (somewhat inappropriately called a 'virtual root'). Moving the viewport is
then achieved by moving the virtual root in the opposite direction.

Both alternatives are completely ICCCM compliant, although the second one may be
somewhat problematic for clients trying to figure out the window manager
decorations around their toplevel windows and for clients trying to draw background
images on the root window.

Sticky windows

A window manager which implements a large desktop typically offers a way for the
user to make certain windows 'stick to the glass', i.e. these windows will stay at the
same position on the screen when the viewport is moved.

Virtual Desktops

Most X servers have only a single screen. The window manager may virtualize this
resource and offer multiple so-called 'virtual desktops', of which only one can be
shown on the screen at a time. There is some variation among the features of virtual
desktop implementations. There may be a fixed number of desktops, or new ones may
be created dynamically. The size of the desktops may be fixed or variable. If the
desktops are larger than the root window, their viewports (see the section called
“Large Desktops”) may be independent or forced to be at the same position.

A window manager which implements virtual desktops generally offers a way for the
user to move clients between desktops. Clients may be allowed to occupy more than
one desktop simultaneously.

Implementation note

There are at least two options for implementing virtual desktops. The first is to use
multiple virtual roots (see the section called “Implementation note”) and change the
current desktop by manipulating the stacking order of the virtual roots. This is
completely ICCCM compliant, but has the issues outlined in the section called
“Implementation note”

The second option is to keep all managed windows as children of the root window and
unmap the frames of those which are not on the current desktop. Unmapped windows
should be placed in IconicState, according to the ICCCM. Windows which are actually
iconified or minimized should have the _NET_WM_STATE_HIDDEN property set, to
communicate to pagers that the window should not be represented as "onscreen."

Pagers

A pager offers a different UI for window management tasks. It shows a miniature view
of the desktop(s) representing managed windows by small rectangles and allows the

Extended Window Manager Hints http://standards.freedesktop.org/wm-spec/wm-spec-1.3.html

5 de 37 30/09/12 10:42

user to initiate various window manager actions by manipulating these
representations. Typically offered actions are activation (see the section called
“Activation”), moving, restacking, iconification, maximization and closing. On a large
desktop, the pager may offer a way to move the viewport. On virtual desktops, the
pager may offer ways to move windows between desktops and to change the current
desktop.

Taskbars

A taskbar offers another UI for window management tasks. It typically represents
client windows as a list of buttons labelled with the window titles and possibly icons.
Pressing a button initiates a window manager action on the represented window,
typical actions being activation and iconification. In environments with a taskbar,
icons are often considered inappropriate, since the iconified windows are already
represented in the taskbar.

Activation

In the X world, activating a window means to give it the input focus. This may not be
possible if the window is unmapped, because it is on a different desktop. Thus,
activating a window may involve additional steps like moving it to the current desktop
(or changing to the desktop the window is on), deiconifying it or raising it.

Animated iconification

Some window managers display some form of animation when (de-)iconifying a
window. This may be a line drawing connecting the corners of the window with the
corners of the icon or the window may be opaquely moved and resized on some
trajectory joining the window location and the icon location.

Window-in-window MDI

Window-in-window MDI is a multiple document interface known from MS Windows
platforms. Programs employing it have a single top-level window which contains a
workspace which contains the subwindows for the open documents. These
subwindows are decorated with window manager frames and can be manipulated
within their parent window just like ordinary top-level windows on the root window.

Layered stacking order

Some window managers keep the toplevel windows not in a single linear stack, but
subdivide the stack into several layers. There is a lot of variation among the features
of layered stacking order implementations. The number of layers may or may not be
fixed. The layer of a toplevel window may be explicit and directly modifiable or
derived from other properties of the window, e.g. the type of the window. The stacking
order may or may not be strict, i.e. not allow the user to raise or lower windows
beyond their layer.

Scope of this spec

Extended Window Manager Hints http://standards.freedesktop.org/wm-spec/wm-spec-1.3.html

6 de 37 30/09/12 10:42

This spec tries to address the following issues:

Allow clients to influence their initial state with respect to maximization,
shading, stickiness, desktop, stacking order.

Improve the window managers ability to vary window decorations and maintain
the stacking order by allowing clients to hint the window manager about the type
of their windows.

Enable pagers and taskbars to be implemented as separate clients and allow
them to work with any compliant window manager.

This spec doesn't cover any of the following:

Other IPC mechanisms like ICE or Corba.

Window manager configuration.

Window manager documentation.

Clients appearing on a proper subset of desktops.

Window-in-window MDI.

The window manager is supposed to be in charge of window management policy, so
that there is consistent behavior on the user's screen no matter who wrote the clients.

The spec offers a lot of external control about window manager actions. This is
intended mainly to allow pagers, taskbars and similar window manager UIs to be
implemented as separate clients. "Ordinary" clients shouldn't use these except maybe
in response to a direct user request (i.e. setting a config option to start maximized or
specifying a -desk n command line argument).

Root Window Properties (and Related Messages)

Whenever this spec speaks about “sending a message to the root window”, it is
understood that the client is supposed to create a ClientMessage event with the
specified contents and send it by using a SendEvent request with the following
arguments:

destination root
propagate False
event-mask (SubstructureNotify|SubstructureRedirect)
event the specified ClientMessage

_NET_SUPPORTED

_NET_SUPPORTED, ATOM[]/32

This property MUST be set by the Window Manager to indicate which hints it
supports. For example: considering _NET_WM_STATE both this atom and all
supported states e.g. _NET_WM_STATE_MODAL, _NET_WM_STATE_STICKY, would
be listed. This assumes that backwards incompatible changes will not be made to the

Extended Window Manager Hints http://standards.freedesktop.org/wm-spec/wm-spec-1.3.html

7 de 37 30/09/12 10:42

hints (without being renamed).

_NET_CLIENT_LIST

_NET_CLIENT_LIST, WINDOW[]/32
_NET_CLIENT_LIST_STACKING, WINDOW[]/32

These arrays contain all X Windows managed by the Window Manager.
_NET_CLIENT_LIST has initial mapping order, starting with the oldest window.
_NET_CLIENT_LIST_STACKING has bottom-to-top stacking order. These properties
SHOULD be set and updated by the Window Manager.

_NET_NUMBER_OF_DESKTOPS

_NET_NUMBER_OF_DESKTOPS, CARDINAL/32

This property SHOULD be set and updated by the Window Manager to indicate the
number of virtual desktops.

A Pager can request a change in the number of desktops by sending a
_NET_NUMBER_OF_DESKTOPS message to the root window:

_NET_NUMBER_OF_DESKTOPS
 message_type = _NET_NUMBER_OF_DESKTOPS
 format = 32
 data.l[0] = new_number_of_desktops
 other data.l[] elements = 0

The Window Manager is free to honor or reject this request. If the request is honored
_NET_NUMBER_OF_DESKTOPS MUST be set to the new number of desktops,
_NET_VIRTUAL_ROOTS MUST be set to store the new number of desktop virtual root
window IDs and _NET_DESKTOP_VIEWPORT and _NET_WORKAREA must also be
changed accordingly. The _NET_DESKTOP_NAMES property MAY remain unchanged.

If the number of desktops is shrinking and _NET_CURRENT_DESKTOP is out of the
new range of available desktops, then this MUST be set to the last available desktop
from the new set. Clients that are still present on desktops that are out of the new
range MUST be moved to the very last desktop from the new set. For these
_NET_WM_DESKTOP MUST be updated.

_NET_DESKTOP_GEOMETRY

_NET_DESKTOP_GEOMETRY width, height, CARDINAL[2]/32

Array of two cardinals that defines the common size of all desktops (this is equal to
the screen size if the Window Manager doesn't support large desktops, otherwise it's
equal to the virtual size of the desktop). This property SHOULD be set by the Window
Manager.

A Pager can request a change in the desktop geometry by sending a
_NET_DESKTOP_GEOMETRY client message to the root window:

_NET_DESKTOP_GEOMETRY
 message_type = _NET_DESKTOP_GEOMETRY

Extended Window Manager Hints http://standards.freedesktop.org/wm-spec/wm-spec-1.3.html

8 de 37 30/09/12 10:42

 format = 32
 data.l[0] = new_width
 data.l[1] = new_height
 other data.l[] elements = 0

The Window Manager MAY choose to ignore this message, in which case
_NET_DESKTOP_GEOMETRY property will remain unchanged.

_NET_DESKTOP_VIEWPORT

_NET_DESKTOP_VIEWPORT x, y, CARDINAL[][2]/32

Array of pairs of cardinals that define the top left corner of each desktop's viewport.
For Window Managers that don't support large desktops, this MUST always be set to
(0,0).

