
Icon Theme Specification

Alexander Larsson

 <alexl@redhat.com>

Frans Englich

 <frans.englich@telia.com>

Version 0.11

Table of Contents

Overview
Definitions
Directory Layout
File Formats

Context
Icon Lookup
Example
Installing Application Icons
Implementation Notes
Background
A. Change history

Overview

An icon theme is a set of icons that share a common look and feel. The user can then
select the icon theme that they want to use, and all apps use icons from the theme.
The initial user of icon themes is the icon field of the desktop file specification, but in
the future it can have other uses (such as mimetype icons).

From a programmer perspective an icon theme is just a mapping. Given a set of
directories to look for icons in and a theme name it maps from icon name and nominal
icon size to an icon filename.

Definitions

Icon Theme

An icon theme is a named set of icons. It is used to map from an iconname and
size to a file. Themes may inherit from other themes as a way to extend them.

Icon Theme Specification http://standards.freedesktop.org/icon-theme-spec/icon-t...

1 de 11 30/09/12 10:43

Icon file

An icon file is an image that can be loaded and used as an icon. The supported
image file formats are PNG, XPM and SVG. PNG is the recommended bitmap
format, and SVG is for vectorized icons. XPM is supported due to backwards
compability reasons, and it is not recommended that new themes use XPM files.
Support for SVGs is optional.

Base Directory

Icons and themes are searched for in a set of directories, called base directories.
The themes are stored in subdirectories of the base directories.

Directory Layout

Icons and themes are looked for in a set of directories. By default, apps should look in
$HOME/.icons (for backwards compatibility), in $XDG_DATA_DIRS/icons and in
/usr/share/pixmaps (in that order). Applications may further add their own icon
directories to this list, and users may extend or change the list (in application/desktop
specific ways).In each of these directories themes are stored as subdirectories. A
theme can be spread across several base directories by having subdirectories of the
same name. This way users can extend and override system themes.

In order to have a place for third party applications to install their icons there should

always exist a theme called "hicolor" [1]. The data for the hicolor theme is available
for download at: http://www.freedesktop.org/software/icon-theme/. Implementations
are required to look in the "hicolor" theme if an icon was not found in the current
theme.

Each theme is stored as subdirectories of the base directories. The internal name of
the theme is the name of the subdirectory, although the user-visible name as specified
by the theme may be different. Hence, theme names are case sensitive, and are
limited to ASCII characters. Theme names may also not contain comma or space.

In at least one of the theme directories there must be a file called index.theme that
describes the theme. The first index.theme found while searching the base directories
in order is used. This file describes the general attributes of the theme.

In the theme directory are also a set of subdirectories containing image files. Each
directory contains icons designed for a certain nominal icon size, as described by the
index.theme file. The subdirectories are allowed to be several levels deep, e.g. the
subdirectory "48x48/apps" in the theme "hicolor" would end up at $basedir/hicolor
/48x48/apps.

The image files must be one of the types: PNG, XPM, or SVG, and the extension must
be ".png", ".xpm", or ".svg" (lower case). The support for SVG files is optional.
Implementations that do not support SVGs should just ignore any ".svg" files. In
addition to this there may be an additional file with extra icon-data for each file. It
should have the same basename as the image file, with the extension ".icon". e.g. if
the icon file is called "mime_source_c.png" the corresponding file would be named
"mime_source_c.icon".

Icon Theme Specification http://standards.freedesktop.org/icon-theme-spec/icon-t...

2 de 11 30/09/12 10:43

File Formats

Both the icon theme description file and the icon data files are ini-style text files, as
described in the desktop file specification. They don't have any encoding field.
Instead, they must always be stored in UTF-8 encoding.

The index.theme file must start with a section called Icon Theme, with contents
according to table 1 below. All lists are comma-separated.

Table 1. Standard Keys

Key Description Value Type Required

Name
short name of the icon theme, used in e.g. lists
when selecting themes.

localestring YES

Comment longer string describing the theme localestring YES

Inherits

The name of the theme that this theme inherits
from. If an icon name is not found in the current
theme, it is searched for in the inherited theme
(and recursively in all the inherited themes).

If no theme is specified implementations are
required to add the "hicolor" theme to the
inheritance tree. An implementation may
optionally add other default themes in between
the last specified theme and the hicolor theme.

strings NO

Directories
list of subdirectories for this theme. For every
subdirectory there must be a section in the
index.theme file describing that directory.

strings YES

Hidden

Whether to hide the theme in a theme selection
user interface. This is used for things such as
fallback-themes that are not supposed to be
visible to the user.

boolean NO

Example
The name of an icon that should be used as an
example of how this theme looks.

string NO

Each directory specified in the Directory key has a corresponding section with the
same name as the directory. The contents of this section is listed in table 2 below.

