
HAROLD

If XML can do it, you can do it too . . .
Now revised and expanded to cover the latest XML technologies and applications, this all-in-one tutorial and
reference shows you step by step how to put the power of XML to work in your Web pages. From document
type definitions and style sheets to XPointers, schemas, the Wireless Markup Language, XHTML and other
advanced tools and applications, XML expert Elliotte Rusty Harold gives you all the know-how and examples
you need to integrate XML with HTML, solve real-world development challenges, and create data-driven content.

Inside, you’ll find complete coverage of XML
• Create well-formed XML documents
• Place international characters in documents
• Validate documents against DTDs and schemas
• Use entities to build large documents from smaller parts
• Embed non-XML data in your documents
• Format your documents with CSS and XSL style sheets
• Connect documents with XLinks and XPointers
• Merge different XML vocabularies with namespaces
• Write metadata for Web pages using RDF
• Harness XML for site design, vector graphics,

and other real-world applications

Shelving Category:
Web Development/XML

Reader Level:
Beginning to Advanced

System Requirements:
Java 1.1 or later compatible platform such as Mac
OS 8.5 or later, Windows 95/98/Me/NT/2000,
Linux, or Solaris

ISBN 0-7645-4760-7

$49.99 USA
$74.99 Canada
£39.99 UK incl. VAT

X
M

L
X

M
L

Master XML
fundamentals
including elements,
tags, attributes,
DTDs, and
namespaces

Harness the
power of CSS and
XSL to format
XML documents

Take XML to the
limit using XLinks,
XPointers, Schemas,
SVG, and XHTML

XML
Elliotte Rusty Harold

“The XML Bible provides complete coverage on all XML-related
topics and will be an essential resource for any developer.”

—Sean Rhody, Technical Editor, XML Journal

,!7IA7G4-fehgah!:p;o;t;T;T

XML code and
authoring tools

on
CD-ROM! BONUS

CD-ROM!
Sample XML code
XML authoring tools
W3C standards

w w w . h u n g r y m i n d s . c o m

100%
O N E H U N D R E D P E R C E N T

C O M P R E H E N S I V E
A U T H O R I T A T I V E
W H A T Y O U N E E D
O N E H U N D R E D P E R C E N T

Publish XML
documents on
the Web

Write Web
pages in
foreign

languages
and diverse

scripts

Shareware programs are fully functional, free trial versions of copyrighted programs. If you like particular programs, register with their
authors for a nominal fee and receive licenses, enhanced versions, and technical support. Freeware programs are free, copyrighted
games, applications, and utilities. You can copy them to as many PCs as you like—free—but they have no technical support.

XML Resources on CD-ROM

XML
Bible

Author of Java Network Programming

Now updated!
Covers XML
1.0 second

edition

*85555-AEHFHa

100%
C O M P R E H E N S I V E

• Code for all examples in the book, plus
additional examples

• XML authoring tools, including expat, XT, Xalan,
Xerces, Batik, FOP, SAXON, HTML Tidy, and
Mozilla

• World Wide Web Consortium XML standards

2nd Edition2nd Edition

2nd Edition2nd Edition

4760-7 Cover 4/18/01 10:45 AM Page 1

XML
Bible

Second Edition

Praise for Elliotte Rusty Harold’s XML Bible
“Great book! I have about 10 XML books and this is by far the best.”

— Edward Blair, Systems Analyst, AT&T

“I recommend the XML Bible. I found it to be really helpful, as I am a beginner

myself. It is easy to understand, which I found most useful since I am not a ‘tech-

head.’”

— Marius Holth Hanssen, Independent IT Consultant

“I don’t know how to praise Elliotte Rusty Harold enough. When I read a technical

book, I don’t expect to ENJOY it in the pure sense. Oh, I expect to ENJOY increasing

my knowledge or to ENJOY the experience of successfully understanding a particu-

larly poorly written passage. Your text is enjoyable in the pure sense. It is fun to

read. I don’t have to force myself to pick up XML Bible — I jump for it because I

know I will be finding something on each page to make me smile.”

— Mike Maddux, Software Architect, Texas Department of Health

“Just wanted to take a minute and send you a big thank you for writing XML Bible
and Java Beans. Without those two books, my life would be so much harder!”

— Ove “Lime” Lindström, Java Consultant, Enea Realtime AB

XML
Bible
Second Edition

Elliotte Rusty Harold

Hungry Minds, Inc.

New York, NY ✦ Indianapolis, IN ✦ Cleveland, OH

XML Bible, Second Edition
Published by
Hungry Minds, Inc.
909 Third Avenue
New York, NY 10022
www.hungryminds.com
Copyright © 2001 Hungry Minds, Inc. All rights
reserved. No part of this book, including interior
design, cover design, and icons, may be reproduced
or transmitted in any form, by any means (electronic,
photocopying, recording, or otherwise) without the
prior written permission of the publisher.

Library of Congress Control Number: 2001089303

ISBN: 0-7645-4760-7

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

2B/RX/QV/QR/IN

Distributed in the United States
by Hungry Minds, Inc.

Distributed by CDG Books Canada Inc. for Canada; by
Transworld Publishers Limited in the United
Kingdom; by IDG Norge Books for Norway; by IDG
Sweden Books for Sweden; by IDG Books Australia
Publishing Corporation Pty. Ltd. for Australia and
New Zealand; by TransQuest Publishers Pte Ltd. for
Singapore, Malaysia, Thailand, Indonesia, and Hong
Kong; by Gotop Information Inc. for Taiwan; by ICG
Muse, Inc. for Japan; by Intersoft for South Africa; by
Eyrolles for France; by International Thomson
Publishing for Germany, Austria, and Switzerland; by
Distribuidora Cuspide for Argentina; by LR
International for Brazil; by Galileo Libros for Chile; by
Ediciones ZETA S.C.R. Ltda. for Peru; by WS
Computer Publishing Corporation, Inc., for the
Philippines; by Contemporanea de Ediciones for
Venezuela; by Express Computer Distributors for the
Caribbean and West Indies; by Micronesia Media
Distributor, Inc. for Micronesia; by Chips
Computadoras S.A. de C.V. for Mexico; by Editorial
Norma de Panama S.A. for Panama; by American
Bookshops for Finland.

For general information on Hungry Minds’ products
and services please contact our Customer Care
department within the U.S. at 800-762-2974, outside
the U.S. at 317-572-3993 or fax 317-572-4002.

For sales inquiries and reseller information, including
discounts, premium and bulk quantity sales, and
foreign-language translations, please contact our
Customer Care department at 800-434-3422, fax
317-572-4002 or write to Hungry Minds, Inc., Attn:
Customer Care Department, 10475 Crosspoint
Boulevard, Indianapolis, IN 46256.

For information on licensing foreign or domestic
rights, please contact our Sub-Rights Customer Care
department at 212-884-5000.

For information on using Hungry Minds’ products
and services in the classroom or for ordering
examination copies, please contact our Educational
Sales department at 800-434-2086 or fax 317-572-4005.

For press review copies, author interviews, or
other publicity information, please contact our
Public Relations department at 317-572-3168 or
fax 317-572-4168.

For authorization to photocopy items for corporate,
personal, or educational use, please contact
Copyright Clearance Center, 222 Rosewood Drive,
Danvers, MA 01923, or fax 978-750-4470.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND AUTHOR HAVE USED THEIR
BEST EFFORTS IN PREPARING THIS BOOK. THE PUBLISHER AND AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE
CONTENTS OF THIS BOOK AND SPECIFICALLY DISCLAIM ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. THERE ARE NO WARRANTIES WHICH
EXTEND BEYOND THE DESCRIPTIONS CONTAINED IN THIS PARAGRAPH. NO WARRANTY MAY BE
CREATED OR EXTENDED BY SALES REPRESENTATIVES OR WRITTEN SALES MATERIALS. THE
ACCURACY AND COMPLETENESS OF THE INFORMATION PROVIDED HEREIN AND THE OPINIONS
STATED HEREIN ARE NOT GUARANTEED OR WARRANTED TO PRODUCE ANY PARTICULAR RESULTS,
AND THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY
INDIVIDUAL. NEITHER THE PUBLISHER NOR AUTHOR SHALL BE LIABLE FOR ANY LOSS OF PROFIT OR
ANY OTHER COMMERCIAL DAMAGES, INCLUDING BUT NOT LIMITED TO SPECIAL, INCIDENTAL,
CONSEQUENTIAL, OR OTHER DAMAGES.

Netscape Communications Corporation has not authorized, sponsored, endorsed, or approved this
publication and is not responsible for its content. Netscape and the Netscape Communications Corporate
Logos, are trademarks and trade names of Netscape Communications Corporation.

Trademarks: All trademarks are property of their respective owners. Hungry Minds, Inc. is not associated
with any product or vendor mentioned in this book.

is a trademark of
Hungry Minds, Inc.

Credits
Acquisitions Editor
Grace Buechlein

Project Editor
Sharon Nash

Technical Editor
Ken Cox

Copy Editor
Richard H. Adin

Project Coordinator
Nancee Reeves

Graphics and Production Specialists
Heather Pope, Jill Piscitelli,

Kathie Shutte

Quality Control Technicians
David Faust, Andy Hollandbeck,

Angel Perez, Dwight Ramsey,

Charles Spencer

Permissions Editor
Laura Moss

Media Development Specialist
Gregory Stephens

Media Development Coordinator
Marisa Pearman

Illustrators
Gabriele McCann

John Greenough

Proofreading and Indexing
TECHBOOKS Production Services

Cover Image
Lawrance Huck

About the Author
Elliotte Rusty Harold is an internationally respected writer, programmer, and edu-

cator both on the Internet and off. He got his start writing FAQ lists for the

Macintosh newsgroups on Usenet and has since branched out into books, Web

sites, and newsletters. He’s an adjunct professor of computer science at

Polytechnic University in Brooklyn, New York. His Cafe con Leche Web site at

http://www.ibiblio.org/xml/ has become one of the most popular indepen-

dent XML sites on the Internet.

Elliotte is originally from New Orleans, to which he returns periodically in search of

a decent bowl of gumbo. However, he currently resides in the Prospect Heights

neighborhood of Brooklyn with his wife, Beth, and cats, Charm (named after the

quark) and Marjorie (named after his mother-in-law). When not writing books, he

enjoys working on genealogy, mathematics, and quantum mechanics. His previous

books include The Java Developer’s Resource, Java Network Programming, Java
Secrets, JavaBeans, XML: Extensible Markup Language, and Java I/O.

For Ma, a great grandmother

Preface

Welcome to the second edition of the XML Bible. When the first edition was
published about two years ago, XML was a promising technology with a

small but growing niche. In the last two years, it has absolutely exploded. XML no
longer needs to be justified as a good idea. In fact, the question developers are ask-
ing has changed from “Why XML?” to “Why not XML?” XML has become the data
format of choice for fields as diverse as stock trading and graphic design. More new
programs today are using XML than aren’t. A solid understanding of just what XML
is and how to use it has become a sine qua non for the computer literate.

The XML Bible is your introduction to the exciting and fast-growing world of XML.
With this book, you’ll learn how to write documents in XML and how to use style
sheets to convert those documents into HTML so that legacy browsers can read
them. You’ll also learn how to use document type definitions (DTDs) to describe
and validate documents. You’ll experience a variety of XML applications in many
domains, ranging from finance to vector graphics to genealogy. And you’ll learn
how to take advantage of XML for your own unique projects, programs, and Web
sites.

Who You Are
Unlike most other XML books on the market, the XML Bible discusses XML from the
perspective of a Web-page author, not from the perspective of a software developer.
I don’t spend a lot of time discussing BNF grammars or parsing element trees.
Instead, I show you how you can use XML and existing tools today to more effi-
ciently produce attractive, exciting, easy-to-use, easy-to-maintain Web sites
that keep your readers coming back for more.

This book is aimed directly at Web-site developers. I assume you want to use XML
to produce Web sites that are difficult to impossible to create with raw HTML. You’ll
be amazed to discover that in conjunction with style sheets and a few free tools,
XML enables you to do things that previously required either custom software cost-
ing hundreds to thousands of dollars per developer, or extensive knowledge of pro-
gramming languages such as Perl. None of the software discussed in this book will
cost you more than a few minutes of download time. None of the tricks require any
programming.

What’s New in the Second Edition
For the second edition, this book was rewritten from the ground up. While I
retained the basic flavor and outline that proved so popular with the first edition,
the writing has been tightened up throughout. I tried to address all common

viii Preface

complaints about the first edition. For instance, the largest examples are now
smaller and easier to digest. Where mistakes or misstatements were found, they
have been corrected. Most important, the text has been brought completely up to
date with the state of the XML world in 2001. Many technologies that were rapidly
changing, bleeding-edge tools in 1999 (XSLT, XSL-FO, XHTML, XLinks, XPointers,
namespaces, etc.), have become the solid rocks on which future XML technologies
are being built. Thus, it is now possible to offer much more comprehensive and
final coverage of these, rather than the somewhat tentative first steps I took in the
first edition.

The world never stands still for long, however. In the two years since the first edi-
tion appeared, new XML technologies have issued forth at a frightening pace. They
are discussed here as well, though often with caveats that the details are still sub-
ject to change. There are several completely new chapters covering many of these
cutting-edge applications, including chapters on:

✦ The Extensible Hypertext Markup Language (XHTML)

✦ Scalable Vector Graphics (SVG)

✦ Schemas

✦ The Wireless Markup Language (WML)

Even more important than the new chapters are the new sections woven into more
familiar chapters. Although I made every effort to write more concisely in this edi-
tion (My favorite reader comment about the first edition was, “It would seem to me
that if you asked the author to write 10,000 words about the colour blue, he would
be able to do it without breaking into a sweat”), we still ended up with a book 200
pages longer than before, and most of those 200 pages are new material scattered
throughout the book. If you liked the first edition, I can only surmise that you’re
going to like the second edition even more. It is in every way a better, more compre-
hensive, more accurate book. If you didn’t like the first edition, I hope you’ll find the
second more to your taste.

What You Need to Know
XML does build on top of the underlying infrastructure of the Internet and the Web.
Consequently, I will assume you know how to ftp files, send e-mail, and load URLs
into your Web browser of choice. I will also assume you have a reasonable knowl-
edge of HTML at about the level supported by Netscape 1.1. On the other hand,
when I discuss newer aspects of HTML that are not yet in widespread use, such as
Cascading Style Sheets, I discuss them in depth.

To be more specific, in this book I assume that you can:

✦ Write a basic HTML page, including links, images, and text, using a text editor.

✦ Place that page on a Web server.

ixPreface

On the other hand, I do not assume that you:

✦ Know SGML. In fact, this preface is almost the only place in the entire book
you’ll see the word SGML used. XML is supposed to be simpler and more
widespread than SGML. It can’t be that if you have to learn SGML first.

✦ Are a programmer, whether of Java, Perl, C, or some other language. XML is
a markup language, not a programming language. You don’t need to be a pro-
grammer to write XML documents.

What You’ll Learn
This book has one primary goal: to teach you to write XML documents for the Web.
Fortunately, XML has a decidedly flat learning curve, much like HTML (and unlike
SGML). As you learn a little you can do a little. As you learn a little more, you can do
a little more. Thus the chapters in this book build steadily on one another. They are
meant to be read in sequence. Along the way you’ll learn:

✦ How to author XML documents and deliver them to readers.

✦ How semantic tagging makes XML documents easier to maintain and develop
than their HTML equivalents.

✦ How to post XML documents on Web servers in a form everyone can read.

✦ How to make sure your XML is well formed.

✦ How to use international characters such as and Æ in your documents.

✦ How to validate documents against DTDs and schemas.

✦ How to use entities to build large documents from smaller parts.

✦ How to describe data with attributes.

✦ How to embed non-XML data in your documents.

✦ How to merge different XML vocabularies with namespaces.

✦ How to format your documents with CSS and XSL style sheets.

✦ How to connect documents with XLinks and XPointers.

✦ How to write metadata for Web pages using RDF.

In the final section of this book, you’ll see several practical examples of XML being
used for real-world applications, including:

✦ Web site design

✦ Schemas

✦ Push

✦ Vector graphics

✦ Genealogy

x Preface

How the Book Is Organized
This book is divided into five parts:

I. Introducing XML

II. Document Type Definitions

III. Style Languages

IV. Supplemental Technologies

V. XML Applications

By the time you finish reading this book, you’ll be ready to use XML to create com-
pelling Web pages. The five parts are described below.

Part I: Introducing XML
Part I consists of Chapters 1 through 7. It begins with the history and theory behind
XML and the goals XML is trying to achieve. It shows you how the different pieces
of the XML equation fit together to enable you to create and deliver documents to
readers. You’ll see several compelling examples of XML applications to give you
some idea of the wide applicability of XML, including Scalable Vector Graphics
(SVG), the Resource Description Framework (RDF), the Mathematical Markup
Language (MathML), the Extensible Forms Description Language (XFDL), and many
others. Then you’ll learn by example how to write XML documents with tags that
you define that make sense for your document. You’ll learn how to edit them in a
text editor, attach style sheets to them, and load them into a Web browser such as
Internet Explorer 5.0 or Mozilla. You’ll even learn how you can write XML docu-
ments in languages other than English, even languages that are nothing like English,
such as Chinese, Hebrew, and Russian.

Part II: Document Type Definitions
Part II (Chapters 8 through 13) focuses on document type definitions (DTDs). A
DTD specifies which elements are and are not allowed in an XML document, and the
exact context and structure of those elements. A validating parser can read a docu-
ment, compare it to its DTD, and report any mistakes it finds. DTDs enable docu-
ment authors to ensure that their work meets any necessary criteria.

In Part II, you’ll learn how to attach a DTD to a document, how to validate your doc-
uments against their DTDs, and how to write your own DTDs that solve your own
problems. You’ll learn the syntax for declaring elements, attributes, entities, and
notations. You’ll learn how to use entity declarations and entity references to build
both a document and its DTD from multiple, independent pieces. This enables you
to make long, hard-to-follow documents much simpler by separating them into
related modules and components. You’ll learn how to integrate other forms of data
like raw text and GIF image files in your XML document. And you’ll learn how to use
namespaces to mix together different XML vocabularies in one document.

xiPreface

Part III: Style Languages
Part III, consisting of Chapters 14 through 18, teaches you everything you need to
know about style sheets. XML markup specifies only what’s in a document. Unlike
HTML, it does not say anything about what that content should look like.
Information about an XML document’s appearance when printed, viewed in a Web
browser, or otherwise displayed is stored in a style sheet. Different style sheets can
be used for the same document. You might, for instance, want to use one style
sheet that specifies small fonts for printing, another one with larger fonts for on-
screen presentation, and a third with absolutely humongous fonts to project the
document on a wall at a seminar. You can change the appearance of an XML docu-
ment by choosing a different style sheet without touching the document itself.

Part III describes in detail the two style sheet languages in broadest use today,
Cascading Style Sheets (CSS) and the Extensible Stylesheet Language (XSL). CSS is a
simple style-sheet language originally designed for use with HTML. It applies fixed
style rules to the contents of particular elements. CSS exists in two versions: CSS
Level 1 and CSS Level 2. CSS Level 1 provides basic information about fonts, color,
positioning, and text properties and is reasonably well supported by current Web
browsers for HTML and XML. CSS Level 2 is a more recent standard that adds sup-
port for aural style sheets, user interface styles, international and bidirectional text,
and more.

XSL, by contrast, is a more complicated and more powerful style language that can
apply styles to the contents of elements as well as rearrange elements, add boiler-
plate text, and transform documents in almost arbitrary ways. XSL is divided into
two parts: a transformation language for converting XML trees to alternative trees,
and a formatting language for specifying the appearance of the elements of an XML
tree. Currently, many more tools support the transformation language than the for-
matting language.

Part IV: Supplemental Technologies
Part IV consists of Chapters 19 through 21. It introduces some XML-based lan-
guages and syntaxes that layer on top of basic XML. XLinks provides multidirec-
tional hypertext links that are far more powerful than the simple HTML <A> tag.
XPointers introduce a new syntax you can attach to the end of URLs to link not only
to particular documents but also to particular parts of particular documents. RDF
is an XML application used to embed metadata in XML and HTML documents.
Metadata is information about a document, such as the author, date, and title of a
work, rather than the work itself. All of these can be added to your own XML-based
markup languages to extend their power and utility.

Part V: XML Applications
Part V, which consists of Chapters 22 to 28, shows you several practical uses of
XML in different domains. XHTML is a reformulation of HTML 4.0 as valid XML.
WML is an HTML-like language for serving Web content to cell phones, PDAs,
pagers, and other memory, display, and bandwidth limited devices. Schemas are an
XML-based syntax for describing the permissible content of XML documents that’s
considerably more powerful and extensible than DTDs. Scalable Vector Graphics

xii Preface

(SVG) is a standard XML format for drawings recommended by the World Wide Web
Consortium (W3C). The Vector Markup Language (VML) is a Microsoft-proprietary
XML application for vector graphics used by Office 2000 and Internet Explorer 5.0.
Microsoft’s Channel Definition Format (CDF) is an XML-based markup language for
defining channels that can push updated Web-site content to subscribers. Finally, a
completely new application is developed for genealogical data to show you not just
how to use XML tags, but why and when to choose them. Combining all of these dif-
ferent applications, you’ll develop a good sense of how XML applications are
designed, built, and used in the real world.

What You Need
XML is a platform-independent technology. Furthermore, most of the best software
for working with XML is written in Java and can run on multiple platforms. Much of
this is included on the CD in the back of the book or is freely available on the
Internet. To make the best use of this book and XML, you need:

✦ A Web browser that supports XML such as Mozilla, Netscape 6.0, or Opera 5.0.
Internet Explorer 5.0/5.5 also supports XML; but its built-in XML parser,
MSXML, is quite buggy, so you’ll need to upgrade it to MSXML 3.0 or later
before you’ll be able to use many of the techniques in this book.

✦ A Java 1.2 or later virtual machine. (Java 1.1 can do in a pinch.) You’ll just
need it to run programs written in Java. You won’t need to write any programs
to use this book.

How to Use This Book
This book is designed to be read more or less cover to cover. Each chapter builds
on the material in the previous chapters in a fairly predictable fashion. Of course,
you’re always welcome to skim over material that’s already familiar to you. I also
hope you’ll stop along the way to try out some of the examples and to write some
XML documents of your own. It’s important to learn not just by reading, but also by
doing. Before you get started, I’d like to make a couple of notes about grammatical
conventions used in this book.

Unlike HTML, XML is case sensitive. <FATHER> is not the same as <Father> or
<father>. The father element is not the same as the Father element or the
FATHER element. Unfortunately, case-sensitive markup languages have an annoying
habit of conflicting with standard English usage. On rare occasion, this means
that you may encounter sentences that don’t begin with a capital letter. More
commonly, you’ll see capitalization used in the middle of a sentence where you
wouldn’t normally expect it. Please don’t get too bothered by this. All XML and
HTML code used in this book is placed in a monospaced font, so most of the time
it will be obvious from the context what is meant.

I have also adopted the British convention of placing punctuation inside quote
marks only when it belongs with the material quoted. Frankly, although I learned to
write in the American educational system, I find the British system far more logical,

xiiiPreface

especially when dealing with source code where the difference between a comma
or a period and no punctuation at all can make the difference between perfectly
correct and perfectly incorrect code.

What the Icons Mean
Throughout the book, I’ve used icons in the left margin to call your attention to
points that are particularly important.

Note icons provide supplemental information about the subject at hand, but gen-
erally something that isn’t quite the main idea. Notes are often used to elaborate
on a detailed technical point.

Tip icons indicate a more efficient way of doing something, or a technique that
may not be obvious.

CD-ROM icons tell you that software discussed in the book is available on the
companion CD-ROM. This icon also tells you whether a longer example, dis-
cussed but not included in its entirety in the book, is on the CD-ROM.

Caution icons warn you of a common misconception or that a procedure doesn’t
always work quite like it’s supposed to. The most common reason for a Caution
icon in this book is to point out the difference between what a specification says
should happen and what actually does.

The Cross-Reference icon refers you to other chapters that have more to say about
a particular subject.

About the Companion CD-ROM
Inside the back cover of this book is a CD-ROM that holds all numbered code list-
ings from this book as well as some longer examples that couldn’t fit into this book.
The CD-ROM also contains the complete text of various XML specifications in XML
and HTML. (Some of the specifications are also available in other formats like PDF.)
Finally, you will find an assortment of useful software for working with XML docu-
ments. Many (though not all) of these programs are written in Java, so they’ll run
on any system with a reasonably compatible Java 1.1 or later virtual machine. Most
of the programs that aren’t written in Java are designed for Windows 95 or later,
though there are also a few programs for Mac and Linux readers.

For a complete description of the CD-ROM contents, please read Appendix A. In
addition, to get a complete description of what is on the CD-ROM, you can load the
file index.html onto your Web browser. The files on the companion CD-ROM are not
compressed, so you can access them directly from the CD.

Cross-
Reference

Caution

On the
CD-ROM

Tip

Note

xiv Preface

Reach Out
Hungry Minds and I want your feedback. After you have had a chance to use this
book, please take a moment to send us an e-mail at My2Cents@hungryminds.com.
Be sure to include the title of this book in your e-mail. Please be honest in your
evaluation. If you thought a particular chapter didn’t tell you enough, let me know.
Of course, I would prefer to receive comments like: “This is the best book I’ve ever
read,” “Thanks to this book, my Web site won Cool Site of the Year,” or “Because I
was reading this book on the beach, I met a stunning swimsuit model who thought I
was the hottest thing on feet,” but I’ll take any comments I can get.

Feel free to send me specific questions regarding the material in this book. I’ll do
my best to help you out and answer your questions, but I can’t guarantee a reply.
The best way to reach me is by e-mail:

elharo@metalab.unc.edu

Also, I invite you to visit my Cafe con Leche Web site at http://www.ibiblio.
org/xml/, which contains a lot of XML-related material and is updated almost
daily. Despite my persistent efforts to make this book perfect, some errors have
doubtless slipped by. Even more certainly, some of the material discussed here
will change over time. I’ll post any necessary updates and errata on my Web site at
http://www.ibiblio.org/xml/books/bible/. Please let me know via e-mail of
any errors that you find that aren’t already listed.

Elliotte Rusty Harold

elharo@metalab.unc.edu

http://www.ibiblio.org/xml/

New York City, April 7, 2001

Acknowledgments

The folks at Hungry Minds have all been great. The acquisitions editors, John

Osborn on the first edition and Grace Buechlein on this edition, deserve spe-

cial thanks for arranging the unusual scheduling this book required to hit the mov-

ing target that XML presents, as well for putting up with multiple missed deadlines.

I’ll do better on the third edition guys, I promise! Sharon Nash shepherded this

book through the development process. With poise and grace, she managed the

constantly shifting outline and schedule that a book based on unstable specifica-

tions and software requires. Terri Varveris edited the first edition. Without her,

there could never have been a second edition.

Steven Champeon brought his SGML experience to the book, and provided many

insightful comments on the text. My brother Thomas Harold put his command

of chemistry at my disposal when I was trying to grasp the Chemical Markup

Language. Carroll Bellau provided me with the parts of my family tree you’ll find in

Chapter 20. Piroz Mohseni and Heather Williamson served as technical editors on

the first edition and corrected many of my errors. Heather Williamson also wrote

parts of the CSS, Namespaces, and VML chapters for the first edition. WandaJane

Phillips wrote the original version of Chapter 27 on CDF that is adapted here.

I also greatly appreciate all the comments, questions, and corrections sent in by

readers of the first edition and XML: Extensible Markup Language. I hope that I’ve

managed to address most of those comments in this book. They’ve definitely

helped make the XML Bible a better book. Particular thanks are due to Michael

Dyck, Alan Esenther, and Donald Lancon Jr. for their especially detailed comments.

The agenting talents of David and Sherry Rogelberg of the Studio B Literary Agency

(http://www.studiob.com/) have made it possible for me to write more or less

full-time. I recommend them highly to anyone thinking about writing computer

books. And as always, thanks go to my wife, Beth, for her endless love and

understanding.

Contents at a Glance
Preface . vii

Acknowledgments . xv

Part I: Introducing XML . 1
Chapter 1: An Eagle’s Eye View of XML . 3

Chapter 2: XML Applications . 17

Chapter 3: Your First XML Document . 55

Chapter 4: Structuring Data . 63

Chapter 5: Attributes, Empty Tags, and XSL . 101

Chapter 6: Well-formedness . 143

Chapter 7: Foreign Languages and Non-Roman Text 175

Part II: Document Type Definitions . 209
Chapter 8: DTDs and Validity . 211

Chapter 9: Element Declarations . 227

Chapter 10: Entity Declarations . 257

Chapter 11: Attribute Declarations . 289

Chapter 12: Unparsed Entities, Notations, and Non-XML Data 317

Chapter 13: Namespaces . 331

Part III: Style Languages . 351
Chapter 14: CSS Style Sheets . 353

Chapter 15: CSS Layouts . 379

Chapter 16: CSS Text Styles . 427

Chapter 17: XSL Transformations . 481

Chapter 18: XSL Formatting Objects . 571

Part IV: Supplemental Technologies 645
Chapter 19: XLinks . 647

Chapter 20: XPointers . 677

Chapter 21: The Resource Description Framework 707

Part V: XML Applications . 733
Chapter 22: XHTML . 735

Chapter 23: The Wireless Markup Language . 787

Chapter 24: Schemas . 827

Chapter 25: Scalable Vector Graphics . 881

Chapter 26: The Vector Markup Language . 939

Chapter 27: The Channel Definition Format . 965

Chapter 28: Designing a New XML Application 995

Appendix A: What’s on the CD-ROM . 1025

Appendix B: XML Reference Material . 1029

Appendix C: The XML 1.0 Specification, Second Edition 1089

Index . 1153

End-User Licence Agreement . 1212

CD-ROM Installation Instructions . 1214

Contents
Preface . vii

Acknowledgments . xv

Part I: Introducing XML 1

Chapter 1: An Eagle’s Eye View of XML 3
What Is XML? . 3

XML is a meta-markup language . 3

XML describes structure and semantics, not formatting 5

Why Are Developers Excited About XML? . 6

Design of field-specific markup languages 6

Self-describing data . 7

Interchange of data among applications 8

Structured and integrated data . 8

The Life of an XML Document . 9

Editors . 9

Parsers and processors . 10

Browsers and other applications . 10

The process summarized . 10

Related Technologies . 11

HTML . 11

Cascading Style Sheets . 12

Extensible Stylesheet Language . 12

URLs and URIs . 14

XLinks and XPointers . 14

The Unicode character set . 15

Putting the pieces together . 16

Chapter 2: XML Applications . 17
XML Applications . 17

Chemical Markup Language . 18

Mathematical Markup Language . 19

Channel Definition Format . 22

Classic literature . 23

Synchronized Multimedia Integration Language 25

HTML+TIME . 25

Open Software Description . 27

Scalable Vector Graphics . 28

Vector Markup Language . 30

xx Contents

MusicML . 31

VoiceXML . 33

Open Financial Exchange . 35

Extensible Forms Description Language 37

HR-XML . 41

Resource Description Framework . 44

XML for XML . 45

XSL . 46

XLinks . 47

Schemas . 47

Behind-the-Scene Uses of XML . 48

Microsoft Office 2000 . 49

Netscape’s What’s Related . 49

Chapter 3: Your First XML Document 55
Hello XML . 55

Creating a simple XML document . 56

Saving the XML file . 56

Loading the XML file into a Web browser 57

Exploring the Simple XML Document . 58

Assigning Meaning to XML Tags . 59

Writing a Style Sheet for an XML Document 60

Attaching a Style Sheet to an XML Document 61

Chpater 4: Structuring Data . 63
Examining the Data . 63

Batters . 64

Pitchers . 66

Organization of the XML data . 69

XMLizing the Data . 70

Starting the document: XML declaration and root element 70

XMLizing league, division, and team data 72

XMLizing player data . 74

XMLizing player statistics . 74

Putting the XML document back together 76

The Advantages of the XML Format . 84

Preparing a Style Sheet for Document Display 86

Linking to a style sheet . 87

Assigning style rules to the root element 88

Assigning style rules to titles . 89

Assigning style rules to player and statistics elements 94

Summing up . 95

Chapter 5: Attributes, Empty Tags, and XSL 101
Attributes . 101

Attributes versus Elements . 107

Structured metadata . 107

Meta-metadata . 111

xxiContents

What’s your metadata is someone else’s data 111

Elements are more extensible . 112

Good times to use attributes . 112

Empty Elements and Empty Element Tags 114

XSL . 114

XSLT templates . 116

The body of the document . 117

The title . 119

Leagues, divisions, and teams . 122

Players . 126

Separation of pitchers and batters . 129

Element contents and the select attribute 134

CSS or XSL? . 140

Chapter 6: Well-formedness . 143
Well-Formedness Rules . 144

XML Documents . 145

The XML declaration . 145

A document must have exactly one root element that completely

contains all other elements. 146

Text in XML . 147

Elements and Tags . 148

Element names . 148

Every start tag must have a corresponding end tag 149

Empty element tags . 149

Elements may nest but may not overlap 151

Attributes . 152

Attribute names . 153

Attribute values . 153

Entity References . 154

Comments . 156

Processing Instructions . 158

CDATA Sections . 159

Well-Formed HTML . 161

Rules for HTML . 161

Tools . 170

Chapter 7: Foreign Languages and Non-Roman Text 175
Non-Roman Scripts on the Web . 176

Scripts, Character Sets, Fonts, and Glyphs 181

A character set for the script . 182

A font for the character set . 182

An input method for the character set 182

Operating system and application software 185

Legacy Character Sets . 186

The ASCII character set . 187

The ISO character sets . 189

xxii Contents

The MacRoman character set . 193

The Windows ANSI character set . 194

The Unicode Character Set . 195

Unicode Encodings . 201

Unicode 3.1 . 202

How to Write XML in Unicode . 202

Converting to and from Unicode . 203

Inserting characters in XML files with character references 204

How to write XML in other character sets 205

Part II: Document Type Definitions 209

Chapter 8: DTDs and Validity . 211
Document Type Definitions . 211

Element Declarations . 212

DTD Files . 214

Document Type Declarations . 215

Internal DTDs . 216

Internal and external DTD subsets . 217

Public DTDs . 218

DTDs and style sheets . 219

Validating Against a DTD . 220

Command-line validators . 221

Web-based validators . 222

Chapter 9: Element Declarations . 227
Analyzing the Document . 227

The ANY Content Model . 233

The #PCDATA Content Model . 234

Child Elements . 237

Sequences . 239

One or More Children . 240

Zero or More Children . 240

Zero or One Child . 241

Grouping with Parentheses . 244

Choices . 246

Mixed Content . 247

Empty Elements . 248

Comments in DTDs . 249

Chapter 10: Entity Declarations . 257
What Is an Entity? . 257

Internal General Entities . 258

Defining an internal general entity reference 259

Using general entity references in the DTD 262

Predefined general entity references 263

xxiiiContents

External General Entities . 264

Text declarations . 266

Nonvalidating parsers . 268

Internal Parameter Entities . 268

External Parameter Entities . 270

Building a Document from Pieces . 276

Chapter 11: Attribute Declarations . 289
What Is an Attribute? . 289

Declaring Attributes in DTDs . 290

Declaring Multiple Attributes . 291

Specifying Default Values for Attributes . 292

#REQUIRED . 292

#IMPLIED . 293

#FIXED . 294

Attribute Types . 294

The CDATA attribute type . 295

The NMTOKEN attribute type . 295

The NMTOKENS attribute type . 296

The enumerated attribute type . 296

The ID attribute type . 297

The IDREF attribute type . 298

The IDREFS attribute type . 299

The ENTITY attribute type . 300

The ENTITIES attribute type . 300

The NOTATION attribute type . 301

Predefined Attributes . 301

xml:space . 302

xml:lang . 303

Declarations of xml:lang . 308

A DTD for Attribute-Based Baseball Statistics 308

Declaring SEASON attributes in the DTD 310

Declaring LEAGUE and DIVISION attributes in the DTD 310

Declaring TEAM attributes in the DTD 311

Declaring PLAYER attributes in the DTD 311

The complete DTD for the baseball statistics example 314

Chapter 12: Unparsed Entities, Notations, and Non-XML Data . . . 317
Notations . 318

Unparsed Entities . 321

Declaring unparsed entities . 321

Embedding unparsed entities . 322

Embedding multiple unparsed entities 325

Processing Instructions . 325

Conditional Sections in DTDs . 329

xxiv Contents

Chapter 13: Namespaces . 331
The Need for Namespaces . 331

Namespace Syntax . 333

Defining namespaces with xmlns attributes 336

Multiple namespaces . 339

Attributes . 343

Default namespaces . 344

Namespaces and Validity . 349

Part III: Style Languages 351

Chapter 14: CSS Style Sheets . 353
What Are Cascading Style Sheets? . 353

A simple CSS style sheet . 354

Attaching style sheets to documents 354

Document Type Definitions and style sheets 357

CSS1 versus CSS2 . 358

CSS3 . 358

Comments in CSS . 359

Selecting Elements . 360

The universal selector . 362

Grouping selectors . 363

Hierarchy selectors . 364

Attribute selectors . 366

ID selectors . 366

Pseudo-elements . 367

Pseudo-classes . 369

Inheritance . 371

Cascades . 372

Different Rules for Different Media . 374

Importing Style Sheets . 375

Style Sheet Character Sets . 376

Chapter 15: CSS Layouts . 379
CSS Units . 380

Length values . 381

URL values . 383

Color values . 384

Keyword values . 388

Strings . 388

The Display Property . 388

Inline elements . 393

Block elements . 393

None . 393

Compact and run-in elements . 394

xxvContents

Marker . 395

Tables . 395

List items . 397

Box Properties . 400

Margin properties . 400

Border properties . 403

Outline properties . 406

Padding properties . 409

Size . 410

The width and height properties . 410

The min-width and min-height properties 412

The max-width and max-height properties 413

The overflow property . 413

Clipping . 414

Positioning . 415

The position property . 415

Stacking elements with the z-index property 419

The float property . 420

The clear property . 421

Formatting Pages . 422

@page . 422

The size property . 422

The margin property . 423

The mark property . 423

The page property . 423

Controlling page breaks . 424

Widows and orphans . 425

Chapter 16: CSS Text Styles . 427
Font Properties . 427

Choosing the font family . 428

Choosing the font style . 430

Small caps . 431

Setting the font weight . 431

Setting the font size . 432

The font shorthand property . 438

The Color Property . 439

Text Properties . 440

Word spacing . 441

The letter-spacing property . 441

The text-decoration property . 443

The vertical-align property . 444

The text-transform property . 445

The text-align property . 445

The text-indent property . 446

The text-shadow property . 446

The line-height property . 448

The white-space property . 449

xxvi Contents

Background Properties . 451

The background-color property . 452

The background-image property . 452

The background-repeat property . 454

The background-attachment property 457

The background-position property 458

The background shorthand property 462

Visibility . 463

Cursors . 464

The Content Property . 465

Quotes . 466

Attributes . 467

URIs . 467

Counters . 468

Aural Style Sheets . 472

The speak property . 473

The volume property . 473

Pause properties . 474

Cue properties . 474

Play-during property . 474

Spatial properties . 475

Voice characteristics . 476

Speech properties . 478

Chapter 17: XSL Transformations . 481
What Is XSL? . 481

Overview of XSL Transformations . 482

Trees . 483

XSLT style sheet documents . 486

Where does the XML transformation happen? 488

How to use Xalan . 488

Direct display of XML files with XSLT style sheets 491

XSL Templates . 493

The xsl:apply-templates element . 494

The select attribute . 496

Computing the Value of a Node with xsl:value-of 497

Processing Multiple Elements with

xsl:for-each . 499

Patterns for Matching Nodes . 499

Matching the root node . 500

Matching element names . 501

Wild cards . 502

Matching children with / . 504

Matching descendants with // . 505

Matching by ID . 505

Matching attributes with @ . 506

Matching comments with comment() 508

Matching processing instructions with processing-instruction() . . 509

xxviiContents

Matching text nodes with text() . 510

Using the or operator | . 510

Testing with [] . 511

XPath Expressions for Selecting Nodes . 513

Node axes . 514

Expression types . 520

The Default Template Rules . 531

The default rule for elements . 531

The default rule for text nodes and attributes 532

The default rule for processing instructions and comments 532

Implications of the default rules . 532

Deciding What Output to Include . 533

Attribute value templates . 533

Inserting elements into the output with xsl:element 535

Inserting attributes into the output with xsl:attribute 536

Defining attribute sets . 537

Generating processing instructions with xsl:processing-instruction 538

Generating comments with xsl:comment 539

Generating text with xsl:text . 539

Copying the Context Node with xsl:copy 540

Counting Nodes with xsl:number . 542

Default numbers . 543

Number to string conversion . 547

Sorting Output Elements . 548

Modes . 551

Defining Constants with xsl:variable . 553

Named Templates . 555

Passing Parameters to Templates . 556

Stripping and Preserving White Space . 557

Making Choices . 559

xsl:if . 559

xsl:choose . 559

Merging Multiple Style Sheets . 560

Importing with xsl:import . 560

Inclusion with xsl:include . 561

Embedding with xsl:stylesheet . 561

Output Methods . 563

xsl:output . 563

XML Declaration . 564

Document type declaration . 565

Indentation . 566

CDATA sections . 567

Media type . 567

Chapter 18: XSL Formatting Objects 571
Formatting Objects and Their Properties 571

Formatting properties . 574

Transforming to formatting objects 579

Using FOP . 581

xxviii Contents

Page Layout . 583

The root element . 583

Simple page masters . 584

Page sequences . 587

Page sequence masters . 596

Content . 599

Block-level formatting objects . 599

Inline formatting objects . 600

Table formatting objects . 601

Out-of-line formatting objects . 601

Leaders and Rules . 602

Graphics . 604

fo:external-graphic . 604

fo:instream-foreign-object . 607

Graphic properties . 609

Links . 611

Lists . 612

Tables . 616

Inlines . 622

Footnotes . 623

Floats . 623

Formatting Properties . 624

The id property . 625

The language property . 625

Paragraph properties . 625

Character properties . 628

Sentence properties . 631

Area properties . 633

Aural properties . 640

Part IV: Supplemental Technologies 645

Chapter 19: XLinks . 647
XLinks versus HTML Links . 647

Linking Elements . 648

Declaring XLink attributes in document type definitions 650

Descriptions of the Remote Resource . 652

Link Behavior . 653

The xlink:show attribute . 653

The xlink:actuate attribute . 655

Extended Links . 657

Extended Link Syntax . 658

Arcs . 661

Out-of-Line Links . 669

xxixContents

Chapter 20: XPointers . 677
Why Use XPointers? . 677

XPointer Examples . 678

A Concrete Example . 681

Location Paths, Steps, and Sets . 684

The Root Node . 686

Axes . 686

The child axis . 687

The descendant axis . 688

The descendant-or-self axis . 689

The parent axis . 689

The self axis . 689

The ancestor axis . 689

The ancestor-or-self axis . 689

The preceding axis . 690

The following axis . 690

The preceding-sibling axis . 690

The following-sibling axis . 690

The attribute axis . 691

The namespace axis . 691

Node Tests . 692

Predicates . 694

Functions that Return Node Sets . 697

id() . 697

here() . 698

origin() . 699

Points . 700

Ranges . 701

Range functions . 702

String ranges . 702

Child Sequences . 704

Chapter 21: The Resource Description Framework 707
What Is RDF? . 707

RDF Statements . 708

Basic RDF Syntax . 710

The RDF Root Element . 710

The Description element . 710

Namespaces . 711

Multiple properties and statements 713

Resource valued properties . 715

XML valued properties . 718

Abbreviated RDF syntax . 718

Containers . 719

The Bag container . 720

The Seq container . 722

xxx Contents

The Alt container . 723

Statements about containers . 724

Statements about container members 727

Statements about implied bags . 729

RDF Schemas . 729

Part V: XML Applications 733

Chapter 22: XHTML . 735
Why Validate HTML? . 735

Moving to XHTML . 737

Making the document well-formed XML 740

Making the document valid . 747

The strict DTD . 755

The frameset DTD . 768

HTML Tidy . 769

What’s New in XHTML . 773

Character references . 773

Custom entity references defined in DTD 777

Encoding declarations . 780

The xml:lang attribute . 781

CDATA sections . 782

Chapter 23: The Wireless Markup Language 787
What Is WML? . 788

Hello WML . 788

The WML MIME media type . 789

Browsing the Web from your phone 790

Cell phone simulators . 791

Basic Text Markup . 794

Tables . 796

Images . 798

Entity references . 799

Cards and Links . 800

Multicard decks . 800

The do element . 801

Anchors . 804

Selections . 807

The Options Menu . 809

Templates . 810

Events . 811

The Header . 814

The access element . 814

Meta . 815

Variables . 816

Reading and writing variables . 816

Input fields . 819

xxxiContents

Select . 821

Setting a new context for variables 821

Talking Back to the Server . 822

Chapter 24: Schemas . 827
What’s Wrong with DTDs? . 827

What is a Schema? . 829

The W3C XML Schema Language . 831

Hello Schemas . 832

The greeting schema . 832

Validating the document against the schema 834

Complex Types . 836

minOccurs and maxOccurs . 838

Element content . 841

Sharing content models . 843

Anonymous types . 844

Mixed content . 846

Grouping . 848

The xsd:all Group . 849

Choices . 850

Sequences . 851

Simple Types . 851

Numeric data types . 854

Time data types . 856

XML data types . 857

String data types . 858

Miscellaneous data types . 859

Derived Types . 859

Regular expressions . 860

The xsd:simpleType element . 865

Empty Elements . 867

Attributes . 867

Namespaces . 871

Schemas for default namespaces . 871

Multiple namespaces, multiple schemas 875

Annotations . 878

Chapter 25: Scalable Vector Graphics 881
What Is SVG? . 882

Scalability . 883

Vector versus bitmapped graphics 884

A Simple SVG Document . 885

Embedding SVG Pictures in Web Pages . 888

Simple Shapes . 891

The rect element . 891

The circle element . 894

The ellipse element . 895

xxxii Contents

The line element . 896

Polygons and polylines . 898

Paths . 899

Arcs . 902

Curves . 905

Text . 907

Strings . 907

Text on a path . 909

Fonts and text styles . 911

Text spans . 912

Bitmapped Images . 913

Coordinate Systems and Viewports . 914

The viewport . 915

Coordinate systems . 917

Grouping Shapes . 921

Referencing Shapes . 922

Transformations . 924

Linking . 932

Metadata . 933

SVG Editors . 936

Chapter 26: The Vector Markup Language 939
What Is VML? . 939

Drawing with a Keyboard . 941

The shape element . 942

Other shape attributes . 944

Shape child elements . 945

Predefined shapes . 946

The shapetype element . 947

The group element . 949

Positioning VML Shapes with CSS Properties 950

The rotation property . 953

The flip property . 955

The center-x and center-y properties 956

VML in Microsoft Office . 956

Settings . 957

Drawing a house . 958

Chapter 27: The Channel Definition Format 965
What Is the Channel Definition Format? . 965

Creating Channels . 966

Determining channel content . 966

Creating CDF files and documents . 967

Linking the Web page to the channel 968

Describing the Channel . 970

Title . 970

Abstract . 972

Logos . 973

xxxiiiContents

Scheduling Updates . 975

Precaching and Web Crawling . 978

Precaching . 978

Web crawling . 978

The Reader Access Log . 979

The BASE Attribute . 981

The LASTMOD Attribute . 982

The USAGE Element . 984

Desktop components . 985

E-mail . 986

Precaching . 987

Screen savers . 988

Software update . 990

Chapter 28: Designing a New XML Application 995
Organization of the Data . 995

Listing the elements . 997

Identifying the fundamental elements 998

Establishing relationships among the elements 1000

The Person DTD . 1002

The Family DTD . 1007

The Source DTD . 1009

The Family Tree DTD . 1010

Designing a Style Sheet for Family Trees 1017

Appendix A: What’s on the CD-ROM 1025

Appendix B: XML Reference Material 1029

Appendix C: The XML 1.0 Specification, Second Edition 1089

Index . 1153

End-User Licence Agreement . 1212

CD-ROM Installation Instructions . 1214

Introducing XML
✦ ✦ ✦ ✦

In This Part

Chapter 1
An Eagle’s Eye View
of XML

Chapter 2
XML Applications

Chapter 3
Your First XML
Document

Chapter 4
Structuring Data

Chapter 5
Attributes, Empty
Tags, and XSL

Chapter 6
Well-formedness

Chapter 7
Foreign Languages
and Non-Roman Text

✦ ✦ ✦ ✦

P A R T

II

An Eagle’s Eye
View of XML

This chapter introduces you to XML. It explains, in general

terms, what XML is and how it is used. It shows you how

the different pieces of the XML equation fit together, and how

an XML document is created and delivered to readers.

What Is XML?
XML stands for Extensible Markup Language (often miscapi-

talized as eXtensibleMarkup Language to justify the acronym).

XML is a set of rules for defining semantic tags that break a

document into parts and identify the different parts of the

document. It is a meta-markup language that defines a syntax

in which other field-specific markup languages can be written.

XML is a meta-markup language
The first thing you need to understand about XML is that it

isn’t just another markup language like Hypertext Markup

Language (HTML) or TeX. These languages define a fixed set

of tags that describe a fixed number of elements. If the

markup language you use doesn’t contain the tag you need,

you’re out of luck. You can wait for the next version of the

markup language, hoping that it includes the tag you need,

but then you’re really at the mercy of whatever the vendor

chooses to include.

XML, however, is a meta-markup language. It’s a language in

which you make up the tags you need as you go along. These

tags must be organized according to certain general princi-

ples, but they’re quite flexible in their meaning. For instance,

if you’re working on genealogy and need to describe family

names, personal names, dates, births, adoptions, deaths,

burial sites, families, marriages, divorces, and so on, you can

create tags for each of these. You don’t have to force your

data to fit into paragraphs, list items, table cells, and other

very general categories.

11C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

What is XML?

Why are developers
excited about XML?

The life of an XML
document

Related technologies

✦ ✦ ✦ ✦

4 Part I ✦ Introducing XML

The tags you create can be documented in a Document Type Definition (DTD).

You’ll learn more about DTDs in Part II of this book. For now, think of a DTD as a

vocabulary and a syntax for certain kinds of documents. For example, the MOL.DTD

in Peter Murray-Rust’s Chemical Markup Language (CML) describes a vocabulary

and a syntax for the molecular sciences: chemistry, crystallography, solid state

physics, and the like. It includes tags for atoms, molecules, bonds, spectra, and so

on. Many different people in the field can share this DTD. Other DTDs are available

for other fields, and you can create your own.

XML defines the meta syntax that field-specific markup languages such as MusicML,

MathML, and CML must follow. It specifies the rules for the low-level syntax, saying

how markup is distinguished from content, how attributes are attached to ele-

ments, and so forth without saying what these tags, elements, and attributes are or

what they mean. It specifies the patterns that elements must follow without giving

the names of the elements. For instance, XML says that tags begin with a < and end

with a >. However, XML does not tell you what names must go between the < and

the >.

If an application understands this meta syntax, it at least partially understands all

the languages built from this meta syntax. A browser does not need to know in

advance each and every tag that might be used by thousands of different markup

languages. Instead, it discovers the tags used by any given document as it reads the

document or its DTD. The detailed instructions about how to display the content of

these tags are provided in a separate style sheet that is attached to the document.

For example, consider the three-dimensional Schrödinger equation:

Scientific papers are full of equations like this, but scientists have been waiting

eight years for the browser vendors to support the tags needed to write even the

most basic math. Musicians are in a similar bind, because Netscape and Internet

Explorer can’t display sheet music.

XML means you don’t have to wait for browser vendors to catch up with what you

want to do. You can invent the tags you need, when you need them, and tell the

browsers how to display these tags.

ih
∂ψ r, t

∂t
= – h2

2m∇2ψ r, t + V r ψ r, t

5Chapter 1 ✦ An Eagle’s Eye View of XML

XML describes structure and semantics,
not formatting
The second thing to understand about XML is that XML markup describes a docu-

ment’s structure and meaning. It does not describe the formatting of the elements

on the page. Formatting can be added to a document with a style sheet. The docu-

ment itself only contains tags that say what is in the document, not what the docu-

ment looks like.

By contrast, HTML encompasses formatting, structural, and semantic markup.
is a formatting tag that makes its content bold. is a semantic tag that

means its contents are especially important. <TD> is a structural tag that indicates

that the contents are a cell in a table. In fact, some tags can have all three kinds of

meaning. An <H1> tag can simultaneously mean 20-point Helvetica bold, a level 1

heading, and the title of the page.

For example, in HTML a song might be described using a definition title, definition

data, an unordered list, and list items. But none of these elements actually have

anything to do with music. The HTML might look something like this:

<dt>Hot Cop
<dd> by Jacques Morali, Henri Belolo, and Victor Willis

 Jacques Morali
 PolyGram Records
 6:20
 1978
 Village People

In XML the same data might be marked up like this:

<SONG>
<TITLE>Hot Cop</TITLE>
<COMPOSER>Jacques Morali</COMPOSER>
<COMPOSER>Henri Belolo</COMPOSER>
<COMPOSER>Victor Willis</COMPOSER>
<PRODUCER>Jacques Morali</PRODUCER>
<PUBLISHER>PolyGram Records</PUBLISHER>
<LENGTH>6:20</LENGTH>
<YEAR>1978</YEAR>
<ARTIST>Village People</ARTIST>

</SONG>

Instead of generic tags such as <dt> and , this example uses meaningful tags

such as <SONG>, <TITLE>, <COMPOSER>, and <YEAR>. These tags didn’t come from

any preexisting standard or specification. I just made them up on the spot because

6 Part I ✦ Introducing XML

they fit the information I was describing. Domain-specific tagging has a number of

advantages, not the least of which is that it’s easier for a human to read the source

code to determine what the author intended.

XML markup also makes it easier for nonhuman automated computer software to

locate all of the songs in the document. A computer program reading HTML can’t tell

more than that an element is a dt. It cannot determine whether that dt represents a

song title, a definition, or just some designer’s favorite means of indenting text. In

fact, a single document may well contain dt elements with all three meanings.

XML element names can be chosen such that they have extra meaning in additional

contexts. For instance, they might be the field names of a database. XML is far more

flexible and amenable to varied uses than HTML because a limited number of tags

don’t have to serve many different purposes. XML offers an infinite number of tags

to fill an infinite number of needs.

Why Are Developers Excited About XML?
XML makes easy many Web-development tasks that are extremely difficult with

HTML, and it makes tasks that are impossible with HTML, possible. Because XML is

extensible, developers like it for many reasons. Which reasons most interest you

depends on your individual needs; but once you learn XML, you’re likely to dis-

cover that it’s the solution to more than one problem you’re already struggling

with. This section investigates some of the generic uses of XML that excite develop-

ers. In Chapter 2, you’ll see some of the specific applications that have already been

developed with XML.

Design of field-specific markup languages
XML enables individual professions (e.g., music, chemistry, human resources) to

develop their own field-specific markup languages. These languages make it possi-

ble for practitioners in the field to trade notes, data, and information without wor-

rying about whether or not the person on the receiving end has the particular

proprietary payware that was used to create the data. They can even send docu-

ments to people outside the profession with reasonable confidence that the people

who receive them will at least be able to view the documents.

Furthermore, creating separate markup languages for different fields does not lead

to bloatware or unnecessary complexity for those outside the profession. You may

not be interested in electrical engineering diagrams, but electrical engineers are.

You may not need to include sheet music in your Web pages, but composers do.

XML lets the electrical engineers describe their circuits and the composers notate

their scores, mostly without stepping on each other’s toes. Neither field needs spe-

cial support from the browser manufacturers or complicated plug-ins, as is true

today.

7Chapter 1 ✦ An Eagle’s Eye View of XML

Self-describing data
Much computer data from the last 40 years is lost, not because of natural disaster

or decaying backup media (though those are problems, too — ones that XML

doesn’t solve), but simply because no one bothered to document how one actually

reads the data media and formats. A Lotus 1-2-3 file on a 10-year-old 5.25-inch

floppy disk may be irretrievable in most corporations today without a huge invest-

ment of time and resources. Data in a less-known binary format such as Lotus Jazz

may be gone forever.

XML is, at a low level, an incredibly simple data format. It can be written in 100 per-

cent pure ASCII text as well as in a few other well-defined formats. ASCII text is rea-

sonably resistant to corruption. The removal of bytes or even large sequences of

bytes does not noticeably corrupt the remaining text. This starkly contrasts with

many other formats, such as compressed data or serialized Java objects, in which

the corruption or loss of even a single byte can render the entire remainder of the

file unreadable.

At a higher level, XML is self-describing. Suppose you’re an information archaeolo-

gist in the twenty-third century and you encounter this chunk of XML code on an

old floppy disk that has survived the ravages of time:

<PERSON ID=”p1100” SEX=”M”>
<NAME>
<GIVEN>Judson</GIVEN>
<SURNAME> McDaniel</SURNAME>

</NAME>
<BIRTH>
<DATE>21 Feb 1834</DATE> </BIRTH>

<DEATH>
<DATE>9 Dec 1905</DATE> </DEATH>

</PERSON>

Even if you’re not familiar with XML, assuming you speak a reasonable facsimile of

twentieth-century English, you’ve got a pretty good idea that this fragment

describes a man named Judson McDaniel, who was born on February 21, 1834 and

died on December 9, 1905. In fact, even with gaps in, or corruption of the data, you

could probably still extract most of this information. The same could not be said for

a proprietary binary spreadsheet or word-processor format.

Furthermore, XML is very well documented. The World Wide Web Consortium

(W3C)’s XML 1.0 specification and numerous paper books like this one tell you

exactly how to read XML data. There are no secrets waiting to trip up the unwary.

8 Part I ✦ Introducing XML

Interchange of data among applications
Because XML is nonproprietary and easy to read and write, it’s an excellent format

for the interchange of data among different applications. XML is not encumbered by

copyright, patent, trade secret, or any other sort of intellectual property restric-

tions. It has been designed to be extremely powerful, while at the same time be

easy for both human beings and computer programs to read and write. Thus it’s an

obvious choice for exchange languages.

One such format is the Open Financial Exchange 2.0 (OFX, http://www.ofx.net/).

OFX is designed to let personal finance programs such as Microsoft Money and

Quicken trade data. The data can be sent back and forth between programs and

exchanged with banks, brokerage houses, credit card companies, and the like.

OFX is discussed in Chapter 2.

By choosing XML instead of a proprietary data format, you can use any tool that

understands XML to work with your data. You can even use different tools for differ-

ent purposes, one program to view and another to edit for instance. XML keeps you

from getting locked into a particular program simply because that’s what your data

is already written in, or because that program’s proprietary format is all your corre-

spondent can accept.

For example, many publishers require submissions in Microsoft Word. This means

that most authors have to use Word, even if they would rather use WordPerfect or

Nisus Writer. This makes it extremely difficult for any other company to publish a

competing word processor unless it can read and write Word files. To do so, a

developer must reverse-engineer the undocumented Word file format, which

requires a significant investment of limited time and resources. Most other word

processors have a limited ability to read and write Word files, but they generally

lose track of graphics, macros, styles, revision marks, and other important features.

The problem is that Word’s file format is undocumented, proprietary, and con-

stantly changing. Word tends to end up winning by default, even when writers

would prefer to use other, simpler programs. If a common word-processing format

were developed in XML, writers could use the program of their choice.

Structured and integrated data
XML is ideal for large and complex documents because the data is structured. It not

only lets you specify a vocabulary that defines the elements in the document; it

also lets you specify the relations between elements. For example, if you’re putting

together a Web page of sales contacts, you can require that every contact have a

phone number and an e-mail address. If you’re inputting data for a database, you

can make sure that no fields are missing. You can even provide default values to be

used when no data is entered.

Cross-
Reference

9Chapter 1 ✦ An Eagle’s Eye View of XML

XML also provides a client-side include mechanism that integrates data from multi-

ple sources and displays it as a single document. (In fact, it provides at least three

different ways of doing this, which is a source of some confusion.) The data can

even be rearranged on the fly. Parts of it can be shown or hidden depending on user

actions. This is extremely useful when you’re working with large information reposi-

tories like relational databases.

The Life of an XML Document
XML is, at its root, a document format. It is a series of rules about what XML docu-

ments look like. There are two levels of conformity to the XML standard. The first is

well-formedness and the second is validity. Part I of this book shows you how to

write well-formed documents. Part II shows you how to write valid documents.

HTML is a document format that is designed for use on the Internet and inside Web

browsers. XML can certainly be used for that, as this book demonstrates. However,

XML is far more broadly applicable. It can be used as a storage format for word pro-

cessors, as a data interchange format for different programs, as a means of enforc-

ing conformity with Intranet templates, and as a way to preserve data in a

human-readable fashion.

However, like all data formats, XML needs programs and content before it’s useful.

Thus, it isn’t enough to just understand XML itself. That’s not much more than a

specification for what data should look like. You also need to know how XML docu-

ments are created, written, and edited, how processors read XML documents and

pass the information they read on to applications, and what these applications do

with that data.

Editors
XML documents are most commonly created with an editor. This may be a basic

text editor such as Notepad or vi that doesn’t really understand XML at all. On the

other hand, it may be a completely WYSIWYG (What You See Is What You Get) edi-

tor such as Adobe FrameMaker that insulates you almost completely from the

details of the underlying XML format. Or it may be a structured editor such as

Visual XML (http://www.pierlou.com/visxml/) that displays XML documents

as trees. For the most part, the fancy editors aren’t very useful yet, so this book

concentrates on writing raw XML by hand in a text editor.

Other programs can also create XML documents. For example, later in this book,

you’ll see several XML documents whose data came straight out of a FileMaker

database. In these cases, the data was first entered into the FileMaker database.

Next, a FileMaker calculation field converted that data to XML. Finally, an

AppleScript program extracted the data from the database and wrote it as an XML

file. Similar processes can extract XML from MySQL, Oracle, and other databases by

using Perl, Java, PHP, or any convenient language. In general, XML works extremely

well with databases.

10 Part I ✦ Introducing XML

In any case, the editor or other program creates an XML document. More often than

not, this document is an actual file on some computer’s hard disk, but it doesn’t

absolutely have to be. For example, the document may be a record or a field in a

database, or it may be a stream of bytes received from the network.

Parsers and processors
An XML parser (also known as an XML processor) reads the document and verifies

that the XML it contains is well formed. It may also check that the document is

valid, although this test is not required. The exact details of these tests are covered

in Part II. If the document passes the tests, then the processor converts the docu-

ment into a tree of elements.

Browsers and other applications
Finally, the parser passes the tree or individual nodes of the tree to the end applica-

tion. If this application is a Web browser such as Mozilla, then the browser formats

the data and shows it to the user. But other programs may also receive the data.

For instance, a database might interpret an XML document as input data for new

records; a MIDI program might see the document as a sequence of musical notes to

play; a spreadsheet program might view the XML as a list of numbers and formulas.

XML is extremely flexible and can be used for many different purposes.

The process summarized
To summarize, an XML document is created in an editor. The XML parser reads the

document and converts it into a tree of elements. The parser passes the tree to the

browser or other application that displays it. Figure 1-1 shows this process.

Figure 1-1: XML document life cycle

It’s important to note that all of these pieces are independent of and decoupled

from each other. The only thing that connects them is the XML document. You can

change the editor program independently of the end application. In fact, you may

not always know what the end application is. It may be an end-user reading your

BrowserParserDocument displays
page to

is read by sends
data to

writes UserEditor

Tempest.xml
Txpad32.exe

T Xerces

11Chapter 1 ✦ An Eagle’s Eye View of XML

work; it may be a database sucking in data; or it may be something not yet

invented. It may even be all of these. The document is independent of the programs

that read and write it.

HTML is also somewhat independent of the programs that read and write it, but
it’s really only suitable for browsing. Other uses, such as database input, are
beyond its scope. For example, HTML does not provide a way to force an author to
include certain required content. For instance, you can’t say that every book must
have an ISBN number. In XML, however, you can require this. You can even control
the order in which particular elements appear (for example, that level 2 headers
must always follow level 1 headers).

Related Technologies
XML doesn’t operate in a vacuum. Using XML as more than a data format involves

several related technologies and standards. These include:

✦ HTML for backward compatibility with legacy browsers

✦ The CSS and XSL style sheet languages to define the appearance of XML

documents

✦ URLs (Uniform Resource Locaters) and URIs (Uniform Resource Identifiers) to

specify the locations of XML documents

✦ XLinks to connect XML documents to each other

✦ The Unicode character set to encode the text of XML documents

HTML
Opera 4.0 and later, Internet Explorer 5.0 and later, Netscape 6.0 and Mozilla pro-

vide some (albeit incomplete) support for XML. However, it takes about two years

from initial release before most users have upgraded to a particular browser ver-

sion (in 2001, my wife still uses Netscape 1.1 on her Mac at work), so you’re going

to need to convert your XML content into classic HTML for some time to come.

Therefore, before you jump into XML, you should be completely comfortable with

HTML. You don’t need to be a hotshot graphical designer, but you should know how

to link from one page to the next, how to include an image in a document, how to

make text bold, and so forth. Since HTML is the most common output format of

XML, the more familiar you are with HTML, the easier it will be to create the effects

you want.

Note

12 Part I ✦ Introducing XML

On the other hand, if you’re accustomed to using tables or single-pixel GIFs to

arrange objects on a page, or if you begin planning a Web site by sketching out its

design in Photoshop, then you’re going to have to unlearn some bad habits. As pre-

viously discussed, XML separates the content of a document from the appearance

of the document. You develop the content first, then design a style sheet that for-

mats the content. Separating content from presentation is an extremely effective

technique that improves both the content and the appearance of the document.

Among other things, it allows authors and designers to work more independently of

each other. However, it does require a different way of thinking about the design of

a Web site, and perhaps even the use of different project management techniques

when multiple people are involved.

Cascading Style Sheets
Because XML allows arbitrary tags in a document, there is no way for the browser

to know in advance how each element should be displayed. When you send a docu-

ment to a user, you also need to send along a style sheet that tells the browser how

to format the elements you’ve chosen. One kind of style sheet you can use is a

Cascading Style Sheet.

CSS, initially invented for HTML, defines formatting properties such as font size,

font family, font weight, paragraph indentation, paragraph alignment, and other

styles that can be applied to particular elements. For example, CSS allows HTML

documents to specify that all H1 elements should be formatted in 32-point, cen-

tered, Helvetica bold. Individual styles can be applied to most HTML elements that

override the browser’s defaults. Multiple style sheets can be applied to a single doc-

ument, and multiple styles can be applied to a single element. The applied styles

then cascade according to a particular set of rules.

CSS rules and properties are explored in more detail in Chapters 14, 15, and 16.

It’s easy to apply CSS rules to XML documents. You simply change the names of the

tags to which you’re applying the rules. Mozilla, Opera 4.0 and later, Netscape 6.0,

and Internet Explorer 5.0 and later can display XML documents with associated CSS

style sheets. They differ a little in how many CSS properties they support and how

well they support them.

Extensible Stylesheet Language
The Extensible (or eXtensible) Stylesheet Language (XSL) is a more powerful style

language designed specifically for XML documents. XSL style sheets are themselves

well-formed XML documents. XSL is actually two different XML applications:

✦ XSL Transformations (XSLT)

✦ XSL Formatting Objects (XSL-FO)

Cross-
Reference

13Chapter 1 ✦ An Eagle’s Eye View of XML

Generally, an XSLT style sheet describes a transformation from an input XML docu-

ment in one format to an output XML document in another format. That output for-

mat can be XSL-FO, but it can also be any other text format, XML or otherwise, such

as HTML, plain text, or TeX.

An XSLT style sheet contains a series of rules that apply to particular patterns of

XML elements. An XSLT processor reads an XML document and compares the ele-

ments it finds there to the patterns in the style sheet. When a pattern from the XSLT

style sheet is recognized in the input XML document, the processor outputs a piece

of text. Unlike cascading style sheets, this output text is not limited to the input text

plus formatting information. The style sheet can add text that wasn’t present in the

original document or delete text that was.

CSS can only change the format of a particular element, and it can only do so on an

element-wide basis. XSLT style sheets, on the other hand, can rearrange and

reorder elements. They can hide some elements and display others. Furthermore,

they can choose the style to use based not just on the tag, but also on the contents

and attributes of the tag, on the position of the tag in the document relative to

other elements, and on a variety of other criteria.

XSLT is explored in detail in Chapter 17.

XSL-FO is an XML application that describes the layout of a page. It specifies where

particular text is placed on the page in relation to other items on the page. It also

assigns styles such as italic or fonts such as Arial to individual items on the page.

You can think of XSL-FO as a page description language such as PostScript (minus

PostScript’s built-in, Turing-complete programming language.)

XSL-FO is covered in Chapter 18.

Which style sheet language should you choose? CSS has the advantage of broader

browser support. However, XSL is far more flexible and powerful, and better suited

to XML documents. Furthermore, XML documents with XSLT style sheets can easily

be converted to HTML documents with CSS style sheets. XSL-FO is a little past the

bleeding edge, however; the specification is not yet finished. No browsers support

it, and even third-party FO-to-PDF converters such as FOP don’t support all of the

current formatting object specification.

Which language you pick largely depends on your needs. If you want to serve

clients XML files directly and have them use their CPU power to format the docu-

ments, then you really need to be using CSS (and even then, the clients had better

have very up-to-date browsers). On the other hand, if you want to support older

browsers, you’re better off converting documents to HTML on the server using

XSLT and sending the browsers pure HTML. For high-quality printing, you’re better

off with XSLT plus XSL-FO. One big advantage of XML is that it’s quite easy to do all

of this at the same time. You can change the style sheet and even the style sheet

language you use without changing the XML documents that contain your content.

Cross-
Reference

Cross-
Reference

14 Part I ✦ Introducing XML

URLs and URIs
XML documents can live on the Web, just like HTML and other documents. When

they do, they are referred to by Uniform Resource Locators (URLs), just like

HTML files. For example, at the URL http://www.hypermedic.com/style/xml/
tempest.xml you’ll find the complete text of Shakespeare’s Tempest marked up

in XML.

Although URLs are well understood and well supported, the XML specification

uses Uniform Resource Identifiers (URIs) instead. URIs are a superset of URLs. A

URI is a more general means of locating a resource; URIs focus a little more on

the resource and a little less on the location. Furthermore, they aren’t necessarily

limited to resources on the Internet. For instance, the URI for this book is

uri:isbn:0764547607. This doesn’t refer to the specific copy you’re holding in

your hands. It refers to the almost-Platonic form of the second edition of the XML
Bible shared by all individual copies.

In theory, a URI can find the closest copy of a mirrored document or locate a docu-

ment that has been moved from one site to another. In practice, URIs are still an

area of active research, and the only kinds of URIs that are actually supported by

current software are URLs.

XLinks and XPointers
As long as XML documents are posted on the Internet, people will want to link them

to each other. Standard HTML link tags can be used in XML documents, and HTML

documents can link to XML documents. For example, this HTML link points to the

aforementioned copy of the Tempest in XML:

The Tempest by Shakespeare

Whether the browser can display this document if you follow the link, depends on
just how well the browser handles XML files. Fourth generation and earlier
browsers don’t handle them very well.

However, XML lets you go further with XLinks for linking to documents and

XPointers for addressing individual parts of a document.

XLinks enable any element to become a link, not just an A element. For example, in

XML, the above link might be written like this:

<PLAY xlink:type=”simple”
xmlns:xlink=”http://www.w3.org/1999/xlink”

xlink:href=”http://www.hypermedic.com/style/xml/tempest.xml”>
<TITLE>The Tempest</TITLE> by <AUTHOR>Shakespeare</AUTHOR>

</PLAY>

Note

15Chapter 1 ✦ An Eagle’s Eye View of XML

Furthermore, XLinks can be bidirectional, multidirectional, or even point to multi-

ple mirror sites from which the nearest is selected. XLinks use normal URLs to iden-

tify the site they’re linking to. As new URI schemes become available, XLinks will be

able to use those, too.

XLinks are discussed in Chapter 19.

XPointers allow URLs to point not just to a particular document at a particular loca-

tion, but to a particular part of a particular document. An XPointer can refer to a

particular element of a document, to the first, the second, or the seventeenth such

element, to the first element that’s a child of a given element, and so on. XPointers

provide extremely powerful connections between documents that do not require

the targeted document to contain additional markup just so its individual pieces

can be linked to from other documents.

Furthermore, unlike HTML anchors, XPointers don’t just refer to a point in a docu-

ment. They can point to ranges or spans. Thus, an XPointer might be used to select

a particular part of a document, perhaps so that it can be copied or loaded into a

program.

XPointers are discussed in Chapter 20.

The Unicode character set
The Web is international, yet most of the text you’ll find on it is in English. XML is

helping to change that. XML provides full support for the Unicode character set.

This character set supports almost every character that is commonly used in every

modern, non-fictional script on Earth.

Unfortunately, XML and Unicode alone are not enough to enable you to read and

write Russian, Arabic, Chinese, and other languages written in non-Roman scripts.

To read and write a language on your computer, you need three things.

1. A character set for the script the language is written in

2. A font for the character set

3. An operating system and application software that understand the

character set

If you want to write in the script as well as read it, you’ll also need an input method

for the script. However, XML defines character references that allow you to use

pure ASCII to encode characters not available in your native character set. This is

sufficient for an occasional quote in Greek or Chinese, although you wouldn’t want

to rely on it to write a novel in another language.

Cross-
Reference

Cross-
Reference

16 Part I ✦ Introducing XML

Chapter 7 explores how international text is represented in computers, how XML
understands text, and how you can use the software you have to read and write in
languages other than English.

Putting the pieces together
XML defines the syntax for the tags you use to mark up a document. An XML docu-

ment is marked up with XML tags. The default character set for XML documents is

Unicode.

Among other things, an XML document may contain hypertext links to other docu-

ments and resources. These links are created according to the XLink specification.

XLinks identify the documents that they’re linking to with URIs (in theory) or URLs

(in practice). An XLink may further specify the individual part of a document it’s

linking to. These parts are addressed via XPointers.

If an XML document is intended to be read by human beings — and not all XML doc-

uments are — then a style sheet provides instructions about how individual ele-

ments are formatted. The style sheet may be written in any of several style sheet

languages. CSS and XSL are the two most popular style sheet languages, and the

two best suited for XML.

Summary
In this chapter, you’ve seen a high-level overview of what XML is and what it can do

for you. In particular, you learned that:

✦ XML is a meta-markup language that enables the creation of markup lan-

guages for particular documents and fields.

✦ XML tags describe the structure and semantics of a document’s content, not

the format of the content. The format is described in a separate style sheet.

✦ XML documents are created in an editor, read by a parser, and displayed by a

browser.

✦ XML on the Web rests on the foundations provided by HTML, CSS, and URLs.

✦ Numerous supporting technologies layer on top of XML, including XSL style

sheets, XLinks, and XPointers. These let you do more than you can accom-

plish with just CSS and URLs.

The next chapter shows you a number of XML applications that teach you some of

the ways that XML is being used in the real world. Examples include vector graph-

ics, music notation, mathematics, chemistry, human resources, webcasting, and

more.

✦ ✦ ✦

Cross-
Reference

XML
Applications

This chapter investigates many examples of XML applica-

tions: publicly standardized markup languages, XML

applications that are used to extend and expand XML itself,

and some behind-the-scene uses of XML. It is inspiring to see

so many different uses to which XML has been put because it

shows just how widely applicable XML is. Many more XML

applications are being created or ported from other formats

every day.

Don’t try and understand every detail of every example in this

chapter. Most of them are unimportant. The main purpose

here is to give you a feel for both the many different uses to

which XML is put and the many different ways XML docu-

ments can be designed. Once you’ve absorbed the flavor of

XML in this chapter, you’ll be better prepared to start working

on your own XML applications in the next chapter.

Part V covers some of the XML applications discussed in
this chapter in more detail.

XML Applications
XML is a meta-markup language for designing domain-specific

markup languages. Each specific XML-based markup language

is called an XML application. This is not an application that

uses XML, such as the Mozilla Web browser, the Gnumeric

spreadsheet, or the XML Spy editor; rather, it is an application

of XML to a specific field such as the Chemical Markup

Language (CML) for chemistry or GedML for genealogy.

Each XML application has its own syntax and vocabulary. This

syntax and vocabulary adheres to the fundamental rules of

XML. This is much like human languages, each of which has

its own vocabulary and grammar, while adhering to certain

fundamental rules imposed by human anatomy and the struc-

ture of the brain.

22C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

XML applications

XML for XML

Behind-the-scene uses
of XML

✦ ✦ ✦ ✦

18 Part I ✦ Introducing XML

XML is an extremely flexible format for text-based data. The reason XML was cho-

sen as the foundation for the wildly different applications discussed in this chapter

(aside from the hype factor) is that XML provides a sensible, well-documented for-

mat that’s easy to read and write. By using this format for its data, a program can

offload a great quantity of detailed processing to a few standard free tools and

libraries. Furthermore, it’s easy for such a program to layer additional levels of syn-

tax and semantics on top of the basic structure XML provides.

Chemical Markup Language
Peter Murray-Rust’s Chemical Markup Language (CML) may have been the first

XML application. CML was originally developed as an SGML (Standard Generalized

Markup Language) application, and gradually transitioned to XML as the XML stan-

dard developed. In its most simplistic form, CML is “HTML plus molecules,” but it

has applications far beyond the limited confines of the Web.

Molecular documents often contain thousands of different, very detailed objects.

For example, a single medium-sized organic molecule may contain hundreds of

atoms, each with at least one bond, and many with several bonds, to other atoms in

the molecule. CML seeks to organize these complex chemical objects in a straight-

forward manner that can be understood, displayed, and searched by a computer.

CML can be used for molecular structures and sequences, spectrographic analysis,

crystallography, scientific publishing, chemical databases, and more. Its vocabulary

includes molecules, atoms, bonds, crystals, formulas, sequences, symmetries, reac-

tions, and other chemistry terms. For instance, Listing 2-1 is a basic CML document

for water (H
2
O):

Listing 2-1: The water molecule H2O described in CML

<?xml version=”1.0”?>
<CML>
<MOL TITLE=”Water”>
<ATOMS>
<ARRAY BUILTIN=”ELSYM”>H O H</ARRAY>

</ATOMS>
<BONDS>
<ARRAY BUILTIN=”ATID1”>1 2</ARRAY>
<ARRAY BUILTIN=”ATID2”>2 3</ARRAY>
<ARRAY BUILTIN=”ORDER”>1 1</ARRAY>

</BONDS>
</MOL>

</CML>

CML has several advantages over more traditional approaches to managing chemi-

cal data such as the Protein Data Bank (PDB) format or MDL Molfiles. First, CML is

easier to search, especially for generic tools that don’t understand all the intricacies

19Chapter 2 ✦ XML Applications

of a particular format. It’s also more easily integrated with Web sites, a crucial

advantage at a time when Internet preprints and discussion groups are rapidly

replacing traditional paper journals and scientific meetings. Finally, and most impor-

tantly, because the underlying XML is platform-independent, CML avoids the plat-

form-dependency that has plagued the binary formats used by traditional chemical

software and document formats. All chemists can read and write CML files, regard-

less of the hardware and software they’ve chosen to adopt.

Murray-Rust also created JUMBO, the first general-purpose XML browser. Figure 2-1

shows JUMBO displaying a CML file. JUMBO works by assigning each XML element

to a Java class that knows how to render that element. To teach JUMBO how to dis-

play new elements, you simply write Java classes for those elements. JUMBO is dis-

tributed with classes for displaying the basic set of CML elements including

molecules, atoms, and bonds, and is available at http://www.xml-cml.org/.

Figure 2-1: The JUMBO browser displaying a CML file

Mathematical Markup Language
Legend claims that Tim Berners-Lee invented the World Wide Web and HTML at

CERN so that high-energy physicists could exchange papers and preprints.

Personally, I’ve never believed that story. I grew up in physics, and while I’ve wan-

dered back and forth between physics, applied math, astronomy, and computer sci-

ence over the years, one thing the papers in all of these disciplines had in common

was lots and lots of equations. Until now, 10 years after the Web was invented, there

hasn’t been any good way to include equations in Web pages.

20 Part I ✦ Introducing XML

There have been a few hacks — Java applets that parse a custom syntax, converters

that turn LaTeX equations into GIF images, custom browsers that read TeX files —

but none has produced high-quality results, and none has caught on with Web

authors, even in scientific fields. XML is finally starting to change this.

The Mathematical Markup Language (MathML) is an XML application for mathemat-

ical equations. MathML is sufficiently expressive to handle most math — from gram-

mar-school arithmetic through calculus and differential equations. It can handle

many more advanced topics as well, although there are definite gaps in some of the

more advanced and obscure notations used by certain subfields of mathematics.

Although there are limits to MathML at the high end of pure mathematics and theo-

retical physics, it is eloquent enough to handle almost all educational, scientific,

engineering, business, economics, and statistics needs. And MathML is likely to be

expanded in the future, so even the purest of the pure mathematicians and the

most theoretical of the theoretical physicists will be able to publish and do

research on the Web. MathML completes the development of the Web into a serious

tool for scientific research and communication (despite its long digression to make

it suitable as a new medium for advertising brochures).

Netscape and Internet Explorer do not yet support MathML. However, plug-ins and

Java applets that add this support are available, such as IBM’s Tech Explorer

(http://www.software.ibm.com/techexplorer) and Design Science’s WebEQ

(http://www.webeq.com). There’s also an active effort to add MathML support to

the open source Mozilla. The World Wide Web Consortium (W3C) has integrated

some MathML support into Amaya, its test-bed browser. Figure 2-2 shows Amaya

displaying the covariant form of Maxwell’s equations written in MathML.

Amaya is on the CD-ROM in the browsers/amaya directory.

Figure 2-2: The Amaya browser displaying the covariant
form of Maxwell’s equations written in MathML

Listing 2-2 contains the document Amaya is displaying:

21Chapter 2 ✦ XML Applications

Listing 2-2: Maxwell’s equations in MathML

<?xml version=”1.0”?>
<html xmlns=”http://www.w3.org/TR/REC-html40”

xmlns:m=”http://www.w3.org/TR/REC-MathML/”
>
<head>
<title>Fiat Lux</title>
<meta name=”GENERATOR” content=”amaya V1.3b” />
</head>
<body>

<p>And God said,</p>

<math>
<m:mrow>
<m:msub>
<m:mi>δ</m:mi>
<m:mi>α</m:mi>

</m:msub>
<m:msup>
<m:mi>F</m:mi>
<m:mi>αβ</m:mi>

</m:msup>
<m:mi></m:mi>
<m:mo>=</m:mo>
<m:mi></m:mi>
<m:mfrac>
<m:mrow> <m:mn>4</m:mn>
<m:mi>π</m:mi>

</m:mrow>
<m:mi>c</m:mi>

</m:mfrac>
<m:mi></m:mi>
<m:msup>
<m:mi>J</m:mi>
<m:mrow>
<m:mi>β</m:mi>
<m:mo></m:mo>

</m:mrow>
</m:msup>

</m:mrow>
</math>

<p>and there was light.</p>
</body>
</html>

Listing 2-2 is an example of a mixed HTML/XML page. The headers and paragraphs

of text (“Fiat Lux,” “Maxwell’s Equations,” “And God said,” “and there was light”)

22 Part I ✦ Introducing XML

are given in classic HTML. The actual equations are written in MathML, an XML

application.

In general, such mixed pages require special support from the browser, as is the

case here, or perhaps plug-ins, ActiveX controls, or JavaScript programs that parse

and display the embedded XML data. Ultimately, of course, you want a browser such

as Mozilla that can parse and display pure XML files without an HTML intermediary.

Channel Definition Format
Microsoft’s Channel Definition Format (CDF) is an XML application for defining

channels. Web sites use channels to upload information to readers who subscribe

to the site rather than waiting for them to come and get it. This is alternately called

webcasting or push. CDF was first introduced in Internet Explorer 4.0.

A CDF document is an XML file, separate from, but linked to an HTML document on

the site being pushed. The channel defined in the CDF document determines which

pages are sent to the readers, how the pages are transported, and how often the

pages are sent. Pages can either be pushed by sending notifications, or even whole

Web sites, to subscribers, or pulled down by the readers at their convenience.

You can add CDF to your site without changing any of the existing content. You sim-

ply add a link to a CDF file on your home page. Then when a reader visits the page,

the browser displays a dialog box asking if they want to subscribe to the channel. If

the reader chooses to subscribe, then the browser downloads a copy of the CDF

document describing the channel. The browser then combines the schedule infor-

mation given in the CDF document with the user’s own preferences to determine

when to check back with the server for new content. This isn’t true push because

the client has to initiate the connection, but it still happens without an explicit

request by the reader.

Listing 2-3 is a simple CDF document for IDG.net. It specifies that the channel con-

tents should be loaded daily from http://www.idg.net/ between August 11, 1999

and December 31, 2002. It also provides logos, icons, titles, and abstracts for the

channel; and allows the channel to be used as a screensaver.

Listing 2-3: A CDF Push Schedule for IDG.net

<?xml version=”1.0”?>
<CHANNEL HREF=”http://www.idg.net/” BASE=”http://www.idg.net”>
<TITLE>IDG Channel</TITLE>
<ABSTRACT>
IDG.net is the largest network of Web sites covering
computer technology. IDG.net serves the needs of
information technology decision-makers and personal
computer users by providing local content, personalization,
search, product information, news, and analysis.”>

23Chapter 2 ✦ XML Applications

</ABSTRACT>
<USAGE VALUE=”Channel”></USAGE>
<LOGO HREF=”/channel/images/start-channel-logo-80.gif”

STYLE=”IMAGE”/>
<LOGO HREF=”/channel/images/start-icon-32.gif” STYLE=”ICON”/>
<LOGO HREF=”/channel/images/start-channel-logo-194.gif”

STYLE=”IMAGE-WIDE”/>
<SCHEDULE STARTDATE=”1999-08-11” ENDDATE=”2002-12-31”>
<INTERVALTIME DAY=”1”/> <LATESTTIME HOUR=”2”/>

</SCHEDULE>
<ITEM HREF=”http://www.idg.net/” PRECACHE=”YES” LEVEL=”0”>
<LOGO HREF=”/channel/images/start-icon.gif” STYLE=”ICON”/>
<TITLE>IDG.net, the computer technology network</TITLE>
<USAGE VALUE=”Channel”></USAGE>

</ITEM>
<ITEM HREF=”http://www.idg.net/” PRECACHE=”YES” LEVEL=”0”>
<USAGE VALUE=”Screensaver”></USAGE>

</ITEM>
<USAGE VALUE=”Channel”></USAGE>

</CHANNEL>

CDF is covered in more detail in Chapter 27.

Classic literature
Jon Bosak has translated all of Shakespeare’s plays into XML. XML markup in each

document distinguishes between titles, subtitles, stage directions, speeches, lines,

speakers, and more. A typical piece of a play is marked up like this extract from

Romeo and Juliet.

<STAGEDIR>Enter ROMEO</STAGEDIR>

<SPEECH>
<SPEAKER>BENVOLIO</SPEAKER>
<LINE>See, where he comes: so please you, step aside;</LINE>
<LINE>I’ll know his grievance, or be much denied.</LINE>
</SPEECH>

<SPEECH>
<SPEAKER>MONTAGUE</SPEAKER>
<LINE>I would thou wert so happy by thy stay,</LINE>
<LINE>To hear true shrift. Come, madam, let’s away.</LINE>
</SPEECH>

<STAGEDIR>Exeunt MONTAGUE and LADY MONTAGUE</STAGEDIR>

<SPEECH>
<SPEAKER>BENVOLIO</SPEAKER>

24 Part I ✦ Introducing XML

<LINE>Good-morrow, cousin.</LINE>
</SPEECH>

<SPEECH>
<SPEAKER>ROMEO</SPEAKER>
<LINE>Is the day so young?</LINE>
</SPEECH>

The complete set of Shakespeare’s plays is on the CD-ROM in the
examples/shakespeare directory.

You may ask yourself what this offers over a book, or even a plain text file. To a

human reader, the answer is not much. But to a computer doing textual analysis, it

offers the opportunity to easily distinguish between the different elements into

which the plays have been divided. For instance, it makes it quite simple for the

computer to go through the text and extract all of Romeo’s lines.

Furthermore, by altering the style sheet with which the document is formatted, an

actor could easily print a version of the document in which all of his or her lines

were formatted in bold face, and the lines immediately before and after were itali-

cized. Anything else you might imagine that requires separating a play into the lines

uttered by different speakers is much more easily accomplished with the XML-for-

matted versions than with the raw text.

Bosak has also marked up English translations of the old and new Testaments, the

Koran, and the Book of Mormon in XML. For example, here’s the first sura from the

Koran:

<sura>
<bktlong>1. The Opening</bktlong>
<bktshort>1. The Opening</bktshort>
<v>In the name of Allah, the Beneficent, the Merciful.</v>
<v>All praise is due to Allah, the Lord of the Worlds.</v>
<v>The Beneficent, the Merciful.</v>
<v>Master of the Day of Judgment.</v>
<v>Thee do we serve and Thee do we beseech for help.</v>
<v>Keep us on the right path.</v>
<v>The path of those upon whom Thou hast bestowed favors. Not
(the path) of those upon whom Thy wrath is brought down, nor of
those who go astray.</v>
</sura>

The markup Bosak used for these religious texts is a little different than the ones he

used for the plays of Shakespeare. For instance, it doesn’t distinguish between

speakers. Thus you couldn’t use these particular XML documents to create a red-

letter Bible, for example, although a different set of tags might allow you to do that.

(A red-letter Bible prints words spoken by Jesus in red.) And because these files are

in English rather than the original languages, they are not as useful for scholarly

textual analysis. Still, time and resources permitting, those are exactly the sorts of

things that XML would allow you to do if you desired. You’d simply need to invent a

different vocabulary and syntax than the one Bosak used.

25Chapter 2 ✦ XML Applications

The XML-ized Bible, Koran, and Book of Mormon are all on the CD-ROM in the
examples/religion directory.

Synchronized Multimedia Integration Language
The Synchronized Multimedia Integration Language (SMIL, pronounced “smile”) is a

W3C-recommended XML application for writing “TV-like” multimedia presentations

for the Web. SMIL documents don’t describe the actual multimedia content (that is

the video and sound that are played). Instead, SMIL documents describe when and

where particular video and audio clips are played.

For instance, a SMIL document might say that the browser should play the sound

file beethoven9.mid, show the video file corange.mov, and display the HTML file

clockwork.htm. Then, when it’s done, it should play the video file 2001.mov, the

audio file zarathustra.mid, and display the HTML file aclarke.htm. This eliminates

the need to embed low bandwidth data such as text in high bandwidth data such as

video just to combine them. Listing 2-4 is a simple SMIL file that does exactly this.

Listing 2-4: A SMIL film festival

<?xml version=”1.0” encoding=”ISO-8859-1”?>
<!DOCTYPE smil PUBLIC “-//W3C//DTD SMIL 1.0//EN”
“http://www.w3.org/TR/REC-smil/SMIL10.dtd”>

<smil>
<body>
<seq id=”Kubrick”>
<audio src=”beethoven9.mid”/>
<video src=”corange.mov”/>
<text src=”clockwork.htm”/>
<audio src=”zarathustra.mid”/>
<video src=”2001.mov”/>
<text src=”aclarke.htm”/>

</seq>
</body>

</smil>

Furthermore, as well as specifying the time sequencing of data, a SMIL document

can position individual graphic elements on the display and attach links to media

objects. For instance, at the same time as the movie and sound are playing, the text

of the respective novels could be subtitling the presentation.

HTML+TIME
SMIL operates independently of the Web page. The streaming media pushed

through SMIL has its own pane in the browser frame, but it doesn’t really have any

26 Part I ✦ Introducing XML

interaction with the content in the HTML on the rest of the page. For instance, SMIL

only lets you time SMIL elements such as audio, video, and text. It doesn’t let you

add timing information to basic HTML elements such as P, LI, or IMG. Moreover,

SMIL duplicates some aspects of HTML, such as how elements are positioned on

the page.

Microsoft, along with Macromedia and Compaq, has proposed a semi-competitive

XML application called Timed Interactive Multimedia Extensions for HTML (or

HTML+TIME for short). HTML+TIME builds on SMIL to support timing for tradi-

tional HTML elements and features much closer integration with the HTML on the

Web page. For example, HTML+TIME lets you write a countdown Web page such as

Listing 2-5 that adds text to the page as time progresses.

Listing 2-5: A countdown Web page using HTML+TIME

<HTML>
<HEAD>
<STYLE>

.time { behavior:url(#default#time); }
</STYLE>
</HEAD>
<BODY>
<P class=”time” t:dur=”1” t:begin=”1”>10</P>
<P class=”time” t:dur=”1” t:begin=”2”>9</P>
<P class=”time” t:dur=”1” t:begin=”3”>8</P>
<P class=”time” t:dur=”1” t:begin=”4”>7</P>
<P class=”time” t:dur=”1” t:begin=”5”>6</P>
<P class=”time” t:dur=”1” t:begin=”6”>5</P>
<P class=”time” t:dur=”1” t:begin=”7”>4</P>
<P class=”time” t:dur=”1” t:begin=”8”>3</P>
<P class=”time” t:dur=”1” t:begin=”9”>2</P>
<P class=”time” t:dur=”1” t:begin=”10”>1</P>
<P class=”time” t:dur=”1” t:begin=”11”>Blast Off!</P>
</BODY>

</HTML>

This is useful for slide shows, timed quizzes, and the like. In HTML+TIME, the film

festival example of Listing 2-4 looks like this:

<t:seq id=”Kubrick”>
<t:audio src=”beethoven9.mid”/>
<t:video src=”corange.mov”/>
<t:textstream src=”clockwork.htm”/>
<t:audio src=”zarathustra.mid”/>
<t:video src=”2001.mov”/>
<t:textstream src=”aclarke.htm”/>

</t:seq>

27Chapter 2 ✦ XML Applications

It’s close to although not exactly the same as the SMIL version. The major differ-

ence is that the SMIL version is intended to be stored in separate files and rendered

by special players such as RealPlayer, whereas the HTML+TIME version is sup-

posed to be included in the Web page and rendered by the browser. Another key

difference is that SMIL is being implemented by a plethora of browsers and other

software such as RealPlayer, whereas HTML+TIME is only supported by Internet

Explorer 5.0 and later.

There are some nice features and some good ideas in HTML+TIME. However, the

W3C had already given its blessing to SMIL several months before Microsoft pro-

posed HTML+TIME, and SMIL has a lot more momentum and support in the third-

party, content-creator community. Consequently, there may be a lack of standards

until these differences can be resolved.

Open Software Description
The Open Software Description (OSD) format is an XML application that was code-

veloped by Marimba and Microsoft to update software automatically. OSD defines

XML tags that describe software components. The description of a component

includes the version of the component, its underlying structure, and its relation-

ships to and dependencies on other components. This provides enough informa-

tion to decide whether a user needs a particular update. If the update is needed, it

can be automatically pushed to the user without requiring the usual manual down-

load and installation. Listing 2-6 is an example of an OSD file for an update to the fic-

tional product WhizzyWriter 1000:

Listing 2-6: An OSD file for an update to WhizzyWriter 1000

<?xml version=”1.0”?>
<CHANNEL HREF=”http://updates.whizzy.com/updateChannel.html”>
<TITLE>WhizzyWriter 1000 Update Channel</TITLE>
<USAGE VALUE=”SoftwareUpdate”/>
<SOFTPKG HREF=”http://updates.whizzy.com/updateChannel.html”

NAME=”{46181F7D-1C38-22A1-3329-00415C6A4D54}”
VERSION=”5,2,3,1”
STYLE=”MSAppLogo5”
PRECACHE=”yes”>

<TITLE>WhizzyWriter 1000</TITLE>
<ABSTRACT>
Abstract: WhizzyWriter 1000: now with tint control!

</ABSTRACT>
<IMPLEMENTATION>
<CODEBASE HREF=”http://updates.whizzy.com/tinupdate.exe”/>
</IMPLEMENTATION>

</SOFTPKG>
</CHANNEL>

28 Part I ✦ Introducing XML

Only information about the update is kept in the OSD file. The actual update files

are stored in a separate CAB archive or executable and downloaded when needed.

There is considerable controversy about whether or not this is actually a good

thing. Many software companies, Microsoft not least among them, have a long his-

tory of releasing updates that cause more problems than they fix. Many users pre-

fer to stay away from new software for awhile until other, more adventurous souls

have given it a shakedown.

Scalable Vector Graphics
Vector graphics are better than bitmaps for many kinds of pictures including flow

charts, cartoons, assembly diagrams, blueprints, and more. However, the GIF and

JPEG formats currently used on the Web are bitmap only; most traditional vector

graphics formats, such as PDF, PostScript, and CGM, were designed with ink (or

toner) on paper in mind rather than electrons on a screen. (This is one reason PDF

on the Web is such an inferior replacement for HTML, despite PDF’s much larger

collection of graphics primitives.) A vector-graphics format for the Web should sup-

port a lot of features that don’t make sense on paper, such as transparency,

antialiasing, additive color, hypertext, animation, and metadata for search engines

and audio renderers. None of these features are needed for the ink-on-paper world

of PostScript and PDF. The W3C is developing a single, unified vector graphics for-

mat called Scalable Vector Graphics (SVG) to do for vector drawings what GIF,

JPEG, and PNG do for bitmap images.

SVG is an XML application for describing two-dimensional graphics. It defines three

basic types of graphics: shapes, images, and text. A shape is defined by its outline,

also known as its path, and may have various strokes or fills. An image is a bitmap

such as a GIF or a JPEG. Text is defined as a string of characters in a particular font,

and may be attached to a path, so it’s not restricted to horizontal lines of text as on

this page. All three kinds of graphics can be positioned on the page at a particular

location, rotated, scaled, skewed, and otherwise manipulated. Listing 2-7 shows an

SVG document describing a pink triangle.

Listing 2-7: A pink triangle in SVG

<?xml version=”1.0”?>
<svg xmlns=”http://www.w3.org/2000/svg”

width=”12cm” height=”8cm”>
<title>Example 2-7 from the XML Bible, 2nd Edition</title>
<text x=”10” y=”15”>This is SVG!</text>
<polygon style=”fill: pink” points=”0,311 180,0 360,311” />

</svg>

Because SVG describes graphics rather than text — unlike most of the other XML

applications discussed in this chapter — it requires special display software. All of

29Chapter 2 ✦ XML Applications

the proposed style sheet languages assume that they’re displaying fundamentally

text-based data, and none of them can support the heavy graphics requirements of

an application such as SVG. Adobe has published browser plug-ins that support

SVG on Windows and the Mac (http://www.adobe.com/svg), and the XML

Apache Project has published Batik (http://xml.apache.org/batik), an open

source SVG viewer program written in Java that can that can display SVG docu-

ments and convert them to JPEGs. Figure 2-3 shows Listing 2-7 displayed by Batik.

Native SVG support may be added to future browsers, especially to Mozilla since

it’s open source.

Figure 2-3: The pink triangle displayed in Batik

Batik is included on the CD-ROM in the directory utilities/batik. The most recent
version can be downloaded from the Web at http://xml.apache.org/batik/.

For authoring, Adobe has published an Illustrator plug-in that enables Adobe

Illustrator 8 to export drawings as SVG files. Adobe Illustrator 9 can save drawings

as SVG files without any special plug-ins. Jasc Software (the Paint Shop Pro folks)

are working on Trajectory Pro, an SVG-native drawing program (http://www.
jasc.com/trj.asp). Many other graphics software vendors have also announced

plans to support SVG in future versions of their products.

Because SVG documents are pure text (like all XML documents), the SVG format is

easy for programs to generate automatically; and it’s easy for software to manipu-

late. In particular, you can combine SVG with DHTML (Dynamic HTML) and

ECMAScript to make the pictures on a Web page animated and responsive to user

action.

SVG is discussed in more detail in Chapter 25.

30 Part I ✦ Introducing XML

Vector Markup Language
Microsoft has developed its own XML application for vector graphics called the

Vector Markup Language (VML). VML is supported by Internet Explorer 5.0/5.5 and

Microsoft Office 2000. Listing 2-8 is an example of an HTML file with embedded VML

that draws the pink triangle. Figure 2-4 shows this file displayed in Internet Explorer

5.5. However, VML is not nearly as ambitious a format as SVG, and leaves out many of

the advanced features that SVG includes, such as clipping, masking, and compositing.

Listing 2-8: The pink triangle in VML

<html xmlns:vml=”urn:schemas-microsoft-com:vml”>
<head>
<title>
A Pink Triangle, Listing 2-8 from the XML Bible

</title>
<object id=”VMLRender”
classid=”CLSID:10072CEC-8CC1-11D1-986E-00A0C955B42E”>

</object>
<style>
vml\:* { behavior: url(#VMLRender) }

</style>
</head>
<body>
<div>

<vml:polyline title=”Example 2-8 from the XML Bible”
style=”width: 12cm; height: 8cm”
stroked=”false” fill=”true” fillcolor=”#FFCCCC”
points=”0,311 180,0 360,311”>
<vml:textbox>This is VML!</vml:textbox>

</vml:polyline>

</div>
</body>

</html>

There’s really no reason for there to be two separate, mutually incompatible vector

graphics standards for the Web, and Microsoft will probably grudgingly support

SVG in the end. Web artists would prefer to have a single standard, but having two

is not unheard of (think GIF and JPEG). As long as the formats are documented and

nonproprietary, it’s not out of the question for Web browsers to support both. At

the least, the underlying XML makes it easier for programmers to write converters

that translate files from one format to the other.

31Chapter 2 ✦ XML Applications

Figure 2-4: The pink triangle created with VML

VML is discussed in more detail in Chapter 26.

MusicML
The Connection Factory has created an XML application for sheet music called

MusicML. MusicML includes notes, beats, clefs, staffs, rows, rhythms, rests, beams,

rows, chords, and more. Listing 2-9 shows the first bar from Beth Anderson’s Flute
Swale in MusicML.

Listing 2-9: The first bar of Beth Anderson’s Flute Swale

<?xml version=”1.0”?>
<!DOCTYPE sheetmusic SYSTEM “music.dtd”>
<sheetmusic>
<musicrow size=”one”>

<entrysegment>
<entrypart cleff=”bass” rhythm=”fourquarter”

position=”one”>
<molkruis level=”plus1” name=”f” notetype=”sharp”/>
<molkruis level=”plus1” name=”c” notetype=”sharp”/>
</entrypart>

</entrysegment>

Continued

32 Part I ✦ Introducing XML

Listing 2-9 (continued)

<segment>

<subsegment position=”one”>
<beam size=”double”>
<note beat=”sixteenth” name=”a” level=”zero”

dynamics=”mf”/>
<note beat=”sixteenth” name=”b” level=”zero”></note>
<note beat=”sixteenth” name=”c” level=”plus1”></note>
<note beat=”sixteenth” name=”a” level=”zero”></note>

</beam>
<beam size=”single”>
<note beat=”eighth” name=”d” level=”plus1”/>
<note beat=”eighth” name=”c” level=”plus1”/>

</beam>
<note beat=”quarter” name=”b” level=”zero”/>
<note beat=”quarter” name=”a” level=”zero”/>

</subsegment>

</segment>

</musicrow>
</sheetmusic>

The Connection Factory has also written a Java applet that can parse and display

MusicML. Figure 2-5 shows the above example rendered by this applet. The applet

has a few bugs (for instance the last note is missing), but overall it’s a surprisingly

good rendition.

Figure 2-5: The first bar of Beth Anderson’s Flute Swale in MusicML

MusicML isn’t going to replace Finale or Nightingale anytime soon. And it really

seems like more of a proof of concept than a polished product. MusicML has a lot of

discrepancies that will drive musicians nuts (e.g., rhythm is misspelled, treble and

bass clefs are reversed, segments should really be measures, and so forth).

Nonetheless something like this is a reasonable output format for music notation

33Chapter 2 ✦ XML Applications

programs that enable sheet music to be displayed on the Web. Furthermore, if the

various notation programs all support MusicML or something like it, then it can be

used as an interchange format to move data from one program to another, some-

thing composers desperately need to be able to do now.

Recordare has published MusicXML (http://www.musicxml.org/xml.html),
an alternative XML application for music. This seems a lot more polished and likely
to be adopted in the long run. However, as of early 2001 there aren’t yet any
viewer programs or software to convert MusicXML into more established formats
like Finale or Score.

VoiceXML
VoiceXML (http://www.voicexml.org/) is an XML application for the spoken

word. In particular, it’s intended for those annoying voice mail and automated phone

response systems. (“If you found a boll weevil in Natural Goodness biscuit dough,

please press one. If you found a cockroach in Natural Goodness biscuit dough,

please press two. If you found an ant in Natural Goodness biscuit dough, please

press 3. Otherwise, please stay on the line for the next available entomologist.”)

VoiceXML enables the same data that’s used on a Web site to be served up via tele-

phone. It’s particularly useful for information that’s created by combining small

nuggets of data, such as stock prices, sports scores, weather reports, airline sched-

ules, and test results. From within the U.S., you can try out some VoiceXML-enabled

services by calling 1-800-4-BVOCAL, 1-800-44-ANITA, or 1-800-555-TELL.

A small VoiceXML file for a shampoo manufacturer’s automated phone response

system might look something like Listing 2-10.

Listing 2-10: A VoiceXML document

<?xml version=”1.0”?>
<vxml version=”1.0”>

<form>
<block>
<prompt bargein=”false”>
Welcome to TIC hair products division,
home of Wonder Shampoo.

</prompt>
<goto next=”#color_choice”/>

</block>
</form>

<menu id=”color_choice”>
<property name=”inputmodes” value=”dtmf”/>

Continued

34 Part I ✦ Introducing XML

Listing 2-10 (continued)

<prompt>
If Wonder Shampoo turned your hair green, please press 1.
If Wonder Shampoo turned your hair purple, please press 2.
If Wonder Shampoo made you bald, please press 3.
</prompt>
<choice dtmf=”1” next=”#green.vxml”/>
<choice dtmf=”2” next=”#purple.vxml”/>
<choice dtmf=”3” next=”#bald.vxml”/>

</menu>

<form id=”green”>
<block>

<prompt>
If Wonder Shampoo turned your hair green and you wish
to return it to its natural color, simply shampoo
seven times with three parts soap, seven parts water,
four parts kerosene, and two parts iguana bile.

</prompt>
<goto next=”#bye”/>

</block>
</form>

<form id=”purple”>
<block>

<prompt>
If Wonder Shampoo turned your hair purple and you wish
to return it to its natural color, please walk
widdershins around your local cemetery
three times while chanting “Surrender Dorothy.”

</prompt>
<goto next=”#bye”/>

</block>
</form>

<form id=”bald”>
<block>

<prompt>
If you went bald as a result of using Wonder Shampoo,
please purchase and apply a three-month supply
of our Magic Hair Growth Formula. Please do not
consult an attorney as doing so would violate the
license agreement printed on the inside fold of
the Wonder Shampoo box in 3-point type, which you
agreed to by opening the box.

</prompt>
<goto next=”#bye”/>

</block>
</form>

<form id=”bye”>
<block>

35Chapter 2 ✦ XML Applications

<prompt>
Thank you for visiting TIC Corp. Goodbye.
</prompt>
<disconnect/>

</block>
</form>

</vxml>

I can’t show you a screen shot of this example, because it’s not intended to be

shown in a Web browser. Instead, you would listen to it on a telephone.

Open Financial Exchange
As noted in the last chapter, the Open Financial Exchange 2.0 (OFX) is an XML appli-

cation for describing consumer-level financial transactions. Personal finance prod-

ucts such as Microsoft Money or Quicken use OFX to provide online banking, stock

trading, and other electronic business. Banks, stock brokers, and mutual funds use

OFX to talk to their customer’s computers. Because OFX is fully documented and

nonproprietary (unlike the binary formats of Money, Quicken, and other programs),

it’s easy for programmers to write the code to understand OFX..

Listing 2-11 is an OFX document that tells MegaBank to transfer $10,000 from sav-

ings account #777777 to checking account #3333333. The account owner has the

social security number 078-05-1120 and authenticates the transaction with the pass-

word “secret” (not an especially good choice). I can’t show you a screen shot of this

document because it’s not intended for humans to read. It’s just a convenient way

for different computer programs on different platforms to exchange data.

Listing 2-11: An OFX document requesting a $10,000 transfer
from savings to checking

<?xml version=”1.0”?>
<?OFX OFXHEADER=”200” VERSION=”200” SECURITY=”NONE”

OLDFILEUID=”NONE” NEWFILEUID=”NONE”?>
<OFX>
<SIGNONMSGSRQV1>
<SONRQ>
<DTCLIENT>20010106113254</DTCLIENT>
<USERID>078-05-1120</USERID>
<USERPASS>secret</USERPASS>
<LANGUAGE>ENG</LANGUAGE>
<FI>
<ORG>MegaBank</ORG>
<FID>666</FID>

Continued

36 Part I ✦ Introducing XML

Listing 2-11 (continued)

</FI>
<APPID>SuperFinance</APPID>
<APPVER>1000</APPVER>

</SONRQ>
</SIGNONMSGSRQV1>
<BANKMSGSRQV1>
<INTRATRNRQ>
<TRNUID>31415</TRNUID>
<INTRARQ>
<XFERINFO>
<BANKACCTFROM>
<BANKID>123456789</BANKID>
<ACCTID>777777</ACCTID>
<ACCTTYPE>SAVINGS</ACCTTYPE>

</BANKACCTFROM>
<BANKACCTTO>
<BANKID>123456789</BANKID>
<ACCTID>3333333</ACCTID>
<ACCTTYPE>CHECKING</ACCTTYPE>

</BANKACCTTO>
<TRNAMT>10000.00</TRNAMT>

</XFERINFO>
</INTRARQ>

</INTRATRNRQ>
</BANKMSGSRQV1>

</OFX>

Any program that understands OFX can exchange information with any other pro-

gram that understands OFX. For instance, if a bank wants to deliver statements to

customers electronically, it only has to write one program to encode the statements

in the OFX format rather than several programs to encode the statement in

Quicken’s format, Money’s format, Managing Your Money’s format, and so forth.

Looked at from the other direction, the Quicken developers can enable electronic

banking for all banks by using OFX instead of writing different code for each sepa-

rate bank’s system.

The more programs that use a given format, the greater the savings in development

cost and effort. For example, six programs reading and writing their own and each

other’s proprietary formats require 30 different converters. Six programs reading

and writing the same OFX format require only six converters. Effort is reduced to

O(n) from O(n2). Figure 2-6 depicts six programs reading and writing their own and

each other’s proprietary binary formats. Figure 2-7 depicts the same six programs

reading and writing a single, open OFX format. Every arrow represents a converter

that has to trade files and data between programs. The XML-based exchange is

much simpler and cleaner than the binary-format exchange.

37Chapter 2 ✦ XML Applications

Figure 2-6: Six different programs reading and writing their own and each other’s formats

Extensible Forms Description Language
I went to my local bookstore and bought a copy of Armistead Maupin’s novel Sure
of You. I paid for that purchase with a credit card, and when I did so, I signed a

piece of paper agreeing to pay the credit card company $14.07 when billed.

Eventually they will send me a bill for that purchase, and I’ll pay it. If I refuse to pay

it, then the credit card company can take me to court to collect, and they can use

my signature on that piece of paper to prove to the court that on October 15, 1998 I

really did agree to pay them $14.07.

The same day I also ordered Anne Rice’s The Vampire Armand from the online book-

store amazon.com. Amazon charged me $16.17 plus $3.95 shipping and handling,

and again I paid for that purchase with a credit card. But the difference is that

Amazon never got a signature on a piece of paper from me. Eventually the credit

card company will send me a bill for that purchase, and I’ll pay it. But if I refuse to

Quicken Money

Mutual Fund
Program CheckFree

Proprietary Bank
System

Managing Your
Money

38 Part I ✦ Introducing XML

pay the bill, they don’t have a piece of paper with my signature on it showing that I

agreed to pay $20.12 on October 15, 1998. If I claim that I never made the purchase,

the credit card company will bill the charges back to Amazon. Before Amazon or

any other online or phone-order merchant is allowed to accept credit card pur-

chases without a signature in ink on paper, the merchant has to agree that it will be

responsible for all disputed transactions.

Figure 2-7: Six programs reading and writing the same OFX formatExtensible
Forms Description Language

Exact numbers are hard to come by and, of course, vary from merchant to mer-

chant, but probably around 2 percent of Internet transactions are billed back to the

originating merchant because of credit card fraud or disputes. This is a huge
amount, especially in an arena where margins are often negative to start with.

Consumer businesses such as Amazon simply accept this as a cost of doing busi-

ness on the Internet and work it into their price structure, but obviously this isn’t

acceptable for six-figure business-to-business transactions. Nobody wants to send

out $200,000 of masonry supplies only to have the purchaser claim they never

Quicken Money

Mutual Fund
Program CheckFree

Proprietary Bank
System

Managing Your
Money

OFX Format

39Chapter 2 ✦ XML Applications

made the order. Before business-to-business transactions can move onto the

Internet, a method needs to be developed that can verify that an order was in fact

made by a particular person and that this person is who he or she claims to be.

Furthermore, this has to be enforceable in court. (It’s a sad fact of American busi-

ness that many companies won’t do business with anyone they can’t sue.)

Part of the solution to the problem is digital signatures — the electronic equivalent

of ink on paper. To digitally sign a document, you calculate a hash code for the doc-

ument using a known algorithm, encrypt the hash code with your private key, and

attach the encrypted hash code to the document. Correspondents can decrypt the

hash code using your public key and verify that it matches the document. However,

they can’t sign documents on your behalf because they don’t have your private key.

The exact protocol followed is a little more complex in practice, but the bottom line

is that your private key is merged with the data you’re signing in a verifiable fash-

ion. No one who doesn’t know your private key can sign the document.

The scheme isn’t foolproof — it’s vulnerable to your private key being stolen, for

example — but it’s probably as hard to forge a digital signature as it is to forge a real

ink-on-paper signature. However, there are also a number of less obvious attacks on

digital signature protocols. One of the most important is changing the data that’s

signed. Changing the data that’s signed should invalidate the signature, but it doesn’t

if the changed data wasn’t included in the first place. For example, when you sub-

mit an HTML form, the only data the browser sends to the server are the values

that you fill into the form’s fields and the names of the fields. The rest of the HTML

markup is not included. You may agree to pay $1500 for a new 700MHz Pentium III

PC, but the only thing sent on the form is the $1500. Signing this number signifies

what you’re paying, but not what you’re paying for. The merchant can then send

you two gross of flushometers and claim that’s what you bought for your $1500.

Obviously, if digital signatures are to be useful, all details of the transaction must be

included. Nothing can be omitted.

The problem gets worse if you have to deal with the United States government.

Government regulations for purchase orders and requisitions often spell out the

contents of forms in minute detail, right down to the font face and type size. Failure

to adhere to the exact specifications can lead to your invoice for $20,000,000 worth

of depleted uranium artillery shells being rejected. Therefore, you not only need to

establish exactly what was agreed to, you also need to establish that you met all

legal requirements for the form. HTML’s forms just aren’t sophisticated enough to

handle these needs.

XML, however, can. It is almost always possible to use XML to develop a markup

language with the right combination of power and rigor to meet your needs, and

this case is no exception. In particular, PureEdge has proposed an XML application

called the Extensible Forms Description Language (XFDL, http://www.pureedge.
com/resources/xfdl.htm) for forms with extremely tight legal requirements that

are to be signed with digital signatures. XFDL further offers the option to do simple

mathematics in the form, for instance, to automatically fill in the sales tax and ship-

ping and handling charges, and then total the price.

40 Part I ✦ Introducing XML

Listing 2-12 is a simple XFDL document that asks the user to input the coefficients

of a quadratic equation (that is, an equation in the form ax2 + bx + c = 0) and solves

for the two roots of the equation. Regular Web browsers can’t handle forms like

these. Therefore, you have to use a special program that understands how to read

them. Right now that means PureEdge’s Internet Forms Viewer. Figure 2-8 shows

this program displaying the quadratic equation form in Listing 2-12.

Listing 2-12: An XFDL form that solves quadratic equations

<?xml version=”1.0”?>
<XFDL version=”4.1.0”>
<page sid=”QuadraticEquationSolver”>
<label>Quadratic Equation Form</label>
<field sid=”a”>
<label>Enter a: (coefficient of x^2)</label>
<value>1</value>

</field>
<field sid=”b”>
<label>Enter b: (coefficient of x^1)</label>
<value>0</value>

</field>
<field sid=”c”>
<label>Enter c: (coefficient of x^0)</label>
<value>-1</value>

</field>
<field sid=”x1”>
<label>Root 1</label>
<editstate>readonly</editstate>
<value content=”compute”>
<compute>
(-b.value
+ sqrt(b.value*b.value - “4”*a.value*c.value))
/”2”*a.value

</compute>
</value>

</field>
<field sid=”x2”>
<label>Root 2</label>
<editstate>readonly</editstate>
<compute>
(-b.value
- sqrt(b.value*b.value - “4”*a.value*c.value))
/”2”*a.value

</compute>
</field>

</page>
</XFDL>

41Chapter 2 ✦ XML Applications

Figure 2-8: The quadratic equation
form in the Internet Forms Viewer

PureEdge has submitted XFDL to the W3C, but it’s really overkill for Web browsers,

and probably won’t be adopted there. The real benefit of XFDL, if it becomes widely

adopted, is in business-to-business and business-to-government transactions. XFDL

can become a key part of electronic commerce, which is not to say that it will
become a key part of electronic commerce. It’s still early, and there are other play-

ers in this space.

HR-XML
The HR-XML Consortium (http://www.hr-xml.org/) is a nonprofit organization

with over 100 different members from various branches of the human resources

industry including recruiters, temp agencies, and large employers, as well as oth-

ers. It’s trying to develop standard XML applications that describe resumes, avail-

able jobs, and candidates. Listing 2-13 shows a job listing encoded in an HR-XML 1.0

document. This application defines elements matching the parts of a typical classi-

fied want ad such as companies, positions, skills, contact information, compensa-

tion, experience, and more.

Listing 2-13: A job listing in HR-XML

<?xml version=”1.0”?>
<!DOCTYPE JobPositionPosting SYSTEM
“http://www.hr-xml.org/schemas/dtd/recruiting/JobPositionPosting-v1.0.dtd”>

<JobPositionPosting status=”inactive”>

Continued

42 Part I ✦ Introducing XML

Listing 2-13: (continued)

<HiringOrg>
<HiringOrgName>IDG Books</HiringOrgName>
<WebSite>http://www.idgbooks.com</WebSite>
<Industry><SummaryText>Publishing</SummaryText></Industry>
<Contact>
<PersonName>
<GivenName>Dee</GivenName>
<FamilyName>Harris</FamilyName>

</PersonName>
<PositionTitle>HR Manager</PositionTitle>
<PostalAddress>
<CountryCode>US</CountryCode>
<PostalCode>94404</PostalCode>
<Region>CA</Region>
<Municipality>Foster City</Municipality>
<DeliveryAddress>
<AddressLine>919 E. Hillsdale Blvd.</AddressLine>
<AddressLine>Suite 400</AddressLine>

</DeliveryAddress>
</PostalAddress>
<VoiceNumber>
<AreaCode>650</AreaCode>
<TelNumber>655-3000</TelNumber>

</VoiceNumber>
</Contact>

</HiringOrg>

<JobPositionInformation>
<JobPositionTitle>Web Development Manager</JobPositionTitle>
<JobPositionDescription>
<JobPositionPurpose>
This position is responsible for the technical and
production functions of the Online group as well as
strategizing and implementing technology to improve
the IDG Books Web sites. Skills must include
C/C++, HTML, SQL, JavaScript, Windows NT 4, mod-
perl, CGI, TCP/IP, Netscape servers, and Apache
server.

</JobPositionPurpose>
<JobPositionLocation>
<LocationSummary>
<Municipality>Foster City</Municipality>
<Region>CA</Region>

</LocationSummary>
</JobPositionLocation>
<Classification>
<DirectHireOrContract>
<DirectHire/>

43Chapter 2 ✦ XML Applications

</DirectHireOrContract>
<Duration>
<Regular/>

</Duration>
</Classification>
<CompensationDescription>
<Pay>
<SalaryAnnual currency=”USD”>$60,000</SalaryAnnual>

</Pay>
</CompensationDescription>

</JobPositionDescription>
<JobPositionRequirements>
<QualificationsRequired>
<Qualification type=”skill”>Perl</Qualification>
<Qualification type=”skill”>C</Qualification>
<Qualification type=”skill”>C++</Qualification>
<Qualification type=”skill”>HTML</Qualification>
<Qualification type=”skill”>SQL</Qualification>
<Qualification type=”skill”>JavaScript</Qualification>
<Qualification type=”skill”>Windows NT4</Qualification>
<Qualification type=”skill”>mod-perl</Qualification>
<Qualification type=”skill”>CGI</Qualification>
<Qualification type=”skill”>TCP/IP</Qualification>
<Qualification type=”skill”>Netscape Server</Qualification>
<Qualification type=”skill”>Apache Server</Qualification>

</QualificationsRequired>
<SummaryText>
Must have excellent communication skills,
project management, the ability to communicate
technical solutions to non-technical people and
management experience.

</SummaryText>
</JobPositionRequirements>

</JobPositionInformation>

<HowToApply distribute=”external”>
<SummaryText>
Qualified candidates should submit their resumes
via e-mail in pure ASCII (no attachments) to Dee
Harris at <Link mailTo=”cajobs@idgbooks.com”>
cajobs@idgbooks.com</Link>.

</SummaryText>
</HowToApply>

<EEOStatement>
IDG Books is an equal opportunity employer.

</EEOStatement>

</JobPositionPosting>

44 Part I ✦ Introducing XML

Although you could certainly define a style sheet for HR-XML documents, and use it

to place job listings on Web pages, that’s not its main purpose. Instead HR-XML is

trying to automate the exchange of job information between companies, applicants,

recruiters, job boards, and other interested parties. There are hundreds of job

boards on the Internet today, as well as numerous Usenet newsgroups and mailing

lists. It’s impossible for one individual to search them all, and it’s hard for a com-

puter to search them all because they all use different formats for salaries, loca-

tions, benefits, and the like.

But if many sites adopt HR-XML, then it becomes relatively easy for a job seeker to

search with criteria like “all the jobs for Java programmers in New York City paying

more than $100,000 a year with full health benefits.” The IRS could enter a search

for all full-time, onsite, freelance openings so that it would know which companies

to go after for failure to withhold tax and pay unemployment insurance.

In practice, these searches would likely be mediated through an HTML form just

like current Web searches. The main difference is that such a search would return

far more useful results because it can use the structure in the data and semantics of

the markup rather than relying on imprecise English text.

Resource Description Framework
XML adds structure to documents. The Resource Description Framework (RDF) is

an XML application that adds semantics. RDF can be used to specify anything from

the author and abstract of a Web page to the version and dependencies of a soft-

ware package to the director, screenwriter, and actors in a movie. What links all of

these uses is that what’s being encoded in RDF is not the data itself (the Web page,

the software, the movie) but information about the data. This data about data is

called meta-data, and is RDF’s raison d’être.

An RDF vocabulary defines a set of elements and their permitted content that’s

appropriate for meta-data in a given domain. RDF enables communities of interest

to standardize their vocabularies and share those vocabularies with others who

may extend them. For example, the Dublin Core is a vocabulary specifically

designed for meta-data about Web pages. Educom’s Instructional Metadata System

(IMS) builds on the Dublin Core by adding additional elements that are useful when

describing school-related content such as learning level, educational objectives,

and price.

Of course, although RDF can be used for print-publishing systems, videostore cata-

logs, automated software updates, and much more, it’s likely to be adopted first for

embedding meta-data in Web pages. RDF has the potential to synchronize the cur-

rent hodge-podge of <META> tags used for site maps, content rating, automated

indexing, and digital libraries into a unified collection that all of these tools under-

stand. Once RDF meta-data becomes a standard part of Web pages, search engines

will be able to return more focused, useful results. Intelligent agents can more eas-

ily traverse the Web to conduct business for you. The Web can evolve from its

45Chapter 2 ✦ XML Applications

current state as an unordered sea of information to a structured, searchable, under-

standable data library.

As the name implies, RDF describes resources. A resource is anything that can be

addressed with a URI. The description of a resource is composed of a number of

properties. Each property has a type and a value. For example, <dc:Format>
text/html</dc:Format> has the type dc:Format and the value text/html. Values

may be text strings, numbers, dates, and so forth, or they may be other resources.

These other resources can have their own descriptions in RDF. For example, the

code in Listing 2-14 uses the Dublin Core vocabulary to describe the Cafe con Leche

Web site.

Listing 2-14: An RDF description of the Cafe con Leche home
page using the Dublin Core vocabulary

<rdf:RDF
xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
xmlns:dc=”http://purl.org/dc/”>

<rdf:Description about=”http://www.ibilio.org/xml/”>
<dc:Creator>Elliotte Rusty Harold</dc:Creator>
<dc:Language>en-US</dc:Language>
<dc:Format>text/html</dc:Format><dc:Date>2000-08-19</dc:date>
<dc:Type>text</dc:Type>
<dc:Title>Cafe con Leche</dc:Title>

</rdf:Description>

</rdf:RDF>

RDF will be used for Platform for Privacy Preferences (P3P) and possibly for future

versions of the Platform for Internet Content Selection (PICS), as well as for many

other areas where meta-data is needed to describe Web pages and other kinds of

content.

RDF is covered in more detail in Chapter 21.

XML for XML
XML is an extremely general-purpose format for text data. Some of the applications

it’s used for are further refinements of XML itself. These include the XSL style

sheet language, the XLink hypertext language, and the XML Schema data descrip-

tion language.

46 Part I ✦ Introducing XML

XSL
XSL, the Extensible Stylesheet Language, is actually two XML applications. The

first application is a vocabulary for transforming XML documents called XSL

Transformations (XSLT). XSLT includes XML elements that represent nodes, pat-

terns, templates, and other items needed for transforming XML documents from

one markup vocabulary to another (or even to the same vocabulary with different

data).

The second application is an XML vocabulary for formatting the transformed XML

document produced by the first part. This application is called XSL Formatting

Objects (XSL-FO). XSL-FO provides elements that describe the layout of a page

including pagination, blocks, characters, lists, graphics, boxes, fonts, and more. A

typical XSLT style sheet that transforms an input document into XSL formatting

objects is shown in Listing 2-15:

Listing 2-15: An XSL style sheet

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
xmlns:fo=”http://www.w3.org/1999/XSL/Format”>

<xsl:output indent=”yes”/>

<xsl:template match=”/”>
<fo:root xmlns:fo=”http://www.w3.org/1999/XSL/Format”>

<fo:layout-master-set>
<fo:simple-page-master master-name=”only”>
<fo:region-body/>

</fo:simple-page-master>
</fo:layout-master-set>

<fo:page-sequence master-name=”only”>

<fo:flow>
<xsl:apply-templates select=”//ATOM”/>

</fo:flow>

</fo:page-sequence>

</fo:root>
</xsl:template>

<xsl:template match=”ATOM”>
<fo:block font-size=”20pt” font-family=”serif”

line-height=”30pt”>

47Chapter 2 ✦ XML Applications

<xsl:value-of select=”NAME”/>
</fo:block>

</xsl:template>

</xsl:stylesheet>

Chapters 17 and 18 explore XSL in great detail.

XLinks
XML makes possible a new, more general kind of link called an XLink. XLinks accom-

plish everything possible with HTML’s URL-based hyperlinks and anchors.

However, any element can become a link, not just A elements. For instance a foot-
note element can link directly to the text of the note like this:

<footnote xmlns:xlink=”http://www.w3.org/1999/xlink”
xlink:type=”simple”
xlink:href=”footnote7.xml”>7</footnote>

Furthermore, XLinks can do many things that HTML links cannot do. XLinks can be

bidirectional so that readers can return to the page they came from. XLinks can link

to arbitrary positions in a document. XLinks can embed text or graphic data inside

a document rather than requiring the user to activate the link (much like HTML’s

 tag but more flexible). In short, XLinks make hypertext even more powerful.

XLinks are covered in Chapter 19.

Schemas
XML’s facilities for declaring how the contents of an XML element should be format-

ted are weak to nonexistent. For example, suppose as part of a date you set up

MONTH elements like this:

<MONTH>9</MONTH>

All a DTD (Document Type Definition) can say is that the contents of the MONTH ele-

ment should be character data. It cannot say that the month should be given as an

integer between 1 and 12.

A number of schemes have been proposed to use XML itself to more tightly restrict

what can appear in the content of any given element. The W3C has endorsed XML

Schema for this purpose. For example, Listing 2-16 shows a schema that declares

that MONTH elements may only contain an integer between 1 and 12:

48 Part I ✦ Introducing XML

Listing 2-16: A schema for months

<?xml version=”1.0”?>
<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

<xsd:simpleType name=”monthInt”>
<xsd:restriction base=”xsd:integer”>
<xsd:minInclusive value=”1”/>
<xsd:maxInclusive value=”12”/>

</xsd:restriction>
</xsd:simpleType>

<xsd:element name=”month” type=”monthInt”/>

</xsd:schema>

Schemas are discussed in more detail in Chapter 24.

I could show you more examples of XML used for XML, but the ones I’ve already

discussed demonstrate the basic point: XML is powerful enough to describe and

extend itself. Among other things, this means that the XML specification can remain

small and simple. There may well never be an XML 2.0 because any major additions

that are needed can be built from XML rather than being built into XML. People and

programs that need these enhanced features can use them. Others who don’t need

them can ignore them. You don’t need to know about what you don’t use. XML pro-

vides the bricks and mortar from which you can build simple huts or towering

castles.

There is a second edition of XML 1.0, and indeed this edition is precisely what this
book is based on; but this is not at all the same thing as XML 2.0. The second edi-
tion of XML 1.0 merely rewrote the XML specification to clarify a number of points
that confused people, and to correct a very small number of mistakes in the origi-
nal specification. However, it did not change the definition of what is and is not a
well-formed or valid XML document. The changes were editorial, not substantive.

Behind-the-Scene Uses of XML
Not all XML applications are public, open standards. Many software vendors are

moving to XML for their own data simply because it’s a well-understood, general-

purpose format for structured data that can be easily manipulated with free tools.

49Chapter 2 ✦ XML Applications

Microsoft Office 2000
Microsoft Office 2000 promotes HTML to a coequal status with its native binary file

formats. However, HTML 4.0 doesn’t provide support for all of the features that

Office requires, such as revision tracking, footnotes, comments, index and glossary

entries, macros, and more. Additional data that can’t be written as HTML is embed-

ded in the file in small chunks of XML. Vector graphics created with the Office draw-

ing tool are stored in VML. Other data can be encoded in custom vocabularies

created just for this purpose. For example, here’s one of those chunks taken from

the HTML version of this very chapter.

<xml>
<o:DocumentProperties>
<o:Author>Elliotte Rusty Harold</o:Author>
<o:Template>Bible2000.dot</o:Template>
<o:LastAuthor>Elliotte Rusty Harold</o:LastAuthor>
<o:Revision>2</o:Revision>
<o:TotalTime>673</o:TotalTime>
<o:LastPrinted>2000-05-08T20:55:00Z</o:LastPrinted>
<o:Created>2000-05-23T23:05:00Z</o:Created>
<o:LastSaved>2000-05-23T23:05:00Z</o:LastSaved>
<o:Pages>29</o:Pages>
<o:Words>8823</o:Words>
<o:Characters>50295</o:Characters>
<o:Company>IDG Books Worldwide</o:Company>
<o:Bytes>28160</o:Bytes>
<o:Lines>419</o:Lines>
<o:Paragraphs>100</o:Paragraphs>
<o:CharactersWithSpaces>61765</o:CharactersWithSpaces>
<o:Version>9.2720</o:Version>
</o:DocumentProperties>
<o:OfficeDocumentSettings>
<o:AllowPNG/>
<o:TargetScreenSize>640x480</o:TargetScreenSize>
</o:OfficeDocumentSettings>
</xml>

Netscape’s What’s Related
Netscape 6.0 supports direct display of XML in the Web browser, but Netscape actu-

ally started using XML internally as early as version 4.0.6. When you ask Netscape

to show you a list of sites related to the current one you’re looking at, your browser

connects to a CGI program running on a Netscape server (http://www-rl1.
netscape.com/wtgn through http://www-rl7.netscape.com/wtgn). The data

the server sends back is in XML. Listing 2-17 shows the XML data for sites related to

my Cafe au Lait site at http://metalab.unc.edu/javafaq/.

50 Part I ✦ Introducing XML

Listing 2-17: XML data for sites related to http://
metalab.unc.edu/javafaq/

<RDF:RDF>
<RelatedLinks>
<child href= “http://info.netscape.com/fwd/rlstatic/
http://search.netscape.com/cgi-bin/search?search=unc”
name=”Search on ‘unc’”/>
<child instanceOf=”Separator1”/>
<child href= “http://info.netscape.com/fwd/rlpaid/
http://excite.netscape.com/education” name=”Teacher & student
resources” type=244/>
<child instanceOf=”Separator1”/>
<child href= “http://info.netscape.com/fwd/rlstatic/
http://directory.netscape.com/Computers/Programming/Languages/
Java/News_and_Events” name=”Computers: ...: News and Events”/>
<child href= “http://info.netscape.com/fwd/rlstatic/
http://directory.netscape.com/add.html” name=”Submit a site to
the Open Directory...”/>
<child href= “http://info.netscape.com/fwd/rlstatic/
http://directory.netscape.com/about.html” name=”Become an Open
Directory editor...”/>
<child instanceOf=”Separator1”/>
<child href=”http://info.netscape.com/fwd/rlurls/http://www.
km-cd.com/black_coffee” name=”Black Coffee“ priority=”7”/>
<child href= “http://info.netscape.com/fwd/rlurls/
http://www.javaworld.com/” name=”JavaWorld“ priority=”7”/>
<child href= “http://info.netscape.com/fwd/rlurls/
http://www.gamelan.com/” name=”Gamelan“ priority=”7”/>
<child href= “http://info.netscape.com/fwd/rlurls/
http://www.apl.jhu.edu/~hall/java”
name=”www.apl.jhu.edu/%7Ehall/java“ priority=”7”/>
<child href= “http://info.netscape.com/fwd/rlurls/
http://teamjava.com/” name=”Teamjava Hq“ priority=”7”/>
<child href= “http://info.netscape.com/fwd/rlurls/
http://ncc.hursley.ibm.com/javainfo/hurindex.html” name=”Ibm
Centre For Java Technology Deve” priority=”7”/>
<child href=
“http://info.netscape.com/fwd/rlurls/http://java.sun.com/”
name=”Java Home Page“ priority=”7”/>
<child href= “http://info.netscape.com/fwd/rlurls/
http://www.javasoft.com/” name=”JavaSoft“ priority=”7”/>
<child href= “http://info.netscape.com/fwd/rlurls/
http://www.jars.com/” name=”Java Review Service“ priority=”7”/>
<child href= “http://info.netscape.com/fwd/rlurls/
http://www.yahoo.com/Computers_and_Internet/Programming_
Languages/Java” name=”Yahoo: Java“ priority=”7”/>

51Chapter 2 ✦ XML Applications

<child href=”http://editorial.alexa.com/netscape_editor”
name=”Suggest related links...”/>
<child instanceOf=”Separator1”/>
<Topic name=”Site info for metalab.unc.edu”>
<child href=”http://info.netscape.com/fwd/rlstatic/
http://home.netscape.com/escapes/related/faq.html” name=”Owner:
MetaLab Projects”/>
<child href= “http://info.netscape.com/fwd/rlstatic/
http://home.netscape.com/escapes/related/faq.html” name=”Date
established: 19-Feb-97”/>
<child href= “http://info.netscape.com/fwd/rlstatic/
http://home.netscape.com/escapes/related/faq.html”
name=”Popularity: in top 1182 sites on web”/>
<child href= “http://info.netscape.com/fwd/rlstatic/
http://home.netscape.com/escapes/related/faq.html” name=”Number
of pages on site: 7447”/>
<child href= “http://info.netscape.com/fwd/rlstatic/
http://home.netscape.com/escapes/related/faq.html” name=”Number
of links to site on web: 225444”/>
</Topic>
<child instanceOf=”Separator1”/>
<child href= “http://info.netscape.com/fwd/rlstatic/
http://home.netscape.com/escapes/related” name=”Learn more
about What’s Related”/>
<child href= “http://info.netscape.com/fwd/rlstatic/
http://home.netscape.com/escapes/keywords” name=”Learn more
about Internet Keywords”/>
</RelatedLinks>
</RDF:RDF>

This all happens completely behind the scenes. The users never know that the data

is being transferred in XML. The actual display is a menu in Netscape Navigator,

shown in Figure 2-9, not an XML or HTML page.

52 Part I ✦ Introducing XML

Figure 2-9: Netscape’s What’s Related menu

This really just scratches the surface of the use of XML for internal data. Many

other projects that use XML are just getting started, and many more will be started

over the next several years. Most of these won’t receive any publicity or write-ups

in the trade press, but they nonetheless have the potential to save their companies

millions of dollars in development costs over the life of the project. The self-docu-

menting nature of XML can be as useful for a company’s internal data as for its

external data. For instance, recently many companies were scrambling to try to fig-

ure out whether programmers who retired 20 years ago used two-digit or four-digit

dates. If that were your job, would you rather be pouring over data that looked like

this?

3c 79 65 61 72 3e 39 39 3c 2f 79 65 61 72 3e

Or that looked like this?

<YEAR>99</YEAR>

Binary file formats meant that programmers were stuck trying to clean up data in

the first format. XML even makes the mistakes easier to find and fix.

53Chapter 2 ✦ XML Applications

Summary
This chapter has just begun to touch on the many and varied applications for which

XML has been and will be used. Some of these applications, such as SVG, MathML,

and MusicML, are clear extensions of HTML for Web browsers. Many others, how-

ever, such as OFX, XFDL, and HR-XML, go in completely new directions. And all of

these applications have their own semantics and syntax that sits on top of the

underlying XML. In some cases, the XML roots are obvious. In others, you could eas-

ily spend months working with them and only hear of XML tangentially. In this chap-

ter, you explored the following applications in which XML has been put to use.

✦ Molecular sciences with CML

✦ Science and math with MathML

✦ Webcasting with CDF

✦ Classic literature

✦ Multimedia with SMIL and HTML+TIME

✦ Software updates through OSD

✦ Vector graphics with both SVG and VML

✦ Music notation in MusicML

✦ Automated voice responses with VoiceXML

✦ Financial data with OFX 2.0

✦ Legally binding forms with XFDL

✦ Job listings with HR-XML

✦ Meta-data through RDF

✦ Extending XML itself with XSL, XLink, and XML Schemas

✦ Internal use of XML by various companies, including Microsoft and Netscape

In the next chapter, you will begin writing your own XML documents and displaying

them in a Web browser.

✦ ✦ ✦

Your First XML
Document

This chapter teaches you how to create simple XML docu-

ments with tags that you define that make sense for your

document. You’ll learn which tools and software you can use

to edit and save an XML document. You’ll also learn how to

write a style sheet for the document that describes how the

content of those tags should be displayed. Finally, you’ll learn

how to load the document into a Web browser so that it can

be viewed.

Since this chapter teaches you by example, it will not cross all

the ts and dot all the is. Experienced readers may notice a few

exceptions and special cases that aren’t discussed here. Don’t

worry about these; the details will be covered over the course

of the next several chapters. For the most part, you don’t

need to worry about the technical rules up front. As with

HTML, you can learn and do a lot by copying a few simple

examples that others have prepared and by modifying them

to fit your needs.

Toward that end I encourage you to follow along by typing in

the examples I give in this chapter and loading them into the

different programs discussed. This will give you a basic feel

for XML that will make the technical details in future chapters

easier to grasp in the context of these specific examples.

Hello XML
This section follows an old programmer’s tradition of intro-

ducing a new language with a program that prints “Hello

World” on the console. XML is a markup language, not a pro-

gramming language; but the basic principle still applies. It’s

easiest to get started if you begin with a complete, working

example that you can build on, rather than starting with more

fundamental pieces that by themselves don’t do anything. If

33C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Creating a simple
XML document

Exploring the simple
XML document

Assigning meaning to
XML tags

Writing style sheets
for XML documents

Attaching style sheets
to XML documents

✦ ✦ ✦ ✦

56 Part I ✦ Introducing XML

you do encounter problems with the basic tools, those problems are a lot easier to

debug and fix in the context of the short, simple documents used here, rather than

in the context of the more complex documents developed in the rest of the book.

Creating a simple XML document
In this section, you create a simple XML document and save it in a file. Listing 3-1 is

about the simplest XML document I can imagine, so start with it. This document

can be typed in any convenient text editor, such as Notepad, BBEdit, or emacs.

Listing 3-1: Hello XML

<?xml version=”1.0”?>
<FOO>
Hello XML!
</FOO>

Listing 3-1 is not very complicated, but it is a good XML document. To be more pre-

cise, it is a well-formed XML document. (XML has special terms for documents that

it considers “good” depending on exactly which set of rules they satisfy. “Well-

formed” is one of those terms, but we’ll get to that later.)

Well-formedness is covered in Chapter 6.

Saving the XML file
After you’ve typed in Listing 3-1, save it in a file called hello.xml, HelloWorld.xml,

MyFirstDocument.xml, or some other name. The three-letter extension .xml is fairly

standard. However, do make sure that you save it in plain-text format, and not in

the native format of a word processor such as WordPerfect or Microsoft Word.

If you’re using Notepad to edit your files, be sure to enclose the filename in dou-
ble quotes when saving the document; for example, "Hello.xml", not merely
Hello.xml, as shown in Figure 3-1. Without the quotes, Notepad will append the
.txt extension to your file name, naming it Hello.xml.txt, which is not what you
want at all.

The Windows NT version of Notepad gives you the option to save the file in

Unicode. This will also work, though for now you should stick to basic ASCII. XML

files are written in Unicode or a compressed version of Unicode called UTF-8, which

is a strict superset of ASCII; thus, pure ASCII files are also well-formed XML files.

Note

Cross-
Reference

57Chapter 3 ✦ Your First XML Document

Figure 3-1: An XML document saved in
Notepad with the filename in quotes

UTF-8 and ASCII are discussed in more detail in Chapter 7.

Loading the XML file into a Web browser
Now that you’ve created your first XML document, you’re going to want to look at

it. The file can be opened directly in a browser that supports XML such as Internet

Explorer 5.0. Figure 3-2 shows the result.

Figure 3-2: Hello.xml displayed in Internet Explorer 5.0

What you see will vary from browser to browser. In this case it’s a nicely formatted

and syntax-colored view of the document’s source code. Mozilla, Netscape, and

Opera will simply show you the string “Hello XML!” in the default font. Whatever

the browser shows you, it’s not likely to be particularly attractive. The problem is

that the browser doesn’t really know what to do with the FOO element. You have to

tell the browser how to handle each element by adding a style sheet. You learn to

do that shortly, but let’s first look a little more closely at this XML document.

Cross-
Reference

58 Part I ✦ Introducing XML

Exploring the Simple XML Document
The first line of the simple XML document in Listing 3-1 is the XML declaration:

<?xml version=”1.0”?>

The XML declaration has a version attribute. An attribute is a name-value pair sep-

arated by an equals sign. The name is on the left side of the equals sign, and the

value is on the right side between double quote marks.

Every XML document should begin with an XML declaration that specifies the ver-

sion of XML in use. (Some XML documents omit this for reasons of backward com-

patibility, but you should include a version declaration unless you have a specific

reason to leave it out.) In the previous example, the version attribute says that

this document conforms to the XML 1.0 specification. There isn’t any version of

XML except 1.0. This attribute just exists to allow the possibility of future revisions.

Now look at the next three lines of Listing 3-1:

<FOO>
Hello XML!
</FOO>

Collectively these three lines form a FOO element. Separately, <FOO> is a start tag;

</FOO> is an end tag; and Hello XML! is the content of the FOO element. Divided

another way, the start tag, end tag, and XML declaration are all markup. The text

Hello XML! is character data.

You may be asking what the <FOO> tag means. The short answer is “whatever you

want it to mean.” Rather than relying on a few hundred predefined tags, XML lets

you create the tags that you need when you need them. Therefore, the <FOO> tag

has whatever meaning you assign it. The same XML document could have been

written with different tag names, as Listings 3-2, 3-3, and 3-4 show.

Listing 3-2: greeting.xml

<?xml version=”1.0”?>
<GREETING>
Hello XML!
</GREETING>

59Chapter 3 ✦ Your First XML Document

Listing 3-3: paragraph.xml

<?xml version=”1.0”?>
<P>
Hello XML!
</P>

Listing 3-4: document.xml

<?xml version=”1.0”?>
<DOCUMENT>
Hello XML!
</DOCUMENT>

The four XML documents in Listings 3-1 through 3-4 have tags with different names.

However, they are all equivalent because they have the same structure and content.

Assigning Meaning to XML Tags
Markup can indicate three kinds of meaning: structural, semantic, or stylistic.

Structure specifies the relations between the different elements in the document.

Semantics relates the individual elements to the real world outside of the document

itself. Style specifies how an element is displayed.

Structure merely expresses the form of the document, without regard for differ-

ences between individual tags and elements. For instance, the four XML documents

shown in Listings 3-1 through 3-4 are structurally the same. They all specify docu-

ments with a single nonempty, root element that contains the same content. The

different names of the tags have no structural significance.

Semantic meaning exists outside the document, in the mind of the author or reader,

or in some computer program that generates or reads these files. For instance, a

Web browser that understands HTML, but not XML, would assign the meaning

“paragraph” to the tags <P> and </P> but not to the tags <GREETING> and

</GREETING>, <FOO> and </FOO>, or <DOCUMENT> and </DOCUMENT>. An English-

speaking human would be more likely to understand <GREETING> and </GREETING>
or <DOCUMENT> and </DOCUMENT> than <FOO> and </FOO> or <P> and </P>.

Meaning, like beauty, is in the mind of the beholder.

60 Part I ✦ Introducing XML

Computers, being relatively dumb machines, can’t really be said to understand the

meaning of anything. They simply process bits and bytes according to predeter-

mined formulas (albeit very quickly). A computer is just as happy to use <FOO> or

<P> as it is to use the more meaningful <GREETING> or <DOCUMENT> tags. Even a

Web browser can’t be said to really understand what a paragraph is. All the

browser knows is that when it encounters the end of a paragraph it should place a

blank line before the next element.

Naturally, it’s better to pick tags that more closely reflect the meaning of the infor-

mation they contain. Many disciplines, such as math and chemistry, are working on

creating industry-standard tag sets. These should be used when appropriate.

However, many tags are made up as you need them.

The third kind of meaning that can be associated with a tag is stylistic. Style says

how the content of a tag is to be presented on a computer screen or other output

device. Style says whether a particular element is bold, italic, green, two inches

high, or what have you. Computers are better at understanding stylistic than

semantic meaning. In XML, style is applied through style sheets.

Writing a Style Sheet for an XML Document
XML allows you to create any tags that you need. Of course, since you have almost

complete freedom in creating tags, there’s no way for a generic browser to antici-

pate your tags and provide rules for displaying them. Therefore, you also need to

write a style sheet for the XML document that tells browsers how to display partic-

ular tags. Like tag sets, style sheets can be shared between different documents and

different people, and the style sheets you create can be integrated with style sheets

others have written.

As discussed in Chapter 1, there is more than one style sheet language to choose

from. The one introduced in this chapter is Cascading Style Sheets (CSS). CSS has

the advantage of being an established W3C standard, being familiar to many people

from HTML, and being supported in the first wave of XML-enabled Web browsers.

As noted in Chapter 1, another possibility is the Extensible Stylesheet Language.
XSL is currently the most powerful and flexible style sheet language, and the only
one designed specifically for use with XML. However, XSL is more complex than
CSS, not yet as well supported, and not finished either.

XSL is discussed in Chapters 5, 17, and 18.

The greeting.xml example shown in Listing 3-2 only contains one tag, <GREETING>,

so all you need to do is define the style for the GREETING element. Listing 3-5 is a

very simple style sheet that specifies that the contents of the GREETING element

should be rendered as a block-level element in 24-point bold type.

Cross-
Reference

Note

61Chapter 3 ✦ Your First XML Document

Listing 3-5: greeting.xsl

GREETING {display: block; font-size: 24pt; font-weight: bold}

Listing 3-5 should be typed in a text editor and saved in a new file called

greeting.css in the same directory as Listing 3-2. The .css extension stands for

Cascading Style Sheet. Again, the .css extension is important, although the exact

filename is not important. However, if a style sheet is to be applied only to a single

XML document, it’s often convenient to give it the same name as that document

with the extension .css instead of .xml.

Attaching a Style Sheet to an XML Document
Once you’ve written an XML document and a Cascading Style Sheet for that docu-

ment, you need to tell the browser to apply the style sheet to the document. In the

long-term, there are likely to be a number of different ways to do this, including

browser-server negotiation via HTTP headers, naming conventions, and browser-

side defaults. However, right now the only way that works is to include an

<?xml-stylesheet?> processing instruction in the XML document to specify

the style sheet to be used.

The <?xml-stylesheet?> processing instruction has two required attributes:

type and href. The type attribute specifies the style sheet language used, and the

href attribute specifies a URL, possibly relative, where the style sheet can be

found. In Listing 3-6, the xml-stylesheet processing instruction specifies that the

style sheet named greeting.css written in the CSS style sheet language is to be

applied to this document.

Listing 3-6: styledgreeting.xml with an xml-stylesheet
processing instruction

<?xml version=”1.0”?>
<?xml-stylesheet type=”text/css” href=”greeting.css”?>
<GREETING>
Hello XML!
</GREETING>

Now that you’ve created your first XML document and style sheet, you want to look

at it. All you have to do is load Listing 3-6 into an XML-enabled Web browser such

as Mozilla, Opera 4.0 and 5.0, Internet Explorer 5.0 and 5.5, or Netscape 6. Figure 3-3

shows styledgreeting.xml in Mozilla for Windows.

62 Part I ✦ Introducing XML

Figure 3-3: Styledgreeting.xml displayed in Mozilla 0.6

Summary
In this chapter, you learned to create a simple XML document. In particular, you

learned:

✦ How to write and save simple XML documents.

✦ How to assign XML elements three kinds of meaning: structural, semantic, and

stylistic.

✦ How to write a CSS for an XML document that tells browsers how to display

particular elements.

✦ How to attach a CSS style sheet to an XML document with an

xml-stylesheet processing instruction.

✦ How to load XML documents into a Web browser.

In the next chapter, we develop a much larger example of an XML document that

demonstrates more of the practical considerations involved in choosing XML tags.

✦ ✦ ✦

Structuring Data

This chapter develops a longer example that shows how a

large list of baseball statistics might be stored in XML.

By following along with this example, you’ll learn many

useful techniques that you can apply to all kinds of data-heavy

documents.

A document such as this has several potential uses. Most

obviously, it can be displayed on a Web page. It can also be

used as input to other programs that want to analyze particu-

lar seasons or lineups. As the example is developed, you’ll

learn, among other things, how to mark up data in XML, the

principles for good XML element names, and how to prepare a

CSS for a document.

Examining the Data
1998 was an astonishing year for baseball. The New York

Yankees won their twenty-fourth World Series by sweeping

the San Diego Padres in four games. The Yankees finished the

regular season with an American League record 114 wins. The

St. Louis Cardinals’ Mark McGwire and the Chicago Cubs’

Sammy Sosa dueled through September for the record, previ-

ously held by Roger Maris, for most home runs hit in a single

season since baseball was integrated. (The all-time major

league record for home runs in a single season is still held by

catcher Josh Gibson who hit 75 home runs in the Negro

league in 1931. Admittedly, Gibson didn’t have to face the sort

of pitching Sosa and McGwire faced in today’s integrated

league. Then again neither did Babe Ruth who was widely —

and incorrectly — believed to have held the record until Roger

Maris hit 61 in 1961.)

What exactly made 1998 such an exciting season? A cynic

would tell you that 1998 was an expansion year with three new

teams, and consequently much weaker pitching overall. This

gave outstanding batters, such as Sosa and McGwire, and out-

standing teams, such as the Yankees, a chance to really shine

because, although they were as strong as they’d been in 1997,

the average opponent they faced was a lot weaker. Of course,

true baseball fanatics know the real reason — statistics.

44C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Examining the data

XMLizing the data

The advantages of
the XML format

Preparing a style
sheet for document
display

✦ ✦ ✦ ✦

64 Part I ✦ Introducing XML

That’s a funny thing to say. In most sports you hear about heart, guts, ability, skill,

determination, and more. Only in baseball do the fans get so worked up about raw

numbers — batting average, earned run average, slugging average, on base average,

fielding percentage, batting average against right-handed pitchers, batting average

against left-handed pitchers, batting average against right-handed pitchers when

batting left-handed, batting average against right-handed pitchers in Cleveland

under a full moon, and so on.

Baseball fans are obsessed with numbers, the more numbers the better. Every sea-

son the Internet is host to thousands of rotisserie leagues in which avid netizens

manage teams, trade players, and calculate how their fantasy teams are doing

based on the real-world performance of the players on their fantasy rosters. STATS,

Inc. tracks the results of each and every pitch made in a major league game, so it’s

possible to calculate statistics for excruciatingly specific situations. For instance,

you can figure out whether a particular batter performs better or worse than aver-

age with players in scoring position.

In the next two sections, for the benefit of the less baseball-obsessed reader, I exam-

ine the commonly available statistics that describe an individual player’s batting

and pitching. Fielding statistics are also available, but I omit them to keep the exam-

ples to a more manageable size. The specific example I use is the New York

Yankees, but the same statistics are available for any team.

Batters
A few years ago, Bruce Bukiet, Jose Palacios, and I wrote a paper called “A Markov

Chain Approach to Baseball” (Operations Research, Volume 45, Number 1, January-

February, 1997, pp. 14-23, http://m.njit.edu/~bukiet/Papers/ball.pdf). In

this paper we analyzed all possible batting orders for all teams in the 1989 National

League. The results of that paper were mildly interesting. The worst batter on the

team, generally the pitcher, should bat eighth rather than the customary ninth posi-

tion, at least in the National League. However, what concerns me here is the work

that went into producing this paper. As low grad student on the totem pole, it was

my job to manually rekey the complete batting history of each and every player in

the National League. That summer would have been a lot more pleasant if I’d had

the data available in a convenient format such as XML. In this chapter, I’m going to

produce the data in that format. Typically this data is presented in rows of numbers

as shown in Table 4-1 for the 1998 Yankees offense (batters). Because pitchers

rarely bat in the American League, only players who actually batted are listed.

65Chapter 4 ✦ Structuring Data

Table 4-1
The 1998 Yankees Offense

Name P G AB R H 2B 3B HR RBI BB SO HBP

Scott Brosius Third Base 152 530 86 159 34 0 19 98 52 97 10

Homer Bush Second Base 45 71 17 27 3 0 1 5 5 19 0

Chad Curtis Outfield 151 456 79 111 21 1 10 56 75 80 7

Chili Davis Designated 35 103 11 30 7 0 3 9 14 18 0
Hitter

Mike Figga Catcher 1 4 1 1 0 0 0 0 0 1 0

Joe Girardi Catcher 78 254 31 70 11 4 3 31 14 38 2

Derek Jeter Shortstop 149 626 127 203 25 8 19 84 57 119 5

Chuck Knoblauch Second Base 150 603 117 160 25 4 17 64 76 70 18

Ricky Ledee Outfield 42 79 13 19 5 2 1 12 7 29 0

Mike Lowell Third Base 8 15 1 4 0 0 0 0 0 1 0

Tino Martinez First Base 142 531 92 149 33 1 28 123 61 83 6

Paul O’Neill Outfield 152 602 95 191 40 2 24 116 57 103 2

Jorge Posada Catcher 111 358 56 96 23 0 17 63 47 92 0

Tim Raines Outfield 109 321 53 93 13 1 5 47 55 49 3

Luis Sojo Shortstop 54 147 16 34 3 1 0 14 4 15 0

Shane Spencer Outfield 27 67 18 25 6 0 10 27 5 12 0

Darryl Strawberry Designated 101 295 44 73 11 2 24 57 46 90 3
Hitter

Dale Sveum First base 30 58 6 9 0 0 0 3 4 16 0

Bernie Williams Outfield 128 499 101 169 30 5 26 97 74 81 1

Standard Abbreviations TM: Team; P: Position; G: Games Played; GS: Games Started; AB: At
Bats; R: Runs; H: Hits; 2B: Doubles; 3B: Triples; HR: Home Runs; RBI: Runs Batted In; SB:
Stolen Bases; CS: Caught Stealing; SH: Sacrifice Hits; SF: Sacrifice Flies; Err: Errors; PB: Pitcher
Balked; BB: Base on Balls (Walks); SO: Strike Outs; HBP: Hit By Pitch

Each column effectively defines an element. Thus, there need to be elements for

player, position, games played, at bats, runs, hits, doubles, triples, home runs, runs

batted in, and walks. Singles are generally not reported separately. Rather, they’re

calculated by subtracting the total number of doubles, triples, and home runs from

the number of hits.

66 Part I ✦ Introducing XML

The above data and the pitcher data in the next section is actually a somewhat
limited list that only begins to specify the data collected on a typical baseball
game. There are a lot more elements, including number of times the pitcher
balked (rare), fielding percentage, throwing arm, batting arm, college attended,
height, weight, shoe size, ring size, preferred brand of chewing tobacco, and more.
However, I stick to this basic information to keep the examples manageable.

Pitchers
Pitchers are not expected to be home-run hitters or base stealers. Indeed, a pitcher

who can reach first on occasion is a surprise bonus for a team. Instead, pitchers are

judged on a whole different set of numbers, which are shown in Table 4-2. Each col-

umn of this table also defines an element. Some of these elements, such as name

and position, are the same for batters and pitchers. Others, such as saves and

shutouts, only apply to pitchers. And a few — such as runs and home runs — have

the same name as a batter statistic, but have different meanings. For instance, the

number of runs for a batter is the number of runs the batter scored. The number of

runs for a pitcher is the number of runs scored by the opposing teams against this

pitcher.

Note

67Chapter 4 ✦ Structuring Data

Ta
bl

e
4-

2
Th

e
19

98
 Y

an
ke

es
 P

it
ch

er
s

N
am

e
P

W
L

S
G

P
G

S
C

G
SH

O
ER

A
IP

H
H

R
R

un
s

ER
H

B
W

P
B

K
W

B
SO

Jo
e

B
or

ow
sk

i
Re

lie
f

1
0

0
8

0
0

0
6.

52
9.

2
11

0
7

7
0

0
0

4
7

Pi
tc

he
r

Ry
an

 B
ra

dl
ey

Re
lie

f
2

1
0

5
1

0
0

5.
68

12
.2

12
2

9
8

1
0

0
9

13
Pi

tc
he

r

Jim
 B

ru
sk

e
Re

lie
f

1
0

0
3

1
0

0
3

9
9

2
3

3
0

0
0

1
3

Pi
tc

he
r

M
ik

e
B

ud
di

e
Re

lie
f

4
1

0
24

2
0

0
5.

62
41

.2
46

5
29

26
3

2
1

13
20

Pi
tc

he
r

D
av

id
 C

on
e

St
ar

tin
g

20
7

0
31

31
3

0
3.

55
20

7.
2

18
6

20
89

82
15

6
0

59
20

9
Pi

tc
he

r

To
dd

 E
rd

os
Re

lie
f

0
0

0
2

0
0

0
9

2
5

0
2

2
0

0
0

1
0

Pi
tc

he
r

O
rla

nd
o

St
ar

tin
g

12
4

0
21

21
3

1
3.

13
14

1
11

3
11

53
49

6
5

2
52

13
1

H
er

na
nd

ez
Pi

tc
he

r

D
ar

re
n

Re
lie

f
0

3
2

34
0

0
0

3.
33

51
.1

53
4

19
19

2
1

0
14

31
H

ol
m

es
Pi

tc
he

r

H
id

ek
i I

ra
bu

St
ar

tin
g

13
9

0
29

28
2

1
4.

06
17

3
14

8
27

79
78

9
6

1
76

12
6

Pi
tc

he
r

M
ik

e
St

ar
tin

g
0

1
0

3
2

0
0

12
.7

9
6.

1
9

2
9

9
0

1
1

4
1

Je
rz

em
be

ck
Pi

tc
he

r

G
ra

em
e

Ll
oy

d
Re

lie
f

3
0

0
50

0
0

0
1.

67
37

.2
26

3
10

7
2

2
0

6
20

Pi
tc

he
r

C
on

tin
ue

d

68 Part I ✦ Introducing XML

Ta
bl

e
4-

2
(c

on
tin

ue
d)

N
am

e
P

W
L

S
G

P
G

S
C

G
SH

O
ER

A
IP

H
H

R
R

un
s

ER
H

B
W

P
B

K
W

B
SO

Ra
m

iro

Re
lie

f
10

2
1

41
14

1
1

3.
25

13
0.

1
13

1
9

50
47

9
3

0
30

56
M

en
do

za
Pi

tc
he

r

Je
ff

N
el

so
n

Re
lie

f
5

3
3

45
0

0
0

3.
79

40
.1

44
1

18
17

8
2

0
22

35
Pi

tc
he

r

An
dy

 P
et

tit
te

St
ar

tin
g

16
11

0
33

32
5

0
4.

24
21

6.
1

22
6

20
 1

10
 1

2
6

5
0

87
14

6
Pi

tc
he

r

M
ar

ia
no

Re

lie
f

3
0

36
54

0
0

0
1.

91
61

.1
48

3
13

13
1

0
0

17
36

Ri
ve

ra
Pi

tc
he

r

M
ik

e
St

an
to

n
Re

lie
f

4
1

6
67

0
0

0
5.

47
79

71
13

51
48

4
0

0
26

69
Pi

tc
he

r

Ja
y

Te
ss

m
er

Re
lie

f
1

0
0

7
0

0
0

3.
12

8.
2

4
1

3
3

0
1

0
4

6
Pi

tc
he

r

D
av

id
 W

el
ls

St
ar

tin
g

18
4

0
30

30
8

5
3.

49
21

4.
1

19
5

29
86

83
1

2
0

29
16

3
Pi

tc
he

r

St
an

da
rd

 A
bb

re
vi

at
io

ns
P:

 P
os

iti
on

; G
P:

 G
am

es
 P

la
ye

d;
 G

S:
 G

am
es

 S
ta

rt
ed

; W
: W

in
s;

 L
: L

os
se

s;
 S

: S
av

es
; E

R
A:

 E
ar

ne
d

Ru
n

Av
er

ag
e;

 C
G

:
C

om
pl

et
e

G
am

es
; S

H
O

: S
hu

t O
ut

s;
 IP

: I
nn

in
gs

 P
itc

he
d;

 H
: H

its
; H

R:
 H

om
e

Ru
ns

; R
: R

un
s;

 E
R:

 E
ar

ne
d

Ru
ns

; H
B

: H
it

B
at

te
r;

W
P:

 W
ild

 P
itc

h;
B

K:
 B

al
k;

 W
B

: W
al

ke
d

B
at

te
r;

SO
: S

tr
uc

k
O

ut
 B

at
te

r

69Chapter 4 ✦ Structuring Data

Organization of the XML data
XML is based on a containment model. Each XML element can contain text or other

XML elements called children. A few XML elements may contain both text and child

elements. This is called mixed content. However, in data heavy documents like the

one being developed in this chapter, mixed content is bad form and should be

avoided. Mixed content is a lot more common and useful in narrative documents

like Web pages, letters, essays, and books.

However, there’s often more than one way to organize the data, depending on your

needs. One advantage of XML is that it makes it fairly straightforward to write a pro-

gram that reorganizes the data in a different form. We discuss this when we talk

about XSL transformations in Chapter 17.

To get started, the first question you have to address is what contains what? For

instance, it is fairly obvious that a league contains divisions that contain teams that

contain players. Although teams can change divisions when moving from one city

to another, and players are routinely traded, at any given moment in time each

player belongs to exactly one team, and each team belongs to exactly one division.

Similarly, a season contains games, which contain innings, which contain at bats,

which contain pitches or plays.

However, does a season contain leagues or does a league contain a season? The

answer isn’t so obvious, and indeed there isn’t one unique answer. Whether it

makes more sense to make season elements children of league elements or league

elements children of season elements depends on the use to which the data will be

put. You can even create a new root element that contains both seasons and

leagues, neither of which is a child of the other (although doing so would require

some advanced techniques that won’t be discussed for several chapters yet).

Readers familiar with database theory may recognize XML’s model as essentially a
hierarchical database, and consequently recognize that it shares all the disadvan-
tages (and a few advantages) of that data model. There are times when a table-
based relational approach makes more sense. This example certainly looks like
one of those times. However, XML doesn’t follow a relational model.

On the other hand, it is completely possible to store the actual data in multiple
tables in a relational database, and then generate the XML on the fly. Indeed, the
larger examples on the CD-ROM were created in that fashion. This enables one set
of data to be presented in multiple formats. Transforming the data with style
sheets provides still more possible views of the data.

Because my personal interests lie in analyzing player performance within a single

season, I’m going to choose season for the root of my documents. Each season will

contain leagues, which will contain divisions, which will contain players. I’m not

going to granularize my data all the way down to the level of individual games,

innings, or plays, because while useful, such examples would be excessively long.

Note

70 Part I ✦ Introducing XML

You, however, may have other interests. If you choose to divide the data in some

other fashion, that works, too. There’s almost always more than one way to orga-

nize data in XML. In fact, several upcoming chapters explore alternative markup

vocabularies for this very example.

XMLizing the Data
Let’s begin the process of marking up the data for the 1998 Major League season in

XML. Remember that in XML you’re allowed to make up the tags as you go along.

We’ve already decided that the fundamental element of this document will be a sea-

son. Seasons will contain leagues. Leagues will contain divisions. Divisions will con-

tain teams. Teams contain players. Players will have statistics including games

played, at bats, runs, hits, doubles, triples, home runs, runs batted in, walks, and

hits by pitch.

Starting the document: XML declaration
and root element
XML documents may be recognized by the XML declaration. This is placed at the

start of XML files to identify the version in use. The only version currently under-

stood is 1.0.

<?xml version=”1.0”?>

Every good XML document (where good has a very specific meaning to be dis-

cussed in Chapter 6) must have a root element. This is an element that completely

contains all other elements of the document. The root element’s start tag comes

before all other elements’ start tags, and the root element’s end tag comes after all

other elements’ end tags. For the root element, we will use SEASON with a start tag

of <SEASON> and an end tag of </SEASON>. The document now looks like this:

<?xml version=”1.0”?>
<SEASON>
</SEASON>

The XML declaration is not an element or a tag. Therefore, it does not need to be

contained inside the root element SEASON. But every element that you put in this

document will go between the <SEASON> start tag and the </SEASON> end tag.

This choice of root element means that you will not be able to store multiple sea-

sons in a single file. If you want to do that, however, you can define a new root ele-

ment that contains seasons. For example,

71Chapter 4 ✦ Structuring Data

<?xml version=”1.0”?>
<DOCUMENT>
<SEASON>
</SEASON>
<SEASON>
</SEASON>

</DOCUMENT>

Of course you will want to identify which season you’re talking about. To do that,

give the SEASON element a YEAR child element. For example:

<?xml version=”1.0”?>
<SEASON>
<YEAR>
1998

</YEAR>
</SEASON>

I’ve used indentation here and in other examples to indicate that the YEAR element

is a child of the SEASON element and that the text 1998 is the content of the YEAR
element. This is good coding style, but it is not required. White space in XML is nor-

mally not especially significant. The same example could have been written like

this:

<?xml version=”1.0”?>
<SEASON>
<YEAR>1998</YEAR>

</SEASON>

Naming Conventions

Before I go any further, I’d like to say a few words about naming conventions. As you’ll see
in Chapter 6, XML element names are quite flexible and can contain any number of letters
and digits in either upper- or lowercase. You have the option of writing XML tags that look
like any of the following:

<SEASON>

<Season>

<season>

<season1998>

<Season98>

<season_98>

There are several thousand more variations. I don’t really care (nor does XML) whether you
use all uppercase, all lowercase, mixed-case with internal capitalization, or some other con-
vention. However, I do recommend that you choose one convention and stick to it.

72 Part I ✦ Introducing XML

Indeed, I often compress elements in this fashion when they’ll fit and space is at a

premium. You can compress the document still further, even down to a single line,

but with a corresponding loss of clarity. For example:

<?xml version=”1.0”?><SEASON><YEAR>1998</YEAR></SEASON>

Of course, this version is much harder to read and to understand, which is why I

didn’t write it that way in the first place. The tenth goal listed in the XML 1.0 specifi-

cation is “Terseness in XML markup is of minimal importance.” The baseball exam-

ple reflects this principle throughout.

XMLizing league, division, and team data
Major league baseball in the United States is divided into two leagues, the American

League and the National League. Each league has a name. The two names can be

encoded like this:

<?xml version=”1.0”?>
<SEASON>
<YEAR>1998</YEAR>
<LEAGUE>
<LEAGUE_NAME>National League</LEAGUE_NAME>

</LEAGUE>
<LEAGUE>
<LEAGUE_NAME>American League</LEAGUE_NAME>

</LEAGUE>
</SEASON>

I’ve chosen to define the name of a league with a LEAGUE_NAME element, rather than

simply a NAME element because NAME is too generic and likely to be used in other

contexts. For instance, divisions, teams, and players also have names.

Elements from different XML applications with the same name can be combined
using namespaces. Namespaces will be discussed in Chapter 13. However, even
with namespaces, you wouldn’t want to give multiple items in the same applica-
tion (TEAM and LEAGUE in this example) the same name.

Each league can be divided into East, West, and Central divisions, which can be

encoded as follows:

<LEAGUE>
<LEAGUE_NAME>National League</LEAGUE_NAME>
<DIVISION>
<DIVISION_NAME>East</DIVISION_NAME>

</DIVISION>
<DIVISION>

Cross-
Reference

73Chapter 4 ✦ Structuring Data

<DIVISION_NAME>Central</DIVISION_NAME>
</DIVISION>
<DIVISION>
<DIVISION_NAME>West</DIVISION_NAME>

</DIVISION>
</LEAGUE>
<LEAGUE>
<LEAGUE_NAME>American League</LEAGUE_NAME>
<DIVISION>
<DIVISION_NAME>East</DIVISION_NAME>

</DIVISION>
<DIVISION>
<DIVISION_NAME>Central</DIVISION_NAME>

</DIVISION>
<DIVISION>
<DIVISION_NAME>West</DIVISION_NAME>

</DIVISION>
</LEAGUE>

The true value of an element depends on its parent; that is, the elements that con-

tain it as well as itself. Both the American and National Leagues have an East divi-

sion but these are not the same thing.

Each division is divided into teams. Each team has a name and a city. For example,

data that pertains to the American League East can be encoded as follows:

<DIVISION>
<DIVISION_NAME>East</DIVISION_NAME>
<TEAM>
<TEAM_CITY>Baltimore</TEAM_CITY>
<TEAM_NAME>Orioles</TEAM_NAME>

</TEAM>
<TEAM>
<TEAM_CITY>Boston</TEAM_CITY>
<TEAM_NAME>Red Sox</TEAM_NAME>

</TEAM>
<TEAM>
<TEAM_CITY>New York</TEAM_CITY>
<TEAM_NAME>Yankees</TEAM_NAME>

</TEAM>
<TEAM>
<TEAM_CITY>Tampa Bay</TEAM_CITY>
<TEAM_NAME>Devil Rays</TEAM_NAME>

</TEAM>
<TEAM>
<TEAM_CITY>Toronto</TEAM_CITY>
<TEAM_NAME>Blue Jays</TEAM_NAME>

</TEAM>
</DIVISION>

74 Part I ✦ Introducing XML

XMLizing player data
Each team is composed of players. Each player has a first name and a last name. It’s

important to separate the first and last names so that you can sort by either one. The

data for the starting pitchers in the 1998 Yankees lineup can be encoded as follows:

<TEAM>
<TEAM_CITY>New York</TEAM_CITY>
<TEAM_NAME>Yankees</TEAM_NAME>
<PLAYER>
<GIVEN_NAME>Orlando</GIVEN_NAME>
<SURNAME>Hernandez</SURNAME>

</PLAYER>
<PLAYER>
<GIVEN_NAME>David</GIVEN_NAME>
<SURNAME>Cone</SURNAME>

</PLAYER>
<PLAYER>
<GIVEN_NAME>David</GIVEN_NAME>
<SURNAME>Wells</SURNAME>

</PLAYER>
<PLAYER>
<GIVEN_NAME>Andy</GIVEN_NAME>
<SURNAME>Pettitte</SURNAME>

</PLAYER>
<PLAYER>
<GIVEN_NAME>Hideki</GIVEN_NAME>
<SURNAME>Irabu</SURNAME>

</PLAYER>
</TEAM>

The tags <GIVEN_NAME> and <SURNAME> are preferable to the more obvious
<FIRST_NAME> and <LAST_NAME> or <FIRST_NAME> and <FAMILY_NAME>.
Whether the family name or the given name comes first or last varies from culture
to culture. Furthermore, surnames aren’t necessarily family names in all cultures.

XMLizing player statistics
The next step is to provide statistics for each player. Statistics look a little different

for pitchers and batters, especially in the American League where few pitchers bat.

Below are Joe Girardi’s 1998 statistics. He’s a catcher so he has batting statistics:

<PLAYER>
<GIVEN_NAME>Joe</GIVEN_NAME>
<SURNAME>Girardi</SURNAME>
<POSITION>Catcher</POSITION>
<GAMES>78</GAMES>
<GAMES_STARTED>76</GAMES_STARTED>
<AT_BATS>254</AT_BATS>

Note

75Chapter 4 ✦ Structuring Data

<RUNS>31</RUNS>
<HITS>70</HITS>
<DOUBLES>11</DOUBLES>
<TRIPLES>4</TRIPLES>
<HOME_RUNS>3</HOME_RUNS>
<RBI>31</RBI>
<STEALS>2</STEALS>
<CAUGHT_STEALING>4</CAUGHT_STEALING>
<SACRIFICE_HITS>8</SACRIFICE_HITS>
<SACRIFICE_FLIES>1</SACRIFICE_FLIES>
<ERRORS>3</ERRORS>
<WALKS>14</WALKS>
<STRUCK_OUT>38</STRUCK_OUT>
<HIT_BY_PITCH>2</HIT_BY_PITCH>

</PLAYER>

Terseness in XML Markup is of Minimal Importance

Throughout this example, I’m following the explicit XML principle that “Terseness in XML
markup is of minimal importance.” This certainly assists nonbaseball-literate readers who
may not recognize baseball arcana such as the standard abbreviation for a walk — BB, base
on balls, not W as you might expect. If document size is truly an issue, it’s easy to compress
the files with zip or any other compression tool.

However, this does mean that XML documents tend to be quite long, and relatively tedious
to type by hand. I confess that this example sorely tempts me to use abbreviations, clarity
be damned. If I were to do so, a typical PLAYER element might look like this:

<PLAYER>
<GIVEN_NAME>Joe</GIVEN_NAME>
<SURNAME>Girardi</SURNAME>
<P>C</P>
<G>78</G>
<AB>254</AB>
<R>31</R>
<H>70</H>
<DO>11</DO>
<TR>4</TR>
<HR>3</HR>
<RBI>31</RBI>
<BB>14</BB>
<SO>38</SO>
<SB>2</SB>
<CS>4</CS>
<HBP>2</HBP>

</PLAYER>

76 Part I ✦ Introducing XML

Now let’s look at the statistics for a pitcher. Although pitchers occasionally bat in

the American League, and frequently bat in the National League, they do so far less

often than any other player. Pitchers are hired and fired, cheered and booed, based

on their pitching performance. If they can actually hit the ball on occasion, that’s

pure gravy. Pitching statistics include games played, wins, losses, innings pitched,

earned runs, shutouts, hits against, walks given up, and more. Here are Hideki

Irabu’s 1998 statistics encoded in XML.

<PLAYER>
<GIVEN_NAME>Hideki</GIVEN_NAME>
<SURNAME>Irabu</SURNAME>
<POSITION>Starting Pitcher</POSITION>
<GAMES>29</GAMES>
<GAMES_STARTED>28</GAMES_STARTED>
<WINS>13</WINS>
<LOSSES>9</LOSSES>
<SAVES>0</SAVES>
<COMPLETE_GAMES>2</COMPLETE_GAMES>
<SHUT_OUTS>1</SHUT_OUTS>
<ERA>4.06</ERA>
<INNINGS>173</INNINGS>
<HITS_AGAINST>148</HITS_AGAINST>
<HOME_RUNS_AGAINST>27</HOME_RUNS_AGAINST>
<RUNS_AGAINST>79</RUNS_AGAINST>
<EARNED_RUNS>78</EARNED_RUNS>
<HIT_BATTER>9</HIT_BATTER>
<WILD_PITCHES>6</WILD_PITCHES>
<BALK>1</BALK>
<WALKED_BATTER>76</WALKED_BATTER>
<STRUCK_OUT_BATTER>126</STRUCK_OUT_BATTER>

</PLAYER>

Putting the XML document back together
Until now, I’ve been showing the XML document in pieces, element by element.

However, it’s now time to put all the pieces together and look at the complete docu-

ment containing the statistics for the 1998 Major League season. Listing 4-1 demon-

strates a complete XML document with 2 leagues, 6 divisions, 30 teams, and 9

players.

Listing 4-1: A complete XML document

<?xml version=”1.0”?>
<SEASON>
<YEAR>1998</YEAR>
<LEAGUE>
<LEAGUE_NAME>American League</LEAGUE_NAME>
<DIVISION>

<DIVISION_NAME>East</DIVISION_NAME>

77Chapter 4 ✦ Structuring Data

<TEAM>
<TEAM_CITY>Baltimore</TEAM_CITY>
<TEAM_NAME>Orioles</TEAM_NAME>
<PLAYER>
<GIVEN_NAME>Doug</GIVEN_NAME>
<SURNAME>Drabek</SURNAME>
<POSITION>Starting Pitcher</POSITION>
<GAMES>23</GAMES>
<GAMES_STARTED>21</GAMES_STARTED>
<WINS>6</WINS>
<LOSSES>11</LOSSES>
<SAVES>0</SAVES>
<COMPLETE_GAMES>1</COMPLETE_GAMES>
<SHUT_OUTS>0</SHUT_OUTS>
<ERA>7.29</ERA>
<INNINGS>108.2</INNINGS>
<HITS_AGAINST>138</HITS_AGAINST>
<HOME_RUNS_AGAINST>20</HOME_RUNS_AGAINST>
<RUNS_AGAINST>90</RUNS_AGAINST>
<EARNED_RUNS>88</EARNED_RUNS>
<HIT_BATTER>5</HIT_BATTER>
<WILD_PITCHES>1</WILD_PITCHES>
<BALK>0</BALK>
<WALKED_BATTER>29</WALKED_BATTER>
<STRUCK_OUT_BATTER>55</STRUCK_OUT_BATTER>

</PLAYER>
<PLAYER>
<GIVEN_NAME>Roberto</GIVEN_NAME>
<SURNAME>Alomar</SURNAME>
<POSITION>Second Base</POSITION>
<GAMES>147</GAMES>
<GAMES_STARTED>143</GAMES_STARTED>
<AT_BATS>588</AT_BATS>
<RUNS>86</RUNS>
<HITS>166</HITS>
<DOUBLES>36</DOUBLES>
<TRIPLES>1</TRIPLES>
<HOME_RUNS>14</HOME_RUNS>
<RBI>56</RBI>
<STEALS>18</STEALS>
<CAUGHT_STEALING>5</CAUGHT_STEALING>
<SACRIFICE_HITS>3</SACRIFICE_HITS>
<SACRIFICE_FLIES>5</SACRIFICE_FLIES>
<ERRORS>11</ERRORS>
<WALKS>59</WALKS>
<STRUCK_OUT>70</STRUCK_OUT>
<HIT_BY_PITCH>2</HIT_BY_PITCH>

</PLAYER>
<PLAYER>
<GIVEN_NAME>Brady</GIVEN_NAME>
<SURNAME>Anderson</SURNAME>
<POSITION>Outfield</POSITION>

Continued

78 Part I ✦ Introducing XML

Listing 4-1 (continued)

<GAMES>133</GAMES>
<GAMES_STARTED>121</GAMES_STARTED>
<AT_BATS>479</AT_BATS>
<RUNS>84</RUNS>
<HITS>113</HITS>
<DOUBLES>28</DOUBLES>
<TRIPLES>3</TRIPLES>
<HOME_RUNS>18</HOME_RUNS>
<RBI>51</RBI>
<STEALS>21</STEALS>
<CAUGHT_STEALING>7</CAUGHT_STEALING>
<SACRIFICE_HITS>4</SACRIFICE_HITS>
<SACRIFICE_FLIES>1</SACRIFICE_FLIES>
<ERRORS>4</ERRORS>
<WALKS>75</WALKS>
<STRUCK_OUT>78</STRUCK_OUT>
<HIT_BY_PITCH>15</HIT_BY_PITCH>

</PLAYER>
<PLAYER>
<GIVEN_NAME>Rich</GIVEN_NAME>
<SURNAME>Becker</SURNAME>
<POSITION>Outfield</POSITION>
<GAMES>79</GAMES>
<GAMES_STARTED>26</GAMES_STARTED>
<AT_BATS>113</AT_BATS>
<RUNS>22</RUNS>
<HITS>23</HITS>
<DOUBLES>1</DOUBLES>
<TRIPLES>0</TRIPLES>
<HOME_RUNS>3</HOME_RUNS>
<RBI>11</RBI>
<STEALS>2</STEALS>
<CAUGHT_STEALING>0</CAUGHT_STEALING>
<SACRIFICE_HITS>2</SACRIFICE_HITS>
<SACRIFICE_FLIES>0</SACRIFICE_FLIES>
<ERRORS>1</ERRORS>
<WALKS>22</WALKS>
<STRUCK_OUT>34</STRUCK_OUT>
<HIT_BY_PITCH>2</HIT_BY_PITCH>

</PLAYER>
<PLAYER>
<GIVEN_NAME>Mike</GIVEN_NAME>
<SURNAME>Bordick</SURNAME>
<POSITION>Shortstop</POSITION>
<GAMES>151</GAMES>
<GAMES_STARTED>144</GAMES_STARTED>
<AT_BATS>465</AT_BATS>
<RUNS>59</RUNS>
<HITS>121</HITS>
<DOUBLES>29</DOUBLES>
<TRIPLES>1</TRIPLES>

79Chapter 4 ✦ Structuring Data

<HOME_RUNS>13</HOME_RUNS>
<RBI>51</RBI>
<STEALS>6</STEALS>
<CAUGHT_STEALING>7</CAUGHT_STEALING>
<SACRIFICE_HITS>15</SACRIFICE_HITS>
<SACRIFICE_FLIES>4</SACRIFICE_FLIES>
<ERRORS>7</ERRORS>
<WALKS>39</WALKS>
<STRUCK_OUT>65</STRUCK_OUT>
<HIT_BY_PITCH>10</HIT_BY_PITCH>

</PLAYER>
<PLAYER>
<GIVEN_NAME>Danny</GIVEN_NAME>
<SURNAME>Clyburn</SURNAME>
<POSITION>Outfield</POSITION>
<GAMES>11</GAMES>
<GAMES_STARTED>7</GAMES_STARTED>
<AT_BATS>25</AT_BATS>
<RUNS>6</RUNS>
<HITS>7</HITS>
<DOUBLES>0</DOUBLES>
<TRIPLES>0</TRIPLES>
<HOME_RUNS>1</HOME_RUNS>
<RBI>3</RBI>
<STEALS>0</STEALS>
<CAUGHT_STEALING>0</CAUGHT_STEALING>
<SACRIFICE_HITS>0</SACRIFICE_HITS>
<SACRIFICE_FLIES>0</SACRIFICE_FLIES>
<ERRORS>0</ERRORS>
<WALKS>1</WALKS>
<STRUCK_OUT>10</STRUCK_OUT>
<HIT_BY_PITCH>0</HIT_BY_PITCH>

</PLAYER>
<PLAYER>
<GIVEN_NAME>Charlie</GIVEN_NAME>
<SURNAME>Greene</SURNAME>
<POSITION>Catcher</POSITION>
<GAMES>13</GAMES>
<GAMES_STARTED>6</GAMES_STARTED>
<AT_BATS>21</AT_BATS>
<RUNS>1</RUNS>
<HITS>4</HITS>
<DOUBLES>1</DOUBLES>
<TRIPLES>0</TRIPLES>
<HOME_RUNS>0</HOME_RUNS>
<RBI>0</RBI>
<STEALS>0</STEALS>
<CAUGHT_STEALING>0</CAUGHT_STEALING>
<SACRIFICE_HITS>1</SACRIFICE_HITS>
<SACRIFICE_FLIES>0</SACRIFICE_FLIES>
<ERRORS>0</ERRORS>
<WALKS>0</WALKS>

Continued

80 Part I ✦ Introducing XML

Listing 4-1 (continued)

<STRUCK_OUT>8</STRUCK_OUT>
<HIT_BY_PITCH>0</HIT_BY_PITCH>

</PLAYER>
<PLAYER>
<GIVEN_NAME>Cal</GIVEN_NAME>
<SURNAME>Ripken</SURNAME>
<POSITION>Third Base</POSITION>
<GAMES>161</GAMES>
<GAMES_STARTED>161</GAMES_STARTED>
<AT_BATS>601</AT_BATS>
<RUNS>65</RUNS>
<HITS>163</HITS>
<DOUBLES>27</DOUBLES>
<TRIPLES>1</TRIPLES>
<HOME_RUNS>14</HOME_RUNS>
<RBI>61</RBI>
<STEALS>0</STEALS>
<CAUGHT_STEALING>2</CAUGHT_STEALING>
<SACRIFICE_HITS>1</SACRIFICE_HITS>
<SACRIFICE_FLIES>2</SACRIFICE_FLIES>
<ERRORS>8</ERRORS>
<WALKS>51</WALKS>
<STRUCK_OUT>68</STRUCK_OUT>
<HIT_BY_PITCH>4</HIT_BY_PITCH>

</PLAYER>
<PLAYER>
<GIVEN_NAME>Rafael</GIVEN_NAME>
<SURNAME>Palmeiro</SURNAME>
<POSITION>First Base</POSITION>
<GAMES>162</GAMES>
<GAMES_STARTED>161</GAMES_STARTED>
<AT_BATS>619</AT_BATS>
<RUNS>98</RUNS>
<HITS>183</HITS>
<DOUBLES>36</DOUBLES>
<TRIPLES>1</TRIPLES>
<HOME_RUNS>43</HOME_RUNS>
<RBI>121</RBI>
<STEALS>11</STEALS>
<CAUGHT_STEALING>7</CAUGHT_STEALING>
<SACRIFICE_HITS>0</SACRIFICE_HITS>
<SACRIFICE_FLIES>4</SACRIFICE_FLIES>
<ERRORS>9</ERRORS>
<WALKS>79</WALKS>
<STRUCK_OUT>91</STRUCK_OUT>
<HIT_BY_PITCH>7</HIT_BY_PITCH>

</PLAYER>
</TEAM>
<TEAM>
<TEAM_CITY>Boston</TEAM_CITY>
<TEAM_NAME>Red Sox</TEAM_NAME>

81Chapter 4 ✦ Structuring Data

</TEAM>
<TEAM>
<TEAM_CITY>New York</TEAM_CITY>
<TEAM_NAME>Yankees</TEAM_NAME>

</TEAM>
<TEAM>
<TEAM_CITY>Tampa Bay</TEAM_CITY>
<TEAM_NAME>Devil Rays</TEAM_NAME>

</TEAM>
<TEAM>
<TEAM_CITY>Toronto</TEAM_CITY>
<TEAM_NAME>Blue Jays</TEAM_NAME>

</TEAM>
</DIVISION>
<DIVISION>

<DIVISION_NAME>Central</DIVISION_NAME>
<TEAM>
<TEAM_CITY>Chicago</TEAM_CITY>
<TEAM_NAME>White Sox</TEAM_NAME>

</TEAM>
<TEAM>
<TEAM_CITY>Kansas City</TEAM_CITY>
<TEAM_NAME>Royals</TEAM_NAME>

</TEAM>
<TEAM>
<TEAM_CITY>Detroit</TEAM_CITY>
<TEAM_NAME>Tigers</TEAM_NAME>

</TEAM>
<TEAM>
<TEAM_CITY>Cleveland</TEAM_CITY>
<TEAM_NAME>Indians</TEAM_NAME>

</TEAM>
<TEAM>
<TEAM_CITY>Minnesota</TEAM_CITY>
<TEAM_NAME>Twins</TEAM_NAME>

</TEAM>
</DIVISION>
<DIVISION>

<DIVISION_NAME>West</DIVISION_NAME>
<TEAM>
<TEAM_CITY>Anaheim</TEAM_CITY>
<TEAM_NAME>Angels</TEAM_NAME>

</TEAM>
<TEAM>
<TEAM_CITY>Oakland</TEAM_CITY>
<TEAM_NAME>Athletics</TEAM_NAME>

</TEAM>
<TEAM>
<TEAM_CITY>Seattle</TEAM_CITY>
<TEAM_NAME>Mariners</TEAM_NAME>

</TEAM>
<TEAM>

Continued

82 Part I ✦ Introducing XML

Listing 4-1 (continued)

<TEAM_CITY>Texas</TEAM_CITY>
<TEAM_NAME>Rangers</TEAM_NAME>

</TEAM>
</DIVISION>

</LEAGUE>
<LEAGUE>
<LEAGUE_NAME>National League</LEAGUE_NAME>
<DIVISION>

<DIVISION_NAME>East</DIVISION_NAME>
<TEAM>
<TEAM_CITY>Atlanta</TEAM_CITY>
<TEAM_NAME>Braves</TEAM_NAME>

</TEAM>
<TEAM>
<TEAM_CITY>Florida</TEAM_CITY>
<TEAM_NAME>Marlins</TEAM_NAME>

</TEAM>
<TEAM>
<TEAM_CITY>Montreal</TEAM_CITY>
<TEAM_NAME>Expos</TEAM_NAME>

</TEAM>
<TEAM>
<TEAM_CITY>New York</TEAM_CITY>
<TEAM_NAME>Mets</TEAM_NAME>

</TEAM>
<TEAM>
<TEAM_CITY>Philadelphia</TEAM_CITY>

<TEAM_NAME>Phillies</TEAM_NAME>
</TEAM>

</DIVISION>
<DIVISION>

<DIVISION_NAME>Central</DIVISION_NAME>
<TEAM>
<TEAM_CITY>Chicago</TEAM_CITY>
<TEAM_NAME>Cubs</TEAM_NAME>

</TEAM>
<TEAM>
<TEAM_CITY>Cincinatti</TEAM_CITY>
<TEAM_NAME>Reds</TEAM_NAME>

</TEAM>
<TEAM>
<TEAM_CITY>Houston</TEAM_CITY>
<TEAM_NAME>Astros</TEAM_NAME>

</TEAM>
<TEAM>
<TEAM_CITY>Milwaukee</TEAM_CITY>
<TEAM_NAME>Brewers</TEAM_NAME>

</TEAM>

83Chapter 4 ✦ Structuring Data

<TEAM>
<TEAM_CITY>Pittsburgh</TEAM_CITY>
<TEAM_NAME>Pirates</TEAM_NAME>

</TEAM>
<TEAM>
<TEAM_CITY>St. Louis</TEAM_CITY>
<TEAM_NAME>Cardinals</TEAM_NAME>

</TEAM>
</DIVISION>
<DIVISION>

<DIVISION_NAME>West</DIVISION_NAME>
<TEAM>
<TEAM_CITY>Arizona</TEAM_CITY>
<TEAM_NAME>Diamondbacks</TEAM_NAME>

</TEAM>
<TEAM>
<TEAM_CITY>Colorado</TEAM_CITY>
<TEAM_NAME>Rockies</TEAM_NAME>

</TEAM>
<TEAM>
<TEAM_CITY>Los Angeles</TEAM_CITY>
<TEAM_NAME>Dodgers</TEAM_NAME>

</TEAM>
<TEAM>
<TEAM_CITY>San Diego</TEAM_CITY>
<TEAM_NAME>Padres</TEAM_NAME>

</TEAM>
<TEAM>
<TEAM_CITY>San Francisco</TEAM_CITY>
<TEAM_NAME>Giants</TEAM_NAME>

</TEAM>
</DIVISION>

</LEAGUE>
</SEASON>

Figure 4-1 shows this document loaded into Internet Explorer 5.0.