A Pager can request to change the viewport for the current desktop by sending a
_NET_DESKTOP_VIEWPORT client message to the root window:

_NET_DESKTOP_VIEWPORT
 message_type = _NET_DESKTOP_VIEWPORT
 format = 32
 data.l[0] = new_vx
 data.l[1] = new_vy
 other data.l[] elements = 0

The Window Manager MAY choose to ignore this message, in which case
_NET_DESKTOP_VIEWPORT property will remain unchanged.

_NET_CURRENT_DESKTOP

_NET_CURRENT_DESKTOP desktop, CARDINAL/32

The index of the current desktop. This is always an integer between 0 and
_NET_NUMBER_OF_DESKTOPS - 1. This MUST be set and updated by the Window
Manager. If a Pager wants to switch to another virtual desktop, it MUST send a
_NET_CURRENT_DESKTOP client message to the root window:

_NET_CURRENT_DESKTOP
 message_type = _NET_CURRENT_DESKTOP
 format = 32
 data.l[0] = new_index
 data.l[1] = timestamp
 other data.l[] elements = 0

Note that the timestamp may be 0 for clients using an older version of this spec, in
which case the timestamp field should be ignored.

_NET_DESKTOP_NAMES

_NET_DESKTOP_NAMES, UTF8_STRING[]

The names of all virtual desktops. This is a list of NULL-terminated strings in UTF-8
encoding [UTF8]. This property MAY be changed by a Pager or the Window Manager
at any time.

Extended Window Manager Hints http://standards.freedesktop.org/wm-spec/wm-spec-1.3.html

9 de 37 30/09/12 10:42

Note: The number of names could be different from _NET_NUMBER_OF_DESKTOPS.
If it is less than _NET_NUMBER_OF_DESKTOPS, then the desktops with high
numbers are unnamed. If it is larger than _NET_NUMBER_OF_DESKTOPS, then the
excess names outside of the _NET_NUMBER_OF_DESKTOPS are considered to be
reserved in case the number of desktops is increased.

Rationale: The name is not a necessary attribute of a virtual desktop. Thus the
availability or unavailability of names has no impact on virtual desktop functionality.
Since names are set by users and users are likely to preset names for a fixed number
of desktops, it doesn't make sense to shrink or grow this list when the number of
available desktops changes.

_NET_ACTIVE_WINDOW

_NET_ACTIVE_WINDOW, WINDOW/32

The window ID of the currently active window or None if no window has the focus.
This is a read-only property set by the Window Manager. If a Client wants to activate
another window, it MUST send a _NET_ACTIVE_WINDOW client message to the root
window:

_NET_ACTIVE_WINDOW
 window = window to activate
 message_type = _NET_ACTIVE_WINDOW
 format = 32
 data.l[0] = source indication
 data.l[1] = timestamp
 data.l[2] = requestor's currently active window, 0 if none
 other data.l[] elements = 0

Source indication should be 1 when the request comes from an application, and 2
when it comes from a pager. Clients using older version of this spec use 0 as source
indication, see the section called “Source indication in requests” for details. The
timestamp is Client's last user activity timestamp (see _NET_WM_USER_TIME) at the
time of the request, and the currently active window is the Client's active toplevel
window, if any (the Window Manager may be e.g. more likely to obey the request if it
will mean transferring focus from one active window to another).

Depending on the information provided with the message, the Window Manager may
decide to refuse the request (either completely ignore it, or e.g. use
_NET_WM_STATE_DEMANDS_ATTENTION).

_NET_WORKAREA

_NET_WORKAREA, x, y, width, height CARDINAL[][4]/32

This property MUST be set by the Window Manager upon calculating the work area
for each desktop. Contains a geometry for each desktop. These geometries are
specified relative to the viewport on each desktop and specify an area that is
completely contained within the viewport. Work area SHOULD be used by desktop
applications to place desktop icons appropriately.

Extended Window Manager Hints http://standards.freedesktop.org/wm-spec/wm-spec-1.3.html

10 de 37 30/09/12 10:42

The Window Manager SHOULD calculate this space by taking the current page minus
space occupied by dock and panel windows, as indicated by the _NET_WM_STRUT or
_NET_WM_STRUT_PARTIAL properties set on client windows.

_NET_SUPPORTING_WM_CHECK

_NET_SUPPORTING_WM_CHECK, WINDOW/32

The Window Manager MUST set this property on the root window to be the ID of a
child window created by himself, to indicate that a compliant window manager is
active. The child window MUST also have the _NET_SUPPORTING_WM_CHECK
property set to the ID of the child window. The child window MUST also have the
_NET_WM_NAME property set to the name of the Window Manager.

Rationale: The child window is used to distinguish an active Window Manager from a
stale _NET_SUPPORTING_WM_CHECK property that happens to point to another
window. If the _NET_SUPPORTING_WM_CHECK window on the client window is
missing or not properly set, clients SHOULD assume that no conforming Window
Manager is present.

_NET_VIRTUAL_ROOTS

_NET_VIRTUAL_ROOTS, WINDOW[]/32

To implement virtual desktops, some Window Managers reparent client windows to a
child of the root window. Window Managers using this technique MUST set this
property to a list of IDs for windows that are acting as virtual root windows. This
property allows background setting programs to work with virtual roots and allows
clients to figure out the window manager frame windows of their windows.

_NET_DESKTOP_LAYOUT

_NET_DESKTOP_LAYOUT, orientation, columns, rows, starting_corner CARDINAL[4]/32

 #define _NET_WM_ORIENTATION_HORZ 0
 #define _NET_WM_ORIENTATION_VERT 1

 #define _NET_WM_TOPLEFT 0
 #define _NET_WM_TOPRIGHT 1
 #define _NET_WM_BOTTOMRIGHT 2
 #define _NET_WM_BOTTOMLEFT 3

This property is set by a Pager, not by the Window Manager. When setting this
property, the Pager must own a manager selection (as defined in the ICCCM 2.8). The
manager selection is called _NET_DESKTOP_LAYOUT_Sn where n is the screen
number. The purpose of this property is to allow the Window Manager to know the
desktop layout displayed by the Pager.

_NET_DESKTOP_LAYOUT describes the layout of virtual desktops relative to each
other. More specifically, it describes the layout used by the owner of the manager
selection. The Window Manager may use this layout information or may choose to
ignore it. The property contains four values: the Pager orientation, the number of
desktops in the X direction, the number in the Y direction, and the starting corner of

Extended Window Manager Hints http://standards.freedesktop.org/wm-spec/wm-spec-1.3.html

11 de 37 30/09/12 10:42

the layout, i.e. the corner containing the first desktop.

Note: In order to inter-operate with Pagers implementing an earlier draft of this
document, Window Managers should accept a _NET_DESKTOP_LAYOUT property of
length 3 and use _NET_WM_TOPLEFT as the starting corner in this case.

The virtual desktops are arranged in a rectangle with rows rows and columns columns. If
rows times columns does not match the total number of desktops as specified by
_NET_NUMBER_OF_DESKTOPS, the highest-numbered workspaces are assumed to
be nonexistent. Either rows or columns (but not both) may be specified as 0 in which
case its actual value will be derived from _NET_NUMBER_OF_DESKTOPS.

When the orientation is _NET_WM_ORIENTATION_HORZ the desktops are laid out in
rows, with the first desktop in the specified starting corner. So a layout with four
columns and three rows starting in the _NET_WM_TOPLEFT corner looks like this:

 +--+--+--+--+
 | 0| 1| 2| 3|
 +--+--+--+--+
 | 4| 5| 6| 7|
 +--+--+--+--+
 | 8| 9|10|11|
 +--+--+--+--+

With starting_corner _NET_WM_BOTTOMRIGHT, it looks like this:

 +--+--+--+--+
 |11|10| 9| 8|
 +--+--+--+--+
 | 7| 6| 5| 4|
 +--+--+--+--+
 | 3| 2| 1| 0|
 +--+--+--+--+

When the orientation is _NET_WM_ORIENTATION_VERT the layout with four columns
and three rows starting in the _NET_WM_TOPLEFT corner looks like:

 +--+--+--+--+
 | 0| 3| 6| 9|
 +--+--+--+--+
 | 1| 4| 7|10|
 +--+--+--+--+
 | 2| 5| 8|11|
 +--+--+--+--+

With starting_corner _NET_WM_TOPRIGHT, it looks like:

 +--+--+--+--+
 | 9| 6| 3| 0|
 +--+--+--+--+
 |10| 7| 4| 1|
 +--+--+--+--+
 |11| 8| 5| 2|
 +--+--+--+--+

The numbers here are the desktop numbers, as for _NET_CURRENT_DESKTOP.