Table 2. Per-Directory Keys

Key Description Value
Type Required Type

Size Nominal size of the icons in this directory. integer YES

Context
The context the icon is normally used in.
This is in detail discussed in the section string NO

Icon Theme Specification http://standards.freedesktop.org/icon-theme-spec/icon-t...

3 de 11 30/09/12 10:43

Key Description Value
Type Required Type

called “Context”.

Type

The type of icon sizes for the icons in this
directory. Valid types are Fixed, Scalable
and Threshold. The type decides what
other keys in the section are used. If not
specified, the default is Threshold.

string NO

MaxSize
Specifies the maximum size that the icons
in this directory can be scaled to. Defaults
to the value of Size if not present.

integer NO Scalable

MinSize
Specifies the minimum size that the icons
in this directory can be scaled to. Defaults
to the value of Size if not present.

integer NO Scalable

Threshold
The icons in this directory can be used if
the size differ at most this much from the
desired size. Defaults to 2 if not present.

integer NO Threshold

In addition to these groups you may add extra groups to the index.theme file in order
to extend it. These extensions must begin with "X-", and can be used to add desktop
specific information to the theme file. Example group names would be "X-KDE Icon
Theme" or "X-Gnome Icon Theme".

The optional filename.icon file contains a group called "Icon Data", with the content
listed in table 3.

Table 3. Icon Data Keys

Key Description Value Type Required

DisplayName

A translated UTF8 string that can
be used instead of the icon name
when the icon is listen in e.g. a
user interface.

localestring NO

EmbeddedTextRectangle

If this exists, it specifies the four
corners of a rectangle where the
program displaying the icon can
embed text. This is normally used
by e.g. file managers that want to
display a preview of text file
contents in the icon. The corners
are specified by a list of four
values: x0,y0,x1,y1. The values are
pixel coordinates from the top left
corner of the icon, except for SVG
files, where they are specified in a
1000x1000 coordinate space that is

integers NO

Icon Theme Specification http://standards.freedesktop.org/icon-theme-spec/icon-t...

4 de 11 30/09/12 10:43

Key Description Value Type Required

scaled to the final rendered size of
the icon.

AttachPoints

A list of points, separated by "|"
that may be used as anchor points
for emblems/overlays. The points
are pixel coordinates from the top
left corner of the icon, except for
SVG files, where they are specified
in a 1000x1000 coordinate space
that is scaled to the final rendered
size of the icon.

points NO

Extensions to the filename.icon file are allowed, but the keys must be begin with "X-"
to avoid collisions with future standardized extensions to this format.

Context

The Context allows the designer to group icons on a conceptual level. It doesn't act as a
namespace in the file system, such that icons can have identical names, but allows
implementations to categorize and sort by it, for example.

These are the available contexts:

Actions. Icons representing actions which the user initiates, such as Save As.

Devices. Icons representing real world devices, such as printers and mice. It's
not for file system nodes such as character or block devices.

FileSystems. Icons for objects which are represented as part of the file system.
This is for example, the local network, “Home”, and “Desktop” folders.

MimeTypes. Icons representing MIME types.

Icon Lookup

The icon lookup mechanism has two global settings, the list of base directories and
the internal name of the current theme. Given these we need to specify how to look
up an icon file from the icon name and the nominal size.

The lookup is done first in the current theme, and then recursively in each of the
current theme's parents, and finally in the default theme called "hicolor"
(implementations may add more default themes before "hicolor", but "hicolor" must
be last). As soon as there is an icon of any size that matches in a theme, the search is
stopped. Even if there may be an icon with a size closer to the correct one in an
inherited theme, we don't want to use it. Doing so may generate an inconsistant
change in an icon when you change icon sizes (e.g. zoom in).

Icon Theme Specification http://standards.freedesktop.org/icon-theme-spec/icon-t...

5 de 11 30/09/12 10:43

The lookup inside a theme is done in three phases. First all the directories are
scanned for an exact match, e.g. one where the allowed size of the icon files match
what was looked up. Then all the directories are scanned for any icon that matches
the name. If that fails we finally fall back on unthemed icons. If we fail to find any icon
at all it is up to the application to pick a good fallback, as the correct choice depends
on the context.