Even as large as it is, this document is incomplete. It only contains players from one

team (the Baltimore Orioles) and only nine players from that team. Showing more

than that would make the example too long to include in this book.

A more complete XML document called 1998fullstatistics.xml with statistics for all
players in the 1998 Major League is on the CD-ROM in the examples\baseball
directory.

On the
CD-ROM

84 Part I ✦ Introducing XML

Figure 4-1: The 1998 major league baseball statistics
displayed in Internet Explorer 5.0.

Furthermore, I’ve limited the data included to make this a manageable example

within the confines of this book. There are many more details you could add. I’ve

already alluded to the possibility of arranging the data game by game, pitch by

pitch. Even without going to that extreme, there are a lot of details that could be

added to individual elements. Teams also have coaches, managers, owners (How

can you think of the Yankees without thinking of George Steinbrenner?), home stadi-

ums, and more.

I’ve also deliberately omitted numbers that can be calculated from other numbers

given here, such as batting average (number of hits divided by number of at bats).

Nonetheless, players have batting arms, throwing arms, heights, weights, birth

dates, positions, numbers, nicknames, colleges attended, and much more. And, of

course, there are many more players than I’ve shown here. All of this is equally easy

to include in XML. However, I will stop the XMLization of the data here so that we

can move on; first to a brief discussion of why this data format is useful, and then

to the techniques that can be used for actually displaying it in a Web browser.

The Advantages of the XML Format
Tables 4-1 and 4-2 do a pretty good job of displaying the batting and pitching data

for a team in a comprehensible and compact fashion. What exactly have we gained

85Chapter 4 ✦ Structuring Data

by rewriting those tables as the much longer XML document of Listing 4-1? There

are several benefits. Among them:

✦ The data is self-describing.

✦ The data can be manipulated with standard tools.

✦ The data can be viewed with standard tools.

✦ Different views of the same data are easy to create with style sheets.

The first major benefit of the XML format is that the data is self-describing. The

meaning of each number is clearly and unmistakably associated with the number

itself. When reading the document, you know that the 183 in <HITS>183</HITS>
refers to hits and not runs batted in or strikeouts. If the person typing in the docu-

ment inadvertently leaves out a statistic, that doesn’t mean that every number after

it is misinterpreted. HITS is still HITS even if the preceding RUNS element is miss-

ing. Another common error in less-verbose formats is transposing values; for

instance, using runs for hits and hits for runs. XML lets you transpose with aban-

don. As long as the markup is transposed along with the content, no information is

lost or misunderstood.

In Part II you’ll see that XML can even use document type definitions (DTDs) to
enforce constraints that certain elements such as HITS or RUNS must be present. In
Chapter 24, you’ll learn to use schemas to restrict the contents of elements, so that,
for example, you can specify that HITS or RUNS must be a nonnegative integer.

The second benefit of the XML format is that data can be manipulated in a wide

range of XML-enabled tools, from expensive payware such as Adobe FrameMaker to

free, open-source software such as Python and Perl. The data may be bigger, but

the extra redundancy allows more tools to process it.

The same is true when the time comes to view the data. The XML document can be

loaded into Internet Explorer, Mozilla, Jumbo, and many other tools, all of which

provide unique, useful views of the data. The document can even be loaded into

simple, bare-bone text editors such as vi, BBEdit, and TextPad. XML is at least

marginally viewable on most platforms.

New software isn’t the only way to get a different view of the data either. The next

section develops a style sheet for baseball statistics that provides a completely dif-

ferent way of looking at the data than what you see in Figure 4-1. Each time you

apply a different style sheet to the same document you see a different picture.

Lastly, you should ask yourself if the size is really that important. Modern hard

drives are quite big and can a hold a lot of data, even if it’s not stored very effi-

ciently. Furthermore, XML files compress very well. The complete 1998 major

league baseball statistics document is 718K. However, compressing the file with

gzip reduces the file size to 63K, a greater than 90 percent reduction. Advanced

Cross-
Reference

86 Part I ✦ Introducing XML

HTTP servers such as Jigsaw can actually send compressed files rather than the

uncompressed files so that network bandwidth used by a document like this is

fairly close to its actual information content. Finally, you should not assume that

binary file formats, especially general-purpose ones, are necessarily more efficient.

A Microsoft Excel 2000 file that contains the same data as 1998fullstatistics.xml

actually takes up 663K, almost as much space as the uncompressed XML document.

Although you can certainly create more efficient file formats to hold this data, in

practice that simply isn’t often necessary.

Preparing a Style Sheet for Document Display
The view of the raw XML document shown in Figure 4-1 is not bad for some uses. For

instance, it allows you to collapse and expand individual elements so you see only

those parts of the document you want to see. However, most of the time you’d prob-

ably like a more finished look, especially if you’re going to display it on the Web. To

provide a more polished look, you must write a style sheet for the document.

In this chapter, I use Cascading Style Sheets (CSS). A CSS style sheet defines format-

ting for each element of the document. The complete list of elements used in the

XML document of Listing 4-1 is:

SEASON

YEAR

LEAGUE

LEAGUE_NAME

DIVISION

DIVISION_NAME

TEAM

TEAM_NAME

TEAM_CITY

PLAYER

GIVEN_NAME

SURNAME

POSITION

GAMES

GAMES_STARTED

WINS

LOSSES

SAVES

COMPLETE_GAMES

SHUT_OUTS

ERA

INNINGS

HITS_AGAINST

HOME_RUNS_AGAINST

RUNS_AGAINST

EARNED_RUNS

WILD_PITCHES

BALK

WALKED_BATTER

STRUCK_OUT_BATTER

AT_BATS

RUNS

HITS

DOUBLES

TRIPLES

HOME_RUNS

RBI

STEALS

CAUGHT_STEALING

SACRIFICE_HITS

SACRIFICE_FLIES

ERRORS

WALKS

STRUCK_OUT

HIT_BY_PITCH

HIT_BATTER

87Chapter 4 ✦ Structuring Data

Generally, you’ll want to follow an iterative procedure, adding style rules for each of

these elements one at a time, checking that they do what you expect, then moving

on to the next element. In this example, such an approach also has the advantage of

introducing CSS properties one at a time for those who are not familiar with them.

Linking to a style sheet
The style sheet can be named anything you like. If it’s only going to apply to one

document, then it’s customary to give it the same name as the document but with

the three-letter extension .css instead of .xml. For instance, the style sheet for the

XML document 1998shortstats.xml might be called 1998shortstats.css. On the other

hand, if the same style sheet will be applied to many documents, then it should

probably have a more generic name such as baseballstats.css.

Since CSS style sheets cascade, more than one can be applied to the same docu-
ment. Thus it’s possible that baseballstats.css would apply some general format-
ting rules, while 1998shortstats.css would override a few to handle specific details
in the one document 1998shortstats.xml. We discuss this procedure in Chapter 14.

To attach a style sheet to the document, you simply add an <?xml-stylesheet?>
processing instruction between the XML declaration and the root element like this:

<?xml version=”1.0”
<?xml-stylesheet type=”text/css” href=”baseballstats.css”?>
<SEASON>
...

This tells a browser reading the document to apply the style sheet found in the

file baseballstats.css to this document. This file is assumed to reside in the same

directory and on the same server as the XML document itself. In other words,

baseballstats.css is a relative URL. Absolute URLs may also be used. For

example:

<?xml version=”1.0”
<?xml-stylesheet type=”text/css”
href=”http://www.ibiblio.org/xml/examples/baseballstats.css”?>
<SEASON>
...

You can begin by simply placing an empty file named baseballstats.css in the same

directory as the XML document. After you’ve done this and added the necessary

processing instruction to 1998shortstats.xml (Listing 4-1), the document now

appears as shown in Figure 4-2. Only the element content is shown. The collapsible

outline view of Figure 4-1 is gone. The formatting of the element content uses the

browser’s defaults — black 12-point Verdana on a white background in this case.

Cross-
Reference

88 Part I ✦ Introducing XML

Figure 4-2: The 1998 major league baseball statistics
displayed after a blank style sheet is applied.

Figure 4-2 is also very close to what you’d see if you loaded Listing 4-1 into
Netscape, Mozilla, or Opera, because they don’t provide a hierarchical source code
view like Internet Explorer does. You’ll also see something similar to Figure 4-2 in
Internet Explorer if the style sheet named by the xml-stylesheet processing
instruction can’t be found in the specified location.

Assigning style rules to the root element
You do not have to assign a style rule to each element in the list. Many elements

can rely on the styles of their parents cascading down. The most important style,

therefore, is the one for the root element —SEASON in this example. This defines

the default for all the other elements on the page. Computer monitors at roughly 72

dots per inch (dpi) don’t have as high a resolution as paper at 300 or more dpi.

Therefore, Web pages should generally use a larger point size than is customary.

Let’s make the default 14-point type, black on a white background, as shown below:

SEASON {font-size: 14pt; background-color: white;
color: black; display: block}

Place this statement in a text file, save the file with the name baseballstats.css in

the same directory as Listing 4-1, 1998shortstats.xml, and open 1998shortstats.xml

in your browser. You should see something similar to what is shown in Figure 4-3.

Note

89Chapter 4 ✦ Structuring Data

Figure 4-3: Baseball statistics in 14-point type with a
black on white background

The default font size changed between Figure 4-2 and Figure 4-3. The text color and

background color did not. Indeed, it was not absolutely required to set them,

because black foreground and white background are the defaults. Nonetheless,

nothing is lost by being explicit about what you want.

Assigning style rules to titles
The YEAR element is more or less the title of the document. Therefore, let’s make it

appropriately large and bold — 32 points should be big enough. Furthermore, it

should stand out from the rest of the document rather than simply running

together with the rest of the content, so let’s make it a centered block element. All

of this can be accomplished by the following style rule.

YEAR {display: block; font-size: 32pt; font-weight: bold;
text-align: center}

Figure 4-4 shows the document after this rule has been added to the style sheet.

Notice in particular the line break after 1998. That’s there because YEAR is now a

block-level element. Everything else in the document is an inline element. Only

block-level elements can be centered (or left-aligned, right-aligned, or justified).

90 Part I ✦ Introducing XML

Figure 4-4: Stylizing the YEAR element as a title

1998 isn’t the ideal title for this document. 1998 Major League Baseball would be

better, but the phrase Major League Baseball isn’t included in the XML document.

CSS lets you add extra content from the style sheet either before or after particular

elements using the :before and :after pseudoselectors. The text that you want

to add is given as a string value of the content property. For example, to add the

phrase “ Major League Baseball” to the end of the YEAR element, add this rule to the

style sheet:

YEAR:after {content: “ Major League Baseball”}

Internet Explorer 5.0/5.5 doesn’t support either the :before and :after pseudose-

lectors or the content property. Therefore, Figure 4-5 shows the document after

this rule has been added in Mozilla, which does support these.

91Chapter 4 ✦ Structuring Data

Figure 4-5: Adding content to the YEAR element

In this document, with these style rules, YEAR duplicates the functionality of

HTML’s H1 header element. Because this document is so neatly hierarchical, several

other elements serve the role of H2 headers, H3 headers, and so on. These elements

can be formatted by similar rules with only a slightly smaller font size.

For instance, SEASON is divided into two LEAGUE elements. The name of each

LEAGUE— that is, the LEAGUE_NAME element — has the same role as an H2 element

in HTML. Each LEAGUE element is divided into three DIVISION elements. The name

of each DIVISION— that is, the DIVISION_NAME element — has the same role as an

H3 element in HTML. These two rules format them accordingly.

LEAGUE_NAME {display: block; text-align: center; font-size:
28pt; font-weight: bold}
DIVISION_NAME {display: block; text-align: center; font-size:
24pt; font-weight: bold}

Figure 4-6 shows the resulting document.

92 Part I ✦ Introducing XML

Figure 4-6: Stylizing the LEAGUE_NAME and DIVISION_NAME
elements as headings

Divisions are divided into TEAM elements. Formatting these is a little trickier

because the title of a team is not simply the TEAM_NAME element but rather the

TEAM_CITY concatenated with the TEAM_NAME. Therefore these need to be inline

elements rather than separate block-level elements. However, they are still titles,

so we set them to bold, italic, 20-point type. Figure 4-7 shows the results of adding

these two rules to the style sheet.

TEAM_CITY {font-size: 20pt; font-weight: bold;
font-style: italic}

TEAM_NAME {font-size: 20pt; font-weight: bold;
font-style: italic}

At this point, it would be nice to arrange the team names and cities as a combined

block-level element. There are several ways to do this. You could, for instance, add

an additional TEAM_TITLE element to the XML document whose sole purpose is

merely to contain the TEAM_NAME and TEAM_CITY. For instance:

<TEAM>
<TEAM_TITLE>
<TEAM_CITY>Colorado</TEAM_CITY>
<TEAM_NAME>Rockies</TEAM_NAME>

</TEAM_TITLE>
</TEAM>

93Chapter 4 ✦ Structuring Data

Figure 4-7: Stylizing team names

Next, you would add a style rule that applies block-level formatting to TEAM_TITLE:

TEAM_TITLE {display: block; text-align: center}

However, you really should never reorganize an XML document just to make the

style sheet work easier. After all, the whole point of a style sheet is to keep format-

ting information out of the document itself. However, you can achieve much the

same effect by making the immediately preceding and following elements block-

level elements — that is, TEAM and PLAYER respectively. This places the TEAM_NAME
and TEAM_CITY in an implicit block-level element of their own. Figure 4-8 shows the

result.

TEAM {display: block}
PLAYER {display: block}

94 Part I ✦ Introducing XML

Figure 4-8: Stylizing team names and cities as headers

Assigning style rules to player and statistics elements
The trickiest formatting that this document requires is for the individual players

and statistics. Each team has a couple of dozen players. Each player has statistics.

You could think of a TEAM element as being divided into PLAYER elements, and place

each player in his own block-level section as you did for previous elements.

However, a more attractive and efficient way to organize this is to use a table. The

style rules that accomplish this look like this:

TEAM {display: table}
TEAM_CITY {display: table-caption}
TEAM_NAME {display: table-caption}
PLAYER {display: table-row}
SURNAME {display: table-cell}
GIVEN_NAME {display: table-cell}
POSITION {display: table-cell}
GAMES {display: table-cell}
GAMES_STARTED {display: table-cell}
AT_BATS {display: table-cell}
RUNS {display: table-cell}
HITS {display: table-cell}
DOUBLES {display: table-cell}
TRIPLES {display: table-cell}

95Chapter 4 ✦ Structuring Data

HOME_RUNS {display: table-cell}
RBI {display: table-cell}
STEALS {display: table-cell}
CAUGHT_STEALING {display: table-cell}
SACRIFICE_HITS {display: table-cell}
SACRIFICE_FLIES {display: table-cell}
ERRORS {display: table-cell}
WALKS {display: table-cell}
STRUCK_OUT {display: table-cell}
HIT_BY_PITCH {display: table-cell}

Unfortunately, Internet Explorer 5.0/5.5 does not support table properties. Mozilla,

Netscape 6.0, and Opera 5.0 do support table formatting. Figure 4-9 shows the final

result.

Figure 4-9: Stylizing player statistics as tables

Summing up
Listing 4-2 shows the finished style sheet. CSS style sheets don’t have a lot of struc-

ture beyond the individual rules. In essence, this is just a list of all the rules that I

introduced separately in the preceding material. Reordering them wouldn’t make

any difference as long as they’re all present.

96 Part I ✦ Introducing XML

Listing 4-2: baseballstats.css

SEASON {font-size: 14pt; background-color: white;
color: black; display: block}

YEAR {display: block; font-size: 32pt; font-weight: bold;
text-align: center; }

YEAR:after {content: “ Major League Baseball”}
LEAGUE_NAME {display: block; text-align: center;

font-size: 28pt; font-weight: bold}
DIVISION_NAME {display: block; text-align: center;

font-size: 24pt; font-weight: bold}
TEAM_CITY {font-size: 20pt; font-weight: bold;

font-style: italic}
TEAM_NAME {font-size: 20pt; font-weight: bold;

font-style: italic}
TEAM {display: table}
TEAM_CITY {display: table-caption}
TEAM_NAME {display: table-caption}
PLAYER {display: table-row}
GIVEN_NAME {display: table-cell}
SURNAME {display: table-cell}
POSITION {display: table-cell}
GAMES {display: table-cell}
GAMES_STARTED {display: table-cell}
WINS {display: table-cell}
LOSSES {display: table-cell}
SAVES {display: table-cell}
COMPLETE_GAMES {display: table-cell}
SHUT_OUTS {display: table-cell}
ERA {display: table-cell}
INNINGS {display: table-cell}
HITS_AGAINST {display: table-cell}
HOME_RUNS_AGAINST {display: table-cell}
RUNS_AGAINST {display: table-cell}
EARNED_RUNS {display: table-cell}
WILD_PITCHES {display: table-cell}
BALK {display: table-cell}
WALKED_BATTER {display: table-cell}
STRUCK_OUT_BATTER {display: table-cell}
AT_BATS {display: table-cell}
RUNS {display: table-cell}
HITS {display: table-cell}
DOUBLES {display: table-cell}
TRIPLES {display: table-cell}
HOME_RUNS {display: table-cell}
RBI {display: table-cell}
STEALS {display: table-cell}
CAUGHT_STEALING {display: table-cell}
SACRIFICE_HITS {display: table-cell}
SACRIFICE_FLIES {display: table-cell}
ERRORS {display: table-cell}

97Chapter 4 ✦ Structuring Data

WALKS {display: table-cell}
STRUCK_OUT {display: table-cell}
HIT_BY_PITCH {display: table-cell}
HIT_BATTER {display: table-cell}

This completes the basic formatting for baseball statistics. However, work clearly

remains to be done. Here are some things that you might want to add.

✦ The numbers are presented raw with no indication of what they represent.

Instead, each number should be identified by a caption that names it, such as

RBI or At Bats.

✦ Interesting data such as batting average that could be calculated from the

data presented here is not included.

✦ Because pitcher statistics are so different from batter statistics, it would be

nice to place them in a separate table for each team.

✦ You can’t really provide two elements for a single table caption. That’s why

you only see the team cities and not the team names in Figure 4-9.

Many of these points could be addressed by adding more content to the document.

For instance, captions can be added to the player stats by placing a phantom

PLAYER element at the top of each roster, like this:

<PLAYER>
<GIVEN_NAME>First Name</GIVEN_NAME>
<SURNAME>Last Name</SURNAME>
<POSITION>Position</POSITION>
<GAMES>Games Played</GAMES>
<GAMES_STARTED>Games Started</GAMES_STARTED>
<AT_BATS>At Bats</AT_BATS>
<RUNS>Runs</RUNS>
<HITS>Hits</HITS>
<DOUBLES>Doubles</DOUBLES>
<TRIPLES>Triples</TRIPLES>
<HOME_RUNS>Home Runs</HOME_RUNS>
<RBI>Runs Batted In</RBI>
<STEALS>Steals</STEALS>
<CAUGHT_STEALING>Caught Stealing</CAUGHT_STEALING>
<SACRIFICE_HITS>Sacrifice Hits</SACRIFICE_HITS>
<SACRIFICE_FLIES>Sacrifice Flies</SACRIFICE_FLIES>
<ERRORS>Errors</ERRORS>
<WALKS>Walks</WALKS>
<STRUCK_OUT>Struck Out</STRUCK_OUT>
<HIT_BY_PITCH>Hit By Pitch</HIT_BY_PITCH>

</PLAYER>

98 Part I ✦ Introducing XML

Still, there’s something fundamentally troublesome about such tactics. The caption

At Bats is not the same as a number of at bats. (It’s the difference between the name

of a thing and the thing itself.) You can encode still more markup like this:

<TABLE_HEAD>
<COLUMN_LABEL>Surname</COLUMN_LABEL>
<COLUMN_LABEL>Given name</COLUMN_LABEL>>
<COLUMN_LABEL>Position</COLUMN_LABEL>
<COLUMN_LABEL>Games</COLUMN_LABEL>
<COLUMN_LABEL>Games Started</COLUMN_LABEL>
<COLUMN_LABEL>At Bats</COLUMN_LABEL>
<COLUMN_LABEL>Runs</COLUMN_LABEL>
<COLUMN_LABEL>Hits</COLUMN_LABEL>
<COLUMN_LABEL>Doubles</COLUMN_LABEL>
<COLUMN_LABEL>Triples</COLUMN_LABEL>
<COLUMN_LABEL>Home Runs</COLUMN_LABEL>
<COLUMN_LABEL>Runs Batted In</COLUMN_LABEL>
<COLUMN_LABEL>Steals</COLUMN_LABEL>
<COLUMN_LABEL>Caught Stealing</COLUMN_LABEL>
<COLUMN_LABEL>Sacrifice Hits</COLUMN_LABEL>
<COLUMN_LABEL>Sacrifice Flies</COLUMN_LABEL>
<COLUMN_LABEL>Errors</COLUMN_LABEL>
<COLUMN_LABEL>Walks</COLUMN_LABEL>
<COLUMN_LABEL>Struck Out</COLUMN_LABEL>
<COLUMN_LABEL>Hit By Pitch</COLUMN_LABEL>>

</TABLE_HEAD>

However, this basically reinvents HTML, and returns us to the point of using

markup for formatting rather than meaning. Furthermore, we’re still simply repeat-

ing the information that’s already contained in the names of the elements. The full

document is large enough as it is. I would prefer to not make it larger.

Adding batting and other averages is easy. Just include the data as additional ele-

ments. For example, here’s a player with batting, slugging, and on-base averages.

<PLAYER>
<GIVEN_NAME>Luis</GIVEN_NAME>
<SURNAME>Ordaz</SURNAME>
<POSITION>Shortstop</POSITION>
<GAMES>57</GAMES>
<GAMES_STARTED>47</GAMES_STARTED>
<ON_BASE_AVERAGE>.253</ON_BASE_AVERAGE>
<SLUGGING_AVERAGE>.233</SLUGGING_AVERAGE>
<BATTING_AVERAGE>.204</BATTING_AVERAGE>
<AT_BATS>153</AT_BATS>
<RUNS>9</RUNS>
<HITS>31</HITS>
<DOUBLES>5</DOUBLES>
<TRIPLES>0</TRIPLES>
<HOME_RUNS>0</HOME_RUNS>
<RBI>8</RBI>
<STEALS>2</STEALS>
<CAUGHT_STEALING>0</CAUGHT_STEALING>

99Chapter 4 ✦ Structuring Data

<SACRIFICE_HITS>4</SACRIFICE_HITS>
<SACRIFICE_FLIES>0</SACRIFICE_FLIES>
<ERRORS>13</ERRORS>
<WALKS>12</WALKS>
<STRUCK_OUT>18</STRUCK_OUT>
<HIT_BY_PITCH>0</HIT_BY_PITCH>

</PLAYER>

However, this information is redundant because it can be calculated from the other

information already included in a player’s listing. Batting average, for example, is

simply the number of base hits divided by the number of at bats; that is,

HITS/AT_BATS. Redundant data makes maintaining and updating the document

exponentially more difficult. A simple change or addition to a single element

requires changes and recalculations in multiple locations.

What’s really needed is a different style sheet language that enables you to add cer-

tain boilerplate content to elements and to perform transformations on the element

content that is present. Such a language exists — the Extensible Stylesheet

Language (XSL).

CSS is simpler than XSL. CSS works well for basic Web pages and reasonably

straightforward documents. XSL is considerably more complex, but it is also more

powerful. XSL builds on the simple CSS formatting that you learned in this chapter,

but it also transforms the source document into various forms that the reader can

view. It’s often a good idea to make a first pass at a problem using CSS while you’re

still debugging your XML, and then move to XSL to achieve greater flexibility.

XSL is discussed in Chapters 5, 17, and 18.

Summary
In this chapter, you saw an example of an XML document being built from scratch.

This chapter was full of seat-of-the-pants/back-of-the-envelope coding. In particular

you learned:

✦ How to identify the elements in the data to be included in the XML document.

✦ How to mark up the data with XML tags that you choose.

✦ The advantages of XML formats over traditional formats.

✦ How to write a style sheet that says how the document should be formatted

and displayed.

In the next chapter, we explore some additional means of embedding information in

XML documents, including attributes, comments, and processing instructions, and

also look at an alternative way of encoding baseball statistics in XML.

✦ ✦ ✦

Cross-
Reference

Attributes,
Empty Tags,
and XSL

There are an infinite number of ways to encode any given

set of data in XML. There’s no one right way to do it,

although some ways are more right than others, and some are

more appropriate for particular uses. This chapter explores a

different solution to the problem of marking up baseball

statistics in XML, carrying over the baseball example from the

previous chapter. Specifically, you’ll learn how to use

attributes to store information and empty-element tags to

define element positions. In addition, because CSS doesn’t

work well with content-less XML elements of this form, we

examine an alternative and more powerful style sheet lan-

guage called the Extensible Stylesheet Language (XSL).

Attributes
In the last chapter, all information was provided either in the

form of a tag name or as the text content of an element. This

is a straightforward and easy-to-understand approach, but it’s

not the only one possible. As in HTML, XML elements may

have attributes. An attribute is a name-value pair associated

with an element. The name and the value are each strings.

You’re already familiar with attribute syntax from HTML. For

example, consider this tag:

<IMG SRC=cup.gif WIDTH=89 HEIGHT=67 ALT=”Cup
of coffee”>

It has four attributes, the SRC attribute whose value is cup.gif,

the WIDTH attribute whose value is 89, the HEIGHT attribute

whose value is 67, and the ALT attribute whose value is Cup of
coffee. However, in XML — unlike HTML — attribute values

55C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Attributes

Attributes vs.
elements

Empty-element tags

XSL

✦ ✦ ✦ ✦

102 Part I ✦ Introducing XML

must always be quoted and start tags must have matching end tags. Thus, the XML

equivalent of this tag is:

Another difference between HTML and XML is that XML assigns no particular
meaning to the IMG element and its attributes. In particular, there’s no guarantee
that an XML browser will interpret this element as an instruction to load and dis-
play the image in the file cup.gif.

Attribute syntax fits the baseball example quite nicely. One advantage is that it

makes the markup somewhat more concise. For example, instead of containing a

YEAR child element, the SEASON element only needs a YEAR attribute:

<SEASON YEAR=”1998”>
</SEASON>

On the other hand, LEAGUE should be a child of the SEASON element rather than an

attribute. For one thing, there are two leagues in a season. Anytime there’s likely to

be more than one of something, child elements are called for. Attribute names must

be unique within an element. Thus, you cannot, for example, write a SEASON ele-

ment like this:

<SEASON YEAR=”1998” LEAGUE=”National” League=”American”>
</SEASON>

The second reason LEAGUE is naturally a child element rather than an attribute is

that it has substructure; that is, it, itself, is subdivided into DIVISION elements.

Attribute values are flat text. XML elements can conveniently encode structure.

Attribute values cannot.

However, the name of a league is unstructured, flat text; and there’s only one name

per league, so LEAGUE elements can easily have a NAME attribute instead of a

LEAGUE_NAME child element:

<LEAGUE NAME=”National League”>
</LEAGUE>

Because an attribute is more closely tied to its element than a child element is, you

don’t run into problems by using NAME instead of LEAGUE_NAME for the name of the

attribute. Divisions and teams can also have NAME attributes without any fear of

confusion with the name of a league. Because an element can have more than one

attribute (as long as the attributes have different names), you can also make a

team’s city an attribute, as shown here:

<LEAGUE NAME=”American League”>
<DIVISION NAME=”East”>
<TEAM NAME=”Orioles” CITY=”Baltimore”></TEAM>
<TEAM NAME=”Red Sox” CITY=”Boston”></TEAM>

Note

103Chapter 5 ✦ Attributes, Empty Tags, and XSL

<TEAM NAME=”Yankees” CITY=”New York”></TEAM>
<TEAM NAME=”Devil Rays” CITY=”Tampa Bay”></TEAM>
<TEAM NAME=”Blue Jays” CITY=”Toronto”></TEAM>
</DIVISION>

</LEAGUE>

Players will have a lot of attributes if you choose to make each statistic an attribute.

For example, here are Joe Girardi’s 1998 statistics as attributes:

<PLAYER GIVEN_NAME=”Joe” SURNAME=”Girardi”
POSITION=”Catcher” GAMES=”78” GAMES_STARTED=”76”
AT_BATS=”254” RUNS=”31” HITS=”70”
DOUBLES=”11” TRIPLES=”4” HOME_RUNS=”3”
RUNS_BATTED_IN=”31” WALKS=”14” STRUCK_OUT=”38”
STOLEN_BASES=”2” CAUGHT_STEALING=”4”
SACRIFICE_FLIES=”1” SACRIFICE_HITS=”8”
HIT_BY_PITCH=”2” STEALS=”2”>

</PLAYER>

Listing 5-1 uses this new attribute style for a complete XML document containing

the baseball statistics for the 1998 season. It contains the same information (i.e., 2

leagues, 6 divisions, 30 teams, and 9 players) as does Listing 4-1 in the last chapter.

It is merely marked up differently. Figure 5-1 shows this document loaded into

Internet Explorer 5.0 without a style sheet.

Listing 5-1: A complete XML document using attributes to
store baseball statistics

<?xml version=”1.0”?>
<SEASON YEAR=”1998”>
<LEAGUE NAME=”American League”>
<DIVISION NAME=”East”>
<TEAM CITY=”Baltimore” NAME=”Orioles”>
<PLAYER GIVEN_NAME=”Doug” SURNAME=”Drabek”

POSITION=”Starting Pitcher” GAMES=”23”
GAMES_STARTED=”21” WINS=”6” LOSSES=”11” SAVES=”0”
COMPLETE_GAMES=”1” SHUT_OUTS=”0” ERA=”7.29”
INNINGS=”108.2” HITS_AGAINST=”138”
HOME_RUNS_AGAINST=”20” RUNS_AGAINST=”90”
EARNED_RUNS=”88” HIT_BATTER=”5” WILD_PITCHES=”1”
BALK=”0” WALKED_BATTER=”29” STRUCK_OUT_BATTER=”55”>

</PLAYER>
<PLAYER GIVEN_NAME=”Roberto” SURNAME=”Alomar”

POSITION=”Second Base” GAMES=”147”
GAMES_STARTED=”143” AT_BATS=”588” RUNS=”86”
HITS=”166” DOUBLES=”36” TRIPLES=”1” HOME_RUNS=”14”
RUNS_BATTED_IN=”56” WALKS=”59” STRUCK_OUT=”70”
STOLEN_BASES=”18” CAUGHT_STEALING=”5”
SACRIFICE_FLIES=”5” SACRIFICE_HITS=”3”

Continued

104 Part I ✦ Introducing XML

Listing 5-1 (continued)

HIT_BY_PITCH=”2” STEALS=”18”>
</PLAYER>
<PLAYER GIVEN_NAME=”Brady” SURNAME=”Anderson”

POSITION=”Outfield” GAMES=”133” GAMES_STARTED=”121”
AT_BATS=”479” RUNS=”84” HITS=”113” DOUBLES=”28”
TRIPLES=”3” HOME_RUNS=”18” RUNS_BATTED_IN=”51”
WALKS=”75” STRUCK_OUT=”78” STOLEN_BASES=”21”
CAUGHT_STEALING=”7” SACRIFICE_FLIES=”1”
SACRIFICE_HITS=”4” HIT_BY_PITCH=”15” STEALS=”21”>

</PLAYER>
<PLAYER GIVEN_NAME=”Rich” SURNAME=”Becker”

POSITION=”Outfield” GAMES=”79” GAMES_STARTED=”26”
AT_BATS=”113” RUNS=”22” HITS=”23” DOUBLES=”1”
TRIPLES=”0” HOME_RUNS=”3” RUNS_BATTED_IN=”11”
WALKS=”22” STRUCK_OUT=”34” STOLEN_BASES=”2”
CAUGHT_STEALING=”0” SACRIFICE_FLIES=”0”
SACRIFICE_HITS=”2” HIT_BY_PITCH=”2” STEALS=”2”>

</PLAYER>
<PLAYER GIVEN_NAME=”Mike” SURNAME=”Bordick”

POSITION=”Shortstop” GAMES=”151” GAMES_STARTED=”144”
AT_BATS=”465” RUNS=”59” HITS=”121” DOUBLES=”29”
TRIPLES=”1” HOME_RUNS=”13” RUNS_BATTED_IN=”51”
WALKS=”39” STRUCK_OUT=”65” STOLEN_BASES=”6”
CAUGHT_STEALING=”7” SACRIFICE_FLIES=”4”
SACRIFICE_HITS=”15” HIT_BY_PITCH=”10” STEALS=”6”>

</PLAYER>
<PLAYER GIVEN_NAME=”Danny” SURNAME=”Clyburn”

POSITION=”Outfield” GAMES=”11” GAMES_STARTED=”7”
AT_BATS=”25” RUNS=”6” HITS=”7” DOUBLES=”0”
TRIPLES=”0” HOME_RUNS=”1” RUNS_BATTED_IN=”3”
WALKS=”1” STRUCK_OUT=”10” STOLEN_BASES=”0”
CAUGHT_STEALING=”0” SACRIFICE_FLIES=”0”
SACRIFICE_HITS=”0” HIT_BY_PITCH=”0” STEALS=”0”>

</PLAYER>
<PLAYER GIVEN_NAME=”Charlie” SURNAME=”Greene”

POSITION=”Catcher” GAMES=”13” GAMES_STARTED=”6”
AT_BATS=”21” RUNS=”1” HITS=”4” DOUBLES=”1”
TRIPLES=”0” HOME_RUNS=”0” RUNS_BATTED_IN=”0”
WALKS=”0” STRUCK_OUT=”8” STOLEN_BASES=”0”
CAUGHT_STEALING=”0” SACRIFICE_FLIES=”0”
SACRIFICE_HITS=”1” HIT_BY_PITCH=”0” STEALS=”0”>

</PLAYER>
<PLAYER GIVEN_NAME=”Cal” SURNAME=”Ripken”

POSITION=”Third Base” GAMES=”161”
GAMES_STARTED=”161” AT_BATS=”601” RUNS=”65”
HITS=”163” DOUBLES=”27” TRIPLES=”1”
HOME_RUNS=”14” RUNS_BATTED_IN=”61” WALKS=”51”
STRUCK_OUT=”68” STOLEN_BASES=”0” CAUGHT_STEALING=”2”
SACRIFICE_FLIES=”2” SACRIFICE_HITS=”1”
HIT_BY_PITCH=”4” STEALS=”0”>

</PLAYER>

105Chapter 5 ✦ Attributes, Empty Tags, and XSL

<PLAYER GIVEN_NAME=”Rafael” SURNAME=”Palmeiro”
POSITION=”First Base” GAMES=”162”
GAMES_STARTED=”161” AT_BATS=”619” RUNS=”98”
HITS=”183” DOUBLES=”36” TRIPLES=”1” HOME_RUNS=”43”
RUNS_BATTED_IN=”121” WALKS=”79” STRUCK_OUT=”91”
STOLEN_BASES=”11” CAUGHT_STEALING=”7”
SACRIFICE_FLIES=”4” SACRIFICE_HITS=”0”
HIT_BY_PITCH=”7” STEALS=”11”>

</PLAYER>
</TEAM>
<TEAM CITY=”Boston” NAME=”Red Sox”></TEAM>
<TEAM CITY=”New York” NAME=”Yankees”></TEAM>
<TEAM CITY=”Tampa Bay” NAME=”Devil Rays”></TEAM>
<TEAM CITY=”Toronto” NAME=”Blue Jays”></TEAM>

</DIVISION>
<DIVISION NAME=”Central”>
<TEAM CITY=”Chicago” NAME=”White Sox”></TEAM>
<TEAM CITY=”Kansas City” NAME=”Royals”></TEAM>
<TEAM CITY=”Detroit” NAME=”Tigers”></TEAM>
<TEAM CITY=”Cleveland” NAME=”Indians”></TEAM>
<TEAM CITY=”Minnesota” NAME=”Twins”></TEAM>

</DIVISION>
<DIVISION NAME=”West”>
<TEAM CITY=”Anaheim” NAME=”Angels”></TEAM>
<TEAM CITY=”Oakland” NAME=”Athletics”></TEAM>
<TEAM CITY=”Seattle” NAME=”Mariners”></TEAM>
<TEAM CITY=”Texas” NAME=”Rangers”></TEAM>

</DIVISION>
</LEAGUE>
<LEAGUE NAME=”National League”>
<DIVISION NAME=”East”>
<TEAM CITY=”Atlanta” NAME=”Braves”></TEAM>
<TEAM CITY=”Florida” NAME=”Marlins”></TEAM>
<TEAM CITY=”Montreal” NAME=”Expos”></TEAM>
<TEAM CITY=”New York” NAME=”Mets”></TEAM>
<TEAM CITY=”Philadelphia” NAME=”Phillies”></TEAM>

</DIVISION>
<DIVISION NAME=”Central”>
<TEAM CITY=”Chicago” NAME=”Cubs”></TEAM>
<TEAM CITY=”Cincinnati” NAME=”Reds”></TEAM>
<TEAM CITY=”Houston” NAME=”Astros”></TEAM>
<TEAM CITY=”Milwaukee” NAME=”Brewers”></TEAM>
<TEAM CITY=”Pittsburgh” NAME=”Pirates”></TEAM>
<TEAM CITY=”St. Louis” NAME=”Cardinals”></TEAM>

</DIVISION>
<DIVISION NAME=”West”>
<TEAM CITY=”Arizona” NAME=”Diamondbacks”></TEAM>
<TEAM CITY=”Colorado” NAME=”Rockies”></TEAM>
<TEAM CITY=”Los Angeles” NAME=”Dodgers”></TEAM>
<TEAM CITY=”San Diego” NAME=”Padres”></TEAM>
<TEAM CITY=”San Francisco” NAME=”Giants”></TEAM>

</DIVISION>
</LEAGUE>

</SEASON>

106 Part I ✦ Introducing XML

Figure 5-1: The 1998 major league baseball statistics using attributes
for most information

Listing 5-1 uses only attributes for player information. Listing 4-1 used only element

content. There are intermediate approaches as well. For example, you could make

the player’s name part of element content while leaving the rest of the statistics as

attributes, like this:

<P>
On Tuesday <PLAYER POSITION=”Catcher” GAMES=”78”
GAMES_STARTED=”76” AT_BATS=”254” RUNS=”31” HITS=”70”
DOUBLES=”11” TRIPLES=”4” HOME_RUNS=”3” RUNS_BATTED_IN=”31”
WALKS=”14” STRUCK_OUT=”38” STOLEN_BASES=”2”
CAUGHT_STEALING=”4” SACRIFICE_FLIES=”1” SACRIFICE_HITS=”8”
HIT_BY_PITCH=”2” STEALS=”2”>Joe Girardi</PLAYER> struck
out twice and...

</P>

This would include Joe Girardi’s name in the text of a page while still making his

statistics available to readers who want to look deeper, perhaps as a hypertext foot-

note or a tool tip. There’s always more than one way to encode the same data.

Which one you pick depends on the needs of your specific application.

107Chapter 5 ✦ Attributes, Empty Tags, and XSL

Attributes versus Elements
Last chapter’s no-attribute approach was an extreme position. It’s also possible to

swing to the other extreme — storing all the information in the attributes and none

in the content. In general, I don’t recommend this approach. Storing all the informa-

tion in element content is much easier to work with in practice. However, this chap-

ter entertains the possibility of using only attributes for the sake of elucidation.

There are no hard and fast rules about when to use child elements and when to use

attributes. Generally, you’ll use whichever suits your application. With experience,

you’ll gain a feel for when attributes are easier than child elements and vice versa.

Until then, one good rule of thumb is that the data itself should be stored in ele-

ments. Information about the data (metadata) should be stored in attributes. And

when in doubt, put the information in the elements.

To differentiate between data and metadata, ask yourself whether someone reading

the document would want to see a particular piece of information. If the answer is

yes, then the information probably belongs in a child element. If the answer is no,

then the information probably belongs in an attribute. If all tags were stripped from

the document along with all the attributes, the basic information should still be pres-

ent. Attributes are good places to put ID numbers, URLs, references, and other infor-

mation not directly or immediately relevant to the reader. However, there are many

exceptions to the basic principle of storing metadata as attributes. Reasons for mak-

ing an exception include:

✦ Attributes can’t hold structure well.

✦ Elements allow you to include meta-metadata (information about the informa-

tion about the information).

✦ Not everyone always agrees on what is and isn’t metadata.

✦ Elements are more extensible in the face of future changes.

Structured metadata
Elements can have substructure, attributes can’t. This makes elements far more

flexible, and may convince you to encode metadata as child elements. For example,

suppose you’re writing an article and you want to include a source for a fact. It

might look something like this:

<FACT SOURCE=”The Biographical History of Baseball,
Donald Dewey and Nicholas Acocella (New York: Carroll &
Graf Publishers, Inc. 1995) p. 169”>
Josh Gibson is the only person in the history of baseball to
hit a pitch out of Yankee Stadium.

</FACT>

108 Part I ✦ Introducing XML

Clearly, the information “The Biographical History of Baseball, Donald Dewey and

Nicholas Acocella (New York: Carroll & Graf Publishers, Inc. 1995) p. 169” is meta-

data. It is not the fact itself. Rather it is information about the fact. However, the

SOURCE attribute contains a lot of implicit substructure. You might find it more use-

ful to organize the information like this:

<SOURCE>
<AUTHOR>Donald Dewey</AUTHOR>
<AUTHOR>Nicholas Acocella</AUTHOR>
<BOOK>
<TITLE>The Biographical History of Baseball</TITLE>
<PAGES>169</PAGES>
<YEAR>1995</YEAR>
<PUBLISHER>Carroll & Graf Publishers, Inc.</PUBLISHER>
<CITY>New York</CITY>

</BOOK>
</SOURCE>

Furthermore, using elements instead of attributes makes it straightforward to

include additional information such as the authors’ e-mail addresses, a URL where

an electronic copy of the document can be found, the chapter title, and anything

else that seems important.

Dates are another example. A common piece of metadata about scholarly articles is

the date the article was first received. This is important for establishing priority of

discovery and invention. It’s easy to include a DATE attribute in an ARTICLE tag:

<ARTICLE DATE=”10/11/2000”>
Polymerase Reactions in Organic Compounds

</ARTICLE>

However, the DATE attribute has substructure signified by the /. Getting that struc-

ture out of the attribute value is much more difficult than reading child elements of

a DATE element, as shown below:

<DATE>
<YEAR>2000</YEAR>
<MONTH>10</MONTH>
<DAY>11</DAY>

</DATE>

For instance, with CSS or XSL, it’s easy to format the day and month invisibly so

that only the year appears. For example, using CSS:

YEAR {display: inline}
MONTH {display: none}
DAY {display: none}

109Chapter 5 ✦ Attributes, Empty Tags, and XSL

If the DATE is stored as an attribute, however, there’s no easy way to access only

part of it. You must write a separate program in a programming language such as

ECMAScript or Java that can parse your date format. It’s easier to use the standard

XML tools and child elements.

Furthermore, the attribute syntax is ambiguous. What does the date “10/11/2000”

signify? In particular, is it October 11th or November 10th? Readers from different

countries will interpret this data differently. Even if your parser understands one

format, there’s no guarantee the people entering the data will enter it correctly. The

XML form, by contrast, is unambiguous.

Finally, using DATE children rather than attributes allows more than one date to be

associated with an element. For instance, scholarly articles are often returned to

the authors for revisions. In these cases, it can also be important to note when the

revised article was received. For example:

<ARTICLE>
<TITLE>
Maximum Projectile Velocity in an Augmented Railgun

</TITLE>
<AUTHOR>Elliotte Harold</AUTHOR>
<AUTHOR>Bruce Bukiet</AUTHOR>
<AUTHOR>William Peter</AUTHOR>
<DATE>
<YEAR>1992</YEAR>
<MONTH>10</MONTH>
<DAY>29</DAY>

</DATE>
<DATE>
<YEAR>1993</YEAR>
<MONTH>10</MONTH>
<DAY>26</DAY>

</DATE>
</ARTICLE>

As another example, consider the ALT attribute of an IMG tag in HTML. This is lim-

ited to a single string of text. However, given that a picture is worth a thousand

words, you might well want to replace an IMG with marked up text. For instance,

consider the pie chart shown in Figure 5-2.

The best description of this picture an ALT attribute can provide is:

<IMG SRC=”05021.gif”
ALT=”Pie Chart of Positions in Major League Baseball”
WIDTH=”819” HEIGHT=”623”>

110 Part I ✦ Introducing XML

Figure 5-2: Distribution of positions in major league baseball

However, an ALT child element can include markup as well as text. For example, you

might provide a table of the relevant numbers instead of a pie chart.

<ALT>
<TABLE>
<TR>
<TD>Starting Pitcher</TD> <TD>242</TD> <TD>20%</TD>

</TR>
<TR>
<TD>Relief Pitcher</TD> <TD>336</TD> <TD>27%</TD>

</TR>
<TR>
<TD>Catcher</TD> <TD>104</TD> <TD>9%</TD>

</TR>
<TR>
<TD>Outfield</TD> <TD>235</TD> <TD>19%</TD>

</TR>
<TR>
<TD>First Base</TD> <TD>67</TD> <TD>6%</TD>

</TR>
<TR>
<TD>Shortstop</TD> <TD>67</TD> <TD>6%</TD>

</TR>
<TR>
<TD>Second Base</TD> <TD>88</TD> <TD>7%</TD>

</TR>
<TR>
<TD>Third Base</TD> <TD>67</TD> <TD>6%</TD>

Major League Baseball Positions

Starting Pitcher
20%

Relief Pitcher
27%

Third Base
6%

Second Base
7%Shortstop

6%

First Base
6%

Outfield
19% Catcher

9%

111Chapter 5 ✦ Attributes, Empty Tags, and XSL

</TR>
</TABLE>

</ALT>

You might even provide the actual Postscript, Scalable Vector Graphics (SVG), or

Vector Markup Language (VML) code to render the picture in the event that the

bitmap image is not available.

Meta-metadata
Using elements for metadata also easily allows for meta-metadata, or information

about the information about the information. For example, the author of a poem

may be considered to be metadata about the poem. The language in which that

author’s name is written is data about the metadata about the poem. This isn’t a

trivial concern, especially for distinctly non-Roman languages. For instance, is the

author of the Odyssey Homer or ? Using elements, it’s easy write.

<POET LANGUAGE=”English”>Homer</POET>
<POET LANGUAGE=”Greek”> </POET>

However, if POET is an attribute rather than a child element, you’re stuck with

unwieldy constructs such as this.

<POEM POET=”Homer” POET_LANGUAGE=”English”
POEM_LANGUAGE=”English”>
Tell me, O Muse, of the cunning man...

</POEM>

And it’s even more bulky if you want to provide both the poet’s English and Greek

names.

<POEM POET_NAME_1=”Homer” POET_LANGUAGE_1=”English”
POET_NAME_2=” ” POET_LANGUAGE_2=”Greek”
POEM_LANGUAGE=”English”>
Tell me, O Muse, of the cunning man...

</POEM>

What’s your metadata is someone else’s data
“Metaness” is in the mind of the beholder. Who’s reading your document and why

they’re reading it determines what they consider to be data and what they consider

to be metadata. For example, if you’re simply reading an article in a scholarly jour-

nal, then the name of the author of the article is tangential to the information it con-

tains. However, if you’re sitting on a tenure and promotions committee scanning a

journal to see whose publishing and whose not, then the names of the authors and

the number of articles they’ve published may be more important to you than what

they wrote (sad but true).

112 Part I ✦ Introducing XML

In fact, you yourself may change your mind about what’s meta and what’s data.

What’s only tangentially relevant to you today may become crucial to you next

week. You can use style sheets to hide unimportant elements today and change the

style sheets to reveal them later. However, it’s more difficult to later reveal informa-

tion that was first stored in an attribute. This may require rewriting the document

itself rather than simply changing the style sheet.

Elements are more extensible
Attributes are certainly convenient when you only need to convey one or two

words of unstructured information. In these cases, there may genuinely be no cur-

rent need for a child element. However, this doesn’t preclude such a need in the

future.

For instance, you may only need to store the name of the author of an article now,

and you may not need to distinguish between the first and last names. However, in

the future you may uncover a need to store first and last names, e-mail addresses,

institutions, snail-mail addresses, URLs, and more. If you’ve stored the authors of

the article as elements, then it’s easy to add child elements to include this addi-

tional information.

Although any such change will probably require some revision of your documents,

style sheets, and associated programs, it’s still much easier to change a simple ele-

ment to a tree of elements than it is to make an attribute a tree of elements.

However, if you used an attribute, you’re stuck. It’s very difficult to extend attribute

syntax beyond the region it was originally designed for.

Good times to use attributes
Having exhausted all the reasons why you should use elements instead of

attributes, I feel compelled to point out that there are still times when using

attributes makes sense. First of all, as previously mentioned, attributes are fully

appropriate for very simple data without substructure that the reader is unlikely to

want to see. One example is the HEIGHT and WIDTH attributes of an IMG element.

Although the values of these attributes may change if the image changes, it’s hard

to imagine how the data in the attribute could be anything more than a very short

string of text. HEIGHT and WIDTH are one-dimensional quantities (in more ways than

one) so they work well as attributes.

Furthermore, attributes are appropriate for simple information about the document

that has nothing to do with the content of the document. For example, it is often

useful to assign an ID attribute to each element. The value of an ID attribute is a

unique string possessed only by one element in the document. You can then use

this string for a variety of tasks including linking to particular elements of the docu-

ment, even if the elements move around as the document changes over time. For

example:

113Chapter 5 ✦ Attributes, Empty Tags, and XSL

<SOURCE ID=”S1”>
<AUTHOR ID=”A1”>Donald Dewey</AUTHOR>
<AUTHOR ID=”A2”>Nicholas Acocella</AUTHOR>
<BOOK ID=”B1”>
<TITLE ID=”B2”>
The Biographical History of Baseball

</TITLE>
<PAGES ID=”B3”>169</PAGES>
<YEAR ID=”B4”>1995</YEAR>
<PUBLISHER>Carroll & Graf Publishers, Inc.</PUBLISHER>
<CITY>New York</CITY>

</BOOK>
</SOURCE>

ID attributes make links to particular elements in the document possible. In this

way, they can serve the same purpose as the NAME attribute of HTML’s A elements.

Other data associated with linking —HREFs to link to, SRCs to pull images and

binary data from, and so forth — also work well as attributes.

You’ll see more examples of attributes used to hold linking information in
Chapter 19.

Attributes are also useful containers for document-specific style information. For

example, if TITLE elements are normally rendered as bold text but you want to

make just one TITLE element both bold and italic, you might write something simi-

lar to this.

<TITLE STYLE=”font-style: italic”>Significant Others</TITLE>

This allows the style information to be embedded without changing the tree struc-

ture of the document. Although ideally you’d prefer to use a separate element, this

scheme gives document authors somewhat more control when they cannot add ele-

ments to the tag set that they’re working with. For example, the webmasters of a

site might require page authors and designers to use a particular XML vocabulary

with a fixed list of elements and attributes. Nonetheless, they might want to allow

designers to make minor adjustments to individual pages. Use this tactic with

restraint, however, or you’ll soon find yourself back in the HTML hell that XML was

supposed to save you from, in which formatting is freely intermixed with meaning

and documents are no longer maintainable.

The final reason to use attributes is to maintain compatibility with HTML. To the

extent that you’re using tags that at least look similar to HTML such as , <P>,

and <TD>, you might as well employ the standard HTML attributes for these tags.

This has the double advantage of allowing legacy browsers to at least partially

parse and display your document, and of being more familiar to the people writing

the documents.

Cross-
Reference

114 Part I ✦ Introducing XML

Empty Elements and Empty Element Tags
An element that contains no content is called an empty element. It can be written

like this:

<PLAYER GIVEN_NAME=”Rich” SURNAME=”Becker”
POSITION=”Outfield” GAMES=”79” GAMES_STARTED=”26”
AT_BATS=”113” RUNS=”22” HITS=”23” DOUBLES=”1”
TRIPLES=”0” HOME_RUNS=”3” RUNS_BATTED_IN=”11”
WALKS=”22” STRUCK_OUT=”34” STOLEN_BASES=”2”
CAUGHT_STEALING=”0” SACRIFICE_FLIES=”0”
SACRIFICE_HITS=”2” HIT_BY_PITCH=”2” STEALS=”2”></PLAYER>

The end tag immediately follows the start tag. Rather than including both a start

and an end tag you can include one empty-element tag. Empty-element tags are dis-

tinguished from start tags by a closing /> instead of simply a closing >. For

instance, instead of <PLAYER></PLAYER> you would write <PLAYER/>. Rich

Becker’s PLAYER element can be written with an empty-element tag like this.

<PLAYER GIVEN_NAME=”Rich” SURNAME=”Becker”
POSITION=”Outfield” GAMES=”79” GAMES_STARTED=”26”
AT_BATS=”113” RUNS=”22” HITS=”23” DOUBLES=”1”
TRIPLES=”0” HOME_RUNS=”3” RUNS_BATTED_IN=”11”
WALKS=”22” STRUCK_OUT=”34” STOLEN_BASES=”2”
CAUGHT_STEALING=”0” SACRIFICE_FLIES=”0”
SACRIFICE_HITS=”2” HIT_BY_PITCH=”2” STEALS=”2”/>

XML parsers treat this single tag identically to its two-tag equivalent. This PLAYER
element is precisely equal (though not identical) to the previous PLAYER element

formed with an empty tag. The difference between <PLAYER></PLAYER> and

<PLAYER/> is syntactic sugar and nothing more. If you don’t like the empty-element

tag syntax, or find it hard to read, you don’t have to use it.

XSL
Attributes are visible in an XML source view of the document as shown in Figure

5-1. However, once a CSS style sheet is applied, the attributes disappear. Figure 5-3

shows Listing 5-1 after the baseball stats style sheet from the previous chapter is

applied. It looks like a blank document because CSS styles only apply to element

content, not to attributes. If you use CSS, any data that you want to display to the

reader should be part of an element’s content rather than one of its attributes.

115Chapter 5 ✦ Attributes, Empty Tags, and XSL

Figure 5-3: A blank document is displayed when a CSS style sheet is applied
to an XML document whose elements do not contain any character data.

However, there is an alternative style sheet language that does allow you to access

and display attribute data. This is the Extensible Stylesheet Language (XSL). XSL is

divided into two parts, XSL Transformations (XSLT) and XSL Formatting Objects

(XSL-FO). XSLT enables you to replace one element with another. You define rules

that map your XML elements to standard HTML elements, to HTML elements plus

CSS attributes, or to a non-HTML vocabulary like XSL-FO. XSLT can reorder ele-

ments in the document and even add additional content that was never present in

the XML document.

At the time of this writing (January 2001) no browser supports XSLT as configured
by default. This includes Netscape, Internet Explorer, Mozilla, Opera, Lynx, Mosaic,
and HotJava.

Internet Explorer 5.0 and 5.5 do support a nonstandard version of a very early
working draft of the XSLT specification, but do not support any part of the final ver-
sion described in this chapter and this book. However, version 3.0 of MSXML,
Microsoft’s XML parser/ XSLT processor, can add support for most (though still not
quite all) of XSLT 1.0 to IE 5.0 and 5.5. However, MSXML 3.0 is not included in the
default install of IE 5.0 or 5.5. You have to download it from Microsoft’s Web site at
http://msdn.microsoft.com/xml/general/xmlparser.asp and install it
using the Windows Installer. Once that’s done, you have to download and run
another program, xmlinst.exe to actually replace the MSXML 2.x DLL that was bun-
dled with IE with the MSXML 3.0 DLL. Otherwise, existing programs such as
Internet Explorer will continue to use the old, non-standard, buggy parser. You can
download xmlinst.exe from the same URL where you found MSXML 3.0.

Chapter 17 shows you some techniques that allow you to use XSLT even with
browsers that don’t support it directly. In the meantime, however, don’t expect any
of the examples in the rest of this chapter to work as advertised except in Internet
Explorer 5.0 or later, and then only after you’ve successfully installed MSXML 3.0.

Caution

116 Part I ✦ Introducing XML

The formatting half of XSL defines an extremely powerful view of documents as

pages. XSL-FO enables you to specify the appearance and layout of a page, including

multiple columns, text flow around objects, line spacing, widow and orphan control,

font faces, styles, and sizes, and more. It’s designed to be powerful enough to layout

documents for both the Web and print from the same source document. For exam-

ple, suppose a local newspaper stores TV show times and advertisements in an XML

document. Then they could use two different XSL style sheets to generate both the

printed and online editions of the television listings from the same source document

automatically. However, no Web browsers yet support XSL formatting objects.

Therefore, this chapter focuses on XSLT, the more finished half of XSL.

XSL-FO is discussed in Chapter 18.

XSLT templates
An XSLT style sheet contains templates into which data from the XML document is

poured. For example, a template might look like this:

<HTML>
<HEAD>
<TITLE>
XSLT Instructions to get the title

</TITLE>
</HEAD>
<BODY>
<H1>XSLT Instructions to get the title</H1>
XSLT Instructions to get the statistics

</BODY>
</HTML>

The italicized sections will be replaced by particular XSLT elements that copy data

from the underlying XML document into this template. You can apply this template

to many different data sets. For instance, if the template is designed to work with

the baseball example, then the same style sheet can display statistics from different

seasons.

This may remind you of some server-side include schemes for HTML. In fact, this is

very much like server-side includes. However, the actual transformation of the

source XML document by the XSLT style sheet takes place on the client rather than

on the server. Furthermore, the output document does not have to be HTML. It can

be any well-formed XML.

Servers can be configured to perform the transformation on the server side
instead. This is how you make XML documents with XSLT style sheets compatible
with legacy browsers that don’t support XSL.

XSLT instructions can retrieve any data in the XML document. This includes ele-

ment content, element names, and, most importantly for this example, attributes.

Particular elements are chosen by a pattern that considers the element’s name, its

Note

Cross-
Reference

117Chapter 5 ✦ Attributes, Empty Tags, and XSL

value, its attributes’ names and values, its absolute and relative position in the tree

structure of the XML document, and more. Once the data is extracted from an ele-

ment, it can be moved, copied, and manipulated in a variety of ways. This brief

introduction doesn’t discuss everything you can do with XSLT. However, you will

learn to use XSLT to write some pretty amazing documents that can be displayed in

a Web browser immediately.

Chapter 17 covers XSLT in depth.

The body of the document
Let’s begin by looking at a simple example and applying it to the baseball statistics

document of Listing 5-1. Listing 5-2 is an XSLT style sheet. This style sheet provides

the HTML mold into which XML data will be poured.

Listing 5-2: An XSLT style sheet

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0”

xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:template match=”SEASON”>
<HTML>
<HEAD>
<TITLE>
Major League Baseball Statistics

</TITLE>
</HEAD>
<BODY>
<H1>Major League Baseball Statistics</H1>

<HR></HR>
Copyright 2000

Elliotte Rusty Harold

elharo@metalab.unc.edu

</BODY>
</HTML>

</xsl:template>

</xsl:stylesheet>

Cross-
Reference

118 Part I ✦ Introducing XML

Listing 5-2 resembles an HTML file included inside an xsl:template element. In

other words, its structure looks like this:

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0”

xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:template match=”SEASON”>
HTML file goes here

</xsl:template>

</xsl:stylesheet>

Listing 5-2 is not just an XSLT style sheet; it’s also a well-formed XML document. It

begins with an XML declaration. The root element of this document is

xsl:stylesheet. This style sheet contains a single template for the XML data

encoded as an xsl:template element. The xsl:template element has a match
attribute with the value SEASON, and its content is a well-formed HTML document.

It’s not a coincidence that the output HTML is well-formed. Because the HTML must

first be part of an XSLT style sheet, and because XSLT style sheets are well-formed

XML documents, all the HTML included in an XSLT style sheet must be well formed.

The Web browser tries to match parts of the XML document against each xsl:
template element. The SEASON template matches all SEASON elements in the docu-

ment. Of course, in Listing 5-1 there’s exactly one of those, the root element. When

the browser reads the XML document, it matches this SEASON element to the

SEASON template and inserts data from the XML document where indicated by XSLT

instructions. However, this particular template contains no XSLT instructions, so its

contents are merely copied verbatim into the Web browser, producing the output

you see in Figure 5-4. Notice that Figure 5-4 does not display any data from the XML

document, only from the XSLT template.

Figure 5-4: Baseball statistics after application of the XSL style sheet in Listing 5-2

119Chapter 5 ✦ Attributes, Empty Tags, and XSL

To apply the XSLT style sheet of Listing 5-2 to the XML document in Listing 5-1, add

an xml-stylesheet processing instruction with a type pseudo-attribute with

value text/xml and an href pseudo-attribute that points to the style sheet

between the XML declaration and the root element. For example:

<?xml version=”1.0”?>
<?xml-stylesheet type=”text/xml” href=”5-2.xsl”?>
<SEASON YEAR=”1998”>
...

This is the same way you attach a CSS style sheet to a document. The only differ-

ence is that the type pseudo-attribute has the value text/xml instead of

text/css.

Internet Explorer requires you to use the nonstandard and incorrect MIME media
type text/xsl instead of text/xml. For maximum portability, you may want to
include two xml-stylesheet processing instructions pointing to the same style
sheet, one instruction with type text/xsl and the second instruction with type
text/xml, like this:

<?xml version=”1.0”?>
<?xml-stylesheet type=”text/xml” href=”5-2.xsl”?>
<?xml-stylesheet type=”text/xsl” href=”5-2.xsl”?>
<SEASON YEAR=”1998”>
...

The browser will pick whichever one it understands. In early 2001, the new MIME
media type application/xml+xslt was standardized especially for XSLT style
sheets. However, no browsers yet support this; and text/xml is still allowed, so I
recommend using text/xml for the time being.

The title
Of course, there was something rather obvious missing from Figure 5-4 — the data!

Although the style sheet in Listing 5-2 displays something (unlike the CSS style

sheet of Figure 5-3) it doesn’t show any data from the XML document. To add this,

you need to use XSLT instruction elements to copy data from the source XML docu-

ment into the output document. Listing 5-3 adds the necessary XSLT instructions to

extract the YEAR attribute from the SEASON element and insert it into the TITLE and

H1 header of the resulting document. Figure 5-5 shows the rendered document.

Caution

120 Part I ✦ Introducing XML

Listing 5-3: An XSLT style sheet with instructions to extract
the YEAR attribute of the SEASON element

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0”

xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:template match=”SEASON”>
<HTML>
<HEAD>
<TITLE>
<xsl:value-of select=”@YEAR”/>
Major League Baseball Statistics

</TITLE>
</HEAD>
<BODY>

<H1>
<xsl:value-of select=”@YEAR”/>
Major League Baseball Statistics

</H1>

<HR></HR>
Copyright 2000

Elliotte Rusty Harold

elharo@metalab.unc.edu

</BODY>
</HTML>

</xsl:template>

</xsl:stylesheet>

The XSLT instruction that extracts the YEAR attribute from the SEASON element is:

<xsl:value-of select=”@YEAR”/>

121Chapter 5 ✦ Attributes, Empty Tags, and XSL

Figure 5-5: Listing 5-1 after application of the XSL style sheet in Listing 5-3

The xsl:value-of element copies the value of something from the input docu-

ment into the output document. In this example, it copies the value of the YEAR
attribute of the root SEASON element. It appears twice because the year should

appear twice in the output document — once in the H1 header and once in the

TITLE. Each time it appears, this instruction does the same thing — it inserts the

value of the YEAR attribute, the string “1998” in this example.

XSLT instructions are distinguished from output elements such as HTML and H1
because the instructions are in the http://www.w3.org/1999/XSL/Transform
namespace. In most cases, this namespace is associated with the prefix xsl. That

is, the names of all XSLT elements begin with xsl:. The namespace is identified by

the xmlns:xsl attribute of the root element of the style sheet. In Listings 5-2 and

5-3, and in all other examples in this book, the value of that attribute is

http://www.w3.org/1999/XSL/Transform.

The prefix can and occasionally does change. However, the URI absolutely must be
http://www.w3.org/1999/XSL/Transform, nothing else. Various early and
outdated drafts of the XSLT specification used different namespace URIs. However,
modern, up-to-date, specification-compliant software uses http://www.w3.
org/1999/XSL/Transform and http://www.w3.org/1999/XSL/Transform
only! If you use any other namespace URI, or make even a small typo in the URI,
the results are likely to be very strange and hard to debug.

You should avoid any software that uses other namespaces because it’s likely to
be out-of-date and quite buggy. Furthermore, you should be wary of anybody who
tries to tell you to use a different namespace. They are not your friends! (Yes, I’m
talking about Microsoft here. Its trainers and evangelists have been promulgating a
nonstandard, Microsoft-only version of XSLT that doesn’t work with anything

Caution

122 Part I ✦ Introducing XML

except Internet Explorer. This nonstandard XSLT can be identified by its use of the
http://www.w3.org/TR/WD-xsl namespace URI. Treat this URI as a warning:
Dangerous nonstandard Microsoft extensions ahead!) In this book, I will adhere
strictly to W3C standard XSLT that works across all browsers and platforms.

Namespaces are discussed in depth in Chapter 13.

Leagues, divisions, and teams
Next, let’s add some XSLT instructions to pull out the two LEAGUE elements. There’s

more than one of these, so we’ll use the xsl:for-each instruction to iterate

through all the leagues. An xsl:value-of element will extract the name of each

league from its NAME attribute. Each name will be mapped to an H2 header. Listing

5-4 demonstrates the process; Figure 5-6 shows the document rendered with this

style sheet.

Listing 5-4: An XSLT style sheet with instructions to extract
LEAGUE elements

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0”

xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:template match=”SEASON”>
<HTML>
<HEAD>
<TITLE>
<xsl:value-of select=”@YEAR”/>
Major League Baseball Statistics

</TITLE>
</HEAD>
<BODY>

<H1>
<xsl:value-of select=”@YEAR”/>
Major League Baseball Statistics

</H1>

<xsl:for-each select=”LEAGUE”>
<H2 ALIGN=”CENTER”>
<xsl:value-of select=”@NAME”/>

</H2>
</xsl:for-each>

<HR></HR>
Copyright 2000

Elliotte Rusty Harold

Cross-
Reference

123Chapter 5 ✦ Attributes, Empty Tags, and XSL

elharo@metalab.unc.edu

</BODY>
</HTML>

</xsl:template>

</xsl:stylesheet>

Figure 5-6: The league names are displayed as H2 headers when the XSLT
style sheet in Listing 5-4 is applied.

The key new instruction is the xsl:for-each element

<xsl:for-each select=”LEAGUE”>
<H2 ALIGN=”CENTER”>
<xsl:value-of select=”@NAME”/>

</H2>
</xsl:for-each>

xsl:for-each loops through all the LEAGUE elements (more accurately, those

LEAGUE elements that are children of the previously matched SEASON element,

although in this document that’s all the LEAGUE elements). As the XSLT processor

visits each LEAGUE element, it outputs the value of its NAME attribute between <H2
ALIGN=”CENTER”> and </H2>. Although there’s only one xsl:for-each matching a

LEAGUE element, it loops over all the LEAGUE elements that are immediate children

of the SEASON element. Thus, this template works for anywhere from zero to an

indefinite number of leagues.

124 Part I ✦ Introducing XML

The same technique can be used to assign H3 headers to divisions and H4 headers

to teams. Listing 5-5 demonstrates the procedure and Figure 5-7 shows the docu-

ment rendered with this style sheet. The names of the divisions and teams are read

from the XML data.

Listing 5-5: An XSLT style sheet with instructions to extract
DIVISION and TEAM elements

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0”

xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:template match=”SEASON”>
<HTML>
<HEAD>
<TITLE>
<xsl:value-of select=”@YEAR”/>
Major League Baseball Statistics

</TITLE>
</HEAD>
<BODY>

<H1>
<xsl:value-of select=”@YEAR”/>
Major League Baseball Statistics

</H1>

<xsl:for-each select=”LEAGUE”>
<H2 ALIGN=”CENTER”>
<xsl:value-of select=”@NAME”/>

</H2>

<xsl:for-each select=”DIVISION”>
<H3 ALIGN=”CENTER”>
<xsl:value-of select=”@NAME”/>
</H3>

<xsl:for-each select=”TEAM”>
<H4 ALIGN=”CENTER”>
<xsl:value-of select=”@CITY”/>
<xsl:value-of select=”@NAME”/>

</H4>
</xsl:for-each>

</xsl:for-each>

</xsl:for-each>

<HR></HR>
Copyright 2000

125Chapter 5 ✦ Attributes, Empty Tags, and XSL

Elliotte Rusty Harold

elharo@metalab.unc.edu

</BODY>
</HTML>

</xsl:template>

</xsl:stylesheet>

Figure 5-7: Divisions and team names are displayed after application of the
XSL style sheet in Listing 5-5.

In the case of the TEAM elements, the values of both its CITY and NAME attributes

are used as contents for the H4 header. Also notice that the nesting of the xsl:for-
each elements that selects seasons, leagues, divisions, and teams mirrors the hier-

archy of the document itself. That’s not a coincidence. While other schemes are

possible that don’t require matching hierarchies, this is the simplest, especially for

highly structured data like the baseball statistics of Listing 5-1.

126 Part I ✦ Introducing XML

Players
The next step is to add statistics for individual players on a team. The most natural

way to do this is in a table. Listing 5-6 shows an XSLT style sheet that arranges the

players and their stats in a table. No new XSLT elements are introduced. The same

xsl:for-each and xsl:value-of elements are used on the PLAYER element and

its attributes. The output contains standard HTML table tags. Figure 5-8 displays

the results.

Listing 5-6: An XSLT style sheet that places players and their
statistics in a table

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0”

xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:template match=”SEASON”>
<HTML>
<HEAD>
<TITLE>
<xsl:value-of select=”@YEAR”/>
Major League Baseball Statistics

</TITLE>
</HEAD>
<BODY>

<H1>
<xsl:value-of select=”@YEAR”/>
Major League Baseball Statistics

</H1>

<xsl:for-each select=”LEAGUE”>
<H2 ALIGN=”CENTER”>
<xsl:value-of select=”@NAME”/>

</H2>

<xsl:for-each select=”DIVISION”>
<H3 ALIGN=”CENTER”>
<xsl:value-of select=”@NAME”/>
</H3>

<xsl:for-each select=”TEAM”>
<H4 ALIGN=”CENTER”>
<xsl:value-of select=”@CITY”/>
<xsl:value-of select=”@NAME”/>

</H4>

<TABLE>

127Chapter 5 ✦ Attributes, Empty Tags, and XSL

<THEAD>
<TR>
<TH>Player</TH><TH>P</TH><TH>G</TH>
<TH>GS</TH><TH>AB</TH><TH>R</TH><TH>H</TH>
<TH>D</TH><TH>T</TH><TH>HR</TH><TH>RBI</TH>
<TH>S</TH><TH>CS</TH><TH>SH</TH><TH>SF</TH>
<TH>E</TH><TH>BB</TH><TH>SO</TH><TH>HBP</TH>
</TR>
</THEAD>
<TBODY>
<xsl:for-each select=”PLAYER”>
<TR>
<TD>
<xsl:value-of select=”@GIVEN_NAME”/>
<xsl:value-of select=”@SURNAME”/>
</TD>
<TD><xsl:value-of select=”@POSITION”/></TD>
<TD><xsl:value-of select=”@GAMES”/></TD>
<TD>
<xsl:value-of select=”@GAMES_STARTED”/>

</TD>
<TD><xsl:value-of select=”@AT_BATS”/></TD>
<TD><xsl:value-of select=”@RUNS”/></TD>
<TD><xsl:value-of select=”@HITS”/></TD>
<TD><xsl:value-of select=”@DOUBLES”/></TD>
<TD><xsl:value-of select=”@TRIPLES”/></TD>
<TD><xsl:value-of select=”@HOME_RUNS”/></TD>
<TD><xsl:value-of select=”@RBI”/></TD>
<TD><xsl:value-of select=”@STEALS”/></TD>
<TD>
<xsl:value-of select=”@CAUGHT_STEALING”/>
</TD>
<TD>
<xsl:value-of select=”@SACRIFICE_HITS”/>
</TD>
<TD>
<xsl:value-of select=”@SACRIFICE_FLIES”/>
</TD>
<TD><xsl:value-of select=”@ERRORS”/></TD>
<TD><xsl:value-of select=”@WALKS”/></TD>
<TD>
<xsl:value-of select=”@STRUCK_OUT”/>
</TD>
<TD>
<xsl:value-of select=”@HIT_BY_PITCH”/>
</TD>
</TR>
</xsl:for-each>
</TBODY>
</TABLE>

Continued

128 Part I ✦ Introducing XML

Listing 5-6 (continued)

</xsl:for-each>

</xsl:for-each>

</xsl:for-each>

<HR></HR>
Copyright 2000

Elliotte Rusty Harold

elharo@metalab.unc.edu

</BODY>
</HTML>

</xsl:template>

</xsl:stylesheet>

Figure 5-8: Player statistics are displayed after applying the XSL style sheet in Listing 5-6.

129Chapter 5 ✦ Attributes, Empty Tags, and XSL

Separation of pitchers and batters
One discrepancy you may have noted in Figure 5-8 is that the pitchers aren’t han-

dled properly. Throughout this chapter and Chapter 4, the pitchers have had a

completely different set of statistics, whether those stats were stored in element

content or attributes. Therefore, the pitchers really need a table that is separate

from the other players. Before putting a player into the table, you must test

whether the player is or is not a pitcher. If his POSITION attribute contains the

string “Pitcher”, omit him. Then reverse the procedure in a second table that only

includes pitchers — that is PLAYER elements whose POSITION attribute contains

the string “Pitcher”.

To do this, you have to include code in the xsl:for-each element that selects the

players. You don’t select all players. Instead, you select only those players whose

POSITION attribute is not pitcher. The syntax looks like this.

<xsl:for-each select=”PLAYER[(@POSITION != ‘Pitcher’)”>

But because the XML document distinguishes between starting and relief pitchers,

the true answer must test both cases.

<xsl:for-each select=”PLAYER[(@POSITION != ‘Starting Pitcher’)
and (@POSITION != ‘Relief Pitcher’)]”>

For the table of pitchers, you logically reverse this to the position being equal to

either “Starting Pitcher” or “Relief Pitcher”. (It is not sufficient to just change not
equal to equal. You also have to change and to or.) The syntax looks like this:

<xsl:for-each select=”PLAYER[(@POSITION = ‘Starting Pitcher’)
or (@POSITION = ‘Relief Pitcher’)]”>

Only a single equals sign is used to test for equality rather than the double equals
sign used in C and Java. That’s because XSLT does not have an assignment
operator.

Listing 5-7 shows an XSLT style sheet separating the batters and pitchers into two

different tables. The pitchers’ table adds columns for all the usual pitcher statistics.

Listing 5-1 encodes in attributes: wins, losses, saves, shutouts, and so on. Column

labels are abbreviated to keep the table to a manageable width. Figure 5-9 shows

the results.

Note

130 Part I ✦ Introducing XML

Listing 5-7: An XSLT style sheet that separates batters and
pitchers

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0”

xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:template match=”SEASON”>
<HTML>
<HEAD>
<TITLE>
<xsl:value-of select=”@YEAR”/>
Major League Baseball Statistics

</TITLE>
</HEAD>
<BODY>

<H1>
<xsl:value-of select=”@YEAR”/>
Major League Baseball Statistics

</H1>

<xsl:for-each select=”LEAGUE”>
<H2 ALIGN=”CENTER”>
<xsl:value-of select=”@NAME”/>

</H2>

<xsl:for-each select=”DIVISION”>
<H3 ALIGN=”CENTER”>
<xsl:value-of select=”@NAME”/>
</H3>

<xsl:for-each select=”TEAM”>
<H4 ALIGN=”CENTER”>
<xsl:value-of select=”@CITY”/>
<xsl:value-of select=”@NAME”/>

</H4>

<TABLE>
<CAPTION>Batters</CAPTION>
<THEAD>
<TR>
<TH>Player</TH><TH>P</TH><TH>G</TH>
<TH>GS</TH><TH>AB</TH><TH>R</TH><TH>H</TH>
<TH>D</TH><TH>T</TH><TH>HR</TH><TH>RBI</TH>
<TH>S</TH><TH>CS</TH><TH>SH</TH><TH>SF</TH>
<TH>E</TH><TH>BB</TH><TH>SO</TH>
<TH>HBP</TH>

131Chapter 5 ✦ Attributes, Empty Tags, and XSL

</TR>
</THEAD>
<TBODY>
<xsl:for-each select=”PLAYER[(@POSITION
!= ‘Starting Pitcher’)
and (@POSITION != ‘Relief Pitcher’)]”>
<TR>
<TD>
<xsl:value-of select=”@GIVEN_NAME”/>
<xsl:value-of select=”@SURNAME”/>
</TD>
<TD><xsl:value-of select=”@POSITION”/></TD>
<TD><xsl:value-of select=”@GAMES”/></TD>
<TD>
<xsl:value-of select=”@GAMES_STARTED”/>

</TD>
<TD><xsl:value-of select=”@AT_BATS”/></TD>
<TD><xsl:value-of select=”@RUNS”/></TD>
<TD><xsl:value-of select=”@HITS”/></TD>
<TD><xsl:value-of select=”@DOUBLES”/></TD>
<TD><xsl:value-of select=”@TRIPLES”/></TD>
<TD>
<xsl:value-of select=”@HOME_RUNS”/>

</TD>
<TD><xsl:value-of select=”@RBI”/></TD>
<TD><xsl:value-of select=”@STEALS”/></TD>
<TD>
<xsl:value-of select=”@CAUGHT_STEALING”/>
</TD>
<TD>
<xsl:value-of select=”@SACRIFICE_HITS”/>
</TD>
<TD>
<xsl:value-of select=”@SACRIFICE_FLIES”/>
</TD>
<TD><xsl:value-of select=”@ERRORS”/></TD>
<TD><xsl:value-of select=”@WALKS”/></TD>
<TD>
<xsl:value-of select=”@STRUCK_OUT”/>
</TD>
<TD>
<xsl:value-of select=”@HIT_BY_PITCH”/>
</TD>
</TR>
</xsl:for-each>
</TBODY>
</TABLE>

<TABLE>

Continued

132 Part I ✦ Introducing XML

Listing 5-7 (continued)

<CAPTION>Pitchers</CAPTION>
<THEAD>
<TR>
<TH>Player</TH><TH>P</TH><TH>G</TH>
<TH>GS</TH><TH>W</TH><TH>L</TH><TH>S</TH>
<TH>CG</TH><TH>SO</TH><TH>ERA</TH>
<TH>IP</TH><TH>HR</TH><TH>R</TH><TH>ER</TH>
<TH>HB</TH><TH>WP</TH><TH>B</TH><TH>BB</TH>
<TH>K</TH>
</TR>
</THEAD>
<TBODY>
<xsl:for-each select=”PLAYER[(@POSITION
= ‘Starting Pitcher’)
or (@POSITION = ‘Relief Pitcher’)]”>
<TR>
<TD>
<xsl:value-of select=”@GIVEN_NAME”/>
<xsl:value-of select=”@SURNAME”/>
</TD>
<TD><xsl:value-of select=”@POSITION”/></TD>
<TD><xsl:value-of select=”@GAMES”/></TD>
<TD>
<xsl:value-of select=”@GAMES_STARTED”/>

</TD>
<TD><xsl:value-of select=”@WINS”/></TD>
<TD><xsl:value-of select=”@LOSSES”/></TD>
<TD><xsl:value-of select=”@SAVES”/></TD>
<TD>
<xsl:value-of select=”@COMPLETE_GAMES”/>
</TD>
<TD>
<xsl:value-of select=”@SHUT_OUTS”/>
</TD>
<TD><xsl:value-of select=”@ERA”/></TD>
<TD><xsl:value-of select=”@INNINGS”/></TD>
<TD>
<xsl:value-of select=”@HOME_RUNS_AGAINST”/>
</TD>
<TD>
<xsl:value-of select=”@RUNS_AGAINST”/>
</TD>
<TD>
<xsl:value-of select=”@EARNED_RUNS”/>
</TD>
<TD>

133Chapter 5 ✦ Attributes, Empty Tags, and XSL

<xsl:value-of select=”@HIT_BATTER”/>
</TD>
<TD>
<xsl:value-of select=”@WILD_PITCH”/>

</TD>
<TD><xsl:value-of select=”@BALK”/></TD>
<TD>
<xsl:value-of select=”@WALKED_BATTER”/>
</TD>
<TD>
<xsl:value-of select=”@STRUCK_OUT_BATTER”/>
</TD>
</TR>
</xsl:for-each>
</TBODY>

</TABLE>

</xsl:for-each>

</xsl:for-each>

</xsl:for-each>

<HR></HR>
Copyright 2000

Elliotte Rusty Harold

elharo@metalab.unc.edu

</BODY>
</HTML>

</xsl:template>

</xsl:stylesheet>

134 Part I ✦ Introducing XML

Figure 5-9: Pitchers are distinguished from other players after applying the XSLT style
sheet in Listing 5-7.

Element contents and the select attribute
In this chapter, I focused on using XSLT to format data stored in the attributes of an

element because attributes aren’t accessible from CSS. However, XSLT works

equally well when you want to include an element’s character data. To indicate that

an element’s text is to be copied into the output document, simply use the ele-

ment’s name as the value of the select attribute of the xsl:value-of element. For

example, suppose the PLAYER elements were given as they were in Listing 4-1 where

the statistics were child elements rather than attributes. In this case, a typical

PLAYER element looks like this:

<PLAYER>
<GIVEN_NAME>Roberto</GIVEN_NAME>
<SURNAME>Alomar</SURNAME>
<POSITION>Second Base</POSITION>
<GAMES>147</GAMES>
<GAMES_STARTED>143</GAMES_STARTED>
<AT_BATS>588</AT_BATS>
<RUNS>86</RUNS>
<HITS>166</HITS>
<DOUBLES>36</DOUBLES>

135Chapter 5 ✦ Attributes, Empty Tags, and XSL

<TRIPLES>1</TRIPLES>
<HOME_RUNS>14</HOME_RUNS>
<RBI>56</RBI>
<STEALS>18</STEALS>
<CAUGHT_STEALING>5</CAUGHT_STEALING>
<SACRIFICE_HITS>3</SACRIFICE_HITS>
<SACRIFICE_FLIES>5</SACRIFICE_FLIES>
<ERRORS>11</ERRORS>
<WALKS>59</WALKS>
<STRUCK_OUT>70</STRUCK_OUT>
<HIT_BY_PITCH>2</HIT_BY_PITCH>

</PLAYER>

The major change needed to make the style sheet in Listing 5-7 work with docu-

ments in this format is to remove the @ in front of the statistic name. For example,

instead of writing <xsl:value-of select=”@RUNS”/> to insert the number of

runs into the output document, you write <xsl:value-of select=”RUNS”/>.

Whereas <xsl:value-of select=”@RUNS”/> inserts the value of the RUNS
attribute of the matched element into the output, <xsl:value-of select=
”RUNS”/> inserts the value of the RUNS child element of the matched element into

the output. The value of an element is the text contained in the element after all

tags have been stripped out. For instance, the value of the element

<RUNS>86</RUNS> is 86. The value of the above PLAYER element is:

Roberto
Alomar
Second Base
147
143
588
86
166
36
1
14
56
18
5
3
5
11
59
70
2

White space is part of the value of an element and is not trimmed. Thus, the value

of this PLAYER element includes all the indenting and line breaks of the original

element.

136 Part I ✦ Introducing XML

Listing 5-8 is a complete XSLT style sheet designed for Listing 4-1 in the last chapter.

The major difference between this style sheet and Listing 5-7 is the removal of a lot

of @ signs which merely reflects the change from attributes to child elements. In a

few cases, I also had to account for the difference between the name of an attribute

and the name of an equivalent element (LEAGUE_NAME instead of NAME, TEAM_CITY
instead of CITY, and so on). The output from this style sheet is almost identical to

the output from the style sheet in Listing 5-7, aside from some insignificant extra

white space that the browser will ignore.

Listing 5-8: An XSLT style sheet for element-based
baseball statistics

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0”

xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:template match=”SEASON”>
<HTML>
<HEAD>
<TITLE>
<xsl:value-of select=”YEAR”/>
Major League Baseball Statistics

</TITLE>
</HEAD>
<BODY>

<H1>
<xsl:value-of select=”YEAR”/>
Major League Baseball Statistics

</H1>

<xsl:for-each select=”LEAGUE”>
<H2 ALIGN=”CENTER”>
<xsl:value-of select=”LEAGUE_NAME”/>

</H2>

<xsl:for-each select=”DIVISION”>
<H3 ALIGN=”CENTER”>
<xsl:value-of select=”DIVISION_NAME”/>
</H3>

<xsl:for-each select=”TEAM”>
<H4 ALIGN=”CENTER”>
<xsl:value-of select=”TEAM_CITY”/>
<xsl:value-of select=”TEAM_NAME”/>

</H4>

<TABLE>
<CAPTION>Batters</CAPTION>
<THEAD>

137Chapter 5 ✦ Attributes, Empty Tags, and XSL

<TR>
<TH>Player</TH><TH>P</TH><TH>G</TH>
<TH>GS</TH><TH>AB</TH><TH>R</TH><TH>H</TH>
<TH>D</TH><TH>T</TH><TH>HR</TH><TH>RBI</TH>
<TH>S</TH><TH>CS</TH><TH>SH</TH><TH>SF</TH>
<TH>E</TH><TH>BB</TH><TH>SO</TH>
<TH>HBP</TH>
</TR>
</THEAD>
<TBODY>
<xsl:for-each select=”PLAYER[(POSITION
!= ‘Starting Pitcher’)
and (POSITION != ‘Relief Pitcher’)]”>
<TR>
<TD>
<xsl:value-of select=”GIVEN_NAME”/>
<xsl:value-of select=”SURNAME”/>
</TD>
<TD><xsl:value-of select=”POSITION”/></TD>
<TD><xsl:value-of select=”GAMES”/></TD>
<TD>
<xsl:value-of select=”GAMES_STARTED”/>

</TD>
<TD><xsl:value-of select=”AT_BATS”/></TD>
<TD><xsl:value-of select=”RUNS”/></TD>
<TD><xsl:value-of select=”HITS”/></TD>
<TD><xsl:value-of select=”DOUBLES”/></TD>
<TD><xsl:value-of select=”TRIPLES”/></TD>
<TD>
<xsl:value-of select=”HOME_RUNS”/>

</TD>
<TD><xsl:value-of select=”RBI”/></TD>
<TD><xsl:value-of select=”STEALS”/></TD>
<TD>
<xsl:value-of select=”CAUGHT_STEALING”/>
</TD>
<TD>
<xsl:value-of select=”SACRIFICE_HITS”/>
</TD>
<TD>
<xsl:value-of select=”SACRIFICE_FLIES”/>
</TD>
<TD><xsl:value-of select=”ERRORS”/></TD>
<TD><xsl:value-of select=”WALKS”/></TD>
<TD>
<xsl:value-of select=”STRUCK_OUT”/>
</TD>
<TD>
<xsl:value-of select=”HIT_BY_PITCH”/>
</TD>
</TR>

Continued

138 Part I ✦ Introducing XML

Listing 5-8 (continued)

</xsl:for-each>
</TBODY>
</TABLE>

<TABLE>
<CAPTION>Pitchers</CAPTION>
<THEAD>
<TR>
<TH>Player</TH><TH>P</TH><TH>G</TH>
<TH>GS</TH><TH>W</TH><TH>L</TH><TH>S</TH>
<TH>CG</TH><TH>SO</TH><TH>ERA</TH>
<TH>IP</TH><TH>HR</TH><TH>R</TH><TH>ER</TH>
<TH>HB</TH><TH>WP</TH><TH>B</TH><TH>BB</TH>
<TH>K</TH>
</TR>
</THEAD>
<TBODY>
<xsl:for-each select=”PLAYER[(POSITION
= ‘Starting Pitcher’)
or (POSITION = ‘Relief Pitcher’)]”>
<TR>
<TD>
<xsl:value-of select=”GIVEN_NAME”/>
<xsl:value-of select=”SURNAME”/>
</TD>
<TD><xsl:value-of select=”POSITION”/></TD>
<TD><xsl:value-of select=”GAMES”/></TD>
<TD>
<xsl:value-of select=”GAMES_STARTED”/>

</TD>
<TD><xsl:value-of select=”WINS”/></TD>
<TD><xsl:value-of select=”LOSSES”/></TD>
<TD><xsl:value-of select=”SAVES”/></TD>
<TD>
<xsl:value-of select=”COMPLETE_GAMES”/>
</TD>
<TD>
<xsl:value-of select=”SHUT_OUTS”/>
</TD>
<TD><xsl:value-of select=”ERA”/></TD>
<TD><xsl:value-of select=”INNINGS”/></TD>
<TD>
<xsl:value-of select=”HOME_RUNS_AGAINST”/>
</TD>
<TD>
<xsl:value-of select=”RUNS_AGAINST”/>
</TD>
<TD>
<xsl:value-of select=”EARNED_RUNS”/>

139Chapter 5 ✦ Attributes, Empty Tags, and XSL

</TD>
<TD>
<xsl:value-of select=”HIT_BATTER”/>
</TD>
<TD>
<xsl:value-of select=”WILD_PITCH”/>

</TD>
<TD><xsl:value-of select=”BALK”/></TD>
<TD>
<xsl:value-of select=”WALKED_BATTER”/>
</TD>
<TD>
<xsl:value-of select=”STRUCK_OUT_BATTER”/>
</TD>
</TR>
</xsl:for-each>
</TBODY>

</TABLE>

</xsl:for-each>

</xsl:for-each>

</xsl:for-each>

<HR></HR>
Copyright 2000

Elliotte Rusty Harold

elharo@metalab.unc.edu

</BODY>
</HTML>

</xsl:template>

</xsl:stylesheet>

In this case, within each PLAYER element, the contents of that element’s

GIVEN_NAME, SURNAME, POSITION, GAMES, GAMES_STARTED, AT_BATS, RUNS, HITS,

DOUBLES, TRIPLES, HOME_RUNS, RBI, STEALS, CAUGHT_STEALING, SACRIFICE_HITS,

SACRIFICE_FLIES, ERRORS, WALKS, STRUCK_OUT, and HIT_BY_PITCH children are

extracted and copied to the output. Because this chapter’s example uses the same

names for the attributes as last chapter’s example used for the PLAYER child ele-

ments, this style sheet is very similar to Listing 5-7. The main difference is that the

@ signs are missing. They indicate an attribute rather than a child.

140 Part I ✦ Introducing XML

You can do even more with the select attribute. You can select elements in certain

positions (for example, the first, second, last, seventeenth element, and so forth);

elements with particular contents; elements with specific attribute values; or ele-

ments whose parents or children have certain content or attribute values. You can

even apply a complete set of Boolean logical operators to combine different selec-

tion conditions. We will explore more of these possibilities when we return to XSLT

in Chapter 17.

CSS or XSL?
CSS and XSL overlap to some extent. XSL is certainly more powerful than CSS. This

chapter only touched on the basics of what you can do with XSL. However, XSL’s

power is matched by its complexity. It is definitely harder to learn and use than

CSS. So the question is, “When should you use CSS and when should you use XSL?”

CSS is more broadly supported than XSL. Netscape 4 and Internet Explorer 4 sup-

port parts of CSS Level 1 for HTML elements (although there are many annoying

differences between the two). Furthermore, most of CSS Level 1 and some of CSS

Level 2 is supported by Internet Explorer 5.0 and 5.5, Opera 4.0 and 5.0, Netscape

6.0, and Mozilla for both XML and HTML. Thus, choosing CSS gives you more com-

patibility with a broader range of browsers.

However, XSL is definitely more powerful than CSS. CSS only allows you to apply

formatting to element contents. It does not allow you to change or reorder those

contents; choose different formatting for elements based on their contents or

attributes; or add boilerplate text like a signature block. XSL is far more appropriate

when the XML documents contain only the minimum of data and none of the HTML

frou frou that surrounds the data.

XSL lets you separate the crucial data from everything else on the page, such as

mastheads, navigation bars, and signatures. With CSS, you have to include all these

pieces in your data documents. XML+XSL allows the data documents to live sepa-

rately from the Web page documents. This makes XML+XSL documents more main-

tainable and easier to work with.

In the long run, XSL should become the preferred choice for data-intensive applica-

tions. CSS is more suitable for simple Web pages such as the ones grandparents

write to post pictures of their grandchildren. But for these uses, HTML alone is suf-

ficient. If you’ve really hit the wall with HTML, XML+CSS doesn’t take you much fur-

ther before you run into another wall. XML+XSL, by contrast, takes you far past the

walls of HTML. You still need CSS to work with legacy browsers, but in the long-

term, XSL is the way to go.

141Chapter 5 ✦ Attributes, Empty Tags, and XSL

Summary
In this chapter, you saw examples of XML documents with attributes and XSLT style

sheets that transformed them to HTML. Specifically, you learned that:

✦ An attribute is a name-value pair included in an element’s start tag.

✦ Attributes typically hold meta-information about the element rather than the

element’s data.

✦ Attributes are less convenient to work with than the contents of an element.

✦ Attributes work well for very simple information that’s unlikely to change

form as the document evolves. In particular, style and linking information

work well as attributes.

✦ Empty element tags offer syntactic sugar for elements with no content.

✦ XSLT is a powerful language that enables you to transform documents from

one XML vocabulary to other XML vocabularies or to non-XML vocabularies

such as HTML or tab-delimited text.

The next chapter discusses the exact rules that well-formed XML documents must

adhere to. It also explores some additional means of embedding information in XML

documents, including comments and processing instructions.

✦ ✦ ✦

Well-formedness

HTML 4.0 has nearly 100 different elements. Most of

these elements have a dozen or more possible

attributes for several thousand different possible variations.

Since XML is more powerful than HTML, you might think that

you need to learn even more elements, but you don’t. XML

gets its power through simplicity and extensibility, not

through a plethora of elements.

In fact, XML predefines no elements at all. Instead XML allows

you to define your own elements as needed. However, these

elements and the documents built from them are not com-

pletely arbitrary. Instead, they have to follow a specific set of

rules elaborated in this chapter. A document that follows

these rules is said to be well-formed. Well-formedness is the

minimum criteria necessary for XML processors and browsers

to read files. This chapter examines the rules for well-formed

documents. It explores the different constructs that make up

an XML document — tags, text, attributes, elements, and so

on — and discusses the primary rules each of these must fol-

low. Particular attention is paid to how XML differs from

HTML. Along the way I introduce several new XML constructs,

including comments, processing instructions, entity refer-

ences, and CDATA sections. This chapter isn’t an exhaustive

discussion of well-formedness rules. Some of the rules I pre-

sent here must be adjusted slightly for documents that have a

document type definition (DTD), and there are additional

rules for well-formedness that define the relationship between

the document and its DTD, but we’ll explore these in later

chapters.

66C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Well-formedness rules

XML documents

Text in XML

Elements and tags

Attributes

Entity references

Comments

Processing instructions

CDATA sections

Well-formed HTML

✦ ✦ ✦ ✦

144 Part I ✦ Introducing XML

Well-Formedness Rules
Although XML allows you to invent as many different elements and attributes as

you need, these elements and attributes, as well as their contents and the docu-

ments that contain them, must all follow certain rules in order to be well-formed. If a

document is not well-formed, any attempts to read it or render it will fail.

The XML specification strictly prohibits XML parsers from trying to fix and under-

stand malformed documents. All a conforming parser is allowed to do is report the

error. It may not fix the error. It may not make a best-faith effort to render what the

author intended. It may not ignore the offending malformed markup. All it can do is

report the error and exit.

The objective here is to avoid the bug-for-bug compatibility wars that have hin-
dered HTML, and that have made writing HTML parsers and renderers so difficult.
Because Web browsers allow malformed HTML, Web-page designers don’t make
the extra effort to ensure that their HTML is correct. In fact, they even rely on bugs
in individual browsers to achieve special effects. In order to properly display the
huge installed base of HTML pages, every new Web browser must support every
quirk of all the Web browsers that have come before. The marketplace would
ignore any browser that strictly adhered to the HTML standard. It is to avoid
this sorry state that XML processors are explicitly required to only accept well-
formed XML.

To be well-formed, an XML document must follow more than 100 different rules.

However, most of these rules simply forbid things that you’re not very likely to do

anyway if you follow the examples given in this book. For instance, one rule is that

the name of the element must immediately follow the < of the element’s start tag.

For example, <triangle> is a legal start tag but < triangle> isn’t. On the other

hand, the same rule says that it is OK to have extra space before the tag’s closing

angle bracket. That is, both <triangle> and <triangle > are well-formed start

tags. Another rule says that element names must have at least one character; that

is, <> is not a legal start tag, and </> is not a legal end tag. Chances are it never

would have occurred to you to create an element with a zero-length name, but com-

puters are dumber than human beings, and need to have constraints like this

spelled out for them very formally. XML’s well-formedness rules are designed to be

understood by software rather than human beings, so quite a few of them are a lit-

tle technical and won’t present much of a problem in practice. The only source for

the complete list of rules is the XML specification itself. However, if you follow the

rules given here, and check your work with an XML parser such as Xerces before

distributing your documents, they should be fine.

The XML specification itself is found in Appendix C. The formal syntax the XML
specification uses is called the Backus-Naur-Form, or BNF for short. BNF grammars
are an outgrowth of compiler theory that very formally defines what is and is not a
syntactically correct program or, in the case of XML, a syntactically correct docu-
ment. A parser can compare any document to the XML BNF grammar character by

Cross-
Reference

Note

145Chapter 6 ✦ Well-formedness

character and determine definitively whether or not it satisfies the rules of XML.
There are no borderline cases. BNF grammars, properly written, leave no room for
interpretation. The advantage of this should be obvious to anyone who’s had to
struggle with HTML documents that display in one browser but not in another.

As well as matching the BNF grammar, a well-formed XML document must also
meet various well-formedness constraints that specify conditions that can’t be eas-
ily described in the BNF syntax. Well-formedness is the minimum level that a doc-
ument must achieve to be parsed. Appendix B provides an annotated description
of the complete XML 1.0 BNF grammar as well as all of the well-formedness
constraints.

XML Documents
An XML document is made up of text that’s divided between markup and character

data. It is a sequence of characters with a fixed length that adheres to certain con-

straints. It may or may not be a file. For instance, an XML document may be:

✦ A CLOB field in an Oracle database

✦ The result of a query against a database that combines several records from

different tables

✦ A data structure created in memory by a Java program

✦ A data stream created on the fly by a CGI program written in Perl

✦ Some combination of several different files, each of which is embedded in

another

✦ One part of a larger file containing several XML documents

However, nothing essential is lost if you think of an XML document as a file, as long

as you keep in the back of your mind that it might not really be a file on a hard

drive.

XML documents are made up of storage units called entities. Each entity contains

either text or binary data, never both. Text data is comprised of characters. Binary

data is used for images and applets and the like.

To use a concrete example, a raw HTML file that includes tags is an entity
but not a document. An HTML file plus all the pictures embedded in it with
tags is a complete document.

The XML declaration
In this and the next several chapters, I treat only simple XML documents that are

made up of a single entity, the document itself. Furthermore, these documents only

contain text data, not binary data such as images or applets. Such documents can

Note

146 Part I ✦ Introducing XML

be understood completely on their own without reading any other files. In other

words, they stand alone. Such a document normally contains a standalone
pseudo-attribute in its XML declaration with the value yes, similar to this one.

<?xml version=”1.0” standalone=”yes”?>

I call this a pseudo-attribute because technically only elements can have
attributes. The XML declaration is not an element. Therefore standalone is not
an attribute even if it looks like one.

External entities and entity references can be used to combine multiple files

and other data sources to create a single XML document. These documents can-

not be parsed without reference to other files. Therefore, they normally have a

stand-alone pseudo-attribute with the value no.

<?xml version=”1.0” standalone=”no”?>

If a document does not have an XML declaration, or if a document has an XML dec-

laration but that XML declaration does not have a standalone pseudo-attribute,

then the value no is assumed. That is, the document is assumed to be incapable of

standing on its own, and the parser will prepare itself to read external pieces as

necessary. If the document can, in fact, stand on its own, nothing is lost by the

parser being ready to read an extra piece.

XML documents do not have to include XML declarations, although they should

unless you’ve got a specific reason not to include them. If an XML document does

include an XML declaration, then this declaration must be the first thing in the file

(except possibly for an invisible Unicode byte order mark). XML processors deter-

mine which character set is being used (UTF-8, big-endian Unicode, or little-endian

Unicode) by reading the first several bytes of a file and comparing those bytes

against various encodings of the string <?xml . Nothing should come before this,

including white space. For instance, this line is not an acceptable way to start an

XML file because of the extra spaces at the front of the line.

<?xml version=”1.0” standalone=”yes”?>

A document must have exactly one root element that
completely contains all other elements.
An XML document has a root element that completely contains all other elements

of the document. This is also sometimes called the document element, although this

element does not have to have the name document or root. Root elements are

delimited by a start tag and an end tag, just like any other element. For instance,

consider Listing 6-1.

Note

147Chapter 6 ✦ Well-formedness

Listing 6-1: greeting.xml

<?xml version=”1.0” standalone=”yes”?>
<GREETING>
Hello XML!
</GREETING>

In this document, the root element is GREETING. The XML declaration is not an ele-

ment. Therefore, it does not have to be included inside the root element. Similarly,

other nonelement data in an XML document, such as an xml-stylesheet process-

ing instruction, a DOCTYPE declaration, or comments, do not have to be inside the

root element. But all other elements (other than the root itself) and all raw charac-

ter data must be contained in the root element.

Text in XML
An XML document is made up of text. Text is made up of characters. A character is

a letter, a digit, a punctuation mark, a space or tab, or some similar thing. XML uses

the Unicode character set which not only includes the usual letters and symbols

from English and other Western European alphabets, but also the Cyrillic, Greek,

Hebrew, Arabic, and Devanagari alphabets, as well as the most common Han

ideographs for Chinese, Japanese, and Korean Hangul syllables. For now, I’ll stick to

the English language, the Roman script, and the ASCII character set; but I’ll intro-

duce many alternatives in the next chapter.

A document’s text is divided into character data and markup. To a first approxima-

tion, markup describes a document’s logical structure, while character data pro-

vides the basic information of the document. For example, in Listing 6-1, <?xml
version=”1.0” standalone=”yes”?>, <greeting>, and </greeting> are

markup. Hello XML!, along with its surrounding white space, is the character data.

A big advantage of XML over other formats is that it clearly separates the actual

data of a document from its markup.

To be more precise, markup includes all tags, processing instructions, DTDs, entity

references, character references, comments, CDATA section delimiters, and the

XML declaration. Everything else is character data. However, this is tricky because

when a document is processed some of the markup turns into character data. For

example, the markup > is turned into the greater than sign character (>). The

character data that’s left after the document is processed, and after all markup that

refers to character data has been replaced by the actual character data, is called

parsed character data, or PCDATA for short.

148 Part I ✦ Introducing XML

Elements and Tags
An XML document is a singly rooted hierarchical structure of elements. Each ele-

ment is delimited by a start tag (also known as an opening tag) and an end tag (also

known as a closing tag) or is represented by a single, empty element tag. An XML

tag has the same form as an HTML tag. That is, start tags begin with a < followed by

the name of the element the tags start, and they end with the first > after the open-

ing < (for example, <GREETING>). End tags begin with a </ followed by the name of

the element the tag finishes and are terminated by a > (for example, </GREETING>).

Empty element tags begin with a < followed by the name of the element and are ter-

minated with a /> (for example, <GREETING/>).

Element names
Every element has a name made up of one or more characters. This is the name

included in the element’s start and end tags. Element names begin with a letter

such as y or A or an underscore _. Subsequent characters in the name may include

letters, digits, underscores, hyphens, and periods. They cannot include other punc-

tuation marks such as %, ^, or &. They cannot include white space. (The under-

score often substitutes for white space.) Both lower- and uppercase letters may be

used in XML names. In this book, I mostly follow the convention of making my

names uppercase, mainly because this makes them stand out better in the text.

However, when I’m using a tag set that was developed by other people it is neces-

sary to adopt their case convention. For example, the following are legal XML start

tags with legal XML names:

<HELP>
<Book>
<volume>
<heading1>
<section.paragraph>
<Mary_Smith>
<_8ball>

Colons are also technically legal in tag names. However, these are reserved for use
with namespaces. Namespaces allow you to mix and match XML applications that
may use the same tag names. Chapter 13 introduces namespaces. Until then, you
should not use colons in your tag names.

The following are not legal start tags because they don’t contain legal XML names:

<Book%7>
<volume control>
<3heading>
<Mary Smith>
<.employee.salary>

Note

149Chapter 6 ✦ Well-formedness

The rules for element names actually apply to names of many other things as well.
The same rules are used for attribute names, ID attribute values, entity names, and
a number of other constructs you’ll encounter over the next several chapters.

Every start tag must have a corresponding end tag
Web browsers are relatively forgiving if you forget to close an HTML tag. For

instance, if you include a tag in your document but no corresponding tag,

the entire document after the tag will be made bold. However, the document

will still be displayed.

XML is not so forgiving. Every nonempty tag — that is, tags that do not end with

/>— must be closed with the corresponding end tag. If a document fails to close an

element with the right end tag, the browser or renderer reports an error message

and does not display any of the document’s content in any form.

End tags have the same name as the corresponding start tag, but are prefixed with

a / after the initial angle bracket. For example, if the start tag is <FOO> the end tag

is </FOO>. These are the end tags for the previous set of legal start tags.

</HELP>
</Book>
</volume>
</heading1>
</section.paragraph>
</Mary_Smith>
</_8ball>

XML names are case sensitive. This is different from HTML in which <P> and <p>
are the same tag, and a </p> can close a <P> tag. The following are not end tags for

the set of legal start tags we’ve been discussing:

</help>
</book>
</Volume>
</HEADING1>
</Section.Paragraph>
</MARY_SMITH>
</_8BALL>

Empty element tags
Many HTML elements do not have closing tags. For example, there are no ,

, </HR>, or </BR> tags in HTML. Some page authors do include tags

after their list items, and some HTML tools also use . However, the HTML 4.0

standard specifically denies that this is required. Like all unrecognized tags in

HTML, the presence of an unnecessary has no effect on the rendered output.

Note

150 Part I ✦ Introducing XML

This is not the case in XML. The whole point of XML is to allow new elements and

their corresponding tags to be discovered as a document is parsed. Thus, unrecog-

nized tags may not be ignored. Furthermore, an XML processor must be capable of

determining on the fly whether a tag it has never seen before does or does not have

an end tag. It does this by looking for special empty-element tags that end in />.

Elements that are represented by a single tag without a closing tag are called empty
elements because they have no content. Tags that represent empty elements are

called empty-element tags. These empty element tags are closed with a slash and a

closing angle bracket (/>); for example,
 or <HR/>. From the perspective of

XML, these are the same as the equivalent syntax using both start and end tags

with nothing in between them — for example,
</BR> and <HR></HR>.

However, empty element tags can only be used when the element is truly empty,

not when the end tag is simply omitted. For example, in HTML you might write an

unordered list like this:

I’ve a Feeling We’re Not in Kansas Anymore
Buddies
Everybody Loves You

In XML, you cannot simply replace the tags with because the elements

are not truly empty. Instead they contain text. In normal HTML the closing
tag is omitted by the editor and filled in by the parser. This is not the same thing as

the element itself being empty. The first LI element above contains the content

I’ve a Feeling We’re Not in Kansas Anymore. In XML, you must close these

tags like this:

I’ve a Feeling We’re Not in Kansas Anymore
Buddies
Everybody Loves You

On the other hand, a BR or HR or IMG element really is empty. It doesn’t contain any

text or child elements. Thus, in XML, you have two choices for these elements. You

can either write them with a start and an end tag in which the end tag immediately

follows the start tag — for example, <HR></HR>— or you can write them with an

empty element tag as in <HR/>.

Current Web browsers deal inconsistently with empty element tags. For instance,
some browsers will insert a line break when they see a <HR/> tag and some
won’t. Furthermore, the problem may arise even without empty element tags.
Some browsers insert two horizontal lines when they see <HR></HR> and some
insert one horizontal line. The most generally compatible scheme is to use an
extra attribute before the closing />. The class attribute is often a good choice —
for example, <HR CLASS=”empty”/>. XSLT offers a few more ways to maintain
compatibility with legacy browsers. Chapter 17 discusses these methods.

Note

151Chapter 6 ✦ Well-formedness

Elements may nest but may not overlap
Elements may contain (and indeed often do contain) other elements. However, ele-

ments may not overlap. Practically, this means that if an element contains a start

tag for an element, it must also contain the corresponding end tag. Conversely, an

element may not contain an end tag without its matching start tag. For example,

this is legal XML.

<H1><CITE>What the Butler Saw</CITE></H1>

However, the following is not legal XML because the closing </CITE> tag comes

before the closing </H1> tag:

<H1><CITE>What the Butler Saw</H1></CITE>

Most HTML browsers can handle this case with ease. However, XML browsers are

required to report an error for this construct.

Empty element tags may appear anywhere, of course. For example,

<PLAYWRIGHTS>Oscar Wilde<HR/>Joe Orton</PLAYWRIGHTS>

This implies that for all nonroot elements, there is exactly one other element that

contains the element, but which does not contain any other element containing the

element. This immediate container is called the parent of the element. The con-

tained element is called the child of the parent element. Thus each nonroot element

always has exactly one parent, but a single element may have an indefinite number

of children or no children at all.

Consider Listing 6-2. The root element is the PLAYS element. This contains two

PLAY children. Each PLAY element contains three children: TITLE, AUTHOR, and

YEAR. Each of these contains only character data, not more children.

Listing 6-2: Parents and Children

<?xml version=”1.0” standalone=”yes”?>
<PLAYS>
<PLAY>
<TITLE>What the Butler Saw</TITLE>
<AUTHOR>Joe Orton</AUTHOR>
<YEAR>1969</YEAR>

</PLAY>
<PLAY>
<TITLE>The Ideal Husband</TITLE>
<AUTHOR>Oscar Wilde</AUTHOR>
<YEAR>1895</YEAR>

</PLAY>
</PLAYS>

152 Part I ✦ Introducing XML

In programmer terms, this means that XML documents form a tree. Figure 6-1

shows why this structure is called a tree. It starts from the root and gradually

bushes out to the leaves on the ends. Trees have a number of nice properties that

make them congenial to programmatic traversal, although this doesn’t matter so

much to you as the author of the document.

Figure 6-1: Listing 6-2’s tree structure

Trees are more commonly drawn from the top down. That is, the root of the tree is
shown at the top of the picture rather than the bottom. While this looks less like a
real tree, it doesn’t affect the topology of the data structure in the least.

Attributes
Elements may optionally have attributes. Each attribute of an element is encoded in

the start tag of the element as a name-value pair separated by an equals sign (=)

and, optionally, some extra white space. The attribute value is enclosed in single or

double quotes. For example,

<GREETING LANGUAGE=”English”>
Hello XML!
<MOVIE SRC = ‘WavingHand.mov’/>

</GREETING>

Note

What the
Butler Saw Joe Orton

PLAY PLAY

PLAYS

1969 The Ideal
Husband Oscar Wilde 1895

TITLE AUTHOR YEAR TITLE AUTHOR YEAR

153Chapter 6 ✦ Well-formedness

Here the GREETING element has a LANGUAGE attribute that has the value English.

The MOVIE element has an SRC attribute with the value WavingHand.mov.

Attribute names
Attribute names are strings that follow the same rules as element names. That is,

attribute names must contain one or more characters, and the first character must

be a letter or the underscore (_). Subsequent characters in the name may include

letters, digits, underscores, hyphens, and periods. They may not include white

space or other punctuation marks.

The same element may not have two attributes with the same name. For example,

this is illegal:

<RECTANGLE SIDE=”8” SIDE=”10”/>

Attribute names are case sensitive. The SIDE attribute is not the same as the side
or the Side attribute. Therefore, the following is legal:

<BOX SIDE=”8” side=”10” Side=”31”/>

However, this is extremely confusing, and I strongly urge you not to write markup

that depends on case.

Attribute values
Attributes values are strings. Even when the string shows a number, as in the

LENGTH attribute below, that number is the two characters 7 and 2, not the binary

number 72.

<RULE LENGTH=”72”/>

If you’re writing a program to process XML, you’ll need to convert the string to a

number before performing arithmetic on it.

Unlike attribute names, there are few limits on the content of an attribute value.

Attribute values may contain white space, begin with a number, or contain any

punctuation characters (except, sometimes, for single and double quotes). The

only characters an attribute value may not contain are the angle brackets < and >,

though these can be included using the < and > entity references (discussed

soon).

XML attribute values are delimited by quote marks. Unlike HTML attribute values,

XML attribute values must be enclosed in quotes whether or not the attribute value

includes spaces. For example,

IBiblio

154 Part I ✦ Introducing XML

Most people choose double quotes. However, you can also use single quotes, which

is useful if the attribute value itself contains a double quote. For example,

<IMG SRC=”sistinechapel.jpg”
ALT=’And God said, “Let there be light,”

and there was light’/>

If the attribute value contains both single and double quotes, then the one that’s

not used to delimit the string must be replaced with the proper entity reference. I

generally just go ahead and replace both, which is always legal. For example,

<RECTANGLE LENGTH=’8'7"’ WIDTH=”10'6"”/>

If an attribute value includes both single and double quotes, you may use the entity

reference ' for a single quote (an apostrophe) and " for a double

quote. For example,

<PARAM NAME=”joke” VALUE=”The diner said,
"Waiter, There's a fly in my soup!"”>

Entity References
You’re probably familiar with a number of entity references from HTML. For exam-

ple, © inserts the copyright symbol © and ® inserts the registered trade-

mark symbol ® XML predefines the five entity references listed in Table 6-1. These

predefined entity references are used in XML documents in place of specific charac-

ters that would otherwise be interpreted as part of markup. For instance, the entity

reference < stands for the less than sign (<), which would otherwise be inter-

preted as beginning a tag.

Table 6-1
XML Predefined Entity references

Entity Reference Character

& &

< <

> >

" “

' ‘

In XML, unlike HTML, entity references must end with a semicolon. > is a cor-
rect entity reference; > is not.

Caution

155Chapter 6 ✦ Well-formedness

XML assumes that the opening angle bracket always starts a tag, and that the

ampersand always starts an entity reference. (This is often true of HTML as well,

but most browsers are more forgiving.) For example, consider this line,

<H1>A Homage to Ben & Jerry’s
New York Super Fudge Chunk Ice Cream</H1>

Web browsers that treat this as HTML will probably display it correctly. However,

XML parsers will reject it. You should escape the ampersand with & like this:

<H1>A Homage to Ben & Jerry’s New York Super Fudge Chunk
Ice Cream</H1>

The open angle bracket (<) is similar. Consider this common Java code embedded

in HTML:

<CODE> for (int i = 0; i <= args.length; i++) { </CODE>

Both XML and HTML consider the less than sign in <= to be the start of a tag. The

tag continues until the next >. Thus a Web browser treating this fragment as HTML

will render this line as

for (int i = 0; i

rather than

for (int i = 0; i <= args.length; i++) {

The = args.length; i++) { is interpreted as part of an unrecognized tag.

Again, an XML parser will reject this line completely because it’s malformed.

The less than sign can be included in text in both XML and HTML by writing it as

<. For example,

<CODE> for (int i = 0; i <= args.length; i++) { </CODE>

Raw less than signs and ampersands in normal XML text are always interpreted as

starting tags and entity references respectively. (The abnormal text is CDATA sec-

tions, described below.) Therefore, less than signs and ampersands that are text

rather than markup must always be encoded as < and & respectively.

Attribute values are text, too, and as you already saw, entity references may be

used inside attribute values.

Greater than signs, double quotes, and apostrophes must be encoded when they

would otherwise be interpreted as part of markup. However, it’s easier just to get in

the habit of encoding all of them rather than trying to figure out whether a particu-

lar use would or would not be interpreted as markup.

156 Part I ✦ Introducing XML

Other than the five entity references already discussed, you can only use an entity

reference if you define it in a DTD first. Since you don’t know about DTDs yet, if the

ampersand character & appears anywhere in your document, it must be immedi-

ately followed by amp;, lt;, gt;, apos;, or quot;. All other uses violate well-

formedness.

Chapter 10 teaches you how to define new entity references for other characters
and longer strings of text using DTDs.

Comments
XML comments are almost exactly like HTML comments. They begin with <!-- and

end with --> . All data between the <!-- and --> is ignored by the XML processor.

It’s as if it weren’t there. This can be used to make notes to yourself or your coau-

thors, or to temporarily comment out sections of the document that aren’t ready, as

Listing 6-3 demonstrates.

Listing 6-3: An XML document that contains a comment

<?xml version=”1.0” standalone=”yes”?>
<!-- This is Listing 6-3 from The XML Bible -->
<GREETING>
Hello XML!
<!--Goodbye XML-->
</GREETING>

Since comments aren’t elements, they may be placed before or after the root ele-

ment. However, comments may not come before the XML declaration, which must

be the very first thing in the document. For example, this is not a well-formed XML

document:

<!-- This is Listing 6-3 from The XML Bible -->
<?xml version=”1.0” standalone=”yes”?>
<GREETING>
Hello XML!
<!--Goodbye XML-->
</GREETING>

Comments may not be placed inside a tag. For example, this is also illegal:

<?xml version=”1.0” standalone=”yes”?>
<GREETING>
Hello XML!
</GREETING <!--Goodbye--> >

Cross-
Reference

157Chapter 6 ✦ Well-formedness

However comments may surround and hide tags. In Listing 6-4, the

<antigreeting> tag and all its children are commented out. They are not

shown when the document is rendered. It’s as if they don’t exist.

Listing 6-4: A comment that comments out an element

<?xml version=”1.0” standalone=”yes”?>
<DOCUMENT>
<GREETING>
Hello XML!

</GREETING>
<!--
<ANTIGREETING>
Goodbye XML!

</ANTIGREETING>
-->
</DOCUMENT>

Because comments effectively delete sections of text, you must take care to ensure

that the remaining text is still a well-formed XML document. For example, be careful

not to comment out essential tags, as in this malformed document:

<?xml version=”1.0” standalone=”yes”?>
<GREETING>
Hello XML!
<!--
</GREETING>
-->

Once the commented text is removed what remains is

<?xml version=”1.0” standalone=”yes”?>
<GREETING>
Hello XML!

Because the <greeting> tag is no longer matched by a closing </greeting> tag,

this is no longer a well-formed XML document.

There is one final constraint on comments. The two-hyphen string -- may not

occur inside a comment except as part of its opening or closing tag. For example,

this is an illegal comment:

<!-- The red door--that is, the second one--was left open -->

158 Part I ✦ Introducing XML

This means, among other things, that you cannot nest comments like this:

<?xml version=”1.0” standalone=”yes”?>
<DOCUMENT>
<GREETING>
Hello XML!

</GREETING>
<!--
<ANTIGREETING>
<!--Goodbye XML!-->

</ANTIGREETING>
-->
</DOCUMENT>

It also means that you may run into trouble if you’re commenting out a lot of C,

Java, or JavaScript source code that’s full of expressions such as i-- or

numberLeft--. Generally, it’s not too hard to work around this problem once you

recognize it.

Processing Instructions
Processing instructions are like comments that are intended for computer pro-

grams reading the document rather than people reading the document. However,

XML parsers are required to pass along the contents of processing instructions to

the application on whose behalf they’re parsing, unlike comments, which a parser

is allowed to silently discard. The application that receives the information is free

to ignore any processing instruction it doesn’t understand.

Processing instructions begin with <? and end with ?>. The starting <? is followed

by an XML name called the target, which identifies the program that the instruction

is intended for, followed by data for that program. For example, you saw this pro-

cessing instruction in the last chapter.

<?xml-stylesheet type=”text/xml” href=”5-2.xsl”?>

The target of this processing instruction is xml-stylesheet, a standard name that

means the data in this processing instruction is intended for any Web browser that

can apply a style sheet to the document. type=”text/xml” href=”5-2.xsl” is

the processing instruction data that will be passed to the application reading the

document. If that application happens to be a Web browser that understands XSLT,

then it will apply the style sheet 5-2.xsl to the document and render the result. If

that application is anything other than a Web browser, it will simply ignore the pro-

cessing instruction.

Appearances to the contrary, the XML declaration is technically not a processing
instruction. The difference is academic unless you’re writing a program to read an
XML document using an XML parser. In that case, the parser’s API will provide dif-
ferent methods to get the contents of processing instructions and the contents of
the XML declaration.

Note

159Chapter 6 ✦ Well-formedness

xml-stylesheet processing instructions are always placed in the document’s pro-

log between the XML declaration and the root element start tag. Other processing

instructions may also be placed in the prolog, or at almost any other convenient

location in the XML document, either before, after, or inside the root element. For

example, PHP processing instructions generally appear wherever you want the PHP

processor to place its output. The only place a processing instruction may not

appear is inside a tag or before the XML declaration.

The target of a processing instruction may be the name of the program it is

intended for or it may be a generic identifier such as xml-stylesheet that many

different programs recognize. The target name xml (or XML, Xml, xMl, or any other

variation) is reserved for use by the World Wide Web Consortium. However, you’re

free to use any other convenient name for processing instruction targets. Different

applications support different processing instructions. Most applications simply

ignore any processing instruction whose target they don’t recognize.

The xml-stylesheet processing instruction uses a very common format for pro-

cessing instructions in which the data is divided into pseudo-attributes; that is, the

data is passed as name-value pairs, and the values are delimited by quotes.

However, as with the XML declaration, these are not true attributes because a pro-

cessing instruction is not a tag. Furthermore, this format is optional. Some process-

ing instructions will use this style; others won’t. The only limit on the content of

processing instruction data is that it may not contain the two-character sequence

?> that signals the end of a processing instruction. Otherwise, it’s free to contain

any legal characters that may appear in XML documents. For example, this is a legal

processing instruction.

<?html-signature
Copyright 2001
Elliotte Rusty Harold

elharo@metalab.unc.edu

Last Modified May 3, 2001
?>

In this example, the target is html-signature. The rest of the processing instruction

is data and contains a lot of malformed HTML that would otherwise be illegal in an

XML document. Some programs might read this, recognize the html-signature
target, and copy the data into the signature of an HTML page. Other programs that

don’t recognize the html-signature target will simply ignore it.

CDATA Sections
Suppose your document contains one or more large blocks of text that have a lot of

<, >, &, or “ characters but no markup. This would be true for a Java or HTML tuto-

rial, for example. It would be inconvenient to have to replace each instance of one

of these characters with the equivalent entity reference. Instead, you can include

the block of text in a CDATA section.

160 Part I ✦ Introducing XML

CDATA sections begin with <![CDATA[and end with]]>. For example:

<![CDATA[
System.out.print(“<”);
if (x <= args.length && y > z) {
System.out.println(args[x - y]);

}
System.out.println(“>”);
]]>

The only text that’s not allowed within a CDATA section is the closing CDATA tag

]]>. Comments may appear in CDATA sections, but do not act as comments. That

is, both the comment tags and all the text they contain will be displayed.

Most of the time anything inside a pair of <> angle brackets is markup, and anything

that’s not is character data. However, in CDATA sections, all text is pure character

data. Anything that looks like a tag or an entity reference is really just the text of the

tag or the entity reference. The XML processor does not try to interpret it in any

way. CDATA sections are used when you want all text to be interpreted as pure

character data rather than as markup.

CDATA sections are extremely useful if you’re trying to write about HTML or XML in

XML. For example, this book contains many small blocks of XML code. The word

processor I’m using doesn’t care about that. But if I were to convert this book to

XML, I’d have to painstakingly replace all the less than signs with < and all the

ampersands with & like this:

<?xml version=”1.0” standalone=”yes”?>
<greeting>
Hello XML!
</greeting>

To avoid having to do this, I can instead use a CDATA section to indicate that a

block of text is to be presented as is with no translation. For example:

<![CDATA[<?xml version=”1.0” standalone=”yes”?>
<GREETING>
Hello XML!
</GREETING>]]>

Because]]> may not appear in a CDATA section, CDATA sections cannot nest. This
makes it relatively difficult to write about CDATA sections in XML. If you need to do
this, you just have to bite the bullet and use the < and & escapes.

CDATA sections aren’t needed that often, but when they are needed, they’re needed

badly.

Note

161Chapter 6 ✦ Well-formedness

Well-Formed HTML
You can practice your XML skills even before most Web browsers directly support

XML by writing well-formed HTML. Well-formed HTML is HTML that adheres to

XML’s well-formedness constraints but only uses standard HTML tags. Well-formed

HTML is easier to read than the sloppy HTML most humans and WYSIWYG tools

such as FrontPage write. It’s also easier for Web robots and automated search

engines to understand. It’s more robust, and less likely to break when you make a

change. And it’s less likely to be subject to annoying cross-browser and cross-

platform differences in rendering. Furthermore, you can then use XML tools to

work on your HTML documents, while still maintaining backward compatibility

with browsers that don’t support XML.

Rules for HTML
Real-world Web pages are extremely sloppy. Tags aren’t closed. Elements overlap.

Raw less than signs are included in pages. Semicolons are omitted from the ends of

entity references. Web pages with these problems are technically incorrect, but

most Web browsers accept them. Nonetheless, your Web pages will be cleaner, dis-

play faster, and be easier to maintain if you fix these problems.

Some of the common problems that you need to look for on Web pages include:

1. Start tags without matching end tags (unclosed elements)

2. End tags without start tags (orphaned tags)

3. Overlapping elements

4. Unquoted attributes

5. Unescaped <, >, and & signs

6. Documents without root elements

7. End tags in a different case than the corresponding start tag

I’ve listed these in rough order of importance. Exact details vary from tag to tag,

however. For instance, an unclosed tag will turn all elements following it

bold. However, an unclosed or <P> tag causes no problems at all.

There are also some rules that only apply to XML documents that might actually

cause problems if you attempt to integrate them into your existing HTML pages.

These XML-only constructs include:

8. Start documents with an XML declaration

9. Close empty element tags with a />.

10. Only use the &, <, >, ', and " entity references.

Fixing these problems isn’t hard, but there are a few pitfalls to trip up the unwary.

Let’s explore them.

162 Part I ✦ Introducing XML

Close all elements
Any element that contains content, whether text or other child elements, should

have a start tag and an end tag. HTML doesn’t absolutely require this. For instance,

<P> , <DT>, <DD>, and are often used in isolation. However, this relies on the

Web browser to make a good guess at where the element ends, and browsers don’t

always do quite what authors want or expect. Therefore, it’s best to explicitly close

all start tags.

Probably the biggest change this requires to how you write HTML is thinking of <P>
as a container rather than a simple paragraph break mark. For instance, previously

you would have formatted these maxims from Oscar Wilde’s Phrases and
Philosophies for the Use of the Young like this:

Wickedness is a myth invented by good people to account for the
curious attractiveness of others.
<P>

Those who see any difference between soul and body have
neither.
<P>

Religions die when they are proved to be true. Science is the
record of dead religions.
<P>

The well-bred contradict other people. The wise contradict
themselves.
<P>

Now you have to format them like this instead:

<P>
Wickedness is a myth invented by good people to account for the
curious attractiveness of others.
</P>

<P>
Those who see any difference between soul and body have
neither.
</P>

<P>
Religions die when they are proved to be true. Science is the
record of dead religions.
</P>

<P>
The well-bred contradict other people. The wise contradict
themselves.
</P>

163Chapter 6 ✦ Well-formedness

You’ve probably been taught to think of <P> as ending a paragraph. Now you have

to think of it as beginning one. This does offer you some advantages though. For

instance, you can easily assign a variety of formatting attributes to a paragraph. For

example, here’s the original HTML title of House Resolution 581 as seen on

http://thomas.loc.gov/home/hres581.html:

<center>
<p><h2>House Calendar No. 272</h2>

<p><h1>105TH CONGRESS 2D SESSION H. RES. 581</h1>

<p>[Report No. 106-795]

<p>Authorizing and directing the Committee on the
Judiciary to investigate whether sufficient grounds
exist for the impeachment of William Jefferson Clinton,
President of the United States.
</center>

Here’s the same text, but using well-formed HTML. The align attribute now

replaces the deprecated center element, and a CSS style attribute is used instead

of the tag.

<h2 align=”center”>House Calendar No. 272</h2>

<h1 align=”center”>105TH CONGRESS 2D SESSION H. RES. 581</h1>

<p align=”center”>[Report No. 106-795]</p>

<p align=”center” style=”font-weight: bold”>
Authorizing and directing the Committee on the Judiciary to
investigate whether sufficient grounds exist for the
impeachment of William Jefferson Clinton,
President of the United States.
</p>

Delete orphaned end tags; don’t let elements overlap
When editing pages, it’s not uncommon to remove a start tag and forget to remove

its associated end tag. In HTML, an orphaned end tag, such as a or

</TD> that doesn’t have any matching start tag, is unlikely to cause problems by

itself. However, it does make the file longer than it needs to be, increases the time

that it takes to download the document, and has the potential to confuse people or

tools that are trying to understand and edit the HTML source. Therefore, you

should make sure that each end tag is properly matched with a start tag.

However, more often an end tag that doesn’t match any start tag means that ele-

ments incorrectly overlap. Most elements that overlap on Web pages are quite easy

to fix. For instance, consider this common problem found on the White House home

page (http://www.whitehouse.gov/, November 4, 1998).

164 Part I ✦ Introducing XML

<!-- New Begin -->
Remarks Of The
President Regarding Social Security

<!-- New End -->

Because the b element starts inside the font element, it must end inside the font
element. All that’s needed to fix it is to swap the end tags like this:

<!-- New Begin -->
Remarks Of The
President Regarding Social Security

<!-- New End -->

Alternately, you can swap the start tags instead:

<!-- New Begin -->
Remarks Of The
President Regarding Social Security

<!-- New End -->

Occasionally, you may have a tougher problem. For example, consider this larger

fragment from the same page. I’ve emboldened the problem tags to make it easier

to see the mistake:

<TD valign=TOP width=85>

<img border=0
src=”/WH/images/pin_calendar.gif”
align=LEFT height=50 width=75 hspace=5 vspace=5>
 </TD>
<TD valign=TOP width=225>
What’s New:

What’s happening at the White <nobr>House - </nobr>

<!-- New Begin -->
Remarks Of The
President Regarding Social Security

165Chapter 6 ✦ Well-formedness

<!-- New End -->

</TD>

Here the element begins inside the first <TD valign=TOP
width=85> element and continues past that element into the <TD valign=TOP
width=225> element where it finishes. The proper solution in this case is to close

the FONT element immediately before the first </TD> closing tag, and to then add a

new start tag immediately after the start of the second TD ele-

ment, like this:

<TD valign=TOP width=85>

<img border=0
src=”/WH/images/pin_calendar.gif”
align=LEFT height=50 width=75 hspace=5 vspace=5>

</TD>
<TD valign=TOP width=225>

What’s New:

What’s happening at the White <nobr>House - </nobr>

<!-- New Begin -->
Remarks Of The
President Regarding Social Security

<!-- New End -->

</TD>

Quote all attributes
HTML attributes only require quote marks if they contain embedded white space.

Nonetheless, it doesn’t hurt to include them. Furthermore, using quote marks may

help in the future, if you later decide to change the attribute value to something

that does include white space. It’s quite easy to forget to add the quote marks later,

especially if the attribute is something like an ALT in an whose malformed-

ness is not immediately apparent when viewing the document in a Web browser.

For instance, consider this tag:

It should be rewritten like this:

166 Part I ✦ Introducing XML

The previous fragment from the White House home page has a lot of attributes that

require quoting. When the quote marks are fixed, it looks like this:

<TD valign=”TOP” width=”85”>

<img border=”0”
src=”/WH/images/pin_calendar.gif”
align=”LEFT” height=”50” width=”75” hspace=”5”
vspace=”5”>

</TD>
<TD valign=”TOP” width=”225”>

What’s New:

What’s happening at the White <nobr>House - </nobr>

<!-- New Begin -->
Remarks Of The
President Regarding Social Security

<!-- New End -->

</TD>

Escape <, >, and & signs
HTML is more forgiving of loose less than signs and ampersands than is XML.

Nonetheless, even in pure HTML, they do cause trouble, especially if they’re fol-

lowed immediately by some other character. For instance, consider this e-mail

address as it might easily be copied and pasted from the From: header in Eudora:

Elliotte Rusty Harold <elharo@metalab.unc.edu>

Were it to be rendered in HTML, this is all you would see:

Elliotte Rusty Harold

The e-mail address has been unintentionally hidden by the angle brackets. Anytime

you want to include a raw less than sign or ampersand in HTML, you really should

use the < and & entity references. The correct HTML for such a line would

be:

From: Elliotte Rusty Harold <elharo@metalab.unc.edu>

You’re slightly less likely to see problems with an unescaped greater than sign

because this will only be interpreted as markup if it’s preceded by an as yet unfin-

ished tag. However, there may be such unfinished tags in a document, and a nearby

167Chapter 6 ✦ Well-formedness

greater than sign can mask their presence. For example, consider this fragment of

Java code.

for (int i=0;i<10;i++) {
for (int j=20;j>10;j--) {

It’s likely to be rendered as

for (int i=0;i10;j--) {

If these are only 2 lines in a 100-line program, it’s entirely possible you’ll miss the

problem when casually proofreading. On the other hand, if the greater than sign is

escaped, the unescaped less than sign will probably obscure the rest of the pro-

gram, and the problem will be much more obvious.

Use the same case for all tags
HTML isn’t case sensitive, but XML is. If you open an element with <TD> you can’t

close it with </td>. When I went back to the White House home page for the sec-

ond edition of this book, I found that they’d fixed the problems I noted above.

However, this time I found a lot of elements like this:

Commonly Requested Federal
Services:

The end tags need to at least match the case of the corresponding start tags. Thus

in this example, should be , like this:

Commonly Requested Federal
Services:

However, most of the time I’d go a little further. In particular, I recommend picking a

single convention for tag case, either all uppercase or all lowercase, and sticking to

it throughout the document. This is easier than trying to remember details of each

tag. In this book, I’m mostly using all uppercase tags so that the tags will stand out

in the text, but for HTML I normally use all lowercase because it’s much easier to

type and because, eventually, XHTML will require it. Thus, I’d rewrite the above

fragment like this:

Commonly Requested Federal
Services:

XHTML is discussed in Chapter 22.Cross-
Reference

168 Part I ✦ Introducing XML

Include a root element
The root element for HTML files is supposed to be html. Most browsers forgive a

failure to include this. Nonetheless, it’s definitely better to make the very first tag in

your document <html> and the very last </html>. If any extra text or tags have

gotten in front of <html> or behind </html>, move them between <html> and

</html>.

One common manifestation of this problem is simply forgetting to include </html>
at the end of the document. I always begin my documents by typing <html> and

</html>, then type in between them, rather than waiting until I’ve finished writing

the document and hoping that by that point, possibly days later, I still remember

that I need to put in a closing </html> tag.

Close empty tags with a />
Empty tags are the bête noir of converting HTML to well-formed XML. HTML does

not formally recognize the XML <elementname/> syntax for empty tags. You can

convert
 to
, <HR> to <HR/>, to , and so on quite easily.

However, it’s a tossup whether any given browser will render the transformed tags

properly or not.

Do not confuse truly empty elements such as
, <HR>, and with ele-
ments that do contain content but often only have a start tag in standard HTML,
such as <P>, , <DT>, and <DD>.

The simplest solution, and the one approved by the XML specification, is to replace

the empty tags with start tag/end tag pairs with no content. The browser should

then ignore the unrecognized end tag. For example,

</BR>
<HR></HR>

This seems to work well in practice with one notable exception. Netscape treats

</BR> the same as
; that is, as a signal to break the line. Thus while
 is a

single line break,
</BR> is a double line break, more akin to a paragraph mark

in practice. Furthermore, Netscape ignores
 completely. Web sites that must

support legacy browsers (essentially all Web sites) thus cannot use either

</BR> or
. What does seem to work in practice for XML and legacy

browsers is this:

Note the space between <BR and />. If the space bothers you, you can add an extra

attribute like this:

<BR CLASS=”empty”/>

Caution

169Chapter 6 ✦ Well-formedness

Don’t use any entity references other than &, <, >, ',
and "
Many Web pages don’t need entity references other than &, <, >,

', and ". However, the HTML 4.0 specification does define many more

including:

✦ ™, the trademark symbol (™)

✦ ©, the copyright symbol (©)

✦ ∞, the infinity symbol ∞

✦ π, the lowercase Greek letter π

There are several hundred others. These are just a sample. However, using any of

these will make your document not well-formed. The real solution to this problem is

to use a DTD. We discuss the effect that DTDs have on entity references in Chapter

10. In the meantime, there are several short-term solutions.

The simplest is to write your document in a character set that has all the symbols

you need, and then use a <META> directive to specify the character set in use. For

example, to specify that your document uses UTF-8 encoding, a character set dis-

cussed in the next chapter that contains all the characters you’re likely to want,

you would place this <META> directive in the head of your document.

<META http-equiv=”Content-Type” content=”text/html;
charset=UTF-8”></META>

Alternately, you can simply configure your Web server to emit the necessary con-

tent type header. However, it’s normally easier to use the <META> tag.

Content-Type: text/html; charset=UTF-8

The problem with this approach is that many browsers are not capable of display-

ing the UTF-8 character set. The same is true of most of the other character sets

that you’re likely to use to provide these special characters.

HTML 4.0 supports character entity references just like XML’s; that is, you can

replace a character with &# and the decimal or hexadecimal value of the character

in Unicode. For example:

✦ ™ is the trademark symbol (™)

✦ © is the copyright symbol (©)

✦ ∞ is the infinity symbol ∞

✦ π is the lowercase Greek letter π

170 Part I ✦ Introducing XML

Unfortunately, HTML 3.2 only officially supports the numeric character references

between 0 and 255 (ISO Latin-1), and many commonly used Web browsers won’t

recognize character references outside this range.

If you’re really desperate for well-formed XML that’s backward compatible with

HTML, you can include these characters as inline images. For example:

✦
includes the trademark symbol (™)

✦ <img src=”copyright.gif” width=”12” height=”12”
alt=”Copyright”> includes the copyright symbol (©)

✦ img src=”infinity.gif” width=”12” height=”12” alt=
”infinity”> includes the infinity symbol ∞

✦
includes the lowercase Greek letter π

In practice, however, I don’t recommend using these characters as inline images.

Well-formedness is not nearly so important in HTML that it justifies the added

download and rendering time that using characters as inline images imposes on

your readers.

Don’t include an XML declaration
HTML documents don’t need XML declarations. However, they can have them. Web

browsers should simply ignore tags they don’t recognize. From their perspective,

the line

<?xml version=”1.0” standalone=”yes”?>

is just another tag. Because browsers that don’t understand XML don’t understand

the <?xml?> tag, they quietly ignore it. However, I’ve encountered strange behav-

iors when different browsers are presented with an HTML document that includes

an XML declaration. When faced with such a file, Internet Explorer 4.0 for the Mac

tried to download the file rather than displaying it. Netscape Navigator 3.0 showed

the declaration as text at the top of the document. Admittedly, these are older

browsers, but they are still used by many millions of people. Consequently, since

the XML declaration is not required for XML documents and since it doesn’t really

add a lot to XMLized HTML pages, I’ve removed it from my Web sites.

Tools
It is not particularly difficult to write well-formed XML documents that follow the

rules described in this chapter. However, XML browsers are less forgiving of poor

syntax than are HTML browsers, so you do need to be careful.

If you violate any well-formedness constraints, XML parsers and browsers will

report a syntax error. Thus, the process of writing XML can be a little like the

171Chapter 6 ✦ Well-formedness

process of writing code in a real programming language. You write it; then you com-

pile it; then when the compilation fails, you note the errors reported and fix them.

In the case of XML you parse the document rather than compile it, but the pattern

is the same.

Generally, this is an iterative process in which you go through several edit-parse

cycles before you get your first look at the finished document. Despite this, there’s

no question that writing XML is a lot easier than writing C or Java source code.

With a little practice, you’ll get to the point where you have relatively few errors

and can write XML almost as quickly as you can type.

There are several tools that will help you clean up your pages, most notably RUWF

(Are You Well Formed?) from XML.COM and Tidy from Dave Raggett of the W3C.

RUWF
Any tool that can check XML documents for well-formedness can test well-formed

HTML documents as well. One of the easiest to use is the RUWF well-formedness

checker from XML.COM at http://www.xml.com/pub/a/tools/ruwf/check.html.

Figure 6-2 shows this tester. Simply type in the URL of the page that you want to

check, and RUWF returns the first several dozen errors on the page.

Figure 6-2: The RUWF well-formedness tester

172 Part I ✦ Introducing XML

Here’s the first batch of errors RUWF found on the White House home page. Most of

these errors are malformed XML, but legal (if not necessarily well styled) HTML.

However, at least one error (“Line 55, column 30: Encountered
with no start-tag.”) is a problem for both HTML and XML.

Line 28, column 7: Encountered </HEAD> expected </META>
...assumed </META> ...assumed </META> ...assumed </META>
...assumed </META>
Line 36, column 12, character ‘0’: after AttrName= in start-tag
Line 37, column 12, character ‘0’: after AttrName= in start-tag
Line 38, column 12, character ‘0’: after AttrName= in start-tag
Line 40, column 12, character ‘0’: after AttrName= in start-tag
Line 41, column 10, character ‘A’: after AttrName= in start-tag
Line 42, column 12, character ‘0’: after AttrName= in start-tag
Line 43, column 14: Encountered </CENTER> expected </br>
...assumed </br> ...assumed </br>
Line 51, column 11, character ‘+’: after AttrName= in start-tag
Line 52, column 51, character ‘0’: after AttrName= in start-tag
Line 54, column 57: after &
Line 55, column 30: Encountered with no start-tag.
Line 57, column 10, character ‘A’: after AttrName= in start-tag
Line 59, column 15, character ‘+’: after AttrName= in start-tag

Tidy
After you’ve identified the problems, you’ll want to fix them. Many common prob-

lems — for instance, putting quote marks around attribute values — can be fixed

automatically. The most convenient tool for doing this is Dave Raggett’s command

line program HTML Tidy. Tidy is a character mode program written in ANSI C

that can be compiled and run on most platforms, including Windows, UNIX, BeOS,

and Mac.

Tidy is on the CD-ROM in the directory utilities\tidy. Binaries are included for
Windows. Portable source is included for all platforms. The latest version is avail-
able from http://www.w3.org/People/Raggett/tidy/.

Tidy cleans up HTML files in several ways, not all of which are relevant to XML well-

formedness. In fact, in its default mode Tidy tends to remove unnecessary (for

HTML, but not for XML) end tags such as , and to make other modifications

that break well-formedness. However, you can use the -asxml switch to specify

that you want well-formed XML output. For example, to convert the file index.html

to well-formed XML, you would type this command from a DOS window or shell

prompt:

C:\> tidy -m -asxml index.html

The -m flag tells Tidy to convert the file in place. The -asxml flag tells Tidy to for-

mat the output as XML.

On the
CD-ROM

173Chapter 6 ✦ Well-formedness

Summary
In this chapter, you learned about XML’s well-formedness rules. In particular, you

learned:

✦ XML documents are sequences of characters that meet certain well-formed-

ness criteria.

✦ The text of an XML document is divided into character data and markup.

✦ An XML document is a tree structure made up of elements.

✦ Tags delimit elements.

✦ Start tags and empty tags may contain attributes, which describe elements.

✦ Entity references allow you to include <, >, &, “, and ‘ in your document.

✦ CDATA sections are useful for embedding text that contains a lot of <, >, and &
characters.

✦ Comments can document your code for other people who read it, but parsers

may ignore them. Comments can also hide sections of the document that

aren’t ready.

✦ Processing instructions allow you to pass application-specific information to

particular applications.

✦ HTML documents can also be well-formed with a little extra effort.

The next chapter explores how to write XML in languages other than English, in

particular in languages that don’t look even remotely like English, such as Arabic,

Chinese, and Greek.

✦ ✦ ✦

Foreign
Languages and
Non-Roman Text

The Web is international, yet most of the text that you find

on it is English. XML is starting to change this. XML pro-

vides full support for the double-byte Unicode character set,

as well as its more compact representations. This is good

news for Web authors because Unicode supports almost

every character commonly used in every modern script on

Earth. For instance, this is a well-formed XML document:

<definition>
<word>tuvuxyz</word>
<translation>Extensible Markup Language</translation>

</definition>

Unicode isn’t limited to character data either. Non-English

characters can be used for markup as well. For example, this

is also a well-formed XML document:

<rs>42</rs>

It’s easy to read (or at least look at) these documents in this

printed book, but if you were to try displaying them on your

computer from the source files, you’d discover they’re not

quite so simple. You’d very likely end up looking at a screen

full of gibberish. Typing them into a text editor would be even

more challenging. In this chapter, you learn how international

text is represented in computer applications, how XML under-

stands text, and how you can take advantage of the software

you already own to read and write in languages other than

English.

77C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Non-Roman scripts
on the Web

Scripts, character
sets, fonts, and
glyphs

Legacy character sets

The Unicode
character set

Writing XML in
Unicode

✦ ✦ ✦ ✦

176 Part I ✦ Introducing XML

Non-Roman Scripts on the Web
Although the Web is international, much of its text is in English. Because of the

Web’s expansiveness, however, you can still surf through Web pages in French,

Spanish, Chinese, Arabic, Hebrew, Russian, Hindi, and other languages. Most of the

time, though, these pages come out looking less than ideal. Figure 7-1 shows the

October 1998 cover page of one of the United States Information Agency’s propa-

ganda journals, Issues in Democracy (http://usinfo.state.gov/journals/
itdhr/1098/ijdr/ijdr1098.htm), in Russian translation viewed in an English

encoding. The red Cyrillic text in the upper left is a bitmapped image file so it’s legi-

ble (if you speak Russian) and so are a few words in English, such as Adobe

Acrobat. However, the rest of the text is mostly a bunch of accented Roman vowels,

not the Cyrillic letters they’re supposed to be.

Figure 7-1: The Russian translation of the October 1998 issue of Issues
of Democracy viewed in a Roman script

The quality of Web pages deteriorates even further when complex, non-Western

scripts such as Chinese and Japanese are used. Figure 7-2 shows the home page for

the Japanese translation of my book JavaBeans (IDG Books (now Hungry Minds),

1997, http://www.ohmsha.co.jp/data/books/contents/4-274-06271-6.htm)

viewed in an English browser. Once again, the bitmapped images show the proper

177Chapter 7 ✦ Foreign Languages and Non-Roman Text

Japanese (and English) text, but the rest of the text on the page looks like an

almost-random collection of characters except for a few recognizable English words

such as CD-ROM. The Kanji characters that you’re supposed to see are completely

absent.

Figure 7-2: The Japanese translation of JavaBeans viewed
in an English browser

These pages look as they’re intended to look if viewed with the right encoding and

application software, and if the correct font is installed. Figure 7-3 shows Issues in
Democracy viewed with the Windows 1251 encoding of Cyrillic. As you can see, the

text below the picture is now readable (assuming you can read Russian).

178 Part I ✦ Introducing XML

Figure 7-3: Issues of Democracy viewed in a Cyrillic script

You can select the encoding for a Web page from the View ➪ Encoding menu in

Netscape Navigator or Internet Explorer. In an ideal world, the Web server would

tell the Web browser what encoding to use, and the Web browser would listen. It

would also be nice if the Web server could send the Web browser the fonts it

needed to display the page. In practice, however, you often need to select the

encoding manually, even trying several to find the exact right one when more than

one encoding is available for a script. For instance, a Cyrillic page might be

encoded in Windows 1251, ISO 8859-5, or KOI6-R. Picking the wrong encoding may

make Cyrillic letters appear, but the words will be gibberish.

Even when you can identify the encoding, there’s no guarantee that you have fonts

available to display it. Figure 7-4 shows the Japanese home page for JavaBeans with

Japanese encoding, but without a Japanese font installed on the computer. Most of

the characters in the text are shown as a box, which indicates an unavailable char-

acter glyph.

179Chapter 7 ✦ Foreign Languages and Non-Roman Text

Figure 7-4: The Japanese translation of JavaBeans
in Kanji without the necessary fonts installed

If your system does have Japanese fonts, you can see the text more or less as it was

meant to be seen, as Figure 7-5 demonstrates. Generally speaking, fourth generation

and later browsers running on MacOS 9 or Windows 2000 should have all the neces-

sary fonts. Earlier versions of the operating systems generally require additional

software such as Apple’s Japanese Language Kit (about $99) or Microsoft’s

Japanese Language Pack (free download from the Microsoft Web site).

180 Part I ✦ Introducing XML

Figure 7-5: The Japanese translation of JavaBeans in Kanji
with the necessary fonts installed

Of course, the higher the quality of the fonts that you use, the better the text will
look. Chinese and Japanese fonts tend to be quite large (there are over 50,000
characters in Chinese alone), and the distinctions between individual ideographs
can be quite subtle. Japanese publishers generally use higher-quality paper and
printing than Western publishers, so they can maintain the fine detail necessary to
print Japanese letters. Regrettably a 72-dpi computer monitor can’t do justice to
most Japanese and Chinese characters unless they’re displayed at almost
obscenely large point sizes.

Because each page can only have a single encoding, it is difficult to write a Web

page that integrates multiple scripts, such as an Arabic commentary on a Greek

text. For reasons such as this, the Web community needs a single, universal charac-

ter set to display all characters for all computers and Web browsers. We don’t have

such a character set yet, but XML and Unicode get pretty close to that ideal.

XML files are written in Unicode, a multi-byte character set that can represent most

characters in most of the world’s languages. If a Web page is written in Unicode, as

XML pages are, and if the browser understands Unicode, as XML browsers should,

then it’s not a problem for characters from different languages to be included on

Note

181Chapter 7 ✦ Foreign Languages and Non-Roman Text

the same page. As long as the multi-byte set has the space to hold all of the differ-

ent characters, there’s no need to use more than one character set.

Furthermore, the browser doesn’t need to distinguish between different encodings

such as Windows 1251, ISO 8859-5, or KOI8-R. It can just assume everything’s writ-

ten in Unicode. The XML parser will convert data in other encodings to Unicode as

necessary before presenting it to the application. Therefore, there’s no need for

browsers to try to detect which character set is in use.

Scripts, Character Sets, Fonts, and Glyphs
Most modern human languages have written forms. The set of characters used to

write a language is called a script. A script may be a phonetic alphabet, but it

doesn’t have to be. For instance, Chinese is written with ideographic characters

that represent whole words. Different languages often share scripts, sometimes

with slight variations. For instance, the modern Turkish alphabet is essentially the

familiar Roman alphabet with three extra letters — g, s, and ı. Chinese and Japanese,

on the other hand, share essentially the same 50,000 Han ideographs, although

many characters have different meanings and almost all of them have different pro-

nunciations in the different languages.

The word script is also often used to refer to programs written in weakly typed,
interpreted languages such as JavaScript, Perl, and TCL. In this chapter, the word
script always refers to the set of characters used to write a language and not to any
sort of program.

Some languages can even be written in different scripts. Serbian and Croatian are

virtually identical as spoken languages and are generally referred to as Serbo-

Croatian. However, Serbian is written in a modified Cyrillic script, and Croatian is

written in a modified Roman script. As long as a computer doesn’t attempt to grasp

the meaning of the words it processes, working with a script is equivalent to work-

ing with any language that can be written in that script.

Unfortunately, XML alone is not enough to read a script. For each script a computer

processes, four things are required.

1. A character set for the script

2. A font for the character set

3. An input method for the character set

4. An operating system and application software that understand the

character set

Note

182 Part I ✦ Introducing XML

If any of these four elements are missing, you won’t be able to work easily in the

script, although XML does provide a workaround that’s adequate for occasional

use. If the only thing your application is missing is an input method, you’ll be able

to read text written in the script; you just won’t be able to write in it.

A character set for the script
Computers only understand numbers. Before they can work with text, that text has

to be encoded as numbers in a specified character set. For example, the popular

ASCII character set encodes the capital letter A as 65; capital letter B as 66; capital

letter C as 67, and so on.

These are semantic encodings that provide no style or font information. C, C, or

even C are all represented by the number 67. Information about how the character

is drawn is stored elsewhere.

A font for the character set
A font is a collection of glyphs for a character set, generally in a specific size, face,

and style. For example, C, C, and C are all the same character, but they are drawn

with different glyphs. Nonetheless, their essential meaning is the same.

Exactly how the glyphs are stored varies from system to system. They may be

bitmaps or vector drawings; they may even be hot lead on a printing press. The

form they take doesn’t concern us here. The key idea is that a font tells the com-

puter how to draw each character in the character set.

An input method for the character set
An input method enables you to enter text. English speakers don’t think much

about input methods. We just type on our keyboards, and everything’s hunky-dory.

The same is true in most of Europe, where all that’s needed is a slightly modified

keyboard with a few extra umlauts, cedillas, or thorns (depending on the country).

Figure 7-6 shows a French keyboard I bought in Quebec. It’s close to the standard

U.S. QWERTY layout. However, a number of the keys on the right and left have been

changed to add French letters and diacritical marks like É and ¨. In addition several

keys serve triple duty. The third symbol printed on the lower right hand corner of

the key is accessed by holding down the AltGr (for “Alternate Graphic”) key while

pressing the key with the desired character.

183Chapter 7 ✦ Foreign Languages and Non-Roman Text

Figure 7-6: A French keyboard

Radically different character sets, such as Cyrillic, Hebrew, Arabic, and Greek, are

more difficult to input. There’s a finite number of keys on the keyboard, generally

not enough for Arabic and Roman letters, or Roman and Greek letters. Assuming

both are needed though, a keyboard can have a Greek lock key that shifts the key-

board from Roman to Greek and back. Both Greek and Roman letters can be printed

on the keys in different colors. The same scheme works for Hebrew, Arabic, Cyrillic,

and other non-Roman alphabetic character sets. Figure 7-7 shows a keyboard that

includes both Hebrew and Roman letters mapped onto the same basic keys.

Figure 7-7: A standard PC Hebrew keyboard

However, this scheme really breaks down when faced with ideographic scripts like

Chinese and Japanese. Chinese keyboards can have more than 5000 different keys;

and that still covers less than 10 percent of the language! Syllabic, phonetic, and

radical representations exist that can reduce the number of keys — the most com-

mon Japanese keyboard layout only has 106 keys and some have even fewer as

shown in Figure 7-8 — but it is questionable whether a keyboard is really an appro-

priate means of entering text in these languages. Reliable speech and handwriting

recognition have even greater potential in Asia than in the West.

184 Part I ✦ Introducing XML

Figure 7-8: A Japanese keyboard on Macintosh PowerBook

Because speech and handwriting recognition still haven’t reached the reliability of

even a mediocre typist like myself, most input methods today map multiple

sequences of keys on the keyboard to a single character. For example, to type the

Chinese character for sheep, you might hold down the Alt key and type a tilde (~),

then type yang, then hit the space bar. The input method would then present you with

a list of words that are pronounced more or less like yang, as shown in Figure 7-9.

You would then type the number of or click the mouse on the character you

wanted, n. The exact details of both the GUI and the transliteration system used to

convert typed keys such as yang to the ideographic characters such as n vary

from program to program, operating system to operating system, and language to

language.

185Chapter 7 ✦ Foreign Languages and Non-Roman Text

Figure 7-9: A Chinese input method using Pinyin Romanization

Operating system and application software
As of version 4.0, the major Web browsers do a surprisingly good job of displaying

non-Roman scripts. Provided the underlying operating system supports a given

script and has the right fonts installed, a Web browser can probably display it.

MacOS 9.0 and later can handle most common scripts in the world today, including

right-to-left languages, such as Arabic and Hebrew, and ideographic scripts, such as

Chinese, Japanese, and Korean. These aren’t installed by default. To install them,

run the installer on your MacOS 9.0 or System Install CD, pick the disk that you

want to install them on, select Language Kits, choose Customized Installation, and

then check the scripts that you want to use. Before MacOS 9.0, the base operating

system only supported Western European languages. Chinese, Japanese, Korean,

Arabic, Hebrew, and Cyrillic are still available as language kits that cost about $100

apiece. Each provides fonts and input methods for languages written in those

scripts. There’s also an Indian language kit, which handles the Devanagari, Gujarati,

and Gurmukhu scripts common on the Indian subcontinent.

Windows NT 4.0 and Windows 2000 use Unicode as their native character set. NT

4.0 does a fairly good job with Roman languages, Cyrillic, Greek, Hebrew, and a few

others. NT 4.0 bundles the Lucida Sans Unicode font which covers about 1300 of

the most common of Unicode’s approximately 50,000 characters. Windows 2000

adds fonts covering most of the Chinese-Japanese-Korean ideographs, as well as

input methods for these scripts.

186 Part I ✦ Introducing XML

Microsoft’s consumer operating systems, Windows 3.1, 95, 98, and Me, do not fully

support Unicode. Instead, they rely on localized systems that can only handle basic

English characters plus the localized script.

Microsoft Office 2000 includes fonts covering the full range of Unicode 2.0, including

Chinese, Japanese, Korean, Arabic, and Hebrew, that you can install to read text in

these languages on Windows operating systems from 95 to 2000. (Install International

Support under Office Tools.) If you also want an input method for these scripts, you

can get one with the Microsoft Office 2000 Resource Kit (Microsoft Press, ISBN

0-7356-0555-6) or download it from http://www.microsoft.com/Windows/ie/
Features/ime.asp.

The major UNIX variants have varying levels of support for Unicode. Solaris 7 and

later fully support Unicode and include the necessary fonts and input methods for

most Latin-derived scripts, as well as for Greek, Cyrillic, Chinese, Japanese, Korean,

Arabic, Hebrew, and Thai. Linux has embryonic support for Unicode, which may

grow to something useful in the near future.

Legacy Character Sets
Different computers in different locales use different default character sets. Most

modern computers use a superset of the ASCII character set. ASCII encodes the

English alphabet and the most common punctuation and white-space characters.

In the United States, Macs use the MacRoman character set, Windows PCs use a

character set called Cp1252, and most UNIX workstations use ISO 8859-1, a.k.a

Latin-1. These are all extensions of ASCII that support additional characters such as

ç and ¿ that are needed for Western European languages such as French and

Spanish. In other locales, such as Japan, Greece, and Israel, computers use a still

more confusing hodgepodge of character sets that mostly support ASCII plus the

local language.

This doesn’t work on the Internet. It’s unlikely that while you’re reading the San
Jose Mercury News you’ll turn the page and be confronted with several columns

written in German or Chinese. However, on the Web it’s entirely possible that a user

will follow a link and end up staring at a page of Japanese. Even if the surfer can’t

read Japanese it would still be nice if they saw a correct version of the language, as

seen in Figure 7-5, instead of a random collection of characters like those shown in

Figure 7-2.

XML addresses this problem by moving beyond small, local character sets to one

large set that’s supposed to encompass all scripts used in all living languages (and

a few dead ones) on planet Earth. This character set is called Unicode. As previ-

ously noted, Unicode is a multi-byte character set that provides representations of

187Chapter 7 ✦ Foreign Languages and Non-Roman Text

more than 90,000 different characters in dozens of scripts and hundreds of lan-

guages, and more will be added in the future. All XML processors are required to

understand Unicode, even if they can’t fully display it.

As you learned in Chapter 6, an XML document is divided into text and binary enti-

ties. Each text entity has an encoding. If the encoding is not explicitly specified in

the entity’s definition, then the default is UTF-8 — a compressed form of Unicode

that leaves pure ASCII text unchanged. Thus, XML files that contain nothing but the

common ASCII characters may be edited with tools that are unaware of the compli-

cations of dealing with multibyte character sets such as Unicode.

The ASCII character set
ASCII, the American Standard Code for Information Interchange, is one of the origi-

nal character sets, and is by far the most common. It forms a sort of lowest common

denominator for what a character set must support. It defines all the characters

needed to write U.S. English, and essentially nothing else. The characters are

encoded as the numbers 0 to 127. Table 7-1 presents the ASCII character set.

Table 7-1
The ASCII Character Set

Code Character Code Character Code Character Code Character

0 null (Ctrl+@) 32 Space 64 @ 96 `

1 start of heading 33 ! 65 A 97 a
(Ctrl+A)

2 start of text 34 “ 66 B 98 b
(Ctrl+B)

3 end of text 35 # 67 C 99 c
(Ctrl+C)

4 end of transmission 36 $ 68 D 100 d
(Ctrl+D)

5 enquiry 37 % 69 E 101 e
(Ctrl+E)

6 acknowledge 38 & 70 F 102 f
(Ctrl+F)

continued

188 Part I ✦ Introducing XML

Table 7-1 (continued)

Code Character Code Character Code Character Code Character

7 bell (Ctrl+G) 39 ‘ 71 G 103 g

8 backspace (Ctrl+H) 40 (72 H 104 h

9 tab (Ctrl+I) 41) 73 I 105 i

10 linefeed (Ctrl+J) 42 * 74 J 106 j

11 vertical tab (Ctrl+K) 43 + 75 K 107 k

12 formfeed (Ctrl+L) 44 , 76 L 108 l

13 carriage return 45 - 77 M 109 m
(Ctrl+M)

14 shift out (Ctrl+N) 46 . 78 N 110 n

15 shift in (Ctrl+O) 47 / 79 O 111 o

16 data link escape 48 0 80 P 112 p
(Ctrl+P)

17 device control 1 49 1 81 Q 113 q
(Ctrl+Q)

18 device control 2 50 2 82 R 114 r
(Ctrl+R)

19 device control 3 51 3 83 S 115 s
(Ctrl+S)

20 device control 4 52 4 84 T 116 t
(Ctrl+T)

21 negative 53 5 85 U 117 u
acknowledge
(Ctrl+U)

22 synchronous idle 54 6 86 V 118 v
(Ctrl+V)

23 end of transmission 55 7 87 W 119 w
block (Ctrl+W)

24 cancel (Ctrl+X) 56 8 88 X 120 x

25 end of medium 57 9 89 Y 121 y
(Ctrl+Y)

26 substitute (Ctrl+Z) 58 : 90 Z 122 z

189Chapter 7 ✦ Foreign Languages and Non-Roman Text

Code Character Code Character Code Character Code Character

27 escape (Ctrl+[) 59 ; 91 [123 {

28 file separator 60 < 92 \ 124 |
(Ctrl+\)

29 group separator 61 = 93] 125 }
(Ctrl+])

30 record separator 62 > 94 ^ 126 ~
(Ctrl+^)

31 unit separator 63 ? 95 _ 127 delete
(Ctrl+_)

Characters 0 through 31 are nonprinting control characters. They include the car-

riage return, the linefeed, the tab, the bell, and similar characters. Many of these

are leftovers from the days of paper-based Teletype terminals. For instance, car-

riage return used to literally mean move the carriage back to the left margin, as you

would do on a typewriter. Linefeed moved the platen up one line. Aside from the

few control characters mentioned, these aren’t used much anymore.

Most other character sets that you’re likely to encounter are supersets of ASCII. In

other words, they define 0 though 127 exactly the same as ASCII, but add additional

characters from 128 on up.

The ISO character sets
The A in ASCII stands for American, so it shouldn’t surprise you that ASCII is only

adequate for writing English, and strictly American English at that. ASCII does not

contain the £, ü, ¿, or many other characters that you might want for writing in

other languages or locales.

ASCII can be extended by assigning additional characters to numbers above 128.

The International Standards Organization (ISO) has defined a number of different

character sets based on ASCII that add additional characters needed for other lan-

guages and locales. The most prominent such character set is ISO 8859-1, com-

monly called Latin-1. Latin-1 includes enough additional characters to write in most

Latin alphabet-based Western European languages. Characters 0 through 127 are

the same as they are in ASCII. Characters 128 through 255 are given in Table 7-2.

Again, the first 32 characters are mostly unused, nonprinting control characters.

190 Part I ✦ Introducing XML

Table 7-2
The Upper Half of the ISO 8859-1 Latin-1 Character Set

Code Character Code Character Code Character Code Character

128 Undefined 160 nonbreaking 192 À 224 à
space

129 Undefined 161 ¡ 193 Á 225 á

130 Break permitted here 162 ¢ 194 Â 226 â

131 No break permitted here 163 £ 195 Ã 227 ã

132 Index 164 ¤ 196 Ä 228 ä

133 Next line 165 ¥ 197 Å 229 å

134 Start of selected area 166 i 198 Æ 230 æ

135 End of selected area 167 § 199 Ç 231 ç

136 Character tabulation set 168 ¨ 200 È 232 è

137 Character tabulation 169 © 201 É 233 é
with justification

138 Line tabulation set 170 ª 202 Ê 234 ê

139 Partial line down 171 « 203 Ë 235 ë

140 Partial line up 172 ¬ 204 Ì 236 ì

141 Reverse line feed 173 Discretionary 205 Í 237 í
hyphen

142 Single shift 2 174 ® 206 Î 238 î

143 Single shift 3 175 ¯ 207 Ï 239 ï

144 Device control string 176 ° 208 a 240 ∏

145 Private use 1 177 ± 209 Ñ 241 ñ

146 Private use 2 178 2 210 Ò 242 ò

147 Set transmit state 179 3 211 Ó 243 ó

148 Cancel character 180 ´ 212 Ô 244 ô

149 Message waiting 181 > 213 Õ 245 õ

150 Start of guarded area 182 ¶ 214 Ö 246 ö

151 End of guarded area 183 · 215 × 247 ÷

152 Start of string 184 ¸ 216 Ø 248 ø

191Chapter 7 ✦ Foreign Languages and Non-Roman Text

Code Character Code Character Code Character Code Character

153 Undefined 185 1 217 Ù 249 ù

154 Single character 186 º 218 Ú 250 ú
introducer

155 Control sequence 187 » 219 Û 251 û
indicator

156 String terminator 188 1/4 220 Ü 252 ü

157 Operating system 189 1/2 221 : 253 ;
command

158 Privacy message 190 3/4 222 P 254 ∏

159 Application program 191 ¿ 223 ß 255 ÿ
command

Latin-1 still lacks many useful characters including those needed for Greek, Cyrillic,

Chinese, Turkish, and many other scripts and languages. You might think that these

could just be moved into the numbers from 256 up. However, there’s a catch. A sin-

gle byte can only hold values from 0 to 255. To go beyond that, you need a multi-

byte character set. For historical reasons most software is written under the

assumption that characters and bytes are identical, and tends to break when faced

with multibyte character sets. Therefore, most current operating systems

(Windows NT being the notable exception) use different, single-byte character sets

rather than one large multibyte set. Latin-1 is the most common such set, but other

sets are needed to handle additional languages.

ISO 8859 defines ten other character sets (8859-2 through 8859-10 and 8859-15) suit-

able for different scripts, with three more (8859-11, 8859-13, and 8859-14) in active

development. Table 7-3 lists the ISO character sets and the languages and scripts

for which they can be used. All share the same ASCII characters from 0 to 127, and

then each includes additional characters from 128 to 255.

192 Part I ✦ Introducing XML

Table 7-3
The ISO Character Sets

Character Set Also Known As Languages

ISO 8859-1 Latin-1 ASCII plus the characters required for most Western European
languages including Albanian, Afrikaans, Basque, Catalan, Danish,
Dutch, English, Faroese, Finnish, Flemish, Galician, German, Icelandic,
Irish, Italian, Norwegian, Portuguese, Scottish, Spanish, and Swedish.
However it omits the ligatures ij (Dutch), Œ (French), and German
quotation marks.

ISO 8859-2 Latin-2 ASCII plus the characters required for most Central European
languages including Czech, English, German, Hungarian, Polish,
Romanian, Croatian, Slovak, Slovene, and Sorbian.

ISO 8859-3 Latin-3 ASCII plus the characters required for English, Esperanto, German,
Maltese, and Galician.

ISO 8859-4 Latin-4 ASCII plus the characters required for the Baltic languages Latvian,
Lithuanian, German, Greenlandic, and Lappish; superseded by ISO
8859-10, Latin-6.

ISO 8859-5 ASCII plus Cyrillic characters required for Byelorussian, Bulgarian,
Macedonian, Russian, Serbian, and Ukrainian.

ISO 8859-6 ASCII plus Arabic.

ISO 8859-7 ASCII plus Greek.

ISO 8859-8 ASCII plus Hebrew.

ISO 8859-9 Latin-5 Latin-1 except that the Turkish letters I, ı, +, =, G, and g take the place
of the less commonly used Icelandic letters :, ;, P, ∏, D, and ∏.

ISO 8859-10 Latin-6 ASCII plus characters for the Nordic languages Lithuanian, Inuit
(Greenlandic Eskimo), non-Skolt Sami (Lappish), and Icelandic.

ISO 8859-11 ASCII plus Thai.

ISO 8859-12 This may eventually be used for ASCII plus Devanagari (Hindi,
Sanskrit, and so on), but no proposal is yet available.

ISO 8859-13 Latin-7 ASCII plus the Baltic Rim, particularly Latvian.

ISO 8859-14 Latin-8 ASCII plus Gaelic and Welsh.

ISO 8859-15 Latin-9, Essentially the same as Latin-1 but with the euro sign, E, instead of
Latin-0 the international currency sign, ¤. Furthermore, the Finnish

characters S, s, Z, z replace the uncommon symbols i, ¨, and ¸. Finally,
the French Œ, œ, and Ÿ characters replace the fractions 1/4, 1/2,
3/4.

193Chapter 7 ✦ Foreign Languages and Non-Roman Text

These sets often overlap. Several languages, most notably English and German, can

be written in more than one of the character sets. To some extent the different sets

are designed to allow different combinations of languages. For instance Latin-1 can

combine most Western languages and Icelandic whereas Latin-5 combines most

Western languages with Turkish instead of Icelandic. Thus, if you needed a docu-

ment in English, French, and Icelandic, you’d use Latin-1. A document containing

English, French, and Turkish would be written in Latin-5. However, a document that

required English, Hebrew, and Turkish, would have to be written in Unicode

because no single-byte character set handles all three languages and scripts.

A single-byte set is insufficient for Chinese, Japanese, and Korean. These languages

have more than 256 characters apiece, so they must use multibyte character sets.

The MacRoman character set
The MacOS predates Latin-1 by several years. (The ISO 8859-1 standard was first

adopted in 1987. The first Mac was released in 1984.) Unfortunately, this meant that

Apple had to define its own extended character set called MacRoman. MacRoman is

the same as ASCII and Latin-1 in the codes through the first 127 characters. From

128 through 255, MacRoman has most of the same extended characters as Latin-1

(except for the Icelandic letters :, ;, P, ∏, D, and ∏), but the characters are assigned

to different numbers. This is one reason text files that use extended characters

often look funny when moved from a PC to a Mac or vice versa. Table 7-4 lists the

upper half of the MacRoman character set.

Table 7-4
The Upper Half of the MacRoman Character Set

Code Character Code Character Code Character Code Character

128 Â 160 † 192 ¿ 224 ‡

129 Å 161 ° 193 ¡ 225 ·

130 Ç 162 ¢ 194 ¬ 226 ‚

131 É 163 £ 195 √ 227 „

132 Ñ 164 § 196 ƒ 228 ‰

133 Ö 165 · 197 ≈ 229 Â

134 Ü 166 ¶ 198 ∆ 230 Ê

135 á 167 ß 199 « 231 Á

136 à 168 ® 200 » 232 È

137 â 169 © 201 ... 233 È

continued

194 Part I ✦ Introducing XML

Table 7-4 (continued)

Code Character Code Character Code Character Code Character

138 ä 170 ™ 202 nonbreaking space 234 Í

139 ã 171 _ 203 À 235 Î

140 å 172 ¨ 204 Ã 236 Ï

141 ç 173 ≠ 205 Õ 237 Ì

142 é 174 Æ 206 Œ 238 Î

143 è 175 Ø 207 œ 239 Ó

144 ê 176 ∞ 208 ¯ 240 Ô

145 ë 177 ± 209 _ 241 Apple

146 í 178 ≤ 210 “ 242 Ò

147 ì 179 ≥ 211 “ 243 Û

148 î 180 ¥ 212 ‘ 244 Ú

149 ï 181 > 213 ‘ 245 1

150 ñ 182 ∂ 214 ÷ 246 ˆ

151 ó 183 ∑ 215 ◊ 247 ˜

152 ò 184 Π 216 ÿ 248 ¯

153 ô 185 π 217 Ÿ 249 ˘

154 ö 186 ∫ 218 ⁄ 250 ˙

155 õ 187 ª 219 E (¤ in MacOS 8.1 251 °
and earlier)

156 ú 188 ° 220 ‹ 252 ¸

157 ù 189 Ω 221 › 253 ˝

158 û 190 Æ 222 fi 254 ˛

159 ü 191 Ø 223 fl 255 ˇ

The Windows ANSI character set
The first version of Windows to achieve widespread adoption followed the Mac by a

few years, so it was able to adopt the Latin-1 character set. However, it replaced the

nonprinting control characters between 130 and 159 with more printing characters

195Chapter 7 ✦ Foreign Languages and Non-Roman Text

to stretch the available range a little further. This modified version of Latin-1 is gen-

erally called Windows ANSI (even though it was never standardized by ANSI or any

other standards body) or, more properly, Cp1252. Table 7-5 lists the characters

Cp1252 added to Latin-1.

Table 7-5
The Windows ANSI Character Set

Code Character Code Character Code Character CodeCharacter

128 Undefined 136 ˆ 144 Undefined 152 ~

129 Undefined 137 ‰ 145 ‘ 153 ™

130 , 138 S 146 ‘ 154 S

131 ƒ 139 ‹ 147 “ 155 ›

132 „ 140 Œ 148 “ 156 œ

133 ... 141 Undefined 149 • 157 Undefined

134 † 142 Undefined 150 – 158 Undefined

135 ‡ 143 Undefined 151 — 159 Ÿ

The Unicode Character Set
Using different character sets for different scripts and languages works well enough

as long as:

1. You don’t need to work in more than one script at once.

2. You never trade files with anyone using a different character set.

Because Macs and PCs use different character sets, more people fail these criteria

than not. Obviously what is needed is a single character set that everyone agrees

on and that encodes all characters in all the world’s scripts. Creating such a set is

difficult. It requires a detailed understanding of hundreds of languages and their

scripts. Getting software developers to agree to use that set once it’s been created

is even harder. Nonetheless work is ongoing to create exactly such a set called

Unicode, and the major vendors (Microsoft, Apple, IBM, Sun, Be, and many others)

are slowly moving toward complying with it. XML specifies Unicode as its default

character set.

196 Part I ✦ Introducing XML

Unicode provides room for over one million different characters. Currently, a few

more than 94,000 different Unicode characters are defined. Unicode characters 0

through 255 are identical to Latin-1 characters 0 through 255. About 70,000 of the

characters are used for the Han ideographs and another 11,000 or so are used for

the Korean Hangul syllables. The remainder encodes most of the rest of the world’s

languages. About 6000 more are earmarked for private use by vendors. The remain-

ing million spaces are reserved for future extensions.

I’d love to show you a table of all the characters in Unicode, but if I did this book

would consist entirely of that table and not much else. If you need to know more

about the specific encodings of the different characters in Unicode, get a copy of

The Unicode Standard Version 3.0 (ISBN 0-201-61633-5, from Addison-Wesley). This

1000-page book includes the complete Unicode 3.0 specification, including character

charts for all the different characters defined in Unicode 3.0. You can also find infor-

mation online at the Unicode Consortium Web site at http://www.unicode.org/.

Table 7-6 lists the different scripts encoded by Unicode 3.0, which should give you

some idea of Unicode’s versatility. The characters of each script are generally

encoded in a consecutive subrange (block) of Unicode. Most languages can be writ-

ten with the characters in one of these blocks (for example, Russian can be written

with the Cyrillic block), although some languages, such as Croatian or Turkish, may

need to mix and match characters from the first four Latin blocks.

Table 7-6
Unicode 3.0 Script Blocks

Script Range Purpose

Basic Latin 0–127 ASCII, American English.

Latin-1 126–255 Upper half of ISO Latin-1, in conjunction with the Basic
Supplement Latin block can handle Danish, Dutch, English, Faroese,

Flemish, German, Hawaiian, Icelandic, Indonesian, Irish,
Italian, Norwegian, Portuguese, Spanish, Swahili, and
Swedish.

Latin Extended-A 256–383 This block adds the characters from the ISO 8859 sets
Latin-2, Latin-3, Latin-4, and Latin-5 that are not already
found in the Basic Latin and Latin-1 blocks. In conjunction
with those blocks, this block can encode Afrikaans,
Breton, Basque, Catalan, Czech, Esperanto, Estonian,
French, Frisian, Greenlandic, Hungarian, Latvian,
Lithuanian, Maltese, Polish, Provençal, Rhaeto-Romanic,
Romanian, Romany, Slovak, Slovenian, Sorbian, Turkish,
and Welsh.

197Chapter 7 ✦ Foreign Languages and Non-Roman Text

Script Range Purpose

Latin Extended-B 383–591 Mostly characters needed to extend the Latin script to
handle languages not traditionally written in this script;
includes many African languages, Croatian digraphs to
match Serbian Cyrillic letters, the Pinyin transcription of
Chinese, and the Sami characters from Latin-10.

IPA Extensions 592–687 The International Phonetic Alphabet.

Spacing Modifier 686–767 Small symbols that somehow change (generally
Letters phonetically) the previous letter.

Combining 766–879 Diacritical marks, such as ~, ‘, and ', that will somehow
Diacritical Marks be combined with the previous character (most

commonly, be placed on top of) rather than drawn as a
separate character

Greek 880–1023 Modern Greek; based on ISO 8859-7

Cyrillic 1024–1279 Russian and most other Slavic languages (Ukrainian,
Byelorussian, and so forth), and many non-Slavic
languages of the former Soviet Union (Azerbaijani,
Ossetian, Kabardian, Chechen, Tajik, and so forth); based
on ISO 8859-5. A few languages (Kurdish, Abkhazian)
require both Latin and Cyrillic characters.

Armenian 1326–1423 Armenian.

Hebrew 1424–1535 Hebrew (classical and modern), Yiddish, Judezmo, early
Aramaic.

Arabic 1536–1791 Arabic, Persian, Pashto, Sindhi, Kurdish, and classical
Turkish.

Syriac 1792–1866 Syriac.

Thaana 1920–1969 The Dhivehi language of the Maldives.

Devanagari 2304–2431 Sanskrit, Hindi, Nepali, and other languages of the Indian
subcontinent including Awadhi, Bagheli, Bhatneri, Bhili,
Bihari, Braj Bhasha, Chhattisgarhi, Garhwali, Gondi,
Harauti, Ho, Jaipuri, Kachchhi, Kanauji, Konkani, Kului,
Kumaoni, Kurku, Kurukh, Marwari, Mundari, Newari,
Palpa, and Santali.

Bengali 2432–2559 A North Indian script used in India’s West Bengal state
and Bangladesh; used for Bengali, Assamese, Daphla,
Garo, Hallam, Khasi, Manipuri, Mizo, Naga, Munda, Rian,
and Santali.

Gurmukhi 2560–2687 Punjabi.

continued

198 Part I ✦ Introducing XML

Table 7-6 (continued)

Script Range Purpose

Gujarati 2686–2815 Gujarati.

Oriya 2816–2943 Oriya, Khondi, and Santali.

Tamil 2944–3071 Tamil and Badaga, used in south India, Sri Lanka,
Singapore, and parts of Malaysia.

Telugu 3072–3199 Telugu, Gondi, and Lambadi.

Kannada 3200–3327 Kannada and Tulu.

Malalayam 3326–3455 Malalayam.

Sinhala 3456–3583 Sinhala, the primary language of Sri Lanka. Also used for
Pali and Sanskrit.

Thai 3584–3711 Thai, Kuy, Lavna, and Pali.

Lao 3712–3839 Lao.

Tibetan 3840–4031 Himalayan languages including Tibetan, Ladakhi, and
Lahuli.

Myanmar 4096–4255 Burmese, as well as Shan, Mon, Pali, and Sanskrit.

Georgian 4256–4351 Georgian, the language of the former Soviet Republic of
Georgia on the Black Sea.

Hangul Jamo 4352–4607 The alphabetic components of the Korean Hangul
syllabary.

Ethiopic 4608–4991 Various central East African languages including Ge’ez,
Amharic, Tigre, and Oromo.

Cherokee 5024–5119 The Cherokee syllabary designed by Sequoyah.

Canadian 5120–5759 A unified version of several syllabaries used by aboriginal
Aboriginal groups in Canada for languages in the Algonquian,
Syllabics Inuktitut, and Athapascan families.

Ogham 5760–5791 A script used for Irish and possibly Pictish, found on stone
monuments in Ireland and the U.K.; died out around the
sixteenth century.

Runic 5792–5887 An extinct script used from about the first to the
nineteenth century for a number of Germanic languages
including the ancestors of today’s English, Swedish, and
German.

Khmer 6016–6143 Cambodian.

Mongolian 6144–6319 Mongolian.

199Chapter 7 ✦ Foreign Languages and Non-Roman Text

Script Range Purpose

Latin 7680–7935 Normal Latin letters like E and Y combined with diacritical
Extended marks, rarely used except for Vietnamese vowels.
Additional

Greek 7936–8191 Greek letters combined with diacritical marks; used in
Extended Polytonic and classical Greek.

General 8192–8303 Assorted relatively uncommon punctuation marks such as
Punctuation ‰, †, and •.

Superscripts 8304–8351 Common subscripts and superscripts.
and Subscripts

Currency 8352–8399 Currency symbols not already present in other blocks
Symbols such as the Peseta sign Pts, the Lira sign £, and the euro

sign E.

Combining 8400–8447 Used to make half of a diacritical mark that spans two or
Marks for more characters.
Symbols

Letter like 8446–8527 Symbols that look like letters, such as ™ and N.
Symbols

Number Forms 8526–8591 Fractions and Roman numerals.

Arrows 8592–8703 Arrows.

Mathematical 8704–8959 Mathematical operators that don’t already appear in
Operators other blocks.

Miscellaneous 8960–9039 Cropping marks, bra-ket notation from quantum
Technical mechanics, symbols needed for the APL programming

language, and assorted other technical symbols.

Control Pictures 9216–9279 Pictures of the ASCII control characters; generally used in
debugging and network-packet sniffing.

Optical 9280–9311 OCR-A and the MICR (magnetic ink character recognition)
Character symbols used on printed checks.
Recognition

Enclosed 9312–9471 Letters and numbers in circles and parentheses.
Alphanumerics

Box Drawing 9472–9599 Characters for drawing boxes on monospaced terminals.

Block Elements 9600–9631 Monospaced terminal graphics as used in DOS and
elsewhere.

Geometric 9632–9727 Squares, diamonds, triangles, and the like.
Shapes

Miscellaneous 9726–9983 Cards, chess, astrology, and more.
Symbols

continued

200 Part I ✦ Introducing XML

Table 7-6 (continued)

Script Range Purpose

Dingbats 9984–10175 Characters from the Zapf Dingbat font.

Braille 10240–10495 A writing system built out of raised dots and read by
touch; used by blind people for many different languages.

CJK and KangXi 11904–12245 Fragments of ideographs used to sort dictionaries,
Radicals indexes, and other word lists in Chinese, Japanese, and

Korean.

Ideographic 12272–12283 Characters used to describe rare ideographs that are not
Description included in Unicode.

CJK Symbols and 12286–12351 Symbols and punctuation used in Chinese,
Punctuation Japanese, and Korean.

Hiragana 12352–12447 A cursive syllabary for Japanese.

Katakana 12446–12543 A noncursive syllabary used to write words imported from
the West into Japanese, especially modern words like
o—p—q(keyboard).

Bopomofo 12544–12591, A phonetic alphabet for Chinese used primarily for
12704–12727 teaching.

Hangul 12592–12687 Korean characters needed for compatibility with the KSC
Compatibility 5601 encoding.
Jamo

Kanbun 12688–12703 Marks used in Japanese to indicate the reading order of
classical Chinese.

Enclosed CJK 12800–13055 Hangul and Katakana characters enclosed in circles and
Letters and parentheses.
Months

CJK Compatibility 13056–13311 Characters needed only for compatibility with the legacy
encodings KSC 5601 and CNS 11643.

CJK Unified 13312–40959 The Han ideographs used for Chinese, Japanese, and
Ideographs Korean.

Yi (a.k.a. Cuan, 40960–42191 Yi, a minority language of China.
a.k.a Wei)

Hangul Syllables 44032–55203 The Korean syllabary.

Surrogates 55296–57343 Enables the extension of Unicode to over one million
different characters by encoding characters as pairs of
these values.

201Chapter 7 ✦ Foreign Languages and Non-Roman Text

Script Range Purpose

Private Use 57344–63743 Software developers can include their custom characters
here; not compatible across implementations.

CJK Compatibility 63744–64255 A few extra Han ideographs needed only to maintain
Ideographs compatibility with existing standards such as KSC 5601.

Alphabetic 64256–64335 Ligatures and variants sometimes used in Latin, Armenian,
Presentation and Hebrew.
Forms

Arabic 64336–65023 Variants of assorted Arabic characters.
Presentation
Forms

Combining 65056–65071 Code points that represent only half of a combining
Half Marks diacritical mark that spans multiple characters.

CJK 65072–65103 Mostly vertical variants of Han ideographs used in Taiwan.
Compatibility
Forms

Small Form 65104–65135 Smaller version of ASCII punctuation mostly used in
Variants Taiwan.

Additional Arabic 65136–65279 More variants of assorted Arabic characters.
Presentation
Forms

Half-width and 65280–65519 Characters that allow conversion between different
Full-width Forms Chinese and Japanese encodings of the same characters.

Specials 65520–65535 The byte order mark and the zero-width, nonbreaking
space often used to start Unicode files.

Unicode Encodings
The Unicode character set just assigns characters to numbers. It does not specify

how those numbers are represented. This is done by an encoding scheme. Since

Unicode 3.0 and earlier characters are assigned numbers less than 65,536, a two-

byte, unsigned integer suffices for each character. The most naïve encoding of

Unicode simply identifies each character by such a two-byte, unsigned integer in

either big- or little-endian form. This encoding is called UCS-2. When new characters

are assigned to numbers beyond 65,536 in Unicode 3.1, you’ll need four bytes for

each character. This encoding is called UCS-4.

When Unicode uses 2 bytes for each character, files of English text are about twice

as large in Unicode as they would be in ASCII or Latin-1. UTF-8 is a compressed ver-

sion of Unicode that uses only a single byte for the most common characters, that

is the ASCII characters 0 to 127, at the expense of having to use 3 or more bytes for

202 Part I ✦ Introducing XML

the less common characters, particularly the Hangul syllables and Han ideographs.

If you’re writing mostly in English, UTF-8 can reduce your file sizes by as much

as 50 percent. On the other hand, if you’re writing mostly in Chinese, Korean, or

Japanese, UTF-8 can increase your file size by as much as 50 percent — so it should

be used with caution. UTF-8 has mostly no effect on non-Roman, non-CJK scripts

such as Greek, Arabic, Cyrillic, and Hebrew.

XML processors assume text data is in the UTF-8 format unless told otherwise. This

means that they can read ASCII files, because ASCII is a strict subset of UTF-8. XML

parsers can also recognize and process documents written in UCS-2 provided the

document starts with either a byte order mark or an XML declaration or both.

However, other formats like MacRoman or Latin-1 can cause parsers trouble. You’ll

see how to account for that shortly.

Unicode 3.1
Unicode has been criticized for not encompassing enough, especially in regard to

East Asian languages. It only defines about 20,000 of the 50,000+ Han ideographs

used amongst Chinese, Japanese, Korean, and historical Vietnamese. (Modern

Vietnamese use a Roman alphabet.) Unicode 3.0 does not assign any characters to

code points beyond 65,535. However, it’s anticipated that a number of dead lan-

guages, such as Egyptian hieroglyphics and Babylonian cuneiform, will be added to

this region in Unicode 3.1 and later, as will fictional scripts such as Klingon and

Tengwar.

Unicode 3.1 uses 4 bytes per character (more precisely, 31 bits) to provide space

for more than 2 billion different characters. This is large enough to easily cover

every character ever used in any language in any script on the planet Earth with

room left over for scripts from more than a few other planets as well. In practice,

future versions of Unicode will encode at most about one million total characters,

which is still enough to cover all of Earth’s living and dead languages. Characters 0

through 65,536 can be encoded directly as 2-byte values, exactly as they are in

Unicode 3.0. Characters from 65,537 to 1,048,575 will be encoded as 4-byte surro-

gate pairs using the surrogates block of Unicode. UCS-2 plus surrogate pairs is

called UTF-16. As long as surrogate pairs aren’t used then UCS-2 and UTF-16 are

essentially the same encoding.

How to Write XML in Unicode
Unicode is the native character set of XML, and XML browsers do a pretty good job

of displaying it, at least within the limits of the available fonts. Nonetheless, there

simply aren’t many, if any, text editors that support the full range of Unicode.

Consequently, you’ll probably have to tackle this problem in one of these ways.

203Chapter 7 ✦ Foreign Languages and Non-Roman Text

1. Write in a localized character set such as Latin-3, and then convert your file to

Unicode.

2. Include Unicode character references in the text that numerically identify

particular characters.

The first option is preferable when you’ve got a large amount of text to enter in

essentially one script, or one script plus ASCII. The second works best when you

need to mix small portions of multiple scripts into your document.

Converting to and from Unicode
Application software that exports XML files, such as Adobe FrameMaker, handles

the conversion to Unicode or UTF-8 automatically. Otherwise, you need to use a

conversion tool. Sun’s freely available Java Development Kit (http://java.
sun.com/j2se/) includes a simple command-line utility called native2ascii that

converts between many common and uncommon localized character sets and

Unicode.

For example, the following command converts a text file named myfile.txt from the

platform’s default encoding to Unicode:

C:\> native2ascii myfile.txt myfile.uni

You can specify other encodings with the -encoding option.

C:\> native2ascii -encoding Big5 chinese.txt chinese.uni

You can also reverse the process to go from Unicode to a local encoding with the

-reverse option.

C:\> native2ascii -encoding Big5 -reverse chinese.uni
chinese.txt

The native2ascii program also processes Java-style Unicode escapes, which are

characters embedded as \u09E3. These are not in the same format as XML numeric

character references, though they’re similar. If you convert to Unicode using

native2ascii, you can still use XML character references — the XML processor that

eventually reads the document will still recognize them.

Word 2000 also does a pretty good job of saving files in various encodings of

Unicode. Open the file you want to convert in Word, then select Save As from the

File menu. From the Save as type: pop-up menu, select Encoded Text (*.txt) and

click OK. Word will then bring up a dialog box, shown in Figure 7-10, that asks you

to pick the character set to save the document in, as well as warning you about any

characters that don’t exist in your chosen encoding, although this shouldn’t be a

problem if you’re saving to Unicode. Word gives you four options for Unicode, but

for XML documents you should pick Unicode (UTF-8).

204 Part I ✦ Introducing XML

Figure 7-10: The Save As encoded text dialog box
from Word 2000

Inserting characters in XML files with
character references
Every Unicode character is a number between 0 and 1,114,111. If you do not have a

text editor that can write in Unicode, you can always use a character reference to

insert the character in your XML file instead.