_NET_SHOWING_DESKTOP

Extended Window Manager Hints http://standards.freedesktop.org/wm-spec/wm-spec-1.3.html

12 de 37 30/09/12 10:42

_NET_SHOWING_DESKTOP desktop, CARDINAL/32

Some Window Managers have a "showing the desktop" mode in which windows are
hidden, and the desktop background is displayed and focused. If a Window Manager
supports the _NET_SHOWING_DESKTOP hint, it MUST set it to a value of 1 when the
Window Manager is in "showing the desktop" mode, and a value of zero if the Window
Manager is not in this mode.

If a Pager wants to enter or leave the mode, it MUST send a
_NET_SHOWING_DESKTOP client message to the root window requesting the
change:

_NET_SHOWING_DESKTOP
 message_type = _NET_SHOWING_DESKTOP
 format = 32
 data.l[0] = boolean 0 or 1
 other data.l[] elements = 0

The Window Manager may choose to ignore this client message.

Other Root Window Messages

_NET_CLOSE_WINDOW

_NET_CLOSE_WINDOW

Pagers wanting to close a window MUST send a _NET_CLOSE_WINDOW client
message request to the root window:

_NET_CLOSE_WINDOW
 window = window to close
 message_type = _NET_CLOSE_WINDOW
 format = 32
 data.l[0] = timestamp
 data.l[1] = source indication
 other data.l[] elements = 0

The Window Manager MUST then attempt to close the window specified. See the
section called “Source indication in requests” for details on the source indication.

Rationale: A Window Manager might be more clever than the usual method (send
WM_DELETE message if the protocol is selected, XKillClient otherwise). It might
introduce a timeout, for example. Instead of duplicating the code, the Window
Manager can easily do the job.

_NET_MOVERESIZE_WINDOW

_NET_MOVERESIZE_WINDOW
 window = window to be moved or resized
 message_type = _NET_MOVERESIZE_WINDOW
 format = 32
 data.l[0] = gravity and flags
 data.l[1] = x
 data.l[2] = y
 data.l[3] = width
 data.l[4] = height

Extended Window Manager Hints http://standards.freedesktop.org/wm-spec/wm-spec-1.3.html

13 de 37 30/09/12 10:42

The low byte of data.l[0] contains the gravity to use; it may contain any value allowed
for the WM_SIZE_HINTS.win_gravity property: NorthWest (1), North (2), NorthEast
(3), West (4), Center (5), East (6), SouthWest (7), South (8), SouthEast (9) and Static
(10). A gravity of 0 indicates that the Window Manager should use the gravity
specified in WM_SIZE_HINTS.win_gravity. The bits 8 to 11 indicate the presence of x,
y, width and height. The bits 12 to 15 indicate the source (see the section called
“Source indication in requests”), so 0001 indicates the application and 0010 indicates
a Pager or a Taskbar. The remaining bits should be set to zero.

Pagers wanting to move or resize a window may send a
_NET_MOVERESIZE_WINDOW client message request to the root window instead of
using a ConfigureRequest.

Window Managers should treat a _NET_MOVERESIZE_WINDOW message exactly like
a ConfigureRequest (in particular, adhering to the ICCCM rules about synthetic
ConfigureNotify events), except that they should use the gravity specified in the
message.

Rationale: Using a _NET_MOVERESIZE_WINDOW message with StaticGravity allows
Pagers to exactly position and resize a window including its decorations without
knowing the size of the decorations.

_NET_WM_MOVERESIZE

_NET_WM_MOVERESIZE
 window = window to be moved or resized
 message_type = _NET_WM_MOVERESIZE
 format = 32
 data.l[0] = x_root
 data.l[1] = y_root
 data.l[2] = direction
 data.l[3] = button
 data.l[4] = source indication

This message allows Clients to initiate window movement or resizing. They can define
their own move and size "grips", whilst letting the Window Manager control the
actual operation. This means that all moves/resizes can happen in a consistent
manner as defined by the Window Manager. See the section called “Source indication
in requests” for details on the source indication.

When sending this message in response to a button press event, button SHOULD
indicate the button which was pressed, x_root and y_root MUST indicate the position
of the button press with respect to the root window and direction MUST indicate
whether this is a move or resize event, and if it is a resize event, which edges of the
window the size grip applies to. When sending this message in response to a key
event, the direction MUST indicate whether this this is a move or resize event and the
other fields are unused.

#define _NET_WM_MOVERESIZE_SIZE_TOPLEFT 0
#define _NET_WM_MOVERESIZE_SIZE_TOP 1
#define _NET_WM_MOVERESIZE_SIZE_TOPRIGHT 2
#define _NET_WM_MOVERESIZE_SIZE_RIGHT 3
#define _NET_WM_MOVERESIZE_SIZE_BOTTOMRIGHT 4
#define _NET_WM_MOVERESIZE_SIZE_BOTTOM 5
#define _NET_WM_MOVERESIZE_SIZE_BOTTOMLEFT 6

Extended Window Manager Hints http://standards.freedesktop.org/wm-spec/wm-spec-1.3.html

14 de 37 30/09/12 10:42

#define _NET_WM_MOVERESIZE_SIZE_LEFT 7
#define _NET_WM_MOVERESIZE_MOVE 8 /* movement only */
#define _NET_WM_MOVERESIZE_SIZE_KEYBOARD 9 /* size via keyboard */
#define _NET_WM_MOVERESIZE_MOVE_KEYBOARD 10 /* move via keyboard */

The Client MUST release all grabs prior to sending such message.

The Window Manager can use the button field to determine the events on which it
terminates the operation initiated by the _NET_WM_MOVERESIZE message. Since
there is a race condition between a client sending the _NET_WM_MOVERESIZE
message and the user releasing the button, Window Managers are advised to offer
some other means to terminate the operation, e.g. by pressing the ESC key.

_NET_RESTACK_WINDOW

_NET_RESTACK_WINDOW

Pagers wanting to restack a window SHOULD send a _NET_RESTACK_WINDOW
client message request to the root window:

_NET_RESTACK_WINDOW
 window = window to restack
 message_type = _NET_RESTACK_WINDOW
 format = 32
 data.l[0] = source indication
 data.l[1] = sibling window
 data.l[2] = detail
 other data.l[] elements = 0

This request is similar to ConfigureRequest with CWSibling and CWStackMode flags.
It should be used only by pagers, applications can use normal ConfigureRequests. The
source indication field should be therefore set to 2, see the section called “Source
indication in requests” for details.

Rationale: A Window Manager may put restrictions on configure requests from
applications, for example it may under some conditions refuse to raise a window. This
request makes it clear it comes from a pager or similar tool, and therefore the
Window Manager should always obey it.

_NET_REQUEST_FRAME_EXTENTS

_NET_REQUEST_FRAME_EXTENTS
 window = window for which to set _NET_FRAME_EXTENTS
 message_type = _NET_REQUEST_FRAME_EXTENTS

A Client whose window has not yet been mapped can request of the Window Manager
an estimate of the frame extents it will be given upon mapping. To retrieve such an
estimate, the Client MUST send a _NET_REQUEST_FRAME_EXTENTS message to the
root window. The Window Manager MUST respond by estimating the prospective
frame extents and setting the window's _NET_FRAME_EXTENTS property
accordingly. The Client MUST handle the resulting _NET_FRAME_EXTENTS
PropertyNotify event. So that the Window Manager has a good basis for estimation,
the Client MUST set any window properties it intends to set before sending this
message. The Client MUST be able to cope with imperfect estimates.

Extended Window Manager Hints http://standards.freedesktop.org/wm-spec/wm-spec-1.3.html

15 de 37 30/09/12 10:42

Rationale: A client cannot calculate the dimensions of its window's frame before the
window is mapped, but some toolkits need this information. Asking the window
manager for an estimate of the extents is a workable solution. The estimate may
depend on the current theme, font sizes or other window properties. The client can
track changes to the frame's dimensions by listening for _NET_FRAME_EXTENTS
PropertyNotify events.

Application Window Properties

_NET_WM_NAME

_NET_WM_NAME, UTF8_STRING

The Client SHOULD set this to the title of the window in UTF-8 encoding. If set, the
Window Manager should use this in preference to WM_NAME.

_NET_WM_VISIBLE_NAME

_NET_WM_VISIBLE_NAME, UTF8_STRING

If the Window Manager displays a window name other than _NET_WM_NAME the
Window Manager MUST set this to the title displayed in UTF-8 encoding.

Rationale: This property is for Window Managers that display a title different from the
_NET_WM_NAME or WM_NAME of the window (i.e. xterm <1>, xterm <2>, ... is
shown, but _NET_WM_NAME / WM_NAME is still xterm for each window) thereby
allowing Pagers to display the same title as the Window Manager.