The exact algorithm (in pseudocode) for looking up an icon in a theme (if the
implementation supports SVG) is:

FindIcon(icon, size) {
 filename = FindIconHelper(icon, size, user selected theme);
 if filename != none
 return filename

 filename = FindIconHelper(icon, size, "hicolor");
 if filename != none
 return filename

 return LookupFallbackIcon (icon)
}
FindIconHelper(icon, size, theme) {
 filename = LookupIcon (icon, size, theme)
 if filename != none
 return filename

 if theme has parents
 parents = theme.parents

 for parent in parents {
 filename = FindIconHelper (icon, size, parent)
 if filename != none
 return filename
 }
 return none
}

With the following helper functions:

LookupIcon (iconname, size, theme) {
 for each subdir in $(theme subdir list) {
 for each directory in $(basename list) {
 for extension in ("png", "svg", "xpm") {
 if DirectoryMatchesSize(subdir, size) {
 filename = directory/$(themename)/subdir/iconname.extension
 if exist filename

 return filename
 }
 }
 }
 }
 minimal_size = MAXINT
 for each subdir in $(theme subdir list) {
 for each directory in $(basename list) {
 for extension in ("png", "svg", "xpm") {
 filename = directory/$(themename)/subdir/iconname.extension
 if exist filename and DirectorySizeDistance(subdir, size) < minimal_size {

 closest_filename = filename
 minimal_size = DirectorySizeDistance(subdir, size)

 }
 }

Icon Theme Specification http://standards.freedesktop.org/icon-theme-spec/icon-t...

6 de 11 30/09/12 10:43

 }
 }
 if closest_filename set
 return closest_filename
 return none
}

LookupFallbackIcon (iconname) {
 for each directory in $(basename list) {
 for extension in ("png", "svg", "xpm") {
 if exists directory/iconname.extension
 return directory/iconname.extension
 }
 }
 return none
}

DirectoryMatchesSize(subdir, iconsize) {
 read Type and size data from subdir
 if Type is Fixed
 return Size == iconsize
 if Type is Scaled
 return MinSize <= iconsize <= MaxSize
 if Type is Threshold
 return Size - Threshold <= iconsize <= Size + Threshold
}

DirectorySizeDistance(subdir, size) {
 read Type and size data from subdir
 if Type is Fixed
 return abs(Size - iconsize)
 if Type is Scaled
 if iconsize < MinSize
 return MinSize - iconsize
 if iconsize > MaxSize
 return iconsize - MaxSize
 return 0
 if Type is Threshold
 if iconsize < Size - Threshold
 return MinSize - iconsize
 if iconsize > Size + Threshold
 return iconsize - MaxSize
 return 0
}

In some cases you don't always want to fall back to an icon in an inherited theme. For
instance, sometimes you look for a set of icons, prefering any of them before using an
icon from an inherited theme. To support such operations implementations can
contain a function that finds the first of a list of icon names in the inheritance
hierarchy. I.E. It would look something like this:

FindBestIcon(iconList, size) {
 filename = FindBestIconHelper(iconList, size, user selected theme);
 if filename != none
 return filename

 filename = FindBestIconHelper(iconList, size, "hicolor");
 if filename != none
 return filename

 for icon in iconList {
 filename = LookupFallbackIcon (icon)
 if filename != none

Icon Theme Specification http://standards.freedesktop.org/icon-theme-spec/icon-t...

7 de 11 30/09/12 10:43

 return filename
 }
 return none;
}
FindBestIconHelper(iconList, size, theme) {
 for icon in iconList {
 filename = LookupIcon (icon, size, theme)
 if filename != none
 return filename
 }

 if theme has parents
 parents = theme.parents

 for parent in parents {
 filename = FindBestIconHelper (iconList, size, parent)
 if filename != none
 return filename
 }
 return none
}

This can be very useful for example when handling mimetype icons, where there are
more and less "specific" versions of icons.

Example

Here is an example index.theme file:

[Icon Theme]
Name=Birch
Name[sv]=Björk
Comment=Icon theme with a wooden look
Comment[sv]=Träinspirerat ikontema
Inherits=wood,default
Directories=48x48/apps,48x48/mimetypes,32x32/apps,scalable/apps,scalable/mimetypes

[scalable/apps]
Size=48
Type=Scalable
MinSize=1
MaxSize=256
Context=Applications

[scalable/mimetypes]
Size=48
Type=Scalable
MinSize=1
MaxSize=256
Context=MimeTypes

[32x32/apps]
Size=32
Type=Fixed
Context=Applications

[48x48/apps]
Size=48
Type=Fixed
Context=Applications

[48x48/mimetypes]

Icon Theme Specification http://standards.freedesktop.org/icon-theme-spec/icon-t...