A Unicode character reference consists of the two characters &# followed by the

character code and a semicolon. For instance, the Greek letter π has Unicode value

960, so it may be inserted in an XML file as π. The Cyrillic character ˙ has

Unicode value 1206, so it can be included in an XML file with the character refer-

ence Ҷ.

Unicode character references may also be specified in hexadecimal (base 16).

Although most people are more comfortable with decimal numbers, the Unicode

specification gives character values as 2-byte hexadecimal numbers. It’s often eas-

ier to use hex values directly rather than converting them to decimal.

All you need to do is include an x after the &# to signify that you’re using a hexadec-

imal value. For example, π has hexadecimal value 3C0 so it may be inserted in an

XML file as π. The Cyrillic character ˙ has hexadecimal value 4B6 so it can

205Chapter 7 ✦ Foreign Languages and Non-Roman Text

be included in an XML file with the escape sequence Ҷ. Because 2 bytes

always produce exactly four hexadecimal digits, it’s customary (although not

required) to include leading zeros in hexadecimal character references so they are

rounded out to four digits.

Unicode character references, both hexadecimal and decimal, may be used to

embed characters that would otherwise be interpreted as markup. For instance, the

ampersand (&) is encoded as & or &. The less than sign (<) is

encoded as < or <.

How to write XML in other character sets
Unless told otherwise, an XML processor assumes that all text entities are encoded

in UTF-8. Because UTF-8 includes ASCII as a subset, XML processors can easily

parse ASCII text too.

If you cannot convert your text into either UTF-8 or raw Unicode, you can leave the

text in its native character set and tell the XML processor which set that is. This

should be a last resort, though, because there’s no guarantee that an arbitrary XML

processor can process other encodings. The only character set other than UTF-8

that an XML processor is required to understand are the UCS-2 and UTF-8 encod-

ings of Unicode. Nonetheless, Netscape and Internet Explorer both do a pretty good

job of interpreting the common character sets.

To warn the XML processor that you’re using a non-Unicode encoding, you include

an encoding attribute in the XML declaration at the start of the file. For example, to

specify that the entire document uses Latin-1 by default (unless overridden by

another processing instruction in a nested entity) you would use this XML

declaration.

<?xml version=”1.0” encoding=”ISO-8859-1”?>

Table 7-7 lists the official names of the most common character sets used today, as

they would be given in XML encoding attributes. For encodings not found in this

list, consult the official list maintained by the Internet Assigned Numbers Authority

(IANA) at www.isi.edu/in-notes/iana/assignments/character-sets.

206 Part I ✦ Introducing XML

Table 7-7
Names of Common Character Sets

Character Set Name Languages/Countries

US-ASCII English

UTF-8 Compressed Unicode

UTF-16 Compressed UCS

ISO-10646-UCS-2 Raw Unicode

ISO-10646-UCS-4 Raw UCS

ISO-8859-1 Latin-1, Western Europe

ISO-8859-2 Latin-2, Eastern Europe

ISO-8859-3 Latin-3, Southern Europe

ISO-8859-4 Latin-4, Northern Europe

ISO-8859-5 ASCII plus Cyrillic

ISO-8859-6 ASCII plus Arabic

ISO-8859-7 ASCII plus Greek

ISO-8859-8 ASCII plus Hebrew

ISO-8859-9 Latin-5, Turkish

ISO-8859-10 Latin-6, ASCII plus the Nordic languages

ISO-8859-11 ASCII plus Thai

ISO-8859-13 Latin-7, ASCII plus the Baltic Rim languages, particularly Latvian

ISO-8859-14 Latin-8, ASCII plus Gaelic and Welsh

ISO-8859-15 Latin-9, Latin-0; Western Europe

ISO-2022-JP Japanese

Shift_JIS Japanese, Windows

EUC-JP Japanese, Unix

Big5 Traditional Chinese, Taiwan

GB2312 Simplified Chinese, mainland China

KOI6-R Russian

ISO-2022-KR Korean

EUC-KR Korean, Unix

ISO-2022-CN Chinese

207Chapter 7 ✦ Foreign Languages and Non-Roman Text

Summary
In this chapter you learned:

✦ What a script is, how it relates to languages, and the four things a script

requires.

✦ How scripts are used in computers with character sets, fonts, glyphs, and

input methods.

✦ What character sets are commonly used on different platforms and that most

are based on ASCII.

✦ How to write XML in Unicode without a Unicode editor (write the document in

ASCII and include Unicode character references).

✦ When writing XML in other encodings, include an encoding attribute in the

XML or text declaration.

This chapter concludes your exploration of basic, well-formed XML. The next chap-

ter takes up Document Type Definitions (DTDs) and validity. A DTD defines a struc-

ture for a class of XML documents. It specifies what documents in that class must,

must not, and may contain. By validating documents against DTDs, you can quickly

and easily verify that your documents meet any necessary conditions.

✦ ✦ ✦

Document Type
Definitions

✦ ✦ ✦ ✦

In This Part

Chapter 8
DTDs and Validity

Chapter 9
Element Declarations

Chapter 10
Entity Declarations

Chapter 11
Attribute Declarations

Chapter 12
Unparsed Entities,
Notations, and
Non-XML Data

Chapter 13
Namespaces

✦ ✦ ✦ ✦

P A R T

IIII

DTDs and
Validity

XML has been described as a meta-markup language —

that is, a language for describing markup languages. In

this chapter, you begin to learn how to document and

describe the new markup languages that you create. Such

markup languages (also known as vocabularies or XML appli-
cations) are defined with a document type definition (DTD).

Individual documents can be compared against DTDs in a pro-

cess known as validation. If the document matches the con-

straints listed in the DTD, then the document is said to be

valid; if the document doesn’t match the constraints, then the

document is said to be invalid.

Document Type Definitions
DTD is an acronym for document type definition. A document

type definition lists the elements, attributes, entities, and

notations that can be used in a document, as well as their pos-

sible relationships to one another. A DTD specifies a set of

rules for the structure of a document. For example, a DTD

may dictate that each BOOK element has exactly one ISBN
child, exactly one TITLE child, and one or more AUTHOR chil-

dren, and it may or may not contain a single SUBTITLE. Each

such rule is given in a declaration.

Every valid XML document must specify the DTD it’s valid

with respect to. This DTD can be included in the XML docu-

ment it describes, or that document can link to it at an exter-

nal URL. Such external DTDs can be shared by different

documents and Web sites. If the DTD is not directly included

in the document but is linked in from an external source,

changes made to the DTD automatically propagate to all docu-

ments using that DTD. On the other hand, backward compati-

bility is not guaranteed when a DTD is modified. Incompatible

changes can invalidate documents.

88C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Document type
definitions

Element declarations

DTD Files

Document type
declarations

Validation against
a DTD

✦ ✦ ✦ ✦

212 Part II ✦ Document Type Definitions

The real power of XML comes from common DTDs that are shared among many

documents written by different people. DTDs provide a means for applications,

organizations, and interest groups to agree upon, document, and enforce adherence

to markup standards. For example, a publisher may want an author to adhere to a

particular format because it makes it easier to lay out a book. An author may prefer

writing words in a row without worrying about matching up each bullet point in the

front of the chapter with a subhead inside the chapter. If the author writes in XML,

it’s easy for the publisher to check whether the author adhered to the predeter-

mined format specified by the DTD, and even to find out exactly where and how the

author deviated from the format. This is much easier than having human editors

read through documents with the hope that they spot all the minor deviations from

the format based on style alone.

DTDs also help ensure that different people and programs can read each other’s

files. For instance, if chemists agree on a single DTD for basic chemical notation,

possibly via the intermediary of an appropriate professional organization such as

the American Chemical Society, then they can rest assured that they can all read

and understand one another’s papers. The DTD defines exactly what is and is not

allowed to appear inside a document. The DTD establishes a standard for the ele-

ments that viewing and editing software must support. Even more importantly, it

establishes that extensions beyond those the DTD declares are invalid. Thus, it

helps prevent software vendors from embracing and extending open protocols in

order to lock users into their proprietary software.

Furthermore, a DTD shows how the different elements of a document are arranged.

A DTD shows the generic structure of a document separate from the actual data in

the individual document instances. This means that you can slap a lot of fancy

styles and formatting onto the underlying structure without destroying it, much as

you paint a house without changing its basic architectural plan. The reader of your

page may not see or even be aware of the underlying structure, but as long as it’s

there, human authors and JavaScripts, CGIs, servlets, databases, and other com-

puter programs can use it.

Element Declarations
Recall Listing 3-2 (greeting.xml) from Chapter 3. It is shown below:

Listing 3-2: greeting.xml

<?xml version=”1.0”?>
<GREETING>
Hello XML!
</GREETING>

213Chapter 8 ✦ DTDs and Validity

This XML document contains a single element, GREETING. (Remember, <?xml
version=”1.0”?> is the XML declaration, not an element.) A DTD for this docu-

ment has to declare the GREETING element. It may declare other elements, too,

including ones that aren’t present in this particular document, but it must at least

declare the GREETING element.

Elements are declared using element declarations. Each element declaration gives

the name of the element and lists the elements and text that it can contain. This list

is called the content model. For instance, this element declaration for the GREETING
element says that elements with name GREETING must contain only parsed charac-

ter data:

<!ELEMENT GREETING (#PCDATA)>

Every declaration begins with <!. Element declarations begin with <!ELEMENT (case

sensitive, as most things are in XML). This is followed by some white space and the

name of the element being declared, GREETING in this example. Then there’s some

more white space and the content model for this element. This content model,

(#PCDATA), says that the element must contain parsed character data. Parsed char-

acter data is essentially any text that’s not markup. This also includes entity refer-

ences, such as &, that are replaced by text when the document is parsed. In

other words, GREETING elements can contain text but no child elements. A valid

GREETING element must look like this:

<GREETING>
various random text but no markup

</GREETING>

There’s no restriction on what text the element can contain. It can be zero or more

Unicode characters with any meaning. DTDs don’t let you specify that an element

must contain a year, such as 2001, or a floating point number like 3.14152. You can

only say whether the element contains text, or child elements, or both. Thus a

GREETING element can also look like this:

<GREETING>Hello!</GREETING>

Or even this:

<GREETING></GREETING>

However, a valid GREETING element may not look like this:

<GREETING>
<SOME_TAG>various random text</SOME_TAG>
<SOME_EMPTY_TAG/>

</GREETING>

214 Part II ✦ Document Type Definitions

Nor may it look like this:

<GREETING>
<GREETING>various random text</GREETING>

</GREETING>

Each GREETING element must consist of nothing more and nothing less than parsed

character data between an opening <GREETING> tag and a closing </GREETING>
tag.

DTD Files
Declarations are placed in DTDs. Usually a DTD is a single file, separate from the

document itself (although, as you’ll soon see, other storage schemes are possible).

Such a DTD can be saved in a text file using any standard text editor. By convention,

this file will have the three-letter extension .dtd, although this isn’t required. For

instance, you might save a DTD describing only GREETING elements in a file called

greeting.dtd, as shown in Listing 8-1.

Listing 8-1: greeting.dtd

<!ELEMENT GREETING (#PCDATA)>

Of course, DTDs are usually much longer and more complex and contain many

more declarations than this trivial example.

Most of the time DTDs are written in either ASCII or UTF-8. If you use any other

encoding, then the DTD must have a text declaration identifying the encoding used

as discussed in the last chapter. For example, Listing 8-2 shows a DTD that uses the

ISO-8859-5 encoding because it uses the Russian word for greeting as an element

name:

Listing 8-2: russian_greeting.dtd

<?xml encoding=”ISO-8859-5”?>
<!ELEMENT (#PCDATA)>

215Chapter 8 ✦ DTDs and Validity

Document Type Declarations
A document type declaration is placed in an XML document’s prolog to say what

DTD that document adheres to. It also specifies which element is the root element

of the document. The document type declaration can either specify the DTD

directly by including it inside the document type declaration or indirectly by giving

the URL where the DTD is found. It may even do both, in which case the DTD has

two parts, the internal and external subsets.

A document type declaration is not the same thing as a document type definition.
Only the document type definition is abbreviated DTD. A document type declara-
tion must contain or refer to a document type definition, but a document type def-
inition never contains a document type declaration. I agree that this is
unnecessarily confusing. Unfortunately, XML is stuck with this terminology.

A document type declaration begins with <!DOCTYPE and ends with a >. In between

is the name of the root element, followed by either a pair of square brackets con-

taining the DTD itself, or the SYSTEM keyword and a URL where the DTD can be

found (or, occasionally, both). Thus, a document type declaration has this basic

form:

<!DOCTYPE name_of_root_element
SYSTEM “URL of the external DTD subset” [
internal DTD subset

]>

Here name_of_root_element is simply the name of the root element. The SYSTEM
keyword indicates that what follows is a URL where the DTD is located. The square

brackets enclose the internal subset of the DTD — that is, those declarations

included inside the document itself. You can omit either the SYSTEM keyword and

the URL to the external DTD subset or the square brackets and internal DTD subset,

but you must have at least one of them. For example, this document type declara-

tion only specifies an external DTD that can be found at the URL http://ibiblio.
org/greeting.dtd:

<!DOCTYPE GREETING SYSTEM “http://ibiblio.org/greeting.dtd”>

This document type declaration includes the DTD inside itself:

<!DOCTYPE GREETING [
<!ELEMENT GREETING (#PCDATA)>

]>

Line breaks and extra white space are not significant in a DTD. The same document

type declaration could be written on a single line like this:

<!DOCTYPE GREETING [<!ELEMENT GREETING (#PCDATA)>]>

Caution

216 Part II ✦ Document Type Definitions

In all cases, the document type declaration is placed in the document’s prolog, after

the XML declaration but before the root element. For instance, Listing 8-3 adds a

document type declaration to the hello.xml document from Listing 3-2.

Listing 8-3: Hello XML with DTD

<?xml version=”1.0”?>
<!DOCTYPE GREETING SYSTEM “greeting.dtd”>
<GREETING>
Hello XML!
</GREETING>

Listing 8-3 uses a relative URL to locate the DTD so that it will be searched for in the

same directory in which the document itself was found. You may also wish to locate

DTDs relative to the Web server’s document root or to the current directory. In gen-

eral, any reference that forms a valid URL relative to the location of the document is

acceptable. For example, these are all good document type declarations:

<!DOCTYPE SEASON SYSTEM “/xml/dtds/greeting.dtd”>
<!DOCTYPE SEASON SYSTEM “dtds/greeting.dtd”>
<!DOCTYPE SEASON SYSTEM “../greeting.dtd”>

A document can’t have more than one document type declaration, that is, more
than one <!DOCTYPE> tag. To use elements declared in more than one external
DTD, you need to use external parameter entity references. These are discussed in
Chapter 10.

Internal DTDs
Putting the entire DTD inside the document type declaration isn’t as reusable or

modular as locating it with a URL, but it sometimes helps when you’re developing a

new DTD and want to keep your example document and the DTD in sync. Moreover,

it will have some important consequences when we discuss entities in a couple of

chapters. Listing 8-4 shows a complete greeting document with an internal DTD.

Listing 8-4: Hello XML with an internal DTD

<?xml version=”1.0”?>
<!DOCTYPE GREETING [
<!ELEMENT GREETING (#PCDATA)>

]>
<GREETING>
Hello XML!
</GREETING>

Note

217Chapter 8 ✦ DTDs and Validity

You can load this document into an XML browser as usual. Figure 8-1 shows Listing

8-4 in Internet Explorer 5.5. The result is probably what you’d expect, a collapsible

outline view of the document source. Internet Explorer indicates that a document

type declaration is present by adding the line <!DOCTYPE GREETING (View
Source for full doctype...)> in blue.

Figure 8-1: Hello XML with DTD displayed in Internet
Explorer 5.5

Internal and external DTD subsets
Although most documents consist of easily defined pieces, not all documents use a

common template. Many documents may need to use standard DTDs, such as the

XHTML DTD, while adding custom elements for their own use. Other documents

may use only standard elements, but need to reorder them. For instance, one HTML

page may have a BODY that must contain exactly one H1 header followed by a DL
definition list, while another may have a BODY that contains many different headers,

paragraphs, and images in no particular order. If a particular document has a differ-

ent structure than other pages on the site, it can be useful to define its structure in

the document itself rather than in a separate DTD. This approach also makes the

document easier to edit.

To this end, a document can use both an internal and an external DTD subset. The

internal declarations go in square brackets inside the document type declaration.

For example, Listing 8-5 is an XML document whose root element is DOCUMENT. The

DOCUMENT element contains a GREETING child ELEMENT followed by a DATE child

element. This structure is declared by placing a comma between each element that

must appear as a child element like this:

<!ELEMENT DOCUMENT (GREETING, DATE)>

The DATE element is also declared inside Listing 8-5’s document type declaration.

However, the declaration for the GREETING element is pulled from the file

greeting.dtd, which forms the external DTD subset.

218 Part II ✦ Document Type Definitions

Listing 8-5: A document whose DTD has both an internal and
an external subset

<?xml version=”1.0”?>
<!DOCTYPE DOCUMENT SYSTEM “greeting.dtd” [

<!ELEMENT DOCUMENT (GREETING, DATE)>
<!ELEMENT DATE (#PCDATA)>

]>
<DOCUMENT>
<GREETING>Hello</GREETING>
<DATE>July 28, 2000</DATE>

</DOCUMENT>

A conflict between elements of the same name in the internal and external DTD sub-

sets is an error. The same element cannot be declared twice, whether in the internal

or external DTD subsets or both.

Public DTDs
The SYSTEM keyword is intended for private DTDs used by a single author or group.

Part of the promise of XML, however, is that broader organizations covering an

entire industry, such as the ISO or the IEEE, can standardize public DTDs to cover

their fields. This standardization saves people from having to reinvent tag sets for

the same items, and makes it easier for users to exchange interoperable documents.

DTDs designed for writers outside the creating organization use the PUBLIC keyword

instead of the SYSTEM keyword. Furthermore, the DTD gets a name. The syntax is:

<!DOCTYPE name_of_root_element PUBLIC “DTD_name” “DTD_URL”>

Once again, name_of_root_element is the name of the root element. PUBLIC is an

XML keyword that indicates that this DTD is intended for broad use and has a name.

DTD_name is the name associated with this DTD. Some XML processors may attempt

to use this name to retrieve the DTD from a central repository, although this behavior

is purely theoretical at this point in time. Finally, DTD_URL is a relative or absolute

URL where the DTD can be found if it cannot be retrieved by name from a well-known

repository. In practice, all existing XML parsers retrieve the DTD from its URL.

DTD names follow different rules than most XML names. They can only contain the

ASCII alphanumeric characters, the space, the carriage return, the linefeed, and

these punctuation marks: -'()+,/:=?;!*#@$_%. Furthermore, the names of public DTDs

follow a few conventions.

If a DTD is an ISO standard, its name begins with the string ISO. If a non-ISO stan-

dards body has approved the DTD, its name begins with a plus sign (+). If no stan-

dards body has approved the DTD, its name begins with a hyphen (-). These initial

219Chapter 8 ✦ DTDs and Validity

strings are followed by a double slash (//) and the name of the DTD’s owner, which

is followed by another double slash and the type of document the DTD describes.

Then there’s another double slash followed by an ISO 639 language identifier, such

as EN for English. A complete list of ISO 639 identifiers is available at http://www.
ics.uci.edu/pub/ietf/http/related/iso639.txt. For example, the greeting

DTD can be named as follows:

-//Elliotte Rusty Harold//DTD Greetings and salutations//EN

This public identifier says that the DTD is not standards-body approved (-), belongs

to Elliotte Rusty Harold, describes greetings and salutations, and is written in

English. A full document type declaration pointing to this DTD with this name is:

<!DOCTYPE SEASON PUBLIC
“-//Elliotte Rusty Harold//DTD Greetings and salutations//EN”
“http://www.ibiblio.org/xml/dtds/greeting.dtd”>

You may have noticed that many HTML editors such as BBEdit automatically place

the following string at the beginning of every HTML file they create:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML//EN”>

Now you know what this string means! It says the document follows a nonstandards-

body-approved (-) DTD for HTML produced by the World Wide Web Consortium

(W3C) in the English language.

Technically, the W3C is not a standards organization because it’s membership is
limited to corporations that pay its fees rather than to official government-
approved bodies. It only publishes recommendations instead of standards. In
practice, the distinction is irrelevant.

DTDs and style sheets
A valid document with a DTD can be combined with a style sheet just as a well-

formed document can be. Simply add the usual <?xml-stylesheet?> processing

instruction to the prolog as shown in Listing 8-6.

Listing 8-6: Hello XML with a DTD and style sheet

<?xml version=”1.0”?>
<?xml-stylesheet type=”text/css” href=”greeting.css”?>
<!DOCTYPE GREETING [
<!ELEMENT GREETING (#PCDATA)>

]>
<GREETING>
Hello XML!
</GREETING>

Note

220 Part II ✦ Document Type Definitions

Figure 8-2 shows the resulting Web page. In fact, this gives you exactly the same

result as did the same document in Chapter 3 without the DTD. Formatting gener-

ally does not consider the DTD.

Figure 8-2: Hello XML with a DTD and style sheet
displayed in Internet Explorer 5.5

After you add a style sheet, the three essential parts of the document are stored

in three different files. The data is in the document file, the structure and semantics

applied to the data is in the DTD file, and the formatting is in the style sheet.

This structure enables you to inspect or change any or all of these relatively

independently.

The DTD and the document are more closely linked than the document and the

style sheet. Changing the DTD generally requires revalidating the document and

may require edits to the document to bring it back into conformance with the DTD.

The necessity of this sequence depends on your edits; adding elements is rarely an

issue, although removing elements may be problematic.

Validating Against a DTD
To be considered valid, an XML document must satisfy four criteria:

1. It must be well formed.

2. It must have a document type declaration.

3. Its root element must be the one specified by the document type declaration.

4. It must satisfy all the constraints indicated by the DTD specified by the docu-

ment type declaration.

Not all XML documents have to be valid, and not all parsers check documents for
validity. Often, it’s enough to merely be well formed. In fact, most Web browsers,
including Internet Explorer, Opera, Netscape, and Mozilla, do not check docu-
ments for validity.

Note

221Chapter 8 ✦ DTDs and Validity

Suppose we make a simple change to the hello.xml example by replacing the

<GREETING> and </GREETING> tags with <FOO> and </FOO>, as shown in Listing

8-7. Listing 8-7 is invalid. It is a well-formed XML document, but it does not meet the

constraints specified by the document type declaration and the DTD it contains.

Listing 8-7: This document is invalid because it does not
satisfy the DTD’s rules

<?xml version=”1.0”?>
<!DOCTYPE GREETING SYSTEM “greeting.dtd”>
<FOO>
Hello XML!
</FOO>

This document has two problems:

1. The root element is not GREETING as required by the document type

declaration.

2. The FOO element has not been declared.

Command-line validators
In more complex documents, it’s not so easy to just look at a document and its DTD

and tell whether or not it’s valid. Instead, you’ll want to use a software tool that

understands all the rules of XML to make the checks for you. A validating parser is

such a tool. The parser’s job is to divide the document into a tree structure and

pass the nodes of the tree to the program that will display the data. This might be a

Web browser such as Netscape or Internet Explorer. It might be a database. It might

even be a custom program that you’ve written yourself. As the parser reads a docu-

ment, it checks whether the document adheres to the rules specified by the docu-

ment’s DTD. If it does, the parser passes the data along to the application (such as a

Web browser or a database). If the parser finds a mistake, then it reports the error.

If you’re writing XML by hand, you’ll want to validate your documents before post-

ing them so that you can be confident that readers won’t encounter errors.

There are about a dozen different validating parsers available on the Web. Most of

them are free. Most are libraries intended for programmers to incorporate into their

own, more finished products, and they have minimal (if any) user interfaces. The

one I chose for this book is the Apache XML Project’s Xerces-J because it’s free soft-

ware and written in Java, so it runs on most major platforms. Versions of Xerces are

also available in C and Perl.

222 Part II ✦ Document Type Definitions

Xerces-J 1.2.3 is included on the CD-ROM in the parsers directory. You can also
download the latest version from http://xml.apache.org/xerces-j/.

Some of these class libraries also include stand-alone parsers that run from the

command line. These are programs that read an XML document and report any

errors found but do not display it. For example, Xerces includes sax.SAXCount for

this purpose. To run this program, you first have to add the Xerces jar files to your

Java class path or jre/lib/ext directory. You can then validate a file by opening a

DOS Window or a shell prompt and passing the local name or remote URL of the file

you want to validate to the sax.SAXCount program, like this:

C:\>java sax.SAXCount -v 8-7.xml

You can use a URL instead of a filename, as shown below:

C:\>java sax.SAXCount -v http://www.ibiblio.org/xml/8-7.xml

In either case, sax.SAXCount responds with a list of the errors it found. For

example:

C:\books\bible2\examples\08>java sax.SAXCount -v 8-7.xml
[Error] 8-7.xml:3:6: Document root element “FOO”, must match
DOCTYPE root “GREETING”.
[Error] 8-7.xml:3:6: Element type “FOO” must be declared.
8-6.xml: 350 ms (1 elems, 0 attrs, 0 spaces, 12 chars)

You use sax.SAXCount or a similar tool first to find your mistakes so that you can

fix them, and then to verify that you’ve written valid XML that other programs can

handle. In essence, this is a proofreading or quality assurance phase, not finished

output.

Because Xerces is written in Java, it shares all the disadvantages of cross-platform
Java programs. First, before you can run the parser you must have the Java
Development Kit (JDK) or Java Runtime Environment (JRE) installed. Second, you
need to add the Xerces jar files to your class path or your jre/lib/ext directory in
Java 1.2 and later. Neither of these tasks is as simple as it should be. None of these
tools were designed with an eye toward nonprogrammer end-users; they tend to
be poorly designed and frustrating to use.

Web-based validators
Web-based validators are an alternative for documents that aren’t particularly pri-

vate and that can easily be placed on a public Web server. These validators only

require you to enter the URL of your document in an HTML form. They have the dis-

tinct advantage of not requiring you to muck around with Java runtime software,

class paths, and environment variables.

Caution

On the
CD-ROM

223Chapter 8 ✦ DTDs and Validity

Richard Tobin’s Web-hosted XML well-formedness checker and validator based on

the RXP parser is shown in Figure 8-3. You’ll find it at http://www.cogsci.ed.
ac.uk/%7Erichard/xml-check.html. Figure 8-4 shows the errors displayed as a

result of using this program to validate Listing 8-7.

Figure 8-3: Richard Tobin’s RXP-based, Web-hosted XML
well-formedness checker and validator

Brown University’s Scholarly Technology Group provides a validator at http://www.
stg.brown.edu/service/xmlvalid/ that’s notable for allowing you to upload

files from your computer instead of placing them on a public Web server. This val-

idator is shown in Figure 8-5. Figure 8-6 shows the results of using this program to

validate Listing 8-7.

224 Part II ✦ Document Type Definitions

Figure 8-4: The errors in Listing 8-7, as reported by Richard
Tobin’s XML validator

Figure 8-5: Brown University’s Scholarly Technology Group’s
Web-hosted XML validator

225Chapter 8 ✦ DTDs and Validity

Figure 8-6: The errors in Listing 8-6, as reported by Brown University’s Scholarly
Technology Group’s XML validator

Summary
In this chapter, you learned how to write a simple DTD and how to validate a docu-

ment against that DTD. In particular you learned that:

✦ A document type definition (DTD) provides a list of the elements, attributes,

entities, and notations that may be used in the document, and their relation-

ships to one another.

✦ DTDs lay out the permissible tags and the structure of a document.

✦ DTDs help document and enforce markup standards.

✦ A document’s prolog may contain a document type declaration that specifies

the root element and either contains or refers to the DTD.

✦ External DTDs can be located using the SYSTEM keyword and a URL in the doc-

ument type declaration.

✦ Standard DTDs can be identified using the PUBLIC keyword in the document

type declaration.

✦ An internal DTD subset (which may be the complete DTD) can appear in the

document type declaration surrounded by square brackets.

226 Part II ✦ Document Type Definitions

✦ A document that adheres to the rules of its DTD is said to be valid.

✦ Element declarations declare the name and children of an element.

In the next chapter, you delve deeper into element declarations, exploring how to

use different kinds of content models to describe complicated structures applicable

to many XML documents.

✦ ✦ ✦

Element
Declarations

Elements form the primary structure of an XML docu-

ment. In valid documents, these element structures are

constrained by element declarations. An element declaration

specifies what children in which orders and quantities an ele-

ment of a certain type can have. In this chapter, you learn how

to write DTDs that describe complex element structures.

Each element used in a valid XML document must be declared

by an element declaration in the document’s DTD. An element

declaration specifies the name and possible contents of an

element. The list of contents is called the content model. The

content model uses a simple grammar to precisely specify

what is and isn’t allowed in an element of that type. This

sounds complicated, but all it really means is that you attach

punctuation marks such as *, ?, +, |, (, and) to element

names to indicate where and how many times an element may

appear.

Analyzing the Document
The first step to creating a DTD appropriate for a particular

document is to understand the structure of the information

that you’ll encode. Sometimes information is quite structured,

as in a contact list. At other times, it is relatively free-form, as

in an illustrated short story or a magazine article.

It’s often easier to begin if you have a concrete, well-formed

example document in mind that uses all the elements you

want in your DTD. This chapter uses a relatively structured

document you’re already familiar with as an example, the

baseball statistics document first discussed in Chapter 4.

Listing 9-1 is a trimmed-down version of Listing 4-1. Although

it only has two players, it demonstrates all the essential

features.

99C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Analyzing the
document

The ANY content
model

The #PCDATA content
model

Child elements

Sequences

One or more children

Zero or more children

Zero or one child

Grouping with
parentheses

Choices

Mixed content

Empty elements

Comments in DTDs

✦ ✦ ✦ ✦

228 Part II ✦ Document Type Definitions

Listing 9-1: A well-formed XML document for which
a DTD will be written

<?xml version=”1.0”?>
<SEASON>
<YEAR>1998</YEAR>
<LEAGUE>
<LEAGUE_NAME>National</LEAGUE_NAME>
<DIVISION>

<DIVISION_NAME>East</DIVISION_NAME>
<TEAM>
<TEAM_CITY>Florida</TEAM_CITY>
<TEAM_NAME>Marlins</TEAM_NAME>
<PLAYER>
<GIVEN_NAME>Eric</GIVEN_NAME>
<SURNAME>Ludwick</SURNAME>
<POSITION>Starting Pitcher</POSITION>
<GAMES>13</GAMES>
<GAMES_STARTED>6</GAMES_STARTED>
<WINS>1</WINS>
<LOSSES>4</LOSSES>
<SAVES>0</SAVES>
<COMPLETE_GAMES>0</COMPLETE_GAMES>
<SHUT_OUTS>0</SHUT_OUTS>
<ERA>7.44</ERA>
<INNINGS>32.2</INNINGS>
<HITS_AGAINST>46</HITS_AGAINST>
<HOME_RUNS_AGAINST>7</HOME_RUNS_AGAINST>
<RUNS_AGAINST>31</RUNS_AGAINST>
<EARNED_RUNS>27</EARNED_RUNS>
<HIT_BATTER>0</HIT_BATTER>
<WILD_PITCHES>2</WILD_PITCHES>
<BALK>0</BALK>
<WALKED_BATTER>17</WALKED_BATTER>
<STRUCK_OUT_BATTER>27</STRUCK_OUT_BATTER>

</PLAYER>
<PLAYER>
<GIVEN_NAME>Brian</GIVEN_NAME>
<SURNAME>Daubach</SURNAME>
<POSITION>First Base</POSITION>
<GAMES>10</GAMES>
<GAMES_STARTED>3</GAMES_STARTED>
<AT_BATS>15</AT_BATS>
<RUNS>0</RUNS>
<HITS>3</HITS>
<DOUBLES>1</DOUBLES>
<TRIPLES>0</TRIPLES>
<HOME_RUNS>0</HOME_RUNS>
<RBI>3</RBI>
<STEALS>0</STEALS>
<CAUGHT_STEALING>0</CAUGHT_STEALING>

229Chapter 9 ✦ Element Declarations

<SACRIFICE_HITS>0</SACRIFICE_HITS>
<SACRIFICE_FLIES>0</SACRIFICE_FLIES>
<ERRORS>0</ERRORS>
<WALKS>1</WALKS>
<STRUCK_OUT>5</STRUCK_OUT>
<HIT_BY_PITCH>1</HIT_BY_PITCH>

</PLAYER>
</TEAM>
<TEAM>
<TEAM_CITY>Montreal</TEAM_CITY>
<TEAM_NAME>Expos</TEAM_NAME>

</TEAM>
<TEAM>
<TEAM_CITY>New York</TEAM_CITY>
<TEAM_NAME>Mets</TEAM_NAME>

</TEAM>
<TEAM>
<TEAM_CITY>Philadelphia</TEAM_CITY>

<TEAM_NAME>Phillies</TEAM_NAME>
</TEAM>

</DIVISION>
<DIVISION>

<DIVISION_NAME>Central</DIVISION_NAME>
<TEAM>
<TEAM_CITY>Chicago</TEAM_CITY>
<TEAM_NAME>Cubs</TEAM_NAME>

</TEAM>
</DIVISION>
<DIVISION>

<DIVISION_NAME>West</DIVISION_NAME>
<TEAM>
<TEAM_CITY>Arizona</TEAM_CITY>
<TEAM_NAME>Diamondbacks</TEAM_NAME>

</TEAM>
</DIVISION>

</LEAGUE>
<LEAGUE>
<LEAGUE_NAME>American</LEAGUE_NAME>
<DIVISION>

<DIVISION_NAME>East</DIVISION_NAME>
<TEAM>
<TEAM_CITY>Baltimore</TEAM_CITY>
<TEAM_NAME>Orioles</TEAM_NAME>

</TEAM>
</DIVISION>
<DIVISION>

<DIVISION_NAME>Central</DIVISION_NAME>
<TEAM>
<TEAM_CITY>Chicago</TEAM_CITY>
<TEAM_NAME>White Sox</TEAM_NAME>

</TEAM>

Continued

230 Part II ✦ Document Type Definitions

Listing 9-1 (continued)

</DIVISION>
<DIVISION>

<DIVISION_NAME>West</DIVISION_NAME>
<TEAM>
<TEAM_CITY>Anaheim</TEAM_CITY>
<TEAM_NAME>Angels</TEAM_NAME>

</TEAM>
</DIVISION>

</LEAGUE>
</SEASON>

Adding a DTD to this document enables you to enforce constraints that were previ-

ously adhered to only by convention. For instance, you can require that a SEASON
contain exactly two LEAGUE children, that every TEAM have a TEAM_CITY and a

TEAM_NAME, and that the TEAM_CITY always precede the TEAM_NAME.

The DTD for this document should have one element declaration for each type of

element that appears in the document. Each element declaration gives the name of

the element and the children the element may have. For instance, this DTD will

require that a LEAGUE element have exactly three DIVISION children. It will also

require that the SURNAME element always be inside a PLAYER element, never out-

side. It will insist that a DIVISION have an indefinite number of TEAM elements but

never less than one.

The DTD can require that a PLAYER has exactly one each of the GIVEN_NAME,

SURNAME, and GAMES elements, but make it optional whether a PLAYER has an RBI
or an ERA. Furthermore, it can require that the GIVEN_NAME, SURNAME, POSITION,

and GAMES elements be used in a particular order. A DTD can also require that

elements occur in a particular context. For instance, the GIVEN_NAME, SURNAME,

POSITION, and GAMES may be used only inside a PLAYER element.

Table 9-1 lists the different elements in this particular XML application, as well as

the conditions they must adhere to. Each element has a list of the elements it must

contain and the elements it may contain. In some cases, an element may contain

more than one child element of the same type. A SEASON contains one YEAR and

two LEAGUE elements. A DIVISION generally contains more than one TEAM. Less

obviously, some batters alternate between designated hitter and the outfield from

game to game. Thus, a single PLAYER element might have more than one POSITION.

In the table, a requirement for a particular number of children is indicated by pre-

fixing the element with a number (for example, 2 LEAGUE), and the possibility of

multiple children is indicated by adding (s) to the end of the element’s name, such

as PLAYER(s).

231Chapter 9 ✦ Element Declarations

Listing 9-1 adheres to these conditions. It could be shorter if the two PLAYER ele-

ments and some TEAM elements were omitted. It could be longer if many other

PLAYER elements were included. However, all the other elements are required to be

in the positions in which they appear.

Table 9-1
The Elements in the Baseball Statistics

Element Required Children Optional Children

SEASON YEAR, 2 LEAGUE

YEAR Text

LEAGUE LEAGUE_NAME, 3 DIVISION

LEAGUE_NAME Text

DIVISION DIVISION_NAME, TEAM TEAM(s)

DIVISION_NAME Text

TEAM TEAM_CITY, TEAM_NAME PLAYER(s)

TEAM_CITY Text

TEAM_NAME Text

PLAYER SURNAME, GIVEN_NAME, GAMES_STARTED, AT_BATS,
POSITION(s), GAMES RUNS, HITS, DOUBLES, TRIPLES,

HOME_RUNS, RBI, STEALS,
CAUGHT_STEALING,
SACRIFICE_HITS,
SACRIFICE_FLIES, ERRORS,
WALKS, STRUCK_OUT,
HIT_BY_PITCH,
COMPLETE_GAMES, SHUT_OUTS,
ERA, INNINGS, HITS_AGAINST,
HOME_RUNS_AGAINST,
RUNS_AGAINST, EARNED_RUNS,
HIT_BATTER, WILD_PITCHES,
BALK, WALKED_BATTER,
STRUCK_OUT_BATTER

SURNAME Text

GIVEN_NAME Text

POSITION Text

GAMES Text

GAMES_STARTED Text

Continued

232 Part II ✦ Document Type Definitions

Table 9-1 (continued)

Element Required Children Optional Children

AT_BATS Text

RUNS Text

HITS Text

DOUBLES Text

TRIPLES Text

HOME_RUNS Text

RBI Text

STEALS Text

CAUGHT_STEALING Text

SACRIFICE_HITS Text

SACRIFICE_FLIES Text

ERRORS Text

WALKS Text

STRUCK_OUT Text

HIT_BY_PITCH Text

COMPLETE_GAMES Text

SHUT_OUTS Text

ERA Text

INNINGS Text

HITS_AGAINST Text

HOME_RUNS_AGAINST Text

RUNS_AGAINST Text

EARNED_RUNS Text

HIT_BATTER Text

WILD_PITCHES Text

BALK Text

WALKED_BATTER Text

STRUCK_OUT_BATTER Text

Elements have two basic types in XML. Simple elements contain text, also known as
parsed character data, #PCDATA or PCDATA in this context. Compound elements

Note

233Chapter 9 ✦ Element Declarations

contain other elements or, less commonly, text and other elements. There are no
integer, floating point, date, or other data types in standard XML. Thus, you can’t
use a DTD to say that the number of walks must be a nonnegative integer, or that
the ERA must be a floating point number between 0.0 and 1.0, even though doing
so would be useful in documents like this one.

The W3C is in the process of defining an XML Schema language that uses XML
documents to describe information that might traditionally be encoded in a DTD,
as well as data type information. As of early 2001, these are not yet finished or
supported by most existing software. Schemas will be explored in Chapter 24.

Now that you’ve identified the information that you’re storing, and the optional and

required relationships between these elements, you’re ready to build a DTD for the

document that concisely — if a bit opaquely — summarizes those relationships.

DTDs are conservative. Everything not explicitly permitted is forbidden. If an ele-

ment has not been declared, it can’t be used (at least not in a valid document), and

this does sometimes make the development of DTDs rather tedious. However, DTD

syntax does enable you to compactly specify relationships that are cumbersome to

specify in sentences. For instance, DTDs make it easy to say that GIVEN_NAME must

precede SURNAME, which must precede POSITION, which must precede GAMES,

which must precede GAMES_STARTED, which must precede AT_BATS, which must

precede RUNS, which must precede HITS, and that all of these elements may

appear only inside a PLAYER element.

The ANY Content Model
It’s easiest to build DTDs hierarchically, working from the outside in. This enables

you to build a sample document at the same time that you build the DTD so that

you can verify that the DTD is itself correct and actually describes the format you

want. Thus, the root element is probably the first element you’ll want to deal with.

In the baseball example, SEASON is the root element. The document type declara-

tion in the XML document specifies the name of this element:

<!DOCTYPE SEASON SYSTEM “baseball.dtd”>

However, this merely says that the root element is SEASON. It does not say anything

about what a SEASON element may or may not contain, which is why you must next

declare the SEASON element in an element declaration inside the DTD. That’s done

with this line of code:

<!ELEMENT SEASON ANY>

All element declarations begin with <!ELEMENT (case sensitive) and end with >.

They include the name of the element being declared (SEASON in this example), fol-

lowed by the content model. In this declaration the content model is the keyword

ANY (again case-sensitive). This says that all possible elements as well as parsed

character data can be children of the SEASON element.

234 Part II ✦ Document Type Definitions

Using ANY is common for root elements — especially of unstructured documents —

but should be avoided in most other cases. Generally, it’s better to be as precise as

possible about the contents of each element. DTDs are usually refined throughout

their development, and tend to become less strict over time as they reflect uses

and contexts unimagined in the first pass at the problem. Therefore, it’s best to

start out strict and loosen things up later.

The #PCDATA Content Model
Although any element may appear inside the document, elements that do appear

must also be declared. The first one needed is YEAR. This is the element declaration

for the YEAR element:

<!ELEMENT YEAR (#PCDATA)>

This declaration says that a YEAR may contain only parsed character data, that is,

text that’s not markup. It may not contain children of its own. Therefore, this YEAR
element is valid:

<YEAR>1998</YEAR>

These YEAR elements are also valid:

<YEAR>98</YEAR>
<YEAR>1998 C.E.</YEAR>
<YEAR>
The year of our Lord one thousand,
nine hundred, & ninety-eight
</YEAR>

Even this YEAR element is valid because XML does not attempt to validate the con-

tents of PCDATA, only that it is text that doesn’t contain markup.

<YEAR>Delicious, delicious, oh how boring</YEAR>

However, this YEAR element is invalid because it contains child elements:

<YEAR>
<MONTH>January</MONTH>
<MONTH>February</MONTH>
<MONTH>March</MONTH>
<MONTH>April</MONTH>
<MONTH>May</MONTH>
<MONTH>June</MONTH>
<MONTH>July</MONTH>
<MONTH>August</MONTH>

235Chapter 9 ✦ Element Declarations

<MONTH>September</MONTH>
<MONTH>October</MONTH>
<MONTH>November</MONTH>
<MONTH>December</MONTH>

</YEAR>

There are now two declarations. Listing 9-2 puts them together into one DTD.

Listing 9-2: A DTD that declares SEASON and YEAR elements

<!ELEMENT SEASON ANY>
<!ELEMENT YEAR (#PCDATA)>

As usual, spacing and indentation are not significant. The order in which the ele-

ment declarations appear isn’t relevant either. Listing 9-3 is a DTD that means

exactly the same thing as Listing 9-2.

Listing 9-3: A DTD that declares SEASON and YEAR elements
in a different order

<!ELEMENT YEAR (#PCDATA)>
<!ELEMENT SEASON ANY>

Both DTDs say that a SEASON element may contain parsed character data and any

number of any other declared elements in any order. The only other such declared

element is YEAR, which may contain only parsed character data. Listing 9-4 shows

one document that’s valid according to this DTD:

Listing 9-4: A valid document

<?xml version=”1.0”?>
<!DOCTYPE SEASON SYSTEM “9-3.dtd”>
<SEASON>
<YEAR>1998</YEAR>

</SEASON>

236 Part II ✦ Document Type Definitions

Because the SEASON element may also contain parsed character data, you can add

additional text outside of the YEAR. Listing 9-5 demonstrates this.

Listing 9-5: A valid document that contains a YEAR
and normal text

<?xml version=”1.0”?>
<!DOCTYPE SEASON SYSTEM “9-3.dtd”>
<SEASON>
<YEAR>1998</YEAR>
Major League Baseball

</SEASON>

Eventually the DTD will be modified to disallow documents such as this. However,

for now it’s legal because SEASON is declared to accept ANY content, which includes

parsed character data. On the other hand, Listing 9-6 is invalid because the SEASON
element contains an undeclared SPORT element. The problem is not that SEASON is

not allowed to contain SPORT elements, but rather that the SPORT element has not

been declared. The ANY content model really means any declared element, not any

element at all.

Listing 9-6: An invalid document that contains
a SPORT element

<?xml version=”1.0”?>
<!DOCTYPE SEASON SYSTEM “9-3.dtd”>
<SEASON>
<YEAR>1998</YEAR>
<SPORT>Major League Baseball</SPORT>

</SEASON>

You can attach a simple style sheet, such as the baseballstats.css style sheet devel-

oped in Chapter 4, to Listing 9-5 — as shown in Listing 9-7 — and load it into a Web

browser, as shown in Figure 9-1. The baseballstats.css style sheet contains style

rules for elements that aren’t present in the DTD or the document part of Listing

9-7, but this is not a problem. Web browsers simply ignore any style rules for ele-

ments that aren’t present in the document.

237Chapter 9 ✦ Element Declarations

Listing 9-7: A valid document that contains a style sheet,
a YEAR, and normal text

<?xml version=”1.0”?>
<?xml-stylesheet type=”text/css” href=”baseballstats.css”?>
<!DOCTYPE SEASON SYSTEM “9-3.dtd”>
<SEASON>
<YEAR>1998</YEAR>
Major League Baseball

</SEASON>

Figure 9-1: A valid document that contains a style sheet,
a YEAR element, and normal text displayed in Opera 4.01.

Child Elements
Because the SEASON element was declared to accept any element as a child, ele-

ments could be tossed in willy-nilly. This is useful when you have text that’s more

or less unstructured, such as a magazine article in which paragraphs, sidebars, bul-

leted lists, numbered lists, graphs, photographs, and subheads may appear pretty

much anywhere in the document. However, sometimes you may want to exercise

more discipline and control over the placement of your data. For example, you

could require that every LEAGUE have one LEAGUE_NAME, that every PLAYER have a

GIVEN_NAME and a SURNAME, and that the GIVEN_NAME come before the SURNAME.

238 Part II ✦ Document Type Definitions

To declare that a LEAGUE must have a name, simply declare a LEAGUE_NAME ele-

ment, and then include LEAGUE_NAME in parentheses at the end of the LEAGUE dec-

laration, like this:

<!ELEMENT LEAGUE (LEAGUE_NAME)>
<!ELEMENT LEAGUE_NAME (#PCDATA)>

Each element should be declared in its own <!ELEMENT> declaration exactly once,

even if it appears as a child in other <!ELEMENT> declarations. Here I’ve placed the

declaration LEAGUE_NAME after the declaration of LEAGUE that refers to it, but that

doesn’t matter. XML allows forward references. It even allows circular references;

that is, two elements A and B, either of which can be the child of the other. The

order in which element declarations appear is irrelevant as long as all elements

used in any content model are declared somewhere in the DTD.

You can add these two declarations to the DTD and then include LEAGUE and

LEAGUE_NAME elements in the SEASON. Listing 9-8 shows the revised DTD. Listing 9-9

shows the revised document. Figure 9-2 shows the rendered document.

Listing 9-8: A DTD that declares LEAGUE and
LEAGUE_NAME elements

<!ELEMENT YEAR (#PCDATA)>
<!ELEMENT SEASON ANY>
<!ELEMENT LEAGUE (LEAGUE_NAME)>
<!ELEMENT LEAGUE_NAME (#PCDATA)>

Listing 9-9: A SEASON with two LEAGUE children

<?xml version=”1.0”?>
<?xml-stylesheet type=”text/css” href=”baseballstats.css”?>
<!DOCTYPE SEASON SYSTEM “9-8.dtd”>
<SEASON>
<YEAR>1998</YEAR>
<LEAGUE>
<LEAGUE_NAME>American League</LEAGUE_NAME>

</LEAGUE>
<LEAGUE>
<LEAGUE_NAME>National League</LEAGUE_NAME>

</LEAGUE>
</SEASON>

239Chapter 9 ✦ Element Declarations

Figure 9-2: A valid document that contains a style sheet,
a YEAR element, and two LEAGUE children.

Sequences
Let’s restrict the SEASON element as well. A SEASON contains exactly one YEAR, fol-

lowed by exactly two LEAGUE elements. Instead of saying that a SEASON can contain

ANY elements, specify these three children by including them in SEASON’s element

declaration, enclosed in parentheses and separated by commas, as follows:

<!ELEMENT SEASON (YEAR, LEAGUE, LEAGUE)>

A list of child elements separated by commas is called a sequence. With this decla-

ration, every valid SEASON element must contain exactly one YEAR element, fol-

lowed by exactly two LEAGUE elements, and nothing else. The complete DTD now

looks like Listing 9-10:

Listing 9-10: A DTD that uses a SEQUENCE

<!ELEMENT YEAR (#PCDATA)>
<!ELEMENT LEAGUE (LEAGUE_NAME)>
<!ELEMENT LEAGUE_NAME (#PCDATA)>
<!ELEMENT SEASON (YEAR, LEAGUE, LEAGUE)>

The document part of Listing 9-9 does adhere to this DTD because its SEASON ele-

ment contains one YEAR child followed by two LEAGUE children, and nothing else.

However, if the document included only one LEAGUE, then the document, although

well-formed, would be invalid. Similarly, if the LEAGUE came before the YEAR

240 Part II ✦ Document Type Definitions

element instead of after it, or if the LEAGUE element had YEAR children, or if the doc-

ument in any other way did not adhere to the DTD, then the document would be

invalid and validating parsers would reject it.

It’s straightforward to expand these techniques to cover divisions. As well as a

LEAGUE_NAME, each LEAGUE has three DIVISION children. For example:

<!ELEMENT LEAGUE (LEAGUE_NAME, DIVISION, DIVISION, DIVISION)>

One or More Children
Each DIVISION has a DIVISION_NAME and between four and six TEAM children.

Specifying the DIVISION_NAME is easy. This is demonstrated below:

<!ELEMENT DIVISION (DIVISION_NAME)>
<!ELEMENT DIVISION_NAME (#PCDATA)>

However, the TEAM children are trickier. It’s easy to say you want four TEAM children

in a DIVISION, as shown below:

<!ELEMENT DIVISION (DIVISION_NAME, TEAM, TEAM, TEAM, TEAM)>

Five and six are not harder. But how do you say you want between four and six

inclusive? In fact, XML doesn’t provide an easy way to do this. But you can say that

you want one or more of a given element by placing a plus sign (+) after the element

name in the child list. For example:

<!ELEMENT DIVISION (DIVISION_NAME, TEAM+)>

This says that a DIVISION element must contain a DIVISION_NAME element fol-

lowed by one or more TEAM elements.

When finished, XML schemas will allow you to say that an element contains
between four and six child elements. However there’s no reasonable way to say
this using only DTDs. There is a hard way to say that a DIVISION contains
between four and six TEAM elements using only DTDs, but not three and not
seven. After you finish reading this chapter, see if you can figure out how to do it.

Zero or More Children
Each TEAM should contain one TEAM_CITY, one TEAM_NAME, and an indefinite num-

ber of PLAYER elements. In reality, you need at least nine players for a baseball

team. However, in the examples in this book, many teams are listed without players

Tip

241Chapter 9 ✦ Element Declarations

for reasons of space. Thus, we want to specify that a TEAM can contain zero or more

PLAYER children. You do this by appending an asterisk (*) to the element name in

the content model. For example:

<!ELEMENT TEAM (TEAM_CITY, TEAM_NAME, PLAYER*)>
<!ELEMENT TEAM_CITY (#PCDATA)>
<!ELEMENT TEAM_NAME (#PCDATA)>

Zero or One Child
The final elements in the document to be declared are the children of the PLAYER.

All of these are simple elements that contain only text. Here are their declarations:

<!ELEMENT SURNAME (#PCDATA)>
<!ELEMENT GIVEN_NAME (#PCDATA)>
<!ELEMENT POSITION (#PCDATA)>
<!ELEMENT GAMES (#PCDATA)>
<!ELEMENT GAMES_STARTED (#PCDATA)>
<!ELEMENT AT_BATS (#PCDATA)>
<!ELEMENT RUNS (#PCDATA)>
<!ELEMENT HITS (#PCDATA)>
<!ELEMENT DOUBLES (#PCDATA)>
<!ELEMENT TRIPLES (#PCDATA)>
<!ELEMENT HOME_RUNS (#PCDATA)>
<!ELEMENT RBI (#PCDATA)>
<!ELEMENT STEALS (#PCDATA)>
<!ELEMENT CAUGHT_STEALING (#PCDATA)>
<!ELEMENT SACRIFICE_HITS (#PCDATA)>
<!ELEMENT SACRIFICE_FLIES (#PCDATA)>
<!ELEMENT ERRORS (#PCDATA)>
<!ELEMENT WALKS (#PCDATA)>
<!ELEMENT STRUCK_OUT (#PCDATA)>
<!ELEMENT HIT_BY_PITCH (#PCDATA)>
<!ELEMENT ERA (#PCDATA)>
<!ELEMENT INNINGS (#PCDATA)>
<!ELEMENT HITS_AGAINST (#PCDATA)>
<!ELEMENT HOME_RUNS_AGAINST (#PCDATA)>
<!ELEMENT RUNS_AGAINST (#PCDATA)>
<!ELEMENT EARNED_RUNS (#PCDATA)>
<!ELEMENT HIT_BATTER (#PCDATA)>
<!ELEMENT WILD_PITCHES (#PCDATA)>
<!ELEMENT BALK (#PCDATA)>
<!ELEMENT WALKED_BATTER (#PCDATA)>
<!ELEMENT STRUCK_OUT_BATTER (#PCDATA)>
<!ELEMENT WINS (#PCDATA)>
<!ELEMENT LOSSES (#PCDATA)>
<!ELEMENT SAVES (#PCDATA)>
<!ELEMENT COMPLETE_GAMES (#PCDATA)>
<!ELEMENT SHUT_OUTS (#PCDATA)>

242 Part II ✦ Document Type Definitions

Now we can write the declaration for the PLAYER element. All players have one

SURNAME, one GIVEN_NAME, one or more POSITIONs, one GAMES, and one

GAMES_STARTED element. We could declare that each PLAYER also has one AT_BATS,

RUNS, HITS, and so forth. However, I’m not sure it’s accurate to list zero runs for a

pitcher who hasn’t batted. For one thing, this will likely lead to division by zero

errors when you start calculating batting averages and such. If a particular element

doesn’t apply to a given player, or if it’s not available, then the more sensible thing

to do is to omit the particular statistic from the player’s information. Except for

POSITION, a given player doesn’t have more than one of each statistic. Thus, we

want zero or one element of the given type. You indicate this in a child element list

by appending a question mark (?) to the element, as shown below:

<!ELEMENT PLAYER (
GIVEN_NAME, SURNAME, POSITION+, GAMES, GAMES_STARTED,

AT_BATS?, RUNS?, HITS?, DOUBLES?, TRIPLES?, HOME_RUNS?,
RBI?, STEALS?, CAUGHT_STEALING?, SACRIFICE_HITS?,
SACRIFICE_FLIES?, ERRORS?, WALKS?, STRUCK_OUT?,
HIT_BY_PITCH?,

WINS?, LOSSES?, SAVES?, COMPLETE_GAMES?, SHUT_OUTS?, ERA?,
INNINGS?, HITS_AGAINST?, HOME_RUNS_AGAINST?, RUNS_AGAINST?,
EARNED_RUNS?, HIT_BATTER?, WILD_PITCHES?, BALK?,
WALKED_BATTER?, STRUCK_OUT_BATTER?
)

>

This declaration says that every PLAYER has a GIVEN_NAME, SURNAME, one or more

POSITIONs, GAMES, and GAMES_STARTED elements in that order. Furthermore, each

player might or might not have a single AT_BATS, RUNS, HITS, DOUBLES, TRIPLES,

HOME_RUNS, RBI, STEALS, CAUGHT_STEALING, SACRIFICE_HITS, SACRIFICE_FLIES,

ERRORS, WALKS, STRUCK_OUT, HIT_BY_PITCH, WINS, LOSSES, SAVES, COMPLETE_GAMES,

SHUT_OUTS, ERA, INNINGS, HITS_AGAINST, HOME_RUNS_AGAINST, RUNS_AGAINST,

EARNED_RUNS, HIT_BATTER, WILD_PITCHES, BALK, WALKED_BATTER, and

STRUCK_OUT_BATTER element. Any of those elements that do appear must occur in

the order given here. You now have a complete DTD for baseball statistics. Review it in

its entirety in Listing 9-11.

Listing 9-11: The complete baseball statistics DTD

<!ELEMENT SEASON (YEAR, LEAGUE, LEAGUE)>
<!ELEMENT YEAR (#PCDATA)>

<!ELEMENT LEAGUE (LEAGUE_NAME, DIVISION, DIVISION, DIVISION)>
<!ELEMENT LEAGUE_NAME (#PCDATA)>

<!ELEMENT DIVISION_NAME (#PCDATA)>
<!ELEMENT DIVISION (DIVISION_NAME, TEAM+)>

<!ELEMENT TEAM (TEAM_CITY, TEAM_NAME, PLAYER*)>
<!ELEMENT TEAM_CITY (#PCDATA)>

243Chapter 9 ✦ Element Declarations

<!ELEMENT TEAM_NAME (#PCDATA)>

<!ELEMENT PLAYER (
GIVEN_NAME, SURNAME, POSITION+, GAMES, GAMES_STARTED,

AT_BATS?, RUNS?, HITS?, DOUBLES?, TRIPLES?, HOME_RUNS?,
RBI?, STEALS?, CAUGHT_STEALING?, SACRIFICE_HITS?,
SACRIFICE_FLIES?, ERRORS?, WALKS?, STRUCK_OUT?,
HIT_BY_PITCH?,

WINS?, LOSSES?, SAVES?, COMPLETE_GAMES?, SHUT_OUTS?,
ERA?, INNINGS?, HITS_AGAINST?, HOME_RUNS_AGAINST?,
RUNS_AGAINST?, EARNED_RUNS?, HIT_BATTER?, WILD_PITCHES?,
BALK?, WALKED_BATTER?, STRUCK_OUT_BATTER?
)

>

<!ELEMENT SURNAME (#PCDATA)>
<!ELEMENT GIVEN_NAME (#PCDATA)>
<!ELEMENT POSITION (#PCDATA)>
<!ELEMENT GAMES (#PCDATA)>
<!ELEMENT GAMES_STARTED (#PCDATA)>
<!ELEMENT AT_BATS (#PCDATA)>
<!ELEMENT RUNS (#PCDATA)>
<!ELEMENT HITS (#PCDATA)>
<!ELEMENT DOUBLES (#PCDATA)>
<!ELEMENT TRIPLES (#PCDATA)>
<!ELEMENT HOME_RUNS (#PCDATA)>
<!ELEMENT RBI (#PCDATA)>
<!ELEMENT STEALS (#PCDATA)>
<!ELEMENT CAUGHT_STEALING (#PCDATA)>
<!ELEMENT SACRIFICE_HITS (#PCDATA)>
<!ELEMENT SACRIFICE_FLIES (#PCDATA)>
<!ELEMENT ERRORS (#PCDATA)>
<!ELEMENT WALKS (#PCDATA)>
<!ELEMENT STRUCK_OUT (#PCDATA)>
<!ELEMENT HIT_BY_PITCH (#PCDATA)>

<!ELEMENT ERA (#PCDATA)>
<!ELEMENT INNINGS (#PCDATA)>
<!ELEMENT HITS_AGAINST (#PCDATA)>
<!ELEMENT HOME_RUNS_AGAINST (#PCDATA)>
<!ELEMENT RUNS_AGAINST (#PCDATA)>
<!ELEMENT EARNED_RUNS (#PCDATA)>
<!ELEMENT HIT_BATTER (#PCDATA)>
<!ELEMENT WILD_PITCHES (#PCDATA)>
<!ELEMENT BALK (#PCDATA)>
<!ELEMENT WALKED_BATTER (#PCDATA)>
<!ELEMENT STRUCK_OUT_BATTER (#PCDATA)>
<!ELEMENT WINS (#PCDATA)>
<!ELEMENT LOSSES (#PCDATA)>
<!ELEMENT SAVES (#PCDATA)>
<!ELEMENT COMPLETE_GAMES (#PCDATA)>
<!ELEMENT SHUT_OUTS (#PCDATA)>

244 Part II ✦ Document Type Definitions

Grouping with Parentheses
Although the DTD in Listing 9-11 correctly describes PLAYER elements such as the

ones in Listing 9-1, it’s perhaps a little too loose. It also allows PLAYER elements you

don’t want to accept, such as a pitcher with a WINS element but no corresponding

LOSSES element. And although white space is used to more clearly separate the bat-

ting, pitching, and common statistics, the declaration still allows players with a mix

of batting and pitching statistics like this one:

<PLAYER>
<GIVEN_NAME>Eric</GIVEN_NAME>
<SURNAME>Daubach</SURNAME>
<POSITION>Starting Pitcher</POSITION>
<GAMES>13</GAMES>
<GAMES_STARTED>3</GAMES_STARTED>
<AT_BATS>15</AT_BATS>
<HITS>3</HITS>
<DOUBLES>1</DOUBLES>
<HOME_RUNS>0</HOME_RUNS>
<STEALS>0</STEALS>
<SACRIFICE_HITS>0</SACRIFICE_HITS>
<WALKS>1</WALKS>
<HIT_BY_PITCH>1</HIT_BY_PITCH>
<LOSSES>4</LOSSES>
<COMPLETE_GAMES>0</COMPLETE_GAMES>
<ERA>7.44</ERA>
<HOME_RUNS_AGAINST>7</HOME_RUNS_AGAINST>
<HIT_BATTER>0</HIT_BATTER>
<BALK>0</BALK>
<STRUCK_OUT_BATTER>27</STRUCK_OUT_BATTER>

</PLAYER>

Content models can be written in such a way as to prohibit these as well. Doing that

requires grouping elements with parentheses so that you can say that each PLAYER
has either a complete set of batting statistics or a complete set of pitching statistics.

Each set of parentheses combines several elements so that the combination is

treated as a single unit when validating. This parenthesized unit can then be nested

inside other parentheses in place of a single element. Furthermore, you could then

affix a plus sign, an asterisk, or a question mark to it. You can group these parenthe-

sized combinations into still larger parenthesized groups to produce quite complex

structures. This is a very powerful technique.

For example, consider a list composed of two elements that must alternate with

each other. This is essentially how HTML’s definition list works. Each <DT> tag

should match one <DD> tag. If you replicate this structure in XML, the declaration of

the DL element looks like this:

<!ELEMENT DL (DT, DD)*>

245Chapter 9 ✦ Element Declarations

The parentheses indicate that it’s the matched <DT><DD> pair being repeated, not

<DD> alone.

You can use parentheses in the baseball DTD to specify different sets of statistics

for pitchers and batters. If a player has one statistic for a group, then he must have

all the statistics for the group. The PLAYER declaration now looks like this:

<!ELEMENT PLAYER (
GIVEN_NAME, SURNAME, POSITION+, GAMES, GAMES_STARTED,

(AT_BATS, RUNS, HITS, DOUBLES, TRIPLES, HOME_RUNS,
RBI, STEALS, CAUGHT_STEALING, SACRIFICE_HITS,
SACRIFICE_FLIES, ERRORS, WALKS, STRUCK_OUT,
HIT_BY_PITCH)?,

(WINS, LOSSES, SAVES, COMPLETE_GAMES, SHUT_OUTS,
ERA, INNINGS, HITS_AGAINST, HOME_RUNS_AGAINST,
RUNS_AGAINST, EARNED_RUNS, HIT_BATTER, WILD_PITCHES,
BALK, WALKED_BATTER, STRUCK_OUT_BATTER)?
)

>

This says that each PLAYER element must contain a GIVEN_NAME element, a

SURNAME element, one or more POSITION elements, a GAMES element, and a

GAMES_STARTED element in that order. Then the PLAYER element may or may not

contain the group of AT_BATS, RUNS, HITS, DOUBLES, TRIPLES, HOME_RUNS, RBI,

STEALS, CAUGHT_STEALING, SACRIFICE_HITS, SACRIFICE_FLIES, ERRORS, WALKS,

STRUCK_OUT, and HIT_BY_PITCH elements. However, if it contains any of them, then

it must contain all of them. The question mark indicating that an element is

optional has been moved from the individual batting statistics onto the group of

batting statistics.

Finally, a PLAYER element may or may not contain the group of WINS, LOSSES,

SAVES, COMPLETE_GAMES, SHUT_OUTS, ERA, INNINGS, HITS_AGAINST,

HOME_RUNS_AGAINST, RUNS_AGAINST, EARNED_RUNS, HIT_BATTER, WILD_PITCHES,

BALK, WALKED_BATTER, and STRUCK_OUT_BATTER elements. Again, if it contains any

of them, then it must contain all of them.

This new PLAYER declaration still allows a PLAYER element to have both batting and

pitching statistics as long as it has a complete set of each. While it’s true that pitch-

ers do bat in the National League, this application ignores that. Furthermore, this

declaration also allows players to have neither pitching nor batting statistics,

which you definitely do not want to allow. What you really want to say is that each

player has either pitching or batting statistics, but not both. To do that you need to

use a choice.

246 Part II ✦ Document Type Definitions

Choices
In general, a single parent element has many children. To indicate that the children

must occur in sequence, they can be separated by commas. However, each such

child element may be suffixed with a question mark, a plus sign, or an asterisk to

adjust the number of times it appears in that place in the sequence.

So far, I’ve assumed that child elements appear or do not appear in a specific order.

You, however, may wish to make your DTD more flexible, for instance by allowing

document authors to choose between different elements in a given place. For exam-

ple, in a DTD describing a purchase by a customer, each PAYMENT element might

have either a CREDIT_CARD child or a CASH child providing information about the

method of payment. However, an individual PAYMENT would not have both.

You can indicate that the document author needs to input either one or another ele-

ment by separating child elements with a vertical bar (|) rather than with a comma

(,) in the parent’s element declaration. For example, this declaration says that the

PAYMENT element must have a single child of type CASH or CREDIT_CARD.

<!ELEMENT PAYMENT (CASH | CREDIT_CARD)>

This sort of content specification is called a choice. You can separate any number of

children with vertical bars when you want exactly one of them to be used. For

example, the following says that the PAYMENT element must have a single child of

type CASH, CREDIT_CARD, or CHECK.

<!ELEMENT PAYMENT (CASH | CREDIT_CARD | CHECK)>

The vertical bar is even more useful when you group elements with parentheses.

You can group combinations of elements in parentheses, and then suffix the paren-

theses with asterisks, question marks, and plus signs to indicate that particular

combinations of elements must occur zero or more, zero or one, or one or more

times. For example, this final version of the PLAYER declaration now requires either

pitching or batting statistics. However, the document author must pick one or the

other. They cannot include both:

<!ELEMENT PLAYER (
GIVEN_NAME, SURNAME, POSITION+, GAMES, GAMES_STARTED,

((AT_BATS, RUNS, HITS, DOUBLES, TRIPLES, HOME_RUNS,
RBI, STEALS, CAUGHT_STEALING, SACRIFICE_HITS,
SACRIFICE_FLIES, ERRORS, WALKS, STRUCK_OUT,
HIT_BY_PITCH) |
(WINS, LOSSES, SAVES, COMPLETE_GAMES, SHUT_OUTS,
ERA, INNINGS, HITS_AGAINST, HOME_RUNS_AGAINST,
RUNS_AGAINST, EARNED_RUNS, HIT_BATTER, WILD_PITCHES,
BALK, WALKED_BATTER, STRUCK_OUT_BATTER))
)

>

247Chapter 9 ✦ Element Declarations

There are still a few things that are difficult to handle in element declarations. For

example, there’s no good way to say that a document must begin with a TITLE ele-

ment and end with a SIGNATURE element, but may contain any other elements

between those two. This is because ANY may not be combined with other child ele-

ments. And, in general, the less precise you are about where things appear, the less

control you have over how many of them there are. For example, you can’t say that

a document should have exactly one TITLE element but that the TITLE may appear

anywhere in the document.

Nonetheless, using parentheses to create blocks of elements, either in sequence

with a comma or in parallel with a vertical bar, enables you to create complex struc-

tures with detailed rules for how different elements follow one another. Try not to

go overboard with this, though. Simpler solutions are better solutions. The more

complex your DTD is, the harder it is to write valid files that satisfy the DTD, to say

nothing of the complexity of maintaining the DTD itself.

Mixed Content
You may have noticed that in most of the examples shown so far, elements either

contained child elements or parsed character data, but not both. The only excep-

tions were the root elements in early examples when the full list of tags had not yet

been developed. In these cases, because the root element could contain ANY data, it

was allowed to contain both child elements and raw text.

You can declare tags that contain both child elements and parsed character data.

This is called mixed content. You can use this to allow each TEAM to include an arbi-

trary block of text. For example:

<!ELEMENT TEAM (#PCDATA | TEAM_CITY | TEAM_NAME | PLAYER)*>

Mixing child elements with parsed character data severely restricts the structure

you can impose on your documents. In particular, you can specify only the names

of the child elements that can appear. You cannot constrain the order in which they

appear, the number of each that appears, or whether they appear at all. In terms of

DTDs, think of this as meaning that the child part of the DTD must look like this:

<!ELEMENT PARENT (#PCDATA | CHILD1 | CHILD2 | CHILD3)* >

Almost everything else, other than changing the list of permitted child elements, is

invalid. You cannot place the #PCDATA after the child elements. You cannot use

commas, question marks, or plus signs in an element declaration that includes

#PCDATA. A list of elements and #PCDATA separated by vertical bars is valid. Any

other use is not. For example, the following is illegal:

<!ELEMENT TEAM (TEAM_CITY, TEAM_NAME, PLAYER*, #PCDATA)>

248 Part II ✦ Document Type Definitions

Thus, once you’ve said that a TEAM element can contain parsed character data, you

can no longer say that it must have exactly one name and one city or nine or more

players.

Mixed content is most common in narrative content such as Web pages and news-

paper articles. While writing a paragraph, you might want to <EMPHASIZE>empha-

size a phrase</EMPHASIZE> or note a <PERSON>person’s name</PERSON>. On the

other hand, most of the text of the paragraph or sentence or verse that surrounds

the emphasized phrase or noted name is just text, with nothing special to distin-

guish it from all the other text of the paragraph, sentence, or verse. This structure

is common to both written and spoken narratives.

More data-focused documents, such as the baseball example of this chapter, by

contrast, should avoid mixed content whenever possible. Structured documents

are easier to work with if all elements contain either other elements or unmarked-

up text, but not both. You can always create a new element that holds parsed char-

acter data if you find you need it. For example, you can include a block of text at the

end of each TEAM element by declaring a new BLURB element that holds only

#PCDATA and adding it as the last child element of TEAM. Here’s how this looks:

<!ELEMENT TEAM (TEAM_CITY, TEAM_NAME, PLAYER*, BLURB)>
<!ELEMENT BLURB (#PCDATA)>

This does not significantly change the structure of the document. All it does is add

one more optional element to each TEAM element. However, human thought is not

nearly so structured, and thus these strict forms of markup don’t work as well in

that domain. Articles, essays, novels, diaries, travelogues, short stories, speeches,

and similar narratives are likely to make much heavier use of mixed content.

Empty Elements
As discussed in earlier chapters, it’s occasionally useful to define an element that

has no content. Examples in HTML include the image , horizontal rule <HR>,

and break
. In XML, such empty elements are identified by empty element tags

that end with />, such as , <HR/>, and
.

Valid documents must declare both the empty and nonempty elements they use.

Because empty elements by definition don’t have children, they’re easy to declare.

Use an <!ELEMENT> declaration containing the name of the empty element as nor-

mal, but use the keyword EMPTY (case sensitive as all XML tags are) instead of a list

of children. For example:

<!ELEMENT BR EMPTY>
<!ELEMENT IMG EMPTY>
<!ELEMENT HR EMPTY>

Listing 9-12 is a valid document that uses both empty and nonempty elements.

249Chapter 9 ✦ Element Declarations

Listing 9-12: A valid document using empty elements

<?xml version=”1.0”?>
<!DOCTYPE DOCUMENT [

<!ELEMENT DOCUMENT (TITLE, SIGNATURE)>
<!ELEMENT TITLE (#PCDATA)>
<!ELEMENT COPYRIGHT (#PCDATA)>
<!ELEMENT EMAIL (#PCDATA)>
<!ELEMENT BR EMPTY>
<!ELEMENT HR EMPTY>
<!ELEMENT LAST_MODIFIED (#PCDATA)>
<!ELEMENT SIGNATURE (HR, COPYRIGHT, BR, EMAIL,

BR, LAST_MODIFIED)>
]>
<DOCUMENT>
<TITLE>Empty Tags</TITLE>
<SIGNATURE>
<HR/>
<COPYRIGHT>2000 Elliotte Rusty Harold</COPYRIGHT>

<EMAIL>elharo@metalab.unc.edu</EMAIL>

<LAST_MODIFIED>Thursday, July 27, 2000</LAST_MODIFIED>
</SIGNATURE>

</DOCUMENT>

Declaring an element to be EMPTY requires that all instances of it be empty.

However, an element that is declared to have PCDATA content or purely optional

child elements may also be empty some of the time. For example, Listing 9-12

declares that the TITLE element contains parsed character data. Therefore, these

are all valid TITLE elements according to that DTD:

<TITLE>Empty Tags</TITLE>
<TITLE></TITLE>
<TITLE/>

The empty element tag syntax used in <TITLE/> is pure syntactic sugar for the

longer form <TITLE></TITLE>. You can use <TITLE/> anywhere you can use

<TITLE></TITLE>. The TITLE element does not need to be declared EMPTY in

order to be represented by an empty element tag.

Comments in DTDs
DTDs can contain comments, just like the rest of an XML document. These com-

ments cannot appear inside a declaration, but they can appear outside one.

Comments are often used to organize the DTD in different parts, to document the

allowed content of particular elements, and to further explain what an element is.

250 Part II ✦ Document Type Definitions

For example, the element declaration for the YEAR element might have a comment

such as this:

<!-- A four-digit year like 1999, 2000, or 2001 -->
<!ELEMENT YEAR (#PCDATA)>

As with all comments, this is only for the benefit of people reading the source code.

XML processors will ignore it.

One possible use of comments is to define abbreviations used in the markup. For

example, in this and previous chapters, I’ve avoided using abbreviations for base-

ball terms because they’re simply not obvious to the casual fan. (Would you have

guessed that the abbreviation for Walks is not W, which actually stands for Wins,

but rather BB which stands for Base on Balls?) An alternative approach is to use

abbreviations but define them with comments in the DTD. Listing 9-13 is similar to

previous baseball examples, but uses DTD comments and abbreviated tags.

Listing 9-13: A DTD for abbreviated baseball statistics
elaborated with comments

<!ELEMENT YEAR (#PCDATA)>
<!ELEMENT LEAGUE (LEAGUE_NAME, DIVISION, DIVISION, DIVISION)>

<!-- American or National -->
<!ELEMENT LEAGUE_NAME (#PCDATA)>

<!-- East, West, or Central -->
<!ELEMENT DIVISION_NAME (#PCDATA)>
<!ELEMENT DIVISION (DIVISION_NAME, TEAM+)>
<!ELEMENT SEASON (YEAR, LEAGUE, LEAGUE)>
<!ELEMENT TEAM (TEAM_CITY, TEAM_NAME, PLAYER*)>
<!ELEMENT TEAM_CITY (#PCDATA)>
<!ELEMENT TEAM_NAME (#PCDATA)>

<!ELEMENT PLAYER (
GIVEN_NAME, SURNAME, P+, G, GS, (
(AB, R, H, D, T, HR, RBI, SB, CS, SH, SF, E, BB, S, HBP) |
(W, L, S, CG, SO, ERA, IP, HA, HRA, RA, ER, HB, WP, B, WB, K)
))

>

<!-- ======================= -->
<!-- Player Info -->
<!-- Player’s last name -->
<!ELEMENT SURNAME (#PCDATA)>

<!-- Player’s first name -->
<!ELEMENT GIVEN_NAME (#PCDATA)>

<!-- Position -->

251Chapter 9 ✦ Element Declarations

<!ELEMENT P (#PCDATA)>

<!--Games Played -->
<!ELEMENT G (#PCDATA)>

<!--Games Started -->
<!ELEMENT GS (#PCDATA)>

<!-- ======================= -->
<!-- Batting Statistics -->
<!-- At Bats -->
<!ELEMENT AB (#PCDATA)>

<!-- Runs -->
<!ELEMENT R (#PCDATA)>

<!-- Hits -->
<!ELEMENT H (#PCDATA)>

<!-- Doubles -->
<!ELEMENT D (#PCDATA)>

<!-- Triples -->
<!ELEMENT T (#PCDATA)>

<!-- Home Runs -->
<!ELEMENT HR (#PCDATA)>

<!-- Runs Batted In -->
<!ELEMENT RBI (#PCDATA)>

<!-- Stolen Bases -->
<!ELEMENT SB (#PCDATA)>

<!-- Caught Stealing -->
<!ELEMENT CS (#PCDATA)>

<!-- Sacrifice Hits -->
<!ELEMENT SH (#PCDATA)>

<!-- Sacrifice Flies -->
<!ELEMENT SF (#PCDATA)>

<!-- Errors -->
<!ELEMENT E (#PCDATA)>

<!-- Walks (Base on Balls) -->
<!ELEMENT BB (#PCDATA)>

<!-- Struck Out -->

Continued

252 Part II ✦ Document Type Definitions

Listing 9-13 (continued)

<!ELEMENT S (#PCDATA)>

<!-- Hit By Pitch -->
<!ELEMENT HBP (#PCDATA)>

<!-- ======================= -->
<!-- Pitching Statistics -->
<!-- Complete Games -->
<!ELEMENT CG (#PCDATA)>

<!-- Shut Outs -->
<!ELEMENT SO (#PCDATA)>

<!-- ERA -->
<!ELEMENT ERA (#PCDATA)>

<!-- Innings Pitched -->
<!ELEMENT IP (#PCDATA)>

<!-- Hits Against -->
<!ELEMENT HA (#PCDATA)>

<!-- Home Runs Hit Against -->
<!ELEMENT HRA (#PCDATA)>

<!-- Runs Hit Against -->
<!ELEMENT RA (#PCDATA)>

<!-- Earned Runs -->
<!ELEMENT ER (#PCDATA)>

<!-- Hit Batter -->
<!ELEMENT HB (#PCDATA)>

<!-- Wild Pitches -->
<!ELEMENT WP (#PCDATA)>

<!-- Balk -->
<!ELEMENT B (#PCDATA)>

<!-- Walked Batter -->
<!ELEMENT WB (#PCDATA)>

<!-- Struck Out Batter -->
<!ELEMENT K (#PCDATA)>

<!-- ======================= -->
<!-- Fielding Statistics -->
<!-- Not yet supported -->

253Chapter 9 ✦ Element Declarations

Listing 9-14 shows a sample collection of statistics encoded with the short tag

names. When the entire Major League is encoded using abbreviated names instead

of the full-length names, the resulting document shrinks from 699K with long tag

names to 391K with short tag names, a reduction of 44 percent. The information con-

tent, however, is virtually the same. Consequently, the compressed sizes of the two

documents are much closer, about 58K for the document with short tag names ver-

sus 66K for the document with long tag names using gzip on maximum compression.

Listing 9-14: Baseball statistics with short element names

<?xml version=”1.0”?>
<!DOCTYPE SEASON SYSTEM “9-12.dtd”>
<SEASON>
<YEAR>1998</YEAR>
<LEAGUE>
<LEAGUE_NAME>National</LEAGUE_NAME>
<DIVISION>

<DIVISION_NAME>East</DIVISION_NAME>
<TEAM>
<TEAM_CITY>Atlanta</TEAM_CITY>
<TEAM_NAME>Braves</TEAM_NAME>

</TEAM>
<TEAM>
<TEAM_CITY>Florida</TEAM_CITY>
<TEAM_NAME>Marlins</TEAM_NAME>

</TEAM>
<TEAM>
<TEAM_CITY>Montreal</TEAM_CITY>
<TEAM_NAME>Expos</TEAM_NAME>

</TEAM>
<TEAM>
<TEAM_CITY>New York</TEAM_CITY>
<TEAM_NAME>Mets</TEAM_NAME>

</TEAM>
<TEAM>
<TEAM_CITY>Philadelphia</TEAM_CITY>

<TEAM_NAME>Phillies</TEAM_NAME>
</TEAM>

</DIVISION>
<DIVISION>

<DIVISION_NAME>Central</DIVISION_NAME>
<TEAM>
<TEAM_CITY>Chicago</TEAM_CITY>
<TEAM_NAME>Cubs</TEAM_NAME>

</TEAM>
</DIVISION>
<DIVISION>

<DIVISION_NAME>West</DIVISION_NAME>
<TEAM>
<TEAM_CITY>Arizona</TEAM_CITY>

Continued

254 Part II ✦ Document Type Definitions

Listing 9-14 (continued)

<TEAM_NAME>Diamondbacks</TEAM_NAME>
</TEAM>

</DIVISION>
</LEAGUE>
<LEAGUE>
<LEAGUE_NAME>American</LEAGUE_NAME>
<DIVISION>

<DIVISION_NAME>East</DIVISION_NAME>
<TEAM>
<TEAM_CITY>Baltimore</TEAM_CITY>
<TEAM_NAME>Orioles</TEAM_NAME>

</TEAM>
</DIVISION>
<DIVISION>

<DIVISION_NAME>Central</DIVISION_NAME>
<TEAM>
<TEAM_CITY>Chicago</TEAM_CITY>
<TEAM_NAME>White Sox</TEAM_NAME>
<PLAYER>
<GIVEN_NAME>Jeff</GIVEN_NAME>
<SURNAME>Abbott</SURNAME>
<P>Outfield</P>
<G>89</G>
<GS>61</GS>
<AB>244</AB>
<R>33</R>
<H>68</H>
<D>14</D>
<T>1</T>
<HR>12</HR>
<RBI>41</RBI>
<SB>3</SB>
<CS>3</CS>
<SH>2</SH>
<SF>5</SF>
<E>4</E>
<BB>9</BB>
<S>28</S>
<HBP>0</HBP>

</PLAYER>
</TEAM>

</DIVISION>
<DIVISION>

<DIVISION_NAME>West</DIVISION_NAME>
<TEAM>
<TEAM_CITY>Anaheim</TEAM_CITY>
<TEAM_NAME>Angels</TEAM_NAME>

</TEAM>
</DIVISION>

</LEAGUE>
</SEASON>

255Chapter 9 ✦ Element Declarations

There’s no limit to the amount of information that you can or should include in

comments. Including more does make your DTDs a little longer (and thus both

harder to scan and slower to download). However, the increased clarity provided

by using comments far outweighs these disadvantages. I recommend using com-

ments liberally in all of your DTDs, but especially in those intended for public use.

Summary
In this chapter, you learned the complete syntax for element declarations that are

used in DTDs. In particular, you learned that:

✦ Element declarations declare the name and content model of an element.

✦ The content model specifies what an element must, may, and may not contain.

✦ Child elements separated by commas in an element type declaration must

appear in the same order in that element inside the document.

✦ A plus sign means one or more instances of the element may appear.

✦ An asterisk means zero or more instances of the element may appear.

✦ A question mark means zero or one instance of the child may appear.

✦ A vertical bar means one element or another is to be used.

✦ Parentheses group child elements to enable more detailed element

declarations.

✦ An element with mixed content contains both child elements and parsed char-

acter data. However, declaring mixed content limits the structure that you can

impose on the parent element.

✦ Empty elements are declared with the EMPTY keyword.

✦ Comments make DTDs much more legible.

In the next chapter, you learn more about DTDs, including how to define new entity

references such as ©, α, and €. You also learn how to use multi-

ple DTDs to describe a single document, and to divide one large document into

many smaller parts.

✦ ✦ ✦

Entity
Declarations

Asingle XML document may draw both data and declara-

tions from many different sources, in many different

files. In fact, some of the data may draw directly from

databases, CGI scripts, or other nonfile sources. The items

where the pieces of an XML document are stored, in whatever

form they take, are called entities. Entity references load these

entities into the main XML document. General entity refer-

ences load data into the root element of an XML document,

while parameter entity references load data into the docu-

ment’s DTD. <, >, ', "e;, and & are pre-

defined general entity references that refer to the text entities

<, >, ‘, “, and &, respectively. However, you can also define

new entities in your document’s DTD.

What Is an Entity?
Logically speaking, an XML document is composed of a prolog

followed by a root element that strictly contains all other ele-

ments; but in practice, the actual data of an XML document

can be spread across multiple files. For example, each PLAYER
element might appear in a separate file even though the root

element contains all 1200 or so players in a league. The stor-

age units that contain particular parts of an XML document

are called entities. An entity may be a file, a database record,

or any other item that contains data. For example, all the com-

plete XML files in this book are entities.

The storage unit that contains the XML declaration, the docu-

ment type declaration, and the root element is called the docu-
ment entity. However, the root element and its descendents

may also contain entity references pointing to additional data

that should be inserted into the document. A validating XML

parser combines all the different referenced entities into a sin-

gle logical document before it passes the document onto the

end application or displays the file.

1010C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

What is an entity?

Internal general
entities

External general
entities

Internal parameter
entities

External parameter
entities

How to build a
document from
pieces

Entities and DTDs in
well-formed
documents

✦ ✦ ✦ ✦

258 Part II ✦ Document Type Definitions

Nonvalidating parsers may, but do not have to, insert external entities. They must
insert internal entities.

Entities hold content — well-formed XML, other forms of text, or binary data. The

prolog and the document type declaration are part of the root entity of the docu-

ment. An XSL style sheet qualifies as an entity, but only because it itself is a well-

formed XML document. The entity that makes up the style sheet is not one of the

entities that composes the XML document to which the style sheet applies. A CSS

style sheet is not an entity at all.

Most entities have names by which you can refer to them. The only exception is the

document entity — the main file containing the XML document (although there’s no

requirement that this be a file as opposed to a database record, the output of a CGI

program, or something else). The document entity is the storage unit, in whatever

form it takes, that holds the XML declaration, the document type declaration (if

any), and the root element. Thus, every XML document has at least one entity.

There are two kinds of entities: internal and external. Internal entities are defined

completely within the document entity. The document itself is one such entity, so

all XML documents have at least one internal entity.

External entities, by contrast, draw their content from another source located with

a URL. The main document only includes a reference to the URL where the actual

content resides. In HTML, an IMG element represents an external entity (the actual

image data), while the document itself contained between the <HTML> and </HTML>
tags is an internal entity.

Entities fall into two categories: parsed and unparsed. Parsed entities contain well-

formed XML text. Unparsed entities contain either binary data or non-XML text

(such as an e-mail message). Currently, unparsed entities aren’t well supported (if

at all) by most XML processors. This chapter focuses on parsed entities exclusively.

Chapter 12 covers unparsed entities.

Internal General Entities
You can think of an internal general entity reference as an abbreviation for com-

monly used text or text that’s hard to type. An <!ENTITY> declaration in the DTD

defines an abbreviation and the text that the abbreviation stands for. For instance,

instead of typing the same footer at the bottom of every page, you can simply

define that text as the footer entity in the DTD and then type &footer; at the bot-

tom of each page. Furthermore, if you decide to change the footer block (perhaps

because your e-mail address changes), you only need to make the change once in

the DTD instead of on every page that shares the footer.

Cross-
Reference

Note

259Chapter 10 ✦ Entity Declarations

General entity references begin with an ampersand (&) and end with a semicolon

(;), with the entity’s name between these two characters. For instance, < is a

general entity reference for the less than sign (<). The name of this entity is lt. The

replacement text of this entity is the one character string <. Entity names consist of

any set of alphanumeric characters and the underscore. White space and other

punctuation characters are prohibited. Like most everything else in XML, entity ref-

erences are case sensitive.

Although the colon (:) is technically permitted in entity names, this character is
reserved for use with namespaces, which are discussed in Chapter 13.

Defining an internal general entity reference
Internal general entity references are defined in the DTD with an <!ENTITY> decla-

ration, which has the following format:

<!ENTITY name “replacement text”>

The name is the abbreviation for the replacement text. The replacement text

must be enclosed in quotation marks because it may contain white space and XML

markup. You type the name of the entity in the document, but the reader sees the

replacement text.

For example, my name is the somewhat excessive Elliotte Rusty Harold (blame my

parents for that one). Even with years of practice, I still make typos with that

phrase. I can define a general entity reference for my name so that every time I type

&ERH;, the reader will see Elliotte Rusty Harold. That definition is:

<!ENTITY ERH “Elliotte Rusty Harold”>

Listing 10-1 demonstrates the &ERH; general entity reference. Figure 10-1 shows this

document loaded into Internet Explorer. You see that the &ERH; entity reference in

the source code is replaced by Elliotte Rusty Harold in the output.

Listing 10-1: The ERH internal general entity reference

<?xml version=”1.0”?>
<!DOCTYPE DOCUMENT [

<!ENTITY ERH “Elliotte Rusty Harold”>

<!ELEMENT DOCUMENT (TITLE, SIGNATURE)>
<!ELEMENT TITLE (#PCDATA)>
<!ELEMENT COPYRIGHT (#PCDATA)>
<!ELEMENT EMAIL (#PCDATA)>

Continued

Cross-
Reference

260 Part II ✦ Document Type Definitions

Listing 10-1 (continued)

<!ELEMENT LAST_MODIFIED (#PCDATA)>
<!ELEMENT SIGNATURE (COPYRIGHT, EMAIL, LAST_MODIFIED)>

]>
<DOCUMENT>
<TITLE>&ERH;</TITLE>
<SIGNATURE>
<COPYRIGHT>2000 &ERH;</COPYRIGHT>
<EMAIL>elharo@metalab.unc.edu</EMAIL>
<LAST_MODIFIED>July 30, 2000</LAST_MODIFIED>
</SIGNATURE>

</DOCUMENT>

Figure 10-1: Listing 10-1 after the internal general entity
reference has been replaced by the actual entity.

Notice that the general entity reference, &ERH; appears inside both the COPYRIGHT
and TITLE elements even though these are declared to accept only #PCDATA as chil-

dren. This arrangement is legal because the replacement text of the &ERH; entity

reference is parsed character data. Validation occurs after the parser replaces the

entity references with their values. The same thing happens when you use a style

sheet. The styles are applied to the element tree as it exists after entity values

replace the entity references.

However, validation is optional, even when the DTD defines entities that the docu-

ment uses. A parser can read the DTD to find entity definitions but still not check for

validity. For instance, Listing 10-2 provides the same basic data as Listing 10-1 even

though it’s invalid because the DTD doesn’t include declarations for every element:

261Chapter 10 ✦ Entity Declarations

Listing 10-2: An invalid document that uses a DTD solely
to define a general entity reference

<?xml version=”1.0”?>
<!DOCTYPE DOCUMENT [

<!ENTITY ERH “Elliotte Rusty Harold”>
]>
<DOCUMENT>
<TITLE>&ERH;</TITLE>
<SIGNATURE>
<COPYRIGHT>2000 &ERH;</COPYRIGHT>
<EMAIL>elharo@metalab.unc.edu</EMAIL>
<LAST_MODIFIED>July 30, 2000</LAST_MODIFIED>
</SIGNATURE>

</DOCUMENT>

General entity values may not contain the three characters %, &, and “ directly,

although you can include them via character references; & and % may be included if

they’re starting an entity reference rather than simply representing themselves. An

entity value may contain tags and may span multiple lines. For example, the follow-

ing SIGNATURE entity is valid:

<!ENTITY SIGNATURE
“<SIGNATURE>

<COPYRIGHT>2000 Elliotte Rusty Harold</COPYRIGHT>
<EMAIL>elharo@metalab.unc.edu</EMAIL>
<LAST_MODIFIED>July 30, 2000</LAST_MODIFIED>

</SIGNATURE>”
>

An entity value may also contain multiple elements. For example,

<!ENTITY SIGNATURE
“<HR/>
<COPYRIGHT>2000 Elliotte Rusty Harold</COPYRIGHT>
<EMAIL>elharo@metalab.unc.edu</EMAIL>
<LAST_MODIFIED>July 30, 2000</LAST_MODIFIED>”

>

However, if an entity value contains the start tag for an element it must also contain

the end tag for the same element. That is, it cannot contain only part of an element.

For example, these are both illegal, even if they’re used in such a way that the

resulting document would be well-formed:

<!ENTITY COPYYEAR “<COPYRIGHT>2000 “>
<!ENTITY COPYNAME “Elliotte Rusty Harold</COPYRIGHT>”>

262 Part II ✦ Document Type Definitions

The same is true for comments, processing instructions, entity references, and any-

thing else you might place inside an entity value. If it starts inside the entity, it must

finish inside the entity.

One advantage of using entity references instead of the full text is that it’s easier to

change the text. This is especially useful when a single DTD is shared between mul-

tiple documents. For example, suppose I decide to use the e-mail address eharold@
solar.stanford.edu instead of elharo@metalab.unc.edu. Rather than search-

ing and replacing through multiple files, I simply change one line of the DTD as

follows:

<!ENTITY SIGNATURE
“<HR/>
<COPYRIGHT>2000 Elliotte Rusty Harold</COPYRIGHT>
<EMAIL>eharold@solar.stanford.edu</EMAIL>
<LAST_MODIFIED>July 30, 2000</LAST_MODIFIED>”

>

The next obvious question is whether it’s possible for entities to have parameters.

Can you use the above SIGNATURE entity but change the date in each separate

LAST_MODIFIED element on each page? The answer is no; entities are only for static

replacement text. If you need to pass data to an entity, you should use an element

along with the appropriate rendering instructions in the style sheet instead.

Using general entity references in the DTD
You may wonder whether it’s possible to include one general entity reference inside

another as follows:

<!ENTITY COPY2000 “Copyright 2000 &ERH;”>

This example is legal because the ERH entity appears as part of the COPY2000 entity

that itself will ultimately become part of the document’s content. You can also use

general entity references in other places in the DTD that ultimately become part of

the document content (such as a default attribute value), although there are restric-

tions. The first restriction is that the declaration cannot contain a circular reference

like this one:

<!ENTITY ERH “©2000 Elliotte Rusty Harold”>
<!ENTITY COPY2000 “Copyright 2000 &ERH;”>

The second restriction: General entity references may not insert text that is only

part of the DTD and that will not be used as part of the document content. For

example, the following attempted shortcut fails:

<!ENTITY PCD “(#PCDATA)”>
<!ELEMENT ANIMAL &PCD;>
<!ELEMENT FOOD &PCD;>

263Chapter 10 ✦ Entity Declarations

It’s often useful, however, to have entity references merge text into a document’s

DTD. For this purpose, XML uses the parameter entity reference, which is dis-

cussed later in this chapter.

Predefined general entity references
XML predefines the five general entity references listed in Table 10-1. These five

entity references appear in XML documents in place of specific characters that

would otherwise be interpreted as markup. For instance, the entity reference <
stands for the less than sign (<), which could be interpreted as the beginning of

a tag.

Table 10-1
XML Predefined Entity References

Entity Reference Character

& &

< <

> >

" “

' ‘

For maximum compatibility, you should declare these references in your DTD if you

plan to use them. Declaration is actually quite tricky because you must also escape

the characters in the DTD without using recursion. To do this, use character refer-

ences containing the hexadecimal value of each character. Listing 10-3 shows the

necessary declarations:

Listing 10-3: Declarations for the predefined
general entity references

<!ENTITY lt “&#60;”>
<!ENTITY gt “>”>
<!ENTITY amp “&#38;”>
<!ENTITY apos “'”>
<!ENTITY quot “"”>

Character references are discussed in Chapter 7.Cross-
Reference

264 Part II ✦ Document Type Definitions

External General Entities
Documents using only internal entities closely resemble the HTML model. The com-

plete text of the document is available in a single file. Images, applets, sounds, and

other non-HTML data may be linked to the file, but at least all the text is present. Of

course, the HTML model has some problems. In particular, it’s quite difficult to

embed dynamic information in the file. CGI, Java applets, fancy database software,

server-side includes, and various other technologies can all add this capability to

HTML; but HTML alone only provides a static document. You have to go outside

HTML to build a document from multiple pieces. Frames are perhaps the simplest

HTML solution to this problem, but they are a nonstandard, user interface disaster

that consistently confuse and annoy users.

XML allows you to embed both well-formed (though not valid) XML documents and

document pieces inside other XML documents. Furthermore, XML defines the syn-

tax whereby an XML parser can build a document out of multiple smaller XML doc-

uments and pieces thereof found either on local or remote systems. Documents

may contain other documents, which may contain other documents. As long as

there’s no recursion (an error reported by the processor), the application only sees

a single, complete document. In essence, this provides client-side includes.

External entities are data outside the main file containing the root element/document

entity. External entity references let you embed these external entities in the parsed

character data content of your document (though not in the attribute values), and

thus build a single XML document from multiple independent files.

An external general entity reference such as &CalSmith; indicates where in the

document the parser should insert the external entity. The text of the entity comes

from a document at a given Uniform Resource Identifier (URI). This URI is specified

in the entity’s declaration in the DTD using this syntax:

<!ENTITY name SYSTEM “URI”>

URIs are similar to URLs but allow for more precise specification of the linked
resource. In theory, URIs separate the resource from the location so that a Web
browser can select the nearest or least congested of several mirrors without
requiring an explicit link to that mirror. URIs are an area of active research and
heated debate. Therefore, in practice, and certainly in this book, URIs are URLs for
all purposes.

For example, you may want to put the same signature block on almost every page

of a site. For the sake of definiteness, let’s assume that the signature block is the

XML code shown in Listing 10-4. This would be a well-formed XML document except

that it doesn’t have a root element.

Note

265Chapter 10 ✦ Entity Declarations

Listing 10-4: An XML external parsed entity

<COPYRIGHT>2000 Elliotte Rusty Harold</COPYRIGHT>
<EMAIL>elharo@metalab.unc.edu</EMAIL>
<LAST_MODIFIED>July 30, 2000</LAST_MODIFIED>
<HR/>

Furthermore, let’s assume that you can retrieve this code from the URL

http://www.ibiblio.org/xml/signature.xml. You associate this file with the

entity reference &SIG; by adding the following declaration to the DTD:

<!ENTITY SIG SYSTEM “http://www.ibiblio.org/xml/signature.xml”>

You can also use a relative URL. For example,

<!ENTITY SIG SYSTEM “/xml/signature.xml”>

If the file to be included is in the same directory as the file doing the including, you

only need to use the filename. For example,

<!ENTITY SIG SYSTEM “signature.xml”>

With any of these declarations, you can include the contents of the signature file

in a document at any point merely by using &SIG;, as illustrated with the simple

document in Listing 10-5. Figure 10-2 shows the rendered document in Internet

Explorer 5.5.

Listing 10-5: The SIG external general entity reference

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE DOCUMENT [

<!ELEMENT DOCUMENT
(TITLE, COPYRIGHT, EMAIL, LAST_MODIFIED, HR?)>

<!ELEMENT TITLE (#PCDATA)>
<!ELEMENT COPYRIGHT (#PCDATA)>
<!ELEMENT EMAIL (#PCDATA)>
<!ELEMENT HR EMPTY>
<!ELEMENT LAST_MODIFIED (#PCDATA)>
<!ENTITY SIG SYSTEM “signature.xml”>

]>
<DOCUMENT>
<TITLE>Entity references</TITLE>
&SIG;

</DOCUMENT>

266 Part II ✦ Document Type Definitions

The DTD declares both the internal elements, such as TITLE, and the external ele-

ments, such as COPYRIGHT. Validating parsers are required to resolve all entity ref-

erences and replace them with their values before checking the document against

its DTD.

The standalone pseudo-attribute of the XML declaration now has the value no
because this file is no longer complete. Parsing the file requires additional data

from the external file signature.xml. Technically, though, the standalone declaration

isn’t required because its default value is no.

Figure 10-2: A document that uses an external general
entity reference.

Text declarations
Because neither Listing 10-4 nor Listing 10-5 has an encoding declaration, the

parser assumes both are encoded in the UTF-8 encoding of Unicode. However, in

general, there’s no guarantee or requirement that all the external parsed entities a

document includes will use the same encoding. Indeed each external parsed entity

may have a different encoding. To account for this, each external parsed entity can

have its own text declaration. Text declarations look like XML declarations except

that the version pseudo-attribute is optional, the encoding pseudo-attribute is

required, and there’s no standalone pseudo-attribute. For example, Listing 10-6

has a text declaration that says the entity is encoded in UTF-16 instead of the

default UTF-8.

267Chapter 10 ✦ Entity Declarations

Listing 10-6: An XML external parsed entity
with a text declaration

<?xml encoding=”UTF-16”?>
<COPYRIGHT>2000 Elliotte Rusty Harold</COPYRIGHT>
<EMAIL>elharo@metalab.unc.edu</EMAIL>
<LAST_MODIFIED>July 30, 2000</LAST_MODIFIED>
<HR/>

If the external parsed entity has a root element, and if it either has a version
pseudo-attribute in the text declaration or does not have a text declaration at all,

then the external parsed entity may itself be a well-formed XML document. For

example, it could be the signature block shown in Listing 10-7. However, while

sometimes useful, this is not required.

Listing 10-7: An external parsed entity that is also
a well-formed XML document

<?xml version=”1.0” encoding=”ISO-8859-1”?>
<SIGNATURE>
<COPYRIGHT>2000 Elliotte Rusty Harold</COPYRIGHT>
<EMAIL>elharo@metalab.unc.edu</EMAIL>
<LAST_MODIFIED>July 30, 2000</LAST_MODIFIED>

</SIGNATURE>

Whether a well-formed XML document or not, an external parsed entity may not

contain a document type declaration. This means an external parsed entity cannot

be valid on its own. It can only be validated when it’s inserted into a full XML docu-

ment that does have a document type declaration. A document that uses external

parsed entities can be valid as long as it properly declares all the elements and

attributes used in both the document entity and all the other entities. Indeed,

Listing 10-5 is valid, but it does not have to be. Well-formedness only requires that a

document declare all the entities it uses. Listing 10-8 is an invalid but well-formed

version of Listing 10-5.

268 Part II ✦ Document Type Definitions

Listing 10-8: An invalid but well-formed document that uses
an external general entity reference

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE DOCUMENT [

<!ENTITY SIG SYSTEM “signature.xml”>
]>
<DOCUMENT>
<TITLE>Entity references</TITLE>
&SIG;

</DOCUMENT>

Nonvalidating parsers
All XML parsers resolve internal entity references. Nonvalidating processors may

resolve external entity references, but they are not required to do so. Expat, the

open source XML parser used by Mozilla, for instance, does not resolve external

entity references. Most other parsers do resolve external entity references.

In the world of Web browsers, Mozilla, Netscape and Opera do not resolve external

entity references. Internet Explorer does resolve external entity references.

Internal Parameter Entities
General entities become part of the document, not the DTD. They can be used in

the DTD but only in places where they will become part of the document body.

General entity references may not insert text that is only part of the DTD and will

not be used as part of the document content. It’s often useful, however, to have

entity references in a DTD. For this purpose, XML provides the parameter entity
reference.

Parameter entity references are very similar to general entity references except for

these two key differences:

1. Parameter entity references begin with a percent sign (%) instead of an

ampersand (&).

2. Parameter entity references can only appear in the DTD, not the document

content.

Parameter entities are declared in the DTD like general entities with the addition of

a percent sign before the name. The syntax looks like this:

<!ENTITY % name “replacement text”>

269Chapter 10 ✦ Entity Declarations

The name is the abbreviation for the entity. The reader sees the replacement text,

which must appear in quotes. For example:

<!ENTITY % ERH “Elliotte Rusty Harold”>
<!ENTITY COPY2000 “Copyright 2000 %ERH;”>

Our earlier failed attempt to abbreviate (#PCDATA) works when a parameter entity

reference replaces the general entity reference:

<!ENTITY % PCD “(#PCDATA)”>
<!ELEMENT ANIMAL %PCD;>
<!ELEMENT FOOD %PCD;>

The real value of parameter entity references becomes apparent when you’re shar-

ing common lists of children and attributes between elements. The larger the block

of text you’re replacing and the more times you use it, the more useful parameter

entity references become. For instance, suppose your DTD declares a number of

block-level container elements such as PARAGRAPH, CELL, and HEADING. Each of

these container elements may contain an indefinite number of inline elements such

as PERSON, DEGREE, MODEL, PRODUCT, ANIMAL, INGREDIENT, and so forth. The ele-

ment declarations for the container elements could appear as the following:

<!ELEMENT PARAGRAPH
(PERSON | DEGREE | MODEL | PRODUCT | ANIMAL | INGREDIENT)*>

<!ELEMENT CELL
(PERSON | DEGREE | MODEL | PRODUCT | ANIMAL | INGREDIENT)*>

<!ELEMENT HEADING
(PERSON | DEGREE | MODEL | PRODUCT | ANIMAL | INGREDIENT)*>

The container elements all have the same contents. If you invent a new element

such as EQUATION, CD, or ACCOUNT, this element must be declared as a possible

child of all three container elements. Adding it to two, but forgetting to add it to the

third element, may cause trouble. This problem multiplies when you have 30 or 300

container elements instead of 3.

DTDs are much easier to maintain if you don’t give each container a separate con-

tent model. Instead, make the content model a parameter entity reference; then use

that parameter entity reference in each of the container element declarations. For

example:

<!ENTITY % inlines
“(PERSON | DEGREE | MODEL | PRODUCT | ANIMAL | INGREDIENT)*”>

<!ELEMENT PARAGRAPH %inlines;>
<!ELEMENT CELL %inlines;>
<!ELEMENT HEADING %inlines;>

To add a new element, you only have to change a single parameter entity declara-

tion, rather than 3, 30, or 300 element declarations.

270 Part II ✦ Document Type Definitions

Parameter entity references must be declared before they’re used. The following

example is malformed because the %PCD; reference is not declared until it’s already

been used twice:

<!ELEMENT FOOD %PCD;>
<!ELEMENT ANIMAL %PCD;>
<!ENTITY % PCD “(#PCDATA)”>

Parameter entities can only be used to define content models, element names, and

other parts of declarations in the external DTD subset. That is, parameter entity ref-

erences can only appear inside a declaration in the external DTD subset when their

replacement text is something less than a complete declaration. The above exam-

ples are all illegal if they’re used in an internal DTD subset — that is, inside the

square brackets in a document type declaration.

Parameter entity references can be used in the internal DTD subset, but only if they

provide whole declarations, not simply pieces of them. For example, the following

declaration is legal in both the internal and external DTD subsets:

<!ENTITY % hr “<!ELEMENT HR EMPTY>”>
%hr;

Of course, this really isn’t any easier than declaring the HR element without

parameter entity references:

<!ELEMENT HR EMPTY>

You’ll mainly use parameter entity references in internal DTD subsets when they’re

referring to external parameter entities; that is, when they’re pulling in declarations

or parts of declarations from a different file. This is the subject of the next section.

External Parameter Entities
Up to this point, all the examples have used monolithic DTDs that defined all the

elements used in the document. This technique becomes unwieldy with longer doc-

uments, however. Furthermore, you often want to use part of a DTD in many differ-

ent places. For example, consider a DTD that describes a snail mail address. The

definition of an address is quite general, and can easily be used in many different

contexts. Similarly, the list of predefined entity references in Listing 10-2 is useful in

many XML documents, but you’d rather not copy and paste it all the time.

External parameter entities enable you to build large DTDs from smaller ones; that

is, one DTD may link to another and in so doing pull in the elements and entities

declared in the first. Although cycles are prohibited — DTD 1 may not refer to

DTD 2 if DTD 2 refers to DTD 1 — such nested DTDs can become large and complex.

271Chapter 10 ✦ Entity Declarations

At the same time, breaking a DTD into smaller, more manageable chunks makes the

DTD easier to analyze. Many of the examples in the last chapter were unnecessarily

large. Both the document and its DTD become much easier to understand when

split into separate files.

Furthermore, using smaller, modular DTDs that only describe one set of elements

makes it easier to mix and match DTDs created by different people or organiza-

tions. For instance, if you’re writing a technical article about high temperature

superconductivity, you can use a molecular sciences DTD to describe the molecules

involved, a math DTD to write down your equations, a vector graphics DTD for the

figures, and a basic HTML DTD to handle the explanatory text.

In particular, you can use the mol.dtd DTD from Peter Murray-Rust’s Chemical
Markup Language, the MathML DTD from the World Wide Web Consortium
(W3C)’s Mathematical Markup Language, the SVG DTD from the W3C’s Scalable
Vector Graphics, and the W3C’s XHTML DTD.

You can probably think of more examples where you need to mix and match con-

cepts (and therefore tags) from different fields. Human thought doesn’t restrict

itself to narrowly defined categories. It tends to wander all over the map. The docu-

ments you write will reflect this.

Let’s see how to organize the baseball statistics DTD of the last chapter as a combi-

nation of several different DTDs. This example is extremely hierarchical. One possi-

ble division is to write separate DTDs for PLAYER, TEAM, and SEASON. This is far

from the only way to divide the DTD into more manageable chunks, but it will serve

as a reasonable example. Listing 10-9 shows a DTD solely for a player that can be

stored in a file named player.dtd.

Listing 10-9: A DTD for the PLAYER element
and its children (player.dtd)

<!ELEMENT PLAYER (
GIVEN_NAME, SURNAME, POSITION+, GAMES, GAMES_STARTED,

((AT_BATS, RUNS, HITS, DOUBLES, TRIPLES, HOME_RUNS,
RBI, STEALS, CAUGHT_STEALING, SACRIFICE_HITS,
SACRIFICE_FLIES, ERRORS, WALKS, STRUCK_OUT,
HIT_BY_PITCH) |
(WINS, LOSSES, SAVES, COMPLETE_GAMES, SHUT_OUTS,
ERA, INNINGS, HITS_AGAINST, HOME_RUNS_AGAINST,
RUNS_AGAINST, EARNED_RUNS, HIT_BATTER, WILD_PITCHES,
BALK, WALKED_BATTER, STRUCK_OUT_BATTER))
)

Continued

Note

272 Part II ✦ Document Type Definitions

Listing 10-9 (continued)

>

<!ELEMENT SURNAME (#PCDATA)>
<!ELEMENT GIVEN_NAME (#PCDATA)>
<!ELEMENT POSITION (#PCDATA)>
<!ELEMENT GAMES (#PCDATA)>
<!ELEMENT GAMES_STARTED (#PCDATA)>

<!ELEMENT AT_BATS (#PCDATA)>
<!ELEMENT RUNS (#PCDATA)>
<!ELEMENT HITS (#PCDATA)>
<!ELEMENT DOUBLES (#PCDATA)>
<!ELEMENT TRIPLES (#PCDATA)>
<!ELEMENT HOME_RUNS (#PCDATA)>
<!ELEMENT RBI (#PCDATA)>
<!ELEMENT STEALS (#PCDATA)>
<!ELEMENT CAUGHT_STEALING (#PCDATA)>
<!ELEMENT SACRIFICE_HITS (#PCDATA)>
<!ELEMENT SACRIFICE_FLIES (#PCDATA)>
<!ELEMENT ERRORS (#PCDATA)>
<!ELEMENT WALKS (#PCDATA)>
<!ELEMENT STRUCK_OUT (#PCDATA)>
<!ELEMENT HIT_BY_PITCH (#PCDATA)>

<!ELEMENT ERA (#PCDATA)>
<!ELEMENT INNINGS (#PCDATA)>
<!ELEMENT HITS_AGAINST (#PCDATA)>
<!ELEMENT HOME_RUNS_AGAINST (#PCDATA)>
<!ELEMENT RUNS_AGAINST (#PCDATA)>
<!ELEMENT EARNED_RUNS (#PCDATA)>
<!ELEMENT HIT_BATTER (#PCDATA)>
<!ELEMENT WILD_PITCHES (#PCDATA)>
<!ELEMENT BALK (#PCDATA)>
<!ELEMENT WALKED_BATTER (#PCDATA)>
<!ELEMENT STRUCK_OUT_BATTER (#PCDATA)>
<!ELEMENT WINS (#PCDATA)>
<!ELEMENT LOSSES (#PCDATA)>
<!ELEMENT SAVES (#PCDATA)>
<!ELEMENT COMPLETE_GAMES (#PCDATA)>
<!ELEMENT SHUT_OUTS (#PCDATA)>

By itself, this DTD doesn’t enable you to create very interesting documents. Listing

10-10 shows a simple valid file that only uses the PLAYER DTD in Listing 10-9. This

simple file is not important for its own sake; however, you can build other, more

complex files out of these small parts.

273Chapter 10 ✦ Entity Declarations

Listing 10-10: A valid document using the PLAYER DTD

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE PLAYER SYSTEM “player.dtd”>
<PLAYER>
<GIVEN_NAME>Chris</GIVEN_NAME>
<SURNAME>Hoiles</SURNAME>
<POSITION>Catcher</POSITION>
<GAMES>97</GAMES>
<GAMES_STARTED>81</GAMES_STARTED>
<AT_BATS>267</AT_BATS>
<RUNS>36</RUNS>
<HITS>70</HITS>
<DOUBLES>12</DOUBLES>
<TRIPLES>0</TRIPLES>
<HOME_RUNS>15</HOME_RUNS>
<RBI>56</RBI>
<STEALS>0</STEALS>
<CAUGHT_STEALING>1</CAUGHT_STEALING>
<SACRIFICE_HITS>5</SACRIFICE_HITS>
<SACRIFICE_FLIES>4</SACRIFICE_FLIES>
<ERRORS>3</ERRORS>
<WALKS>38</WALKS>
<STRUCK_OUT>50</STRUCK_OUT>
<HIT_BY_PITCH>4</HIT_BY_PITCH>

</PLAYER>

What other parts of the document can have their own DTDs? Obviously, a TEAM is a

big part. You could write its DTD as follows:

<!ELEMENT TEAM (TEAM_CITY, TEAM_NAME, PLAYER*)>
<!ELEMENT TEAM_CITY (#PCDATA)>
<!ELEMENT TEAM_NAME (#PCDATA)>

On closer inspection, however, you should notice that something is missing: The

definition of the PLAYER element. The definition is in the separate file player.dtd

and needs to be connected to this DTD.

You connect DTDs with external parameter entity references. For a private DTD,

this connection takes the following form:

<!ENTITY % name SYSTEM “URI”>
%name;

For example:

<!ENTITY % player SYSTEM “player.dtd”>
%player;

274 Part II ✦ Document Type Definitions

This example uses a relative URL (player.dtd) and assumes that the file player.dtd

will be found in the same place as the linking DTD. If that’s not the case, you can

use a full URL as follows:

<!ENTITY % player SYSTEM
“http://www.ibiblio.org/xml/dtds/player.dtd”>

%player;

Listing 10-11 shows a completed TEAM DTD that includes a reference to the

PLAYER DTD:

Listing 10-11: The TEAM DTD (team.dtd)

<!ELEMENT TEAM (TEAM_CITY, TEAM_NAME, PLAYER*)>
<!ELEMENT TEAM_CITY (#PCDATA)>
<!ELEMENT TEAM_NAME (#PCDATA)>
<!ENTITY % player SYSTEM “player.dtd”>
%player;

By using this DTD, producing a valid team document whose root element is TEAM is

straightforward. Listing 10-12 demonstrates one such valid team document whose

root element is TEAM. This document uses both the elements declared in team.dtd

and those declared in player.dtd.

Listing 10-12: A valid team document

<?xml version=”1.0” encoding=”ISO-8859-1”?>
<!DOCTYPE TEAM SYSTEM “team.dtd”>
<TEAM>
<TEAM_CITY>Florida</TEAM_CITY>
<TEAM_NAME>Marlins</TEAM_NAME>
<PLAYER>
<GIVEN_NAME>Alex</GIVEN_NAME>
<SURNAME>Gonzalez</SURNAME>
<POSITION>Shortstop</POSITION>
<GAMES>25</GAMES>
<GAMES_STARTED>23</GAMES_STARTED>
<AT_BATS>86</AT_BATS>
<RUNS>11</RUNS>
<HITS>13</HITS>
<DOUBLES>2</DOUBLES>
<TRIPLES>0</TRIPLES>
<HOME_RUNS>3</HOME_RUNS>
<RBI>7</RBI>
<STEALS>0</STEALS>
<CAUGHT_STEALING>0</CAUGHT_STEALING>

275Chapter 10 ✦ Entity Declarations

<SACRIFICE_HITS>2</SACRIFICE_HITS>
<SACRIFICE_FLIES>0</SACRIFICE_FLIES>
<ERRORS>2</ERRORS>
<WALKS>9</WALKS>
<STRUCK_OUT>30</STRUCK_OUT>
<HIT_BY_PITCH>1</HIT_BY_PITCH>

</PLAYER>
<PLAYER>
<GIVEN_NAME>Brian</GIVEN_NAME>
<SURNAME>Daubach</SURNAME>
<POSITION>First Base</POSITION>
<GAMES>10</GAMES>
<GAMES_STARTED>3</GAMES_STARTED>
<AT_BATS>15</AT_BATS>
<RUNS>0</RUNS>
<HITS>3</HITS>
<DOUBLES>1</DOUBLES>
<TRIPLES>0</TRIPLES>
<HOME_RUNS>0</HOME_RUNS>
<RBI>3</RBI>
<STEALS>0</STEALS>
<CAUGHT_STEALING>0</CAUGHT_STEALING>
<SACRIFICE_HITS>0</SACRIFICE_HITS>
<SACRIFICE_FLIES>0</SACRIFICE_FLIES>
<ERRORS>0</ERRORS>
<WALKS>1</WALKS>
<STRUCK_OUT>5</STRUCK_OUT>
<HIT_BY_PITCH>1</HIT_BY_PITCH>

</PLAYER>
<PLAYER>
<GIVEN_NAME>Joe</GIVEN_NAME>
<SURNAME>Fontenot</SURNAME>
<POSITION>Starting Pitcher</POSITION>
<GAMES>8</GAMES>
<GAMES_STARTED>8</GAMES_STARTED>
<WINS>0</WINS>
<LOSSES>7</LOSSES>
<SAVES>0</SAVES>
<COMPLETE_GAMES>0</COMPLETE_GAMES>
<SHUT_OUTS>0</SHUT_OUTS>
<ERA>6.33</ERA>
<INNINGS>42.2</INNINGS>
<HITS_AGAINST>56</HITS_AGAINST>
<HOME_RUNS_AGAINST>5</HOME_RUNS_AGAINST>
<RUNS_AGAINST>34</RUNS_AGAINST>
<EARNED_RUNS>30</EARNED_RUNS>
<HIT_BATTER>5</HIT_BATTER>
<WILD_PITCHES>6</WILD_PITCHES>
<BALK>0</BALK>
<WALKED_BATTER>20</WALKED_BATTER>
<STRUCK_OUT_BATTER>24</STRUCK_OUT_BATTER>

</PLAYER>
</TEAM>

276 Part II ✦ Document Type Definitions

A SEASON contains LEAGUE, DIVISION, and TEAM elements. Although LEAGUE and

DIVISION could each have their own DTD, it doesn’t pay to go overboard with split-

ting DTDs. Unless you expect you’ll have some documents that contain LEAGUE or

DIVISION elements that are not part of a SEASON, you might as well include all

three in the same DTD. Listing 10-13 demonstrates.

Listing 10-13: The SEASON DTD (season.dtd)

<!ELEMENT YEAR (#PCDATA)>
<!ELEMENT LEAGUE (LEAGUE_NAME, DIVISION, DIVISION, DIVISION)>

<!-- American or National -->
<!ELEMENT LEAGUE_NAME (#PCDATA)>

<!-- East, West, or Central -->
<!ELEMENT DIVISION_NAME (#PCDATA)>
<!ELEMENT DIVISION (DIVISION_NAME, TEAM+)>
<!ELEMENT SEASON (YEAR, LEAGUE, LEAGUE)>
<!ENTITY % team SYSTEM “team.dtd”>
%team;

It’s now possible to write a document including all players and teams in the league.

This document only refers to the SEASON DTD of Listing 10-13 using this document

type declaration:

<!DOCTYPE TEAM SYSTEM “season.dtd”>

It does not need to include the PLAYER or TEAM DTDs specifically because the

SEASON DTD will pull them in. DTD inclusion has an indefinite number of levels.

Although neither the league DTD nor the team DTD it imports declares the PLAYER
element, you can still use PLAYER elements in the right places in a league document

because the player DTD that the team DTD does import does declare the PLAYER
element. Only after all parameter entity imports are fully resolved is the document

checked against the DTD.

Building a Document from Pieces
The baseball examples have been quite large. Although only a truncated version

with limited numbers of players appears in this book, the full document is more

than half a megabyte, way too large to comfortably download or search, especially

if the reader is only interested in a single team, player, or division. The techniques

discussed in the previous section of this chapter allow you to split the document

277Chapter 10 ✦ Entity Declarations

into many different, smaller, more manageable documents, one for each team,

player, division, and league. External entity references connect the players to form

teams, the teams to form divisions, the divisions to form leagues, and the leagues to

form a season.

Unfortunately you cannot embed just any XML document as an external parsed

entity. Consider, for example, Listing 10-14, ChrisHoiles.xml. This is a revised ver-

sion of Listing 10-10. However, if you look closely you’ll notice that the prolog is dif-

ferent. Listing 10-10’s prolog is:

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE PLAYER SYSTEM “player.dtd”>

Listing 10-14’s prolog has a text declaration instead of an XML declaration.

Furthermore, the document type declaration is completely omitted.

Listing 10-14: ChrisHoiles.xml

<?xml encoding=”UTF-8”?>
<PLAYER>
<GIVEN_NAME>Chris</GIVEN_NAME>
<SURNAME>Hoiles</SURNAME>
<POSITION>Catcher</POSITION>
<GAMES>97</GAMES>
<GAMES_STARTED>81</GAMES_STARTED>
<AT_BATS>267</AT_BATS>
<RUNS>36</RUNS>
<HITS>70</HITS>
<DOUBLES>12</DOUBLES>
<TRIPLES>0</TRIPLES>
<HOME_RUNS>15</HOME_RUNS>
<RBI>56</RBI>
<STEALS>0</STEALS>
<CAUGHT_STEALING>1</CAUGHT_STEALING>
<SACRIFICE_HITS>5</SACRIFICE_HITS>
<SACRIFICE_FLIES>4</SACRIFICE_FLIES>
<ERRORS>3</ERRORS>
<WALKS>38</WALKS>
<STRUCK_OUT>50</STRUCK_OUT>
<HIT_BY_PITCH>4</HIT_BY_PITCH>

</PLAYER>

I’ll spare you the other 1200 or so players, although you’ll find them all on the
accompanying CD-ROM in the examples\baseball\players folder.

On the
CD-ROM

278 Part II ✦ Document Type Definitions

The examples in this chapter are all given in ASCII. Because ASCII is a strict subset

of both Latin-1 and UTF-8, you could use either of these text declarations:

<?xml version=”1.0” encoding=”ISO-8859-1”?>
<?xml version=”1.0” encoding=”UTF-8”?>

Listing 10-15, mets.dtd, and Listing 10-16, mets.xml, show how you can use external

parsed entities to put together a complete team. The DTD defines external entity

references for each player on the team. The XML document loads the DTD using an

external parameter entity reference in its internal DTD subset. Then, its document

entity includes many external general entity references that load in the individual

players. Notice in particular how compactly external entity references enable you

to embed multiple players.

Listing 10-15: The New York Mets DTD with entity references
for players (mets.dtd)

<!ENTITY AlLeiter SYSTEM “mets/AlLeiter.xml”>
<!ENTITY ArmandoReynoso SYSTEM “mets/ArmandoReynoso.xml”>
<!ENTITY BobbyJones SYSTEM “mets/BobbyJones.xml”>
<!ENTITY BradClontz SYSTEM “mets/BradClontz.xml”>
<!ENTITY DennisCook SYSTEM “mets/DennisCook.xml”>
<!ENTITY GregMcMichael SYSTEM “mets/GregMcMichael.xml”>
<!ENTITY HideoNomo SYSTEM “mets/HideoNomo.xml”>
<!ENTITY JohnFranco SYSTEM “mets/JohnFranco.xml”>
<!ENTITY JosiasManzanillo SYSTEM “mets/JosiasManzanillo.xml”>
<!ENTITY OctavioDotel SYSTEM “mets/OctavioDotel.xml”>
<!ENTITY RickReed SYSTEM “mets/RickReed.xml”>
<!ENTITY RigoBeltran SYSTEM “mets/RigoBeltran.xml”>
<!ENTITY WillieBlair SYSTEM “mets/WillieBlair.xml”>

Listing 10-16: The New York Mets with players loaded
from external entities (mets.xml)

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE TEAM SYSTEM “team.dtd” [
<!ENTITY % players SYSTEM “mets.dtd”>
%players;

]>
<TEAM>
<TEAM_CITY>New York</TEAM_CITY>
<TEAM_NAME>Mets</TEAM_NAME>

279Chapter 10 ✦ Entity Declarations

&AlLeiter;
&ArmandoReynoso;
&BobbyJones;
&BradClontz;
&DennisCook;
&GregMcMichael;
&HideoNomo;
&JohnFranco;
&JosiasManzanillo;
&OctavioDotel;
&RickReed;
&RigoBeltran;
&WillieBlair;

</TEAM>

Figure 10-3 shows Listing 10-16 loaded into Internet Explorer. Notice that the data

for the players is present even though the main document only contains references

to the entities where the player data resides. Internet Explorer resolves external

references — not all XML parsers/browsers do.

Figure 10-3: The XML document displays all players on
the 1998 New York Mets.

280 Part II ✦ Document Type Definitions

It would be nice to continue this procedure — building a division by combining

team files, a league by combining divisions, and a season by combining leagues.

Unfortunately, if you try this you rapidly run into a wall. The documents embedded

via external entities cannot have their own document type declarations. At most,

their prologs can contain text declarations. This means you can only have a single

level of document embedding. This contrasts with DTD embedding in which DTDs

can be nested arbitrarily deeply.

There are two roads around this problem. One is to include all teams, divisions,

leagues, and seasons in a single document that refers to the many different player

documents. This requires a few more than 1200 entity declarations (one for each

player). The other is to remove the document type declarations from the individual

team files. They will then no longer be able to parsed on their own. They will then

only make sense when rendered as part of a document that does define all the vari-

ous entity references they make use of.

In both cases, you need a DTD that defines entity references for each player.

Because there’s no limit to how deeply DTDs can nest (unlike XML documents), we

begin with a DTD that pulls in DTDs containing entity definitions for all the teams.

This is shown in Listing 10-17.

Listing 10-17: The players DTD (players.dtd)

<!ENTITY % angels SYSTEM “angels.dtd”>
%angels;
<!ENTITY % astros SYSTEM “astros.dtd”>
%astros;
<!ENTITY % athletics SYSTEM “athletics.dtd”>
%athletics;
<!ENTITY % bluejays SYSTEM “bluejays.dtd”>
%bluejays;
<!ENTITY % braves SYSTEM “braves.dtd”>
%braves;
<!ENTITY % brewers SYSTEM “brewers.dtd”>
%brewers;
<!ENTITY % cubs SYSTEM “cubs.dtd”>
%cubs;
<!ENTITY % devilrays SYSTEM “devilrays.dtd”>
%devilrays;
<!ENTITY % diamondbacks SYSTEM “diamondbacks.dtd”>
%diamondbacks;
<!ENTITY % dodgers SYSTEM “dodgers.dtd”>
%dodgers;
<!ENTITY % expos SYSTEM “expos.dtd”>
%expos;
<!ENTITY % giants SYSTEM “giants.dtd”>
%giants;

281Chapter 10 ✦ Entity Declarations

<!ENTITY % indians SYSTEM “indians.dtd”>
%indians;
<!ENTITY % mariners SYSTEM “mariners.dtd”>
%mariners;
<!ENTITY % marlins SYSTEM “marlins.dtd”>
%marlins;
<!ENTITY % mets SYSTEM “mets.dtd”>
%mets;
<!ENTITY % orioles SYSTEM “orioles.dtd”>
%orioles;
<!ENTITY % padres SYSTEM “padres.dtd”>
%padres;
<!ENTITY % phillies SYSTEM “phillies.dtd”>
%phillies;
<!ENTITY % pirates SYSTEM “pirates.dtd”>
%pirates;
<!ENTITY % rangers SYSTEM “rangers.dtd”>
%rangers;
<!ENTITY % redsox SYSTEM “redsox.dtd”>
%redsox;
<!ENTITY % reds SYSTEM “reds.dtd”>
%reds;
<!ENTITY % rockies SYSTEM “rockies.dtd”>
%rockies;
<!ENTITY % royals SYSTEM “royals.dtd”>
%royals;
<!ENTITY % tigers SYSTEM “tigers.dtd”>
%tigers;
<!ENTITY % twins SYSTEM “twins.dtd”>
%twins;
<!ENTITY % whitesox SYSTEM “whitesox.dtd”>
%whitesox;
<!ENTITY % yankees SYSTEM “yankees.dtd”>
%yankees;

Listing 10-18 takes the first path. It pulls together all the player subdocuments and

all the DTDs that define the entities for each player. It includes one entity reference

for each player in the league. Although this document is much smaller than the

monolithic document developed earlier (32K vs. 628K), it’s still quite long, so not all

players are included here. The full version of Listing 10-18 relies on 33 DTDs and

more than 1000 XML files to produce the finished document. The largest problem

with this approach is that if the document is served via HTTP, then browsers will

need to make over 1000 separate connections to the Web server before the docu-

ment can be displayed.

The full example is on the CD-ROM in the file examples\baseball\players\index.xml.On the
CD-ROM

282 Part II ✦ Document Type Definitions

Listing 10-18: Master document for the 1998 season using
external entity references for players

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE SEASON SYSTEM “season.dtd” [

<!ENTITY % players SYSTEM “players.dtd”>
%players;

]>
<SEASON>
<YEAR>1998</YEAR>
<LEAGUE>
<LEAGUE_NAME>National</LEAGUE_NAME>
<DIVISION>

<DIVISION_NAME>East</DIVISION_NAME>
<TEAM>
<TEAM_CITY>Florida</TEAM_CITY>
<TEAM_NAME>Marlins</TEAM_NAME>

</TEAM>
<TEAM>
<TEAM_CITY>Montreal</TEAM_CITY>
<TEAM_NAME>Expos</TEAM_NAME>

</TEAM>
<TEAM>
<TEAM_CITY>New York</TEAM_CITY>
<TEAM_NAME>Mets</TEAM_NAME>
&RigoBeltran;
&DennisCook;
&SteveDecker;
&JohnFranco;
&MattFranco;
&ButchHuskey;
&BobbyJones;
&MikeKinkade;
&HideoNomo;
&VanceWilson;

</TEAM>
<TEAM>
<TEAM_CITY>Philadelphia</TEAM_CITY>
<TEAM_NAME>Phillies</TEAM_NAME>

</TEAM>
</DIVISION>
<DIVISION>

<DIVISION_NAME>Central</DIVISION_NAME>
<TEAM>
<TEAM_CITY>Chicago</TEAM_CITY>
<TEAM_NAME>Cubs</TEAM_NAME>

</TEAM>
</DIVISION>
<DIVISION>

<DIVISION_NAME>West</DIVISION_NAME>
<TEAM>

283Chapter 10 ✦ Entity Declarations

<TEAM_CITY>Arizona</TEAM_CITY>
<TEAM_NAME>Diamondbacks</TEAM_NAME>

</TEAM>
</DIVISION>

</LEAGUE>
<LEAGUE>
<LEAGUE_NAME>American</LEAGUE_NAME>
<DIVISION>

<DIVISION_NAME>East</DIVISION_NAME>
<TEAM>
<TEAM_CITY>Baltimore</TEAM_CITY>
<TEAM_NAME>Orioles</TEAM_NAME>

</TEAM>
</DIVISION>
<DIVISION>

<DIVISION_NAME>Central</DIVISION_NAME>
<TEAM>
<TEAM_CITY>Chicago</TEAM_CITY>
<TEAM_NAME>White Sox</TEAM_NAME>
&JeffAbbott;
&MikeCameron;
&MikeCaruso;
&LarryCasian;
&TomFordham;
&MarkJohnson;
&RobertMachado;
&JimParque;
&ToddRizzo;

</TEAM>
</DIVISION>
<DIVISION>

<DIVISION_NAME>West</DIVISION_NAME>
<TEAM>
<TEAM_CITY>Anaheim</TEAM_CITY>
<TEAM_NAME>Angels</TEAM_NAME>

</TEAM>
</DIVISION>

</LEAGUE>
</SEASON>

You do have some flexibility in which levels you choose for your master document

and embedded data. For instance, one alternative to the structure used by Listing

10-18 places the teams and all their players in individual documents, then combines

those team files into a season with external entities as shown in Listing 10-19. This

has the advantage of using a smaller number of XML files of more even sizes that

place less load on the Web server and that would download and display more

quickly. To be honest, however, the advantage of one approach over the other is

minimal. Feel free to use whichever one more closely matches the organization of

your data, or simply whichever you feel more comfortable with.

284 Part II ✦ Document Type Definitions

Listing 10-19: The 1998 season using external entity
references for teams

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE SEASON SYSTEM “season.dtd” [

<!ENTITY players SYSTEM “players.dtd”>
%players;
<!ENTITY angels SYSTEM “angels.xml”>
<!ENTITY astros SYSTEM “astros.xml”>
<!ENTITY athletics SYSTEM “athletics.xml”>
<!ENTITY bluejays SYSTEM “bluejays.xml”>
<!ENTITY braves SYSTEM “braves.xml”>
<!ENTITY brewers SYSTEM “brewers.xml”>
<!ENTITY cardinals SYSTEM “cardinals.xml”>
<!ENTITY cubs SYSTEM “cubs.xml”>
<!ENTITY devilrays SYSTEM “devilrays.xml”>
<!ENTITY diamondbacks SYSTEM “diamondbacks.xml”>
<!ENTITY dodgers SYSTEM “dodgers.xml”>
<!ENTITY expos SYSTEM “expos.xml”>
<!ENTITY giants SYSTEM “giants.xml”>
<!ENTITY indians SYSTEM “indians.xml”>
<!ENTITY mariners SYSTEM “mariners.xml”>
<!ENTITY marlins SYSTEM “marlins.xml”>
<!ENTITY mets SYSTEM “mets.xml”>
<!ENTITY orioles SYSTEM “orioles.xml”>
<!ENTITY padres SYSTEM “padres.xml”>
<!ENTITY phillies SYSTEM “phillies.xml”>
<!ENTITY pirates SYSTEM “pirates.xml”>
<!ENTITY rangers SYSTEM “rangers.xml”>
<!ENTITY redsox SYSTEM “red sox.xml”>
<!ENTITY reds SYSTEM “reds.xml”>
<!ENTITY rockies SYSTEM “rockies.xml”>
<!ENTITY royals SYSTEM “royals.xml”>
<!ENTITY tigers SYSTEM “tigers.xml”>
<!ENTITY twins SYSTEM “twins.xml”>
<!ENTITY whitesox SYSTEM “whitesox.xml”>
<!ENTITY yankees SYSTEM “yankees.xml”>

]>
<SEASON>
<YEAR>1998</YEAR>
<LEAGUE>
<LEAGUE_NAME>National</LEAGUE_NAME>
<DIVISION>

<DIVISION_NAME>East</DIVISION_NAME>
&marlins;
&braves;
&expos;

285Chapter 10 ✦ Entity Declarations

&mets;
&phillies;

</DIVISION>
<DIVISION>

<DIVISION_NAME>Central</DIVISION_NAME>
&cardinals;
&cubs;
&reds;
&astros;
&brewers;
&pirates;

</DIVISION>
<DIVISION>

<DIVISION_NAME>West</DIVISION_NAME>
&diamondbacks;
&rockies;
&dodgers;
&padres;
&giants;

</DIVISION>
</LEAGUE>
<LEAGUE>
<LEAGUE_NAME>American</LEAGUE_NAME>
<DIVISION>
<DIVISION_NAME>East</DIVISION_NAME>
&orioles;
&redsox;
&yankees;
&devilrays;
&bluejays

</DIVISION>
<DIVISION>
<DIVISION_NAME>Central</DIVISION_NAME>
&whitesox;
&indians;
&tigers;
&royals;
&twins;

</DIVISION>
<DIVISION>
<DIVISION_NAME>West</DIVISION_NAME>
&angels;
&athletics;
&mariners;
&rangers;
</DIVISION>

</LEAGUE>
</SEASON>

286 Part II ✦ Document Type Definitions

The individual team files that are being included in this example, such as mets.xml,

will contain the data for the players on those teams. They can either contain the

data directly or they can contain the entity references defined by players.dtd.

Listing 10-20 shows what one such team document looks like. This is not by itself a

complete or well-formed XML document. It does not define any of the entity refer-

ences it uses, and it has a text declaration instead of an XML declaration. It can only

be parsed when imported into a document that does define these entity references

such as Listing 10-19. It is only a part of an XML document. The team documents

are not usable on their own because the entity references they contain are not

defined until they’re aggregated into the master document.

Listing 10-20: The New York Mets with players
loaded from external entities

<?xml encoding=”ISO-8859-1”?>
<TEAM>
<TEAM_CITY>New York</TEAM_CITY>
<TEAM_NAME>Mets</TEAM_NAME>
&AlLeiter;
&ArmandoReynoso;
&BobbyJones;
&BradClontz;
&DennisCook;
&GregMcMichael;
&HideoNomo;
&JohnFranco;
&JosiasManzanillo;
&OctavioDotel;
&RickReed;
&RigoBeltran;
&WillieBlair;

</TEAM>

It’s truly unfortunate that only the top-level document is allowed to have a docu-

ment type declaration. This somewhat limits the utility of external parsed entities.

XInclude is a proposed standard that offers an alternative, non-DTD–based means
of building an XML document out of smaller XML documents. However, XInclude
is not part of the core XML standard and is not necessarily supported by any vali-
dating XML parser and Web browser, unlike the techniques of this chapter, which
are supported.

New
Feature

287Chapter 10 ✦ Entity Declarations

Summary
In this chapter, you discovered that XML documents are built from both internal

and external entities. In particular, you learned that:

✦ Entities are the physical storage units from which an XML document is

assembled.

✦ An entity holds content: well-formed XML, other forms of text, or binary data.

✦ Internal entities are defined completely within the DTD.

✦ External entities draw their content from another resource located with

a URL.

✦ General entity references have the form &name; and are used in a document’s

content.

✦ Internal general entity references are replaced by an entity value given in the

entity declaration.

✦ External general entity references are replaced by the data at a URL specified

in the entity declaration after the SYSTEM keyword.

✦ Internal parameter entity references have the form %name; and are used

exclusively in DTDs.

✦ You can merge different DTDs with external parameter entity references.

✦ External entity references enable you to build large, compound documents

out of small parts.

✦ Invalid documents can still use DTDs to define entity references.

When a document uses attributes, the attributes must also be declared in the DTD

in order for the document to be valid. The next chapter shows how to declare

attributes in DTDs, and how you can attach constraints to the attribute values.

✦ ✦ ✦

Attribute
Declarations

Some XML elements have attributes, that is, name-value

pairs containing information intended for the applica-

tion. Attributes are intended for extra information associated

with an element (such as an ID number) used only by pro-

grams that read and write the file, and not for the content of

the element that’s read and written by humans. In this chap-

ter, you learn about the various attribute types and how to

declare attributes in DTDs.

What Is an Attribute?
As first discussed in Chapter 5, start tags and empty element

tags may contain attributes — name-value pairs separated by

an equals sign (=). For example,

<GREETING LANGUAGE=”English”>
Hello XML!
<MOVIE SOURCE=”WavingHand.mov”/>

</GREETING>

In this example, the GREETING element has a LANGUAGE
attribute, which has the value English. The MOVIE element

has a SOURCE attribute, which has the value WavingHand.mov.

The GREETING element’s content is Hello XML!. The lan-

guage in which the content is written is useful information

about the content. The language, however, is not itself part of

the content.

Similarly, the MOVIE element’s content is the binary data

stored in the file WavingHand.mov. The name of the file is not

the content, although the name tells you where the content

can be found. The attribute contains information about the

content rather than the content itself.

1111C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

What is an attribute?

Declaring attributes
in DTDs

Declaring multiple
attributes

Specifying default
values for attributes

Attribute types

Predefined attributes

A DTD for attribute-
based baseball
statistics

✦ ✦ ✦ ✦

290 Part II ✦ Document Type Definitions

Elements can possess more than one attribute. For example:

<RECTANGLE WIDTH=”30” HEIGHT=”45”/>
<SCRIPT LANGUAGE=”javascript” ENCODING=”8859_1”>...</SCRIPT>

In this example, the LANGUAGE attribute of the SCRIPT element has the value

javascript. The ENCODING attribute of the SCRIPT element has the value 8859_1.

The WIDTH attribute of the RECTANGLE element has the value 30. The HEIGHT
attribute of the RECTANGLE element has the value 45. These values are all strings,

not numbers.

Declaring Attributes in DTDs
Like elements and entities, the attributes used in a document must be declared in

the DTD in order for the document to be valid. The <!ATTLIST> construct declares

attributes. <!ATTLIST> has the following form:

<!ATTLIST Element_name Attribute_name Type Default_value>

Element_name is the name of the element possessing this attribute. Attribute_
name is the name of the attribute. Type is the kind of attribute — one of the ten

types listed in Table 11-1. The most general type is CDATA. Finally, Default_value
is the value the attribute takes on if no value is specified for the attribute.

Table 11-1
Attribute Types

Type Meaning

CDATA Character data — text that is not markup

Enumerated A list of possible values from which exactly one will be chosen

ID A unique name not shared by any other ID type attribute in the
document

IDREF The value of an ID type attribute of an element in the document

IDREFS Multiple IDs of elements separated by white space

ENTITY The name of an entity declared in the DTD

ENTITIES The names of multiple entities declared in the DTD, separated by white
space

NMTOKEN An XML name token

NMTOKENS Multiple XML name tokens separated by white space

NOTATION One or more names of notations declared in the DTD

291Chapter 11 ✦ Attribute Declarations

For example, consider the following element:

<GREETING LANGUAGE=”French”>
Bonjour!

</GREETING>

This element might be declared as follows in the DTD:

<!ELEMENT GREETING (#PCDATA)>
<!ATTLIST GREETING LANGUAGE CDATA “English”>

The <!ELEMENT> declaration simply says that a GREETING element contains parsed

character data. That’s nothing new. The <!ATTLIST> declaration says that GREET-
ING elements have an attribute with the name LANGUAGE whose value has the type

CDATA, essentially the same as #PCDATA for element content. If you encounter a

GREETING tag without a LANGUAGE attribute, the value English is used by default.

The attribute list is declared separately from the element itself. The name of the ele-

ment to which the attribute belongs is included in the <!ATTLIST> declaration.

This attribute declaration applies only to that element, GREETING in the preceding

example. If other elements also have LANGUAGE attributes, they require separate

<!ATTLIST> declarations.

As with most declarations, the exact order in which attribute declarations appear is

not important. They can come before or after the element declaration with which

they’re associated. In fact, you can even declare an attribute more than once

(although I don’t recommend this practice), in which case the first such declaration

takes precedence.

You can even declare attributes for elements that don’t exist, although this is

uncommon. Perhaps you could declare these nonexistent attributes as part of the

initial editing of the DTD, with a plan to return later and declare the elements.

Declaring Multiple Attributes
Elements often have multiple attributes. HTML’s IMG element can have HEIGHT,

WIDTH, ALT, BORDER, ALIGN, and several other attributes. In fact, all HTML elements

can have multiple attributes. XML tags can also have multiple attributes. For

instance, a RECTANGLE element naturally needs both a LENGTH and a WIDTH
attribute.

<RECTANGLE LENGTH=”70cm” WIDTH=”85cm”/>

292 Part II ✦ Document Type Definitions

You can declare these attributes in several attribute declarations, with one declara-

tion for each attribute. For example:

<!ELEMENT RECTANGLE EMPTY>
<!ATTLIST RECTANGLE LENGTH CDATA “0cm”>
<!ATTLIST RECTANGLE WIDTH CDATA “0cm”>

The preceding example says that RECTANGLE elements possess LENGTH and WIDTH
attributes, each of which has the default value 0cm.

You can combine the two <!ATTLIST> tags into a single declaration like this:

<!ATTLIST RECTANGLE LENGTH CDATA “0cm”
WIDTH CDATA “0cm”>

This single declaration declares both the LENGTH and WIDTH attributes, each with

type CDATA, and each with a default value of 0cm. You can also use this syntax when

the attributes have different types or defaults, as shown below:

<!ATTLIST RECTANGLE LENGTH CDATA “15cm”
WIDTH CDATA “34cm”>

Specifying Default Values for Attributes
Instead of specifying an explicit default attribute value such as 0px, an attribute

declaration can require the author to provide a value, allow the value to be omitted

completely, or even always use the default value. These requirements are specified

with the three keywords #REQUIRED, #IMPLIED, and #FIXED, respectively.

#REQUIRED
You may not always have a good option for a default value. For example, when writ-

ing a DTD for use on your intranet, you may want to require that all documents

have at least one empty <AUTHOR/> element. This element might not be rendered,

but it can identify the person who created the document. This element can have

NAME, EMAIL, and EXTENSION attributes so that the author may be contacted. For

example:

<AUTHOR NAME=”Elliotte Rusty Harold”
EMAIL=”elharo@metalab.unc.edu” EXTENSION=”3459”/>

Instead of providing default values for these attributes, suppose you want to force

anyone posting a document on the Intranet to identify themselves. Although XML

can’t prevent someone from attributing authorship to Luke Skywalker, it can at least

293Chapter 11 ✦ Attribute Declarations

require that authorship be attributed to someone by using #REQUIRED as the

default value. For example:

<!ELEMENT AUTHOR EMPTY>
<!ATTLIST AUTHOR NAME CDATA #REQUIRED>
<!ATTLIST AUTHOR EMAIL CDATA #REQUIRED>
<!ATTLIST AUTHOR EXTENSION CDATA #REQUIRED>

If the parser encounters an AUTHOR element that does not include one or more of

these attributes, it returns an error.

You might also want to use #REQUIRED to force authors to give their IMG elements

WIDTH, HEIGHT, and ALT attributes. For example:

<!ELEMENT IMG EMPTY>
<!ATTLIST IMG ALT CDATA #REQUIRED>
<!ATTLIST IMG WIDTH CDATA #REQUIRED>
<!ATTLIST IMG HEIGHT CDATA #REQUIRED>

Any attempt to omit these attributes (as all too many Web pages do) produces an

invalid document. The XML parser notices the error and informs the application of

the missing attributes.

#IMPLIED
Sometimes you may not have a good option for a default value, but you do not want

to require the author of the document to include a value either. For example, suppose

some of the people posting documents to your Intranet are offsite freelancers who

have e-mail addresses but lack phone extensions. Therefore, you don’t want to

require them to include an extension attribute in their AUTHOR elements. For example:

<AUTHOR NAME=”Elliotte Rusty Harold”
EMAIL=”elharo@metalab.unc.edu” />

You still don’t want to provide a default value for the extension, but you do want to

allow authors to include such an attribute. In this case, use #IMPLIED as the default

value like this:

<!ELEMENT AUTHOR EMPTY>
<!ATTLIST AUTHOR EXTENSION CDATA #IMPLIED>
<!ATTLIST AUTHOR NAME CDATA #REQUIRED>
<!ATTLIST AUTHOR EMAIL CDATA #REQUIRED>

If the XML parser encounters an AUTHOR element without an EXTENSION attribute, it

informs the application that no value is available. The application can act on this

notification as it chooses. For example, if the application is feeding elements into a

SQL database in which the attributes are mapped to fields, the application would

probably insert a null into the corresponding database field.

294 Part II ✦ Document Type Definitions

#FIXED
Finally, you may want to provide a default value for the attribute without allowing

the author to change it. For example, you may wish to specify an identical COMPANY
attribute of the AUTHOR element for anyone posting documents to your Intranet

like this:

<AUTHOR NAME=”Elliotte Rusty Harold” COMPANY=”TIC”
EMAIL=”elharo@metalab.unc.edu” EXTENSION=”3459”/>

You can require that everyone use this value for the company name by specifying

the default value as #FIXED, followed by the actual default. For example:

<!ELEMENT AUTHOR EMPTY>
<!ATTLIST AUTHOR COMPANY CDATA #FIXED “TIC”>
<!ATTLIST AUTHOR EXTENSION CDATA #IMPLIED>
<!ATTLIST AUTHOR NAME CDATA #REQUIRED>
<!ATTLIST AUTHOR EMAIL CDATA #REQUIRED>

Document authors are not required to actually include the fixed attribute in their

tags. If they don’t include the fixed attribute, the default value will be used. If they

do include the fixed attribute, however, they must use an identical value.

Otherwise, the parser will return an error.

Attribute Types
All preceding examples have been CDATA type attributes. This is the most general

type, but there are nine other types permitted for attributes. Altogether the ten

types are:

✦ CDATA

✦ NMTOKEN

✦ NMTOKENS

✦ Enumerated

✦ ID

✦ IDREF

✦ IDREFS

✦ ENTITY

✦ ENTITIES

✦ NOTATION

295Chapter 11 ✦ Attribute Declarations

Nine of the preceding types are constants used in the type field, while Enumerated

is a special type that indicates the attribute must take its value from a list of possi-

ble values. Let’s investigate each type in depth.

The CDATA attribute type
CDATA, the most general attribute type, means the attribute value may be any string

of text not containing a less than sign (<) or quotation marks (“). These characters

may be inserted using the usual entity references (< and ") or by charac-

ter references (< and "). Furthermore, all raw ampersands (&) — that is

ampersands that do not begin a character or entity reference — must also be

escaped as & or &.

In fact, even if the value itself contains double quotes, they do not have to be

escaped. Instead, you may use single quotes to delimit the attributes, as in the fol-

lowing example:

<RECTANGLE LENGTH=’7”’ WIDTH=’8.5”’/>

If the attribute value contains single and double quotes, the one not used to delimit

the value must be replaced with the entity reference ' (apostrophe) or

" (double quote). For example:

<RECTANGLE LENGTH=’8'7”’ WIDTH=”10’6"”/>

The NMTOKEN attribute type
The NMTOKEN attribute type restricts the value of the attribute to a valid XML name

token. As discussed in Chapter 6, XML names must begin with a letter or an under-

score (_), and subsequent characters in the name may include letters, digits, under-

scores, hyphens, and periods. They may not include white space. (The underscore

often substitutes for white space.) Technically, names may contain colons, but you

shouldn’t use this character because it’s reserved for use with namespaces. A name

token is the same as an XML name except that it may begin with digits, hyphens,

and periods rather than just letters and the underscore. Thus 73 and -red are legal

XML name tokens even though they’re not legal XML names. All names are name

tokens, but not all name tokens are names.

The NMTOKEN attribute type helps when you need to pick from any large group of

names that aren’t specifically part of XML but do meet requirements for XML name

tokens. The most significant of these requirements is the prohibition of white

space. For example, NMTOKEN could be used for an attribute whose value had to

map to an 8.3 DOS filename. On the other hand, it wouldn’t work well for UNIX,

Macintosh, or Windows NT filenames because those names often contain white

space.

296 Part II ✦ Document Type Definitions

For example, suppose you want to require a STATE attribute in an ADDRESS element

to be a two-letter abbreviation. You cannot force this characteristic with a DTD, but

you can prevent people from entering New York or Puerto Rico with the following

<!ATTLIST> declaration:

<!ATTLIST ADDRESS STATE NMTOKEN #REQUIRED>

However, California, Nevada, and other single-word states are still legal values. Of

course, you could simply use an enumerated list with several dozen two-letter

codes, but that approach results in more effort than most people want to expend.

For that matter, do you even know the two-letter codes for all 50 U.S. states, all the

territories and possessions, all foreign military postings, and all Canadian

provinces? On the other hand, if you define this list once in a parameter entity ref-

erence in a DTD file, you can reuse the file many times over.

The NMTOKENS attribute type
The NMTOKENS attribute type is a rare plural form of NMTOKEN. It enables the value

of the attribute to consist of multiple XML name tokens that are separated from

each other by white space. Generally, you use NMTOKENS for the same reasons as

NMTOKEN, but only when multiple tokens are required. For example, if you want to

require multiple two-letter state codes for a STATES attribute, you can use the fol-

lowing declaration:

<!ATTLIST ADDRESS STATES NMTOKENS #REQUIRED>

Then, documents could contain an ADDRESS element like this one:

<ADDRESS STATES=”MI NY LA CA”/>

Unfortunately, if you apply this technique, you’re no longer ruling out states such

as New York because each individual part of the state name qualifies as an

NMTOKEN, as shown here:

<ADDRESS STATES=”MI New York LA CA”/>

The enumerated attribute type
The enumerated type is not an XML keyword, but a list of possible values for the

attribute, separated by vertical bars. Each value must be a valid XML name token.

The document author can choose any member of the list as the value of the

attribute. The default value must be one of the values in the list.

297Chapter 11 ✦ Attribute Declarations

For example, suppose you want an element to be visible or invisible. You may

assign the element to have a VISIBLE attribute, which can only have the values

TRUE or FALSE. If that element is the simple P element, then the <!ATTLIST> decla-

ration would look as follows:

<!ATTLIST P VISIBLE (TRUE | FALSE) “TRUE”>

The preceding declaration says that a P element may or may not have a VISIBLE
attribute. If it does have a VISIBLE attribute, then the value of that attribute must

be either TRUE or FALSE. If it does not have such an attribute, then the value TRUE
is assumed. For example,

<P VISIBLE=”FALSE”>You can’t see me! Nyah! Nyah!</P>
<P VISIBLE=”TRUE”>You can see me.</P>
<P>You can see me too.</P>

By itself, this declaration is not a magic incantation that enables you to hide text. It

still relies on the application to understand that it shouldn’t display invisible ele-

ments. Whether the element is shown or hidden would probably be set through a

style sheet rule applied to elements with VISIBLE attributes. For example, in XSLT,

<xsl:template match=”P[@VISIBLE=’FALSE’]”>
</xsl:template>

<xsl:template match=”P[@VISIBLE=’TRUE’]”>
<xsl:apply-templates/>

</xsl:template>

The ID attribute type
An ID type attribute uniquely identifies an element in the document. Authoring

tools and other applications commonly use ID to help identify the elements of a

document without concern for their exact meaning or relationship to one another.

An attribute value of type ID must be a valid XML name — that is, it begins with a

letter and is composed of alphanumeric characters and the underscore without

white space. A particular name may not be used as an ID attribute of more than one

tag. Using the same ID twice in one document causes the parser to return an error.

Furthermore, each element may not have more than one attribute of type ID.

Typically, ID attributes exist solely for the convenience of programs that manipu-

late the data. In many cases, multiple elements can be effectively identical except

for the value of an ID attribute. If you choose IDs in some predictable fashion, a pro-

gram can enumerate all the different elements or all the different elements of one

type in the document.

The ID type is incompatible with #FIXED. An attribute cannot be both fixed and

have an ID type because a #FIXED attribute can only have a single value, whereas

298 Part II ✦ Document Type Definitions

each ID type attribute must have a different value. Most ID attributes use

#REQUIRED, as Listing 11-1 demonstrates.

Listing 11-1: A required ID attribute type

<?xml version=”1.0”?>
<!DOCTYPE DOCUMENT [

<!ELEMENT DOCUMENT (P*)>
<!ELEMENT P (#PCDATA)>
<!ATTLIST P PNUMBER ID #REQUIRED>

]>
<DOCUMENT>
<P PNUMBER=”p1”>The quick brown fox</P>
<P PNUMBER=”p2”>The quick brown fox</P>

</DOCUMENT>

The IDREF attribute type
The value of an attribute with the IDREF type is the ID of another element in the

document. For example, Listing 11-2 shows the IDREF and ID attributes used to

connect children to their parents.

Listing 11-2: family.xml

<?xml version=”1.0”?>
<!DOCTYPE FAMILY [

<!ELEMENT FAMILY (PERSON*)>
<!ELEMENT PERSON (#PCDATA)>
<!ATTLIST PERSON PNUMBER ID #REQUIRED>
<!ATTLIST PERSON FATHER IDREF #IMPLIED>
<!ATTLIST PERSON MOTHER IDREF #IMPLIED>

]>
<FAMILY>
<PERSON PNUMBER=”a1”>Susan</PERSON>
<PERSON PNUMBER=”a2”>Jack</PERSON>
<PERSON PNUMBER=”a3” MOTHER=”a1” FATHER=”a2”>Chelsea</PERSON>
<PERSON PNUMBER=”a4” MOTHER=”a1” FATHER=”a2”>David</PERSON>

</FAMILY>

299Chapter 11 ✦ Attribute Declarations

You generally use this uncommon but crucial type when you need to establish con-

nections between elements that aren’t reflected in the tree structure of the docu-

ment. In Listing 11-2, each child is given FATHER and MOTHER attributes containing

the ID attributes of its father and mother. However, based on the element structure

alone, there are simply four PERSON elements. None is the parent or child of the

other elements.

The IDREFS attribute type
You cannot easily and directly use an IDREF to link parents to their children in

Listing 11-2 because each parent has an indefinite number of children. As a

workaround, you could group all the children of the same parents into a SIBLINGS
element and link to the SIBLINGS. Even this approach falters in the face of half-sib-

lings who share only one parent. In short, IDREF works for many-to-one relation-

ships, but not for one-to-many or many-to-many relationships.

If one attribute potentially needs to refer to more than one ID in the document you

can declare it to have type IDREFS. The value of such an attribute is a white-

space–separated list of XML names. Each name in the list must be the ID of some

element somewhere in the same document.

Listing 11-3 demonstrates this by using a single PARENTS attribute of type IDREFS
rather than separate FATHER and MOTHER attributes. This is a more realistic

approach for a world in which families often don’t come in neat packages of one

father, one mother, and two children.

Listing 11-3: alternative_family.xml

<?xml version=”1.0”?>
<!DOCTYPE FAMILY [

<!ELEMENT FAMILY (PERSON*)>
<!ELEMENT PERSON (#PCDATA)>
<!ATTLIST PERSON PNUMBER ID #REQUIRED>
<!ATTLIST PERSON PARENTS IDREFS #IMPLIED>

]>
<FAMILY>
<PERSON PNUMBER=”a1”>Susan</PERSON>
<PERSON PNUMBER=”a2”>Jack</PERSON>
<PERSON PNUMBER=”a3” PARENTS=”a1 a2”>Chelsea</PERSON>
<PERSON PNUMBER=”a4” PARENTS=”a1 a2”>David</PERSON>

</FAMILY>

300 Part II ✦ Document Type Definitions

The ENTITY attribute type
An ENTITY type attribute enables you to link external binary data — that is, an

external unparsed general entity — into the document. The value of the ENTITY
attribute is the name of an unparsed general entity declared in the DTD, which links

to the external data.

The classic example of an ENTITY attribute is an image. The image consists of

binary data available from another URL. Provided the XML browser can support it,

you may include an image in an XML document with the following declarations in

your DTD:

<!ELEMENT IMAGE EMPTY>
<!ATTLIST IMAGE SOURCE ENTITY #REQUIRED>
<!ENTITY LOGO SYSTEM “logo.gif”>

Then, at the desired image location in the document, insert the following IMAGE tag:

<IMAGE SOURCE=”LOGO”/>

This approach is not a magic formula that all XML browsers automatically under-

stand. It is simply one technique that browsers and other applications may or may

not adopt to embed non-XML data in documents.

This technique is explored further in Chapter 12.

The ENTITIES attribute type
ENTITIES is a relatively rare plural form of ENTITY. The value of an ENTITIES type

attribute consists of multiple unparsed entity names separated by white space.

Each entity name refers to an external non-XML data source. One use for this

approach is a slide show that rotates different pictures, as in the following example:

<!ELEMENT SLIDESHOW EMPTY>
<!ATTLIST SLIDESHOW SOURCES ENTITIES #REQUIRED>
<!ENTITY PIC1 SYSTEM “cat.gif”>
<!ENTITY PIC2 SYSTEM “dog.gif”>
<!ENTITY PIC3 SYSTEM “cow.gif”>

Then, at the point in the document where you want the slide show to appear, insert

the following tag:

<SLIDESHOW SOURCES=”PIC1 PIC2 PIC3”/>

This is not a universal formula that all (or even any) XML browsers automatically

understand; it is simply one method that browsers and other applications might

adopt to embed non-XML data in documents.

Cross-
Reference

301Chapter 11 ✦ Attribute Declarations

The NOTATION attribute type
The NOTATION attribute type specifies that an attribute’s value is the name of a

notation declared in the DTD. The default value of this attribute must also be the

name of a notation declared in the DTD. Notations are introduced in the next chap-

ter. In brief, notations identify the format of non-XML data, for instance by specify-

ing a helper application for an unparsed entity.

Chapter 12 covers notations.

For example, this PLAYER attribute of a SOUND element has type NOTATION and a

default value of MP— the notation signifying a particular kind of sound file:

<!ATTLIST SOUND PLAYER NOTATION (MP) #REQUIRED>
<!NOTATION MP SYSTEM “mplay32.exe”>

You can also offer a choice of different notations. One use for this is to specify differ-

ent helper apps for different platforms. The browser can pick the one it has available.

In this case, the NOTATION keyword is followed by a set of parentheses containing the

list of allowed notation names separated by vertical bars. For example:

<!NOTATION MP SYSTEM “mplay32.exe”>
<!NOTATION ST SYSTEM “soundtool”>
<!NOTATION SM SYSTEM “Sound Machine”>
<!ATTLIST SOUND PLAYER NOTATION (MP | SM | ST) #REQUIRED>

This says that the PLAYER attribute of the SOUND element may be set to MP, ST, or

SM. We explore this further in the next chapter.

At first glance, this approach may appear inconsistent with the handling of other
list attributes, such as ENTITIES and NMTOKENS, but these two approaches are
actually quite different. ENTITIES and NMTOKENS have a list of attributes in the
actual element in the document but only one value in the attribute declaration in
the DTD. NOTATION only has a single value in the attribute of the actual element
in the document, however. The list of possible values occurs in the attribute decla-
ration in the DTD.

Predefined Attributes
In a way, two attributes are predefined in XML. You must declare these attributes in

your DTD for each element to which they apply, but you should only use these

declared attributes for their intended purposes. Such attributes are identified by a

name that begins with xml:.

These two attributes are xml:space and xml:lang. The xml:space attribute

describes how white space is treated in the element. The xml:lang attribute

describes the language (and, optionally, dialect and country) in which the element

is written.

Note

Cross-
Reference

302 Part II ✦ Document Type Definitions

xml:space
In HTML, white space is relatively insignificant. Although the difference between one

space and no space is significant, the difference between 1 space and 2 spaces, 1

space and a carriage return, or 1 space, 3 carriage returns, and 12 tabs is not impor-

tant. For text in which white space is significant — computer source code, certain

mainframe database reports, or the poetry of e. e. cummings, for example — you can

use a PRE element to specify a monospaced font and preservation of white space.

XML, however, preserves white space by default. The XML processor passes all white

space characters to the application unchanged. The application usually ignores the

extra white space. However, the XML processor can tell the application that certain

elements contain significant white space that should be preserved. The page author

uses the xml:space attribute to indicate these elements to the application.

An XML parser always passes all white space to the application, regardless of
whether xml:space’s value is default or preserve. With a value of default,
however, the application does what it would normally do with extra white space.
With a value of preserve, the application treats the extra white space as signifi-
cant. Significance depends somewhat on the eventual destination of the data. For
instance, extra white space in Java source code is relevant to a source code editor
but not to a compiler.

If an element contains significant white space, the DTD should have an <!ATTLIST>
declaration for the xml:space attribute. This attribute will have an enumerated

type with the two values, default and preserve, as shown in Listing 11-4.

Listing 11-4: Java source code with significant white space
encoded in XML

<?xml version=”1.0” standalone=”yes”?>
<!DOCTYPE PROGRAM [
<!ELEMENT PROGRAM (#PCDATA)>
<!ATTLIST PROGRAM xml:space (default|preserve) ‘preserve’>

]>
<PROGRAM xml:space=”preserve”>public class AsciiTable {

public static void main (String[] args) {

for (int i = 0; i < 128; i++) {
System.out.println(i + “ “ + (char) i);

}

}

}
</PROGRAM>

Note

303Chapter 11 ✦ Attribute Declarations

The XML specification requires that when declared, the xml:space attribute
“must be given as an enumerated type whose only possible values are ‘default’
and ‘preserve.’” In other words, it must be declared like this:

<!ATTLIST PROG xml:space (default|preserve) ‘preserve’>

Or perhaps like this:

<!ATTLIST PROG xml:space (default|preserve) ‘default’>

However, it may not be declared like this, even though this would seem to be
reasonable:

<!ATTLIST PROG xml:space CDATA #FIXED ‘preserve’>

It can’t even be declared like this:

<!ATTLIST PROG xml:space CDATA (preserve) ‘preserve’>

You have to provide both possible values to the enumeration. In fact, the last dec-
laration should be allowed. An erratum to the XML 1.0 specification, which was
incorporated into the second edition of the XML specification, clarifies this point
and explicitly allows declarations of xml:space with only one of the two possible
enumerated values. However, not all parsers have been updated to take advantage
of this erratum. For the time being you should only use the two-value enumeration.

Descendants (child elements and their children, and their children’s children, and

so on) of an element for which xml:space is defined are assumed to behave simi-

larly to their parent (either preserving or not preserving space), unless they pos-

sess an xml:space attribute with a conflicting value.

xml:lang
The xml:lang attribute identifies the language in which the element’s content is

written. The value of this attribute can have type CDATA, NMTOKEN, or an enumer-

ated list. Ideally, each of these attribute values should be one of the two-letter lan-

guage codes defined by the original ISO-639 standard. The complete list of codes

can be found on the Web at http://www.ics.uci.edu/pub/ietf/http/
related/iso639.txt.

For instance, consider this sentence from Petronius’s Satyricon in both Latin and

English. A SENTENCE element encloses both versions, but the first SENTENCE ele-

ment has an xml:lang attribute for Latin, while the second has an xml:lang
attribute for English.

Caution

304 Part II ✦ Document Type Definitions

<SENTENCE xml:lang=”la”>
Veniebamus in forum deficiente iam die, in quo notavimus
frequentiam rerum venalium, non quidem pretiosarum sed tamen
quarum fidem male ambulantem obscuritas temporis
facillime tegeret.

</SENTENCE>
<SENTENCE xml:lang=”en”>
We have come to the marketplace now when the day is failing,
where we have seen many things for sale, not for the
valuable goods but rather that the darkness of
the time may most easily conceal their shoddiness.

</SENTENCE>

While an English-speaking reader can easily tell which is the original text and which

is the translation, a computer can use the hint provided by the xml:lang attribute.

This distinction enables a spell checker to determine whether to check a particular

element and designate which dictionary to use. Search engines can inspect these

language attributes to determine whether to index a page and return matches

based on the user’s preferences. The language applies to the element and all its

children until one of its children declares a different language.

Country codes
The value of the xml:lang attribute may include additional subcode segments, sep-

arated from the primary language code by a hyphen. Most often, the first subcode

segment is a two-letter country code specified by ISO 3166. You can retrieve the

most current list of country codes from http://www.isi.edu/in-notes/iana/
assignments/country-codes. For example:

<P xml:lang=”en-US”>Put the body in the trunk of the car.</P>
<P xml:lang=”en-GB”>Put the body in the boot of the car.</P>

By convention, language codes are written in lowercase and country codes are writ-

ten in uppercase. However, this is merely a convention. This is one of the few parts

of XML that is case insensitive, because of its heritage in the case-insensitive ISO

standard.

IANA language codes
If no appropriate ISO code is available for the primary language, you can use one

of the codes registered with the Internet Assigned Numbers Authority (IANA).

Table 11-2 lists the additional codes registered with the IANA as of January 2001.

You can find the most current list at http://www.isi.edu/in-notes/iana/
assignments/languages/tags.

305Chapter 11 ✦ Attribute Declarations

Table 11-2
The IANA Language Codes

Code Language

no-bok Norwegian “Book language”

no-nyn Norwegian “New Norwegian”

i-navajo Navajo, the language of the most populous Native American tribe, the Navajo
tribe, which has about 150,000 speakers mostly located in Arizona, New
Mexico, and Utah

i-mingo The language of the Mingo tribe of West Virginia

i-default The default language context

i-tsu Tsou, a non-Chinese aboriginal language in Taiwan with about 5000 native
speakers

i-hak Hakka, a Chinese dialect with about 20 million speakers; see also zh-hak

i-klingon Klingon, the fictional language used in Star Trek

i-tay Tayal, a non-Chinese aboriginal language in Taiwan with about 63,000 native
speakers

i-tao Tao, Wobe, an African language spoken by about 156,000 people in Côte
d’Ivoire

i-pwn Paiwan, a non-Chinese aboriginal language in Taiwan with about 81,000
native speakers

i-bnn Bunun, a non-Chinese aboriginal language in Taiwan with about 34,000
native speakers

i-ami Amis, a non-Chinese aboriginal language in Taiwan with about 130,000
native speakers

i-lux Luxembourgish, a.k.a. Letzeburgesh, the German dialect spoken in the Grand
Duchy of Luxembourg

zh-guoyu Mandarin, the Chinese dialect spoken by about two-thirds of Chinese
speakers, approximately 800 million people

zh-hakka Hakka, a Chinese dialect with about 20 million speakers

zh-min The primary Chinese dialect of Taiwan spoken by about 45 million people,
alternately known as Min, Fukienese, Fuzhou, Hokkien, Amoy, or Taiwanese

zh-wuu Wu, a Chinese dialect spoken by about 50 million people in and south of
Shanghai, a.k.a. Shanghaiese

zh-xiang The Xiang or Hunanese dialect of Chinese with about 15 million speakers in
China’s Hunan province

zh-yue Cantonese, the primary dialect of Hong Kong and the surrounding areas of
southern China

zh-gan Kan, a.k.a. Gan, a dialect of Chinese spoken by about 21 million people

306 Part II ✦ Document Type Definitions

IANA codes beginning with i-, such as i-navajo, represent new languages not currently

included in two-letter form in ISO 639. IANA codes beginning with a two-letter ISO 639

code, such as zh-yue, represent a dialect of the primary language. Thus, zh is the ISO-

639 code for Chinese; zh-yue is the IANA code for the Yue dialect of Chinese (more

commonly known as Cantonese in English). The criteria for what qualifies as a lan-

guage and what qualifies as a dialect are not particularly well defined. For instance,

Swedish and Norwegian, two different languages, are mutually intelligible; but

Cantonese and Mandarin, two different dialects of Chinese, are mutually unintelligi-

ble. To be perfectly honest, the best answer is that the people who speak different

languages have their own armies and the people who speak different dialects don’t.

For instance, Listing 11-5 gives the national anthem of Luxembourg in both

Letzeburgesh (i-lux) and English (en):

Listing 11-5: The national anthem of Luxembourg
in Letzeburgesh and English

<?xml version=”1.0” encoding=”ISO-8859-1”?>
<!DOCTYPE DOCUMENT [
<!ELEMENT DOCUMENT (SONG+)>
<!ELEMENT SONG (STANZA+)>
<!ELEMENT STANZA (VERSE+)>
<!ELEMENT VERSE (#PCDATA)>
<!ATTLIST SONG xml:lang NMTOKEN ‘en’

LYRICIST CDATA #IMPLIED
COMPOSER CDATA #IMPLIED
TRANSLATOR CDATA #IMPLIED

>
]>
<DOCUMENT>
<SONG xml:lang=”i-lux”

Too Many Languages, Not Enough Codes

XML remains a little behind the times in this area. The original ISO-639 standard language
codes were formed from two case-insensitive ASCII alphabetic characters. This standard
allows no more than 26 × 26 or 676 different codes. About ten times that many different
languages are spoken on Earth today (not even counting dead languages such as Etruscan).
In practice, the reasonable codes are somewhat fewer than 676 because the language
abbreviations should have some relation to the name of the language.

ISO-639, part two, uses three-letter language codes, which should handle all languages spo-
ken on Earth. The XML standard specifically requires two-letter codes, however. On the other
hand, because of some very technical details about how the XML specification is written (see
the comments about production 33 in the Language identification section of Appendix B for
details), parsers are not required to enforce this constraint. Unfortunately, some do and
some do not, so documents really have to assume that two-letter codes are required.

307Chapter 11 ✦ Attribute Declarations

LYRICIST=”Michel Lentz” COMPOSER=”J.A. Zinnen”>
<STANZA>
<VERSE>Wo d’Uelzecht duerch d’Wisen ze’t,</VERSE>
<VERSE>Dërch d’Fielzen d’Sauer br´cht,</VERSE>
<VERSE>Wo’ d’Ref lanscht d’Musel dofteg ble’t,</VERSE>
<VERSE>Den Himmel Wein ons m´cht:</VERSE>
<VERSE>Dat ass onst Land, fir dat mer ge’f</VERSE>
<VERSE>Heinidden alles won,</VERSE>
<VERSE>Ons Hemeschtsland dat mir so’ de’f</VERSE>
<VERSE>An onsen Hierzer dron.</VERSE>
<VERSE>Ons Hemeschtsland dat mir so’ de’f</VERSE>
<VERSE>An onsen Hierzer dron.</VERSE>

</STANZA>
<STANZA>
<VERSE>O Du do uewen, dem seng Hand</VERSE>
<VERSE>Durch d’Welt Natio’ne let,</VERSE>
<VERSE>Behitt du d’L´tzeburger Land</VERSE>
<VERSE>Vum frieme Joch a Led;</VERSE>
<VERSE>Du hues ons all als Kanner schon</VERSE>
<VERSE>De freie Gescht jo ginn,</VERSE>
<VERSE>Loss viru bl´nken d’Freihetsonn,</VERSE>
<VERSE>De’ mir so’ lang gesinn.</VERSE>
<VERSE>Loss viru bl´nken d’Freihetsonn,</VERSE>
<VERSE>De’ mir so’ lang gesinn.</VERSE>

</STANZA>
</SONG>
<SONG xml:lang=”en” TRANSLATOR=”Nicholas E. Weydert”>
<STANZA>
<VERSE>Where slow you see the Alzette flow,</VERSE>
<VERSE>The Sura play wild pranks,</VERSE>
<VERSE>Where lovely vineyards amply grow,</VERSE>
<VERSE>Upon the Moselle’s banks,</VERSE>
<VERSE>There lies the land for which our thanks</VERSE>
<VERSE>Are owed to God above,</VERSE>
<VERSE>Our own, our native land which ranks</VERSE>
<VERSE>Well foremost in our love.</VERSE>
<VERSE>Our own, our native land which ranks</VERSE>
<VERSE>Well foremost in our love.</VERSE>

</STANZA>
<STANZA>
<VERSE>Oh Father in Heaven whose powerful hand</VERSE>
<VERSE>Makes states or lays them low,</VERSE>
<VERSE>Protect the Luxembourger land</VERSE>
<VERSE>From foreign yoke and woe.</VERSE>
<VERSE>God’s golden liberty bestow</VERSE>
<VERSE>On us now as of yore.</VERSE>
<VERSE>Let Freedom’s sun in glory glow</VERSE>
<VERSE>For now and evermore.</VERSE>
<VERSE>Let Freedom’s sun in glory glow</VERSE>
<VERSE>For now and evermore.</VERSE>

</STANZA>
</SONG>

</DOCUMENT>

308 Part II ✦ Document Type Definitions

X-Codes
If neither the ISO nor the IANA has a code for the language you need, which is often

the case for many aboriginal languages, you may define new language codes. These

x-codes must begin with the string x- or X- to identify them as user-defined, private

use codes. For example,

<P xml:lang=”x-choctaw”>
Chahta imanumpa ish anumpola hinla ho?

</P>
<P xml:lang=”en”>Do you speak Choctaw?</P>

Declarations of xml:lang
Like all attributes used in DTDs for valid documents, the xml:lang attribute must

be specifically declared for those elements to which it directly applies. (It indirectly

applies to children of elements that have specified xml:lang attributes, but these

children do not require separate declaration.) The declaration of the SENTENCE ele-

ment can appear as follows:

<!ELEMENT SENTENCE (#PCDATA)>
<!ATTLIST SENTENCE xml:lang NMTOKEN “en”>

You may not want to permit arbitrary values for xml:lang. The permissible values

are also valid XML names, so the attribute is commonly given the NMTOKEN type.

This restricts the value of the attribute to an XML name token. For example,

<!ELEMENT P (#PCDATA)>
<!ATTLIST P xml:lang NMTOKEN #IMPLIED “en”>

Alternately, if only a few languages or dialects are permitted, you can use an enu-

merated type. For example, the following DTD says that the P element may be

either English or Latin.

<!ELEMENT P (#PCDATA)>
<!ATTLIST P xml:lang (en | la) “en”>

You can use a CDATA type attribute, but there’s little reason to. Using NMTOKEN or an

enumerated type helps catch some potential errors.

A DTD for Attribute-Based Baseball Statistics
Chapter 5 developed a well-formed XML document for the 1998 Major League

Baseball Season that used attributes to store the YEAR of a SEASON, the NAME of

leagues, divisions, and teams, the CITY in which a team plays, and the detailed

309Chapter 11 ✦ Attribute Declarations

statistics of individual players. Listing 11-6 presents a shorter version of Listing 5-1.

It is a complete XML document with two leagues, six divisions, six teams, and two

players. It serves to refresh your memory of which elements belong where and with

which attributes.

Listing 11-6: A complete XML document

<?xml version=”1.0”?>
<SEASON YEAR=”1998”>
<LEAGUE NAME=”American League”>
<DIVISION NAME=”East”>
<TEAM CITY=”Baltimore” NAME=”Orioles”>
<PLAYER GIVEN_NAME=”Doug” SURNAME=”Drabek”

POSITION=”Starting Pitcher” GAMES=”23”
GAMES_STARTED=”21” WINS=”6” LOSSES=”11” SAVES=”0”
COMPLETE_GAMES=”1” SHUT_OUTS=”0” ERA=”7.29”
INNINGS=”108.2” HITS_AGAINST=”138”
HOME_RUNS_AGAINST=”20” RUNS_AGAINST=”90”
EARNED_RUNS=”88” HIT_BATTER=”5” WILD_PITCHES=”1”
BALK=”0” WALKED_BATTER=”29” STRUCK_OUT_BATTER=”55”/>

<PLAYER GIVEN_NAME=”Roberto” SURNAME=”Alomar”
POSITION=”Second Base” GAMES=”147”
GAMES_STARTED=”143” AT_BATS=”588” RUNS=”86”
HITS=”166” DOUBLES=”36” TRIPLES=”1” HOME_RUNS=”14”
RUNS_BATTED_IN=”56” WALKS=”59” STRUCK_OUT=”70”
STEALS=”18” CAUGHT_STEALING=”5” HIT_BY_PITCH=”2”
SACRIFICE_FLIES=”5” SACRIFICE_HITS=”3”/>

</TEAM>
</DIVISION>
<DIVISION NAME=”Central”>
<TEAM CITY=”Chicago” NAME=”White Sox”></TEAM>

</DIVISION>
<DIVISION NAME=”West”>
<TEAM CITY=”Anaheim” NAME=”Angels”></TEAM>

</DIVISION>
</LEAGUE>
<LEAGUE NAME=”National League”>
<DIVISION NAME=”East”>
<TEAM CITY=”New York” NAME=”Mets”></TEAM>

</DIVISION>
<DIVISION NAME=”Central”>
<TEAM CITY=”Chicago” NAME=”Cubs”></TEAM>

</DIVISION>
<DIVISION NAME=”West”>
<TEAM CITY=”San Francisco” NAME=”Giants”></TEAM>

</DIVISION>
</LEAGUE>

</SEASON>

310 Part II ✦ Document Type Definitions

To make this document valid, you need to provide a DTD. This DTD must declare

both the elements and the attributes used in Listing 11-6. The element declarations

resemble the ones used in the last chapter, except that there are fewer of them

because most of the information has been moved into attributes:

<!ELEMENT SEASON (LEAGUE, LEAGUE)>
<!ELEMENT LEAGUE (DIVISION, DIVISION, DIVISION)>
<!ELEMENT DIVISION (TEAM+)>
<!ELEMENT TEAM (PLAYER*)>
<!ELEMENT PLAYER EMPTY>

Declaring SEASON attributes in the DTD
The SEASON element has a single attribute, YEAR. Although some semantic con-

straints determine what is and is not a year (1998 is a year; March 31 is not), the

DTD doesn’t enforce these. Thus, the best approach declares that the YEAR
attribute has the most general attribute type, CDATA. Furthermore, we want all sea-

sons to have a year, so we’ll make the YEAR attribute required.

<!ATTLIST SEASON YEAR CDATA #REQUIRED>

Although you really can’t restrict the form of the text authors enter in YEAR
attributes, you can at least provide a comment that shows what’s expected. For

example, it may be a good idea to specify that four-digit years are required.

<!ATTLIST SEASON YEAR CDATA #REQUIRED> <!-- e.g. 1998 -->
<!-- DO NOT USE TWO-DIGIT YEARS like 98, 99, 00!! -->

The W3C is in the process of defining an XML Schema language that uses XML
documents to describe information that might traditionally be encoded in a DTD,
as well as data type information. Schemas do allow you to express requirements
such as “Each YEAR element must contain a four-digit year between 1845 and
9999”. As of early 2001, these are not yet finished or supported by most existing
software. Schemas will be explored in Chapter 24.

Declaring LEAGUE and DIVISION attributes in the DTD
Next, consider LEAGUE and DIVISION. Each has a single NAME attribute. Again, the

natural type is CDATA and the attribute will be required. Because these are two sep-

arate NAME attributes for two different elements, two separate <!ATTLIST> declara-

tions are required.

<!ATTLIST LEAGUE NAME CDATA #REQUIRED>
<!ATTLIST DIVISION NAME CDATA #REQUIRED>

Note

311Chapter 11 ✦ Attribute Declarations

A comment may help here to show document authors the expected form; for

instance, whether or not to include the words League and Division as part of the

name.

<!ATTLIST LEAGUE NAME CDATA #REQUIRED>
<!-- e.g. “National League” -->

<!ATTLIST DIVISION NAME CDATA #REQUIRED>
<!-- e.g. “East” -->

Declaring TEAM attributes in the DTD
A TEAM has both a NAME and a CITY. Each is CDATA and each is required:

<!ATTLIST TEAM NAME CDATA #REQUIRED>
<!ATTLIST TEAM CITY CDATA #REQUIRED>

Alternately, you can declare both attributes in a single <!ATTLIST> declaration:

<!ATTLIST TEAM NAME CDATA #REQUIRED
CITY CDATA #REQUIRED>

In either case, a comment may help to establish what isn’t obvious to everyone; for

instance, that the CITY attribute may actually be the name of a state.

<!ATTLIST TEAM NAME CDATA #REQUIRED>
<!ATTLIST TEAM CITY CDATA #REQUIRED>
<!-- e.g. “San Diego” as in “San Diego Padres”

or “Texas” as in “Texas Rangers” -->

Declaring PLAYER attributes in the DTD
The PLAYER element boasts the most attributes. GIVEN_NAME and SURNAME, the

first two, are simply CDATA and required:

<!ATTLIST PLAYER GIVEN_NAME CDATA #REQUIRED>
<!ATTLIST PLAYER SURNAME CDATA #REQUIRED>

The next PLAYER attribute is POSITION. Because baseball positions are standard-

ized, you might use the enumerated attribute type here. However First Base,

Second Base, Third Base, Starting Pitcher, and Relief Pitcher all contain white space

and are therefore not valid XML names. Consequently, the only attribute type that

works is CDATA. There is no reasonable default value for the position so we make

this attribute required as well.

<!ATTLIST PLAYER POSITION CDATA #REQUIRED>

312 Part II ✦ Document Type Definitions

Next come the various statistics: GAMES, GAMES_STARTED, AT_BATS, RUNS, HITS,

WINS, LOSSES, SAVES, SHUTOUTS, and so forth. Each should be a single number. XML

does not allow you to declare an attribute as integer or float, but you can at least

require them to be name tokens so as to rule out a few invalid values. Because not

all players have valid values for each of these, declare each one implied rather than

required.

<!ATTLIST PLAYER GAMES NMTOKEN #IMPLIED>
<!ATTLIST PLAYER GAMES_STARTED NMTOKEN #IMPLIED>

<!-- Batting Statistics -->
<!ATTLIST PLAYER AT_BATS NMTOKEN #IMPLIED>
<!ATTLIST PLAYER RUNS NMTOKEN #IMPLIED>
<!ATTLIST PLAYER HITS NMTOKEN #IMPLIED>
<!ATTLIST PLAYER DOUBLES NMTOKEN #IMPLIED>
<!ATTLIST PLAYER TRIPLES NMTOKEN #IMPLIED>
<!ATTLIST PLAYER HOME_RUNS NMTOKEN #IMPLIED>
<!ATTLIST PLAYER RUNS_BATTED_IN NMTOKEN #IMPLIED>
<!ATTLIST PLAYER STEALS NMTOKEN #IMPLIED>
<!ATTLIST PLAYER CAUGHT_STEALING NMTOKEN #IMPLIED>
<!ATTLIST PLAYER SACRIFICE_HITS NMTOKEN #IMPLIED>
<!ATTLIST PLAYER SACRIFICE_FLIES NMTOKEN #IMPLIED>
<!ATTLIST PLAYER ERRORS NMTOKEN #IMPLIED>
<!ATTLIST PLAYER WALKS NMTOKEN #IMPLIED>
<!ATTLIST PLAYER STRUCK_OUT NMTOKEN #IMPLIED>
<!ATTLIST PLAYER HIT_BY_PITCH NMTOKEN #IMPLIED>

<!-- Pitching Statistics -->
<!ATTLIST PLAYER WINS NMTOKEN #IMPLIED>
<!ATTLIST PLAYER LOSSES NMTOKEN #IMPLIED>
<!ATTLIST PLAYER SAVES NMTOKEN #IMPLIED>
<!ATTLIST PLAYER COMPLETE_GAMES NMTOKEN #IMPLIED>
<!ATTLIST PLAYER SHUT_OUTS NMTOKEN #IMPLIED>
<!ATTLIST PLAYER ERA NMTOKEN #IMPLIED>
<!ATTLIST PLAYER INNINGS NMTOKEN #IMPLIED>
<!ATTLIST PLAYER HITS_AGAINST NMTOKEN #IMPLIED>
<!ATTLIST PLAYER HOME_RUNS_AGAINST NMTOKEN #IMPLIED>
<!ATTLIST PLAYER RUNS_AGAINST NMTOKEN #IMPLIED>
<!ATTLIST PLAYER EARNED_RUNS NMTOKEN #IMPLIED>
<!ATTLIST PLAYER HIT_BATTER NMTOKEN #IMPLIED>
<!ATTLIST PLAYER WILD_PITCHES NMTOKEN #IMPLIED>
<!ATTLIST PLAYER BALK NMTOKEN #IMPLIED>
<!ATTLIST PLAYER WALKED_BATTER NMTOKEN #IMPLIED>
<!ATTLIST PLAYER STRUCK_OUT_BATTER NMTOKEN #IMPLIED>

One disadvantage of this approach relative to the child elements that were used in

the last chapter is that you can no longer separate out the pitching and batting

statistics and treat them as a group. There’s no way to say that all elements must

have either Group X or Group Y or both. Whether one attribute is required, implied,

or fixed is completely independent of the presence or absence of other attributes.

313Chapter 11 ✦ Attribute Declarations

If you prefer, you can combine all the possible attributes of PLAYER into one mon-

strous <!ATTLIST> declaration:

<!ATTLIST PLAYER
GIVEN_NAME NMTOKEN #REQUIRED
SURNAME NMTOKEN #REQUIRED
POSITION NMTOKEN #REQUIRED
GAMES NMTOKEN #IMPLIED
GAMES_STARTED NMTOKEN #IMPLIED
AT_BATS NMTOKEN #IMPLIED
RUNS NMTOKEN #IMPLIED
HITS NMTOKEN #IMPLIED
DOUBLES NMTOKEN #IMPLIED
TRIPLES NMTOKEN #IMPLIED
HOME_RUNS NMTOKEN #IMPLIED
RUNS_BATTED_IN NMTOKEN #IMPLIED
STEALS NMTOKEN #IMPLIED
CAUGHT_STEALING NMTOKEN #IMPLIED
SACRIFICE_HITS NMTOKEN #IMPLIED
SACRIFICE_FLIES NMTOKEN #IMPLIED
ERRORS NMTOKEN #IMPLIED
WALKS NMTOKEN #IMPLIED
STRUCK_OUT NMTOKEN #IMPLIED
HIT_BY_PITCH NMTOKEN #IMPLIED

WINS NMTOKEN #IMPLIED
LOSSES NMTOKEN #IMPLIED
SAVES NMTOKEN #IMPLIED
SHUT_OUTS NMTOKEN #IMPLIED
COMPLETE_GAMES NMTOKEN #IMPLIED
SHUTOUTS NMTOKEN #IMPLIED
ERA NMTOKEN #IMPLIED
INNINGS NMTOKEN #IMPLIED
HITS_AGAINST NMTOKEN #IMPLIED
HOME_RUNS_AGAINST NMTOKEN #IMPLIED
RUNS_AGAINST NMTOKEN #IMPLIED
EARNED_RUNS NMTOKEN #IMPLIED
HIT_BATTER NMTOKEN #IMPLIED
WILD_PITCHES NMTOKEN #IMPLIED
BALK NMTOKEN #IMPLIED
WALKED_BATTER NMTOKEN #IMPLIED
STRUCK_OUT_BATTER NMTOKEN #IMPLIED

>

One disadvantage of this approach is that it makes it impossible to include even

simple comments next to the individual attributes because comments cannot

appear inside declarations, only outside them.

314 Part II ✦ Document Type Definitions

The complete DTD for the baseball statistics example
Listing 11-7 shows the complete attribute-based baseball DTD.

Listing 11-7: The complete DTD for baseball statistics that
uses attributes for most of the information

<!ELEMENT SEASON (LEAGUE, LEAGUE)>
<!ELEMENT LEAGUE (DIVISION, DIVISION, DIVISION)>
<!ELEMENT DIVISION (TEAM+)>
<!ELEMENT TEAM (PLAYER*)>
<!ELEMENT PLAYER EMPTY>

<!ATTLIST SEASON YEAR CDATA #REQUIRED> <!-- e.g. 1998 -->
<!-- DO NOT USE TWO DIGIT YEARS like 98, 99, 00!! -->

<!ATTLIST LEAGUE NAME CDATA #REQUIRED>
<!-- e.g. “National League” -->

<!ATTLIST DIVISION NAME CDATA #REQUIRED>
<!-- e.g. “East” -->

<!ATTLIST TEAM NAME CDATA #REQUIRED>
<!ATTLIST TEAM CITY CDATA #REQUIRED>
<!-- e.g. “San Diego” as in “San Diego Padres”

or “Texas” as in “Texas Rangers” -->

<!ATTLIST PLAYER GIVEN_NAME CDATA #REQUIRED>
<!ATTLIST PLAYER SURNAME CDATA #REQUIRED>
<!ATTLIST PLAYER POSITION CDATA #REQUIRED>

<!ATTLIST PLAYER
GIVEN_NAME NMTOKEN #REQUIRED
SURNAME NMTOKEN #REQUIRED
POSITION NMTOKEN #REQUIRED
GAMES NMTOKEN #IMPLIED
GAMES_STARTED NMTOKEN #IMPLIED
AT_BATS NMTOKEN #IMPLIED
RUNS NMTOKEN #IMPLIED
HITS NMTOKEN #IMPLIED
DOUBLES NMTOKEN #IMPLIED
TRIPLES NMTOKEN #IMPLIED
HOME_RUNS NMTOKEN #IMPLIED
RUNS_BATTED_IN NMTOKEN #IMPLIED
STEALS NMTOKEN #IMPLIED
CAUGHT_STEALING NMTOKEN #IMPLIED
SACRIFICE_HITS NMTOKEN #IMPLIED
SACRIFICE_FLIES NMTOKEN #IMPLIED

315Chapter 11 ✦ Attribute Declarations

ERRORS NMTOKEN #IMPLIED
WALKS NMTOKEN #IMPLIED
STRUCK_OUT NMTOKEN #IMPLIED
HIT_BY_PITCH NMTOKEN #IMPLIED

WINS NMTOKEN #IMPLIED
LOSSES NMTOKEN #IMPLIED
SAVES NMTOKEN #IMPLIED
SHUT_OUTS NMTOKEN #IMPLIED
COMPLETE_GAMES NMTOKEN #IMPLIED
SHUTOUTS NMTOKEN #IMPLIED
ERA NMTOKEN #IMPLIED
INNINGS NMTOKEN #IMPLIED
HITS_AGAINST NMTOKEN #IMPLIED
HOME_RUNS_AGAINST NMTOKEN #IMPLIED
RUNS_AGAINST NMTOKEN #IMPLIED
EARNED_RUNS NMTOKEN #IMPLIED
HIT_BATTER NMTOKEN #IMPLIED
WILD_PITCHES NMTOKEN #IMPLIED
BALK NMTOKEN #IMPLIED
WALKED_BATTER NMTOKEN #IMPLIED
STRUCK_OUT_BATTER NMTOKEN #IMPLIED>

To attach the above to Listing 11-6, use the following document type declaration,

assuming of course that Listing 11-7 is stored in a file called baseballattributes.dtd:

<!DOCTYPE SEASON SYSTEM “baseballattributes.dtd”>

Summary
In this chapter, you learned how to declare attributes in DTDs. In particular, you

learned the following concepts:

✦ Attributes are declared in an <!ATTLIST> tag in the DTD.