_NET_WM_ICON_NAME

_NET_WM_ICON_NAME, UTF8_STRING

The Client SHOULD set this to the title of the icon for this window in UTF-8 encoding.
If set, the Window Manager should use this in preference to WM_ICON_NAME.

_NET_WM_VISIBLE_ICON_NAME

_NET_WM_VISIBLE_ICON_NAME, UTF8_STRING

If the Window Manager displays an icon name other than _NET_WM_ICON_NAME the
Window Manager MUST set this to the title displayed in UTF-8 encoding.

_NET_WM_DESKTOP

_NET_WM_DESKTOP desktop, CARDINAL/32

Cardinal to determine the desktop the window is in (or wants to be) starting with 0
for the first desktop. A Client MAY choose not to set this property, in which case the
Window Manager SHOULD place it as it wishes. 0xFFFFFFFF indicates that the
window SHOULD appear on all desktops.

Extended Window Manager Hints http://standards.freedesktop.org/wm-spec/wm-spec-1.3.html

16 de 37 30/09/12 10:42

The Window Manager should honor _NET_WM_DESKTOP whenever a withdrawn
window requests to be mapped.

The Window Manager should remove the property whenever a window is withdrawn
but it should leave the property in place when it is shutting down, e.g. in response to
losing ownership of the WM_Sn manager selection.

Rationale: Removing the property upon window withdrawal helps legacy applications
which want to reuse withdrawn windows. Not removing the property upon shutdown
allows the next Window Manager to restore windows to their previous desktops.

A Client can request a change of desktop for a non-withdrawn window by sending a
_NET_WM_DESKTOP client message to the root window:

_NET_WM_DESKTOP
 window = the respective client window
 message_type = _NET_WM_DESKTOP
 format = 32
 data.l[0] = new_desktop
 data.l[1] = source indication
 other data.l[] elements = 0

See the section called “Source indication in requests” for details on the source
indication. The Window Manager MUST keep this property updated on all windows.

_NET_WM_WINDOW_TYPE

_NET_WM_WINDOW_TYPE, ATOM[]/32

This SHOULD be set by the Client before mapping to a list of atoms indicating the
functional type of the window. This property SHOULD be used by the window
manager in determining the decoration, stacking position and other behavior of the
window. The Client SHOULD specify window types in order of preference (the first
being most preferable) but MUST include at least one of the basic window type atoms
from the list below. This is to allow for extension of the list of types whilst providing
default behavior for Window Managers that do not recognize the extensions.

Rationale: This hint is intended to replace the MOTIF hints. One of the objections to
the MOTIF hints is that they are a purely visual description of the window decoration.
By describing the function of the window, the Window Manager can apply consistent
decoration and behavior to windows of the same type. Possible examples of behavior
include keeping dock/panels on top or allowing pinnable menus / toolbars to only be
hidden when another window has focus (NextStep style).

_NET_WM_WINDOW_TYPE_DESKTOP, ATOM
_NET_WM_WINDOW_TYPE_DOCK, ATOM
_NET_WM_WINDOW_TYPE_TOOLBAR, ATOM
_NET_WM_WINDOW_TYPE_MENU, ATOM
_NET_WM_WINDOW_TYPE_UTILITY, ATOM
_NET_WM_WINDOW_TYPE_SPLASH, ATOM
_NET_WM_WINDOW_TYPE_DIALOG, ATOM
_NET_WM_WINDOW_TYPE_NORMAL, ATOM

_NET_WM_WINDOW_TYPE_DESKTOP indicates a desktop feature. This can include a
single window containing desktop icons with the same dimensions as the screen,

Extended Window Manager Hints http://standards.freedesktop.org/wm-spec/wm-spec-1.3.html

17 de 37 30/09/12 10:42

allowing the desktop environment to have full control of the desktop, without the
need for proxying root window clicks.

_NET_WM_WINDOW_TYPE_DOCK indicates a dock or panel feature. Typically a
Window Manager would keep such windows on top of all other windows.

_NET_WM_WINDOW_TYPE_TOOLBAR and _NET_WM_WINDOW_TYPE_MENU
indicate toolbar and pinnable menu windows, respectively (i.e. toolbars and menus
"torn off" from the main application). Windows of this type may set the
WM_TRANSIENT_FOR hint indicating the main application window.

_NET_WM_WINDOW_TYPE_UTILITY indicates a small persistent utility window, such
as a palette or toolbox. It is distinct from type TOOLBAR because it does not
correspond to a toolbar torn off from the main application. It's distinct from type
DIALOG because it isn't a transient dialog, the user will probably keep it open while
they're working. Windows of this type may set the WM_TRANSIENT_FOR hint
indicating the main application window.

_NET_WM_WINDOW_TYPE_SPLASH indicates that the window is a splash screen
displayed as an application is starting up.

_NET_WM_WINDOW_TYPE_DIALOG indicates that this is a dialog window. If
_NET_WM_WINDOW_TYPE is not set, then windows with WM_TRANSIENT_FOR set
MUST be taken as this type.

_NET_WM_WINDOW_TYPE_NORMAL indicates that this is a normal, top-level
window. Windows with neither _NET_WM_WINDOW_TYPE nor WM_TRANSIENT_FOR
set MUST be taken as this type.

_NET_WM_STATE

_NET_WM_STATE, ATOM[]

A list of hints describing the window state. Atoms present in the list MUST be
considered set, atoms not present in the list MUST be considered not set. The
Window Manager SHOULD honor _NET_WM_STATE whenever a withdrawn window
requests to be mapped. A Client wishing to change the state of a window MUST send
a _NET_WM_STATE client message to the root window (see below). The Window
Manager MUST keep this property updated to reflect the current state of the window.

The Window Manager should remove the property whenever a window is withdrawn,
but it should leave the property in place when it is shutting down, e.g. in response to
losing ownership of the WM_Sn manager selection.

Rationale: Removing the property upon window withdrawal helps legacy applications
which want to reuse withdrawn windows. Not removing the property upon shutdown
allows the next Window Manager to restore windows to their previous state.

Possible atoms are:

_NET_WM_STATE_MODAL, ATOM
_NET_WM_STATE_STICKY, ATOM
_NET_WM_STATE_MAXIMIZED_VERT, ATOM

Extended Window Manager Hints http://standards.freedesktop.org/wm-spec/wm-spec-1.3.html

18 de 37 30/09/12 10:42

_NET_WM_STATE_MAXIMIZED_HORZ, ATOM
_NET_WM_STATE_SHADED, ATOM
_NET_WM_STATE_SKIP_TASKBAR, ATOM
_NET_WM_STATE_SKIP_PAGER, ATOM
_NET_WM_STATE_HIDDEN, ATOM
_NET_WM_STATE_FULLSCREEN, ATOM
_NET_WM_STATE_ABOVE, ATOM
_NET_WM_STATE_BELOW, ATOM
_NET_WM_STATE_DEMANDS_ATTENTION, ATOM

An implementation MAY add new atoms to this list. Implementations without
extensions MUST ignore any unknown atoms, effectively removing them from the list.
These extension atoms MUST NOT start with the prefix _NET.

_NET_WM_STATE_MODAL indicates that this is a modal dialog box. If the
WM_TRANSIENT_FOR hint is set to another toplevel window, the dialog is modal for
that window; if WM_TRANSIENT_FOR is not set or set to the root window the dialog
is modal for its window group.

_NET_WM_STATE_STICKY indicates that the Window Manager SHOULD keep the
window's position fixed on the screen, even when the virtual desktop scrolls.

_NET_WM_STATE_MAXIMIZED_{VERT,HORZ} indicates that the window is
{vertically,horizontally} maximized.

_NET_WM_STATE_SHADED indicates that the window is shaded.

_NET_WM_STATE_SKIP_TASKBAR indicates that the window should not be included
on a taskbar. This hint should be requested by the application, i.e. it indicates that the
window by nature is never in the taskbar. Applications should not set this hint if
_NET_WM_WINDOW_TYPE already conveys the exact nature of the window.

_NET_WM_STATE_SKIP_PAGER indicates that the window should not be included on
a Pager. This hint should be requested by the application, i.e. it indicates that the
window by nature is never in the Pager. Applications should not set this hint if
_NET_WM_WINDOW_TYPE already conveys the exact nature of the window.

_NET_WM_STATE_HIDDEN should be set by the Window Manager to indicate that a
window would not be visible on the screen if its desktop/viewport were active and its
coordinates were within the screen bounds. The canonical example is that minimized
windows should be in the _NET_WM_STATE_HIDDEN state. Pagers and similar
applications should use _NET_WM_STATE_HIDDEN instead of WM_STATE to decide
whether to display a window in miniature representations of the windows on a
desktop.