8 de 11 30/09/12 10:43

Size=48
Type=Fixed
Context=MimeTypes

The corresponding directory tree in the /usr/share/icons directory could look like this:

birch/index.theme
birch/scalable/apps/mozilla.svg
birch/scalable/mimetypes/mime_text_plain.svg
birch/scalable/mimetypes/mime_text_plain.icon
birch/48x48/apps/mozilla.png
birch/32x32/apps/mozilla.png
birch/48x48/mimetypes/mime_text_plain.png
birch/48x48/mimetypes/mime_text_plain.icon

Where birch/scalable/mimetypes/mime_text_plain.icon contains:

[Icon Data]
DisplayName=Mime text/plain
EmbeddedTextRectangle=100,100,900,900
AttachPoints=200,200|800,200|500,500|200,800|800,800

And birch/48x48/mimetypes/mime_text_plain.icon contains:

[Icon Data]
DisplayName=Mime text/plain
EmbeddedTextRectangle=8,8,40,40
AttachPoints=20,20|40,40|50,10|10,50

In this example a lookup of "mozilla" would get the prerendered 48x48 and 32x32
icons before the SVG icons due to the order of Directories.

Installing Application Icons

So, you're an application author, and want to install application icons so that they
work in the KDE and Gnome menus. Minimally you should install a 48x48 icon in the
hicolor theme. This means installing a PNG file in $prefix/share/icons/hicolor/48x48
/apps. Optionally you can install icons in different sizes. For example, installing a svg
icon in $prefix/share/icons/hicolor/scalable/apps means most desktops will have one
icon that works for all sizes. You might even want to install icons with a look that
matches other well known themes so your application will fit in with some specific
desktop environment.

It is recommended that the icons installed in the hicolor theme look neutral, since it is
a fallback theme that will be used in combination with some very different looking
themes. But if you don't have any neutral icon, please install whatever icon you have
in the hicolor theme so that all applications get at least some icon in all themes.

Implementation Notes

The algorithm as described in this document works by always looking up filenames in
directories (a stat in unix terminology). A good implementation is expected to read
the directories once, and do all lookups in memory using that information.

This caching can make it impossible for users to add icons without having to restart

Icon Theme Specification http://standards.freedesktop.org/icon-theme-spec/icon-t...

9 de 11 30/09/12 10:43

applications. In order to handle this, any implementation that does caching is
required to look at the mtime of the toplevel icon directories when doing a cache
lookup, unless it already did so less than 5 seconds ago. This means that any icon
editor or theme installation program need only to change the mtime of the the
toplevel directory where it changed the theme to make sure that the new icons will
eventually get used.

Background

The icon theme specification is based on the original KDE icon theme system
designed by Antonio Larossa, Geert Janssen and Torsten Rahn. The common
specification mostly adds support for .icon files, renames the icon theme description
files and removes a few references to kde in them.

A. Change history

Version 0.12, 24 December 2006, Octavio Alvarez.

Fixed "hicolor" lookup in the pseudocode, so it works with multiple parents.

Version 0.11, 7 February 2006, Alexander Larsson.

Fixed icon lookup clarification to work with multiple inheritance.

Version 0.10, 7 February 2006, Alexander Larsson.

Clarify that icon lookup looks in all parent themes before falling back to
nonthemed icons.

Added lookup function that takes a list of icon names (FindBestIcon)

Version 0.9, 4 April 2005, Alexander Larsson.

Cleanups and fixes to language from Rodney Dawes and Frans Englich.

Added section describing Contexts in more details (by Frans Englich).

Version 0.8, 5 February 2004, Alexander Larsson.

Fix language problems as pointed out by Rodney Dawes and Michael Terry.

Added background section.

Version 0.7, 13 September 2003, Heinrich Wendel.

Converted to basedir spec.

Changed type of MaxSize, MinSize and Threshold to integer.

Removed typo in code example.

Corrected path to default-icon-theme.

Icon Theme Specification http://standards.freedesktop.org/icon-theme-spec/icon-t...

10 de 11 30/09/12 10:43

Version 0.6, 2 December 2002, Alexander Larsson.

Added Hidden key.

Removed multiple inheritance.

Renamed the default theme hicolor.

Added the application icon install section.

Fixed some xml issues.

Version 0.5, 18 September 2002, Alexander Larsson.

Added DisplayName to icon data.

Fixed up example svg icon data.

Fixed some spelling and grammar errors.

Version 0.4, 16 May 2002, Alexander Larsson.

Fixed some spelling and grammar errors.

Version 0.3, 14 May 2002, Alexander Larsson.

Made support for SVGs optional.

Added a default fallback theme.

Changed the example directory layout a bit to match the default theme.

Version 0.2, 29 April 2002, Alexander Larsson.

Changed search order to png, svg, xpm.

Added comment to say that xpm is supported for backwards compat and not
recommended in new themes.

Default Type for a directory is now Threshold

Added implementation notes section.

Added Example key.

Version 0.1, 22 April 2002, Alexander Larsson.

Created initial draft.

[1] This name is chosen for backwards compatibility with the old KDE default theme

Icon Theme Specification http://standards.freedesktop.org/icon-theme-spec/icon-t...

11 de 11 30/09/12 10:43