✦ One <!ATTLIST> tag can declare an indefinite number of attributes for a

single element.

✦ Attributes normally have default values, but this condition can be changed by

using the keywords #REQUIRED, #IMPLIED, or #FIXED.

✦ There are ten attribute types: CDATA, Enumerated, NMTOKEN, NMTOKENS, ID,

IDREF, IDREFS, ENTITY, ENTITIES, and NOTATION.

316 Part II ✦ Document Type Definitions

✦ The xml:space attribute determines whether white space in an element is

significant.

✦ The xml:lang attribute specifies the language in which an element’s content

appears.

In the next chapter, you learn how notations, processing instructions, and unparsed

external entities can be used to embed non-XML data in XML documents.

✦ ✦ ✦

Unparsed
Entities,
Notations, and
Non-XML Data

Not all data in the world is XML. In fact, I’d venture to

say that most of the world’s accumulated data isn’t

XML. A heck of a lot is stored in plain text, HTML, and

Microsoft Word, to name just three common non-XML for-

mats. Although most of this data could theoretically be rewrit-

ten in XML — interest and resources permitting — not all of

the world’s data should be in XML. Encoding photographs in

XML, for example, would be extremely inefficient.

XML provides three constructs for working with non-XML

data: Notations, unparsed entities, and processing instruc-

tions. Notations describe the format of non-XML data.

Unparsed entities provide links to the actual location of the

non-XML data. Processing instructions give information about

how to view the data.

The material discussed in this chapter is controversial.
Although everything I describe is part of the XML 1.0 spec-
ification, not everyone agrees that it should be. You can
certainly write XML documents without using any nota-
tions or unparsed entities, and with only a few simple pro-
cessing instructions. You may want to skip this chapter at
first, and return to it later if you discover a need for it.

Caution

1212C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Notations

Unparsed entities

Processing
instructions

Conditional sections
in DTDs

✦ ✦ ✦ ✦

318 Part II ✦ Document Type Definitions

Notations
The first problem you encounter when working with non-XML data in an XML docu-

ment is identifying the format of the data so that the XML application knows how to

display the non-XML data. For example, it would be silly to try to draw an MP3 file

on the screen.

To a limited extent, you can solve this problem within a single application by using

a fixed set of elements for particular kinds of data. For instance, if all pictures are

embedded through IMAGE elements and all sounds through AUDIO elements, then

it’s not hard to develop a browser that knows how to handle those two elements. In

essence, this is the approach that HTML takes. However, this approach does pre-

vent document authors from creating new tags that more specifically describe their

content; for example, a PERSON element that happens to have a HEADSHOT attribute

that points to a JPEG image of that person.

Furthermore, no application understands all possible file formats. Most Web

browsers can recognize and read GIF, JPEG, PNG, and perhaps a few other kinds of

image files; but they fail completely when faced with EPS files, TIFF files, FITS files,

or any of the hundreds of other common and uncommon image formats. The dialog

box in Figure 12-1 is probably all too familiar.

Figure 12-1: What happens when
Netscape Navigator doesn’t
recognize a file type

Ideally, a document should tell the application what format an unparsed entity is in

so that you don’t have to rely on the application recognizing the file type by a

magic number or a potentially unreliable filename extension. Furthermore, you’d

like to give the application some hints about what program it can use to display the

unparsed entity if it’s unable to do so itself.

319Chapter 12 ✦ Unparsed Entities, Notations, and Non-XML Data

Notations provide a partial (although not always well-supported) solution to this

problem. A notation describes one possible format for non-XML data through a

NOTATION declaration in the Document Type Definition (DTD). Each notation decla-

ration contains a name and an external identifier in the following syntax:

<!NOTATION name SYSTEM “externalID”>

The name is an identifier for this particular format used in the document. The

externalID contains a human-intelligible string that somehow identifies the nota-

tion. For instance, you might use MIME media types as in this notation for GIF images:

<!NOTATION GIF SYSTEM “image/gif”>

You can also use a PUBLIC identifier instead of the SYSTEM identifier. To do this, you

must provide both a public ID and a URL. For example,

<!NOTATION GIF PUBLIC
“-//IETF//NONSGML Media Type image/gif//EN”
“http://www.isi.edu/in-notes/iana/assignments/media-

types/image/gif”>

There is a lot of debate about what exactly makes a good external identifier. MIME
media types, such as image/gif or text/html, are one possibility. Another possibil-
ity is to use URLs or other locators for standards documents such as
http://www.w3.org/TR/REC-html40/. A third possibility is the name of an
official international standard such as ISO 8601 for representing dates and times.
In some cases, an ISBN or Library of Congress catalog number for the paper docu-
ment where the standard is defined might be more appropriate, and there are
many more choices.

Which you choose may depend on the expected life span of your document. For
instance, if you use an unusual format, you don’t want to rely on a URL that
changes from month to month. If you expect or hope that your document will still
spark interest in 100 years, then you may want to consider identifiers that are
likely to have meaning in 100 years, as opposed to those that are merely this
decade’s technical ephemera.

You can also use notations to describe data that does fit in an XML document. For

instance, consider this DATE element:

<DATE>05-07-06</DATE>

What day, exactly, does 05-07-06 represent? Is it May 7, 1906 C.E.? Or is it July 5,

1906 C.E.? The answer depends on whether you read this in the United States or

Europe. Maybe it’s even May 7, 2006 C.E. or July 5, 2006 C.E. Or perhaps what’s

meant is May 7, 6 C.E., during the reign of the Roman emperor Augustus in the West

and the Han dynasty in China. It’s also possible that this date isn’t in the “Common

Era” at all but is given in the traditional Jewish, Muslim, or Chinese calendar.

Without more information, you cannot determine the true meaning.

Caution

320 Part II ✦ Document Type Definitions

To avoid this type of confusion, ISO standard 8601 defines a precise means of repre-

senting dates. In this scheme, July 5, 2006 C.E. is written as 20060705 or, in XML, as

follows:

<DATE>20060705</DATE>

This format doesn’t match anybody’s expectations; it’s equally confusing to every-

body and thus has the advantage of being more or less culturally neutral (although

still biased toward the traditional Western calendar).

Notations are declared in the DTD and then used as the values of NOTATION-type

attributes. To continue with the date example, Listing 12-1 defines two possible

notations for dates in ISO 8601 and conventional U.S. formats. Then, a required

FORMAT attribute of type NOTATION is added to each DATE element to describe the

structure of the particular element.

Listing 12-1: DATE elements in an ISO 8601 and conventional
U.S. formats

<?xml version=”1.0” standalone=”yes”?>
<!DOCTYPE SCHEDULE [

<!NOTATION ISODATE SYSTEM
“http://www.iso.ch/cate/d15903.html”>

<!NOTATION USDATE SYSTEM
“http://www.boulder.nist.gov/timefreq/general/calendars/”>

<!ELEMENT SCHEDULE (APPOINTMENT*)>
<!ELEMENT APPOINTMENT (NOTE, DATE, TIME?)>

<!ELEMENT NOTE (#PCDATA)>
<!ELEMENT DATE (#PCDATA)>
<!ELEMENT TIME (#PCDATA)>

<!ATTLIST DATE FORMAT NOTATION (ISODATE | USDATE) #IMPLIED>

]>
<SCHEDULE>
<APPOINTMENT>
<NOTE>Deliver presents</NOTE>
<DATE FORMAT=”USDATE”>12-25-1999</DATE>

</APPOINTMENT>
<APPOINTMENT>
<NOTE>Party like it’s 1999</NOTE>
<DATE FORMAT=”ISODATE”>19991231</DATE>

</APPOINTMENT>
</SCHEDULE>

321Chapter 12 ✦ Unparsed Entities, Notations, and Non-XML Data

Notations can’t force authors to use the format described by the notation. For that

you need to use some sort of schema language in addition to basic XML — but it is

sufficient for simple uses where you trust authors to correctly describe their data.

Unparsed Entities
XML is not an ideal format for all data, particularly nontext data. For instance, you

could store each pixel of a bitmap image as an XML element like this:

<PIXEL X=”232” Y=”128” COLOR=”FF5E32” />

This is hardly a good idea, though. Anything remotely like this would cause your

image files to balloon to obscene proportions. Since you shouldn’t encode all data

in XML, XML documents must be capable of referring to data that is not currently

XML and probably never will be.

A typical Web page may include GIF and JPEG images, Java applets, ActiveX con-

trols, various kinds of sounds, and so forth. In XML, any block of non-XML data is

called an unparsed entity because the XML parser won’t attempt to understand it. At

most, it informs the application of the entity’s existence and provides the applica-

tion with the entity’s name and possibly (though not necessarily) its content.

HTML pages embed non-HTML entities through a variety of custom tags. Pictures

are included with the tag whose SRC attribute provides the URL of the image

file. Java applets are embedded via the <APPLET> tag whose CLASS and CODEBASE
attributes refer to the file and directory where the applet resides. The <OBJECT> tag

uses its CODEBASE attribute for a Uniform Resource Identifier (URI) from which the

object’s data is retrieved. In each case, a particular predefined element represents a

particular kind of content. A predefined attribute contains the URL for that content.

XML applications can work like this, but they don’t have to. Instead, XML applica-

tions can use an unparsed entity to refer to the content. Unparsed entities provide

links to the actual location of the non-XML data. Then they use an ENTITY-type

attribute to associate that entity with a particular element in the document.

Declaring unparsed entities
Recall from Chapter 10 that an external entity declaration looks like this:

<!ENTITY SIG SYSTEM “http://www.ibiblio.org/xml/signature.xml”>

322 Part II ✦ Document Type Definitions

However, this form is only acceptable if the external entity that the URL names is

well-formed XML. If the external entity is not XML, then you have to specify the

entity’s type using the NDATA keyword. For example, to associate the GIF file logo.gif

with the name LOGO, you would place this ENTITY declaration in the DTD:

<!ENTITY LOGO SYSTEM “logo.gif” NDATA GIF>

The final word in the declaration, GIF in this example, must be the name of a nota-

tion declared in the DTD. For example, the notation for GIF might look like this:

<!NOTATION GIF SYSTEM “image/gif”>

As usual, you can use absolute or relative URLs for the external entity as conve-

nience dictates. For example,

<!ENTITY LOGO SYSTEM “http://www.ibiblio.org/xml/logo.gif”
NDATA GIF>

<!ENTITY LOGO SYSTEM “/xml/logo.gif” NDATA GIF>
<!ENTITY LOGO SYSTEM “../logo.gif” NDATA GIF>

Embedding unparsed entities
You cannot simply embed an unparsed entity at an arbitrary location in the docu-

ment using a general entity reference as you can with parsed entities. For instance,

Listing 12-2 is a malformed XML document because LOGO is an unparsed entity. If

LOGO were a parsed entity, this example would be okay.

Listing 12-2: A malformed XML document that tries to embed
an unparsed entity with a general entity reference

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE DOCUMENT [
<!ELEMENT DOCUMENT ANY>
<!ENTITY LOGO SYSTEM “http://www.ibiblio.org/xml/logo.gif”

NDATA GIF>
<!NOTATION GIF SYSTEM “image/gif”>

]>
<DOCUMENT>
&LOGO;

</DOCUMENT>

To embed unparsed entities, rather than using general entity references such as

&LOGO;, you declare an element that serves as a placeholder for the unparsed

entity (IMAGE, for example). Then you declare an ENTITY-type attribute for the

IMAGE element (SOURCE, for example) that provides the name of the unparsed

entity. Listing 12-3 demonstrates.

323Chapter 12 ✦ Unparsed Entities, Notations, and Non-XML Data

Listing 12-3: A valid XML document that correctly embeds an
unparsed entity

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE DOCUMENT [

<!ELEMENT DOCUMENT ANY>
<!ENTITY LOGO SYSTEM “http://www.ibiblio.org/xml/logo.gif”

NDATA GIF>
<!NOTATION GIF SYSTEM “image/gif”>
<!ELEMENT IMAGE EMPTY>
<!ATTLIST IMAGE SOURCE ENTITY #REQUIRED>

]>
<DOCUMENT>
<IMAGE SOURCE=”LOGO” />

</DOCUMENT>

It is now up to the application reading the XML document to recognize the

unparsed entity and display it. Applications may choose not to display the

unparsed entity (just as a Web browser may choose not to load images when the

user has disabled image loading).

These examples show empty elements as the containers for unparsed entities.

That’s not required, however. For instance, imagine an XML-based corporate ID sys-

tem that a security guard uses to look up people entering a building. The PERSON
element might have NAME, PHONE, OFFICE, and EMPLOYEE_ID children and a PHOTO
ENTITY attribute. Listing 12-4 demonstrates.

Listing 12-4: A nonempty PERSON element with a PHOTO
ENTITY attribute

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE PERSON [
<!ELEMENT PERSON (NAME, EMPLOYEE_ID, PHONE, OFFICE)>
<!ELEMENT NAME (#PCDATA)>
<!ELEMENT EMPLOYEE_ID (#PCDATA)>
<!ELEMENT PHONE (#PCDATA)>
<!ELEMENT OFFICE (#PCDATA)>
<!NOTATION JPEG SYSTEM “image/jpg”>
<!ENTITY ROGER SYSTEM “rogers.jpg” NDATA JPEG>

<!ATTLIST PERSON PHOTO ENTITY #REQUIRED>

]>

Continued

324 Part II ✦ Document Type Definitions

Listing 12-4 (continued)

<PERSON PHOTO=”ROGER”>
<NAME>Jim Rogers</NAME>
<EMPLOYEE_ID>4534</EMPLOYEE_ID>
<PHONE>X396</PHONE>
<OFFICE>RH 415A</OFFICE>

</PERSON>

This example may seem a little contrived. In practice, you’d be better advised to

make an empty PHOTO element with a SOURCE attribute a child of a PERSON element

rather than an attribute of PERSON. Furthermore, you’d probably separate the DTD

into external and internal subsets. The external subset, shown in Listing 12-5,

declares the elements, notations, and attributes. These are the parts likely to be

shared among many different documents. The entity, however, changes from docu-

ment to document. Thus, you can better place it in the internal DTD subset of each

document as shown in Listing 12-6.

Listing 12-5: The external DTD subset person.dtd

<!ELEMENT PERSON (NAME, EMPLOYEE_ID, PHONE, OFFICE, PHOTO)>
<!ELEMENT NAME (#PCDATA)>
<!ELEMENT EMPLOYEE_ID (#PCDATA)>
<!ELEMENT PHONE (#PCDATA)>
<!ELEMENT OFFICE (#PCDATA)>
<!ELEMENT PHOTO EMPTY>
<!NOTATION JPEG SYSTEM “image/jpeg”>
<!ATTLIST PHOTO SOURCE ENTITY #REQUIRED>

Listing 12-6: A document that uses an internal DTD subset to
locate the unparsed entity

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE PERSON [

<!ENTITY % PERSON_DTD SYSTEM “person.dtd”>
%PERSON_DTD;
<!ENTITY ROGER SYSTEM “rogers.jpg” NDATA JPEG>

]>
<PERSON>

325Chapter 12 ✦ Unparsed Entities, Notations, and Non-XML Data

<NAME>Jim Rogers</NAME>
<EMPLOYEE_ID>4534</EMPLOYEE_ID>
<PHONE>X396</PHONE>
<OFFICE>RH 415A</OFFICE>
<PHOTO SOURCE=”ROGER”/>

</PERSON>

Embedding multiple unparsed entities
On rare occasions, you may need to refer to more than one unparsed entity in a sin-

gle attribute, perhaps even an indefinite number. You can do this by declaring an

attribute of the entity placeholder to have type ENTITIES. An ENTITIES-type

attribute has a value part that consists of multiple unparsed entity names separated

by white space. Each entity name refers to an external non-XML data source and

must be declared in the DTD. For example, you might use this to write a slide show

element that rotates different pictures. The DTD would require these declarations:

<!ELEMENT SLIDESHOW EMPTY>
<!ATTLIST SLIDESHOW SOURCES ENTITIES #REQUIRED>
<!NOTATION JPEG SYSTEM “image/jpeg”>
<!ENTITY CHARM SYSTEM “charm.jpg” NDATA JPEG>
<!ENTITY MARJORIE SYSTEM “marjorie.jpg” NDATA JPEG>
<!ENTITY POSSUM SYSTEM “possum.jpg” NDATA JPEG>
<!ENTITY BLUE SYSTEM “blue.jpg” NDATA JPEG>

Then, at the point in the document where you want the slide show to appear, insert

the following element:

<SLIDESHOW SOURCES=”CHARM MARJORIE POSSUM BLUE”/>

Once again, I must emphasize that this is not a magic formula that all (or even
any) XML browsers automatically understand. It is simply one technique that
browsers and other applications may or may not adopt to embed non-XML data in
documents.

Processing Instructions
HTML comments are often abused to support proprietary extensions such as

server-side includes, browser-specific scripting languages, database templates, and

several dozen other items outside the purview of the HTML standard. The advan-

tage of using comments for these purposes is that other systems simply ignore the

data they don’t understand. The disadvantage of this approach is that a document

stripped of its comments may no longer be the same document, and that comments

Caution

326 Part II ✦ Document Type Definitions

intended as mere documentation may be unintentionally processed as input to

these proprietary extensions. To avoid this misuse of comments, XML provides the

processing instruction — an explicit mechanism for embedding information in a file

intended for applications that receive data from the XML parser rather than for the

XML parser itself. Among other uses, processing instructions can provide addi-

tional information about how to view unparsed external entities.

A processing instruction is a string of text between <? and ?> marks. The only

required syntax for the text inside the processing instruction is that it must begin

with an XML name that is followed by white space that is then followed by data.

The XML name may either be the actual name of the application (e.g., latex) or the

name of a notation in the DTD that points to the application (e.g., LATEX) where

LATEX is declared like this in the DTD:

<!NOTATION LATEX SYSTEM “/usr/local/bin/latex”>

It may also be a general-purpose name, such as xml-stylesheet, that is recog-

nized by many different applications.

The syntax of the processing instruction data is deliberately left unspecified. The

details tend to be very specific to the application for which the processing instruc-

tion is intended. Indeed, most applications that rely on processing instructions will

impose more structure on the contents of a processing instruction. For example,

consider this processing instruction used in IBM’s Bean Markup Language:

<?bmlpi register demos.calculator.EventSourceText2Int?>

The name of this processing instruction is bmlpi. Any application that recognizes

this name will ask the parser for the data. This data is the string register
demos.calculator.EventSourceText2Int, which happens to include the full

package qualified name of a Java class. This tells the application named bmlpi to

use the Java class demos.calculator.EventSourceText2Int to convert action

events to integers. If bmlpi encounters this processing instruction while reading

the document, it will load the class demos.calculator.EventSourceText2Int
and use it to convert events to integers from that point on.

If this sounds fairly specific and detailed, that’s because it is. Unless you’re using

the Bean Markup Language, you don’t need to know it. Processing instructions are

not part of the general structure of the document. They are intended to provide

extra, detailed information for particular applications, not for every application

that reads the document. If some other application encounters this instruction

while reading a document, it will simply ignore the instruction.

Processing instructions may be placed almost anywhere in an XML document

except inside a tag or a CDATA section. They may appear in the prolog or in the

DTD, in the content of an element, or even after the closing document tag. Because

327Chapter 12 ✦ Unparsed Entities, Notations, and Non-XML Data

processing instructions are not elements, they do not affect the tree structure of a

document. You do not need to open or close processing instructions, or worry

about how they nest inside other elements. Processing instructions are not tags,

and they do not delimit elements.

You’re already familiar with one example of processing instructions, the

xml-stylesheet processing instruction used to bind style sheets to documents:

<?xml-stylesheet type=”text/xml” href=”baseball.xsl”?>

Although this example appears in a document’s prolog, in general processing

instructions may appear anywhere in a document. You do not need to declare these

instructions as child elements of the element they are contained in because they’re

not elements.

Processing instructions with the name xml , XML, XmL, and so forth, in any other

combination of case, are reserved. Otherwise, you are free to use any name and any

string of text inside a processing instruction other than the closing string ?>. For

instance, the following examples are all legal processing instructions:

<?cocoon-process type=”xslt”?>
<?gcc HelloWorld.c ?>
<?html
<h2>Composers</h2>

John Cage
Ruth Anderson
Pauline Oliveros

?>
<?acrobat document=”passport.pdf”?>
<?Dave Remember to replace this with the real data

before publishing?>

Remember that an XML parser won’t necessarily do anything with these instruc-
tions. It merely passes them along to the application. The application decides what
to do with the instructions. Most applications simply ignore processing instructions
they don’t understand.

Sometimes knowing the type of an unparsed external entity is insufficient. You may

also need to know what program to run to view the entity and what parameters you

need to provide that program. You can use a processing instruction to provide this

information. Because processing instructions can contain fairly arbitrary data, it’s

relatively easy for them to contain instructions determining what action the exter-

nal program listed in the notation should take.

Note

328 Part II ✦ Document Type Definitions

Such a processing instruction can range from simply the name of a program that

can view the file to several kilobytes of configuration information. Of course, the

application and the document author must use the same means of determining

which processing instructions belong with which unparsed external entities.

Listing 12-7 shows one scheme that uses a processing instruction and a PDF nota-

tion to try to pass the PDF version of a physics paper to Acrobat Reader for display.

Listing 12-7: Embedding a PDF document in XML

<?xml version=”1.0” standalone=”yes”?>
<!DOCTYPE PAPER [

<!NOTATION PDF PUBLIC
“-//IETF//NONSGML Media Type application/pdf//EN”
“http://www.isi.edu/in-notes/iana/assignments/media-

types/application/pdf”>
<!ELEMENT PAPER (TITLE, AUTHOR+)>
<!ATTLIST PAPER CONTENTS ENTITY #IMPLIED>
<!ENTITY P0007053 SYSTEM

“http://xxx.lanl.gov/pdf/astro-ph/0007053?”
NDATA PDF

>

<!ELEMENT AUTHOR (#PCDATA)>
<!ELEMENT TITLE (#PCDATA)>

]>

<?PDF acroread?>
<PAPER CONTENTS=”P0007053”>
<TITLE>
Influence of the Magnetic Field on the Fermion
Scattering off Bubble and Kink Walls

</TITLE>
<AUTHOR>P. Cea</AUTHOR>
<AUTHOR>G. L. Fogli</AUTHOR>
<AUTHOR>L. Tedesco</AUTHOR>

</PAPER>

As always, you have to remember that not every XML processor will treat this

example in the way intended. In fact, it’s entirely possible that no processor will.

However, this is one possible scheme for how an application might support PDF

files and other non-XML media types.

329Chapter 12 ✦ Unparsed Entities, Notations, and Non-XML Data

Conditional Sections in DTDs
When developing DTDs or documents, you may need to comment out parts of the

DTD not yet reflected in the documents. In addition to using comments directly, you

can omit a particular group of declarations in the DTD by wrapping it in an IGNORE
directive. The syntax follows:

<![IGNORE [
declarations that are ignored

]]>

As usual, white space doesn’t really affect the syntax, but you should keep the

opening <![IGNORE [and the closing]]> on separate lines for easy viewing.

You can ignore any declaration or combination of declarations — elements, entities,

attributes, or even other IGNORE blocks — but you must ignore entire declarations.

The IGNORE construct must completely enclose the entire declaration it removes

from the DTD. You cannot ignore a piece of a declaration (such as the NDATA GIF in

an unparsed entity declaration).

You can also specify that a particular section of declarations is included — that is,

not ignored. The syntax for the INCLUDE directive is just like the IGNORE directive

but with a different keyword:

<![INCLUDE [
declarations that are included

]]>

When an INCLUDE is inside an IGNORE, the INCLUDE and its declarations are

ignored. When an IGNORE is inside an INCLUDE, the declarations inside the IGNORE
block are still ignored. In other words, an INCLUDE never overrides an IGNORE.

Given these conditions, you may wonder why INCLUDE even exists. No DTD would

change if all INCLUDE blocks were simply removed, leaving only their contents.

INCLUDE appears to be completely extraneous. However, there is one neat trick

with parameter entity references and both IGNORE and INCLUDE that you can’t do

with IGNORE alone. First, define a parameter entity reference as follows:

<!ENTITY % fulldtd “IGNORE”>

You can ignore elements by wrapping them in the following construct:

<![%fulldtd; [
declarations

]]>

330 Part II ✦ Document Type Definitions

The %fulldtd; parameter entity reference evaluates to IGNORE, so the declara-

tions are ignored. Now, suppose you make the one-word edit to change fulldtd
from IGNORE to INCLUDE as follows:

<!ENTITY % fulldtd “INCLUDE”>

Immediately, all the IGNORE blocks convert to INCLUDE blocks. In effect, you have a

one-line switch to turn blocks on or off.

In this example, I’ve only used one switch, fulldtd. You can use this switch in mul-

tiple IGNORE/INCLUDE blocks in the DTD. You can also have different groups of

IGNORE/INCLUDE blocks that you switch on or off based on different conditions.

You’ll find this capability particularly useful when designing DTDs for inclusion in

other DTDs. The ultimate DTD can change the behavior of the DTDs it embeds by

changing the value of the parameter entity switch.

Summary
In this chapter, you learned how to integrate non-XML data into your XML docu-

ments through notations, unparsed entities, and processing instructions. In particu-

lar, you learned that:

✦ Notations define a data type for non-XML data using a NOTATION declaration.

✦ Unparsed entities are storage units containing non-XML text or binary data.

✦ Unparsed entities are defined in the DTD using an ENTITY declaration with an

extra NDATA declaration identifying the type of the data through a notation

name.

✦ Documents include unparsed entities using ENTITY or ENTITIES attributes.

✦ Processing instructions contain data passed along unchanged from the XML

processor to the ultimate application.

✦ INCLUDE and IGNORE blocks specify that the enclosed declarations of the DTD

are or are not (respectively) to be considered when parsing the document.

You’ll see a lot more examples of documents with DTDs over the next several parts

of this book, but as far as basic syntax and usage goes, this chapter concludes the

exploration of DTDs. However, there’s one more fundamental technology that you

need to add to your toolbox before you’ve got a complete picture of XML itself.

That technology is namespaces, a way of attaching prefixes and URIs to element

and attribute names so that applications can tell the difference between elements

and attributes from different XML vocabularies, even when they have the same

names. The next chapter explores namespaces.

✦ ✦ ✦

Namespaces

No XML is an island. While documents that use a single

markup vocabulary are useful (witness the baseball

examples of Chapters 4 and 5), documents that mix and

match markup from different XML applications are even more

functional. For example, imagine you may want to include a

BIOGRAPHY element in each PLAYER element. Since the biogra-

phy consists basically of free-form, formatted text, it’s conve-

nient to write it in well-formed HTML without reinventing all

the elements for paragraphs, line breaks, list items, bold ele-

ments, and so forth from scratch.

The problem, however, is that when mixing and matching ele-

ments from different XML applications, you’re likely to find

the same name used for two different things. Is a TITLE the

title of a page, the title of a book, or the title of a person? Is an

ADDRESS the mailing address of a company or the e-mail

address of a webmaster? Namespaces disambiguate these

cases by associating a URI with each XML application and

attaching a prefix to each element to indicate which applica-

tion it belongs to. Thus, you can have both BOOK:TITLE and

HTML:TITLE elements or POSTAL:ADDRESS and

HTML:ADDRESS elements instead of just one kind of TITLE or

ADDRESS. This chapter shows you how to use namespaces.

If you’re familiar with namespaces as used in C++ and
other programming languages, you need to put aside your
preconceptions before reading further. XML namespaces
are similar to, but not quite the same as, the namespaces
used in programming. In particular, XML namespaces do
not necessarily form a set (a collection with no duplicates).

The Need for Namespaces
XML enables developers to create their own markup lan-

guages for their own projects. These languages can be shared

with people working on similar projects all over the world.

One specific example of this is Scalable Vector Graphics

Caution

1313C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

The need for
namespaces

Namespace syntax

Namespaces and
validity

✦ ✦ ✦ ✦

332 Part II ✦ Document Type Definitions

(SVG). SVG is an XML application that describes line art such as might be produced

by Adobe Illustrator or Visio. SVG documents are embedded in HTML or XHTML

documents to add vector graphics to Web pages. SVG elements include desc,

title, metadata, defs, path, text, rect, circle, ellipse, line, polyline,

polygon, use, image, svg, g, view, switch, a, altGlyphDef, script, style,

symbol, marker, clipPath, mask, linearGradient, radialGradient, pattern,

filter, cursor, font, animate, set, animateMotion, animateColor,

animateTransform, color-profile, and font-face. Five of these —title, a,

script, style, and font— happen to share names with HTML elements. Several

others conflict with other XML vocabularies you might want to embed in an HTML

document. For instance, MathML uses set to mean a mathematical set; the

Resource Description Framework (RDF) uses title to refer to the title of a

resource.

How is a browser reading a document that mixes HTML, SVG, and RDF supposed to

know whether any given title element is an HTML title, an SVG title, or an

RDF title? Perhaps the browser could have enough knowledge of where the differ-

ent kinds of SVG pictures, RDF metadata, MathML equations, and other extra-HTML

vocabularies are supposed to appear to be able to tell which is which. But what is

the browser supposed to do when it encounters conflicts with nonstandard vocabu-

laries that it hasn’t seen before and of which it has no understanding? XML is

designed to allow authors and developers to extend it with their own elements in

an infinite variety of ways. When authors begin mixing and matching tag sets cre-

ated by different developers, name conflicts are almost inevitable.

Namespaces are the solution. They allow each element and attribute in a document

to be placed in a different namespace mapped to a particular URI. The XML ele-

ments that come from SVG are placed in the http://www.w3.org/2000/svg
namespace. The XML elements that come from XHTML are placed in the http://
www.w3.org/1999/xhtml namespace. MathML goes in the http://www.w3.org/
1998/Math/MathML namespace. If you mix in elements from some vocabulary you

created yourself, you can place that in another namespace, with a URI somewhere

in a domain you own.

A URI (Uniform Resource Identifier) is an abstraction of a URL. Whereas a URL
locates a resource, a URI identifies a resource. For instance, a URI for a person
might include that person’s social security number. This doesn’t mean you can
look the person up in a Web browser using a person URI. In practice, most URIs
that are actually used today, including most URIs that are used for namespaces,
are in fact URLs.

This URI doesn’t even have to point at any particular file. The URI that defines a

namespace is purely formal. Its only purpose is to group and disambiguate element

and attribute names in the document. It does not necessarily point to anything. In

particular, there is no guarantee that the document at the namespace URI describes

Note

333Chapter 13 ✦ Namespaces

the syntax used in the document; or, for that matter, that any document exists at the
URI. Most namespace URIs produce “404 Not Found” errors when you attempt to

resolve them. Having said that, if there is a canonical URI for a particular XML appli-

cation, then that URI is a good choice for the namespace definition.

Namespaces have been carefully crafted to layer on top of the XML 1.0 specifica-

tion. Other than reserving the colon character to separate prefixes and local names,

namespaces have no direct effect on standard XML syntax. An XML 1.0 processor

that knows nothing about namespaces can still read a document that uses name-

spaces, and will not find any errors. Conversely, a document that uses namespaces

must still be well-formed when read by a processor that knows nothing about

namespaces. If the document is validated, then it must be validated without specifi-

cally considering the namespaces. To an XML processor, a document that uses

namespaces is just a funny-looking document in which some of the element and

attribute names have a single colon. Documents that use namespaces do not break

existing XML parsers; and users don’t have to wait for notoriously unpunctual soft-

ware companies to release expensive upgrades before using namespaces.

Namespaces in XML is an official W3C recommendation. The W3C considers it
complete, aside from possible minor errors and elucidations. Nonetheless, of all
the finished XML specifications from the W3C, this one is the most controversial.
Many people feel very strongly that this standard contains fundamental flaws. The
main objection is that namespaces are, in practice, incompatible with DTDs. While
I don’t have a strong opinion on this one way or the other, I do question the wis-
dom of publishing a standard when nothing approaching a consensus has been
reached. Namespaces are a crucial part of many XML-related specifications such as
XSL and XHTML, so you need to understand them. Nonetheless, a lot of develop-
ers and authors have chosen to ignore this specification for their own work.

Namespace Syntax
Suppose you’re a webmaster at a small agency in Hollywood that represents screen-

writers. You want a Web page that describes the scripts currently available for auc-

tion from the agency’s clients. The basic page that provides the list is written in

HTML. The information about each client is given in some industry standard DTD

for describing people that produces PERSON elements that look like this:

<PERSON>
<FIRST>Larry</FIRST>
<LAST>Smith</LAST>
<TITLE>Mr.</TITLE>

</PERSON>

Caution

334 Part II ✦ Document Type Definitions

The information about screenplays is provided in SCRIPT elements that look like

this:

<SCRIPT>
<TITLE>New York Stories</TITLE>
<AUTHOR>
<PERSON>
<FIRST>Larry</FIRST>
<LAST>Smith</LAST>
<TITLE>Mr.</TITLE>

</PERSON>
</AUTHOR>
<SYNOPSIS>
Six friends with no visible means of support nonetheless
manage to live in improbably large apartments in
Manhattan.

</SYNOPSIS>
</SCRIPT>

The entire document might look something like Listing 13-1.

Listing 13-1: A well-formed XML document that uses HTML
and two custom XML applications

<HTML>
<HEAD><TITLE>Screenplays for Auction</TITLE></HEAD>
<BODY>
<H1>January 27, 2001 Auction</H1>

<P>Pilot scripts for the Fall season:</P>

<SCRIPT>
<TITLE>Chicken Feathers</TITLE>
<AUTHOR>
<PERSON>
<FIRST>William</FIRST>
<LAST>Sanders</LAST>
<TITLE>Col.</TITLE>

</PERSON>
</AUTHOR>
<SYNOPSIS>
Hijinks in a poultry factory

</SYNOPSIS>
</SCRIPT>

<SCRIPT>
<TITLE>Soft Copy</TITLE>
<AUTHOR>

335Chapter 13 ✦ Namespaces

<PERSON>
<FIRST>Nora</FIRST>
<LAST>Lessinger</LAST>
<TITLE>Dr.</TITLE>

</PERSON>
</AUTHOR>
<SYNOPSIS>Sex lives of the rich and famous</SYNOPSIS>

</SCRIPT>

Send inquiries to
<PERSON>
<TITLE>Mr.</TITLE>,
<FIRST>Mikhail</FIRST>
<LAST>Ovitsky</LAST>
<COMPANY>Duplicative Artists Mismanagement</COMPANY>,
<ADDRESS>135 Agents Row, Hollywood, CA 90123</ADDRESS>

</PERSON>

</BODY>
</HTML>

There are several problems with this document, even though it’s well-formed XML.

Some of the elements used as part of the custom vocabularies conflict with each

other and with standard HTML. The first problem is that the TITLE element is used

for three separate things: The title of the page, the title of a script, and the title of a

person. The second problem may be even worse in practice. The SCRIPT element

conflicts with the HTML SCRIPT element. A Web browser reading this document

may try to interpret the contents of the SCRIPT element as a JavaScript program.

Even though this particular page doesn’t use any JavaScript, an HTML renderer,

even one that supports XML embedded in HTML documents, is still going to think

that a SCRIPT element contains JavaScript. These sorts of problems crop up all the

time when you mix and match different XML vocabularies. In this case, the problem

is the attempt to merge three different vocabularies — one for persons, one for

scripts, and one for Web pages — that were designed without much concern for

each other.

For that matter, even if you’re lucky and the names don’t conflict, how is an XML

browser supposed to be able to distinguish between groups of elements from differ-

ent vocabularies? For instance a studio robot might want to collect script proposals

from various agencies by harvesting all the SCRIPT elements that contain synopses

while ignoring all the JavaScript. You can fix all these problems by adding name-

spaces to the document. Namespaces identify which elements in the document

belong to which XML vocabularies.

336 Part II ✦ Document Type Definitions

Defining namespaces with xmlns attributes
The script auction example uses elements from three different vocabularies, so

three different namespaces are needed. Each namespace has a URI. You can choose

any convenient absolute URI in a domain that you own for the namespace. In this

example, I use the URI http://ns.cafeconleche.org/people/ for the person

application because I happen to own the cafeconleche.org domain.

The URI you choose does not have to refer to anything. There does not have to be
a DTD or a schema or any other page at all at the location identified by the name-
space URI. In fact, there isn’t even a host named ns.cafeconleche.org. A namespace
URI is nothing more than a formal identifier that helps to distinguish between ele-
ments with the same name from different organizations. URIs were chosen for this
purpose because they allow developers to choose their own namespace URIs with-
out having to create yet another central registration authority.

However, URIs often contain characters that can’t appear in XML element and

attribute names. For example, http://ns.cafeconleche.org/people:first is

not a legal name for an XML element because it contains forward slashes. Therefore

you have to associate the URI with a prefix and put the prefix in the element name

instead. The prefixes are generally some abbreviated form of the thing that the XML

application describes. For the person application, you might choose the prefix P, p,

or PE, or perhaps even person or PEOPLE. In this example, I use P as the prefix for

the person vocabulary with the associated URI http://ns.cafeconleche.
org/people/.

You associate a namespace URI with a prefix by adding an xmlns:prefix attribute

to the elements they apply to. prefix is replaced by the actual prefix used for

the namespace. The value of the attribute is the URI of the namespace. For exam-

ple, this xmlns:P attribute associates the prefix P with the URI http://ns.
cafeconleche.org/people/.

xmlns:P=”http://ns.cafeconleche.org/people/”

Once this attribute is added to an element, the P prefix can then be attached to

that element’s name as well as the names of all its attributes and descendants.

Within that element the P prefix identifies something as belonging to the http://
ns.cafeconleche.org/people/ namespace. The prefix is attached to the local

name by a colon. Listing 13-2 demonstrates this by adding the P prefix to the

PERSON, FIRST, and LAST elements, as well as those TITLE elements that come

from the people application, but not to the TITLE elements that come from HTML

or the script application.

Note

337Chapter 13 ✦ Namespaces

Listing 13-2: Placing the person application elements in a
separate namespace

<HTML>
<HEAD><TITLE>Screenplays for Auction</TITLE></HEAD>
<BODY>
<H1>January 27, 2001 Auction</H1>

<P>Pilot scripts for the Fall season:</P>

<SCRIPT>
<TITLE>Chicken Feathers</TITLE>
<AUTHOR>
<P:PERSON xmlns:P=”http://ns.cafeconleche.org/people/”>
<P:FIRST>William</P:FIRST>
<P:LAST>Sanders</P:LAST>
<P:TITLE>Col.</P:TITLE>

</P:PERSON>
</AUTHOR>
<SYNOPSIS>
Hijinks in a poultry factory

</SYNOPSIS>
</SCRIPT>

<SCRIPT>
<TITLE>Soft Copy</TITLE>
<AUTHOR>
<P:PERSON xmlns:P=”http://ns.cafeconleche.org/people/”>
<P:FIRST>Nora</P:FIRST>
<P:LAST>Lessinger</P:LAST>
<P:TITLE>Dr.</P:TITLE>

</P:PERSON>
</AUTHOR>
<SYNOPSIS>Sex lives of the rich and famous</SYNOPSIS>

</SCRIPT>

Send inquiries to
<P:PERSON xmlns:P=”http://ns.cafeconleche.org/people/”>
<P:TITLE>Mr.</P:TITLE>,
<P:FIRST>Mikhail</P:FIRST>
<P:LAST>Ovitsky</P:LAST>
<P:COMPANY>Duplicative Artists Mismanagement</P:COMPANY>,
<P:ADDRESS>
135 Agents Row, Hollywood, CA 90123

</P:ADDRESS>
</P:PERSON>

</BODY>
</HTML>

338 Part II ✦ Document Type Definitions

It’s now quite easy to distinguish between the title of the page and the title of a per-

son. The first is represented by a TITLE element, while the second is represented

by a P:TITLE element.

The elements with the P prefix are said to have qualified names beginning with the P
prefix:

✦ P:PERSON

✦ P:TITLE

✦ P:FIRST

✦ P:LAST

✦ P:COMPANY

✦ P:ADDRESS

The part of the name after the colon is called the local name. These six elements

have these six local names:

✦ PERSON

✦ TITLE

✦ FIRST

✦ LAST

✦ COMPANY

✦ ADDRESS

The prefix can change as long as the URI and the local names stay the same. The

true names of these elements are based on the URI rather than on the prefix. Thus,

the abstract true names of these six elements have a form like this:

✦ http://ns.cafeconleche.org/people/:PERSON

✦ http://ns.cafeconleche.org/people/:TITLE

✦ http://ns.cafeconleche.org/people/:FIRST

✦ http://ns.cafeconleche.org/people/:LAST

✦ http://ns.cafeconleche.org/people/:COMPANY

✦ http://ns.cafeconleche.org/people/:ADDRESS

However, you’ll never use a name like this anywhere in an XML document. In

essence, the shorter qualified names are mandatory nicknames that are used within

the document because URIs often contain characters such as ~, %, and / that aren’t

legal in XML names.

339Chapter 13 ✦ Namespaces

A namespace prefix can be any legal XML name that does not contain a colon.

Recall from Chapter 6 that a legal XML name must begin with a letter or an under-

score (_). Subsequent letters in the name may include letters, digits, underscores,

hyphens, and periods. They may not include white space.

Two prefixes are specifically disallowed, xml and xmlns. The xml prefix should
only be used for the xml:space and xml:lang attributes defined in the XML 1.0
specification. The prefix xml is automatically mapped to the URI http://
www.w3.org/XML/1998/namespace. The xmlns prefix is used to bind ele-
ments to namespaces, and is therefore not available as a prefix to be bound to.

Multiple namespaces
The difference between the title of a page and the title of a script is still up in the

air, as is the difference between a screenplay SCRIPT and a JavaScript SCRIPT. To

fix this, you need to add another namespace to the document. This time, I use the

prefix SCR and the URI http://ns.cafeconleche.org/scripts/. Defining this

mapping requires adding this attribute to all the SCRIPT elements:

xmlns:SCR=”http://ns.cafeconleche.org/scripts/”

Alternately, instead of placing the declaration of the SCR namespace prefix on all

SCRIPT elements, I can put it on one element that contains them all. There are two

such elements in the example, HTML and BODY. When the namespace declaration is

not placed directly on the start tag that begins the vocabulary, it’s generally put on

the root element. Listing 13-3 does exactly this.

Listing 13-3: Declaring a namespace on the root element

<HTML xmlns:SCR=”http://ns.cafeconleche.org/scripts/”>
<HEAD><TITLE>Screenplays for Auction</TITLE></HEAD>
<BODY>
<H1>January 27, 2001 Auction</H1>

<P>Pilot scripts for the Fall season:</P>

<SCR:SCRIPT>
<SCR:TITLE>Chicken Feathers</SCR:TITLE>
<SCR:AUTHOR>
<P:PERSON xmlns:P=”http://ns.cafeconleche.org/people/”>
<P:FIRST>William</P:FIRST>
<P:LAST>Sanders</P:LAST>
<P:TITLE>Col.</P:TITLE>

Continued

Note

340 Part II ✦ Document Type Definitions

Listing 13-3 (continued)

</P:PERSON>
</SCR:AUTHOR>
<SCR:SYNOPSIS>
Hijinks in a poultry factory

</SCR:SYNOPSIS>
</SCR:SCRIPT>

<SCR:SCRIPT>
<SCR:TITLE>Soft Copy</SCR:TITLE>
<SCR:AUTHOR>
<P:PERSON xmlns:P=”http://ns.cafeconleche.org/people/”>
<P:FIRST>Nora</P:FIRST>
<P:LAST>Lessinger</P:LAST>
<P:TITLE>Dr.</P:TITLE>

</P:PERSON>
</SCR:AUTHOR>
<SCR:SYNOPSIS>Sex lives of the rich and famous
</SCR:SYNOPSIS>

</SCR:SCRIPT>

Send inquiries to
<P:PERSON xmlns:P=”http://ns.cafeconleche.org/people/”>
<P:TITLE>Mr.</P:TITLE>,
<P:FIRST>Mikhail</P:FIRST>
<P:LAST>Ovitsky</P:LAST>
<P:COMPANY>Duplicative Artists Mismanagement</P:COMPANY>,
<P:ADDRESS>
135 Agents Row, Hollywood, CA 90123

</P:ADDRESS>
</P:PERSON>

</BODY>
</HTML>

Whether you choose to declare a namespace on the root element or on some ele-

ment further down the hierarchy is mostly a matter of personal preference and

convenience in the document at hand. Some developers prefer to declare all name-

spaces on the root element. Others prefer to declare the namespaces closer to

where they’re actually used. XML doesn’t care. For example, Listing 13-3 could have

equally well been written as shown in Listing 13-4, with both the SCR and P prefixes

declared on the root element.

341Chapter 13 ✦ Namespaces

Listing 13-4: Declaring all namespaces on the root element

<HTML xmlns:SCR=”http://ns.cafeconleche.org/scripts/”
xmlns:P=”http://ns.cafeconleche.org/people/”>

<HEAD><TITLE>Screenplays for Auction</TITLE></HEAD>
<BODY>
<H1>January 27, 2001 Auction</H1>

<P>Pilot scripts for the Fall season:</P>

<SCR:SCRIPT>
<SCR:TITLE>Chicken Feathers</SCR:TITLE>
<SCR:AUTHOR>
<P:PERSON>
<P:FIRST>William</P:FIRST>
<P:LAST>Sanders</P:LAST>
<P:TITLE>Col.</P:TITLE>

</P:PERSON>
</SCR:AUTHOR>
<SCR:SYNOPSIS>
Hijinks in a poultry factory

</SCR:SYNOPSIS>
</SCR:SCRIPT>

<SCR:SCRIPT>
<SCR:TITLE>Soft Copy</SCR:TITLE>
<SCR:AUTHOR>
<P:PERSON>
<P:FIRST>Nora</P:FIRST>
<P:LAST>Lessinger</P:LAST>
<P:TITLE>Dr.</P:TITLE>

</P:PERSON>
</SCR:AUTHOR>
<SCR:SYNOPSIS>Sex lives of the rich and famous
</SCR:SYNOPSIS>

</SCR:SCRIPT>

Send inquiries to
<P:PERSON>
<P:TITLE>Mr.</P:TITLE>,
<P:FIRST>Mikhail</P:FIRST>
<P:LAST>Ovitsky</P:LAST>
<P:COMPANY>Duplicative Artists Mismanagement</P:COMPANY>,
<P:ADDRESS>
135 Agents Row, Hollywood, CA 90123

</P:ADDRESS>
</P:PERSON>

</BODY>
</HTML>

342 Part II ✦ Document Type Definitions

In most cases (validation against a DTD being the notable exception), it’s the URI

that’s important, not the prefix. The prefixes can change. As long as the URI stays

the same the meaning of the document is unchanged. For example, Listing 13-5 uses

the prefixes PERSON and SCRIPT instead of P and SCR. However, this document is

effectively the same as Listing 13-4.

Listing 13-5: Same document, different prefixes

<HTML xmlns:SCRIPT=”http://ns.cafeconleche.org/scripts/”
xmlns:PERSON=”http://ns.cafeconleche.org/people/”>

<HEAD><TITLE>Screenplays for Auction</TITLE></HEAD>
<BODY>
<H1>January 27, 2001 Auction</H1>

<P>Pilot scripts for the Fall season:</P>

<SCRIPT:SCRIPT>
<SCRIPT:TITLE>Chicken Feathers</SCRIPT:TITLE>
<SCRIPT:AUTHOR>
<PERSON:PERSON>
<PERSON:FIRST>William</PERSON:FIRST>
<PERSON:LAST>Sanders</PERSON:LAST>
<PERSON:TITLE>Col.</PERSON:TITLE>

</PERSON:PERSON>
</SCRIPT:AUTHOR>
<SCRIPT:SYNOPSIS>
Hijinks in a poultry factory

</SCRIPT:SYNOPSIS>
</SCRIPT:SCRIPT>

<SCRIPT:SCRIPT>
<SCRIPT:TITLE>Soft Copy</SCRIPT:TITLE>
<SCRIPT:AUTHOR>
<PERSON:PERSON>
<PERSON:FIRST>Nora</PERSON:FIRST>
<PERSON:LAST>Lessinger</PERSON:LAST>
<PERSON:TITLE>Dr.</PERSON:TITLE>

</PERSON:PERSON>
</SCRIPT:AUTHOR>
<SCRIPT:SYNOPSIS>Sex lives of the rich and famous
</SCRIPT:SYNOPSIS>

</SCRIPT:SCRIPT>

Send inquiries to
<PERSON:PERSON>
<PERSON:TITLE>Mr.</PERSON:TITLE>,
<PERSON:FIRST>Mikhail</PERSON:FIRST>
<PERSON:LAST>Ovitsky</PERSON:LAST>
<PERSON:COMPANY>Duplicative Artists Mismanagement

343Chapter 13 ✦ Namespaces

</PERSON:COMPANY>
<PERSON:ADDRESS>
135 Agents Row, Hollywood, CA 90123

</PERSON:ADDRESS>
</PERSON:PERSON>

</BODY>
</HTML>

In fact, it’s even possible to redeclare prefixes so that one prefix refers to different

URIs in different places in the document, or so that two different prefixes refer to

the same URI. This is, however, needlessly confusing; and I strongly recommend

that you don’t do it. There are more than enough prefixes to go around, and almost

no need to reuse them within the same document. The main importance of this is if

two different documents from different authors that happen to reuse a similar pre-

fix are being combined. This is a good reason to avoid short prefixes such as A, S,

and X that are likely to be reused for different purposes.

Attributes
Because attributes belong to particular elements, they’re more easily distinguished

from similarly named attributes without namespaces. Consequently, it’s not nearly

as essential to add namespaces to attributes as to elements. For example, the XSLT

specification requires that all XSL transformation elements fall in the http://www.
w3.org/1999/XSL/Transform namespace. However, it does not require that the

attributes of these elements be in any particular namespace. (In fact, it requires

that they not be in any namespace.) Nonetheless, you can attach namespace pre-

fixes to attributes if necessary. For example, all the attributes in this SCRIPT
element and its children live in the http://namespaces.cafeconleche.org/
scripts/ namespace.

<SCR:SCRIPT SCR:TYPE=”Sitcom”
SCR:COPYRIGHT=”2001 William Sanders”

xmlns:SCR=”http://namespaces.cafeconleche.org/scripts/”
xmlns:P=”http://namespaces.cafeconleche.org/people/”>
<SCR:TITLE SCR:ALT=”NO”>Chicken Feathers</SCR:TITLE>
<SCR:AUTHOR SCR:ID=”A67Y”>
<P:PERSON>
<P:FIRST>William</P:FIRST>
<P:LAST>Sanders</P:LAST>
<P:TITLE>Col.</P:TITLE>

</P:PERSON>
</SCR:AUTHOR>
<SCR:SYNOPSIS SCR:LANG=”English”>
Hijinks in a poultry factory

</SCR:SYNOPSIS>
</SCR:SCRIPT>

344 Part II ✦ Document Type Definitions

This might occasionally prove useful if you need to combine attributes from two dif-

ferent XML applications on the same element. XLink uses prefixed attributes to

allow any element to become a link.

XLinks are discussed in Chapter 19.

It is possible (though mostly pointless) to associate the same namespace URI with

two different prefixes. There’s really no reason to do this. The only reason I bring it

up here is simply to warn you that it is the true name of the attribute that must sat-

isfy XML’s rules for an element not having more than one attribute with the same

name. For example, this code is illegal because SCR:ID and SCRIPT:ID are the

same:

<SCR:SCRIPT SCR:TYPE=”Sitcom”
SCR:COPYRIGHT=”2001 William Sanders”

xmlns:SCR=”http://namespaces.cafeconleche.org/scripts/”
xmlns:SCRIPT=”http://namespaces.cafeconleche.org/scripts/”
xmlns:P=”http://namespaces.cafeconleche.org/people/”>
<SCR:TITLE SCR:ID=”A67Y” SCRIPT:ID=”Y76A”>
Chicken Feathers

</SCR:TITLE>
</SCR:SCRIPT>

On the other hand, the parser does not actually check the URI to see what it points

to. The URIs http://ibiblio.org/xml/ and http://www.ibiblio.org/xml/
point to the same page. However, this code is legal:

<SCR:SCRIPT SCR:TYPE=”Sitcom”
SCR:COPYRIGHT=”2001 William Sanders”

xmlns:SCR=”http://ibiblio.org/xml/”
xmlns:SCRIPT=”http://www.ibiblio.org/xml/”
xmlns:P=”http://namespaces.cafeconleche.org/people/”>
<SCR:TITLE SCR:ID=”A67Y” SCRIPT:ID=”Y76A”>
Chicken Feathers

</SCR:TITLE>
</SCR:SCRIPT>

Default namespaces
In long documents with a lot of markup, all in the same namespace, you might find

it inconvenient to add a prefix to each element name. You can attach a default

namespace to an element and to its descendants using an xmlns attribute with no

prefix. The element itself and all its descendants are considered to be in the defined

namespace unless they have an explicit prefix.

For example, you may wish to place the HTML elements in the script auction exam-

ple in a namespace of their own, but not to give them any prefixes so that legacy

browsers will still recognize them. Listing 13-6 does exactly this.

Cross-
Reference

345Chapter 13 ✦ Namespaces

Listing 13-6: Placing the HTML elements in the same
namespace

<HTML xmlns=”http://www.w3.org/1999/xhtml”
xmlns:SCRIPT=”http://ns.cafeconleche.org/scripts/”
xmlns:PERSON=”http://ns.cafeconleche.org/people/”>

<HEAD><TITLE>Screenplays for Auction</TITLE></HEAD>
<BODY>
<H1>January 27, 2001 Auction</H1>

<P>Pilot scripts for the Fall season:</P>

<SCRIPT:SCRIPT>
<SCRIPT:TITLE>Chicken Feathers</SCRIPT:TITLE>
<SCRIPT:AUTHOR>
<PERSON:PERSON>
<PERSON:FIRST>William</PERSON:FIRST>
<PERSON:LAST>Sanders</PERSON:LAST>
<PERSON:TITLE>Col.</PERSON:TITLE>

</PERSON:PERSON>
</SCRIPT:AUTHOR>
<SCRIPT:SYNOPSIS>
Hijinks in a poultry factory

</SCRIPT:SYNOPSIS>
</SCRIPT:SCRIPT>

<SCRIPT:SCRIPT>
<SCRIPT:TITLE>Soft Copy</SCRIPT:TITLE>
<SCRIPT:AUTHOR>
<PERSON:PERSON>
<PERSON:FIRST>Nora</PERSON:FIRST>
<PERSON:LAST>Lessinger</PERSON:LAST>
<PERSON:TITLE>Dr.</PERSON:TITLE>

</PERSON:PERSON>
</SCRIPT:AUTHOR>
<SCRIPT:SYNOPSIS>Sex lives of the rich and famous
</SCRIPT:SYNOPSIS>

</SCRIPT:SCRIPT>

Send inquiries to
<PERSON:PERSON>
<PERSON:TITLE>Mr.</PERSON:TITLE>,
<PERSON:FIRST>Mikhail</PERSON:FIRST>
<PERSON:LAST>Ovitsky</PERSON:LAST>
<PERSON:COMPANY>Duplicative Artists Mismanagement
</PERSON:COMPANY>,
<PERSON:ADDRESS>
135 Agents Row, Hollywood, CA 90123

</PERSON:ADDRESS>
</PERSON:PERSON>

</BODY>
</HTML>

346 Part II ✦ Document Type Definitions

From the perspective of most XML applications, a document that uses the default

namespace is the same as a document that uses prefixes as long as the URIs associ-

ated with each element are the same. However, a legacy HTML browser will have a

much easier time with the Listing 13-6 than with the equivalent version in Listing 13-7

that attaches the prefix HTML to all the HTML elements.

Listing 13-7: Prefixing the HTML elements in the same
namespace

<HTML:HTML xmlns:HTML=”http://www.w3.org/1999/xhtml”
xmlns:SCRIPT=”http://ns.cafeconleche.org/scripts/”
xmlns:PERSON=”http://ns.cafeconleche.org/people/”>

<HTML:HEAD>
<HTML:TITLE>Screenplays for Auction</HTML:TITLE>

</HTML:HEAD>
<HTML:BODY>
<HTML:H1>January 27, 2001 Auction</HTML:H1>

<HTML:P>Pilot scripts for the Fall season:</HTML:P>

<SCRIPT:SCRIPT>
<SCRIPT:TITLE>Chicken Feathers</SCRIPT:TITLE>
<SCRIPT:AUTHOR>
<PERSON:PERSON>
<PERSON:FIRST>William</PERSON:FIRST>
<PERSON:LAST>Sanders</PERSON:LAST>
<PERSON:TITLE>Col.</PERSON:TITLE>

</PERSON:PERSON>
</SCRIPT:AUTHOR>
<SCRIPT:SYNOPSIS>
Hijinks in a poultry factory

</SCRIPT:SYNOPSIS>
</SCRIPT:SCRIPT>

<SCRIPT:SCRIPT>
<SCRIPT:TITLE>Soft Copy</SCRIPT:TITLE>
<SCRIPT:AUTHOR>
<PERSON:PERSON>
<PERSON:FIRST>Nora</PERSON:FIRST>
<PERSON:LAST>Lessinger</PERSON:LAST>
<PERSON:TITLE>Dr.</PERSON:TITLE>

</PERSON:PERSON>
</SCRIPT:AUTHOR>
<SCRIPT:SYNOPSIS>Sex lives of the rich and famous
</SCRIPT:SYNOPSIS>

</SCRIPT:SCRIPT>

347Chapter 13 ✦ Namespaces

Send inquiries to
<PERSON:PERSON>
<PERSON:TITLE>Mr.</PERSON:TITLE>,
<PERSON:FIRST>Mikhail</PERSON:FIRST>
<PERSON:LAST>Ovitsky</PERSON:LAST>
<PERSON:COMPANY>Duplicative Artists Mismanagement
</PERSON:COMPANY>,
<PERSON:ADDRESS>
135 Agents Row, Hollywood, CA 90123

</PERSON:ADDRESS>
</PERSON:PERSON>

</HTML:BODY>
</HTML:HTML>

A good time to use default namespaces is when you need to attach a namespace to

every element in an existing document to which you’re now going to add elements

from a different language. For instance, if you place some MathML in an XHTML

document, you only have to add prefixes to the MathML elements. You can put all

the HTML elements in the XHTML namespace simply by adding an xmlns attribute

to the start tag like this:

<html xmlns=”http://www.w3.org/1999/xhtml”>

You do not need to edit the rest of the file! The MathML tags you insert still need to

be in the proper MathML namespace. However, as long as they aren’t mixed up with

a lot of HTML markup, you can simply declare an xmlns attribute on the root ele-

ment of the MathML. This defines a default namespace for the MathML elements

that overrides the default namespace of the document containing the MathML.

Listing 13-8 demonstrates.

Listing 13-8: A MathML math element embedded in a
well-formed HTML document

<?xml version=”1.0”?>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<title>Fiat Lux</title>
<meta name=”GENERATOR” content=”amaya V1.3b” />

</head>
<body>

<P>And God said,</P>

<math xmlns=”http://www.w3.org/1998/Math/MathML”>

Continued

348 Part II ✦ Document Type Definitions

Listing 13-8 (continued)

<mrow>
<msub>
<mi>δ</mi>
<mi>α</mi>

</msub>
<msup>
<mi>F</mi>
<mi>αβ</mi>

</msup>
<mi></mi>
<mo>=</mo>
<mi></mi>
<mfrac>
<mrow>
<mn>4</mn>
<mi>π</mi>

</mrow>
<mi>c</mi>

</mfrac>
<mi></mi>
<msup>
<mi>J</mi>
<mrow>
<mi>β</mi>
<mo></mo>

</mrow>
</msup>

</mrow>
</math>

<P>and there was light</P>

</body>
</html>

Here, math, mrow, msub, mo, mi, mfrac, mn, and msup are all in the http://www.w3.
org/1998/Math/MathML namespace, even though the document that contains

them uses the http://www.w3.org/1999/xhtml namespace.

Attributes are never in a default namespace. They must be explicitly prefixed. An
unprefixed attribute is in no namespace at all. Even if the element it is a part of is
in some namespace, default or otherwise, the unprefixed attribute is still not in
that or any other namespace.

Note

349Chapter 13 ✦ Namespaces

Namespaces and Validity
Namespaces do not get any special exemptions from the normal rules of well-

formedness and validity. Well-formedness is generally not a problem, but validity

sometimes is. In order for a document that uses namespaces to be valid, you must

declare the xmlns attributes in the DTD just like you’d declare any other attribute.

Furthermore, you must declare the elements and attributes using the prefixes they

use in the document. For instance, if a document uses a PERSON:ADDRESS element,

then the DTD must declare a PERSON:ADDRESS element, not merely an ADDRESS ele-

ment, like this:

<!ELEMENT PERSON:ADDRESS (#PCDATA)>

This means that if a DTD was written without namespace prefixes, then it must be

rewritten using the namespace prefixes before it can be used to validate documents

that use prefixed element and attribute names. For example, consider this element

declaration:

<!ELEMENT SCRIPT (TITLE, AUTHOR, SYNOPSIS)>

You have to rewrite it like this if the elements are all given the SCR namespace prefix:

<!ELEMENT SCR:SCRIPT (SCR:TITLE, SCR:AUTHOR, SCR:SYNOPSIS)>

This means that you cannot use the same DTD for both documents with names-

paces and documents without, even if they use essentially the same vocabulary. In

fact you can’t even use the same DTD for documents that use the same tag sets and

namespaces, but different prefixes, because DTDs are tied to the actual prefixes

rather than the URIs of the namespaces.

If you have a question about whether a document that uses namespaces is well-
formed or valid, forget everything you know about namespaces. Simply treat the
document as a normal XML document that happens to have some element and
attribute names that contain colons. The document is as well-formed and valid as
it is when you don’t consider namespaces.

Default attribute values can help a little here. For example, this ATTLIST declara-

tion places every PERSON:ADDRESS element in the http://ns.cafeconleche.
org/people/ namespace unless specified otherwise in the document.

<!ATTLIST PERSON:ADDRESS xmlns:PERSON
“http://ns.cafeconleche.org/people/” >

Default namespaces are especially useful in valid documents since they don’t

require you to add prefixes to all the elements. Adding prefixes to elements from an

XML application whose DTD doesn’t use prefixes breaks validity.

Tip

350 Part II ✦ Document Type Definitions

There are, however, clear limits to how far default namespaces will take you. In par-

ticular, they are not sufficient to differentiate between two elements that use an ele-

ment name in incompatible ways. For example, if one DTD defines a HEAD as

containing a TITLE and a META element, and another DTD defines a HEAD as con-

taining #PCDATA, then you have to use prefixes in the DTD and the document to dis-

tinguish the two different HEAD elements.

Two different development efforts are underway that may (or may not) eventually
solve the problem of merging incompatible DTDs from different domains. XML
schemas offers a namespace-aware alternative to DTDs for validation. XML frag-
ments may enable different documents to be combined with more explicit
acknowledgement of which parts come from where. However, neither of these is
even close to finished. Consequently, for now, merging incompatible DTDs will
probably require you to rewrite the DTD and your documents to use prefixes.

Summary
This chapter explained namespaces. In particular, you learned that:

✦ Namespaces distinguish between elements and attributes with the same name

from different XML applications.

✦ In a document that mixes markup from multiple XML applications, namespaces

identify which elements and attributes are part of which XML applications.

✦ Namespaces are declared by an xmlns attribute whose value is the URI of the

namespace. The document referred to by this URI need not exist.

✦ The prefix associated with a namespace is the part of the name of the xmlns
attribute that follows the colon, for example, xmlns:prefix.

✦ Prefixes are attached to all element and attribute names that belong to the

namespace identified by the prefix.

✦ If an xmlns attribute has no prefix, it establishes a default namespace for that

element and its descendants (but not for any attributes).

✦ DTDs must be written in such a fashion that a processor that knows nothing

about namespaces can still parse and validate the document.

This completes Part II. You now have a solid grasp of XML fundamentals. In the next

several parts, we’ll investigate a number of supplementary technologies that layer

on top of XML, as well as applications built with XML. Many of these applications

use namespaces for one purpose or another. In particular, you’ll learn how names-

paces are used in the Extensible Stylesheet Language (XSL), the XML Linking

Language (XLink), the Resource Description Framework (RDF), and several other

XML applications.

✦ ✦ ✦

Note

Style Languages
✦ ✦ ✦ ✦

In This Part

Chapter 14
CSS Style Sheets

Chapter 15
CSS Layouts

Chapter 16
CSS Text Styles

Chapter 17
XSL Transformations

Chapter 18
XSL Formatting
Objects

✦ ✦ ✦ ✦

P A R T

IIIIII

CSS Style Sheets

CSS is a very simple and straightforward language for

applying styles to XML documents. Most of the styles

CSS supports are familiar from any word processor. For exam-

ple, you can choose the font, the font weight, the font size, the

background color, the spacing of various elements, the bor-

ders around elements, and more. However, rather than being

stored as part of the document itself, all the style information

is placed in a separate document called a style sheet. A single

XML document can be formatted in many different ways just

by changing the style sheet. Different style sheets can be

designed for different purposes — for print, the Web, presenta-

tions, and other uses — all with the styles appropriate for the

specific medium, and all without changing any of the content

in the document itself.

Netscape/Mozilla 6.0, Opera 4.0 and 5.0, and Internet
Explorer 5.0 and 5.5 all implement some but not all parts
of the CSS specification. Earlier versions of the major
browsers, while perhaps supporting some form of CSS for
HTML documents, do not support it at all for XML docu-
ments. To make matters worse, they all implement differ-
ent subsets of the specification; and sometimes don’t
implement the same subsets for XML as they do for HTML.
I’ll try to indicate where one browser or another has a par-
ticular problem as we go along. However, if you find that
something in this chapter doesn’t work as advertised in
your favorite browser (or in any browser), please complain
to the browser vendor, not to me.

What Are Cascading Style Sheets?
Cascading Style Sheets (referred to as CSS from now on) is a

declarative language introduced in 1996 as a standard means

of adding information to HTML documents about style proper-

ties such as fonts and borders. However, CSS actually works

better with XML than with HTML because HTML is burdened

with backward-compatibility issues. For instance, properly

Caution

1414C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

What is CSS?

Comments in CSS

Selecting elements

Inheritance

Cascades

Different rules for
different media

Importing style sheets

Style sheet character
sets

✦ ✦ ✦ ✦

354 Part III ✦ Style Languages

supporting the CSS nowrap property requires eliminating the nonstandard but fre-

quently used NOWRAP element in HTML. Since XML elements don’t have any prede-

fined formatting, they don’t restrict which CSS styles can be applied to which

elements.

A simple CSS style sheet
A CSS style sheet contains a list of rules. Each rule gives the names of the elements

it applies to and the styles to apply to those elements. Consider Listing 14-1, a CSS

style sheet for poems. Listing 14-1 can be typed in any text editor, saved as a text

file, and named something like poem.css. The three letter extension .css is conven-

tional, but not required.

Listing 14-1: A CSS style sheet for poems

POEM { display: block }
TITLE { display: block; font-size: 16pt; font-weight: bold }
POET { display: block; margin-bottom: 10px }
STANZA { display: block; margin-bottom: 10px }
VERSE { display: block }

This style sheet has five rules. Each rule has a selector — in this example the name

of the element to which it applies — and a list of styles to apply to instances of that

element. The first rule says that the contents of the POEM element should be dis-

played in a block by itself (display: block). The second rule says that the con-

tents of the TITLE element should be displayed in a block by itself (display:
block) in 16-point (font-size: 16pt) bold type (font-weight: bold). The third

rule says that the POET element should be displayed in a block by itself (display:
block) and should be set off from what follows it by 10 pixels (margin-bottom:
10px). The fourth rule is the same as the third rule except that it applies to STANZA
elements. Finally, the fifth rule simply states that VERSE elements are also displayed

in their own block.

Attaching style sheets to documents
To really make sense out of the style sheet in Listing 14-1, you have to give it an

XML document to format. Listing 14-2 is a poem from Walt Whitman’s classic book

of poetry, Leaves of Grass, marked up in XML. The second line is the xml-
stylesheet processing instruction that instructs the Web browser loading this

document to apply the style sheet found in the file poem.css to this document.

Figure 14-1 shows this document loaded into Mozilla.

355Chapter 14 ✦ CSS Style Sheets

Listing 14-2: Darest Thou Now O Soul marked up in XML

<?xml version=”1.0”?>
<?xml-stylesheet type=”text/css” href=”poem.css”?>
<POEM>

<TITLE>Darest Thou Now O Soul</TITLE>
<POET>Walt Whitman</POET>

<STANZA>
<VERSE>Darest thou now O soul,</VERSE>
<VERSE>Walk out with me toward the unknown region,</VERSE>
<VERSE>Where neither ground is for the feet nor

any path to follow?</VERSE>
</STANZA>
<STANZA>
<VERSE>No map there, nor guide,</VERSE>
<VERSE>Nor voice sounding, nor touch of

human hand,</VERSE>
<VERSE>Nor face with blooming flesh, nor lips,

are in that land.</VERSE>
</STANZA>
<STANZA>
<VERSE>I know it not O soul,</VERSE>
<VERSE>Nor dost thou, all is blank before us,</VERSE>
<VERSE>All waits undream’d of in that region,

that inaccessible land.</VERSE>
</STANZA>
<STANZA>
<VERSE>Till when the ties loosen,</VERSE>
<VERSE>All but the ties eternal, Time and Space,</VERSE>
<VERSE>Nor darkness, gravitation, sense,

nor any bounds bounding us.</VERSE>
</STANZA>
<STANZA>
<VERSE>Then we burst forth, we float,</VERSE>
<VERSE>In Time and Space O soul,

prepared for them,</VERSE>
<VERSE>Equal, equipt at last, (O joy! O fruit of all!)

them to fulfil O soul.</VERSE>
</STANZA>

</POEM>

356 Part III ✦ Style Languages

Figure 14-1: Darest Thou Now O Soul as rendered by Mozilla

The type pseudo-attribute in the xml-stylesheet processing instruction is the

MIME media type of the style sheet you’re using. Its value is text/css for CSS and

text/xml for XSL.

XSL is discussed in Chapters 5, 17 and 18.

The value of the href pseudo-attribute in the xml-stylesheet processing instruc-

tion is the URL, often relative, where the style sheet is located. If the style sheet

can’t be found, the Web browser will use its default style sheet instead.

You can apply the same style sheet to many documents. Indeed, you generally will.

Thus, it’s common to put your style sheets in some central location on your Web

server where all of your documents can refer to them; a convenient location is a

styles directory at the root level of the Web server.

<?xml-stylesheet type=”text/css” href=”/styles/poem.css”?>

You might even use an absolute URL to a style sheet on another Web site, though

this does leave your site dependent on the status of the external Web site.

<?xml-stylesheet type=”text/css”
href=”http://www.ibiblio.org/xml/styles/poem.css”?>

Cross-
Reference

357Chapter 14 ✦ CSS Style Sheets

You can even use multiple xml-stylesheet processing instructions to pull in rules

from different style sheets. For example:

<?xml version=”1.0”?>
<?xml-stylesheet type=”text/css” href=”/styles/poem.css”?>
<?xml-stylesheet type=”text/css”

href=”http://www.ibiblio.org/xml/styles/poem.css”?>
<POEM>
...

Document Type Definitions and style sheets
Style sheets are more or less orthogonal to Document Type Definitions (DTDs). A

document with a style sheet may or may not have a DTD, and a document with a

DTD may or may not have a style sheet. However, DTDs do often serve as conve-

nient lists of the elements that you need to provide style rules for.

In this and the next several chapters, most of the examples use documents that are

well-formed but not valid. The lack of DTDs will make the examples shorter and the

relevant parts more obvious. However, there’s absolutely no reason why you can’t

attach a style sheet to a document that has a DTD. In either case, the style rules

only apply to the content of the document, not to the DTD.

CSS in HTML

Although XML is the focus of this book, CSS style sheets also work with HTML documents.
The main differences between CSS with HTML and CSS with XML are:

1. In HTML, the elements you can attach rules to are limited to standard HTML ele-
ments such as P, PRE, LI, DIV, and SPAN.

2. HTML browsers don’t recognize processing instructions, so style sheets are attached
to HTML documents using LINK tags in the HEAD element. Furthermore, per-docu-
ment style rules can be included in the HEAD in a STYLE element. For example:

<LINK REL=STYLESHEET TYPE=”text/css” HREF=”/styles/poem.css” >
<STYLE TYPE=”text/css”>
PRE { color: red }

</STYLE>

3. HTML browsers don’t render CSS properties as faithfully as XML browsers because
of the legacy formatting of elements. Tables are notoriously problematic in this
respect.

358 Part III ✦ Style Languages

CSS1 versus CSS2
The first version of CSS was thrown together rather quickly, and left a lot to the

imagination. It was quite limited in what it could accomplish. For instance, CSS

could make an element red but couldn’t make it the same color as the menu bar. It

could make text bold, but couldn’t make it shadowed. The underlying layout model

only really worked for left-to-right Western languages such as English and Greek,

and fell apart when faced with documents containing right-to-left languages such as

Arabic or top-to-bottom languages such as Chinese. Many details were insufficiently

specified and open to multiple incompatible interpretations. Most importantly for

our purposes, CSS only really considered HTML; it didn’t work well for XML. For

example, it didn’t provide table formatting because that could be done with HTML

table tags.

In 1998, the World Wide Web Consortium (W3C) published a revised and expanded

specification for CSS called CSS Level 2 (CSS2). At the same time, they renamed the

original CSS to CSS Level 1 (CSS1). CSS2 is mostly a superset of CSS1, with a few

minor exceptions. CSS2 incorporates many features that Web developers and

designers have long requested from browser vendors. The specification has more

than doubled in size from CSS1, and is not only a compilation of changes and new

features, but a redraft of the original specification. This makes this specification a

single source for all Cascading Style Sheet syntax, semantics, and rules. Of course,

CSS2 fights the same backward compatibility battles with HTML that CSS1 fought.

However, with XML, CSS2 can format content on both paper and the Web almost as

well as a desktop publishing program such as PageMaker or QuarkXPress can.

The complete CSS Level 2 specification is available on the Web at http://
www.w3.org/TR/REC-CSS2 and on the CD-ROM in the specs/css2 folder. This
is possibly the most readable specification document ever produced by the W3C
and is well worth your time to read.

All browsers that can display XML documents support CSS Level 2, at least in part.

Therefore, this chapter focuses on CSS Level 2 exclusively. The distinction between

CSS Level 1 and Level 2 is really only important for older browsers that don’t sup-

port XML at all.

CSS3
Work is ongoing to produce CSS Level 3. This is currently being developed by the

W3C as several independent pieces including:

✦ Better page formatting including running headers and footers, page numbers,

and automatically updated cross-references

✦ Styles for forms including input fields, checkboxes, radio buttons, buttons, list

boxes, and more

On the
CD-ROM

359Chapter 14 ✦ CSS Style Sheets

✦ Math styles for equations and numbers

✦ Behavioral styles for tasks currently accomplished with JavaScript and

DHTML

✦ More accurate color matching

✦ Multi-column layouts

✦ Selectors that operate by element content and relative position in the

document

When all of these are done, they’ll be rolled together with the existing CSS Level 2

specification to produce CSS Level 3. However, it’s unlikely that this will be finished

before late 2001, and it certainly won’t be implemented by browsers in any large

way until at least 2002.

Comments in CSS
CSS style sheets can include comments. CSS comments are similar to C’s /* */
comments, but not to the <!-- --> XML and HTML comments. Listing 14-3 demon-

strates this. This style sheet doesn’t merely apply style rules to elements. It also

describes, in English, the results those style rules are supposed to achieve.

Listing 14-3: A style sheet for poems with comments

/* Work around a Mozilla bug */
POEM { display: block }

/* Make the title look like an H1 header */
TITLE { display: block; font-size: 16pt; font-weight: bold }
POET { display: block; margin-bottom: 10 }

/* Put a blank line in-between stanzas,
only a line break between verses */

STANZA { display: block; margin-bottom: 10 }
VERSE { display: block }

CSS style sheets aren’t nearly as convoluted as XML DTDs, or Java, C, or Perl pro-

grams, so comments aren’t quite as necessary as they are in other languages.

However, it’s rarely a bad idea to include comments. They can only help someone

who’s trying to make sense out of a style sheet you wrote.

360 Part III ✦ Style Languages

Selecting Elements
The part of a CSS rule that specifies which elements it applies to is called a selector.
The most common kind of selector is simply the name of an element, for instance

TITLE in this rule:

TITLE { display: block; font-size: 16pt; font-weight: bold }

However, selectors can also specify multiple elements, elements with a particular

ID, and elements that appear in particular contexts relative to other elements.

Indeed, a selector can be anything from a simple element name to a complex sys-

tem of contextual patterns. Table 14-1 summarizes the selector patterns.

Table 14-1
CSS Selector Patterns

Syntax Meaning

* Matches all elements.

X Matches every element with the name X; for example, the pattern
STANZA matches all STANZA elements.

X Y Matches every element with the name Y that is a descendent of an
element with the name X; for example, POEM VERSE matches all
VERSE descendents of POEM elements.

X > Y Matches every element named Y that is a child of an element
named X; for example, STANZA > VERSE matches all VERSE
children of a STANZA element.

X + Y Matches all elements named Y whose preceding sibling is an
element named X. For example, STANZA + REFRAIN matches
every REFRAIN element that is immediately preceded by a STANZA
element. VERSE + VERSE matches every VERSE element that is
immediately preceded by another VERSE element. In Listing 14-2
this matches all verses in each STANZA except the first.

X:first-child Matches every element named X that is the first child of its parent
element; for example, POEM:first-child matches the first child
element of the POEM element. In Listing 14-2 this is the TITLE
element.

X[A] Matches all elements named X that have an A attribute, no matter
what its value; for example, AUTHOR[NAME] matches every AUTHOR
element with a NAME attribute.

361Chapter 14 ✦ CSS Style Sheets

Syntax Meaning

X[A=”M”] Matches all elements named X whose A attribute has the value M;
for example, AUTHOR[NAME=”Walt Whitman”] matches every
AUTHOR element whose NAME attribute has the value Walt Whitman.

X[A~=”M”] Matches all elements named X whose A attribute contains a space
separated list of names one of which is M; for example,
AUTHOR[NAME=”Walt”] matches every AUTHOR element whose
NAME attribute has the value Walt Whitman, Walt Smith, Walt Irving,
or Irving Walt.

X[A|=”M”] Matches all elements named X whose A attribute contains a space
separated list of names the first of which is M; for example,
AUTHOR[NAME|=”Walt”] matches every AUTHOR element whose
NAME attribute has the value Walt Whitman but not those whose
NAME attribute has the value Irving Walt.

X#M Matches any elements named X whose ID is M as identified by an ID
type attribute. Unfortunately, this selector does not work properly for
XML in most Web browsers.

X:lang(i) Matches all elements named X that are written in the natural
language i as indicated by an xml:lang attribute.

X:link Matches all elements named X that are inside a link whose target
has not yet been visited.

X:visited Matches all elements named X that are inside a link whose target
has been visited.

X:active Matches all elements named X that are currently selected.

X:hover Matches all elements named X over which the cursor is currently
positioned.

X:focus Matches all elements named X that currently have the focus.

To demonstrate these selectors let’s pick a poem with a slightly more complicated

structure. Listing 14-4 shows Shakespeare’s twenty-first sonnet. This has both

STANZA and REFRAIN elements, each of which contains VERSE elements. The

STANZA elements have NUMBER attributes of ID type as established by a document

type definition. The POEM element has a TYPE attribute with the value SONNET.

362 Part III ✦ Style Languages

Listing 14-4: Shakespeare’s twenty-first sonnet

<?xml version=”1.0”?>
<?xml-stylesheet type=”text/css” href=”sonnet.css”?>
<!DOCTYPE POEM [
<!ATTLIST STANZA NUMBER ID #IMPLIED>

]>
<POEM TYPE=”SONNET”>
<POET>William Shakespeare</POET>
<TITLE>Sonnet 21</TITLE>
<STANZA NUMBER=”st1”>
<VERSE>So is it not with me as with that Muse</VERSE>
<VERSE>Stirr’d by a painted beauty to his verse,</VERSE>
<VERSE>Who heaven itself for ornament doth use</VERSE>
<VERSE>And every fair with his fair doth rehearse;</VERSE>

</STANZA>
<STANZA NUMBER=”st2”>
<VERSE>Making a couplement of proud compare</VERSE>
<VERSE>With sun and moon, with earth and sea’s rich

gems,</VERSE>
<VERSE>With April’s first-born flowers, and all things

rare</VERSE>
<VERSE>That heaven’s air in this huge rondure hems.</VERSE>

</STANZA>
<STANZA NUMBER=”st3”>
<VERSE>O, let me, true in love, but truly write,</VERSE>
<VERSE>And then believe me, my love is as fair</VERSE>
<VERSE>As any mother’s child, though not so bright</VERSE>
<VERSE>As those gold candles fix’d in heaven’s air.</VERSE>

</STANZA>
<REFRAIN>
<VERSE>Let them say more that like of hearsay well,</VERSE>
<VERSE>I will not praise that purpose not to sell.</VERSE>

</REFRAIN>
</POEM>

The universal selector
The * symbol selects all elements in the document. This lets you set default styles

for all elements. For example, this rule sets the default font to New York:

* { font-family: “New York” }

363Chapter 14 ✦ CSS Style Sheets

You can use * instead of an element name in other selector patterns to apply styles

to all elements with a specific attribute, attribute value, role, and so forth. For

example, this rule makes all elements whose TYPE attribute has the value SONNET
italic:

*[TYPE=”SONNET”] { font-style: italic }

There’s only one such element in Listing 14-3, but other documents might have

more of these, which may or may not be POEM elements.

If you are using the universal selector with just one other property specification,
you can leave out the *. For example, the above rule could be rewritten as

[TYPE=”SONNET”] { font-style: italic }

Grouping selectors
If you want to apply one set of properties to some but not all elements, list the ele-

ment names in the selector separated by commas. For instance, in Listing 14-1 POET
and STANZA were both styled as block display with a 10-pixel margin. You can com-

bine these two rules like this:

POET, STANZA { display: block; margin-bottom: 10px }

You can add as many elements as you like. For example, this rule applies style to

POET, STANZA and REFRAIN elements:

POET, STANZA, REFRAIN { display: block; margin-bottom: 10px }

Furthermore, more than one rule can apply styles to a single element. So you can

combine some standard properties into a rule with many selectors, then use more

specific rules to apply custom formatting to selected elements. For instance, in

Listing 14-1 all the elements were listed as block display. This can be combined into

one rule while additional formatting for the POET, STANZA, REFRAIN and TITLE ele-

ments is contained in separate rules, as shown in Listing 14-5.

Listing 14-5: sonnet.css

POEM, VERSE, TITLE, POET, STANZA, REFRAIN { display: block }
POET, STANZA, REFRAIN { margin-bottom: 10px }
TITLE {font-size: 16pt; font-weight: bold }

Tip

364 Part III ✦ Style Languages

Hierarchy selectors
In XML, as in life, what you look like depends heavily on what your ancestors

looked like. You can individually select elements that are children or descendants

of a specified type of element with descendant, child, and sibling selectors.

Child selectors
A child selector uses the greater than sign > to select an element if and only if it’s an

immediate child of a specified parent. For instance, to apply a rule to VERSE ele-

ments that are children of STANZA elements but not to VERSE elements that are chil-

dren of REFRAIN elements, you’d use the selector STANZA > VERSE. These rules

make stanza verses bold but refrain verses italic:

STANZA > VERSE {font-weight: bold }
REFRAIN > VERSE {font-style: italic }

You can expand this to look at the parent of the parent, the parent of the parent of

the parent, and so forth. For example, the following rule says that a VERSE element

inside a STANZA element inside a POEM element should be rendered in a

monospaced font:

POEM > REFRAIN > VERSE { font-family: Courier, monospaced }

In practice, this level of specificity is rarely needed. In cases in which it does seem

to be needed, you can often rewrite your style sheet to rely more on inheritance,

cascades, and relative units, and less on the precise specification of formatting.

Descendant selectors
A descendant selector chooses elements that are children, grandchildren, or other

descendants of a specified element. For instance, you can specify one style for

VERSE elements contained in a POEM element and a different style for VERSE ele-

ments contained in a BOOK element. To do this, prefix the name of the ancestor ele-

ment to the name of the styled element separated by a space. For example, these

rules make book verses bold, but poem verses italic:

BOOK VERSE {font-weight: bold }
POEM VERSE {font-style: italic; font-weight: normal }

In the event of a conflict between two rules, the closer one takes precedence. For

instance, if a BOOK contains a POEM that contains VERSE elements, then those VERSE
elements will be italic and not bold. In case of a conflict between two equally spe-

cific rules, the last rule encountered in the style sheet takes precedence.

You can even give VERSE elements inside POEM elements inside BOOK elements a com-

pletely different style that is not shared by VERSE elements inside POEM elements that

365Chapter 14 ✦ CSS Style Sheets

are not inside BOOK elements or VERSE elements that are not inside POEM elements

but are inside BOOK elements. For instance, this rule makes such elements red:

BOOK POEM VERSE {color: red }

Not all styles conflict with each other. For instance, consider these three rules:

BOOK VERSE {font-weight: bold }
POEM VERSE {font-style: italic }
CHAPTER VERSE {color: red }

Together these say that every VERSE element contained inside a BOOK element will

be bold; every VERSE element contained inside a POEM element will be italic; and

every VERSE element contained inside a CHAPTER element will be red. A VERSE ele-

ment that matches all three rules — that is, one that has a BOOK ancestor and a

POEM ancestor and a CHAPTER ancestor — will have all three properties; that is, it

will be bold, italic, and red.

In Listings 14-2 and 14-4, all VERSE elements are descendants of POEM elements, but

not immediate children. Some VERSE elements are immediate children of STANZA
elements and some are immediate children of the REFRAIN element. A descendant

selector of the form POEM VERSE matches a VERSE element that is an arbitrary

descendant of a SONNET element. In order to specify a minimum generation for a

descendant, you can use the selector POEM * VERSE, which forces the VERSE ele-

ment to be at least a grandchild, or lower descendant of the POEM element.

You can combine descendant and child selectors to find specific elements. For

example, the following rule italicizes all VERSE elements that are children of a

REFRAIN element that is in turn a descendant of a POEM element.

POEM REFRAIN>VERSE { font-style: italic }

Adjacent sibling selectors
A plus sign between two element names signifies that the left-hand element pre-

cedes the right-hand element at the same level of the hierarchy. The right-hand ele-

ment is selected. For example, this rule finds all REFRAIN elements that share a

parent with a STANZA element and that immediately follow a STANZA element:

STANZA+REFRAIN {color: red}

This rule finds all VERSE elements that are preceded by another VERSE element:

VERSE+VERSE {color: blue}

Applied to Listings 14-2 and 14-4 this has the effect of coloring all verses blue

except the first one in the stanza.

366 Part III ✦ Style Languages

Attribute selectors
Attribute selectors identify specific element/attribute combinations. Square brack-

ets surround the name of the attribute being specified. For example, this rule speci-

fies a script font for all <POEM TYPE=”x”> elements, but not plain <POEM> elements:

POEM[TYPE] { font-family: “Zapf Chancery”, cursive }

To distinguish between <POEM TYPE=”x”> and <POEM TYPE=”y”> elements, you

can add an equals sign followed by the quoted attribute value. For example, this

rule only applies to sonnets:

POEM[TYPE=”SONNET”] { font-style: italic }

You can use a ~= to indicate that the attribute value only needs to contain the spec-

ified word somewhere within it. For example, this rule italicizes all POEM elements

whose TYPE attribute contains the word SONNET:

POEM[TYPE~=”SONNET”] { font-style: italic }

However, this would not find elements whose TYPE attribute contains the word

SONNETS or UNISONNET. CSS only looks for complete words. It does not look for

substrings.

You can use a |= to indicate that the attribute value needs to begin with the speci-

fied word. For example, this rule italicizes all POEM elements whose TYPE attribute

begins with the word SONNET:

POEM[TYPE|=”SONNET”] { font-style: italic }

This would not find elements whose TYPE attribute had the value “HEXAMETER
SONNET”, but it would match a POEM with a TYPE attribute having the value “SON-
NET HEXAMETER”.

ID selectors
Sometimes, a unique element needs a unique style. You need a rule that applies to

exactly that one element. For instance, suppose you want to make one element in a

list bold to really emphasize it in contrast to its siblings. In this case, you can write

a rule that applies to an ID type attribute of the element. The selector is the name of

the element, followed by a sharp sign # and the value of the ID attribute.

367Chapter 14 ✦ CSS Style Sheets

For example, this rule makes bold the first STANZA element, and only the first

STANZA element, in Listing 14-4. Other STANZA elements appear with the default

weight.

STANZA#st1 {font-weight: bold}

However, there’s a catch. In order to tell which attributes have ID type and can

therefore be selected by an ID selector, the browser must read the DTD. Most

browsers, including Mozilla, Netscape, Opera, and Internet Explorer, do not read

the DTD. Therefore they will not apply this style to the requested element. You’re

better off simply using an attribute selector that picks up the attribute by name like

this:

STANZA[NUMBER=”st1”] {font-weight: bold}

Pseudo-elements
Pseudo-elements are treated as elements in style sheets but are not necessarily par-

ticular-named elements in the document source code or the document tree. They

are abstractions of certain parts of the rendered document after application of the

style sheet; for example, the first line of a paragraph. Pseudo-elements address

parts of the document that aren’t normally identified as separate elements, but

nonetheless often need separate styles. These include:

✦ The first line of an element

✦ The first letter of an element

✦ The position immediately before an element

✦ The position immediately after an element

Addressing the first letter
The most common reason to format the first letter of an element separately from

the rest of the element is to insert a drop cap as shown in Figure 14-2. This is

accomplished by writing a rule that is addressed with the element name and fol-

lowed by :first-letter. For example:

CHAPTER:first-letter {
font-size: 300%;
float: left;
vertical-align: text-top;
margin-right: 12px

}

368 Part III ✦ Style Languages

Figure 14-2: A drop cap on the first-letter pseudo-element
with small caps used on the first-line pseudo-element

Addressing the first line
The first line of an element is also often formatted differently than subsequent lines.

For instance, it may be printed in small caps instead of normal body text as shown

in Figure 14-2. You can attach the :first-line selector to the name of an element

to create a rule that only applies to the first line of the element. For example,

CHAPTER:first-line { font-variant: small-caps }

Exactly what this pseudo-element selects is relative to the current layout. If the win-

dow is larger and there are more words in the first line, then more words will be in

small caps. If the window is made smaller or the font gets larger so that the text

wraps differently and fewer words fit on the first line, then the words that are

wrapped to the next line are no longer in small caps. The determination of which

characters comprise the first-line pseudo-element is deferred until the docu-

ment is actually displayed.

Before and after
The :before and :after pseudo-elements select the location immediately before

and after the element that precedes them. The content property is used to put

data into this location. For example, this rule places the string ----------
between STANZA objects to help separate the stanzas. The line breaks are encoded

as \A in the string literal:

STANZA:after {content: “\A----------\A”}
STANZA:before {content: “\A----------\A”}

369Chapter 14 ✦ CSS Style Sheets

Content is the only property a :before or :after selector is allowed to have. In

addition to including raw text, this can insert the value of an attribute, various

kinds of quotation marks, or a file found at a particular URL.

The content property is discussed in more depth in the section on generated
content in Chapter 16.

Pseudo-classes
Pseudo-classes select elements that have something in common, but do not neces-

sarily have the same type. Pseudo-classes differ from regular classes in that they

select elements based on aspects other than the name, attributes, or content of the

element. Pseudo-classes differ from pseudo-elements in that they always select an

entire element, never just a part of it.

For example, a pseudo-class may be based on the position of the mouse, the object

that has the focus, or whether an object is a link. The :hover pseudo-class refers to

whichever element the cursor is currently over, regardless of the element’s type. An

element may even change its pseudo-class as the reader interacts with the docu-

ment. Some pseudo-classes are mutually exclusive, but most can be applied simul-

taneously to the same element, and can be placed anywhere within an element

selector. CSS defines 10 pseudo-classes:

✦ :first-child

✦ :link

✦ :visited

✦ :active

✦ :hover

✦ :focus

✦ :lang

✦ :right

✦ :left

✦ :first

:first-child
The :first-child pseudo-class selects the first child of the named element,

regardless of its type. For example, this rule makes the first verse of each stanza

bold:

STANZA:first-child {font-style: bold}

Cross-
Reference

370 Part III ✦ Style Languages

:link, :visited, :active
The :link pseudo-class applies to all elements that the browser recognizes as

hyperlinks that the user has not yet followed. In XML, this would apply to elements

with an xlink:type attribute. The :visited pseudo-class applies to links the user

has followed. The :active pseudo-class applies to links the user is following right

this second.

XLinks are discussed in Chapter 19.

For example, the following code fragment assumes that the AUTHOR element has

been designated as a link and alters the colors of the text depending on the current

state of the link. An unvisited link will be colored red, a visited link will be colored

gray, and an active link will be colored lime green:

AUTHOR:link { color: “red” }
AUTHOR:visited { color: “gray” }
AUTHOR:active { color: “lime” }

In practice, these pseudo-classes don’t work for XML documents because browsers

don’t yet recognize XLinks.

:hover
The :hover pseudo-class refers to elements that the mouse or other pointing

device is pointing at, but without the mouse button depressed. For instance, this

rule emboldens the STANZA element the cursor is pointing at:

STANZA:hover { font-weight: bold }

The STANZA element returns to its normal weight when the cursor is no longer posi-

tioned over it.

:focus
The :focus pseudo-class selects the element that has the focus. An element has

the focus when it has been selected and is ready to receive some sort of input. The

following rule makes whichever element has the focus bold.

*:focus { font-weight: “bold” }

:lang()
The :lang() pseudo-class selects elements with a specified language. In XML, lan-

guages are specified with an xml:lang attribute. The following rule changes the

direction of all VERSE elements written in Hebrew to read right to left, rather than

left to right:

VERSE:lang(he) {direction: “rtl” }

Cross-
Reference

371Chapter 14 ✦ CSS Style Sheets

Inheritance
CSS does not require that you define a rule giving a value for every property to

every element. Some properties have default values that are used when no rule is

specified. Even more importantly, most elements can simply inherit the value of a

property from their parent element. For instance, if no rule explicitly specifies the

font size of an element, then the element has the same font size as its parent. If no

rule specifies the color of an element, then the element has the same color as its

parent. The same is true of most CSS properties. In fact, the only properties that

aren’t inherited are the background and box properties. For example, consider

these rules:

P { font-weight: bold;
font-size: 24pt;
font-family: sans-serif}

BOOK { font-style: italic; font-family: serif}

Now consider this XML fragment:

<P>
According to the American Library Association,
Michael Willhoite’s <BOOK>Daddy’s Roommate</BOOK> was
the #2 most frequently banned book in the U.S. in the 1990s.

</P>

Although the BOOK element has not been specifically assigned a font-weight or a

font-size, it will be rendered in 24-point bold because it is a child of the P ele-

ment. It will also be italicized because that is specified in its own rule. BOOK inherits
the font-weight and font-size of its parent P. If later in the document a BOOK
element appears in the context of some other element, then it will inherit the font-
weight and font-size of that element.

The font-family is a little trickier because both P and BOOK declare conflicting

values for this property. Inside the BOOK element, the font-family declared by

BOOK takes precedence. Outside the BOOK element, P’s font-family is used. So,

“Daddy’s Roommate” is drawn in a serif font, while “most frequently banned book”

is drawn in a sans serif font.

Often you want the child elements to inherit formatting from their parents so it’s

important not to overspecify the formatting of any element. For instance, suppose I

had declared that BOOK was written in a 14-point font like this:

BOOK { font-style: italic; font-family: serif; font-size: 14pt}

Then the example would be rendered as shown in Figure 14-3, with the BOOK title

being much smaller than the body text it’s embedded in.

372 Part III ✦ Style Languages

Figure 14-3: The BOOK title written in a 14-point font size

You could fix this with a special rule that uses a contextual selector to pick out

BOOK elements inside P elements, but it’s easier to simply inherit the parent’s

font-size.

One way to avoid problems like this, while retaining some control over the size of

individual elements, is to use relative units such as ems and exs instead of absolute

units such as points, picas, inches, and centimeters. An em is the width of the letter

m in the current font. An ex is the height of the letter x in the current font. If the

font gets bigger, so does everything measured in ems and exs.

A similar option that’s available for some properties is to use percentage units. For

example, the following rule sets the font size of the FOOTNOTE_NUMBER element to

80 percent of the font size of the parent element. If the parent element’s font size

increases or decreases, FOOTNOTE_NUMBER’s font size scales similarly.

FOOTNOTE_NUMBER { font-size: 80% }

Exactly what the percentage is a percentage of varies from property to property. In

the vertical-align property, the percentage is of the line height of the element

itself. In a margin property, a percentage is a percentage of the element’s width.

Cascades
There are several ways a CSS style sheet can be attached to an XML document:

1. The XML document can include an <?xml-stylesheet?> processing instruc-

tion in its prolog. In fact, there may be more than one of these.

2. The style sheet itself may import other style sheets, as discussed below.

373Chapter 14 ✦ CSS Style Sheets

3. The user may specify a style sheet for the document using mechanisms inside

the browser.

4. The browser may provide a default style sheet.

Thus, a single document may have more than one style sheet. For instance, a

browser may have a default style sheet which is added to the one that the designer

provides for the page. In such a case, it’s entirely possible that there will be multi-

ple rules that apply to one element, and that these rules may conflict. Thus, it’s

important to determine in which order the rules are applied. This process is called

a cascade, and is where Cascading Style Sheets get their name from.

When multiple style rules match a particular element, the most specific one is cho-

sen. For example, these two rules say that verses have a plain font-style but that

verses inside a refrain are italicized:

VERSE {font-style: normal }
REFRAIN VERSE {font-style: italic }

In case of a conflict between two equally specific rules, the last rule encountered in

the style sheet takes precedence.

Try to avoid depending on cascading order. It’s rarely a mistake to specify as little
style as possible and to let the browser preferences take control.

If there is more than one rule at a given level of specificity, the cascading order is

resolved in the following order of preference:

1. Reader declarations marked important.

2. Author declarations marked important.

3. Reader declarations not marked important.

4. Author declarations not marked important.

5. The last rule in the style sheet that applies.

To mark a rule important, you add !important after the property value. For exam-

ple, the following rule says that the TITLE element should be colored blue even if

the author of the document requested a different color. On the other hand, the

font-family should be serif only if the author rules don’t disagree.

TITLE { color: blue !important; font-family: serif}

On the other hand, if no rule matches a given element, then that element inherits its

properties from its parent. If there is no value to be inherited from the parent ele-

ment, the default value is used. You can give most properties the value inherit to

say explicitly that it inherits the value from its parent. However, because this is nor-

mally the default, this isn’t done much in practice. Instead, the property is simply

left unspecified.

Tip

374 Part III ✦ Style Languages

Different Rules for Different Media
XML documents aren’t just for Web pages. They can be shown on TV screens,

printed on paper, bound in books, read by speech synthesizers, beamed to Palm

Pilots, and projected onto movie screens. Each media type has its own customary

styles and formats. Italics don’t make much sense on a dumb terminal. A font that’s

easily readable on paper at 300 dpi may be illegible when displayed on a low-resolu-

tion computer screen.

CSS allows you to vary styles to match the medium in which the content is dis-

played. For example, text is easier to read onscreen if it uses a sans serif font, while

text on paper is generally easiest to read if it is written in a serif font. You can

enclose style rules intended for only one medium in an @media rule naming that

medium. There can be as many @media rules in a document as there are media

types to specify. For example, Listing 14-6 formats a POEM differently depending on

whether it’s being printed on paper or displayed onscreen.

Listing 14-6: A CSS style sheet with different styles for
different media

@media print {
POEM { font-size: 10pt; font-family: Times, serif }
TITLE { font-size: larger; font-weight: bold;

font-family: Helvetica, sans-serif }
}
@media screen {
POEM { font-size: 12pt;

font-family: Geneva, Arial, sans-serif }
}
@media screen, print {
VERSE { line-height: 1.2 }

}
POEM, VERSE, TITLE, POET, STANZA, REFRAIN { display: block }
POET, STANZA, REFRAIN { margin-bottom: 2mm }
TITLE {font-size: larger; font-weight: bold }

The first @media block defines styles that will only be used if the document is

printed on paper. The second @media block defines styles that will only be used

when the document is displayed on the screen. The screen rules pick a larger font

than the print rules do. Because modern computer displays have much lower reso-

lutions than modern printers, it’s important to make the font larger on the screen

than on the printout and to choose a font that’s designed for the screen. The third

@media block provides styles that apply to both of these media types. To designate

375Chapter 14 ✦ CSS Style Sheets

style instructions for multiple media types simultaneously, you simply list them fol-

lowing the @media rule designator separated by a comma. The last three rules

apply in all media: screen, print, or anything else.

The browser decides which rules make sense in its current context when it knows

how it’s going to display the document. CSS does not specify an all-inclusive list of

media types, although it does provide a list of 10 possible values:

✦ all: all devices

✦ aural: speech synthesizers.

✦ braille: Braille tactile feedback devices for the sight impaired

✦ embossed: paged Braille printers

✦ handheld: PDAs and other handheld devices such as Windows CE palmtops,

Newtons, and Palm Pilots

✦ print: all printed, opaque material

✦ projection: presentation and slide shows, whether projected directly from a

computer or printed on transparencies.

✦ screen: bitmapped, color computer displays

✦ tty: dumb terminals and old PC monitors that use a fixed-pitch, monochro-

matic character grid

✦ tv: television-type devices; that is, low resolution, analog display, color

Some properties are only available with specific media types. For instance, the

pitch property only makes sense with the aural media type.

Browsing software does not have to support all these types. Indeed I know of no

single device that does support all of these. However, style sheet designers should

probably assume that readers will use any or all of these types of devices to view

their content.

Importing Style Sheets
The @import rule embeds a different style sheet into an existing style sheet. This

allows you to build large style sheets from smaller, easier to understand pieces. An

absolute or relative URL is used to identify the style sheets. For example, the follow-

ing rule imports the file poetry.css.

@import url(poetry.css);

376 Part III ✦ Style Languages

@import rules may specify a media type following the name of the style sheet, in

which case the imported style sheet rules will only be used in the specified

medium. For example, the following rule imports the file printmedia.css. However,

the rules in this style sheet will only be applied to printouts and not to screen dis-

plays.

@import url(printmedia.css) print;

The next rule imports the file continuous.css that will be used for both computer

monitors and/or television display:

@import url(continuous.css) tv, screen;

The @import directives must appear at the beginning of the style sheet, before any

rules. Cycles (for example, poem.css imports stanza.css which imports poem.css)

are prohibited.

Style sheets that are imported into other style sheets have lower precedence than

the importing style sheet. This means that if sonnet.css imported poem.css and

they declared conflicting rules for an element, the rules in sonnet.css would over-

ride those in poem.css.

Style Sheet Character Sets
CSS style sheets can be written in a multitude of encodings — ISO 8859-1, SJIS, UTF-

8, and so on — just like XML documents. There are three ways to specify the charac-

ter set in which a style sheet is written, and they take precedence in the following

order.

1. The HTTP “charset” parameter in a “Content-Type” field.

2. An @charset rule in the style sheet itself.

3. The charset pseudo-attribute of the xml-stylesheet processing instruction

that links the style sheet to the XML document.

Most of the time the @charset rule is the easiest one to use because it lets the per-

son who writes the style sheet choose whatever encoding is convenient for them.

Each style sheet can contain no more than one of these. If present, it must appear

at the very beginning of the document, and cannot be preceded by any other char-

acters. It’s followed by the name of the character set in double quotes. For example,

this rule says that the style sheet is written in the ISO 8859-1 character set, a.k.a.

Latin-1:

@charset “ISO-8859-1”

377Chapter 14 ✦ CSS Style Sheets

The character set name specified in this statement must be a name as described in

the IANA registry. Chapter 7 contains a partial list of these character sets.

Character sets are discussed in great detail in Chapter 7.

Summary
This chapter showed you how to apply CSS styles to XML elements and documents.

In this chapter, you learned that:

✦ CSS is a straightforward declarative language for applying styles to the con-

tents of elements that works well with HTML and even better with XML.

✦ Browser implementations of CSS are limited. No browser comes close to

implementing the full CSS Level 2 specification. Extensive testing is necessary

before publishing a document and its style sheet.

✦ One or more processing instructions in the form <?xml-stylesheet
type=”text/css” href=”url”?> in the prolog indicates which style sheets

a browser should apply to the document.

✦ Selectors are a list of the elements that a rule applies to.

✦ Many (though not all) CSS properties are inherited by the children of the ele-

ments they apply to.

✦ If multiple rules apply to a single element, then the formatting properties cas-

cade in a sensible way.

✦ You can include C-like /* */ comments in a CSS style sheet.

✦ One style sheet can import another using an @import rule.

✦ An @media rule identifies in which media the given styles should be applied.

✦ An @charset rule identifies the character set in which the style sheet is

encoded.

This chapter focused on how you choose the elements that you apply styles to. The

next two chapters focus on the styles themselves. You’ll learn about all the different

CSS properties that let you specify borders, colors, margins, fonts, sizes, positions,

and more.

✦ ✦ ✦

Cross-
Reference

CSS Layouts

When a browser renders an XML document, it places

the text from the individual elements on one or more

pages. The text on each page is organized into nested boxes.

Each paragraph is a box. Each line in the paragraph is a box.

And these line boxes can contain still other boxes, which ulti-

mately contain text. As well as paragraphs, there may be

tables and lists and other items that are formed from boxes

and that are subdivided into smaller boxes. Furthermore, the

browser can create boxes to hold images, pull quotes, and

other content that isn’t part of the normal flow of the page.

This chapter shows you how CSS arranges text on the page in

boxes with different sizes, borders, margins, padding, and

positions. You learn how to create boxes that are a certain

size or that fall into a certain range of sizes. You also learn

how to position the boxes at particular points on the page, as

well as how to let the browser do the hard work for you.

Netscape 6.0, Mozilla, Opera 4.0 and 5.0, and Internet
Explorer 5.0 and later all implement only some parts of the
CSS specification. Earlier versions of the major browsers,
while perhaps supporting some form of CSS for HTML doc-
uments, do not support it at all for XML documents. To
make matters worse, they all implement different subsets
of the specification, and sometimes don’t implement the
same subsets for XML as they do for HTML. I’ll note where
one browser or another has a particular problem as we go
along. However, if you find that something in this chapter
doesn’t work as advertised in your favorite browser, please
complain to the browser vendor, not to me.

Caution

1515C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

CSS units

The display property

Box properties

Size

Positioning

Formatting pages

✦ ✦ ✦ ✦

380 Part III ✦ Style Languages

CSS Units
CSS properties have names and values. Table 15-1 lists a few of these property

names and sample values.

Table 15-1
Sample Property Names and Values

Name Value

display none

font-style italic

margin-top 0.5in

font-size 12pt

border-style solid

color #CC0033

background-color white

background-image url(http://www.idgbooks.com/images/paper.gif)

list-style-image url(/images/redbullet.png)

line-height 120%

The names are all CSS keywords. However, the values are much more diverse. Some

of them are keywords, such as the none in display: none or the solid in bor-
der-style: solid. Other values are numbers with units, such as the 0.5in in

margin-top: 0.5in or the 12pt in font-size: 12pt. Still other values are URLs,

such as url(http://www.idgbooks.com/images/paper.gif) in background-
image: url(http://www.idgbooks.com/images/paper.gif); and still others

are RGB colors such as the #CC0033 in color: #CC0033. Different properties per-

mit different values. However, only five different kinds of values account for almost

all properties. These types are:

✦ A length

✦ A URL

✦ A color

✦ A keyword

✦ A string

Keywords vary from property to property, but the other kinds of values are the

same from property to property. That is, a length is a length is a length regardless

of which property it’s the value of. If you know how to specify the length of a

381Chapter 15 ✦ CSS Layouts

border, you also know how to specify the length of a margin and a padding and an

image and a font. This reuse of syntax makes working with different properties

much easier.

Length values
In CSS, length is a scalar measure used for width, height, font-size, word and letter

spacing, text indentation, line height, margins, padding, border widths, and many

other properties. Lengths are given as a number followed by the abbreviation for

one of these units:

Inches in

Centimeters cm

Millimeters mm

Points pt

Picas pc

Pixels px

Ems em

Exs ex

For example, this rule says that the font used for the TITLE element should be

exactly one centimeter high:

TITLE {font-size: 1cm}

Although font sizes are normally given in points rather than centimeters, the

browser will perform any necessary conversion between units.

The number may have a decimal point (for example, margin-top: 0.3in). Some

properties allow negative values such as –0.5in, but not all do; and even those

that do often place limits on how negative a length can be. It’s best to avoid nega-

tive lengths for maximum cross-browser compatibility.

The units of length are divided into three classes:

✦ Absolute units: inches, centimeters, millimeters, points, and picas

✦ Relative units: pixels, ems, and exs

✦ Percentages

Absolute units of length
Absolute units of length are something of a misnomer because there’s really no

such thing as an absolute unit of length on a computer screen. Changing a moni-

tor’s resolution from 640 × 480 to 1600 × 1200 changes the length of everything on

382 Part III ✦ Style Languages

the screen, inches and centimeters included. Nonetheless, CSS supports five “abso-

lute” units of length that at least don’t change from one font to the next. These are

listed in Table 15-2, along with the conversion factors between them.

Table 15-2
Absolute Units of Length

Inch (in) Centimeters (cm) Millimeters (mm) Points (pt) Picas (pc)

Inch 1.0 2.54 25.4 72 6

Centimeters 0.3937 1.0 10 28.3464 4.7244

Millimeters 0.03937 0.1 1.0 2.83464 0.47244

Points 0.01389 0.0352806 0.352806 1.0 0.83333

Picas 0.16667 0.4233 4.233 12 1.0

Relative units of length
CSS also supports three relative units for lengths. These are:

✦ em: the width of the letter m in the current font

✦ ex: the height of the letter x in the current font

✦ px: the size of a pixel (This assumes square pixels. All common modern dis-

plays use square pixels although some older PC monitors, mostly now leaking

lead into land fills, did not.)

For example, this rule sets the left and right borders of the PULLQUOTE element to

twice the width of the letter m in the current font and the top and bottom borders

to one and a half times the height of the letter x in the current font:

PULLQUOTE { border-right-width: 2em;
border-left-width: 2em;
border-top-width: 1.5ex;
border-bottom-width: 1.5ex }

The normal purpose of using ems and exs is to set a width that’s appropriate for a

given font, without necessarily knowing how big the font is. For instance in the

above rule, the font size is not known so the exact width of the borders is not known

either. It can be determined at display time by comparison with the m and the x in

the current font. Larger font sizes will have correspondingly larger ems and exs.

Lengths in pixels are relative to the height and width of a (presumably square) pixel

on the monitor. Widths and heights of images are often given in pixels.

383Chapter 15 ✦ CSS Layouts

Pixel measurements are generally not a good idea. First, the size of a pixel varies
widely with resolution. Most power users set their monitors at much too high a
resolution, which makes the pixels far too small for legibility.

Second, within the next 10 years, 200-dpi and even 300-dpi monitors will become
common, finally breaking away from the rough 72-pixels-per-inch (give or take 28
pixels) de facto standard that’s prevailed since the first Macintosh in 1984.
Documents that specify measurements in nonscreen-based units such as ems,
exs, points, picas, and inches will be able to make the transition. However, docu-
ments that use pixel-level specifications will become illegibly small when viewed
on high-resolution monitors.

Percentage units of length
Finally, lengths can be specified as a percentage of something. Generally, this is a

percentage of the current value of a property. For instance, if the font-size of a

STANZA element is 12 points, and the font-size of the VERSE the STANZA contains is

set to 150 percent, then the font-size of the VERSE will be 18 points. Such a rule

would look like this:

VERSE {font-size: 150%}

The exact size in this case does depend on the size of the font in the parent ele-

ment. If the parent element font-size is bigger, the font-size of this element will be

bigger. If the parent element font-size is smaller, the font-size of this element will be

smaller.

URL values
Several CSS properties can have URL values, including background-image, con-
tent, and list-style-image. Furthermore, as you saw in the last chapter, the

@import rule uses URL values. Literal URLs are placed inside url(). All forms of

relative and absolute URLs are allowed. For example:

DOC { background-image: url(http://www.mysite.com/bg.gif) }
LETTER { background-image: url(/images/paper.gif) }
GAME { background-image: url(currentposition.gif)}
INSTRC { background-image: url(../images/screenshot.gif)}

You can enclose the URL in single or double quotes, although nothing is gained by

doing so. For example:

DOC { background-image: url(“http://www.mysite.com/bg.gif”)}
LETTER { background-image: url(‘/images/paper.gif’) }
GAME { background-image: url(“currentposition.gif”) }
INSTRC { background-image: url(‘../images/screenshot.gif’) }

Caution

384 Part III ✦ Style Languages

Any parentheses, apostrophes, white space, or quotation marks that appear inside

the URL (uncommon except perhaps for the space character) should be replaced

by URL standard % escapes. That is:

space %20

, %2C

‘ %27

“ %22

(%2B

) %2C

CSS defines its own backslash escapes for these characters \(, \), \,, \’, and
\”, but these only add an additional layer of confusion.

Color values
One of the most widely adopted uses of CSS over traditional HTML is applying fore-

ground and background colors to elements on the page. Properties that take on

color values include color, background-color, and border-color.

CSS provides four ways to specify color: by name, by hexadecimal components, by

integer components, and by percentages. Defining color by name is the simplest.

CSS understands these 16 color names adopted from the Windows VGA palette:

Note

✦ aqua

✦ black

✦ blue

✦ fuchsia

✦ gray

✦ green

✦ lime

✦ maroon

✦ navy

✦ olive

✦ purple

✦ red

✦ silver

✦ teal

✦ white

✦ yellow

Of course, the typical color monitor can display several million more colors. Other

colors can be created by providing values for the red, green, and blue (RGB) com-

ponents of the colors. CSS identifies colors as RGB values in the Standard Default

Color Space for the Internet (sRGB). Different browsers and different monitors

placed side-by-side may display visibly different hues for the same color. Indeed,

even the ambient light in the room can change the exact appearance of a color.

Nonetheless, this specification provides an unambiguous and objectively measur-

able definition of a color. Web browsers that conform to the standard perform a

gamma correction on the colors identified by the CSS2 specification. sRGB specifies

a display gamma of 2.2 under most viewing conditions. This means that for most

computer hardware, the colors given through CSS properties will have to be

adjusted for an effective display gamma of 2.2.

385Chapter 15 ✦ CSS Layouts

Only colors identified in CSS rules are affected. Colors used in images are expected
to carry their own color-correction information.

CSS uses a 24-bit color model. Each primary color is stored in 8 bits. An 8-bit

unsigned integer is a number between 0 and 255. This number may be given in

either decimal or hexadecimal. Alternately, each component may be given as a per-

centage between 0 percent (0) and 100 percent (255). Table 15-3 lists some of the

possible colors and their decimal, hexadecimal, and percentage RGB values.

Table 15-3
Sample CSS Colors

Color Decimal RGB Hexadecimal RGB Percentage RGB

Pure red rgb(255,0,0) #FF0000 rgb(100%, 0%, 0%)

Pure green rgb(0,255,0) #00FF00 rgb(0%, 100%, 0%)

Pure blue rgb(0,0,255) #0000FF rgb(0%, 0%, 100%)

White rgb(255,255,255) #FFFFFF rgb(100%, 100%, 100%)

Black rgb(0,0,0) #000000 rgb(0%, 0%, 0%)

Light violet rgb(255,204,255) #FFCCFF rgb(100%, 80%, 100%)

Medium gray rgb(153,153,153) #999999 rgb(60%, 60%, 60%)

Brown rgb(153,102,51) #996633 rgb(60%, 40%, 20%)

Pink rgb(255,204,204) #FFCCCC rgb(100%, 80%, 80%)

Orange rgb(255,204,204) #FFCC00 rgb(100%, 80%, 80%)

Many people still use 256-color monitors. Some people even browse the Web in
monochrome, especially on handheld devices such as Palm Pilots. Even on more
capable systems, some colors are distinctly different on Macs and PCs. The most
reliable colors are the 16 named colors.

The next most reliable colors are those formed using only the hexadecimal com-
ponents 00, 33, 66, 99, CC, and FF (0, 51, 102, 153, 204, 255 in decimal; 0%, 20%,
40%, 60%, 80%, 100% in percentage units). For instance, 33FFCC is a “browser-
safe” color because the red component is made from two threes, the green from
two Fs, and the blue from two Cs.

If you specify a hexadecimal RGB color using only three digits, CSS duplicates
them; for example, #FC0 is really #FFCC00 and #963 is really #996633.

Tip

Note

386 Part III ✦ Style Languages

System colors
CSS also allows you to specify colors by copying them from the local Graphical

User Interface (GUI). These system colors can be used with all color-related proper-

ties. Style rules based on system colors take into account user preferences, and

therefore offer some advantages, including:

✦ Pages that fit the user’s preferred look and feel.

✦ Greater accessibility for users whose default settings compensate for a

disability.

Table 15-4 lists system color keywords and their descriptions. Any of the color

properties can take on these values.

For example, this rule sets the foreground and background colors of a VERSE to the

same colors used for the foreground and background of the browser’s window:

VERSE { color: WindowText; background-color: Window}

Gamma Correction

At its most basic, gamma correction controls the brightness of images so that they are displayed accu-
rately on computer screens. Images that have not been properly corrected can appear bleached out or
too dark on a monitor.

Most computer monitors have an innate gamma fairly close to 2.5. This means that the ratio of intensity
to voltage roughly follows an exponential curve with the power 2.5. If you send your monitor a message
for a specific pixel to have an intensity of x, that pixel will automatically have an intensity of x2.5 applied
to it. Because the range of voltage is between 0 and 1, this means that your pixel’s intensity is lower
than you wish. To correct this, the voltage to the monitor has to be “gamma corrected.”

The easiest way to correct this problem is to increase the voltage before it gets to the monitor. Because
the relationship between the voltage and the brightness is known, the signal can be adjusted to remove
the effect of the monitor’s gamma. When this is done properly, the computer display should accurately
reflect the image input. Of course, when gamma correcting an image, the ambient light, brightness and
contrast settings on the monitor, and personal taste also play a role.

When doing gamma correction for the Web, platform idiosyncrasies come into play. Some UNIX work-
stations automatically correct for gamma variance on their video card, just as the Macintosh does, but
most PCs do not. This means that an image that looks good on a PC will be too light on a Mac; and
when something looks good on a Mac, it will be too dark on a PC. If you are placing colored images or
text on the Internet, you can’t please all of the people all of the time. Currently, PNG is the only com-
mon graphic format used on the Web that can encode gamma-correction information.

387Chapter 15 ✦ CSS Layouts

Table 15-4
Additional System Colors Used with All Color-Related Properties

System Color Keywords Description

ActiveBorder The color of the border of the currently active window.

ActiveCaption The color of the caption of the currently active window.

AppWorkspace The background color of multiple-document interface.

Background Desktop background color.

ButtonFace The foreground color for three-dimensional widgets.

ButtonHighlight The shadow color for three-dimensional widgets (for edges
facing away from the light source).

ButtonShadow The shadow color for three-dimensional widgets.

ButtonText Color of the text on push buttons.

CaptionText Color of the text in captions, size boxes, and scrollbar
arrow boxes.

GrayText The color of disabled text. This color is set to #000 if the
current display driver does not support a solid gray color.

Highlight The color of items selected in a control.

HighlightText The color with which selected text is highlighted.

InactiveBorder The color of an inactive window border.

InactiveCaption The color of an inactive window caption.

InactiveCaptionText The color of the text of a caption of an inactive window.

InfoBackground The background color for tooltip controls.

InfoText The text color used in tooltip controls.

Menu The background color of a menu.

MenuText The color of text in menu items.

Scrollbar The color of the scrollbar area.

ThreeDDarkShadow Dark shadow for three-dimensional widgets.

ThreeDFace The face color for three-dimensional widgets.

ThreeDHighlight The highlight color for three-dimensional widgets.

ThreeDLightShadow The light color for three-dimensional widgets (for edges
facing the light source).

ThreeDShadow The color of the dark shadow for three-dimensional widgets.

Window The color in the window background.

WindowFrame The color of the window frame.

WindowText The color of the text in the window.

388 Part III ✦ Style Languages

Keyword values
Keywords are not necessarily the same from property to property, but similar prop-

erties generally support similar keywords. For instance, the value of border-left-
style can be any one of the keywords none, dotted, dashed, solid, double,

groove, ridge, inset, or outset. The border-right-style, border-top-style,

border-bottom-style, and border-style properties can also assume one of this

set of values. The individual keywords are discussed in the sections about the indi-

vidual properties.

Strings
A few CSS properties, such as font-family and content, have string values. In

CSS, a string is a sequence of Unicode characters enclosed in either single or dou-

ble quotes. If the string contains double quotes, then single quotes must be used to

enclose the string and vice versa.

You can also use a backslash to escape otherwise illegal characters, typically single

or double quotes. For instance, you can use \” to include a double quote mark

inside a string that’s surrounded by double quotes. Strings cannot contain line

breaks. However, you can use \A to insert one. You can also include a raw line

break if you prefix it by a backslash first. This is sometimes useful in the content
property.

You can also use a backslash followed by the hexadecimal value of a Unicode char-

acter to insert a character that isn’t easy to type. For example, to insert the Greek

letter Θ, Unicode value 398 (in hexadecimal), you could simply use \398.

The Display Property
From the perspective of CSS, all elements are block elements, inline elements, table

parts, or invisible. The display property specifies which one of these an element

is. This property has 19 possible values given by keywords shown in Table 15-5.

Table 15-5
Values for the Display Property

Block Level Inline Elements Table Parts Invisible

block Inline table-column none

table inline-table table-cell

list-item marker table-footer-group

389Chapter 15 ✦ CSS Layouts

Block Level Inline Elements Table Parts Invisible

run-in run-in table-column-group

compact compact table-row

table-header-group

table-row-group

table-caption

Block elements are usually separated from other elements by placing a line break

before and after each one. Table elements are parts of a grid. Inline elements are

placed one after the other in a row. These are like words in a sentence. They move

freely as text is added and deleted around them. Block elements are more fixed and

at most move up and down but not left and right as content is added before and

after them. Block elements include tables, lists, and list items. Most display types

are just modifications of the main block or inline types.

A browser uses the distinction between these elements to make its first pass at lay-

ing out the document. It will place the text of any inline elements on the page mov-

ing from left to right, until it fills the line. If necessary, it will continue on the next

line down. (The direction property lets you reverse the order so that elements

are placed from right to left, useful if you’re formatting Hebrew or Arabic.) However,

when the browser comes to a block-level element, either the start or the end of one,

it breaks the line and continues on the next line.

Consider Listing 15-1, which is a synopsis of William Shakespeare’s Twelfth Night.
The root element, SYNOPSIS, contains six top-level elements, one TITLE and five

ACT elements. Each ACT contains an ACT_NUMBER and one or more SCENE children.

Each SCENE contains a SCENE_NUMBER and a LOCATION. LOCATION elements contain

mixed content, possibly including one or more CHARACTER elements.

Listing 15-1: A synopsis of Shakespeare’s Twelfth Night in
XML

<?xml version=”1.0”?>
<?xml-stylesheet type=”text/css” href=”synopsis.css”?>
<SYNOPSIS>
<TITLE>Twelfth Night</TITLE>

<ACT>
<ACT_NUMBER>Act 1</ACT_NUMBER>
<SCENE>
<SCENE_NUMBER>Scene 1</SCENE_NUMBER>

Continued

390 Part III ✦ Style Languages

Listing 15-1 (continued)

<LOCATION><CHARACTER>Duke Orsino</CHARACTER>’s palace
</LOCATION>

</SCENE>
<SCENE>
<SCENE_NUMBER>Scene 2</SCENE_NUMBER>
<LOCATION>The sea-coast</LOCATION>

</SCENE>
<SCENE>
<SCENE_NUMBER>Scene 3</SCENE_NUMBER>
<LOCATION><CHARACTER>Olivia</CHARACTER>’s house
</LOCATION>

</SCENE>
<SCENE>
<SCENE_NUMBER>Scene 4</SCENE_NUMBER>
<LOCATION><CHARACTER>Duke Orsino</CHARACTER>’s palace.
</LOCATION>

</SCENE>
<SCENE>
<SCENE_NUMBER>Scene 5</SCENE_NUMBER>
<LOCATION><CHARACTER>Olivia</CHARACTER>’s house
</LOCATION>

</SCENE>
</ACT>

<ACT>
<ACT_NUMBER>Act 2</ACT_NUMBER>
<SCENE>
<SCENE_NUMBER>Scene 1</SCENE_NUMBER>
<LOCATION>The sea-coast</LOCATION>

</SCENE>
<SCENE>
<SCENE_NUMBER>Scene 2</SCENE_NUMBER>
<LOCATION>A street</LOCATION>

</SCENE>
<SCENE>
<SCENE_NUMBER>Scene 3</SCENE_NUMBER>
<LOCATION><CHARACTER>Olivia</CHARACTER>’s house
</LOCATION>

</SCENE>
<SCENE>
<SCENE_NUMBER>Scene 4</SCENE_NUMBER>
<LOCATION><CHARACTER>Duke Orsino</CHARACTER>’s palace.
</LOCATION>

</SCENE>
<SCENE>
<SCENE_NUMBER>Scene 5</SCENE_NUMBER>
<LOCATION><CHARACTER>Olivia</CHARACTER>’s garden
</LOCATION>

</SCENE>
</ACT>

391Chapter 15 ✦ CSS Layouts

<ACT>
<ACT_NUMBER>Act 3</ACT_NUMBER>
<SCENE>
<SCENE_NUMBER>Scene 1</SCENE_NUMBER>
<LOCATION><CHARACTER>Olivia</CHARACTER>’s garden
</LOCATION>

</SCENE>
<SCENE>
<SCENE_NUMBER>Scene 2</SCENE_NUMBER>
<LOCATION><CHARACTER>Olivia</CHARACTER>’s house
</LOCATION>

</SCENE>
<SCENE>
<SCENE_NUMBER>Scene 3</SCENE_NUMBER>
<LOCATION>A street</LOCATION>

</SCENE>
<SCENE>
<SCENE_NUMBER>Scene 4</SCENE_NUMBER>
<LOCATION><CHARACTER>Olivia</CHARACTER>’s garden
</LOCATION>

</SCENE>
</ACT>

<ACT>
<ACT_NUMBER>Act 4</ACT_NUMBER>
<SCENE>
<SCENE_NUMBER>Scene 1</SCENE_NUMBER>
<LOCATION><CHARACTER>Olivia</CHARACTER>’s front yard
</LOCATION>

</SCENE>
<SCENE>
<SCENE_NUMBER>Scene 2</SCENE_NUMBER>
<LOCATION><CHARACTER>Olivia</CHARACTER>’s house
</LOCATION>

</SCENE>
<SCENE>
<SCENE_NUMBER>Scene 3</SCENE_NUMBER>
<LOCATION><CHARACTER>Olivia</CHARACTER>’s garden
</LOCATION>

</SCENE>
</ACT>

<ACT>
<ACT_NUMBER>Act 5</ACT_NUMBER>
<SCENE>
<SCENE_NUMBER>Scene 1</SCENE_NUMBER>
<LOCATION><CHARACTER>Olivia</CHARACTER>’s front yard
</LOCATION>

</SCENE>
</ACT>

</SYNOPSIS>

392 Part III ✦ Style Languages

You can do a fair job of formatting this document using only display properties.

SYNOPSIS, TITLE, ACT, and SCENE are all block-level elements. ACT_NUMBER,

SCENE_NUMBER, LOCATION, and CHARACTER can remain inline elements. Listing 15-2

is a very simple style sheet that accomplishes this.

Listing 15-2: A very simple style sheet for the synopsis of a
play

SYNOPSIS, TITLE, ACT, SCENE { display: block }

Figure 15-1 shows the synopsis of Twelfth Night loaded into Mozilla with the style

sheet of Listing 15-2. Notice that in Listing 15-2 it is not necessary to explicitly spec-

ify that ACT_NUMBER, SCENE_NUMBER, LOCATION, and CHARACTER are all inline ele-

ments. This is the default unless otherwise specified. Children do not inherit the

display property. Thus, just because SCENE is a block-level element does not mean

that its children SCENE_NUMBER and LOCATION are also block-level elements.

Figure 15-1: The synopsis of Twelfth Night as displayed in Mozilla

393Chapter 15 ✦ CSS Layouts

Inline elements
Inline elements are laid out horizontally in a row starting from the top of the con-

taining box of the surrounding page or block element, and moving from left to right.

When a row fills up, a new row is started on the next line down. Words may be

wrapped but only as necessary to fit the text on the screen. There are no hard line

breaks. In HTML, EM, STRONG, B, I, and A are all inline elements. As another exam-

ple, you can think of EM, STRONG, B, I, and A in this paragraph as inline code ele-

ments. They aren’t separated out from the rest of the text. If no value is specified

for the display property of an element, then the default is to make the element an

inline element.

Block elements
Block-level elements are laid out vertically, one on top of the other. The first block

is laid out in the top-left corner of the containing block, then the second block is

placed below it, also flush against the left edge of the containing block. Each block-

level element is separated from its sibling and parent elements, generally by placing

a line break before and after it. The vertical distance between each block is defined

by the individual block’s margin and padding properties. In HTML P, BLOCKQUOTE,

H1 through H6, and HR are all examples of block-level elements. The paragraphs and

headings you see on this page are all block-level elements. Block-level elements

may contain inline elements and other block-level elements, but inline elements

should only contain other inline elements, not block-level elements, although this

rule is not strictly enforced.

None
Setting display to none hides the element. An element whose display property is

set to none is invisible and not rendered on the screen. It does not affect the posi-

tion of other visible elements on the page. In HTML, TITLE, META, and HEAD would

have a display property of none. In XML, display: none is often useful for meta-

information in elements.

For example, suppose you wanted to list the locations in the synopsis but drop

everything else. You could use the style sheet in Listing 15-3. This hides the TITLE,

ACT_NUMBER, and SCENE_NUMBER elements by setting their display property to

none. The LOCATION element is displayed as a block. Figure 15-2 shows the result of

applying this style sheet to Listing 15-1.

Listing 15-3: A style sheet for the synopsis of a play that only
shows the locations

TITLE, ACT_NUMBER, SCENE_NUMBER { display: none }
LOCATION { display: block}

394 Part III ✦ Style Languages

Figure 15-2: The synopsis of Twelfth Night showing only
locations as displayed in Internet Explorer

Once you’ve hidden an element by using display: none you cannot then show

any of its descendants. For example, consider these rules:

SYNOPSIS { display: none }
LOCATION { display: block}

Because the LOCATION element is contained inside the SYNOPSIS element, it is hid-

den even though its own display property is set to block.

Compact and run-in elements
The compact and run-in values of the display property identify an element as

either a block or an inline box depending on context. Other properties declared as

these types will treat them as either a block or inline element depending on what

they eventually become.

A run-in box is a block-level element if the element that follows it is an inline ele-

ment. It is an inline element if the element that follows it is a block-level element. In

other words, it guarantees that there will be a line break before it but not after it.

This is sometimes useful for headings.

A compact box will normally be a block-level element. However, if it’s followed by a

block-level element and it can fit in the margin of that element’s box, then the

browser will put it in the margin rather than making it a separate element.

395Chapter 15 ✦ CSS Layouts

Marker
Setting the display property to marker identifies a block that’s formed by content

generated in the style sheet rather than copied in from the XML document. This

value is only used with the :before and :after pseudo-elements that have been

attached to block-level elements. marker is discussed in more detail in the section

on the content property in the next chapter.

Tables
CSS lets you format elements as parts of tables using these 10 values of the

display property:

✦ table

✦ inline-table

✦ table-row-group

✦ table-header-group

✦ table-footer-group

✦ table-row

✦ table-column-group

✦ table-column

✦ table-cell

✦ table-caption

For example, setting the display property to table indicates that the selected ele-

ment is a block-level container for various smaller children that will be arranged in

a grid. The inline-table value forces the table to act as an inline element, allow-

ing text to float along its sides, and allows multiple tables to be placed side by side.

The other eight values in this list identify particular parts of a table, and should

only be used when the elements they’re applied to are descendants of an element

formatted as a table or inline table. The table-caption value formats an element

as a table caption. The table-row-group, table-header-group, and table-
footer-group values create groups of data cells that are formatted as a single row.

The table-column-group creates a group of data cells that are formatted as a sin-

gle column that was defined using the table-column value. XML elements that

appear in table cells have — naturally enough — a display property with the value

table-cell.

For example, if you were to build a table of the scenes and locations in the synop-

sis, each scene could be a row. Scene numbers and locations could be cells. Each

act could be a row group. The title would be a header. Listing 15-4 demonstrates.

396 Part III ✦ Style Languages

Listing 15-4: A style sheet that formats synopses as tables

SYNOPSIS {display: table}
TITLE {display: table-header}
SCENE { display: table-row}
ACT { display: table-row-group }
LOCATION, SCENE_NUMBER { display: table-cell }

Figure 15-3 shows the result of applying this style sheet to the Twelfth Night synop-

sis. By default, there are no grid lines or borders. These could be inserted using the

border properties that you’ll encounter shortly. It also wouldn’t hurt to add a little

padding around each cell.

Figure 15-3: A table-based synopsis layout

Internet Explorer 5.0 and 5.5 do not support table formatting using CSS.Caution

397Chapter 15 ✦ CSS Layouts

List items
List-item elements are block-level elements with a list-item marker preceding them.

In HTML, LI is a list-item element. If you simply set the display property to

list-item and don’t do anything else, then the element is formatted as a block-

level element that may or may not have a bullet, called a marker, in front of it.

However, you can set three additional properties that affect how list items are dis-

played. These are:

✦ list-style-type

✦ list-style-image

✦ list-style-position

There’s also a shorthand list-style property that lets you set all three in a

single rule.

Internet Explorer 5.5 and Mozilla 0.8 do not yet support display: list-item.
Mozilla treats list items as simple block-level elements, while Internet Explorer
does even worse by treating them as inline elements. Opera 4.0.1 supports it, but
has some weird bugs.

One thing CSS lists do not imply, however, is indentation. If you’re accustomed to

using lists to indent items from HTML, you need to break yourself of that habit. In

CSS, indentation is provided by the margin and padding properties as well as the

text-indent property. List items are not automatically indented unless you set the

other properties necessary to indent something.

The list-style-type property
The list-style-type property determines the nature of the bullet character in

front of each list item. Possibilities include:

✦ disc: •

✦ circle: ❍

✦ square: ❑

✦ decimal: 1, 2, 3, 4, 5, and so on

✦ decimal-leading-zero: 01, 02, 03, 04, 05, and so on

✦ lower-roman: i, ii, iii, iv, and so on

✦ upper-roman: I, II, III, IV, and so on

✦ lower-alpha: a, b, c, and so on

✦ upper-alpha: A, B, C, and so on

✦ lower-latin: same as lower-alpha; a, b, c, and so on

✦ upper-latin: same as upper-alpha; A, B, C, and so on

Caution

398 Part III ✦ Style Languages

✦ lower-greek: α, β, γ, δ, ε, and so on

✦ hebrew: and so on

✦ armenian: and so on

✦ georgian: and so on

✦ cjk-ideographic: and so on

✦ hiragana: and so on

✦ katakana: and so on

✦ hiragana-iroha: and so on

✦ katakana-iroha: and so on

✦ none: no bullet character is used

I would not rely on a typical Western browser being capable of handling the more

unusual of these. In that case, it will default to decimal. (European style numerals

have pretty much replaced Hebrew, Han, and other traditional number systems in

most of the world for day-to-day use.) If no value is set, the default is disc. For

example, the style sheet in Listing 15-5 defines ACT and SCENE as list items.

However, ACT is given no bullet, and SCENE is given a square bullet. Figure 15-4

shows the synopsis in Opera with this style sheet.

Listing 15-5: A style sheet for a play synopsis that uses list
items

SYNOPSIS, TITLE { display: block }
ACT { display: list-item; list-style-type: none }
SCENE { display: list-item; list-style-type: square }

The list-style-image property
Alternately, you can use a bitmapped image of your choice loaded from a file as the

bullet. To do this you set the list-style-image property to the URL of the image.

If both list-style-image and list-style-type are set, the list-style-image
will be used, unless it can’t be found, in which case the bullet specified by list-
style-type will be used. For example, this rule uses a heart (♥) stored in the file

heart.jpg as the bullet before each scene. (After all, Twelfth Night is a romantic com-

edy.) Figure 15-5 shows the result of adding this rule to the synopsis style sheet.

SCENE { display: list-item;
list-style-image: url(heart.jpg);
list-style-type: square

}

399Chapter 15 ✦ CSS Layouts

Figure 15-4: A list-based synopsis layout

Figure 15-5: A list-based synopsis layout with an image bullet

400 Part III ✦ Style Languages

The list-style-position property
The list-style-position property specifies whether the bullet is drawn inside

or outside the text of the list item. The legal values are inside and outside. The

default is outside. The difference is only obvious when the text wraps onto more

than one line.

This is inside:

✦ If music be the food of love, play on/Give me excess of it, that, surfeiting,/The

appetite may sicken, and so die./That strain again! it had a dying fall:

This is outside:

✦ If music be the food of love, play on/Give me excess of it, that, surfeiting,/The

appetite may sicken, and so die./That strain again! it had a dying fall:

The list-style shorthand property
Finally, the list-style property is a shorthand that allows you to set all three of

the above-described properties simultaneously. For example, this rule says that a

SCENE is displayed inside with a heart image and no bullet:

SCENE { display: list-item;
list-style: none inside url(heart.jpg) }

Box Properties
CSS arranges text on a two-dimensional canvas. The elements drawn on this canvas

are laid out in imaginary rectangles called boxes. Each box is given a size and a

position as well as margins, borders, and padding. The box edges are always ori-

ented parallel to the edges of the canvas. Box properties enable you to specify the

width, height, margins, padding, borders, and outlines of the individual boxes.

Figure 15-6 shows how these properties relate to each other.

These boxes stack together and wrap around each other so that the contents of

each element are aligned in an orderly fashion, based upon the rules of the style

sheets.

Margin properties
Margin properties specify the amount of space added to the box outside its border.

This may be set separately for the top, bottom, right and left margins using the

margin-top, margin-bottom, margin-right, and margin-left properties. Each

margin may be given as an absolute length or as a percentage of the size of the par-

ent element’s width. For example, you can add a little extra space between each

ACT element and the preceding element by setting ACT’s margin-top property to

3ex as Listing 15-6 and Figure 15-7 demonstrate.

401Chapter 15 ✦ CSS Layouts

Figure 15-6: A CSS box with margin, border, and padding

Listing 15-6: Extra space on the top margin of each act

ACT { margin-top: 3ex }
SYNOPSIS, TITLE, ACT, SCENE { display: block }

You can also set all four margins simultaneously using the shorthand margin prop-

erty. For example, you can add extra white space around the entire Twelfth Night
document by setting the margin property for the root-level element (SYNOPSIS in

this example) as shown by the first rule of Listing 15-7 and in Figure 15-8.

Listing 15-7: Adding a one centimeter margin on each side of
the SYNOPSIS

SYNOPSIS { margin: 1cm 1cm 1cm 1cm }
SYNOPSIS, TITLE, ACT, SCENE { display: block }
ACT { margin-top: 3ex }

An XML element lives in a box
like this one. The total width of the
element is the sum of the natural
width or specified width of the
element, the width of the margin,
the width of the border, and the
width of the padding around the
border. The total height the
element is the sum of the height
of the element, the height of the
margin, the height of the border,
and the height of the padding
around the border.

The margin

The border

The padding

The element

402 Part III ✦ Style Languages

Figure 15-7: The top margin of the ACT element is larger

Figure 15-8: One centimeter of white space around the entire synopsis

403Chapter 15 ✦ CSS Layouts

In fact, this is the same as using a single value for margin, which CSS interprets as

being applicable to all four sides.

SYNOPSIS { margin: 1cm }

Given two margin values, the first applies to top and bottom, the second to right

and left. Given three margin values, the first applies to the top, the second to the

right and left, and the third to the bottom. It’s probably easier to just use the sepa-

rate margin-top, margin-bottom, margin-right, and margin-left properties if

you want to specify different margins for different sides.

Border properties
Most boxes don’t have borders. They are invisible rectangles that affect the layout

of their contents, but are not seen as boxes by the readers. However, you can make

a box visible by drawing lines around it using the border properties. Border proper-

ties let you specify the style, width, and color of the border.

Border style
By default, no border is drawn around boxes regardless of the width and color of

the border. To make a border visible you must change the border-style property

of the box from its default value of none to one of these 10 values:

✦ none: no line

✦ hidden: an invisible line that still takes up space

✦ dotted: a dotted line

✦ dashed: a dashed line

✦ solid: a solid line

✦ double: a double solid line

✦ grooved: a line that appears to be drawn into the page

✦ ridge: a line that appears to be coming out of the page

✦ inset: the entire element (not just an outline line) appears pushed into the

document

✦ outset: the entire element (not just an outline line) appears to be pushed out

of the document

The border-style property can have between one and four values. As with the

margin property, a single value applies to all four borders. Two values set the top

and bottom borders to the first style, right and left borders to the second style.

Three values set the top, right and left, and bottom border styles in that order. Four

values set each border in the order top, right, bottom, and left. For example, Listing

15-8 adds a rule to enclose the entire SYNOPSIS in a solid border.

404 Part III ✦ Style Languages

Listing 15-8: Bordering the SYNOPSIS

SYNOPSIS { border-style: solid }
SYNOPSIS { margin: 1cm 1cm 1cm 1cm }
SYNOPSIS, TITLE, ACT, SCENE { display: block }
ACT { margin-top: 3ex }

Figure 15-9 shows the result in Mozilla. In this case, the border has the secondary

effect of making the margin more obvious. (Remember that the margin is outside

the border.)

SYNOPSIS { border-style: solid }

Figure 15-9: A border around the synopsis

Border width
Four border-width properties specify the width of the borderlines along the top,

bottom, right, and left edges of the box. These are:

✦ border-top-width

✦ border-right-width

✦ border-bottom-width

✦ border-left-width

405Chapter 15 ✦ CSS Layouts

Each may be specified as an absolute length or as one of three keywords: thin,

medium, or thick. Border widths cannot be negative, but can be zero.

For example, to enclose the SYNOPSIS element in a one-pixel wide solid border (the

thinnest border any computer monitor can display), you could use the next rule to

set these four properties:

SYNOPSIS { border-style: solid;
border-top-width: 1px;
border-right-width: 1px;
border-bottom-width: 1px;
border-left-width: 1px }

If you want to set all or several borders to the same width, it’s most convenient to

use the border-width shorthand property. This property can have between one

and four values. One value sets all four border widths. Two values set the top and

bottom borders to the first value, right and left borders to the second value. Three

values set the top, right, and left, and bottom widths in that order. Four values set

each border in the order top, right, bottom, and left. For example, the following is

equivalent to the previous rule:

SYNOPSIS { border-style: solid; border-width: 1px }

Border color
Most browsers draw borders in black by default, or possibly in shades of gray if

necessary to produce 3D effects for the grooved, ridge, inset, and outset styles.

However, you can use the border-color properties to change this for one or more

sides of the box. These properties are:

✦ border-top-color

✦ border-right-color

✦ border-bottom-color

✦ border-left-color

There’s also a border-color shorthand property that sets the color of all four bor-

ders. A single value sets all four border colors. Two values set the top and bottom

borders to the first color, the right and left borders to the second color. Three val-

ues set the top, right and left, and bottom border colors in that order. Four values

set each border in the order top, right, bottom, and left. The value can be any rec-

ognized color name or an RGB triplet. For example, to enclose the SYNOPSIS ele-

ment in a one-pixel wide, solid red border, you’d use this rule:

SYNOPSIS { border-style: solid;
border-width: 1px;
border-color: red }

Because this book is printed in black and white, I’ll spare you the picture.

406 Part III ✦ Style Languages

Shorthand border properties
Five shorthand border properties let you set the width, style, and color of a border

with one rule. These properties are:

✦ border-top

✦ border-right

✦ border-bottom

✦ border-left

✦ border

For instance, the border-top property provides a width, style, and color for the

top border. The border-right, border-bottom, and border-left properties are

similar. For example, the first rule of Listing 15-9 produces a two-pixel groove blue

border (a horizontal rule if you will) below each act. Figure 15-10 shows the result.

Listing 15-9: Using borders to produce horizontal rules

ACT { border-bottom: 2px groove blue }
SYNOPSIS { border-style: solid }
SYNOPSIS { margin: 1cm 1cm 1cm 1cm }
SYNOPSIS, TITLE, ACT, SCENE { display: block }
ACT { margin-top: 3ex }

The border property sets all four sides to the specified width, style, and height. For

example, this rule draws a three-pixel wide, solid, red border around a SYNOPSIS
element.

SYNOPSIS { border: 3pt solid red }

Outline properties
An outline is much like a border. However, an outline is inside and on top of the

box. Its width does not add to the width of the box. Furthermore, if a CSS element is

nonrectangular (unlikely), the outline around it will also be nonrectangular.

Because outlines are not necessarily rectangular, you cannot set the left, right, top,

and bottom outline separately. You can only affect the entire outline at once.

Current Web browsers don’t do a very good job of supporting outlines. It’s best to
stick with borders for the time being.

Caution

407Chapter 15 ✦ CSS Layouts

Figure 15-10: A two-pixel groove bottom border is similar to
HTML’s HR element

Outline style property
The outline-style property sets the style of the outline for the entire box. This

functions just like the border-style property, and has the same 10 possible values

with the same meanings:

✦ none: no line

✦ hidden: an invisible line that still takes up space

✦ dotted: a dotted line

✦ dashed: a dashed line

✦ solid: a solid line

✦ double: a double solid line

✦ grooved: a line that appears to be drawn into the page

✦ ridge: a line that appears to be coming out of the page

✦ inset: the entire element (not just the outline line) appears pushed into the

document

✦ outset: the entire element (not just the outline line) appears to be pushed

out of the document

408 Part III ✦ Style Languages

These three rules set the outline styles for the TITLE, ACT, and SCENE elements:

TITLE { outline-style: solid }
ACT { outline-style: outset }
SCENE { outline-style: dashed }

Outline width property
The outline-width property works like the margin-width and border-width
properties. It sets the width of the outline of a box using either an unsigned length

or one of these three keywords:

✦ thin: about 0.5 to 0.75 points

✦ medium: about 1 point

✦ thick: about 1.5 to 2 points

For example this rule places a thick outline around each ACT, but only a thin outline

around each TITLE:

ACT { outline: thick }
TITLE { outline: thin }

Outline color property
The outline-color property sets the color of the outline of an element’s box.

Generally, this is set to either a color name such as red or an RGB color such as

#FF0000. However, it may also have the keyword value invert, which inverts the

color of the pixels on the screen. (Black becomes white, and vice versa.) For

example:

TITLE { outline-color: #FFCCCC;
outline-style: inset;
outline-width: thick }

ACT { outline-color: #FF33CC }
SYNOPSIS { outline-color: invert }

Outline shorthand property
The outline property is a shorthand property that sets the outline width, color,

and style for all four edges of a containing box in one rule. For example:

TITLE { outline: thin dashed red }
SYNOPSIS { outline: inset }

409Chapter 15 ✦ CSS Layouts

Padding properties
The padding properties specify the amount of space on the inside of the border of

the box. The border of the box, if shown, falls between the margin and the padding.

Padding may be set separately for the top, bottom, right and left padding using the

padding-top, padding-bottom, padding-right, and padding-left properties.

Each padding may be given as an absolute length or be a percentage of the ele-

ment’s width. For example, you can set off the SYNOPSIS from its border by setting

its padding properties as shown in this rule.

SYNOPSIS { padding-bottom: 1em;
padding-top: 1em;
padding-right: 1em;
padding-left: 1em }

You can also set all four at once using the shorthand padding property. For exam-

ple, this rule is the same as the previous one:

SYNOPSIS { padding: 1em 1em 1em 1em }

In fact, this is the same as using a single value for the padding property, which CSS

interprets as applying to all four sides:

SYNOPSIS { padding: 1em }

Given two padding values, the first applies to the top and bottom, the second to

the right and left. Given three padding values, the first applies to the top, the sec-

ond to the right and left, and the third to the bottom. It’s probably easier to use the

separate padding-top, padding-bottom, padding-right, and padding-left
properties.

The blue borders below the acts in the synopsis in Figure 15-10 seem a little too

close, so let’s add an ex of padding between the end of the act and the border with

the padding-bottom property, as shown in the first rule of Listing 15-10. Figure

15-11 shows the result. Generally, it’s a good idea to use a little padding around bor-

ders to make the text easier to read.

Listing 15-10: Padding the border

ACT { padding-bottom: 1ex }
ACT { border-bottom: 2px groove blue }
SYNOPSIS { border-style: solid }
SYNOPSIS { margin: 1cm 1cm 1cm 1cm }
SYNOPSIS, TITLE, ACT, SCENE { display: block }
ACT { margin-top: 3ex }

410 Part III ✦ Style Languages

Figure 15-11: Padding makes borders easier on the eye

Size
CSS lets you choose exactly how big each element’s box will be. By default, boxes

are just big enough to contain their contents, borders, and padding. Inline and table

elements that contain text always have these automatically calculated dimensions.

However, you can make block-level elements either bigger or smaller than this

default by using these six properties:

✦ height

✦ width

✦ min-width

✦ max-width

✦ min-height

✦ max-height

The width and height properties
Usually the browser decides how much space each element requires by adding up

the total size of its contents, along with the size of any borders and padding; and

usually this is exactly what you want it to do. However, you can force a block-level

element to a predetermined size by setting its width and height properties.

411Chapter 15 ✦ CSS Layouts

Consider Listing 15-11. The first rule says that every TITLE element will be exactly

three inches wide and two inches high. Even if it doesn’t use up all this space, other

elements that follow it will leave the extra space empty.

Listing 15-11: A style sheet that sets a fixed size for the TITLE
element

TITLE { width: 3in; height: 2in }
SYNOPSIS, TITLE, ACT, SCENE { display: block }
TITLE { border-style: solid }
SYNOPSIS { border-style: dotted }
ACT { border-style: dashed }
SCENE { border-style: groove }
ACT, SCENE, TITLE, SYNOPSIS { margin: 1ex }

Figure 15-12 demonstrates the effect of Listing 15-11. Borders are added to all the

block level elements so you can see where their boxes are placed. All of them

except for TITLE take up the minimum amount of vertical space they need to hold

their contents and the maximum amount of horizontal space. However, because the

TITLE element’s width and height properties have been set, it’s taller than it

needs to be and narrower than it could be.

Figure 15-12: This TITLE element is exactly three inches wide and
two inches high.

412 Part III ✦ Style Languages

If the box size you specify is too small to hold what the box needs to hold, the con-

tents will not be scaled to fit. By default the content will spill out of the box and

overlap whatever follows. Figure 15-13 demonstrates this with a box that’s too small

for the actual title. However, you can clip or scroll the overflowed contents using

the overflow property.

Figure 15-13: This TITLE element is exactly three ems wide and
one em high, too small to hold the entire title.

You do not have to set both width and height. You can set one or the other, or nei-

ther. The default setting for both is auto; that is, calculate the necessary size based

on the contents and context of the box.

The min-width and min-height properties
If you want an element to take up at least a minimum amount of space, but you do

want to allow it to grow larger if necessary to hold its contents, you can set the

min-height and min-width properties. These specify the smallest dimensions that

the element will use. For example, this rule says that a TITLE element must be at

least one inch wide and one inch high:

TITLE { min-width: 1in; min-height: 1in }

413Chapter 15 ✦ CSS Layouts

If the title needs more space than that, the browser is free to make its box larger. If

it takes up less space than that, then the browser will leave some empty space.

Min-height and min-width should be preferred to height and width because you

can never be sure exactly how much space any given string of text is going to

occupy from one computer to the next. Using min-height and min-width instead

of height and width will give you the same effect most of the time, and look much

better in the occasional cases where you do need the extra space.

The min-height and min-width properties override height and width. If height
is set to something smaller than min-height, then the value of the min-height
property determines the height of the box, regardless of the value of height. The

same is true for width and min-width.

The max-width and max-height properties
If you want an element to occupy no more than a certain amount of space, but you

do want it to be smaller if its contents allow, you can set the max-height and max-
width properties. Together, these specify the largest area that an element will

occupy. For example, this rule says that a TITLE element must be no more than

three inches wide and two inches high:

TITLE { max-width: 3in; max-height: 2in }

If the title needs less space than that, the browser is free to shrink its box. However,

if it needs more space than that, then the browser will let some text fall outside the

box, or otherwise handle it as specified by the overflow property. Because max-
height and max-width can cause text to overlap other text in an unattractive fash-

ion, just like height and width can, you should use it sparingly.

The max-height and max-width properties override height and width. If height
is set to something larger than max-height, then the value of the max-height
property determines the height of the box, regardless of the value of height. The

same is true for width and max-width.

The overflow property
When the size of a box is precisely specified using width and height or limited by

max-width and max-height, it’s entirely possible that its contents may take up

more area than the box actually has. The overflow property controls how the

excess content is dealt with. This property can be set to one of four values:

✦ visible

✦ hidden

✦ scroll

✦ auto

414 Part III ✦ Style Languages

The default is visible, which means let the text continue outside the box, on top

of the text in other boxes if necessary. You saw an example of this in Figure 15-13.

On the other hand, if overflow is set to hidden, then the visible text will be

clipped to its containing box as shown for the TITLE element in Figure 15-14. This

rule produces that effect:

TITLE { width: 3em; height: 1em; overflow: hidden}

Figure 15-14: This TITLE element is exactly three ems wide and
one em high, too small to hold the entire title, so the overflow
is hidden.

Another option that’s useful, especially for relatively large blocks that contain still

larger amounts of text, is to provide scroll bars. You can request this by setting

overflow to scroll. To specify scroll bars only if they’re actually needed — that is,

only if the content does indeed overflow — choose the value auto.

Clipping
Clipping is a very unusual effect that shows only some of the content of a box. It

does this by setting a clipping region using the clip property. By default, the clip-

ping region is the content box itself. However, you can make it smaller so that only

some of the box’s content is shown. You can only clip elements whose overflow
attribute is set to some value other than visible.

415Chapter 15 ✦ CSS Layouts

Current Web browsers don’t support the clip property very well, if at all.

For example, let’s suppose you want to put the title in a two centimeter by two cen-

timeter box. This rule does that:

TITLE {height: 2cm; width: 2cm}

Now suppose you only want to show the content in the middle one centimeter by

one centimeter square of that box. You add this rule:

TITLE {clip: rect(0.5cm, 0.5cm, 0.5cm, 0.5cm) }

The first argument is the offset of the clipping region from the top of the box. The

second argument is the offset of the clipping region from the bottom of the box.

The third and fourth arguments are the offset of the clipping region from the left

and right sides of the box respectively. Only content that appears in the clipping

region will be shown. The major purpose of clipping is to choose what subset of the

content will be shown when the block that’s available to show it is smaller than the

size of the content.

Positioning
For truly custom layouts, CSS lets you decide exactly where to put each element’s

box. By default, block-level elements contained inside the same parent element fol-

low each other on the page. They do not line up side by side or wrap around each

other. You can change this with judicious use of the float and clear properties.

You can even make elements overlap each other, in which case the z-index prop-

erty determines which element’s on top and which is on bottom.

The position property
Element boxes can be positioned automatically by the browser, offset relative to

their automatically calculated positions, or placed at a fixed position in the box that

contains them or at a fixed position on the page. The position property deter-

mines which of these options the browser uses to position each element. It can

have one of these four keyword values:

✦ static: the default layout

✦ relative: elements are offset from their static positions

✦ absolute: elements are placed at a specific position relative to the box

they’re contained in

✦ fixed: elements are placed at a specific point in the window or on the page

Caution

416 Part III ✦ Style Languages

Relative positioning
As a document is being laid out, the formatter chooses positions for items accord-

ing to the normal flow of elements and text. This is the default static formatting

used by most documents. After this has been completed, the elements may be

shifted relative to their natural, calculated positions. This adjustment in an ele-

ment’s position is known as relative positioning. Altering the position of an element

in this manner does not affect the positions of other elements. Thus, boxes can

overlap because relatively positioned boxes retain all of their normal flow sizes and

spacing.

To relatively position an element you set its position property to relative. Then

you give the length to offset the left edge of the element to the right of its normal

position as the value of the left attribute and the length to offset the top edge of

the element down from its normal position as the value of the top attribute. You

can use negative numbers to offset to the left and up. For example, Listing 15-12

moves the TITLE element 50 pixels to the right and down from where it would nor-

mally be placed.

Listing 15-12: A style sheet that adjusts the position of the
TITLE element

TITLE { position: relative; left: 50px; top: 50px }
SYNOPSIS, TITLE, ACT, SCENE { display: block }
TITLE { border-style: solid }
SYNOPSIS { border-style: dotted }
ACT { border-style: dashed }
SCENE { border-style: groove }
ACT, SCENE, TITLE, SYNOPSIS { margin: 1ex }

Figure 15-15 shows how this makes the TITLE element overlap some other elements

on the page.

You can use the right property to offset the right edge of the element from the

right edge of its normal block; that is, to move it to the left. Similarly, you can set

the bottom property to offset the bottom edge of the element from the bottom edge

of its normal position and thus move it up. You should not set left at the same

time as right or top at the same time as bottom.

417Chapter 15 ✦ CSS Layouts

Figure 15-15: A relatively positioned TITLE element

Absolute positioning
An absolutely positioned element is placed at a specific point inside the block that

contains it. For example, the coordinates of an absolutely positioned TITLE element

are relative to the top-left corner of the SYNOPSIS block. If the SYNOPSIS block

moves, then the TITLE element moves with it. However, if a sibling ACT element

moves, the TITLE element won’t move to accommodate it. The contents of abso-

lutely positioned elements do not flow around other boxes, so absolute positioning

may cause elements to overlap. In fact, absolutely positioned elements have no

impact on the flow of their following siblings, so elements that follow the absolutely

positioned one act as if it were not there.

The position of the upper-left corner of an absolutely positioned element is set by

the top and left properties. The position of the lower-right corner of an absolutely

positioned element is set by the bottom and right properties. Specifying all four

positions fixes the height and width of the box. If one corner is omitted, the box is

sized appropriately for its contents. For example, this rule places the TITLE ele-

ment exactly one inch down and one inch to the right of the upper-left corner of its

parent SYNOPSIS element:

TITLE { position: absolute;
left: 1in; top: 1in; width: 3in; height: 2in}

418 Part III ✦ Style Languages

Figure 15-16 shows the result. Notice that unlike a relatively positioned element, an

absolutely positioned element does not reserve any space for itself. Unless every-

thing on the page is absolutely positioned, it’s almost certain that some elements

will overlap each other.

Figure 15-16: An absolutely positioned TITLE element

Most of the time, absolute positioning is a bad idea for the same reason that abso-

lute sizes are a bad idea. Although an absolutely positioned element may look okay

on your system, it probably won’t on some of the systems that people will use to

read the document.

Fixed positioning
Elements with fixed positions are placed at coordinates relative to the window in

which they’re displayed or the piece of paper on which they’re printed. A fixed ele-

ment does not move when the document is scrolled. When printed on paper, a fixed

element appears in the same place on each page. This enables you to place a footer

or header on a document, or a signature at the end of a series of one-page letters.

For example, this rule puts the title near the top-center of the window even when

the user has scrolled down to the bottom of the synopsis:

TITLE { position: fixed; top: 0.1in; left: 2in}

419Chapter 15 ✦ CSS Layouts

Unfortunately, this isn’t as useful as it might sound, because unless you also care-

fully apply a fixed position to everything else on the page, the elements will overlap

as shown in Figure 15-17.

Figure 15-17: A fixed position TITLE element

Stacking elements with the z-index property
When boxes overlap, the z-index property determines which boxes are on top of

which others. Elements with larger z-indexes are placed on top of elements with

smaller z-indexes. Whether the elements on the bottom show through is a function

of the background properties of the element on top of them. If the background is

transparent, at least some of what’s below will probably show through. For exam-

ple, Figure 15-17 showed the title on top of the synopsis. You can change the z-index

to put the title behind the synopsis using these rules:

TITLE { z-index: 1}
SYNOPSIS { z-index: 2}

Current Web browsers don’t support the z-index property very well, if at all.Caution

420 Part III ✦ Style Languages

The float property
The float property, whose value is none by default, can be set to left or right. If

the value is left, then the element is moved to the left side of the page and the text

flows around it on the right. In HTML, this is how an IMG with ALIGN=”LEFT”
behaves. If the value is right, then the element is moved to the right side of the

page and the text flows around it on the left. In HTML, this is how an IMG with

ALIGN=”RIGHT” behaves. For example, the first rule in Listing 15-13 lets text float to

the right of the title as shown in Figure 15-18:

Listing 15-13: A floating TITLE

TITLE { float: left }
SYNOPSIS, TITLE, ACT, SCENE { display: block }
TITLE { border-style: solid }
SYNOPSIS { border-style: dotted }
ACT { border-style: dashed }
SCENE { border-style: groove }
ACT, SCENE, TITLE, SYNOPSIS { margin: 1ex }

Figure 15-18: The title floating on the left

421Chapter 15 ✦ CSS Layouts

The clear property
The clear property specifies whether an element can have floating elements on

its sides. If it cannot, the element will be moved below any floating elements that

precede it. It’s related to the HTML <BR CLEAR=”ALL”> element. The possible

values are:

✦ none

✦ left

✦ right

✦ both

The default value, none, causes floating elements to appear on both sides of the ele-

ment. The value left bans floating elements on the left side of the element. The

value right bans floating elements on the right side of the element. The value

both bans floating elements on the both sides of the element. For example, suppose

you add this rule to the style sheet in Listing 15-13:

ACT { clear: left }

Now, although the TITLE element wants to float on the left of the first ACT, ACT
doesn’t allow that as is shown in Figure 15-19. TITLE is still on the left, but now ACT
is pushed down below the image.

Figure 15-19: The ACT clears the TITLE on the left.

422 Part III ✦ Style Languages

Formatting Pages
CSS makes the reasonable assumption that pages are rectangular. A page can have

all the standard box properties including margins and size except for borders and

padding. However, a page box does not have borders or padding because these

would fall off the actual page. The @page selector selects the page so you can set

those properties that apply to the page itself rather than XML elements on the

page. Pseudo-classes can specify different properties for the first page, right facing

pages, and left facing pages.

@page
@page is a selector that refers to the page box. This is a rectangular area, roughly

the size of a printed page, which contains the page area and the margin block. The

page area contains the material to be displayed, and the edges of the box provide a

container in which page layout occurs between page breaks. For example, this rule

gives the page one-inch margins on all four sides:

@page { margin-left: 1.0in;
margin-right: 1.0in;
margin-top: 1.0in;
margin-bottom: 1.0in }

Because the @page rule is unaware of the page’s content, including the fonts it uses,

it can’t understand measurements in ems and exs. All other units of measurement

are acceptable, including percentages. Percentages used on margin settings are a

percentage of the total page box size. Page boxes allow negative values for margins,

which can place content outside of the area normally accessible by the application

or printer. In most of these cases, the information is simply cut.

@page selects every page of a document. You can use one of the page pseudo-class

selectors —:first, :left, or :right— to specify different properties for the first

page of a document, for the left (generally even numbered) pages of a document,

and for the right (generally odd numbered) pages of a document. For example,

these rules specify one inch outside margins and half inch inside margins:

@page:right { margin-left: 0.5in; margin-right: 1.0in }
@page:left { margin-left: 1.0in; margin-right: 0.5in }
@page:first { margin-left: 0.5in; margin-right: 1.0in }

The size property
In an @page rule, the size property specifies the height and width of the page. You

can set the size as one or two absolute lengths or as one of the four keywords

auto, portrait, landscape, or inherit. If only one length is given, the page will

423Chapter 15 ✦ CSS Layouts

be a square. When both dimensions are given, the first is the width of the page, the

second is the height. For example,

@page { size: 8.5in 11in }

The auto setting automatically sizes to the target screen or sheet. landscape
forces the document to be formatted to fit the target page, but with long sides hori-

zontal. The portrait setting formats the document to fit the default target page

size, but with long sides vertical.

The margin property
The margin property determines the sizes of the margins of the page, the rectangu-

lar areas on all four sides in which nothing is printed. This property is used as a

shorthand for setting the margin-top, margin-bottom, margin-right, and

margin-left properties separately. These properties are the same as they are for

boxes. For example, this rule describes an 8.5 by 11-inch page with one inch mar-

gins on all sides.

@page { size: 8.5in 11in; margin: 1.0in }

The mark property
The mark property places marks on the page delineating where the paper should be

cut and/or how pages should be aligned. These marks appear in the margins out-

side of the page box. The software controls the rendering of the marks, which are

only displayed on absolute page boxes. Absolute page boxes cannot be moved, and

are controlled by the general margins of the page. Relative page boxes are aligned

against a target page, in most cases forcing the marks off the edge of the page.

When aligning a relative page box, you are essentially looking at the page in your

mind’s eye, and using margin and padding properties to move the printed area of

that page about the physical paper.

The mark property has four possible values —crop, cross, inherit, and none—

and can only be used with the @page element. Crop marks identify the cutting

edges of paper. Cross marks, also known as registration marks, are used to align

pages after printing. If set to none, no marks will be displayed on the document. For

example, this rule specifies a page with both crop and cross marks:

@page { mark: crop cross}

The page property
As well as using the @page selector to specify page properties, you can attach page

properties to individual elements using the page property. To do this you write an

@page rule that specifies the page properties, give that @page rule a name, and then

424 Part III ✦ Style Languages

use the name as the value of the page property of a normal element rule. For exam-

ple, these two rules together say that a SYNOPSIS will be printed in landscape ori-

entation:

@page rotated { size: landscape}
SYNOPSIS { page: rotated}

When using the page property, it’s possible that different sibling elements will spec-

ify different page properties. If this happens, a page break will be inserted between

the elements. If a child uses a different page layout than its parent, the child’s lay-

out takes precedence.

Controlling page breaks
When working in paged media, it’s often useful to be able to specify that one or

more elements are kept on the same page if possible. Conversely, you may want to

suggest a good place to break a page. You can control page breaks with these five

CSS properties:

✦ page-break-before

✦ page-break-after

✦ page-break-inside

✦ orphans

✦ widows

Generally, these properties are ignored in nonpaged media such as browser

windows.

The page-break-before property controls whether pages are allowed, forbidden,

or required before the selected element; the page-break-after property controls

whether pages are allowed, forbidden, or required after the selected element;

and the page-break-inside property determines whether pages are allowed, for-

bidden, or required inside the selected element. These can be used to keep para-

graphs of related text, headings and their body text, images and their captions, or

complete tables together on the same page. They can also be used to insert

page breaks. Page-break-before and page-break-after can have any of these

five values:

✦ auto

✦ always

✦ avoid

✦ left

✦ right

Page-break-inside is limited to avoid and auto.

425Chapter 15 ✦ CSS Layouts

The default for all three properties is auto, which means the formatter is free to put

page breaks wherever it likes. The value always means that a page break is

required in the specified place. The value avoid prevents a page break from occur-

ring where indicated. Finally, the values left and right force either one or two

page breaks, whichever is necessary to make the next page either a left or right-

hand page. This is useful at the end of a chapter in a book where chapters generally

start on right-hand pages, even when that leaves blank pages.

The following rule inserts a page break before and after every SYNOPSIS element in

a document but not inside a synopsis so that each synopsis appears on its own

page.

SYNOPSIS { page-break-before: always;
page-break-after: always;
page-break-inside: avoid }

This rule prevents page breaks inside acts but allows them if necessary, between

acts:

ACT { page-break-before: auto;
page-break-after: auto;
page-break-inside: avoid }

This keeps every act complete on one page. Of course, it is possible that one ACT
element will simply be too large to fit on a single page. In this case, the formatter

may break the page anyway.

Widows and orphans
Sometimes it’s necessary to insert a page break in the middle of an element. For

instance a paragraph may begin on one page and continue on the next. This avoids

large runs of white space at the ends of pages. However, if too little of a paragraph is

left on any one page, then the page looks ugly. For instance, you would normally pre-

fer to avoid printing just the first line of a paragraph at the end of a page and the rest

of the paragraph on the next page. It would be more aesthetic to leave a blank line at

the bottom of the page and move the entire paragraph to the next page. Similarly,

there should be more than one line of a paragraph at the top of any given page. If the

normal line-breaking algorithm only places the last line of a paragraph at the top of

the page, then the second-to-last line of the paragraph should be removed from the

bottom of the previous page and placed at the top of the next page.

Single lines at the bottom of a page are called orphans. Single lines at the top of a

page are called widows. You can set the orphans and widows properties of an ele-

ment to specify the minimum number of lines of a block-level element that the for-

matter must place before and after each page break. For example, this rule says

that if there’s a page break in the middle of an ACT, then there must be at least two

lines of the ACT on both sides of the break:

ACT { orphans: 2; widows: 2 }

426 Part III ✦ Style Languages

Summary
This chapter discussed CSS’s layout model. In this chapter, you learned that:

✦ Lengths in CSS can be specified in relative or absolute units. Relative units are

preferred.

✦ Color is given in a 24-bit RGB space in decimal, hexadecimal, or percentages.

✦ The display property determines whether an element is a block element,

inline element, list item, or table part.

✦ The text of XML elements are placed in rectangular boxes on one or more

pages when rendered by a browser.

✦ Box properties let you adjust borders, margins, and padding around elements.

✦ Margins are extra white space inside an element’s box, and can be set sepa-

rately for each side.

✦ Padding is extra white space inside an element’s box, and can be set sepa-

rately for each side.

✦ A border is a line drawn between the margin and padding of a box, and can be

set separately for each side in a variety of styles, widths, and colors.

✦ The height, width, min-height, min-width, max-height, and max-width
properties let you adjust the size of element boxes.

✦ The position, left, right, top, and bottom properties let you adjust where

an element box is placed on the page.

✦ The @page rule lets you set the margins, size, and other properties of the

pages on which the XML elements will be placed.

The documents in this chapter were rather dry. Elements moved around on the

page, but they didn’t have any flare. They weren’t italic or bold or big or small or

flashing neon. The next chapter shows you the CSS properties that adjust a variety

of text styles including font weight, font size, alignment, and even pitch, volume,

and speed.

✦ ✦ ✦

CSS Text Styles

The first part of each CSS rule is a selector that says which

elements the rule applies to. The second part is a list of

the properties that the rule applies to those elements. This

chapter focuses on the properties that you can specify in a CSS

style sheet. You learn how to change the font size, style, and

weight; how to align text and order paragraphs; how to control

the behavior of speech synthesizers reading the text; and more.

Netscape 6.0, Mozilla, Opera 4.0 and 5.0, and Internet
Explorer 5.0 and 5.5 all implement only some parts of the
CSS specification. Earlier versions of the major browsers,
while perhaps supporting some form of CSS for HTML doc-
uments, do not support it at all for XML documents. To
make matters worse, they all implement different subsets
of the specification; and sometimes don’t implement the
same subsets for XML as they do for HTML. I’ll note where
one browser or another has a particular problem as we go
along. However, if you find that something in this chapter
doesn’t work as advertised in your favorite browser (or in
any browser), please complain to the browser vendor, not
to me.

Font Properties
CSS supports seven basic properties that control the font

used to draw the text. These are:

✦ font-family

✦ font-size

✦ font-size-adjust

✦ font-stretch

✦ font-style

✦ font-variant

✦ font-weight

In addition, there’s a font shorthand property that can set

most of these properties simultaneously.

Caution

1616C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Font properties

The color property

Text properties

Background
properties

Visibility

Cursors

The content property

Aural style sheets

✦ ✦ ✦ ✦

428 Part III ✦ Style Languages

Choosing the font family
The font family is the font in which the text is drawn. The value of the font-family
property is a comma-separated list of font names such as Helvetica, Times, and

Palatino. Font names that include white space, such as Times New Roman, should

be enclosed in double quotes.

Names may also be one of the five generic names serif, sans-serif, cursive,

fantasy, and monospace. The browser replaces these names with a font of the

requested type installed on the local system. Table 16-1 demonstrates these fonts.

Table 16-1
Generic Fonts

Name Typical Families Distinguishing Characteristic Example

Serif Times, Curlicues on the edges of The quick brown fox
Times New Roman, letters make serif text easier jumped over the lazy
Palatino to read in small body type. dog.

Sans-serif Geneva, Helvetica, Block type, often used The quick brown fox
Verdana in headlines. jumped over the lazy

dog.

Monospace Courier, Courier New, A typewriter-like font in The quick brown
Monaco, which each character has fox jumped over
American Typewriter exactly the same width; the lazy dog.

commonly used for source
code and e-mail.

Cursive ZapfChancery Script font, a simulation The quick brown fox
of handwriting. jumped over the lazy dog.

Fantasy Western, Critter Text with special effects; The quick
for example, letters on fire, brown fox
letters formed by tumbling jumped over the
acrobats, and letters made lazy dog.
from animals.

Because there isn’t a guarantee that any given font will be available or appropriate

on a particular client system (10-point Times is practically illegible on a Macintosh,

much less a Palm Pilot), you should provide a comma-separated list of choices for

the font in the order of preference. The last choice in the list should always be one

of the generic names. However, even if you don’t specify a generic name and the

fonts you do specify aren’t available, the browser will pick something. It just may

not be anything like what you wanted.

429Chapter 16 ✦ CSS Text Styles

For example, Listing 16-1 is the style sheet for play synopses similar to Listing 15-1

of the last chapter. It has rules that make the TITLE element Helvetica with fallback

positions of Verdana and any sans serif font, and the rest of the elements Times

with fallback positions of Times New Roman, and any serif font.

Listing 16-1: A style sheet for the synopsis of a play

TITLE { font-family: Helvetica, Verdana, sans-serif }
SYNOPSIS { font-family: Times, “Times New Roman”, serif }
SYNOPSIS, TITLE, ACT, SCENE { display: block }

Figure 16-1 shows the synopsis loaded into Mozilla with this style sheet. Not a great

deal has changed since Figure 15-1 in the last chapter. Times or something very

close to it is commonly the default font. The most obvious difference is that the

title is now in Helvetica.

Figure 16-1: The synopsis of Twelfth Night with the title in Helvetica

The font-family property is inherited by child elements. Thus, by setting

SYNOPSIS’s font-family to Times, all the child elements are also set to Times

except for TITLE whose own font-family property overrides the one it inherits.

430 Part III ✦ Style Languages

Choosing the font style
The font-style property has three possible values: normal, italic, and

oblique. The regular text you’re reading now is normal. The typical rendering of

the HTML EM element is italicized. Oblique text is very similar to italicized text.

However, a computer creates oblique text by algorithmically slanting normal text. A

human designer creates italics by carefully handcrafting a font to look good in its

slanted form. Listing 16-2 adds a rule to the synopsis style sheet that italicizes

scene numbers.

Listing 16-2: A style sheet that italicizes scene numbers

TITLE { font-family: Helvetica, Verdana, sans-serif }
SYNOPSIS { font-family: Times, “Times New Roman”, serif }
SYNOPSIS, TITLE, ACT, SCENE { display: block }
SCENE_NUMBER { font-style: italic}

Figure 16-2 shows the synopsis loaded into Internet Explorer with this style sheet.

Figure 16-2: The synopsis of Twelfth Night with italic scene
numbers

431Chapter 16 ✦ CSS Text Styles

Small caps
The font-variant property has two possible values: normal and small-caps.

The default is normal. Setting font-variant to small-caps replaces lowercase let-

ters with capital letters in a smaller font size than the main body text.

You can get a very nice effect by combining the font-variant property with the

first-letter pseudo-element. For example, define the ACT_NUMBER element to

have the font-variant: small-caps. Next define the first letter of ACT_NUMBER
to have font-variant: normal. This produces act numbers that look like this:

ACT 1

Here are the rules:

ACT_NUMBER { font-variant: small-caps}
ACT_NUMBER:first-letter { font-variant: normal}

The second rule overrides the first, but only for the first letter of the act number.

Internet Explorer 5.0 and 5.5 don’t support the first-letter pseudo-element,
though Mozilla and Opera 5.0 do.

Setting the font weight
The font-weight property determines how dark (bold) or light the text appears.

There are 13 possible values for this property:

✦ normal

✦ bold

✦ bolder

✦ lighter

✦ 100

✦ 200

✦ 300

✦ 400

✦ 500

✦ 600

✦ 700

✦ 800

✦ 900

Caution

432 Part III ✦ Style Languages

Weights range from 100 (the lightest) to 900 (the darkest). Intermediate, noncen-

tury values such as 850 are not allowed. Normal weight is 400. Bold is 700. The

bolder value makes an element bolder than its parent. The lighter value makes

an element less bold than its parent. However, there’s no guarantee that a particu-

lar font has as many as nine separate levels of boldness.

Here’s a simple rule that makes the TITLE and ACT_NUMBER elements bold:

TITLE, ACT_NUMBER { font-weight: bold}

Figure 16-3 shows the effect of adding this rule to the synopsis style sheet.

Figure 16-3: The synopsis of Twelfth Night with bold title and
act numbers

Setting the font size
The font-size property determines the height and the width of a typical character

in the font. Larger sizes take up more space on the screen. The size may be speci-

fied as a keyword, a value relative to the font size of the parent, a percentage of the

size of the parent element’s font size, or an absolute number.

433Chapter 16 ✦ CSS Text Styles

Keyword
Absolute size keywords are:

✦ xx-small

✦ x-small

✦ small

✦ medium

✦ large

✦ x-large

✦ xx-large

These keywords are the preferred way to set font sizes because they are relative to

the base font size of the page. For instance, if the user has adjusted their default

font size to 20 points because they’re very nearsighted, a large font will be even

larger and a small font will still be pretty large.

Although the exact values are up to the browser’s best judgment, in general each

size is 1.2 times larger than the next smallest size. The default is medium, so if a

browser’s default is 12 points, then large type will be 14.4 points, x-large type

will be 17.28 points, and xx-large type will be 20.736 points. By contrast, small
type will be 10 points, x-small type will be 8.33 points, and xx-small will be a pos-

sibly illegible 7 points. A browser may well choose to round these values to the

nearest integer. Here’s a simple rule that makes the TITLE extra large:

TITLE { font-size: x-large }

Figure 16-4 shows the results after this rule is added to the synopsis style sheet.

Value relative to parent’s font size
You can also specify the size relative to the parent element as either larger or

smaller. For instance, in the following, the SCENE_NUMBER will have a font size that

is smaller than the font size of its parent SCENE.

SCENE_NUMBER { font-size: smaller }

Figure 16-5 shows the result of adding this rule to the synopsis style sheet.

434 Part III ✦ Style Languages

Figure 16-4: The synopsis of Twelfth Night with an extra
large title

Figure 16-5: The synopsis of Twelfth Night with a smaller
scene number

435Chapter 16 ✦ CSS Text Styles

There’s no hard-and-fast rule for exactly how much smaller a smaller font will be or

how much larger a larger font will be. Generally, the browser will attempt to move

from medium to small, from small to x-small, and so forth. The same is true (in the

other direction) for larger fonts. Thus, making a font larger should increase its size

by about 20 percent, and making a font smaller should decrease its size by about

16.6 percent, but browsers are free to fudge these values in order to match the

available font sizes.

Percentage of parent element’s font size
If these options aren’t precise enough, you can make finer adjustments by using a

percentage of the parent element’s font size. For example, this rule says that the

font used for a SCENE_NUMBER is 50% of the size of the font for the SCENE.

SCENE_NUMBER { font-size: 50% }

Absolute lengths
Finally, you can specify a font size as an absolute length. Although you can use pix-

els, picas, centimeters, millimeters, or inches, the most common unit when measur-

ing fonts is the point. For example, this rule sets the default font-size for the

SYNOPSIS element and its children to 14 points.

SYNOPSIS { font-size: 14pt }

I urge you not to use absolute units to describe font sizes. It’s extremely difficult
(I’d argue impossible) to pick a font size that’s legible across all the different plat-
forms on which your page might be viewed, ranging from cell phones to the Sony
Jumbotron in Times Square. Even when restricting themselves to standard per-
sonal computers, most designers usually pick a font that’s too small. Any text that’s
intended to be read on the screen should be at least 12 points, possibly more.

Figure 16-6 shows the results after all these font rules have been added to the syn-

opsis style sheet. The text of the scenes is not really bolder. It’s just bigger. In any

case, it’s a lot easier to read.

Adjusting the aspect value
How legible a font is depends less on the size of the font than on its aspect value.

This is the ratio of font size to x-height. The higher this number, the more legible a

font is at smaller sizes. The lower the aspect value, the less legible the font will be

as it is shrunk. When browsers rely solely on the font size when choosing substitute

fonts, the likelihood that the chosen font will be too small to read is greatly

increased. The font-size-adjust property controls the aspect value of elements

to preserve the x-height of the first choice font in the substitute font when using

the font-family property.

Caution

436 Part III ✦ Style Languages

Figure 16-6: The synopsis of Twelfth Night in a larger font size

For example, Verdana has an aspect value of .58, while Times New Roman has an

aspect value of .46. Therefore, Verdana will remain legible at smaller sizes than

Times New Roman, but may appear too large if substituted directly for Times New

Roman at the same font size.

If the value of the font-size-adjust property is none, the font’s x-height is not

preserved. If a number is specified, the value identifies the aspect value of the first

choice font, and directs the software to scale any font it substitutes to match. This

helps you ensure legibility across all platforms, and all supporting applications. The

following rules use the font-size-adjust property to keep fonts legible while

implementing a range of sizes.

TITLE { font-size-adjust: “.58”;
font-family: Helvetica, Verdana, Arial, sans-serif }

SYNOPSIS { font-size-adjust: “.46”;
font-family: Times, “Times New Roman”, serif }

The change when these rules are added is actually quite dramatic, as Figure 16-7

shows.

437Chapter 16 ✦ CSS Text Styles

Figure 16-7: The synopsis of Twelfth Night with a different
aspect ratio

Kerning a font
The font-stretch property controls the kerning of a font; that is, the amount of

space between two characters in the font. There are nine possible values for this

property. In order from tightest to loosest, they are:

✦ ultra-condensed

✦ extra-condensed

✦ condensed

✦ semi-condensed

✦ normal

✦ semi-expanded

✦ expanded

✦ extra-expanded

✦ ultra-expanded

438 Part III ✦ Style Languages

The default is normal. The values ultra-condensed through ultra-expanded are

organized from most condensed to least condensed. Each makes a small change in

the horizontal spacing of the text. In addition you can specify this property as

wider or narrower to change the font-stretch by one position up or down from

the inherited value. The following style sheet rules use a variety of kernings.

TITLE { font-stretch: “ultra-expanded” }
ACT { font-stretch: “expanded” }
SCENE { font-stretch: “ultra-condensed” }
SCENE_NUMBER { font-stretch: “wider” }

Existing Web browsers really don’t support the font-stretch property. You can
use it if you want, but don’t rely on it.

The font shorthand property
Font is a shorthand property that sets the font style, variant, weight, size, and fam-

ily with one rule. For example, here are two rules for the TITLE and SCENE_NUMBER
elements that combine the separate rules of the previous section:

TITLE { font: bold x-large Helvetica, sans-serif }
SCENE_NUMBER { font: italic smaller Times, serif }

Values must be given in the following order:

1. One each of style, variant, and weight, in any order, any of which may be

omitted

2. Size, which may not be omitted

3. Optionally, a forward slash (/) and a line height

4. Family, which may not be omitted

If this sounds complicated and hard to remember, that’s because it is. I certainly
can’t remember the exact details for the order of these properties without looking
them up. I prefer to just use the individual properties one at a time. It’s question-
able whether shorthand properties like this really save any time.

Listing 16-3 is the style sheet for the synopsis with all the rules devised so far, using

the font shorthand properties. However, because a font property is exactly equiv-

alent to the sum of the individual properties it represents, there’s no change to the

rendered document.

Note

Caution

439Chapter 16 ✦ CSS Text Styles

Listing 16-3: A style sheet for the synopsis with font
shorthand

SYNOPSIS, TITLE, ACT, SCENE { display: block }
ACT_NUMBER { font-weight: bold}
SYNOPSIS { font-size: 14pt }
TITLE { font-size-adjust: “.58”; }
SYNOPSIS { font-size-adjust: “.46” }

font-family: Times, “Times New Roman”, serif }
ACT_NUMBER { font-variant: small-caps}
ACT_NUMBER:first-letter { font-variant: normal}
TITLE {
font: bold x-large Helvetica, Verdana, Arial, sans-serif

}
SCENE_NUMBER { font: italic smaller Times, serif }

The font property may also have one of these six keyword values that match all of

a font’s properties to the properties of particular elements of the browser user

interface or the users system:

✦ caption: the font that used for captioned widgets like buttons

✦ icon: the font that labels icons

✦ menu: the font used for menu items

✦ message-box: the font used for display text in dialog boxes

✦ small-caption: the font used for labels on small widgets

✦ status-bar: the font used in the browser’s status bar

For example this rule says that a SYNOPSIS element will be formatted with the same

font family, size, weight, and style as the font the browser uses in its status bar:

SYNOPSIS { font: status-bar }

The Color Property
CSS allows you to assign colors to almost any element on a page with the color
property. The value of this color property may be one of 16 named color keywords,

or an RGB triple in decimal, hexadecimal, or percentages. For instance, the follow-

ing rules specify that every element in the SYNOPSIS is colored black except the

SCENE_NUMBER, which is colored blue:

SYNOPSIS { color: black }
SCENE_NUMBER { color: blue}

440 Part III ✦ Style Languages

Children inherit the color property. Thus, all elements in the synopsis except for

the SCENE_NUMBER elements will be colored black.

The following rules are all equivalent to the above two. I recommend using named

colors when possible, and browser-safe colors when not.

SYNOPSIS { color: #000000 }
SCENE_NUMBER { color: #0000FF}
SYNOPSIS { color: rgb(0, 0, 0) }
SCENE_NUMBER { color: rgb(0, 0, 255)}
SYNOPSIS { color: rgb(0%, 0%, 0%) }
SCENE_NUMBER { color: rgb(0%, 0%, 100%)}

The color property specifies the foreground color for the text content of an ele-

ment. It may be given as a literal color name such as red, or an RGB value such as

#CC0000. Color names include aqua, black, blue, fuchsia, gray, green, lime,

maroon, navy, olive, purple, red, silver, teal, white, and yellow.

The following style rules apply color to three elements, using all three methods of

identifying color. It specifies the RGB hex value #FF0000 for SCENE_NUMBER ele-

ments, all TITLE elements to appear in red, and all ACT_NUMBER elements to appear

in rgb(255,0,0). These values are all red:

SCENE_NUMBER { color: #FF0000}
TITLE { color: red}
ACT_NUMBER { color: rgb(255,0,0) }

Text Properties
Nine properties affect the appearance of text, irrespective of font:

✦ word-spacing

✦ letter-spacing

✦ text-decoration

✦ vertical-align

✦ text-transform

✦ text-align

✦ text-indent

✦ line-height

✦ white-space

441Chapter 16 ✦ CSS Text Styles

Word spacing
The word-spacing property expands the text by adding additional space between

words. A negative value removes space between words. The only reason I can think

of to alter the word spacing on a Web page is if you are a student laboring under

tight page-count limits who wants to make a paper look bigger or smaller than it is.

Desktop publishers love to spend hours and hours tweaking these details pixel by
pixel. The problem is that all the rules they’ve learned about how and when to
adjust spacing are based on ink on paper and really don’t work when transferred
to the medium of electrons on phosphorus (a typical CRT monitor). You’re almost
always better off letting the browser make decisions about word and letter spac-
ing for you.

If, on the other hand, your target medium is ink on paper, then there’s a little more
to be gained by adjusting these properties. The main difference is that with ink on
paper you control the delivery medium. You know exactly how big the fonts are,
how wide and high the display is, how many dots per inch are being used, and so
forth. On the Web, you simply don’t have enough information about the output
medium available to control everything at this level of detail.

To change this from the default value of normal, you set a length for the property.

For example,

SYNOPSIS { word-spacing: 1em }

Browsers are not required to respect this property, especially if it interferes with

other properties like align: justified. Internet Explorer does not support

word-spacing, but Mozilla and Opera do as shown in Figure 16-8.

The letter-spacing property
The letter-spacing property lets you to expand text by adding additional space

between letters. A negative value removes space between letters. Again, the only

reason I can think of to do this on a Web page is to make a paper look bigger or

smaller than it really is to meet a length requirement.

To change this from the default value of normal, you set a length for the property.

For example:

SYNOPSIS { letter-spacing: 0.3em }

Because justification works by adjusting the amount of space between letters,

changing the letter spacing manually can prevent the browser from justifying text.

However, browsers are not required to respect this property, especially if it inter-

feres with other properties such as align: justified. Nonetheless, most

browsers attempt to implement it as best they can within the restrictions of other

rules as shown in Figure 16-9.

Note

442 Part III ✦ Style Languages

Figure 16-8: The synopsis of Twelfth Night with one em of word
spacing

Figure 16-9: The SYNOPSIS element with 0.3 em letter spacing.

443Chapter 16 ✦ CSS Text Styles

The text-decoration property
The text-decoration property can have one of the following five values:

✦ none

✦ underline

✦ overline

✦ line-through

✦ blink

Except for none, which is the default, these values are not mutually exclusive. You

may, for example, specify that a paragraph is underlined, overlined, struck through,

and blinking. (I do not, however, recommend that you do this.)

Browsers, fortunately, are not required to support blinking text.

For example, the next rule specifies that CHARACTER elements are underlined.

Figure 16-10 shows the result of applying this rule to the synopsis of Twelfth Night.