Implementation note: if an Application asks to toggle _NET_WM_STATE_HIDDEN the
Window Manager should probably just ignore the request, since
_NET_WM_STATE_HIDDEN is a function of some other aspect of the window such as
minimization, rather than an independent state.

_NET_WM_STATE_FULLSCREEN indicates that the window should fill the entire
screen and have no window decorations. Additionally the Window Manager is
responsible for restoring the original geometry after a switch from fullscreen back to
normal window. For example, a presentation program would use this hint.

Extended Window Manager Hints http://standards.freedesktop.org/wm-spec/wm-spec-1.3.html

19 de 37 30/09/12 10:42

_NET_WM_STATE_ABOVE indicates that the window should be on top of most
windows (see the section called “Stacking order” for details).

_NET_WM_STATE_BELOW indicates that the window should be below most windows
(see the section called “Stacking order” for details).

_NET_WM_STATE_ABOVE and _NET_WM_STATE_BELOW are mainly meant for user
preferences and should not be used by applications e.g. for drawing attention to their
dialogs (the Urgency hint should be used in that case, see the section called
“Urgency”).'

_NET_WM_STATE_DEMANDS_ATTENTION indicates that some action in or with the
window happened. For example, it may be set by the Window Manager if the window
requested activation but the Window Manager refused it, or the application may set it
if it finished some work. This state may be set by both the Client and the Window
Manager. It should be unset by the Window Manager when it decides the window got
the required attention (usually, that it got activated).

To change the state of a mapped window, a Client MUST send a _NET_WM_STATE
client message to the root window:

 window = the respective client window
 message_type = _NET_WM_STATE
 format = 32
 data.l[0] = the action, as listed below
 data.l[1] = first property to alter
 data.l[2] = second property to alter
 data.l[3] = source indication
 other data.l[] elements = 0

This message allows two properties to be changed simultaneously, specifically to
allow both horizontal and vertical maximization to be altered together. l[2] MUST be
set to zero if only one property is to be changed. See the section called “Source
indication in requests” for details on the source indication. l[0], the action, MUST be
one of:

_NET_WM_STATE_REMOVE 0 /* remove/unset property */
_NET_WM_STATE_ADD 1 /* add/set property */
_NET_WM_STATE_TOGGLE 2 /* toggle property */

See also the implementation notes on urgency and fixed size windows.

_NET_WM_ALLOWED_ACTIONS

_NET_WM_ALLOWED_ACTIONS, ATOM[]

A list of atoms indicating user operations that the Window Manager supports for this
window. Atoms present in the list indicate allowed actions, atoms not present in the
list indicate actions that are not supported for this window. The Window Manager
MUST keep this property updated to reflect the actions which are currently "active"
or "sensitive" for a window. Taskbars, Pagers, and other tools use
_NET_WM_ALLOWED_ACTIONS to decide which actions should be made available to
the user.

Possible atoms are:

Extended Window Manager Hints http://standards.freedesktop.org/wm-spec/wm-spec-1.3.html

20 de 37 30/09/12 10:42

_NET_WM_ACTION_MOVE, ATOM
_NET_WM_ACTION_RESIZE, ATOM
_NET_WM_ACTION_MINIMIZE, ATOM
_NET_WM_ACTION_SHADE, ATOM
_NET_WM_ACTION_STICK, ATOM
_NET_WM_ACTION_MAXIMIZE_HORZ, ATOM
_NET_WM_ACTION_MAXIMIZE_VERT, ATOM
_NET_WM_ACTION_FULLSCREEN, ATOM
_NET_WM_ACTION_CHANGE_DESKTOP, ATOM
_NET_WM_ACTION_CLOSE, ATOM

An implementation MAY add new atoms to this list. Implementations without
extensions MUST ignore any unknown atoms, effectively removing them from the list.
These extension atoms MUST NOT start with the prefix _NET.

Note that the actions listed here are those that the Window Manager will honor for
this window. The operations must still be requested through the normal mechanisms
outlined in this specification. For example, _NET_WM_ACTION_CLOSE does not mean
that clients can send a WM_DELETE_WINDOW message to this window; it means that
clients can use a _NET_CLOSE_WINDOW message to ask the Window Manager to do
so.

Window Managers SHOULD ignore the value of _NET_WM_ALLOWED_ACTIONS
when they initially manage a window. This value may be left over from a previous
Window Manager with different policies.

_NET_WM_ACTION_MOVE indicates that the window may be moved around the
screen.

_NET_WM_ACTION_RESIZE indicates that the window may be resized.
(Implementation note: Window Managers can identify a non-resizable window
because its minimum and maximum size in WM_NORMAL_HINTS will be the same.)

_NET_WM_ACTION_MINIMIZE indicates that the window may be iconified.

_NET_WM_ACTION_SHADE indicates that the window may be shaded.

_NET_WM_ACTION_STICK indicates that the window may have its sticky state
toggled (as for _NET_WM_STATE_STICKY). Note that this state has to do with
viewports, not desktops.

_NET_WM_ACTION_MAXIMIZE_HORZ indicates that the window may be maximized
horizontally.

_NET_WM_ACTION_MAXIMIZE_VERT indicates that the window may be maximized
vertically.

_NET_WM_ACTION_FULLSCREEN indicates that the window may be brought to
fullscreen state.

_NET_WM_ACTION_CHANGE_DESKTOP indicates that the window may be moved
between desktops.

_NET_WM_ACTION_CLOSE indicates that the window may be closed (i.e. a
WM_DELETE_WINDOW message may be sent).

Extended Window Manager Hints http://standards.freedesktop.org/wm-spec/wm-spec-1.3.html

21 de 37 30/09/12 10:42

_NET_WM_STRUT

_NET_WM_STRUT, left, right, top, bottom, CARDINAL[4]/32

This property is equivalent to a _NET_WM_STRUT_PARTIAL property where all start
values are 0 and all end values are the height or width of the logical screen.
_NET_WM_STRUT_PARTIAL was introduced later than _NET_WM_STRUT, however,
so clients MAY set this property in addition to _NET_WM_STRUT_PARTIAL to ensure
backward compatibility with Window Managers supporting older versions of the
Specification.

_NET_WM_STRUT_PARTIAL

_NET_WM_STRUT_PARTIAL, left, right, top, bottom, left_start_y, left_end_y,
right_start_y, right_end_y, top_start_x, top_end_x, bottom_start_x,
bottom_end_x,CARDINAL[12]/32

This property MUST be set by the Client if the window is to reserve space at the edge
of the screen. The property contains 4 cardinals specifying the width of the reserved
area at each border of the screen, and an additional 8 cardinals specifying the
beginning and end corresponding to each of the four struts. The order of the values is
left, right, top, bottom, left_start_y, left_end_y, right_start_y, right_end_y, top_start_x,
top_end_x, bottom_start_x, bottom_end_x. All coordinates are root window
coordinates. The client MAY change this property at any time, therefore the Window
Manager MUST watch for property notify events if the Window Manager uses this
property to assign special semantics to the window.

If both this property and the _NET_WM_STRUT property are set, the Window
Manager MUST ignore the _NET_WM_STRUT property values and use instead the
values for _NET_WM_STRUT_PARTIAL. This will ensure that Clients can safely set
both properties without giving up the improved semantics of the new property.

The purpose of struts is to reserve space at the borders of the desktop. This is very
useful for a docking area, a taskbar or a panel, for instance. The Window Manager
should take this reserved area into account when constraining window positions -
maximized windows, for example, should not cover that area.

The start and end values associated with each strut allow areas to be reserved which
do not span the entire width or height of the screen. Struts MUST be specified in root
window coordinates, that is, they are not relative to the edges of any view port or
Xinerama monitor.

For example, for a panel-style Client appearing at the bottom of the screen, 50 pixels
tall, and occupying the space from 200-600 pixels from the left of the screen edge
would set a bottom strut of 50, and set bottom_start_x to 200 and bottom_end_x to
600. Another example is a panel on a screen using the Xinerama extension. Assume
that the set up uses two monitors, one running at 1280x1024 and the other to the
right running at 1024x768, with the top edge of the two physical displays aligned. If
the panel wants to fill the entire bottom edge of the smaller display with a panel 50
pixels tall, it should set a bottom strut of 306, with bottom_start_x of 1280, and
bottom_end_x of 2303. Note that the strut is relative to the screen edge, and not the
edge of the xinerama monitor.

Extended Window Manager Hints http://standards.freedesktop.org/wm-spec/wm-spec-1.3.html

22 de 37 30/09/12 10:42

Rationale: A simple "do not cover" hint is not enough for dealing with e.g. auto-hide
panels.

Notes: An auto-hide panel SHOULD set the strut to be its minimum, hidden size. A
"corner" panel that does not extend for the full length of a screen border SHOULD
only set one strut.