CHARACTER { text-decoration: underline }

Figure 16-10: The synopsis of Twelfth Night with underlined
characters

Note

444 Part III ✦ Style Languages

The vertical-align property
The vertical-align property controls the vertical alignment of text within an

inline box. It specifies how an inline element is positioned relative to the baseline of

the text. Valid values are:

✦ baseline: align the baseline of the inline box with the baseline of the block

box (this is the default)

✦ sub: position the inline box as a subscript

✦ super: position the inline box as a superscript

✦ top: align the top of the inline box with the top of the line

✦ middle: align the midpoint of the inline box with the baseline of the block

box, plus half of the x-height of the block box

✦ bottom: align the bottom of the inline box with the bottom of the line

✦ text-top: align the top of the inline box with the top of the parent element’s

font

✦ text-bottom: align the bottom of the inline box with the bottom of the parent

element’s font

You can also set the vertical-align property to a percentage that raises (posi-

tive value) or lowers (negative value) the box by the percentage of the line-height.

A value of 0% is the same as the baseline value. Finally, you can set vertical-
align to a signed length that will raise or lower the box by the specified distance. A

value of 0cm is the same as the baseline value.

The sub value makes the element a subscript. The super value makes the element

a superscript. The text-top value aligns the top of the element with the top of the

parent element’s font. The middle value aligns the vertical midpoint of the element

with the baseline of the parent plus half the x-height. The text-bottom value aligns

the bottom of the element with the bottom of the parent element’s font.

The top value aligns the top of the element with the tallest letter or element on the

line. The bottom value aligns the bottom of the element with the bottom of the low-

est letter or element on the line. The exact alignment changes as the height of the

tallest or lowest letter changes.

For example, the rule for a footnote number might look like this one that super-

scripts the number and decreases its size by 20 percent.

FOOTNOTE_NUMBER { vertical-align: super; font-size: 80% }

445Chapter 16 ✦ CSS Text Styles

The text-transform property
The text-transform property lets you specify that text should be rendered in all

uppercase, all lowercase, or with initial letters capitalized. This is useful in head-

lines, for example. The valid values are:

✦ capitalize

✦ uppercase

✦ lowercase

✦ none

Capitalization Makes Only The First Letter Of Every Word Uppercase Like This

Sentence. PLACING THE SENTENCE IN UPPERCASE, HOWEVER, MAKES EVERY LET-

TER IN THE SENTENCE UPPERCASE. The following rule converts the TITLE element

in the Twelfth Night synopsis to uppercase.

TITLE { text-transform: uppercase }

The text-transform property is somewhat language-dependent because many
languages — Hebrew and Chinese, for example — don’t have any concept of upper-
and lowercase.

The text-align property
The text-align property applies only to block-level elements. It specifies whether

the text in the block is aligned with the left side, the right side, centered, or justi-

fied. The valid values are:

✦ left

✦ right

✦ center

✦ justify

The following rules center the TITLE element in the Twelfth Night synopsis and jus-

tify everything else. Figure 16-11 shows the synopsis after these rules have been

applied. I also changed SCENE to display: inline so that there’d be enough text

in a paragraph to extend across the browser window and show that the text is truly

justified.

SCENE { display: inline}
TITLE { text-align: center }
SYNOPSIS { text-align: justify }

Note

446 Part III ✦ Style Languages

Figure 16-11: The TITLE in the synopsis is centered
and the rest of the text is justified.

The text-indent property
The text-indent property, which only applies to block-level elements, specifies

how far the first line of a block is indented with respect to the remaining lines of the

block. It is given either as an absolute length or as a percentage of the width of the

parent element. The value may be negative to create a hanging indent.

To indent all the lines of an element, rather than just the first, you use the box
properties discussed in the last chapter to set an extra left margin on the element.

For example, the following rule indents the scenes in the synopsis by half an inch.

Figure 16-12 shows the synopsis after this rule has been applied.

SCENE { text-indent: 0.5in }

The text-shadow property
The text-shadow property applies shadows to text. The value is a comma-sepa-

rated list of shadow effects to control the order, color, and dimensions of the shad-

ows that are overlaid on the text. Shadows do not extend the size of the block

containing the text, but may extend over the boundaries of the block. The z-index of

the shadows is the same as the element itself.

Tip

447Chapter 16 ✦ CSS Text Styles

Figure 16-12: Each SCENE and its children in the synopsis
are indented half an inch.

The value of the text-shadow includes a signed length for the offset of the shadow.

It may also include a blur radius and a shadow color. The shadow offset is specified

with two signed lengths that specify how far out from the text the shadow extends.

The first length specifies the horizontal distance from the text; the second length

specifies the vertical depth of the shadow. If you apply a negative value to the

shadow offsets, the shadow will appear to the left and above the text, rather than

below and to the right. An optional third signed length specifies the boundary of the

blur effect. An optional fourth value specifies the color of the shadow. For example,

TITLE { text-shadow: red -5pt -5pt -2pt }
SCENE_NUMBER { text-shadow: 5pt 4pt 3pt green }
ACT_NUMBER { text-shadow: none }

In practice, however, the text-shadow property isn’t supported by any major

browser.

448 Part III ✦ Style Languages

The line-height property
The line-height property specifies the distance between the baselines of succes-

sive lines. It can be given as an absolute number, an absolute length, or a percent-

age of the font size. For instance, the following rule double-spaces the SYNOPSIS
element. Figure 16-13 shows the Twelfth Night synopsis after this rule has been

applied.

SYNOPSIS { line-height: 200% }

Figure 16-13: A double-spaced synopsis

Double-spacing isn’t particularly attractive, though, so I’ll remove it. Listing 16-4

summarizes the additions made in this and the previous sections to the synopsis

style sheet (minus the double-spacing).

449Chapter 16 ✦ CSS Text Styles

Listing 16-4: The synopsis style sheet with text properties

SYNOPSIS, TITLE, ACT, SCENE { display: block }
ACT_NUMBER { font-weight: bold}
SYNOPSIS { font-size: 14pt }
SYNOPSIS { word-spacing: 1em }
SYNOPSIS { letter-spacing: 0.3em }
SCENE_NUMBER { color: #FF0000}
TITLE { color: red}
ACT_NUMBER { color: rgb(255,0,0) }
ACT_NUMBER { font-variant: small-caps}
CHARACTER { text-decoration: underline }
SCENE_NUMBER { vertical-align: subscript}
TITLE { font-size-adjust: “.58”; }
SYNOPSIS { font-size-adjust: “.46”

font-family: Times, “Times New Roman”, serif }
TITLE {
font: normal bold x-large Helvetica, Verdana, Arial, sans-serif
}
SCENE_NUMBER { font: italic smaller Times, serif }
TITLE { text-align: center }
SYNOPSIS { text-align: justify }
SCENE { text-indent: 0.5in }

The white-space property
The white-space property determines how significant white space (spaces, tabs,

line breaks) is within an element. The allowable values are:

✦ normal

✦ pre

✦ nowrap

The default value, normal, simply means that runs of white space are condensed to

a single space and words are wrapped to fit on the screen or page. This is the way

white space is normally handled in both HTML and XML.

The pre value acts like the PRE (preformatted) element in HTML. All white space in

the input document is considered significant and faithfully reproduced on the out-

put device. It may be accompanied by a shift to a monospaced font. This would be

useful for much computer source code or some poetry. Listing 16-5 is a poem, The
Altar by George Herbert, in which spacing is important. In this poem, the lines form

the shape of the poem’s subject.

450 Part III ✦ Style Languages

Listing 16-5: The Altar in XML

<?xml version=”1.0”?>
<?xml-stylesheet type=”text/css” href=”16-6.css”?>
<POEM>

<TITLE>The Altar</TITLE>
<POET>George Herbert</POET>

<VERSE> A broken ALTAR, Lord, thy servant rears,</VERSE>
<VERSE> Made of a heart, and cemented with tears:</VERSE>
<VERSE> Whose parts are as thy hand did frame;</VERSE>
<VERSE> No workman’s tool hath touched the same.</VERSE>
<VERSE> No workman’s tool hath touched the same.</VERSE>
<VERSE> A HEART alone</VERSE>
<VERSE> Is such a stone,</VERSE>
<VERSE> As nothing but</VERSE>
<VERSE> Thy power doth cut.</VERSE>
<VERSE> Wherefore each part</VERSE>
<VERSE> Of my hard heart</VERSE>
<VERSE> Meets in this frame,</VERSE>
<VERSE> To praise thy name:</VERSE>
<VERSE> That if I chance to hold my peace,</VERSE>
<VERSE> These stones to praise thee may not cease.</VERSE>
<VERSE> O let thy blessed SACRIFICE be mine,</VERSE>
<VERSE> And sanctify this ALTAR to be thine.</VERSE>

</POEM>

Listing 16-6 is a style sheet that uses white-space: pre to preserve this form.

Figure 16-14 shows the result in Mozilla.

Internet Explorer 5.0 and 5.5 do not correctly implement the white-space prop-
erty. Mozilla and Opera do.

Listing 16-6: A style sheet for white space-sensitive poetry

POEM { display: block }
TITLE { display: block; font-size: 16pt; font-weight: bold }
POET { display: block; margin-bottom: 10px }
STANZA { display: block; margin-bottom: 10px }
VERSE { display: block;

white-space: pre; font-family: monospace }

Caution

451Chapter 16 ✦ CSS Text Styles

Figure 16-14: The Altar by George Herbert with
white-space: pre

Finally, the nowrap value is a compromise that breaks lines exactly where there’s an

explicit break in the source text, but condenses other runs of space to a single

space. This might be useful when you’re trying to faithfully reproduce the line

breaks in a classical manuscript or some other poetry where the line breaks are sig-

nificant but the space between words isn’t.

Background Properties
The background of an element can be set to a color or an image. If it’s set to an

image, the image can be positioned differently relative to the content of the ele-

ment. This is accomplished with the following five basic properties:

✦ background-color

✦ background-image

✦ background-repeat

✦ background-attachment

✦ background-position

452 Part III ✦ Style Languages

Finally, there’s a background shorthand property that allows you to set some or all

of these five properties in one rule.

Fancy backgrounds are vastly overused. Anything other than a very light back-
ground color only makes your page harder to read and annoys users. I list these
properties here for the sake of completeness, but I recommend that you use them
sparingly, if at all.

None of the background properties is inherited. Each child element must specify

the background it wants. However, it may appear as if background properties are

inherited because the default is for the background to be transparent. The back-

ground of whatever element is drawn below an element will show through. Most of

the time this is the background of the parent element.

The background-color property
The background-color property may be set to the same values as the color prop-

erty. However, rather than changing the color of the element’s contents, it changes

the color of the element’s background on top of which the contents are drawn. For

example, to draw a SIGN element with yellow text on a blue background, you would

use this rule:

SIGN { color: yellow; background-color: blue}

You can also set the background-color to the keyword transparent (the default)

which simply means that the background takes on the color or image of whatever

the element is laying on top of, generally the parent element.

The background-image property
The background-image property is either none (the default) or a URL (generally

relative) where a bitmapped image file can be found. If it’s a URL, then the browser

will load the image and use it as the background, much like the BACKGROUND
attribute of the BODY element in HTML. For example, here’s how you attach the file

shakespeare.jpg (shown in Figure 16-15) as the background for a SYNOPSIS element.

SYNOPSIS { background-image: url(shakespeare.jpg) }

Caution

453Chapter 16 ✦ CSS Text Styles

Figure 16-15: The original, untiled, uncropped background image for
the synopsis

The image referenced by the background-image property is drawn underneath the

specified element, not underneath the browser pane like the BACKGROUND attribute

of HTML’s BODY element. Background images will generally not be the exact same

size as the contents of the page. If the image is larger than the element’s box, the

image will be cropped. If the image is smaller than the element’s box, it will be tiled

vertically and horizontally. Figure 16-16 shows a background image that has tiled

exactly far enough to cover the underlying content.

454 Part III ✦ Style Languages

Figure 16-16: A tiled background image

Tiling takes place across the element whose background-image property is set; not
across the browser window. You can set background images for nonroot elements

like the ACT or the SCENE if you like.

The background-repeat property
The background-repeat property adjusts how background images are tiled across

the screen. You can specify that background images are not tiled or are only tiled

horizontally or vertically. Possible values for this property are:

✦ repeat

✦ repeat-x

✦ repeat-y

✦ no-repeat

455Chapter 16 ✦ CSS Text Styles

For example, to show only a single picture of Shakespeare, you would set the

background-repeat of the SYNOPSIS element to no-repeat like this:

SYNOPSIS { background-image: url(shakespeare.jpg);
background-repeat: no-repeat }

Figure 16-17 shows the result.

Figure 16-17: An untiled background image

To tile across but not down the page, set background-repeat to repeat-x, like

this:

SYNOPSIS { background-image: url(shakespeare.jpg);
background-repeat: repeat-x }

456 Part III ✦ Style Languages

The result is shown in Figure 16-18:

Figure 16-18: A background image tiled across but
not down

To tile down but not across the page, set background-repeat to repeat-y like

this:

SYNOPSIS { background-image: url(shakespeare.jpg);
background-repeat: repeat-y }

Figure 16-19 shows the effect.

457Chapter 16 ✦ CSS Text Styles

Figure 16-19: A background image tiled down but
not across

The background-attachment property
In HTML, the background image is attached to the document. When the document

is scrolled, the background image scrolls with it. With the background-attach-
ment property, you can specify that the background be attached to the window or

pane instead. Possible values are scroll and fixed. The default is scroll; that is,

the background is attached to the document rather than the window.

However, with background-attachment set to fixed, the document scrolls but

the background image doesn’t. This might be useful in conjunction with an image

that’s big enough for a typical browser window but not big enough to be a backdrop

for a large document when you don’t want to tile the image. You would code that

request like this:

SYNOPSIS { background-image: url(shakespeare.jpg);
background-attachment: fixed;
background-repeat: no-repeat }

458 Part III ✦ Style Languages

Figure 16-20 shows the effect after a little scrolling.

Figure 16-20: A fixed background image stays in the same
position in the window even as the document scrolls.

Internet Explorer does not support fixed background images; Mozilla and Opera do.

The background-position property
By default, the upper-left corner of a background image is aligned with the upper-

left corner of the element it’s attached to. (See Figure 16-17 for an example.) Most of

the time this is exactly what you want. However, for those rare times when you

want something else, the background-position property allows you to move the

background relative to the element.

You can specify the offset by using percentages of the width and height of the par-

ent element, by using absolute lengths, or by using two of these six keywords:

✦ top

✦ center

Caution

459Chapter 16 ✦ CSS Text Styles

✦ bottom

✦ left

✦ center

✦ right

Percentages of parent element’s width and height
Percentages enable you to pin different parts of the background to the correspond-

ing part of the element. The x coordinate is given as a percentage ranging from 0%

(left side) to 100% (right side). The y coordinate is given as a percentage ranging

from 0% (top) to 100% (bottom). For example, this rule places the upper-right cor-

ner of the image in the upper-right corner of the SYNOPSIS element. Figure 16-21

shows the result.

SYNOPSIS { background-image: url(shakespeare.jpg);
background-repeat: no-repeat;
background-position: 100% 0% }

Figure 16-21: A background image aligned with the
upper-right corner of the content

460 Part III ✦ Style Languages

Absolute lengths
Setting background-position to a length positions the upper-left corner of the

background at an absolute position in the element. The next rule places the upper-

left corner of the background image shakespeare.jpg one centimeter to the right

and two centimeters below the upper-left corner of the element. Figure 16-22 shows

the result.

SYNOPSIS { background-image: url(shakespeare.jpg);
background-repeat: no-repeat;
background-position: 1cm 2cm }

Figure 16-22: A background image positioned one
centimeter to the right and two centimeters below
the left corner of the element

Keywords
The top left and left top keywords are the same as 0% 0%. The top, top cen-
ter, and center top are the same as 50% 0%. The right top and top right key-

words are the same as 100% 0%. The left, left center, and center left

461Chapter 16 ✦ CSS Text Styles

keywords are the same as 0% 50%. The center and center center keywords are

the same as 50% 50%. The right, right center, and center right keywords are

the same as 100% 50%. The bottom left and left bottom keywords are the same

as 0% 100%. The bottom, bottom center, and center bottom mean the same as

50% 100%. The bottom right and right bottom keywords are the same as 100%

100%. Figure 16-23 shows the positions for the different values.

Figure 16-23: Relative positioning of background images

For instance, this rule positions the image in the top center of the synopsis, as

shown in Figure 16-24:

SYNOPSIS { background-image: url(shakespeare.jpg);
background-repeat: no-repeat;
background-position: center top }

If the background-attachment property has the value fixed, then the image is

placed relative to the windowpane instead of the element.

top left
left top
0% 0%

top
top center
center top

50% 0%

top right
right top
100% 0%

left
center left
left center

0% 50%

center
center center

50% 50%

right
center right
right center
100% 50%

bottom left
left bottom
0% 100%

bottom
bottom center
center bottom

50% 100%

bottom right
right bottom
100% 100%

462 Part III ✦ Style Languages

Figure 16-24: An untiled background image pinned to
the top center of the SYNOPSIS element.

The background shorthand property
The background property is shorthand for setting the background-color, back-
ground-image, background-repeat, background-attachment, and background-
position properties in a single rule. For example, to set background-color to

white, background-image to shakespeare.jpg, background-repeat to no-
repeat, and background-attachment to fixed in the SYNOPSIS element, you can

use this rule:

SYNOPSIS {
background: url(shakespeare.jpg) white no-repeat fixed

}

The foregoing rule means exactly the same thing as this longer but more legible

rule:

SYNOPSIS { background-image: url(shakespeare.jpg);
background-color: white;
background-repeat: no-repeat;
background-attachment: fixed }

463Chapter 16 ✦ CSS Text Styles

When using the background shorthand property, values for any or all of the five

properties may be given in any order. However, none may occur more than once.

For example, the upper-right corner alignment rule used for Figure 16-21 could have

been written like this instead:

SYNOPSIS { background: url(shakespeare.jpg) no-repeat 100% 0% }

Visibility
The visibility property controls whether the contents of an element are seen.

The three possible values of this property are:

✦ visible

✦ hidden

✦ collapse

If visibility is set to visible, the contents of the box, including all borders are

shown. This is the default. If visibility is set to hidden, the box’s contents and

border are not drawn. However, unlike an element whose display property is set

to none, invisible boxes still take up space and affect the layout of the document.

Setting visibility to hidden is not the same as setting display to none.

The collapse value is the same as hidden for most elements, except for table rows

and columns. For table rows and columns, collapse hides the row or column, but

it does not otherwise change the layout of the table as hidden would. That is, it

acts almost exactly like display: none. However, you can’t set display to both

none and table-row or table-column so for these elements you have to use vis-
ibility: collapse instead.

For example, this rule hides the SCENE_NUMBER elements:

SCENE_NUMBER {visibility: hidden}

Figure 16-25 shows the result. Notice that the locations of each scene are still

pushed over to the right in pretty much the same position they were in Figure

16-24. That’s because the space on the left is taken up by the invisible SCENE_NUM-
BER elements.

Mozilla and Opera only recognize the visibility property when it’s applied to
block-level elements, not when it’s applied to inline elements.

Caution

464 Part III ✦ Style Languages

Figure 16-25: Invisible scene numbers

Cursors
The cursor is the arrow/hand/insertion bar/other icon that indicates the position of

the pointer on the screen. The cursor property specifies the cursor a user’s soft-

ware should display when a reader moves the pointer over a particular element.

CSS allows these 16 cursor values:

✦ auto: the browser chooses a cursor based on the current context. This is the

default value

✦ crosshair: a simple cross hair cursor such as ✚

✦ default: the platform-dependent default cursor, usually an arrow; for

example

✦ hand: a hand such as F

✦ move: a symbol that indicates something is to be moved such as

✦ n-resize: north (up is north) pointing arrow such as

✦ e-resize: east (right) pointing arrow such as ➯

➪

465Chapter 16 ✦ CSS Text Styles

✦ s-resize: south (down) pointing arrow such as

✦ w-resize: west (left) pointing arrow such as

✦ ne-resize: northeast pointing arrow such as

✦ nw-resize: northwest pointing arrow such as

✦ se-resize: southeast pointing arrow such as

✦ sw-resize: southwest pointing arrow such as

✦ text: I-beam such as I

✦ wait: stop watch, spinning beach ball, hourglass or other icon indicating the

passage of time such as

✦ help: question mark such as

The following rule uses the cursor property to specify that the hand cursor should

be used over individual verses.

VERSE { cursor: hand }

You can also use a custom cursor that’s loaded from an image file by giving a URL

for the image. Generally, you provide cursors in several formats in a comma-sepa-

rated list, the last of which is the name of a generic cursor. For example:

VERSE { cursor: url(“poetry.cur”), url(“poetry.gif”), text }

The Content Property
The content property places data from the style sheet into the output document at

a position indicated by a :before or :after pseudo-element. The value of the con-

tent property may be a string enclosed in quote marks. For example, this rule

places an asterisk before and after each SCENE element:

SCENE:after { content: “*”}
SCENE:before { content: “*”}

Mozilla, Internet Explorer, and Opera currently only support the content property
on block-level elements. This would not work (although it should) for inline ele-
ments such as SCENE_NUMBER.

Figure 16-26 shows the result. The asterisks are just part of the display. They do not

become part of the XML document itself, so even if you added characters or strings

with special meaning to XML, < or & for example, this would not make the docu-

ment malformed because the document is never changed.

Caution

➪

➪

➪

➪

➪

➪

466 Part III ✦ Style Languages

Figure 16-26: Asterisks have been added by the
content property

You can add more than a single character to the content. You can even add multiple

lines of text. The line breaks are encoded as \A in the string literal. For example,

this rule places two rows of asterisks after each act:

ACT:after {content: “\A*********\A*********\A”}

Mozilla, Internet Explorer, and Opera do not yet support \A.

Quotes
Instead of a string literal, the value may be the keyword open-quote to insert an

opening quote like “ or close-quote to insert a closing quote character like ”. By

default, the straight double quote “is used to quote items. However, you can

change this with the quotes property. The value of this element is the quote pair to

be used. For example, this rule says that if a LOCATION is quoted, the left quote

should be “ and the right quote should be ”:

LOCATION {quotes: “”” “””}

The quotes can be anything you want. For instance, you could use the French

guillemets « and » like this:

LOCATION {quotes: “«” “»”}

Caution

467Chapter 16 ✦ CSS Text Styles

You could do e-mail-style quoting by setting the left quote to > and the right quote

to nothing at all like this:

LOCATION {quotes: “>” “”}

There’s not even any requirement that you actually use any sort of quote marks.

For example, this rule uses these properties to put a right parenthesis after each

SCENE_NUMBER element:

SCENE_NUMBER {quotes: “” “)”}
SCENE_NUMBER:before {content: open-quote}
SCENE_NUMBER:after {content: close-quote}

If quotes are likely to nest, then you can specify multiple quote combinations. For

example, this says that a quote inside a quote would be quoted with single quota-

tion marks:

LOCATION {quotes: ‘“‘ ‘“‘ “‘“ “‘“}

You have to match each open quote with a close quote, but if for some reason you

don’t want to show one or the other you can use no-open-quote instead of open-
quote and no-close-quote where you would normally use close-quote. The no-
open-quote and no-close-quote keywords do not insert any characters; they just

increment or decrement the level of nesting as if quotes had been used.

Attributes
Normally, the only content the reader sees is character data that came from ele-

ment content in the XML document. However, you can use the attr() function as

the value of the content property to insert an attribute value into the displayed

document. For example, this rule inserts the content of the POEM element’s TYPE
attribute:

POEM:before {content: “A “ + attr(type)}

URIs
One of the most interesting values of the content property is a URI (Uniform

Resource Identifier). The URI is given in the same syntax used for the background-
image property, and it means much the same thing: load the document at the speci-

fied URI and display it in the specified location. The browser is allowed to load and

embed any kind of document it understands. For example, this rule says that the

picture found at the URI http://www.example.com/shakespeare.jpg should be

inserted before the TITLE element:

TITLE:before {
content: uri(http://www.example.com/shakespeare.jpg)

}

468 Part III ✦ Style Languages

This can be used for any kind of content that the browser understands: images, text

files, PDFs, other XML documents, sound recordings, and more. For example, this

rule suggests that a sound file should be played before the TITLE element:

TITLE:before {
content: uri(http://www.example.com/12th_night.mp3)

}

Unfortunately, current Web browsers don’t yet let you use the content property to

embed the contents of an arbitrary URI, even though this use is endorsed by the

CSS specification.

Counters
The final thing you can offer as the value of the content property is a counter. This

is a running total of some type of element from the input document. This enables

you to make simple numbered lists, to create outlines that are properly indented

with different numbering systems for each level of the outline, to assign numbers to

each part, chapter, and section, and more. Numbers can be recalculated on the fly

whenever a document changes, rather than having to be painstakingly inserted by

hand.

The counter-increment property creates and adds to the value of a named

counter. The counter() function inserts the current value of a specified counter

into the output. There’s also a counter-reset property that returns a counter to

its starting point. For example, suppose your XML document did not contain built-

in scene numbers or act numbers; that is, suppose it looked like Listing 16-7:

Listing 16-7: A synopsis of Shakespeare’s Twelfth Night in
XML without explicit act or scene numbers

<?xml version=”1.0”?>
<?xml-stylesheet type=”text/css” href=”counters.css”?>
<SYNOPSIS>
<TITLE>Twelfth Night</TITLE>

<ACT>
<SCENE>
<LOCATION><CHARACTER>Duke Orsino</CHARACTER>’s palace
</LOCATION>

</SCENE>
<SCENE>
<LOCATION>The sea-coast</LOCATION>

</SCENE>
<SCENE>
<LOCATION><CHARACTER>Olivia</CHARACTER>’s house
</LOCATION>

</SCENE>

469Chapter 16 ✦ CSS Text Styles

<SCENE>
<LOCATION><CHARACTER>Duke Orsino</CHARACTER>’s palace.
</LOCATION>

</SCENE>
<SCENE>
<LOCATION><CHARACTER>Olivia</CHARACTER>’s house
</LOCATION>

</SCENE>
</ACT>

<ACT>
<SCENE>
<LOCATION>The sea-coast</LOCATION>

</SCENE>
<SCENE>
<LOCATION>A street</LOCATION>

</SCENE>
<SCENE>
<LOCATION><CHARACTER>Olivia</CHARACTER>’s house
</LOCATION>

</SCENE>
<SCENE>
<LOCATION><CHARACTER>Duke Orsino</CHARACTER>’s palace.
</LOCATION>

</SCENE>
<SCENE>
<LOCATION><CHARACTER>Olivia</CHARACTER>’s garden
</LOCATION>

</SCENE>
</ACT>

<ACT>
<SCENE>
<LOCATION><CHARACTER>Olivia</CHARACTER>’s garden
</LOCATION>

</SCENE>
<SCENE>
<LOCATION><CHARACTER>Olivia</CHARACTER>’s house
</LOCATION>

</SCENE>
<SCENE>
<LOCATION>A street</LOCATION>

</SCENE>
<SCENE>
<LOCATION><CHARACTER>Olivia</CHARACTER>’s garden
</LOCATION>

</SCENE>
</ACT>

<ACT>
<SCENE>

Continued

470 Part III ✦ Style Languages

Listing 16-7 (continued)

<LOCATION><CHARACTER>Olivia</CHARACTER>’s front yard
</LOCATION>

</SCENE>
<SCENE>
<LOCATION><CHARACTER>Olivia</CHARACTER>’s house
</LOCATION>

</SCENE>
<SCENE>
<LOCATION><CHARACTER>Olivia</CHARACTER>’s garden
</LOCATION>

</SCENE>
</ACT>

<ACT>
<SCENE>
<LOCATION><CHARACTER>Olivia</CHARACTER>’s front yard
</LOCATION>

</SCENE>
</ACT>

</SYNOPSIS>

You can still insert scene numbers using counters. First, add a rule that increments

a counter named “scene” by 1 with each SCENE element:

SCENE {counter: scene}

Next, add a rule that inserts the current value of the scene counter as well as the

word “Scene” and a colon before each SCENE element:

SCENE:before {content: “Scene “ counter(scene) “: “}

Finally, reset the scene counter to zero at the beginning of each act so that scenes

start over from 1 in each act rather than counting continuously throughout the

play:

ACT {counter-reset: scene 0}

It’s not any harder to add an act counter. In fact, it’s a little easier because you don’t

have to reset it. These two rules suffice:

ACT {counter-increment: act}
ACT:before {content: “Act “ counter(act) “: “}

Internet Explorer, Mozilla, and Opera all have different bugs in handling counters.
Regrettably, counters are not very reliable at the present time.

Caution

471Chapter 16 ✦ CSS Text Styles

You can increment by a number other than 1 by adding a second value to the

counter-increment property. For example, this rule increments the act counter

by 2 with each act:

ACT {counter-increment: act 2}

By default, counters are decimal numbers. However, you can provide an optional

second argument to the counter() function that changes the numbering style. The

options are:

✦ disc: �

✦ circle: ❍

✦ square: ❑

✦ decimal: 1, 2, 3, 4, 5, and so on

✦ decimal-leading-zero: 01, 02, 03, 04, 05, and so on

✦ lower-roman: i, ii, iii, iv, and so on

✦ upper-roman: I, II, III, IV, and so on

✦ lower-alpha: a, b, c, and so on

✦ upper-alpha: A, B, C, and so on

✦ lower-latin: same as lower-alpha; a, b, c, and so on

✦ upper-Latin: same as upper-alpha; A, B, C, and so on

✦ lower-greek: α, β, γ, δ,ε, and so on

✦ hebrew: and so on

✦ armenian: A, P, C, T, Y, and so on

✦ georgian: f, m, u, l, t, and so on (same as the Georgian

alphabet)

✦ cjk-ideographic: and so on

✦ hiragana: and so on

✦ katakana: and so on

✦ hiragana-iroha: and so on

✦ katakana-iroha: and so on

✦ none: no bullet character is used

I would not rely on a typical Western browser being able to handle the more

unusual of these characters. In that case, the browser will default to decimal.

472 Part III ✦ Style Languages

If you’d like to use generated content as the list bullet instead of the standard bul-

let, set the display property of the :before or :after pseudo-element to marker.

This must occur inside an element whose display property is set to list-item.

For example, Listing 16-8 uses generated content as a marker for both ACT and

SCENE lists.

Listing 16-8: Using scene numbers as list bullets

SYNOPSIS, TITLE { display: block }
TITLE { font-family: Helvetica, Verdana, sans-serif;

font-size: x-large; text-align: center }
SYNOPSIS { font-family: Times, “Times New Roman”, serif; font-
size: 14pt; text-align: justify }
ACT, SCENE, TITLE, SYNOPSIS { margin: 1ex }
SCENE {display: list-item; counter-increment: scene}
ACT {display: list-item; counter-increment: act}
SCENE:before {display: marker;

content: “Scene “ counter(scene) “: “}
ACT {counter-reset: scene 0}
ACT:before {content: “Act “ counter(act) “: “}

Existing Web browsers don’t yet support display: marker. I’d stick to the more
standard list-item bullets for the time being, or simply generate the markers man-
ually using the appropriate :before and :after rules, indentation, and the
content property.

Aural Style Sheets
Visually impaired users already have special software that reads Web pages. In the

future, such use is likely to expand to sighted people browsing the Web while talk-

ing on cell phones, driving their cars, washing the dishes, and performing other

activities in which the eyes and hands have to be directed elsewhere. As well as the

very visual properties you’ve encountered up to this point that say how elements

are printed or shown on a screen, CSS provides aural properties to describe how

elements should be read out loud as well. Listing 16-9 is an aural style sheet that

identifies specific ways to speak information in the SYNOPSIS example.

Caution

473Chapter 16 ✦ CSS Text Styles

Listing 16-9: An aural style sheet for a synopsis

SYNOPSIS {speak: normal}

TITLE, AUTHOR, ACT, SCENE {
voice-family: Bruce, male;
stress: 20;
richness: 90;
cue-before: url(“ping.au”)

}

ACT { pause: 30ms 40ms } /* pause-before: 30ms;
pause-after: 40ms */

SCENE { pause-after: 10ms;
cue-before: url(“bell.aiff”);
cue-after: url(“dong.wav”) }

The speak property
The speak property determines whether text will be rendered aurally, and if so,

how. If speak has the value normal, words are spoken using the best available

speech synthesis. If speak has the value spell-out, words are spelled out letter-

by-letter, which might be useful for unusual or foreign words a speech synthesizer

probably can’t handle. The default value is none (that is, just render the content

visually and forget about speech synthesis).

The volume property
The volume property controls the average volume of the speaking voice of the

speech synthesizer. This is only an average. A highly inflected voice at a volume of

50 might peak at 75. The minimum volume is 0. The maximum volume is 100.

Percentage values can also be used, as can any of these six keywords:

✦ silent: no sound

✦ x-soft: 0, the minimum audible volume

✦ soft: about 25

✦ medium: about 50

✦ loud: about 75

✦ x-loud: 100, the maximum comfortable hearing level

474 Part III ✦ Style Languages

Pause properties
Pauses are the aural equivalent of commas. They can be used to provide drama, or

just to help separate one speaker’s voice from another’s. They’re set with the

pause, pause-before, and pause-after properties.

The pause-before property specifies the length of time the speech synthesizer

should pause before speaking an element’s contents. The pause-after property

specifies the length of time the speech synthesizer should pause after speaking an

element’s contents. Each can be set as an absolute time or as a percentage of the

speech-rate property. The pause property is a shorthand for setting both pause-
before and pause-after. When two values are supplied, the first is applied to

pause-before and the second is applied to pause-after. When only one value is

given, it applies to both properties. For example,

SCENE { pause-after: 10ms }

/* pause-before: 30ms; pause-after: 40ms */
ACT { pause: 30ms 40ms }

Cue properties
Cues are audible clues that alert the listener to a specific event that is about to

occur, or has just occurred. The cue properties let you specify a URL for a sound

file that will be played before or after an element is spoken. The cue-before prop-

erty plays a sound before an element is read. The cue-after property plays a

sound after an element is read. Both use a URI to specify the cue to play.

The cue property is a shorthand for setting both cue-before and cue-after.

When two values are supplied, the first is applied to cue-before and the second is

applied to cue-after. When only one value is given, it applies to both properties.

For example:

ACT, SCENE { cue-before: url(“ping.au”) }
SCENE { cue-before: url(“bell.aiff”);

cue-after: url(“dong.wav”) }

Play-during property
The play-during property specifies a sound to be played in the background while

an element’s content is spoken. The value of the property is URL to the sound file.

You can also add one or both of the keywords mix and repeat to the value. Mix
tells the speech synthesizer to mix in the parent’s play-during sound. Repeat
tells the speech synthesizer to loop the sound continuously until the entire element

has been spoken. The default value is none.

475Chapter 16 ✦ CSS Text Styles

Spatial properties
The spatial properties specify where the sound should appear to be coming from.

For example, you can have a document read to you from 3 feet away in a ditch or

from 100 feet away on a cliff. This is, of course, limited by the capabilities of the

speech synthesizer and audio hardware.

The azimuth property
The azimuth property controls the horizontal angle from which the sound appears

to emanate. When you listen to audio through good stereo speakers, you seem to

hear a lateral sound stage. The azimuth property can be used with this type of

stereo system to create angles to the sound you hear. When you add a total sur-

round sound system using either a binaural headphone or a five-speaker home the-

atre setup, the azimuth property becomes very noticeable.

The azimuth is specified as an angle between –360 degrees and 360 degrees. A value

of 0deg means that the sound is directly in front of the listener (as are -360deg and

360deg). A value of 180deg means that the sound is directly behind the listener. (In

CSS terminology deg replaces the more common ° degree symbol.) Angles are

counted clockwise to the listener’s right. You can also use one of these nine key-

words to specify the azimuth angle:

✦ center: 0 deg

✦ center-right: 20deg

✦ right: 40deg

✦ far-right: 60deg

✦ right-side: 90deg

✦ left-side: 270deg

✦ far-left: 300deg

✦ left: 320deg

✦ center-left: 340deg

You can add the keyword behind to any of these values to subtract 180deg from

the values. For example, left behind is the same as -140deg, which is the same

as 220deg.

A value of leftwards moves the sound an additional 20 degrees to the left, relative

to the current angle. This is most easily understood as turning the sound counter-

clockwise. So, even if the sound is already behind the listener, it will continue to

move “left” around the circle. A value of rightwards moves the sound an addi-

tional 20 degrees to the right (clockwise) from to the current angle.

476 Part III ✦ Style Languages

The elevation property
The elevation property controls the apparent height of the speaker above the lis-

tener’s position. Because you cannot predetermine the number and location of

speakers in use by the document reader, this attribute simply identifies the desired

result. As the document author, you can’t really force a specific result in all cases,

anymore than you can guarantee that a reader has a color monitor. The elevation is

specified as an angle between –90 degrees and 90 degrees. It can also be given as

one of these five keywords:

✦ below: -90deg

✦ level: 0deg

✦ above: 90deg

✦ higher: 10deg above the current elevation (useful with inheritance)

✦ lower: 10deg below the current elevation (useful with inheritance)

Voice characteristics
Adjusting the rate of speech controls the individual characteristics of the synthe-

sizer’s “voice,” the voice-family used, the pitch, and the richness of the voice.

The speech-rate property
The speech-rate property specifies the speech synthesizer’s speed as an approxi-

mate number of average-sized words per minute. You can supply an integer or one

of these five keywords:

✦ x-slow: 80 words per minutes

✦ slow: 120 words per minute

✦ medium: 180 to 200 words per minute

✦ fast: 300 words per minute

✦ x-fast: 500 words per minute

You can also use the keyword faster to add 40 words per minute to the rate of the

parent element or slower to subtract 40 words per minute from the rate of the par-

ent element.

The voice-family property
The voice-family property is a comma-separated, prioritized list of voice family

names that chooses the voice used for reading the text of the document. It’s like the

font-family property, but with voices instead of type faces.

477Chapter 16 ✦ CSS Text Styles

Generic voice values include male, female, and child. Specific names are as

diverse as font names and include Agnes, Bruce, Good News, Hysterical,

Victoria, Whisper, and many more. Just as with font families, there’s no guarantee

that any of these voices is installed on any given system. And just as with font fami-

lies, these names must be quoted if they consist of more than one word. For exam-

ple, if you were marking up a play, you might choose different voices for each actor

but fall back to the generics if necessary, like this:

LINE[speaker=”Olivia”] { voice-family: Victoria, female }
LINE[speaker=”Viola”] { voice-family: Agnes, female }
LINE[speaker=”Antonio”] { voice-family: Bruce, male }
LINE[speaker=”Sebastian”] { voice-family: David, male }

The pitch property
The pitch property specifies the frequency that the speech synthesizer uses for a

particular type of object. To some degree, this controls whether a voice sounds

male or female. However, it’s better to use an appropriate voice-family instead. The

value is given in hertz, that is, in cycles per second. Female voices are about 210 Hz,

while typical male voices are in the ballpark of 120 Hz. You can also use these key-

words to adjust the pitch:

✦ x-low

✦ low

✦ medium

✦ high

✦ x-high

The exact values of these keywords in hertz depend on the user’s environment and

selected voice.

The pitch-range property
The pitch-range property specifies the acceptable variations in the speaker’s

average pitch as a number between 0 and 100. This controls the inflection and vari-

ation of the voice used by the speech synthesizer. A value of 0 creates a flat, mono-

tone voice, while 50 is a normal voice, and values above 50 create an exceptionally

animated voice. For example,

LINE[speaker=”Tuvok”] { pitch-range: 10 }
LINE[speaker=”Seven”] { pitch-range: 20 }
LINE[speaker=”Janeway”] { pitch-range: 50 }
LINE[speaker=”Paris”] { pitch-range: 70 }

478 Part III ✦ Style Languages

The stress property
The stress property specifies the level of assertiveness or emphasis that’s used in

the speaking voice. The default is 50. For example,

LINE[speaker=”Tuvok”] { stress: 40 }
LINE[speaker=”Seven”] { stress: 90 }
LINE[speaker=”Janeway”] { stress: 60 }
LINE[speaker=”Kim”] { stress: 30 }

The value and effect of this attribute has a different effect in each language being

spoken. When used with languages such as English, which use stresses on sentence

position, you can select primary, secondary, and tertiary stress points to control

the inflection that is applied to these areas of the sentence.

The richness property
The richness property specifies the “brightness” of the voice used by the speech

synthesizer. The richer the voice, the better its carrying capacity. Smooth voices

don’t carry far because they’re not as deeply pitched as rich voices. The value is

a number between 1 and 100, with a default of 50. Higher values produce voices

that carry better, while lower values produce softer, easier-to-listen-to voices. For

example,

LINE[speaker=”Tuvok”] { richness: 45 }
LINE[speaker=”Seven”] { richness: 65 }
LINE[speaker=”Janeway”] { richness: 70 }
LINE[speaker=”Neelix”] { richness: 25 }

Speech properties
These properties control how the speech synthesizer interprets punctuation and

numbers. There are two such properties: speak-punctuation and speak-numeral.

The speak-punctuation property
By default, punctuation is spoken literally. A statement such as “The cat, Charm, ate

all of his food.” is read as “The cat comma Charm comma ate all of his food period”.

However, by setting the speak-punctuation property to none, the punctuation

will not be spoken. It will, however, be paused for, as in a natural speaking voice.

For example, “The cat <pause> Charm <pause> ate all of his food <silence>”.

The speak-numeral property
By default, numbers are spoken as a full string. For example, the number 102 would

be read as “one hundred and two.” If, however, you set the speak-numeral prop-

erty to digits, each number will be spoken individually such as “one zero two.”

You can return to the default by setting speak-numeral property to continuous.

479Chapter 16 ✦ CSS Text Styles

Summary
This chapter discussed CSS’s text and character-oriented properties. In this chap-

ter, you learned that:

✦ Font properties determine the font face, style, size, and weight of text.

✦ Background properties include color, image, image position, and image tiling.

✦ Text properties let you adjust line height, word spacing, letter spacing, verti-

cal and horizontal alignment, decoration, and capitalization.

✦ Aural style sheets specify properties such as speak-punctuation, volume,

pause-before, cue-after, and voice determine how a document should be

read by a speech synthesizer.

Although CSS is quite powerful when fully implemented, there are some limits to

what you can achieve with it. First, CSS can only attach styles to content that

already appears in the document. It can only add very limited content to the docu-

ment, and it cannot transform the content in any way, such as by sorting or reorder-

ing it. These needs are addressed by XSL, the Extensible Stylesheet Language.

However, a more severe limitation is that you’re limited to those parts of CSS that

are reliably implemented across multiple browsers, a depressingly small subset of

standard CSS. XSL, by contrast, can be implemented on the server side so that

you’re not restricted to only those parts that browsers actually implement. The

next chapter explores XSL transformations, and shows you how much farther they

can take you.

✦ ✦ ✦

XSL
Transformations

The Extensible Stylesheet Language (XSL) includes both a

transformation language and a formatting language. Each

of these, naturally enough, is an XML application. The transfor-

mation language provides elements that define rules for how

one XML document is transformed into another XML docu-

ment. The transformed XML document may use the markup

and DTD of the original document, or it may use a completely

different set of elements. In particular, it may use the elements

defined by the second part of XSL, the formatting objects. This

chapter discusses the transformation language half of XSL.

What Is XSL?
The transformation and formatting halves of XSL can function

independently of each other. For instance, the transformation

language can transform an XML document into a well-formed

HTML file, and completely ignore XSL formatting objects. This is

the style of XSL previewed in Chapter 5 and emphasized in this

chapter. Furthermore, it’s not absolutely required that a docu-

ment written in XSL formatting objects be produced by using

the transformation part of XSL on another XML document. For

example, it’s easy to imagine a converter written in Java that

reads TeX or PDF files and translates them into XSL formatting

objects (though no such converters exist as of early 2001).

In essence, XSL is two languages, not one. The first language is

a transformation language, the second a formatting language.

The transformation language is useful independent of the for-

matting language. Its ability to move data from one XML repre-

sentation to another makes it an important component of

XML-based electronic commerce, electronic data interchange,

metadata exchange, and any application that needs to convert

between different XML representations of the same data. These

uses are also united by their lack of concern with rendering

data on a display for humans to read. They are purely about

moving data from one computer system or program to another.

1717C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

What is XSL?

Overview of XSL
transformations

Understanding XSL
templates

Computing the value
of a node with
xsl:value-of

Processing multiple
elements with xsl:for-
each

Matching and
selecting nodes with
patterns

Understanding the
default template rules

Deciding which
output to include

Counting nodes

Sorting output
elements

Setting the mode
attribute

Output methods

✦ ✦ ✦ ✦

482 Part III ✦ Style Languages

Consequently, many early implementations of XSL focus exclusively on the transfor-

mation part and ignore the formatting objects. These are incomplete implementa-

tions, but nonetheless useful. Not all data must ultimately be rendered on a

computer monitor or printed on paper.

Chapter 18 discusses the XSL formatting language.

Overview of XSL Transformations
In an XSL transformation, an XSLT processor reads both an XML document and an

XSLT style sheet. Based on the instructions the processor finds in the XSLT style

sheet, it outputs a new XML document or fragment thereof. There’s also special

support for outputting HTML. With some effort most XSLT processors can also be

made to output essentially arbitrary text, though XSLT is designed primarily for

XML-to-XML and XML-to-HTML transformations.

Cross-
Reference

A Word of Caution about XSL

XSL is still under development. The language has changed radically in the past, and will almost certainly
change again in the future. This chapter is based on the November 16, 1999 XSLT 1.0 Recommendation.
Because XSLT is now an official Recommendation of the World Wide Web Consortium (W3C), I’m hope-
ful that any changes that do occur will simply add to the existing syntax without invalidating style sheets
that adhere to the 1.0 spec. Indeed the W3C has just begun work on XSLT 1.1 and 2.0, and it does seem
likely that all legal XSLT 1.0 documents will still be legal XSLT 1.1 and 2.0 documents.

Not all software has caught up to the 1.0 Recommendation, however. In particular, Version 5.5 and ear-
lier of Internet Explorer only implement a very old working draft of XSLT that looks almost nothing like
the finished standard. You should not expect most of the examples in this chapter to work with IE, even
after substantial tweaking. Conversely, the language that IE does implement is not XSLT; and any book
or person that tells you otherwise is telling you an untruth. Both Microsoft’s live presentations and the
written documentation it posts on its Web site are notorious for teaching nonstandard Microsoft ver-
sions of XSLT (and other languages) without clearly distinguishing which parts are real XSLT and which
are Microsoft extensions to (some would say perversions of) standard XSLT.

In November 2000 Microsoft released MSXML 3.0, an XML parser/XSLT processor for IE that does come
much closer to supporting XSLT 1.0. You can download it from http://msdn.microsoft.com/
xml/general/xmlparser.asp. However, there are still some bugs and areas where Microsoft did not
follow the specification, so this is not quite a complete implementation of XSLT 1.0. More importantly,
MSXML 3.0 is not bundled with IE5.5; and even if you install it, it does not automatically replace the ear-
lier, non-standard-compliant version of MSXML that is bundled. To replace the old version, you have to
download and run a separate program called xmlinst.exe, which you can get from the same page where
you found MSXML 3.0.

483Chapter 17 ✦ XSL Transformations

Trees
As you learned in Chapter 6, every well-formed XML document is a tree. A tree is a

data structure composed of connected nodes beginning with a top node called the

root. The root is connected to its child nodes, each of which is connected to zero or

more children of its own, and so forth. Nodes that have no children of their own are

called leaves. A diagram of a tree looks much like a genealogical descendant chart

that lists the descendants of a single ancestor. The most useful property of a tree is

that each node and its children also form a tree. Thus, a tree is a hierarchical struc-

ture of trees in which each tree is built out of smaller trees.

For the purposes of XSLT, elements, attributes, namespaces, processing instruc-

tions, and comments are counted as nodes. Furthermore, the root of the document

must be distinguished from the root element. Thus, XSLT processors model an XML

document as a tree that contains seven kinds of nodes:

✦ The root

✦ Elements

✦ Text

✦ Attributes

✦ Namespaces

✦ Processing instructions

✦ Comments

The Document Type Definition (DTD) and document type declaration are specifi-

cally not included in this tree. However, a DTD may add default attribute values to

some elements, which then become additional attribute nodes in the tree.

For example, consider the XML document in Listing 17-1. This shows part of the

periodic table of the elements. I’ll be using this as an example in this chapter.

The complete periodic table appears on the CD-ROM in the file allelements.xml
in the examples/periodic_table directory.

The root PERIODIC_TABLE element contains ATOM child elements. Each ATOM ele-

ment contains several child elements providing the atomic number, atomic weight,

symbol, boiling point, and so forth. A UNITS attribute specifies the units for those

elements that have units.

ELEMENT would be a more appropriate name here than ATOM. However, writing
about ELEMENT elements and trying to distinguish between chemical elements
and XML elements might create confusion. Thus, at least for the purposes of this
chapter, ATOM seemed like the more legible option.

Note

On the
CD-ROM

484 Part III ✦ Style Languages

Listing 17-1: An XML periodic table with two atoms:
hydrogen and helium

<?xml version=”1.0”?>
<?xml-stylesheet type=”text/xml” href=”17-2.xsl”?>
<PERIODIC_TABLE>

<ATOM STATE=”GAS”>
<NAME>Hydrogen</NAME>
<SYMBOL>H</SYMBOL>
<ATOMIC_NUMBER>1</ATOMIC_NUMBER>
<ATOMIC_WEIGHT>1.00794</ATOMIC_WEIGHT>
<BOILING_POINT UNITS=”Kelvin”>20.28</BOILING_POINT>
<MELTING_POINT UNITS=”Kelvin”>13.81</MELTING_POINT>
<DENSITY UNITS=”grams/cubic centimeter”>
<!-- At 300K, 1 atm -->
0.0000899

</DENSITY>
</ATOM>

<ATOM STATE=”GAS”>
<NAME>Helium</NAME>
<SYMBOL>He</SYMBOL>
<ATOMIC_NUMBER>2</ATOMIC_NUMBER>
<ATOMIC_WEIGHT>4.0026</ATOMIC_WEIGHT>
<BOILING_POINT UNITS=”Kelvin”>4.216</BOILING_POINT>
<MELTING_POINT UNITS=”Kelvin”>0.95</MELTING_POINT>
<DENSITY UNITS=”grams/cubic centimeter”><!-- At 300K -->
0.0001785

</DENSITY>
</ATOM>

</PERIODIC_TABLE>

Figure 17-1 displays a tree diagram of this document. It begins at the top with the

root node (not the same as the root element!) which contains two child nodes, the

xml-stylesheet processing instruction and the root element PERIODIC_TABLE.

(The XML declaration is not visible to the XSLT processor and is not included in the

tree the XSLT processor operates on.) The PERIODIC_TABLE element contains two

child nodes, both ATOM elements. Each ATOM element has an attribute node for its

STATE attribute, and a variety of child element nodes. Each child element contains

a node for its contents, as well as nodes for any attributes, comments and process-

ing instructions it possesses. Notice in particular that many nodes are something

other than elements. There are nodes for text, attributes, comments, namespaces

and processing instructions. Unlike CSS, XSL is not limited to working only with

whole elements. It has a much more granular view of a document that enables you

to base styles on comments, attributes, processing instructions, element content,

and more.

485Chapter 17 ✦ XSL Transformations

Like the XML declaration, an internal DTD subset or DOCTYPE declaration is not
part of the tree. However, it may have the effect of adding attribute nodes to some
elements through <!ATTLIST> declarations that use #FIXED or default attribute
values.

Figure 17-1: Listing 17-1 as a tree diagram

XSLT operates by transforming one XML tree into another XML tree. More precisely,

an XSLT processor accepts as input a tree represented as an XML document and

produces as output a new tree, also represented as an XML document.

Consequently, the transformation part of XSL is also called the tree construction

part. The XSL transformation language contains operators for selecting nodes from

the tree, reordering the nodes, and outputting nodes. If one of these nodes is an ele-

ment node, then it may be an entire tree itself. Remember that all these operators,

both for input and output, are designed for operation on a tree.

The input must be an XML document. You cannot use XSLT to transform from non-

XML formats such as PDF, TeX, Microsoft Word, PostScript, MIDI, or others. HTML

and SGML are borderline cases because they’re so close to XML. XSLT can work

with HTML and SGML documents that satisfy XML’s well-formedness rules.

However, XSLT cannot handle the wide variety of non-well-formed HTML and SGML

that you encounter on most Web sites and document production systems. XSLT is

not a general-purpose regular expression language for transforming arbitrary data.

Most of the time the output of an XSLT transformation is also an XML document.

However, it can also be a result tree fragment that could be used as an external

parsed entity in another XML document. (That is, it would be a well-formed XML

document if it were enclosed in a single root element.) In other words, the output

may not necessarily be a well-formed XML document, but it will at least be a plausi-

ble part of a well-formed XML document. An XSLT transformation cannot output

text that is malformed XML such as

<I>Tag Mismatch!</I>

Root

PERIODIC_TABLE<?xml-stylesheet type="text/xml" href="17-2.xsl"?>

ATOM

Al 300K. 1
atm

NAME SYMBOL ATOMIC_NUMBER

BOILING_POINT MELTING_POINT 0.0000899

ATOMIC_WEIGHT DENSITY

HHydrogen 1.007941

13.8120.28

UNITS="grams cubic
centimeter"

Al 300K. 1
atm

UNITS="grams cubic
centimeter"

ATOM

STATE="GAS" NAME SYMBOL ATOMIC_NUMBER

BOILING_POINT MELTING_POINT 0.0001785

ATOMIC_WEIGHT DENSITY

HeHelium 4.00262

0.95UNITS="Kelvin" 4.128

STATE="GAS"

UNITS="Kelvin"UNITS="Kelvin" UNITS="Kelvin"

Note

486 Part III ✦ Style Languages

The xsl:output element and disable-output-escaping attribute discussed
below loosen this restriction somewhat.

Most XSLT processors also support output as HTML and/or raw text, although the

standard does not require them to do so. To some extent this allows you to trans-

form to non-XML formats like TeX, RTF, or PostScript. However XSLT is not designed

to make these transformations easy. It is designed for XML-to-XML transformations.

If you need a non-XML output format, it will probably be easier to use XSLT to trans-

form the XML to an intermediate format like TeXML (http://www.alphaworks.
ibm.com/tech/texml), and then use additional, non-XSLT software to transform

that into the format you want.

XSLT style sheet documents
An XSLT document contains template rules. A template rule has a pattern specify-

ing the nodes it matches and a template to be instantiated and output when the pat-

tern is matched. When an XSLT processor transforms an XML document using an

XSL style sheet, it walks the XML document tree, looking at each node in turn. As

each node in the XML document is read, the processor compares it with the pattern

of each template rule in the style sheet. When the processor finds a node that

matches a template rule’s pattern, it outputs the rule’s template. This template gen-

erally includes some markup, some new data, and some data copied out of the

source XML document.

XSLT uses XML to describe these rules, templates, and patterns. The root element

of the XSLT document is either a stylesheet or a transform element in the

http://www.w3.org/1999/XSL/Transform namespace. By convention this

namespace is mapped to the xsl prefix, but you’re free to pick another prefix if you

prefer. In this chapter, I always use the xsl prefix. From this point forward it should

be understood that the prefix xsl is mapped to the http://www.w3.org/1999/
XSL/Transform namespace.

If you get the namespace URI wrong, either by using a URI from an older draft of
the specification, such as http://www.w3.org/TR/WD-xsl, or simply by mak-
ing a typo in the normal URI, the XSLT processor will output the style sheet docu-
ment itself instead of the transformed input document. This is the result of the
interaction between several obscure sections of the XSLT 1.0 specification. The
details aren’t important. What is important is that this very unusual behavior
looks very much like a bug in the processor if you aren’t familiar with it. If you
are familiar with it, fixing it is trivial; just correct the namespace URI to
http://www.w3.org/1999/XSL/Transform.

Each template rule is an xsl:template element. The pattern of the rule is placed in

the match attribute of the xsl:template element. The output template is the con-

tent of the xsl:template element. All instructions in the template for doing things

such as selecting parts of the input tree to include in the output tree are performed

by one or another XSLT elements. These are identified by the xsl: prefix on the ele-

ment names. Elements that do not have an xsl: prefix are part of the result tree.

Tip

Tip

487Chapter 17 ✦ XSL Transformations

Listing 17-2 shows a very simple XSLT style sheet with two template rules. The first

template rule matches the root element PERIODIC_TABLE. It replaces this element

with an html element. The contents of the html element are the results of applying the

other templates in the document to the contents of the PERIODIC_TABLE element.

The second template matches ATOM elements. It replaces each ATOM element in

the input document with a P element in the output document. The xsl:apply-
templates rule inserts the text of the matched source element into the output

document. Thus, the contents of a P element will be the text (but not the markup)

contained in the corresponding ATOM element.

The xsl:stylesheet root element has two required attributes, version and

xmlns:xsl, each of which must have exactly the values shown here (1.0 for ver-
sion and http://www.w3.org/1999/XSL/Transform for xmlns:xsl). I’ll discuss

the exact syntax of all these elements and attributes below.

Listing 17-2: An XSLT style sheet for the periodic table with
two template rules

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0”

xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:template match=”PERIODIC_TABLE”>
<html>
<xsl:apply-templates/>

</html>
</xsl:template>

<xsl:template match=”ATOM”>
<P>
<xsl:apply-templates/>

</P>
</xsl:template>

</xsl:stylesheet>

The xsl:transform element can be used in place of xsl:stylesheet if you prefer.

This is an exact synonym with the same syntax, semantics, and attributes. For

example,

<?xml version=”1.0”?>
<xsl:transform version=”1.0”

xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>
<!-- templates go here -->

</xsl:transform>

In this book, I will stick to xsl:stylesheet.

488 Part III ✦ Style Languages

Where does the XML transformation happen?
There are three primary ways to transform XML documents into other formats,

such as HTML, with an XSLT style sheet:

1. The XML document and associated style sheet are both served to the client

(Web browser), which then transforms the document as specified by the style

sheet and presents it to the user.

2. The server applies an XSLT style sheet to an XML document to transform it to

some other format (generally HTML) and sends the transformed document to

the client (Web browser).

3. A third program transforms the original XML document into some other for-

mat (often HTML) before the document is placed on the server. Both server

and client only deal with the transformed document.

Each of these three approaches uses different software, although they all use the

same XML documents and XSLT style sheets. An ordinary Web server sending XML

documents to Internet Explorer is an example of the first approach. A servlet-com-

patible Web server using the IBM alphaWorks’ XML Enabler (http://www.alpha-
works.ibm.com/tech/xmlenabler) is an example of the second approach. A

human using Michael Kay’s command line SAXON program (http://users.
iclway.co.uk/mhkay/saxon/) to transform XML documents to HTML documents,

then placing the HTML documents on a Web server is an example of the third

approach. However, these all use (at least in theory) the same XSLT language.

In this chapter, I emphasize the third approach, primarily because at the time of

this writing, specialized converter programs such as Michael Kay’s SAXON and the

XML Apache Project’s Xalan (http://xml.apache.org/xalan/) provide the most

complete and accurate implementations of the XSLT specification. Furthermore,

this approach offers the broadest compatibility with legacy Web browsers and

servers, whereas the first approach requires a more recent browser than most

users use, and the second approach requires special Web server software. In prac-

tice, though, requiring a different server is not nearly as onerous as requiring a par-

ticular client. You, yourself, can install your own special server software; but you

cannot rely on your visitors to install particular client software.

Xalan is on the CD-ROM in the directory utilities/xalan. SAXON is on the CD-ROM
in the directory utilities/saxon.

How to use Xalan
Xalan is a Java 1.1 character mode application. To use it, you’ll need a Java 1.1-com-

patible virtual machine such as Sun’s Java Development Kit (JDK), or Java Runtime

Environment (JRE), Apple’s Macintosh Runtime for Java 2.2 (MRJ), or Microsoft’s

virtual machine. You’ll need to set your CLASSPATH environment variable to include

On the
CD-ROM

489Chapter 17 ✦ XSL Transformations

both the xalan.jar and xerces.jar files (both included in the Xalan distribution).

On Unix/Linux you can set this in your .cshrc file if you use csh or tcsh or in your

.profile file if you use sh, ksh or bash. On Windows 95/98 you can set it in

AUTOEXEC.BAT. In Windows NT/2000, set it with the System Control Panel

Environment tab.

If you’re using the JRE 1.2 or later, you can just put the xalan.jar and xerces.jar files
in your jre/lib/ext directory instead of mucking around with the CLASSPATH envi-
ronment variable. If you’ve installed the JDK instead of the JRE on Windows, you
may have two jre/lib/ext directories, one somewhere like C:\jdk1.3\jre\lib\ext
and the other somewhere like C:\Program Files\Javasoft\jre\1.3\lib\ext. You need
to copy the jar archive into both ext directories. Putting one copy in one directory
and an alias into the other directory does not work. You must place complete,
actual copies into each ext directory.

Although I primarily use Xalan in this chapter, the examples should work with
SAXON or any other XSLT processor that implements the November 16, 1999 XSLT
1.0 recommendation.

The Java class containing the main method for Xalan is org.apache.xalan.
xslt.Process. You can run Xalan by typing the following at the shell prompt or in

a DOS window:

C:\> java org.apache.xalan.xslt.Process -in 17-1.xml -xsl
17-2.xsl -out 17-3.html

This line runs the java interpreter on the Java class containing the Xalan program’s

main() method, org.apache.xalan.xslt.Process. The source XML document

following the -in flag is 17-1.xml. The XSLT style sheet follows the -xsl flag and is

17-2.xsl here; and the output HTML file follows the -out argument and is named

17-3.html. If the -out argument is omitted, the transformed document will be printed

on the console. If the -xsl argument is omitted, Xalan will attempt to use the style

sheet named by the xml-stylesheet processing instruction in the prolog of the

input XML document.

Listing 17-2 transforms input documents to well-formed HTML files as discussed in

Chapter 6. However, you can transform from any XML application to any other as

long as you can write a style sheet to support the transformation. For example, you

can imagine a style sheet that transforms from Vector Markup Language (VML) doc-

uments to Scalable Vector Graphics (SVG) documents:

% java org.apache.xalan.xslt.Process -in pinktriangle.vml
-xsl VmlToSVG.xsl -out pinktriangle.svg

Most other command line XSLT processors behave similarly, though of course

they’ll have different command line arguments and options. They may prove

slightly easier to use if they’re not written in Java since there won’t be any need to

configure the CLASSPATH.

Note

Tip

490 Part III ✦ Style Languages

If you’re using Windows, you can use a stand-alone executable version of SAXON
called Instant SAXON (http://users.iclway.co.uk/mhkay/saxon/
instant.html) instead. This is a little easier to use because it doesn’t require
you to mess around with CLASSPATH environment variables. To transform a doc-
ument with this program, simply place the saxon.exe file in your path and type:

C:\> saxon -o 17-3.html 17-1.xml 17-2.xsl

Listing 17-3 shows the output of running Listing 17-1 through Xalan with the XSLT

style sheet in Listing 17-2. Notice that Xalan does not attempt to clean up the HTML

it generates, which has a lot of white space. This is not important since ultimately

you want to view the file in a Web browser that trims white space. Figure 17-2

shows Listing 17-3 loaded into Netscape Navigator 4.6. Because Listing 17-3 is stan-

dard HTML, you don’t need an XML-capable browser to view it.

Listing 17-3: The HTML produced by applying the style sheet
in Listing 17-2 to the XML in Listing 17-1

<html>

<P>
Hydrogen
H
1
1.00794
20.28
13.81

0.0000899

</P>

<P>
Helium
He
2
4.0026
4.216
0.95

0.0001785

</P>

</html>

Tip

491Chapter 17 ✦ XSL Transformations

Figure 17-2: The page produced by applying the style
sheet in Listing 17-2 to the XML document in Listing 17-1.

Direct display of XML files with XSLT style sheets
Instead of preprocessing the XML file, you can send the client both the XML file and

the XSLT file that describes how to render it. The client is responsible for applying

the style sheet to the document and rendering it accordingly. This is more work for

the client, but places much less load on the server. In this case, the XSLT style sheet

must transform the document into an XML application the client understands.

HTML is a likely choice, though in the future some browsers may understand XSL

formatting objects as well.

Attaching an XSLT style sheet to an XML document is easy. Simply insert an xml-
stylesheet processing instruction in the prolog immediately after the XML decla-

ration. This processing instruction should have a type attribute with the value

text/xml and an href attribute whose value is a URL pointing to the style sheet.

For example:

<?xml version=”1.0”?>
<?xml-stylesheet type=”text/xml” href=”17-2.xsl”?>

This is also how you attach a CSS style sheet to a document. The only difference

here is that the type attribute has the value text/xml instead of text/css.

In the future the more specific MIME media type application/xslt+xml will
be available to distinguish XSLT documents from all other XML documents. Once
XSLT processors are revised to support this, you will be able to write the xml-
stylesheet processing instruction like this instead:

<?xml-stylesheet type=”application/xslt+xml”
href=”17-2.xsl”?>

Note

492 Part III ✦ Style Languages

Internet Explorer 5.0 and 5.5’s XSLT support differs from the November 16, 1999 rec-

ommendation in several ways. First, it expects that XSLT elements live in the

http://www.w3.org/TR/WD-xsl namespace instead of the http://www.w3.org/
1999/XSL/Transform namespace, although the xsl prefix is still used. Second, it

expects the non-standard MIME type text/xsl in the xml-stylesheet processing

instruction rather than text/xml. Finally, it does not implement the default rules

for elements that match no template. Consequently, you need to provide a template

for each element in the hierarchy starting from the root before trying to view a doc-

ument in Internet Explorer. Listing 17-4 demonstrates. The three rules match the

root node, the root element PERIODIC_TABLE, and the ATOM elements in that order.

Figure 17-3 shows the XML document in Listing 17-1 loaded into Internet Explorer

5.5 with this style sheet.

Listing 17-4: The style sheet of Listing 17-2 adjusted to work
with Internet Explorer 5.0 and 5.5

<?xml version=”1.0”?>
<!-- This is a non-standard style sheet designed just for

Internet Explorer. It will not work with any standards
compliant XSLT processor. -->

<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/TR/WD-xsl”>

<xsl:template match=”/”>
<html>
<xsl:apply-templates/>

</html>
</xsl:template>

<xsl:template match=”PERIODIC_TABLE”>
<xsl:apply-templates/>

</xsl:template>

<xsl:template match=”ATOM”>
<P>
<xsl:value-of select=”.”/>

</P>
</xsl:template>

</xsl:stylesheet>

Ideally, you would use the same XML document both for direct display and for pre-
rendering to HTML. Unfortunately, that would require Microsoft to actually support
the real XSLT specification. Microsoft has repeatedly promised to support this, and
they have just as repeatedly reneged on those promises.

Caution

493Chapter 17 ✦ XSL Transformations

Figure 17-3: The page produced in Internet Explorer 5.5
by applying the style sheet in Listing 17-4 to the XML
document in Listing 17-1.

Internet Explorer also fails to support many other parts of standard XSLT, while

offering a number of nonstandard extensions. If you’ve successfully installed

MSXML3 in replace mode, then IE5 can handle most of XSLT 1.0 including the

http://www.w3.org/1999/XSL/Transform namespace. However, even this ver-

sion still has a few bugs, including expecting the text/xsl MIME type instead of

text/xml. In the rest of this chapter, I use only standard XSLT and simply prerender

the file in HTML before loading it into a Web browser. If you find something in this

chapter doesn’t work in Internet Explorer, please complain to Microsoft, not to me.

XSL Templates
Template rules defined by xsl:template elements are the most important part of

an XSLT style sheet. These associate particular output with particular input. Each

xsl:template element has a match attribute that specifies which nodes of the

input document the template is instantiated for.

The content of the xsl:template element is the actual template to be instantiated.

A template may contain both text that will appear literally in the output document

and XSLT instructions that copy data from the input XML document to the result.

Because all XSLT instructions are in the http://www.w3.org/1999/XSL/
Transform namespace, it’s easy to distinguish between the elements that are literal

data to be copied to the output and instructions. For example, here is a template

that is applied to the root node of the input tree:

<xsl:template match=”/”>
<html>
<head>
</head>
<body>
</body>

</html>
</xsl:template>

494 Part III ✦ Style Languages

When the XSLT processor reads the input document, the first node it sees is the

root. This rule matches that root node, and tells the XSLT processor to emit this

text:

<html>
<head>
</head>
<body>
</body>

</html>

This text is well-formed HTML. Because the XSLT document is itself an XML docu-

ment, its contents — templates included — must be well-formed XML.

If you were to use the above rule, and only the above rule, in an XSLT style sheet,

the output would be limited to the above six tags. That’s because no instructions in

the rule tell the formatter to move down the tree and look for further matches

against the templates in the style sheet.

The xsl:apply-templates element
To get beyond the root, you have to tell the formatting engine to process the chil-

dren of the root. In general, to include content in the child nodes, you have to

recursively process the nodes through the XML document. The element that does

this is xsl:apply-templates. By including xsl:apply-templates in the output

template, you tell the formatter to compare each child element of the matched

source element against the templates in the style sheet, and, if a match is found,

output the template for the matched node. The template for the matched node may

itself contain xsl:apply-templates elements to search for matches for its chil-

dren. When the formatting engine processes a node, the node is treated as a com-

plete tree. This is the advantage of the tree structure. Each part can be treated the

same way as the whole. For example, Listing 17-5 is an XSLT style sheet that uses

the xsl:apply templates element to process the child nodes.

Listing 17-5: An XSLT style sheet that recursively processes
the children of the root

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:template match=”/”>
<html>
<xsl:apply-templates/>

</html>
</xsl:template>

495Chapter 17 ✦ XSL Transformations

<xsl:template match=”PERIODIC_TABLE”>
<body>
<xsl:apply-templates/>

</body>
</xsl:template>

<xsl:template match=”ATOM”>
An Atom

</xsl:template>

</xsl:stylesheet>

When this style sheet is applied to Listing 17-1, here’s what happens:

1. The root node is compared with all template rules in the style sheet. It

matches the first one.

2. The <html> tag is written out.

3. The xsl:apply-templates element causes the formatting engine to process

the child nodes of the root node of the input document.

A. The first child of the root, the xml-stylesheet processing instruction,

is compared with the template rules. It doesn’t match any of them, so no

output is generated.

B. The second child of the root node of the input document, the root ele-

ment PERIODIC_TABLE, is compared with the template rules. It matches

the second template rule.

C. The <body> tag is written out.

D. The xsl:apply-templates element in the body element causes the for-

matting engine to process the child nodes of PERIODIC_TABLE.

a. The first child of the PERIODIC_TABLE element, that is the

Hydrogen ATOM element, is compared with the template rules. It

matches the third template rule.

b. The text “An Atom” is output.

c. The second child of the PERIODIC_TABLE element, that is the

Helium ATOM element, is compared with the template rules. It

matches the third template rule.

d. The text “An Atom” is output.

E. The </body> tag is written out.

4. The </html> tag is written out.

5. Processing is complete.

496 Part III ✦ Style Languages

The end result is:

<html>
<body>

An Atom

An Atom

</body>
</html>

The select attribute
To replace the text “An Atom” with the name of the ATOM element as given by its

NAME child, you need to specify that templates should be applied to the NAME chil-

dren of the ATOM element. To choose a particular set of children instead of all chil-

dren you supply xsl:apply-templates with a select attribute designating the

children to be selected. For example:

<xsl:template match=”ATOM”>
<xsl:apply-templates select=”NAME”/>

</xsl:template>

The select attribute uses the same kind of patterns as the match attribute of the

xsl:template element. For now, I’ll stick to simple names of elements; but in the

section on patterns for matching and selecting later in this chapter, you’ll see many

more possibilities for both select and match. If no select attribute is present, all

child element, text, comment, and processing instruction nodes are selected.

(Attribute and namespace nodes are not selected.)

The result of adding this rule to the style sheet of Listing 17-5 and applying it to

Listing 17-1 is this:

<html>
<body>

Hydrogen

Helium

</body>
</html>

497Chapter 17 ✦ XSL Transformations

Computing the Value of a Node with
xsl:value-of

The xsl:value-of element computes the value of something (most of the time,

though not always, something in the input document) and copies it into the output

document. The select attribute of the xsl:value-of element specifies exactly

which something’s value is being computed.

For example, suppose you want to replace the literal text An Atom with the name of

the ATOM element as given by the contents of its NAME child. You can replace An
Atom with <xsl:value-of select=”NAME”/> like this:

<xsl:template match=”ATOM”>
<xsl:value-of select=”NAME”/>

</xsl:template>

Then, when you apply the style sheet to Listing 17-1, this text is generated:

<html>
<body>

Hydrogen

Helium

</body>
</html>

The item whose value is selected, the NAME element in this example, is relative to

the current node. The current node is the item matched by the template, the partic-

ular ATOM element in this example. Thus, when the Hydrogen ATOM is matched by

<xsl:template match=”ATOM”>, the Hydrogen ATOM’s NAME is selected by

xsl:value-of. When the Helium ATOM is matched by <xsl:template
match=”ATOM”>, the Helium ATOM’s NAME is selected by xsl:value-of.

The value of a node is always a string, possibly an empty string. The exact contents

of this string depend on the type of the node. The most common type of node is ele-

ment, and the value of an element node is particularly simple. It’s the concatenation

of all the character data (but not markup!) between the element’s start tag and end

tag. For example, the first ATOM element in Listing 17-1 is as follows:

<ATOM STATE=”GAS”>
<NAME>Hydrogen</NAME>
<SYMBOL>H</SYMBOL>
<ATOMIC_NUMBER>1</ATOMIC_NUMBER>
<ATOMIC_WEIGHT>1.00794</ATOMIC_WEIGHT>
<BOILING_POINT UNITS=”Kelvin”>20.28</BOILING_POINT>
<MELTING_POINT UNITS=”Kelvin”>13.81</MELTING_POINT>
<DENSITY UNITS=”grams/cubic centimeter”>

498 Part III ✦ Style Languages

<!-- At 300K, 1 atm -->
0.0000899

</DENSITY>
</ATOM>

The value of this element is shown below:

Hydrogen
H
1
1.00794
1
20.28
13.81

0.0000899

I calculated this value by stripping out all the tags and comments. Everything else

including white space was left intact. The values of the other six node types are cal-

culated similarly, mostly in obvious ways. Table 17-1 summarizes.

Table 17-1
Values of Nodes

Node Type Value

Root The value of the root element

Element The concatenation of all parsed character data contained in
the element, including character data in any of the
descendants of the element

Text The text of the node; essentially the node itself

Attribute The normalized attribute value as specified by Section 3.3.3
of the XML 1.0 recommendation; basically the attribute
value after entities are resolved and leading and trailing
white space is stripped; does not include the name of the
attribute, the equals sign, or the quotation marks

Namespace The URI of the namespace

Processing instruction The data in the processing instruction; does not include the
processing instruction, <? or ?>

Comment The text of the comment, <!-- and --> not included

499Chapter 17 ✦ XSL Transformations

Processing Multiple Elements with
xsl:for-each

The xsl:value-of element should only be used in contexts where it is obvious

which node’s value is being taken. If there are multiple possible items that could be

selected, then only the first one will be chosen. For instance, this is a poor rule

because a typical PERIODIC_TABLE element contains more than one ATOM:

<xsl:template match=”PERIODIC_TABLE”>
<xsl:value-of select=”ATOM”/>

</xsl:template>

There are two ways of processing multiple elements in turn. The first method

you’ve already seen. Simply use xsl:apply-templates with a select attribute

that chooses the particular elements that you want to include, like this:

<xsl:template match=”PERIODIC_TABLE”>
<xsl:apply-templates select=”ATOM”/>

</xsl:template>

<xsl:template match=”ATOM”>
<xsl:value-of select=”.”/>

</xsl:template>

The select=”.” in the second template tells the formatter to take the value of the

matched element, ATOM in this example.

The second option is xsl:for-each. The xsl:for-each element processes each

element chosen by its select attribute in turn. However, no additional template is

required. For example:

<xsl:template match=”PERIODIC_TABLE”>
<xsl:for-each select=”ATOM”>
<xsl:value-of select=”.”/>

</xsl:for-each>
</xsl:template>

Patterns for Matching Nodes
The match attribute of the xsl:template element supports a complex syntax that

allows you to express exactly which nodes you do and do not want to match. The

select attribute of xsl:apply-templates, xsl:value-of, xsl:for-each,

xsl:copy-of, and xsl:sort supports an even more powerful superset of this syn-

tax called XPath that allows you to express exactly which nodes you do and do not

want to select. Various patterns for matching and selecting nodes are discussed

below.

500 Part III ✦ Style Languages

Matching the root node
In order that the output document be well-formed, the first thing output from an

XSL transformation should be the output document’s root element. Consequently,

XSLT style sheets generally start with a rule that applies to the root node. To spec-

ify the root node in a rule, you give its match attribute the value “/”. For example:

<xsl:template match=”/”>
<DOCUMENT>
<xsl:apply-templates/>

</DOCUMENT>
</xsl:template>

This rule applies to the root node and only the root node of the input tree. When

the root node is read, the tag <DOCUMENT> is output, the children of the root node

are processed, then the </DOCUMENT> tag is output. This rule overrides the default

rule for the root node. Listing 17-6 shows a style sheet with a single rule that

applies to the root node.

Listing 17-6: An XSLT style sheet with one rule for the root
node

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:template match=”/”>
<html>
<head>
<title>Atomic Number vs. Atomic Weight</title>

</head>
<body>
<table>
Atom data will go here

</table>
</body>

</html>
</xsl:template>

</xsl:stylesheet>

Because this style sheet only provides a rule for the root node, and because that

rule’s template does not specify any further processing of child nodes, only literal

output that’s included in the template is inserted in the resulting document. In

501Chapter 17 ✦ XSL Transformations

other words, the result of applying the style sheet in Listing 17-6 to Listing 17-1 (or

any other well-formed XML document) is this:

<html>
<head>
<title>Atomic Number vs. Atomic Weight</title>
</head>
<body>
<table>

Atom data will go here
</table>

</body>
</html>

Matching element names
As previously mentioned, the most basic pattern contains a single element name

that matches all elements with that name. For example, this template matches ATOM
elements and makes their ATOMIC_NUMBER children bold:

<xsl:template match=”ATOM”>
<xsl:value-of select=”ATOMIC_NUMBER”/>

</xsl:template>

Listing 17-7 demonstrates a style sheet that expands on Listing 17-6. First, an

xsl:apply-templates element is included in the template rule for the root node.

This rule uses a select attribute to ensure that only PERIODIC_TABLE elements

are processed.

Second, a rule that only applies to PERIODIC_TABLE elements is created using

match=”PERIODIC_TABLE”. This rule sets up the header for the table, and then

applies templates to form the body of the table from ATOM elements.

Finally, the ATOM rule specifically selects the ATOM element’s NAME, ATOMIC_NUMBER,

and ATOMIC_WEIGHT child elements with <xsl:value-of select=”NAME”/>,

<xsl:value-of select=”ATOMIC_NUMBER”/>, and <xsl:value-of
select=”ATOMIC_WEIGHT”/>. These are wrapped up inside HTML’s tr and td ele-

ments, so that the end result is a table of atomic numbers matched to atomic

weights. Figure 17-4 shows the output of applying the style sheet in Listing 17-7 to

the complete periodic table document displayed in Netscape Navigator.

One thing you may wish to note about this style sheet: The exact order of the NAME,

ATOMIC_NUMBER, and ATOMIC_WEIGHT elements in the input document is irrele-

vant. They appear in the output in the order they were selected; that is, first num-

ber, then weight. Conversely, the individual atoms are sorted in alphabetical order

as they appear in the input document. Later, you’ll see how to use an xsl:sort ele-

ment to change that so you can arrange the atoms in the more conventional atomic

number order.

502 Part III ✦ Style Languages

Listing 17-7: Templates applied to specific classes of element
with select

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:template match=”/”>
<html>
<head>
<title>Atomic Number vs. Atomic Weight</title>

</head>
<body>
<xsl:apply-templates select=”PERIODIC_TABLE”/>

</body>
</html>

</xsl:template>

<xsl:template match=”PERIODIC_TABLE”>
<h1>Atomic Number vs. Atomic Weight</h1>
<table>
<th>Element</th>
<th>Atomic Number</th>
<th>Atomic Weight</th>
<xsl:apply-templates select=”ATOM”/>

</table>
</xsl:template>

<xsl:template match=”ATOM”>
<tr>
<td><xsl:value-of select=”NAME”/></td>
<td><xsl:value-of select=”ATOMIC_NUMBER”/></td>
<td><xsl:value-of select=”ATOMIC_WEIGHT”/></td>

</tr>
</xsl:template>

</xsl:stylesheet>

Wild cards
Sometimes you want a single template to apply to more than one element. You can

indicate that a template matches all elements by using the asterisk wildcard (*) in

place of an element name in the match attribute. For example this template says

that all elements should be wrapped in a P element:

<xsl:template match=”*”>
<P>
<xsl:value-of select=”.”/>

</P>
</xsl:template>

503Chapter 17 ✦ XSL Transformations

Figure 17-4: A table showing atomic number versus atomic
weight in Netscape Navigator

Of course this is probably more than you want. You’d like to use the template rules

already defined for PERIODIC_TABLE and ATOM elements as well as the root node

and only use this rule for the other elements. Fortunately you can. In the event that

two rules both match a single node, then by default the more specific one takes

precedence. In this case that means that ATOM elements will use the template with

match=”ATOM” instead of a template that merely has match=”*”. However, NAME,

BOILING_POINT, ATOMIC_NUMBER and other elements that don’t match a more spe-

cific template will cause the match=”*” template to activate.

You can place a namespace prefix in front of the asterisk to indicate that only ele-

ments in a particular namespace should be matched. For example, this template

matches all SVG elements, presuming that the prefix svg is mapped to the normal

SVG URI http://www.w3.org/2000/svg in the style sheet.

<xsl:template match=”svg:*”>
<DIV>
<xsl:value-of select=”.”/>

</DIV>
</xsl:template>

504 Part III ✦ Style Languages

Of course in Listing 17-1, there aren’t any elements from this namespace, so this

template wouldn’t produce any output. However, it might when applied to a differ-

ent document that did include some SVG.

Matching children with /
You’re not limited to the children of the current node in match attributes. You can

use the / symbol to match specified hierarchies of elements. Used alone, the / sym-

bol refers to the root node. However, you can use it between two names to indicate

that the second is the child of the first. For example, ATOM/NAME refers to NAME ele-

ments that are children of ATOM elements.

In xsl:template elements, this enables you to match only some of the elements of

a given kind. For example, this template rule marks SYMBOL elements that are chil-

dren of ATOM elements strong. It does nothing to SYMBOL elements that are not

direct children of ATOM elements.

<xsl:template match=”ATOM/SYMBOL”>
<xsl:value-of select=”.”/>

</xsl:template>

Remember that this rule selects SYMBOL elements that are children of ATOM ele-
ments, not ATOM elements that have SYMBOL children. In other words, the . in
<xsl:value-of select=”.”/> refers to the SYMBOL and not to the ATOM.

You can specify deeper matches by stringing patterns together. For example,

PERIODIC_TABLE/ATOM/NAME selects NAME elements whose parent is an ATOM ele-

ment whose parent is a PERIODIC_TABLE element.

You can also use the * wild card to substitute for an arbitrary element name in a

hierarchy. For example, this template rule applies to all SYMBOL elements that are

grandchildren of a PERIODIC_TABLE element.

<xsl:template match=”PERIODIC_TABLE/*/SYMBOL”>
<xsl:value-of select=”.”/>

</xsl:template>

Finally, as you saw above, a / by itself selects the root node of the document. For

example, this rule applies to all PERIODIC_TABLE elements that are root elements

of the document:

<xsl:template match=”/PERIODIC_TABLE”>
<html><xsl:apply-templates/></html>

</xsl:template>

Caution

505Chapter 17 ✦ XSL Transformations

While / refers to the root node, /* refers to the root element, whatever it is. For

example, this template doesn’t care whether the root element is PERIODIC_TABLE,

DOCUMENT, or SCHENECTADY. It produces the same output in all cases.

<xsl:template match=”/*”>
<html>
<head>
<title>Atomic Number vs. Atomic Weight</title>

</head>
<body>
<xsl:apply-templates/>

</body>
</html>

</xsl:template>

Matching descendants with //
Sometimes, especially with an uneven hierarchy, you may find it easier to bypass

intermediate nodes and simply select all the elements of a given type, whether

they’re immediate children, grandchildren, great-grandchildren, or what have you.

The double slash, //, refers to a descendant element at an arbitrary level. For

example, this template rule applies to all NAME descendants of PERIODIC_TABLE, no

matter how deep:

<xsl:template match=”PERIODIC_TABLE//NAME”>
<i><xsl:value-of select=”.”/></i>

</xsl:template>

The periodic table example is fairly shallow, but this trick becomes more important

in deeper hierarchies, especially when an element can contain other elements of its

type (for example, an ATOM contains an ATOM).

The // operator at the beginning of a pattern selects any descendant of the root

node. For example, this template rule processes all ATOMIC_NUMBER elements while

completely ignoring their location:

<xsl:template match=”//ATOMIC_NUMBER”>
<i><xsl:value-of select=”.”/></i>

</xsl:template>

Matching by ID
You may want to apply a particular style to a particular single element without

changing all other elements of that type. The simplest way to do that in XSLT is to

attach a style to the element’s ID type attribute. This is done with the id() selector,

506 Part III ✦ Style Languages

which contains the ID value in single quotes. For example, this rule makes the ele-

ment with the ID e47 bold:

<xsl:template match=”id(‘e47’)”>
<xsl:value-of select=”.”/>

</xsl:template>

This assumes, of course, that the elements that you want to select in this fashion

have an attribute declared as type ID in the source document’s DTD. This may not

be the case, however. For one thing, many documents do not have DTDs. They’re

merely well-formed, not valid. And even if they have a DTD, there’s no guarantee

that any element has an ID type attribute.

ID-type attributes are not simply attributes with the name ID. ID type attributes
are discussed in Chapter 11.

Matching attributes with @
As you saw in Chapter 5, the @ sign matches against attributes and selects nodes

according to attribute names. Simply prefix the name of the attribute that you want

to select with the @ sign. For example, this template rule matches UNITS attributes,

and wraps them in an I element.

<xsl:template match=”@UNITS”>
<I><xsl:value-of select=”.”/></I>

</xsl:template>

However, merely adding this rule to the style sheet will not automatically produce

italicized units in the output because attributes are not children of the elements

that contain them. Therefore by default when an XSLT processor is walking the tree

it does not see attribute nodes. You have to explicitly process them using

xsl:apply-templates with an appropriate select attribute. Listing 17-8 demon-

strates with a style sheet that outputs a table of atomic numbers versus melting

points. Not only is the value of the MELTING_POINT element written out, so is the

value of its UNITS attribute. This is selected by <xsl:apply-templates-of
select=”@UNITS”/> in the template rule for MELTING_POINT elements.

Listing 17-8: An XSLT style sheet that selects the UNITS
attribute with @

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:template match=”/PERIODIC_TABLE”>
<html>
<body>
<h1>Atomic Number vs. Melting Point</h1>

Cross-
Reference

507Chapter 17 ✦ XSL Transformations

<table>
<th>Element</th>
<th>Atomic Number</th>
<th>Melting Point</th>
<xsl:apply-templates/>

</table>
</body>

</html>
</xsl:template>

<xsl:template match=”ATOM”>
<tr>
<td><xsl:value-of select=”NAME”/></td>
<td><xsl:value-of select=”ATOMIC_NUMBER”/></td>
<td><xsl:apply-templates select=”MELTING_POINT”/></td>

</tr>
</xsl:template>

<xsl:template match=”MELTING_POINT”>
<xsl:value-of select=”.”/>
<xsl:apply-templates select=”@UNITS”/>

</xsl:template>

<xsl:template match=”@UNITS”>
<I><xsl:value-of select=”.”/></I>

</xsl:template>

</xsl:stylesheet>

Recall that the value of an attribute node is simply the normalized string value of

the attribute. Once you apply the style sheet in Listing 17-8, ATOM elements come

out formatted like this:

<tr>
<td>Hydrogen</td><td>1</td><td>13.81<I>Kelvin</I></td>
</tr>

<tr>
<td>Helium</td><td>2</td><td>0.95<I>Kelvin</I></td>
</tr>

You can combine attributes with elements using the various hierarchy operators.

For example, the pattern BOILING_POINT/@UNITS refers to the UNITS attribute of a

BOILING_POINT element. ATOM/*/@UNITS matches any UNITS attribute of a child

element of an ATOM element. This is especially helpful when matching against

attributes in template rules. You must remember that what’s being matched is the

attribute node, not the element that contains it. It’s a very common mistake to

implicitly confuse the attribute node with the element node that contains it. For

508 Part III ✦ Style Languages

example, consider this rule, which attempts to apply templates to all child elements

that have UNITS attributes:

<xsl:template match=”ATOM”>
<xsl:apply-templates select=”@UNITS”/>

</xsl:template>

What it actually does is apply templates to the nonexistent UNITS attributes of

ATOM elements.

You can also use the @* wild card to match all attributes of an element, for example

BOILING_POINT/@* to match all attributes of BOILING_POINT elements. You can

also add a namespace prefix after the @ to match all attributes in a declared names-

pace. For instance, @xlink:* matches all the XLink attributes, such as

xlink:show, xlink:type, and xlink:href, assuming the xlink prefix is mapped

to the http://www.w3.org/1999/xlink XLink namespace URI.

Matching comments with comment()
Most of the time you should simply ignore comments in XML documents. Making

comments an essential part of a document is a very bad idea. Nonetheless, XSLT

does provide a means to match a comment if you absolutely have to.

To match a comment, use the comment() pattern. Although this pattern has func-

tion-like parentheses, it never actually takes any arguments. For example, this tem-

plate rule italicizes all comments:

<xsl:template match=”comment()”>
<i><xsl:value-of select=”.”/></i>

</xsl:template>

To distinguish between different comments, you have to look at the comments’ par-

ent and ancestors. For example, recall that a DENSITY element looks like this:

<DENSITY UNITS=”grams/cubic centimeter”>
<!-- At 300K, 1 atm -->
0.0000899

</DENSITY>

You can use the hierarchy operators to select particular comments. For example,

this rule only matches comments that occur inside DENSITY elements:

<xsl:template match=”DENSITY/comment()”>
<i><xsl:value-of select=”.”/></i>

</xsl:template>

The only reason Listing 17-1 uses a comment to specify conditions instead of an

attribute or element is precisely for this example. In practice, you should never put

important information in comments. The real reason XSLT allows you to select com-

509Chapter 17 ✦ XSL Transformations

ments is so that a style sheet can transform from one XML application to another

while leaving the comments intact. Any other use indicates a poorly designed origi-

nal document. The following rule matches all comments, and copies them back out

again using the xsl:comment element.

<xsl:template match=”comment()”>
<xsl:comment><xsl:value-of select=”.”/></xsl:comment>

</xsl:template>

Matching processing instructions with
processing-instruction()
When it comes to writing structured, intelligible, maintainable XML, processing

instructions aren’t much better than comments. However, there are occasional gen-

uine needs for them, including attaching style sheets to documents.

The processing-instruction() function matches processing instructions. The

argument to processing-instruction() is a quoted string giving the target of the

processing instruction to select. If you do not include an argument, the first pro-

cessing instruction child of the current node is matched. For example, this rule

matches the processing instruction children of the root node (most likely the xml-
stylesheet processing instruction). The xsl:processing-instruction element

inserts a processing instruction with the specified name and value in the output

document.

<xsl:template match=”/processing-instruction()”>
<xsl:processing-instruction name=”xml-stylesheet”>
type=”text/xml” value=”auto.xsl”

</xsl:processing-instruction>
</xsl:template>

This rule also matches the xml-stylesheet processing instruction, but by its

name:

<xsl:template
match=”processing-instruction(‘xml-stylesheet’)”>
<xsl:processing-instruction name=”xml-stylesheet”>
<xsl:value-of select=”.”/>

</xsl:processing-instruction>
</xsl:template>

In fact, one of the primary reasons for distinguishing between the root element and

the root node is so that processing instructions from the prolog can be read and

processed. Although the xml-stylesheet processing instruction uses a name =

value syntax, XSL does not consider these to be attributes because processing

instructions are not elements. The value of a processing instruction is simply every-

thing between the white space following its name and the closing ?>.

510 Part III ✦ Style Languages

Matching text nodes with text()
Text nodes are generally ignored as nodes, although their values are included as

part of the value of a selected element. However, the text() operator does enable

you to specifically select the text child of an element. Despite the parentheses, this

operator takes no arguments. For example, this rule emboldens all text:

<xsl:template match=”text()”>
<xsl:value-of select=”.”/>

</xsl:template>

The main reason this operator exists is for the default rules. XSLT processors must

provide the following default rule whether the author specifies it or not:

<xsl:template match=”text()”>
<xsl:value-of select=”.”/>

</xsl:template>

This means that whenever a template is applied to a text node, the text of the node

is output. If you do not want the default behavior, you can override it. For example,

including the following empty template rule in your style sheet will prevent text

nodes from being output unless specifically matched by another rule.

<xsl:template match=”text()”>
</xsl:template>

Using the or operator |
The vertical bar (|)allows a template rule to match multiple patterns. If a node

matches one pattern or the other, it will activate the template. For example, this

template rule matches both ATOMIC_NUMBER and ATOMIC_WEIGHT elements:

<xsl:template match=”ATOMIC_NUMBER|ATOMIC_WEIGHT”>
<xsl:apply-templates/>

</xsl:template>

You can include white space around the | if that makes the code clearer. For example,

<xsl:template match=”ATOMIC_NUMBER | ATOMIC_WEIGHT”>
<xsl:apply-templates/>

</xsl:template>

You can also use more than two patterns in sequence. For example, this template

rule applies to ATOMIC_NUMBER, ATOMIC_WEIGHT, and SYMBOL elements (that is, it

matches ATOMIC_NUMBER, ATOMIC_WEIGHT and SYMBOL elements):

<xsl:template match=”ATOMIC_NUMBER | ATOMIC_WEIGHT | SYMBOL”>
<xsl:apply-templates/>

</xsl:template>

511Chapter 17 ✦ XSL Transformations

The / operator is evaluated before the | operator. Thus, the following template rule

matches an ATOMIC_NUMBER child of an ATOM, or an ATOMIC_WEIGHT of unspecified

parentage, not an ATOMIC_NUMBER child of an ATOM or an ATOMIC_WEIGHT child of

an ATOM.

<xsl:template match=”ATOM/ATOMIC_NUMBER|ATOMIC_WEIGHT”>
<xsl:apply-templates/>

</xsl:template>

Testing with []
So far, I’ve merely tested for the presence of various nodes. However, you can test

for more details about the nodes that match a pattern using []. You can perform

many different tests including:

✦ Whether an element contains a given child, attribute, or other node

✦ Whether the value of an attribute is a certain string

✦ Whether the value of an element matches a string

✦ What position a given node occupies in the hierarchy

For example, seaborgium, element 106, has only been created in microscopic quan-

tities. Even its most long-lived isotope has a half-life of only 30 seconds. With such a

hard-to-create, short-lived element, it’s virtually impossible to measure the density,

melting point, and other bulk properties. Consequently, the periodic table docu-

ment omits the elements describing the bulk properties of seaborgium and similar

atoms because the data simply doesn’t exist. If you want to create a table of atomic

number versus melting point, you should omit those elements with unknown melt-

ing points. To do this, you can provide one template for ATOM elements that have

MELTING_POINT children and another one for elements that don’t, like this:

<!-- Include nothing for arbitrary atoms -->
<xsl:template match=”ATOM” />

<!-- Include a table row for atoms that do have
melting points. This rule will override the
previous one for those atoms that do have
melting points. -->

<xsl:template match=”ATOM[MELTING_POINT]”>
<tr>
<td><xsl:value-of select=”NAME”/></td>
<td><xsl:value-of select=”MELTING_POINT”/></td>

</tr>
</xsl:template>

Note here, that it is the ATOM element being matched, not the MELTING_POINT ele-

ment as in the case of ATOM/MELTING_POINT.

512 Part III ✦ Style Languages

The test brackets can contain more than simply a child-element name. In fact, they

can contain any XPath expression. (XPath expressions are a superset of match pat-

terns that are discussed in the next section.) If the specified element has a child

matching that expression, it is considered to match the total pattern. For example,

this template rule matches ATOM elements with NAME or SYMBOL children.

<xsl:template match=”ATOM[NAME | SYMBOL]”>
<xsl: value-of select="."/>

</xsl:template>

This template rule matches ATOM elements with a DENSITY child element that has a

UNITS attribute:

<xsl:template match=”ATOM[DENSITY/@UNITS]”>
<xsl: value-of select="."/>

</xsl:template>

To revisit an earlier example, to correctly find all child elements that have UNITS
attributes, use * to find all elements and [@UNITS] to winnow those down to the

ones with UNITS attributes, like this:

<xsl:template match=”ATOM”/*[@UNITS]”>
<xsl: value-of select="."/>

</xsl:template>

One type of pattern testing that proves especially useful is string equality. An

equals sign (=) can test whether the value of a node identically matches a given

string. For example, this template finds the ATOM element that contains an

ATOMIC_NUMBER element whose content is the string 10 (Neon).

<xsl:template match=”ATOM[ATOMIC_NUMBER=’10’]”>
This is Neon!

</xsl:template>

Testing against element content may seem extremely tricky because of the need to

get the value exactly right, including white space. You may find it easier to test

against attribute values since those are less likely to contain insignificant white

space. For example, the style sheet in Listing 17-9 applies templates only to those

ATOM elements whose STATE attribute value is the three letters GAS.

Listing 17-9: An XSLT style sheet that selects only those
ATOM elements whose STATE attribute has the
value GAS

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

513Chapter 17 ✦ XSL Transformations

<xsl:template match=”PERIODIC_TABLE”>
<html>
<head><title>Gases</title></head>
<body>
<xsl:apply-templates/>

</body>
</html>

</xsl:template>

<xsl:template match=”ATOM”/>

<xsl:template match=”ATOM[@STATE=’GAS’]”>
<P><xsl:value-of select=”.”/></P>

</xsl:template>

</xsl:stylesheet>

You can use other XPath expressions for more complex matches. For example, you

can select all elements whose names begin with “A” or all elements with an atomic

number less than 100.

XPath Expressions for Selecting Nodes
The select attribute is used in xsl:apply-templates, xsl:value-of, xsl:for-
each, xsl:copy-of, xsl:variable, xsl:param, and xsl:sort to specify exactly

which nodes are operated on. The value of this attribute is an expression written in

the XPath language. The XPath language provides a means of identifying a particu-

lar element, group of elements, text fragment, or other part of an XML document.

The XPath syntax is used both for XSLT and XPointer.

XPointers are discussed in Chapter 20. XPath is discussed further in that chapter as
well.

Expressions are a superset of the match patterns discussed in the last section. That

is, all match patterns are expressions, but not all expressions are match patterns.

Recall that match patterns enable you to match nodes by element name, child ele-

ments, descendants, and attributes, as well as by making simple tests on these

items. XPath expressions allow you to select nodes through all these criteria but

also by referring to ancestor nodes, parent nodes, sibling nodes, preceding nodes,

and following nodes. Furthermore, expressions aren’t limited to producing merely a

list of nodes, but can also produce booleans, numbers, and strings.

Cross-
Reference

514 Part III ✦ Style Languages

Node axes
Expressions are not limited to specifying the children and descendants of the cur-

rent node. XPath provides a number of axes that you can use to select from differ-

ent parts of the tree relative to some particular node in the tree called the context

node. In XSLT, the context node is normally initialized to the current node that the

template matches, though there are ways to change this. Table 17-2 summarizes the

axes and their meanings.

Table 17-2
Expression Axes

Axis Selects From

ancestor The parent of the context node, the parent of the parent of
the context node, the parent of the parent of the parent of
the context node, and so forth back to the root node

ancestor-or-self The ancestors of the context node and the context node
itself

attribute The attributes of the context node

child The immediate children of the context node

descendant The children of the context node, the children of the
children of the context node, and so forth

descendant-or-self The context node itself and its descendants

following All nodes that start after the end of the context node,
excluding attribute and namespace nodes

following-sibling All nodes that start after the end of the context node and
have the same parent as the context node

namespace The namespace of the context node

parent The unique parent node of the context node

preceding All nodes that finish before the beginning of the context
node, excluding attribute and namespace nodes

preceding-sibling All nodes that start before the beginning of the context
node and have the same parent as the context node

self The context node

Choosing an axis limits the expression so that it only selects from the set of nodes

indicated in the second column of Table 17-2. The axis is generally followed by a

515Chapter 17 ✦ XSL Transformations

double colon (::) and a node test that further winnows down this node set. For

example, a node test may contain the name of the element to be selected as in the

following template rule:

<xsl:template match=”ATOM”>
<tr>
<td>
<xsl:value-of select=”child::NAME”/>

</td>
<td>
<xsl:value-of select=”child::ATOMIC_NUMBER”/>

</td>
<td>
<xsl:value-of select=”child::ATOMIC_WEIGHT”/>

</td>
</tr>

</xsl:template>

The template rule matches ATOM elements. When an ATOM element is matched, that

element becomes the context node. A NAME element, an ATOMIC_NUMBER element,

and an ATOMIC_WEIGHT element are all selected from the children of that matched

ATOM element and output as table cells. (If there’s one more than one of these

desired elements — for example, three NAME elements — then all are selected but

only the value of the first one is taken.)

The child axis doesn’t let you do anything that you can’t do with element names

alone. In fact select=”ATOMIC_WEIGHT” is just an abbreviated form of

select=”child::ATOMIC_WEIGHT”. However, the other axes are a little more inter-

esting.

Referring to the parent element is illegal in match patterns, but not in expressions.

To refer to the parent, you use the parent axis. For example, this template matches

BOILING_POINT elements but outputs the value of the parent ATOM element:

<xsl:template match=”BOILING_POINT”>
<P><xsl:value-of select=”parent::ATOM”/></P>

</xsl:template>

Some radioactive atoms such as polonium have half-lives so short that bulk proper-

ties such as the boiling point and melting point can’t be measured. Therefore, not

all ATOM elements necessarily have BOILING_POINT child elements. The above rule

enables you to write a template that only outputs those elements that actually

have boiling points. Expanding on this example, Listing 17-10 matches the

MELTING_POINT elements but actually outputs the parent ATOM element using

parent::ATOM.

516 Part III ✦ Style Languages

Listing 17-10: A style sheet that outputs only those elements
with known melting points

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:template match=”/”>
<html>
<body>
<xsl:apply-templates select=”PERIODIC_TABLE”/>

</body>
</html>

</xsl:template>

<xsl:template match=”PERIODIC_TABLE”>
<h1>Elements with known Melting Points</h1>
<xsl:apply-templates select=”.//MELTING_POINT”/>

</xsl:template>

<xsl:template match=”MELTING_POINT”>
<p>
<xsl:value-of select=”parent::ATOM”/>

</p>
</xsl:template>

</xsl:stylesheet>

Once in awhile, you may need to select the nearest ancestor of an element with a

given type. The ancestor axis does this. For example, this rule inserts the value of

the nearest PERIODIC_TABLE element that contains the matched SYMBOL element.

<xsl:template match=”SYMBOL”>
<xsl:value-of select=”ancestor::PERIODIC_TABLE”/>

</xsl:template>

The ancestor-or-self axis behaves like the ancestor axis except that if the con-

text node passes the node test, then it will be returned as well. For example, this

rule matches all elements. If the matched element is a PERIODIC_TABLE, then that

very PERIODIC_TABLE is selected in xsl:value-of.

<xsl:template match=”*”>
<xsl:value-of select=”ancestor-or-self::PERIODIC_TABLE”/>

</xsl:template>

517Chapter 17 ✦ XSL Transformations

Node tests
Instead of the name of a node, the axis may be followed by one of these four node-

type functions:

✦ comment()

✦ text()

✦ processing-instruction()

✦ node()

The comment() function selects a comment node. The text() function selects a

text node. The processing-instruction() function selects a processing instruc-

tion node, and the node() function selects any type of node. (The * wild card only

selects element nodes.) The processing-instruction() node type can also con-

tain an optional argument specifying the name of the processing instruction to

select.

Hierarchy operators
You can use the / and // operators to string expressions together. For example,

Listing 17-11 prints a table of element names, atomic numbers, and melting points

for only those elements that have melting points. It does this by selecting the par-

ent of the MELTING_POINT element, then finding that parent’s NAME and

ATOMIC_NUMBER children with select=”parent::*/child::NAME)”.

Listing 17-11: A table of melting point versus atomic number

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:template match=”/PERIODIC_TABLE”>
<html>
<body>
<h1>Atomic Number vs. Melting Point</h1>
<table>
<th>Element</th>
<th>Atomic Number</th>
<th>Melting Point</th>
<xsl:apply-templates select=”child::ATOM”/>

</table>
</body>

</html>
</xsl:template>

Continued

518 Part III ✦ Style Languages

Listing 17-11 (continued)

<xsl:template match=”ATOM”>
<xsl:apply-templates
select=”child::MELTING_POINT”/>

</xsl:template>

<xsl:template match=”MELTING_POINT”>
<tr>
<td>
<xsl:value-of select=”parent::*/child::NAME”/>

</td>
<td>
<xsl:value-of
select=”parent::*/child::ATOMIC_NUMBER”/>
</td>
<td>
<xsl:value-of select=”self::*”/>
<xsl:value-of select=”attribute::UNITS”/>

</td>
</tr>

</xsl:template>

</xsl:stylesheet>

This is not the only way to solve the problem. Another possibility is to use the pre-
ceding-sibling and following-sibling axes, or both if the relative location

(preceding or following) is uncertain. The necessary template rule for the MELT-
ING_POINT element looks like this:

<xsl:template match=”MELTING_POINT”>
<tr>
<td>
<xsl:value-of
select=”preceding-sibling::NAME

| following-sibling::NAME”/>
</td>
<td>
<xsl:value-of
select=”preceding-sibling::ATOMIC_NUMBER

| following-sibling::ATOMIC_NUMBER”/>
</td>
<td>
<xsl:value-of select=”self::*”/>
<xsl:value-of select=”attribute::UNITS”/>

</td>
</tr>

</xsl:template>

519Chapter 17 ✦ XSL Transformations

Abbreviated syntax
The various axes in Table 17-2 are a bit too wordy for comfortable typing. XPath

also defines an abbreviated syntax that can substitute for the most common of

these axes and is more used in practice. Table 17-3 shows the full and abbreviated

equivalents.

Table 17-3
Abbreviated Syntax for XPath Expressions

Abbreviation Full

. self::node()

.. parent::node()

name child::name

@name attribute::name

// /descendant-or-self::node()/

Listing 17-12 demonstrates by rewriting Listing 17-11 using the abbreviated syntax.

The output produced by the two style sheets is exactly the same, however.

Listing 17-12: A table of melting point versus atomic number
using the abbreviated syntax

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:template match=”/PERIODIC_TABLE”>
<html>
<body>
<h1>Atomic Number vs. Melting Point</h1>
<table>
<th>Element</th>
<th>Atomic Number</th>
<th>Melting Point</th>
<xsl:apply-templates select=”ATOM”/>

</table>
</body>

</html>
</xsl:template>

Continued

520 Part III ✦ Style Languages

Listing 17-12 (continued)

<xsl:template match=”ATOM”>
<xsl:apply-templates
select=”MELTING_POINT”/>

</xsl:template>

<xsl:template match=”MELTING_POINT”>
<tr>
<td>
<xsl:value-of
select=”../NAME”/>

</td>
<td>
<xsl:value-of
select=”../ATOMIC_NUMBER”/>
</td>
<td>
<xsl:value-of select=”.”/>
<xsl:value-of select=”@UNITS”/>

</td>
</tr>

</xsl:template>

</xsl:stylesheet>

Match patterns can only use the abbreviated syntax and the child and attribute
axes. The full syntax using the axes of Table 17-2 is restricted to expressions.

Expression types
Every expression evaluates to a single value. For example, the expression 3 + 2
evaluates to the value 5. The expressions used so far have all evaluated to node

sets. However, there are five types of expressions in XSLT:

✦ Node sets

✦ Booleans

✦ Numbers

✦ Strings

✦ Result tree fragments

Node sets
A node set is an unordered group of nodes from the input document. The axes in

Table 17-2 all return a node set containing the nodes they match. Which nodes are

in the node set depends on the context node, the node test, and the axis.

521Chapter 17 ✦ XSL Transformations

For example, when the context node is the PERIODIC_TABLE element of Listing

17-1, the XPath expression select=”child::ATOM” returns a node set that

contains both ATOM elements in that document. The XPath expression

select=”child::ATOM/child::NAME” returns a node set containing the two ele-

ment nodes <NAME>Hydrogen</NAME> and <NAME>Helium</NAME> when the con-

text node is the PERIODIC_TABLE element of Listing 17-1.

The context node is a member of the context node list. The context node list is that

group of elements that all match the same rule at the same time, generally as a

result of one xsl:apply-templates or xsl:for-each call. For instance, when

Listing 17-12 is applied to Listing 17-1, the ATOM template is invoked twice, first for

the hydrogen atom, then for the helium atom. The first time it’s invoked, the con-

text node is the hydrogen ATOM element. The second time it’s invoked, the context

node is the helium ATOM element. However, both times the context node list is the

set containing both the helium and hydrogen ATOM elements.

Table 17-4 lists a number of functions that operate on node sets, either as argu-

ments or as the context node.

Table 17-4
Functions That Operate on or Return Node Sets

Function Return Type Returns

position() number The position of the context node in
the context node list; the first node
in the list has position 1.

last() number The number of nodes in the context
node list; this is the same as the
position of the last node in the list.

count(node-set) number The number of nodes in node-set.

id node set A node set containing all the
(string1 string2 string3...) elements anywhere in the same

document that have an ID named in
the argument list; the empty set if no
element has the specified ID.

key node set A node set containing all nodes in
(string name, Object value) this document that have a key with

the specified value. Keys are set with
the top-level xsl:key element.

Continued

522 Part III ✦ Style Languages

Table 17-4 (continued)

Function Return Type Returns

document node set A node set in the document
(string URI, string base) referred to by the URI; the nodes are

chosen from the named anchor or
XPointer used by the URI. If there is
no named anchor or XPointer, then
the root element of the named
document is the node set. Relative
URIs are relative to the base URI
given in the second argument. If the
second argument is omitted, then
relative URIs are relative to the URI
of the style sheet (not the source
document!).

local-name(node set) string The local name (everything after the
namespace prefix) of the first node
in the node set argument; can be
used without any arguments to get
the local name of the context node.

namespace-uri(node set) string The URI of the namespace of the first
node in the node set; can be used
without any arguments to get the
URI of the namespace of the context
node; returns an empty string if the
node is not in a namespace.

name(node set) string The qualified name (both prefix and
local part) of the first node in the
node set argument; can be used
without an argument to get the
qualified name of the context node.

generate-id(node set) string A unique identifier for the first node
in the argument node set; can be
used without any argument to
generate an ID for the context node.

If an argument of the wrong type is passed to one of these functions, then XSLT will

attempt to convert that argument to the correct type; for instance, by converting

the number 12 to the string “12”. However, no arguments may be converted to node

sets.

523Chapter 17 ✦ XSL Transformations

The position() function can be used to determine an element’s position within a

node set. Listing 17-13 is a style sheet that prefixes the name of each atom’s name

with its position in the document using <xsl:value-of select=”position()”/>.

Listing 17-13: A style sheet that numbers the atoms in the
order they appear in the document

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:template match=”/PERIODIC_TABLE”>
<HTML>
<HEAD><TITLE>The Elements</TITLE></HEAD>
<BODY>
<xsl:apply-templates select=”ATOM”/>

</BODY>
</HTML>

</xsl:template>

<xsl:template match=”ATOM”>
<P>
<xsl:value-of select=”position()”/>.
<xsl:value-of select=”NAME”/>

</P>
</xsl:template>

</xsl:stylesheet>

When this style sheet is applied to Listing 17-1, the output is this:

<HTML>
<HEAD>
<TITLE>The Elements</TITLE>
</HEAD>
<BODY>
<P>1.

Hydrogen</P>
<P>2.

Helium</P>
</BODY>
</HTML>

524 Part III ✦ Style Languages

Booleans
A boolean has one of two values: true or false. XSLT allows any kind of data to be

transformed into a boolean. This is often done implicitly when a string or a number

or a node set is used where a boolean is expected, as in the test attribute of an

xsl:if element. These conversions can also be performed by the boolean() func-

tion which converts an argument of any type to a boolean according to these rules:

✦ A number is false if it’s zero or NaN (a special symbol meaning Not a Number,

used for the result of dividing by zero and similar illegal operations); true oth-

erwise.

✦ An empty node set is false. All other node sets are true.

✦ An empty result tree fragment is false. All other result tree fragments are true.

✦ A zero length string is false. All other strings are true.

Booleans are also produced as the result of expressions involving these operators:

✦ = equal to

✦ != not equal to

✦ < less than (really <)

✦ > greater than

✦ <= less than or equal to (really <=)

✦ >= greater than or equal to

The < sign is illegal in attribute values. Consequently, it must be replaced by
< even when used as the less-than operator.

These operators are most commonly used in predicate tests to determine whether

a rule should be invoked. An XPath expression can contain not only a pattern that

selects certain nodes, but also a predicate that further filters the set of nodes

selected. For example, child::ATOM selects all the ATOM children of the context

node. However, child::ATOM[position()=1] selects only the first ATOM child of

the context node. [position()=1] is a predicate on the node test ATOM that

returns a boolean result: True if the position of the ATOM is equal to one; false other-

wise. Each node test can have any number of predicates. However, more than one is

unusual.

For example, this template rule applies to the first ATOM element in the periodic

table, but not to subsequent ones, by testing whether or not the position of the ele-

ment equals 1.

<xsl:template match=”PERIODIC_TABLE/ATOM[position()=1]”>
<xsl:value-of select=”.”/>

</xsl:template>

Caution

525Chapter 17 ✦ XSL Transformations

This template rule applies to all ATOM elements that are not the first child element

of the PERIODIC_TABLE by testing whether the position is greater than 1:

<xsl:template match=”PERIODIC_TABLE/ATOM[position()>1]”>
<xsl:value-of select=”.”/>

</xsl:template>

The keywords and and or logically combine two boolean expressions according to

the normal rules of logic. For example, suppose you want a template that matches

an ATOMIC_NUMBER element that is both the first and last child of its parent ele-

ment; that is, it is the only element of its parent. This template rule uses and to

accomplish that:

<xsl:template
match=”ATOMIC_NUMBER[position()=1 and position()=last()]”>
<xsl:value-of select=”.”/>

</xsl:template>

If the first condition is false, then the complete and expression is guaranteed to be

false. Consequently, the second condition won’t be checked.

This template matches both the first and last ATOM elements in their parent by

matching when the position is 1 or when the position is equal to the number of ele-

ments in the set:

<xsl:template match=”ATOM[position()=1 or position()=last()]”>
<xsl:value-of select=”.”/>

</xsl:template>

This is logical or, so it will also match if both conditions are true. That is, it will

match an ATOM that is both the first and last child of its parent. If the first condition

is true, then the complete or expression is guaranteed to be true. Consequently, the

second condition won’t be checked.

The not() function reverses the result of an operation. For example, this template

rule matches all ATOM elements that are not the first child of their parents:

<xsl:template match=”ATOM[not(position()=1)]”>
<xsl:value-of select=”.”/>

</xsl:template>

The same template rule could be written using the not equal operator != instead:

<xsl:template match=”ATOM[position()!=1]”>
<xsl:value-of select=”.”/>

</xsl:template>

526 Part III ✦ Style Languages

This template rule matches all ATOM elements that are neither the first nor last ATOM
child of their parent:

<xsl:template match =
“ATOM[not(position()=1 or position()=last())]”>
<xsl:value-of select=”.”/>

</xsl:template>

XSLT does not have an exclusive or operator. However, one can be formed by judi-

cious use of not(), and, and or. For example, this rule selects those ATOM elements

that are either the first or last child, but not both:

<xsl:template
match=”ATOM[(position()=1 or position()=last())

and not(position()=1 and position()=last())]”>
<xsl:value-of select=”.”/>

</xsl:template>

There are three remaining functions that return booleans:

✦ true() always returns true

✦ false() always returns false

✦ lang(code) returns true if the current node has the same language (as given

by the xml:lang attribute) as the code argument

Numbers
XPath numbers are 64-bit IEEE 754 floating-point doubles. Even numbers like 42 or

-7000 that look like integers are stored as doubles. Nonnumber values such as

strings and booleans are converted to numbers automatically as necessary, or at

user request through the number() function using these rules:

✦ Booleans are 1 if true; 0 if false.

✦ A string is trimmed of leading and trailing white space, then converted to a

number in the fashion you would expect; for example, the string “12” is con-

verted to the number 12. If the string cannot be interpreted as a number, then

it is converted to the special symbol NaN, which stands for Not a Number.

✦ Node sets and result tree fragments are converted to strings; the string is then

converted to a number.

For example, this template only outputs the nonnaturally occurring transuranium

elements; that is, those elements with atomic numbers greater than 92 (the atomic

number of uranium). The node set produced by ATOMIC_NUMBER is implicitly

527Chapter 17 ✦ XSL Transformations

converted to the string value of the current ATOMIC_NUMBER node. This string is

then converted into a number.

<xsl:template match=”/PERIODIC_TABLE”>
<HTML>
<HEAD><TITLE>The Transuranium Elements</TITLE></HEAD>
<BODY>
<xsl:apply-templates select=”ATOM[ATOMIC_NUMBER>92]”/>

</BODY>
</HTML>

</xsl:template>

XPath provides the standard four arithmetic operators:

✦ + for addition

✦ - for subtraction

✦ * for multiplication

✦ div for division (the more common / is already used for other purposes in

XPath)

For example, <xsl:value-of select=”2+2”/> inserts the string “4” into the out-

put document. These operations are more commonly used as part of a test. For

example, this rule selects those elements whose atomic weight is more than twice

their atomic number:

<xsl:template match=”/PERIODIC_TABLE”>
<HTML>
<BODY>
<H1>High Atomic Weight to Atomic Number Ratios</H1>
<xsl:apply-templates
select=”ATOM[ATOMIC_WEIGHT > 2 * ATOMIC_NUMBER]”/>

</BODY>
</HTML>

</xsl:template>

This template actually prints the ratio of atomic weight to atomic number:

<xsl:template match=”ATOM”>
<p>
<xsl:value-of select=”NAME”/>
<xsl:value-of select=”ATOMIC_WEIGHT div ATOMIC_NUMBER”/>

</p>
</xsl:template>

XPath also provides the less-familiar mod binary operator, which takes the remain-

der of two numbers. When used in conjunction with position() this operator lets

you perform tasks such as outputting every second ATOM or alternating colors

between rows in a table. Just define templates that apply different styles when the

528 Part III ✦ Style Languages

position mod two is one and when it’s zero. For example, these two rules use differ-

ent colors for alternate rows of a table:

<xsl:template match=”ATOM[position() mod 2 = 1]”>
<tr>
<td><xsl:value-of select=”NAME”/></td>
<td><xsl:value-of select=”ATOMIC_NUMBER”/></td>
<td><xsl:apply-templates select=”MELTING_POINT”/></td>

</tr>
</xsl:template>

<xsl:template match=”ATOM[position() mod 2 = 0]”>
<tr style=”color: #666666”>
<td><xsl:value-of select=”NAME”/></td>
<td><xsl:value-of select=”ATOMIC_NUMBER”/></td>
<td><xsl:apply-templates select=”MELTING_POINT”/></td>

</tr>
</xsl:template>

You can change the divisor to 3 to apply different styles to every third element, to 4

to apply different styles to every fourth element, and so forth.

Finally, XPath includes four functions that operate on numbers:

✦ floor() returns the greatest integer less than or equal to the number

✦ ceiling() returns the smallest integer greater than or equal to the number

✦ round() rounds the number to the nearest integer

✦ sum() returns the sum of its arguments

For example, this template rule estimates the number of neutrons in an atom by

subtracting the atomic number (the number of protons) from the atomic weight

(the weighted average over the natural distribution of isotopes of the number of

neutrons plus the number of protons) and rounding to the nearest integer:

<xsl:template match=”ATOM”>
<p>
<xsl:value-of select=”NAME”/>
<xsl:value-of
select=”round(ATOMIC_WEIGHT - ATOMIC_NUMBER)”/>

</p>
</xsl:template>

This rule calculates the average atomic weight of all the atoms in the table by

adding all the atomic weights, and then dividing by the number of atoms:

<xsl:template match=”/PERIODIC_TABLE”>
<HTML>
<BODY>
<H1>Average Atomic Weight</H1>
<xsl:value-of

529Chapter 17 ✦ XSL Transformations

select=”sum(descendant::ATOMIC_WEIGHT)
div count(descendant::ATOMIC_WEIGHT)”/>

</BODY>
</HTML>

</xsl:template>

Strings
A string is a sequence of Unicode characters. Other data types can be converted to

strings using the string() function according to these rules:

✦ Node sets are converted to strings by using the value of the first node in the

set as calculated by the xsl:value-of element according to the rules given

in Table 17-1.

✦ Result tree fragments are converted by acting as if they’re contained in a sin-

gle element, and then taking the value of that imaginary element. Again, the

value of this element is calculated by the xsl:value-of element according to

the rules given in Table 17-1. That is, all the result tree fragment’s text (but not

markup) is concatenated.

✦ A number is converted to a European-style number string like -12 or

3.1415292.

✦ Boolean false is converted to the English word false. Boolean true is con-

verted to the English word true.

Besides string(), XSLT contains 10 functions that manipulate strings. These are

summarized in Table 17-5.

Table 17-5
XPath String Functions

Function Return Type Returns

starts-with(main_string, Boolean True if main_string starts with
prefix_string) prefix_string; false otherwise

contains(containing_string, Boolean True if the contained_string is
contained_string) part of the containing_string;

false otherwise

substring String length characters from the
(string, offset, length) specified offset in string; or all

characters from the offset to the
end of the string if length is
omitted; length and offset are
rounded to the nearest integer if
necessary

Continued

530 Part III ✦ Style Languages

Table 17-5 (continued)

Function Return Type Returns

substring-before String The part of the string from the
(string, marker-string) first character up to (but not

including) the first occurrence of
marker-string

substring-after String The part of the string from the
(string, marker-string) end of the first occurrence of

marker-string to the end of
string; the first character in the
string is at offset 1

string-length(string) Number The number of characters in string

normalize-space(string) String The string after leading and
trailing white space is stripped and
runs of white space are replaced
with a single space; if the argument
is omitted the string value of the
context node is normalized

translate(string, String Returns string with occurrences of
replaced_text, characters in replaced_text
replacement_text) replaced by the corresponding

characters from
replacement_text

concat String Returns the concatenation of as
(string1, string2, . . .) many strings as are passed as

arguments in the order they were
passed

format-number(number, String Returns the string form of number
format-string, formatted according to the specified
locale-string) format-string as if by Java 1.1’s

java.text.DecimalFormat class
(see http://java.sun.com/
products/jdk/1.1/docs/api/
java.text.DecimalFormat.
html); the locale-string is an
optional argument that provides
the name of the xsl:decimal-
format element used to interpret
the format-string

531Chapter 17 ✦ XSL Transformations

Result tree fragments
A result tree fragment is a portion of an XML document that is not a complete node

or set of nodes. For instance, using the document() function with a URI that points

into the middle of an element might produce a result tree fragment. Result tree frag-

ments may also be returned by some extension functions (functions unique to a

particular XSLT implementation or installation).

Because result tree fragments aren’t well-formed XML, you can’t do much with

them. In fact, the only allowed operations are to convert them to a string or a

boolean using string() and boolean(), respectively.

The Default Template Rules
Having to carefully map the hierarchy of an XML document in an XSLT style sheet

may be inconvenient. This is especially true if the document does not follow a sta-

ble, predictable order like the periodic table, but rather throws elements together

willy-nilly like many Web pages. In those cases, you should have general rules that

can find an element and apply templates to it regardless of where it appears in the

source document.

To make this process easier, XSLT defines several default template rules that are

implicitly included in all style sheets. The first default rule matches root and ele-

ment nodes, and applies templates to all child nodes. The second default rule

matches text nodes and attributes, copying their values onto the output stream.

Together these two rules mean that even a blank XSLT style sheet with just one

empty xsl:stylesheet element will still produce the raw character data of the

input XML document as output.

The default rule for elements
The first default rule applies to element nodes and the root node:

<xsl:template match=”*|/”>
<xsl:apply-templates/>

</xsl:template>

*|/ is XPath shorthand for “any element node or the root node.” The purpose of

this rule is to ensure that all elements are recursively processed even if they aren’t

reached by following the explicit rules. That is, unless another rule overrides this

one (especially for the root element), all element nodes will be processed.

However, once an explicit rule for any parent of an element is present, this rule will

not be activated for the child elements unless the template rule for the parent has

an xsl:apply-templates child. For instance, you can stop all processing by

532 Part III ✦ Style Languages

matching the root element and neither applying templates nor using xsl:for-each
to process the children like this:

<xsl:template match=”/”>
</xsl:template>

The default rule for text nodes and attributes
Exceptionally observant readers may have noted several of the examples seem to

have output the contents of some elements without actually taking the value of the

element they were outputting! These contents were provided by XSLT’s default rule

for text and attribute nodes. This rule is:

<xsl:template match=”text()|@*”>
<xsl:value-of select=”.”/>

</xsl:template>

This rule matches all text and attribute nodes (match=”text()|@*”) and outputs

the value of the node (<xsl:value-of select=”.”/>). In other words, it copies

the text from the input to the output. This rule ensures that at the very least an ele-

ment’s text is output, even if no rule specifically matches it. Another rule can over-

ride this one for specific elements where you want either more or less than the text

content of an element.

This rule also copies attribute values (but not names). However, they turn from

attributes in the input to simple text in the output. Because there’s no default rule

that ever applies templates to attributes, this rule won’t be activated for attributes

unless you specifically add a nondefault rule somewhere in the style sheet that

does apply templates to attributes of one or more elements.

The default rule for processing instructions and
comments
There’s also a default rule for processing instructions and comments. It simply says

to do nothing; that is, drop the processing instructions and comments from the out-

put as if they didn’t exist. It looks like this:

<xsl:template match=”processing-instruction()|comment()”/>

You can, of course, replace this with your own rule for handling processing instruc-

tions and comments if you want to.

Implications of the default rules
Together, the default rules imply that applying an empty style sheet with only an

xsl:stylesheet or xsl:transform element but no children (such as Listing

17-14) to an XML document copies all the #PCDATA out of the elements in the input

533Chapter 17 ✦ XSL Transformations

to the output. However, this method produces no markup. These are, however,

extremely low priority rules. Consequently, any other matches take precedence

over the default rules.

Listing 17-14: An empty XML style sheet

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

</xsl:stylesheet>

One of the most common sources of confusion about XSLT in Internet Explorer 5.5
and earlier is that IE does not provide any of these default rules. You have to make
sure that you explicitly match any node whose contents (including descendants)
you want to output.

Deciding What Output to Include
It’s often necessary to defer decisions about what markup to emit until the input

document has been read. For instance, you may want to change the contents of a

FILENAME element into the HREF attribute of an A element, or replace one element

type in the input with several different element types in the output depending on

the value of an attribute. This is accomplished with xsl:element, xsl:attribute,

xsl:processing-instruction, xsl:comment, and xsl:text elements. XSLT

instructions are used in the contents of these elements and attribute value tem-

plates are used in the attribute values of these elements to vary their output.

Attribute value templates
Attribute value templates copy data from the input document to attribute values in

the output. For example, suppose you want to convert the periodic table into

empty ATOM elements with this attribute-based form:

<ATOM NAME=”Vanadium”
ATOMIC_WEIGHT=”50.9415”
ATOMIC_NUMBER=”23”

/>

Caution

534 Part III ✦ Style Languages

To do this, you need to extract the contents of elements in the input document and

place those in attribute values in the output document. The first thing you’re likely

to attempt is something similar to this:

<xsl:template match=”ATOM”>
<ATOM NAME=”<xsl:value-of select=’NAME’/>”
ATOMIC_WEIGHT=”<xsl:value-of select=’ATOMIC_WEIGHT’/>”
ATOMIC_NUMBER=”<xsl:value-of select=’ATOMIC_NUMBER’/>”

/>
</xsl:template>

But this is malformed XML. You can’t use the < character inside an attribute value.

Furthermore, it’s extremely difficult to write software that can parse this in its most

general case.

Instead, inside attribute values, data enclosed in curly braces {} takes the place of

the xsl:value-of element. The correct way to write the above template is like

this:

<xsl:template match=”ATOM”>
<ATOM NAME=”{NAME}”/>
ATOMIC_WEIGHT=”{ATOMIC_WEIGHT}”
ATOMIC_NUMBER=”{ATOMIC_NUMBER}”

/>
</xsl:template>

In the output, {NAME} is replaced by the value of the NAME child element of the

matched ATOM. {ATOMIC_WEIGHT} is replaced by the value of the ATOMIC_WEIGHT
child element of the matched ATOM. {ATOMIC_NUMBER} is replaced by the value of

the ATOMIC_NUMBER child element, and so on.

Attribute value templates can have more complicated patterns than merely an ele-

ment name. In fact, you can use any XPath expression in an attribute value tem-

plate. For example, this template rule selects DENSITY elements in the form used in

Listing 17-1.

<xsl:template match=”DENSITY”>
<BULK_PROPERTY
NAME=”DENSITY”
ATOM=”{../NAME}”
VALUE=”{normalize-space(.)}”
UNITS=”{@UNITS}”

/>
</xsl:template>

It converts them into BULK_PROPERTY elements that look like this:

<BULK_PROPERTY NAME=”DENSITY” ATOM=”Helium”
VALUE=”0.0001785” UNITS=”grams/cubic centimeter”/>

535Chapter 17 ✦ XSL Transformations

Attribute values are not limited to a single attribute value template. You can com-

bine an attribute value template with literal data or with other attribute value tem-

plates. For example, this template rule matches ATOM elements and replaces them

with their name formatted as a link to a file in the format H.html, He.html, and so

on. The filename is derived from the attribute value template {SYMBOL}, while the

literal data provides the period and extension.

<xsl:template match=”ATOM”>

<xsl:value-of select=”NAME”/>

</xsl:template>

More than one attribute value template can be included in an attribute value. For

example, this template rule includes the density units as part of the VALUE attribute

rather than making them a separate attribute:

<xsl:template match=”DENSITY”>
<BULK_PROPERTY
NAME=”DENSITY”
ATOM=”{../NAME}”
VALUE=”{normalize-space(.)} {@UNITS}”

/>
</xsl:template>

You can use attribute value templates in many attributes in an XSLT style

sheet. This is particularly important in xsl:element, xsl:attribute, and

xsl:processing-instruction elements where attribute value templates allow

the designer to defer the decision about exactly what element, attribute, or pro-

cessing instruction appears in the output until the input document is read. You can-

not use attribute value templates as the value of a select or match attribute, an

xmlns attribute, an attribute that provides the name of another XSLT instruction

element, or an attribute of a top-level element (one that’s an immediate child of

xsl:stylesheet).

Inserting elements into the output with xsl:element
Elements are usually included in the output document simply by including the lit-

eral start and end tags in template content. For instance, to insert a P element you

merely type <P> and </P> at the appropriate points in the style sheet. However,

occasionally you need to use details from the input document to determine which

element to place in the output document. This might happen, for example, when

making a transformation from a source vocabulary that uses attributes for informa-

tion to an output vocabulary that uses elements for the same information.

The xsl:element element inserts an element into the output document. The name

of the element is given by an attribute value template in the name attribute of

xsl:element. The content of the element derives from the content of the

536 Part III ✦ Style Languages

xsl:element element, which may include xsl:attribute, xsl:processing-
instruction, and xsl:comment instructions (all discussed below) to insert these

items.

For example, suppose you want to replace the ATOM elements with GAS, LIQUID,

and SOLID elements, depending on the value of the STATE attribute. Using

xsl:element, a single rule can do this by converting the value of the STATE
attribute to an element name. This is how it works:

<xsl:template match=”ATOM”>
<xsl:element name=”{@STATE}”>
<NAME><xsl:value-of select=”NAME”/></NAME>
<!-- rules for other children -->

</xsl:element>
</xsl:template>

By using more complicated attribute value templates, you can perform most of the

calculations that you might need.

Inserting attributes into the output with xsl:attribute
You can include attributes in the output document simply by typing the literal

attributes themselves. For instance, to insert a DIV element with an ALIGN attribute

bearing the value CENTER, you merely type <DIV ALIGN=”CENTER”> and </DIV> at

the appropriate points in the style sheet. However, you frequently have to rely on

data that you read from the input document to determine an attribute value and

sometimes even to determine the attribute name.

For example, suppose you want a style sheet that selects atom names and formats

them as links to files named H.html, He.html, Li.html, and so forth like this:

Hydrogen
Helium
Lithium

Each different element in the input will have a different value for the HREF attribute.

The xsl:attribute element calculates an attribute name and value and inserts it

into the output. Each xsl:attribute element is a child of either an xsl:element
element or a literal element. The attribute calculated by xsl:attribute will be

attached to the element calculated by its parent in the output. The name of the

attribute is specified by the name attribute of the xsl:attribute element. The

value of the attribute is given by the contents of the xsl:attribute element. For

example, this template rule produces the output shown above:

<xsl:template match=”ATOM”>
<A>
<xsl:attribute name=”HREF”>
<xsl:value-of select=”SYMBOL”/>.html

</xsl:attribute>

537Chapter 17 ✦ XSL Transformations

<xsl:value-of select=”NAME”/>

</xsl:template>

All xsl:attribute elements must come before any other content of their parent

element. You can’t add an attribute to an element after you’ve already started writ-

ing out its content. For example, this template is illegal:

<xsl:template match=”ATOM”>
<A>
<xsl:value-of select=”NAME”/>
<xsl:attribute name=”HREF”>
<xsl:value-of select=”SYMBOL”/>.html

</xsl:attribute>

</xsl:template>

Defining attribute sets
You often need to apply the same group of attributes to many different elements, of

either the same or different classes. For instance, you might want to apply a style
attribute to each cell in an HTML table. To make this simpler, you can define one or

more attributes as members of an attribute set at the top level of the style sheet

with xsl:attribute-set, and then include that attribute set in an element with an

xsl:use-attribute-sets attribute.

For example, this xsl:attribute-set element defines an element named cell-
style with a font-family attribute of New York, Times New Roman, Times, serif
and a font-size attribute of 12pt.

<xsl:attribute-set name=”cellstyle”>
<xsl:attribute name=”font-family”>
New York, Times New Roman, Times, serif

</xsl:attribute>
<xsl:attribute name=”font-size”>12pt</xsl:attribute>

</xsl:attribute-set>

This template rule then applies those attributes to td elements in the output.

<xsl:template match=”ATOM”>
<tr>
<td xsl:use-attribute-sets=”cellstyle”>
<xsl:value-of select=”NAME”/>

</td>
<td xsl:use-attribute-sets=”cellstyle”>
<xsl:value-of select=”ATOMIC_NUMBER”/>

</td>
</tr>

</xsl:template>

538 Part III ✦ Style Languages

An element can use more than one attribute set by specifying the names of the all

the sets in a white space separated list in the value of the xsl:use-attribute-
sets attribute. All attributes from all the sets are applied to the element. For exam-

ple, this td element possesses attributes from both the cellstyle and the

numberstyle attribute sets.

<td xsl:use-attribute-sets=”cellstyle numberstyle”>
<xsl:value-of select=”ATOMIC_NUMBER”/>

</td>

If more than one attribute set defines the same attribute, then the last attribute set

mentioned is used. If there is more than one attribute set with the same name (as

may happen when one style sheet imports another) then the attributes in the sets

are merged. If the identically named attribute sets define the same attribute, then

the value from the set with higher importance is chosen. A style sheet in which mul-

tiple attribute sets of the same importance with the same name define the same

attribute is in error.

You can also include attribute sets in particular elements by adding a use-
attribute-sets element to an xsl:element, xsl:copy, or xsl:attribute-set
element. For example,

<xsl:element name=”td” use-attribute-sets=”cellstyle”>
<xsl:value-of select=”ATOMIC_NUMBER”/>

</xsl:element>

The xsl: prefix is unnecessary (and in fact prohibited) when use-attribute-
sets is an attribute of an XSLT element rather than an element from the result set.

Generating processing instructions with
xsl:processing-instruction
The xsl:processing-instruction element places a processing instruction in the

output document. The target of the processing instruction is specified by a required

name attribute. The contents of the xsl:processing-instruction element

become the contents of the processing instruction. For example, this rule replaces

PROGRAM elements with a gcc processing instruction:

<xsl:template match=”PROGRAM”>
<xsl:processing-instruction name=”gcc”> -O4
</xsl:processing-instruction>

</xsl:template>

PROGRAM elements in the input are replaced by this processing instruction in the

output:

<?gcc -O4
?>

539Chapter 17 ✦ XSL Transformations

The contents of the xsl:processing-instruction element can include

xsl:value-of elements and xsl:apply-templates elements provided the result

of these instructions is pure text. For example,

<xsl:template match=”PROGRAM”>
<xsl:processing-instruction name=”gcc”>-O4
<xsl:value-of select=”NAME”/>

</xsl:processing-instruction>
</xsl:template>

The xsl:processing-instruction element may not contain xsl:element and

other instructions that produce elements and attributes in the result. Furthermore,

xsl:processing-instruction may not include any instructions or literal text

that insert a ?> in the output because that would prematurely end the processing

instruction.

Generating comments with xsl:comment
The xsl:comment element inserts a comment in the output document. It has no

attributes. Its contents are the text of the comment. For example,

<xsl:template match=”ATOM”>
<xsl:comment>There was an atom here once.</xsl:comment>

</xsl:template>

This rule replaces ATOM nodes with this comment:

<!--There was an atom here once.-->

The contents of the xsl:comment element can include xsl:value-of elements and

xsl:apply-templates elements provided the results of these instructions are

pure text. It may not contain xsl:element and other instructions that produce ele-

ments and attributes in the result. Furthermore, xsl:comment may not include any

instructions or literal text that inserts a double hyphen in the comment. This would

result in a malformed comment in the output.

Generating text with xsl:text
The xsl:text element inserts its contents into the output document as literal text.

For example, this rule replaces each ATOM element with the string “There was an

atom here once.”

<xsl:template match=”ATOM”>
<xsl:text>There was an atom here once.</xsl:text>

</xsl:template>

The xsl:text element isn’t much used because most of the time it’s easier to sim-

ply type the text. However, xsl:text does have a couple of advantages. The first is

540 Part III ✦ Style Languages

that it preserves white space exactly, even if the node contains nothing but white

space. By default, XSLT processors delete all text nodes from the style sheet that

contain only white space. This is useful when dealing with poetry, computer source

code, or other text in which white space is significant.

The second advantage is that it enables you to insert unescaped < and & into your

output document that are not converted to < and &. To do this, place the

general entity reference for the symbol (< or &) in an xsl:text element;

then set the xsl:text element’s disable-output-escaping attribute to yes. This

can be useful when you need to include JavaScript source code in the output docu-

ment. For example,

<xsl:template match=”SCRIPT”>
<script language=”javascript”>
<xsl:text disable-output-escaping=”yes”>
<!-- if (

location.host.tolowercase().indexof(“ibiblio”)
< 0) {
location.href=”http://www.ibiblio.org/xml/”;

}
} // -->

</xsl:text>
</script>

</xsl:template>

This may produce output that is not well-formed XML. (Indeed that’s the case

here.) However, if you’re trying to write a non-XML format such as HTML or TeX

this may be what you want. Note, however, that the style sheet and the input docu-

ment are both still well-formed XML.

Copying the Context Node with xsl:copy
The xsl:copy element copies the source node into the output tree. Child elements,

attributes, and other content are not automatically copied. However, the contents

of the xsl:copy element are an xsl:template element that can select these things

to be copied as well. This is often useful when transforming a document from one

markup vocabulary to the same or a closely related markup vocabulary. For exam-

ple, this template rule strips the attributes and child elements off an ATOM and

replaces it with the value of its contents enclosed in a b element:

<xsl:template match=”ATOM”>
<xsl:copy>
<xsl:value-of select=”.”/>

</xsl:copy>
</xsl:template>

541Chapter 17 ✦ XSL Transformations

One useful template xsl:copy makes possible is the identity transformation; that

is, a transformation from a document into itself. Such a transformation looks like

this:

<xsl:template
match=”*|@*|comment()|processing-instruction()|text()”>
<xsl:copy>
<xsl:apply-templates
select=”*|@*|comment()|processing-instruction()|text()”/>

</xsl:copy>
</xsl:template>

You can adjust the identity transformation a little to produce similar documents.

For example, Listing 17-15 is a style sheet that strips comments from a document,

leaving the document otherwise untouched. It resulted from leaving the comment()
node out of the match and select attribute values in the identity transformation.

Listing 17-15: An XSLT style sheet that strips comments from
a document

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:template
match=”*|@*|processing-instruction()|text()”>
<xsl:copy>
<xsl:apply-templates
select=”*|@*|processing-instruction()|text()”/>

</xsl:copy>
</xsl:template>

</xsl:stylesheet>

xsl:copy only copies the source node. You can copy other nodes, possibly more

than one of them, using xsl:copy-of. The select attribute of xsl:copy-of
chooses the nodes to be copied. For example, Listing 17-16 is a style sheet that uses

xsl:copy-of to strip out elements without melting points from the periodic table

by copying only ATOM elements that have MELTING_POINT children.

542 Part III ✦ Style Languages

Listing 17-16: A style sheet that copies only ATOM elements
that have MELTING_POINT children

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:template match=”/PERIODIC_TABLE”>
<PERIODIC_TABLE>
<xsl:apply-templates select=”ATOM”/>

</PERIODIC_TABLE>
</xsl:template>

<xsl:template match=”ATOM”>
<xsl:apply-templates select=”MELTING_POINT”/>

</xsl:template>

<xsl:template match=”MELTING_POINT”>
<xsl:copy-of select=”..”/>

</xsl:template>

</xsl:stylesheet>

Listings 17-15 and 17-16 are examples of XSL transformations from a source
vocabulary to the same vocabulary. Unlike most of the examples in this chapter,
they do not transform to well-formed HTML.

Counting Nodes with xsl:number
The xsl:number element inserts a formatted integer into the output document.

The value of the integer is given by the value attribute. This contains a number,

which is rounded to the nearest integer, then formatted according to the value of

the format attribute. Reasonable defaults are provided for both these attributes.

For example, consider the style sheet for the ATOM elements in Listing 17-17.

Listing 17-17: An XSLT style sheet that counts atoms

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

Note

543Chapter 17 ✦ XSL Transformations

<xsl:template match=”PERIODIC_TABLE”>
<html>
<head><title>The Elements</title></head>
<body>
<table>
<tr><xsl:apply-templates select=”ATOM”/></tr>

</table>
</body>

</html>
</xsl:template>

<xsl:template match=”ATOM”>
<td><xsl:number value=”ATOMIC_NUMBER”/></td>
<td><xsl:value-of select=”NAME”/></td>

</xsl:template>

</xsl:stylesheet>

When this style sheet is applied to Listing 17-1, the output appears like this:

<html>
<head>
<title>The Elements</title>
</head>
<body>
<table>
<tr>
<td>1</td><td>Hydrogen</td><td>2</td><td>Helium</td>
</tr>
</table>
</body>
</html>

Each element is matched with its atomic number. The value attribute can contain

any data that XPath knows how to convert to a number. In this case, the

ATOMIC_NUMBER child element of the matched ATOM is converted.

Default numbers
If you use the value attribute to calculate the number, that’s all you need. However,

if the value attribute is omitted, then the position of the current node in the source

tree is used as the number. For example, consider Listing 17-18, which produces a

table of atoms that have boiling points less than or equal to the boiling point of

nitrogen.

544 Part III ✦ Style Languages

Listing 17-18: An XSLT style sheet that counts atoms

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:template match=”PERIODIC_TABLE”>
<html>
<head><title>The Elements</title></head>
<body>
<table>
<tr>
<td>Name</td>
<td>Position</td>
<td>Default Number</td>
<td>Boiling Point</td>

</tr>
<xsl:apply-templates
select=”ATOM[BOILING_POINT <= 77.344]”/>

</table>
</body>

</html>
</xsl:template>

<xsl:template match=”ATOM”>
<tr>
<td><xsl:value-of select=”NAME”/></td>
<td><xsl:number value=”position()”/></td>
<td><xsl:number/></td>
<td><xsl:number value=”BOILING_POINT”/></td>

</tr>
</xsl:template>

</xsl:stylesheet>

Figure 17-5 shows the finished table produced by applying this stylesheet to

the complete periodic table. This shows that the default value calculated by

xsl:number is the position of the node among other sibling nodes of the same

type (ATOM elements in this case). This is not the same as the number returned by

the position() function, which only calculates position relative to other nodes in

the context node list (the nodes which the template matched — hydrogen, helium,

nitrogen, and neon in this example). You can change what xsl:number counts

using these three attributes:

✦ level

✦ count

✦ from

545Chapter 17 ✦ XSL Transformations

Figure 17-5: Atoms with boiling points less than or equal
to nitrogen’s

The level attribute
By default, with no value attribute, xsl:number counts siblings of the source node

with the same type. For instance, if the ATOMIC_NUMBER elements were numbered

instead of ATOM elements, none would have a number higher than 1 because an

ATOM never has more than one ATOMIC_NUMBER child. Although the document con-

tains more than one ATOMIC_NUMBER element, these are not siblings.

Setting the level attribute of xsl:number to any counts all of the elements of the

same kind as the current node in the document. This includes not just the ones in

the current node list, but all nodes of the same type. Even if you select only the

atomic numbers of the gases, for example, the solids and liquids would still count,

even if they weren’t output. Consider these rules:

<xsl:template match=”ATOM”>
<tr><xsl:apply-templates select=”NAME”/></tr>

</xsl:template>

<xsl:template match=”NAME”>
<td><xsl:number level=”any”/></td>
<td><xsl:value-of select=”.”/></td>

</xsl:template>

Because level is set to any, these templates produce output like this that doesn’t

start from 1 with each new NAME element:

<tr>
<td>1</td><td>Hydrogen</td>
</tr>
<tr>
<td>2</td><td>Helium</td>
</tr>

546 Part III ✦ Style Languages

If you remove the level attribute or set it to its default value of single, then the

output looks like this:

<tr>
<td>1</td><td>Hydrogen</td>
</tr>
<tr>
<td>1</td><td>Helium</td>
</tr>

A slightly less useful option sets the level attribute of xsl:number to multiple to

specify that both the siblings of the current node and its ancestors (but not their

children that aren’t siblings of the current node) should be counted.

The count attribute
By default, with no value attribute, only elements of the same type as the element

of the current node get counted. However, you can set the count attribute of

xsl:number to an expression that specifies what to count. For instance, this rule

matches all the child elements of an ATOM. It places a number in front of each one

that represents its position among all the children of that ATOM.

<xsl:template match=”ATOM/*”>
<td><xsl:number count=”*”/></td>
<td><xsl:value-of select=”.”/></td>

</xsl:template>

The output from this template looks like this:

<td>1</td><td>Hydrogen</td>
<td>2</td><td>H</td>
<td>3</td><td>1</td>
<td>4</td><td>1.00794</td>
<td>5</td><td>20.28</td>
<td>6</td><td>13.81</td>
<td>7</td><td>

0.0000899
</td>

<td>1</td><td>Helium</td>
<td>2</td><td>He</td>
<td>3</td><td>2</td>
<td>4</td><td>4.0026</td>
<td>5</td><td>4.216</td>
<td>6</td><td>0.95</td>
<td>7</td><td>

0.0001785
</td>

547Chapter 17 ✦ XSL Transformations

The from attribute
The from attribute contains an XPath expression that specifies which element the

counting begins with in the input tree. However, the counting still begins from 1, not

2 or 10 or some other number. The from attribute only changes which element is

considered to be the first element. This attribute is only considered when

level=”any”. Other times it has no effect.

Number to string conversion
Until now, I’ve implicitly assumed that numbers looked like 1, 2, 3, and so on; that

is, a European numeral starting from 1 and counting by 1. However, that’s not the

only possibility. For instance, the page numbers in the preface and other front mat-

ter of books often appear in small Roman numerals like i, ii, iii, iv, and so on. And

different countries use different conventions to group the digits, separate the inte-

ger and fractional parts of a real number, and represent the symbols for the various

digits. These are all adjustable through four attributes of xsl:number:

✦ format

✦ letter-value

✦ grouping-separator

✦ grouping-size

The format attribute
You can adjust the numbering style used by xsl:number using the format
attribute. This attribute generally has one of the following values:

✦ i: the lowercase Roman numerals i, ii, iii, iv, v, vi, . . .

✦ I: the uppercase Roman numerals I, II, III, IV, V, VI, . . .

✦ a: the lowercase letters a, b, c, d, e, f, . . .

✦ A: the uppercase letters A, B, C, D, E, F, . . .

For example, this rule numbers the atoms with capital Roman numerals:

<xsl:template match=”ATOM”>
<P>
<xsl:number value=”position()” format=”I”/>
<xsl:value-of select=”.”/>

</P>
</xsl:template>

You can specify decimal numbering with leading zeroes by including the number of

leading zeroes you want in the format attribute. For instance, setting

format=”01”, produces the sequence 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12,

You might find this useful when lining numbers up in columns.

548 Part III ✦ Style Languages

The letter-value attribute
The letter-value attribute distinguishes between letters interpreted as numbers

and letters interpreted as letters. For instance, if you want to use format=”I” to

start the sequence I, J, K, L, M, N, . . . instead of I, II, III, IV, V, VI, . . . you would set

the letter-value attribute to the keyword alphabetic. The keyword tradi-
tional specifies a numeric sequence. For example,

<xsl:template match=”ATOM”>
<P>
<xsl:number value=”position()”

format=”I” letter-value=”alphabetic”/>
<xsl:value-of select=”.”/>
</P>

</xsl:template>

Grouping attributes
In the United States, we tend to write large numbers with commas grouping every

three digits; for example, 4,567,302,000. However, in many languages and countries,

a period or a space separates the groups instead; for instance, 4.567.302.000 or

4 567 302 000. Furthermore, in some countries it’s customary to group large num-

bers every four digits instead of every three; for example, 4,5673,0000. If you’re

dealing with very long lists that may contain a thousand or more items, you need to

worry about these issues.

The grouping-separator attribute specifies the grouping separator used between

groups of digits. The grouping-size attribute specifies the number of digits used

in a group. For example,

<xsl:number grouping-separator=” “ grouping-size=”3”/>

Generally, you’d make these attributes contingent on the language.

Sorting Output Elements
The xsl:sort element sorts the output elements into a different order than they

appear in the input. An xsl:sort element appears as a child of an xsl:apply-
templates element or xsl:for-each element. The select attribute of the

xsl:sort element defines the key used to sort the element’s output by

xsl:apply-templates or xsl:for-each.

By default, sorting is performed in alphabetical order of the keys. If more than one

xsl:sort element is present in a given xsl:apply-templates or xsl:for-each
element, then the elements are sorted first by the first key, then by the second key,

and so on. If any elements still compare equally, they are output in the order they

appear in the source document.

For example, suppose you have a file full of ATOM elements arranged alphabetically.

To sort by atomic number, you can use the style sheet in Listing 17-19.

549Chapter 17 ✦ XSL Transformations

Listing 17-19: An XSLT style sheet that sorts by atomic
number

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:template match=”PERIODIC_TABLE”>
<html>
<head>
<title>Atomic Number vs. Atomic Weight</title>

</head>
<body>
<h1>Atomic Number vs. Atomic Weight</h1>
<table>
<th>Element</th>
<th>Atomic Number</th>
<th>Atomic Weight</th>
<xsl:apply-templates>
<xsl:sort select=”ATOMIC_NUMBER”/>

</xsl:apply-templates>
</table>

</body>
</html>

</xsl:template>

<xsl:template match=”ATOM”>
<tr>
<td><xsl:apply-templates select=”NAME”/></td>
<td><xsl:apply-templates select=”ATOMIC_NUMBER”/></td>
<td><xsl:apply-templates select=”ATOMIC_WEIGHT”/></td>

</tr>
</xsl:template>

</xsl:stylesheet>

Figure 17-6 shows the limits of alphabetical sorting. Hydrogen, atomic number 1, is

the first element. However, the second element is not helium, atomic number 2, but

rather neon, atomic number 10. Although 10 sorts after 9 numerically, alphabeti-

cally 10 falls before 2.

You can, however, adjust the order of the sort by setting the optional data-type
attribute to the value number. For example,

<xsl:sort data-type=”number” select=”ATOMIC_NUMBER”/>

Figure 17-7 shows the elements sorted properly.

550 Part III ✦ Style Languages

Figure 17-6: Atoms alphabetically sorted by atomic number

Figure 17-7: Atoms numerically sorted by atomic number

551Chapter 17 ✦ XSL Transformations

You can change the order of the sort from the default ascending order to descend-

ing by setting the order attribute to descending like this:

<xsl:sort order=”descending”
data-type=”number”
select=”ATOMIC_NUMBER”/>

This sorts the elements from the largest atomic number to the smallest so that

hydrogen now appears last in the list.

Alphabetical sorting naturally depends on the alphabet. The lang attribute can set

the language of the keys. The value of this attribute should be an ISO 639 language

code such as en for English. However, processors are not required to know how to

sort in all the different languages that might be encountered in XML. While English

sorting is fairly straight-forward, many other languages require much more compli-

cated algorithms. Indeed a few languages actually have multiple standard ways of

sorting based on different criteria. The lang attribute is ignored if data-type is

number.

These are the same values supported by the xml:lang attribute discussed in
Chapter 11.

Finally, you can set the case-order attribute to one of the two values upper-
first or lower-first to specify whether uppercase letters sort before lowercase

letters or vice versa. The default depends on the language.

Modes
Sometimes you want to include the same content from the source document in the

output document multiple times. That’s easy to do simply by applying templates

multiple times, once in each place where you want the data to appear. However,

suppose you want the data to be formatted differently in different locations? That’s

a little trickier.

For example, suppose you want the output of processing the periodic table to be a

series of 100 links to more detailed descriptions of the individual atoms. In this

case, the output document would start like this:

Actinium
Aluminum
Americium
Antimony
Argon
. . .

Cross-
Reference

552 Part III ✦ Style Languages

Later in the document, the actual atom descriptions would appear, formatted like

this:

<H3>
Hydrogen
</H3>
<P>

Hydrogen
H
1
1.00794
20.28
13.81

0.0000899

</P>

This sort of application is common anytime you automatically generate a table of

contents or an index. The NAME of the atom must be formatted differently in the

table of contents than in the body of the document. You need two different rules

that both apply to the ATOM element at different places in the document. The solu-

tion is to give each of the different rules a mode attribute. Then you can choose

which template to apply by setting the mode attribute of the xsl:apply-tem-
plates element. Listing 17-20 demonstrates.

Listing 17-20: An XSLT style sheet that uses modes to format
the same data differently in two different
places

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:template match=”/PERIODIC_TABLE”>
<HTML>
<HEAD><TITLE>The Elements</TITLE></HEAD>
<BODY>

<H2>Table of Contents</H2>

<xsl:apply-templates select=”ATOM” mode=”toc”/>

<H2>The Elements</H2>
<xsl:apply-templates select=”ATOM” mode=”full”/>

553Chapter 17 ✦ XSL Transformations

</BODY>
</HTML>

</xsl:template>

<xsl:template match=”ATOM” mode=”toc”>
<A>
<xsl:attribute name=”HREF”>#<xsl:value-of
select=”SYMBOL”/></xsl:attribute>

<xsl:value-of select=”NAME”/>

</xsl:template>

<xsl:template match=”ATOM” mode=”full”>
<H3><A>
<xsl:attribute name=”NAME”>
<xsl:value-of select=”SYMBOL”/>

</xsl:attribute>
<xsl:value-of select=”NAME”/>

</H3>
<P>
<xsl:value-of select=”.”/>

</P>
</xsl:template>

</xsl:stylesheet>

The default template rule for nodes preserves modes. That is, for every mode n you

declare in your style sheet, the XSLT processor adds one template rule that applies

specifically to that mode and looks like this:

<xsl:template match=”*|/” mode=”n”>
<xsl:apply-templates mode=”n”/>

</xsl:template>

As usual, you are free to override this default rule with one of your own design.

Defining Constants with xsl:variable
Named constants help clean up code. They can replace commonly used boilerplate

text with a simple name and reference. They can also make it easy to adjust boiler-

plate text that appears in multiple locations by simply changing the constant

definition.

The xsl:variable element defines a named string for use elsewhere in the

style sheet via an attribute value template. It has a single attribute, name,
which provides a name by which the variable can be referred to. The contents of

the xsl:variable element provide the replacement text. For example, this

554 Part III ✦ Style Languages

xsl:variable element defines a variable with the name copy01 and the value

Copyright 2001 Elliotte Rusty Harold:

<xsl:variable name=”copy01”>
Copyright 2001 Elliotte Rusty Harold

</xsl:variable>

To access the value of this variable, you prefix a dollar sign to the name of the vari-

able. To insert this in an attribute, use an attribute value template. For example:

<BLOCK COPYRIGHT=”{$copy01}”>
</BLOCK>

You can use xsl:value-of to insert the variable’s replacement text into the output

document as text:

<xsl:value-of select=”$copy01”/>

The contents of the xsl:variable can contain markup including other XSLT

instructions. This means that you can calculate the value of a variable based on

other information, including the value of other variables. However, a variable may

not refer to itself recursively, either directly or indirectly. For instance, the following

example is in error:

<xsl:variable name=”GNU”>
<xsl:value-of select=”$GNU”/>’s not Unix

</xsl:variable>

Similarly, two variables may not refer to each other in a circular fashion like this:

<xsl:variable name=”Thing1”>
Thing1 loves <xsl:value-of select=”$Thing2”/>

</xsl:variable>

<xsl:variable name=”Thing2”>
Thing2 loves <xsl:value-of select=”$Thing1”/>

</xsl:variable>

xsl:variable elements can either be top-level children of the xsl:stylesheet
root element or they can be included inside template rules. A variable present at

the top level of a style sheet can be accessed anywhere in the style sheet. It’s a

global variable. By contrast, a variable that’s declared inside a template rule is only

accessible by its following sibling elements and their descendants (the scope of the

variable). It’s a local variable. Local variables override global variables with the

same name. Local variables can also override other local variables. In the event of a

conflict between two variables with the same name, the closest local variable with

the same name is used.

555Chapter 17 ✦ XSL Transformations

Named Templates
Variables are limited to basic text and markup. XSLT provides a more powerful

macro facility that can wrap standard markup and text around changing data. For

example, suppose you want an atom’s atomic number, atomic weight, and other key

values formatted as a table cell in small, bold Times in blue. In other words, you

want the output to look like this:

<td>

52

</td>

You can certainly include all that in a template rule like this:

<xsl:template match=”ATOMIC_NUMBER”>
<td>

<xsl:value-of select=”.”/>

</td>
</xsl:template>

This markup can be repeated inside other template rules. When the detailed

markup grows more complex, and when it appears in several different places in a

style sheet, you may elect to turn it into a named template. Named templates

resemble variables. However, they enable you to include data from the place where

the template is applied, rather than merely inserting fixed text.

The xsl:template element can have a name attribute by which it can be explicitly

invoked, even when it isn’t applied indirectly. For example, this shows a sample

named template for the above pattern:

<xsl:template name=”ATOM_CELL”>
<td>

<xsl:value-of select=”.”/>

</td>
</xsl:template>

The <xsl:value-of select=”.”/> element in the middle of the named template

will be replaced by the contents of the current node from which this template was

called.

556 Part III ✦ Style Languages

The xsl:call-template element appears in the contents of a template rule. It has

a required name argument that names the template it will call. When processed, the

xsl:call-template element is replaced by the contents of the xsl:template ele-

ment it names. For example, you can now rewrite the ATOMIC_NUMBER rule like this

by using the xsl:call-template element to call the ATOM_CELL named template:

<xsl:template match=”ATOMIC_NUMBER”>
<xsl:call-template name=”ATOM_CELL”/>

</xsl:template>

This fairly simple example only saves a few lines of code, but the more complicated

the template, and the more times it’s reused, the greater the reduction in complex-

ity of the style sheet. Named templates also have the advantage, like variables, of

factoring out common patterns in the style sheet so that you can edit them as one.

For instance, if you decide to change the color of atomic number, atomic weight,

and other key values from blue to red, you only need to change it once in the

named template. You do not have to change it in each separate template rule. This

facilitates greater consistency of style.

Passing Parameters to Templates
Each separate invocation of a template can pass parameters to the template to cus-

tomize its output. This is done the same way for named templates and unnamed

templates. In the xsl:template element, the parameters are represented as

xsl:param child elements. In xsl:call-template or xsl:apply-templates ele-

ments, parameters are represented as xsl:with-param child elements.

For example, suppose you want to also include a link to a particular file for each

atom cell. The output should look something like this:

<td>

52

</td>

The trick is that the value of the href attribute has to be passed in from the point

where the template is invoked because it changes for each separate invocation of

the template. For example, atomic weights will have to be formatted like this:

<td>

4.0026

</td>

557Chapter 17 ✦ XSL Transformations

The template that supports this looks like this:

<xsl:template name=”ATOM_CELL”>
<xsl:param name=”file”>index.html</xsl:param>
<td>

<xsl:value-of select=”.”/>

</td>
</xsl:template>

The name attribute of the xsl:param element gives the parameter a name (impor-

tant if there are multiple arguments) and the contents of the xsl:param element

supplies a default value for this parameter to be used if the invocation doesn’t pro-

vide a value. (This can also be given as a string expression by using a select
attribute.)

When this template is called, an xsl:with-param child of the xsl:call-template
element provides the value of the parameter using its name attribute to identify the

parameter and its contents to provide a value for the parameter. For example:

<xsl:template match=”ATOMIC_NUMBER”>
<xsl:call-template name=”ATOM_CELL”>
<xsl:with-param

name=”file”>atomic_number.html</xsl:with-param>
<xsl:value-of select=”.”/>

</xsl:call-template>
</xsl:template>

Again, this is a simple example. However, much more complex named templates

exist. For instance, you could define header and footer templates for pages on a

Web site for importing by many different style sheets, each of which would only

have to change a few parameters for the name of the page author, the title of the

page, and the copyright date.

Stripping and Preserving White Space
You may have noticed that most of the examples of output have been formatted a

little strangely. The reason the examples appeared strange is that the source docu-

ment needed to break long elements across multiple lines to fit between the mar-

gins of this book. Unfortunately, the extra white space added to the input document

carried over into the output document. For a computer, the details of insignificant

white space aren’t important, but for a person they can be distracting.

558 Part III ✦ Style Languages

The default behavior for text nodes read from the input document, such as the con-

tent of an ATOMIC_NUMBER or DENSITY element, is to preserve all white space. A

typical DENSITY element looks like this:

<DENSITY UNITS=”grams/cubic centimeter”>
<!-- At 300K, 1 atm -->
0.0000899

</DENSITY>

When its value is taken the leading and trailing white space is included, like this,

even though it’s really only there to help fit on this printed page and isn’t at all

significant:

0.0000899

You can use the normalize-space() function to strip the leading and trailing

white space from this or any other string. For example, instead of writing

<xsl:value-of select=”DENSITY”/>, you would write <xsl:value-of
select=”normalize-space(DENSITY)”/>.

You can also automatically delete white-space only nodes in the input document by

using xsl:strip-space. The elements attribute of this top-level element contains

a list of elements from which text nodes that contain nothing but white space

should be deleted. For example, this element says that nodes containing only white

space should be stripped from DENSITY, NAME, SYMBOL, and BOILING_POINT ele-

ments:

<xsl:strip-space elements=”DENSITY NAME SYMBOL BOILING_POINT”/>

You can strip space-only nodes in all elements by using the * wildcard, like this:

<xsl:strip-space elements=”*”/>

There’s also an xsl:preserve-space element with a similar syntax but opposite

meaning. However, since preserving space is the default, this element isn’t much

used. Its main purpose is to override xsl:strip-space elements imported from

other style sheets or to specify a few elements where space is preserved when the

default has been reset to stripping by <xsl:strip-space elements=”*”/>.

White space only text nodes in the style sheet, as opposed to the input document,

are another matter. They are stripped by default. If you want to preserve one, you

attach an xml:space attribute with the value preserve to its parent element or to

another one of its ancestors.

559Chapter 17 ✦ XSL Transformations

The xml:space attribute was discussed in Chapter 11.

Sometimes the easiest way to include significant white space in a style sheet is to

wrap it in an xsl:text element. Space inside an xsl:text element is treated liter-

ally and never stripped.

Making Choices
XSLT provides two elements that allow you to change the output based on the

input. The xsl:if element either does or does not output a given fragment of XML

depending on what patterns are present in the input. The xsl:choose element

picks one of several possible XML fragments, depending on what patterns are pre-

sent in the input. Most of what you can do with xsl:if and xsl:choose can also

be done by a suitable application of templates. However, sometimes the solution

with xsl:if or xsl:choose is simpler and more obvious.

xsl:if
The xsl:if element provides a simple facility for changing the output based on a

pattern. The test attribute of xsl:if contains an expression that evaluates to a

boolean. If the expression is true, the contents of the xsl:if element are output.

Otherwise, they’re not. For example, this template writes out the names of all ATOM
elements. A comma and a space is added after all except the last element in the list.

<xsl:template match=”ATOM”>
<xsl:value-of select=”NAME”/>
<xsl:if test=”position()!=last()”>, </xsl:if>

</xsl:template>

This ensures that the list looks like “Hydrogen, Helium” and not “Hydrogen,

Helium, ”.

There are no xsl:else or xsl:else-if elements. The xsl:choose element pro-

vides this functionality.

xsl:choose
The xsl:choose element selects one of several possible outputs depending on sev-

eral possible conditions. Each condition and its associated output template is pro-

vided by an xsl:when child element. The test attribute of the xsl:when element

is an XPath expression with a boolean value. If multiple conditions are true, only

the first true one is instantiated. If none of the xsl:when elements are true, the

Cross-
Reference

560 Part III ✦ Style Languages

xsl:otherwise child element is instantiated. For example, this rule changes the

color of the output based on whether the STATE attribute of the ATOM element is

SOLID, LIQUID, or GAS:

<xsl:template match=”ATOM”>
<xsl:choose>
<xsl:when test=”@STATE=’SOLID’”>
<P style=”color: black”>
<xsl:value-of select=”.”/>

</P>
</xsl:when>
<xsl:when test=”@STATE=’LIQUID’”>
<P style=”color: blue”>
<xsl:value-of select=”.”/>

</P>
</xsl:when>
<xsl:when test=”@STATE=’GAS’”>
<P style=”color: red”>
<xsl:value-of select=”.”/>

</P>
</xsl:when>
<xsl:otherwise>
<P style=”color: green”>
<xsl:value-of select=”.”/>

</P>
</xsl:otherwise>

</xsl:choose>
</xsl:template>

Merging Multiple Style Sheets
A single XML document may use many different markup vocabularies described in

many different DTDs. You may wish to use different standard style sheets for those

different vocabularies. However, you’ll also want style rules for particular docu-

ments as well. The xsl:import and xsl:include elements enable you to merge

multiple style sheets so that you can organize and reuse style sheets for different

vocabularies and purposes.

Importing with xsl:import
The xsl:import element is a top-level element whose href attribute provides the

URI of a style sheet to import. All xsl:import elements must appear before any

other top-level element in the xsl:stylesheet root element. For example, these

xsl:import elements import the style sheets genealogy.xsl and standards.xsl.

<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>
<xsl:import href=”genealogy.xsl”/>
<xsl:import href=”standards.xsl”/>

561Chapter 17 ✦ XSL Transformations

<!-- other child elements follow -->
</xsl:stylesheet>

Rules in the imported style sheets may conflict with rules in the importing style

sheet. If so, rules in the importing style sheet take precedence. If two rules in differ-

ent imported style sheets conflict, then the rule in the last style sheet imported

(standards.xsl above) takes precedence.

The xsl:apply-imports element is a slight variant of xsl:apply-templates that

only uses imported rules. It does not use any rules from the importing style sheet.

This allows access to imported rules that would otherwise be overridden by rules

in the importing style sheet. Other than the name, it has identical syntax to

xsl:apply-templates. The only behavioral difference is that it only matches tem-

plate rules in imported style sheets.

Inclusion with xsl:include
The xsl:include element is a top-level element that copies another style sheet

into the current style sheet at the point where it occurs. (More precisely, it copies

the contents of the xsl-stylesheet or xsl:transform element in the remote doc-

ument into the current document.) Its href attribute provides the URI of the style

sheet to include. An xsl:include element can occur anywhere at the top level

after the last xsl:import element.

Unlike rules included by xsl:import elements, rules included by xsl:include ele-

ments have the same precedence in the including style sheet that they would have

if they were copied and pasted from one style sheet to the other. As far as the XSLT

processor is concerned, there is no difference between an included rule and a rule

that’s physically present.

Embedding with xsl:stylesheet
You can directly include an XSLT style sheet in the XML document it applies to. I

don’t recommend this in practice, and browsers and XSLT processors are not

required to support it. Nonetheless, a few do. To use this, the xsl:stylesheet ele-

ment must appear as a child of the document element, rather than as a root ele-

ment itself. It would have an id attribute giving it a unique name, and this id
attribute would appear as the value of the href attribute in the xml-stylesheet
processing instruction, following the fragment identifier separator #. Listing 17-21

demonstrates.

562 Part III ✦ Style Languages

Listing 17-21: An XSLT style sheet embedded in an XML
document

<?xml version=”1.0”?>
<?xml-stylesheet type=”text/xml” href=”#id(mystyle)”?>
<PERIODIC_TABLE>

<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
id=”mystyle”>

<xsl:template match=”/”>
<html>
<xsl:apply-templates/>

</html>
</xsl:template>

<xsl:template match=”PERIODIC_TABLE”>
<xsl:apply-templates/>

</xsl:template>

<xsl:template match=”ATOM”>
<P>
<xsl:value-of select=”.”/>

</P>
</xsl:template>

<!--Don’t display the style sheet itself
or its descendants-->

<xsl:template match=”xsl:stylesheet”/>

</xsl:stylesheet>

<ATOM>
<NAME>Actinium</NAME>
<ATOMIC_WEIGHT>227</ATOMIC_WEIGHT>
<ATOMIC_NUMBER>89</ATOMIC_NUMBER>
<OXIDATION_STATES>3</OXIDATION_STATES>
<BOILING_POINT UNITS=”Kelvin”>3470</BOILING_POINT>
<MELTING_POINT UNITS=”Kelvin”>1324</MELTING_POINT>
<SYMBOL>Ac</SYMBOL>
<DENSITY UNITS=”grams/cubic centimeter”><!-- At 300K -->
10.07

</DENSITY>
<ELECTRONEGATIVITY>1.1</ELECTRONEGATIVITY>
<ATOMIC_RADIUS UNITS=”Angstroms”>1.88</ATOMIC_RADIUS>

</ATOM>

</PERIODIC_TABLE>

563Chapter 17 ✦ XSL Transformations

Output Methods
Most of the examples in this chapter have focused on transforming XML into well-

formed HTML. However, most XSLT processors actually support three different out-

put methods:

✦ XML

✦ HTML

✦ Text

The XSLT processor behaves differently depending on which of these output meth-

ods it uses. The XML format is the default and in many ways the simplest. The out-

put is mostly exactly what you request in your style sheet. Because well-formed

XML does not permit raw less-than signs and ampersands, if you use a character

reference such as < or the entity reference < to insert the < character, the

formatter will output < or perhaps <. If you use a character reference such

as & or the entity reference & to insert the & character, the formatter will

insert & or perhaps &. There are ways to disable this escaping, though, as

you’ll see later.

The HTML output method is designed to output standard HTML 4.0. This is not the

well-formed HTML used in this book, but rather traditional HTML in which empty

tags look like <HR> and instead of <HR/> and , processing instruc-

tions are terminated with a > instead of ?>, and < signs used in JavaScript are not

converted to <. This makes it much easier to output HTML that works across

many browsers and platforms without odd effects such as double lines where a sin-

gle line is expected or other detritus caused by forcing HTML into the XML mold.

The HTML output method is automatically selected when the formatter notices that

the root output element is html, HTML, HtMl, or any other combination of case that

still spells Hypertext Markup Language.

The final output method is pure text. The text output method operates by first

forming a full result tree as per the XML output method, but then only outputting

the string value of that tree. This is useful for transforming to non-XML formats

such as RTF or TeX. The primary benefit of the text output format is that less than

signs are not converted to < or < and ampersands are not converted to

& or &. This allows you to output effectively arbitrary text.

xsl:output
By default an XSLT processor will use the XML output method, unless it recognizes

the output root element as HTML, in which case it uses the HTML output method.

You can change this by using a top-level xsl:output element. The method

564 Part III ✦ Style Languages

attribute of the xsl:output element specifies which output method to use and nor-

mally has one of these three values:

✦ xml

✦ html

✦ text

Formatting engines may support other values as well, but so far none do. For exam-

ple, to specify that you want pure well-formed HTML as output, with all the empty

tags properly indicated, all less than signs escaped, and so forth, you would use

this xsl:output element at the top level of your style sheet:

<xsl:output method=”xml”/>

To indicate that you want regular HTML output even though you aren’t using an

html root element, you’d put this xsl:output element at the top level of your style

sheet:

<xsl:output method=”html”/>

The xsl:output element also has a number of other allowed attributes that modify

how XML is output. These allow you to change the prolog of the document, how the

output is indented with insignificant white space, and which elements use CDATA
sections rather than escaping < and & characters.

XML Declaration
Four attributes of xsl:output format the XML declaration used in your document.

This assumes the output method is xml. These attributes are:

✦ omit-xml-declaration

✦ version

✦ encoding

✦ standalone

The omit-xml-declaration attribute has the value yes or no. If yes, then an XML

declaration is not included in the output document. If no, then it is. For example, to

insert a very basic <?xml version=”1.0”?> XML declaration in the output docu-

ment you would use this xsl:output element at the top level of your style sheet:

<xsl:output method=”xml” omit-xml-declaration=”no”/>

565Chapter 17 ✦ XSL Transformations

You could also include it as two separate xsl:output elements like this:

<xsl:output method=”xml”/>
<xsl:output omit-xml-declaration=”no”/>

The default value of the version attribute of the XML declaration is 1.0. Currently,

that’s the only value allowed. If at some point in the future that changes, then the

version attribute of xsl:output will allow you to change the version used in the

XML declaration. For example,

<xsl:output version=”1.1”/>

You can set the standalone attribute of the XML declaration to the value yes or no
using the standalone attribute of the xsl:output element. For example, this

xsl:output element would insert the XML declaration <?xml version=”1.0”
standalone=”yes”?>:

<xsl:output method=”xml”
omit-xml-declaration=”no” standalone=”yes”/>

The final possible piece of an XML declaration is the encoding declaration. As you

probably guessed this can be set with the encoding attribute of the xsl:output
element. The value can be any legal encoding name registered with the Internet

Assigned Numbers Authority as discussed in Chapter 7. For example, to insert the

XML declaration <?xml version=”1.0” encoding=”ISO-8859-1”?>, you’d use

this xsl:output element:

<xsl:output method=”xml”
omit-xml-declaration=”no” encoding=”ISO-8859-1”/>

This also changes the encoding the XSLT processor uses for the output document

from its default UTF-8. However, not all processors support all possible encodings.

Those written in Java are likely to support the most encodings because Java’s rich

class library makes it almost trivial to support several dozen popular encodings.

Document type declaration
XSLT does not provide any elements for building an internal DTD subset for the out-

put document with <!ELEMENT>, <!ATTLIST>, <!ENTITY>, and <!NOTATION> decla-

rations. However, it does provide two attributes of the xsl:output element you

can use to include a DOCTYPE declaration that points to an external DTD. These are

doctype-system and doctype-public. The first inserts a SYSTEM identifier for the

DTD; the second a PUBLIC identifier. For example, suppose you want this DOCTYPE
declaration in your output document:

<!DOCTYPE PERIODIC_TABLE SYSTEM “chemistry.dtd”>

566 Part III ✦ Style Languages

Then you would use this xsl:output element at the top level of your style sheet:

<xsl:output doctype-system=”chemistry.dtd”/>

The XSLT processor determines the proper root element for the document type

declaration by looking at the root element of the output tree. Using a full URL

instead of a relative URL is equally easy:

<xsl:output
doctype-system=”http://www.mysite.com/chemistry.dtd”/>

On the other hand, suppose you want this DOCTYPE declaration in your output doc-

ument:

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.0 Transitional//EN”
“http://www.w3.org/TR/REC-html40/loose.dtd”>

Then you would use both doctype-system and doctype-public attributes so

your DOCTYPE declaration will have both a PUBLIC and a SYSTEM identifier. For

example,

<xsl:output
doctype-system=”http://www.w3.org/TR/REC-html40/loose.dtd”
doctype-public=”-//W3C//DTD HTML 4.0 Transitional//EN”/>

Indentation
The indentation of most of the output examples in this chapter has been more than

a little flaky. It’s certainly not as neat as the carefully hand-coded indentation of the

input documents. However, if white space isn’t particularly significant in your out-

put document, you can change this and ask the formatter for “pretty printed” XML

with the nesting of different elements indicated by the indentation. This is accom-

plished by the indent attribute of the xsl:output element. If this attribute has the

value yes (the default is no), then the processor is allowed (but not required) to

insert (but not remove) extra white space into the output to try to “pretty print”

the output. This may include indentation and line breaks. For example,

<xsl:output indent=”yes”/>

You cannot, however, specify how much you want each level indented (for example,

by two spaces or one tab). That’s up to the formatter. Together, the xsl:strip-
space and the indent attribute of the xsl:output element allow you to produce

output that’s almost as attractive as the most painstakingly hand-crafted XML.

567Chapter 17 ✦ XSL Transformations

CDATA sections
Standard XSLT does not allow you to insert CDATA sections at arbitrary locations in

XML documents produced by XSL transformations. However, you can specify that

the text contents of a particular element be placed in a CDATA section. In this case

the < and & symbols are not encoded as < and & as they would normally

be. To do this, place the name of the element whose text contents should be

wrapped in CDATA delimiters in the cdata-section-elements attribute of the

xsl:output element. For example, this xsl:output element says that the contents

of the SCRIPT element should be wrapped in a CDATA section:

<xsl:output cdata-section-elements=”SCRIPT”/>

You can enclose multiple names of elements whose text contents should be

wrapped in CDATA delimiters in one cdata-section-elements attribute simply by

separating the names with white space. For example, this xsl:output element says

that the contents of both the SCRIPT and CODE elements should be wrapped in a

CDATA section:

<xsl:output cdata-section-elements=”SCRIPT CODE”/>

Alternately, you can just use multiple xsl:output elements, each naming one ele-

ment. For example:

<xsl:output cdata-section-elements=”SCRIPT”/>
<xsl:output cdata-section-elements=”CODE”/>

Media type
One final xsl:output attribute specifies the MIME media type of the output docu-

ment. This is media-type. Mostly this will have the value text/xml, but it might be

text/html for the HTML output method, text/plain for the text output method,

or even something else such as text/rtf. You should not specify a charset param-

eter for the media type. The formatting engine should determine this from the

encoding attribute of the xsl:output element. For example, this xsl:output ele-

ment specifies that the output encoding uses the text/rtf MIME type:

<xsl:output media-type=”text/rtf”/>

Depending on external context, this may determine the filename extension, the icon

of the file, how an HTTP server handles the file, or something else. Then again, it

might have no effect at all. The XSLT processor might ignore this request and out-

put the same byte stream or XML tree regardless of media type. This is something

that’s important to the environment in which the XML document exists, but not so

important to the XML document itself.

568 Part III ✦ Style Languages

Summary
In this chapter, you learned about XSL transformations. In particular, you learned

that:

✦ The Extensible Stylesheet Language (XSL) comprises two separate XML appli-

cations for transforming and formatting XML documents.

✦ An XSL transformation applies rules to a tree read from an XML document to

transform it into an output tree written out as an XML document.

✦ An XSL template rule is an xsl:template element with a match attribute.

Nodes in the input tree are compared against the patterns of the match
attributes of the different template elements. When a match is found, the con-

tents of the template are output.

✦ The value of a node is a pure text (no markup) string containing the contents

of the node. This can be calculated by the xsl:value-of element.

✦ You can process multiple elements in two ways: the xsl:apply-templates
element and the xsl:for each element.

✦ The value of the match attribute of the xsl:template element is a match pat-

tern specifying which nodes the template matches.

✦ XPath expressions (or simply expressions) are a superset of match patterns

used by the select attribute of xsl:apply-templates, xsl:value-of,

xsl:for-each, xsl:copy-of, xsl:variable, xsl:param, xsl:with-param,

and xsl:sort elements.

✦ Default rules apply templates to element nodes and take the value of text

nodes and attributes.

✦ The xsl:element, xsl:attribute, xsl:processing-instruction,

xsl:comment, and xsl:text elements output elements, attributes, process-

ing instructions, comments, and text calculated from data in the input

document.

✦ The xsl:attribute-set element defines a common group of attributes that

can be applied to multiple elements in different templates with the xsl:use-
attribute-sets.

✦ The xsl:copy element copies the current node from the input into the

output.

✦ The xsl:number element inserts the number specified by its value attribute

into the output using a specified number format given by the format
attribute.

✦ The xsl:sort element can reorder the input nodes before copying them to

the output.

569Chapter 17 ✦ XSL Transformations

✦ Modes can apply different templates to the same element from different loca-

tions in the style sheet.

✦ The xsl:variable element defines named constants that can clarify your

code.

✦ Named templates help you reuse common template code.

✦ White space is maintained by default unless an xsl:strip-space element or

xml:space attribute says otherwise.

✦ The xsl:if element produces output if, and only if, its test attribute is true.

✦ The xsl:choose element outputs the template of the first one of its xsl:when
children whose test attribute is true, or the template of its xsl:otherwise
element if no xsl:when element has a true test attribute.

✦ The xsl:import and xsl:include elements merge rules from different style

sheets.

✦ The xsl:stylesheet element allows you to include a style sheet directly in

the document it applies to.

✦ Various attributes of the xsl:output element allow you to specify the output

document’s format, XML declaration, document type declaration, indentation,

encoding and MIME type.

The next chapter takes up the second half of XSL: the formatting objects vocabu-

lary. Formatting objects is an extremely powerful way of specifying the precise lay-

out you want your pages to have. XSL transformations are used to transform an

XML document into an XSL formatting object document.

✦ ✦ ✦

XSL Formatting
Objects

XSL Formatting Objects (XSL-FO) are the second half of

the Extensible Stylesheet Language (XSL). XSL-FO is an

XML application that describes how pages will look when pre-

sented to a reader. A style sheet uses the XSL transformation

language to transform an XML document in a semantic vocab-

ulary into a new XML document that uses the XSL-FO presen-

tational vocabulary. While one can hope that Web browsers

will one day know how to directly display data marked up

with XSL formatting objects, for now an additional step is nec-

essary in which the output document is further transformed

into some other format, such as Adobe’s PDF.

Formatting Objects and Their
Properties

XSL-FO provides a more sophisticated visual layout model

than HTML+CSS. Formatting supported by XSL-FO, but not

supported by HTML+CSS, includes right-to-left and top-to-

bottom text, footnotes, margin notes, page numbers in cross-

references, and more. In particular, while CSS (Cascading Style

Sheets) is primarily intended for use on the Web, XSL-FO is

designed for broader use. You should, for instance, be able to

write an XSL style sheet that uses formatting objects to lay

out an entire printed book. A different style sheet should be

able to transform the same XML document into a Web site.

There are exactly 56 XSL formatting object elements. These

are placed in the http://www.w3.org/1999/XSL/Format
namespace. At least 99 percent of the time, the chosen prefix

is fo. In this chapter, I use the fo prefix to indicate this

namespace without further comment.

1818C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Formatting objects
and their properties

Page layout

Content

Leaders and rules

Graphics

Links

Lists

Tables

Inlines

Footnotes

Floats

Formatting properties

✦ ✦ ✦ ✦

572 Part III ✦ Style Languages

Of the 56 elements, most signify various kinds of rectangular areas. Most of the rest

are containers for rectangular areas and spaces. In alphabetical order, these format-

ting objects are:

fo:basic-link

fo:bidi-override

fo:block

fo:block-container

fo:character

fo:color-profile

fo:conditional-page-
master-reference

fo:declarations

fo:external-graphic

fo:float

fo:flow

fo:footnote

fo:footnote-body

fo:initial-property-set

fo:inline

fo:inline-container

fo:instream-foreign-object

fo:layout-master-set

fo:leader

fo:list-block

fo:list-item

fo:list-item-body

fo:list-item-label

fo:marker

fo:multi-case

fo:multi-properties

fo:multi-property-set

fo:multi-switch

fo:multi-toggle

fo:page-number

fo:page-number-citation

fo:page-sequence

fo:page-sequence-master

fo:region-after

fo:region-before

fo:region-body

fo:region-end

fo:region-start

fo:repeatable-page-master-alter-
natives

fo:repeatable-page-master-
reference

fo:retrieve-marker

fo:root

fo:simple-page-master

fo:single-page-master-
reference

fo:static-content

fo:table

fo:table-and-caption

fo:table-body

fo:table-caption

fo:table-cell

fo:table-column

fo:table-footer

fo:table-header

fo:table-row

fo:title

fo:wrapper

573Chapter 18 ✦ XSL Formatting Objects

The XSL formatting model is based on rectangular boxes called areas that can con-

tain text, empty space, images, or other formatting objects. As with CSS boxes, an

area has borders and padding on each of its sides, although CSS’s margins are

replaced by XSL’s space-before and space-after. An XSL formatter reads the format-

ting objects to determine which areas to place where on the page. Many formatting

objects produce single areas (at least most of the time), but because of page

breaks, word wrapping, hyphenation, and other details that must be taken into

account when fitting a potentially infinite amount of text into a finite amount of

space, some formatting objects do occasionally generate more than one area.

The formatting objects differ primarily in what they represent. For example, the

fo:list-item-label formatting object is a box that contains a bullet, a number,

or another indicator placed in front of a list item. A fo:list-item-body formatting

object is a box that contains the text, sans label, of the list item. And a fo:list-
item formatting object is a box that contains both the fo:list-item-label and

fo:list-item-body formatting objects.

When processed, the formatting objects document is broken up into pages. A Web

browser window will normally be treated as one very long page. A print format will

often contain many individual pages. Each page contains a number of areas. There

are four primary kinds of areas:

✦ regions

✦ block areas

✦ line areas

✦ inline areas

A Word of Caution about XSL Formatting Objects

XSL is still under development. The XSL language has changed radically in the past, and will
change again in the future. This chapter is based on the November 21, 2000 Candidate
Recommendation of the XSL specification. By the time you are reading this book, this draft
of XSL will probably have been superseded and the exact syntax of XSL-FO will have
changed. If you do encounter something that doesn’t seem to work quite right, you should
compare the examples in this book against the most current specification.

To make matters worse, no software implements all of the Candidate Recommendation of
XSL. In fact, so far there are only a few standalone programs that convert XSL-FO documents
into PDF files. There are no Web browsers that can display a document written with XSL for-
matting objects. Eventually, of course, this should be straightened out as the standard
evolves toward its final incarnation and more vendors implement XSL formatting objects.

574 Part III ✦ Style Languages

These form a rough hierarchy. Regions contain block areas. Block areas contain

other block areas, line areas, and content. Line areas contain inline areas. Inline

areas contain other inline areas and content. More specifically:

✦ A region is the highest-level container in XSL-FO. You can think of a page of

this book as containing three regions: the header, the main body of the page,

and the footer. Formatting objects that produce regions include fo:region-
body, fo:region-before, fo:region-after, fo:region-start, and

fo:region-end.

✦ A block area represents a block-level element, such as a paragraph or a list

item. Although block areas may contain other block areas, there should

always be a line break before the start and after the end of each block area. A

block area, rather than being precisely positioned by coordinates, is placed

sequentially in the area that contains it. As other block areas are added and

deleted before it or within it, the block area’s position shifts as necessary to

make room. A block area may contain parsed character data, inline areas, line

areas, and other block areas that are sequentially arranged in the containing

block area. Formatting objects that produce block areas include fo:block,

fo:table-and-caption, and fo:list-block.

✦ A line area represents a line of text inside a block. For example, each of the

lines in this list item is a line area. Line areas can contain inline areas and

inline spaces. There are no formatting objects that correspond to line areas.

Instead, the formatting engine calculates the line areas as it decides how to

wrap lines inside block areas.

✦ Inline areas are parts of a line such as a single character, a footnote reference,

or a mathematical equation. Inline areas can contain other inline areas and

raw text. Formatting objects that produce inline areas include fo:character,

fo:external-graphic, fo:inline, fo:instream-foreign-object,

fo:leader, and fo:page-number.

Formatting properties
When taken as a whole, the various formatting objects in an XSL-FO document spec-

ify the order in which content is to be placed on pages. However, formatting proper-
ties specify the details of formatting such as size, position, font, color, and a lot

more. Formatting properties are represented as attributes on the individual format-

ting object elements.

The details of many of these properties should be familiar from CSS. Work is ongo-

ing to ensure that CSS and XSL-FO use the same names to mean the same things.

For example, the CSS font-family property means the same thing as the XSL

font-family property; and although the syntax for assigning values to properties

is different in CSS and XSL-FO, the meaning of the values themselves is the same. To

indicate that the fo:block element is formatted in some approximation of Times,

you might use this CSS rule:

fo:block {font-family: ‘New York’, ‘Times New Roman’, serif}

575Chapter 18 ✦ XSL Formatting Objects

The XSL-FO equivalent is to include a font-family attribute in the fo:block start

tag in this way:

<fo:block font-family=”’New York’, ‘Times New Roman’, serif”>

Although this is superficially different, the style name (font-family) and the style

value (‘New York’, ‘Times New Roman’, serif) are the same. CSS’s font-family
property is specified as a list of font names, separated by commas, in order from

first choice to last choice. XSL-FO’s font-family property is specified as a list of

font names, separated by commas, in order from first choice to last choice. Both

CSS and XSL-FO quote font names that contain white space. Both CSS and XSL-FO

understand the keyword serif to mean an arbitrary serif font.