_NET_WM_ICON_GEOMETRY

_NET_WM_ICON_GEOMETRY, x, y, width, height, CARDINAL[4]/32

This optional property MAY be set by stand alone tools like a taskbar or an iconbox. It
specifies the geometry of a possible icon in case the window is iconified.

Rationale: This makes it possible for a Window Manager to display a nice animation
like morphing the window into its icon.

_NET_WM_ICON

_NET_WM_ICON CARDINAL[][2+n]/32

This is an array of possible icons for the client. This specification does not stipulate
what size these icons should be, but individual desktop environments or toolkits may
do so. The Window Manager MAY scale any of these icons to an appropriate size.

This is an array of 32bit packed CARDINAL ARGB with high byte being A, low byte
being B. The first two cardinals are width, height. Data is in rows, left to right and top
to bottom.

_NET_WM_PID

_NET_WM_PID CARDINAL/32

If set, this property MUST contain the process ID of the client owning this window.
This MAY be used by the Window Manager to kill windows which do not respond to
the _NET_WM_PING protocol.

If _NET_WM_PID is set, the ICCCM-specified property WM_CLIENT_MACHINE
MUST also be set. While the ICCCM only requests that WM_CLIENT_MACHINE is set
“ to a string that forms the name of the machine running the client as seen from the
machine running the server” conformance to this specification requires that
WM_CLIENT_MACHINE be set to the fully-qualified domain name of the client's host.

See also the implementation notes on killing hung processes.

_NET_WM_HANDLED_ICONS

_NET_WM_HANDLED_ICONS

This property can be set by a Pager on one of its own toplevel windows to indicate
that the Window Manager need not provide icons for iconified windows, for example if
it is a taskbar and provides buttons for iconified windows.

Extended Window Manager Hints http://standards.freedesktop.org/wm-spec/wm-spec-1.3.html

23 de 37 30/09/12 10:42

_NET_WM_USER_TIME

_NET_WM_USER_TIME CARDINAL/32

This property contains the XServer time at which last user activity in this window
took place.

Clients should set this property on every new toplevel window, before mapping the
window, to the timestamp of the user interaction that caused the window to appear. A
client that only deals with core events, might, for example, use the timestamp of the
last KeyPress or ButtonPress event. ButtonRelease and KeyRelease events should not
generally be considered to be user interaction, because an application may receive
KeyRelease events from global keybindings, and generally release events may have
later timestamp than actions that were triggered by the matching press events.
Clients can obtain the timestamp that caused its first window to appear from the
DESKTOP_STARTUP_ID environment variable, if the app was launched with startup
notification. If the client does not know the timestamp of the user interaction that
caused the first window to appear (e.g. because it was not launched with startup
notification), then it should not set the property for that window. The special value of
zero on a newly mapped window can be used to request that the window not be
initially focused when it is mapped.

If the client has the active window, it should also update this property on the window
whenever there's user activity.

Rationale: This property allows a Window Manager to alter the focus, stacking, and/or
placement behavior of windows when they are mapped depending on whether the
new window was created by a user action or is a "pop-up" window activated by a
timer or some other event.

_NET_FRAME_EXTENTS

_NET_FRAME_EXTENTS, left, right, top, bottom, CARDINAL[4]/32

The Window Manager MUST set _NET_FRAME_EXTENTS to the extents of the
window's frame. left, right, top and bottom are widths of the respective borders
added by the Window Manager.

Window Manager Protocols

_NET_WM_PING

This protocol allows the Window Manager to determine if the Client is still processing
X events. This can be used by the Window Manager to determine if a window which
fails to close after being sent WM_DELETE_WINDOW has stopped responding or has
stalled for some other reason, such as waiting for user confirmation. A Client
SHOULD indicate that it is willing to participate in this protocol by listing
_NET_WM_PING in the WM_PROTOCOLS property of the client window.

A Window Manager can use this protocol at any time by sending a client message as
follows:

Extended Window Manager Hints http://standards.freedesktop.org/wm-spec/wm-spec-1.3.html

24 de 37 30/09/12 10:42

type = ClientMessage
window = the respective client window
message_type = WM_PROTOCOLS
format = 32
data.l[0] = _NET_WM_PING
data.l[1] = timestamp
data.l[2] = the respective client window
other data.l[] elements = 0

A participating Client receiving this message MUST send it back to the root window
immediately, by setting window = root, and calling XSendEvent with the same event
mask like all other root window messages in this specification use. The Client MUST
NOT alter any field in the event other than the window. This includes all 5 longs in the
data.l[5] array. The Window Manager can uniquely identify the ping by the timestamp
and the data.l[2] field if necessary. Note that some older clients may not preserve
data.l[2] through data.l[4].

The Window Manager MAY kill the Client (using _NET_WM_PID) if it fails to respond
to this protocol within a reasonable time.

See also the implementation notes on killing hung processes.

_NET_WM_SYNC_REQUEST

This protocol uses the XSync extension (see the protocol specification and the library
documentation) to let client and window manager synchronize the repaint of the
window manager frame and the client window. A client indicates that it is willing to
participate in the protocol by listing _NET_WM_SYNC_REQUEST in the
WM_PROTOCOLS property of the client window and storing the XID of an XSync
counter in the property _NET_WM_SYNC_REQUEST_COUNTER. The initial value of
this counter is not defined by this specification.

A window manager uses this protocol by preceding a ConfigureNotify event sent to a
client by a client message as follows:

type = ClientMessage
window = the respective client window
message_type = WM_PROTOCOLS
format = 32
data.l[0] = _NET_WM_SYNC_REQUEST
data.l[1] = timestamp
data.l[2] = low 32 bits of the update request number
data.l[3] = high 32 bits of the update request number
other data.l[] elements = 0

After receiving one or more such message/ConfigureNotify pairs, and having handled
all repainting associated with the ConfigureNotify events, the client MUST set the
_NET_WM_SYNC_REQUEST_COUNTER to the 64 bit number indicated by the
data.l[2] and data.l[3] fields of the last client message received.

By using either the Alarm or the Await mechanisms of the XSync extension, the
window manager can know when the client has finished handling the ConfigureNotify
events. The window manager SHOULD not resize the window faster than the client
can keep up.

Extended Window Manager Hints http://standards.freedesktop.org/wm-spec/wm-spec-1.3.html

25 de 37 30/09/12 10:42

The update request number in the client message is determined by the window
manager subject to the restriction that it MUST NOT be 0. The number is generally
intended to be incremented by one for each message sent. Since the initial value of
the XSync counter is not defined by this specification, the window manager MAY set
the value of the XSync counter at any time, and MUST do so when it first manages a
new window.

Implementation notes

Desktop/workspace model

This spec assumes a desktop model that consists of one or more completely
independent desktops which may or may not be larger than the screen area. When a
desktop is larger than the screen it is left to the Window Manager if it will implement
scrolling or paging.

File Manager desktop

This spec suggests implementing the file manager desktop by mapping a
desktop-sized window (no shape) to all desktops, with
_NET_WM_WINDOW_TYPE_DESKTOP. This makes the desktop focusable and greatly
simplifies implementation of the file manager. It is also faster than managing lots of
small shaped windows. The file manager draws the background on this window. There
should be a root property with a window handle for use in applications that want to
draw the background (xearth).

Implementing enhanced support for application transient windows

If the WM_TRANSIENT_FOR property is set to None or Root window, the window
should be treated as a transient for all other windows in the same group. It has been
noted that this is a slight ICCCM violation, but as this behavior is pretty standard for
many toolkits and window managers, and is extremely unlikely to break anything, it
seems reasonable to document it as standard.

Urgency

Windows expecting immediate user action should indicate this using the urgency bit
in the WM_HINTS.flags property, as defined in the ICCCM.

Fixed size windows

Windows can indicate that they are non-resizable by setting minheight = maxheight
and minwidth = maxwidth in the ICCCM WM_NORMAL_HINTS property. The Window
Manager MAY decorate such windows differently.

Pagers and Taskbars

This specification attempts to make reasonable provisions for window manager
independent pagers and taskbars. Window Managers that require / desire additional

Extended Window Manager Hints http://standards.freedesktop.org/wm-spec/wm-spec-1.3.html

26 de 37 30/09/12 10:42

functionality beyond what can be achieved using the mechanisms set out in this
specification may choose to implement their own pagers, which communicate with the
Window Manager using further, window manager specific hints, or some other means.

Pagers should decide whether to show a miniature version of a window using the
following guidelines:

If either _NET_WM_STATE_SKIP_PAGER or _NET_WM_STATE_HIDDEN are set
on a window, then the pager should not show that window.

The pager may choose not to display windows with certain semantic types; this
spec has no recommendations, but common practice is to avoid displaying
_NET_WM_WINDOW_TYPE_DOCK for example.