Of course, XSL formatting objects support many properties that have no CSS equiv-

alent, such as destination-placement-offset, block-progression-dimen-
sion, character, and hyphenation-keep. You need to learn these to take full

advantage of XSL. The standard XSL-FO properties follow:

absolute-position

active-state

alignment-adjust

alignment-baseline

auto-restore

azimuth

background

background-attachment

background-color

background-image

background-position

background-position-horizontal

background-position-vertical

background-repeat

baseline-shift

blank-or-not-blank

block-progression-dimension

border

border-after-color

border-after-precedence

border-after-style

border-after-width

border-before-color

border-before-precedence

border-before-style

border-before-width

border-bottom

border-bottom-color

border-bottom-style

border-bottom-width

border-collapse

border-color

border-end-color

border-end-precedence

border-end-style

border-end-width

border-left

border-left-color

border-left-style

border-left-width

border-right

border-right-color

border-right-style

border-right-width

576 Part III ✦ Style Languages

border-separation

border-spacing

border-start-color

border-start-precedence

border-start-style

border-start-width

border-style

border-top

border-top-color

border-top-style

border-top-width

border-width

bottom

break-after

break-before

caption-side

case-name

case-title

character

clear

clip

color

color-profile-name

column-count

column-gap

column-number

column-width

content-height

content-type

content-width

country

cue

cue-after

cue-before

destination-placement-offset

direction

display-align

dominant-baseline

elevation

empty-cells

end-indent

ends-row

extent

external-destination

float

flow-name

font

font-family

font-selection-strategy

font-size

font-size-adjust

font-stretch

font-style

font-variant

font-weight

force-page-count

format

glyph-orientation-horizontal

glyph-orientation-vertical

grouping-separator

grouping-size

height

hyphenate

hyphenation-character

hyphenation-keep

hyphenation-ladder-count

hyphenation-push-character-count

hyphenation-remain-character-count

577Chapter 18 ✦ XSL Formatting Objects

id

indicate-destination

initial-page-number

inline-progression-dimension

internal-destination

keep-together

keep-with-next

keep-with-previous

language

last-line-end-indent

leader-alignment

leader-length

leader-pattern

leader-pattern-width

left

letter-spacing

letter-value

linefeed-treatment

line-height

line-height-shift-adjustment

line-stacking-strategy

margin

margin-bottom

margin-left

margin-right

margin-top

marker-class-name

master-name

max-height

maximum-repeats

max-width

media-usage

min-height

min-width

number-columns-repeated

number-columns-spanned

number-rows-spanned

odd-or-even

orphans

overflow

padding

padding-after

padding-before

padding-bottom

padding-end

padding-left

padding-right

padding-start

padding-top

page-break-after

page-break-before

page-break-inside

page-height

page-position

page-width

pause

pause-after

pause-before

pitch

pitch-range

play-during

position

precedence

provisional-distance-between-
starts

provisional-label-separation

reference-orientation

ref-id

578 Part III ✦ Style Languages

region-name

relative-align

relative-position

rendering-intent

retrieve-boundary

retrieve-class-name

retrieve-position

richness

right

role

rule-style

rule-thickness

scaling

scaling-method

score-spaces

script

show-destination

size

source-document

space-after

space-before

space-end

space-start

space-treatment

span

speak

speak-header

speak-numeral

speak-punctuation

speech-rate

src

start-indent

starting-state

starts-row

stress

suppress-at-line-break

switch-to

table-layout

table-omit-footer-at-break

table-omit-header-at-break

target-presentation-context

target-processing-context

target-stylesheet

text-align

text-align-last

text-altitude

text-decoration

text-depth

text-indent

text-shadow

text-transform

top

treat-as-word-space

unicode-bidi

vertical-align

visibility

voice-family

volume

white-space

white-space-collapse

widows

width

word-spacing

wrap-option

writing-mode

xml:lang

z-index

579Chapter 18 ✦ XSL Formatting Objects

Transforming to formatting objects
XSL-FO is a complete XML vocabulary for laying out text on a page. An XSL-FO doc-

ument is simply a well-formed XML document that uses this vocabulary. That

means it has an XML declaration, a root element, child elements, and so forth. It

must adhere to all the well-formedness rules of any XML document, or formatters

will not accept it. By convention, a file that contains XSL formatting objects has the

three-letter extension .fob or the two-letter extension .fo. However, it might have

the suffix .xml because it also is a well-formed XML file.

Listing 18-1 is a simple document marked up using XSL formatting objects. The root

of the document is fo:root. This element contains a fo:layout-master-set and

a fo:page-sequence. The fo:layout-master-set element contains fo:simple-
page-master child elements. Each fo:simple-page-master describes a kind of

page on which content will be placed. Here there’s only one very simple page, but

more complex documents can have different master pages for first, right, and left,

body pages, front matter, back matter, and more, each with a potentially different

set of margins, page numbering, and other features.

Content is placed on copies of the master page using a fo:page-sequence. The

fo:page-sequence has a master-name attribute specifying the master page to be

used. Its fo:flow child element holds the actual content to be placed on the pages.

The content here is given as two fo:block children, each with a font-size prop-

erty of 20 points, a font-family property of serif, and a line-height of 30 points.

Listing 18-1: A simple XSL-FO document

<?xml version=”1.0”?>
<fo:root xmlns:fo=”http://www.w3.org/1999/XSL/Format”>

<fo:layout-master-set>
<fo:simple-page-master master-name=”only”>
<fo:region-body/>

</fo:simple-page-master>
</fo:layout-master-set>

<fo:page-sequence master-name=”only”>

<fo:flow flow-name=”xsl-region-body”>
<fo:block font-size=”20pt” font-family=”serif”

line-height=”30pt”>
Hydrogen

</fo:block>
<fo:block font-size=”20pt” font-family=”serif”

line-height=”30pt” >
Helium

Continued

580 Part III ✦ Style Languages

Listing 18-1 (continued)

</fo:block>
</fo:flow>

</fo:page-sequence>

</fo:root>

Although you could write a document such as Listing 18-1 by hand, doing so would

lose all the benefits of content-format independence achieved by XML. Normally,

you write an XSLT style sheet that transforms an XML source document into XSL-FO.

Listing 18-2 is the XSLT style sheet that produced Listing 18-1 by transforming the

previous chapter’s Listing 17-1.

Listing 18-2: A transformation from a source vocabulary to
XSL formatting objects

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
xmlns:fo=”http://www.w3.org/1999/XSL/Format”>

<xsl:output indent=”yes”/>

<xsl:template match=”/”>
<fo:root xmlns:fo=”http://www.w3.org/1999/XSL/Format”>

<fo:layout-master-set>
<fo:simple-page-master master-name=”only”>
<fo:region-body/>

</fo:simple-page-master>
</fo:layout-master-set>

<fo:page-sequence master-name=”only”>

<fo:flow flow-name=”xsl-region-body”>
<xsl:apply-templates select=”//ATOM”/>

</fo:flow>

</fo:page-sequence>

</fo:root>

581Chapter 18 ✦ XSL Formatting Objects

</xsl:template>

<xsl:template match=”ATOM”>
<fo:block font-size=”20pt” font-family=”serif”

line-height=”30pt”>
<xsl:value-of select=”NAME”/>

</fo:block>
</xsl:template>

</xsl:stylesheet>

Using FOP
At the time of this writing, no browser can directly display XML documents trans-

formed into XSL formatting objects. However, there are several applications that

can convert an XSL-FO document into a viewable format such as PDF or TeX. The

one used here is the XML Apache project’s open source FOP. FOP is a command-line

Java program that converts FO (formatting object) documents to Adobe Acrobat

PDF files. At the time of this writing, the most recent version of FOP is 0.18.1, which

incompletely supports a subset of the formatting objects and properties in the XSL

Candidate Recommendation. You can download the latest version of FOP from

http://xml.apache.org/fop/.

FOP is included on the CD-ROM in the directory utilities/fop. However, chances
are good that a version that supports XSL-FO more completely will have been
released by the time you’re reading this, so you should try to get it from the Web
if you can.

FOP is a Java program that should run on any platform with a reasonably compati-

ble Java 1.1 virtual machine. To install it, just add the fop.jar, xerces.jar, and w3c.jar

archives included with the FOP distribution to your CLASSPATH. If you’re running

Java 1.2 or later, you can just drop them in your jre/lib/ext directory.

If you’ve installed the JDK (rather than the JRE) on Windows, make sure to put
fop.jar, xerces.jar, and w3c.jar in both of your jre/lib/ext directories. One of these is
in the directory you selected when you installed the JDK, such as C:\jdk\
jre\lib\ext. The other one is somewhere like C:\Program Files\JavaSoft\
jre\1.3\lib\ext.

Also, make sure you use the w3c.jar file included with the FOP distribution rather
than one included with other Apache products like Batik. The different versions are
often incompatible.

Caution

On the
CD-ROM

582 Part III ✦ Style Languages

The org.apache.fop.apps.CommandLine class contains the main() method for

this program. Run it from the command line with arguments specifying the input

and output files. For example,

C:\> java org.apache.fop.apps.CommandLine 18-1.fo 18-1.pdf

The output will look something like this:

java org.apache.fop.apps.CommandLine 18-1.fo 18-1.pdf
FOP 0.17.0 DEV
using SAX parser org.apache.xerces.parsers.SAXParser
using renderer org.apache.fop.render.pdf.PDFRenderer
using element mapping org.apache.fop.fo.StandardElementMapping
using element mapping org.apache.fop.svg.SVGElementMapping
using element mapping
org.apache.fop.extensions.ExtensionElementMapping
using property list mapping
org.apache.fop.fo.StandardPropertyListMapping
using property list mapping
org.apache.fop.svg.SVGPropertyListMapping
using property list mapping
org.apache.fop.extensions.ExtensionPropertyListMapping
building formatting object tree
setting up fonts
formatting FOs into areas
[1]
rendering areas to PDF
writing out PDF

Here 18-1.fo is the input XML file that uses the formatting object vocabulary.

18-1.pdf is the output PDF file that can be displayed and printed by Adobe Acrobat

or other programs that read PDF files.

Although PDF files are themselves ASCII text, this isn’t a book about PostScript, so

there’s nothing to be gained by showing you the exact output of the above com-

mand. If you’re curious, open the PDF file in any text editor. Instead, Figure 18-1

shows the rendered file displayed in Netscape Navigator using the Acrobat plug-in.

PDF files are not the only or even the primary eventual destination format for XML

documents styled with XSL formatting objects. Certainly, one would hope that Web

browsers will directly support XSL formatting objects in the not too distant future.

For now, PDF files are the only convenient format, so that’s what I show in this

chapter. Eventually, more software will be able to read and display these files.

583Chapter 18 ✦ XSL Formatting Objects

Figure 18-1: The PDF file displayed in Netscape Navigator

Page Layout
The root element of a formatting objects document is fo:root. This element con-

tains one fo:layout-master-set element and one or more fo:page-sequence
elements. The fo:page-sequence elements contain content; that is, text and

images to be placed on the pages. The fo:layout-master-set contains templates

for the pages that will be created. When the formatter reads an XSL-FO document, it

creates a page based on the first template in the fo:layout-master-set. Then it

fills it with content from the fo:page-sequence. When it’s filled the first page, it

instantiates a second page based on a template, and fills it with content. The pro-

cess continues until the formatter runs out of content.

The root element
The fo:root element generally has an xmlns:fo attribute with the value

http://www.w3.org/1999/XSL/Format and may (though it generally does not)

have an id attribute. The fo:root element exists just to declare the namespace

and be the document root. It has no direct effect on page layout or formatting.

584 Part III ✦ Style Languages

Simple page masters
The page templates are called page masters. Page masters are similar in purpose to

QuarkXPress master pages or PowerPoint slide masters. Each defines a general lay-

out for a page including its margins, the sizes of the header, footer, and body area of

the page, and so forth. Each actual page in the rendered document is based on one

master page, and inherits certain properties like margins, page numbering, and lay-

out from that master page. XSL-FO 1.0 defines exactly one kind of page master, the

fo:simple-page-master, which represents a rectangular page. The fo:layout-
master-set contains one or more fo:simple-page-master elements that define

master pages.

Future versions of XSL-FO will add other kinds of page masters, possibly including
nonrectangular pages.

Each master page is represented by a fo:simple-page-master element. A

fo:simple-page-master element defines a page layout, including the size of its

before region, body region, after region, end region, and start region. Figure 18-2

shows the typical layout of these parts. One thing that may not be obvious from

this picture is that the body region overlaps the other four regions (though not the

page margins); that is, the body is everything inside the thick black line including

the start, end, before, and after regions.

In normal English text, the end region is the right side of the page and the start
region is the left side of the page. This is reversed in Hebrew or Arabic text,
because these languages are written from right to left. In almost all modern lan-
guages, the before region is the header and the after region is the footer, but this
could be reversed in a language that wrote from bottom to top.

Simple page master properties
The fo:simple-page-master element has three main attributes:

✦ master-name: the name by which page sequences will reference this master

page

✦ page-height: the height of the page

✦ page-width: the width of the page

If the page-height and page-width are not provided, then the formatter chooses

a reasonable default based on the media in use (for example, 8.5" × 11").

Note

Note

585Chapter 18 ✦ XSL Formatting Objects

Figure 18-2: The layout of the parts of a simple page
of English text

Other attributes commonly applied to page masters include:

✦ The margin-bottom, margin-left, margin-right, and margin-top
attributes, or the shorthand margin attribute

✦ The writing-mode attribute that determines which direction text flows on

the page, for example, left-to-right or right-to-left or top-to-bottom

✦ The reference-orientation attribute that specifies in 90-degree increments

whether and how much the content is rotated

page top margin

page bottom margin

p
a
g
e

r
i
g
h
t

m
a
r
g
i
n

p
a
g
e

l
e
f
t

m
a
r
g
i
n

BEFORE

BODY

S
T
A
R
T

E
N
D

AFTER

586 Part III ✦ Style Languages

For example, here is a fo:layout-master-set containing one fo:simple-page-
master named US-Letter. It specifies an 8.5 × 11-inch page with half-inch margins

on each side. It contains a single region, the body, into which all content will be

placed.

<fo:layout-master-set>
<fo:simple-page-master master-name=”US-Letter”

page-height=”11in” page-width=”8.5in”
margin-top=”0.5in” margin-bottom=”0.5in”
margin-left=”0.5in” margin-right=”0.5in”>
<fo:region-body/>

</fo:simple-page-master>
</fo:layout-master-set>

Regions
The designer sets the size of the body (center) region, header, footer, end region,

and start region, as well as the distances between them, by adding region child ele-

ments to the fo:simple-page-master. These are:

✦ fo:region-before

✦ fo:region-after

✦ fo:region-body

✦ fo:region-start

✦ fo:region-end

The fo:region-before and fo:region-after elements each have an extent
attribute that gives the height of these regions. Their width extends from the left

side of the page to the right side. The fo:region-start and fo:region-end ele-

ments each have an extent attribute that specifies their widths. Their height

extends from the bottom of the start region to the top of the end region. (This

assumes normal Western text. Details would be rotated in Chinese or Hebrew or

some other non-right-to-left–top-to-bottom script.)

The fo:region-body does not have an extent attribute. Instead, the size of the

body is everything inside the page margins. Thus, the region body overlaps the

other four regions on the page. If you place text into the body and the other four

regions, text will be drawn on top of other content. To avoid this, you must set the

left margin of the body to be as large or larger than the extent of the start region,

the top margin of the body to be as large or larger than the extent of the before

region, and so on.

587Chapter 18 ✦ XSL Formatting Objects

Each of the five regions of a simple page master may be filled with content from a

fo:flow or fo:static-content element when the document is processed.

However, these elements do not contain that content. Instead, they simply give the

dimensions of the boxes the formatter will build to put content in. They are

blueprints for the boxes, not the boxes themselves.

For example, this fo:simple-page-master creates pages with one-inch before and

after regions. The region body will extend vertically from the bottom of the before

region to the top of the after region. It will extend horizontally from the left side of

the page to the right side of the page because there is no start or end region.

<fo:simple-page-master master-name=”table_page”>
<fo:region-before extent=”1.0in”/>
<fo:region-body margin-top=”1.0in” margin-bottom=”1.0in”/>
<fo:region-after extent=”1.0in”/>

</fo:simple-page-master>

For another example, here is a fo:layout-master-set that makes all outer

regions one inch. Furthermore, the page itself has a half-inch margin on all sides.

<fo:layout-master-set>
<fo:simple-page-master master-name=”only”

page-width=”8.5in” page-height=”11in”
margin-top=”0.5in” margin-bottom=”0.5in”
margin-left=”0.5in” margin-right=”0.5in”>

<fo:region-start extent=”1.0in”/>
<fo:region-before extent=”1.0in”/>
<fo:region-body margin=”1.0in”/>
<fo:region-end extent=”1.0in”/>
<fo:region-after extent=”1.0in”/>

</fo:simple-page-master>
</fo:layout-master-set>

The body regions from pages based on this page master will be 5.5 inches wide and

8 inches high. That’s calculated by subtracting the sum of the body region’s mar-

gins and the page margins from the size of the page.

Page sequences
In addition to a fo:layout-master-set, each formatting object document con-

tains one or more fo:page-sequence elements. Each page in the sequence has an

associated page master that defines how the page will look. Which page master this

is, is determined by the master-name attribute fo:page-sequence element. This

must match the name of a page master in the fo:layout-master-set. Listing 18-1

used a fo:simple-master-page named only to fill this role, but it is not uncom-

mon to have more than one master page. In this case, the master pages might be

grouped as part of a fo:page-sequence-master instead. For instance, you could

588 Part III ✦ Style Languages

have one master page for the first page of each chapter, a different one for all the

subsequent left-hand pages, and a third for all the subsequent right-hand pages. Or,

there could be one simple page master for a table of contents, another for body

text, and a third for the index. In this case, you use one page sequence each for the

table of contents, the body text, and the index.

Each page sequence contains three child elements in this order:

1. An optional fo:title element containing inline content that can be used as

the title of the document. This would normally be placed in the title bar of the

browser window like the TITLE element in HTML.

2. Zero or more fo:static-content elements containing text to be placed on

every page.

3. One fo:flow element containing data to be placed on each page in turn.

The main difference between a fo:flow and a fo:static-content is that text

from the flow isn’t placed on more than one page, whereas the static content is. For

example, the words you’re reading now are flow content that only appear on this

page, whereas the part and chapter titles at the top of the page are static content

that is repeated from page to page.

The fo:flow element contains, in order, the elements to be placed on the page. As

each page fills with elements from the flow, a new page is created with the next

master page in the page sequence master for the elements that remain in the flow.

With a simple page master, the same page will be instantiated repeatedly, as many

times as necessary to hold all the content.

The fo:static-content element contains information to be placed on each page.

For instance, it may place the title of a book in the header of each page. Static con-

tent can be adjusted depending on the master page. For instance, the part title may

be placed on left-hand pages, and the chapter title on right-hand pages. The

fo:static-content element can also be used for items such as page numbers that

have to be calculated from page to page. In other words, what’s static is not the

text, but the calculation that produces the text.

Flows
The fo:flow object holds the actual content, which will be placed on the instances

of the master pages. This content is composed of a sequence of fo:block,

fo:block-container, fo:table-and-caption, fo:table, and fo:list-block
elements. This section sticks to basic fo:block elements, which are roughly equiv-

alent HTML’s DIV elements. Later in this chapter, you learn more block-level ele-

ments that a flow can contain.

589Chapter 18 ✦ XSL Formatting Objects

For example, here is a basic flow containing the names of several atoms, each in its

own block:

<fo:flow flow-name=”xsl-region-body”>
<fo:block>Actinium</fo:block>
<fo:block>Aluminum</fo:block>
<fo:block>Americium</fo:block>

</fo:flow>

The flow-name attribute of the fo:flow, here with the value xsl-region-body,

specifies which of the five regions of the page this flow’s content will be placed in.

The allowed values are:

✦ xsl-region-body

✦ xsl-region-before

✦ xsl-region-after

✦ xsl-region-start

✦ xsl-region-end

For example, a flow for the header has a flow-name value of xsl-region-before.

A flow for the body would have a flow-name of xsl-region-body. There can’t be

two flows with the same name in the same page sequence. Thus, each fo:page-
sequence can contain at most five fo:flow children, one for each of the five

regions on the page.

You can now put together a complete style sheet that lays out the entire periodic

table. Listing 18-3 demonstrates this with an XSLT style sheet that converts the peri-

odic table into XSL formatting objects. The flow grabs all the atoms and places each

one in its own block. A simple page master named only defines an A4-sized master

page in landscape mode with half-inch margins on each side.

Listing 18-3: A basic style sheet for the periodic table

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
xmlns:fo=”http://www.w3.org/1999/XSL/Format”>

<xsl:template match=”/”>
<fo:root xmlns:fo=”http://www.w3.org/1999/XSL/Format”>

<fo:layout-master-set>

<fo:simple-page-master master-name=”A4”
page-width=”297mm” page-height=”210mm”
margin-top=”0.5in” margin-bottom=”0.5in”

Continued

590 Part III ✦ Style Languages

Listing 18-3 (continued)

margin-left=”0.5in” margin-right=”0.5in”>
<fo:region-body/>

</fo:simple-page-master>

</fo:layout-master-set>

<fo:page-sequence master-name=”A4”>

<fo:flow flow-name=”xsl-region-body”>
<xsl:apply-templates select=”//ATOM”/>

</fo:flow>

</fo:page-sequence>

</fo:root>
</xsl:template>

<xsl:template match=”ATOM”>
<fo:block><xsl:value-of select=”NAME”/></fo:block>

</xsl:template>

</xsl:stylesheet>

Figure 18-3 shows the resulting document after Listing 18-3 has been run through an

XSLT processor to produce an XSL-FO document, and that document has been run

through FOP to produce a PDF file.

Static Content
Whereas each piece of the content of a fo:flow element appears on one page, each

piece of the content of a fo:static-content element appears on every page. For

instance, if this book were laid out in XSL-FO, then both the header at the top of the

page and the footer at the bottom of the page would have been produced by

fo:static-content elements. You do not have to use fo:static-content ele-

ments, but if you do use them they must appear before all the fo:flow elements in

the page sequence.

fo:static-content elements have the same attributes and contents as a

fo:flow. However, because a fo:static-content cannot break its contents

across multiple pages if necessary, it generally has less content than a fo:flow. For

example, Listing 18-4 uses a fo:static-content to place the words “The Periodic

Table” in the header of each page.

591Chapter 18 ✦ XSL Formatting Objects

Figure 18-3: The output of Listing 18-3

Listing 18-4: Using fo:static-content to generate a header

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
xmlns:fo=”http://www.w3.org/1999/XSL/Format”>

<xsl:template match=”/”>
<fo:root xmlns:fo=”http://www.w3.org/1999/XSL/Format”>

<fo:layout-master-set>

<fo:simple-page-master master-name=”A4”
page-width=”297mm” page-height=”210mm”
margin-top=”0.5in” margin-bottom=”0.5in”
margin-left=”0.5in” margin-right=”0.5in”>
<fo:region-before extent=”1.0in”/>
<fo:region-body margin-top=”1.0in”/>

</fo:simple-page-master>

</fo:layout-master-set>

Continued

592 Part III ✦ Style Languages

Listing 18-4 (continued)

<fo:page-sequence master-name=”A4”>

<fo:static-content flow-name=”xsl-region-before”>
<fo:block>The Periodic Table</fo:block>

</fo:static-content>

<fo:flow flow-name=”xsl-region-body”>
<xsl:apply-templates select=”//ATOM”/>

</fo:flow>

</fo:page-sequence>

</fo:root>
</xsl:template>

<xsl:template match=”ATOM”>
<fo:block><xsl:value-of select=”NAME”/></fo:block>

</xsl:template>

</xsl:stylesheet>

Figure 18-4 shows the last page of the PDF file ultimately produced by Listing 18-4.

The same text, “The Periodic Table”, appears on all four pages of the document.

Figure 18-4: Static content in the header

593Chapter 18 ✦ XSL Formatting Objects

Page numbering
The fo:page-sequence element has eight optional attributes that define page

numbers for the sequence. These are:

✦ initial-page-number

✦ force-page-count

✦ format

✦ letter-value

✦ country

✦ language

✦ grouping-separator

✦ grouping-size

The initial-page-number attribute gives the number of the first page in this

sequence. The most likely value for this attribute is 1, but it could be a larger num-

ber if the previous pages are in a different fo:page-sequence or even a different

document. It can also be set to one of these three key words:

✦ auto: 1 unless pages from a preceding fo:page-sequence have pushed that

up. This is the default.

✦ auto-odd: Same as auto, but add 1 if that value is an even number; that is,

start on an odd page.

✦ auto-even: Same as auto, but add 1 if that value is an odd number; that is,

start on an even page.

The force-page-count attribute is used to require the document to have an even

or odd number of pages or to end on an even or odd page. This is sometimes neces-

sary for printed books. The force-page-count attribute can have one of these six

keyword values:

✦ auto: Make the last page an odd page if the initial-page-number of the

next fo:page-sequence is even. Make the last page an even-page if the initial-

page-number of the next page-sequence is odd. If there is no next fo:page-
sequence or if the next fo:page-sequence does not specify an

initial-page-number, then let the last page fall where it may.

✦ even: Require an even number of pages, inserting an extra blank page if neces-

sary to make it so.

✦ odd: Require an odd number of pages, inserting an extra blank page if neces-

sary to make it so.

594 Part III ✦ Style Languages

✦ end-on-even: Require the last page to have an even page number, inserting

an extra blank page if necessary to make it so.

✦ end-on-odd: Require the last page to have an odd page number, inserting an

extra blank page if necessary to make it so.

✦ no-force: Do not require either an even or odd number of pages.

The country attribute should be set to an RFC 1766 country code. The language
attribute should be set to an RFC 1766 language code (http://www.ietf.org/
rfc/rfc1766.txt). For instance, you would use en to indicate English and us to

indicate the United States.

These are essentially the same as the legal values for xml:lang that were dis-
cussed in Chapter 11, except that the country code and language codes are placed
in two separate attributes rather than in one attribute.

The remaining four attributes have exactly the same syntax and meaning as when

used as attributes of the xsl:number element from XSLT, so I won’t repeat that dis-

cussion here.

The xsl:number element and the format, letter-value, grouping-
separator, and grouping-size attributes are discussed in the “Number to
String Conversion” section in Chapter 17.

The fo:page-number formatting object is an empty inline element that inserts the

number of the current page. The formatter is responsible for determining what that

number is. This element can have a variety of formatting attributes common to

inline elements such as font-family and text-decoration. For example, Listing

18-5 uses fo:static-content and fo:page-number to put the page number at the

bottom of every page:

Listing 18-5: Using fo:page-number to place the page number
in the footer

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
xmlns:fo=”http://www.w3.org/1999/XSL/Format”>

<xsl:template match=”/”>
<fo:root xmlns:fo=”http://www.w3.org/1999/XSL/Format”>

<fo:layout-master-set>

<fo:simple-page-master master-name=”A4”

Cross-
Reference

Cross-
Reference

595Chapter 18 ✦ XSL Formatting Objects

page-width=”297mm” page-height=”210mm”
margin-top=”0.5in” margin-bottom=”0.5in”
margin-left=”0.5in” margin-right=”0.5in”>
<fo:region-before extent=”1.0in”/>
<fo:region-body margin-top=”1.0in”

margin-bottom=”1.0in”/>
<fo:region-after extent=”1.0in”/>

</fo:simple-page-master>

</fo:layout-master-set>

<fo:page-sequence master-name=”A4”
initial-page-number=”1” language=”en” country=”us”>

<fo:static-content flow-name=”xsl-region-before”>
<fo:block>The Periodic Table</fo:block>

</fo:static-content>

<fo:static-content flow-name=”xsl-region-after”>
<fo:block>p. <fo:page-number/></fo:block>

</fo:static-content>

<fo:flow flow-name=”xsl-region-body”>
<xsl:apply-templates select=”//ATOM”/>

</fo:flow>

</fo:page-sequence>

</fo:root>
</xsl:template>

<xsl:template match=”ATOM”>
<fo:block><xsl:value-of select=”NAME”/></fo:block>

</xsl:template>

</xsl:stylesheet>

Figure 18-5 shows the second page of the PDF file generated from Listing 18-5. The

page number appears at the bottom of this and every other page in the document.

596 Part III ✦ Style Languages

Figure 18-5: Automatically generated page numbers in the footer

Page sequence masters
Each page the formatter creates is associated with a master page from the

fo:layout-master-set that defines how the page will look. Which master

page this is, is determined by the master-name attribute fo:page-sequence ele-

ment. Listing 18-3 through 18-5 used a single fo:simple-master-page named A4
to fill this role, but it is not uncommon to have more than one master page. For

instance, you could use one master page for the first page of each chapter, a differ-

ent one for all the subsequent left-hand pages, and a third for all the subsequent

right-hand pages. In this case, the master pages might be grouped as part of a

fo:page-sequence-master instead.

The fo:page-sequence-master element is a child of the fo:layout-master-set
that lists the order in which particular master pages will be instantiated using one

or more of these three child elements:

✦ fo:single-page-master-reference

✦ fo:repeatable-page-master-reference

✦ fo:repeatable-page-master-alternatives

Each of these elements has a master-name attribute that determines which master

pages are used when.

597Chapter 18 ✦ XSL Formatting Objects

fo:single-page-master-reference
The simplest is fo:single-page-master-reference whose master-name
attribute identifies one master page to be instantiated. For example, this

fo:layout-master-set contains a fo:page-sequence-master element named

contents that says that all text should be placed on a single instance of the master

page named A4:

<fo:layout-master-set>

<fo:simple-page-master master-name=”A4”
page-width=”297mm” page-height=”210mm”
margin-top=”0.5in” margin-bottom=”0.5in”
margin-left=”0.5in” margin-right=”0.5in”>

<fo:region-body/>
</fo:simple-page-master>

<fo:page-sequence-master master-name=”contents”>
<fo:single-page-master-reference master-name=”A4”/>

</fo:page-sequence-master>

</fo:layout-master-set>

This page sequence master only allows the creation of a single page. Technically,

it’s an error if there’s more content than can fit on this one page. However, in prac-

tice most formatters simply repeat the last page used until they have enough pages

to hold all the content.

Now consider this page sequence master:

<fo:page-sequence-master master-name=”contents”>
<fo:single-page-master-reference master-name=”A4”/>
<fo:single-page-master-reference master-name=”A4”/>

</fo:page-sequence-master>

This provides for up to two pages, each based on the master page named A4. If the

first page fills up, a second is created. If that page fills up, then the formatter may

throw an error, or it may create extra pages.

The same technique can be used to apply different master pages. For example, this

sequence specification bases the first page on the master page named front and

the second on the master page named back:

<fo:page-sequence-master master-name=”contents”>
<fo:single-page-master-reference master-name=”front”/>
<fo:single-page-master-reference master-name=”back”/>

</fo:page-sequence-master>

The first page the formatter creates will be based on the master page named front.

The second page created will be based on the master page named back. If the sec-

ond page fills up, the formatter may throw an error, or it may create extra pages

based on back, the last master page instantiated.

598 Part III ✦ Style Languages

fo:repeatable-page-master-reference
Of course, you usually don’t know in advance exactly how many pages there will be.

The fo:repeatable-page-master-reference element lets you specify that as

many pages as necessary will be used to hold the content, all based on a single

master page. The master-name attribute identifies which master page will be

repeated. For example, this page sequence master will use as many copies of the

master page named A4 as necessary to hold all the content:

<fo:page-sequence-master master-name=”contents”>
<fo:repeatable-page-master-reference master-name=”A4”/>

</fo:page-sequence-master>

Alternately, you can set the maximum-repeats attribute of the fo:repeatable-
page-master-reference element to limit the number of pages that will be cre-

ated. For instance, this fo:page-sequence-master generates at most 10 pages per

document:

<fo:page-sequence-master master-name=”contents”>
<fo:repeatable-page-master-reference master-name=”A4”

maximum-repeats=”10”/>
</fo:page-sequence-master>

This also lets you do things like using one master for the first two pages, another

for the next three pages, and a third master for the next 10 pages.

fo:repeatable-page-master-alternatives
The fo:repeatable-page-master-alternatives element specifies different

master pages for the first page, even pages, odd pages, blank pages, last even page,

and last odd page. This is more designed for a chapter of a printed book where the

first and last pages, as well the even and odd pages, traditionally have different

margins, headers, and footers.

Because a fo:repeatable-page-master-alternatives element needs to refer to

more than one master page, it can’t use a master-name attribute such as fo:single
-page-master-reference and fo:repeatable-page-master-reference.

Instead, it has fo:conditional-page-master-reference child elements. Each of

these has a master-name attribute that identifies the master page to instantiate

given that condition. The conditions themselves are determined by three attributes:

✦ page-position: This attribute can be set to first, last, rest, or any to

identify it as applying only to the first page, last page, any page except the

first, or any page respectively.

✦ odd-or-even: This attribute can be set to odd, even, or any to identify it as

applying only to odd pages, only to even pages, or to all pages respectively.

✦ blank-or-not-blank: This attribute can be set to blank, not-blank, or any
to identify it as applying only to blank pages, only to pages that contain con-

tent, or to all pages respectively.

599Chapter 18 ✦ XSL Formatting Objects

For example, this page sequence master says that the first page should be based on

the master page named letter_first but that all subsequent pages should use

the master page named letter:

<fo:page-sequence-master master-name=”contents”>
<fo:repeatable-page-master-alternatives>
<fo:conditional-page-master-reference
page-position=”first” master-name=”letter_first”/>

<fo:conditional-page-master-reference
page-position=”rest” master-name=”letter”/>

</fo:repeatable-page-master-alternatives>
</fo:page-sequence-master master-name=”contents”>

If the content overflows the first page, the remainder will be placed on a second

page. If it overflows the second page, a third page will be created. As many pages as

needed to hold all the content will be constructed.

Content
The content (as opposed to markup) of an XSL-FO document is mostly text. Non-

XML content such as GIF and JPEG images can be included in a fashion similar to

the IMG element of HTML. Other forms of XML content, such as MathML and SVG,

can be embedded directly inside the XSL-FO document. This content is stored in

several kinds of elements including:

✦ Block-level formatting objects

✦ Inline formatting objects

✦ Table formatting objects

✦ Out-of-line formatting objects

All of these different kinds of elements are descendants of either a fo:flow or a

fo:static-content element. They are never placed directly on page masters or

page sequences.

Block-level formatting objects
A block-level formatting object is drawn as a rectangular area separated by a line

break and possibly extra white space from any content that precedes or follows it.

Blocks may contain other blocks, in which case the contained blocks are also sepa-

rated from the containing block by a line break and perhaps extra white space.

Block-level formatting objects include:

✦ fo:block

✦ fo:block-container

600 Part III ✦ Style Languages

✦ fo:table-and-caption

✦ fo:table

✦ fo:list-block

The fo:block element is the XSL-FO equivalent of display: block in CSS or

DIV in HTML. Blocks may be contained in fo:flow elements, other fo:block
elements, and fo:static-content elements. fo:block elements may contain

other fo:block elements, other block-level elements such as fo:table and

fo:list-block, and inline elements such as fo:inline and fo:page-number.

Block-level elements may also contain raw text. For example:

<fo:block>The Periodic Table, Page <fo:page-number/></fo:block>

The block-level elements generally have attributes for both area properties and

text-formatting properties. The text-formatting properties are inherited by any child

elements of the block unless overridden.

As of version 0.18.1, FOP does not support fo:block-container or
fo:table-and-caption.

Inline formatting objects
An inline formatting object is also drawn as a rectangular area that may contain text

or other inline areas. However, inline areas are most commonly arranged in lines

running from left to right. When a line fills up, a new line is started below the previ-

ous one. The exact order in which inline elements are placed depends on the writ-

ing mode. For example, when working in Hebrew or Arabic, inline elements are first

placed on the right and then fill to the left. Inline formatting objects include:

✦ fo:bidi-override

✦ fo:character

✦ fo:external-graphic

✦ fo:initial-property-set

✦ fo:instream-foreign-object

✦ fo:inline

✦ fo:inline-container

✦ fo:leader

✦ fo:page-number

✦ fo:page-number-citation

As of version 0.18.1, FOP does not support fo:bidi-override, fo:initial-
property-set, or fo:inline-container.

Caution

Caution

601Chapter 18 ✦ XSL Formatting Objects

Table formatting objects
The table formatting objects are the XSL-FO equivalents of CSS2 table properties.

However, tables do work somewhat more naturally in XSL-FO than in CSS. For the

most part, an individual table is a block-level object, while the parts of the table

aren’t really either inline or block level. However, an entire table can be turned into

an inline object by wrapping it in a fo:inline-container.

There are nine XSL table formatting objects:

✦ fo:table-and-caption

✦ fo:table

✦ fo:table-caption

✦ fo:table-column

✦ fo:table-header

✦ fo:table-footer

✦ fo:table-body

✦ fo:table-row

✦ fo:table-cell

The root of a table is either a fo:table or a fo:table-and-caption that contains

a fo:table and a fo:caption. The fo:table contains a fo:table-header,

fo:table-body, and fo:table-footer. The table body contains fo:table-row
elements that are divided up into fo:table-cell elements.

FOP 0.18.1 has limited support for the table formatting objects, and none at all for
fo:table-and-caption and fo:table-caption.

Out-of-line formatting objects
There are three “out-of-line” formatting objects:

✦ fo:float

✦ fo:footnote

✦ fo:footnote-body

Out-of-line formatting objects “borrow” space from existing inline or block objects.

On the page, they do not necessarily appear between the same elements that they

appeared between in the input formatting object XML tree.

FOP 0.18.1 does not support fo:float.Caution

Caution

602 Part III ✦ Style Languages

Leaders and Rules
A rule is a block-level horizontal line inserted into text similar to the line below the

chapter title on the first page of this chapter. The HR element in HTML produces a

rule. A leader is a line that extends from the right side of left-aligned text in the mid-

dle of a line to the left side of some right-aligned text on the same line. It’s most

commonly made up of dots, although other characters can be used. Leaders are

commonly seen in menus and tables of contents. In fact, if you flip back to the table

of contents at the beginning of this book, you’ll see leaders between chapter and

section titles and the page numbers.

In XSL-FO both leaders and rules are produced by the fo:leader element. This is

an inline element that represents a leader, although it can easily serve as a rule by

placing it inside a fo:block.

Six attributes describe the appearance of a leader:

✦ leader-alignment: This can be set to reference-area or page to indicate

that the start edge of the leader should be aligned with the start edge of the

named item. It can also be set to none or inherit.

✦ leader-length: The length of the leader, such as 12pc or 5in.

✦ leader-pattern: This can be set to space, rule, dots, use-content, or

inherit. The use-content value means that the leader characters should be

read from the content of the fo:leader element.

✦ leader-pattern-width: This property can be set to a specific length such as

2mm or to use-font-metrics, which indicates that the leader should simply

be as big as it would naturally be. This is not the length of the entire leader

(which is set by leader-length); it is the length of each repeating pattern in

the leader. If necessary, white space will be added to stretch each pattern out

to the requested length.

✦ rule-style: This property has the same values as the CSS border-style
properties; that is, none, dotted, dashed, solid, double, groove, ridge, and

inherit.

✦ rule-thickness: This property is the thickness (width) of the rule; 1pt by

default.

In addition, a number of other common properties apply to leaders. For instance,

you can use the font-family property to change the font in which a leader is

drawn or the color property to change the color in which a leader is drawn. For

example, this is a green horizontal line that’s 7.5 inches long and 2 points thick:

<fo:block>
<fo:leader leader-length=”7.5in” leader-pattern=”rule”

rule-thickness=”2pt” color=”green”/>
</fo:block>

Listing 18-6 uses fo:leader to place a rule at the top of each page footer.

603Chapter 18 ✦ XSL Formatting Objects

Listing 18-6: Using fo:leader to separate the footer from the
body with a horizontal line

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
xmlns:fo=”http://www.w3.org/1999/XSL/Format”>

<xsl:template match=”/”>
<fo:root xmlns:fo=”http://www.w3.org/1999/XSL/Format”>

<fo:layout-master-set>

<fo:simple-page-master master-name=”A4”
page-width=”297mm” page-height=”210mm”
margin-top=”0.5in” margin-bottom=”0.5in”
margin-left=”0.5in” margin-right=”0.5in”>
<fo:region-before extent=”1.0in”/>
<fo:region-body margin-top=”1.0in”

margin-bottom=”1.0in”/>
<fo:region-after extent=”1.0in”/>

</fo:simple-page-master>

</fo:layout-master-set>

<fo:page-sequence master-name=”A4”
initial-page-number=”1” language=”en” country=”us”>

<fo:static-content flow-name=”xsl-region-before”>
<fo:block>The Periodic Table</fo:block>

</fo:static-content>

<fo:static-content flow-name=”xsl-region-after”>
<fo:block><fo:leader leader-pattern=”rule”

leader-length=”18cm” />
</fo:block>
<fo:block>p. <fo:page-number/></fo:block>

</fo:static-content>

<fo:flow flow-name=”xsl-region-body”>
<xsl:apply-templates select=”//ATOM”/>

</fo:flow>

</fo:page-sequence>

</fo:root>
</xsl:template>

<xsl:template match=”ATOM”>
<fo:block><xsl:value-of select=”NAME”/></fo:block>

</xsl:template>

</xsl:stylesheet>

604 Part III ✦ Style Languages

Figure 18-6 shows the third page of the PDF file generated from Listing 18-6. The

rule appears at the bottom of this and every other page in the document.

Figure 18-6: Automatically generated rules in the footer

Graphics
XSL-FO provides two elements for embedding pictures in a rendered document. The

fo:external-graphic element inserts a non-XML graphic, such as a JPEG image.

The fo:instream-foreign-object element inserts an XML document that is not

an XSL-FO document, such as an SVG picture or a MathML equation.

fo:external-graphic
The fo:external-graphic element provides the equivalent of an HTML IMG ele-

ment. That is, it loads an image, probably in a non-XML format, from a URL.

fo:external-graphic is always an empty element with no children. The src
attribute contains a URI identifying the location of the image to be embedded. For

example, consider this standard HTML IMG element:

605Chapter 18 ✦ XSL Formatting Objects

The fo:external-graphic equivalent looks like this:

<fo:external-graphic src=”cup.gif”/>

Of course, you can use an absolute URL if you like:

<fo:external-graphic src=”http://www.ibiblio.org/xml/cup.gif”/>

Just as with Web browsers and HTML, there’s no guarantee that any particular for-

matting engine recognizes and supports any particular graphic format. Currently,

FOP supports GIF and JPEG images. More formats may be added in the future.

fo:external-graphic is an inline element. You can make it a block-level picture

simply by wrapping it in a fo:block element like this:

<fo:block><fo:external-graphic src=”cup.gif”/></fo:block>

Listing 18-7 shows a style sheet that loads the image at http://www.ibiblio.
org/xml/images/atom.jpg and puts it in the header of all the pages. In this case,

the URI of the image is hard coded in the style sheet. In general, however, it would

be read from the input document.

Listing 18-7: An XSL style sheet that references an external
graphic

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
xmlns:fo=”http://www.w3.org/1999/XSL/Format”>

<xsl:template match=”/”>
<fo:root xmlns:fo=”http://www.w3.org/1999/XSL/Format”>

<fo:layout-master-set>

<fo:simple-page-master master-name=”A4”
page-width=”297mm” page-height=”210mm”
margin-top=”0.5in” margin-bottom=”0.5in”
margin-left=”0.5in” margin-right=”0.5in”>
<fo:region-before extent=”1.0in”/>
<fo:region-body margin-top=”1.0in”

margin-bottom=”1.0in”/>
<fo:region-after extent=”1.0in”/>

Continued

606 Part III ✦ Style Languages

Listing 18-7 (continued)

</fo:simple-page-master>

</fo:layout-master-set>

<fo:page-sequence master-name=”A4”
initial-page-number=”1” language=”en” country=”us”>

<fo:static-content flow-name=”xsl-region-before”>
<fo:block>
<fo:external-graphic
src=”http://www.ibiblio.org/xml/images/atom.jpg”/>
The Periodic Table

</fo:block>
</fo:static-content>

<fo:static-content flow-name=”xsl-region-after”>
<fo:block>
<fo:leader leader-pattern=”rule”

leader-length=”18cm”/>
</fo:block>
<fo:block>p. <fo:page-number/></fo:block>

</fo:static-content>

<fo:flow flow-name=”xsl-region-body”>
<xsl:apply-templates select=”//ATOM”/>

</fo:flow>

</fo:page-sequence>

</fo:root>
</xsl:template>

<xsl:template match=”ATOM”>
<fo:block><xsl:value-of select=”NAME”/></fo:block>

</xsl:template>

</xsl:stylesheet>

Figure 18-7 shows the first page of the PDF file generated from Listing 18-7. The pic-

ture appears at the top of this and every other page in the document.

607Chapter 18 ✦ XSL Formatting Objects

Figure 18-7: Inserting an external graphic in the header

fo:instream-foreign-object
The fo:instream-foreign-object inserts a graphic element that is described in

XML and that is included directly in the XSL-FO document. For example, a

fo:instream-foreign-object element might contain an SVG picture. The format-

ter would render the picture in the finished document. Listing 18-8 is an XSL-FO

document that places the pink triangle SVG example from Chapter 2 on the header

of each page:

Listing 18-8: An XSL style sheet that contains an instream
SVG picture

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
xmlns:fo=”http://www.w3.org/1999/XSL/Format”>

<xsl:template match=”/”>

Continued

608 Part III ✦ Style Languages

Listing 18-8 (continued)

<fo:root xmlns:fo=”http://www.w3.org/1999/XSL/Format”>

<fo:layout-master-set>

<fo:simple-page-master master-name=”A4”
page-width=”297mm” page-height=”210mm”
margin-top=”0.5in” margin-bottom=”0.5in”
margin-left=”0.5in” margin-right=”0.5in”>
<fo:region-before extent=”1.0in”/>
<fo:region-body margin-top=”1.0in”/>

</fo:simple-page-master>

</fo:layout-master-set>

<fo:page-sequence master-name=”A4”
initial-page-number=”1” language=”en” country=”us”>

<fo:static-content flow-name=”xsl-region-before”>
<fo:block> The Periodic Table
<fo:instream-foreign-object>
<svg xmlns=”http://www.w3.org/2000/svg”

width=”1.5cm” height=”1cm”>
<polygon style=”fill:#FFCCCC” points=”0,31 18,0 36,31”/>

</svg>
</fo:instream-foreign-object>

</fo:block>
</fo:static-content>

<fo:flow flow-name=”xsl-region-body”>
<xsl:apply-templates select=”//ATOM”/>

</fo:flow>

</fo:page-sequence>

</fo:root>
</xsl:template>

<xsl:template match=”ATOM”>
<fo:block><xsl:value-of select=”NAME”/></fo:block>

</xsl:template>

</xsl:stylesheet>

609Chapter 18 ✦ XSL Formatting Objects

Figure 18-8 shows the first page of the PDF file generated from Listing 18-8. The tri-

angle appears at the top of this and every other page in the document.

Figure 18-8: Inserting an instream graphic in the header

Not all formatters support all possible XML graphics formats. For instance, FOP

does not support MathML at all, and only supports a subset of SVG. Still this is a

useful technique, especially when you want XSLT to generate pictures at runtime.

For instance, you could write an XSLT style sheet that produced nicely formatted

annual reports, including all the charts and graphics, simply by transforming some

of the input document into XSL-FO and other parts of the input document into SVG.

Graphic properties
fo:external-graphic and fo:instream-foreign-object share a number of

properties designed to scale, position, crop, align, and otherwise adjust the appear-

ance of the image on the page.

610 Part III ✦ Style Languages

Content type
The content-type attribute specifies the type of the graphic. You can give this as a

MIME media type, such as image/jpg or image/svg-xml, by prefixing the actual type

with content-type:. For example, to specify that the fo:external-graphic ele-

ment refers to a GIF image you would write it as

<fo:external-graphic content-type=”content-type:image/gif”
src=”cup.gif” />

This can also be given in terms of a namespace prefix by using a value in the form

namespace-prefix:prefix. For example, to specify that the fo:instream-for-
eign-object includes an SVG picture you write it as

<fo:instream-foreign-object
xmlns:svg=”http://www.w3.org/2000/svg”
content-type=”namespace-prefix:svg”>

The namespace prefix does not have to be declared on the fo:instream-for-
eign-object element. It simply needs to be declared somewhere in the ancestors

of the element.

Size
The height and width attributes specify the vertical and horizontal size of the

rectangle set aside on the page for the image. Either or both of these can be set to

the keyword auto, rather than to an absolute length, to indicate that the size of the

image itself should be used.

The content-height and content-width attributes specify the vertical and hori-

zontal size of the image itself. If either or both of these is not the same as height
and width, respectively, then the image has to be scaled.

Scaling
The scaling attribute can be set to either uniform or non-uniform. Uniform scal-

ing maintains the height-to-width ratio of the image as it’s scaled. This is the

default. Non-uniform scaling may scale the height and width differently, so that the

image is distorted.

You can also choose the algorithm by which scaling occurs by using the scaling-
method attribute. This can be set to auto, integer-pixels, or resample-any-
method. Integer scaling maintains an integral ratio between original and scaled

images such as 2:1 or 3:1, but not 1.5:1. In most cases, integer-scaled images are

smaller than images scaled by resample-any-method, but won’t require dithering.

The value auto lets the formatter decide what to do.

611Chapter 18 ✦ XSL Formatting Objects

In addition, you can set a variety of common properties for inline elements. These

include the common accessibility, aural, background, border, padding, and margin

properties. Because graphics shouldn’t be split across multiple pages, they don’t

support the usual break properties, but they do support keep-with-next and

keep-with-previous.

Links
The fo:basic-link element encodes HTML-style hyperlinks in XSL-FO documents.

This is an inline formatting object that the user can click on to move to a different

document, or to a different place in the same document. This doesn’t offer much for

print, but it might be useful when and if Web browsers support XSL-FO directly. The

link behavior is controlled by these eight attributes:

✦ external-destination

✦ internal-destination

✦ indicate-destination

✦ show-destination

✦ destination-placement-offset

✦ target-presentation-context

✦ target-processing-context

✦ target-stylesheet

A link to a remote document target specifies the URI through the value of the

external-destination attribute. The browser should replace the current docu-

ment with the document at this URI when the reader activates the link. In most GUI

environments, the user activates the link by clicking on its contents. For example:

<fo:block> Be sure to visit the
<fo:basic-link
external-destination=”http://www.ibiblio.org/xml/”>
Cafe con Leche Web site!

</fo:basic-link>
</fo:block>

You can also link to another node in the same document by using the internal-
destination attribute. The value of this attribute is not a URI, but rather the ID of

the element you’re linking to. You can often use the generate-id() function of

XSLT to produce both the IDs on the output elements and the links to those ele-

ments inside the XSL-FO output. You should not specify both the internal and exter-

nal destination for one link.

612 Part III ✦ Style Languages

The three other destination attributes affect the appearance and behavior of the

link. The indicate-destination attribute has a boolean value (true or false;

false by default) that specifies whether, when the linked item is loaded, it should

somehow be distinguished from nonlinked parts of the same document. For exam-

ple, if you follow a link to one ATOM element in a table of 100 atoms, the specific

atom you were connecting to might be in boldface while the other atoms are in nor-

mal type. The exact details are system dependent.

The show-destination attribute has two possible values: replace (the default)

and new. With a value of replace, when a link is followed, the target document

replaces the existing document in the same window. With a value of new, when the

user activates a link, the browser opens a new window in which to display the tar-

get document.

When a browser follows an HTML link into the middle of a document, generally

the specific linked element is positioned at the tip-top of the window. The

destination-placement-offset attribute specifies how far down the browser

should scroll the linked element in the window. It’s given as a length such as 3in or

156px.

The three target properties describe how the document at the other end of the link

will be displayed. The target-presentation-context attribute contains a URI

that generally indicates some subset of the external destination that should actu-

ally be presented to the user. For instance, an XPointer could be used here to say

that although an entire book is loaded only the seventh chapter will be shown.

The target-processing-context attribute contains a URI that serves as a base

URI in the event that the external destination contains a relative URI. Otherwise,

that would be considered relative to the current document.

Finally, the target-stylesheet attribute contains a URI that points to a style

sheet that should be used when the targeted document is rendered. This overrides

any style sheet that the targeted document itself specifies, whether through an

xml-stylesheet processing instruction, a LINK element in HTML, or an HTTP

header.

In addition, the link may have the usual accessibility, margin, background, border,

padding, and aural properties.

Lists
The fo:list-block formatting object element describes a block-level list element.

(There are no inline lists.) A list may or may not be bulleted, numbered, indented,

or otherwise formatted. Each fo:list-block element contains either a series of

fo:list-item elements or fo:list-item-label fo:list-item-body pairs. (It

cannot contain both.) A fo:list-item must contain a fo:list-item-label and a

fo:list-item-body. The fo:list-item-label contains the bullet, number, or

613Chapter 18 ✦ XSL Formatting Objects

other label for the list item as a block level element. The fo:list-item-body con-

tains block-level elements holding the actual content of the list item. To summarize,

a fo:list-block contains fo:list-item elements. Each fo:list-item contains

a fo:list-item-label and fo:list-item-body. However, the fo:list-item
elements can be omitted. For example:

<fo:list-block>
<fo:list-item>

<fo:list-item-label><fo:block>*</fo:block>
</fo:list-item-label>
<fo:list-item-body>
<fo:block>Actinium</fo:block>

</fo:list-item-body>
</fo:list-item>
<fo:list-item>

<fo:list-item-label><fo:block>*</fo:block>
</fo:list-item-label>
<fo:list-item-body>
<fo:block>Aluminum</fo:block>

</fo:list-item-body>
</fo:list-item>

</fo:list-block>

Or, with the fo:list-item tags removed:

<fo:list-block>
<fo:list-item-label>
<fo:block>*</fo:block>

</fo:list-item-label>
<fo:list-item-body>
<fo:block>Actinium</fo:block>

</fo:list-item-body>
<fo:list-item-label>
<fo:block>*</fo:block>

</fo:list-item-label>
<fo:list-item-body>
<fo:block>Aluminum</fo:block>
</fo:list-item-body>

</fo:list-block>

The fo:list-block element has two special attributes that control list formatting:

✦ provisional-label-separation: The distance between the list item label

and the list item body, given as a triplet of maximum;minimum;optimum, such

as 2mm;0.5mm;1mm.

✦ provisional-distance-between-starts: The distance between the start

edge of the list item label and the start edge of the list item body.

614 Part III ✦ Style Languages

fo:list-block also has the usual accessibility, aural, border, padding, back-

ground, margin, and keeps and breaks properties. The fo:list-item element has

the standard block-level properties for backgrounds, position, aural rendering, bor-

ders, padding, margins, line and page breaking. The fo:list-item-label and

fo:list-item-body elements only have the accessibility properties: id and keep-
together. The rest of their formatting is controlled either by the parent elements

(fo:list-item and fo:list-item-block) or the child elements they contain.

Listing 18-9 formats the periodic table as a list in which the atomic numbers are the

list labels and the names of the elements are the list bodies. Figure 18-9 shows the

second page of output produced by this style sheet.

Listing 18-9: An XSL style sheet that formats the periodic
table as a list

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
xmlns:fo=”http://www.w3.org/1999/XSL/Format”>

<xsl:template match=”/”>
<fo:root xmlns:fo=”http://www.w3.org/1999/XSL/Format”>

<fo:layout-master-set>

<fo:simple-page-master master-name=”A4”
page-width=”297mm” page-height=”210mm”
margin-top=”0.5in” margin-bottom=”0.5in”
margin-left=”0.5in” margin-right=”0.5in”>
<fo:region-body/>

</fo:simple-page-master>

</fo:layout-master-set>

<fo:page-sequence master-name=”A4”>

<fo:flow flow-name=”xsl-region-body”>
<fo:list-block>
<xsl:apply-templates select=”//ATOM”>
<xsl:sort data-type=”number”

select=”ATOMIC_NUMBER”/>
</xsl:apply-templates>

</fo:list-block>
</fo:flow>

</fo:page-sequence>

</fo:root>

615Chapter 18 ✦ XSL Formatting Objects

</xsl:template>

<xsl:template match=”ATOM”>
<fo:list-item>
<fo:list-item-label><fo:block>

<xsl:value-of select=”ATOMIC_NUMBER”/>
</fo:block></fo:list-item-label>
<fo:list-item-body><fo:block>
<xsl:value-of select=”NAME”/>

</fo:block></fo:list-item-body>
</fo:list-item>

</xsl:template>

</xsl:stylesheet>

Figure 18-9: The periodic table formatted as a list

In HTML a list item implies a certain level of indenting. However, as you can see in

Figure 18-9, no such indenting is implied by any of the XSL-FO list elements. If you

want list items to be indented, you can use the start-indent and end-indent
attributes on the fo:list-item-label and fo:list-item-body elements. Each

of these is set to a length. However, because the list item body normally starts on

616 Part III ✦ Style Languages

the same line as the list item label, its start indent is often given by the special XSL-

FO body-start() function. This returns the combined length of the start-indent
and the provisional-distance-between-starts. For example,

<xsl:template match=”ATOM”>
<fo:list-item>
<fo:list-item-label start-indent=”1.0cm”

end-indent=”1.0cm”>
<fo:block>
<xsl:value-of select=”ATOMIC_NUMBER”/>
</fo:block>

</fo:list-item-label>
<fo:list-item-body start-indent=”body-start()”>
<fo:block>
<xsl:value-of select=”NAME”/>

</fo:block>
</fo:list-item-body>

</fo:list-item>
</xsl:template>

Tables
The fundamental table element in XSL is fo:table-and-caption. This is a block-

level object that contains a fo:table and a fo:caption. If your table doesn’t need

a caption, you can just use a raw fo:table instead. The XSL-FO table model is

quite close to HTML’s table model. Table 18-1 shows the mapping between HTML

4.0 table elements and XSL formatting objects:

Table 18-1
HTML Tables vs. XSL Formatting Object Tables

HTML Element XSL FO Element

TABLE fo:table-and-caption

no equivalent fo:table

CAPTION fo:table-caption

COL fo:table-column

COLGROUP no equivalent

THEAD fo:table-header

TBODY fo:table-body

TFOOT fo:table-footer

TD fo:table-cell

TR fo:table-row

617Chapter 18 ✦ XSL Formatting Objects

Each fo:table-and-caption contains an optional fo:table-caption element

and one fo:table element. The caption can contain any block-level elements you

care to place in the caption. By default captions are placed before the table, but this

can be adjusted by setting the caption-side property of the table-and-caption
element to one of these eight values:

✦ before

✦ after

✦ start

✦ end

✦ top

✦ bottom

✦ left

✦ right

For example, here’s a table with a caption on the bottom:

<fo:table-and-caption caption-side=”bottom”>
<fo:table-caption>
<fo:block font-weight=”bold”

font-family=”Helvetica, Arial, sans”
font-size=”12pt”>

Table 18-1: HTML Tables vs. XSL Formatting Object Tables
</fo:block>

</fo:table-caption>
<fo:table>
<!-- table contents go here -->

</fo:table>
</fo:table-and-caption>

The fo:table element contains fo:table-column elements, an optional

fo:table-header, an optional fo:table-footer, and one or more fo:table-
body elements. The fo:table-body is divided into fo:table-row elements. Each

fo:table-row is divided into fo:table-cell elements. The fo:table-header
and fo:table-footer can either be divided into fo:table-cell or fo:table-
row elements. For example, here’s a simple table that includes the first three rows

of Table 18-1 above.

<fo:table>
<fo:table-header>
<fo:table-cell>
<fo:block font-family=”Helvetica, Arial, sans”

font-size=”11pt” font-weight=”bold”>
HTML Element

</fo:block>
</fo:table-cell>
<fo:table-cell>

618 Part III ✦ Style Languages

<fo:block font-family=”Helvetica, Arial, sans”
font-size=”11pt” font-weight=”bold”>

XSL FO Element
</fo:block>

</fo:table-cell>
</fo:table-header>
<fo:table-body>
<fo:table-row>
<fo:table-cell>
<fo:block font-family=”Courier, monospace”>
TABLE

</fo:block>
</fo:table-cell>
<fo:table-cell>
<fo:block font-family=”Courier, monospace”>
fo:table-and-caption

</fo:block>
</fo:table-cell>

</fo:table-row>
<fo:table-row>
<fo:table-cell>
<fo:block>no equivalent</fo:block>

</fo:table-cell>
<fo:table-cell>
<fo:block font-family=”Courier, monospace”>
fo:table

</fo:block>
</fo:table-cell>

</fo:table-row>
</fo:table-body>

</fo:table>

You can make table cells span multiple rows and columns by setting the number-
columns-spanned and/or number-rows-spanned attributes to an integer giving

the number of rows or columns to span. The optional column-number attribute can

change which column the spanning begins in. The default is the current column.

Borders can be drawn around table parts using the normal border properties. The

empty-cells attribute has the value show or hide; show if borders are to be drawn

around cells with no content, hide if not. The default is show.

When a long table extends across multiple pages, sometimes the header and footer

are repeated on each page. You can alter this behavior with the table-omit-
header-at-break and table-omit-footer-at-break attributes of the fo:table
element. The value false indicates that the header or footer is to be repeated from

page to page. The value true indicates that it is not. The default is false.

619Chapter 18 ✦ XSL Formatting Objects

The optional fo:table-column element is an empty element that specifies proper-

ties for all cells in a particular column. The cells it applies to are identified by the

column-number attribute or by the position of the fo:table-column element

itself. fo:table-column does not actually contain any cells. A fo:table-column
can apply properties to more than one consecutive column by setting the number-
columns-spanned property to an integer greater than one. The most common

property to set in a fo:table-column is column-width (a signed length) but the

standard border, padding, and background properties (discussed below and mostly

the same as in CSS) can also be set.

FOP 0.18.1 only has limited table support. In particular, it does not support
fo:table-caption or fo:table-and-caption. Furthermore, FOP requires
you to explicitly specify the column widths using a fo:table-column element.
You can’t let it choose suitable widths as you might let a Web browser do.

For example, Listing 18-10 lays out all the properties of the elements in a table.

Figure 18-10 shows the first page of output produced by this style sheet.

Listing 18-10: An XSL style sheet that formats the elements
as a table

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
xmlns:fo=”http://www.w3.org/1999/XSL/Format”>

<xsl:template match=”/”>
<fo:root xmlns:fo=”http://www.w3.org/1999/XSL/Format”>

<fo:layout-master-set>

<fo:simple-page-master master-name=”A4”
page-width=”297mm” page-height=”210mm”
margin-top=”0.5in” margin-bottom=”0.5in”
margin-left=”0.5in” margin-right=”0.5in”>
<fo:region-body/>

</fo:simple-page-master>

</fo:layout-master-set>

<fo:page-sequence master-name=”A4”>

<fo:flow flow-name=”xsl-region-body”>
<fo:table>

Continued

Caution

620 Part III ✦ Style Languages

Listing 18-10 (continued)

<fo:table-column column-width=”30mm”/>
<fo:table-column column-width=”12mm”/>
<fo:table-column column-width=”12mm”/>
<fo:table-column column-width=”25mm”/>
<fo:table-column column-width=”27mm”/>
<fo:table-column column-width=”18mm”/>
<fo:table-column column-width=”49mm”/>
<fo:table-column column-width=”16mm”/>
<fo:table-column column-width=”16mm”/>
<fo:table-column column-width=”16mm”/>
<fo:table-column column-width=”21mm”/>
<fo:table-column column-width=”21mm”/>
<fo:table-column column-width=”21mm”/>
<fo:table-body>
<xsl:apply-templates select=”//ATOM”>
<xsl:sort data-type=”number”
select=”ATOMIC_NUMBER”/>

</xsl:apply-templates>
</fo:table-body>

</fo:table>
</fo:flow>

</fo:page-sequence>

</fo:root>
</xsl:template>

<xsl:template match=”ATOM”>
<fo:table-row>
<fo:table-cell>
<fo:block><xsl:value-of select=”NAME”/></fo:block>

</fo:table-cell>
<fo:table-cell>
<fo:block><xsl:value-of select=”SYMBOL”/></fo:block>

</fo:table-cell>
<fo:table-cell>
<fo:block>
<xsl:value-of select=”ATOMIC_NUMBER”/>

</fo:block>
</fo:table-cell>
<fo:table-cell>
<fo:block>
<xsl:value-of select=”ATOMIC_WEIGHT”/>

</fo:block>
</fo:table-cell>
<fo:table-cell>
<fo:block>
<xsl:value-of select=”OXIDATION_STATES”/>

621Chapter 18 ✦ XSL Formatting Objects

</fo:block>
</fo:table-cell>
<fo:table-cell>
<fo:block><xsl:value-of select=”DENSITY”/></fo:block>

</fo:table-cell>
<fo:table-cell>
<fo:block>
<xsl:value-of select=”ELECTRON_CONFIGURATION”/>

</fo:block>
</fo:table-cell>
<fo:table-cell>
<fo:block>
<xsl:value-of select=”ELECTRONEGATIVITY”/>

</fo:block>
</fo:table-cell>
<fo:table-cell>
<fo:block>
<xsl:value-of select=”ATOMIC_RADIUS”/>

</fo:block>
</fo:table-cell>
<fo:table-cell>
<fo:block>
<xsl:value-of select=”ATOMIC_VOLUME”/>

</fo:block>
</fo:table-cell>
<fo:table-cell>
<fo:block>
<xsl:value-of select=”SPECIFIC_HEAT_CAPACITY”/>

</fo:block>
</fo:table-cell>
<fo:table-cell>
<fo:block>
<xsl:value-of select=”SPECIFIC_HEAT_CAPACITY”/>

</fo:block>
</fo:table-cell>
<fo:table-cell>
<fo:block>
<xsl:value-of select=”THERMAL_CONDUCTIVITY”/>

</fo:block>
</fo:table-cell>

</fo:table-row>
</xsl:template>

</xsl:stylesheet>

622 Part III ✦ Style Languages

Figure 18-10: The periodic table formatted as a table

Inlines
The fo:inline element has no particular effect on the layout of the page. Rather

it’s an element on which you can hang formatting attributes such as font-style or

color for application to the inline’s contents. The fo:inline formatting object is a

container that groups inline objects together. It cannot contain block-level ele-

ments. For example, you can use fo:inline elements to add style to various parts

of the footer, like this:

<fo:static-content flow-name=”xsl-region-after”>
<fo:block font-weight=”bold” font-size=”10pt”

font-family=”Arial, Helvetica, sans”>
<fo:inline font-style=”italic” text-align=”start”>
The XML Bible

</fo:inline>
<fo:inline text-align=”centered”>
Page <fo:page-number/>

</fo:inline>
<fo:inline text-align=”right”>
Chapter 18: XSL Formatting Objects

</fo:inline>
</fo:block>

</fo:static-content>

623Chapter 18 ✦ XSL Formatting Objects

Footnotes
The fo:footnote element creates a footnote. The author places the fo:footnote
element in the flow exactly where the footnote reference such as 1 or * will occur.

The fo:footnote element contains both the reference text and a fo:footnote-
body block-level element containing the text of the footnote. However, only the foot-

note reference is inserted inline. The formatter places the note text in the after

region (generally the footer) of the page.

For example, this footnote uses an asterisk as a footnote marker and refers to

“JavaBeans, Elliotte Rusty Harold (IDG Books, Foster City, 1998), p. 147”. Standard

properties such as font-size and vertical-align are used to format both the

note marker and the text in the customary fashion.

<fo:footnote>
<fo:inline font-size=”smaller” vertical-align=”super”>*
</fo:inline>
<fo:footnote-body font-size=”smaller”>
<fo:inline font-size=”smaller” vertical-align=”super”>

*
</fo:inline>
<fo:inline font-style=”italic”>JavaBeans</fo:inline>,
Elliotte Rusty Harold
(IDG Books, Foster City, 1998), p. 147

</fo:footnote-body>
</fo:footnote>

XSL-FO doesn’t provide any means of automatically numbering and citing foot-
notes, but this can be done by judicious use of xsl:number in the transformation
style sheet. XSL Transformations make end notes easy as well.

Floats
A fo:float produces a floating box anchored to the top of the region where it

occurs. A fo:float is most commonly used for graphics, charts, tables or other

out-of-line content that needs to appear somewhere on the page, although precisely

where it appears is not particularly important. For example, this fo:block includes

a floating graphic with a caption:

<fo:block>
Although PDF files are themselves ASCII text,
this isn’t a book about PostScript, so there’s
nothing to be gained by showing you the exact
output of the above command. If you’re curious,
open the PDF file in any text editor.
Instead, Figure 18-1
<fo:float float=”before”>

Tip

624 Part III ✦ Style Languages

<fo:external-graphic src=”4760-7fg1801.jpg”
height=”485px” width=”623px” />

<fo:block font-family=”Helvetica, sans”>
<fo:inline font-weight=”bold”>
Figure 18-1:

</fo:inline>
The PDF file displayed in Netscape Navigator

</fo:block>
</fo:float>
shows the rendered file displayed in
Netscape Navigator using the Acrobat plug-in.

</fo:block>

The formatter tries to place the graphic somewhere on the same page where the

content surrounding the fo:float appears. However, it may not always be able to

find room on that page. If it can’t, it moves the object to a subsequent page. Within

those limits, it’s free to place it anywhere on the page.

The value of the float attribute indicates on which side of the page the fo:float
floats. It can be set to before, start, end, left, right, none, or inherit.

The clear attribute can be set on elements near the floating object to indicate

whether they’ll flow around the side of the float or whether they’ll move below the

float. It can have the values start (the start edge of the object must not be adja-

cent to a floating object), end (the end edge of the object must not be adjacent to a

floating object), left (the left edge of the object must not be adjacent to a floating

object), right (the right edge of the object must not be adjacent to a floating

object), both (neither the left nor the right edge of the object may be adjacent to a

floating object), none, or inherit.

FOP 0.18.1 does not support the fo:float formatting object.

Formatting Properties
By themselves, formatting objects say relatively little about how content is format-

ted. They merely put content in abstract boxes, which are placed in particular parts

of a page. Attributes on the various formatting objects determine how the content

in those boxes is styled.

As already mentioned, there are more than 200 different formatting properties. Not

all properties can be attached to all elements. For instance, there isn’t much point

to specifying the font-style of a fo:external-graphic. Most properties, how-

ever, can be applied to more than one kind of formatting object element. (The few

that can’t, such as src and provisional-label-separation, were discussed

above with the formatting objects they apply to.) When a property is common to

multiple formatting objects, it shares the same syntax and meaning across the

objects. For example, you use identical code to format a fo:title in 14-point

Times bold as you do to format a fo:block in 14-point Times bold.

Caution

625Chapter 18 ✦ XSL Formatting Objects

Many of the XSL-FO properties are similar to CSS properties. The value of a CSS

font-family property is the same as the value of an XSL-FO font-family
attribute. If you’ve read about CSS in Chapters 14 through 16, you’re already more

than half finished learning XSL-FO properties.

The id property
The id property can be applied to any element. This is an XML ID-type attribute.

The value of this property must, therefore, be an XML name that’s unique within

the style sheet and within the output formatting object document. The last require-

ment is a little tricky because it’s possible that one template rule in the style sheet

may generate several hundred elements in the output document. The generate-
id() function of XSLT can be useful here.

The language property
The language property specifies the language of the content contained in either a

fo:block or a fo:character element. Generally, the value of this property is an

ISO 639 language code such as en (English) or la (Latin). It may also be the key-

word none or use-document. The latter means to simply use the language of the

input as specified by the xml:lang attribute. For example, consider the first verse

of Caesar’s Gallic Wars:

<fo:block id=”verse1.1.1” language=”la”>
Gallia est omnis divisa in partes tres,
quarum unam incolunt Belgae, aliam Aquitani,
tertiam qui ipsorum lingua Celtae, nostra Galli appellantur

</fo:block>

Although the language property has no direct effect on formatting, it may have an

indirect effect if the formatter selects layout algorithms depending on the language.

For instance, the formatter should use different default writing modes for Arabic

and English text. This carries over into determination of the start and end regions

and the inline and block progression directions.

Paragraph properties
Paragraph properties are styles that normally are thought of as applying to an

entire block of text in a traditional word processor, although perhaps block-level
text properties is a more appropriate name here. For example, indentation is a para-

graph property, because you can indent a paragraph, but you can’t indent a single

word.

626 Part III ✦ Style Languages

Break properties
The break properties specify where page breaks are and are not allowed. There are

seven loosely related break properties:

✦ keep-with-next

✦ keep-with-previous

✦ keep-together

✦ break-before

✦ break-after

The keep-with-next property determines how much effort the formatter will

expend to keep this formatting object on the same page as the following formatting

object. The keep-with-previous property determines how much effort the for-

matter will expend to keep this formatting object on the same page as the preced-

ing formatting object. And the keep-together property determines how much

effort the formatter will expend to keep the contents of this formatting object on

one page. These are not hard and fast rules because it’s always possible that a for-

matting object is just too big for one page. Each of these properties can be set to an

integer giving the strength of the effort to keep the objects on the same page (larger

integers are stronger) or to the keywords always or auto. always means maximum

effort; auto means let the breaks fall where they may.

By contrast, the break-before property and break-after properties mandate

some kind of break. What exactly is broken is determined by the value of the prop-

erty. This can be one of these five values:

✦ column: Break the current column and move to the next column.

✦ page: Break the current page and move to the next page.

✦ even-page: Break the current page and move to the next even-numbered page,

inserting a blank page if the current page is itself an even-numbered page.

✦ odd-page: Break the current page and move to the next odd-numbered page,

inserting a blank page if the current page is itself an odd-numbered page.

✦ auto: Let the formatter decide where to break; the default.

For example, this template rule ensures that each ATOM of sufficiently small size is

printed on a page of its own:

<xsl:template match=”ATOM”>
<fo:block break-before=”page” break-after=”page”>
<xsl:apply-templates/>

</fo:block>
</xsl:template>

627Chapter 18 ✦ XSL Formatting Objects

Finally, the inhibit-line-breaks property is a boolean that can be set to true to

indicate that not even a line break is allowed, much less a page break.

XSL-FO also defines three shorthand page-break properties: page-break-after,

page-break-before, and page-break-inside. These are not absolutely neces-

sary because their effects can be achieved by appropriate combinations of the keep

and break properties. For example, to specify a page break after an element, you’d

set break-before to page and keep-with-previous to auto.

Hyphenation properties
The hyphenation properties determine where hyphenation is allowed and how it

should be used. These properties apply only to soft or “optional” hyphens such as

the ones sometimes used to break long words at the end of a line. They do not

apply to hard hyphens such as the ones in the word mother-in-law, although hard

hyphens may affect where soft hyphens are allowed. There are six hyphenation

properties. They are:

✦ hyphenate: Automatic hyphenation is allowed only if this property has the

value true.

✦ hyphenation-character: The Unicode character used to hyphenate words,

such as – in English.

✦ hyphenation-keep: One of the four keywords (column, none, page, inherit)

that specify where and whether hyphenation is allowed. The default is not to

hyphenate.

✦ hyphenation-ladder-count: A nonnegative integer that specifies the maxi-

mum number of hyphenated lines that may appear in a row.

✦ hyphenation-push-character-count: A nonnegative integer that specifies

the minimum number of characters that must follow an automatically inserted

hyphen. (Short syllables look bad in isolation.)

✦ hyphenation-remain-character-count: A nonnegative integer specifying

the minimum number of characters that must precede an automatically

inserted hyphen.

For example:

<fo:block hyphenate=”true”
hyphenation-character=”-”
hyphenation-keep=”none”
hyphenation-ladder-count=”2”
hyphenation-push-character-count=”4”
hyphenation-remain-character-count=”4” >

some content...
</fo:block>

628 Part III ✦ Style Languages

XSL-FO does not specify a word-breaking algorithm to determine where a soft

hyphen may be applied. Even when these properties allow hyphenation, it’s still

completely up to the formatter to figure out how to hyphenate individual words.

Indeed, basic formatters may not attempt to hyphenate words at all.

Indent properties
The indent properties specify how far lines are indented from the edge of the text.

There are four of these:

✦ start-indent

✦ end-indent

✦ text-indent

✦ last-line-end-indent

The start-indent property offsets all lines from the start edge (left edge in

English). The end-indent property offsets all lines from the end edge (right edge in

English). The text-indent property offsets only the first line from the start edge.

The last-line-end-indent property offsets only the last line from the start edge.

Values are given as a signed length. For example, a standard paragraph with a half-

inch, first-line indent might be formatted this way:

<fo:block text-indent=”0.5in”>
The first line of this paragraph is indented

</fo:block>

A block quote with a one-inch indent on all lines on both sides is formatted like this:

<fo:block start-indent=”1.0in” end-indent=”1.0in”>
This text is offset one inch from both edges.

</fo:block>

Because the text-indent is added to the start-indent to get the total indenta-

tion of the first line, using a positive value for start-indent and a negative value

for text-indent creates hanging indents. For example, all lines except the first in

this paragraph are indented by one inch. The first line is only indented half an inch:

<fo:block text-indent=”-0.5in” start-indent=”1.0in”>
This paragraph uses a hanging indent.

</fo:block>

Character properties
Character properties describe the qualities of individual characters. They are

applied to elements that contain characters such as fo:block and fo:list-item-
body elements. These include color, font, style, weight, and similar properties.

629Chapter 18 ✦ XSL Formatting Objects

The color property
The color property sets the foreground color of the contents using the same syn-

tax as the CSS color property. For example, this fo:inline colors the text “Lions

and tigers and bears, oh my!” pink:

<fo:inline color=”#FFCCCC”>
Lions and tigers and bears, oh my!

</fo:inline>

Colors are specified in much the same way as they are in CSS; that is, as hexadeci-

mal triples in the form #RRGGBB or as one of the 16 named colors aqua, black,

blue, fuchsia, gray, green, lime, maroon, navy, olive, purple, red, silver,

teal, white, and yellow.

Font properties
Any formatting object that holds text can have a wide range of font properties.

Most of these are familiar from CSS, including:

✦ font-family: A list of font names in order of preference

✦ font-size: A signed length

✦ font-size-adjust: The preferred ratio between the x-height and size of a

font, specified as an unsigned real number or as none

✦ font-stretch: The “width” of a font, given as one of the keywords condensed,

expanded, extra-condensed, extra-expanded, narrower, normal, semi-
condensed, semi-expanded, ultra-condensed, ultra-expanded, or wider

✦ font-style: The style of font specified as one of the keywords italic,

normal, oblique, reverse-normal, or reverse-oblique

✦ font-variant: Either normal or small-caps

✦ font-weight: The thickness of the strokes that draw the font, given as one of

the keywords 100, 200, 300, 400, 500, 600, 700, 800, 900, bold, bolder,

lighter, or normal

Text properties
The text properties apply styles to text that are more or less independent of the

font chosen. These include:

✦ text-transform

✦ text-shadow

✦ text-decoration

✦ score-spaces

630 Part III ✦ Style Languages

The text-transform property defines how text is capitalized, and is identical to

the CSS property of the same name. The four possible values are:

✦ none: Don’t change the case (the default)

✦ capitalize: Make the first letter of each word uppercase and all subsequent

letters lowercase

✦ uppercase: Make all characters uppercase

✦ lowercase: Make all characters lowercase

This property is somewhat language specific. (Chinese and Hebrew, for example,

don’t have separate upper and lower cases.) Formatters are free to ignore the case

recommendations when they’re applied to non-Roman text.

The text-shadow property applies a shadow to text. This is similar to a back-

ground color, but differs in that the shadow attaches to the text itself rather than to

the box containing the text. The value of text-shadow can be the keyword none or

a named or RGB color. For example:

<fo:inline text-shadow=”FFFF66”>
This sentence is yellow.

</fo:inline>

The text-decoration property is similar to the CSS text-decoration property.

Like that property, it has these five possible values:

✦ none: No decoration, the default

✦ underline: Underlining

✦ overline: A line above the text

✦ line-through: Strike through

✦ blink: The notorious blinking text introduced by Netscape

In addition to the five values that are familiar from CSS, XSL-FO also adds four val-

ues that turn off decoration that is simply inherited from a parent element:

✦ no-underline

✦ no-overline

✦ no-line-through

✦ no-blink

Scoring is a catchall word for underlining, line-through, double strike-through, and

so forth. The score-spaces property determines whether white space is scored.

For example, if score-spaces is true, an underlined sentence looks like this. If

score-spaces is false, an underlined sentence looks like this.

631Chapter 18 ✦ XSL Formatting Objects

Sentence properties
Sentence properties apply to groups of characters, that is, a property that makes

sense only for more than one letter at a time, such as how much space to place

between letters or words.

Letter spacing properties
Kerning of text is a slippery measure of how much space separates two characters.

It’s not an absolute number. Most formatters adjust the space between letters

based on local necessity, especially in justified text. Furthermore, high-quality fonts

use different amounts of space between different glyphs. However, you can make

text looser or tighter overall.

The letter-spacing property adds additional space between each pair of glyphs,

beyond that provided by the kerning. It’s given as a signed length specifying the

desired amount of extra space to add. For example:

<fo:block letter-spacing=”2px”>
This is fairly loose text

</fo:block>

The length may be negative to tighten up the text. Formatters, however, generally

impose limits on how much extra space they allow to be added to or removed from

the space between letters.

Word spacing properties
The word-spacing property adjusts the amount of space between words.

Otherwise, it behaves much like the letter spacing properties. The value is a signed

length giving the amount of extra space to add between two words. For example:

<fo:block word-spacing=”0.3cm”>
This is pretty loose text.

</fo:block>

Line spacing properties
An XSL-FO formatting engine divides block areas into line areas. You cannot create

line areas directly from XSL-FO. However, with these five properties you can affect

how they’re vertically spaced:

✦ line-height: The minimum height of a line

✦ line-height-shift-adjustment: consider-shifts if subscripts and

superscripts should expand the height of a line; disregard-shifts if they

shouldn’t

632 Part III ✦ Style Languages

✦ line-stacking-strategy: line-height (the CSS model and the default);

font-height (make the line as tall as the font height after addition of text-
altitude and text-depth); or max-height (distance between the maximum

ascender height and maximum descender depth)

✦ text-depth: A signed length specifying additional vertical space added after

each line; can also be the keyword use-font-metrics (the default) to indi-

cate that this depends on the font

✦ text-altitude: A signed length specifying the minimum additional vertical

space added before each line; can also be the keyword use-font-metrics
(the default) to indicate that this depends on the font

The line height also depends largely on the size of the font in which the line is

drawn. Larger font sizes will naturally have taller lines. For example, the following

opening paragraph from Mary Wollstonecraft’s A Vindication of the Rights of Woman
is effectively double-spaced:

<fo:block font-size=”12pt” line-height=”24pt”>
In the present state of society it appears necessary to go
back to first principles in search of the most simple truths,
and to dispute with some prevailing prejudice every inch of
ground. To clear my way, I must be allowed to ask some plain
questions, and the answers will probably appear as
unequivocal as the axioms on which reasoning is built;
though, when entangled with various motives of action, they
are formally contradicted, either by the words or conduct
of men.

</fo:block>

Text alignment properties
The text-align and text-align-last properties specify how the inline content

is horizontally aligned within its box. The eight possible values are:

✦ start: Left-aligned in left-to-right languages like English

✦ center: Centered

✦ end: Right-aligned in left-to-right scripts

✦ justify: Expanded with extra space as necessary to fill out the line

✦ left: Align with the left side of the page regardless of the writing direction

✦ right: Align with the right side of the page regardless of the writing direction

✦ inside: Align with the inside edge of the page; that is, the right edge on the

left page of two facing pages or the left edge on the right page of two facing

pages

✦ outside: Align with the outside edge of the page; that is, the left edge on the

left page of two facing pages or the right edge on the right page of two facing

pages

633Chapter 18 ✦ XSL Formatting Objects

The text-align-last property enables you to specify a different value for the last

line in a block. This is especially important for justified text, where the last line

often doesn’t have enough words to be attractively justified. The possible values

are the same as for text-align plus relative. A relatively aligned last line will

line up the same way as all other lines unless text-align is justified, in which

case the last line will align with the start edge instead.

White space properties
The space-treatment property specifies what the formatting engine should do

with white space that’s still present after the original source document is trans-

formed into formatting objects. It can be set to either preserve (the default) or

ignore. If you set it to ignore, leading and trailing white space will be thrown away.

The white-space-collapse property can be set to true (the default) or false.

When true, runs of white space are replaced by a single space. When false, they’re

left unchanged.

The wrap-option property determines how text that’s too long to fit on a line is

handled. This property can be set to wrap (the default) or no-wrap. When set to

wrap, this allows the formatter to insert line breaks as necessary to fit the text.

Area properties
Area properties are applied to boxes. These may be either block-level or inline

boxes. Each of these boxes has:

✦ A background

✦ Margins

✦ Borders

✦ Padding

✦ A size

Background properties
The background properties are identical to the CSS background properties. There

are five:

✦ The background-color property specifies the color of the box’s back-

ground. Its value is either a color such as red or #FFCCCC or the keyword

transparent.

✦ The background-image property gives the URI of an image to be used as a

background. The value can also be the keyword none.

634 Part III ✦ Style Languages

✦ The background-attachment property specifies whether the background

image is attached to the window or the document. Its value is one of the two

keywords fixed or scroll.

✦ The background-position property specifies where the background image

is placed in the box. Possible values include center, left, right, bottom,

middle, top, or a coordinate.

✦ The background-repeat property specifies how and whether a background

image is tiled if it is smaller than its box. Possible values include repeat, no-
repeat, repeat-x, and repeat-y.

The following block shows the use of the background-image, background-posi-
tion, background-repeat, and background-color properties:

<fo:block background-image=”/bg/paper.gif”
background-position=”0,0”
background-repeat=”repeat”
background-color=”white”>

Two strings walk into a bar...
</fo:block>

The only background property FOP 0.18.1 supports is background-color. The
others will probably be added in future releases.

Border properties
The border properties describe the appearance of a border around the box. They

are mostly the same as the CSS border properties. However, as well as border-
XXX-bottom, border-XXX-top, border-XXX-left, and border-XXX-right prop-

erties, the XSL versions also have border-XXX-before, border-XXX-after,

border-XXX-start, and border-XXX-end versions. There are 31 border proper-

ties in all. These are:

✦ Color: border-color, border-before-color, border-after-color,

border-start-color, border-end-color, border-top-color, border-
bottom-color, border-left-color, and border-right-color. The

default color is black.

✦ Width: border-width, border-before-width, border-after-width,

border-start-width, border-end-width, border-top-width, border-
bottom-width, border-left-width, and border-right-width. The

default width is medium.

✦ Style: border-style, border-before-style, border-after-style,

border-start-style, border-end-style, border-top-style, border-
bottom-style, border-left-style, border-right-style. The default

style is none.

✦ Shorthand properties: border, border-top, border-bottom, border-left,

border-right, border-color, border-style, border-width.

Caution

635Chapter 18 ✦ XSL Formatting Objects

For example, this block has a two-pixel-wide blue border:

<fo:block border-before-color=”blue” border-before-width=”2px”
border-after-color=”blue” border-after-width=”2px”
border-start-color=”blue” border-start-width=”2px”
border-end-color=”blue” border-end-width=”2px”>

You have been selected for special high intensity training.
</fo:block>

Padding properties
The padding properties specify the amount of space between the border of the box

and the contents of the box. The border of the box, if shown, falls between the margin

and the padding. The padding properties are mostly the same as the CSS padding

properties. However, as well as padding-bottom, padding-top, padding-left, and

padding-right, the XSL-FO versions also have padding-before, padding-after,

padding-start, and padding-end versions. Thus in total there are eight padding

properties, each of which has a signed length for a value. These are:

✦ padding-after

✦ padding-before

✦ padding-bottom

✦ padding-end

✦ padding-left

✦ padding-start

✦ padding-right

✦ padding-top

For example, this block has half a centimeter of padding on each side:

<fo:block padding-before=”0.5cm” padding-after=”0.5cm”
padding-start=”0.5cm” padding-end=”0.5cm”>

Did you hear the one about the dyslexic agnostic?
</fo:block>

Margin properties for blocks
There are five margin properties, each of whose values is given as an unsigned

length. These are:

✦ margin-top

✦ margin-bottom

✦ margin-left

✦ margin-right

✦ margin

636 Part III ✦ Style Languages

However, these properties are only here for compatibility with CSS. In general, it’s

recommended that you use these four properties instead because they fit better in

the XSL-FO formatting model:

✦ space-before

✦ space-after

✦ start-indent

✦ end-indent

The space-before and space-after properties are equivalent to the margin-top
and margin-bottom properties respectively. The start-indent property is equiv-

alent to the sum of padding-left, border-left-width, and margin-left. The

end-indent property is equivalent to the sum of padding-right, border-right-
width, and margin-right. Figure 18-11 should make this clearer.

Figure 18-11: Padding, indents, borders, and space before and after for an XSL box

For example, this block has a half centimeter margin at its start and end sides:

<fo:block start-indent=”0.5cm” end-indent=”0.5cm”>
Two strings walk into a bar...

</fo:block>

However, unlike margins, space properties are given as space specifiers that con-

tain more than one value. In particular, they contain a preferred value, a minimum

The total width of the box is
the sum of the natural or
specified width of the contents,
the width of the margin, the width
of the border, and the width of
the padding. The total height of
the element is the sum of the
height of the element, the
space-before, the space-after,
the height of the border, and the
height of the padding.

space-before

start indent end indent

The margin

The border

The padding

The element

space-after

637Chapter 18 ✦ XSL Formatting Objects

value, a maximum value, a conditionality, and a precedence. This allows the format-

ter somewhat more freedom in laying out the page. The formatter is free to pick any

amount of space between the minimum and maximum to fit the constraints of the

page.

Each of the space values is a length. The conditionality is one of the two keywords

discard or retain. This determines what happens to extra space at the end of a

line. The default is to discard it. The precedence can either be an integer or the key-

word force. The precedence determines what happens when the space-end of

one inline area conflicts with the space-start of the next. The area with higher

precedence wins. The default precedence is 0. Semicolons separate all five values.

For example, consider this fo:block element:

<fo:block space-before=”0in;0.5in;0.166in;discard;force”>
It goes to 11.
</fo:block>

It says that ideally the formatter should add a sixth of an inch of space before this

element. However, it can add as little as no space at all and as much as half an inch

if necessary. Because the precedence is set to force, this will override any other

space specifiers that conflict with it. Finally, if there’s any extra space that’s left

over at the end, it will be discarded.

Margin properties for inline boxes
Two margin properties apply only to inline elements:

✦ space-end

✦ space-start

Their values are space specifiers that give a range of extra space to be added before

and after the element. The actual spaces may be smaller or larger. Because the

space is not part of the box itself, one box’s end space can be part of the next box’s

start space.

Size properties
Six properties specify the height and width of the content area of a box. These are:

✦ height

✦ width

✦ max-height

✦ max-width

✦ min-height

✦ min-width

638 Part III ✦ Style Languages

These properties do not specify the total width and height of the box, which also

includes the margins, padding, and borders. This is only the width and height of the

content area. As well as an unsigned length, the height and width properties may

be set to the keyword auto, which chooses the height and width based on the

amount of content in the box. However, in no case are the height and width larger

than the values specified by the max-height and max-width or smaller than the

min-height and min-width. For example:

<fo:block height=”2in” width=”2in”>
Two strings walk into a bar...

</fo:block>

The overflow properties
The overflow property determines what happens when there’s too much content

to fit within a box of a specified size. This may be an explicit specification using the

size properties or an implicit specification based on page size or other constraints.

There are four possibilities, each of which is represented by a keyword:

✦ auto: Use scrollbars if there is overflow; don’t use them if there isn’t. If scroll

bars aren’t available (for example, on a printed page) then add a new page for

flow content and generate an error for static content. This is the default.

✦ hidden: Don’t show any content that runs outside the box.

✦ scroll: Attach scroll bars to the box so the reader can scroll to the additional

content.

✦ visible: The complete contents are shown; if necessary, by overriding the

size constraints on the box.

✦ error-if-overflow: The formatter should give up and display an error mes-

sage if content overflows its box.

✦ paginate: If the object overflowed is a page, then create a new page to hold

the excess content.

The clip property specifies the shape of the clipping region if the overflow prop-

erty does not have the value visible. The default clipping region is simply the box

itself. However, you can change this by specifying a particular rectangle like this:

clip=rect(top_offset right_offset bottom_offset left_offset)

Here top_offset, right_offset, bottom_offset, and left_offset are signed

lengths giving the offsets of the clipping region from the top, right, bottom, and left

sides of the box. This allows you to make the clipping region larger or smaller than

the box itself.

The reference-orientation property
The reference-orientation property allows you to specify that the content of a

box is rotated relative to its normal orientation. The only valid values are 90-degree

639Chapter 18 ✦ XSL Formatting Objects

increments, which are measured counterclockwise, that is 0, 90, 180, and 270. You

can also specify -90, -180, and -270. For example, here’s a 90-degree rotation:

<fo:block reference-orientation=”90”>
Bottom to Top

</fo:block>

Writing mode properties
The writing mode specifies the direction of text in the box. This has important

implications for the ordering of formatting objects in the box. Most of the time,

speakers of English and other Western languages assume a left-to-right, top-to-bot-

tom writing mode, such as this:

A B C D E F G
H I J K L M N
O P Q R S T U
V W X Y Z

However, in the Hebrew and Arabic-speaking worlds, a right-to-left, top-to-bottom

ordering such as this one seems more natural:

G F E D C B A
N M L K J I H
U T S R Q P O
Z Y X W V

In Taiwan, a top-to-bottom, left-to-right order is conventional:

A E I M Q U Y
B F J N R V Z
C G K O S W
D H L P T X

In XSL-FO, the writing mode doesn’t just affect text. It also affects how objects in a

flow or sequence are laid out, how wrapping is performed, and more. You’ve

already noticed that many properties are organized in start, end, before, and after

variations instead of left, right, top, and bottom. Specifying style rules in terms of

start, end, before, and after, instead of left, right, top, and bottom, produces more

robust, localizable style sheets.

The writing-mode property specifies the writing mode for an area. This property

can have 1 of 13 keyword values. These are:

✦ bt-lr: Bottom-to-top, left-to-right

✦ bt-rl: Bottom-to-top, right-to-left

✦ lr-alternating-rl-bt: Left-to-right lines alternating with right-to-left lines,

bottom-to-top

640 Part III ✦ Style Languages

✦ lr-alternating-rl-tb: Left-to-right lines alternating with right-to-left lines,

top-to-bottom

✦ lr-bt: Left-to-right, bottom-to-top

✦ lr-inverting-rl-bt: Left to right, then move up to the next line and go

right to left (that is, snake up the page like a backward S)

✦ lr-inverting-rl-tb: Left to right, then move down to the next line and go

right to left (that is, snake down the page like a backward S)

✦ lr-tb: Left to right, top to bottom

✦ rl-bt: Right to left, bottom to top

✦ rl-tb: Right to left, top to bottom

✦ tb-lr: Top to bottom, left to right

✦ tb-rl: Top to bottom, right to left

✦ tb-rl-in-rl-pairs: Text is written in two character, right-to-left pairs; the

pairs are then laid out top-to-bottom to form a line; lines are laid out from

right-to-left

Orphans and widows
To a typesetter, an orphan is a single line of a paragraph at the bottom of a page. A

widow is a single line of a paragraph at the top of a page. Good typesetters move an

extra line from the previous page to the next page or from the next page to the pre-

vious page as necessary to avoid orphans and widows. You can adjust the number

of lines considered an orphan by setting the orphans property to an unsigned inte-

ger. You can adjust the number of lines considered a widow by setting the widows
property to an unsigned integer. For instance, if you want to make sure that every

partial paragraph at the end of a page has at least three lines, set the orphans prop-

erty to 3. For example:

<fo:simple-page-master master-name=”even”
orphans=”3” page-height=”11in” page-width=”8.5in”

/>

Aural properties
XSL-FO supports the full collection of CSS2 aural style properties including:

✦ azimuth

✦ cue

✦ cue-after

✦ cue-before

✦ elevation

✦ pause

641Chapter 18 ✦ XSL Formatting Objects

✦ pause-after

✦ pause-before

✦ pitch

✦ pitch-range

✦ play-during

✦ richness

✦ speak

✦ speak-header

✦ speak-numeral

✦ speak-punctuation

✦ speech-rate

✦ stress

✦ voice-family

✦ volume

Of course, these probably won’t be relevant in most of the output mediums that

XSL-FO currently supports. When and if XSL-FO is implemented directly in Web

browsers, these will become more important.

The aural style properties are discussed in the last section of Chapter 16. They
have the same semantics and syntax in XSL-FO as they do in CSS2.

Summary
In this chapter, you learned about XSL formatting objects. In particular, you learned

that:

✦ An XSL processor follows the instructions in an XSLT style sheet to transform

an XML source document into a new XML document marked up in the XSL for-

matting object vocabulary.

✦ Most XSL formatting objects generate one or more rectangular areas. Pages

contain regions. Regions contain block areas. Block areas contain block areas

and line areas. Line areas contain inline areas. Inline areas contain other inline

areas and character areas.

✦ The root element of a formatting object document is fo:root. This contains

fo:layout-master-set elements and fo:page-sequence elements.

Cross-
Reference

642 Part III ✦ Style Languages

✦ Each fo:layout-master-set element contains one or more fo:simple-
page-master elements, each of which defines the layout of a particular kind

of page by dividing it into five regions (before, after, start, end, and body) and

assigning properties to each one. It may also contain one or more fo:page-
sequence-master elements.

✦ Each fo:page-sequence element contains zero or one fo:title elements,

zero or more fo:static-content elements, one or more fo:flow elements,

and a master-name attribute. The contents of the fo:flow are copied onto

instances of the master pages in the order specified by the fo:page-
sequence-master element identified by the master-name attribute. The con-

tents of the fo:static-content elements are copied onto every page that’s

created.

✦ The fo:external-graphic element loads an image from a URL and displays

it inline.

✦ The fo:instream-foreign-object element displays an image encoded in a

non-XSL-FO XML application such as SVG or MathML embedded in the XSL-FO

document.

✦ The fo:basic-link element creates a hypertext link to a URL.

✦ A list is a block-level element created by a fo:list-block element. It con-

tains block-level fo:list-item elements. Each fo:list-item contains a

fo:list-item-label and fo:list-item-body, and each of these contains

block-level elements.

✦ The fo:page-number element inserts the current page number.

✦ The fo:inline element is a container used to attach properties to the text

and areas it contains.

✦ The fo:footnote element inserts an out-of-line footnote and an inline foot-

note reference into the page.

✦ The fo:float element inserts an out-of-line block-level element such as a fig-

ure or a pull quote onto the page. The float property determines which side

of the page it floats on and the clear property determines whether and where

other elements are allowed to float around it.

✦ There are more than 200 separate XSL formatting properties, many of which

are identical to CSS properties of the same name. These are attached to XSL

formatting object elements as attributes.

✦ The keeps and breaks properties describe where page breaks are and are not

allowed. These include keep-with-next, keep-with-previous, keep-
together, break-before, break-after, widows, and orphans.

✦ The hyphenation properties describe whether and how to insert soft

hyphens. These include hyphenate, hyphenation-character,

hyphenation-keep, hyphenation-ladder-count, hyphenation-push-
character-count, and hyphenation-remain-character-count.

643Chapter 18 ✦ XSL Formatting Objects

✦ The indent properties specify how far lines are indented from the edge of the

text. There are four of these: start-indent, end-indent, text-indent, and

last-line-end-indent.

✦ Character properties describe attributes of individual characters and include

color, font-family, font-size, font-size-adjust, font-stretch, font-
style, font-variant, font-weight, text-transform, text-shadow, text-
decoration, and score-space.

✦ Sentence properties describe formatting that only makes sense for groups of

letters and words and include letter-spacing, word-spacing, line-
height, line-height-shift-adjustment, line-stacking-strategy,

text-depth, text-altitude, text-align, text-align-last, space-
treatment, white-space-collapse, and wrap-option.

✦ Area properties describe attributes of boxes produced by various formatting

objects, and include the background, border, padding, and margin properties.

✦ XSL-FO supports the full complement of aural styles defined in CSS2 for read-

ing documents aloud.

The next chapter introduces XLinks, a more powerful linking syntax than the stan-

dard HTML A element hyperlinks and XSL’s fo:basic-link.

✦ ✦ ✦

Supplemental
Technologies

✦ ✦ ✦ ✦

In This Part

Chapter 19
XLinks

Chapter 20
XPointers

Chapter 21
The Resource
Description
Framework

✦ ✦ ✦ ✦

P A R T

IVIV

XLinks

Linking in XML is divided into two parts, XLink and

XPointers. XLink, the XML Linking Language, defines how

one document links to another document. XPointer, the XML

Pointer Language, defines how individual parts of a document

are addressed. An XLink points to a URI (in practice, a URL)

that specifies a particular resource. This URI may include an

XPointer part that more specifically identifies the desired part

or section of the targeted resource or document. This chapter

explores XLinks. The next chapter explores XPointers.

XLinks versus HTML Links
The Web conquered the more established gopher protocol for

one main reason: HTML made it possible to embed hypertext

links in documents. These links could insert images or let the

user to jump from inside one document to another document

or another part of the same document. To the extent that

XML is rendered into HTML for viewing, the same syntax

that HTML uses for linking can be used in XML documents.

Alternate syntaxes can be converted into HTML syntax

using XSLT.

XSLT, including several examples of converting XML
markup to HTML links, is discussed in Chapter 17.

However, HTML linking has limits. For one thing, URLs are lim-

ited to pointing at a single document. More granularity than

that, such as linking to the third sentence of the seventeenth

paragraph in a document, requires you to manually insert

named anchors in the targeted file. It can’t be done without

write access to the document to which you’re linking.

Furthermore, HTML links don’t maintain any sense of history

or relations between documents. Although browsers may

track the path you’ve followed through a series of documents,

such tracking isn’t very reliable. From inside the HTML,

there’s no way to know from where a reader came. Links are

Cross-
Reference

1919C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

XLinks versus HTML
Links

Linking elements

Descriptions of the
remote resource

Link behavior

Extended links

Extended link syntax

Arcs

Out-of-line links

✦ ✦ ✦ ✦

648 Part IV ✦ Supplemental Technologies

purely one-way. The linking document knows to whom it’s linking, but the linked

document doesn’t know who’s linking to it.

XLink is a proposal for more powerful links between documents designed especially

for use with XML documents. XLink achieves everything possible with HTML’s URL-

based hyperlinks and anchors. Beyond this, however, it supports multidirectional

links where the links run in more than one direction. Any element can become a

link, not just the A element. Links do not even have to be stored in the same file as

the documents they connect. These features make XLinks more suitable not only

for new uses, but for things that can be done only with considerable effort in HTML,

such as cross-references, footnotes, end notes, interlinked data, and more.

I should warn you that at the time of this writing (April 2001), XLink is still under-
going significant development and modification. Although it is beginning to stabi-
lize, some bits and pieces likely will change by the time you’re reading
this. This chapter is based on the December 20, 2000 Proposed Recommendation
of XLink. I’m hopeful that this won’t be too far removed from the final specifica-
tion. Nonetheless, if you do encounter inconsistencies, you should compare
the examples in this book against the most current specification at
http://www.w3.org/TR/xlink/.

To make matters worse, only Mozilla and Netscape 6.0 have any support for
XLinks, and that support is incomplete. Internet Explorer 5.5 and Opera 5.0 and
earlier have absolutely no support for any kind of XLink. There are no general-pur-
pose applications that support arbitrary XLinks. That’s because XLinks have a much
broader base of applicability than HTML links. XLinks are not just used for hyper-
text connections and embedding images in documents. They can be used by any
custom application that needs to establish connections between documents and
parts of documents, for any reason. Thus, even when XLinks are fully implemented
in browsers they may not always be blue underlined text that you click to jump to
another page. They can be that, but they can also be both more and less, depend-
ing on your needs.

Linking Elements
In HTML, a link is defined with the <A> tag. However, just as XML is more flexible

with tags that describe elements, it is more flexible with tags that refer to external

resources. In XML, any element can be a link or part of a link. XLink elements are

identified by an xlink:type attribute with one of these seven values:

✦ simple

✦ extended

✦ locator

Caution

649Chapter 19 ✦ XLinks

✦ arc

✦ resource

✦ title

✦ none

The xlink prefix must be bound to the http://www.w3.org/1999/xlink names-

pace URI. As usual, the prefix can change as long as the URI remains the same. The

xlink prefix is customary and should be used unless you’ve got a really good rea-

son to change it. In this chapter, I assume that the prefix xlink has been bound to

the http://www.w3.org/1999/xlink URI.

XLinks elements whose xlink:type attribute has the value simple or extended
are called linking elements. For example, these are three linking elements:

<COMPOSER xmlns:xlink=”http://www.w3.org/1999/xlink”
xlink:type=”simple”
xlink:href=”http://www.users.interport.net/~beand/”>

Beth Anderson
</COMPOSER>
<FOOTNOTE xmlns:xlink=”http://www.w3.org/1999/xlink”

xlink:type=”simple”
xlink:href=”footnote7.xml”>7</FOOTNOTE>

<IMAGE xmlns:xlink=”http://www.w3.org/1999/xlink”
xlink:type=”simple” xlink:href=”logo.gif”
xlink:actuate=”onLoad” xlink:show=”embed”/>

Notice that the elements have semantic names that describe the content they con-

tain rather than how the elements behave. The information that these elements are

links is included in the attributes not the element names. Attributes define the link-

ing behavior.

These three examples are simple XLinks. Simple XLinks are similar to standard

HTML links and are the only kind of link supported by application software, so I’ll

begin with them. Later, we’ll talk about the more complex (and more powerful)

extended links.

In the COMPOSER example above, the xlink:href attribute defines the target of

the link. The value of this attribute is the absolute URL http://www.users.
interport.net/~beand/. This linking element describes a connection from the

COMPOSER element in the current document with the content “Beth Anderson” to

the remote document at http://www.users.interport.net/~beand/. If you

were to include this element in an XML document and load that document into an

XLink-aware Web browser such as Mozilla or Netscape 6, then the browser would

underline the link, color it blue, and let the user click on it to jump to the page

http://www.users.interport.net/~beand/.

650 Part IV ✦ Supplemental Technologies

However, you can also interpret this link more abstractly, as simply defining a one-

way connection from one resource, the COMPOSER element, to another resource, the

Web page at http://www.users.interport.net/~beand/. Figure 19-1 diagrams

this connection. This connection does not truly imply any particular semantics or

behavior. It’s up to the application reading the document to decide what this

abstract link means to it.

Figure 19-1: A link from the COMPOSER element to
http://www.users.interport.net/~beand/

In the FOOTNOTE example, the link target attribute’s name is xlink:href. Its

value is the relative URL footnote7.xml. This describes a connection from the

FOOTNOTE element in the current document with the content “7” to the document

named footnote7.xml on the same server in the same directory as the document in

which this link appears.

In the third example above, the value of the xlink:href attribute is the relative

URL logo.gif. Again, the protocol, host, and directory of this document are taken

from the protocol, host, and directory of the document in which this link appears.

However, this element requests slightly different behavior. Instead of waiting for the

user to activate the link, the xlink:actuate attribute asks that the link be acti-

vated automatically as soon as the document is loaded. The xlink:show attribute

requests that the result be embedded in the current document instead of replacing

the current document.

Declaring XLink attributes in document type
definitions
If the document has a DTD, these attributes should be declared like any other. For

example, declarations of the FOOTNOTE, COMPOSER, and IMAGE elements might look

like this:

<!ELEMENT FOOTNOTE (#PCDATA)>
<!ATTLIST FOOTNOTE

xmlns:xlink CDATA #FIXED “http://www.w3.org/1999/xlink”
xlink:type CDATA #FIXED “simple”
xlink:href CDATA #REQUIRED

>

Beth Anderson
http://www.users.interport.net/~beand/

COMPOSER

651Chapter 19 ✦ XLinks

<!ELEMENT COMPOSER (#PCDATA)>
<!ATTLIST COMPOSER

xmlns:xlink CDATA #FIXED “http://www.w3.org/1999/xlink”
xlink:type CDATA #FIXED “simple”
xlink:href CDATA #REQUIRED

>
<!ELEMENT IMAGE EMPTY>
<!ATTLIST IMAGE

xmlns:xlink CDATA #FIXED “http://www.w3.org/1999/xlink”
xlink:type CDATA #FIXED “simple”
xlink:href CDATA #REQUIRED
xlink:show CDATA #FIXED “onLoad”
xlink:actuate CDATA #FIXED “embed”

>

With these declarations, the xlink:type, xmlns:xlink, xlink:show, and

xlink:actuate attributes have fixed values. Therefore they do not need to be

included in the instances of the elements, which you may now write more com-

pactly like this:

<FOOTNOTE xlink:href=”footnote7.xml”>7</FOOTNOTE>
<COMPOSER xlink:href=”http://www.users.interport.net/~beand/”>
Beth Anderson

</COMPOSER>
<IMAGE xlink:href=”logo.gif”/>

Making an element a link doesn’t impose any restriction on other attributes or con-

tents of the element. An XLink element may contain arbitrary children or other

attributes, always subject to the restrictions of the DTD, of course. For example, a

more realistic IMAGE element would look like this:

<IMAGE ALT=”Cafe con Leche Logo of a coffee cup”
WIDTH=”89” HEIGHT=”67”
xmlns:xlink=”http://www.w3.org/1999/xlink”
xlink:type=”simple” xlink:href=”logo.gif”
xlink:actuate=”onLoad” xlink:show=”embed”/>

Half of the attributes don’t have anything to do with linking. The declaration in the

DTD would then look like this:

<!ELEMENT IMAGE EMPTY>
<!ATTLIST IMAGE

xmlns:xlink CDATA #FIXED “http://www.w3.org/1999/xlink”
xlink:type CDATA #FIXED “simple”
xlink:href CDATA #REQUIRED
xlink:show CDATA #FIXED “onLoad”
xlink:actuate CDATA #FIXED “embed”
ALT CDATA #REQUIRED
ALIGN CDATA #IMPLIED
HEIGHT CDATA #REQUIRED
WIDTH CDATA #REQUIRED

>

652 Part IV ✦ Supplemental Technologies

In fact, a linking element may even have children that are themselves linking ele-

ments! That is, a linking element may contain another linking element or elements.

This doesn’t have any special meaning. As far as links go, each linking element is

treated in isolation.

Descriptions of the Remote Resource
A linking element may have optional xlink:role and xlink:title attributes that

describe the remote resource; that is, the document or other resource to which the

link points. The title contains plain text that describes the resource. The role con-

tains a URI pointing to a document that more fully describes the resource. For

example, the title might describe what a page does and the role might point to a

help page for the page:

<SEARCH xlink:type=”simple”
xlink:href=”http://www.google.com/advanced_search”
xlink:title=”Search with Google”
xlink:role=”http://www.google.com/help.html”>
Search the Web with Google

</SEARCH>

Both the role and title describe the remote resource, not the local element. The

remote resource in the above example is the document at http://www.google.
com/advanced_search. It’s not uncommon, though it’s not required, for the

xlink:title to be the same as the contents of the TITLE element of the page to

which you are linking.

XLink does not define the user interface by which link roles and titles are presented

to users. For instance, Mozilla shows the user the title of the link in a tool tip when

the cursor is hovering over the link, and does nothing with the role. A different

application might choose to put the title in the status bar of the browser window, or

do both, or neither. How or whether any particular application makes use of the

role and title is completely up to it.

As with all other attributes, the xlink:title and xlink:role attributes should be

declared in the DTD for all the elements to which they belong. For example, this is a

reasonable declaration for the above SEARCH element:

<!ELEMENT SEARCH (#PCDATA)>
<!ATTLIST SEARCH

xmlns:xlink CDATA #FIXED “http://www.w3.org/1999/xlink”
xlink:type CDATA #FIXED “simple”
xlink:href CDATA #REQUIRED
xlink:title CDATA #IMPLIED
xlink:role CDATA #IMPLIED

>

653Chapter 19 ✦ XLinks

Link Behavior
Linking elements can contain two more optional attributes that suggest to applica-

tions how the link behaves when activated. These are:

✦ xlink:show

✦ xlink:actuate

The xlink:show attribute suggests how the content should be displayed when the

link is activated, for example, by opening a new window to hold the target content

or by loading the target into the current window. The xlink:actuate attribute sug-

gests when the link should be activated; for instance, as soon as the document is

loaded or only after a specific user request. Behavior is application dependent,

however, and applications are free to ignore the suggestions.

The xlink:show attribute
The xlink:show attribute has five possible values:

✦ replace

✦ new

✦ embed

✦ other

✦ none

If the value of xlink:show is replace, then when the link is activated (generally by

clicking on it, at least in GUI browsers), the target of the link replaces the current

document in the same window. This is the default behavior of HTML links. For

example:

<COMPOSER xlink:type=”simple”
xlink:show=”replace”
xlink:href=”http://www.users.interport.net/~beand/”>

Beth Anderson
</COMPOSER>

If the value of xlink:show is new, activating the link opens a new window in which

the targeted resource is displayed. This is similar to the behavior of HTML links

when the target attribute is set to _blank. For example:

<WEBSITE xlink:type=”simple”
xlink:show=”new”
xlink:href=”http://www.quackwatch.com/”>

Check this out, but don’t leave our site completely!
</WEBSITE>

654 Part IV ✦ Supplemental Technologies

Readers do not expect a new window to open after clicking a link. They expect that
when they click a link, the new page will load into the current window, unless they
specifically ask that the link open in a new window.

Some Web sites are so self-important that they find it impossible to believe that
any user would ever want to leave. Thus they “help” the readers by opening new
windows. Most of the time this only serves to confuse and annoy. Don’t change
the behavior users expect without a very good reason. The thin hope that a reader
might spend an additional two seconds on your site or view one more page and
see one more ad is not a good enough reason.

If the value of xlink:show is embed, activating the link inserts the targeted

resource into the existing document. Exactly what this means is application depen-

dent. Mostly, it implies that the application should somehow render the linked con-

tent and display it as part of the finished document. This is how the IMG, APPLET,

and OBJECT elements behave in HTML. For example, an element like this one might

be used to indicate that a JPEG image should be embedded in the document:

<PHOTO xlink:type=”simple”
xlink:href=”images/nypride.jpg”
xlink:show=”embed”
ALT=”Marchers on 5th Avenue, June 2000”/>

If the value of xlink:show is other, then the application is supposed to look for

other markup in the document that explains what to do. Generally this would be

used when a particular XML application used different, non-XLink elements or

attributes to describe the link behavior. For example, many Web pages have a LINK
element in their header that references a style sheet and looks similar to this:

<LINK REL=”stylesheet” TYPE=”text/css”
HREF=”http://www.w3.org/StyleSheets/TR/W3C-WD” />

This is a link, but what’s at the end of the link does not replace the existing docu-

ment; it does not embed itself into the existing document; it is not displayed in a

new window. In XML documents, you might agree that this behavior was implied

whenever a STYLESHEET element was encountered. Because this is not one of the

three predetermined link behaviors, you’d set xlink:show to other.

<STYLESHEET xlink:show=”other”
xlink:href=”http://www.w3.org/StyleSheets/TR/W3C-WD”

/>

Finally, you can set xlink:show to none to indicate that the document contains no

information to help the application decide what, if anything, to do with the link. It’s

completely up to the application reading the document to make its own choices.

Regardless of what behavior xlink:show suggests, the browser or other applica-

tion reading the document is free to do whatever it wants when the link is

Caution

655Chapter 19 ✦ XLinks

activated, including nothing at all. For instance, a browser with “Automatically load

images” turned off might well choose to ignore xlink:show=”embed”.

Like all attributes in valid documents, the xlink:show attribute must be declared

in a <!ATTLIST> declaration for the linking element. For example:

<!ELEMENT WEBSITE (#PCDATA)>
<!ATTLIST WEBSITE

xmlns:xlink CDATA #FIXED “http://www.w3.org/1999/xlink”
xlink:type CDATA #FIXED “simple”
xlink:href CDATA #REQUIRED
xlink:show (new | replace | embed) #IMPLIED “replace”

>

This particular DTD fragment doesn’t allow the xlink:show attribute to have the

value other or none. That’s OK, too. Not all linking elements necessarily support all

possible values of xlink:show.

The xlink:actuate attribute
A linking element’s xlink:actuate attribute has four possible values:

✦ onRequest

✦ onLoad

✦ other

✦ none

The value onRequest specifies that the link should be traversed only when and if

the user requests it. This is the behavior of a normal HTML link. For example, this

link jumps to the FatBrain bookstore when the user specifically requests that

action:

<PURCHASE xlink:type=”simple” xlink:actuate=”onRequest”
xlink:href=”http://www.fatbrain.com/”>

Buy from FatBrain
</PURCHASE>

On the other hand, if the linking element’s xlink:actuate attribute is set to

onLoad, the link is traversed once the document containing the link is loaded. For

example, you might set the actuate attribute to onLoad for an image or other piece

of external content that’s to be embedded in the linking document. This way the

user doesn’t have to click the link to follow it. The code might look like this:

<IMAGE xlink:type=”simple” xlink:href=”logo.gif”
xlink:actuate=”onLoad” xlink:show=”embed”/>

656 Part IV ✦ Supplemental Technologies

If the linking element’s xlink:actuate attribute value is other, then the applica-

tion should look at other markup, not defined by XLink, to decide when to traverse

the link. For instance, a browser might define a PRELOAD element as indicating that

a document or image is not used on this page, but will likely soon be used. For

example,

<PRELOAD xlink:type=”simple” xlink:href=”logo.gif”
xlink:actuate=”other” xlink:show=”none”/>

Therefore, if the browser has extra bandwidth available while the user is reading

the page, it should load the document and cache it. Otherwise, it waits until the

user actually actuates the link. Applications that don’t recognize the PRELOAD ele-

ment would simply ignore it. (I should warn you that this is a purely hypothetical

example that is not yet and probably never will be implemented by any actual

browser.)

A Shortcut for the DTD

Because the attribute names and types are standardized, it’s often convenient to make the attribute
declarations a parameter entity reference and simply repeat that in the declaration of each linking ele-
ment if there is more than one linking element in a document. For example:

<!ENTITY % link-attributes
“xlink:type CDATA #FIXED ‘simple’
xlink:role CDATA #IMPLIED
xlink:title CDATA #IMPLIED

xmlns:xlink CDATA #FIXED ‘http://www.w3.org/1999/xlink’
xlink:href CDATA #REQUIRED
xlink:show (new|replace|embed|other|none) #IMPLIED ‘replace’
xlink:actuate (onRequest|onLoad|other|none) #IMPLIED ‘onRequest’
“
>

<!ELEMENT COMPOSER (#PCDATA)>
<!ATTLIST COMPOSER

%link-attributes;
>
<!ELEMENT AUTHOR (#PCDATA)>
<!ATTLIST AUTHOR

%link-attributes;
>
<!ELEMENT WEBSITE (#PCDATA)>
<!ATTLIST WEBSITE

%link-attributes;
>

657Chapter 19 ✦ XLinks

Finally, setting xlink:actuate to none leaves it completely up to the application to

decide when or if to traverse the link.

Like all attributes in valid documents, the xlink:actuate attribute must be

declared in the DTD in an <!ATTLIST> declaration for the linking elements in which

it appears. For example:

<!ELEMENT IMAGE EMPTY>
<!ATTLIST IMAGE

xmlns:xlink CDATA #FIXED “http://www.w3.org/1999/xlink”
xlink:type CDATA #FIXED “simple”
xlink:href CDATA #REQUIRED
xlink:show (new | replace | embed) #IMPLIED “embed”
xlink:actuate (onLoad) #FIXED “onLoad”

>

This particular DTD fragment doesn’t allow the xlink:actuate attribute to have

the values onRequest, other, or none. That’s OK, too. Not all linking elements nec-

essarily support all possible values of xlink:actuate.

Extended Links
Simple links behave more or less like the standard links you’re accustomed to from

HTML. A simple link connects one element in the linking document to one target

document. Furthermore, the link is one-way, from the source to the target.

Extended links, however, go substantially beyond HTML links to include multidirec-

tional links between many documents and out-of-line links. An extended link con-

sists of a set of resources and a set of the connections between them. The

resources may be local (part of the extended link element) or remote (not part of

the extended link element, and generally, though not necessarily, in another docu-

ment). Each resource may be either a target or a source of a link or both. If a link

does not contain any local resources, only remote resources, then it’s called an out-
of-line link.

In computer science terms, an extended link is a directed, labeled graph in which

the resources are vertices and the links between resources are edges. Thought of

abstractly like this, an extended link is really just an XML format for a directed

graph. The tricky part comes in deciding exactly what any particular application is

supposed to do with such a data structure. For now, I can only speculate about

what applications might do with extended links and what sort of user interfaces

they might provide.

An extended link is included in an XML document as an element of some arbitrary

type such as COMPOSER or TEAM that has an xlink:type attribute with the value

658 Part IV ✦ Supplemental Technologies

extended. As usual the xlink prefix is associated with the

http://www.w3.org/1999/xlink namespace URI. For example,

<WEBSITE xmlns:xlink=”http://www.w3.org/1999/xlink”
xlink:type=”extended”>

...
</WEBSITE>

Extended Link Syntax
Extended links generally point to more than one target and from more than one

source. Both sources and targets are called by the more generic word resource. In

fact, whether a resource is a source or a target can change depending on which link

is being followed and in which direction.

Resources are divided into remote resources and local resources. A local resource is

actually contained inside the extended link element. It is the content of an element

of arbitrary type that has an xlink:type attribute with the value resource.

A remote resource exists outside the extended link element, very possibly in

another document. The extended link element contains locator child elements that

point to the remote resource. These are elements with any name that have an

xlink:type attribute with the value locator. Each locator element has an

xlink:href attribute whose value is a URI locating the remote resource.

The terminology is unnecessarily confusing here. Both xlink:type=”locator”
and xlink:type=”resource” elements locate resources. An
xlink:type=”locator” element locates a remote resource. An
xlink:type=”resource” element locates a local resource. Personally, I think
xlink:type=”local” and xlink:type=”remote” would be better choices
here, but xlink:type=”resource” and xlink:type=”locator” are what
the standard has given us.

For example, suppose you’re writing a page of links to Java sites. One of the sites

you want to link to is Cafe au Lait at http://ibiblio.org/javafaq/. However,

there are also three mirrors of that site in three other countries. Some people com-

ing to your site will want to access the home site while others will want to go to one

of the mirror sites. With HTML links or simple XLinks you have to write four differ-

ent links, one for the home site and one for each mirror and let the user pick.

However with an extended XLink you can provide one link that connects all four

sites as well as the page you’re linking from. The browser can choose the one clos-

est to the user when the link is activated (though I feel compelled to reiterate here

that browser support for this is strictly hypothetical). The four remote sites are

identified by locator elements. The text that will be shown to the user on your page

is identified by a resource element. Here’s the XML:

Caution

659Chapter 19 ✦ XLinks

<WEBSITE xmlns:xlink=”http://www.w3.org/1999/xlink”
xlink:type=”extended”>

<NAME xlink:type=”resource”>Cafe au Lait</NAME>
<HOMESITE xlink:type=”locator”

xlink:href=”http://ibiblio.org/javafaq/”/>
<MIRROR xlink:type=”locator”

xlink:href=”http://sunsite.kth.se/javafaq”/>
<MIRROR xlink:type=”locator”

xlink:href=”http://sunsite.informatik.rwth-
aachen.de/javafaq/”/>
<MIRROR xlink:type=”locator”

xlink:href=”http://sunsite.cnlab-
switch.ch/javafaq/”/>
</WEBSITE>

This WEBSITE element describes an extended link with five resources:

✦ The text Cafe au Lait, a local resource

✦ The document at http://ibiblio.org/javafaq/, a remote resource

✦ The document at http://sunsite.kth.se/javafaq, a remote resource

✦ The document at http://sunsite.informatik.rwth-
aachen.de/javafaq/, a remote resource

✦ The document at http://sunsite.cnlab-switch.ch/javafaq/, a remote

resource

Figure 19-2 shows the WEBSITE extended link element and five resources. The

WEBSITE element contains one resource and refers to the other four by URLs.

However, this just describes these resources. No connections are implied between

them.

Figure 19-2: An extended link with one local and four remote resources

<NAME>Cafe au Lait</NAME>

WEBSITE

http://ibiblio.org/javafaq/

http://sunsite.kth.se/javafaq http://sunsite.cnlab-switch.ch/javafaq/

http://sunsite.informatik.rwth-
aachen.de/javafaq/

660 Part IV ✦ Supplemental Technologies

Both the extended link element itself and the individual locator children may have

descriptive attributes such as xlink:role and xlink:title. The xlink:role and

xlink:title attributes of the extended link element provide default roles and

titles for each of the individual locator child elements. Individual resource and loca-

tor elements may override these defaults with xlink:role and xlink:title
attributes of their own. Listing 19-1 demonstrates:

Listing 19-1: An extended link with one local and four remote
resources

<WEBSITE xmlns:xlink=”http://www.w3.org/1999/xlink”
xlink:type=”extended” xlink:title=”Cafe au Lait”>

<NAME xlink:type=”resource”
xlink:role=”http://ibiblio.org/javafaq/”>

Cafe au Lait
</NAME>
<HOMESITE xlink:type=”locator”

xlink:href=”http://ibiblio.org/javafaq/”
xlink:role=”http://ibiblio.org/”/>

<MIRROR xlink:type=”locator”
xlink:title=”Cafe au Lait Swedish Mirror”
xlink:role=”http://sunsite.kth.se/”
xlink:href=”http://sunsite.kth.se/javafaq”/>

<MIRROR xlink:type=”locator”
xlink:title=”Cafe au Lait German Mirror”
xlink:role=”http://sunsite.informatik.rwth-aachen.de/”
xlink:href=
“http://sunsite.informatik.rwth-aachen.de/javafaq/”/>

<MIRROR xlink:type=”locator”
xlink:title=”Cafe au Lait Swiss Mirror”
xlink:role=”http://sunsite.cnlab-switch.ch/”
xlink:href=”http://sunsite.cnlab-switch.ch/javafaq/”/>

</WEBSITE>

As always, in valid documents, the XLink elements and all their possible attributes

must be declared in the DTD. For example, Listing 19-2 is a DTD that declares the

WEBSITE, HOMESITE, NAME, and MIRROR elements as used in the example above, as

well as their attributes:

661Chapter 19 ✦ XLinks

Listing 19-2: A DTD that declares the WEBSITE, NAME,
HOMESITE, and MIRROR elements

<!ELEMENT WEBSITE (NAME, HOMESITE, MIRROR*) >
<!ATTLIST WEBSITE
xmlns:xlink CDATA #FIXED “http://www.w3.org/1999/xlink”
xlink:type (extended) #FIXED “extended”
xlink:title CDATA #IMPLIED
xlink:role CDATA #IMPLIED

>

<!ELEMENT NAME (#PCDATA)>
<!ATTLIST NAME

xlink:type (resource) #FIXED “resource”
xlink:role CDATA #IMPLIED
xlink:title CDATA #IMPLIED

>

<!ELEMENT HOMESITE (#PCDATA)>
<!ATTLIST HOMESITE

xlink:type (locator) #FIXED “locator”
xlink:href CDATA #REQUIRED
xlink:role CDATA #IMPLIED
xlink:title CDATA #IMPLIED

>

<!ELEMENT MIRROR (#PCDATA)>
<!ATTLIST MIRROR

xlink:type (locator) #FIXED “locator”
xlink:href CDATA #REQUIRED
xlink:role CDATA #IMPLIED
xlink:title CDATA #IMPLIED

>

Arcs
The xlink:show and xlink:actuate attributes of a simple link define how and

when a link is traversed. Extended links are a little more complicated because they

provide many different possible traversal paths. For example in an extended link with

three resources, A, B, and C; there are nine different possible traversals. These are:

✦ A → A

✦ B → B

✦ C → C

✦ A → B

662 Part IV ✦ Supplemental Technologies

Another Shortcut for the DTD

If you have many extended link, resource, and locator elements, it may be advantageous to define the
common attributes in parameter entities in the DTD, which you can reuse in different elements. For
example:

<!ENTITY % extended.att
“xlink:type CDATA #FIXED ‘extended’
xmlns:xlink CDATA #FIXED ‘http://www.w3.org/1999/xlink’
xlink:role CDATA #IMPLIED
xlink:title CDATA #IMPLIED”

>

<!ENTITY % resource.att
“xlink:type (resource) #FIXED ‘resource’
xlink:href CDATA #REQUIRED
xlink:role CDATA #IMPLIED
xlink:title CDATA #IMPLIED”

>

<!ENTITY % locator.att
“xlink:type (locator) #FIXED ‘locator’
xlink:href CDATA #REQUIRED
xlink:role CDATA #IMPLIED
xlink:title CDATA #IMPLIED”

>

<!ELEMENT WEBSITE (HOMESITE, MIRROR*) >
<!ATTLIST WEBSITE

%extended.att;
>

<!ELEMENT NAME (#PCDATA)>
<!ATTLIST NAME

%resource.att;
>

<!ELEMENT HOMESITE (#PCDATA)>
<!ATTLIST HOMESITE

%locator.att;
>

<!ELEMENT MIRROR (#PCDATA)>
<!ATTLIST MIRROR

%locator.att;
>

663Chapter 19 ✦ XLinks

✦ B → A

✦ A → C

✦ C → A

✦ B → C

✦ C → B

Each of these possible paths between resources can have different rules for when

the link is traversed and what happens when it’s traversed. These potential traversals

are called arcs, and they’re represented in XML by elements that have an xlink:
type attribute with the value arc. Traversal rules are specified by attaching xlink:
actuate and xlink:show attributes to arc elements. These attributes have the same

values and meanings as they do for simple links. Applications can use arc elements to

determine which traversals are and are not allowed and when a link is traversed.

An arc element also has an xlink:from attribute and an xlink:to attribute. The

xlink:from attribute says which resource or resources the arc comes from. The

xlink:to attribute says which resource or resources the arc goes to. They do this

by matching the value of the xlink:label attributes on the various resources in

the extended link. For instance, if the xlink:from attribute has the value A, and

the xlink:to attribute has the value B, then the arc goes from the resource whose

xlink:label has the value A to the resource whose xlink:label has the value B.

Listing 19-3 demonstrates.

Listing 19-3: An extended link with arcs

<WEBSITE xmlns:xlink=”http://www.w3.org/1999/xlink”
xlink:type=”extended” xlink:title=”Cafe au Lait”>

<NAME xlink:type=”resource” xlink:label=”source”>
Cafe au Lait

</NAME>

<HOMESITE xlink:type=”locator”
xlink:href=”http://ibiblio.org/javafaq/”
xlink:label=”us”/>

<MIRROR xlink:type=”locator”
xlink:title=”Cafe au Lait Swedish Mirror”
xlink:label=”se”
xlink:href=”http://sunsite.kth.se/javafaq”/>

<MIRROR xlink:type=”locator”
xlink:title=”Cafe au Lait German Mirror”
xlink:label=”sk”
xlink:href=”http://sunsite.informatik.rwth-

aachen.de/javafaq/”/>

Continued

664 Part IV ✦ Supplemental Technologies

Listing 19-3: (continued)

<MIRROR xlink:type=”locator”
xlink:title=”Cafe au Lait Swiss Mirror”
xlink:label=”ch”
xlink:href=”http://sunsite.cnlab-switch.ch/javafaq/”/>

<CONNECTION xlink:type=”arc” xlink:from=”source”
xlink:to=”ch” xlink:show=”replace”
xlink:actuate=”onRequest”/>

<CONNECTION xlink:type=”arc” xlink:from=”source”
xlink:to=”us” xlink:show=”replace”
xlink:actuate=”onRequest”/>

<CONNECTION xlink:type=”arc” xlink:from=”source”
xlink:to=”se” xlink:show=”replace”
xlink:actuate=”onRequest”/>

<CONNECTION xlink:type=”arc” xlink:from=”source”
xlink:to=”sk” xlink:show=”replace”
xlink:actuate=”onRequest”/>

</WEBSITE>

The first CONNECTION element above defines an arc from the resource with the label

“source” to the resource with the label “ch”. The second CONNECTION element

defines an arc from the resource with the label “source” to the resource with the

label “us”, and so on. Figure 19-3 diagrams this link with ovals representing the

resources and arrows representing the arcs. This is the same as Figure 19-2, but

now connections have been added between resources as specified by the arc

elements.

Figure 19-3: An extended link with one local and four remote resources and arcs going
from the local resource to each of the remote resources

<NAME>Cafe au Lait</NAME>

http://ibiblio.org/javafaq/

http://sunsite.kth.se/javafaq http://sunsite.cnlab-switch.ch/javafaq/

http://sunsite.informatik.rwth-
aachen.de/javafaq/

WEBSITEWEBSITE

665Chapter 19 ✦ XLinks

In this case, each xlink:arc element defines exactly one connection because the

target and source labels aren’t shared by multiple resources. However, this isn’t

necessarily the case. Each arc goes from exactly one resource to exactly one other

resource. However, a single arc element may actually describe multiple arcs. If more

than one resource has the xlink:label A, then xlink:from=”A” and

xlink:to=”B” defines multiple arcs from all resources with the label A to the

resource with label B. If more than one resource has the label B, then arcs go from

all resources with the label A to all resources with label B. For instance, consider

the WEBSITE element in Listing 19-4:

Listing 19-4: Labels can be shared between resources

<WEBSITE xmlns:xlink=”http://www.w3.org/1999/xlink”
xlink:type=”extended” xlink:title=”Cafe au Lait”>

<NAME xlink:type=”resource” xlink:label=”source”>
Cafe au Lait

</NAME>

<HOMESITE xlink:type=”locator”
xlink:href=”http://ibiblio.org/javafaq/”
xlink:label=”home”/>

<MIRROR xlink:type=”locator”
xlink:title=”Cafe au Lait Swedish Mirror”
xlink:label=”mirror”
xlink:href=”http://sunsite.kth.se/javafaq”/>

<MIRROR xlink:type=”locator”
xlink:title=”Cafe au Lait Slovakian Mirror”
xlink:label=”mirror”
xlink:href=”http://sunsite.informatik.rwth-

aachen.de/javafaq/”/>

<MIRROR xlink:type=”locator”
xlink:title=”Cafe au Lait Swiss Mirror”
xlink:label=”mirror”
xlink:href=”http://sunsite.cnlab-switch.ch/javafaq/”/>

<CONNECTION xlink:type=”arc” xlink:from=”source”
xlink:to=”mirror” xlink:show=”replace”
xlink:actuate=”onRequest”/>

</WEBSITE>

666 Part IV ✦ Supplemental Technologies

Here, the “mirror” label is shared by three different elements and the single arc ele-

ment defines three arcs: One from the source to the Swedish mirror, one from the

source to the Swiss mirror, and one from the source to the German mirror. Figure

19-4 diagrams this. It’s very similar to Figure 19-3 except that the link between the

NAME element and the home site at http://ibiblio.org/javafaq/ is missing.

Because the HOMESITE has a different label, it isn’t connected by the single arc

element.

Figure 19-4: An extended link with one local and four remote resources and three arcs
going from the local resource to each of the mirror resources

Although I don’t recommend it, you can omit either the xlink:from attribute, the

xlink:to attribute, or both from an arc element. In this case, all resources partici-

pating in the link, both local and remote, take the place of the missing attribute. For

instance, consider the WEBSITE element in Listing 19-5.

Listing 19-5: An omitted to attribute

<WEBSITE xmlns:xlink=”http://www.w3.org/1999/xlink”
xlink:type=”extended” xlink:title=”Cafe au Lait”>

<NAME xlink:type=”resource” xlink:label=”source”>
Cafe au Lait

</NAME>

<HOMESITE xlink:type=”locator”
xlink:href=”http://ibiblio.org/javafaq/”
xlink:label=”us”/>

<NAME>Cafe au Lait</NAME>

http://ibiblio.org/javafaq/

http://sunsite.kth.se/javafaq http://sunsite.cnlab-switch.ch/javafaq/

http://sunsite.informatik.rwth-
aachen.de/javafaq/

WEBSITE

667Chapter 19 ✦ XLinks

<MIRROR xlink:type=”locator”
xlink:title=”Cafe au Lait Swedish Mirror”
xlink:label=”se”
xlink:href=”http://sunsite.kth.se/javafaq”/>

<MIRROR xlink:type=”locator”
xlink:title=”Cafe au Lait Slovakian Mirror”
xlink:label=”sk”
xlink:href=”http://sunsite.informatik.rwth-

aachen.de/javafaq/”/>

<MIRROR xlink:type=”locator”
xlink:title=”Cafe au Lait Swiss Mirror”
xlink:label=”ch”
xlink:href=”http://sunsite.cnlab-switch.ch/javafaq/”/>

<xlink:arc from=”source” show=”new” actuate=”onRequest”/>

<CONNECTION xlink:type=”arc” xlink:from=”source”
xlink:show=”replace” xlink:actuate=”onRequest”/>

</WEBSITE>

Its single arc element is missing the xlink:to attribute. Consequently this

extended link includes five arcs — one from the source to us, three from the source

to each of the mirrors, and one from the source to itself. All arcs start at the NAME
element because the xlink:from attribute is present and so specifies. Figure 19-5

diagrams this. It’s very similar to Figure 19-3 except that there’s now an extra circu-

lar arc from the NAME element to itself.

Figure 19-5: An extended link with one local and four remote resources and five arcs
going from the local resource to each of the resources, including to itself

<NAME>Cafe au Lait</NAME>

http://ibiblio.org/javafaq/

http://sunsite.kth.se/javafaq http://sunsite.cnlab-switch.ch/javafaq/

http://sunsite.informatik.rwth-
aachen.de/javafaq/

WEBSITEWEBSITE

668 Part IV ✦ Supplemental Technologies

As usual, if the document has a DTD, then to be valid all the attributes and ele-

ments must be fully declared. Listing 19-6 is a DTD fragment that describes the

above WEBSITE element.

Listing 19-6: A DTD for the WEBSITE extended link

<!ELEMENT WEBSITE (HOMESITE, MIRROR*, xlink:arc*) >
<!ATTLIST WEBSITE
xmlns:xlink CDATA #FIXED “http://www.w3.org/1999/xlink”
xlink:type (extended) #FIXED “extended”
xlink:title CDATA #IMPLIED
xlink:role CDATA #IMPLIED

>

<!ELEMENT HOMESITE (#PCDATA)>
<!ATTLIST HOMESITE

xlink:type (locator) #FIXED “locator”
xlink:href CDATA #REQUIRED
xlink:label CDATA #IMPLIED
xlink:role CDATA #REQUIRED
xlink:title CDATA #IMPLIED

>

<!ELEMENT MIRROR (#PCDATA)>
<!ATTLIST MIRROR

xlink:type (locator) #FIXED “locator”
xlink:href CDATA #REQUIRED
xlink:label CDATA #IMPLIED
xlink:role CDATA #REQUIRED
xlink:title CDATA #IMPLIED

>

<!ELEMENT xlink:arc EMPTY>
<!ATTLIST CONNECTION
xlink:type (arc) #FIXED “arc”
xlink:from CDATA #IMPLIED
xlink:to CDATA #IMPLIED
xlink:show (replace) #IMPLIED “replace”
xlink:actuate (onRequest | onLoad) #IMPLIED “onRequest”

>

669Chapter 19 ✦ XLinks

Out-of-Line Links
Inline links, such as the familiar A element from HTML, are themselves part of the

source or target of the link. Generally, they link from the document that they’re part

of to some other document. However, they can also link to a different part of the

same document. The source of the link, that is the blue underlined text, is included

inside the A element that defines the link. Most simple links are inline.

Extended links can also be out-of-line. An out-of-line link does not contain any part

of any of the resources it connects. Instead, the links are stored in a separate docu-

ment called the linkbase. For example, you might use a linkbase to maintain a slide

show where each slide requires next and previous links. By changing the order of

the slides in the linkbase, you can change the targets of the previous and next links

on each page without having to edit the slides themselves.

Out-of-line links also allow you to add links to and from documents that can’t be

modified, such as a page on someone else’s Web site. For instance, media watchdog

groups such as FAIR (http://www.fair.org/) and AIM (http://www.aim.org/)

could put out-of-line links from the New York Times editorial page to analyses of

those editorials. The links would only be visible to users who loaded the right

linkbase, however.

Finally, out-of-line links allow you to add links to different parts of non-XML content.

For instance, you could link to the third minute of a QuickTime movie, even though

the movie doesn’t contain any attributes or elements that would normally be used

to identify the linked position.

For example, a list of mirror sites for a document such as Listing 19-6 might be

stored in a separate file on a Web server in a known location where browsers can

find and query it to determine the nearest mirror of a page they’re looking for. The

out-of-line-ness, however, is that this element does not appear in the document

from which the link is activated.

This expands the abstraction of style sheets into the linking domain. A style sheet

is completely separate from the document it describes and yet provides rules that

modify how the document is presented to the reader. A linkbase containing out-of-

line links is separated from the documents it connects, yet it provides the neces-

sary links to the reader. This has several advantages, including keeping more

presentation-oriented markup separate from the document and allowing the linking

of read-only documents.

I feel compelled to note that application support for out-of-line links is at best
hypothetical at the time of this writing. Although I can show you how to write such
links, their actual implementation and support is almost certainly some time away.
Some of the details remain to be defined and likely will be implemented in ven-
dor-specific fashions, at least initially. Still, they hold the promise of enabling more
sophisticated linking than can be achieved with HTML.

Caution

670 Part IV ✦ Supplemental Technologies

For example, I’ve put the notes for a Java course I teach on my Web site. Figure 19-6

shows the introductory page. This particular course consists of 13 classes, each of

which contains between 30 and 60 individual pages of notes. A table of contents

page for each class is then provided that links to each note page used in that class.

Each of the several hundred pages making up the entire site has links to the previ-

ous document (Previous link), the next document (Next link), and the table of con-

tents (Top link) for the week, as shown in Figure 19-7. Putting it all together, this

amounts to more than a thousand interconnections among this set of documents.

Figure 19-6: The introductory page for my class Web site
shows 13 weeks of lecture notes

The possible interconnections grow exponentially with the number of documents.

Every time a document is moved, renamed, or divided into smaller pieces, the links

need to be adjusted on that page, on the page before it and after it in the set, and on

the table of contents for the week. Quite frankly, this is a lot more work than it

should be, and it tends to discourage necessary modifications and updates to the

course notes.

671Chapter 19 ✦ XLinks

Figure 19-7: One page of lecture notes displaying the Previous,
Next, and Top links

The sensible thing to do, if HTML supported it, would be to store the connections

in a separate document. Pages could then be reorganized by editing that one docu-

ment. HTML links don’t support this, but extended XLinks do. Listing 19-7 demon-

strates one such a document. This document describes links from the main index

page to the individual classes and vice versa.

Listing 19-7: An out-of-line extended link

<COURSE xmlns:xlink=”http://www.w3.org/1999/xlink”
xlink:type=”extended”>

<TOC xlink:type=”locator” xlink:href=”index.xml”
xlink:label=”index”/>

<CLASS xlink:type=”locator” xlink:href=”week1.xml”
xlink:label=”class”/>

<CLASS xlink:type=”locator” xlink:href=”week2.xml”
xlink:label=”class”/>

<CLASS xlink:type=”locator” xlink:href=”week3.xml”
xlink:label=”class”/>

Continued

672 Part IV ✦ Supplemental Technologies

Listing 19-7 (continued)

<CLASS xlink:type=”locator” xlink:href=”week4.xml”
xlink:label=”class”/>

<CLASS xlink:type=”locator” xlink:href=”week5.xml”
xlink:label=”class”/>

<CLASS xlink:type=”locator” xlink:href=”week6.xml”
xlink:label=”class”/>

<CLASS xlink:type=”locator” xlink:href=”week7.xml”
xlink:label=”class”/>

<CLASS xlink:type=”locator” xlink:href=”week8.xml”
xlink:label=”class”/>

<CLASS xlink:type=”locator” xlink:href=”week9.xml”
xlink:label=”class”/>

<CLASS xlink:type=”locator” xlink:href=”week10.xml”
xlink:label=”class”/>

<CLASS xlink:type=”locator” xlink:href=”week11.xml”
xlink:label=”class”/>

<CLASS xlink:type=”locator” xlink:href=”week12.xml”
xlink:label=”class”/>

<CLASS xlink:type=”locator” xlink:href=”week13.xml”
xlink:label=”class”/>

<CONNECTION xlink:type=”arc” from=”index” to=”class”/>
<CONNECTION xlink:type=”arc” from=”class” to=”index”/>

</COURSE>

Listing 19-8 demonstrates another possible out-of-line extended link. This one pro-

vides previous and next links between the 13 classes.

Listing 19-8: An out-of-line extended link

<COURSE xmlns:xlink=”http://www.w3.org/1999/xlink”
xlink:type=”extended”>

<CLASS xlink:type=”locator” xlink:href=”week1.xml”
xlink:label=”1”/>

<CLASS xlink:type=”locator” xlink:href=”week2.xml”
xlink:label=”2”/>

<CLASS xlink:type=”locator” xlink:href=”week3.xml”
xlink:label=”3”/>

<CLASS xlink:type=”locator” xlink:href=”week4.xml”
xlink:label=”4”/>

<CLASS xlink:type=”locator” xlink:href=”week5.xml”
xlink:label=”5”/>

<CLASS xlink:type=”locator” xlink:href=”week6.xml”
xlink:label=”6”/>

673Chapter 19 ✦ XLinks

<CLASS xlink:type=”locator” xlink:href=”week7.xml”
xlink:label=”7”/>

<CLASS xlink:type=”locator” xlink:href=”week8.xml”
xlink:label=”8”/>

<CLASS xlink:type=”locator” xlink:href=”week9.xml”
xlink:label=”9”/>

<CLASS xlink:type=”locator” xlink:href=”week10.xml”
xlink:label=”10”/>

<CLASS xlink:type=”locator” xlink:href=”week11.xml”
xlink:label=”11”/>

<CLASS xlink:type=”locator” xlink:href=”week12.xml”
xlink:label=”12”/>

<CLASS xlink:type=”locator” xlink:href=”week13.xml”
xlink:label=”13”/>

<!-- Previous Links -->
<CONNECTION xlink:type=”arc” xlink:from=”2” xlink:to=”1”/>
<CONNECTION xlink:type=”arc” xlink:from=”3” xlink:to=”2”/>
<CONNECTION xlink:type=”arc” xlink:from=”4” xlink:to=”3”/>
<CONNECTION xlink:type=”arc” xlink:from=”5” xlink:to=”4”/>
<CONNECTION xlink:type=”arc” xlink:from=”6” xlink:to=”5”/>
<CONNECTION xlink:type=”arc” xlink:from=”7” xlink:to=”6”/>
<CONNECTION xlink:type=”arc” xlink:from=”8” xlink:to=”7”/>
<CONNECTION xlink:type=”arc” xlink:from=”9” xlink:to=”8”/>
<CONNECTION xlink:type=”arc” xlink:from=”10” xlink:to=”9”/>
<CONNECTION xlink:type=”arc” xlink:from=”11” xlink:to=”10”/>
<CONNECTION xlink:type=”arc” xlink:from=”12” xlink:to=”11”/>
<CONNECTION xlink:type=”arc” xlink:from=”13” xlink:to=”12”/>

<!-- Next Links -->
<CONNECTION xlink:type=”arc” xlink:from=”1” xlink:to=”2”/>
<CONNECTION xlink:type=”arc” xlink:from=”2” xlink:to=”3”/>
<CONNECTION xlink:type=”arc” xlink:from=”3” xlink:to=”4”/>
<CONNECTION xlink:type=”arc” xlink:from=”4” xlink:to=”5”/>
<CONNECTION xlink:type=”arc” xlink:from=”5” xlink:to=”6”/>
<CONNECTION xlink:type=”arc” xlink:from=”6” xlink:to=”7”/>
<CONNECTION xlink:type=”arc” xlink:from=”7” xlink:to=”8”/>
<CONNECTION xlink:type=”arc” xlink:from=”8” xlink:to=”9”/>
<CONNECTION xlink:type=”arc” xlink:from=”9” xlink:to=”10”/>
<CONNECTION xlink:type=”arc” xlink:from=”10” xlink:to=”11”/>
<CONNECTION xlink:type=”arc” xlink:from=”11” xlink:to=”12”/>
<CONNECTION xlink:type=”arc” xlink:from=”12” xlink:to=”13”/>

</COURSE>

Now the topics can be reordered simply by rearranging what’s connected to what in

the out-of-line extended link. The course notes themselves don’t have to be

touched. However, there are a couple of pieces missing from this puzzle. The first

is some notion of how or where in the individual week documents the links will be

displayed. It would be easy enough to add <PREVIOUS/> and <NEXT/> tags to the

674 Part IV ✦ Supplemental Technologies

individual week pages. The XPointers you’ll learn about in the next chapter would

allow you to select these elements in particular as the sources of outgoing links

rather than the entire document.

A single XML document may contain multiple out-of-line extended links. Listings

19-7 and 19-8 could be combined into a single document. However, the XLink speci-

fication is relatively silent on exactly what the format of such a compound docu-

ment should look like. About all it says is that such a document must be a

well-formed XML document. An XLink processor would presumably read the entire

document and extract and store any extended links it found there.

The final thing that’s missing is some way for a browser or other application that’s

reading the individual pages to be informed that there is a separate linkbase else-

where that it should read and parse so that it can show the links to the user. This is

probably the area in which the specification is weakest. Ideally, it would be handled

through some external mechanism such as HTTP headers. However, the only cur-

rently defined way to do this (which still isn’t supported by any browsers or other

software) is to add an extended link inside the documents the out-of-line link

connects.

One of the arcs in this extended link has an xlink:arcrole attribute with the value

http://www.w3.org/1999/xlink/properties/linkbase. The xlink:to
attribute of this arc should identify a locator element that gives the URL of the

linkbase. The xlink:actuate attribute of the arc determines whether the links are

loaded automatically or whether a user request is required. For example, if Listing

19-7 and Listing 19-8 were found in a file at the URL http://ibiblio.org/
javafaq/course/courselinks.xml, then this element might be included in the

main page for the Java course notes:

<LINKBASE xlink:type=”xlink:extended”
xmlns:xlink=”http://www.w3.org/1999/xlink”>

<SOURCE xlink:type=”resource” xlink:label=”source”/>
<LINKS xlink:type=”locator” xlink:label=”linkbase”

xlink:href=
“http://ibiblio.org/javafaq/course/courselinks.xml”/>

<LOAD xlink:type=”arc”
xlink:arcrole=
“http://www.w3.org/1999/xlink/properties/linkbase”
xlink:from=”source” xlink:to=”linkbase”
xlink:actuate=”onLoad” />

</LINKBASE>

Of course, the problem with this approach is that it again requires that you be able

to modify the documents before you can link them. At least in this case, however, it

may be enough for the browser to load one such document to find the linkbase, so

you may not need to modify every document the linkbase connects.

675Chapter 19 ✦ XLinks

Summary
In this chapter, you learned about XLinks. In particular, you learned that:

✦ XLinks can do everything HTML links can do and quite a bit more, but they

aren’t well supported by current applications.

✦ XLink elements are all defined by attributes attached to the existing elements

in other XML applications.

✦ XLink attributes of all types are placed in the http://www.w3.org/
1999/xlink namespace, normally with the xlink prefix.

✦ Simple links behave much like HTML links, but they are not restricted to a

single <A> tag.

✦ XLink elements are identified by xlink:type attributes.

✦ Simple link elements are identified by xlink:type attributes with the value

simple.

✦ Simple link elements have an xlink:href whose value is the URI the link

points to.

✦ Linking elements can describe the resource they’re linking to with

xlink:title and xlink:role attributes. The value of the xlink:role
attribute must be a URI.

✦ Linking elements can use the xlink:show attribute to tell the application how

the content should be displayed when the link is activated, for example, by

opening a new window.

✦ Linking elements can use the xlink:actuate attribute to tell the application

whether the link should be traversed without a specific user request.

✦ Extended link elements are identified by xlink:type attributes with the value

extended.

✦ Extended links can contain multiple locators, resources, and arcs.

✦ Local resource elements are identified by xlink:type attributes with the

value resource. The resource is the content of the resource element.

✦ Remote resource locator elements are identified by xlink:type attributes

with the value locator.

✦ A locator element has an xlink:href attribute whose value is the URI of the

resource it locates.

✦ Arc elements are identified by xlink:type attributes with the value arc.

✦ Arc elements have xlink:from and xlink:to attributes that identify the

resources they connect by their labels.

676 Part IV ✦ Supplemental Technologies

✦ Arc elements may have xlink:show and xlink:actuate attributes to deter-

mine when and how traversal of the link occurs.

✦ An out-of-line link is a link that does not contain any local resources.

✦ A linkbase is a document containing multiple out-of-line, extended link

elements.

✦ A linkbase is found when a document with an extended link whose

xlink:arcrole has the value http://www.w3.org/1999/xlink/
properties/linkbase is read.

In the next chapter, you learn how XPointers can be used to link not only to remote

documents, but also to very specific elements in remote documents.

✦ ✦ ✦

XPointers

XPointer, the XML Pointer Language, defines an address-

ing scheme for individual parts of an XML document.

These addresses can be used by any application that needs to

identify parts of or locations in an XML document. For

instance, an XML editor could use an XPointer to identify the

current position of the insertion point or the range of the

selection. An XInclude processor can use an XPointer to

determine what part of a document to include. And the URI in

an XLink can include an XPointer fragment identifier that

locates one particular element in the targeted document.

XPointers use the same XPath syntax that you’re familiar with

from XSL transformations to identify the parts of the docu-

ment they point to, along with a few additional pieces.

This chapter is based on the January 8, 2001, XPointer Last
Call Working Draft, the November 16, 1999, XPath 1.0
specification, and the December 20, 2000, XLink Proposed
Recommendation. The broad picture presented here is
likely to be correct, but the details are subject to change.
You can find the latest XPointer specification at
http://www.w3.org/TR/xptr. Furthermore, no main-
stream browsers have any support for XPointers. You can
use URLs with XPointer fragment identifiers in Web pages,
but browsers will mostly ignore them.

Why Use XPointers?
Traditional URLs are simple and easy to use, but they’re also

quite limited. For one thing, a URL only points at a single,

complete document. More granularity than that, such as link-

ing to the third sentence of the seventeenth paragraph in a

document, requires the author of the targeted document to

manually insert named anchors at the targeted location. The

author of the document doing the linking can’t do this unless

he or she also has write access to the document being linked

to. Even if the author doing the linking can insert named

anchors into the targeted document, it’s almost always

inconvenient.

Caution

2020C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Why use XPointers?

XPointer examples

A concrete example

Location paths, steps,
and sets

The root node

Axes

Node tests

Predicates

Functions that return
node sets

Points

Ranges

Child sequences

✦ ✦ ✦ ✦

678 Part IV ✦ Supplemental Technologies

It would be more useful to be able to link to a particular element or group of ele-

ments on a page without having to change the document you’re linking to. For

example, given a large document such as the complete baseball statistics of

Chapters 4 and 5, you might want to link to only one team or one player. There are

several parts to this problem. The first part is addressing the individual elements.

This is the part that XPointers solve. XPointers enable you to target a given element

by number, name, type, or relation, to other elements in the document.

The second part of the problem is the protocol by which a browser asks a Web

server to send only part of a document rather than the whole thing. This is an area

of active research. More work is needed. XPointers do little to solve this problem,

except for providing a foundation on which such systems can build. For instance,

the best efforts to date are the so-called “byte range extensions to HTTP” available

in HTTP 1.1. So far these have not achieved widespread adoption, mostly because

Web authors aren’t comfortable specifying a byte range in a document.

Furthermore, byte ranges are extremely fragile. Trivial edits to a document, even

simple reformatting, can destroy byte range links. HTTP 1.1 does allow other range

units besides raw bytes (for example, XML elements), but does not require Web

servers or browsers to support such units. Much work remains to be done.

The third part of the problem is making sure that the retrieved document makes

sense without the rest of the document to go along with it. In the context of XML,

this effectively means the linked part is well formed, or perhaps valid. This is a

tricky proposition, because most XML documents, especially ones with nontrivial

prologs, don’t decompose well. Again, XPointers don’t address this. The World

Wide Web Consortium (W3C) XML Fragment Working Group is addressing this

issue, but work here is far from finished.

For the moment, therefore, an XPointer can be used as an index into a complete

document, the whole of which is loaded and then positioned at the location identi-

fied by the XPointer, and even this much is more than most browsers can handle. In

the long-term, extensions to XML, XLink, HTTP, and other protocols may allow more

sophisticated uses of XPointers. For instance, XInclude will let you quote a remote

document by using an XPointer to tell browsers where to copy the quote in the

original document, rather than retyping the text of the quote. You could include

cross-references inside a document that automatically update themselves as the

document is revised. These uses, however, will have to wait for the development of

several next-generation technologies. For now, you must be content with precisely

identifying the part of a document you want to jump to when following an XLink.

XPointer Examples
HTML links generally point to one particular document. Additional granularity —

that is, pointing to a particular section, chapter, or paragraph of a particular docu-

ment — isn’t well supported. Provided you control both the linking and the linked

679Chapter 20 ✦ XPointers

document, you can insert a named anchor into an HTML file at the position to

which you want to link. For example:

<H2>XPointer Examples</H2>

You can then link to this position in the file by adding a # and the name of the

anchor to the URL. The piece of the URL after the # is called the fragment identifier.
For example, in this link the fragment identifier is xtocid20.2.

XPointer Examples

However, this solution is kludgy. It’s not always possible to modify the target docu-

ment so that the source document can link to it. The target document may be on a

different server controlled by someone other than the author of the source docu-

ment. And the author of the target document may change or move it without notify-

ing the author of the source.

Furthermore, named anchors violate the principle of separating markup from con-

tent. Placing a named anchor in a document says nothing about the document or its

content. It’s just a marker for other documents to refer to. It adds nothing to the

document’s own content.

XPointers allow much more sophisticated connections between parts of documents.

An XPointer can refer to any element of a document; to the first, second, or seven-

teenth element; to the seventh element named P, to the first element that’s a child of

the second DIV element, and so on. XPointers provide very precisely targeted

addresses of particular parts of documents. They do not require the targeted docu-

ment to contain additional markup just so its individual pieces can be linked to.

Furthermore, unlike HTML anchors, XPointers don’t point to just a single point in a

document. They can point to entire elements, to possibly discontiguous sets of ele-

ments, or to the range of text between two points. Thus, you can use an XPointer to

select a particular part of a document, perhaps so it can be copied or loaded into a

program.

Here are a few examples of XPointers:

xpointer(id(“ebnf”))
xpointer(descendant::language[position()=2])
ebnf
xpointer(/child::spec/child::body/child::*/child::language[2])
xpointer(/spec/body/*/language[2])
/1/14/2
xpointer(id(“ebnf”))xpointer(id(“EBNF”))

680 Part IV ✦ Supplemental Technologies

Each of these selects a particular element in a document. The first finds the ele-

ment with the ID ebnf. The second finds the second language element in the docu-

ment. The third is a shorthand form of finding the element with the ID ebnf. The

fourth and fifth both specify the second language child element of any child ele-

ment of the body child elements of the spec child element of the root node. The

sixth finds the second child element of the fourteenth child element of the root ele-

ment. The final URI also points to the element with the ID ebnf. However, if no such

element is present, it then finds the element with the ID EBNF.

The document is not specified by the XPointer; rather, the URI that precedes the

XPointer specifies the document. This URI may be contained in an XLink linking ele-

ment, in an XInclude include element, or in something else. The XLinks and URIs

you saw in the previous chapter did not contain XPointers, but it isn’t hard to

add XPointers to them. Most of the time you simply append the XPointer to the

URI separated by a #, just as you do with named anchors in HTML. For example,

the above list of XPointers could be suffixed to URLs and come out looking similar

to the following:

http://www.w3.org/TR/1998/REC-xml-
19980210.xml#xpointer(id(“ebnf”))
http://www.w3.org/TR/1998/REC-xml-
19980210.xml#xpointer(descendant::language[position()=2])
http://www.w3.org/TR/1998/REC-xml-19980210.xml#ebnf
http://www.w3.org/TR/1998/REC-xml-
19980210.xml#xpointer(/child::spec/child::body/child::*/child::
language[2])
http://www.w3.org/TR/1998/REC-xml-
19980210.xml#xpointer(/spec/body/*/language[2])
http://www.w3.org/TR/1998/REC-xml-19980210.xml#/1/14/2
http://www.w3.org/TR/1998/REC-xml-
19980210.xml#xpointer(id(“ebnf”))xpointer(id(“EBNF”))

In fact, these URIs are just six different ways of pointing to the same element of the

document at http://www.w3.org/TR/1998/REC-xml-19980210.xml. Normally

such URIs are values of the xlink:href attribute of a linking element. For example:

<SPECIFICATION xmlns:xlink=”http://www.w3.org/1999/xlink”
xlink:type=”simple”
xlink:href=”http://www.w3.org/TR/1998/REC-xml-
19980210.xml#xpointer(id(‘ebnf’))”
xlink:actuate=”onRequest” xlink:show=”replace”>
Extensible Markup Language (XML) 1.0

</SPECIFICATION>

XPointers don’t have any special exemptions from the rules of URIs. In particular, if

the XPointer contains characters that are not allowed in URLs, (for example, Ω or ^)

then these characters must be encoded in UTF-8, and the bytes of the UTF-8 encod-

ing must be hex-escaped using a percent sign. For example, the capital Greek letter

Omega is Unicode character 3A9 in hexadecimal. When encoded in UTF-8, this

681Chapter 20 ✦ XPointers

character is the two bytes 206 and 169. In hexadecimal, that’s CE and A9.

Therefore, the XPointer xpointer(id(“Ω”)) would be encoded in a URL as

xpointer(id(“%CE%A9”)). The caret is Unicode character 5E in hexadecimal.

The equals sign is Unicode character 3D in hexadecimal. The colon is Unicode

character 3A in hexadecimal. Because these three characters are part of the

ASCII character set, their UTF-8 encodings are simply their values. Therefore

xpointer(descendant::*[.=’^’]) would be encoded in a URL as

xpointer(descendant%3A%3A*[.%3D’%5E’]). Modern Web browsers allow the

square brackets [and] in URLs. However, some older browsers do not, so for maxi-

mum compatibility you should escape these characters as %5B and %5D respec-

tively. Thus the above XPointer would become xpointer(descendant%3A%3A*%5B.
%3D’%5E’%5D).

A Concrete Example
To demonstrate the different types of XPointers, it’s useful to have a concrete exam-

ple in mind. Listing 20-1 is a simple, valid document that should be self-explanatory.

It contains information about two related families and their members. The root ele-

ment is FAMILYTREE. A FAMILYTREE can contain PERSON and FAMILY elements.

Each PERSON and FAMILY element has a required ID attribute. Persons contain a

name, birth date, death date and spouse. Families contain a husband, a wife, and

zero or more children. The individual persons are referred to from the family by ref-

erence to their IDs.

This XML application is revisited in Chapter 28.

Listing 20-1: A family tree

<?xml version=”1.0”?>
<!DOCTYPE FAMILYTREE [

<!ELEMENT FAMILYTREE (PERSON | FAMILY)*>

<!-- PERSON elements -->
<!ELEMENT PERSON (NAME*, BORN*, DIED*, SPOUSE*)>
<!ATTLIST PERSON
ID ID #REQUIRED
FATHER CDATA #IMPLIED
MOTHER CDATA #IMPLIED

>
<!ELEMENT NAME (#PCDATA)>
<!ELEMENT BORN (#PCDATA)>
<!ELEMENT DIED (#PCDATA)>

Continued

Cross-
Reference

682 Part IV ✦ Supplemental Technologies

Listing 20-1 (continued)

<!ELEMENT SPOUSE EMPTY>
<!ATTLIST SPOUSE IDREF IDREF #REQUIRED>

<!--FAMILY-->
<!ELEMENT FAMILY (HUSBAND?, WIFE?, CHILD*) >
<!ATTLIST FAMILY ID ID #REQUIRED>

<!ELEMENT HUSBAND EMPTY>
<!ATTLIST HUSBAND IDREF IDREF #REQUIRED>
<!ELEMENT WIFE EMPTY>
<!ATTLIST WIFE IDREF IDREF #REQUIRED>
<!ELEMENT CHILD EMPTY>
<!ATTLIST CHILD IDREF IDREF #REQUIRED>

]>
<FAMILYTREE>

<PERSON ID=”p1”>
<NAME>Domeniquette Celeste Baudean</NAME>
<BORN>21 Apr 1836</BORN>
<DIED>Unknown</DIED>
<SPOUSE IDREF=”p2”/>

</PERSON>

<PERSON ID=”p2”>
<NAME>Jean Francois Bellau</NAME>
<SPOUSE IDREF=”p1”/>

</PERSON>

<PERSON ID=”p3” FATHER=”p2” MOTHER=”p1”>
<NAME>Elodie Bellau</NAME>
<BORN>11 Feb 1858</BORN>
<DIED>12 Apr 1898</DIED>
<SPOUSE IDREF=”p4”/>

</PERSON>

<PERSON ID=”p4”>
<NAME>John P. Muller</NAME>
<SPOUSE IDREF=”p3”/>

</PERSON>

<PERSON ID=”p7”>
<NAME>Adolf Eno</NAME>
<SPOUSE IDREF=”p6”/>

</PERSON>

<PERSON ID=”p6” FATHER=”p2” MOTHER=”p1”>
<NAME>Maria Bellau</NAME>
<SPOUSE IDREF=”p7”/>

683Chapter 20 ✦ XPointers

</PERSON>

<PERSON ID=”p5” FATHER=”p2” MOTHER=”p1”>
<NAME>Eugene Bellau</NAME>

</PERSON>

<PERSON ID=”p8” FATHER=”p2” MOTHER=”p1”>
<NAME>Louise Pauline Bellau</NAME>
<BORN>29 Oct 1868</BORN>
<DIED>3 May 1938</DIED>
<SPOUSE IDREF=”p9”/>

</PERSON>

<PERSON ID=”p9”>
<NAME>Charles Walter Harold</NAME>
<BORN>about 1861</BORN>
<DIED>about 1938</DIED>
<SPOUSE IDREF=”p8”/>

</PERSON>

<PERSON ID=”p10” FATHER=”p2” MOTHER=”p1”>
<NAME>Victor Joseph Bellau</NAME>
<SPOUSE IDREF=”p11”/>

</PERSON>

<PERSON ID=”p11”>
<NAME>Ellen Gilmore</NAME>
<SPOUSE IDREF=”p10”/>

</PERSON>

<PERSON ID=”p12” FATHER=”p2” MOTHER=”p1”>
<NAME>Honore Bellau</NAME>

</PERSON>

<FAMILY ID=”f1”>
<HUSBAND IDREF=”p2”/>
<WIFE IDREF=”p1”/>
<CHILD IDREF=”p3”/>
<CHILD IDREF=”p5”/>
<CHILD IDREF=”p6”/>
<CHILD IDREF=”p8”/>
<CHILD IDREF=”p10”/>
<CHILD IDREF=”p12”/>

</FAMILY>

<FAMILY ID=”f2”>
<HUSBAND IDREF=”p7”/>
<WIFE IDREF=”p6”/>

</FAMILY>

</FAMILYTREE>

684 Part IV ✦ Supplemental Technologies

In the sections that follow, this document is assumed to be present at the URL

http://www.theharolds.com/genealogy.xml. This isn’t a real URL, but the

emphasis here is on selecting individual parts of a document rather than a docu-

ment as a whole.

Location Paths, Steps, and Sets
Many (though not all) XPointers are location paths. These are the same location

paths used by XSLT and discussed in Chapter 17. Consequently, much of the syntax

should already be familiar to you.

Location paths are built from location steps. Each location step specifies a point in

the targeted document, always relative to some other well-known point such as the

start of the document or the previous location step. This well-known point is called

the context node. In general, a location step has three parts: the axis, the node test,
and an optional predicate. These are combined in this form:

axis::node-test[predicate]

For example, in the location step child::PERSON[position()=2], the axis is

child, the node-test is PERSON, and the predicate is [position()=2]. This loca-

tion step selects the second PERSON element along the child axis, starting from the

context node or, less formally, the second PERSON child element of the context

node. Of course, which element this actually is depends on what the context node

is. Consequently, this is what’s referred to as a relative location step. There are also

absolute location steps that do not depend on the context node.

The axis tells you in what direction to search from the context node. For instance,

an axis can say to look at things that follow the context node, things that precede

the context node, things that are children of the context node, things that are

attributes of the context node, and so forth.

The node test tells you which nodes to consider along the axis. The most common

node test is simply an element name. However the node test may also be the aster-

isk (*) wild card to indicate that any element is to be matched, or one of several

functions for selecting comments, text, attributes, processing instructions, points,

and ranges. The group of nodes along the given axis that satisfy the node test form

a location set.

The predicate is a boolean expression (exactly like the expressions you learned

about in XSLT) that tests each node in that set. If that expression returns false, then

the node is removed from the set.

685Chapter 20 ✦ XPointers

Often, after the entire location step — axis, node test, and predicate — has been

evaluated, what’s left is a single, unique node. A location set like this with only one

node is called a singleton. However, not all location steps produce singletons. In

some cases, you may finish with multiple nodes in the final location set. On occa-

sion, there may be no nodes in the location set; in other words, the location set is

the empty set.

A single location step is often not enough to identify the node you want. Commonly,

location steps are strung together, separated by slashes, to form a location path.

Each location step’s location set becomes the context node set for the next step in

the path. For example, consider this XPointer:

xpointer(/child::FAMILYTREE/child::PERSON[position()=3])

The location path of this XPointer is /child::FAMILYTREE/child::PERSON
[position()=3]. It is built from two location steps:

✦ /child::FAMILYTREE

✦ child::PERSON[position()=3]

The first location step is an absolute step that selects all child elements of the root

node whose name is FAMILYTREE. When applied to Listing 20-1, there’s exactly one

such element. The second location step is then applied relative to the FAMILYTREE
element returned by the first location step. All of its child nodes are considered.

Those that satisfy the node test — that is, elements whose name is PERSON— are

returned. There are 12 of these nodes. Each of these 12 nodes is then compared

against the predicate to see if its position is equal to 3. This turns out to be true for

only one node, Elodie Bellau’s PERSON element, so that is the single node this

XPointer points to.

It is not always the case, however, that an XPointer points to exactly one node. For

instance, consider this XPointer:

xpointer(/child::FAMILYTREE/child::PERSON[position()>3])

This is exactly the same as before except that the equals sign has been changed to

a greater than sign. Now when each of the 12 PERSON elements are compared, the

predicate returns true for 9 of them. Each of these nine is included in the location

set that this XPointer returns. This XPointer points to nine nodes, not to one.

686 Part IV ✦ Supplemental Technologies

The Root Node
Although Listing 20-1 includes ID attributes for most elements, and although they

are convenient, they are not required for linking into the document. You can select

any element in the document simply by working your way down from the root

node. An initial / indicates the root node.

The root node of the document is not the same as the root element. Rather it is an

abstract node that contains the entire document including the XML declaration, the

document type declaration, any comments or processing instructions that come

before or after the root element such as xml-stylesheet, and the root element

itself. For example, to select the root node of the XML 1.0 specification at

http://www.w3.org/TR/REC-xml you can use this URI:

http://www.w3.org/TR/REC-xml#xpointer(/)

For another example, Domeniquette Celeste Baudean is the first person in

Listing 20-1. Therefore to point at her name, you can get the first element child of

the root node (that is, the root element of the document, FAMILYTREE), then count

one PERSON down from the root element, and then count one NAME down from that

like this:

/child::*/child::PERSON[position()=1]/child::NAME

This location path says to find the root node, then find all element children of the

root node (which in a well-formed XML document will be exactly the root element),

then find the first PERSON element that’s an immediate child of that element, and

then find its NAME child elements.

Axes
XPath defines 13 axes along which an XPointer may search for nodes, all from the

same XPath syntax used for XSLT. These depend on context to determine exactly

what they point to. For instance, consider this location path:

id(“p6”)/child::NAME

It begins with the id() function that returns a node set containing the element with

the ID type attribute whose value is p6. This provides a context node for the follow-

ing location step along the relative child axis. Other axes include ancestor,

descendant, self, ancestor-or-self, descendant-or-self, attribute, and

more. Each serves to select a particular subset of the elements in the document.

For instance, the following axis selects from nodes that come after the context

node. The preceding axis selects from nodes that come before the context node.

Table 20-1 summarizes the 13 axes.

687Chapter 20 ✦ XPointers

Table 20-1
Location Step Axes

Axis Selects From

child All nodes contained in the context node, but not contained in
any other nodes the context node contains

parent The unique node that contains the context node but that
does not contain any other nodes that also contain the
context node

self The context node

ancestor The parent of the context node, the parent of the parent of
the context node, the parent of the parent of the parent of
the context node, and so forth, back to the root node

ancestor-or-self The ancestors of the context node and the context node itself

attribute The attributes of the context node

descendant The children of the context node, the children of the children
of the context node, and so forth

descendant-or-self The context node itself and its descendants

following All nodes that start after the end of the context node,
excluding attribute and namespace nodes

following-sibling All nodes that start after the end of the context node and
have the same parent as the context node

namespace All namespaces defined for the context node

preceding All nodes that finish before the beginning of the context
node, excluding attribute and namespace nodes

preceding-sibling All nodes that start before the beginning of the context node
and have the same parent as the context node

The child axis
The child axis selects from the children of the context node. For example, con-

sider this XPointer:

xpointer(/child::FAMILYTREE/child::PERSON[position()=3]/child::
NAME)

688 Part IV ✦ Supplemental Technologies

Reading from right to left, it selects the NAME child elements of the third PERSON ele-

ment that’s a child of the FAMILYTREE element that’s a child of the root of the docu-

ment. In this example, there’s only one such element; but if there are more than

one, then all are returned. For instance, consider this XPointer:

xpointer(/child::FAMILYTREE/child::PERSON/child::NAME)

This selects all NAME children of PERSON elements that are children of FAMILYTREE
elements that are children of the root. There are a dozen of these in Listing 20-1.

It’s important to note that the child axis only selects from the immediate children

of the context node. For example, consider this URI:

http://www.theharolds.com/genealogy.xml#xpointer(/child::NAME)

This points nowhere because there are no NAME elements in the document that are

direct, immediate children of the root node. There are a dozen NAME elements that

are indirect children. If you’d like to refer to these, you should use the descendant
axis instead of child.

As in XSLT, the child axis is implied if no explicit axis name is present. For

instance, the above three XPointers would more likely be written in this abbrevi-

ated form:

xpointer(/FAMILYTREE/PERSON[position()=3]/NAME)
xpointer(/FAMILYTREE/PERSON/NAME)
xpointer(/NAME)

The descendant axis
The descendant axis searches through all the descendants of the context node, not

just the immediate children. For example, /descendant::BORN selects all the BORN
elements in the document. /descendant::BORN[position()=3] selects the third

BORN element encountered in a depth-first search of the document tree. (Depth first

is the order you get if you simply read through the XML document from top to bot-

tom.) In Listing 20-1, that selects Louise Pauline Bellau’s birthday, <BORN>29 Oct
1868</BORN>.

The descendant axis can be abbreviated by using a double slash in place of a sin-

gle slash. For example, //BORN[position()=3] also selects the third BORN element

encountered in a depth-first search of the document tree. //NAME selects all NAME
elements in the document. //PERSON/NAME selects all NAME children of PERSON
elements.

689Chapter 20 ✦ XPointers

The descendant-or-self axis
The descendant-or-self axis searches through all the descendants of the context

node and the context node itself. For example, id(“p11”)/descendant-or-
self::PERSON refers to all PERSON children of the element with ID p11 as well as

that element itself, because it is of type PERSON. There is no abbreviation for

descendant-or-self.

The parent axis
The parent axis refers to the node that’s the immediate parent of the context node.

For example, /descendant::HUSBAND[position()=1]/parent::* refers to the

parent element of the first HUSBAND element in the document. In Listing 20-1, this is

the FAMILY element with ID f1.

Without a node test the parent axis can be abbreviated by a .. as in

//HUSBAND[position()=1]/...

The self axis
The self axis selects the context node. It’s sometimes useful when making relative

links. For example, /self::node() selects the root node of the document (which is

not the same as the root element of the document; that would be selected by

/child::* or, in this example, /child::FAMILYTREE.) It can be abbreviated by a

single period. However, this axis is rarely used in XPointers. It’s more useful for

XSLT select expressions.

The ancestor axis
The ancestor axis selects all nodes that contain the context node, starting with its

parent. For example, /descendant::BORN[position()=2]/ancestor::
*[position()=1] selects the element that contains the second BORN element.

Applied to Listing 20-1, it selects Elodie Bellau’s PERSON element. There’s no abbre-

viation for the ancestor axis.

The ancestor-or-self axis
The ancestor-or-self axis selects the context node and all nodes that contain it.

For example, id(“p1”)/ancestor-or-self::* identifies a node set that includes

Domeniquette Celeste Baudean’s PERSON element, that has ID p1, and its parent, the

FAMILYTREE element, and its parents, the root node. There’s also no abbreviation

for the ancestor-or-self axis.

690 Part IV ✦ Supplemental Technologies

The preceding axis
The preceding axis selects all nodes that finish before the context node. The first

time it encounters an element’s start tag or empty element tag, moving backwards

from the start of the context node, it counts that element. For example, consider

this rule:

/descendant::BORN[position()=3]/preceding::*[position()=5]

This says go to the third BORN element from the root, Louise Pauline Bellau’s birth-

day, <BORN>29 Oct 1868</BORN>, and then move back five elements. This lands

on Maria Bellau’s NAME element. There’s no abbreviation for the preceding axis.

The following axis
The following axis selects all elements that occur after the context node’s closing

tag. The first time it encounters an element’s start tag or empty element tag, it

counts that element. For example, consider this rule:

/descendant::BORN[position()=2]/following::*[position()=5]

This says go to Elodie Bellau’s birthday, <BORN>11 Feb 1858</BORN>, and then

move forward five elements. This lands on John P. Muller’s SPOUSE element,

<SPOUSE IDREF=”p3” />, after passing through Elodie Bellau’s DIED element,

Elodie Bellau’s SPOUSE element, John P. Muller’s PERSON element and John P.

Muller’s NAME element, in this order. There’s no abbreviation for the following
axis.

The preceding-sibling axis
The preceding-sibling axis selects elements that precede the context node in

the same parent element. For example, /descendant::BORN[position()=2]/
preceding-sibling::*[position()=1] selects Elodie Bellau’s NAME element,

<NAME>Elodie Bellau</NAME>. /descendant::BORN[position()=2]/
preceding-sibling::*[position()=2] doesn’t point to anything because

there’s only one sibling of Elodie Bellau’s BORN element before it. There’s no

abbreviation for the preceding-sibling axis.

The following-sibling axis
The following-sibling axis selects elements that follow the context node in the

same parent element. For example, /descendant::BORN[position()=2]
/following-sibling::*[position()=1] selects Elodie Bellau’s DIED element,

691Chapter 20 ✦ XPointers

<DIED>12 Apr 1898</DIED>. /descendant::BORN[position()=2]/following-
sibling::*[position()=3] doesn’t point to anything because there are only two

sibling elements following Elodie Bellau’s BORN element. There’s no abbreviation for

the following-sibling axis.

The attribute axis
The attribute axis selects attributes of the context node. For example, the loca-

tion path /descendant::SPOUSE/attribute::IDREF selects all IDREF attributes

of all SPOUSE elements in the document. The attribute axis can be abbreviated by

an @ sign. Thus, //SPOUSE/@IDREF also selects all IDREF attributes of all SPOUSE
elements in the document. @* is a general abbreviation for an attribute with any

name. Thus //SPOUSE/@* indicates all attributes of all SPOUSE elements.

For another example, to find all PERSON elements in the document

http://www.theharolds.com/genealogy.xml whose FATHER attribute is Jean

Francois Bellau (ID p2), you could write //PERSON[@FATHER=”p2”].

The xmlns and xmlns:prefix attributes used to declare namespaces are not

attribute nodes. To get information about namespaces, you have to use the

namespace axis instead.

The namespace axis
The namespace axis contains the namespaces in scope on the context node. It only

applies to element nodes. There is one namespace node for each prefix that is

mapped to a URI on that element (whether the prefix is used or not, and whether

the xmlns:prefix attribute that created the mapping is on the element itself or

one of its ancestors). Furthermore, if the element is in a default, nonprefixed name-

space, then there is also a namespace node for the default namespace.

Namespace nodes are very slippery and hard to grab hold of. Although the element

is the parent of the namespace node, the namespace node is not the child of the

element. A simple walk of the tree or asking for the children of the element will not

find the namespaces of the element. Instead, you have to walk the namespace axis

explicitly. The only node test that applies to namespace nodes is node().

Fortunately, there’s very little reason to point to a namespace node with an

XPointer. This axis is more useful for XSLT and not much used in XPointer.

692 Part IV ✦ Supplemental Technologies

Node Tests
Most of the time the node test part of a location step is simply an element or

attribute name like PERSON or @IDREF. However, there are nine other possibilities:

✦ *

✦ prefix:*

✦ @prefix:*

✦ node()

✦ text()

✦ comment()

✦ processing-instruction()

✦ point()

✦ range()

An asterisk stands for any element. For example, id(“p1”)/child::* selects all

the child elements of the element with the ID p1 regardless of their type. This does,

however, select only element nodes. It omits comment nodes, text nodes, process-

ing instruction nodes, and attribute nodes. If you want to select absolutely any kind

of node, use the node() node test instead.

A prefix followed by an asterisk selects all elements in the namespace that match

the prefix. For example, if the svg prefix is mapped to the http://www.w3.org/
2000/svg URI, then svg:* matches all SVG elements. Similarly, @prefix:*
matches all attributes in the specified namespace. For instance, if xlink is mapped

to the URI http://www.w3.org/1999/xlink, then @xlink:* matches all XLink

attributes in the document such as xlink:type, xlink:show, xlink:actuate,

xlink:href, xlink:role, and so forth.

Determining which namespace URIs a prefix is mapped to can be tricky. If the

XPointer is used in an XML document, then the normal xmlns:prefix attributes in

scope where the XPointer is used determine which namespace URI a prefix maps to.

However, XPointers can also be used in non-XML documents. For instance, an

XPointer may be included as a URL fragment identifier in a link to an XML docu-

ment from an HTML page. HTML has no means of associating prefixes with URIs. In

this case, you can prefix the xpointer() part with one or more an

xmlns(prefix=URI) parts that establish a prefix mapping.

For example, suppose you want to point at the MathML math element in the docu-

ment at http://www.example.com/equations.xml. You know that this element is

in the http://www.w3.org/1998/Math/MathML namespace, but you don’t know

what prefix is used in the document. Regardless of what prefix the target document

693Chapter 20 ✦ XPointers

uses, you can use the prefix mml as long as you use an xmlns(mml=http://www.
w3.org/1998/Math/MathML) part to associate it with the right URI. For example,

xmlns(mml=http://www.w3.org/1998/Math/MathML)
xpointer(//mml:math[1])

The text() node test specifically refers to the parsed character data content

of an element. It’s most commonly used with mixed content. Despite the paren-

theses, the text() node test does not actually take any arguments. For instance

/descendant::text() refers to all of the text but none of the markup of a docu-

ment. For another example, consider this CITATION element:

<CITATION CLASS=”TURING” ID=”C2”>
<AUTHOR>Turing, Alan M.</AUTHOR>
“<TITLE>On Computable Numbers,
With an Application to the Entscheidungs-problem</TITLE>”

<JOURNAL>
Proceedings of the London Mathematical Society</JOURNAL>,

<SERIES>Series 2</SERIES>,
<VOLUME>42</VOLUME>
(<YEAR>1936</YEAR>):
<PAGES>230-65</PAGES>.

</CITATION>

The following location path refers to the quotation mark before the TITLE element.

id(“C2”)/child::text()[position()=2]

The first text node in this fragment is the white space between <CITATION
CLASS=”TURING” ID=”C2”> and <AUTHOR>. Technically, this location path refers to

all text between </AUTHOR> and <TITLE>, including the white space and not just

the quotation mark.

XPointers that point to text nodes are tricky. I recommend that you avoid them if
possible. Of course, you may not always be able to.

Because character data does not contain any child nodes, child, descendant,

descendant-or-self, and attribute relative location steps may not be attached to an

XPath that selects a text node. The exception is the point() node test which is dis-

cussed later.

The comment() node test specifically refers to comments. For example, this

XPointer points to the third comment in the document:

xpointer(/descendant::comment()[position()=3])

Caution

694 Part IV ✦ Supplemental Technologies

Because comments do not contain attributes or elements, you cannot add an addi-

tional child, descendant, or attribute relative location step after the first term that

selects a comment. Despite the parentheses, the comment() node test does not

actually take any arguments.

Finally, the processing-instruction() node test selects any processing

instructions that occur along the chosen axis. You can use it without any

arguments to select all processing instructions, or with an argument to specify the

targets of the particular processing instructions you want to select. For example,

/descendant::processing-instruction() selects all processing instructions

in the document. However, /descendant::processing-instruction
(‘xml-stylesheet’) only finds processing instructions that begin

<?xml-stylesheet . /descendant::processing-instruction(“php”) only

finds processing instructions intended for PHP. As with comments, because pro-

cessing instructions do not contain attributes or elements, you cannot add an addi-

tional child, descendant, or attribute relative location step after the first step that

selects a processing instruction.

The point() and range() node tests refer to new ways of dividing an XML docu-

ment that only work in XPointer, not in other standards that use XPath, such as

XSLT. They will be discussed below.

Predicates
Each location step can contain zero or more predicates that further restrict which

nodes an XPointer points to. In many cases a predicate is necessary to pick the one

node from a node set that you want. This uses the same syntax as you already

learned about from XSLT. Each predicate contains an expression in square brackets

([]). This allows an XPointer to select nodes according to many different criteria.

For example, you can select:

✦ All elements that have a color attribute

✦ All elements that have a width attribute with the value 100

✦ The first element in the document that contains a LIMIT element

✦ The second element whose text content includes the word “Gale”

✦ All elements that are not the first or last children of their parents

✦ All elements whose value is 42

✦ All elements whose value is a number greater than 100

These are just a small sampling of the selections that predicates make possible.

695Chapter 20 ✦ XPointers

The result of a predicate expression is ultimately converted to a boolean after all

calculations are finished. Nonboolean results are converted as follows:

✦ A number is compared against the position of the node in the context node

list. If it matches, then the result is true; otherwise, the result is false. (More

about this shortly.)

✦ An empty node set is false; all other node sets are true.

✦ A zero-length string is false; all other strings are true (including the string

“false”).

The predicate expression is evaluated for each node in the context node list. Each

node for which the expression ultimately evaluates to false is removed from the list.

Thus only those nodes that satisfy the predicate remain. I will not repeat the dis-

cussion of the operators and functions available to use expressions here . However,

I will show you a few examples of predicates using the expression syntax as it’s

likely to be used in XPointers.

Expression syntax is covered in Chapter 17.

Probably the most frequently used function in XPointer predicates is position().

This returns the index of the node in the context node list. This enables you to find

the first, second, third, or other indexed node. You can compare positions using the

relational operators <, >, =, !=, >=, and <=.

For instance, in Listing 20-1 the root FAMILYTREE element has 14 immediate chil-

dren, 12 PERSON elements, and 2 FAMILY elements. In order, they are:

xpointer(/child::FAMILYTREE/child::*[position()=1])
xpointer(/child::FAMILYTREE/child::*[position()=2])
xpointer(/child::FAMILYTREE/child::*[position()=3])
xpointer(/child::FAMILYTREE/child::*[position()=4])
xpointer(/child::FAMILYTREE/child::*[position()=5])
xpointer(/child::FAMILYTREE/child::*[position()=6])
xpointer(/child::FAMILYTREE/child::*[position()=7])
xpointer(/child::FAMILYTREE/child::*[position()=8])
xpointer(/child::FAMILYTREE/child::*[position()=9])
xpointer(/child::FAMILYTREE/child::*[position()=10])
xpointer(/child::FAMILYTREE/child::*[position()=11])
xpointer(/child::FAMILYTREE/child::*[position()=12])
xpointer(/child::FAMILYTREE/child::*[position()=13])
xpointer(/child::FAMILYTREE/child::*[position()=14])

In fact, this test is so common that XPath offers a shorthand notation for it. Instead

of writing [position=X] where X is a number, you can simply enclose the number

or an XPath expression that returns the number in the square brackets like this:

xpointer(/child::FAMILYTREE/child::*[1])
xpointer(/child::FAMILYTREE/child::*[2])
xpointer(/child::FAMILYTREE/child::*[3])

Cross-
Reference

696 Part IV ✦ Supplemental Technologies

xpointer(/child::FAMILYTREE/child::*[4])
xpointer(/child::FAMILYTREE/child::*[5])
xpointer(/child::FAMILYTREE/child::*[6])
xpointer(/child::FAMILYTREE/child::*[7])
xpointer(/child::FAMILYTREE/child::*[8])
xpointer(/child::FAMILYTREE/child::*[9])
xpointer(/child::FAMILYTREE/child::*[10])
xpointer(/child::FAMILYTREE/child::*[11])
xpointer(/child::FAMILYTREE/child::*[12])
xpointer(/child::FAMILYTREE/child::*[13])
xpointer(/child::FAMILYTREE/child::*[14])

Greater numbers, such as /child::FAMILYTREE/child::*[15], don’t point to

anything; they’re just dangling.

To count all elements in the document, not just the immediate children of the root,

you can use the descendant axis instead of child. Table 20-2 shows the first four

descendant XPointers for the document element FAMILYTREE of Listing 20-1, and

what they point to. Note especially that /child::FAMILYTREE/descendant::
*[position()=1] points to the entire first PERSON element, including its children,

and not just the <PERSON> start tag.

Table 20-2
The First Four Descendants of the Document Element

Xpointer Points To

/child::FAMILYTREE/descendant::*[position()=1] <PERSON ID=”p1”>

<NAME>Domeniquette
Celeste
Baudean</NAME>

<BORN>11 Feb
1858</BORN>

<DIED>12 Apr
1898</DIED>

<SPOUSE IDREF=”p2”/>

</PERSON>

/child::FAMILYTREE/descendant::*[position()=2] <NAME>Domeniquette
Celeste
Baudean</NAME>

/child::FAMILYTREE/descendant::*[position()=3] <BORN>21 Apr
1836</BORN>

/child::FAMILYTREE/descendant::*[position()=4] <DIED>unknown</DIED>

697Chapter 20 ✦ XPointers

Functions that Return Node Sets
XPointers are not limited to location paths. In fact they can use any expression that

returns a node set. In particular, they can use functions that return node sets. There

are three of these:

✦ id()

✦ here()

✦ origin()

The last two, here() and origin() are XPointer extensions to XPath that are not

available in XSLT.

id()
The id() function is one of the simplest and most robust means of identifying an

element node. It selects the element in the document that has an ID type attribute

with a specified value. For example, consider this URI:

http://www.theharolds.com/genealogy.xml#xpointer(id(“p12”))

If you look at Listing 20-1, you find this element:

<PERSON ID=”p12” FATHER=”p2” MOTHER=”p1”>
<NAME>Honore Bellau</NAME>

</PERSON>

Because ID type attributes are unique, you know there aren’t any other elements

that match this XPointer. Therefore, http://www.theharolds.com/genealogy.
xml#xpointer(id(“p12”)) must refer to Honore Bellau’s PERSON element. Note

that the XPointer points to the entire element to which it refers, including all its

children, not just the start tag.

Since ID pointers are so common and so useful, there’s also a shortcut for this. If all

you want to do is point to a particular element with a particular ID, you can skip all

the xpointer(id(“”)) frou frou and just use the bare ID after the # like this:

http://www.theharolds.com/genealogy.xml#p12

You can only do this if all you want is the particular element with the particular ID.

You cannot add additional relative location steps to a URI that uses this shortcut

to select children of the element with ID p12 or the third attribute of the element

with ID p12. If you want to do that, you have to use the full xpointer(id(“p12”))
syntax.

698 Part IV ✦ Supplemental Technologies

The disadvantage of the id() function is that it requires assistance from the tar-

geted document. If the element you want to point to does not have an ID type

attribute, you’re out of luck. If other elements in the document have ID type

attributes, you may be able to point to one of them and use a relative location step

to point to the one you really want. Nonetheless, ID type attributes work best when

you control both the targeted document and the linking document, so that you can

ensure that the IDs match the links even as the documents evolve and change over

time.

If the document does not have a DTD, then it cannot have any ID type attributes,

although it may have attributes named ID. In this case, you can’t point at anything

using the id() function.

One possibility is to first use an id()-based XPointer, but back it up with an

XPointer that looks for the attribute with the specific name anywhere in the docu-

ment, ID in this example. Simply append the second XPointer to the first like this:

xpointer(id(“p12”))xpointer(//*[@ID=”p12”])

XPointers are evaluated from left to right. The first match found is returned, so the

backup is only used if an ID type attribute with the value p12 can’t be found.

here()
The second node set returning function is here(). However, it’s only useful when

used in conjunction with one or more relative location steps. In intradocument

links, that is, links from one point in a document to another point in the same docu-

ment, it’s often necessary to refer to “the next element after this one,” or “the par-

ent element of this element.” The here() function refers to the node that contains

the XPointer so that such references are possible.

Consider Listing 20-2, a simple slide show. In this example, here()/../following::
SLIDE[1] refers to the next slide in the show. here()/../preceding::SLIDE[1]
refers to the previous slide in the show. Presumably, this would be used in conjunc-

tion with a style sheet that showed one slide at a time.

Listing 20-2: A slide show

<?xml version=”1.0”?>
<SLIDESHOW xmlns:xlink=”http://www.w3.org/1999/xlink”>
<SLIDE>
<H1>Welcome to the slide show!</H1>
<BUTTON xlink:type=”simple”

xlink:href=”here()/../following::SLIDE[1]”>
Next

699Chapter 20 ✦ XPointers

</BUTTON>
</SLIDE>
<SLIDE>
<H1>This is the second slide</H1>
<BUTTON xlink:type=”simple”

xlink:href=”here()/../preceding::SLIDE[1]”>
Previous

</BUTTON>
<BUTTON xlink:type=”simple”

xlink:href=”here()/../following::SLIDE[1]”>
Next

</BUTTON>
</SLIDE>
<SLIDE>
<H1>This is the third slide</H1>
<BUTTON xlink:type=”simple”

xlink:href=”here()/../preceding::SLIDE[1]”>
Previous

</BUTTON>
<BUTTON xlink:type=”simple”

xlink:href=”here()/../following::SLIDE[1]”>
Next

</BUTTON>
</SLIDE>
...
<SLIDE>
<H1>This is the last slide</H1>
<BUTTON xlink:type=”simple”

xlink:href=”here()/../preceding::SLIDE[1]”>
Previous

</BUTTON>
</SLIDE>

</SLIDESHOW>

Generally, the here() function is only used in fully relative URIs in XLinks. If any

URI part is included, it must be the same as the URI of the current document.

origin()
The origin() function is much the same as here(); that is, it refers to the source

of a link. However, origin() is used in out-of-line links where the link is not actu-

ally present in the source document. It points to the element in the source docu-

ment from which the user activated the link.

700 Part IV ✦ Supplemental Technologies

Points
Selecting a particular element or node is almost always good enough for pointing

into well-formed XML documents. However, on occasion you may need to point into

XML data in which large chunks of non-XML text is embedded via CDATA sections,

comments, processing instructions, or some other means. In these cases, you may

need to refer to particular ranges of text in the document that don’t map onto any

particular markup element. Or, you may need to point into non-XML substructure in

the text content of particular elements; for example the month in a BORN element

that looks like this:

<BORN>11 Feb 1858</BORN>

An XPath expression can identify an element node, an attribute node, a text node, a

comment node, or a processing instruction node. However, it can’t indicate the first

two characters of the BORN element (the date) or the substring of text between the

first space and the last space in the BORN element (the month).

XPointer generalizes XPath to allow identifiers like this. An XPointer can address

points in the document and ranges between points. These may not correspond to

any one node. For instance, the place between the X and the P in the word XPointer
at the beginning of this paragraph is a point. The place between the t and the h in

the word this at the end of the first sentence of this paragraph is another point. The

text fragment “Pointer generalizes XPath to allow pointers like t” between those two

points is a range.

Every point is either between two nodes or between two characters in the parsed

character data of a document. To make sense of this, you have to remember that

parsed character data is part of a text node. For instance, consider this very simple

but well-formed XML document:

<GREETING>
Hello

</GREETING>

There are exactly 3 nodes and 14 distinct points in this document. The nodes are

the root node, which contains the GREETING element node, which contains a text

node. In order the points are:

1. The point before the root node

2. The point before the GREETING element node

3. The point before the text node containing the text “Hello” (as well as assorted

white space)

4. The point before the white space between <GREETING> and Hello

701Chapter 20 ✦ XPointers

5. The point before the first H in Hello

6. The point between the H and the e in Hello

7. The point between the e and the l in Hello

8. The point between the l and the l in Hello

9. The point between the l and the o in Hello

10. The point after the o in Hello

11. The point after the white space between Hello and </GREETING>

12. The point after the text node containing the text "Hello"

13. The point after the GREETING element

14. The point after the root node

The exact details of the white space in the document are not considered here.

XPointer collapses all runs of white space to a single space.

Points allow XPointers to indicate arbitrary positions in the parsed character data

of a document. They do not, however, enable pointing at a position in the middle of

a tag. In essence, what points add is the ability to break up the text content into

smaller nodes, one for each character.

A point is selected by using the string-range () function to select a range, and then

using the start-point () or end-point () function to extract the first or last point

from the range. For example, this XPointer selects the point immediately before the

D in Domeniquette Celeste Baudean’s NAME element:

xpointer(start-point(string-range(id('p1')/
NAME/,"Domeniquette")))

This XPointer selects the point after the last e in Domeniquette:

xpointer(end-point(string-range(id(‘p1’)/NAME/,"Domeniquette")))

You can also take the start-point () or end-point() of an element, text, comment,

processing instruction, or root node to get the first or last point in that node.

Ranges
Some applications need to specify a range across a document rather than a particu-

lar point in the document. For instance, the selection a user makes with a mouse is

not necessarily going to match up with any one element or node. It may start in the

middle of one paragraph, extend across a heading and a picture, and then into the

middle of another paragraph two pages down.

702 Part IV ✦ Supplemental Technologies

Any such contiguous area of a document can be described with a range. A range

begins at one point and continues until another point. The start and end points are

each identified by a location path. If the starting path points to a node set rather

than a point, then range-to () will return multiple ranges, one starting from the

first point of each node in the set.

To specify a range, you append /range-to(end-point) to a location path specify-

ing the start point of the range. The parentheses contain a location path specifying

the end point of the range. For example, suppose you want to select everything

between the first <PERSON> start tag and the last <PERSON> end tag in Listing 20-1.

This XPointer accomplishes that:

xpointer(/child::FAMILYTREE/child::PERSON[position()=
1]/range-to(/child::FAMILYTREE/child::PERSON[position()=last()]))

Range functions
XPointer includes several functions specifically for working with ranges. Most of

these operate on location sets. A location set is just a node set that can also contain

points and ranges, as well as nodes.

The range(location-set) function returns a location set containing one range for

each location in the argument. The range is the minimum range necessary to cover

the entire location. In essence, this function converts locations to ranges.

The range-inside(location-set) function returns a location set containing the

interiors of each of the locations in the input. That is, if one of the locations is an

element, then the location returned is the content of the element (but not including

the start and end tags). However, if the input location is a range or point, then the

interior of the location is just the same as the range or point.

The start-point(location-set) function returns a location set that contains

the first point of each location in the input location set. For example, start-
point(//PERSON[1]) returns the point immediately after the first <PERSON> start

tag in the document. start-point(//PERSON) returns the set of points immedi-

ately after each <PERSON> start tag.

The end-point(location-set) function acts the same as start-point() except

that it returns the points immediately after each location in its input.

String ranges
XPointer provides some very basic string-matching capabilities through the

string-range() function. This function takes as an argument a location set to

search and a substring to search for. It returns a location set containing one range

703Chapter 20 ✦ XPointers

for each nonoverlapping matching substring. You can also provide optional index
and length arguments indicating how many characters after the match the range

should start and how many characters after the start the range should continue.

The basic syntax is:

string-range(location-set, substring, index, length)

The first argument is an XPath expression that returns a location set specifying

which part of the document to search for a matching string. The second substring

argument is the actual string to search for. By default, the range returned starts

before the first matched character and encompasses all the matched characters.

However, the index argument can give a positive number to start after the begin-

ning of the match. For instance, setting it to 2 indicates that the range starts with

the second character after the first matched character. The length argument can

specify how many characters to include in the range.

A string range points to an occurrence of a specified string, or a substring of a given

string in the text (not markup) of the document. For example, this XPointer finds all

occurrences of the string Harold:

xpointer(string-range(/,”Harold”))

You can change the first argument to specify what nodes you want to look in. For

example, this XPointer finds all occurrences of the string Harold in NAME elements:

xpointer(string-range(//NAME,”Harold”))

String ranges may have predicates. For example, this XPointer finds only the first

occurrence of the string Harold in the document:

xpointer(string-range(/,”Harold”)[position()=1])

This targets the position immediately preceding the word Harold in Charles Walter

Harold’s NAME element. This is not the same as pointing at the entire NAME element

as an element-based selector would do.

A third numeric argument targets a particular position in the string. For example,

this targets the point between the l and d in the first occurrence of the string Harold
because d is the sixth letter:

xpointer(string-range(/,”Harold”,6)[position()=1])

An optional fourth argument specifies the number of characters to select. For exam-

ple, this URI selects the old from the first occurrence of the entire string Harold:

xpointer(string-range(/,”Harold”,4,3)[position()=1])

704 Part IV ✦ Supplemental Technologies

If the first string argument in the node test is the empty string, then relevant posi-

tions in the context node’s text contents are selected. For example, the following

XPointer targets the first six characters of the document’s parsed character data:

xpointer(string-range(1,“”,1,6)[position()=1])

For another example, let’s suppose that you want to find the year of birth for all

people born in the nineteenth century. The following will accomplish that:

xpointer(string-range(//BORN, “ 18”, 2, 4))

This says to look in all BORN elements for the string “ 18”. (The initial space is

important to avoid accidentally matching someone born in 1918 or on the 18th day

of the month.) When it’s found, move one character ahead (to skip the space) and

return a range covering the next four characters.

When matching strings, case is considered. Markup characters are ignored.

Child Sequences
The two most common ways to identify an element in an XML document are by ID

and by location. Identifying an element by ID is accomplished through the id()
function. Identifying an element by location is generally accomplished by counting

children down from the root. For example, the following URIs both point to John P.

Muller’s PERSON element:

http://www.theharolds.com/genealogy.xml#xpointer(id(“p4”))
http://www.e.com/genealogy.xml#xpointer(/child::*[position()=1]
/child::*[position()=4])

A child sequence is a shortcut for XPointers, like the second example above — that

is, an XPointer that consists of nothing but a series of child relative location steps

counting down from the root node, each of which selects a particular child by posi-

tion only. The shortcut is to use only the position number and the slashes that sep-

arate individual elements from each other, like this:

http://www.theharolds.com/genealogy.xml#/1/4

/1/4 is a child sequence that selects the fourth child element of the first child

of the root. This syntax can be extended for any depth of child elements. For

example these two URIs point to John P. Muller’s NAME and SPOUSE elements

respectively:

http://www.theharolds.com/genealogy.xml#/1/4/1
http://www.theharolds.com/genealogy.xml#/1/4/2

705Chapter 20 ✦ XPointers

Child sequences may include an initial ID. In that case, the counting begins from

the element with that ID rather than from the root. For example, John P. Muller’s

PERSON element has an ID attribute with the value p4. Consequently

xpointer(p4/1) points to his NAME element and xpointer(p4/2) points to his

SPOUSE element.

Each child sequence always points to a single element. You cannot use child

sequences with any other relative location steps. You cannot use them to select ele-

ments of a particular type. You cannot use them to select attributes or strings. You

can only use them to select a single element by its relative location in the tree.

Summary
In this chapter, you learned about XPointers. In particular you learned that:

✦ XPointers refer to particular parts of or locations in XML documents.

✦ The syntax of an XPointer is the keyword xpointer, followed by parentheses

containing an XPath expression that returns a node set.

✦ The id() function points to an element with a specified value for an ID type

attribute.

✦ Each location step contains an axis, a node test, and zero or more predicates.

✦ Location steps can be chained to make location paths.

✦ Relative location steps select nodes in a document based on their relationship

to a context node.

✦ The self axis points to the context node. It can be abbreviated as a period (.).

✦ The parent axis points to the node that contains the context node. It can be

abbreviated as a double period (..).

✦ The child axis includes the immediate children of the context node. It can be

abbreviated simply by a node test.

✦ The descendant axis includes all nodes contained in the context node. It can

effectively be abbreviated as a double slash (//).

✦ The descendant-or-self axis includes all nodes contained in the context

node as well as the context node itself.

✦ The ancestor axis includes all element nodes that contain the context node,

as well as the root node.

✦ The ancestor-or-self axis includes all nodes that contain the context node,

as well as the context node itself.

✦ The preceding axis includes all nodes that finish before the context node.

706 Part IV ✦ Supplemental Technologies

✦ The following axis includes all nodes that start after the context node.

✦ The preceding-sibling axis selects from nodes that precede the context

node with the same parent node as the context node.

✦ The following-sibling axis selects from nodes that follow the context

node with the same parent node as the context node.

✦ The attribute axis points to attributes of the context node. It can be abbre-

viated as an @ sign.

✦ The node test of a relative location step is normally an element or attribute

name, but may also be the * wild card to select all elements or one of the key-

words comment(), text(), processing-instruction(), node(), point(),

or range().

✦ The optional predicate of a relative location step is a boolean XPath expres-

sion enclosed in square brackets that further narrows the node set that the

XPointer refers to.

✦ A point indicates a position preceding or following a node or a character.

✦ A range identifies the XML text between two points.

✦ The string-range() function points to a specified block of text.

✦ A child sequence points to an element by counting children from the root.

The next chapter explores the Resource Description Framework, RDF, an XML appli-

cation for encoding metadata.

✦ ✦ ✦

The Resource
Description
Framework

The Resource Description Framework (RDF) is an XML

application for encoding metadata. It’s particularly well

suited for describing Web sites and Web pages so that search

engines can not only index them but also understand what

they’re indexing. Once RDF and standard RDF vocabularies

become prevalent on the Web, search engines will be able to

determine whether a page titled Homer is talking about the

father of Western literature or the father of Bart Simpson. This

chapter discusses the nature of the resources RDF describes

and the statements it describes those resources with.

What Is RDF?
Metadata is data about data — information about information.

For example, the text of a book is its data. The name of the

author, the address of the publisher, the copyright date, and

so forth is metadata about the book. Metadata has many uses

on the Web, including organizing, searching, filtering, and per-

sonalizing Web sites. Accurate metadata should make it much

easier to find the Web sites you want while ignoring the Web

sites you don’t want.

To achieve these benefits, however, Web sites, search engines,

and directories must agree to use a standard format for meta-

data. The Resource Description Framework is a World Wide

Web Consortium (W3C)-recommended XML application for

encoding, exchanging, and reusing structured metadata. RDF

vocabularies can describe rating systems, site maps, privacy

preferences, collaborative services, licensing restrictions, and

more.

2121C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

What is RDF?

RDF statements

Basic RDF syntax

Abbreviated RDF
syntax

Containers

RDF schemas

✦ ✦ ✦ ✦

708 Part IV ✦ Supplemental Technologies

In general, metadata vocabularies must be customized for each individual knowl-

edge domain. However, RDF strives to create a convention that controls how the

semantics, syntax, and structure of metadata are formulated in the separate

domains, so that metadata formats developed for one domain can be merged with

formats developed for a second domain and used in a third domain without losing

any of the clarity of the original statements. RDF is designed to make it easy for

software to understand enough about a Web site so that it can discover resources

on a site, catalog the site’s content, rate that content, figure out who owns the con-

tent, learn under what terms and at what cost it may be used, and do other things a

Web spider or intelligent agent might want to do.

RDF Statements
An RDF document or element makes statements about resources. A statement says

that a certain resource has one or more properties. Each property has a type (that

is, a name) and a value. The value of a property may be a literal, such as a string,

number, or date; or it may be another resource.

A statement can be thought of as a triple composed of three items: resource, prop-

erty type, and property value. For example, an RDF statement might say, “The book

XML Bible (ISBN: 0-7645-4760-7) has the author Elliotte Rusty Harold.” Here the

resource is “The book XML Bible (ISBN: 0-7645-4760-7),” and the author property of

this resource has the value “Elliotte Rusty Harold.” Figure 21-1 is a pictorial descrip-

tion of this RDF statement.

Figure 21-1: An RDF statement

A resource can be anything that can have a Uniform Resource Identifier (URI). URIs

are a superset of the more common Uniform Resource Locators (URLs). As well as

Web pages, URIs can identify books, television shows, individual people, and more.

In the above example, an ISBN is used as a URI for a book. Thus, a resource might

be an entire Web site (http://www.norml.org/), a single Web page

(http://www.mozilla.org/rdf/doc/index.html), a specific HTML or XML

element on a Web page identified with an XPointer (http://ibiblio.org/xml/
mailinglists.html#xpointer(/descendant::dt[7]), a book

(urn:isbn:0764547607), a person (mailto:elharo@metalab.unc.edu), or just

about anything else — as long as a URI can be constructed for it. The only require-

ment for being a resource is a unique URI. This URI does not have to be a URL; it

can be something else, such as an ISBN.

urn:isbn:0764547607 Elliotte Rusty Harold
has the author

709Chapter 21 ✦ The Resource Description Framework

Resources are described with properties. A property is a specific characteristic,

attribute, or relationship of a resource. Each property has a meaning that can be

identified by the property’s name and the associated schema. The schema should

be found at the URI used for the property’s namespace. The schema identifies the

values, or value ranges, that are permitted for the property, and the types of

resources it can describe.

RDF schemas (which should not be confused with the XML schemas described in
Chapter 24) are still in the development stages, so don’t be too surprised if you
don’t actually find a schema where one is supposed to be. Also note that a name-
space URI pointing to a schema is an RDF requirement, not a requirement of
namespaces in general. In fact, the namespaces specification specifically denies
any such requirement.

RDF only defines an XML syntax for encoding these resource-property type-prop-

erty value triples in XML. It does not define the actual vocabularies used to

describe resources and properties. Eventually this will need to be addressed as

well, at least if RDF is to be useful beyond a local intranet. Efforts are underway to

produce standard vocabularies for content rating (PICS 2.0), personal information

(P3P), news syndication (RSS), and digital library catalogs (Dublin Core). Others

can be invented as needed.

An RDF statement combines a specific resource with a named property and its

value. These three parts of the statement are called, respectively, the subject, the

predicate, and the object. The resource being described is the subject, the property

used to describe the resource is the predicate, and the value of the property is the

statement’s object.

Here’s a normal, human readable statement:

Elliotte Rusty Harold is the creator of the Web site at the URL http://
ibiblio.org/xml/.

This same statement can be written in several other ways in English. For example:

The Web site at the URL http://ibiblio.org/xml/ has the creator Elliotte

Rusty Harold.

The Web site at the URL http://ibiblio.org/xml/ was created by Elliotte

Rusty Harold.

The creator of the Web site at the URL http://ibiblio.org/xml/ is Elliotte

Rusty Harold.

Elliotte Rusty Harold created the Web site at the URL

http://ibiblio.org/xml/.

However, all five versions mean exactly the same thing. In each version, the subject

is the Web site at the URL http://ibiblio.org/xml/. The predicate is the creator

property. The object is the value of the creator property, Elliotte Rusty Harold.

Figure 21-2 diagrams this statement as RDF understands it.

Caution

710 Part IV ✦ Supplemental Technologies

Figure 21-2: The statement in diagram form

The RDF subject, object, and predicate do not correspond to the common use of
those terms in English grammar. Indeed, part of the purpose of RDF is to separate
the meaning of subject, object, and predicate in an idea from their roles in any
given sentence because the same idea can be expressed in multiple sentences, in
each of which the grammatical subject, object, and predicate change places.

Basic RDF Syntax
The purpose of RDF is to write meaningful statements such as, “Elliotte Rusty

Harold is the creator of the Web site at the URL http://ibiblio.org/xml/” in a

standard XML format that computers can parse.

The RDF root element
The root element of an RDF document is RDF. This and all other RDF elements are

placed in the http://www.w3.org/1999/02/22-rdf-syntax-ns# namespace. (As

strange as it looks, the # is not a typo. It’s there so that when an element name is

added to the namespace URI, the result is a correct URL.) This namespace is usu-

ally either given the prefix rdf or set as the default namespace. For example, with

an explicit prefix, an empty RDF element looks like this:

<rdf:RDF
xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”>
<!-- rdf:Description elements will go here -->

</rdf:RDF>

With the default namespace, it looks like this:

<RDF xmlns=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”>
<!-- rdf:Description elements will go here -->

</RDF>

The Description element
An RDF statement is encoded in XML as a Description element. Each property of

the resource being described is a child element of the Description element. The

content of the child element is the value of the property. For example, Listing 21-1

translates the statement “Elliotte Rusty Harold created the Web site at the URL

http://ibiblio.org/xml/” into RDF.

Note

http://ibiblio.org/xml/ Elliotte Rusty Harold
has the creator

711Chapter 21 ✦ The Resource Description Framework

Listing 21-1: The statement translated into RDF

<rdf:RDF
xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”>
<rdf:Description about=”http://ibiblio.org/xml/”>
<Creator>Elliotte Rusty Harold</Creator>

</rdf:Description>
</rdf:RDF>

This rdf:RDF element contains a single statement. The statement is encoded as an

rdf:Description element. The resource this statement is about (the subject) is

http://ibiblio.org/xml/. The predicate of this statement is the content of the

rdf:Description element, <Creator>Elliotte Rusty Harold</Creator>. The

object of this statement is the content of the Creator element, Elliotte Rusty
Harold. In short, the statement says that the resource at http://ibiblio.
org/xml/ has a Creator property whose value is the literal string Elliotte
Rusty Harold.

Namespaces
Namespaces are used to distinguish between RDF elements and elements from

other vocabularies in property types and values. The http://www.w3.org/
1999/02/22-rdf-syntax-ns# namespace is used for RDF elements, generally with

an rdf prefix. In Listing 21-1, the Creator element is not in any namespace.

However, the descriptions may (and should) come from a specified namespace. For

instance, the RDF element in Listing 21-2 uses the Dublin Core vocabulary and the

http://purl.org/dc/elements/1.1/ namespace.

Listing 21-2: Elements from the Dublin Core vocabulary are in
the http://purl.org/dc/elements/1.1/ namespace

<rdf:RDF
xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
xmlns:dc=”http://purl.org/dc/elements/1.1/”>
<rdf:Description about=”http://ibiblio.org/xml/”>
<dc:creator>Elliotte Rusty Harold</dc:creator>

</rdf:Description>
</rdf:RDF>

712 Part IV ✦ Supplemental Technologies

The Dublin Core

The Dublin Core (http://purl.org/dc/) is a collection of elements designed to help
researchers find electronic resources in a manner similar to using a library card catalog.
Dublin Core elements include basic cataloging information. In particular:

✦ TITLE: The name of the resource.

✦ CREATOR: The person or organization that created most of the resource, for exam-
ple, the author of a novel or the photographer who took a picture.

✦ SUBJECT: The topic of the resource.

✦ DESCRIPTION: A brief description of the resource, such as an abstract.

✦ PUBLISHER: The person or organization making the resource available, for example,
IDG Books, Claremont University, or Apple Computer.

✦ CONTRIBUTOR: A non-CREATOR who contributed to the resource, for example, the
illustrator or editor of a novel.

✦ DATE: The date the resource was made available in its present form, generally in the
format YYYY-MM-DD, such as 1969-06-29.

✦ TYPE: The category of the resource, for example, Web page, short story, poem, arti-
cle, or photograph. Work is ongoing to produce a definitive list of acceptable
resource categories. The current draft list includes collection, dataset, event, image,
interactive resource, service, software, sound, and text. These will likely be divided
into subtypes in the future.

✦ FORMAT: The format of the resource, such as PDF, HTML, or JPEG. This would most
likely be given as a MIME media type, such as application/pdf, text/html, or
image/jpeg.

✦ IDENTIFIER: A unique string or number for the resource, for example, a URL or an
ISBN.

✦ SOURCE: A string or number that uniquely identifies the work from which the
resource was derived. For instance, a Web page with the text of Jerome K. Jerome’s
nineteenth century novel Three Men in a Boat might use this to note the specific
edition from which text was scanned.

✦ LANGUAGE: The primary language in which the resource is written as ISO 639 lan-
guage code, such as en for English.

✦ RELATION: An identifier for a different resource that is somehow related to this
resource, probably by using an identifier string like the IDENTIFIER property. For
example, if the resource were a newspaper story about a company, then this prop-
erty might include the URI of that company’s home page or a mailto URL for the
author of the article.

713Chapter 21 ✦ The Resource Description Framework

The Dublin Core is used throughout the examples in this chapter. However, you are

by no means limited to using only these elements. You are free to use different stan-

dard and nonstandard vocabularies and namespaces for properties as long as you

put them in a namespace.

Multiple properties and statements
A single Description element can specify more than one property of a resource.

For instance, what’s missing from the previous statement is the name of the site,

Cafe con Leche. A statement that includes this is, “Elliotte Rusty Harold is the

author of the Cafe con Leche Web site at the URL http://ibiblio.org/xml/.”

Rewritten in more stilted, RDF-like syntax, this becomes “The Web site at the URL

http://ibiblio.org/xml/ has the name Cafe con Leche and was created by

Elliotte Rusty Harold.” Figure 21-3 diagrams this statement. Listing 21-3 shows how

to add the property name to the RDF serialization in a natural way as simply one

more child of rdf:Description, dc:title.

Figure 21-3: A statement with multiple properties

http://ibiblio.org/xml/ Elliotte Rusty Harold
was created by

Cafe con Leche
has the name

✦ COVERAGE: The coverage property identifies the scope of applicability of the
resource in time, space, jurisdiction, or some other dimension. For example, if the
resource were a decision by the United States Court of Appeals for the Ninth Circuit,
then the coverage might be California, Oregon, Washington, Arizona, Montana,
Idaho, Nevada, Alaska, Hawaii, Guam, and the Northern Mariana Islands. If the
resource were a volume of an encyclopedia, then the coverage might be the letter A.

✦ RIGHTS: Copyright and other intellectual property notices specifying the conditions
under which the resource may or may not be used.

714 Part IV ✦ Supplemental Technologies

Listing 21-3: A statement with multiple properties in RDF
serialization form

<rdf:RDF
xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
xmlns:dc=”http://purl.org/dc/elements/1.1/”>

<rdf:Description about=”http://ibiblio.org/xml/”>
<dc:creator>Elliotte Rusty Harold</dc:creator>
<dc:title>Cafe con Leche</dc:title>

</rdf:Description>

</rdf:RDF>

A single RDF element can contain any number of Description elements, allowing it

to make any number of statements. For example, suppose you want to make the

two separate statements “Elliotte Rusty Harold is the author of the Cafe con Leche

Web site at the URL http://ibiblio.org/xml/” and “Elliotte Rusty Harold is the

author of the Cafe au Lait Web site at the URL http://www.cafeaulait.org/.”

These are two statements about two different resources. Listing 21-4 shows how

these are encoded in RDF.

Listing 21-4: Two separate statements encoded in RDF

<rdf:RDF
xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
xmlns:dc=”http://purl.org/dc/elements/1.1/”>

<rdf:Description about=”http://ibiblio.org/xml/”>
<dc:creator>Elliotte Rusty Harold</dc:creator>
<dc:title>Cafe con Leche</dc:title>

</rdf:Description>

<rdf:Description about=”http://www.cafeaulait.org/”>
<dc:creator>Elliotte Rusty Harold</dc:creator>
<dc:title>Cafe au Lait</dc:title>

</rdf:Description>

</rdf:RDF>

715Chapter 21 ✦ The Resource Description Framework

Resource valued properties
A slightly more complicated example is the statement, “The Cafe con Leche Web

site at the URL http://ibiblio.org/xml/ has the creator Elliotte Rusty Harold,

whose e-mail address is elharo@metalab.unc.edu.” The e-mail address is the key.

It provides a unique identifier for an individual, specifically the URL

mailto:elharo@metalab.unc.edu. Thus, the individual becomes a resource

rather than simply a literal. This resource is the value of the creator property of the

http://ibiblio.org/xml/ resource. Figure 21-4 diagrams this statement.

Figure 21-4: A statement with a resource valued property

Encoding this statement in RDF is straightforward. Simply give the Creator ele-

ment a Description child that describes the mailto:elharo@metalab.unc.edu
resource, as in Listing 21-5.

Listing 21-5: A statement encoded in RDF with nested
Description elements

<RDF xmlns=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
xmlns:dc=”http://purl.org/dc/elements/1.1/”>

<Description about=”http://ibiblio.org/xml/”>
<dc:title>Cafe con Leche</dc:title>
<dc:creator>
<Description about=”mailto:elharo@metalab.unc.edu”>

<dc:title>Elliotte Rusty Harold</dc:title>
</Description>

Continued

http://ibiblio.org/xml/
was created by

Cafe con Leche

has the name

has the name

mailto:elharo@metalab.unc.edu

Elliotte Rusty Harold

716 Part IV ✦ Supplemental Technologies

Listing 21-5 (continued)

</dc:creator>
</Description>

</RDF>

There’s no limit to the depth to which descriptions can be nested, nor is there any

limit to the number of properties that can be applied to a Description element,

nested or unnested.

RDF also provides an alternate syntax in which Description elements are not

nested inside each other. Instead, the resource being described contains a

resource attribute that points to the URI of the Description element. For exam-

ple, Listing 21-6 is an equivalent serialization of the statement “The Cafe con Leche

Web site at the URL http://ibiblio.org/xml/ has the creator Elliotte Rusty

Harold, whose e-mail address is elharo@metalab.unc.edu.”

Listing 21-6: Descriptions by reference using the resource
attribute

<rdf:RDF
xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
xmlns:dc=”http://purl.org/dc/elements/1.1/”>

<rdf:Description about=”http://ibiblio.org/xml/”>
<dc:title>Cafe con Leche</dc:title>
<dc:creator rdf:resource=”mailto:elharo@metalab.unc.edu”/>

</rdf:Description>

<rdf:Description about=”mailto:elharo@metalab.unc.edu”>
<dc:title>Elliotte Rusty Harold</dc:title>

</rdf:Description>

</rdf:RDF>

Although this syntax is harder for a human reader to parse, it doesn’t present any

significant difficulties to a computer program. The primary advantage of this form

is that it allows the same property to be attached to multiple resources. For exam-

ple, consider the statement, “Elliotte Rusty Harold, whose e-mail address is

elharo@metalab.unc.edu, created both the Cafe con Leche Web site at the

URL http://ibiblio.org/xml/ and the Cafe au Lait Web site at the URL

http://ibiblio.org/javafaq/”, which is diagrammed in Figure 21-5. This is

easily serialized, as shown in Listing 21-7. The description of the resource

mailto:elharo@metalab.unc.edu does not have to be repeated.

717Chapter 21 ✦ The Resource Description Framework

Figure 21-5: A statement with the same property attached to multiple resources

Listing 21-7: A statement with the same property attached to
multiple resources

<rdf:RDF
xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
xmlns:dc=”http://purl.org/dc/elements/1.1/”>

<rdf:Description about=”http://ibiblio.org/xml/”>
<dc:title>Cafe con Leche</dc:title>
<dc:creator rdf:resource=”mailto:elharo@metalab.unc.edu”/>

</rdf:Description>

<rdf:Description about=”http://ibiblio.org/javafaq/”>
<dc:title>Cafe au Lait</dc:title>
<dc:creator rdf:resource=”mailto:elharo@metalab.unc.edu”/>

</rdf:Description>

<rdf:Description about=”mailto:elharo@metalab.unc.edu”>
<dc:title>Elliotte Rusty Harold</dc:title>

</rdf:Description>

</rdf:RDF>

http://ibiblio.org/xml/
was created by

was created byCafe con Leche

has the name

has the name

http://ibiblio.org/javafaq/

Cafe au Lait

has the name

mailto:elharo@metalab.unc.edu

Elliotte Rusty Harold

718 Part IV ✦ Supplemental Technologies

XML valued properties
Property values are most commonly either pure text or resources. However, they

may also contain well-formed XML markup that is not itself RDF markup. In this

case, the property element must have a parseType attribute with the value

Literal, as shown in Listing 21-8.

Listing 21-8: A literal property value that uses XML markup

<rdf:RDF
xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
xmlns:dc=”http://purl.org/dc/elements/1.1/”
xmlns:nm=”http://ibiblio.org/xml/names/”>

<rdf:Description about=”http://ibiblio.org/xml/”>
<dc:creator parseType=”Literal”>
<nm:FirstName>Elliotte</nm:FirstName>
<nm:MiddleName>Rusty</nm:MiddleName>
<nm:LastName>Harold</nm:LastName>

</dc:creator>
</rdf:Description>

</rdf:RDF>

Without parseType=”Literal”, the value of a property must be a resource or

parsed character data only. It must not contain any embedded markup.

Abbreviated RDF Syntax
As well as the basic syntax used above, RDF also defines an abbreviated syntax that

uses attributes instead of parsed character data content. This is convenient when

RDF data is embedded in an HTML page, because a Web browser can simply ignore

the RDF tags without any effect on the rendered page. The two syntaxes are com-

pletely equivalent from the perspective of an RDF (as opposed to HTML) parser.

In abbreviated syntax, each property becomes an attribute of the Description ele-

ment. The name of the property is the name of the attribute. If the property has a

literal value, the value of the property is the value of the attribute. If the property

has a resource value, the value of the property is the URI of the resource, and a sep-

arate Description element describes the resource. Because the Description ele-

ment no longer has a variety of child elements, it does not need a closing tag and is

normally written using an empty element tag.

719Chapter 21 ✦ The Resource Description Framework

The simple statement “Elliotte Rusty Harold created the Web site

http://ibiblio.org/xml/” is written like this in abbreviated form:

<RDF xmlns=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
xmlns:dc=”http://purl.org/dc/elements/1.1/”>

<Description about=”http://ibiblio.org/xml/”
dc:creator=”Elliotte Rusty Harold” />

</RDF>

The statement “Elliotte Rusty Harold created the Cafe con Leche Web site

http://ibiblio.org/xml/” is written like this in abbreviated form:

<RDF xmlns=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
xmlns:dc=”http://purl.org/dc/elements/1.1/”>

<Description about=”http://ibiblio.org/xml/”
dc:creator=”Elliotte Rusty Harold”
dc:title=”Cafe con Leche” />

</RDF>

Resource valued properties are trickier to abbreviate. The statement, “The Cafe con

Leche Web site at the URL http://ibiblio.org/xml/ has the creator Elliotte

Rusty Harold, whose e-mail address is elharo@metalab.unc.edu” can be abbrevi-

ated like this:

<rdf:RDF
xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
xmlns:dc=”http://purl.org/dc/elements/1.1/”>
<rdf:Description about=”http://ibiblio.org/xml/”

dc:title=”Cafe con Leche”>
<dc:creator rdf:resource=”mailto:elharo@metalab.unc.edu”
dc:title=”Elliotte Rusty Harold” />

</rdf:Description>
</rdf:RDF>

Here the Description element is nonempty because it has a dc:creator child.

However, it still doesn’t contain any character data except white space.

Containers
When an RDF element describes a resource with multiple properties of the same

type, for example, to say that a document was written by multiple people or to list

mirror sites where a Web page can be found, a container can group the property

values. Every item in the group is a property value of the same type (property

name). This allows you to describe the group as a whole rather than merely

describe individual items in the container. RDF defines three kinds of containers:

720 Part IV ✦ Supplemental Technologies

✦ Bag: A group of unordered properties

✦ Seq: A sequence (ordered list) of properties

✦ Alt: A list of alternative properties from which a single one is chosen

The Bag container
A bag is a list of property values (resources and literals), in no particular order, all

of which share the same property name (type). This allows you to declare a prop-

erty that has more than one value. This would be useful, for instance, if you were

specifying the author property of a book with multiple authors, or the member

property of a committee. A bag may contain duplicate values.

A bag of properties is represented by a Bag element. Each item in the bag is an li
child element of the Bag. The Bag itself is a child of the Description to which it

applies.

For example, consider the statement, “The Cafe con Leche Web site at

http://ibiblio.org/xml/ was created by Elliotte Rusty Harold to provide XML

news, XML mailing lists, XML conferences, and XML books.” This is diagrammed in

Figure 21-6. The four main subjects of the site can be collected in a Bag, as shown in

Listing 21-9.

Figure 21-6: The statement uses a bag containing four properties

http://ibiblio.org/xml/

Cafe con Leche Elliotte Rusty Harold
XML News

XML Mailing Lists

XML Conferences

XML Books

has the name was created by has the subjecthas the name was created by has the subject

721Chapter 21 ✦ The Resource Description Framework

Listing 21-9: A bag with four members

<rdf:RDF
xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
xmlns:dc=”http://purl.org/dc/elements/1.1/”>

<rdf:Description about=”http://ibiblio.org/xml/”>
<dc:title>Cafe con Leche</dc:title>
<dc:creator>Elliotte Rusty Harold</dc:creator>
<dc:subject>
<rdf:Bag>
<rdf:li>XML News</rdf:li>
<rdf:li>XML Mailing lists</rdf:li>
<rdf:li>XML Conferences</rdf:li>
<rdf:li>XML Books</rdf:li>

</rdf:Bag>
</dc:subject>

</rdf:Description>

</rdf:RDF>

If the members of the bag are resources rather than literals, they’re identified with a

resource attribute whose value is a URI for the resource. For example, Listing 21-10

provides a simple site map for Cafe con Leche.

Listing 21-10: A simple site map for Cafe con Leche in a Bag

<rdf:RDF
xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
xmlns:dc=”http://purl.org/dc/elements/1.1/”>

<rdf:Description about=”http://ibiblio.org/xml/”>
<dc:title>Cafe con Leche</dc:title>
<dc:creator>Elliotte Rusty Harold</dc:creator>
<dc:subject>
<rdf:Bag>
<rdf:li
resource=”http://ibiblio.org/xml/news2001.html”/>

<rdf:li
resource=”http://ibiblio.org/xml/mailinglists.html”/>

<rdf:li
resource=”http://ibiblio.org/xml/books.html”/>

<rdf:li

Continued

722 Part IV ✦ Supplemental Technologies

Listing 21-10 (continued)

resource=”http://ibiblio.org/xml/tradeshows.html”/>
</rdf:Bag>

</dc:subject>
</rdf:Description>

<rdf:Description
about=”http://ibiblio.org/xml/news2001.html”>
<dc:title>XML News from 2001</dc:title>

</rdf:Description>

<rdf:Description
about=”http://ibiblio.org/xml/books.html”>
<dc:title>XML Books</dc:title>

</rdf:Description>

<rdf:Description
about=”http://ibiblio.org/xml/mailinglists.html”>
<dc:title>XML Mailing Lists</dc:title>

</rdf:Description>

<rdf:Description
about=”http://ibiblio.org/xml/tradeshows.html”>
<dc:title>XML Trade Shows and Conferences</dc:title>

</rdf:Description>

</rdf:RDF>

The Seq container
A sequence container is similar to a bag container. However, it guarantees that the

order of the contents is maintained. Sequences are written exactly like bags, except

that the Seq element replaces the Bag element. For example, this sequence guaran-

tees that when the Subject is read out by an RDF parser, it comes out in the order

XML News, XML Mailing Lists, XML Conferences, XML Books, and not some other

order, such as XML Books, XML Conferences, XML Mailing Lists, XML News.

<dc:subject>
<rdf:Seq>
<rdf:li>XML News</rdf:li>
<rdf:li>XML Mailing lists</rdf:li>
<rdf:li>XML Conferences</rdf:li>
<rdf:li>XML Books</rdf:li>

</rdf:Seq>
</dc:subject>

723Chapter 21 ✦ The Resource Description Framework

In practice, the order of properties in a container is rarely important, so sequences

aren’t used as much as bags and alternatives.

The Alt container
An Alt container holds one or more items from which a single one is picked. For

example, this might be used to describe the mirrors of a Web site. Consider the

statement The Cafe au Lait Web site at http://www.cafeaulait.org/ created by

Elliotte Rusty Harold is mirrored at ibiblio (http://www.ibiblio.org/javafaq/)

Sunsite Germany (http://sunsite.informatik.rwth-aachen.de/javafaq/),

Sunsite Sweden (http://sunsite.kth.se/javafaq/), and Sunsite Switzerland

(http://sunsite.cnlab-switch.ch/javafaq/). Because only one of these mir-

ror sites is desired, they can be placed in an alternative list. Listing 21-11 shows the

RDF serialization.

Listing 21-11: Mirror sites of Cafe au Lait in an Alt

<rdf:RDF
xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
xmlns:dc=”http://purl.org/dc/elements/1.1/”>

<rdf:Description about=”http://www.cafeaulait.org/”>
<dc:title>Cafe au Lait</dc:title>
<dc:creator>Elliotte Rusty Harold</dc:creator>
<dc:publisher>
<rdf:Alt>
<rdf:li resource =
“http://www.ibiblio.org/javafaq/” />
<rdf:li resource =
“http://sunsite.informatik.rwth-aachen.de/javafaq/” />
<rdf:li resource =
“http://sunsite.kth.se/javafaq/” />
<rdf:li resource =
“http://sunsite.cnlab-switch.ch/javafaq/” />

</rdf:Alt>
</dc:publisher>

</rdf:Description>

<rdf:Description
about=”http://www.ibiblio.org/javafaq/”>
<dc:publisher>ibiblio</dc:publisher>

</rdf:Description>

<rdf:Description

Continued

724 Part IV ✦ Supplemental Technologies

Listing 21-11 (continued)

about=”http://sunsite.informatik.rwth-aachen.de/javafaq/”>
<dc:publisher>Sunsite Germany</dc:publisher>

</rdf:Description>

<rdf:Description
about=”http://sunsite.cnlab-switch.ch/javafaq/”>
<dc:publisher>Sunsite Switzerland</dc:publisher>

</rdf:Description>

<rdf:Description
about=”http://sunsite.kth.se/javafaq/”>
<dc:publisher>Sunsite Sweden</dc:publisher>

</rdf:Description>

</rdf:RDF>

Statements about containers
Statements can be made about a container as a whole, separate from statements

about individual items in the container. You may want to say that a particular per-

son developed a Web site without implying that he or she personally wrote each

and every page on the site. Or, perhaps you want to claim a copyright on a collec-

tion of links without claiming a copyright on the pages to which you’re linking.

(For example, the market values Yahoo’s collection of links and descriptions at

around 7 billion dollars, even though Yahoo owns essentially none of the pages to

which it links.) In fact, the individual members of the container might have different

copyrights than the container itself. Figure 21-7 diagrams this.

To encode this in RDF, give the container (Bag, Seq, or Alt) an ID attribute.

Description elements with about attributes, whose value is a relative URL point-

ing to the container ID, describe the container.

725Chapter 21 ✦ The Resource Description Framework

Figure 21-7: A Bag whose rights information is different than the rights
information of the individual members of the Bag

Listing 21-12: A description of a container encoded in RDF

<rdf:RDF
xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
xmlns:dc=”http://purl.org/dc/elements/1.1/”>

<rdf:Description
about=”http://ibiblio.org/xml/links.html”>
<dc:title>XML Links</dc:title>
<dc:creator>Elliotte Rusty Harold</dc:creator>

Continued

http://ibiblio.org/xml/links.html

http://www.w3.org/XML/

http://www.xmlx.com/

http://www.oasis-
open.org/cover/xml.html

http://www.xml.com/

http://www.xmlinfo.com/

http://www.microsoft.com
/xml/

XML Links Elliotte Rusty Harold

Copyright 1999
Elliotte Rusty Harold

has the title was created byhas the title was created by

has the subjecthas the subject

has the rightshas the rights

726 Part IV ✦ Supplemental Technologies

Listing 21-12 (continued)

<dc:subject>
<rdf:Bag ID=”links”>
<rdf:li resource=”http://www.w3.org/XML/”/>
<rdf:li resource=”http://www.xml.com/”/>
<rdf:li resource=”http://www.xmlinfo.com/”/>
<rdf:li resource=”http://www.microsoft.com/xml/”/>
<rdf:li
resource=”http://www.oasis-open.org/cover/xml.html”/>

<rdf:li resource=”http://www.xmlx.com/”/>
</rdf:Bag>

</dc:subject>
</rdf:Description>

<rdf:Description about=”#links”>
<dc:rights>
Copyright 1999 Elliotte Rusty Harold

</dc:rights>
</rdf:Description>

<rdf:Description about=”http://www.w3.org/XML/”>
<dc:title>The W3C</dc:title>
<dc:rights>
Copyright 1997 W3C (MIT, INRIA, Keio)

</dc:rights>
</rdf:Description>

<rdf:Description about=”http://www.xml.com/”>
<dc:title>xml.com</dc:title>
<dc:rights>
Copyright 1998-1999 Seybold Publications
and O’Reilly & Associates, Inc.

</dc:rights>
</rdf:Description>

<rdf:Description about=”http://www.xmlinfo.com/”>
<dc:title>XML Info</dc:title>
<dc:creator>James Tauber</dc:creator>

</rdf:Description>

<rdf:Description about=”http://www.microsoft.com/xml/”>
<dc:title>Microsoft’s XML Page</dc:title>
<dc:rights>Copyright 1999 Microsoft Corporation</dc:rights>

</rdf:Description>

<rdf:Description
about=”http://www.oasis-open.org/cover/xml.html”>
<dc:title>Robin Cover’s XML Web Page</dc:title>
<dc:rights>

727Chapter 21 ✦ The Resource Description Framework

Copyright Robin Cover and OASIS, 1994-98
</dc:rights>

</rdf:Description>

<rdf:Description about=”http://www.xmlx.com/”>
<dc:title>XML Exchange</dc:title>
<dc:publisher>CommerceNet</dc:publisher>

</rdf:Description>

</rdf:RDF>

Statements about container members
Sometimes you do want to make a statement about each member of a container, but

you don’t want to repeat the same description three or four times. For example, you

may want to specify that the title and creator of each of the mirror sites is Cafe au

Lait and Elliotte Rusty Harold, respectively, as shown in Figure 21-8.

Figure 21-8: Attaching the same description to each page in a container

You can include an aboutEach attribute in the Bag, Seq, or Alt element whose

value is a name by which descriptions can be applied to all the members of the con-

tainer. For example, suppose you want to apply a copyright notice to each page in a

Bag. Listing 21-13 accomplishes this.

http://ibiblio.org/xml/

http://ibiblio.org/
xml/news1999.html

http://ibiblio.org/xml/
mailinglists.html

http://ibiblio.org/
xml/tradeshows.html

http://ibiblio.org/
xml/books.html

Cafe con Leche

has the subjecthas the title

XML NewsElliotte Rusty Harold

Copyright 1999 Elliotte
Rusty Harold. Linking is
permitted. Mirroring
requires explicit, prior
permission.

was created bywas created by

XML Mailing Lists

XML Conferences

XML Books

has the title

has the title

has the title

has the title

has the title

has the title

has the title

has the title

has the rights

has the rights

has the rightshas the rig
hts

has the rights

has the rights

has the rightshas the rig
hts

728 Part IV ✦ Supplemental Technologies

Listing 21-13: A description of each element in a Bag
container

<rdf:RDF
xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
xmlns:dc=”http://purl.org/dc/elements/1.1/”>

<rdf:Description about=”http://ibiblio.org/xml/”>
<dc:title>Cafe con Leche</dc:title>
<dc:creator>Elliotte Rusty Harold</dc:creator>
<dc:subject>
<rdf:Bag aboutEach=”pages”>
<rdf:li
resource=”http://ibiblio.org/xml/news1999.html”/>

<rdf:li
resource=”http://ibiblio.org/xml/mailinglists.html”/>
<rdf:li
resource=”http://ibiblio.org/xml/books.html”/>

<rdf:li
resource=”http://ibiblio.org/xml/tradeshows.html”/>

</rdf:Bag>
</dc:subject>

</rdf:Description>

<rdf:Description aboutEach=”#pages”>
<dc:rights>
Copyright 1999 Elliotte Rusty Harold
Linking is permitted.
Mirroring requires explicit, prior permission.

</dc:rights>
</rdf:Description>

<rdf:Description
about=”http://ibiblio.org/xml/news1999.html”>
<dc:title>XML News from 1999</dc:title>

</rdf:Description>

<rdf:Description about=”http://ibiblio.org/xml/books.html”>
<dc:title>XML Books</dc:title>

</rdf:Description>

<rdf:Description
about=”http://ibiblio.org/xml/mailinglists.html”>
<dc:title>XML Mailing Lists</dc:title>

</rdf:Description>

<rdf:Description
about=”http://ibiblio.org/xml/tradeshows.html”>
<dc:title>XML Trade Shows and Conferences</dc:title>

</rdf:Description>

</rdf:RDF>

729Chapter 21 ✦ The Resource Description Framework

Statements about implied bags
Sometimes you want to make a statement about a group of resources that may or

may not be members of the same container. For example, suppose you want to spec-

ify that every page on the Web site http://www.cafeaulait.org is Copyright 2001

Elliotte Rusty Harold. You can do this with a Description element that applies to all

resources whose URI begins with the string http://www.cafeaulait.org. This

Description element must have an aboutEachPrefix attribute whose value is the

URI prefix of the resources to which the description applies. For example:

<rdf:Description aboutEachPrefix=”http://www.cafeaulait.org”>
<dc:rights>Copyright 2001 Elliotte Rusty Harold</dc:rights>

</rdf:Description>

This Description element creates an implicit bag whose members are the

resources matching the prefix. These resources may or may not be members of

other containers in the RDF file, and they may or may not be sibling elements. The

members of this implied bag are gathered from wherever they reside.

URI prefixes can be used to select only a subtree of a Web site. For example, this

description claims that all pages at ibiblio.org in the /xml hierarchy are Copyright

2001 Elliotte Rusty Harold. However, it does not apply to other pages outside that

hierarchy such as http://ibiblio.org/id/asiasylum or

http://ibiblio.org/stats/.

<rdf:Description
aboutEachPrefix=”http://ibiblio.org/xml/”>
<dc:rights>Copyright 2001 Elliotte Rusty Harold</dc:rights>

</rdf:Description>

For another example, consider ISBNs that are assigned by publishers. All books

from Hungry Minds have an ISBN that begins 07645. Thus, this Description ele-

ment creates an implicit Bag containing only books published by Hungry Minds and

assigns a Publisher property to each member:

<rdf:Description aboutEachPrefix=”urn:isbn:07645”>
<dc:publisher>Hungry Minds</dc:publisher>

</rdf:Description>

RDF Schemas
Although there’s no guarantee that a generic XML namespace URI points to any-

thing in particular, RDF is stricter than that. Any namespace URI used in RDF should

point to a schema for the vocabulary. The schema describes the semantics and

allowed syntax of a particular element. For instance, the schema may say that the

contents of a DATE element must be in the form 1999-12-31 and not in the form

December 31, 1999. A schema may also make DTD-like statements, such as that

each BOOK element must contain one or more AUTHOR child elements.

730 Part IV ✦ Supplemental Technologies

Exactly how a schema makes statements such as this is a subject of debate, and, in

fact, RDF does not mandate any one schema language. You are free to use DTDs,

W3C XML Schemas, RELAX schemas, or something else. In practice, current RDF

schemas are mostly written in prose that human beings read. For example, part of

the Dublin Core “schema” is shown in Figure 21-9. (In the long run, a more formal

and complete schema for the Dublin Core is likely to be developed.)

Figure 21-9: The Dublin Core schema

Eventually schemas will be written in a more formal syntax that computers can

understand. In particular, the W3C RDF Schema Working Group is attempting to

develop an RDF schema specification that writes RDF schemas in RDF. This will

enable an RDF processor to validate a particular RDF document against the

schemas it uses. However, this work is not finished as of April 2001. If you’re curi-

ous about this project, you can retrieve the current draft of the RDF schema specifi-

cation from http://www.w3.org/TR/rdf-schema/.

731Chapter 21 ✦ The Resource Description Framework

Summary
This chapter discussed the Resource Description Framework. In particular, you

learned that:

✦ The Resource Description Framework (RDF) is an XML application for struc-

tured metadata. Metadata is information about information.

✦ An RDF document or element makes statements about resources.

✦ Each statement specifies a resource, a property of that resource, and the

value of that property.

✦ A resource is anything that has a Uniform Resource Identifier (URI). Uniform

Resource Locators (URLs) are just one form of URI.

✦ The value of a property may be plain text, another resource, or XML markup.

✦ All RDF elements are in the http://www.w3.org/1999/02/22-rdf-syntax-
ns# namespace.

✦ The root element of an RDF document is RDF.

✦ An RDF element contains Description elements that make statements about

resources.

✦ Each Description element contains either a literal property or a resource
attribute whose value is the URI of the property value.

✦ RDF also defines an abbreviated syntax in which properties may be replaced

by attributes of the same name on the Description element.

✦ The Bag, Seq, and Alt elements provide containers for multiple resources.

Properties can be applied to the container as a whole, the individual elements

of the container, or both.

✦ The namespace URI for each vocabulary used in an RDF document should

point to a schema for the vocabulary.

The next chapter starts the explanation of a number of other XML applications. It

begins with an in-depth analysis of the Extensible Hypertext Markup Language,

XHTML, a reformulation of HTML as well-formed and valid XML.

✦ ✦ ✦

XML
Applications

✦ ✦ ✦ ✦

In This Part

Chapter 22
XHTML

Chapter 23
The Wireless Markup
Language

Chapter 24
Schemas

Chapter 25
Scalable Vector
Graphics

Chapter 26
The Vector Markup
Language

Chapter 27
The Channel
Definition Format

Chapter 28
Designing a New
XML Application

✦ ✦ ✦ ✦

P A R T

VV

XHTML

XHTML (Extensible Hypertext Markup Language) is the

W3C’s effort to redefine HTML based on XML rather

than SGML. This requires tightening up a lot of the looseness

of traditional HTML. End tags must be added to elements that

don’t normally have them, such as p and dt. Empty element

tags, such as hr and img, must end in /> instead of just >.

Attribute values must be quoted. The names of all HTML ele-

ments and attributes are standardized in lowercase. But

XHTML goes one step further than merely requiring HTML

documents to be well-formed XML. It actually provides a doc-

ument type definition (DTD) that you can use to validate your

HTML documents. In fact, it provides three:

✦ The XHTML strict DTD for new HTML documents:

http://www.w3.org/TR/xhtml1/DTD/
xhtml1-strict.dtd

✦ The XHTML transitional DTD for legacy HTML docu-

ments that still use deprecated tags such as

applet: http://www.w3.org/TR/xhtml1/DTD/
xhtml1-transitional.dtd

✦ The XHTML frameset DTD for documents that use

frames: http://www.w3.org/TR/xhtml1/DTD/
xhtml1-frameset.dtd

You can choose the one that best fits your site.

Why Validate HTML?
XHTML, the Extensible Hypertext Markup Language, is a refor-

mulation of HTML 4.0 as well-formed and valid XML. XHTML

documents must adhere to all the rules of XML. For instance,

all start tags must have a matching end tags. Tags can nest

but cannot overlap. Attribute values must be quoted. The

ampersand and less-than characters can only be used to start

entity references and tags respectively; and so on.

2222C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Why validate HTML?

Moving to XHTML

What’s new in
XHTML

✦ ✦ ✦ ✦

736 Part V ✦ XML Applications

Valid documents aren’t required for HTML, but validity does make it much easier

for browsers to properly understand and display documents. A valid XHTML docu-

ment is far more likely to render correctly and predictably across many different

browsers than an invalid HTML document. Until recently, too much of the competi-

tion among browser vendors revolved around just how much broken HTML they

could make sense of. For instance, Internet Explorer fills in a missing </table> end

tag whereas Netscape Navigator does not. Consequently, many pages on Microsoft’s

Web site (which were only tested in Internet Explorer) contained missing </table>
tags and could not be viewed in Netscape Navigator. (I’ll leave it to the reader to

decide whether this was unfortunate happenstance or deliberate sabotage.) In

either case, if Microsoft had required valid HTML on its Web site, this would not

have happened.

It is extremely difficult for even the largest Web shops to test their pages against

even a small fraction of the browsers that people actually use. Even testing the lat-

est versions of both Netscape and Internet Explorer is more than some designers

manage. While I certainly won’t argue that you shouldn’t test your pages in as many

versions of as many browsers as possible, the reality is that time and resources are

finite. Validating HTML goes a long way toward ensuring that your pages render rea-

sonably in a broad spectrum of browsers.

In addition, validating HTML helps you find your mistakes. There are a surprising

number of HTML documents on the Web today with truly mistaken HTML. I’ve seen

pages where authors have placed attributes on the wrong elements, misspelled ele-

ment and attribute names, left off the closing “ on an attribute or > on a tag, and

more. These problems don’t just cause problems in some browsers; they cause

major problems in all browsers! Yet you’ll find mistakes like these on some of the

largest and most popular sites on the Web. All of these common problems can be

easily detected if you validate your documents before publishing them.

There are also advantages to XHTML beyond the realm of browser display. First,

when your documents are XHTML rather than HTML, you get to use the myriad of

XML-aware tools to process your HTML documents. For example, you can use

XSLT to transform XHTML documents into XSL Formatting Objects for high-quality

printing.

Second, because XML is much more carefully defined and stricter in what it does

and doesn’t allow than classic HTML, it’s much easier for your own custom pro-

grams to process XHTML than HTML. Web spiders, indexing tools, link checkers,

and other programs are all much easier to write for XHTML than for HTML.

Third, it’s much easier to mix other XML applications like Scalable Vector Graphics

(SVG) or MathML into an XHTML document than an HTML document. XHTML’s

well-formedness and validity rules makes it really obvious where other, non-XHTML

content can be placed. Furthermore, XML namespaces make it easy for browsers to

determine which parts of a page come from which XML vocabulary, so that it

knows what to pass to the MathML plug-in, what to display as an SVG picture, and

what to format in a normal HTML fashion.

737Chapter 22 ✦ XHTML

And while it may be marginally more difficult to write XHTML by hand than tradi-

tional HTML, it’s not significantly more difficult for editors such as DreamWeaver or

Microsoft Word to produce XHTML than HTML. The current versions of these tools

mostly produce malformed HTML, but in the future, they’ll generate correct XHTML

without any extra effort on the user’s part.

Moving to XHTML
The XHTML 1.0 specification defines a Strictly Conforming XHTML Document as

one that meets the following criteria:

1. The root element of the document must be html.

2. The root element of the document must set the default namespace to

http://www.w3.org/1999/xhtml.

3. It must have a DOCTYPE declaration that references the strict, transitional, or

frameset DTD using one of the these three Formal Public Identifiers:

• -//W3C//DTD XHTML 1.0 Strict//EN

• -//W3C//DTD XHTML 1.0 Transitional//EN

• -//W3C//DTD XHTML 1.0 Frameset//EN

4. It must be valid.

These requirements have certain implications. For instance, well-formedness is a

prerequisite for validity. Therefore, requirement four implies that the document

must be well-formed. And, of course, requirement three has all sorts of implications

based on the rules found in those three DTDs. For the most part, these rules match

your expectations about what an HTML document should look like. However, there

are some exceptions, especially for the strict DTD. For instance, all element and

attribute names must be lower case. Nonstandard elements such as marquee and

layer and nonstandard attributes such as datafld are strictly forbidden.

Let’s explore the process you’ll have to go through to convert an existing HTML

document to XHTML. I’ll choose as an example the Mobile Office page from Project
FREEDOM, Web site of U.S. Representative Ron Paul, (http://www.house.gov/
paul/mobileo.htm). I chose this page because it’s a particularly egregious exam-

ple of malformed, invalid, ugly, and just-plain-wrong HTML. According to the site

information at http://www.house.gov/paul/siteman.htm, “The site is stored on

the main House of Representative [sic] secure server and is generally created using

a combination of web-design software applications and direct HTML coding. The

site operates equally well on the most recent versions of Netscape and Microsoft

Internet Explorer-compatible platforms, working best with a frames-enabled

browser.” In fact, I’d be surprised if it works well in any browser. The most common

problem on Web sites today is that they’ve been designed to look good on only one

particular browser or platform. However, this one seemed especially unsightly on

every browser I tried, including IE5.5 for Windows (shown in Figure 22-1).

738 Part V ✦ XML Applications

Figure 22-1: Ron Paul’s Mobile Office Web page

The HTML source code is given in Listing 22-1. This is shown exactly as it appeared

on the site on December 1, 2000, aside from adding a few line breaks to fit it on the

printed page. Read through it carefully and see how many problems you can find.

Listing 22-1: http://www.house.gov/paul/mobileo.htm

<head><title>Mobile Office

</title></head>
<!--INSERT TITLE, INSERT TEXT-->

<body bgcolor=#ffffff text=black link=#000080 vlink=#000080
alink=#000080 leftmargin=0 topmargin=0 marginwidth=0
marginheight=0 >
<basefont size=2 face=”Times New Roman”>
<table border=0 valign=top align=left>
<tr><td bgcolor=#EFEFCE valign=top>

<table border=0><tr><td width=2></td><td border=1>
<font size=+1 face=”MS Sans Serif, Geneva,
Verdana”>Menu

739Chapter 22 ✦ XHTML

Opening Page

Search Project Freedom

E-Communications

A Biography of Ron Paul

Texas’ 14th District

Committees

Constituent Services

Mobile Office

Ron Paul’s Legislation

Cosponsors of Legislation

Privacy Forum

Press Releases

Weekly Column

Speeches

Legislative Update Line

Freedom Watch

Important Documents

Web Resources

House
Floor Schedule

Site Information

</td></tr></table>
<table align=right border=1><tr><td>

<P>
The Office of U.S. Rep. Ron Paul

203 Cannon HOB

Washington, DC 20515

(202) 225-2831<p>
</td></tr></table>

</td>

<td valign=top align=left>
<!--PAGE TEXT INSERT HERE-->

<CENTER><img src=”images/mo.gif” alt=”The Mobile
Office”></CENTER>
<P>
What is the Mobile Office?
<P>
The Current Mobile Office
Schedule.

Continued

740 Part V ✦ XML Applications

Listing 22-1 (continued)

<P>
<P>
The Monthly Schedule for the Mobile
office.<P>
<P>

<!--END OF PAGE-->
</td></tr>
</table>
<P>

In fact, there are more than 25 separate errors in this document, the exact number

depending on how you count. Since this document is so completely broken, let’s

divide the task of converting it to XHTML into three parts. First, we’ll convert it to

well-formed XML; then we’ll make it valid XHTML according to the transitional

XHTML DTD; and finally, we’ll upgrade it to full conformance with the XHTML

strict DTD.

Making the document well-formed XML
Listing 22-1 contains numerous well-formedness errors. Let’s address them in order.

The first one you should have noted is that there’s no root element! The html ele-

ment that should enclose all HTML and XHTML documents is missing. The docu-

ment starts with a head. This is followed by a body element. All well-formed XML

documents must have exactly one root element. Therefore the first thing you need

to do is add an html root element like this:

<html>
<head><title>Mobile Office</title></head>
<body>
...

</html>

741Chapter 22 ✦ XHTML

However, the html root element isn’t the only element with problems in this docu-

ment. Many, many elements in this document, the body element being just the first

one, have start tags but no corresponding end tags. You have to fix all these too.

For instance, near the bottom of the document, you’ll find these six paragraphs:

<P>
What is the Mobile Office?
<P>
The Current Mobile Office
Schedule.
<P>
<P>
The Monthly Schedule for the Mobile
office.<P>
<P>

However, these paragraphs are identified by six <P> start tags that are all

unmatched by </P> end tags. This needs to be fixed wherever it occurs. For exam-

ple, that section should be rewritten like this:

<P>
What is the Mobile Office?
</P>
<P>
The Current Mobile Office
Schedule.
</P>
<P></P>
<P>
The Monthly Schedule for the Mobile
office.
</P>
<P></P>
<P></P>

When matching start tags to end tags, it’s also important to make sure that their

cases match. A <P> start tag cannot be closed with a </p> end tag. This mistake is

made in the first paragraph of this sample:

What is the Mobile Office?

The opening uppercase <A> tag is closed by a lowercase tag. The easiest way

to fix mismatched case problems is to adopt a single case for all tags. The XHTML

DTDs actually specify that all tags be written in lowercase, so you should change

the above fragment to this:

<p>
What is the Mobile Office?
</p>
<p>
The Current Mobile Office
Schedule.

742 Part V ✦ XML Applications

</p>
<p></p>
<p>
The Monthly Schedule for the Mobile
office.
</p>
<p></p>
<p></p>

Another frequent problem with elements, one of the few this document doesn’t

really exhibit, is overlapping tags. This is when a start tag appears inside an ele-

ment but the corresponding end tag appears outside that element. This problem

looks like this:

The Current Mobile Office
Schedule.

There are a couple of instances of this in Listing 22-1, but they’re all results of omit-

ted end tags.

The final common problem with elements is an empty element that does not use an

empty-element tag. This is extremely prevalent because HTML includes many

empty elements such as br, img, and hr. However, HTML browsers don’t always

recognize XML’s empty-element tags, such as
 and <hr/>, and consequently

won’t always include the line break or horizontal rule you were aiming for. They

seem to think that these tags represent an element named br/ or hr/ rather than

an empty element named br or hr.

You could use start tag-end tag pairs, such as
</br> and <hr></hr>, instead.

However, these also cause problems for some browsers. In particular, you may get

two line breaks or horizontal lines where you only wanted one. The solution that

seems to work best in practice is to add an attribute to the empty-element tag. This

pushes the / away from the element name and eliminates problems with most

browsers. Conveniently, XHTML allows all elements to have a class attribute with

any convenient value. It’s normally used as a hook off which to hang CSS style rules.

However, it can also be used for any purpose you like, including simply moving the

/> away from the element name. For example, consider this fragment with four

empty elements from Listing 22-1:

Important Documents

Web Resources

You can easily make the br elements well formed by adding class=”empty”
attributes to their tags like this:

--------------------<br class=”empty”/>
Important Documents<br class=”empty”/>
Web Resources<br class=”empty”/>
--------------------<br class=”empty”/>

743Chapter 22 ✦ XHTML

The value of the class attribute doesn’t have any particular significance here. It

does not have to be the word empty. If you need to place a different value in the

class attribute for some other purpose, you can. All that’s required to make the

empty-element tags work is that some attribute be present with some value. For

this function, it doesn’t really matter what the attribute is or what value it has.

The final thing that you need to do to make Listing 22-1 well formed is to quote all

the attribute values. Right now, more attribute values are unquoted than quoted.

For example, here’s the body start tag:

<body bgcolor=#ffffff text=black link=#000080 vlink=#000080
alink=#000080 leftmargin=0 topmargin=0 marginwidth=0
marginheight=0 >

You can place either single or double quotes around the attribute values, whichever

you prefer. Most Web browsers will accept either one, but some third-party tools,

such as Web spiders, work better with double quotes. For example,

<body bgcolor=”#ffffff” text=”black” link=”#000080”
vlink=”#000080” alink=”#000080” leftmargin=”0”
topmargin=”0” marginwidth=”0” marginheight=”0”>

After all these changes are made, you now have a fully well-formed document.

Listing 22-2 demonstrates. I cleaned up the white space a little too.

Listing 22-2: A well-formed version of the Mobile Office page

<html>
<head><title>Mobile Office</title></head>

<!--INSERT TITLE, INSERT TEXT-->

<body bgcolor=”#ffffff” text=”black” link=”#000080”
vlink=”#000080” alink=”#000080” leftmargin=”0”
topmargin=”0” marginwidth=”0” marginheight=”0”>

<basefont size=”2” face=”Times New Roman”/>
<table border=”0” valign=”top” align=”left”>
<tr><td bgcolor=”#EFEFCE” valign=”top”>

<br class=”empty”/>
<table border=”0”><tr><td width=”2”></td><td border=”1”>

Menu<br class=”empty”/>

Opening Page<br class=”empty”/>
Search Project Freedom
<br class=”empty”/>

Continued

744 Part V ✦ XML Applications

Listing 22-2 (continued)

E-Communications
<br class=”empty”/>
--------------------<br class=”empty”/>
A Biography of Ron Paul
<br class=”empty”/>
Texas’ 14th District
<br class=”empty”/>
Committees
<br class=”empty”/>
--------------------<br class=”empty”/>
Constituent Services
<br class=”empty”/>
Mobile Office<br class=”empty”/>
--------------------<br class=”empty”/>
Ron Paul’s Legislation
<br class=”empty”/>
Cosponsors of Legislation
<br class=”empty”/>
Privacy Forum
<br class=”empty”/>
--------------------<br class=”empty”/>
Press Releases
<br class=”empty”/>
Weekly Column
<br class=”empty”/>
Speeches
<br class=”empty”/>
Legislative Update Line
<br class=”empty”/>
Freedom Watch
<br class=”empty”/>
--------------------<br class=”empty”/>
Important Documents
<br class=”empty”/>
Web Resources<br class=”empty”/>
--------------------<br class=”empty”/>

House Floor Schedule<br class=”empty”/>
Site Information
<br class=”empty”/>

</td></tr></table>
<table align=”right” border=”1”><tr><td>

<p></p>
The Office of U.S. Rep. Ron Paul<br class=”empty”/>
203 Cannon HOB<br class=”empty”/>
Washington, DC 20515<br class=”empty”/>
(202) 225-2831<p></p>

745Chapter 22 ✦ XHTML

</td></tr></table>

</td>

<td valign=”top” align=”left”>
<!--PAGE TEXT INSERT HERE-->

<center><img src=”images/mo.gif” alt=”The Mobile
Office”/></center>
<p>
What is the Mobile Office?
</p>
<p>
The
Current Mobile Office Schedule.
</p>
<p></p>
<p>
The Monthly Schedule for the Mobile
office.
</p>
<p></p>

<!--END OF PAGE-->
</td></tr>
</table>
<p></p>
</body>
</html>

Well-formedness is a very picky criterion for documents to satisfy. I would never

trust myself to merely eyeball the well-formedness of a document without checking

it. Since XHTML is XML, and a well-formed XHTML document is a well-formed XML

document, you can use all the tools you use to check the well-formedness of an

XML document to check the well-formedness of an XHTML document. This includes

the sax.SAXCount program from Xerces.

sax.SAXCount was introduced in Chapter 8.

For example, here are the last couple of checks I made while I was converting

Listing 22-1 into Listing 22-2. The first one found an error where an opening <A> tag

was closed by tag, that is, a case mismatch. The last check was naturally

error-free. (Otherwise, it wouldn’t have been the last check.)

Cross-
Reference

746 Part V ✦ XML Applications

D:\books\bible2\examples\22>java sax.SAXCount 22-2.html
[Fatal Error] 22-2.html:63:57: The element type “A” must be
terminated by the matching end-tag “”.
org.xml.sax.SAXException: Stopping after fatal error: The
element type “A” must be terminated by the matching end-tag
“”.

at
org.apache.xerces.framework.XMLParser.
reportError(XMLParser.java:1040)

at
org.apache.xerces.framework.XMLDocumentScanner.
reportFatalXMLError(XMLDocumentScanner.java:634)

at org.apache.xerces.framework.XMLDocumentScanner
.abortMarkup(XMLDocumentScanner.java:683)

at org.apache.xerces.framework.XMLDocumentScanner$
ContentDispatcher.dispatch(XMLDocumentScanner.java:1187)

at
org.apache.xerces.framework.XMLDocumentScanner.parseSome(
XMLDocumentScanner.java:380)

at
org.apache.xerces.framework.XMLParser.parse(XMLParser.java:900)

at
org.apache.xerces.framework.XMLParser.parse(XMLParser.java:939)

at sax.SAXCount.print(SAXCount.java:152)
at sax.SAXCount.main(SAXCount.java:372)

D:\books\bible2\examples\22>java sax.SAXCount 22-2.html
22-2.html: 240 ms (87 elems, 90 attrs, 0 spaces, 758 chars)

The one thing you cannot do with an XHTML document that you can do with a nor-

mal XML document is just load it into an XML-savvy browser such as Netscape 6 to

see whether or not it’s well-formed. If you give a Web browser a malformed XHTML

document, it will probably just treat it as a normal HTML document and try to qui-

etly fix any problems it finds rather than reporting the mistakes. This may depend

on the details of the MIME media type or filename extension. However, in any case,

it’s not a reliable way to check XHTML documents for well-formedness.

Another common change that’s required to make many documents well-formed,

though not this particular one, is to define your entity references. HTML predefines

and authors use numerous entity references including , ©, &tm;, and

more. None of these are allowed in an XML document unless they’re first declared

in a DTD. Fortunately, the XHTML DTD predefines all the usual HTML entity refer-

ences, as well as a few new ones besides, so as soon as you add a DOCTYPE declara-

tion pointing to one of the three XHTML DTDs these entity references are no longer

a problem.

747Chapter 22 ✦ XHTML

Making the document valid
A well-formed HTML document is only halfway to being a valid XHTML document.

Recall that there are four conditions for XHTML validity:

1. The root element of the document must be html.

2. The root element of the document must set the default namespace to

http://www.w3.org/1999/xhtml.

3. It must have a DOCTYPE declaration that references the strict, transitional, or

frameset DTD using one of the these three Formal Public Identifiers:

• -//W3C//DTD XHTML 1.0 Strict//EN

• -//W3C//DTD XHTML 1.0 Transitional//EN

• -//W3C//DTD XHTML 1.0 Frameset//EN

4. It must be valid.

We’ve improved the document a great deal from its original form, but we’ve still only

met the first of these four conditions and the prerequisite for the fourth condition.

Meeting the second condition is straightforward. Just add the necessary names-

pace declaration to the html root element start tag like this:

<html xmlns=”http://www.w3.org/1999/xhtml”>

Adding the DOCTYPE declaration is no harder. Attaching that, the beginning of the

document now looks like this:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>

I’ve chosen the transitional DTD because it’s the simplest one to move an existing

document to. New documents should use the strict DTD instead. It would probably

also be a good idea to store a local copy of the DTD on your own site rather than

referencing the one on the W3C site. If you did that, the DOCTYPE declaration would

look similar to this:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“xhtml1-transitional.dtd”>

If you wanted to, you could also add an XML declaration to the prolog. However,

that’s not absolutely required. Because a few older Web browsers will attempt to

display the XML declaration as plain text at the start of the document, I prefer not

to include it in XHTML documents.

748 Part V ✦ XML Applications

After you’ve added the DOCTYPE declaration, you can attempt to validate the docu-

ment using sax.SAXCount or some other program. The W3C provides an online val-

idation service at http://validator.w3.org/ shown in Figure 22-2. This can

check XHTML documents against the DTD they specify, as well as check normal

HTML documents against the SGML DTD for HTML 4.0.

Figure 22-2: The W3C HTML Validation Service

The various tools that you can use to validate XML documents are described in
Chapter 8.

Here are the results of my first attempt to validate the XHTMLized Mobile Office

page using the W3C validator:

✦ Line 8, column 49:

vlink=”#000080” alink=”#000080” leftmargin=”0”

Error: there is no attribute “leftmargin”

✦ Line 9, column 16:

topmargin=”0” marginwidth=”0” marginheight=”0”>
^

Error: there is no attribute “topmargin”

✦ Line 9, column 32:

topmargin=”0” marginwidth=”0” marginheight=”0”>
^

Error: there is no attribute “marginwidth”

Cross-
Reference

749Chapter 22 ✦ XHTML

✦ Line 9, column 49:

topmargin=”0” marginwidth=”0” marginheight=”0”>
^

Error: there is no attribute “marginheight”

✦ Line 11, column 27:

<table border=”0” valign=”top” align=”left”>
^

Error: there is no attribute “valign”

✦ Line 14, column 13:

^

Error: there is no attribute “SRC”

✦ Line 14, column 46:

^

Error: required attribute “src” not specified

✦ Line 14, column 46:

^

Error: required attribute “alt” not specified

✦ Line 16, column 56:

<table border=”0”><tr><td width=”2”></td><td border=”1”>
^

Error: there is no attribute “border”

✦ Line 67, column 2:

<p></p>
^

Error: document type does not allow element “p” here; missing one of

“object”, “applet”, “map”, “iframe”, “button”, “ins”, “del”, “noscript”

start-tag

✦ Line 71, column 16:

(202) 225-2831<p></p>
^

Error: document type does not allow element “p” here; missing one of

“object”, “applet”, “map”, “iframe”, “button”, “ins”, “del”, “noscript”

start-tag

750 Part V ✦ XML Applications

✦ Line 94, column 46:

^

Error: required attribute “alt” not specified

That’s 12 separate errors that need to be dealt with. Some of them have obvious

solutions; some of them don’t.

The first two problems noted are of similar provenance. The DTD does not declare

leftmargin and topmargin attributes for the body element. In fact, these are

Microsoft extensions to HTML that were never supported in standard HTML or

Netscape. They should be replaced by a CSS style attribute that sets those proper-

ties. For example,

<body style=”leftmargin: 0; topmargin: 0”
bgcolor=”#ffffff” text=”black” link=”#000080”
vlink=”#000080” alink=”#000080”
marginwidth=”0” marginheight=”0”>

This should work in all browsers that leftmargin and topmargin work in and

quite a few more besides. This demonstrates one of the advantages of validating

your XHTML: The pages you produce are much more cross-browser compatible.

The next two problems are the marginwidth and marginheight attributes on the

body element. These are not part of any standard or nonstandard browser reper-

toire I’m familiar with. I’m not sure where the page designer came up with them —

probably he or she just misremembered the syntax for some other property such

as bottommargin or rightmargin— but regardless of where they came from, they

really don’t mean anything. If an HTML browser sees attributes it doesn’t under-

stand, it simply ignores them. However, to achieve XHTML conformance, we must

delete them:

<body style=”leftmargin: 0; topmargin: 0”
bgcolor=”#ffffff” text=”black” link=”#000080”
vlink=”#000080” alink=”#000080”>

This demonstrates one benefit of validating your XHTML — it catches your mis-

takes. These can be cases in which you misremembered the name of the attribute

that provides the effect you want, or they can be simple typos, gbcolor instead of

bgcolor, for example. Whichever they are, these are real problems that cause real

trouble for Web browsers today, not just anal-retentive rules about how code is sup-

posed to be written. Finding and fixing these sorts of mistakes is important, even if

you don’t really care whether or not your document is valid.

The next error is of a similar nature. The page author placed the valign attribute

on the table element. However, a table element isn’t allowed to have a valign
attribute, so this doesn’t mean anything to a browser. It’s possible that the author

meant this to be an align attribute, which a table is allowed to have; but given

751Chapter 22 ✦ XHTML

the value of top, it’s more likely that they were trying to set the default vertical

alignment for cells within the table. It’s reasonable to guess that HTML might let

you do this, but in fact it doesn’t. Instead, you have to place the valign attribute

on the tr or td elements. Fortunately, it’s fairly easy to fix this here because the

table in question only contains a single row. You just move the attribute from the

table start tag to the tr start tag like this:

<table border=”0” align=”left”>
<tr valign=”top”>

If the table contained multiple rows, you’d just copy the valign attribute to each

<tr> start tag.

The next two errors are related, and both stem from this element:

The first error says, “there is no attribute ‘SRC’.” The second error says, “required

attribute ‘src’ not specified.” In both cases, the problem is XML’s case sensitivity. In

XHTML, the SRC attribute is not the same as the src attribute, although they are

the same in traditional HTML. XHTML requires all attribute and element names to

be typed in lowercase. This fix is easy to make. Just change the attribute names to

lowercase:

The next error also refers to this img element. It says, “required attribute ‘alt’ not

specified.” In most cases, the transitional DTD lets most common, but improper,

forms of HTML slip through with only a little tweaking to require well formedness.

However, in this case, the W3C has decided to put its foot down in defense of acces-

sibility. In XHTML, unlike in HTML, all images must be supplied with alternate text.

This means you have to add content to this element as an alt attribute. For exam-

ple, this alt attribute suffices:

<img src=”images/pflogosm.gif” border=”0”
alt=”Project Freedom Logo”/>

The next problem is a familiar one, “there is no attribute ‘border’” for the td ele-

ment. Again, the attribute was placed on the wrong element. It belongs on the

table element, not the td element. However, this table element already has a

border attribute with a different value. Since as written the border attribute on the

td element has no effect, I’ll assume that it was just a fluke and delete it completely.

That will keep us as close to the original page as possible.

The tenth and eleventh errors are the nastiest. These are the long ones that state

“Error: document type does not allow element ‘p’ here; missing one of ‘object’,

‘applet’, ‘map’, ‘iframe’, ‘button’, ‘ins’, ‘del’, ‘noscript’ start-tag.” This isn’t very

clear, and the validator doesn’t tell you which one is missing or how it should be

inserted. These sorts of errors, when an element doesn’t match its content model,

can be some of the hardest to track down.

752 Part V ✦ XML Applications

A different validator (sax.SAXCount) gave the different but equally unhelpful mes-

sage, “The content of element type ‘font’ must match ‘(#PCDATA|a|br|span|bdo|

object|applet|img|map|iframe|tt|i|b|big|small|u|s|strike|font|basefont|em|str

ong|dfn|code|q|sub|sup|samp| kbd|var|cite|abbr| acronym|input|select|

textarea|label|button|ins|del|script|noscript)*’.”

These are two different ways of looking at the same problem. The specific problem

is that there’s an element A inside an element B when elements of type B are not

allowed to contain elements of type A. The W3C validator reports that as a problem

with A, while sax.SAXCount reports it as a problem with B. However, in both cases

the problem is the same. Neither validator tells you the whole problem, but by

putting them together, you see that the problem is that there’s a p element inside a

font element.

Looking at the content model that’s violated you should notice that, as long as it is,

this does not include every element defined in XHTML. In particular, it just includes

the inline elements like a and strong. It does not include any of the block-level ele-

ments like p or table. Therefore, chances are that’s exactly what you’re looking for:

A block-level element that’s a child of a font element. With that information in

hand, it’s not hard to locate the offender. It’s this font element:

<p>
The Office of U.S. Rep. Ron Paul<br class=”empty”/>
203 Cannon HOB<br class=”empty”/>
Washington, DC 20515<br class=”empty”/>
(202) 225-2831

</p>

The solution is straightforward: Move the font tags inside the p element like this:

<p>

The Office of U.S. Rep. Ron Paul<br class=”empty”/>
203 Cannon HOB<br class=”empty”/>
Washington, DC 20515<br class=”empty”/>
(202) 225-2831

</p>

There’s one final problem to be fixed, but this is one you’ve seen before. The img
element in line 94 does not have an alt attribute. This particular image is a picture

of the mobile office, so fill it in like this:

<img src=”images/mobileoffice.gif” border=”0”
alt=”Mobile Office Minivan”/>

Now you’re done. The document validates, at least against the transitional DTD.

Listing 22-3 shows the finished XHTML document.

753Chapter 22 ✦ XHTML

Listing 22-3: A valid XHTML Document

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head><title>Mobile Office</title></head>

<!--INSERT TITLE, INSERT TEXT-->

<body bgcolor=”#ffffff” text=”black” link=”#000080”
vlink=”#000080” alink=”#000080”
style=”leftmargin: 0; topmargin: 0”>

<basefont size=”2” face=”Times New Roman”/>
<table border=”0” align=”left”>
<tr valign=”top”><td bgcolor=”#EFEFCE” valign=”top”>

<img src=”images/pflogosm.gif” border=”0”

alt=”Project Freedom Logo”/>

<br class=”empty”/>
<table border=”0”>
<tr>
<td width=”2”></td>
<td>

Menu

<br class=”empty”/>

Opening Page<br class=”empty”/>
Search Project Freedom
<br class=”empty”/>
E-Communications
<br class=”empty”/>
--------------------<br class=”empty”/>
A Biography of Ron Paul
<br class=”empty”/>
Texas’ 14th District
<br class=”empty”/>
Committees
<br class=”empty”/>
--------------------<br class=”empty”/>
Constituent Services
<br class=”empty”/>
Mobile Office<br class=”empty”/>
--------------------<br class=”empty”/>
Ron Paul’s Legislation
<br class=”empty”/>

Cosponsors of Legislation
<br class=”empty”/>
Privacy Forum
<br class=”empty”/>

Continued

754 Part V ✦ XML Applications

Listing 22-3 (continued)

--------------------<br class=”empty”/>
Press Releases
<br class=”empty”/>
Weekly Column
<br class=”empty”/>
Speeches
<br class=”empty”/>
Legislative Update Line
<br class=”empty”/>
Freedom Watch
<br class=”empty”/>
--------------------<br class=”empty”/>
Important Documents
<br class=”empty”/>
Web Resources<br class=”empty”/>
--------------------<br class=”empty”/>

House Floor Schedule<br class=”empty”/>
Site Information

<br class=”empty”/>

</td></tr>
</table>
<table align=”right” border=”1”>
<tr><td>
<p>
The Office of U.S. Rep. Ron Paul<br class=”empty”/>
203 Cannon HOB<br class=”empty”/>
Washington, DC 20515<br class=”empty”/>
(202) 225-2831
</p>

</td></tr>
</table>

</td>

<td valign=”top” align=”left”>
<!--PAGE TEXT INSERT HERE-->

<center>

</center>
<p>
What is the
Mobile Office?
</p>
<p>
The
Current Mobile Office Schedule.
</p>
<p></p>

755Chapter 22 ✦ XHTML

<p>
The Monthly Schedule
for the Mobile office.

</p>
<p></p>

<img src=”images/mobileoffice.gif” border=”0”
alt=”Mobile Office Minivan”/>

<!--END OF PAGE-->
</td></tr>

</table>
<p></p>

</body>
</html>

The strict DTD
Moving to the transitional DTD is a good first step, and the easiest one to take; but

new documents should use the strict DTD instead. Time and resources permitting,

you should try to transition your HTML documents and XHTML transitional docu-

ments to the strict DTD as well. The very name transitional implies that it’s not

around forever, and that possibly starting with XHTML 2.0 or perhaps some later

version, the strict DTD will be the only option for valid, future-looking Web pages.

The biggest difference between the strict DTD and the transitional DTD is that the

strict DTD almost completely eliminates presentational elements such as font and

center and presentational attributes such as bgcolor and width. Instead, these

should all be replaced by CSS styles. The goal here is to return to the original plan

for HTML as a semantic rather than presentational markup language.

To indicate that you want to use the strict DTD, just change the DOCTYPE declara-

tion of your document as follows:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“xhtml1-strict.dtd”>

Then run it through your validation tool of choice. When I changed the document

type declaration of Listing 22-3 to point to the strict DTD and passed it through the

W3C validator, 19 more problems were uncovered:

✦ Line 7, column 16:

<body bgcolor=”#ffffff” text=”black” link=”#000080”
^

Error: there is no attribute “bgcolor”

756 Part V ✦ XML Applications

✦ Line 7, column 31:

<body bgcolor=”#ffffff” text=”black” link=”#000080”

^

Error: there is no attribute “text”

✦ Line 7, column 44:

<body bgcolor=”#ffffff” text=”black” link=”#000080”
^

Error: there is no attribute “link”

✦ Line 8, column 12:

vlink=”#000080” alink=”#000080”
^

Error: there is no attribute “vlink”

✦ Line 8, column 28:

vlink=”#000080” alink=”#000080”
^

Error: there is no attribute “alink”

✦ Line 10, column 19:

<basefont size=”2” face=”Times New Roman”/>
^

Error: there is no attribute “size”

✦ Line 10, column 28:

<basefont size=”2” face=”Times New Roman”/>
^

Error: there is no attribute “face”

✦ Line 10, column 46:

<basefont size=”2” face=”Times New Roman”/>

^

Error: element “basefont” undefined

✦ Line 11, column 28:

<table border=”0” align=”left”>
^

Error: there is no attribute “align”

✦ Line 12, column 35:

<tr valign=”top”><td bgcolor=”#EFEFCE” valign=”top”>
^

Error: there is no attribute “bgcolor”

757Chapter 22 ✦ XHTML

✦ Line 14, column 48:

<img src=”images/pflogosm.gif” border=”0”
^

Error: there is no attribute “border”

✦ Line 20, column 22:

<td width=”2”></td>
^

Error: there is no attribute “width”

✦ Line 22, column 20:

^

Error: there is no attribute “size”

✦ Line 22, column 30:

^

Error: there is no attribute “face”

✦ Line 22, column 62:

^

Error: element “font” undefined

✦ Line 25, column 41:

^

Error: element “font” undefined

✦ Line 74, column 48:

<p>
^

Error: element “font” undefined

✦ Line 87, column 14:

<center>
^

Error: element “center” undefined

✦ Line 95, column 43:

The
^

Error: there is no attribute “target”

758 Part V ✦ XML Applications

Each of these problems is either an element or attribute that is not available in the

strict DTD. An element that’s not available in the DTD will produce several error

messages — one for the element itself and one for each attribute that element pos-

sesses. In every case, the forbidden item provides presentational information that

can be replaced with a CSS style. For example, the first five problems all relate to

color attributes on the body start tag:

<body bgcolor=”#ffffff” text=”black” link=”#000080”
vlink=”#000080” alink=”#000080”
style=”leftmargin: 0; topmargin: 0”>

You can move the bgcolor and text values inside the allowed style attribute like

this:

<body style=”background-color: #ffffff; color: black;
leftmargin: 0; topmargin: 0”>

When moving to CSS, the bgcolor attribute becomes the background-color prop-

erty and the text attribute becomes the (foreground) color property.

Background-color, color, and the other CSS properties used in this section
are discussed in Chapter 16.

The three link colors are trickier. CSS doesn’t provide any properties that are exact

equivalents for the link, vlink, and alink attributes. Instead, you have to provide

CSS rules that use the appropriate selectors to choose links, visited links, and

active links, and assign the desired colors to each one. These rules can be placed in

a style element in the document’s head like this:

<head>
<title>Mobile Office</title>
<style type=”text/css”>
a:link {color: #000080}
a:visited {color: #000080}
a:active {color: #000080}

</style>
</head>

In HTML, it’s customary to enclose the CSS rules in the content of the style ele-
ment in a comment like this:

<style type=”text/css”>
<!-- a:link {color: #000080}

a:visited {color: #000080}
a:active {color: #000080} -->

</style>

Caution

Cross-
Reference

759Chapter 22 ✦ XHTML

This hides the style rules from older browsers that don’t recognize CSS, and that
might try to display the contents of the style element as part of the document.
However, most browsers that understand strict XHTML can handle CSS, and all of
them at least recognize the style element. Furthermore, XML rules dictate that
XHTML browsers should not pay any attention to the contents of comments. (In
practice some do and some don’t.) The XML parser built-in to the browser may not
even provide the text of the comments to the rendering engine for display. If you
do need to write pages that work well in older browsers, you should use the tran-
sitional XHTML DTD instead of the strict one.

Changing link colors is a very bad thing to do to your readers. Browsing a page that
uses nonstandard link colors is a little like driving in a country where the stop signs
are blue, the warning signs are green, and the directional signs are red. While the
default link colors (blue, purple, and red) are hardly the ideal choices, they are the
ones standardized in today’s browsers, and they are the colors readers have
learned to expect. If you change the link colors, many readers won’t realize where
the links are on the page. They certainly won’t be able to tell the difference
between visited and unvisited links.

The next three errors stem from the basefont element:

<basefont size=”2” face=”Times New Roman”/>

This is a standard HTML element for setting the default font on the page. The first

two errors say that the size and face attributes of this element aren’t defined,

while the last error says that the basefont element itself isn’t defined. It has been

deleted from strict XHTML. Instead, you set default font properties for the docu-

ment by attaching CSS style properties to the body element of the document. The

basefont’s size attribute can be replaced by a CSS font-size property. In HTML,

the size attribute of the basefont is given as a number between 1 and 7, where 3

is the browser’s default font-size. Thus, the CSS equivalent is using smaller on

font-size. The basefont’s face attribute can be replaced by a CSS font-family
property. This makes the body start tag look like this:

<body style=”font-size: smaller;
font-family: ‘Times New Roman’;
background-color: #ffffff; color: black;
leftmargin: 0; topmargin: 0”>

The next problem is the align attribute on the first table. Because this already

has the default value left, you can just drop it out. There’s no need to replace it

with a CSS style.

The tenth problem is straightforward and easy to fix: The bgcolor attribute is not

allowed on table cells (td elements) any more than it’s allowed on the body ele-

ment. Again, you can replace it with a CSS background-color property, like this:

<td style=”background-color: #EFEFCE” valign=”top”>

Caution

760 Part V ✦ XML Applications

Perhaps a little surprisingly, the valign presentational attribute is allowed here.

That’s because it has a special meaning for table cells that no generic CSS property

can really match.

The next problem is similar. In strict XHTML, the img element can’t have a border
attribute. Instead, it should have a border-width CSS style property. Furthermore,

this property can’t be an absolute number such as 0 or 2; it must have units. Thus,

you change this:

<img src=”images/pflogosm.gif” border=”0”
alt=”Project Freedom Logo”/>

to this:

<img src=”images/pflogosm.gif” style=”border-width: 0px”
alt=”Project Freedom Logo”/>

The next problem arises in line 20. The td element can’t have a width attribute.

This must be replaced by a CSS width property. Again, the HTML width is given in

pixels, so the equivalent CSS property must specify units of pixels like this:

<td style=”width: 2px”></td>

Next comes one of the most common problems with documents being converted

from old-style HTML to XHTML — the font element. Fortunately, this is easy to

change to CSS. The font element attributes map to CSS font properties just as they

did for the basefont element earlier. The size attribute is replaced by a font-
size property and the face attribute is replaced by a font-family property. Of

course, because the font element itself is illegal, you need an element to hang this

style on. A lot of times there’s a fortuitous p or td or some other element in the

right place to fill this need; but if there’s not, you can add a span or div element

instead. Use span for inline runs of style and div for styles that surround one or

more block-level elements such as p and blockquote. For instance, in this case you

can change the offending font element to this span element:

<span style=”font-size: +1;
font-family: ‘MS Sans Serif’, Geneva, Verdana”>

Menu

The next problem element is also a font element, and is changed to another span
element:

The penultimate problem is the center element used to center the picture of the

mobile office minivan within its table cell. The center element has been completely

761Chapter 22 ✦ XHTML

deprecated. Instead, you should use a div element with a CSS text-align prop-

erty; for example:

<div style=”text-align: center”>

</div>

Although this property is named text-align, it will align anything contained in the

div element including, as in this case, images.

The final problem is an unusual one: the target attribute of the a element is forbid-

den. There’s no CSS equivalent for this attribute. It’s simply gone. Consequently,

you simply have to delete the target attribute from your strict XHTML documents,

and suffer the corresponding loss in functionality.

Current Mobile Office Schedule

The reason the W3C removed target from strict XHTML was that it’s used to con-
trol link behavior. In particular, target determines which window or frame the
document is displayed in. For instance, by setting target to _blank you can
specify that the document will open in a new window rather than the current one.
The W3C feels that link behavior is outside the scope of HTML. This is, in my opin-
ion, a flaw in strict XHTML. It’s not presentational information, and I certainly don’t
see any reason for link behavior to be ruled out of bounds for a Hypertext Markup
Language. XLink does provide equivalent functionality through the xlink:show
attribute, but XHTML 1.0 doesn’t support XLink.

XLinks and the xlink:show attribute are discussed in Chapter 19.

That’s the last error the validator reported. Listing 22-4 is the complete, fixed

document with all the changes described above.

Listing 22-4: The fixed XHTML Document

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“xhtml1-strict.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<title>Mobile Office</title>
<style type=”text/css”>
a:link {color: #000080}
a:visited {color: #000080}
a:active {color: #000080}

</style>
</head>

Continued

Cross-
Reference

Note

762 Part V ✦ XML Applications

Listing 22-4 (continued)

<!--INSERT TITLE, INSERT TEXT-->

<body style=”font-size: smaller;
font-family: ‘Times New Roman’;
background-color: #ffffff; color: black;
leftmargin: 0; topmargin: 0”>

<table border=”0”>
<tr valign=”top”>
<td style=”background-color: #EFEFCE” valign=”top”>

<img src=”images/pflogosm.gif” style=”border-width: 0px”
alt=”Project Freedom Logo”/>

<br class=”empty”/>
<table border=”0”>
<tr>
<td style=”width: 2px”></td>
<td>

<span style=”font-size: +1;
font-family: ‘MS Sans Serif’, Geneva, Verdana”>
Menu

<br class=”empty”/>
<span style=”font-size: -2;

font-family: ‘Arial Narrow’”>
Opening Page<br class=”empty”/>
Search Project Freedom
<br class=”empty”/>
E-Communications
<br class=”empty”/>
--------------------<br class=”empty”/>
A Biography of Ron Paul
<br class=”empty”/>
Texas’ 14th District
<br class=”empty”/>
Committees
<br class=”empty”/>
--------------------<br class=”empty”/>
Constituent Services
<br class=”empty”/>
Mobile Office<br class=”empty”/>
--------------------<br class=”empty”/>
Ron Paul’s Legislation
<br class=”empty”/>

Cosponsors of Legislation
<br class=”empty”/>
Privacy Forum
<br class=”empty”/>
--------------------<br class=”empty”/>
Press Releases
<br class=”empty”/>

763Chapter 22 ✦ XHTML

Weekly Column
<br class=”empty”/>
Speeches
<br class=”empty”/>
Legislative Update Line
<br class=”empty”/>
Freedom Watch
<br class=”empty”/>
--------------------<br class=”empty”/>
Important Documents
<br class=”empty”/>
Web Resources<br class=”empty”/>
--------------------<br class=”empty”/>

House Floor Schedule<br class=”empty”/>
Site Information

<br class=”empty”/>

</td></tr>
</table>
<table align=”right” border=”1”>
<tr><td>
<p>
The Office of U.S. Rep. Ron Paul<br class=”empty”/>
203 Cannon HOB<br class=”empty”/>
Washington, DC 20515<br class=”empty”/>
(202) 225-2831
</p>

</td></tr>
</table>

</td>

<td valign=”top” align=”left”>
<!--PAGE TEXT INSERT HERE-->

<div style=”text-align: center”>

</div>
<p>
What is the
Mobile Office?
</p>
<p>
The
Current Mobile Office Schedule.
</p>
<p></p>
<p>
The Monthly Schedule
for the Mobile office.

</p>

Continued

764 Part V ✦ XML Applications

Listing 22-4 (continued)

<p></p>

<img src=”images/mobileoffice.gif” border=”0”
alt=”Mobile Office Minivan”/>

<!--END OF PAGE-->
</td></tr>

</table>
<p></p>

</body>
</html>

Listing 22-4 fixes all the errors that the validator found. Are you done? Is this now a

valid XHTML document? Unfortunately, the answer is still no. If you read Listing

22-4, you should have noticed that it still contains a number of illegal presentational

elements such as font, and presentational attributes such as border. In fact, if you

rerun Listing 22-4 through the W3C validator, it spits out these five additional error

messages:

✦ Line 79, column 20:

<table align=”right” border=”1”>
^

Error: there is no attribute “align”

✦ Line 81, column 25:

<p>
^

Error: there is no attribute “size”

✦ Line 81, column 34:

<p>
^

Error: there is no attribute “face”

✦ Line 81, column 48:

<p>
^

Error: element “font” undefined

✦ Line 112, column 50:

<img src=”images/mobileoffice.gif” border=”0”
^

Error: there is no attribute “border”

765Chapter 22 ✦ XHTML

Fortunately, all these errors are ones you’ve seen before, and they’re relatively easy

to fix. Listing 22-5 makes the necessary corrections. Still there’s a deeper question.

Why didn’t the validator detect these problems the first time through? The reason

is that some problems can mask other problems. In particular, the validator will not

check anything inside an undefined element. For instance, if a font element con-

tains a center element, the validator will only report the font element as being a

problem. It does not look inside the font element, so it won’t find the center ele-

ment or any other illegal elements or attributes that might be hidden there.

Therefore, when you think you’re done, you need to run the finished document

through the validator to make sure that no hidden problems have been revealed (or

even created) by your edits. In some cases, you may even need to make four or five

or more passes through the validator before you have finally eliminated all the

problems. This, however, is not one of those times. It turns out that Listing 22-5 is

indeed valid strict XHTML, and no further edits are required.

Listing 22-5: The valid XHTML Document

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“xhtml1-strict.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<title>Mobile Office</title>
<style type=”text/css”>
a:link {color: #000080}
a:visited {color: #000080}
a:active {color: #000080}

</style>
</head>

<!--INSERT TITLE, INSERT TEXT-->

<body style=”font-size: smaller;
font-family: ‘Times New Roman’;
background-color: #ffffff; color: black;
leftmargin: 0; topmargin: 0”>

<table border=”0”>
<tr valign=”top”>
<td style=”background-color: #EFEFCE” valign=”top”>

<img src=”images/pflogosm.gif” style=”border-width: 0px”
alt=”Project Freedom Logo”/>

<br class=”empty”/>
<table border=”0”>
<tr>
<td style=”width: 2px”></td>
<td>

<span style=”font-size: +1;
font-family: ‘MS Sans Serif’, Geneva, Verdana”>
Menu

Continued

766 Part V ✦ XML Applications

Listing 22-5 (continued)

<br class=”empty”/>

Opening Page<br class=”empty”/>
Search Project Freedom
<br class=”empty”/>
E-Communications
<br class=”empty”/>
--------------------<br class=”empty”/>
A Biography of Ron Paul
<br class=”empty”/>
Texas’ 14th District
<br class=”empty”/>
Committees
<br class=”empty”/>
--------------------<br class=”empty”/>
Constituent Services
<br class=”empty”/>
Mobile Office<br class=”empty”/>
--------------------<br class=”empty”/>
Ron Paul’s Legislation
<br class=”empty”/>

Cosponsors of Legislation
<br class=”empty”/>
Privacy Forum
<br class=”empty”/>
--------------------<br class=”empty”/>
Press Releases
<br class=”empty”/>
Weekly Column
<br class=”empty”/>
Speeches
<br class=”empty”/>
Legislative Update Line
<br class=”empty”/>
Freedom Watch
<br class=”empty”/>
--------------------<br class=”empty”/>
Important Documents
<br class=”empty”/>
Web Resources<br class=”empty”/>
--------------------<br class=”empty”/>

House Floor Schedule<br class=”empty”/>
Site Information

<br class=”empty”/>

</td></tr>
</table>
<table border=”1”>
<tr><td>
<p style=”font-size: -2; font-family: ‘Arial Narrow’”>

767Chapter 22 ✦ XHTML

The Office of U.S. Rep. Ron Paul<br class=”empty”/>
203 Cannon HOB<br class=”empty”/>
Washington, DC 20515<br class=”empty”/>
(202) 225-2831
</p>

</td></tr>
</table>

</td>

<td valign=”top” align=”left”>
<!--PAGE TEXT INSERT HERE-->

<div style=”text-align: center”>

</div>
<p>
What is the
Mobile Office?
</p>
<p>
The
Current Mobile Office Schedule.
</p>
<p></p>
<p>
The Monthly Schedule
for the Mobile office.

</p>
<p></p>

<img src=”images/mobileoffice.gif”
style=”border-width: 0”
alt=”Mobile Office Minivan”/>

<!--END OF PAGE-->
</td></tr>

</table>
<p></p>

</body>
</html>

The disadvantage of this approach is that many browsers don’t support all of the

CSS style properties used here, although they do support the equivalent presenta-

tional elements and attributes. For example, when I loaded Listing 22-4 into

Netscape Navigator 4.6.1 for Windows, as shown in Figure 22-3, the picture of the

Mobile Office minivan had moved to the top of the page for no apparent reason.

However, Internet Explorer 5.5 did place the picture in the right place on the page.

Because of problems such as this, it may be advisable to stick with the transitional

DTD and the presentational attributes for a while longer until all your users have

upgraded to browsers that fully support CSS and XHTML.

768 Part V ✦ XML Applications

Figure 22-3: A browser exhibiting incorrect and unexplained
rendering of an XHTML plus CSS document

The frameset DTD
The transitional DTD omits one popular feature of HTML — frames. The W3C has

never liked frames, and with good reason — they’re a user interface disaster that

consistently irritate and bewilder readers. Nonetheless, many Web designers like

them, and many existing Web sites use them.

Although I agree with the W3C and suggest that you avoid frames on all new pages

you create, there are times when an existing site design makes that impossible, at

least without an excessive investment of resources. Consequently, if you must use

frames but you still want to move to XHTML and validate your documents, you can

use the frameset DTD. This is very close to the transitional DTD, but adds all the

necessary declarations for frame, iframe, frameset, and other frame-related ele-

ments and attributes. The document type declaration for a page built on top of the

frame set DTD looks like this:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Frameset//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd”>

As with the other two XHTML DTDs, it’s probably a good idea to store a local copy of

the frameset DTD and identify it by a relative URL rather than relying on the official

copy at the W3C. Then the document type declaration would look like this instead:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Frameset//EN”
“xhtml1-frameset.dtd”>

769Chapter 22 ✦ XHTML

HTML Tidy
Converting malformed HTML documents to valid XHTML by hand, as I’ve done in

this chapter, can be a tedious and time-consuming job. Fortunately, Dave Raggett of

the W3C has published HTML Tidy, an open source tool that can do much of the

work for you. Tidy is a character-mode program written in ANSI C that can be com-

piled and run on most platforms including Windows, Unix, BeOS, and the Mac.

Tidy is on the CD-ROM in the directory utilities/tidy. Binaries are included for
Windows. Portable source code is included for other platforms. The latest version
is available from http://www.w3.org/People/Raggett/tidy/.

In its default mode Tidy tends to remove unnecessary (for HTML, but not for XML)

end tags such as and to make other modifications that break well-formed-

ness. However, you can use the --output-xhtml switch to specify that you want

valid XHTML output. For example, to convert the file mobile_office.html to valid

XHTML, you would type this command from a DOS window or shell prompt:

C:\> tidy --output-xhtml true mobile_office.html

By default Tidy just prints its output on the stdout (the console or DOS window

from which you ran it) as well as messages about any problems it couldn’t fix. You’ll

probably want to redirect the corrected HTML into a file using the > redirection

operator like this:

C:\>tidy --output-xhtml true 22-1.html>22-6.html

Tidy (vers 30th April 2000) Parsing “22-1.html”
line 9 column 30 - Warning: lacks “alt” attribute
line 68 column 4 - Warning: lacks “alt” attribute

“22-1.html” appears to be HTML 3.2
2 warnings/errors were found!

The alt attribute should be used to give a short description
of an image; longer descriptions should be given with the
longdesc attribute which takes a URL linked to the description.
These measures are needed for people using non-graphical
browsers.

For further advice on how to make your pages accessible
see “http://www.w3.org/WAI/GL”. You may also want to try
“http://www.cast.org/bobby/” which is a free Web-based
service for checking URLs for accessibility.

You are recommended to use CSS to specify the font and
properties such as its size and color. This will reduce
the size of HTML files and make them easier maintain
compared with using elements.

HTML & CSS specifications are available from http://www.w3.org/

On the
CD-ROM

770 Part V ✦ XML Applications

To learn more about Tidy see
http://www.w3.org/People/Raggett/tidy/
Please send bug reports to Dave Raggett care of
<html-tidy@w3.org>
Lobby your company to join W3C, see
http://www.w3.org/Consortium

Listing 22-6 shows the XHTML document Tidy produced. As the above message

indicates, it’s not actually a valid XHTML document. In this case, the problem is

that two img elements are missing alt attributes. While Tidy could insert an empty

alt attribute, that wouldn’t really serve any purpose. It has to rely on a human

being (you) to fill in a reasonable value for the alternate text. Otherwise, the docu-

ment is well formed. In general, whatever Tidy leaves out is not too difficult to fix

by hand.

Listing 22-6: The well-formed, almost-valid XHTML document
produced by Tidy

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<meta name=”generator” content=”HTML Tidy, see www.w3.org” />
<title>Mobile Office</title>
<!--INSERT TITLE, INSERT TEXT-->
</head>
<body>
<basefont size=”2” face=”Times New Roman” />
<table border=”0” valign=”top” align=”left”>
<tr>
<td bgcolor=”#EFEFCE” valign=”top”><img
src=”images/pflogosm.gif”
border=”0” />

<table border=”0”>
<tr>
<td width=”2”></td>
<td border=”1”><font size=”+1”
face=”MS Sans Serif, Geneva, Verdana”>Menu

Opening
Page

Search Project Freedom

E-Communications

A Biography of Ron Paul

Texas’ 14th District

Committees

771Chapter 22 ✦ XHTML

Constituent Services

Mobile Office

Ron Paul’s Legislation

Cosponsors of Legislation

Privacy Forum

Press Releases

Weekly Column

Speeches

Legislative Update Line

Freedom Watch

Important Documents

Web Resources

House
Floor
Schedule

Site Information

 </td>
</tr>
</table>

<table align=”right” border=”1”>
<tr>
<td>

<p>The Office of U.S. Rep.
Ron
Paul

203 Cannon HOB

Washington, DC 20515

(202) 225-2831</p>

<p></p>
</td>
</tr>
</table>
</td>
<td valign=”top” align=”left”><!--PAGE TEXT INSERT HERE-->
<center>
</center>

<p>What is the Mobile
Office?</p>

<p>The Current Mobile
Office

Continued

772 Part V ✦ XML Applications

Listing 22-6 (continued)

Schedule.</p>

<p>The Monthly Schedule for the Mobile
office.</p>

<p>
<!--END OF PAGE--></p>
</td>
</tr>
</table>
</body>
</html>

Tidy also missed a couple of problems as well. When I ran this document through

the W3C validator, in addition to the aforementioned missing alt attributes, these

two problems were found:

✦ Line 11, column 25:

<table border=”0” valign=”top” align=”left”>
^

Error: there is no attribute “valign”

✦ Line 19, column 11:

<td border=”1”><font size=”+1”
^

Error: there is no attribute “border”

Still, all of these issues are easy enough to resolve once they’re noticed. Tidy may

not do everything for you, but it does do a lot.

Tidy is limited to converting documents to transitional XHTML. It isn’t yet smart

enough to handle the more difficult task of converting a document to strict XHTML.

However, even if you need strict XHTML, you can still save a lot of time by first con-

verting the document to transitional XHTML using Tidy, and then finishing the con-

version by hand. Just remember to change the document type declaration to point

to the strict DTD before validating.

773Chapter 22 ✦ XHTML

What’s New in XHTML
For the most part XHTML just tightens up existing HTML syntax. In the strict ver-

sion, it even throws out some familiar elements and attributes such as font and

bgcolor. However, besides the stick of validity, XHTML proffers a few carrots as

well. Browsers that understand XHTML can use the full panoply of XML syntax that

isn’t available in classic HTML. This includes:

✦ Character references

✦ Custom entity references defined in the DTD

✦ CDATA sections

✦ Encoding declarations

✦ The xml:lang attribute

On the other hand, these constructs are quite near the bleeding edge since almost

all of them cause problems for many browsers people are still using. Nonetheless,

they can be viable in certain controlled environments and will become more useful

as time passes and more people upgrade their browsers to full XHTML support.

This section explores a few of the advantages of using fully XHTML-aware browsers.

Character references
XML documents are Unicode. By implication, that means XHTML documents are

Unicode, too. You can present an XHTML browser with a document containing

mixed English, Greek, Arabic, and Japanese, and expect it to do something reason-

able with it. The browser may not have the necessary fonts to render the non-Latin

text, but at least it should not try to pretend that Arabic, Japanese, or Greek is just

a funny form of Latin-1 as many browsers do now.

Even if the browser can display text written in unusual character sets, it may still

not be easy to write such a document using existing editors. However, when writing

XHTML, you can use decimal or hexadecimal character references to produce the

full range of Unicode characters. A Unicode decimal character reference consists of

the two characters &# followed by the character code, followed by a semicolon. For

instance, the capital Greek letter Σ has Unicode value 931, so it may be inserted in

an XML file as Σ. To use hexadecimal instead, just put an x after the #. For

example, Σ has hexadecimal value 3A3, so it may be inserted in an XML file as

Σ. Because two bytes always produce exactly four hexadecimal digits and

because most current Unicode characters occupy two bytes, it’s customary

(though not required) to include leading zeros in hexadecimal character references

so that they are rounded out to four digits. Listing 22-7 shows an XHTML document

containing a few lines from Plato’s Gorgias that use a mix of ASCII characters and

decimal and hexadecimal character references.

774 Part V ✦ XML Applications

Listing 22-7: An XHTML document that uses character
references

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“xhtml1-strict.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<title>Gorgias 447a from Plato</title>

</head>
<body>
<h1>Plato, <cite>Gorgias 447a</cite></h1>
<p>

Καλλίκλης
:
πολέμου
καὶ
μάχης
φασὶ
χρη̂ναι,
ὠ̂
Σώκρατες,
οὕτω
μεταλαγχά
νειν.
</p>
<p>

Σωκράτης:
ἀλλ’
ἠ̂, τὸ
λεγόμενον,
κατόπιν
ἑορτη̂ς
ἥκομεν
καὶ
ὑστερου̂μ
εν;
</p>
<p>

Καλλίκλης
:
καὶ μάλα
γε
ἀστείας
ἑορτη̂ς:
πολλὰ
γὰρ καὶ

775Chapter 22 ✦ XHTML

καλὰ
Γοργίας
ἡμι̂νὀλι
́γον
πρότερονε
̓πεδείξατ
ο.
</p>
<p>
Σωκράτης:
τούτων
μέντοι,
ὠ̂
Καλλίκλει
ς,
αἴτιος
χαιρεφω̂ν
ὅδε,
ἐν
ἀγορᾳ̂
ἀναγκάσα
ς
ἡμα̂ς
διατρι̂ψαι
</p>
</body>
</html>

Figure 22-4 shows this document loaded into the XHTML-savvy Mozilla. However,

this document doesn’t work nearly so well in non-XHTML-aware browsers such as

Netscape 4.6, as Figure 22-5 shows.

Figure 22-4: Mozilla can display Greek text using character
references.

776 Part V ✦ XML Applications

Figure 22-5: Legacy browsers such as Netscape 4.6 don’t know
what to do with character references.

There’s also a middle ground. Some browsers understand character references but

either don’t have or don’t know how to use the fonts needed to display those char-

acters. Opera 4.0 and 5.0 just display boxes for most of the characters in Listing 22-7,

as shown in Figure 22-6. Internet Explorer 5.5 can handle the Greek letters, and some

of the accents, but is thrown by the breathing marks, as shown in Figure 22-7.

Mozilla is actually the first browser I’ve found that can really handle classical Greek,

regardless of how it’s encoded. Support for other typographically challenging lan-

guages such as Arabic and Chinese also varies a great deal from browser to browser.

Figure 22-6: Opera recognizes that the character references are
not Roman letters, but can’t display them.

777Chapter 22 ✦ XHTML

Figure 22-7: Internet Explorer 5.5 can handle the Greek letters
but not the breathing marks.

Character references and browser support for various character sets are discussed
in more detail in Chapter 7.

Custom entity references defined in DTD
Most Web browsers understand a very basic set of predefined entity references

including <, &, ", ©, , and so on. HTML 4.0 expanded this

set to several hundred entity references, including characters from the upper half of

the Latin-1 character set such as ñ (ñ) and Ü (Ü), mathematical sym-

bols such as ∂ (∂) and √ (√), Greek letters such as θ (θ) and Ω
(Ω), and a few others besides. All of these are available to you in XHTML docu-

ments as well. All three XHTML DTDs define these entities so that you can use them.

In addition, you can define other entity references in the internal or external DTD

subsets of your document, just as you might for any XML document. These can

either point to individual characters, to text strings, to elements, or to groups of

elements. For example, Listing 22-8 is a DTD fragment that defines several combin-

ing diacritical marks frequently used in classical Greek.

Listing 22-8: greek_accents.ent: A DTD subset defining Greek
diacritical marks

<!ENTITY varia “̀”> <!-- grave accent -->
<!ENTITY oxia “́”> <!-- acute accent -->
<!ENTITY circumflex “̂”>
<!ENTITY psili “̓”> <!-- smooth breathing -->
<!ENTITY dasia “̔”> <!-- rough breathing -->
<!ENTITY iota_subscript “ͅ”>

Cross-
Reference

778 Part V ✦ XML Applications

Listing 22-9 is a more intelligible version of Listing 22-7. It imports this entity set

and uses the five general entities found there for the accent and breathing marks

instead of numeric character references. For the Greek letters, it uses general entity

references defined in the XHTML strict DTD. Finally, it defines three general entities

in the internal DTD subset for the names of Socrates, Gorgias, and Kallikles.

Listing 22-9: An XHTML document that uses entity references

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“xhtml1-strict.dtd” [

<!ENTITY % greek_accents SYSTEM “greek_accents.ent”>
%greek_accents;

<!ENTITY Socrates
“Σωκρα&oxia;της”>
<!ENTITY Gorgias
“Γοργι&oxia;ας”>
<!ENTITY Kallikles

“Καλλι&oxia;κλη
ς”
>

]>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<title>Gorgias 447a from Plato</title>

</head>
<body>
<h1>Plato, <cite>Gorgias 447a</cite></h1>
<p>
&Kallikles;:
πολε&oxia;μου
και&varia;
μα&oxia;χης
φασι&varia;
χρη&circumflex;ναι,
ω&psili;&circumflex;
Σω&oxia;κρατες,
ου&dasia;&oxia;τω
μεταλαγχ
α&oxia;νειν.
</p>
<p>
&Socrates;:
α&psili;λλ’
η&psili;&circumflex;, το&varia;
λεγο&oxia;μεν
ον,
κατο&oxia;πιν
ε&dasia;ορτη&circumflex;ς

779Chapter 22 ✦ XHTML

η&dasia;&oxia;κομεν
και&varia;
υ&dasia;στερο
υ&circumflex;μεν;
</p>
<p>

&Kallikles;:
και&varia;
μα&oxia;λα
γε
α&psili;στει&oxia;ας
ε&dasia;ορτη&circumflex;ς:
πολλα&varia;
γα&varia;ρ και&varia;
καλα&varia; &Gorgias;
η&dasia;μι&circumflex;νο&psili;λ
ι&oxia;γον
προ&oxia;τερον
ε&psili;πεδει&oxia;ξ
ατο.
</p>
<p>
&Socrates;:
του&oxia;των
με&oxia;ντοι,
ω&psili;&circumflex;
Καλλι&oxia;κλ
εις,
αι&psili;&oxia;τιος
Χαιρεφω&circumflex;ν
ο&dasia;&oxia;δε, ε&psili;ν
α&psili;γορ
α&circumflex;&iota_subscript;
α&psili;ναγκα&oxia;σ
ας
η&dasia;μα&circumflex;ς
διατρι&circumflex;ψα
ι
</p>
</body>
</html>

Unfortunately, this document requires a level of XHTML-savvy that none of the

browsers I was able to test possessed. Even Mozilla 0.8 was not able to recognize

the nonpredefined entities. Therefore, the use of author-defined entity references in

XHTML documents is likely to remain theoretical for some time to come.

Entity references are discussed in more detail in Chapter 10.Cross-
Reference

780 Part V ✦ XML Applications

Encoding declarations
Web servers are supposed to identify the character set and encoding of documents

they send in the Content-type field of the HTTP header they prefix to each docu-

ment. For example, this HTTP header specifies the UTF-8 encoding of the Unicode

character set:

HTTP/1.1 200 OK
Date: Thu, 07 Dec 2000 21:09:53 GMT
Server: Apache/1.3.6 Ben-SSL/1.36 (Unix)
Last-Modified: Tue, 21 Dec 1999 03:04:51 GMT
Content-Length: 5201
Content-Type: text/html; charset=utf-8

In practice, however, most servers fail to do this. Furthermore, it’s difficult to con-

figure a Web server to understand that particular documents are in some encoding

other than the most common one on that particular system. Therefore HTML

authors who use a character set that goes beyond simple ASCII normally identify

the set they’re using with a meta element and an http-equiv attribute in the HTML

head, like this:

<meta
http-equiv=”Content-Type” content=”text/html; charset=UTF-8”

/>

To make matters worse, whereas most Web browsers assume a document uses

Latin-1 when faced with an unidentified character set, XML processors are required

to assume that documents are written in UTF-8 unless they’re told otherwise. While

some browsers (though not all) will recognize a charset parameter passed in an

HTTP header, none will notice a meta element similar to this one.

Of course, XML documents have a different means of specifying character sets

using an encoding declaration inside the XML declaration. For example:

<?xml version=”1.0” encoding=”UTF-8”?>

Unfortunately, some browsers that don’t recognize this construct as an XML decla-

ration or explicitly support XHTML will try to display it, so you want to avoid

including it if possible. The most broadly compatible option is to author your docu-

ments in UTF-8 so that you can omit the XML declaration, and use a meta element

to tell HTML browsers what they’re dealing with. If UTF-8 is too sophisticated for

your installed base of browsers, then you should stick to pure ASCII (a subset of

UTF-8) and the predefined entity references.

The encoding declaration, UTF-8, and Unicode are covered in much more detail in
Chapter 7.

Cross-
Reference

781Chapter 22 ✦ XHTML

The xml:lang attribute
The xml:lang attribute contains a code identifying which language the content of

that element is written in. For example, these opening lines from Marcel Proust’s Du
cote de chez Swann are written in French, naturellement:

<q xml:lang=”fr-FR”
cite=”ftp://movie0.archive.org/pub/etext/etext01/swann10h.htm”
>
Longtemps, je me suis couchf de bonne heure. Parfois, é peine
ma bougie fteinte, mes yeux se fermaient si vite que je n’avais
pas le temps de me dire: “Je m’endors.”
</q>

In HTML, language identification is normally handled by the lang attribute instead,

but otherwise the syntax is the same. For example,

<q lang=”fr-FR”
cite=”ftp://movie0.archive.org/pub/etext/etext01/swann10h.htm”
>
Longtemps, je me suis couchf de bonne heure. Parfois, é peine
ma bougie fteinte, mes yeux se fermaient si vite que je n’avais
pas le temps de me dire: “Je m’endors.”
</q>

For XHTML, the W3C recommends using both the lang and xml:lang attributes,

like this:

<q lang=”fr-FR” xml:lang=”fr-FR”
cite=”ftp://movie0.archive.org/pub/etext/etext01/swann10h.htm”
>
Longtemps, je me suis couchf de bonne heure. Parfois, é peine
ma bougie fteinte, mes yeux se fermaient si vite que je n’avais
pas le temps de me dire: “Je m’endors.”
</q>

HTML-aware tools will use the lang attribute to determine the language. XML-aware

tools will use the xml:lang attribute. In the event of a conflict between the two, the

value of the xml:lang attribute should take precedence, though this may depend

more on which attribute the tool in question expects to read than on the official

rules for disambiguation.

The xml:lang attribute was first introduced in Chapter 11.Cross-
Reference

782 Part V ✦ XML Applications

CDATA sections
Before there were any books about HTML, many people, the author of this book

included, learned HTML from the NCSA’s A Beginner’s Guide to HTML, which is itself

written in HTML and published on the Web at http://www.ncsa.uiuc.edu/
General/Internet/WWW/HTMLPrimer.html. Over the years, many other online

tutorials about HTML and other new markup languages have been written in HTML

and published on the Web. Today, many people are writing and reading online tuto-

rials about SVG, WML, schemas, XHTML, and other cutting-edge topics. Indeed, I

read a few of these while preparing to write the book you’re reading now.

Of course, if you’ve ever written such a tutorial, you’ve noticed a problem. It’s

extremely inconvenient to write about HTML or anything that looks remotely like

HTML in HTML. The problem is that all the examples of markup are interpreted by

the browser as markup and disappear from the rendered document. For example, if

I were writing about the pre element in HTML, I might write something like this:

<p>
HTML normally answers the question of whether white space is
significant or not by predefining the meaning of white space in
particular elements. For instance, white space is significant
inside <code><pre></code> and <code></pre></code> tags.
It’s not significant almost everywhere else. This means that if
you want to preserve line breaks without using a monospaced
font, you need to insert a lot of <code>
</code> tags as in
this first stanza from William Blake’s poem <cite>The
Tyger</cite>:
</p>
<pre><code><p>
Tyger! Tyger! burning bright<br class=”empty”/>
In the forests of the night<br class=”empty”/>
What immortal hand or eye<br class=”empty”/>
Could frame thy fearful symmetry?<br class=”empty”/>
</p></code></pre>

Of course, when this was displayed in a browser you’d see something like this:

HTML normally answers the question of whether white space is significant or

not by predefining the meaning of white space in particular elements. For

instance, white space is significant inside and tags. It’s not significant almost

everywhere else. This means that if you want to preserve line breaks without

using a monospaced font, you need to insert a lot of tags as in this first stanza

from William Blake’s poem The Tyger:

Tyger! Tyger! burning bright

In the forests of the night

What immortal hand or eye

Could frame thy fearful symmetry?

783Chapter 22 ✦ XHTML

This is not what you wanted at all! Of course, you know the solution. I should have

escaped all the less-than signs from the markup I wanted to appear in the rendered

document using entity references such as <, and if there were any raw amper-

sands in this sample, they’d need to be escaped too. The result looks like this:

<p>
HTML normally answers the question of whether white space is
significant or not by predefining the meaning of white space in
particular elements. For instance, white space is significant
inside <code><pre></code> and <code></pre></code> tags.
It’s not significant almost everywhere else. This means that if
you want to preserve line breaks without using a monospaced
font, you need to insert a lot of <code>
</code> tags as
in this first stanza from William Blake’s poem <cite>The
Tyger</cite>:
</p>
<pre><code><p>
Tyger! Tyger! burning bright<br class=”empty”/>
In the forests of the night<br class=”empty”/>
What immortal hand or eye<br class=”empty”/>
Could frame thy fearful symmetry?<br class=”empty”/>
</p></code></pre>

While adequate for occasional illegal characters, this is very tedious to do for large

examples. XML, by contrast offers a very neat solution: Just wrap the entire exam-

ple in a CDATA section and then use the markup as you normally would. You can

still use < and & for the smaller pieces where the example markup is inter-

mingled with real markup. For example,

<p>
HTML normally answers the question of whether white space is
significant or not by predefining the meaning of white space in
particular elements. For instance, white space is significant
inside <code><pre></code> and <code></pre></code> tags.
It’s not significant almost everywhere else. This means that if
you want to preserve line breaks without using a monospaced
font, you need to insert a lot of <code>
</code> tags as
in this first stanza from William Blake’s poem <cite>The
Tyger</cite>:
</p>
<pre><code><![CDATA[<p>
Tyger! Tyger! burning bright<br class=”empty”/>
In the forests of the night<br class=”empty”/>
What immortal hand or eye<br class=”empty”/>
Could frame thy fearful symmetry?<br class=”empty”/>
</p>]]></code></pre>

This is much easier to write, much easier to debug, and much easier to read.

Unfortunately, current browsers don’t reliably support CDATA sections; but when

they do, they’ll make writing online tutorials for the next generation of markup lan-

guages much easier.

784 Part V ✦ XML Applications

Of the allegedly XHTML-aware browsers I tested, only Amaya 4.1 correctly recog-
nized and handled CDATA sections as shown in Figure 22-8. Mozilla 0.8 completely
omitted the content of the CDATA section, treating it as an unrecognized tag.
Opera 4.0.1 and 5.0 and Internet Explorer 5.5 left out the <[CDATA[but included
everything else, as shown in Figure 22-9. They treated the tags inside the CDATA
section as markup rather than the plain text they actually are.

Figure 22-8: Amaya 4.1 recognizes CDATA sections in XHTML
documents

Figure 22-9: Opera does not recognize CDATA sections in XHTML
documents

CDATA sections are discussed in more detail in Chapter 6.Cross-
Reference

Caution

785Chapter 22 ✦ XHTML

Summary
In this chapter, you learned that:

✦ XHTML is a reformulation of HTML as an XML application. Among other

changes, this requires making your HTML documents well formed.

✦ When converting an existing HTML document into well-formed XML, you have

to make sure all attribute values are quoted, all entity references are declared,

all start tags have matching end tags, that there is a single root element, and

that elements do not overlap.

✦ XHTML documents must be valid according to one of three DTDs.

✦ The XHTML transitional DTD allows most standard HTML and XHTML ele-

ments and attributes defined in HTML 4.0 and earlier except for frames.

✦ The XHTML frameset DTD allows everything the transitional DTD allows, and

adds the elements and attributes needed to work with frames.

✦ The XHTML strict DTD disallows frame elements such as frame, presenta-

tional elements such as center and bgcolor, and deprecated elements such

as applet. The eliminated presentational attributes and elements are

replaced by CSS styles.

✦ When converting an existing HTML document into valid XHTML, you have to

repeatedly use a validation tool to make sure you’re only using allowed ele-

ments and attributes and only in the ways the DTD allows them to be used.

✦ Dave Raggett’s HTML Tidy is a very useful tool for automating a lot of the

grunt work involved in converting existing HTML documents to XHTML;

but you’ll still need to do some work by hand when Tidy is through with a

document.

✦ XHTML lets you use character references in your Web pages, though the

browser still needs a font it can use to draw those characters.

✦ XHTML lets you define entity references in the DTD to use in your Web pages,

but current browsers often don’t recognize these.

✦ XML parsers determine the character set from an encoding declaration. HTML

parsers determine the character set from the charset parameter of the

Content-type field of an HTTP header. XHTML documents use the encoding

declaration, but only if the browser specifically knows about XHTML.

✦ XML’s xml:lang attribute and HTML’s lang attribute should both be used to

identify the language of an element.

✦ Theoretically XHTML allows you to use CDATA sections in your Web pages,

but browser support for this feature is lacking.

786 Part V ✦ XML Applications

In the next chapter, we explore another HTML-like XML application, WML, the

Wireless Markup Language. WML is used to write Web pages that are displayed on

cell phones and other bandwidth-limited devices with small screens, rather than on

computers with relatively large monitors and fast connections. To a first approxi-

mation, WML is very much like a version of XHTML that’s been stripped down to its

bare essentials.

✦ ✦ ✦

The Wireless
Markup
Language

The Wireless Markup Language (WML) is an XML applica-

tion designed for presenting Web content to cell phones,

pagers, personal digital assistants (PDAs), and similar band-

width-, display-, and memory-challenged devices. It uses a mix

of HTML-like elements such as p, em, a, and strong, along

with WML-unique elements such as go, do, card, and

onevent. WML is being used today to provide services that

pass small nuggets of information to consumers such as

weather reports, flight schedules, traffic reports, stock prices,

and sports scores.

WML is just one part of the Wireless Application Protocol

(WAP). As well as WML, WAP includes specifications for

WMLC, a binary compression format for WML; WBMP, a

bitmapped format for black and white images embedded in

WML decks; WMLScript, a scripting language for WML; WSP,

the protocol by which cell phones talk to WAP gateways; and

a lot more. If WML is like HTML, then WAP is like HTML plus

HTTP, CGI, JavaScript, SOCKS, gzip, and PNG.

WML is the only part of WAP implemented in XML.

Fortunately, WML is the only one of these a content provider

needs to be intimately familiar with — at least at the start. As

you graduate to more complex documents and to more

sophisticated sites, you might want to learn about WMLScript

and WBMP. The remaining protocols and formats only really

need to be understood by cell phone manufacturers and ser-

vice providers. This is similar to how you can learn to write

and publish HTML pages without knowing very much, if any-

thing, about HTTP. Consequently, this chapter focuses exclu-

sively on WML with brief nods at WBMP and WMLScript.

2323C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

What is WML?

Hello WML

Basic text markup

Cards and links

Selections

The options menu

Events

The header

Variables

Talking back to the
server

✦ ✦ ✦ ✦

788 Part V ✦ XML Applications

What Is WML?
WML, the Wireless Markup Language, is an XML application designed to deliver

Web content to cell phones, pagers, and personal digital assistants. These devices

have several things in common, most notably a very small black-and-white screen

and very limited bandwidth. Screens can be as tiny as 4 rows by 10 columns; that is,

40 total characters. In other words, the single sentence you’re reading right now

could not be displayed on some cell phones without scrolling. Most phones can

only display text and perhaps 1-bit black-and-white images; very few have any sort

of scripting language built-in. A cell phone may have more CPU power and memory

than a 1960s-era multimillion-dollar IBM mainframe, but it is still quite weak when

compared to even the slowest of today’s PCs. Bandwidth may be equivalent to a

14.4K modem or slower. Latency may be even worse, averaging five seconds or

more per request. These devices are not really suitable for browsing the everyday

Web, and require special pages designed especially for very constricted environ-

ments. These pages are written in WML.

Because of the innate limitations of the devices on which WML documents are read,

WML uses a different metaphor than HTML. Where HTML presents sites of scrol-

lable pages, WML offers decks of flippable cards. A single document is transmitted

as a unit but displayed as multiple cards. Each card contains a small amount of

XML markup and text using an HTML-like vocabulary. Rather than viewing the

entire document at once, and perhaps scrolling, users move forward and backward

in the deck by flipping cards. The deck author inserts hypertext links in the deck to

allow the user to jump to particular cards or to other decks completely.

Different cell phones have widely varying WML support. Most phones that can

browse the wireless Web at all support WML 1.1 or later. Most of the markup dis-

cussed in this chapter is identical from WML 1.1 on. WML 1.2 and 1.3 differ from

earlier versions in support for advanced features such as WMLScript, but are pretty

much the same with respect to their document type definitions (DTDs).

Unfortunately, many phones implement different subsets of WML 1.1. For instance,

some phones can make text bold; others can’t. Some phones can center text; others

can’t. However, as long as you don’t tie your applications too closely to the detailed

presentational capabilities of one phone or another, most phones will happily

ignore the markup they can’t handle and still present the basic information you

serve to the user.

Hello WML
Listing 23-1 is about the simplest WML document imaginable. It is an XML docu-

ment, as you can plainly see. It has an XML declaration. It has a document type dec-

laration, and it is valid. It does not use namespaces. It will probably be stored in a

file called something like hello.wml or 23-1.wml, although it could also be stored in

a file called hello.xml or even hello.txt. The root element is wml. The wml element

contains a single card element. The card element contains a single p element that

represents a paragraph of text. This text is “Hello WML!”

789Chapter 23 ✦ The Wireless Markup Language

Listing 23-1: Hello WML

<?xml version=”1.0”?>
<!DOCTYPE wml PUBLIC “-//WAPFORUM//DTD WML 1.1//EN”

“http://www.wapforum.org/DTD/wml_1.1.xml”>
<wml>
<card>
<p>Hello WML!</p>

</card>
</wml>

You can place this document on a normal Web server. It’s served over HTTP like

any other file. Before a cell phone can load it, it’s actually downloaded to one of the

cell phone company’s proxy servers first, but that’s pretty much transparent to

both the client and the page author.

Some cell phones let you omit the document type declaration. However, I strongly
recommend that you include one and validate your WML documents. WML
browsers are much less forgiving of poor markup than traditional HTML browsers
such as Netscape. For instance, if you merely left out the <p> and </p> tags in
Listing 23-1, but otherwise wrote a well-formed document, most WML browsers
would not be able to display it. Validation is a very important tool for debugging
WML documents.

The WML MIME media type
The main thing you need to worry about on the server side is that the server

assigns the file the correct MIME media type, text/vnd.wap.wml. Consult your

server documentation to determine exactly how to set up a mapping between .wml

files and that MIME type. If you’re using Apache (and if you’re not, you should be),

then all you need to do is add this line to the httpd.conf file:

addtype text/vnd.wap.wml wml

Some WML documents also use other unusual file formats, including .wbmp (wire-

less Bitmap Images), .wmls (WMLScript), and .wmlc (a brain-damaged, non-XML,

compiled binary form of WML). You might as well add mappings for these as well:

addtype text/vnd.wap.wmlscript wmls
addtype image/vnd.wap.wbmp wbmp
addtype text/vnd.wap.si si
addtype text/vnd.wap.sl sl
addtype application/vnd.wap.wbxml wbxml
addtype application/vnd.wap.wmlc wmlc
addtype application/vnd.wap.wmlscriptc wmlsc

Tip

790 Part V ✦ XML Applications

The fundamental flaw in WML is that it doesn’t support the one media type that
actually makes sense for cell phones — audio.

If you don’t want to set these mappings for the entire server, or if you don’t have

write access to httpd.conf but you are using Apache, then you can simply put this

directive in a file named .htaccess in the directory that contains your WML files.

An alternative that you can use on a file-by-file basis with some browsers is to add a

meta tag to the deck’s head. An http-equiv attribute can specify the content type.

Listing 23-2 demonstrates.

Listing 23-2: A WML document that specifies its MIME media
type

<?xml version=”1.0”?>
<!DOCTYPE wml PUBLIC “-//WAPFORUM//DTD WML 1.1//EN”

“http://www.wapforum.org/DTD/wml_1.1.xml”>
<wml>
<head>
<meta http-equiv=”Content-Type”

content=’text/vnd.wap.wml; charset=”ISO-8859-1”’/>
</head>
<card>
<p>Hello WML!</p>

</card>
</wml>

However, this only works for WML documents, not for WMLScript programs, WBMP

images, or any of the other media types that may be used on a WAP site.

Furthermore, not all WML browsers recognize this, so it should be used only as a

last resort.

Browsing the Web from your phone
This file can be accessed from any browser that understands WML, which basically

means the browser built into your cell phone. (Opera 5.0 also has experimental

WML support.) You’ll need to select Access the Internet, or the equivalent on your

cell phone’s menu. Next select Go to... to tell the phone you want to type in a

URL. Then use the cell phone’s keypad to type in the URL. You’ll have to press

each key multiple times until it cycles to the letter that you want. This is not

an easy operation for even the simplest URLs. If the URL is something like

Note

791Chapter 23 ✦ The Wireless Markup Language

http://www.ibiblio.org/xml/books/bible2e/examples/23/23-1.wml, it’s

almost hopeless. The state of user interfaces on the Web today is bad. The state of

user interfaces in the wireless world is a thousand times worse. Once you’ve suc-

ceeded, you should see something like Figure 23-1, details depending on which

phone you’re using of course.

Not all cell phones and not all providers support WAP and WML. In particular,
VoiceStream claimed that the Ericsson phone they sold me would support WAP,
but in fact it did not work on their network, and they couldn’t provide me with one
that did. If you buy a cell phone to use with WAP, be sure to try it out in the store
before signing any contracts.

Cell phone simulators
If you don’t like developing cross-browser Web sites for multiple versions of

Internet Explorer and Netscape, as well as for various other browsers, you’re going

to hate WML. Although only two programs account for almost all the browsers built

into most cell phones, the different screen sizes and capabilities of different phones

make the same browsers behave very differently on different phones. To test across

all the different possible combinations of phones that users might own, you’d need

to buy dozens of phones — and more are being released every month. Of course,

while you were testing these phones, you’d likely be paying exorbitant prices for

the air time.

Fortunately, you can run WAP simulator software on your PC to make your PC pre-

tend that it’s a cell phone. Better yet, you can download skins for this software that

will make it take on the appearance of different phones on the market. Several dif-

ferent developer kits are available with these phone simulators, including:

✦ Phone.com’s UP.SDK developer kit for Windows,

http://developer.phone.com/

✦ The Ericsson WAP IDE, http://www.ericsson.com/developerszone/

✦ The Nokia WAP Toolkit, http://www.nokia.com/corporate/wap/sdk.html

You’ll need to fill in some pointless registration forms to get any of these. I routinely

lie on these forms.

All of these products have bugs ranging from minor annoyances to major hassles.
Version 2.0 of the Nokia WAP Toolkit completely incapacitated my normally stable
Windows NT 4.0 PC to the point where I had to switch the power off to restart the
machine. It is definitely not my first choice. As of January 2001, Phone.com’s
UP.SDK 4.0 seems to be the least buggy of a bad lot, so I used it for most of the
screenshots in this chapter.

Caution

Note

792 Part V ✦ XML Applications

Figure 23-1: Hello WML on a cell phone. Photo courtesy of Reggie Dablo.

793Chapter 23 ✦ The Wireless Markup Language

Figure 23-2 shows a phone simulator loaded with a Motorola Timeport P7389 skin,

which I had to download separately. However, not all cell phones and not all simula-

tors support the same set of features or behave the same way. To get screen shots

of some of the less-supported WML features for this chapter, I had to test multiple

simulators and skins before I found one that worked. On the other hand, if you’re

developing your own wireless services, you’ll want to test your decks in as many

different phones as possible and ruthlessly eliminate any features that don’t at least

degrade gracefully on phones where they’re not supported.

Figure 23-2: Hello WML on a cell phone simulator

One advantage to using a simulator instead of a real phone is that a simulator can

show you a lot more details about just what the cell phone is sending and what it’s

getting back. Figure 23-3 shows the Information Window from Phone.com’s

UP.Simulator. This is invaluable for debugging and is particularly useful for diagnos-

ing problems with forms and misconfigured servers. It can also let you know when

you’re getting something out of the cache rather than from the Web site. WAP gate-

ways cache much more aggressively than most HTTP proxy servers. It’s essential to

clear the cache before reloading a changed WML document.

794 Part V ✦ XML Applications

Figure 23-3: The tracing console

There’s a danger in using the simulator instead of a real phone to test: it’s too
easy! First, the simulator lets you use a real keyboard to type in the URLs. Don’t! If
you do this, you’ll get a totally false picture of how easy or difficult WML is to use.
In fact, it’s extremely difficult. If you let yourself use crutches that your readers with
real cell phones won’t have (like keyboards) you won’t find out how much trouble
it is to access your site. Second, the simulator will load content a lot faster than a
real phone will. For a more accurate measure, disconnect your normal Internet
connection and replace it with an old 9600 bps modem.

Basic Text Markup
The text inside a WML card is divided into paragraphs, each of which is repre-

sented by a p element. This is very similar to the p element you know from HTML,

and indeed many of the tags and attributes you use inside paragraphs are also

adapted from HTML. However when using these, you must keep in mind that you

only have between 4 and 8 lines of 10 to 20 characters each. This is not nearly

enough to write HTML like you’re accustomed to. You probably shouldn’t even

write full sentences when fragments will do.

Elements that WML 1.1 and later adopt from HTML include:

Caution

head

meta

p

br

img

a

em

strong

b

i

u

big

small

table

tr

td

select

option

input

795Chapter 23 ✦ The Wireless Markup Language

WML 1.2, which is supported by relatively few phones as of early 2001, adds one

more element, pre. WML 1.3, which is not yet supported by any phones as of

January 2001, does not add any elements to this list.

These elements all mean more or less the same things they mean in standard

HTML, although they often don’t allow all the attributes that they can have in

HTML. Since WML is well formed and potentially valid XML, these tags must always

be written in lowercase. Every start tag must have a matching end tag. Attribute

values must be quoted, and all other well-formedness rules must be followed.

Listing 23-3 shows a simple WML deck. The root element is wml instead of html.

Instead of a body element, there’s a card element. Otherwise, this could easily be

HTML. The card contains six p elements, signifying six paragraphs. Each paragraph

exhibits a different character style.

Listing 23-3: Text Styles in WML

<?xml version=”1.0”?>
<!DOCTYPE wml PUBLIC “-//WAPFORUM//DTD WML 1.1//EN”

“http://www.wapforum.org/DTD/wml_1.1.xml”>
<wml>
<card>
<p>Normal</p>
<p>Strong</p>
<p>Emphasized</p>
<p><big>Big</big></p>
<p><u>Underline</u></p>
<p><i>Italic</i></p>

</card>
</wml>

Figure 23-4 shows Listing 23-3 in a phone simulator. Different WML browsers have

varying levels of support for the various styles. For instance, in this particular

browser strong, em, and big all have the same effect, making the text bold. This

browser can’t underline anything, so instead it makes the underlined element italic.

Other browsers may do a better or worse job, but I wouldn’t count on any great

fidelity to the designer’s intent. Existing phones are just too limited.

Figure 23-4: Paragraphs with normal, strong, emphasized,

big, underlined, and italic text

796 Part V ✦ XML Applications

The p element has two optional attributes that affect its presentation:

✦ align with the values left, right, and center

✦ mode with the values wrap and nowrap

Listing 23-4 demonstrates these attributes. Figure 23-5 shows this document in a

simulator that does support all these features. However, you should be aware that

many real phones can’t handle these attributes and will simply ignore them. Don’t

write cards that depend on proper presentation of these attributes.

Listing 23-4: Paragraph attributes in WML

<?xml version=”1.0”?>
<!DOCTYPE wml PUBLIC “-//WAPFORUM//DTD WML 1.1//EN”

“http://www.wapforum.org/DTD/wml_1.1.xml”>
<wml>
<card>
<p align=”center”>
Titles Are Often Centered

</p>
<p align=”left” mode=”wrap”>
Left-aligned, wrapped text is the default.

</p>
<p align=”right”>Right aligned</p>
<p mode=”nowrap”>
This text should extend across one
line with some form of horizontal
scrolling, possibly automatic;
but many phones will wrap it anyway.

</p>
</card>

</wml>

Figure 23-5: Left-aligned, right-aligned, and centered, wrapped
and unwrapped paragraphs

Tables
WML provides very limited table support, just the table, tr, and td elements. For

example, Listing 23-5 demonstrates a very simple stock quote table. The left column

contains the stock symbol. The right column contains the price. This example is

797Chapter 23 ✦ The Wireless Markup Language

merely a static WML file, but cards such as this are customarily produced on-the-fly

by a CGI program that fills in the table with the latest prices.

Listing 23-5: A stock quote table

<?xml version=”1.0”?>
<!DOCTYPE wml PUBLIC “-//WAPFORUM//DTD WML 1.1//EN”

“http://www.wapforum.org/DTD/wml_1.1.xml”>
<wml>
<card>
<p>
<table columns=”2” title=”Your Portfolio”>
<tr><td>Symbol</td><td>Price</td></tr>
<tr><td>RHAT</td><td>8.69</td></tr>
<tr><td>COVD</td><td>2.81</td></tr>
<tr><td>NPNT</td><td>0.75</td></tr>

</table>
</p>

</card>
</wml>

Figure 23-6 shows the rendered table. If a portfolio contains more than three or four

stocks, the user will probably have to scroll down to see the whole table.

Figure 23-6: A stock quote table

Despite the superficial similarities, there are a number of differences between WML

and HTML tables that you should keep in mind:

✦ A WML table element must have a columns attribute that specifies the num-

ber of columns in this table. Each table row (tr element) must have exactly

this number of table cells (td elements).

✦ A WML table element can have a title attribute instead of HTML’s caption
element. However, many browsers choose not to display table titles.

✦ The table element can have an optional align attribute. However, this has a

very different meaning than the align attribute of HTML’s table. In particu-

lar, it indicates how the text in each column is aligned rather than how the

table is aligned relative to the element that contains it. The value of this

attribute is a white space-separated list of letters from the set C (centered),

798 Part V ✦ XML Applications

R (right-aligned), L (left-aligned), and D (default), one letter for each column in

the table. For example, align=”L R” means that the first column is left

aligned and the second column is right aligned.

✦ A td element can only contain inline elements such as a, img, em, and strong.

It cannot contain paragraphs or other tables.

✦ WML tables don’t allow you to set the borders, background colors, spacing,

padding, or other presentational properties of each cell.

WML table support is very rudimentary compared to HTML. Even within these limi-

tations, not all WML browsers support tables; and those that do support tables

don’t necessarily support every detail such as alignment.

Images
WML cards can contain simple bitmapped images. Each image must be black and

white. It should be no larger than 127 pixels by 127 pixels, and preferably about a

quarter of that. Furthermore, you cannot use a standard GIF, JPEG, or PNG image.

Instead, you have to convert your image into a special Wireless Bitmap format.

These files should have the four-letter extension .wbmp and be served with the

MIME media type image/vnd.wap.wbmp.

Standard graphics programs such as Adobe Photoshop and Macromedia Freehand

don’t support this format yet, but a Google search for WBMP will turn up several

tools for creating WBMP images, including:

✦ WAPTiger, an open source BMP to WBMP command-line conversion program

for Linux and Windows that you can download from

http://www.waptiger.de/download.html

✦ The TeraFlops online converter form for GIF, JPEG, and BMP images at

http://www.teraflops.com/wbmp/

✦ Laurent Charbonnel’s $10 shareware Adobe Photoshop plug-in for the

Macintosh that you can download from

http://www.creationflux.com/laurent/wbmp.html

After you’ve converted your image to the WBMP format, you use an img element to

place it on a card. This is very much like HTML’s img element. The src attribute

contains an absolute or relative URL locating the external image file. The alt
attribute contains text to be displayed if the browser can’t load the image (and

many WML browsers can’t load images at all). The height and width attributes

contain the number of pixels in the image vertically and horizontally. Listing 23-6

demonstrates with a deck that loads a simple WBMP image I use as a logo on one of

my Web sites.

799Chapter 23 ✦ The Wireless Markup Language

Listing 23-6: A WML card that loads a WBMP image

<?xml version=”1.0” encoding=”ISO-8859-1”?>
<!DOCTYPE wml PUBLIC “-//WAPFORUM//DTD WML 1.1//EN”

“http://www.wapforum.org/DTD/wml_1.1.xml”>
<wml>
<card>
<p><img src=”cup.wbmp” alt=”Cafe au Lait logo”

height=”39” width=”69”/></p>
<p>Cafe au Lait</p>

</card>
</wml>

Not all cell phones and WML browsers support images. In fact, I’d venture to say
most don’t. In my tests, only the Nokia simulator and Opera 5.0 displayed the
WBMP images instead of the alt text. It’s probably too early yet to use images on
your WML cards.

Entity references
The WML DTD defines seven entity references that you can use. These are the five

standard predefined XML entity references and two new ones:

✦ " the straight double quotation mark “

✦ & the ampersand &

✦ ' the straight single quote ‘

✦ < the less than sign <

✦ > the greater than sign >

✦ the non-breaking space

✦ ­ the optional “soft” hyphen

The soft hyphen is particularly useful because a typical cell phone screen is so nar-

row that it’s very helpful to allow lines to break in the middle of words. This lets

you make use of more of the limited screen size. Listing 23-7 demonstrates.

Soft hyphens don’t work in a lot of WML browsers. For instance, Opera 5.0 doesn’t
use them to break words. Other browsers do even worse, and display them as
hard hyphens, whether they’re used to break words or not. Figure 23-7 demon-
strates.

Caution

Caution

800 Part V ✦ XML Applications

Listing 23-7: Soft hyphens to help split text up

<?xml version=”1.0”?>
<!DOCTYPE wml PUBLIC “-//WAPFORUM//DTD WML 1.1//EN”

“http://www.wapforum.org/DTD/wml_1.1.xml”>
<wml>
<card>
<p>
An ex­cep­tion­al­ly grand­i­ose
vo­cab­u­lar­y is­n’t to be
com­mend­ed when pro­duc­ing WML.

</p>
</card>

</wml>

Figure 23-7: Phone.com’s UP.Simulator 4.0 doesn’t handle soft
hyphens properly.

Cards and Links
Despite superficial similarities in text formatting, WML is not HTML. The biggest dif-

ference is that WML documents are divided into decks of cards. Although the deck

is stored on the server in a single file and the browser (that is, the phone) retrieves

the entire deck in a single download, the user only sees one card at a time. Each

card customarily contains links to the next card, and perhaps other related cards

elsewhere in the deck or to cards in other decks.

Multicard decks
Imagine a WML service that drills users on their foreign language vocabulary. A

bored traveler stuck at LaGuardia Airport waiting for a delayed flight to Quebec

City could dial up the service and load a deck to practice their French. Each deck

contains several foreign words interspersed with their English translations. The

first card contains a foreign word; the second card contains the English translation;

the third card contains a foreign word; the fourth card contains the English transla-

tion; and so on. At the end of the deck the user is given the option to download a

new batch of words. Listing 23-8 shows one such deck of six cards.

801Chapter 23 ✦ The Wireless Markup Language

Listing 23-8: A WML deck with six cards

<?xml version=”1.0” encoding=”ISO-8859-1”?>
<!DOCTYPE wml PUBLIC “-//WAPFORUM//DTD WML 1.1//EN”

“http://www.wapforum.org/DTD/wml_1.1.xml”>
<wml>
<card xml:lang=”fr-CA”>
<p>Bonjour</p>

</card>
<card xml:lang=”en-US”>
<p>Hello</p>

</card>
<card xml:lang=”fr-CA”>
<p>monde</p>

</card>
<card xml:lang=”en-US”>
<p>world</p>

</card>
<card xml:lang=”fr-CA”>
<p>rédiger</p>

</card>
<card xml:lang=”en-US”>
<p>write, draw up, edit</p>

</card>
</wml>

It’s straightforward to load this deck into the cell-phone browser as shown in Figure

23-8. However, this only shows the first card in the deck. The answer card, and the

other four cards are nowhere to be seen. Furthermore, no matter how you punch

the buttons on the phone, they’re not going to appear.

The do element
What’s needed is a means of navigating from one card to the next. The word “OK” in

the lower-right corner of the screen and the OK button below it looks promising,

but hitting it just brings up the phone’s default menu. It does not load the next card.

You’d like to remap the OK button so that it jumps to the next card rather than to

the default menu. Fortunately, that’s not hard to do. First, you need to give each card

its own ID type attribute so that it can be linked to separately from the entire deck.

Number the French cards f1 through f3 and the English cards e1 through e3, like this:

<card id=”f1” xml:lang=”fr-CA”>
<p>Bonjour</p>

</card>
<card id=”e1” xml:lang=”en-US”>
<p>Hello</p>

</card>

802 Part V ✦ XML Applications

Figure 23-8: The first card of the WML deck in
Listing 23-8

Next, you want to make the OK button jump to a particular named card. You do this

with a do element like this one:

<do type=”accept”>
<go href=”#e1”/>

</do>

The type attribute of the do element specifies the user action that triggers the con-

tents of the do element. In this case, the action is accept, which corresponds to the

OK button on this particular phone. It may correspond to a different button on dif-

ferent phones — on some phones the user might even say the word “OK” into the

handset — but there should be an accept button somewhere. An action can be

attached to any of these six types:

✦ accept

✦ prev

✦ help

✦ reset

✦ options

✦ delete

803Chapter 23 ✦ The Wireless Markup Language

These are abstract, semantic types. In general, there won’t be a key on the phone

marked accept or delete or prev. However, the phone should provide the user with

some obvious means of taking each of these actions, and you should use it. For

instance, if you provide a help card, it should be activated by the help action, not

by the accept action.

The contents of the do element tell the browser what to do when the user presses

the OK button. In this case, a go element says to jump to the URL specified by its

href attribute. In this case, that URL is the fragment identifier #e1, which means

jump to the card in the same deck with the ID e1. However, it could also be a full

URL telling the browser to jump to a different deck completely. Furthermore,

instead of a go element, you could use any of the elements in Table 23-1 to map a

key to a different kind of action.

Table 23-1
Action Elements

Label Corresponds to

go Go to the URL identified by the href attribute

prev Go the previous card, like the Back button in a Web browser

noop Short for “no operation;” do nothing at all; useful for
eliminating default behavior

refresh Resets variables as specified by the refresh element’s
setvar child elements

Listing 23-9 is a complete vocabulary deck that lets you navigate from one card to

the next.

Listing 23-9: A WML deck with 10 linked cards

<?xml version=”1.0” encoding=”ISO-8859-1”?>
<!DOCTYPE wml PUBLIC “-//WAPFORUM//DTD WML 1.1//EN”

“http://www.wapforum.org/DTD/wml_1.1.xml”>
<wml>
<card id=”f1” xml:lang=”fr-CA”>
<p>Bonjour</p>
<do type=”accept”>
<go href=”#e1”/>

</do>
</card>
<card id=”e1” xml:lang=”en-US”>
<p>Hello</p>

Continued

804 Part V ✦ XML Applications

Listing 23-9 (continued)

<do type=”accept”>
<go href=”#f2”/>

</do>
</card>
<card id=”f2” xml:lang=”fr-CA”>
<p>monde</p>
<do type=”accept”>
<go href=”#e2”/>

</do>
</card>
<card id=”e2” xml:lang=”en-US”>
<p>world</p>
<do type=”accept”>
<go href=”#f3”/>

</do>
</card>
<card id=”f3” xml:lang=”fr-CA”>
<p>rédiger</p>
<do type=”accept”>
<go href=”#e3”/>

</do>
</card>
<card id=”e3” xml:lang=”en-US”>
<p>write, draw up, edit</p>

</card>
</wml>

Anchors
Suppose instead of drilling users on vocabulary you want to quiz them. You can set

up a single card with one foreign word and three possible translations, one right

and two wrong, like this:

<card id=”q1”>
<p>raconter:</p>
<p>tell about</p>
<p>resemble</p>
<p>sail</p>

</card>

You then provide cards for the right answer and the wrong answer, like this:

<card id=”right”>
<p>Correct!</p>

</card>
<card id=”wrong”>
<p>

805Chapter 23 ✦ The Wireless Markup Language

Wrong!
Try again.

</p>
</card>

You can use the same a tag you’re familiar with from HTML to link between the

cards. Its href attribute contains a URL pointing to a different deck or a fragment

identifier pointing to a different card in the same deck. Listing 23-10 shows the com-

pleted quiz using links.

Listing 23-10: A simple quiz using the a element to connect
cards

<?xml version=”1.0” encoding=”ISO-8859-1”?>
<!DOCTYPE wml PUBLIC “-//WAPFORUM//DTD WML 1.1//EN”

“http://www.wapforum.org/DTD/wml_1.1.xml”>
<wml>
<card id=”q1”>
<p>raconter:</p>
<p>tell about</p>
<p>resemble</p>
<p>sail</p>

</card>
<card id=”right”>
<p>Correct!</p>

</card>
<card id=”wrong”>
<p>

Wrong!
Try again.

</p>
</card>

</wml>

Figure 23-9 shows the first card in this deck. The phone in this picture indicates

links by placing them inside square brackets. Other phones may use a different

visual metaphor such as underlining the link, or showing it in reverse video. When

color phones become available, they may even color links blue just like most Web

browsers do. WML browsers exercise a lot more leeway in user interface than typi-

cal Web browsers.

The user can navigate from link to link by using the arrow keys. When the cursor is

positioned at a link, the status indicator at the bottom left of the display changes

from OK to Link. A user activates a link by pressing the accept button. On most

phones, one of the keys also serves as a Back button so users can go back to the

previous card without explicitly following a link.

806 Part V ✦ XML Applications

Figure 23-9: Links

It doesn’t really matter for this simple, ungraded quiz, but there are some security
implications here. If this were a more serious test, or even a competitive trivia
game, you would not want to send the user the answers at the same time you
send them the question. You’d wait until they sent their response back to the
server before uploading the answers to their browser. Otherwise, there are several
ways a cheater could peek at the answers before they answered the question.

Instead of an a link, you can use an anchor element with a go action. For example,

<card id=”q1”>
<p>raconter:</p>
<p><anchor><go href=”#right”/>tell about</anchor></p>
<p><anchor><go href=”#wrong”/>resemble</anchor></p>
<p><anchor><go href=”#wrong”/>sail</anchor></p>

</card>

The advantage of this is that you can also use a prev or refresh action. For exam-

ple, Listing 23-11 features a back link to the original question from the wrong

answer card and an a link from the correct answer card that loads a new question

from the server.

Listing 23-11: A simple quiz using anchor elements to
connect cards and decks

<?xml version=”1.0” encoding=”ISO-8859-1”?>
<!DOCTYPE wml PUBLIC “-//WAPFORUM//DTD WML 1.1//EN”

“http://www.wapforum.org/DTD/wml_1.1.xml”>
<wml>
<card id=”q1”>
<p>raconter:</p>
<p><anchor><go href=”#right”/>tell about</anchor></p>
<p><anchor><go href=”#wrong”/>resemble</anchor></p>
<p><anchor><go href=”#wrong”/>sail</anchor></p>

</card>
<card id=”right”>
<p>Correct!</p>
<p>Next question</p>

</card>

Caution

807Chapter 23 ✦ The Wireless Markup Language

<card id=”wrong”>
<p>

Wrong!

<anchor><prev/>Try again.</anchor>

</p>
</card>

</wml>

Figure 23-10 shows the wrong answer card with the link back to the card the user

came from. This is one place where WML is actually more powerful than HTML.

HTML doesn’t let you link back to the last card the user saw without knowing which

card that was; but WML does.

Figure 23-10: The wrong answer card

Selections
Making choices from lists of options, as in the French quiz examples, is one of the

few user interfaces that works at all on cell phones. Anything that requires display-

ing more text, or asking the user to type in any word longer than four letters, is

hopeless. WML provides special support for such lists of choices using the select
element and its option children. The hierarchy is like this:

1. A card contains a p.

2. A p contains a select that has a title attribute.

3. A select contains one or more option elements.

4. Each option contains parsed character data.

5. Each option has an onpick attribute specifying which card to jump to when

the option is selected.

Listing 23-12 uses a select group for the quiz of Listing 23-10. Each answer is

encoded as an option element.

808 Part V ✦ XML Applications

Listing 23-12: A simple quiz using a select group for question
answers

<?xml version=”1.0” encoding=”ISO-8859-1”?>
<!DOCTYPE wml PUBLIC “-//WAPFORUM//DTD WML 1.1//EN”

“http://www.wapforum.org/DTD/wml_1.1.xml”>
<wml>
<card id=”q1”>
<p>
raconter:
<select>
<option onpick=”#right”>tell about</option>
<option onpick=”#wrong”>resemble</option>
<option onpick=”#wrong”>sail</option>

</select>
</p>

</card>
<card id=”right”>
<p>Correct!</p>

</card>
<card id=”wrong”>
<p>

Wrong!
Try again.

</p>
</card>

</wml>

Figure 23-11 shows the resulting quiz page. It’s very similar to Figure 23-10. The user

interface is a little different, and as always may vary from phone to phone. Here, the

user can either use the arrow keys and the OK button to make their choice, or sim-

ply press 1, 2, or 3 on the keypad.

Figure 23-11: A select based quiz

Never place more than nine options in a menu. There are only nine usable digits
on the phone’s keypad, after all.

Tip

809Chapter 23 ✦ The Wireless Markup Language

The Options Menu
HTML documents often have menus of related pages down the right- or left-hand

side of the page. This allows the user to easily navigate to different sections of the

site. Cell phones don’t have the space to waste on such gewgaws, but it’s still a use-

ful feature. Thus, WML allows you to build an options menu into cards and decks

that is normally hidden, but which the user can access by pressing the appropriate

key. (As usual, exactly which key this is varies from phone to phone.)

Options menus are built from multiple do elements at the top-level of the card, out-

side of any p elements. Each such do element should have a type attribute with the

value options and a label attribute giving the text of the menu item. For example,

suppose the entrance to the foreign language WML service offers quizzes in

French, Latin, and Greek. To let the user pick one, you would specify three do ele-

ments, each one linking to a different quiz with a go child. The deck in Listing 23-13

demonstrates.

Listing 23-13: An options menu for choosing a quiz language

<?xml version=”1.0” encoding=”ISO-8859-1”?>
<!DOCTYPE wml PUBLIC “-//WAPFORUM//DTD WML 1.1//EN”

“http://www.wapforum.org/DTD/wml_1.1.xml”>
<wml>
<card id=”front_door”>
<do type=”options” label=”French”>
<go href=”french.wml”/>

</do>
<do type=”options” label=”Latin”>
<go href=”latin.wml”/>

</do>
<do type=”options” label=”Greek”>
<go href=”greek.wml”/>

</do>
<p>
Please choose a language from the menu:

</p>
</card>

</wml>

The browser initially presents just the card’s paragraphs as shown in Figure 23-12.

The phone clues in the user that an options menu is available for this card by plac-

ing the word Menu, Options, or some localized equivalent in its status bar. The user

can access the menu from the Menu button on the phone, or their phone’s equiva-

lent. Again the exact phrasing and button placement can vary from phone to phone.

810 Part V ✦ XML Applications

However, once the menu has been activated it will look similar to Figure 23-13, with

a number next to each menu option. Users can select options using the arrow keys

and the accept button; or they can simply press the corresponding number on the

phone’s keypad for one-touch access.

Figure 23-12: The first screen for Listing 23-11

Figure 23-13: The options menu for Listing 23-11

Templates
You often want the same options menu to appear on each and every card. In this

case, rather than placing the same batch of do elements on each card, you can

place them all in a top-level template child element of the wml element. This ele-

ment is optional, but if it’s present it must be placed between the head and the first

card element. For example, Listing 23-14 uses a template to allow the user to switch

languages at any time in the vocabulary drill deck.

Listing 23-14: An options menu for multiple cards based on a
template

<?xml version=”1.0” encoding=”ISO-8859-1”?>
<!DOCTYPE wml PUBLIC “-//WAPFORUM//DTD WML 1.1//EN”

“http://www.wapforum.org/DTD/wml_1.1.xml”>
<wml>
<template>
<do type=”options” label=”French”>
<go href=”french.wml”/>

</do>
<do type=”options” label=”Latin”>
<go href=”latin.wml”/>

</do>
<do type=”options” label=”Greek”>
<go href=”greek.wml”/>

</do>

811Chapter 23 ✦ The Wireless Markup Language

</template>
<card xml:lang=”fr-CA”>
<p>Bonjour</p>

</card>
<card xml:lang=”en-US”>
<p>Hello</p>

</card>
<card xml:lang=”fr-CA”>
<p>monde</p>

</card>
<card xml:lang=”en-US”>
<p>world</p>

</card>
<card xml:lang=”fr-CA”>
<p>rédiger</p>

</card>
<card xml:lang=”en-US”>
<p>write, draw up, edit</p>

</card>
</wml>

If you put an options menu in both an individual card and in a template at the top

level of the deck, then the one on the card overrides the one defined in the tem-

plate on that card. On other cards without their own options menus, the one from

the template is used.

WML templates are not parameterized. You cannot change the contents of the

options menu from card to card or use more than one template in a deck. If you

need to provide different options menus on different cards, then you need to use

individual do elements on each card, even if there’s a lot of duplication from card to

card.

Events
WML operates in a much more limited environment than does HTML. However, it

does have considerably more built-in interactivity. Some of the features that HTML

needs additional technologies to implement, such as Flash, JavaScript, and

HTML+Time, are a standard part of WML. In particular, you can install event han-

dlers that respond to particular occurrences such as:

✦ A fixed amount of time elapsing (ontimer)

✦ A user loading the page from a URL (onenterforward)

✦ A user moving back to a page that they previously visited

(onenterbackward)

812 Part V ✦ XML Applications

An event handler is represented by an onevent child element of a card. The

type attribute of the onevent element specifies what kind of event (ontimer,

onenterforward, onenterbackward) the handler responds to. Each onevent
element has a single child element that specifies what action to take when the event

occurs. This should be one of the action elements listed in Table 23-1 and used pre-

viously for do actions: go, prev, refresh, or noop.

An onenterforward event occurs any time the user follows a link to a card or

types in the URL for a card. An onenterbackward event occurs any time the user

presses the back button to go to a card they’ve seen before. These events can be

intercepted to prevent the user from seeing or returning to a card, for instance by

responding to an onenterbackward event with a jump to a different card.

Ontimer events do not naturally occur as the user navigates a deck. To create an

ontimer event you must first add a timer element to the card. Each timer element

has a value attribute that gives the number of tenths of seconds that elapse

between when the card is first loaded and when the event is fired. Thus a value of

10 equals 1 second, a value of 20 equals 2 seconds, and so forth. Fractional values

(that is, better than a tenth of a second precision) are not allowed.

The typical response to an ontimer event is to jump to a different card without a

specific user request. For instance, you might use it to scroll large amounts of text

one screen a second without requiring the user to continuously press the down

arrow key. (Unfortunately, there’s no way to pause a screen.)

For example, let’s suppose that you want to give the user no more than 10 seconds

to answer a question in a quiz, and you only want to give them one shot at the ques-

tion. First, you’d add a timer to the question card with a value of 100. If the timer

expired before the user chose an answer, you’d go to a time-expired card. Then

you’d add an onevent handler for onenterbackward events that jumped to an

error card immediately if the user tried to go back to a question that the user had

already seen. Listing 23-15 demonstrates.

Listing 23-15: A timed quiz question

<?xml version=”1.0” encoding=”ISO-8859-1”?>
<!DOCTYPE wml PUBLIC “-//WAPFORUM//DTD WML 1.1//EN”

“http://www.wapforum.org/DTD/wml_1.1.xml”>
<wml>
<card id=”q1”>
<onevent type=”onenterbackward”>
<go href=”#one_chance”/>

</onevent>
<onevent type=”ontimer”>
<go href=”#time_expired”/>

</onevent>
<timer value=”100”/>
<p>

813Chapter 23 ✦ The Wireless Markup Language

raconter:
<select>
<option onpick=”#right”>tell about</option>
<option onpick=”#wrong”>resemble</option>
<option onpick=”#wrong”>sail</option>

</select>
</p>

</card>
<card id=”right”>
<p>Correct!</p>

</card>
<card id=”wrong”>
<p>

Wrong!
</p>

</card>
<card id=”time_expired”>
<p>

Sorry. You must answer in ten seconds or less.
</p>

</card>
<card id=”one_chance”>
<p>

You only get one chance to answer each question.
</p>

</card>
</wml>

Using timers to automatically jump from one card to the next is so common that

there’s a shortcut for it. Instead of having a separate onevent element for the timer,

you can just add an ontimer attribute to the parent card element. The value of this

attribute is the URL of the card to jump to when the timer expires. You still have to

include the timer child element itself, though. For example, by using this shortcut,

the first card in Listing 23-15 could be rewritten like this:

<card id=”q1” ontimer=”#time_expired”>
<onevent type=”onenterbackward”>
<go href=”#one_chance”/>

</onevent>
<timer value=”100”/>
<p>
raconter:
<select>
<option onpick=”#right”>tell about</option>
<option onpick=”#wrong”>resemble</option>
<option onpick=”#wrong”>sail</option>

</select>
</p>

</card>

814 Part V ✦ XML Applications

The Header
WML documents can be spidered, searched, and indexed just like HTML and XML

documents. Current spiders don’t pay a lot of attention to WML, but if WML

achieves broad adoption, this is likely to change. You can make your decks

friendlier to search-engine robots, Web spiders, and intelligent agents by including

metadata in your WML pages.

Just as in HTML, this metadata is customarily placed in a single head element at the

start of the document. This element can have one access child and any number of

meta children. The access element specifies which other decks are allowed to link

to this one. The meta element can be used to specify values for arbitrary quantities

for any purpose.

The access element
By default, any card in any WML deck at any Web site can link to your own decks

and cards. The access element lets you control which other decks are allowed to

link to this deck. You can limit access to a particular domain, to a particular host,

or to a particular directory, subdirectory, or file on a particular host. Remember

that what’s being limited is where users are allowed to come to your deck from, not

where users are allowed to go to from your deck.

The access element is completely new to WML. HTML has nothing like it,
although it can be simulated in JavaScript. If HTML did have such an element,
problems such as the Ticketmaster-Microsoft lawsuit probably wouldn’t have
arisen in the first place.

The access element has two attributes: domain and path. The value of the domain
attribute is a string such as edu, fordham.edu, or www.fordham.edu. Only decks

somewhere in the specified domain will be allowed to link to your deck. The value

of the path attribute is a partial path such as /mll or /mll/ModLangs. Only decks

whose path begins with the specified string will be allowed to link to your deck.

For example, if the French quiz were developed at Fordham University, and you

wanted to limit incoming links to other pages and sites at Fordham, you might place

this access element in the head:

<access domain=”fordham.edu”/>

If you wanted to limit access to links from other university sites, you might use this

access element:

<access domain=”edu”/>

Note

815Chapter 23 ✦ The Wireless Markup Language

However, if you wanted to limit access to surfers being referred from the Modern

Languages department at Fordham University, you’d have to set the path attribute

as well, like this:

<access domain=”www.fordham.edu” path=”/mll/ModLangs”/>

Remember that the access element only controls which other pages and decks are

allowed to refer to your deck. It has nothing to do with where the user is or what

domain they’re in. I can be surfing the Internet from spy.cia.gov and still read decks

that are restricted to fordham.edu as long as I get to your decks by going through a

link from a fordham.edu Web page or WML deck.

Because access control is enforced on the client side, and can easily be subverted
by customized client software, this is not secure. Do not rely it on for anything
more important than one-player games.

Meta
WML meta elements have the same general syntax and purpose as HTML meta ele-

ments. To provide arbitrary meta-information you use the name and content
attributes instead of name and value attributes. For example, if you want to specify

that robots are not allowed to index or follow the links in a page, you’d place this

meta tag in your head element:

<meta name=”robots” content=”noindex,nofollow”/>

To identify the author of the page, you could use a meta element like this one:

<meta name=”author” content=”Elliotte Rusty Harold”/>

To set the value of one of the HTTP headers that’s sent by the server before the

WML document, use the http-equiv attribute instead of name. For example, to

specify that the document is written in the ISO-8859-1 character set, you could use

this meta element:

<meta http-equiv=”Content-Type”
content=’text/vnd.wap.wml; charset=”ISO-8859-1”’/>

On some Web servers, this may also be a more convenient way of specifying the

proper MIME media type for WML files than reconfiguring the server to recognize

the .wml extension.

WML does add one new attribute to the meta element that HTML doesn’t have. This

is forua, which stands for “for user agent.” WML documents are normally served

through a WAP gateway, and the gateway normally takes the action requested by

the meta element, and then strips it out of the file it sends to the client. However, if

you set forua to true, the gateway will pass the meta element along to the client

unchanged.

Caution

816 Part V ✦ XML Applications

Variables
HTML browsers use cookies to maintain state as users move from page to page

within the site. WML browsers use variables. The good news is that variables are a

lot easier to configure and use than HTML cookies because variables were designed

into WML from the start, rather than being bolted on after the fact like cookies.

The bad news is that the privacy implications of WML variables are just as bad as
with cookies, though different. Any site that knows the name of a variable can read
its value, not just the site that sent it to you. This means users can be tracked
across sites, and that secure information such as passwords and credit card num-
bers should not be stored in variables. On the other hand, cookies can live forever
so that users can be tracked over time by a single site. All WML variables are
erased when the phone is turned off. There are efforts underway to add persistent
cookie support to WAP so that cell phone users will have the worst of both worlds.
If that’s not scary enough, advertisers and law enforcement agencies are salivating
over the prospect of cell phones that can tell them your physical location within a
few meters at any given time. The next time you’re walking past the local adult
bookshop, don’t be surprised if you get a call on your cell phone telling you that
Ryan Idol videos are on sale this week.

Reading and writing variables
Each WML variable has a name and a value. Both of these are strings. WML does

not have any integer, floating point, char, array, object, or other variable types.

The setvar element assigns a value to a variable. If the variable does not exist, it is

created. If it does exist, its old value is overwritten. For example, this setvar ele-

ment gives the variable username the value armaup:

<setvar name=”username” value=”armaup”/>

The setvar element is only allowed inside go, prev, refresh, and postfield ele-

ments. This means the user must take some action or an event must occur before a

variable can be set.

Variable names must be composed exclusively of the English letters A through Z

and a through z, the digits 0 through 9, and the underscore _. Each variable must

begin with an underscore or a letter. There is no limit to the number of characters

that you can use in a variable value, as long as the normal rules of XML are fol-

lowed. The length of both variable names and values is unlimited. A variable that is

set to the empty string (for example, <setvar name=”username” value=””/>) is

considered to be unset; that is, it does not have a value.

To use a variable, you include its name in the text of your WML document, pre-

ceded by a dollar sign. For example, $username refers to the variable named

Caution

817Chapter 23 ✦ The Wireless Markup Language

username. The name is sometimes enclosed in parentheses, like $(username), if

the variable name is not immediately followed by white space. The browser will

replace the variable reference with the variable value before displaying the card to

the user. Variables may be used in the text of a card, and in the values of href,

title, label, name, value, iname, ivalue, and alt attributes. However, variables

cannot be used to substitute for tags or entire elements. They are not entity refer-

ences, in other words.

Listing 23-16 is a simple WML deck in which the first card asks the user whether

they prefer apples or oranges. Users indicate their choice by clicking a link. If they

choose the first link, then fruit is set to apples. If they choose the second link,

then fruit is set to oranges. Simultaneously with their choice, they go to the sec-

ond card, which displays this value, as shown in Figure 23-15. This requires that the

user come to the first card before the second card. If the user reaches the second

card before the first card, then fruit will not have been set. Judicious use of the

onenterforward and onenterbackward events can sometimes prevent this from

happening. However, it’s not easily possible to check whether a variable has a value

or what that value is before displaying it.

Listing 23-16: A deck that uses variables

<?xml version=”1.0” encoding=”ISO-8859-1”?>
<!DOCTYPE wml PUBLIC “-//WAPFORUM//DTD WML 1.1//EN”

“http://www.wapforum.org/DTD/wml_1.1.xml”>
<wml>
<card id=”c1”>
<p>
Do you prefer
<anchor>
apples
<go href=”#c2”>
<setvar name=”fruit” value=”apples”/>

</go>
</anchor>
or
<anchor>
oranges?
<go href=”#c2”>
<setvar name=”fruit” value=”oranges”/>

</go>
</anchor>

</p>
</card>
<card id=”c2”>

<p>You prefer $(fruit).</p>
</card>

</wml>

818 Part V ✦ XML Applications

Figure 23-14: The user can’t tell that the value came from a
variable.

A single dollar sign in WML content always represents the start of a variable refer-

ence. If you just want to include a dollar sign as a dollar sign, in a price for example,

then you have to replace each single dollar sign with a double dollar sign. For exam-

ple, if you wanted to add dollar signs to the quotes in the stock portfolio example

as shown in Figure 23-15, you have to use double dollar signs, as shown in Listing

23-17. If you used single dollar signs, the browser would report an error.

Listing 23-17: A deck that includes dollars signs in the parsed
character data

<?xml version=”1.0”?>
<!DOCTYPE wml PUBLIC “-//WAPFORUM//DTD WML 1.1//EN”

“http://www.wapforum.org/DTD/wml_1.1.xml”>
<wml>
<card>
<p>
<table columns=”2” title=”Your Portfolio”>
<tr><td>Symbol</td><td>Price</td></tr>

WMLScript

Normally variables go hand-in-hand with a programming language such as C, Basic, or JavaScript.
Indeed, WML does have a programming language called WMLScript, and WMLScript programs can
access and work with WML variables created by setvar, input, or select elements. WMLScript is
essentially JavaScript with a few extra functions for working with WML documents in particular. Thus, it
provides all the arithmetic, logic, string manipulation, and other functionality that you’d expect from a
traditional programming language.

However, traditional procedural programming language syntax doesn’t map well into XML’s element-
and attribute-based hierarchy. Therefore, WMLScript is not written in XML. Instead, WMLScripts are
placed in separate files, generally with the four-letter extension .wmls. They can be linked to from go, a,
and do elements just like regular WML decks and cards. The URL part specifies the WMLScript file and
the fragment identifier provides the name and arguments of the function to call in that file. When such
a link is activated, the script is executed.

However, as of early 2001, WMLScript is supported by relatively few actual cell phones, so it’s not a
good idea to build your WML services around it. Furthermore, because WMLScript is not XML (unlike
WML) and requires some experience with JavaScript, it’s doubly outside the scope of this book. If you
want to know more, the WAP Forum at http://www.wapforum.org/what/technical.htm provides
the WMLScript language and library specifications in PDF format.

819Chapter 23 ✦ The Wireless Markup Language

<tr><td>RHAT</td><td>$$8.69</td></tr>
<tr><td>COVD</td><td>$$2.81</td></tr>
<tr><td>NPNT</td><td>$$0.75</td></tr>

</table>
</p>

</card>
</wml>

Figure 23-15: Dollar signs in #PCDATA must be doubled in the
source document.

Input fields
One of the main uses for variables in WML is to hold input from the user. The input
element, which is very similar to the input element in HTML, allows you to collect

a small amount of information from the user and display it on cards or send it back

to the server. The name attribute of the input element gives the name of the vari-

able being input. For example, Listing 23-18 asks the user for their name and then

gives them a personalized greeting.

Listing 23-18: Hello you

<?xml version=”1.0” encoding=”ISO-8859-1”?>
<!DOCTYPE wml PUBLIC “-//WAPFORUM//DTD WML 1.1//EN”

“http://www.wapforum.org/DTD/wml_1.1.xml”>
<wml>
<card id=”c1”>
<p>
Please tell me your name:
<input name=”username”/>
<do type=”accept”>
<go href=”#c2”/>

</do>
</p>

</card>
<card id=”c2”>
<p>Hello $username</p>

</card>
</wml>

820 Part V ✦ XML Applications

Figure 23-16 shows the input field as shown on the phone. Figure 23-17 shows the

personalized message.

Figure 23-16: An input field

Figure 23-17: The variable $username has been set by the input
field.

Use input fields VERY sparingly. While it’s straightforward to type in a name using

the keyboard in a simulator, it is extremely difficult to enter even a few letters from

an actual cell phone keypad. In fact, many WML providers actually have users cus-

tomize their menus and services online at a real Web site from their desktop PCs

rather than from their cell phones because it’s just too hard to enter data on a

phone. The most I’d ask users to enter from their keypad would be a three-letter air-

port code or a four-letter stock symbol.

Besides the required name attribute, the input element can have any of these

optional attributes:

✦ type: If the type attribute has the value password, then only dots are echoed

on the screen when the user types into the field.

✦ value: A default value for the input field that is shown before the user starts

typing.

✦ format: A mask specifying which characters the user is allowed to type

where; for instance, the format string NN\/NN\/NNNN specifies that the user

must input a date in the form 01/19/2001.

✦ emptyok: This either has the value true— the field is allowed to be empty —

or false— the field is not allowed to be empty. The default is false.

✦ size: An integer indicating how many letters the browser should set aside

space for.

✦ maxlength: The maximum number of characters allowed in the value; for

instance in a credit card number this might be 16.

✦ title: A label for the field which the browser may or may not choose to show.

821Chapter 23 ✦ The Wireless Markup Language

Select
The select element can also be used to set variables. The name attribute specifies

the variable to set. The value attribute specifies the default value for the variable

in case the user doesn’t make a selection. Each of the option child elements also

has a value attribute that gives the value to assign to the variable if the user

chooses that option.

Listing 23-19 demonstrates with a card that asks the user whether they want to drill

on nouns, verbs, or adjectives. The default choice is nouns. Users are sent to differ-

ent decks depending on their choice.

Listing 23-19: The select element sets the part_of_speech
variable

<?xml version=”1.0” encoding=”ISO-8859-1”?>
<!DOCTYPE wml PUBLIC “-//WAPFORUM//DTD WML 1.1//EN”

“http://www.wapforum.org/DTD/wml_1.1.xml”>
<wml>
<card>
<p>
Drill on:
<select name=”part_of_speech” value=”noun”>
<option value=”nouns”>Nouns</option>
<option value=”verbs”>Verbs</option>
<option value=”adjectives”>Adjectives</option>

</select>
<do type=”accept”>
<go href=”$(part_of_speech).wml”/>

</do>
</p>

</card>
</wml>

If it’s more convenient you can set a variable to the integer index of the selection

such as 1, 2, or 3. In this case, use the iname attribute of the select element to

hold the variable name and the ivalue attribute to hold the default value. You can

use name and value and iname and ivalue at the same time to set two different

variables, although it’s rarely necessary to do so.

Setting a new context for variables
WML variables are global. A variable set on one card or site still exists on all other

cards and sites visited by the browser until it’s overwritten. Because variables

aren’t segregated by the sites that create them, another site’s variables can over-

write yours; and that other site’s variables can provide confusing information to

822 Part V ✦ XML Applications

your site. If you use variables with common names such as x or username, this is

especially likely. If you’re going to use variables in your decks and sites to track the

progress of users, the first thing you need to do when a user enters your site is

wipe out existing variables that might conflict with yours. You do this by giving the

card a newcontext attribute with the value true. For example,

<card id=”entrance_card” newcontext=”true”>
<p>...</p>

</card>

Unfortunately, this has the side effect of wiping out the user’s history so they won’t

be able to go back to any card they came from prior to entering your site.

Furthermore, if the user ever comes back to this card while in the process of navi-

gating your site, all the variables they’ve set and their navigation history through

your site will also be lost. You can make this problem less likely by using events.

For example, consider these two cards:

<card>
<!-- This must be the first card in the deck -->
<onevent type=”onenterforward”>
<go href=”#wipeout”/>

</onevent>
<p>...</p>

</card>
<card id=”wipeout” newcontext=”true”>
<onevent type=”onenterforward”><prev/></onevent>
<onevent type=”onenterbackward”><prev/></onevent>

</card>

Users initially go to the main card by following a link to the entire deck with no frag-

ment identifier. They are then immediately redirected to the wipeout card, which

sets a new context and thereby erases all existing variables and history. The wipe-

out card then redirects them back to the card they came from using the prev
action and an onenterforward event. (The same thing happens through an

onenterbackward event if somehow a user backs into the wipeout card, though

this is unlikely.) There should be no direct links to the entrance card from anywhere

else in the deck, which its lack of an id attribute enforces. If the user uses the Back

button to return to the entrance card, only an onenterbackward event occurs,

which does not result in a jump to the wipeout card, so all variables are maintained.

Frankly, this is a big hack and is not perfectly reliable. Nonetheless, this is the best

you can do given the brain-damaged way variables are implemented in WML.

Talking Back to the Server
Until now, all the WML document examples have been static files, which make nice,

simple book examples. In the real world, however, most WML sites, even more than

HTML sites, rely on databases, CGI, servlets, ASP, JSP, PHP, ColdFusion, Zope,

Enhydra, and other server-side technologies. Many WML pages are dynamically

823Chapter 23 ✦ The Wireless Markup Language

generated out of databases. For example, the various foreign language drill-and-quiz

examples might use randomly chosen words from large dictionaries.

If you’re familiar with any of these server-side environments, writing the code to

dynamically or randomly generate the decks is not at all hard. However, with all

this powerful server machinery you’d like to do more. You’d like to store quiz

scores on the server. You might want to adjust the difficulty of questions according

to a student’s prior performance. You might want more secure quizzes that don’t

send students the correct answers until they’ve submitted their answer. All of this

and a lot more requires that the cell phone browser be able to send information

back to the server.

There are two main ways that the WML client can send information back to the

server:

✦ By encoding the data in a request for a URL. For instance, a server might inter-

pret the URL http://www.wmlstocks.com/getQuote.wml?symbol=RHAT as a

request for the current stock price of Red Hat. This is called the GET method.

I’ve already implicitly used this approach several times in this chapter.

✦ By submitting form data after the request for a URL. This is called the POST

method.

The GET method is very straightforward. You simply build the URL in the form the

server expects to receive it. If you use a variable to hold the query string values,

then the WML browser will even automatically encode it in the x-www-form-url-

encoded syntax required by the CGI specification. For example, this card collects a

stock symbol from the user, attaches it to a relative URL, and sends the whole thing

to a server.

<card>
<p>
Please enter stock symbol and press OK:
<input name=”symbol”/>
<do type=”accept”>
<go href=”prices.cgi?stock=$(symbol)”/>

</do>
</p>

</card>

Almost all the effort here is in writing the server-side program that receives and

responds to the request. For details on that end, consult any good book on CGI pro-

gramming (or servlets, JSP, ASP, PHP, or similar technologies).

POST is only slightly more complicated. To indicate that you want to use POST

instead of GET, you add a method attribute with the value post to the go element.

The go element must still have an href attribute that specifies the URL to post the

data to. You place the name-value pairs the server-side program expects to receive

in postfield elements, one such element for each CGI variable. The postfield
element has name and value attributes providing the value to post.

824 Part V ✦ XML Applications

For example, a couple of times in this chapter I’ve warned you that the quizzes

weren’t secure because the questions and answers were sent to the browser at the

same time. Now I’m going to show you how to fix that. Listing 23-20 uses the same

question you’ve seen several times in this chapter. However, this time the answers

aren’t included. Instead, when the user makes a selection and presses the Accept

button, their answer is sent to the server. Some program running on the server

must look at that answer and decide which page to send back. It can also keep track

of a user’s answers to provide a final grade when the quiz is finished.

Listing 23-20: A secure quiz

<?xml version=”1.0” encoding=”ISO-8859-1”?>
<!DOCTYPE wml PUBLIC “-//WAPFORUM//DTD WML 1.1//EN”

“http://www.wapforum.org/DTD/wml_1.1.xml”>
<wml>
<card id=”q1”>
<p>
raconter:
<select name=”answer” value=””>
<option value=”tell about”>tell about</option>
<option value=”resemble”>resemble</option>
<option value=”sail”>sail</option>

</select>
<do type=”accept”>
<go href=”answer.wml” method=”post”>
<postfield name=”response” value=”$(answer)”/>
<postfield name=”username” value=”armaup”/>

</go>
</do>

</p>
</card>

</wml>

What does the server do when it receives this data? That’s up to you. You’ll need to

write some sort of servlet, CGI, or other server-side program that receives and

responds to the data.

There is a speed penalty to this strategy. The browser has to go back to the server

for each card. That could be alleviated in part by feeding all the question cards as

one deck but leaving the answers on the server. Overall, though, the server is a

much more secure and convenient place to store state and other information than

the client.

825Chapter 23 ✦ The Wireless Markup Language

Summary
In this chapter, you learned that:

✦ The Wireless Markup Language (WML) is an XML application for serving Web

content to cell phones, PDAs, and other display-, CPU-, memory-, and band-

width-limited devices.

✦ The root element of WML documents is wml.

✦ The wml element contains an optional head, an optional template, and one or

more card elements.

✦ The head element can contain a single access element that specifies which

other sites and decks are allowed to link to this one.

✦ The head element can also contain meta elements that set HTTP headers,

control robots, add keywords and abstracts for search engines, or perform

other behind-the-scenes jobs.

✦ The template element defines an options menu for every card in the deck.

Each option is a do element with a type=”options” attribute.

✦ Each card element represents one screenful of data.

✦ The text of a card is contained inside p elements, which represent paragraphs.

✦ Text can be formatted using familiar HTML-like elements such as u, b, strong,

em, i, and br. However, not all WML browsers can display all possible styles.

✦ Hypertext links can be inserted into text with the familiar a element from

HTML or an anchor element with a go child.

✦ The img element lets you add black-and-white images in a special Wireless

Bitmap (WBMP) format to your cards.

✦ The do element lets you define an action to be taken at user option. Its type
attribute specifies what the user has to do to take the specified action.

✦ The onevent element lets you take action when a timer expires, the user

views a card for the first time, or the user returns to a card.

✦ Actions you can take include going to a new card with go, returning to the pre-

vious card with prev, or resetting the variables with refresh.

✦ The setvar element defines a variable using name and value attributes.

✦ The input element defines a variable using its name attribute and text the

user types in from the keypad.

826 Part V ✦ XML Applications

✦ The select element defines a variable using its name attribute and a choice

the user makes from a menu.

✦ The postfield element lets you send data to server side programs that

expect their input to come via the POST method.

In the next chapter, we explore an XML application that looks nothing like HTML —

the W3C XML Schema language. This is an XML application for defining the permis-

sible contents of documents adhering to a particular XML application. Schemas

let you specify element and attribute structures, much as DTDs do, but they do it

using an XML instance document syntax. Furthermore, schemas let you impose

restraints on the content of XML elements and attributes, such as specifying that a

SHOE_SIZE element must contain a number between 1 and 15, or that an ABSTRACT
element must contain between 100 and 512 characters.

✦ ✦ ✦

Schemas

What’s Wrong with DTDs?
Document Type Definitions (DTDs) are an outgrowth of XML’s

heritage in Standardized General Markup Language (SGML).

SGML was always intended for narrative-style documents:

books, reports, technical manuals, brochures, Web pages, and

the like. DTDs were designed to serve the needs of these sorts

of documents, and indeed they serve them well. DTDs let you

state very simply and straightforwardly that every book must

have one or more authors, that every song has exactly one

title, that every PERSON element has an ID attribute, and so

forth. Indeed for narrative documents that are intended for

human beings to read from start to finish, that are more or

less composed of words in a row, there’s really no need for

anything beyond a DTD. However, XML has gone well beyond

the uses envisioned for SGML. XML is being used for object

serialization, stock trading, remote procedure calls, graphics

file formats, and many more things that look nothing like tra-

ditional narrative documents; and it is in these new arenas

that DTDs are showing some limits.

The limitation most developers notice first is the almost com-

plete lack of data typing, especially for element content. DTDs

can’t say that a PRICE element must contain a number, much

less a number that’s greater than zero with two decimal digits

of precision and a dollar sign. There’s no way to say that a

MONTH element must be an integer between 1 and 12. There’s

no way to indicate that a TITLE must contain between 1 and

255 characters. None of these are particularly important things

to do for the narrative documents SGML was aimed at; but

they’re very common things to want to do with data formats

intended for computer-to-computer exchange of information

rather than computer-to-human communication. Humans are

very good at handling fuzzy systems where expected data is

missing, or perhaps in not quite the right format; computers

are not. Computers need to know that when they expect an

element to contain an integer between 1 and 12, the element

really contains an integer in that range and nothing else.