If the _NET_WM_STATE_SKIP_PAGER and _NET_WM_STATE_HIDDEN hints are
not present, and the Window Manager claims to support
_NET_WM_STATE_HIDDEN, then the window should be shown if it's in either
NormalState or IconicState.

For Window Managers that do not support _NET_WM_STATE_HIDDEN, the
pager should not show windows in IconicState. These Window Managers are
probably using an older version of this specification.

Window Geometry

Window manager implementors should refer to the ICCCM for definitive
specifications of how to handle MapRequest and ConfigureRequest events. However,
since these aspects of the ICCCM are easily misread, this document offers the
following clarifications:

Window Managers MUST honor the win_gravity field of WM_NORMAL_HINTS
for both MapRequest and ConfigureRequest events (ICCCM Version 2.0, §4.1.2.3
and §4.1.5)

When generating synthetic ConfigureNotify events, the position given MUST be
the top-left corner of the client window in relation to the origin of the root
window (i.e., ignoring win_gravity) (ICCCM Version 2.0, §4.2.3)

Window Managers maintain a reference point for each client window and place
the window relative to this reference point depending on the window's
win_gravity as follows:

win_gravity: placed at the reference point

StaticGravity the left top corner of the client window

NorthWestGravity the left top corner of the frame window

NorthGravity the center of the frame window's top side

NorthEastGravity the right top corner of the frame window

EastGravity the center of the frame window's right side

SouthEastGravity the right bottom corner of the frame window

Extended Window Manager Hints http://standards.freedesktop.org/wm-spec/wm-spec-1.3.html

27 de 37 30/09/12 10:42

SouthGravity the center of the frame window's bottom side

SouthWestGravity the left bottom corner of the frame window

WestGravity the center of the frame window's left side

CenterGravity the center of the frame window

Applications are free to change their win_gravity setting at any time.

If an Application changes its win_gravity then the Window Manager should
adjust the reference point, so that the client window will not move as the result.
For example if the Application's win_gravity was NorthWestGravity and
reference point was at the top-left corner of the frame window, then after change
of win_gravity to SouthEastGravity the reference point should be adjusted to
point to the lower-right corner of the frame.

Note

Changing the win_gravity for a single configure request and back
afterwards is unlikely to work as intended, due to a race condition.
The window manager sees a property notify for
WM_NORMAL_HINTS, followed by the configure request, followed
by another property notify for WM_NORMAL_HINTS. By the time the
window manager gets around to request the changed
WM_NORMAL_HINTS in response to the first property notify, the
server may have already processed the second property change.

If the window manager supports it, applications should use
_NET_MOVERESIZE_WINDOW with a specified gravity to avoid this
problem.

If the Application requests a new position (x, y) (and possibly also a new size),
the Window Manager calculates a new reference point (ref_x, ref_y), based on
the client window's (possibly new) size (width, height), border width (bw) and
win_gravity as explained in the table below.

The Window Manager will use the new reference point until the next request for
a new position.

win_gravity: ref_x: ref_y:

StaticGravity x y

NorthWestGravity x-bw y-bw

NorthGravity x+(width/2) y-bw

NorthEastGravity x+width+bw y-bw

EastGravity x+width+bw y+(height/2)

SouthEastGravity x+width+bw y+height+bw

SouthGravity x+(width/2) y+height+bw

SouthWestGravity x-bw y+height+bw

Extended Window Manager Hints http://standards.freedesktop.org/wm-spec/wm-spec-1.3.html

28 de 37 30/09/12 10:42

WestGravity x-bw y+(height/2)

CenterGravity x+(width/2) y+(height/2)

If an Application requests just a new size, its reference point does not move. So
for example if client window has win_gravity SouthEastGravity and is resized,
the bottom right corner of its frame will not move but instead the top left corner
will be adjusted by the difference in size.

When calculating the reference point at the time of initial placement, the
Window Manager should take the initial window's size into consideration, as if it
was the frame for this window.

Window-in-Window MDI

The authors of this specification acknowledge that there is no standard method to
allow the Window Manager to manage windows that are part of a Window-in-Window
MDI application. Application authors are advised to use some other form of MDI, or to
propose a mechanism to be included in a future revision of this specification.

Killing Hung Processes

If processes fail to respond to the _NET_WM_PING protocol _NET_WM_PID may be
used in combination with the ICCCM specified WM_CLIENT_MACHINE to attempt to
kill a process.

WM_CLIENT_MACHINE is usually set by calling XSetWMProperties(). The hostname
for the current host can be be retrieved using gethostname(), when gethostname() is
not available on the platform implementors may use the value of the nodename field
of struct utsname as returned by uname(). Note also that the value of
WM_CLIENT_MACHINE is not guaranteed to be a fully fully-qualified domain name of
the host. An example of how to retrieve the hostname:

int net_get_hostname (char *buf, size_t maxlen)
{
#ifdef HAVE_GETHOSTNAME

if (buf == NULL) return 0;

gethostname (buf, maxlen);
buf [maxlen - 1] = '\0';

return strlen(buf);
#else

struct utsname name;
size_t len;

if (buf == NULL) return 0;

uname (&name);
len = strlen (name.nodename);

if (len >= maxlen) len = maxlen - 1;
strncpy (buf, name.nodename, len);
buf[len] = '\0';

return len;

Extended Window Manager Hints http://standards.freedesktop.org/wm-spec/wm-spec-1.3.html

29 de 37 30/09/12 10:42

#endif
}

Stacking order

To obtain good interoperability between different Desktop Environments, the
following layered stacking order is recommended, from the bottom:

windows of type _NET_WM_TYPE_DESKTOP

windows having state _NET_WM_STATE_BELOW

windows not belonging in any other layer

windows of type _NET_WM_TYPE_DOCK (unless they have state
_NET_WM_TYPE_BELOW) and windows having state _NET_WM_STATE_ABOVE

focused windows having state _NET_WM_STATE_FULLSCREEN

Windows that are transient for another window should be kept above this window.

The window manager may choose to put some windows in different stacking
positions, for example to allow the user to bring currently a active window to the top
and return it back when the window looses focus.

Source indication in requests

Some requests from Clients include type of the Client, for example the
_NET_ACTIVE_WINDOW message. Currently the types can be 1 for normal
applications, and 2 for pagers and other Clients that represent direct user actions
(the Window Manager may decide to treat requests from applications differently than
requests that are result of direct user actions). Clients that support only older version
of this spec will have 0 as their source indication, thus not specifying their source at
all. This also may mean that some of the fields in the message comply only with the
older specification version.

References

[UTF8]

F. Yergeau,"UTF-8, a transformation format of ISO 10646", RFC 2279

[ICCCM]

David Rosenthal and Stuart W. Marks, "Inter-Client Communication Conventions
Manual (Version 2.0)", X Consortium Standard, X Version 11, Release 6.3

Copyright

Copyright (C) 2000-2003 See Contributors List

Extended Window Manager Hints http://standards.freedesktop.org/wm-spec/wm-spec-1.3.html

30 de 37 30/09/12 10:42

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies
or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Contributors

Sasha Vasko

Bradley T. Hughes

Dominik Vogt

Havoc Pennington

Jeff Raven

Jim Gettys

John Harper

Julian Adams

Matthias Ettrich

Micheal Rogers

Nathan Clemons

Tim Janik

Tomi Ollila

Sam Lantinga

The Rasterman

Paul Warren

Owen Taylor

Extended Window Manager Hints http://standards.freedesktop.org/wm-spec/wm-spec-1.3.html

31 de 37 30/09/12 10:42

Marko Macek

Greg Badros

Matthias Clasen

David Rosenthal

Lubos Lunak

Rob Adams

Thomas Fitzsimmons

Olivier Chapuis

Søren Sandmann

Change history

Changes since 1.2

Added source indication to _NET_CLOSE_WINDOW, _NET_WM_MOVERESIZE,
_NET_MOVERESIZE_WINDOW, _NET_WM_DESKTOP and _NET_WM_STATE
message.

Added _NET_WM_SYNC_REQUEST to allow synchronized repaint of application
window and window manager frame during opaque resize.

Added _NET_REQUEST_FRAME_EXTENTS and _NET_FRAME_EXTENTS to
allow a client to retrieve its window's frame extents.

Added new state _NET_WM_STATE_DEMANDS_ATTENTION.

Added timestamp, source indication and requestor's active window fields to the
_NET_ACTIVE_WINDOW message.

Added _NET_RESTACK_WINDOW message.

Added new property _NET_WM_STRUT_PARTIAL to allow partial-width struts.

Rewrote the implementation notes on "Window Movement", retitled it to
"Window Geometry".

Rewrote the implementation notes on "Urgency", making it clear that the hint is
not just about dialogs.

Fixed the specification of the X and Y members of _NET_DESKTOP_LAYOUT and
renamed them to columns and row for clarity.

Change the description of _NET_WM_STATE_MODAL to no longer require apps
to break the ICCCM for group-modal windows, but still support the
WM_TRANSIENT_FOR=root dialect.

Extended Window Manager Hints http://standards.freedesktop.org/wm-spec/wm-spec-1.3.html

32 de 37 30/09/12 10:42

Specified that (yet) unused fields in client messages must be set to 0.

_NET_WM_PING message now has the client window identified in data.l[2] field.

Added _NET_WM_USER_TIME to detect user activity in windows.

Explicitly specify that the window manager should restore original geometry
when _NET_WM_STATE_FULLSCREEN is reset.

Changes since 1.1

Changed WM_CLIENT_NAME(STRING) from suggested to required for
_NET_WM_PID.

Specification and sample code for the content of WM_CLIENT_NAME(STRING).

Added _NET_WM_WINDOW_TYPE_SPLASH,
_NET_WM_WINDOW_TYPE_UTILITY.

Added _NET_WM_STATE_FULLSCREEN.

Added _NET_WM_ALLOWED_ACTIONS.

Added _NET_WM_STATE_HIDDEN and clarified purpose of
_NET_WM_STATE_SKIP_PAGER and _NET_WM_STATE_SKIP_TASKBAR.
Changed section on virtual desktop implementation to suggest ICCCM
compliance regarding IconicState, using _NET_WM_STATE_HIDDEN to avoid
confusion. Added implementation note for pagers on when to display a window.

Added button field and new directions for keyboard-initiated actions to the
_NET_WM_MOVERESIZE message.

Added advice on removing _NET_WM_STATE and _NET_WM_DESKTOP when a
window is withdrawn.

Added _NET_DESKTOP_LAYOUT to allow a Pager to specify inter-desktop
geometry.

Added _NET_SHOWING_DESKTOP.

Added _NET_WM_STATE_ABOVE and _NET_WM_STATE_BELOW and a
recommended layered stacking order.

Added _NET_MOVERESIZE_WINDOW.

Improve markup of citations.

Explain _NET_DESKTOP_GEOMETRY and _NET_WM_HANDLED_ICONS in more
detail and improve the explanation of WM_CLIENT_MACHINE in the section
called “Killing Hung Processes”.

Add Lubos Lunak to the list of contributors.

Extended Window Manager Hints http://standards.freedesktop.org/wm-spec/wm-spec-1.3.html

33 de 37 30/09/12 10:42

Changes since 1.0

Fix doctype, add author info, update data.

Change specification description wording to be more inclusive, and to reflect the
joint nature of the specification.

Fix miscellaneous typographical, grammar and spelling errors.

Clarified _NET_SUPPORTED to include ALL atoms, not just the property names.

Various corrections to use of MUST and SHOULD.

Fix problem in _NET_WM_ICON where 'bytes' should have been 'cardinals'

Replaced ISO-8559-1 characters with entities.

Changes since 1.0pre5

Change history moved to end.

UTF-8 Reference updated.

Window Gravity information updated.

Copyright Added.

Minor typo corrections.

Changes since 1.0pre4

Clarified the interpretation of client-provided geometries on large desktops.

Added more explanation for _NET_DESKTOP_NAMES.

Added _NET_WM_ICON_NAME and _NET_WM_VISIBLE_ICON_NAME.

Tried to improve the wording of _NET_WM_STRUT explanation.

Changed _NET_WORKAREA to an array of viewport-relative geometries.

Updated list of “dependent” properties for _NET_NUMBER_OF_DESKTOPS to
include _NET_WORKAREA and _NET_DESKTOP_VIEWPORT.

Tidied formatting of all client messages.

Changes since 1.0pre3

Added information about common non-ICCCM features.

Added explanation of sending messages to the root window.

Removed XA_ prefix from type names.

Extended Window Manager Hints http://standards.freedesktop.org/wm-spec/wm-spec-1.3.html

34 de 37 30/09/12 10:42

Clarified that “mapping order” refers to inital mapping and specify the directions
of both orders.

Clarified that desktops have a common size specified by
_NET_DESKTOP_GEOMETRY.

Rewrote explanation of _NET_DESKTOP_VIEWPORT.

Tidied formatting of _NET_CURRENT_DESKTOP.

Replaced “window handle” by “window ID”.

Tidied formatting of _NET_WORKAREA.

Rewrote the motivation for _NET_VIRTUAL_ROOTS.

Added advice on Pointer grabs to _NET_WM_MOVERESIZE.

Fixed typos in _NET_WM_STATE.

Added _NET_WM_STATE_SKIP_PAGER.

Tidied formatting of _NET_WM_STRUT.

Tidied formatting of _NET_WM_ICON_GEOMETRY.

Changes since 1.0pre2

_NET_SET_NUMBER_OF_DESKTOPS -> _NET_NUMBER_OF_DESKTOPS for
consistency.

_NET_WM_VISIBLE_NAME_STRING -> _NET_WM_VISIBLE_NAME for
consistency.

_NET_WM_STATE: added explanation of permitted extensions. Added
explanation of being set / not set.

Spellchecked, corrected various typos.

UTF8 -> UTF-8 for consistency.

added references to the ICCCM an UTF-8 (incomplete).

added data and event formats where missing.

clarified _NET_SUPPORTING_WM_CHECK.

fixed formatting of _NET_CLOSE_WINDOW message.

Changes since 1.0pre1

Removed implementation note concerning Gnome's (potential) file manager
behavior.

Extended Window Manager Hints http://standards.freedesktop.org/wm-spec/wm-spec-1.3.html

35 de 37 30/09/12 10:42

The Window Movement section of the implementation notes has been revised.

Changes since 1.9f

Revised revision number for first accepted release 1.9XX -> 1.0preXX.

Prerequisites for adoption of this specification added.

Tidied formatting of _NET_CURRENT_DESKTOP for consistency.

Tidied formatting of _NET_ACTIVE_WINDOW for consistency. Removed doubled
text.

Tidied formatting of _NET_WM_DESKTOP for consistency.

Killing Hung Processes implementation note added. _NET_WM_PID and
_NET_WM_PING now link to this.

Clarified x_root and y_root meaning for _NET_WM_MOVERESIZE.

Added contributor list.

Changes since 1.9e

Added _NET_WM_VISIBLE_NAME_STRING

Removed ambiguity from _NET_NUMBER_OF_DESKTOPS and
_NET_DESKTOP_NAMES in combination.

Set _NET_WM_MOVERESIZE format to 32 for consistency.

Removed _NET_PROPERTIES.

Removed comment from _NET_WM_MOVERESIZE.

Changes since 1.9d

Added _NET_VIRTUAL_ROOTS

Added note about ICCCM compliant window moves.

Added _NET_WM_HANDLED_ICONS

Added _NET_SUPPORTING_WM_CHECK

Removed degrees of activation

Changes since 1.9c

Removed packaging of hints into 2 X properties. Jim Gettys points out that the
performance gains of fewer round trips can be better achieved using Xlib
routines.

Extended Window Manager Hints http://standards.freedesktop.org/wm-spec/wm-spec-1.3.html

36 de 37 30/09/12 10:42

Clarified that _NET_DESKTOP_VIEWPORT is in pixels

_NET_DESKTOP_VIEWPORT is now an array, one for each desktop, to allow for
different active viewports on different desktops

_NET_WM_STRUT now only applies on desktops on which the client is visible

Introduced RFC 2119 language, and attempted to clarify the roles of the Window
Manager, Pagers and Applications

Added _NET_WM_NAME

_NET_DESKTOP_NAMES now in UTF8

Desktops now start from 0

Added _NET_WM_PID

Added _NET_WM_PING protocol

Added _NET_WM_STATE_SKIP_TASKBAR

Changes since 1.9b

Removed _NET_NUMBER_OF_DESKTOPS client message, as it overlaps
unnecessarily with _NET_{INSERT/DELETE}_DESKTOP.

Replaced _NET_WM_LAYER and _NET_WM_HINTS with
_NET_WM_WINDOW_TYPE functional hint.

Changed _NET_WM_STATE to a list of atoms, for extensibility.

Expanded description of _NET_WORKAREA and _NET_WM_STRUT.

Removed _NET_WM_SIZEMOVE_NOTIFY protocol.

Added degrees of activation to _NET_ACTIVE_WINDOW client message

Added _NET_WM_ICON

My comments are in [[]]. Comments from Marko's draft are in [[MM:]]

Extended Window Manager Hints http://standards.freedesktop.org/wm-spec/wm-spec-1.3.html

37 de 37 30/09/12 10:42