2424C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

What’s wrong with
DTDs?

What is a schema?

The W3C XML
Schema language

Hello schemas

Complex types

Grouping

Simple types

Derived types

Empty elements

Attributes

Namespaces

Annotations

✦ ✦ ✦ ✦

828 Part V ✦ XML Applications

The second problem is that DTDs have an unusual non-XML syntax. You actually

need separate parsers and APIs to handle DTDs than you do to handle XML docu-

ments themselves. For instance, consider this common element declaration:

<!ELEMENT TITLE (#PCDATA)>

That’s not a legal XML element. You can’t begin an element name with an exclama-

tion point. TITLE is not an attribute. Neither is (#PCDATA). This is a very different

way of describing information than is used in XML document instances. One would

expect that if XML were really powerful enough to live up to all its hype then it

would be powerful enough to describe itself. You shouldn’t need two different syn-

taxes: One for the information and one for the meta-information detailing the struc-

ture of the information. XML element and attribute syntax should suffice for both

info and meta-info.

The third problem is that DTDs are only marginally extensible and don’t scale very

well. It’s difficult to combine independent DTDs together in a sensible way. You can

do this with parameter entity references. Indeed XHTML modularization is based on

this idea. However, the modularized DTDs are very messy and very hard to follow.

The largest DTDs in use today are in the ballpark of 10,000 lines of code, and it’s

questionable whether much larger XML applications can be defined before the

entire DTD becomes completely unmanageable and incomprehensible. By contrast,

the largest computer programs in existence today, which are much more intrinsi-

cally complex than even the most ambitious DTDs, easily reach sizes of 1,000,000

lines of code and more; sometimes even 10,000,000 lines of code or more.

Perhaps most annoyingly, DTDs are only marginally compatible with namespaces.

The first principle of namespaces is that only the URI matters. The prefix does not.

The prefix can change as long as the URI remains the same. However, validation of

documents that use namespace prefixes works only if the DTDs declare the prefixed

names. You cannot use namespace URIs in a DTD. You must use the actual prefixes.

If you change the prefixes in the document but don’t change the DTD, then the doc-

ument immediately ceases to be valid. There are some tricks that you can perform

with parameter entity references to make DTDs less dependent on the actual prefix,

but they’re complicated and not well understood in the XML community. And even

when they are understood, these tricks simply feel far too much like a dirty hack

rather than a clean, maintainable solution.

Finally, there are a number of annoying minor limitations where DTDs don’t allow

you to do things that it really feels like you ought to be able to do. For instance,

DTDs cannot enforce the order or number of child elements in mixed content. That

is, you can’t make statements such as each PARAGRAPH element must begin with

exactly one SUMMARY element that is followed by plain text. Similarly you can’t

enforce the number of child elements without also enforcing their order. For

instance, you cannot easily say that a PERSON element must contain a FIRST_NAME

829Chapter 24 ✦ Schemas

child, a MIDDLE_NAME child, and a LAST_NAME child, but that you don’t care what

order they appear in. Again, there are workarounds; but they grow combinatorially

complex with the number of possible child elements.

Schemas are an attempt to solve all these problems by defining a new XML-based

syntax for describing the permissible contents of XML documents that includes:

✦ Powerful data typing including range checking

✦ Namespace-aware validation based on namespace URIs rather than on

prefixes

✦ Extensibility and scalability

However, schemas are not a be-all and end-all solution. In particular, schemas do not
replace DTDs! You can use both schemas and DTDs in the same document. DTDs

can do several things that schemas cannot do, most importantly declaring entities.

And of course, DTDs still work very well for the sort of classic, narrative documents

they were originally designed for. Indeed, for these sorts of documents a DTD is

often considerably easier to write than an equivalent schema. Parsers and other

software will continue to support DTDs for as long as they support XML.

What is a Schema?
The word schema derives from the Greek word σχηµα, meaning form or shape. It

was first popularized in the Western world by the works of Immanuel Kant in the

late 1700s. According to the 1933 edition of the Oxford English Dictionary, Kant used

the word schema to mean, “Any one of certain forms or rules of the ‘productive

imagination’ through which the understanding is able to apply its ‘categories’ to the

manifold of sense-perception in the process of realizing knowledge or experience.”

(And you thought computer science was full of unintelligible technical jargon!)

Schemas remained the province of philosophers for the next 200 years until, the

word schema entered computer science, probably through database theory. Here,

schema originally meant any document that described the permissible content of a

database. More specifically, a schema was a description of all the tables in a

database and the fields in the table. A schema also described what type of data

each field could contain: CHAR, INT, CHAR[32], BLOB, DATE, and so on.

The word schema has grown from that source definition to a more generic meaning

of any document that describes the permissible contents of other documents, espe-

cially if data typing is involved. Thus, you’ll hear about different kinds of schemas

from different technologies, including vocabulary schemas, RDF schemas, organiza-

tional schemas, X.500 schemas and, of course, XML schemas.

830 Part V ✦ XML Applications

Since schemas is such a generic term, it shouldn’t come as any surprise to you

that there’s more than one schema language for XML. In fact there are many,

each with its own unique advantages and disadvantages. These include Murata

Makoto’s Relax (http://www.xml.gr.jp/relax/), Rick Jelliffe’s Schematron

(http://www.ascc.net/xml/resource/schematron/schematron.html), James

Clark’s TREX - Tree Regular Expressions for XML (http://www.thaiopensource.
com/trex/), the Document Definition Markup Language (DDML, also known as

XSchema, http://purl.oclc.org/NET/ddml), and the W3C’s misleadingly, generi-

cally titled XML Schema language. In addition, traditional XML DTDs can be consid-

ered to be yet another schema language.

There are also a number of dead XML schema languages that have been abandoned

by their manufacturers in favor of other languages. These include Document

Content Description (DCD), Commerce One’s Schema for Object-Oriented XML

(SOX), and Microsoft’s XML-Data. None of these are worth your time or investment

at this point. They never achieved broad adoption, and the vendors are now mov-

ing to the W3C XML Schema language instead.

This chapter focuses almost exclusively on the W3C XML Schema language.

Nonetheless, Relax and Schematron are definitely worthy of your attention as well.

In particular, if you find W3C schemas to be excessively complex (and many people

do so find them) and if you want a simpler schema language that still offers a com-

plete set of extensible data types, you should consider Relax. Relax adopts the less

controversial data types half of the W3C XML Schema recommendation, but

replaces the much more complex and much less popular structures half with a

much simpler language. Relax also has the advantage of being an official JIS and ISO

standard.

Most schema languages, including W3C schemas, Relax, DDML, and DTDs, take the

approach that you must carefully specify what is allowed in the document. They are

conservative: Everything not permitted is forbidden. If, on the other hand, you’re

looking for a less-restrictive schema language in which everything not forbidden is

You say schemas, I say schemata

Probably no single topic has been more controversial in the schema world than the proper
plural form of the word schema. The original Greek plural is σχηµατα, schemata in Latin
transliteration; and this is the form which Kant used and which you’ll find in most dictio-
naries. This was fine for the 200 years when only people with PhDs in philosophy actually
used the word. However, as often happens when words from other languages are adopted
into popular English, its plural changed to something that sounds more natural to an
Anglophone ear. In this case, the plural form schemata seems to be rapidly dying out in
favor of the simpler schemas. In fact, the three World Wide Web Consortium (W3C) schema
specifications all use the plural form schemas. I follow this convention in this book.

831Chapter 24 ✦ Schemas

permitted, you should consider Schematron. Schematron is based on XPath, which

allows it to make statements none of the other major schema languages can, such

as “An a element cannot have another a element as a descendant, even though an a
element can contain a strong element which can contain an a element if it itself is

not a descendant of an a element.” This isn’t a theoretical example. This is a real

restriction in XHTML that has to be made in the prose of the specification because

neither DTDs nor schemas are powerful enough to say it. What it means is that links

can’t nest; that is, a link cannot contain another link.

From this point forward, I will use the unqualified word schema to refer to the

W3C’s XML schema language; but please keep in mind that alternatives that are

equally deserving of the appellation do exist.

The W3C XML Schema Language
The W3C XML Schema language was created by the W3C XML Schema Working

Group based on many different submissions from a variety of companies and indi-

viduals. It is a very large specification designed to handle a broad range of use

cases. In fact, the schema specification is considerably larger and more complex

than the XML 1.0 specification. It is an open standard, free to be implemented by

any interested party. There are no known patent, trademark, or other intellectual

property restrictions that would prevent you from doing anything you might rea-

sonably want to do with schemas. (which unfortunately is not quite the same thing

as saying that there are no known patent, trademark, or other intellectual property

restrictions that would prevent you from doing anything you might reasonably want

to do). The U.S. Patent Office has been a little out of control lately, granting patents

left and right for inventions that really don’t deserve it, including a lot of software

and business processes. I would not be surprised to learn of an as yet unnoticed

patent that at least claims to cover some or all of the W3C XML Schema language.

At the time of this writing, (April 2001) the W3C XML Schema Working Group is
still revising and changing its schema language in preparation for an eventual 1.0
release. The language described here has changed radically in the past, and will
change again in the future. This chapter is based on the March 30, 2001 Proposed
Recommendation of the Schema specification. By the time you are reading this
book, this draft will probably have been superseded and the exact syntax of
schemas will have changed. If you do encounter something that doesn’t seem to
work quite right, you should compare the examples in this book against the most
current specification.

To make matters worse, no software yet implements all of the March 30, 2001
Proposed Recommendation. In fact, so far there is only one parser that supports
an incomplete subset of the W3C XML Schema language. Eventually, of course,
this should become less of an issue as the standard evolves toward its final incar-
nation and more vendors implement the full schema language described here.

Caution

832 Part V ✦ XML Applications

Hello Schemas
Let’s begin our exploration of schemas with the ubiquitous Hello World example.

Recall, once again, Listing 3-2 (greeting.xml) from Chapter 3. It is shown below:

Listing 3-2: greeting.xml

<?xml version=”1.0”?>
<GREETING>
Hello XML!
</GREETING>

This XML document contains a single element, GREETING. (Remember that <?xml
version=”1.0”?> is the XML declaration, not an element.) This element contains

parsed character data. A schema for this document has to declare the GREETING
element. It may declare other elements too, including ones that aren’t present in

this particular document, but it must at least declare the GREETING element.

The greeting schema
Listing 24-1 is a very simple schema for GREETING elements. By convention it would

be stored in a file with the three-letter extension .xsd such as greeting.xsd, but that’s

not required. It is an XML document so it has an XML declaration. It can be written

and saved in any text editor that knows how to save Unicode files. As always, you

can use a different character set if you declare it in an encoding declaration. Schema

documents are XML documents and have all the privileges and responsibilities of

other XML documents. They can even have DTDs, DOCTYPE declarations, and style

sheets if that seems useful to you, although in practice most do not.

Listing 24-1: greeting.xsd

<?xml version=”1.0”?>
<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

<xsd:element name=”GREETING” type=”xsd:string”/>

</xsd:schema>

833Chapter 24 ✦ Schemas

The root element of this and all other schemas is schema. This must be in the

http://www.w3.org/2001/XMLSchema namespace. Normally, this namespace is

bound to the prefix xsd or xs, although this can change as long as the URI stays the

same. The other common approach is to make this URI the default namespace,

although that generally requires a few extra attributes to help separate out the

names from the XML application the schema describes from the names of the

schema elements themselves. You’ll see this when namespaces are discussed at the

end of this chapter.

If there is one thing in this chapter that I’m afraid will change between the time I’m
writing these words and the time you’re reading them, it is this namespace URI. You
can find out the current namespace URI by consulting the official schema recom-
mendation at http://www.w3.org/TR/xmlschema-1/.

Elements are declared using xsd:element elements. Listing 24-1 includes a single

such element declaring the GREETING element. The name attribute specifies which

element is being declared, GREETING in this example. This xsd:element element

also has a type attribute whose value is the data type of the element. In this case

the type is xsd:string, a standard type for elements that can contain any amount

of text in any form but not child elements. It’s equivalent to a DTD content model of

#PCDATA. That is, this xsd:element says that a valid GREETING element must look

like this:

<GREETING>
various random text but no markup

</GREETING>

There’s no restriction on what text the element can contain. It can be zero or more

Unicode characters with any meaning. Thus a GREETING element can also look like

this:

<GREETING>Hello!</GREETING>

Or even this:

<GREETING></GREETING>

However, a valid GREETING element may not look like this:

<GREETING>
<SOME_TAG>various random text</SOME_TAG>
<SOME_EMPTY_TAG/>

</GREETING>

Caution

834 Part V ✦ XML Applications

Nor may it look like this:

<GREETING>
<GREETING>various random text</GREETING>

</GREETING>

Each GREETING element must consist of nothing more and nothing less than parsed

character data between an opening <GREETING> tag and a closing </GREETING> tag.

Validating the document against the schema
For a document to be validated against a DTD, the document itself must contain a

document type declaration pointing to the DTD it should be validated against. You

cannot easily receive a document from a third party and validate it against your

DTD. You have to validate it against the DTD that the document’s author specified.

This is excessively limiting.

For example, imagine you’re running an e-commerce business that accepts orders

for products using SOAP or XML-RPC. Each order comes to you over the Internet as

an XML document. Before accepting that order the first thing you want to do is

check that it’s valid against a DTD you’ve defined to make sure that it contains all

the necessary information. However, if DTDs are all you have to validate with, then

there’s nothing to prevent a hacker from sending you a document whose DOCTYPE
declaration points to a different DTD. Then your system may report that the docu-

ment is valid according to the hacked DTD, even though it would be invalid when

compared to the correct DTD. If your system accepts the invalid document, it could

introduce corrupt data that crashes the system or lets the hacker order goods they

haven’t provided payment for, all because the person authoring the document got to

choose which DTD to validate against rather than the person validating the docu-

ment.

Schemas are more flexible. The schema specification specifically allows for a vari-

ety of different means for associating documents with schemas. For instance, one

possibility is that both the name of the document to validate and the name of the

schema to validate it against could be passed to the validator program on the com-

mand line like this:

C:\>validator greeting.xml greeting.xsd

Parsers could also let you choose the schema by setting a SAX property or environ-

mental variable. Many other schemes are possible. The schema specification does

not mandate any one way of doing this. However, it does define one particular way

to associate a document with a schema. As with DOCTYPE declarations and DTDs,

this requires modifying the instance document to point to the schema. The differ-

ence is that with schemas, unlike with DTDs, this is not the only way to do it. Parser

vendors are free to develop other mechanisms if they want to.

835Chapter 24 ✦ Schemas

To attach a schema to a document, add an xsi:noNamespaceSchemaLocation
attribute to the document’s root element. (You can also add it to the first element in

the document that the schema applies to, but most of the time adding it to the root

element is simplest.) The xsi prefix is mapped to the http://www.w3.org/2001/
XMLSchema-instance URI. As always, the prefix can change as long as the URI

stays the same. Listing 24-2 demonstrates.

I also worry that the http://www.w3.org/2001/XMLSchema-instance
namespace URI will change between the time I’m writing these words and
the time you’re reading them. You can find out the current namespace URI by
consulting the official schema recommendation at http://www.w3.org/TR/
xmlschema-1/.

Listing 24-2: valid_greeting.xml

<?xml version=”1.0”?>
<GREETING xsi:noNamespaceSchemaLocation=”greeting.xsd”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”>

Hello XML!
</GREETING>

You can now run the document through any parser that supports schema valida-

tion. One such parser is Xerces Java 1.3.0 from the XML Apache Project. In fact, you

can use the same SAXCount program you learned about in Chapter 8 to validate

against schemas as well as DTDs. When you set the -v flag, SAXCount validates the

documents it parses against a DTD if it sees a DOCTYPE declaration and against a

schema if it finds an xsi:noNamespaceSchemaLocation attribute. Assuming

SAXCount finds no errors, it simply returns the amount of time that was required to

parse the document:

C:\XML>java sax.SAXCount -v valid_greeting.xml
valid_greeting.xml: 701 ms (1 elems, 1 attrs, 0 spaces, 12
chars)

This chapter uses Xerces Java 1.4, which provides partial support for the March 30,
2001 Proposed Recommendation of XML Schema. At the time of this writing
Xerces C++ has no schema support at all. Furthermore, Earlier versions of
Xerces Java support earlier drafts of the W3C XML Schema language that use
different namespace URIs. In particular, they support the http://www.w3.org/
2000/10/XMLSchema and http://www.w3.org/1999/XMLSchema name-
spaces. It’s possible that by the time you’re reading this, the schema specification
and namespace URI will have changed again, and a newer version of Xerces will
only support the newer version of the language. You can download the latest ver-
sion of Xerces from http://xml.apache.org/xerces-j/.

Note

Caution

836 Part V ✦ XML Applications

Now let’s suppose you have a document that’s not valid, such as Listing 24-3. This

document uses a P element that hasn’t been declared in the schema.

Listing 24-3: invalid_greeting.xml

<?xml version=”1.0”?>
<GREETING
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:noNamespaceSchemaLocation=”greeting.xsd”>
<P>Hello XML!</P>

</GREETING>

Running it through sax.SAXCount, you now get this output showing you what the

problems are:

C:\XML>java sax.SAXCount -v invalid_greeting.xml
[Error] invalid_greeting.xml:5:6: Element type “P” must be
declared.
[Error] invalid_greeting.xml:6:13: Datatype error: In element
‘GREETING’ : Can not have element children within a simple type
content.
invalid_greeting.xml: 1292 ms (2 elems, 2 attrs, 0 spaces, 14
chars)

The validator found two problems. The first is that the P element is used but is not,

itself, declared. The second is that the GREETING element is declared to have type

xsd:string, one of several “simple” types that we discuss later in this chapter that

cannot have any child elements. However, in this case, the GREETING element does

contain a child element: the P element.

Complex Types
The W3C XML Schema language divides elements into complex and simple types. A

simple type element is one like GREETING that can only contain text and does not

have any attributes. It cannot contain any child elements. It may, however, be more

limited in the kind of text it can contain. For instance, a schema can say that a sim-

ple element contains an integer, a date, or a decimal value between 3.76 and 98.24.

Complex elements can have attributes and can have child elements.

Most documents need a mix of both complex and simple elements. For example,

consider Listing 24-4. This document describes the song Yes I Am by Melissa

Etheridge. The root element is SONG. This element has a number of child elements

giving the title of the song, the composer, the producer, the publisher, the duration

837Chapter 24 ✦ Schemas

of the song, the year it was released, the price, and the artist who sang it. Except for

SONG itself, these are all simple elements that can have type xsd:string. You might

see documents like this used in CD databases, MP3 players, Napster clients, or any-

thing else that needs to store information about songs.

Listing 24-4: yesiam.xml

<?xml version=”1.0”?>
<SONG xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xsi:noNamespaceSchemaLocation=”song.xsd”>
<TITLE>Yes I Am</TITLE>
<COMPOSER>Melissa Etheridge</COMPOSER>
<PRODUCER>Hugh Padgham</PRODUCER>
<PUBLISHER>Island Records</PUBLISHER>
<LENGTH>4:24</LENGTH>
<YEAR>1993</YEAR>
<ARTIST>Melissa Etheridge</ARTIST>
<PRICE>$1.25</PRICE>

</SONG>

Now you need a schema that describes this and all other reasonable song docu-

ments. Listing 24-5 is the first attempt at such a schema.

Listing 24-5: song.xsd

<?xml version=”1.0”?>
<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

<xsd:element name=”SONG” type=”SongType”/>

<xsd:complexType name=”SongType”>
<xsd:sequence>
<xsd:element name=”TITLE” type=”xsd:string”/>
<xsd:element name=”COMPOSER” type=”xsd:string”/>
<xsd:element name=”PRODUCER” type=”xsd:string”/>
<xsd:element name=”PUBLISHER” type=”xsd:string”/>
<xsd:element name=”LENGTH” type=”xsd:string”/>
<xsd:element name=”YEAR” type=”xsd:string”/>
<xsd:element name=”ARTIST” type=”xsd:string”/>
<xsd:element name=”PRICE” type=”xsd:string”/>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

838 Part V ✦ XML Applications

The root element of this schema is once again xsd:schema, and once again the prefix

xsd is mapped to the namespace URI http://www.w3.org/2001/XMLSchema. This

will be the case for all schemas in this chapter, and indeed all schemas that you write.

I won’t note it again.

This schema declares a single top-level element. That is, there is exactly one ele-

ment declared in an xsd:element declaration that is an immediate child of the root

xsd:schema element. This is the SONG element. Only top-level elements can be the

root elements of documents described by this schema, though in general they do

not have to be the root element.

The SONG element is declared to have type SongType. The W3C Schema Working

Group wasn’t prescient. They built a lot of common types into the language, but

they didn’t know that I was going to need a song type, and they didn’t provide one.

Indeed, they could not reasonably have been expected to predict and to provide for

the numerous types that schema designers around the world were ever going to

need. Instead, they provided facilities to allow users to define their own types.

SongType is one such user-defined type. In fact, you can tell it’s not a built-in type

because it doesn’t begin with the prefix xsd. All built-in types are in the

http://www.w3.org/2001/XMLSchema namespace.

The xsd:complexType element defines a new type. The name attribute of this ele-

ment names the type being defined. Here that name is SongType, which matches

the type previously assigned to the SONG element. Forward references (for example,

xsd:element using the SongType type before it’s been defined) are perfectly

acceptable in schemas. Circular references are okay, too. Type A can depend on

type B which depends on type A. Schema processors sort all this out without any

difficulty.

The contents of the xsd:complexType element specify what content a SongType
element must contain. In this example, the schema says that every SongType ele-

ment contains a sequence of eight child elements: TITLE, COMPOSER, PRODUCER,

PUBLISHER, LENGTH, YEAR, PRICE, and ARTIST. Each of these is declared to have

the built-in type xsd:string. Each SongType element must contain exactly one of

each of these in exactly that order. The only other content it may contain is insignif-

icant white space between the tags.

minOccurs and maxOccurs
You can validate Listing 24-4, yesiam.xml, against the song schema, and it does,

indeed, prove valid. Are you done? Is song.xsd now an adequate description of legal

song documents? Suppose you instead wanted to validate Listing 24-6, a song docu-

ment that describes Hot Cop by the Village People. Could you do it with the existing

schema?

839Chapter 24 ✦ Schemas

Listing 24-6: hotcop.xml

<?xml version=”1.0”?>
<SONG xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xsi:noNamespaceSchemaLocation=”song.xsd”>
<TITLE>Hot Cop</TITLE>
<COMPOSER>Jacques Morali</COMPOSER>
<COMPOSER>Henri Belolo</COMPOSER>
<COMPOSER>Victor Willis</COMPOSER>
<PRODUCER>Jacques Morali</PRODUCER>
<PUBLISHER>PolyGram Records</PUBLISHER>
<LENGTH>6:20</LENGTH>
<YEAR>1978</YEAR>
<ARTIST>Village People</ARTIST>

</SONG>

The answer is No, you cannot. The problem is that this song was a collaboration

between three different composers and the existing schema only allows a single

composer. Furthermore, the price is missing. If you looked at other songs, you’d

find similar problems with the other child elements. Under Pressure has two artists,

David Bowie and Queen. We Are the World has dozens of artists. Many songs have

multiple producers. A garage band without a publisher might record a song and

post it on Napster in the hope of finding one.

The song schema needs to be adjusted to allow for varying numbers of particular

elements. This is done by attaching minOccurs and maxOccurs attributes to each

xsd:element element. These attributes specify the minimum and maximum num-

ber of instances of the element that may appear at that point in the document. The

value of each attribute is an integer greater than or equal to zero. The maxOccurs
attribute may also have the value unbounded to indicate that an unlimited number

of the particular element may appear. Listing 24-7 demonstrates.

Listing 24-7: minOccurs and maxOccurs

<?xml version=”1.0”?>
<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

<xsd:element name=”SONG” type=”SongType”/>

<xsd:complexType name=”SongType”>
<xsd:sequence>
<xsd:element name=”TITLE” type=”xsd:string”

minOccurs=”1” maxOccurs=”1”/>
<xsd:element name=”COMPOSER” type=”xsd:string”

Continued

840 Part V ✦ XML Applications

Listing 24-7 (continued)

minOccurs=”1” maxOccurs=”unbounded”/>
<xsd:element name=”PRODUCER” type=”xsd:string”

minOccurs=”0” maxOccurs=”unbounded”/>
<xsd:element name=”PUBLISHER” type=”xsd:string”

minOccurs=”0” maxOccurs=”1”/>
<xsd:element name=”LENGTH” type=”xsd:string”

minOccurs=”1” maxOccurs=”1”/>
<xsd:element name=”YEAR” type=”xsd:string”

minOccurs=”1” maxOccurs=”1”/>
<xsd:element name=”ARTIST” type=”xsd:string”

minOccurs=”1” maxOccurs=”unbounded”/>
<xsd:element name=”PRICE” type=”xsd:string”

minOccurs=”0” maxOccurs=”1”/>
</xsd:sequence>

</xsd:complexType>

</xsd:schema>

This schema says that every SongType element must have, in order,

✦ Exactly one TITLE (minOccurs=”1” maxOccurs=”1”)

✦ At least one, and possibly a great many, COMPOSERs (minOccurs=”1”
maxOccurs=”unbounded”)

✦ Any number of PRODUCERs, although possibly no producer at all

(minOccurs=”0” maxOccurs=”unbounded”)

✦ Either one PUBLISHER or no PUBLISHER at all (minOccurs=”0”
maxOccurs=”1”)

✦ Exactly one LENGTH (minOccurs=”1” maxOccurs=”1”)

✦ Exactly one YEAR (minOccurs=”1” maxOccurs=”1”)

✦ At least one ARTIST, possibly more (minOccurs=”1”
maxOccurs=”unbounded”)

✦ An optional PRICE, (minOccurs=”0” maxOccurs=”1”)

This is much more flexible and easier to use than the limited ?, *, and + that are

available in DTDs. It is very straightforward to say, for example, that you want

between 4 and 7 of a given element. Just set minOccurs to 4 and maxOccurs to 7.

If minOccurs and maxOccurs are not present, then the default value of each is 1.

Taking advantage of this, the song schema can be written a little more compactly as

shown in Listing 24-8.

841Chapter 24 ✦ Schemas

Listing 24-8: Taking advantage of the default values of
minOccurs and maxOccurs

<?xml version=”1.0”?>
<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

<xsd:element name=”SONG” type=”SongType”/>

<xsd:complexType name=”SongType”>
<xsd:sequence>
<xsd:element name=”TITLE” type=”xsd:string”/>
<xsd:element name=”COMPOSER” type=”xsd:string”

maxOccurs=”unbounded”/>
<xsd:element name=”PRODUCER” type=”xsd:string”

minOccurs=”0” maxOccurs=”unbounded”/>
<xsd:element name=”PUBLISHER” type=”xsd:string”

minOccurs=”0”/>
<xsd:element name=”LENGTH” type=”xsd:string”/>
<xsd:element name=”YEAR” type=”xsd:string”/>
<xsd:element name=”ARTIST” type=”xsd:string”

maxOccurs=”unbounded”/>
<xsd:element name=”PRICE” type=”xsd:string”

minOccurs=”0”/>
</xsd:sequence>

</xsd:complexType>

</xsd:schema>

Element content
The examples so far have all been relatively flat. That is, a SONG element contained

other elements; but those elements only contained parsed character data, not child

elements of their own. Suppose, however, that some child elements do contain

other elements, as in Listing 24-9. Here the COMPOSER and PRODUCER elements each

contain NAME elements.

Listing 24-9: A deeper hierarchy

<?xml version=”1.0”?>
<SONG xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xsi:noNamespaceSchemaLocation=”24-10.xsd”>
<TITLE>Hot Cop</TITLE>
<COMPOSER>

Continued

842 Part V ✦ XML Applications

Listing 24-9 (continued)

<NAME>Jacques Morali</NAME>
</COMPOSER>
<COMPOSER>
<NAME>Henri Belolo</NAME>

</COMPOSER>
<COMPOSER>
<NAME>Victor Willis</NAME>

</COMPOSER>
<PRODUCER>
<NAME>Jacques Morali</NAME>

</PRODUCER>
<PUBLISHER>PolyGram Records</PUBLISHER>
<LENGTH>6:20</LENGTH>
<YEAR>1978</YEAR>
<ARTIST>Village People</ARTIST>

</SONG>

Because the COMPOSER and PRODUCER elements now have complex content, you can

no longer use one of the built-in types such as xsd:string to declare them. Instead

you have to define a new ComposerType and ProducerType using top-level

xsd:complexType elements. Listing 24-10 demonstrates.

Listing 24-10: Defining separate ComposerType and
ProducerType types

<?xml version=”1.0”?>
<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

<xsd:element name=”SONG” type=”SongType”/>

<xsd:complexType name=”ComposerType”>
<xsd:sequence>
<xsd:element name=”NAME” type=”xsd:string”/>

</xsd:sequence>
</xsd:complexType>

<xsd:complexType name=”ProducerType”>
<xsd:sequence>
<xsd:element name=”NAME” type=”xsd:string”/>

</xsd:sequence>
</xsd:complexType>

<xsd:complexType name=”SongType”>
<xsd:sequence>
<xsd:element name=”TITLE” type=”xsd:string”/>

843Chapter 24 ✦ Schemas

<xsd:element name=”COMPOSER” type=”ComposerType”
maxOccurs=”unbounded”/>

<xsd:element name=”PRODUCER” type=”ProducerType”
minOccurs=”0” maxOccurs=”unbounded”/>

<xsd:element name=”PUBLISHER” type=”xsd:string”
minOccurs=”0”/>

<xsd:element name=”LENGTH” type=”xsd:string”/>
<xsd:element name=”YEAR” type=”xsd:string”/>
<xsd:element name=”ARTIST” type=”xsd:string”

maxOccurs=”unbounded”/>
<xsd:element name=”PRICE” type=”xsd:string”

minOccurs=”0”/>
</xsd:sequence>

</xsd:complexType>

</xsd:schema>

Sharing content models
You may have noticed that PRODUCER and COMPOSER are very similar. Each contains

a single NAME child element and nothing else. In a DTD you’d take advantage of this

shared content model via a parameter entity reference. In a schema, it’s much eas-

ier. Simply given them the same type. While you could declare that the PRODUCER
has ComposerType or vice versa, it’s better to declare that both have a more

generic PersonType. Listing 24-11 demonstrates.

Listing 24-11: Using a single PersonType for both COMPOSER
and PRODUCER

<?xml version=”1.0”?>
<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

<xsd:element name=”SONG” type=”SongType”/>

<xsd:complexType name=”PersonType”>
<xsd:sequence>
<xsd:element name=”NAME” type=”xsd:string”/>

</xsd:sequence>
</xsd:complexType>

<xsd:complexType name=”SongType”>
<xsd:sequence>
<xsd:element name=”TITLE” type=”xsd:string”/>
<xsd:element name=”COMPOSER” type=”PersonType”

maxOccurs=”unbounded”/>

Continued

844 Part V ✦ XML Applications

Listing 24-11 (continued)

<xsd:element name=”PRODUCER” type=”PersonType”
minOccurs=”0” maxOccurs=”unbounded”/>

<xsd:element name=”PUBLISHER” type=”xsd:string”
minOccurs=”0”/>

<xsd:element name=”LENGTH” type=”xsd:string”/>
<xsd:element name=”YEAR” type=”xsd:string”/>
<xsd:element name=”ARTIST” type=”xsd:string”

maxOccurs=”unbounded”/>
<xsd:element name=”PRICE” type=”xsd:string”

minOccurs=”0”/>
</xsd:sequence>

</xsd:complexType>

</xsd:schema>

Anonymous types
Suppose you wanted to divide the NAME elements into separate GIVEN and FAMILY
elements like this:

<NAME>
<GIVEN>Victor</GIVEN>
<FAMILY>Willis</FAMILY>

</NAME>
<NAME>
<GIVEN>Jacques</GIVEN>
<FAMILY>Morali</FAMILY>

</NAME>

To declare this, you could use an xsd:complexType element to define a new

NameType element like this:

<xsd:complexType name=”NameType”>
<xsd:sequence>
<xsd:element name=”GIVEN” type=”xsd:string”/>
<xsd:element name=”FAMILY” type=”xsd:string”/>

</xsd:sequence>
</xsd:complexType>

Then the PersonType would be defined like this:

<xsd:complexType name=”PersonType”>
<xsd:sequence>
<xsd:element name=”NAME” type=”NameType”/>

</xsd:sequence>
</xsd:complexType>

845Chapter 24 ✦ Schemas

However, the NAME element is only used inside PersonType elements. Perhaps it

shouldn’t be a top-level definition. For instance, you may not want to allow NAME
elements to be used as root elements, or to be children of things that aren’t

PersonType elements. You can prevent this by defining a name with an anonymous
type. To do this, instead of assigning the NAME element a type with a type attribute

on the corresponding xsd:element element, you give it an xsd:complexType child

element to define its type. Listing 24-12 demonstrates.

Listing 24-12: Anonymous types

<?xml version=”1.0”?>
<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

<xsd:element name=”SONG” type=”SongType”/>

<xsd:complexType name=”PersonType”>
<xsd:sequence>
<xsd:element name=”NAME”>
<xsd:complexType>
<xsd:sequence>
<xsd:element name=”GIVEN” type=”xsd:string”/>
<xsd:element name=”FAMILY” type=”xsd:string”/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:sequence>

</xsd:complexType>

<xsd:complexType name=”SongType”>
<xsd:sequence>
<xsd:element name=”TITLE” type=”xsd:string”/>
<xsd:element name=”COMPOSER” type=”PersonType”

maxOccurs=”unbounded”/>
<xsd:element name=”PRODUCER” type=”PersonType”

minOccurs=”0” maxOccurs=”unbounded”/>
<xsd:element name=”PUBLISHER” type=”xsd:string”

minOccurs=”0”/>
<xsd:element name=”LENGTH” type=”xsd:string”/>
<xsd:element name=”YEAR” type=”xsd:string”/>
<xsd:element name=”ARTIST” type=”xsd:string”

maxOccurs=”unbounded”/>
<xsd:element name=”PRICE” type=”xsd:string”

minOccurs=”0”/>
</xsd:sequence>

</xsd:complexType>

</xsd:schema>

846 Part V ✦ XML Applications

Defining the element types inside the xsd:element elements that are themselves

children of xsd:complexType elements is a very powerful technique. Among other

things, it enables you to give elements with the same name different types when

used in different elements. For example, you can say that the name of a PERSON con-

tains GIVEN and FAMILY child elements while the NAME of a MOVIE contains an

xsd:string and the NAME of a VARIABLE contains a string containing only alphanu-

meric characters from the ASCII character set.

Mixed content
Schemas offer much greater control over mixed content than DTDs do. In particu-

lar, schemas let you enforce the order and number of elements appearing in mixed

content. For example, suppose you wanted to allow extra text to be mixed in with

the names to provide middle initials, titles, and the like as shown in Listing 24-13.

The format used here is purely for illustrative purposes. In practice, I’d recommend
that you make the middle names and titles separate elements as well.

Listing 24-13: Mixed content

<?xml version=”1.0”?>
<SONG xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xsi:noNamespaceSchemaLocation=”24-14.xsd”>
<TITLE>Hot Cop</TITLE>
<COMPOSER>
<NAME>
Mr. <GIVEN>Jacques</GIVEN> <FAMILY>Morali</FAMILY> Esq.

</NAME>
</COMPOSER>
<COMPOSER>
<NAME>
Mr. <GIVEN>Henri</GIVEN> L. <FAMILY>Belolo</FAMILY>, M.D.

</NAME>
</COMPOSER>
<COMPOSER>
<NAME>
Mr. <GIVEN>Victor</GIVEN> C. <FAMILY>Willis</FAMILY>

</NAME>
</COMPOSER>
<PRODUCER>
<NAME>
Mr. <GIVEN>Jacques</GIVEN> S. <FAMILY>Morali</FAMILY>

</NAME>
</PRODUCER>
<PUBLISHER>PolyGram Records</PUBLISHER>
<LENGTH>6:20</LENGTH>
<YEAR>1978</YEAR>
<ARTIST>Village People</ARTIST>

</SONG>

Caution

847Chapter 24 ✦ Schemas

It’s very easy to declare that an element has mixed content in schemas. First, set up

the xsd:complexType exactly as you would if the element only contained child ele-

ments. Then add a mixed attribute to it with the value true. Listing 24-14 demon-

strates. It is almost identical to Listing 24-12 except for the addition of the

mixed=”true” attribute.

Listing 24-14: Declaring mixed content in a schema

<?xml version=”1.0”?>
<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

<xsd:element name=”SONG” type=”SongType”/>

<xsd:complexType name=”PersonType”>
<xsd:sequence>

<xsd:element name=”NAME”>
<xsd:complexType mixed=”true”>

<xsd:sequence>
<xsd:element name=”GIVEN” type=”xsd:string”/>
<xsd:element name=”FAMILY” type=”xsd:string”/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:sequence>

</xsd:complexType>

<xsd:complexType name=”SongType”>
<xsd:sequence>

<xsd:element name=”TITLE” type=”xsd:string”/>
<xsd:element name=”COMPOSER” type=”PersonType”

maxOccurs=”unbounded”/>
<xsd:element name=”PRODUCER” type=”PersonType”

minOccurs=”0” maxOccurs=”unbounded”/>
<xsd:element name=”PUBLISHER” type=”xsd:string”

minOccurs=”0”/>
<xsd:element name=”LENGTH” type=”xsd:string”/>
<xsd:element name=”YEAR” type=”xsd:string”/>
<xsd:element name=”ARTIST” type=”xsd:string”/>

maxOccurs=”unbounded”/>
<xsd:element name=”PRICE” type=”xsd:string” minOccurs=”0”/>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

848 Part V ✦ XML Applications

Grouping
So far, all the schemas you’ve seen have held that order mattered; for example, that

it would be wrong to put the COMPOSER before the TITLE or the PRODUCER after the

ARTIST. Given these schemas, the document shown below in Listing 24-15 is clearly

invalid. But should it be? Element order often does matter in narrative documents

such as books and Web pages. However, it’s not nearly as important in data-centric

documents such as the examples of this chapter. Do you really care whether the

TITLE comes first or not, as long as there is a TITLE? After all, if the document’s

going to be shown to a human being, it will probably first be transformed with an

XSLT style sheet that can easily place the contents in any order it likes.

Listing 24-15: A song document that places the elements in a
different order

<?xml version=”1.0”?>
<SONG xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xsi:noNamespaceSchemaLocation=”song.xsd”>
<ARTIST>Village People</ARTIST>
<TITLE>Hot Cop</TITLE>
<COMPOSER>
<NAME><GIVEN>Jacques</GIVEN> <FAMILY>Morali</FAMILY></NAME>

</COMPOSER>
<PUBLISHER>PolyGram Records</PUBLISHER>
<COMPOSER>
<NAME><FAMILY>Belolo</FAMILY> <GIVEN>Henri</GIVEN></NAME>

</COMPOSER>
<YEAR>1978</YEAR>
<COMPOSER>
<NAME><FAMILY>Willis</FAMILY> <GIVEN>Victor</GIVEN></NAME>

</COMPOSER>
<PRODUCER>
<NAME><GIVEN>Jacques</GIVEN> <FAMILY>Morali</FAMILY></NAME>

</PRODUCER>
<PRICE>$1.25</PRICE>

</SONG>

The W3C XML Schema language provides three grouping constructs that you can

use to specify whether and how ordering of individual elements is important.

These are:

✦ The xsd:all group requires that each element in the group must occur at

most once, but that order is not important.

✦ The xsd:choice group specifies that any one element from the group should

appear. It can also be used to say that between N and M elements from the

group should appear in any order.

849Chapter 24 ✦ Schemas

✦ The xsd:sequence group requires that each element in the group appear

exactly once, in the specified order.

Unfortunately, these constructs are not everything you might desire. In particular,

you can’t specify constraints such as those that would be required to really handle

Listing 24-14. In particular, you can’t specify that you want a SONG to have exactly

one TITLE, one or more COMPOSERs, zero or more PRODUCERs, one or more

ARTISTs, but that you don’t care in what order the individual elements occur.

The xsd:all Group
You can specify that you want each NAME element to have exactly one GIVEN child

and one FAMILY child, but that you don’t care what order they appear in. The

xsd:all group accomplishes this. For example,

<xsd:complexType name=”PersonType”>
<xsd:sequence>
<xsd:element name=”NAME”>
<xsd:complexType>
<xsd:all>
<xsd:element name=”GIVEN” type=”xsd:string”

minOccurs=”1” maxOccurs=”1”/>
<xsd:element name=”FAMILY” type=”xsd:string”

minOccurs=”1” maxOccurs=”1”/>
</xsd:all>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
</xsd:complexType>

The extension to handle what you want for Listing 24-15 seems obvious. It would

look like this:

<xsd:complexType name=”SongType”>
<xsd:all>
<xsd:element name=”TITLE” type=”xsd:string”

minOccurs=”1” maxOccurs=”1”/>
<xsd:element name=”COMPOSER” type=”PersonType”

minOccurs=”1” maxOccurs=”unbounded”/>
<xsd:element name=”PRODUCER” type=”PersonType”

minOccurs=”0” maxOccurs=”unbounded”/>
<xsd:element name=”PUBLISHER” type=”xsd:string”

minOccurs=”0” maxOccurs=”1”/>
<xsd:element name=”LENGTH” type=”xsd:string”

minOccurs=”1” maxOccurs=”1”/>
<xsd:element name=”YEAR” type=”xsd:string”

minOccurs=”1” maxOccurs=”1”/>
<xsd:element name=”ARTIST” type=”xsd:string”

minOccurs=”1” maxOccurs=”unbounded”/>
<xsd:element name=”PRICE” type=”xsd:string” minOccurs=”0”/>

</xsd:all>
</xsd:complexType>

850 Part V ✦ XML Applications

Unfortunately, the W3C XML Schema language restricts the use of minOccurs and

maxOccurs in xsd:all elements. In particular, each one’s value must be 0 or 1. You

cannot set it to 4 or 7 or unbounded. Therefore the above type definition is invalid.

Furthermore, xsd:all can only contain individual element declarations. It cannot

contain xsd:choice or xsd:sequence elements. xsd:all offers somewhat more

expressivity than DTDs do, but probably not as much as you want.

Choices
The xsd:choice element is the schema equivalent of the | in DTDs. When

xsd:element elements are combined inside an xsd:choice, then exactly one of

those elements must appear in instance documents. For example, the choice in this

xsd:complexType requires either a PRODUCER or a COMPOSER, but not both.

<xsd:complexType name=”SongType”>
<xsd:sequence>
<xsd:element name=”TITLE” type=”xsd:string”/>
<xsd:choice>
<xsd:element name=”COMPOSER” type=”PersonType”/>
<xsd:element name=”PRODUCER” type=”PersonType”/>

</xsd:choice>
<xsd:element name=”PUBLISHER” type=”xsd:string”

minOccurs=”0”/>
<xsd:element name=”LENGTH” type=”xsd:string”/>
<xsd:element name=”YEAR” type=”xsd:string”/>
<xsd:element name=”ARTIST” type=”xsd:string”

maxOccurs=”unbounded”/>
<xsd:element name=”PRICE” type=”xsd:string” minOccurs=”0”/>

</xsd:sequence>
</xsd:complexType>

The xsd:choice element itself can have minOccurs and maxOccurs attributes that

establish exactly how many selections may be made from the choice. For example,

setting minOccurs to 1 and maxOccurs to 6 would indicate that between one and

six elements listed in the xsd:choice could appear. Each of these could be any of

the elements in the xsd:choice. For example, you could have six different ele-

ments, three of the same element and three of another, or up to six of the same ele-

ment. This next xsd:choice allows for any number of artists, composers, and

producers. However, in order to require that there be at least one ARTIST element

and at least one COMPOSER element, rather than allowing all spaces to be filled by

PRODUCER elements, it’s necessary to place xsd:element declarations for these

two outside the choice. This has the unfortunate side-effect of locking in more

order than is really needed.

<xsd:complexType name=”SongType”>
<xsd:sequence>
<xsd:element name=”TITLE” type=”xsd:string”/>

851Chapter 24 ✦ Schemas

<xsd:element name=”COMPOSER” type=”PersonType”/>
<xsd:choice minOccurs=”0” maxOccurs=”unbounded”>
<xsd:element name=”PRODUCER” type=”PersonType”/>
<xsd:element name=”COMPOSER” type=”PersonType”/>
<xsd:element name=”ARTIST” type=”xsd:string”/>

</xsd:choice>
<xsd:element name=”ARTIST” type=”xsd:string”/>
<xsd:element name=”PUBLISHER” type=”xsd:string”

minOccurs=”0”/>
<xsd:element name=”LENGTH” type=”xsd:string”/>
<xsd:element name=”YEAR” type=”xsd:string”/>
<xsd:element name=”PRICE” type=”xsd:string” minOccurs=”0”/>

</xsd:sequence>
</xsd:complexType>

Sequences
An xsd:sequence element requires each member of the sequence to appear in the

same order in the instance document as in the xsd:sequence element. I’ve used

this frequently as the basic group for xsd:complexType elements in this chapter so

far. The number of times each element is allowed to appear can be controlled by

the xsd:element’s minOccurs and maxOccurs attributes. You can add minOccurs
and maxOccurs attributes to the xsd:sequence element to specify the number of

times the sequence should repeat.

Simple Types
Until now I’ve focused on writing schemas that validate the element structures in

an XML document. However, there’s also a lot of non-XML structure in the song doc-

uments. The YEAR element isn’t just a string. It’s an integer, and maybe not just any

integer either, but a positive integer with four digits. The PRICE element is some

sort of money. The LENGTH element is a duration of time. DTDs have absolutely

nothing to say about such non-XML structures that are inside the parsed character

data content of elements and attributes. Schemas, however, do let you make all

sorts of statements about what forms the text inside elements may take and what it

means. Schemas provide much more sophisticated semantics for documents than

DTDs do.

Listing 24-16 is a new schema for song documents. It’s based on Listing 24-8, but

read closely and you should notice that a few things have changed.

852 Part V ✦ XML Applications

Listing 24-16: A schema with simple data types

<?xml version=”1.0”?>
<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

<xsd:element name=”SONG” type=”SongType”/>

<xsd:complexType name=”SongType”>
<xsd:sequence>
<xsd:element name=”TITLE” type=”xsd:string”/>
<xsd:element name=”COMPOSER” type=”xsd:string”

maxOccurs=”unbounded”/>
<xsd:element name=”PRODUCER” type=”xsd:string”

minOccurs=”0” maxOccurs=”unbounded”/>
<xsd:element name=”PUBLISHER” type=”xsd:string”

minOccurs=”0”/>
<xsd:element name=”LENGTH” type=”xsd:duration”/>
<xsd:element name=”YEAR” type=”xsd:gYear”/>
<xsd:element name=”ARTIST” type=”xsd:string”

maxOccurs=”unbounded”/>
<xsd:element name=”PRICE” type=”xsd:string”

minOccurs=”0”/>
</xsd:sequence>

</xsd:complexType>

</xsd:schema>

Did you spot the changes? The values of the type attributes of the LENGTH and

YEAR declarations are no longer xsd:string. Instead, LENGTH has the type

xsd:duration and YEAR has the type xsd:gYear. These declarations say that it’s

no longer okay for the YEAR and LENGTH elements to contain just any old string of

text. Instead they must contain strings in particular formats. In particular, the YEAR
must contain a year in the Gregorian calendar; and the LENGTH element must con-

tain a recognizable length of time. When you check a document against this

schema, the validator will check that these elements contain the proper data. It’s

not just looking at the elements. It’s looking at the content inside the elements!

Let’s actually validate hotcop.xml against this schema and see what we get:

C:schemas\examples>java sax.SAX2Count -v hotcop.xml
[Error] hotcop.xml:10:25: Datatype error:
java.text.ParseException: Illegal or misplaced separator.

That’s unexpected! Fortunately SAX2Count tells us where the error happened, on

line 10 and column 25. Here’s Line 10:

<LENGTH>6:20</LENGTH>

The problem is that 6:20 is not in the proper format for time durations, at least

not the format that the W3C XML Schema language uses and that schema validators

853Chapter 24 ✦ Schemas

know how to check. Schema validators expect that time types are expressed in

the format defined in ISO standard 8601, Representations of dates and times
(http://www.iso.ch/markete/8601.pdf). This standard says that time dura-

tions should have the form PnYnMnDTnHnMdS, where n is an integer and d is a

decimal number. P stands for “Period”. nY gives the number of years; the first nM
gives the number of months; and nD gives the number of days. T separates the date

from the time. Following the T, nH gives the number of hours; the second nM gives

the number of minutes; and dS gives the number of seconds. If d has a fraction part,

then the duration can be specified to an arbitrary level of precision.

In this format, a duration of 6 minutes and 20 seconds should be written as

P0Y0M0DT0H6M20S. If you prefer, the zero pieces can be left out, so you can write

this more compactly as PT6M20S. Listing 24-17 shows the fixed version of

hotcop.xml with the LENGTH in the right format.

Listing 24-17: fixed hotcop.xml

<?xml version=”1.0”?>
<SONG xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xsi:noNamespaceSchemaLocation=”24-16.xsd”>
<TITLE>Hot Cop</TITLE>
<COMPOSER>Jacques Morali</COMPOSER>
<COMPOSER>Henri Belolo</COMPOSER>
<COMPOSER>Victor Willis</COMPOSER>
<PRODUCER>Jacques Morali</PRODUCER>
<PUBLISHER>PolyGram Records</PUBLISHER>
<LENGTH>P0YT6M20S</LENGTH>
<YEAR>1978</YEAR>
<ARTIST>Village People</ARTIST>

</SONG>

Admittedly the ISO 8601 format for time durations is a little obtuse, if precise. You

may well be asking whether there’s a type that you can specify for the LENGTH that

would make lengths such as 6:20 and 4:24 legal. In fact, there’s no such type built-in

to the W3C XML Schema language; but you can define one yourself. You’ll learn how

to do that soon, but first let’s explore some of the other data types that are built-in

to the W3C XML Schema language.

There are 44 built-in simple types in the W3C XML Schema language. These can be

unofficially divided into seven groups:

✦ Numeric types

✦ Time types

✦ XML types

✦ String types

854 Part V ✦ XML Applications

✦ The boolean type

✦ The URI type

✦ The binary types

Numeric data types
The most obvious data types, and the ones most familiar to programmers, are the

numeric data types. Among computer scientists, there’s quite a bit of disagreement

about how numbers should be represented in computer systems. The W3C XML

Schema language tries to make everyone happy by providing almost every numeric

type imaginable including:

✦ Integer and floating point numbers

✦ Finite size numbers similar to those in Java and C and infinitely precise, unlim-

ited-size numbers similar to those in Eiffel and Java’s java.math package

✦ Signed and unsigned numbers

You’ll probably only use a subset of these. For instance, you wouldn’t use both

the arbitrarily large xsd:integer type and the four-byte limited xsd:int type.

Table 24-1 summarizes the different numeric types.

Table 24-1
Schema Numeric Types

Name Type Examples

xsd:float IEEE 754 32-bit floating -INF, -1E4, -0, 0, 12.78E-2, 12,
point number, or as close INF, NaN
as you can get using a
base 10 representation;
same as Java’s float type

xsd:double IEEE 754 64-bit floating -INF, 1.401E-90, -1E4, -0, 0,
point number, or as close 12.78E-2, 12, INF, NaN, 3.4E42
as you can get using a
base 10 representation;
same as Java’s double type

xsd:decimal Arbitrary precision, -2.7E400, 5.7E-444, -
decimal numbers; same as 3.1415292, 0, 7.8,
java.math.BigDecimal 90200.76, 3.4E1024

xsd:integer An arbitrarily large or small -500000000000000000000000,
integer; same as -9223372036854775809,
java.math.BigInteger -126789, -1, 0, 1, 5, 23, 42, 126789,

9223372036854775808,
4567349873249832649873624958

855Chapter 24 ✦ Schemas

Name Type Examples

xsd: An integer less than or 0, -1, -2, -3, -4, -5, -6, -7, -8, -9, . . .
nonPositiveInteger equal to zero

xsd:negativeInteger An integer strictly less -1, -2, -3, -4, -5, -6, -7, -8, -9, . . .
than zero

xsd:long An eight-byte two’s -9223372036854775808,
complement integer such -9223372036854775807, . . . -6,
as Java’s long type -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6,

7, 8, 9, 10, 11, 12, 13, 14, . . .,
2147483645, 2147483646,
2147483647, 2147483648,
. . .9223372036854775806,
9223372036854775807

xsd:int An integer that can be -2147483648, -2147483647,
represented as a four-byte, -2147483646, 2147483645,
two’s complement number . . . -6, -5, -4, -3, -2, -1, 0, 1, 2, 3,
such as Java’s int type 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,

. . ., 2147483645, 2147483646,
2147483647

xsd:short An integer that can be -32768, -32767, -32766, . . ., -6,
represented as a two-byte, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6,
two’s complement number 7, 8, 9, 10, 11, 12, 13, 14, 15, .,
such as Java’s short type 16,. . . , 32765, 32766, 32767

xsd:byte An integer that can be -128, -127, -126, -125, . . ., -3, -2,
represented as a one-byte, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
two’s complement number 11, 12, 13, 14, 15, 16, . . .124,
such as Java’s byte type 125, 126, 127

xsd: An integer greater than or 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
nonNegativeInteger equal to zero 12, . . .

xsd:unsignedLong An eight-byte unsigned 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
integer 12, . . .18446744073709551614,

18446744073709551615

xsd:unsignedInt A four-byte unsigned integer 0, 1, 2, 3, 4, 5, . . .4294967294,
4294967295

xsd:unsignedShort A two-byte unsigned integer 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, . . .65533, 65534,
65535

xsd:unsignedByte A one-byte unsigned integer 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, . . . 252, 253, 254, 255

xsd:positiveInteger An integer strictly greater 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
than zero 13, 14, . . .

856 Part V ✦ XML Applications

Time data types
The next set of simple types the W3C XML Schema language provides are more

familiar to database designers than to procedural programmers; these are the time

types. These can represent times of day, dates, or durations of time. The formats,

shown in Table 24-2, are all based on the ISO standard 8601, Representations of dates
and times (http://www.iso.ch/markete/8601.pdf).

Table 24-2
XML Schema Time Types

Name Type Examples

xsd:timeInstant A particular moment in 1999-05-31T13:20:00.000-05:00
Coordinated Universal Time,
up to an arbitrarily small
fraction of a second

xsd:gMonth A month in no particular year --01--, --02--, --03--, --04--,. . .
--09--,--10--, --11--, --12--

xsd:gYear A given year 0001, 0002, 0003, . . .1998, 1999,
2000, 2001, 2002, . . .9997, 9998,
9999

xsd:YearMonth A specific month in a 1999–12, 2001–04, 1968–07
specific year

xsd:gMonthDay A date in no particular year, --10-31, --02-28, --02-29
or rather in every year

xsd:recurringDay A day in no particular month, --01, --02, . . . –09, --10, --11,
or rather in every month --12,. . ., --28, --29, --30, --31

xsd:duration A length of time, without P2000Y10M31DT09H32M7.4312S
fixed endpoints, to an
arbitrary fraction of a second

xsd:date A specific day in history 1969-06-27, 2000-10-31,
2001-11-17

xsd:time A specific time of day, 14:30:00.000,
that recurs every day 09:30:00.000-05:00

Notice in particular that in all the date formats the year comes first, followed by the

month, then the day, then the hour, and so on. The largest unit of time is on the left

and the smallest unit is on the right. This helps avoid questions such as whether

2001–02–11 is February 11, 2000 or November 2, 2001.

857Chapter 24 ✦ Schemas

XML data types
The next batch of schema data types should be quite familiar. These are the types

related to XML constructs themselves. Most of these types match attribute types in

DTDs such as NMTOKENS or IDREF. The difference is that with schemas these types

can be applied to both elements and attributes. These also include four new types

related to other XML constructs: xsd:language, xsd:Name, xsd:QName, and

xsd:NCName. Table 24-3 summarizes the different types.

Table 24-3
XML Schema XML Types

Name Type Examples

xsd:ID XML 1.0 ID attribute type; any XML p1, p2, ss123-45-6789,
name that’s unique among ID type _92, red, green, NT-Decl,
attributes and elements seventeen

xsd:IDREF XML 1.0 IDREF attribute type; any XML p1, p2, ss123-45-6789,
name that’s used as the value of an ID _92, p1, p2, red, green,
type attribute or element elsewhere in NT-Decl, seventeen
the document

xsd:ENTITY XML 1.0 ENTITY attribute type; any PIC1, PIC2, PIC3,
XML name that’s declared as an cow_movie, MonaLisa,
unparsed entity in the DTD Warhol

xsd:NOTATION XML 1.0 NOTATION attribute type; GIF, jpeg, TIF, pdf, TeX
any XML name that’s declared as a
notation name in the schema using
xsd:notation

xsd:IDREFS XML 1.0 IDREFS attribute type; p1 p2, ss123-45-6789 _92,
a white space-separated list of XML red green NT-Decl
names that are used as values of ID seventeen
type attributes or elements elsewhere
in the document

xsd:ENTITIES XML 1.0 ENTITIES attribute type; PIC1 PIC2 PIC3
a white space-separated list of
ENTITY names

xsd:NMTOKEN XML 1.0 NMTOKEN attribute type 12 are you ready 199

xsd:NMTOKENS XML 1.0 NMTOKENS attribute type, MI NY LA CA
a white space-separated list of
name tokens p1 p2 p3 p4 p5 p6

xsd:language Valid values for xml:lang as en-GB, en-US, fr
defined in XML 1.0

Continued

858 Part V ✦ XML Applications

Table 24-3 (continued)

Name Type Examples

xsd:Name An XML 1.0 Name, with or without set, title, rdf, math,
colons math123, xlink:href,

song:title

xsd:QName a prefixed name song:title, math:set,
xsd:element

xsd:NCName a local name without any colons set, title, rdf, math,
tei.2, href

For more details on the permissible values for elements and attributes declared to
have these types, see Chapter 11.

String data types
You’ve already encountered the xsd:string type. It’s the most generic simple

type. It requires a sequence of Unicode characters of any length, but this is what all

XML element content and attribute values are. There are also two very closely

related types: xsd:token and xsd:CDATA. These are the same as xsd:string
except that they limit the amount, location, and type of white space that can be

used. Table 24-4 summarizes the string data types.

Table 24-4
XML Schema String Types

Name Type Examples

xsd:string A sequence of zero or more p1, p2, 123 45 6789,
Unicode characters that are ^*&^*&_92, red green
allowed in an XML document; blue, NT-Decl,
essentially the only forbidden seventeen; Mary had
characters are most of the C0 a little lamb, The
controls, surrogates, and the love of money is the
byte-order mark root of all Evil.,

Would you paint the
lily? Would you gild
gold?

xsd:normalizedString A string that does not contain PIC1, PIC2, PIC3,
any tabs, carriage returns, or cow_movie, MonaLisa,
linefeeds Hello World , Warhol,

red green

Cross-
Reference

859Chapter 24 ✦ Schemas

Name Type Examples

xsd:token A string with no leading or p1 p2, ss123 45 6789,
trailing white space, no tabs, no _92, red, green, NT
linefeeds, and not more than Decl, seventeenp1, p2,
one consecutive space 123 45 6789,

^*&^*&_92, red green
blue, NT-Decl,
seventeen; Mary had
a little lamb, The
love of money is the
root of all Evil.

Miscellaneous data types
There are two types left over that don’t fit neatly into the previous categories:

xsd:boolean, and xsd:uriReference. The xsd:boolean type represents some-

thing similar to C++’s bool data type. It has four legal values: 0, 1, true, and false.

0 is considered to be the same as false, and 1 is considered the same as true.

The final schema simple type is xsd:any URI. An element of this type contains a

relative or absolute URI, possibly a URL, such as urn:isbn:0764547607,

http://www.w3.org/TR/2000/WD-xmlschema-2-20000407/#timeDuration,

/javafaq/reports/JCE1.2.1.htm, /TR/2000/WD-xmlschema-2-20000407/,

or ../index.html.

Derived Types
There’s one element in the song examples that clearly deserves a data type, but so

far doesn’t have one —PRICE. However none of the built-in data types really match

the format for prices. Recall that PRICE elements look like this:

<PRICE>$1.25</PRICE>

This isn’t an integer of any kind, because it has a decimal point. It could be a float-

ing point number, but that wouldn’t account for the currency sign. You could drop

off the currency sign like this:

<PRICE>1.25</PRICE>

However, then you’d have to assume you were working in dollars. What if you

wanted to sell songs priced in pounds or yen or lira? Perhaps you could make the

currency sign part of a separate element, like this:

<PRICE>
<CURRENCY>$</CURRENCY>
<AMOUNT>1.25</AMOUNT>

</PRICE>

860 Part V ✦ XML Applications

AMOUNT could be an xsd:float, and CURRENCY could be an xsd:string. However,

this still isn’t perfect. You want to limit the CURRENCY to exactly one character, and

that character must be a currency sign. You don’t want to allow it to contain any

arbitrary string. Furthermore, you’d like to limit the precision of the AMOUNT to

exactly two decimal places. You probably don’t want to sell songs that cost $1.1 or

$1.99999.

What’s needed is a way to define a new data type that matches your requirements;

and indeed the W3C XML Schema language provides it. You can derive a new type

from an old type. In particular, you can restrict an existing type to a smaller subset

of possible values. You use a regular expression to define what values are legal.

Regular expressions
The regular expressions used in schemas are similar to the regular expressions you

might be familiar with from Perl, grep or other languages. You use statements like

[A-Z]+ to mean “a string containing one more of the capital letters from A to Z” or

(club)* to mean “a string composed of zero or more repetitions of the word club.”

Table 24-5 summarizes the grammar of XML schema regular expressions. In this

table A and B represent some string or another regular expression particle from

elsewhere in the table; that is they will be replaced by something else when actually

used in a regular expression. n and m represent some integer that will be replaced

by a specific number.

Table 24-5
Regular Expression Symbols for XML Schema

Symbol Meaning

A? Zero or one occurrences of A

A* Zero or more occurrences of A

A+ One or more occurrences of A

A{n,m} Between n and m occurrences of A

A{n} Exactly n occurrences of A

A{n,} At least n occurrences of A

A|B Either A or B

AB A followed by B

. Any one character

\p{A} One character from Unicode character class A

[abcdefg] A single occurrence of any of the characters contained in the
brackets

861Chapter 24 ✦ Schemas

Symbol Meaning

[^abcdefg] A single occurrence of any of the characters not contained in the
brackets

[a-z] A single occurrence of any character from a to z inclusive

[^a-z] A single occurrence of any of character except those from a to z
inclusive

\n Linefeed

\r Carriage return

\t Tab

\\ The backward slash \

\| The vertical bar |

\. The period .

\- The hyphen -

\^ The caret ^

\? The question mark ?

* The asterisk *

\+ The plus sign +

\{ The open brace {

\} The closing brace }

\(The open parenthesis (

\) The closing parenthesis)

\[The open bracket [

\] The close bracket]

For the most part, these symbols have exactly the same meanings that they have in

Perl. The schema regular expression syntax is somewhat weaker than Perl’s, but

then whose isn’t? In any case, this should be sufficient power to meet any reason-

able needs that schemas have.

Schema regular expressions do have one important feature that isn’t available prior

to Perl 5.6 and is unfamiliar to most developers — you can use \p{} to stand in for

a character in a particular Unicode character class. For instance, N is the Unicode

character class for numbers. This doesn’t just include the European digits 0

through 9, but also the Arabic-Indic digits, the Devanagari digits, the Thai digits,

and many more besides. Therefore \p{N} represents any digit defined anywhere in

Unicode. \p{N}+ represents a string consisting of one or more Unicode digits.

Table 24-6 lists the various Unicode character classes you can take advantage of in

regular expressions. For the money regular expression, you need the Sc class for

862 Part V ✦ XML Applications

currency indicators and the Nd class for decimal digits. This is a little more restric-

tive than the N class, which includes nondecimal digits, such as the Roman numer-

als and the Han ideograph representing 100,000,000.

Table 24-6
Unicode Character Classes

Abbreviation Includes Examples

Letters

L All Letters a, b, c, A, B, C, ü, Ü, ç, Ç, ζ, θ, Ζ, Θ, a,
, Β, Α, , Β, ℵ, dz, Dz, DZ

Lu Uppercase letters A, B, C, Ü, Ç, Ζ, Θ, Α, , Β, DZ

Ll Lowercase letters

Lt Title case letters Dz

Lm Modifier letters; letters that h, j, r, w

are attached to the previous
characters somehow

Lo Other letters; typically ones Japanese Katakana and
from languages that don’t Hiragana, most Han ideographs
distinguish upper- and lowercase

Marks

M All Marks

Mn Nonspacing marks; mostly accent `, ‘, ¨, ¯
marks that are attached to the
previous character on the top or
bottom, and thus do not change
the amount of space the character
occupies

Mc Spacing combining marks; accent T, Gurmukhi vowel sign AA
marks that are attached to the
previous character on the left or
right, and thus do change the
amount of space the character
occupies

Me Enclosing marks that completely The Cyrillic hundred thousands and
surround a character millions signs

863Chapter 24 ✦ Schemas

Abbreviation Includes Examples

Numbers

N All numbers 0, 1, 2, 3, 1⁄4, 1⁄2, 2, 3, , I, II, III, IV,
V,

Nd Decimal digits; characters that 0, 1, 2, 3, ,
represent one of the numbers
0 through 9

Nl Numbers based on letters I, II, III, IV,

No Other numbers 1⁄4, 1⁄2, 2, 3

Punctuation

P All punctuation -, _, •, (, [, {,),], }, ‘, “, «, ‘, “, », !, ?, @,
*, ¡, ¿, ·

Pc Connectors _, •

Pd Dashes Hyphens, soft hyphens, em dashes,
en dashes, etc.

Ps Opening punctuation (, [, {

Pe Closing punctuation),], }

Pi Initial quote marks ‘, “, «

Pf Final quote marks ‘, ”, »

Po Other punctuation marks !, ?, @, *, ¡, ¿, ·

Separators

Z All separators

Zs Space Space, nonbreaking space, en space,
em space

Zl Line separators Unicode character 2028, the line
separator

Zp Paragraph separators Unicode character 2029, the
paragraph separator

Symbols

S All Symbols ∂, ∆, ∏, $, ¥, £, ~, ¯, ¨, i, ©, ®, °, �,

Sm Mathematical symbols ∂, ∆, ∏, ∑, √, ≠, ≤, ≥, ≈

Continued

864 Part V ✦ XML Applications

Table 24-6 (continued)

Abbreviation Includes Examples

Symbols

Sc Currency signs

Sk Modifier symbols ~, ¯, ¨

So Other symbols

Other

C All Others

Cc Control characters Carriage return, line feed, tab and
the C1 controls

Cf Format characters The left-to-right and right-to-left
marks used to indicate change of
direction in bidirectional text

Co Private use characters; code points
which may be used for a program’s
internal purposes

Cn Unassigned; code points which, while
legal in XML, the Unicode specification
has not yet assigned a character to.

You’re now ready to put together a regular expression that describes money strings

such as $1.25. What you want to say is that each such string contains:

1. A currency symbol

2. One or more decimal digits

3. An optional fractional part which, if present at all, consists of a decimal point

and two decimal digits

Here’s the regular expression that says that:

\p{Sc}\p{Nd}+(\.\p{Nd}\p{Nd})?

865Chapter 24 ✦ Schemas

It begins with \p{Sc} to indicate a currency symbol such as $, ¥, £, or

This is followed by \p{Nd}+. \p{Nd} represents any decimal digit character. The +
indicates one or more of these characters.

Next there’s a parenthesized expression followed by a question mark,

(\.\p{Nd}\p{Nd})?. The question mark indicates the parenthesized expression is

optional. However, if it does appear its entire contents must be present, not just

part. In other words, the question mark stands for zero or one, just as it does in

DTDs. The contents of the parentheses are \.\p{Nd}\p{Nd}, which represents a

period followed by two decimal digits, for example .35. Normally a period in a regu-

lar expression means any character at all, so here it’s escaped with a preceding

backslash to indicate that we really do want the actual period character.

The xsd:simpleType element
Now that you have a regular expression that represents money, you’re ready to

define a money type. This is done with the xsd:simpleType element. This element

needs to specify three things:

✦ The name by which this type is known, money in this example. This is set by

the name attribute.

✦ The existing type the new type is derived from. For the money type this will

be xsd:string. This is set by the base attribute of an xsd:restriction
child element.

✦ The regular expression that restricts the possible values,

\p{Sc}\p{Nd}+(\.\p{Nd}\p{Nd})? for money. This is set by a pattern
child element of the xsd:restriction element through a value attribute.

Putting that all together, you have this type definition:

<xsd:simpleType base=”xsd:string” name=”money”>
<xsd:restriction base=”xsd:string”>
<xsd:pattern value=”\p{Sc}\p{Nd}+(\.\p{Nd}\p{Nd})?”/>

</xsd:restriction>
</xsd:simpleType>

Listing 24-18 provides the complete song schema including this type definition.

Take special note of the XML comment used to elucidate the regular expression.

Regular expressions can be quite opaque, and a comment like this one can go a

long way toward making the schema more understandable.

866 Part V ✦ XML Applications

Listing 24-18: A schema that defines a custom money type

<?xml version=”1.0”?>
<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

<xsd:element name=”SONG” type=”SongType”/>

<xsd:simpleType name=”money”>
<xsd:restriction base=”xsd:string”>
<xsd:pattern value=”\p{Sc}\p{Nd}+(\.\p{Nd}\p{Nd})?”/>
<!--

Regular Expression:
\p{Sc} Any Unicode currency indicator;

e.g., $, ¥, £, &#A4, etc.
\p{Nd} A Unicode decimal digit character
\p{Nd}+ One or more Unicode decimal digits
\. The period character
(\.\p{Nd}\p{Nd})
(\.\p{Nd}\p{Nd})? Zero or one strings of the form .35

This works for any decimalized currency.

-->
</xsd:restriction>

</xsd:simpleType>

<xsd:complexType name=”SongType”>
<xsd:sequence>
<xsd:element name=”TITLE” type=”xsd:string”/>
<xsd:element name=”COMPOSER” type=”PersonType”

maxOccurs=”unbounded”/>
<xsd:element name=”PRODUCER” type=”PersonType”

minOccurs=”0” maxOccurs=”unbounded”/>
<xsd:element name=”PUBLISHER” type=”xsd:string”

minOccurs=”0”/>
<xsd:element name=”LENGTH” type=”xsd:duration”/>
<xsd:element name=”YEAR” type=”xsd:gYear”/>
<xsd:element name=”ARTIST” type=”xsd:string”

maxOccurs=”unbounded”/>
<xsd:element name=”PRICE” type=”money” maxOccurs=”1”/>

</xsd:sequence>
</xsd:complexType>

<xsd:complexType name=”PersonType”>
<xsd:sequence>
<xsd:element name=”NAME”>
<xsd:complexType>
<xsd:all>
<xsd:element name=”GIVEN” type=”xsd:string”/>
<xsd:element name=”FAMILY” type=”xsd:string”/>

</xsd:all>
</xsd:complexType>

867Chapter 24 ✦ Schemas

</xsd:element>
</xsd:sequence>

</xsd:complexType>

</xsd:schema>

Empty Elements
The last section created a money simple type by restricting the base simple type

xsd:string. Complex types can be restricted, too. In particular, this is useful for

declaring that an element is empty; that is, that it cannot contain any child ele-

ments or parsed character data. This is the same as using the EMPTY content model

in a DTD. As an example of this technique I’ll define an empty PHOTO element. This

will be used in the next section when attributes are introduced.

The ultimate base complex type in schemas, the ur-type if you prefer, is

xsd:anyType. To require that it be empty, you give it complex content, and then

restrict it to only the content model described here so it can be extended elsewhere

in the schema. However, you don’t actually provide any child elements, like this:

<!-- An empty element -->
<xsd:complexType name=”PhotoType”>
<xsd:complexContent>
<xsd:restriction base=”xsd:anyType”>
</xsd:restriction>

</xsd:complexContent>
</xsd:complexType>

This does not require the PHOTO element to be defined with an empty element
tag such as <PHOTO/>. The start-tag-end-tag pair <PHOTO></PHOTO> is also
acceptable. In fact, the XML 1.0 specification says these two forms are equivalent.
Schemas change nothing about XML 1.0. An XML 1.0 parser that knows nothing
about schemas will have no trouble reading a document that uses schemas.

Attributes
In the examples so far, two XML constructs have been conspicuous by their

absence: entities and attributes. The omission of entities was quite deliberate.

Schemas cannot declare entities. If you need entities, you must use a DTD. (Of

course, you can use a schema as well as the DTD.) However, schemas are fully capa-

ble of declaring attributes. Indeed they do a much better job of it than DTDs do

because schemas can use the full set of data types like xsd:float and

xsd:anyURI.

Caution

868 Part V ✦ XML Applications

You may not have noticed my avoidance of attributes because the examples all
used xmlns:xsi and xsi:noNamespaceSchemaLocation attributes on the
root element. However, as far as a schema validator is concerned, attributes used
to declare namespaces, or to attach documents to schemas, “don’t count.” You do
not have to, and indeed should not, declare these attributes. However, you do
have to declare all the other attributes you use.

As a concrete example, let’s consider how you might add a PHOTO element to the

SONG documents. This element would be similar to the IMG element in HTML, and

have an SRC attribute that contained a URL pointing to the photo’s location, an ALT
attribute containing some text in the event that the PHOTO can’t be displayed, and

WIDTH and HEIGHT attributes that together give the size of the image in pixels.

Listing 24-19 demonstrates:

Listing 24-19: The PHOTO element has several attributes of
different types

<?xml version=”1.0”?>
<SONG xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xsi:noNamespaceSchemaLocation=”24-20.xsd”>
<TITLE>Yes I Am</TITLE>
<PHOTO ALT=”Melissa Etheridge holding a guitar”

WIDTH=”100” HEIGHT=”300”
SRC=”guitar.jpg”/>

<COMPOSER>
<GIVEN>Melissa</GIVEN>
<FAMILY>Etheridge</FAMILY>

</COMPOSER>
<PRODUCER>
<GIVEN>Hugh</GIVEN>
<FAMILY>Padgham</FAMILY>

</PRODUCER>
<PRODUCER>
<GIVEN>Melissa</GIVEN>
<FAMILY>Etheridge</FAMILY>

</PRODUCER>
<PUBLISHER>Island Records</PUBLISHER>
<LENGTH>4:24</LENGTH>
<YEAR>1993</YEAR>
<ARTIST>Melissa Etheridge</ARTIST>
<PRICE>$1.25</PRICE>

</SONG>

Note

869Chapter 24 ✦ Schemas

Even though the PHOTO element is empty, because it has attributes it has a complex

type. You define a PhotoType just as you previously defined a PersonType and a

SongType. However, where those types used xsd:element to declare child ele-

ments, this type will use xsd:attribute to declare attributes.

<xsd:complexType name=”PhotoType”>
<xsd:attribute name=”SRC” type=”xsd:anyURI”/>
<xsd:attribute name=”WIDTH” type=”xsd:positiveInteger”/>
<xsd:attribute name=”HEIGHT” type=”xsd:positiveInteger”/>
<xsd:attribute name=”ALT” type=”xsd:string”/>

</xsd:complexType>

Because the SRC attribute should contain a URL, it’s been given the type

xsd:anyURI. Because the HEIGHT and WIDTH attributes should each be an integer

greater than zero, they’re given the type xsd:positiveInteger. Finally, because

the ALT attribute can contain essentially any string of text of any length, it’s set to

the most general type, xsd:string.

In this particular example, all the elements either have child elements or attributes,

not both. However, that’s certainly not required. In general, elements can have both

child elements and attributes. Just use both xsd:element and xsd:attribute in

the same xsd:complexType element.

There can’t be more than one attribute with the same name on a given element.

Each attribute either appears or does not appear. An xsd:attribute can have a

use attribute with the value required to indicate that the element must occur. In

this case, you probably do want to insist that each of the four attributes be present.

Therefore the declaration of PhotoType becomes this:

<xsd:complexType name=”PhotoType”>
<xsd:attribute name=”SRC” type=”xsd:anyURI”

use=”required” />
<xsd:attribute name=”WIDTH” type=”xsd:positiveInteger”

use=”required” />
<xsd:attribute name=”HEIGHT” type=”xsd:positiveInteger”

use=”required” />
<xsd:attribute name=”ALT” type=”xsd:string”

use=”required” />
</xsd:complexType>

The use attribute can also have the value fixed or optional. If fixed, then

xsd:attribute must also have a value attribute giving the fixed, default value

which may not be overridden in the instance document. This is the same as #FIXED
in ATTLIST declarations in DTDs. If optional, then xsd:attribute may (but is not

required to) have a value attribute giving the default value to be used in the event

that the instance document does not provide a value. This is the same as #IMPLIED
in ATTLIST declarations. Listing 24-20 puts this all together in a complete schema

for songs, including a PHOTO element with several required attributes.

870 Part V ✦ XML Applications

Listing 24-20: A SONG schema that declares attributes

<?xml version=”1.0”?>
<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

<xsd:element name=”SONG” type=”SongType”/>

<xsd:complexType name=”PhotoType”>
<xsd:attribute name=”SRC” type=”xsd:anyURI”

use=”required” />
<xsd:attribute name=”WIDTH” type=”xsd:positiveInteger”

use=”required” />
<xsd:attribute name=”HEIGHT” type=”xsd:positiveInteger”

use=”required” />
<xsd:attribute name=”ALT” type=”xsd:string”

use=”required” />
</xsd:complexType>

<xsd:complexType name=”SongType”>
<xsd:sequence>
<xsd:element name=”TITLE” type=”xsd:string”/>
<xsd:element name=”PHOTO” type=”PhotoType”/>
<xsd:element name=”COMPOSER” type=”PersonType”

maxOccurs=”unbounded”/>
<xsd:element name=”PRODUCER” type=”PersonType”

minOccurs=”0” maxOccurs=”unbounded”/>
<xsd:element name=”PUBLISHER” type=”xsd:string”

minOccurs=”0”/>
<xsd:element name=”LENGTH” type=”xsd:duration”/>
<xsd:element name=”YEAR” type=”xsd:gYear”/>
<xsd:element name=”ARTIST” type=”xsd:string”

maxOccurs=”unbounded”/>
<xsd:element name=”PRICE” type=”money”/>

</xsd:sequence>
</xsd:complexType>

<xsd:simpleType name=”money”>
<xsd:restriction base=”xsd:string”>
<xsd:pattern value=”\p{Sc}\p{Nd}+(\.\p{Nd}\p{Nd})?”/>
<!--

Regular Expression:
\p{Sc} Any Unicode currency indicator;

e.g., $, ¥, £, &#A4, etc.
\p{Nd} A Unicode decimal digit character
\p{Nd}+ One or more Unicode decimal digits
\. The period character
(\.\p{Nd}\p{Nd})
(\.\p{Nd}\p{Nd})? Zero or one strings of the form .35

This works for any decimalized currency.

-->
</xsd:restriction>

871Chapter 24 ✦ Schemas

</xsd:simpleType>

<xsd:complexType name=”PersonType”>
<xsd:sequence>
<xsd:element name=”NAME”>
<xsd:complexType>
<xsd:all>
<xsd:element name=”GIVEN” type=”xsd:string”/>
<xsd:element name=”FAMILY” type=”xsd:string”/>

</xsd:all>
</xsd:complexType>

</xsd:element>
</xsd:sequence>

</xsd:complexType>

</xsd:schema>

Namespaces
So far the example song documents have been blissfully namespace-free. Adding

namespaces to the documents, and designing a schema that applies to the

namespace-qualified documents is not particularly difficult. Namespaces add

some important features, such as the ability to write schemas and validate docu-

ments that use elements and attributes from multiple XML applications. However,

the terminology is a little on the confusing side. Some words, such as “qualified,”

don’t mean quite the same thing in schemas as they do in other XML technologies,

so you do need to pay close attention and read what follows carefully.

Schemas for default namespaces
Let’s begin with a simple example in which the XML application described by the

schema uses a single default, nonprefixed namespace. Most of the time each name-

space URI maps to exactly one schema (though later you’ll learn several techniques

to break large schemas into parts using xsd:import and xsd:include).

The schema for elements that are not in any namespace are identified by an

xsi:noNamespaceSchemaLocation attribute. The schemas for elements that are in

namespaces are identified by an xsi:schemaLocation attribute. This attribute

contains a list of namespace URI/schema URI pairs. Each namespace URI is followed

by one schema URI. The namespace URI is almost always absolute, but the schema

URI is almost always a URL and often a relative URL.

872 Part V ✦ XML Applications

Listing 24-21 demonstrates. This is the familiar hotcop.xml document that you’ve

seen several times already, though it’s been simplified a bit to keep the examples

smaller. All the elements in this document are in the http://ibiblio.org/xml/
namespace/song namespace defined by the xmlns attribute on the root element.

The attributes in this document are not in any namespace because they don’t have

prefixes. There are two things you need to remember here:

1. Attributes without prefixes are never in any namespace, no matter what

namespace their parent element is in; no matter what default namespace the

document uses.

2. For purposes of schema validation, namespace declaration attributes, such as

xmlns and xmlns:xsi, and schema attachment attributes, such as

xsi:schemaLocation, don’t count. You do not need to declare these in your

schema.

In this case, all the elements are in the http://ibiblio.org/xml/namespace/
song namespace, so an xsi:schemaLocation attribute is needed to associate this

namespace with a URL where the schema can be found, namespace_song.xsd for

this example.

Listing 24-21: A SONG document in the http://ibiblio.org/
xml/namespace/song namespace

<?xml version=”1.0” encoding=”UTF-8” standalone=”no”?>
<SONG xmlns=”http://ibiblio.org/xml/namespace/song”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation =
“http://ibiblio.org/xml/namespace/song
namespace_song.xsd”

>
<TITLE>Hot Cop</TITLE>
<!-- I’ve temporarily dropped the SRC attribute on this

element. I’m going to replace it with XLinks shortly.
-->

<PHOTO ALT=”Victor Willis in Cop Outfit” WIDTH=”100”
HEIGHT=”200”/>

<COMPOSER>Jacques Morali</COMPOSER>
<COMPOSER>Henri Belolo</COMPOSER>
<COMPOSER>Victor Willis</COMPOSER>
<PRODUCER>Jacques Morali</PRODUCER>
<PUBLISHER>PolyGram Records</PUBLISHER>
<LENGTH>P0YT6M20S</LENGTH>
<YEAR>1978</YEAR>
<ARTIST>Village People</ARTIST>

</SONG>

873Chapter 24 ✦ Schemas

What does namespace_song.xsd look like? Listing 24-22 shows you. It’s much the

same schema as before, although I’ve dropped the MoneyType and PersonType to

save a little room.

Listing 24-22: A schema for SONG documents in the http://
ibiblio.org/xml/namespace/song namespace

<?xml version=”1.0”?>
<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns=”http://ibiblio.org/xml/namespace/song”
targetNamespace=”http://ibiblio.org/xml/namespace/song”
elementFormDefault=”qualified”
attributeFormDefault=”unqualified”

>

<xsd:element name=”SONG” type=”SongType”/>

<xsd:complexType name=”PhotoType”>
<xsd:attribute name=”WIDTH” type=”xsd:positiveInteger”

use=”required” />
<xsd:attribute name=”HEIGHT” type=”xsd:positiveInteger”

use=”required” />
<xsd:attribute name=”ALT” type=”xsd:string”

use=”required” />
</xsd:complexType>

<xsd:complexType name=”SongType”>
<xsd:sequence>
<xsd:element name=”TITLE” type=”xsd:string”/>
<xsd:element name=”PHOTO” type=”PhotoType”/>
<xsd:element name=”COMPOSER” type=”xsd:string”

maxOccurs=”unbounded”/>
<xsd:element name=”PRODUCER” type=”xsd:string”

minOccurs=”0” maxOccurs=”unbounded”/>
<xsd:element name=”PUBLISHER” type=”xsd:string”

minOccurs=”0”/>
<xsd:element name=”LENGTH” type=”xsd:duration”/>
<xsd:element name=”YEAR” type=”xsd:gYear”/>
<xsd:element name=”ARTIST” type=”xsd:string”

maxOccurs=”unbounded”/>
</xsd:sequence>

</xsd:complexType>

</xsd:schema>

874 Part V ✦ XML Applications

The main body of the schema is much the same as before. However, the

xsd:schema start tag has several new attributes. It looks like this:

<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns=”http://ibiblio.org/xml/namespace/song”
targetNamespace=”http://ibiblio.org/xml/namespace/song”
elementFormDefault=”qualified”
attributeFormDefault=”unqualified”

>

The first xmlns attribute establishes the default namespace for this schema, which

is, after all, an XML document itself. It sets the namespace to http://ibiblio.
org/xml/namespace/song, the same as in the instance documents you’re trying to

model. This says that the unprefixed element names used in this schema such as

PhotoType are in the http://ibiblio.org/xml/namespace/song namespace.

The second attribute says that this schema applies to documents in the http://
ibiblio.org/xml/namespace/song namespace; that is, the elements identified by

name attributes such as SONG, PHOTO, and TITLE are in the http://ibiblio.org/
xml/namespace/song namespace.

The third attribute, elementFormDefault, has the value qualified. This means

that the elements being described in this document are in fact in a namespace;

specifically they’re in the target namespace given previously by the

targetNamespace attribute. This does not mean that the elements being modeled

necessarily have prefixes, merely that they are in some namespace.

Finally, the fourth attribute, attributeFormDefault, has the value unqualified.

This means that the attributes described by this schema are not in a namespace.

Schemas have one major advantage over DTDs when working with documents with

namespaces. They validate against the local name and the namespace URIs of the

elements and attributes, not the prefix and the local name like DTDs do. This means

the prefixes do not have to match in the schema and in the instance documents.

Indeed one might use prefixes and the other might use the default namespace.

For instance, consider Listing 24-23. This is the same as Listing 24-21 except that it

uses the song prefix rather than the default namespace to indicate the http://
ibiblio.org/xml/namespace/song namespace. However, it can use the exact
same schema! The schema does not need to change just because the prefix (or lack

thereof) has changed. As long as the namespace URI stays the same, the schema is

happy.

875Chapter 24 ✦ Schemas

Listing 24-23: A SONG document in the http://ibiblio.org/
xml/namespace/song namespace with prefixes

<?xml version=”1.0” encoding=”UTF-8” standalone=”no”?>
<song:SONG

xmlns:song=”http://ibiblio.org/xml/namespace/song”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation =
“http://ibiblio.org/xml/namespace/song
namespace_song.xsd”

>
<song:TITLE>Hot Cop</song:TITLE>
<!-- I’ve temporarily dropped the SRC attribute on this

element. I’m going to replace it with XLinks shortly.
-->

<song:PHOTO ALT=”Victor Willis in Cop Outfit” WIDTH=”100”
HEIGHT=”200”/>

<song:COMPOSER>Jacques Morali</song:COMPOSER>
<song:COMPOSER>Henri Belolo</song:COMPOSER>
<song:COMPOSER>Victor Willis</song:COMPOSER>
<song:PRODUCER>Jacques Morali</song:PRODUCER>
<song:PUBLISHER>PolyGram Records</song:PUBLISHER>
<song:LENGTH>P0YT6M20S</song:LENGTH>
<song:YEAR>1978</song:YEAR>
<song:ARTIST>Village People</song:ARTIST>

</song:SONG>

Multiple namespaces, multiple schemas
Now let’s consider the case in which one document mixes markup from different

vocabularies. In particular, let’s suppose that you want to use XLink to connect the

PHOTO element to the actual JPEG image rather than application-specific markup

such as SRC. You need to set xlink:type, xlink:href, xlink:show, and

xlink:actuate attributes on the PHOTO element to give it the proper meaning and

behavior like this:

<PHOTO xlink:type=”simple” xlink:href=”hotcop.jpg”
xlink:show=”embed” xlink:actuate=”onLoad”
ALT=”Victor Willis in Cop Outfit”
WIDTH=”100” HEIGHT=”200”/>

XLinks are discussed in Chapter 19.Cross-
Reference

876 Part V ✦ XML Applications

Now the document uses two main namespaces, the http://ibiblio.org/xml/
namespace/song namespace for songs and the http://www.w3.org/1999/xlink
namespace for XLinks. Thus, it needs two schemas. However, because the root ele-

ment can have only one xsi:schemaLocation attribute, it has to serve double

duty and declare both. Listing 24-24 demonstrates.

Listing 24-24: A SONG document that uses XLink to embed
photos

<?xml version=”1.0” encoding=”UTF-8” standalone=”no”?>
<SONG xmlns=”http://ibiblio.org/xml/namespace/song”

xmlns:xlink=”http://www.w3.org/1999/xlink”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation =
“http://ibiblio.org/xml/namespace/song 24-26.xsd
http://www.w3.org/1999/xlink xlink.xsd”

>
<TITLE>Hot Cop</TITLE>
<PHOTO xlink:type=”simple” xlink:href=”hotcop.jpg”

xlink:show=”embed” xlink:actuate=”onLoad”
ALT=”Victor Willis in Cop Outfit”
WIDTH=”100” HEIGHT=”200”/>

<COMPOSER>Jacques Morali</COMPOSER>
<COMPOSER>Henri Belolo</COMPOSER>
<COMPOSER>Victor Willis</COMPOSER>
<PRODUCER>Jacques Morali</PRODUCER>
<PUBLISHER>PolyGram Records</PUBLISHER>
<LENGTH>P0YT6M20S</LENGTH>
<YEAR>1978</YEAR>
<ARTIST>Village People</ARTIST>

</SONG>

Listing 24-25 shows this XLink schema. It only declares attributes, no elements at

all. You haven’t seen an example of this yet, but it’s not hard. Just use xsd:
attribute elements at the top-level, that is, as direct children of the xsd:schema
element. The only difference between these top-level xsd:attribute elements and

the ones you’ve seen before is that each use attribute must be matched by a corre-

sponding value attribute.

Three of the attributes have fixed values, and don’t even need to be explicitly

included in the instance document. Only the xlink:href attribute asks the author

to supply a value. However, this is rather specific to this particular use of XLink.

Almost anything else you’d do with an XLink other than embedding an image or

other non-XML content into the document would require a different schema that

used different fixed defaults.

877Chapter 24 ✦ Schemas

Listing 24-25: xlink.xsd: An XLink schema

<?xml version=”1.0” encoding=”UTF-8” standalone=”no”?>
<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns=”http://www.w3.org/1999/xlink”
targetNamespace=”http://www.w3.org/1999/xlink”
attributeFormDefault=”unqualified”

>

<xsd:attribute name=”type” type=”xsd:string”
use=”fixed” value=”simple” />

<xsd:attribute name=”href” type=”xsd:anyURI”/>
<xsd:attribute name=”actuate” type=”xsd:string”

use=”fixed” value=”onLoad” />
<xsd:attribute name=”show” type=”xsd:string”

use=”fixed” value=”embed” />

</xsd:schema>

Of course, this schema doesn’t actually apply these attributes to any elements.

Therefore, the schema that does describe the PHOTO element needs to import

xlink.xsd in order to reference these declarations. This is done with an xsd:import
element. The xsd:import’s schemaLocation attribute tells the processor where

to find the schema to import. The namespace attribute says which elements and

attributes the schema declares. Once this schema has been imported, you can

add those attributes to any xsd:complexType by giving it an xsd:attribute
child whose ref attribute identifies the attribute to be attached. Listing 24-26

demonstrates.

Listing 24-26: A SONG schema that imports the XLink schema

<?xml version=”1.0”?>
<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns=”http://ibiblio.org/xml/namespace/song”
xmlns:xlink=”http://www.w3.org/1999/xlink”
targetNamespace=”http://ibiblio.org/xml/namespace/song”
elementFormDefault=”qualified”
attributeFormDefault=”unqualified”

>

<xsd:import namespace=”http://www.w3.org/1999/xlink”

Continued

878 Part V ✦ XML Applications

Listing 24-26 (continued)

schemaLocation=”xlink.xsd”/>

<xsd:element name=”SONG” type=”SongType”/>

<xsd:complexType name=”PhotoType”>
<xsd:attribute name=”WIDTH” type=”xsd:positiveInteger”

use=”required” />
<xsd:attribute name=”HEIGHT” type=”xsd:positiveInteger”

use=”required” />
<xsd:attribute name=”ALT” type=”xsd:string”

use=”required” />
<xsd:attribute name=”xlink:type” type=”xsd:string”

use=”fixed” value=”simple” />
<xsd:attribute ref=”xlink:type”/>
<xsd:attribute ref=”xlink:href” use=”required”/>
<xsd:attribute ref=”xlink:actuate”/>
<xsd:attribute ref=”xlink:show”/>

</xsd:complexType>

<xsd:complexType name=”SongType”>
<xsd:sequence>
<xsd:element name=”TITLE” type=”xsd:string”/>
<xsd:element name=”PHOTO” type=”PhotoType”/>
<xsd:element name=”COMPOSER” type=”xsd:string”

maxOccurs=”unbounded”/>
<xsd:element name=”PRODUCER” type=”xsd:string”

minOccurs=”0” maxOccurs=”unbounded”/>
<xsd:element name=”PUBLISHER” type=”xsd:string”

minOccurs=”0”/>
<xsd:element name=”LENGTH” type=”xsd:duration”/>
<xsd:element name=”YEAR” type=”xsd:gYear”/>
<xsd:element name=”ARTIST” type=”xsd:string”

maxOccurs=”unbounded”/>
</xsd:sequence>

</xsd:complexType>

</xsd:schema>

Annotations
At some point in this chapter, it’s likely to have occurred to you that schemas can

get rather large and rather complex. If for some strange reason that hasn’t occurred

to you yet, just imagine a schema not for the very small and simple song docu-

ments demonstrated in this chapter, but for much larger XML applications such as

Scalable Vector Graphics, XHTML, and DocBook.

879Chapter 24 ✦ Schemas

You can certainly use regular XML comments to describe schemas, and I encourage

you to do so, especially when you’re doing something less than obvious in the

schema. The W3C XML Schema language also provides a more formal mechanism

for annotating schemas. Both the top-level xsd:schema element itself and the

various other schema elements (xsd:complexType, xsd:all, xsd:element,

xsd:attribute, and so on) can contain xsd:annotation child elements that

describe that part of the schema for human readers or for other computer pro-

grams. This element has two kinds of child elements:

✦ The xsd:documentation child element describes the schema for human

readers. It often contains copyright and similar information.

✦ The xsd:appInfo child element describes the schema for computer pro-

grams. For instance, it might contain instructions about what style sheets to

apply to the schema.

Each xsd:annotation element can contain any number of either of these.

However, no special syntax has been defined for the content of these elements. You

can put anything in there you find convenient, including other XML markup, subject

only to the usual well-formedness constraints. Thus an xsd:documentation ele-

ment might contain XHTML and an xsd:appInfo element might contain XSLT. Then

again either or both might simply contain plain, unmarked-up text. For example,

this annotation could be added to the song schemas developed in this chapter:

<xsd:annotation>
<xsd:documentation>
Song schema for Chapter 24 of the XML Bible
Copyright 2001 Elliotte Rusty Harold.
elharo@metalab.unc.edu
</xsd:documentation>
</xsd:annotation>

Summary
In this chapter, you learned that:

✦ Schemas address a number of perceived limitations with DTDs, including a

strange, non-XML syntax, namespace incompatibility, lack of data typing, and

limited extensibility and scalability.

✦ There are multiple XML schema languages including Relax, Schematron,

TREX, and the W3C XML Schema language described in this chapter.

✦ An XML document can indicate the schema that applies to its non-namespace-

qualified elements via an xsi:noNamespaceSchemaLocation attribute, which

is normally placed on the root element.

880 Part V ✦ XML Applications

✦ An XML document can indicate the schema that applies to its namespace

qualified elements via an xsi:schemaLocation attribute, which is normally

placed on the root element.

✦ Schemas declare elements with xsd:element elements.

✦ The type attribute of xsd:element specifies the data type of that element.

✦ Elements with complex types can have attributes and child elements.

✦ Elements with simple types contain only parsed character data and do not

have attributes.

✦ The xsd:group, xsd:all, xsd:choice, and xsd:sequence elements let you

specify particular combinations of elements in an element’s content model.

✦ The minOccurs and maxOccurs attributes of xsd:element determine how

many of a given element are allowed in the instance document at that point.

The default for each is 1. maxOccurs can be set to unbounded to indicate that

any number of the element may appear.

✦ There are 44 built-in simple types, including many numeric, string, time, and

XML types.

✦ You can define your own simple types by restricting an existing type such

as xsd:string, often via a regular expression pattern matching the allowed

content.

✦ Schemas declare attributes with xsd:attribute elements.

✦ The xsd:import element imports declarations for elements and attributes in

a different namespace from another schema document.

✦ Adding xsd:annotation elements helps make your schemas more readable.

✦ The xsd:documentation child of an xsd:annotation element provides

information for human readers.

✦ The xsd:appInfo child of an xsd:annotation element provides information

for software programs reading the schema, though schema validators ignore it.

In the next chapter, we explore another standard XML application from the W3C,

Scalable Vector Graphics (SVG). SVG is a W3C Recommendation for an XML format

for line art. Unlike most XML applications, which describe text of some kind or

another, or perhaps numeric data, SVG documents describe pictures. SVG goes a

long way toward proving just how versatile XML really is.

✦ ✦ ✦

Scalable Vector
Graphics

The world has several well-understood, well-supported

formats for photographs, painted art, and other

bitmapped graphics including GIF, JPEG, and, most recently,

PNG. These have all achieved broad adoption on the Web and

elsewhere. However, a standard format for line art, such as

flow charts, blueprints, technical diagrams, and other sorts of

drawings, has been sorely lacking. Scalable Vector Graphics

(SVG) is the first realistic candidate to fill this hole.

SVG is a W3C-endorsed XML application for line art. It defines

elements that represent polygons, rectangles, ellipses, lines,

curves, and more. New shapes can be defined using a simple

path language. Color schemes and patterns can be applied to

shapes through clipping, masking, compositing, fills, and gra-

dients. Furthermore, the shapes on the page can move.

JavaScript can make shapes respond to user input. SVG is a

complete format for detailed descriptions of dynamic vector

graphics. For static graphics, SVG is almost on a par with

Adobe’s EPS (Encapsulated PostScript) format, and consider-

ably more powerful than CGM (Computer Graphics Metafile).

For animated pictures, it’s as powerful as the proprietary SWF

format used by Macromedia Flash.

SVG documents can be embedded in Web pages. Browser

plug-ins exist that enable Netscape and Internet Explorer (IE)

to display SVG graphics. Eventually, SVG support will be built

directly into the browser so that you can include SVG draw-

ings in your Web pages with no more effort than you expend

today to add a GIF or JPEG picture to a page. However, SVG’s

significance extends far past the limited domain of Web sites.

SVG will eventually become the standard exchange medium

for drawings produced by all sorts of vector graphics software

on any platform.

2525C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

What is SVG?

A simple SVG
document

Embedding SVG
pictures in Web
pages

Simple shapes

Paths

Text

Bitmapped images

Coordinate systems
and viewports

Grouping shapes

Referencing shapes

Transformations

Linking

Metadata

SVG editors

✦ ✦ ✦ ✦

882 Part V ✦ XML Applications

What Is SVG?
There are two primary types of computer graphics: bitmapped and vector. A

bitmapped graphic contains a list of the colors of individual pixels in a normally

rectangular area. Examples include the GIF, JPEG, and PNG images used on most

Web pages. If a bitmapped graphic is 3 inches by 4 inches and has a resolution of 72

pixels per inch, then it contains 72 × 3 × 72 × 4 pixels, that is, 62,208 pixels. If the

image is stored in 24-bit color, then each pixel occupies 3 bytes, so this image uses

1,492,992 bits, or about 486KB of memory. The actual file may use a variety of lossy

and nonlossy compression algorithms to reduce this size somewhat, but you can

still see that bitmapped images get very big very quickly. This is why Web pages

with lots of pictures are so slow to load.

By contrast, a vector graphic does not store several bytes of data for each pixel in

the image. Instead it stores a list of instructions for drawing the image. These

instructions may say to draw a line between point A and point B, place a purple cir-

cle with a 2-inch radius in the middle of the page, and draw the text “Delicious, deli-

cious. Oh how boring!” 12 points high in the Palatino font on top of the circle. As a

general rule, the space required for these instructions is much less than the space

required for a bitmapped equivalent. Vector graphics are much smaller and more

efficient than bitmapped images. Vector formats aren’t suitable for all graphics —

for instance, they don’t work well for photographs — but they are much better for

graphics that were drawn on a computer by a human being rather than being

copied from nature using a camera, digital or otherwise.

There are many vector graphics formats in the world today including PICT, EPS, and

CGM; but for historical and political reasons, there really hasn’t been a standard

format everyone could use. PICT files are based on the Macintosh’s native

QuickDraw software and algorithms. They are mostly limited to the Macintosh and

don’t port well to other platforms. EPS documents require a full-blown PostScript

A Word of Caution about SVG

SVG is still under development. The SVG language has changed in the past, and will change again in the
future. This chapter is based on the November 2, 2000, SVG Candidate Recommendation, as well as on
quite a lot of beta software. By the time you are reading this book, the final version of SVG will proba-
bly have been released and a few details will have changed. If you do encounter something that does-
n’t seem to work quite right, please compare the examples in this book against the final specification.

To make matters worse, at the time of this writing no software implemented all of the November 2,
2000, SVG Candidate Recommendation. In fact, so far there are only a few standalone programs and
browser plug-ins that can understand SVG documents, and most of those only understand an older
working draft. None of the major Web browsers (Netscape, IE, Opera) know how to interpret and dis-
play an SVG picture embedded in an HTML page without a plug-in. Eventually, of course, this should be
straightened out as SVG evolves toward its final incarnation and more vendors implement it in their
software.

883Chapter 25 ✦ Scalable Vector Graphics

interpreter, which, while potentially cross-platform, is too big a task for a lot of

graphic software vendors. CGM was probably the closest to a vendor-neutral, stan-

dard, vector graphics format, especially in its WebCGM incarnation; but CGM lacks

complex fills, image clipping, image manipulation, detailed color control, and other

high-end features that graphic designers need. Furthermore, CGM is a binary file

format, with all the concurrent disadvantages of binary file formats. In fact, all three

of these formats are so difficult to implement that few Web browsers (and none of

the major ones) have included built-in support for them. It seems probable that

SVG will be the first successful effort to define a truly open, cross-platform standard

for vector graphics.

SVG is an XML application for describing drawings. SVG elements represent two-

dimensional shapes: rectangles, ovals, circles, triangles, clouds, spirals, trapezoids,

and so forth. Each shape is described as a path formed from a series of lines and

curves. SVG uses elements and attributes to describe the position, size, and outline

of each shape. CSS styles are used to attach colors, fonts, and other details to the

abstract geometric shapes.

XSL also integrates very nicely with SVG. Because SVG documents are well-formed

XML documents, an XSLT processor can convert SVG documents into other SVG

documents or into other XML applications. More commonly, an existing XML docu-

ment can be converted into SVG. For example, a file full of numbers might be con-

verted into a bar graph, a pie chart, or even a bar code. The resulting SVG

document might then be embedded in an XSL Formatting Objects document. SVG

merges very nicely with XSL-FO. The XSL-FO can describe the general text-based

page layout, while SVG describes all the graphics.

Most SVG documents are drawn using a GUI (graphical user interface), and only

saved into SVG form. Consequently, you don’t need to know the detailed syntax of

each and every SVG element and attribute. However, if you know a little, you can

sometimes do some surprising tricks with the SVG file that may prove impossible

with a graphical editor. For example, you can search for all the blue elements, and

change them to red. SVG is also a much easier graphics format to generate from

programs you write than binary formats such as TIFF, PICT, or CGM.

Scalability
The S in SVG stands for Scalable. That means a given SVG picture is not tied to a

single resolution or size. The same picture can be expanded or compressed. The

same SVG document can become a very small picture on a Palm Pilot, a medium-

sized picture on a Web page, or a very large picture projected on a movie screen.

An SVG picture can even be zoomed in or out at full resolution on the same display.

SVG pictures do not have absolute sizes.

Scalable also means that the same picture can be displayed at different resolutions.

I can print a full-page picture on my Apple Personal LaserWriter NTR, and the pic-

ture will be printed at the printer’s full resolution of 300 dots per inch. I can show

the same picture on my Silicon Graphics 1600SW flat panel monitor, and it will use

884 Part V ✦ XML Applications

the monitor’s lesser resolution of 110 dots per inch. If I used a higher resolution

printer or a lower resolution monitor, the picture would adjust accordingly. Unlike

bitmapped formats such as TIFF, JPEG, and GIF, SVG pictures don’t require you to

choose between size and resolution.

Scalable also means that SVG can scale to very large projects where documents are

built up out of thousands of individual pictures. For instance, an architectural dia-

gram for a new campus of a large corporation might include separate SVG docu-

ments representing each room. Floor documents would be built up by combining

the room documents. Buildings would be created by combining the floor docu-

ments. The campus would be created by combining the individual building docu-

ments and adding a few pieces to represent the tunnels and roads and green spaces

that connected them. Similar buildings and floors might be described by annotating

small changes on top of basic templates. Different architects could work on differ-

ent parts of the campus at the same time; then combine all the pieces together.

In my opinion, this definition of scalability isn’t well met by SVG 1.0. There are two
problems. First, the ability to build one SVG document out of multiple component
parts is based on some other specifications, such as XInclude and XLink, that aren’t
finished yet. Second, SVG documents don’t carry any notion of the real-world sizes
of what they describe, just a scalable local coordinate space. This means that
there’s no standard way of making sure that the water fountain I design will fit
through the door of the building you design.

Vector versus bitmapped graphics
Since the demise of daisy-wheel printers, all modern computer rendering devices

have used bitmapped graphics. That is, they divide the canvas on which they draw

into a grid of pixels of varying colors. The basic algorithms for rendering raster

graphics are the same whether you’re talking about a 72-dpi color CRT monitor or a

1200-dpi black-and-white printer. This means that when a vector document such as

an SVG picture is drawn, it must first be converted into a bitmap. The real differ-

ence, therefore, between finite precision bitmapped pictures and infinitely precise

vector graphics is in where the conversion to the bitmap, and subsequent loss of

information, takes place. With a bitmapped image, the information is lost when the

document is first created at a particular resolution. With a vector image, all infor-

mation is maintained perfectly until the document is actually drawn on the screen

or printed on paper.

Because SVG graphics will eventually be rendered as a bitmap, the W3C Scalable

Vector Graphics Working Group decided that it might as well take advantage of that

fact. Consequently, they added a number of fundamentally bitmapped features to

SVG that are applied to SVG pictures on the client side when the document is ren-

dered. For example, you can place bitmapped JPEG and PNG images in an SVG doc-

ument using the image element. For another example, infinitely precise vector text

doesn’t need antialiasing but bitmapped text does. SVG renderers can apply a vari-

ety of antialiasing algorithms to both text and lines before drawing them on the

Caution

885Chapter 25 ✦ Scalable Vector Graphics

screen. SVG documents can also request bitmap filter effects such as blurring and

drop shadows.

A Simple SVG Document
Listing 25-1 is an SVG document that describes a red circle. This document should

be saved in a file named something similar to circle.svg or 25-1.svg. The three-letter

extension .svg is customary, although not always required. This is an XML docu-

ment so it could be saved as circle.xml or as circle.txt. The MIME media type of this

document should be set to image/svg+xml in environments that support MIME

types. Figure 25-1 shows the document displayed in the Apache XML Project’s

Batik.

Batik is an open source program included on the CD-ROM in the directory
utilities/batik. The most recent version can be downloaded from the Web at
http://xml.apache.org/batik/. Batik requires Java 1.2 or later. Once
you’ve unzipped the zip file, you can run the Batik SVGViewer by double-clicking
the batik-svgviewer.jar file. Alternately, you can run it at the command line from
inside the batik directory like this:

D:\xml\batik-1.0beta2>java -jar batik-svgviewer.jar

Figure 25-1: An SVG document

Listing 25-1: An SVG document that represents a red circle
with a blue outline

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<svg xmlns=”http://www.w3.org/2000/svg”

width=”3.5in” height=”1in”>
<title>Listing 25-1 from the XML Bible</title>
<circle r=”30” cx=”34” cy=”34”

style=”fill: red; stroke: blue; stroke-width: 2” />
</svg>

On the
CD-ROM

886 Part V ✦ XML Applications

This is an XML document, so it begins with an XML declaration like all good XML

documents should. This particular document doesn’t have a document type decla-

ration, so it’s only well formed, not valid. However, the SVG specification does

include a DTD that you can use to validate SVG documents, and you could refer-

ence it if it seemed useful to do so. You could even provide an xml-stylesheet
processing instruction that connected this document to a CSS or XSL style sheet.

The root element of this and all SVG documents is svg. This element is in the

http://www.w3.org/2000/svg namespace. Sometimes, as here, this is the default

namespace. Other times, it’s mapped to a prefix. The prefix svg is customary. As

usual, the specific prefix (or lack thereof) doesn’t matter as long as the URI

(Uniform Resource Identifier) is correct.

This chapter uses the http://www.w3.org/2000/svg URI from the November
2, 2000, Candidate Recommendation of SVG exclusively. However, earlier working
drafts of the SVG specification used different URIs, and these are still expected by
some software. It’s possible that the final release version of SVG 1.0 will use a dif-
ferent namespace.

The svg element has width and height attributes that specify the size of the can-

vas on which the picture is drawn. Here it’s a 3.5 inch wide by one inch high rectan-

gle. These attributes aren’t required, but some versions of Batik don’t seem to work

properly if they aren’t included.

The root svg element also contains two child elements: a title and a circle. The

title contains a string of text that’s displayed in the title bar of the SVG browser.

The circle is a shape to be drawn. This circle has a radius of 30. “30 what?” you

may be asking. Is that 30 pixels? 30 inches? 30 parsecs? It’s actually 30 units in the

nondimensional local coordinate space. Remember that SVG graphics are scalable.

The real size of a radius 30 circle can change from one environment to another. By

default, it maps to 30 pixels on the local display so the circle will be smaller on

higher-resolution monitors. However, you can use transforms and other markup to

change the actual size, as you’ll see soon.

The center of the circle is placed at position x=34, y=34. This is 34 units down from

and 34 units to the right of the upper-left corner of the window. Standard computer

graphics coordinates are used. That is, the upper-left corner of this rectangle is

point 0, 0. X coordinates increase to the right; Y coordinates increase down. Figure

25-2 diagrams this coordinate system. You can use floating-point numbers such as

7.5 to place shapes anywhere on this grid. You are not limited to placing shapes at

the actual pixels of the display. An SVG document represents an abstract, infinitely

precise, almost Platonic ideal of a two-dimensional plane.

Note

887Chapter 25 ✦ Scalable Vector Graphics

Figure 25-2: SVG coordinate system

The style attribute assigns CSS properties to this circle. In particular, it sets the fill

color to red and the stroke color to blue. Furthermore it makes the stroke two units

wide.

In my opinion this is one of the flakier aspects of SVG. CSS defines a color prop-
erty, but it doesn’t define any fill, stroke, or stroke-width properties. SVG has
adopted the CSS syntax as an optional feature, but applied it to its own set of
properties. The same circle could equally well have been written like this:

<circle r=”30” cx=”34” cy=”34”
fill=”red” stroke=”blue” stroke-width=”2” />

For inline styles, I prefer to use the more explicit attributes. However, you can also
attach external CSS style sheets to SVG documents that set various properties for
different elements. This is perhaps a little more useful.

Caution

888 Part V ✦ XML Applications

SVG elements and attribute names only use the ASCII character set, so any normal

text editor can produce and save an SVG document. However, if the drawing con-

tent itself contains non-ASCII text (for example, a Russian billboard) then you’d

have to save it in some other character set and use the appropriate encoding decla-

ration to identify it. Of course, as you’ll see at the end of this chapter, you don’t

have to use a text editor to create or save an SVG document at all. In fact, most of

the time, you’ll probably use a graphics program such as Adobe Illustrator that

offers a standard user interface for drawing pictures. You’ll just save the finished

result as SVG.

Embedding SVG Pictures in Web Pages
It’s very easy to include SVG pictures in Web pages for browsers that natively

understand SVG. You don’t even have to use valid XHTML. Just paste the SVG

source code into the HTML document where you want the picture to appear. Listing

25-2 demonstrates by embedding Listing 25-1 in a simple HTML document.

Listing 25-2: An HTML document in which Listing 25-1 is
embedded

<html>
<head>
<title>Circles are my friends</title>

</head>
<body>
<h1>Rectangles are the Enemy!</h1>

<svg xmlns=”http://www.w3.org/2000/svg”
style=”width: 3.5in; height: 1in”>

<title>Listing 25-1 from the XML Bible</title>
<circle r=”30” cx=”34” cy=”34”

style=”fill: red; stroke: blue; stroke-width: 2”/>
</svg>

<hr>
Last Modified February 17, 2001

Copyright 2001

Elliotte Rusty Harold

</body>
</html>

889Chapter 25 ✦ Scalable Vector Graphics

At the time of this writing, only the Amaya browser from the W3C natively supports

SVG included in this fashion. Figure 25-3 shows Amaya displaying Listing 25-2.

Amaya is on the CD-ROM in the directory browsers/amaya. You can download
the latest version from http://www.w3.org/Amaya/. This chapter was written
using Amaya 4.1.

Figure 25-3: An SVG document included in a Web page

Although they’re text, SVG documents are no more part of HTML than are the

binary GIF, JPEG, and PNG formats. Therefore most browsers don’t support SVG

pictures that are pasted into HTML source code, as in Listing 25-2. Instead, you

have to save the picture in a separate document and link to it from the HTML using

the EMBED element. This is very much like the normal IMG element you’re familiar

with from HTML. It has WIDTH, HEIGHT, ALT, ALIGN, and SRC attributes that mean

more or less the same as they mean for IMG. The only difference is that IMG is used

for image formats the browser natively supports, while EMBED is used for data

formats that require a separate plug-in. Most EMBED elements also have a

PLUGINSPAGE attribute whose value is a URL where the browser can download

the plug-in it needs to display the embedded content. I recommend the Adobe

SVG Viewer plug-in, which is available for Netscape and Internet Explorer on both

Windows and MacOS. For example, this EMBED element could be used to place

Listing 25-1 in 100 pixel by 100 pixel rectangle on the page:

<EMBED WIDTH=”100” HEIGHT=”100” SRC=”25-1.svg”
ALT=”A red circle with a blue border”
ALIGN=”LEFT”
PLUGINSPAGE=”http://www.adobe.com/svg/viewer/install/”>

On the
CD-ROM

890 Part V ✦ XML Applications

The SVG picture will be left aligned so that text flows around it on the right. If the

browser can’t handle this type of content, it will display the alternate text “A red

circle with a blue border” instead. And if the user does not have the necessary plug-

in to load this document, then it will ask them if they want to go to the Adobe Web

site to get it. Figure 25-4 shows the final result after the plug-in is installed and

Listing 25-3 is loaded into Netscape Navigator.

You need version 2.0 beta 1 or later of the Adobe SVG Plug-In to view the SVG
documents in this chapter. Version 1.0 of the Adobe SVG Plug-In only supports an
older, out-of-date, working draft of SVG from March 2000. This chapter
describes the more current Candidate Recommendation of SVG from
November 2000. The latest version should be available from http://www.
adobe.com/svg/viewer/install.

Listing 25-3: An HTML document in which Listing 25-1 is
embedded

<html>
<head>
<title>Circles are my friends</title>

</head>
<body>
<h1>Rectangles are the Enemy!</h1>

<EMBED WIDTH=”100” HEIGHT=”100” SRC=”25-1.svg”
ALT=”A red circle with a blue border”
ALIGN=”LEFT”
PLUGINSPAGE=”http://www.adobe.com/svg/viewer/install/”>

<p>
You need version 2.0 or later of the Adobe SVG plug-in
for this to work. Version 1.0 of the Adobe SVG plug-in only
supports an older, out-of-date working draft of SVG from
March 2000. This chapter describes the more current
Candidate Recommendation of SVG from November 2000.

</p>

<hr>
Last Modified February 17, 2001

Copyright 2001

Elliotte Rusty Harold

</body>
</html>

Caution

891Chapter 25 ✦ Scalable Vector Graphics

Figure 25-4: An SVG document embedded in a Web page

Simple Shapes
SVG defines six simple shape elements that you can use to place particular kinds of

shapes on the page. These are:

✦ rect

✦ circle

✦ ellipse

✦ line

✦ polygon

✦ polyline

You’re not limited to these shapes, however. You can also define arbitrary one- and

two-dimensional shapes using paths. But let’s begin with the basic shapes.

The rect element
The rect element represents a rectangle aligned with the two coordinate axes. In

other words, it represents rectangles like the one on the left side of Figure 25-5 but

not the one on the right side.

892 Part V ✦ XML Applications

Figure 25-5: SVG rect elements represent rectangles like the one on the left,
not the one on the right.

Given the constraint of axis alignment, each rectangle can be fully specified by the

coordinates of its upper-left corner, its width, and its height. These are given by

four attributes on the rect element:

✦ x: the x coordinate of the upper-left corner of the rectangle

✦ y: the y coordinate of the upper-left corner of the rectangle

✦ width: the extent of the rectangle parallel to the x-axis

✦ height: the extent of the rectangle parallel to the y-axis

For example, this rect element represents a 10 by 10 square whose upper-left cor-

ner is aligned with the upper-left corner of the picture:

<rect x=”0” y =”0” width=”10” height=”10”/>

Listing 25-4 draws part of a checkers board by alternating red and black squares,

each 25 units square. Figure 25-6 shows the rendered document.

Listing 25-4: A partial checkerboard made up out of rects

<?xml version=”10” encoding=”UTF-8” standalone=”yes”?>
<svg xmlns=”http://www.w3.org/2000/svg”

width=”3.5in” height=”1.0in”>
<title>Listing 25-4 from the XML Bible</title>
<rect x=”0” y=”0” width=”25” height=”25” fill=”red”/>
<rect x=”25” y=”0” width=”25” height=”25” fill=”black”/>
<rect x=”50” y=”0” width=”25” height=”25” fill=”red” />
<rect x=”0” y=”25” width=”25” height=”25” fill=”black”/>
<rect x=”25” y=”25” width=”25” height=”25” fill=”red” />
<rect x=”50” y=”25” width=”25” height=”25” fill=”black”/>
<rect x=”0” y=”50” width=”25” height=”25” fill=”red” />
<rect x=”25” y=”50” width=”25” height=”25” fill=”black”/>
<rect x=”50” y=”50” width=”25” height=”25” fill=”red” />

</svg>

893Chapter 25 ✦ Scalable Vector Graphics

Figure 25-6: A piece of a
checkerboard arranged with nine
rect elements

You can make rounded rectangles by setting the rx and ry attributes of the rectan-

gle to a positive length. The larger this number, the more rounded the corners will

be. The maximum rounding is half the width of the rectangle for rx and half the

length of the rectangle for ry. This much rounding turns the rectangle into an

ellipse. Anything beyond that is ignored. For example, Listing 25-5 adds five units of

rounding to each of the rectangles from Listing 25-4. Figure 25-7 shows the results of

adding this rounding.

Listing 25-5: A pattern of nine rounded rects

<?xml version=”10” encoding=”UTF-8” standalone=”yes”?>
<svg xmlns=”http://www.w3.org/2000/svg”

width=”3.5in” height=”1.0in”>
<title>Listing 25-5 from the XML Bible</title>
<rect x=”0” y=”0” width=”25” height=”25” rx=”5” ry=”5”

fill=”red”/>
<rect x=”25” y=”0” width=”25” height=”25” rx=”5” ry=”5”

fill=”black”/>
<rect x=”50” y=”0” width=”25” height=”25” rx=”5” ry=”5”

fill=”red” />
<rect x=”0” y=”25” width=”25” height=”25” rx=”5” ry=”5”

fill=”black”/>
<rect x=”25” y=”25” width=”25” height=”25” rx=”5” ry=”5”

fill=”red” />
<rect x=”50” y=”25” width=”25” height=”25” rx=”5” ry=”5”

fill=”black”/>
<rect x=”0” y=”50” width=”25” height=”25” rx=”5” ry=”5”

fill=”red” />
<rect x=”25” y=”50” width=”25” height=”25” rx=”5” ry=”5”

fill=”black”/>
<rect x=”50” y=”50” width=”25” height=”25” rx=”5” ry=”5”

fill=”red” />
</svg>

894 Part V ✦ XML Applications

Figure 25-7: A pattern of
rounded rects

The circle element
The circle element represents a circle. The position of the circle is determined by

the coordinates of its center. The size of the circle is determined by its radius.

These are specified by three attributes of the circle element:

✦ cx: the x coordinate of the center of the circle

✦ cy: the y coordinate of the center of the circle

✦ r: the length of the radius

For example, this circle element has a 25-unit radius. Its center is positioned at

the upper-left corner of the picture. Thus, only the lower-right quarter (fourth

quadrant) of the circle will be shown. The other three quarters of the circle are off

the screen.

<circle cx=”0” cy=”0” r=”25” />

Listing 25-6 uses circle elements to draw a bull’s-eye on the screen. The circles in

a bull’s-eye are concentric so that the center coordinates are the same for each cir-

cle. Only the radius changes. This example takes advantage of the implicit z-order-

ing of SVG shapes. Each shape is drawn on top of its previous sibling. That is, the

first circle element is drawn first, the second circle element is drawn on top of

the first, the third circle is drawn on top of the second, and so forth. Without this

ordering, the largest circle might be drawn on top of all the others, obscuring them.

Figure 25-8 shows the result.

Listing 25-6: An SVG bull’s-eye

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<svg xmlns=”http://www.w3.org/2000/svg”

width=”3.5in” height=”2.0in”>
<title>Listing 26-6 from the XML Bible</title>
<circle cx=”90” cy=”90” r=”70”

fill=”red” stroke=”black” stroke-width=”2” />
<circle cx=”90” cy=”90” r=”60”

895Chapter 25 ✦ Scalable Vector Graphics

fill=”white” stroke=”black” stroke-width=”2” />
<circle cx=”90” cy=”90” r=”50”

fill=”red” stroke=”black” stroke-width=”2” />
<circle cx=”90” cy=”90” r=”40”

fill=”white” stroke=”black” stroke-width=”2” />
<circle cx=”90” cy=”90” r=”30”

fill=”red” stroke=”black” stroke-width=”2” />
<circle cx=”90” cy=”90” r=”20”

fill=”white” stroke=”black” stroke-width=”2”/>
<circle cx=”90” cy=”90” r=”10”

fill=”red” stroke=”black” stroke-width=”2” />
</svg>

Figure 25-8: An SVG bull’s-eye

The ellipse element
Ellipses are a little like squashed circles, or, reversing the perspective, circles are

degenerate ellipses. Whereas circles have perfect rotational symmetry, ellipses do

have definite x and y axes. Like SVG rectangles, SVG ellipses line up their axes par-

allel to the coordinate axes. Thus, like rectangles, you only need four numbers to

specify an ellipse:

✦ cx: the x coordinate of the center of the ellipse

✦ cy: the y coordinate of the center of the ellipse

✦ rx: the length of the radius of the ellipse parallel to the x-axis

✦ ry: the length of the radius of the ellipse parallel to the y-axis

For example, this ellipse is four times as long as it is high:

<ellipse cx=”45” cy=”20” rx=”40” ry=”10” />

896 Part V ✦ XML Applications

Listing 25-7 places two very eccentric ellipses more or less perpendicular to each

other to form a simple four-pointed star. These use the default fill color (black) and

stroke (none). Figure 25-9 shows the result.

Listing 25-7: Two ellipses perpendicular to each other

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<svg xmlns=”http://www.w3.org/2000/svg”

width=”3.5in” height=”1.0in”>
<title>Listing 25-7 from the XML Bible</title>
<ellipse cx=”45” cy=”45” rx=”40” ry=”10” />
<ellipse cx=”45” cy=”45” rx=”10” ry=”40” />

</svg>

Figure 25-9: Two ellipses
perpendicular to each other

The line element
The line element represents a straight-line segment between two points. It is iden-

tified by the x and y coordinates of its end points as specified in these attributes:

✦ x1: The x-coordinate of the start point

✦ y1: The y-coordinate of the start point

✦ x2: The x-coordinate of the end point

✦ y2: The y-coordinate of the end point

For example, this is a 100-unit horizontal line:

897Chapter 25 ✦ Scalable Vector Graphics

<line x1=”0” y1=”100” x2=”100” y2=”100”/>

This is a 100-unit vertical line:

<line x1=”0” y1=”100” x2=”0” y2=”0”/>

This line runs at a 45-degree angle between the end points of the two previous lines:

<line x1=”0” y1=”0” x2=”100” y2=”100”/>

Listing 25-8 puts them all together to form a right triangle. However, as currently

written these lines won’t actually be visible. To display them, you need to at least

set the stroke color to something other than white. Listing 25-8 also expands the

stroke width to two pixels. Figure 25-10 shows the result.

Listing 25-8: A right triangle formed from three lines

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<svg xmlns=”http://www.w3.org/2000/svg”

width=”3.5in” height=”2.0in”>
<title>Listing 25-8 from the XML Bible</title>
<line x1=”0” y1=”100” x2=”100” y2=”100”

stroke-width=”2px” stroke=”black”/>
<line x1=”0” y1=”100” x2=”0” y2=”0”

stroke-width=”2px” stroke=”black”/>
<line x1=”0” y1=”0” x2=”100” y2=”100”

stroke-width=”2px” stroke=”black”/>
</svg>

Figure 25-10: A right triangle
formed from three lines

898 Part V ✦ XML Applications

Polygons and polylines
A polygon is a closed curve formed by straight-line segments between a sequence

of three or more points. The first point is connected to the second point, the sec-

ond to the third, the third to the fourth, and so on, until the last point, which is con-

nected back to the first point. Thus, a polygon with N points has N line segments. A

polyline is similar except that the last point is not connected back to the first point.

A polyline with N points has only N-1 line segments. Polygons include not only the

usual convex polygons like triangles and concave polygons like stars, but also con-

siderably stranger items such as polygons with self-intersecting edges. Figure 25-11

shows the three major kinds. SVG polygons include all these cases. Rectangles are

special cases of polygons, but circles are not because they don’t use straight lines.

Figure 25-11: A concave polygon,
a convex polygon, and a complex
polygon, each formed from
eight points

The points forming a polygon are listed in order in the polygon element’s points
attribute. The first point is connected to the second point, the second point is con-

nected to the third point, the third point is connected to the fourth point, and so

on. The last point is connected back to the first point. All points are given as pairs

of dimensionless numbers in the local coordinate space separated by a comma.

Points are separated from each other by white space. For example, the right trian-

gle of Listing 25-8 could instead be written as this polygon:

<polygon points=”0,100 100,100 0,0”/>

Figure 25-11 was actually created using polygon elements in the SVG document

shown in Listing 25-9.

Listing 25-9: Three polygons

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<svg xmlns=”http://www.w3.org/2000/svg”

width=”3.5in” height=”1.5in”>
<title>Listing 25-9 from the XML Bible</title>
<polygon points=”0,30 30,0 80,0 110,30 110,80 80,110

30,110 0,80”/>

899Chapter 25 ✦ Scalable Vector Graphics

<polygon points=”120,55 160,40 180,0 200,40 240,55 200,80
180,120 160,80”/>

<polygon points=”240,30 270,45 312,80 270,110 268,82
272,23 267,71 311,17 “/>

</svg>

The polyline element is almost identical to the polygon element except that the

last point listed in the points attribute is not connected back to the first point.

However, the last point can repeat the first point, so that the path is connected. For

example, the right triangle of Listing 25-8 could instead be written as this polyline:

<polyline points=”0,100 100,100 0,0 0,100”/>

It’s necessary to repeat the first point as the last point to get the polyline to close

up. On the other hand, polylines are filled by default, so adding the last point is

only really necessary if you turn the fill off using style=”fill: none”.

Paths
The path element represents an arbitrary two-dimensional curve. Paths can be

stroked so that they look like lines. They can be filled so they appear as solid

shapes. They can even be used as masks or clipping regions. You can think of a

path as the curve a pen draws as it moves across the paper. Often paths are con-

nected, but occasionally the artist may pick up the pen and put it down at a differ-

ent point on the page and continue drawing from there. However, the pen draws in

a single-color ink (possibly invisible) and the tip of the pen has a fixed thickness. To

change the color or size of the line drawn the artist must change pens.

There are ten basic operations the artist can perform with a pen:

✦ Move to: Pick the pen up and put it down at a specified point on the paper.

✦ Line to: Draw a straight line from the current pen position to a specified point.

✦ Horizontal line to: Draw a straight line from the current pen position across to

a specified x coordinate, keeping the y coordinate the same.

✦ Vertical line to: Draw a straight line from the current pen position up or down

to a specified y coordinate, keeping the x coordinate the same.

✦ Arc: Draw an elliptical or circular arc from the current pen position to a speci-

fied point.

✦ Curve to: Draw a cubic Bézier curve from the current pen position to a speci-

fied point.

900 Part V ✦ XML Applications

✦ Smooth curve to: Draw a “smooth” cubic Bézier curve from the current pen

position to a specified point.

✦ Quadratic curve to: Draw a quadratic Bézier curve from the current pen posi-

tion to a specified point.

✦ Smooth quadratic curve to: Draw a “smooth” quadratic Bézier curve from the

current pen position to a specified point.

✦ Close path: Draw a straight line from the current pen position back to the first

point in the path.

An SVG document represents a path with a path element. The d (for data) attribute

of the path contains the instructions for drawing the path. The instructions are

each represented by single letters:

✦ M and m for move to

✦ L and l for line to

✦ H and h for draw a horizontal line to

✦ V and v for draw a vertical line to

✦ A and a for draw an elliptical arc to

✦ C and c for draw a cubic Bézier curve to

✦ S and s for draw a smooth cubic Bézier curve to

✦ Q and q for draw a quadratic Bézier curve to

✦ T and t for draw a smooth quadratic Bézier curve to

✦ Z and z for close path

The uppercase letters give the points as absolute coordinates. The lowercase let-

ters give the points as positive or negative offsets from the current pen position.

Every path begins with an M or m to set the initial point. Paths must end with a Z or

z. Each M and L instruction is followed by the coordinates of the point to go to. For

example, here’s a path element that draws an isosceles triangle:

<path d=”M 0,200 L 100,0 L 200,200 Z” />

Don’t worry if it isn’t obvious to you that this is an isosceles triangle. In fact, I’d be

surprised if it were even obvious that this is a triangle. Here’s how this path
attribute is interpreted:

1. M 0,200: Move the pen to the point x=0, y=200. This is where the path begins.

2. L 100,0: Draw a line from the current pen location (x=0, y=200) to x=100, y=0.

901Chapter 25 ✦ Scalable Vector Graphics

3. L 200,200: Draw a line from the current pen location (x=100, y=0) to x=200,

y=200.

4. Z: Close the path; that is, draw a line from the last point (x=200, y=200) back to

the first point (x=0, y=200).

There’s often more than one way to define a given path. For instance, this path ele-

ment represents that same triangle but uses lowercase, relative units after estab-

lishing the initial point:

<path d=”m 0,200 l 100,-200 l 100,200 z” />

Here’s how this path attribute is interpreted:

1. m 0,200: Because this move to command is the first point in the path, the rel-

ative coordinates are treated as absolute coordinates, and the pen is moved

to the point x=0, y=200. This is where the path begins.

2. l 100,-200: Draw a line from the current pen location (x=0, y=200) that goes

100 pixels to the right and 200 pixels down; that is, draw a line to (x=100, y=0).

3. l 100,200: Draw a line from the current pen location (x=100, y=0) that goes

100 pixels to the right and 200 pixels down; that is, draw a line to (x=200,

y=200).

4. z: Close the shape; that is, draw a line from the current point (x=200, y=200)

back to the first point (x=0, y=200).

There are a variety of other forms path data can take, although the meaning is the

same. For instance you can use a space to separate the x and y coordinates in a

point rather than a comma, and you can provide several coordinates after a line-to

command to indicate that you want multiple lines drawn. For instance, the above

path could equally easily have been written like this:

<path d=”m0 200l100 -200 100 200z” />

One reason not to write your coordinates this way is that although this form is

equally easy to write, it is far from equally easy to read. For instance, is it obvious

to you where the second command is in the above path? (Hint: be sure to distin-

guish between the letter l and the digit 1).

Listing 25-10 shows a tic-tac-toe board drawn as one single, long, self-intersecting

path. Because a tic-tac-toe grid is made up exclusively of horizontal and vertical

lines, this document uses the V and H operators heavily. Also note the use of the M
command to move the pen around the board without drawing a line. Finally,

because paths are filled by default, CSS styles are used to turn off filling and to turn

on stroking. Figure 25-12 shows the finished board.

902 Part V ✦ XML Applications

Listing 25-10: Tic-tac-toe

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<svg xmlns=”http://www.w3.org/2000/svg”

width=”3.6in” height=”3.4in”>
<title>Listing 25-10 from the XML Bible</title>
<path d=”M 100,0 V 300

M 200,0 V 300
M 0,100 H 300
M 0,200 H 300 Z”
fill=”none” stroke=”black” stroke-width=”2px” />

</svg>

Figure 25-12: A tic-tac-toe board
formed from a single path element

Arcs
Arcs are more complex than straight lines. You have to specify seven separate num-

bers to determine which arc will be drawn from the current point. These seven

numbers are:

1. The x coordinate of the point to draw the arc to

2. The y coordinate of the point to draw the arc to

903Chapter 25 ✦ Scalable Vector Graphics

3. The radius of the arc along the x axis; the larger the radius the less curved the

arc will be

4. The radius of the arc along the y axis; equal x and y radii produce a circular

arc.

5. The orientation of the ellipse with respect to the x axis, in clockwise degrees

6. Whether the arc should subtend an angle greater than or less than 180

degrees; 1 for more than 180 degrees, 0 for less than 180 degrees

7. Whether the arc should be drawn with an increasing or decreasing angle; 1 for

an increasing angle, 0 for a decreasing angle

Here’s a path that uses an arc to draw a piece of pie with a 30-degree arc centered

on the y axis:

<path d=”M 100,100
L 74.11809548975, 3.40741737109
A 100 100 0 0 1 125.8819045103 3.40741737109
L 100, 100 Z”

style=”fill: none; stroke: black; stroke-width: 1px” />

Determining the correct coordinates for the above path required trigonometry, a

hand calculator, and some experimentation. The end points of the arc were calcu-

lated like this:

1. Make the radius of the circle 100 units.

2. Place the center of the circle at x=100, y=100.

3. Start the arc at the position x = 100 – 100 sin (30/2), y = 100 – 100 cos (30/2).

4. Finish the arc at the position x = 100 + 100 sin (30/2), y = 100 – 100 cos (30/2).

If that seems a little involved, that’s because it is. And this example is simpler than

many because:

1. Only circular arcs were used, not elliptical ones.

2. The coordinates and radius were deliberately chosen to make the math as

simple as possible.

Many arcs will be considerably worse than this. Arcs are really beginning to hit the

limit of what you can plausibly work with by hand. Listing 25-11 draws a complete

pie with eight 45-degree pieces. Figure 25-13 shows the result. Forty-five-degree

increments are marginally easier to work with than 30-degree increments, but the

coordinates were still quite burdensome to calculate. The bottom line is that arc

paths are really intended for computers to calculate. Humans should use some sort

of reasonable GUI to describe them.

904 Part V ✦ XML Applications

Listing 25-11: A pie formed by eight arc paths

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<svg xmlns=”http://www.w3.org/2000/svg”

width=”3.6in” height=”2.4in”>
<title>Listing 25-11 from the XML Bible</title>
<path d=”M 100,100

L 100, 0
A 100 100 0 0 1 170.7106781187 29.28932188135
L 100, 100 Z”
fill=”brown” stroke=”black” stroke-width=”1px” />

<path d=”M 100,100
L 170.7106781187 29.28932188135
A 100 100 0 0 1 200 100
L 100, 100 Z”
fill=”brown” stroke=”black” stroke-width=”1px” />

<path d=”M 100,100
L 200, 100
A 100 100 0 0 1 170.7106781187 170.7106781187
L 100, 100 Z”
fill=”brown” stroke=”black” stroke-width=”1px” />

<path d=”M 100,100
L 170.7106781187,170.7106781187
A 100 100 0 0 1 100 200
L 100, 100 Z”
fill=”brown” stroke=”black” stroke-width=”1px” />

<path d=”M 100,100
L 100,200
A 100 100 0 0 1 29.28932188135 170.7106781187
L 100, 100 Z”
fill=”brown” stroke=”black” stroke-width=”1px” />

<path d=”M 100,100
L 29.28932188135 170.7106781187
A 100 100 0 0 1 0 100
L 100, 100 Z”
fill=”brown” stroke=”black” stroke-width=”1px” />

<path d=”M 100,100
L 0, 100
A 100 100 0 0 1 29.28932188135 29.28932188135
L 100, 100 Z”
fill=”brown” stroke=”black” stroke-width=”1px” />

<path d=”M 100,100
L 29.28932188135 29.28932188135
A 100 100 0 0 1 100 0
L 100, 100 Z”
fill=”brown” stroke=”black” stroke-width=”1px” />

</svg>

905Chapter 25 ✦ Scalable Vector Graphics

Figure 25-13: A pie formed by
eight arc paths

Curves
You now have the tools needed to produce essentially any two-dimensional shape

that can be formed from straight lines, as well as circles, ellipses, and pieces

thereof. But that still leaves a lot unaccounted for. Figure 25-14 shows just a few of

the things that you can’t really describe with the shapes and paths discussed so far.

Paths like those in Figure 25-14, and many more, can be modeled by Bézier curves. A

Bézier curve is defined by a start point and an end point, as well as one or more

control points that define lines tangent to the curve through the start and end

points. One control point produces a quadratic Bézier curve. Two control points

produce a cubic Bézier curve. Smooth Bézier curves mirror one coordinate point

off the preceding coordinate point.

If you thought arcs were bad, Bézier curves are even worse. Where trigonometry

sufficed for arcs, Bézier curves require differential calculus. Fortunately, no one

expects you to calculate the coordinates for curves like this by hand. In a few cases,

a computer program might calculate them. For instance, the spiral in Figure 25-14 is

straightforward to generate algorithmically. However, most Bézier curves are pro-

duced by a human artist in conjunction with a graphics program like Adobe

Illustrator. Indeed that is exactly how Figure 25-14 was drawn. Thus, I’ll spare you

all the details of exactly how Bézier coordinates are specified in SVG. Instead, in

Listing 25-12 I’ll merely show you the SVG source code for the first shape in Figure

25-14. This was produced by Adobe Illustrator, and cleaned up a little by hand for

printing in the book. The SVG source code for the last three pictures in Figure 25-14

would take too much space to show here, but is on the CD-ROM and Web site. I sug-

gest that you use a drawing program that can export SVG when you need to draw

complicated paths like these.

906 Part V ✦ XML Applications

Figure 25-14: Figures drawn with Bézier curves

Listing 25-12: Bézier curves

<?xml version=”1.0” encoding=”utf-8”?>
<!-- Generator: Adobe Illustrator 9.0, SVG Export Plug-In -->
<svg xml:space=”preserve” xmlns=”http://www.w3.org/2000/svg”>
<g id=”Layer_x0020_1”

style=”fill-rule:nonzero; clip-rule:nonzero; fill:#FFFFFF;
stroke:#000000; stroke-width:0.25;
stroke-miterlimit:4;”>

<path style=”stroke-width:1;”
d=”M99.233,22.5c0,27.614-22.386,50-50,50c-22.091,

0-40-17.909-40-40c0-17.673,14.327-32,
32-32c14.139,0,25.6,11.461,25.6,25.6c0,
11.311-9.169,20.48-20.48,20.48c-9.049,
0-16.384-7.335-16.384-16.384 c0-7.239,
5.869-13.107,13.107-13.107c5.791,0,10.486,4.694,
10.486,10.486c0,4.633-3.756,8.389-8.389,
8.389c-3.707,0-6.711-3.005-6.711-6.711”/>

</g>
</svg>

907Chapter 25 ✦ Scalable Vector Graphics

Bézier curves can also handle the simpler cases of straight lines, arcs, circles, and

more. Adobe Illustrator is a Bézier-based program, and consequently uses Bézier

curves like the ones shown here for almost all shapes when it exports an SVG docu-

ment, even for straighter shapes that could have been encoded as rectangles, poly-

gons, or lines.

Text
Picture books are fine for three-year-olds, but most vector graphics meant for

adults include text. Sometimes, this text can be part of the Web page or an XSL-FO

document in which the SVG is embedded. However, it’s also useful to be able to

make text part of the picture. Sometimes you want a single line of text placed at a

particular position, and other times you want to wrap text around a curving path.

SVG provides all of these features; and, of course, it lets you choose the font family,

weight, and style. Furthermore, you can treat text as just another shape or path.

This means that you can apply coordinate transformations to skew or rotate text,

paint the text, clip and mask it, and do anything else to text that you could do to a

circle or a rectangle or a polygon. Finally, because XML documents are Unicode,

you aren’t just limited to standard Latin text. If the necessary fonts are installed,

SVG can handle text in right-to-left languages such as Arabic and ideographic lan-

guages such as Chinese.

The one thing that SVG really can’t do with text is wrap it. There’s no textBox ele-

ment in SVG. You can’t define a rectangle, assign some text to the rectangle, and

expect it to wrap every time a line reaches the right edge of the box. All line breaks

have to be inserted manually. The reason is that many languages, such as Tibetan,

Arabic, and Chinese, have relatively complex, context-sensitive rules about how

and where to break lines, and SVG implementers couldn’t be expected to be familiar

with all of them.

Strings
The text element places a single line of text on the canvas at the position indicated

by its x and y attributes. These are the coordinates of the lower-left corner of the

string. The text to place is simply the content of the text element. For example,

this text element places the string Hello SVG! at the coordinates x=50, y=50 in the

default font and size.

<text x=”50” y=”50”>Hello SVG!</text>

Listing 25-13 is a nursery rhyme in SVG. Figure 25-15 shows the displayed text.

908 Part V ✦ XML Applications

Listing 25-13: Four text elements, one for each line of a
poem

<?xml version=”1.0” encoding=”utf-8”?>
<svg xmlns=”http://www.w3.org/2000/svg”

width=”3.6in” height=”1.0in”>
<title>Listing 25-13 from the XML Bible</title>
<text x=”50” y=”20”>Mary had a little lamb</text>
<text x=”50” y=”40”>whose fleece was white as snow</text>
<text x=”50” y=”60”>and everywhere that Mary went</text>
<text x=”50” y=”80”>the lamb was sure to go</text>

</svg>

Figure 25-15: Four text strings

Notice that the poem begins on the line with y=20. Y coordinates increase down.

The y attribute of the text element specifies the position of the baseline of the

string; that is the bottom of the string. Therefore, if you set y to 0, then most of the

string, aside from the descenders in letters like y and g, would be positioned at neg-

ative coordinates, outside the visible range.

The text element does not consider line breaks. Each line should be a separate

text element with a different y coordinate. For example, suppose you were to use

this single text element instead of the four in Listing 25-13:

<text x=”50” y=”20”> Mary had a little lamb
whose fleece was white as snow
and everywhere that Mary went
the lamb was sure to go

</text>

909Chapter 25 ✦ Scalable Vector Graphics

Then SVG would just place all four verses on the same line as shown in Figure 25-16,

even if that means some of the text runs off the right hand side of the visible area

and gets truncated.

Figure 25-16: One text string

Normally, the XML parser compresses all runs of white space to a single space. You

can change this behavior by adding an xml:space attribute with the value preserve

to the text element like this:

<text x=”50” y=”20” xml:space=”preserve”>
Mary had a little lamb
whose fleece was white as snow
and everywhere that Mary went
the lamb was sure to go

</text>

However, while this will add some extra space between words at the ends of the

verses like lamb and whose, it still won’t preserve the line breaks.

Text on a path
Suppose instead of a nursery rhyme that neatly divides into small lines with well-

defined line breaks, you have a much larger run of prose, like the text of this para-

graph for example. You normally want to place that inside a box of fixed width and

fixed position, but unlimited height, and allow the formatter to decide where to

break the lines. SVG can’t quite do that, but it can get close.

SVG allows you to place text along a path other than a straight line. You can wrap

text along a triangle, a spiral, a cloud, Abraham Lincoln’s beard, or just about any

other path you can imagine. This is accomplished by placing a textpath element

inside a text element. The textpath element contains the text to draw and an

xlink:href attribute pointing to the path along which to draw it.

910 Part V ✦ XML Applications

For example, to wrap the prose of a paragraph along five parallel lines, you first

need a path element that describes five parallel lines. This one will do.

<path id=”para5”
d=”M 10,20 L 200,20 M 10,40 L 200,40

M 10,60 L 200,60 M 10,80 L 200,80
M 10,100 L 200,100
M 10, 20 Z”

fill=”none” stroke=”none”/>

Notice the use of the M commands to jump from one line to the next without includ-

ing the jumps in the path. In particular, notice the last one that moves the pen back

to the beginning of the path. Without this, the last line of text might get drawn

across a diagonal line connecting the last point to the first point. Also notice that

this path element has an id attribute so that it can be linked to.

The text element that writes along this path is given like this:

<text>
<textPath xlink:href=”#para5”

xmlns:xlink=”http://www.w3.org/1999/xlink”>
The text to be wrapped along the path goes here

</textPath>
</text>

Don’t forget to map the xlink prefix to the http://www.w3.org/1999/xlink URI.

If you use this in multiple places in the document, it might be more convenient to

declare it on the root svg element.

Listing 25-14 is a complete SVG document that wraps a paragraph of text around a

path composed of horizontal lines.

Listing 25-14: Text on a path

<?xml version=”1.0” encoding=”utf-8”?>
<svg xmlns=”http://www.w3.org/2000/svg”>

<title>Listing 25-14 from the XML Bible</title>

<path id=”para5”
d=”M 10,20 L 360,20 M 10,40 L 360,40

M 10,60 L 360,60 M 10,80 L 360,80
M 10,100 L 360,100 M 10, 120 L 360, 120
M 10,20 Z”

fill=”none” stroke=”black”/>/>

911Chapter 25 ✦ Scalable Vector Graphics

<text>
<textPath xlink:href=”#para5”

xmlns:xlink=”http://www.w3.org/1999/xlink”>
Suppose instead of a nursery rhyme that neatly divides
into small lines with well-defined line breaks, you have
a much larger run of prose, like the text of this
paragraph for example. You normally want to place that
inside a box of fixed width and fixed position, but
unlimited height, and allow the formatter to decide where
to break the lines. SVG can’t quite do that yet, but it
can get close.

</textPath>
</text>

</svg>

At the time of this writing, Batik did not yet support text on a path, although it may

by the time you read this. Consequently, Figure 25-17 shows this example embed-

ded in an HTML page and rendered by the Adobe SVG plug-in 2.0b1 in Netscape

Navigator. You’ll notice that SVG is not very smart about deciding where to break

lines. In fact, it doesn’t even try. It just fills up to the end of the line with text, and

then starts at the next point on the path. Part of the problem here is that SVG needs

to be internationalizable. A good line-breaking algorithm is highly language depen-

dent. Hebrew and Chinese, for example, break very differently than do English and

French.

Fonts and text styles
SVG adopts CSS text and font properties more or less in toto. You set the font fam-

ily, font weight, font style, font size, text decoration, color, and so forth by using CSS

Level 2 text properties. For example, this paragraph is written in 12-point Times

New Roman. If you were to encode it in SVG, it would look something like this:

<text x=”20” y=”20” font-size=”12pt;
font-family=”Times, ‘Times New Roman’, ‘New York’, serif”>
SVG adopts CSS text and font properties more or less in
toto. You set the font family, font weight, font style,
font size, ...

</text>

If you prefer, you can use the text element’s style attribute like this:

<text x=”20” y=”20”
style=”font-size: 12pt;
font-family: Times, ‘Times New Roman’, ‘New York’, serif”>
SVG adopts CSS text and font properties more or less in
toto. You set the font family, font weight, font style,
font size, ...

</text>

912 Part V ✦ XML Applications

Figure 25-17: Text on a path

CSS text and font properties are covered in great detail in Chapter 16. A big advan-
tage to SVG adopting CSS for such properties is that you don’t need to learn, and I
don’t have to write about, two different syntaxes that describe pretty much the
same thing. As large as this book is, it would have been even larger without such
economical reuse of syntax.

Text spans
The tspan element lets you apply styles to pieces of a text element. It’s similar to

the span element in HTML, that is, a convenient hook off of which to hang CSS

styles or other properties. For example, tspan enables you to format the first sen-

tence of this paragraph with only the word tspan and text in Courier. Here’s how:

<text x=”20” y=”20” font-size=”12pt”
font-family=”Times, ‘Times New Roman’, serif”>

The <tspan font-family=”Courier, monospace”>tspan</tspan>
element lets you apply styles to pieces of a
<tspan font-family=”Courier, monospace”>text</tspan> element.

</text>

Cross-
Reference

913Chapter 25 ✦ Scalable Vector Graphics

Bitmapped Images
SVG is a format for vector graphics. Nonetheless, it’s very often useful or necessary

to place bitmapped images in line art. For example, you might want to start with a

photograph and then overlay text and arrows on that photograph calling out indi-

vidual parts. Or perhaps a calendar includes both vector graphics for functionality

and a photograph of a nature scene to make the calendar pretty to look at. In fact,

almost anywhere you look in printed matter, you’re likely to find art that combines

bitmapped images and vector graphics.

SVG allows you to place bitmapped images in documents in a straightforward fash-

ion. As with the IMG element in HTML, the actual bitmap data is not included in the

SVG document. Instead it is linked in from a URL. Also as in HTML, exactly which

bitmapped graphic formats are supported depends on what software you’re using.

All SVG processors can handle JPEG and PNG. GIF is problematical because of

patent problems.

The image element contains a link to the file containing the bitmapped data. The

URL where the image data can be found is read from the xlink:href attribute,

where the xlink prefix is mapped to the standard XLink URI,

http://www.w3.org/1999/xlink. The x and y attributes specify where in the

local coordinate system the upper left hand corner of the image should be placed.

As with any SVG shape, the chosen position may cause the image to lay on top of or

beneath other items on the canvas. The width and height attributes determine the

size of the box in which the image is placed. If the actual image is too large or too

small for the box, then it will be scaled as necessary to fit the box, perhaps even

disproportionately exactly like the IMG element in HTML. For example, Listing 25-15

is a complete SVG document that contains a picture of one of my cats, Marjorie.

SVG text elements layer the phrases “This is my cat Marjorie.” and “She likes to

have her picture taken.” on top of the picture. Figure 25-18 shows the results.

Listing 25-15: Placing a JPEG image in an SVG picture

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<svg xmlns=”http://www.w3.org/2000/svg”

xmlns:xlink=”http://www.w3.org/1999/xlink”
width=”360px” height=”310px”>

<title>Listing 25-15 from the XML Bible</title>

<image xlink:href=”marjorie.jpg”
x=”20px” y=”5px” width=”260px” height=”297px”/>

<text x=”25px” y=”240px”
font-size=”14pt” font-weight=”bold”
font-family=”Helvetica, Arial, sans”>

This is my cat Marjorie.
</text>

Continued

914 Part V ✦ XML Applications

Listing 25-15 (continued)

<text x=”25px” y=”255px”
font-size=”14pt” font-weight=”bold”
font-family=”Helvetica, Arial, sans”>

She likes to have her picture taken.
</text>

</svg>

Figure 25-18: Text laid on top of
an image

The image element can also be used to load another SVG document into the current

one. The XML for the loaded SVG document is not merged into the existing docu-

ment, as it might be with XInclude. Instead, it’s just treated as another picture with a

certain size at a certain set of coordinates, possibly with some filters applied to it.

Coordinate Systems and Viewports
So far, we’ve worked in nondimensional units that map to screen pixels. However,

SVG supports all the units of length defined in CSS, including inches, centimeters,

millimeters, points, picas, pixels, and even percentages. For instance, you can say

that a rectangle is two inches wide by three inches high like this:

<rect x=”0in” y=”0in” width=”2in” height=”3in”/>

915Chapter 25 ✦ Scalable Vector Graphics

When an SVG renderer such as Batik displays this rectangle, it will ask its environ-

ment how many pixels there are in an inch. On most computer displays, it would

get an answer back that is somewhere between 68 and 110 pixels per inch. It would

then convert the requested length in inches to the equivalent length in pixels

before drawing the picture on the screen. Depending on the resolution of the moni-

tor and the capabilities of both the renderer and the host operating system, the

actual sizes may be a little more or a little less than what you asked for. For

instance, if you draw a circle with a 10-inch radius on your display, then measure it

with a ruler (not an onscreen ruler, but a real physical ruler made out of wood), it

should be approximately 10 inches, maybe 8, maybe 12 depending on the resolution

of the monitor, but something in the ballpark of 10 inches. And if the circle is 20 per-

cent off of its expected size, then all the other shapes drawn on that display will

also be 20 percent off.

Not all SVG lengths can be specified in real-world units like inches and points. In

particular, only rectangles, circles, ellipses, and lines can be specified this way.

Polygons and polylines must use nondimensional local units for the coordinates

given in their points attributes. Paths must also use nondimensional local units for

the coordinates given in their d attributes. This makes real-world units less useful

than they might otherwise be.

However, if you prefer to design your drawings in inches or feet or centimeters

rather than pixels, there is a work-around. You can assign a width and a height to

your svg element to specify how much space it occupies on the page. Then you can

set the viewBox attribute to define a local coordinate system within that svg ele-

ment. The combination of the actual, onscreen width and height with the view box

can define a mapping between the actual pixels and any units of length you desire,

from nanometers to parsecs.

The viewport
SVG pictures are drawn on an infinite, two-dimensional plane with infinitely precise

coordinates. Of course, when such a picture is actually shown on the screen, you

only see a finite rectangular region of limited precision called the viewport. This

viewport has a certain width and height that can be determined in several ways.

The first possibility applies when an SVG document is included in an HTML page

using an EMBED element as in Listing 25-3. In this case, the WIDTH and HEIGHT
attributes of the EMBED element establish the size of the canvas. Alternately, if the

svg element is pasted right into the HTML document as in Listing 25-2, then it can

have CSS height and width properties that set its size, even if this results in the

image being clipped. Listing 25-16 demonstrates.

916 Part V ✦ XML Applications

Listing 25-16: Using CSS properties to set the size of an
embedded SVG picture

<html>
<head>
<title>Circles are my friends</title>

</head>
<body>
<h1>Rectangles are the Enemy!</h1>

<svg xmlns=”http://www.w3.org/2000/svg”
style=”width: 100px; height: 100px”>

<title>Listing 25-16 from the XML Bible</title>
<circle r=”30” cx=”34” cy=”34”

fill=”red” stroke=”blue” stroke-width=”2”/>
</svg>

<hr>
Last Modified February 19, 2001

Copyright 2001

Elliotte Rusty Harold

</body>
</html>

If the svg element is not embedded in HTML in one fashion or another, or if the

external document in which it is embedded does not set its width and height, then

the height is set by the width and height attributes of the svg element itself. For

example, this svg element has a viewport that’s ten inches by five inches:

<svg xmlns=”http://www.w3.org/2000/svg”
width=”10in” height=”5in”>

<circle r=”30” cx=”34” cy=”34”/>
</svg>

Alternately, the width and the height can be given in user coordinates, in which

case the real units are pixels. This svg element has a viewport that’s 144 pixels by

72 pixels:

<svg xmlns=”http://www.w3.org/2000/svg”
width=”144” height=”72”>

<circle r=”30” cx=”34” cy=”34”/>
</svg>

Remember that this only changes the size of the viewport on the screen. It has no

effect on the size of the shapes that the svg element contains. If the shapes are too

917Chapter 25 ✦ Scalable Vector Graphics

big for the viewport, then they’ll be truncated; but the plane on which the shapes

are rendered is still infinitely large.

Coordinate systems
There are many reasons why you might want to adjust the local coordinate system.

For example, if you were drawing a map, it might be convenient to have each local

coordinate unit represent a mile. Furthermore, you’d like one mile to map to one

inch, approximately 72 pixels. Or perhaps you want to draw a blueprint of a house

on which the local coordinate units reflect the actual size of the rooms in feet. For

instance, the room in which I’m typing this is 10 feet by 12 feet, so I might represent

it as this rect element:

<rect x=”0” y=”0” width=”10” height=”12”/>

However, I do want the room to appear larger than 10 pixels by 12 pixels on the dis-

play. So, I need to use a local coordinate system that is not so tightly locked to the

size of a pixel.

You can both scale and translate the local coordinate system by attaching a

viewBox attribute to the svg element. This changes the local coordinate system

inside the viewport by specifying four characteristics of the local coordinate sys-

tem:

1. The x coordinate of the upper-left corner of the viewport

2. The y coordinate of the upper-left corner of the viewport

3. The width of the viewport in local coordinates

4. The height of the viewport in local coordinates

These four numbers are given in this order in the viewBox attribute of the SVG ele-

ment. For example, let’s suppose you have a four-inch by four-inch space to work

with on the screen. However, your arithmetic would be simplified if you could use a

1000 by 1000 unit square. Then you would set up your svg element like this:

<svg xmlns=”http://www.w3.org/2000/svg”
width=”4in” height=”4in” viewBox=”0 0 1000 1000”>

<!-- SVG shapes -->
</svg>

The upper-left corner is still at point x=0, y=0. The width and height in the local

coordinate space are now 1000 each. Dividing 1000 units by 4 inches, you find that

250 local units equal one inch on the screen. For example, consider the svg element

in Listing 25-17. This is 100 pixels by 100 pixels square. A large (radius=500) circle is

placed at x=400, y=400. Figure 25-19 shows the result. Most of the circle is cut off

both below and to the right because most of the circle is outside the viewport. You

only see a small part of the upper-left quadrant of the circle.

918 Part V ✦ XML Applications

Listing 25-17: A circle that doesn’t fit in its viewport

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<svg xmlns=”http://www.w3.org/2000/svg”

width=”100px” height=”100px”>
<title>Listing 25-17 from the XML Bible</title>
<circle cx=”400” cy=”400” r=”500” />

</svg>

Figure 25-19: A radius 500 circle at
400,400 displayed in a 100-pixel
square viewport.

Now suppose you add a viewBox attribute to this svg element that sets the width

of the viewport to 1000 pixels by 1000 pixels. This is shown in Listing 25-18. This

effectively shrinks the circle by a factor of 10 to 1, as shown in Figure 25-20.

However, because the radius of the circle is 500 and the circle’s center is positioned

at x=400, y=400, the leftmost and topmost parts of the circle extend into the nega-

tive coordinate space and are truncated.

Listing 25-18: Using a viewBox attribute to adjust the local
coordinate system

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<svg xmlns=”http://www.w3.org/2000/svg”

width=”100px” height=”100px”
viewBox=”0 0 1000 1000”>

<title>Listing 25-18 from the XML Bible</title>
<circle cx=”400” cy=”400” r=”500” />

</svg>

919Chapter 25 ✦ Scalable Vector Graphics

Figure 25-20: A radius 500 circle at
400,400 displayed in a 100-pixel
square viewport and a 1000-unit
square view box.

You can fix the truncation by using the view box to shift the coordinate system 100

units left and up. To do this set the first two numbers in the viewBox attribute to

–100. Then the local coordinate system extends from –100 to 899 instead of 0 to 999.

Listing 25-19 demonstrates, and Figure 25-21 shows the result.

Listing 25-19: Using a viewBox attribute to adjust the local
coordinate system

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<svg xmlns=”http://www.w3.org/2000/svg”

width=”100px” height=”100px”
viewBox=”-100 -100 1000 1000”>

<title>Listing 25-19 from the XML Bible</title>
<circle cx=”400” cy=”400” r=”500” />

</svg>

Figure 25-21: A radius 500 circle at
400,400 displayed in a 100-pixel
square viewport and a 1000-unit
square view box shifted down and
to the right by 100 units.

920 Part V ✦ XML Applications

Suppose the viewport is three inches wide by four inches high, and you want 100

local units to equal one inch on the screen. You’d multiply the actual width and

height by 100/inch to get a 300 width and a 400 height. Then you’d use this svg ele-

ment:

<svg xmlns=”http://www.w3.org/2000/svg”
width=”3in” height=”4in” viewBox=”0 0 300 400”>

<!-- SVG shapes -->
</svg>

You can even scale the x and y axes independently. For example, suppose you want

100 units per inch resolution on the y axis, but 300 units per inch resolution on the

x axis, and the viewport is four inches square. You could use this svg element:

<svg xmlns=”http://www.w3.org/2000/svg”
width=”4in” height=”4in” viewBox=”0 0 1200 400”>

<!-- SVG shapes -->
</svg>

However, by default SVG will attempt to maintain the aspect ratio of the picture. In

this case, it will expand the y coordinate to fit the x coordinates. You can change

this behavior by setting the preserveAspectRatio attribute of the svg element to

none, in which case, using different scale factors on the x and y axes can lead to

pictures that seem squeezed along the more precise dimension. For example, you’d

normally think this rect element was a square:

<rect x=”200” y=”200” width=”100” height=”100”/>

However, if you place this rect element in the above nonuniform coordinate sys-

tem and set preserveAspectRatio to none as shown in Listing 25-20, then you get

the rectangle shown in Figure 25-22.

Listing 25-20: Nonuniform coordinate systems squeeze
shapes if the aspect ratio isn’t preserved

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<svg xmlns=”http://www.w3.org/2000/svg”

width=”4in” height=”4in” viewBox=”0 0 1200 400”
preserveAspectRatio=”none”>

<title>Listing 25-20 from the XML Bible</title>
<rect x=”200” y=”200” width=”100” height=”100”/>

</svg>

921Chapter 25 ✦ Scalable Vector Graphics

Figure 25-22: Nonuniform coordinate
systems squeeze shape

Grouping Shapes
The g (for group) element combines shapes so they can be treated as a single

entity. The g can have its own local coordinate space in which its child shapes are

placed. This entire collection of shapes can then be moved, positioned, styled, and

copied as a unit. For example, suppose you need a shape that is a star inside a cir-

cle. You can create it by combining a circle with a polygon in a g element like

this:

<g width=”6cm” height=”6cm” viewBox=”0 0 250 250”>
<circle cx=”115” cy=”115” r=”100” fill=”red” />
<polygon fill=”blue”
points=”33,90 97,90 117,36 137,90 199,90 147,125

167,180 117,146 67,180 85,125”>
</polygon>

</g>

The width and height attributes define the dimensions of the containing block.

The viewBox attribute defines the local coordinate system of the elements con-

tained in the group. This is an abstract system, not one based on any sort of physi-

cal units such as inches, pixels, or ems. The conversion between the local units and

the global units depends on the height and the width of the group. For instance, in

the above example the group’s actual height and width is 6cm by 6cm, but its local

width and height is 250 by 250. Thus, each local unit is 0.024cm (6cm/250). As the

922 Part V ✦ XML Applications

height and width of the group change, the sizes of the contents of the group scale

proportionately. Furthermore, as you’ll see in the next section, the group can be

copied by use elements that can adjust the actual height and width. In this case,

the contents scale proportionately.

Referencing Shapes
Almost any shape, path, or group in an SVG document can be copied into multiple

different places in the document. The use element refers to an element defined

elsewhere in the document. For example, suppose you defined red and white

squares, like this:

<rect id=”RedSquare”
width=”1in” height=”1in”
fill=”red”/>

<rect id=”WhiteSquare”
width=”1in” height=”1in”
fill=”white”/>

Now suppose you want to place a copy of the red square at coordinates x=3in,

y=3in. This use element does that:

<use x=”3in” y=”3in” xlink:href=”#RedSquare”/>

For this to work, the xlink prefix has to be mapped to the standard XLink name-

space URI, http://www.w3.org/1999/xlink. This is normally done on the root

element.

It’s customary to put the referenced elements inside a defs element. This hides

them so they won’t be drawn until they’re referenced by a use element. For exam-

ple,

<defs>
<rect id=”RedSquare”

width=”1in” height=”1in”
fill=”red”/>

<rect id=”WhiteSquare”
width=”1in” height=”1in”
fill=”white”/>

</defs>

Referencing elements is especially useful if you have many different copies of the

same styled element at different positions. For example, designing a checkerboard

in SVG would normally require 64 different shapes, one for each square on the

board. However, with use and g, you can reduce that to just 2 rectangles, 2 groups

of rectangles, and 24 use elements. Listing 25-21 demonstrates. Note especially the

nesting of the references. That is, the board uses the rows that use the squares.

Figure 25-23 shows the result of Listing 25-21.

923Chapter 25 ✦ Scalable Vector Graphics

Listing 25-21: A checkerboard

<?xml version=”1.0” encoding=”utf-8”?>
<svg xmlns=”http://www.w3.org/2000/svg”

xmlns:xlink=”http://www.w3.org/1999/xlink”
width=”8in” height=”8in”>

<title>Listing 25-21 from the XML Bible</title>

<defs>

<rect id=”RedSquare”
width=”1in” height=”1in”
fill=”red”/>

<rect id=”BlackSquare”
width=”1in” height=”1in”
fill=”black”/>

<g id=”RowA”>
<use x=”0in” xlink:href=”#RedSquare”/>
<use x=”1in” xlink:href=”#BlackSquare”/>
<use x=”2in” xlink:href=”#RedSquare”/>
<use x=”3in” xlink:href=”#BlackSquare”/>
<use x=”4in” xlink:href=”#RedSquare”/>
<use x=”5in” xlink:href=”#BlackSquare”/>
<use x=”6in” xlink:href=”#RedSquare”/>
<use x=”7in” xlink:href=”#BlackSquare”/>

</g>

<g id=”RowB”>
<use x=”0in” xlink:href=”#BlackSquare”/>
<use x=”1in” xlink:href=”#RedSquare”/>
<use x=”2in” xlink:href=”#BlackSquare”/>
<use x=”3in” xlink:href=”#RedSquare”/>
<use x=”4in” xlink:href=”#BlackSquare”/>
<use x=”5in” xlink:href=”#RedSquare”/>
<use x=”6in” xlink:href=”#BlackSquare”/>
<use x=”7in” xlink:href=”#RedSquare”/>

</g>

</defs>

<use y=”0in” xlink:href=”#RowA”/>
<use y=”1in” xlink:href=”#RowB”/>
<use y=”2in” xlink:href=”#RowA”/>
<use y=”3in” xlink:href=”#RowB”/>
<use y=”4in” xlink:href=”#RowA”/>
<use y=”5in” xlink:href=”#RowB”/>
<use y=”6in” xlink:href=”#RowA”/>
<use y=”7in” xlink:href=”#RowB”/>

</svg>

924 Part V ✦ XML Applications

Figure 25-23: A checkerboard

This is actually not the most compact solution possible. You could build double

rows of two rows each, and then quadruple rows of two double rows each.

However, this is the most straightforward solution.

One thing SVG does not give you, which would be very useful in cases such as this,

is any sort of iterative structure that would let you simply say, “Give me eight rows

of four black squares each spaced two inches apart.” Tasks like this can sometimes

be accomplished with JavaScript and the SVG Document Object Model (DOM).

Transformations
There are two ways to travel to Jupiter. The first is to get in a rocket ship and fly

yourself there. The second is to pick up the entire universe, and drag everything in

the universe except yourself a few hundred million miles so that Jupiter arrives

where you are, with everything else having moved the same amount in the same

direction. Needless to say, one of these solutions is considerably easier to accom-

plish than the other. However, in the abstract, massless world of SVG, that’s not

true. It is just as easy, sometimes even easier, to move the entire universe to where

you want it to be as it is to move a shape or path or group to where it needs to go.

The process of moving the SVG universe is called a coordinate system
transformation, and the engine that powers the move is the transform attribute of

the g element.

925Chapter 25 ✦ Scalable Vector Graphics

The coordinate system transformation that moves the universe so that you end up

on Jupiter is called a translation, but this is not the only kind of transformation

available in SVG. In fact, there are six kinds of transformation, each represented by

a different function that can be used in the value of a transform attribute:

✦ translate(dx dy): Add dx to all x coordinates and dy to all y coordinates.

✦ rotate(Θ x y): Rotate the coordinate system by Θ degrees around a z-axis

passing through the point x, y.

✦ scale(sx sy): Multiply the x coordinates by sx and the y coordinates by sy.

✦ skewX(Θ): Skew the y-axis relative to the x-axis by Θ degrees.

✦ skewY(Θ): Skew the x-axis relative to the y-axis by Θ degrees.

✦ matrix(a b c d e f): Multiply all coordinate vectors (x, y, 1) by this trans-

lation matrix:

Translations and rotations are rigid transformations; that is, they preserve the dis-

tance between points. If a line is 70 units long before a translation or a rotation,

then it is still 70 units long after a translation or rotation. For that matter, it is still

70 units long after any combination of translations and rotations. A scaling, by con-

trast, may, change the sizes of various objects, though their relative sizes will be

the same. A skew can change both objects’ absolute and relative sizes. Finally, a

matrix is a fairly arbitrary transformation that can combine any or all of the other

four transforms, as well as adding a few things those can’t do, such as a flip.

Coordinate transforms are important tools in SVG, and allow you to easily perform

tasks that are otherwise quite difficult; particularly because you don’t have to make

these transformations on the entire canvas at once. Instead you make it one group

at a time. In each group you use the coordinate space that’s most appropriate for it.

The change from the original coordinate space to the new coordinate space is

defined by the g element’s transform attribute.

For example, consider the pie made up of 45-degree arcs from Listing 25-11. It was

relatively difficult to do all the trigonometry to calculate the proper end points of

each of the eight arcs. However some arcs are easier than others. And once you’ve

got one arc, you can copy it to different positions and rotate each copy. Listing

25-22 is exactly the same pie as Listing 25-11, but it only required one bout with the

calculator, and is a smaller document over all.

926 Part V ✦ XML Applications

Listing 25-22: A pie formed by eight rotated copies of one
wedge

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<svg xmlns=”http://www.w3.org/2000/svg”

xmlns:xlink=”http://www.w3.org/1999/xlink”>
<title>Listing 25-22 from the XML Bible</title>
<defs>
<path id=”piece”

d=”M 100,100
L 100, 0
A 100 100 0 0 1 170.7106781187 29.28932188135
L 100, 100 Z”

fill=”brown” stroke=”black” stroke-width=”1px” />
</defs>

<g transform=”rotate(0 100 100)”>
<use xlink:href=”#piece”/>

</g>
<g transform=”rotate(45 100 100)”>
<use xlink:href=”#piece”/>

</g>
<g transform=”rotate(90 100 100)”>
<use xlink:href=”#piece”/>

</g>
<g transform=”rotate(135 100 100)”>
<use xlink:href=”#piece”/>

</g>
<g transform=”rotate(180 100 100)”>
<use xlink:href=”#piece”/>

</g>
<g transform=”rotate(225 100 100)”>
<use xlink:href=”#piece”/>

</g>
<g transform=”rotate(270 100 100)”>
<use xlink:href=”#piece”/>

</g>
<g transform=”rotate(315 100 100)”>
<use xlink:href=”#piece”/>

</g>

</svg>

Suppose you want to split the pie apart so that there are gaps between the pieces,

as in an exploded drawing. This is relatively difficult to do by manually calculating

the coordinates of each piece. However, it’s very straightforward to do with a trans-

lation. First, you translate the entire picture down and to the right, because as

927Chapter 25 ✦ Scalable Vector Graphics

originally written it butts up against the top and left edges. Then you rotate each

piece and translate it four units to the right and ten up. Listing 25-23 demonstrates.

Figure 25-24 shows the result.

Listing 25-23: An exploded pie

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<svg xmlns=”http://www.w3.org/2000/svg”

xmlns:xlink=”http://www.w3.org/1999/xlink”
width=”3.6in” height=”2.8in”>

<title>Listing 25-23 from the XML Bible</title>
<defs>
<path id=”piece”

d=”M 100,100
L 100, 0
A 100 100 0 0 1 170.7106781187 29.28932188135
L 100, 100 Z”

fill=”brown” stroke=”black” stroke-width=”1px” />
</defs>

<g transform=”translate(50 50)”>
<g transform=”rotate(0 100 100) translate(4 -10)”>
<use xlink:href=”#piece”/>

</g>
<g transform=”rotate(45 100 100) translate(4 -10)”>
<use xlink:href=”#piece”/>

</g>
<g transform=”rotate(90 100 100) translate(4 -10)”>
<use xlink:href=”#piece”/>

</g>
<g transform=”rotate(135 100 100) translate(4 -10)”>
<use xlink:href=”#piece”/>

</g>
<g transform=”rotate(180 100 100) translate(4 -10)”>
<use xlink:href=”#piece”/>

</g>
<g transform=”rotate(225 100 100) translate(4 -10)”>
<use xlink:href=”#piece”/>

</g>
<g transform=”rotate(270 100 100) translate(4 -10)”>
<use xlink:href=”#piece”/>

</g>
<g transform=”rotate(315 100 100) translate(4 -10)”>
<use xlink:href=”#piece”/>

</g>
</g>

</svg>

928 Part V ✦ XML Applications

Figure 25-24: An exploded diagram
of a pie

In this case each transformation consists of a rotation followed by a translation.

You can string as many of these together as you like. Transformations are not, in

general, commutative, however. Order matters in transformations.

Scaling is a very straightforward operation in which the size of everything is multi-

plied by a fixed factor. You can provide different scales for the x and y axes, or just

one scale for both. For example, Listing 25-24 defines several pie pieces, each one

and a half times the size of the previous one. In this example, notice how the coor-

dinate system of the largest piece is actually the product of the multiple groups it’s

enclosed in and the transformations each imposes. Figure 25-25 shows the result.

Listing 25-24: Scaled pie

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<svg xmlns=”http://www.w3.org/2000/svg”

xmlns:xlink=”http://www.w3.org/1999/xlink”>
<title>Listing 25-24 from the XML Bible</title>
<defs>
<path id=”piece”

d=”M 100,100
L 100, 0
A 100 100 0 0 1 170.7106781187 29.28932188135
L 100, 100 Z”

fill=”brown” stroke=”black” stroke-width=”1px” />
</defs>

929Chapter 25 ✦ Scalable Vector Graphics

<g transform=”translate(-100 0)”>
<use xlink:href=”#piece”/>
<g transform=”translate(0 50) scale(1.5)”>
<use xlink:href=”#piece”/>
<g transform=”translate(0 50) scale(1.5)”>
<use xlink:href=”#piece”/>
<g transform=”translate(0 50) scale(1.5)”>
<use xlink:href=”#piece”/>

</g>
</g>

</g>
</g>

</svg>

Figure 25-25: Scaled pieces of pie

Skewing rotates one axis of the coordinate system, either x or y, but not both. Lines

that appear perpendicular to each other before skewing no longer appear so after

skewing. Figures tend to get squashed and pushed over in one direction or another.

You can skew either the x axis relative to the y axis with skewY() or the y axis rela-

tive to the x axis with skewX(). Each takes as an argument the number of degrees

930 Part V ✦ XML Applications

to skew the axis by. This is sometimes used for text effects as demonstrated in

Listing 25-25 and shown in Figure 25-26. The text normally runs along the x axis

whereas the letters are oriented parallel to the y axis. Thus skewing with respect to

the x axis (skewX()) merely slants the text within a line. However, skewing with

respect to the y axis (skewY()) changes the baseline of the text but keeps all non-

italic text pretty much perpendicular to the baseline.

Listing 25-25: Skewed text

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<svg xmlns=”http://www.w3.org/2000/svg”

width=”4.6in” height=”4.6in”>
<title>Listing 25-25 from the XML Bible</title>

<g transform=”skewX(45)”>
<text x=”10” y=”72”

font-size=”24pt” font-weight=”bold”
font-family=”Helvetica, Arial, sans”>

X Skewed 45 Degrees
</text>

</g>

<g transform=”skewY(45)”>
<text x=”10” y=”72”

font-size=”24pt” font-weight=”bold”
font-family=”Helvetica, Arial, sans”>

Y Skewed 45 Degrees
</text>

</g>

</svg>

931Chapter 25 ✦ Scalable Vector Graphics

Figure 25-26: Skewed text

All of these transformations — translations, skews, and rotations — are defined

mathematically as multiplications of vectors by matrixes. An arbitrary two-dimen-

sional rigid transformation, as well as the nonrigid scales and skews, can be defined

in terms of multiplying the coordinate vector by a particular matrix. Furthermore,

any combinations of translations, scales, skews, and rotations can be defined as

multiplication by a matrix that is the product of the matrixes for each of the individ-

ual transformations. However, the reverse is not true. Not all matrix transforma-

tions can be decomposed into sequences of rotations, translations, scales, and

skews. In particular, a matrix allows you to flip the coordinate system; that is, map

negative coordinates into positive coordinates and vice versa; or, another way of

thinking about it, flip the entire plane over through the third dimension. The matrix

for flipping the coordinate system around the y axis looks like this:

If you’re familiar with linear algebra, it should be obvious that this simple diagonal

matrix multiplies the x coordinates by –1 and leaves the y coordinates untouched.

In other words, it transforms vectors such as [x y 1] to [–x y 1]. If you’re not famil-

iar with linear algebra, just take my word for it. In SVG, this matrix is written as

932 Part V ✦ XML Applications

[–1 0 0 1 0 0]. (The last row of the transformation matrix is always (0 0 1) in SVG.)

Thus, to flip the coordinate system, you can use this transform:

<g transform=”matrix(-1 0 0 1 0 0)”>
<!-- SVG elements here -->

</g>

To flip the y axis around the x axis, and thus get a coordinate system in which

increasing y is up, you’d use this transform:

<g transform=”matrix(1 0 0 -1 0 0)”>
<!-- SVG elements here -->

</g>

There are also matrixes for flips about other axes, but they can all be formed as a

flip about the y-axis followed by a translation.

Linking
Because SVG graphics are meant to be used on the Web, it shouldn’t come as any

great surprise that they can contain simple hypertext links. This allows SVG pic-

tures to be used as image maps on Web pages without separate map files.

The a element indicates that its contents are a link. This is very similar to the a ele-

ment in HTML and XHTML, and behaves almost identically. However, instead of

using an href attribute, it uses an xlink:href attribute in which the xlink prefix

is mapped to the http://www.w3.org/1999/xlink URI. For example, Listing 25-26

draws nine circles in a three by three grid. Each circle element is enclosed in an

element that links to a news site such as CNN or the New York Times. When the

user clicks on a circle, they’re transported to the home page of a different news

site.

Listing 25-26: Nine circles linked to different sites

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<svg xmlns=”http://www.w3.org/2000/svg”

xmlns:xlink=”http://www.w3.org/1999/xlink”
width=”3.6in” height=”3.6in”
viewBox=”0 0 300 300”>

<title>Listing 25-26 from the XML Bible</title>

<a xlink:href=”http://www.cnn.com/”>
<circle r=”20” cx=”25” cy=”25” fill=”yellow”/>

<a xlink:href=”http://www.msnbc.com/”>
<circle r=”20” cx=”75” cy=”25” fill=”blue”/>

933Chapter 25 ✦ Scalable Vector Graphics

<a xlink:href=”http://www.news.com/”>
<circle r=”20” cx=”125” cy=”25” fill=”green”/>

<a xlink:href=”http://www.cnn.com/”>
<circle r=”20” cx=”25” cy=”75” fill=”red”/>

<a xlink:href=”http://news.altavista.com/”>
<circle r=”20” cx=”75” cy=”75” fill=”orange”/>

<a xlink:href=”http://www.nytimes.com/”>
<circle r=”20” cx=”125” cy=”75” fill=”violet”/>

<a xlink:href=”http://www.abcnews.com/”>
<circle r=”20” cx=”25” cy=”125” fill=”indigo”/>

<a xlink:href=”http://www.csmonitor.com/”>
<circle r=”20” cx=”75” cy=”125” fill=”pink”/>

<a xlink:href=”http://news.bbc.co.uk/”>
<circle r=”20” cx=”125” cy=”125” fill=”purple”/>

</svg>

The a element may also have all the other attributes of a simple Xlink, including

xlink:role, xlink:arcrole, xlink:title, xlink:type, xlink:show, and

xlink:actuate. xlink:type must have the value simple. xlink:actuate is lim-

ited to onRequest. xlink:show is limited to new and replace. (To embed content

in an SVG document you have to use image rather than a.) These attributes have

the same meaning and behavior as for any other XLink.

XLinks are discussed in Chapter 19.

Metadata
Graphics, even ones written in XML, can be rather opaque to anyone who can’t see

very well. This class of users includes not only visually impaired people, but also

computer programs such as Web spiders, indexers, spell checkers, and so forth. To

make the information normally encoded in graphics more accessible to this class of

users, most of the elements in an SVG document can contain title, desc, and

metadata elements. SVG places no restrictions on the contents of these elements,

except that:

1. The content must be well-formed XML.

2. The content can use any XML vocabulary provided you use a namespace to

distinguish its elements from SVG’s elements.

Cross-
Reference

934 Part V ✦ XML Applications

The main difference between these three elements (title, desc, and metadata) is

the rough semantic meaning they imply. In particular:

✦ The title element is a short string of generally unmarked up text. It can be

placed in the title bar of the window showing the picture, as Batik does, or in

a tool tip when the user places the mouse over the titled element.

✦ The metadata element often contains indexing information in some formal

vocabulary such as RDF (Resource Description Framework), topic maps,

and/or the Dublin Core.

✦ The desc element often contains marked up text intended for humans to read,

particularly well-formed HTML.

However, in practice they’re pretty much equivalent. Feel free to use whichever ele-

ments seem right to you. For instance, a metadata element might contain XHTML

or RDF. The information in the metadata element is intended for non-SVG proces-

sors that need to try to make sense out of the picture. For example, Listing 25-27

adds some metadata describing the picture of my cat Marjorie originally seen in

Listing 25-15. The title element says this is Listing 25-27 from the XML Bible. The

desc element describes Marjorie with a little HTML. The metadata element con-

tains an RDF description of this picture. However, when loaded into a browser,

the picture hasn’t changed at all. Metadata is for almost anything except an SVG

renderer.

Listing 25-27: RDF and XHTML metadata embedded in an
SVG document

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<svg xmlns=”http://www.w3.org/2000/svg”

xmlns:xlink=”http://www.w3.org/1999/xlink”
width=”300px” height=”320px”>

<title>Listing 25-27 from the XML Bible</title>

<desc>
<body xmlns=”http://www.w3.org/1999/xhtml”>
<p>

<i>Marjorie</i> is a 9-pound blue British shorthair.
She’s about three years old, loves cameras,
and hates people. She tolerates Beth and me,
barely, but hides in the back of the
bedroom closet anytime company comes over.

</p>

<p>
She’s definitely something of a wimp.
The other cat in our household, <i>Charm</i>, is
constantly attacking her; and, even though she’s a
couple of pounds heavier than him, her only real
defense is to lay down and wait until he gets bored

935Chapter 25 ✦ Scalable Vector Graphics

and runs away. When we got her, we hoped she’d bite
back and teach Charm that biting hurts, but no such
luck. Charm still bites anything and anyone he can
catch: mice, cats, dogs, people, furniture, paper,
computers, household appliances, etc.
If he can catch it, he will bite it.

</p>
</body>

</desc>

<metadata>
<rdf:RDF

xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
xmlns:dc=”http://purl.org/dc/elements/1.1/”>

<rdf:Description about=”#marjorie picture”>
<dc:title>Marjorie the Kitten</dc:title>
<dc:creator
rdf:resource=”mailto:elharo@metalab.unc.edu”/>

<dc:description>
A photo of a grey cat standing on a table
looking into the camera.

</dc:description>
<dc:date>2000-12-21</dc:date>
<dc:type>Photograph</dc:type>
<dc:format>image/jpeg</dc:format>
<dc:rights>
Copyright 2000 Elliotte Rusty Harold

</dc:rights>
</rdf:Description>

<rdf:Description about=”mailto:elharo@metalab.unc.edu”>
<dc:title>Elliotte Rusty Harold</dc:title>

</rdf:Description>

</rdf:RDF>
</metadata>

<image id=”marjorie_picture” xlink:href=”marjorie.jpg”
x=”20px” y=”5px” width=”260px” height=”297px”/>

<text x=”25px” y=”240px”
font-size=”14pt” font-weight=”bold”
font-family=”Helvetica, Arial, sans”>

This is my cat Marjorie.
</text>
<text x=”25px” y=”255px”

font-size=”14pt” font-weight=”bold”
font-family=”Helvetica, Arial, sans”>

She likes to have her picture taken.
</text>

</svg>

936 Part V ✦ XML Applications

RDF and the Dublin Core Vocabulary used here are discussed in Chapter 21.

Although the most common place to put title, desc, and metadata elements is at

the top level, as immediate children of the root svg element, they can appear essen-

tially anywhere in the SVG document. For instance, if one SVG document contained

multiple image elements, you could give each image element a metadata child to

describe the element.

SVG Editors
Drawing pictures with a keyboard is more than a little like hammering a nail into

wood with a sponge. A keyboard simply isn’t the right tool with which to draw. A

mouse is better, and a graphics tablet is best of all. Fortunately, you can use more

traditional graphics tools such as Adobe Illustrator and CorelDraw to produce SVG

documents. Graphics programs that support SVG to some extent include:

✦ Adobe Illustrator 9.0 and later can export graphics as SVG, though it cannot

yet open and edit documents saved as SVG. It’s available for both Macintosh

and Windows.

✦ Version 4.3.2 of the W3C’s Amaya Web browser and editor has a very rudimen-

tary drawing tool that produces SVG. However, it’s really little more than a

proof of concept, and thoroughly inadequate for real work. Future versions

may improve on it though.

✦ JASC Software, best known for PaintShop Pro, also publishes Trajectory Pro, a

native SVG editor for Windows 95/98/Me/NT4/2000.

✦ CorelDraw 10 for Windows can both import and export SVG documents.

As time passes many other traditional graphics tools will add SVG to their reper-

toire, and programs that already support it will improve their support. Within a few

years, SVG should be as ubiquitous in vector drawing programs as GIF and JPEG are

today in bitmapped paint programs.

Summary
In this chapter, you learned about SVG, an XML application for vector graphics rec-

ommended by the W3C. In particular, you learned that:

✦ SVG provides a standard XML format for vector drawings.

✦ SVG pictures can be included directly in HTML documents for browsers that

understand SVG natively such as Amaya.

Cross-
Reference

937Chapter 25 ✦ Scalable Vector Graphics

✦ For browsers that don’t understand SVG natively, you can link to SVG pictures

from HTML using EMBED elements and render them with the Adobe SVG

Plug-in.

✦ All SVG elements are in the http://www.w3.org/2000/svg namespace.

✦ The root element of an SVG picture is svg.

✦ Rectangles are defined by their upper-left corner, width, and height. They are

parallel to the coordinate axes, and are represented by rect elements.

✦ Circles are defined by their center point and radius. They are represented by

circle elements.

✦ Ellipses are defined by their center point, x radius, and y radius. They are par-

allel to the coordinate axes, and are represented by ellipse elements.

✦ Line segments are defined by their end points. They are represented by line
elements.

✦ Polygons are defined by a list of the points of the corners of the polygon. This

is stored in the points attribute of a polygon element.

✦ Polylines are just like polygons except that the last point is not automatically

connected back to the first point.

✦ Paths are defined by a path element. The d attribute of a path element con-

tains a list of commands for the path and coordinates for those commands

including move to, line to, arc to, curve to, and close path.

✦ Each path command is represented by a single letter; uppercase if the coordi-

nates are absolute, lowercase if the coordinates are relative.

✦ Shapes and paths can be combined into a single unit called a group and repre-

sented by a g element.

✦ The use element copies a shape, path, or group defined elsewhere in the doc-

ument. An xlink:href attribute containing an XPointer identifies the shape

to draw.

✦ The defs element prevents its contents from being drawn until they’re refer-

enced by a use element.

✦ CSS styles are used to define the colors, fonts, and other details of the

abstract geometric shapes defined by the SVG elements. These are attached

to shapes, paths, and groups using a style attribute.

✦ The viewBox attribute of the svg element maps a local coordinate space onto

the actual rectangular canvas where the picture will be drawn.

✦ The transform attribute of the g element can rotate, translate, scale, skew,

and flip SVG shapes.

938 Part V ✦ XML Applications

✦ You can annotate your SVG documents and elements with non-SVG informa-

tion using title, metadata and desc elements.

✦ Graphics programs such as Adobe Illustrator are often a better way to pro-

duce SVG documents than drawing in a text editor.

In the next chapter, you explore VML, the Vector Markup Language, an alternative

XML format for vector graphics. VML was invented by Microsoft and is used in

Office 2000 and Internet Explorer 5.

✦ ✦ ✦

The Vector
Markup
Language

Microsoft’s Vector Markup Language (VML) is an XML

application for vector graphics that can be embed-

ded in Web pages in place of the bitmapped GIF and JPEG

images loaded by HTML’s IMG element. Vector graphics take

up less space and thus display much faster over slow network

connections than traditional GIF and JPEG bitmap images.

VML is supported by the various components of Microsoft

Office 2000 (Word, PowerPoint, Excel), as well as by Internet

Explorer 5.0 and later. When you save a Word 2000,

PowerPoint 2000, or Excel 2000 document as HTML, graphics

created in those programs are converted to VML.

What Is VML?
VML elements represent shapes: rectangles, ovals, circles,

triangles, clouds, trapezoids, and so forth. Each shape is

described as a path formed from a series of connected lines

and curves. VML uses elements and attributes to describe the

outline, fill, position, and other properties of each shape.

Cascading Style Sheet (CSS) styles are used to position the

individual VML elements on the Web page, alongside the usual

HTML elements such as P and IMG.

Listing 26-1 is an HTML document. Embedded in this HTML

file is the VML code to draw a five-pointed blue star and a red

circle. Figure 26-1 shows the document displayed in Internet

Explorer.

2626C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

What is VML?

Drawing with a
keyboard

Positioning shapes
with CSS properties

VML in Microsoft
Office

✦ ✦ ✦ ✦

940 Part V ✦ XML Applications

Figure 26-1: An HTML document with embedded
VML elements

Listing 26-1: An HTML document with VML code that draws a
five-pointed blue star and a red circle

<html xmlns:vml=”urn:schemas-microsoft-com:vml”>

<head>
<title>Example 26-1 from the XML Bible</title>
<object id=”VMLRender”
classid=”CLSID:10072CEC-8CC1-11D1-986E-00A0C955B42E”>

</object>
<style>
vml\:* { behavior: url(#VMLRender) }

</style>
</head>

<body>
<h1>Example 26-1 from the XML Bible</h1>

<div>
<vml:oval
style=”width:200px; height: 200px”
strokecolor=”red”
strokeweight=”2”>

</vml:oval>

<vml:polyline
style=”width: 200px; height: 200px”

941Chapter 26 ✦ The Vector Markup Language

stroked=”false”
filled=”true”
fillcolor=”blue”
points=”8, 65, 72, 65, 92, 11, 112, 65,

174, 65, 122, 100, 142, 155, 92,
121, 42, 155, 60, 100”>

</vml:polyline>
</div>
<hr></hr>
Last Modified February 17, 2001

Copyright 2001

Elliotte Rusty Harold

</body>

</html>

Listing 26-1 obviously isn’t an ordinary HTML document, even though it contains

some standard HTML elements. First, the html root element binds the namespace

prefix vml to the URI urn:schemas-microsoft-com:vml. As usual, the prefix can

change as long as the URI stays the same. In fact, Microsoft uses the single-letter

prefix v in most of its examples. In this chapter, I assume that the prefix vml is

bound to urn:schemas-microsoft-com:vml without further comment.

The head element contains an object child with the id VMLRender. (VMLRender is

a program installed with Internet Explorer 5.) There’s also a CSS style element that

specifies that all elements in the urn:schemas-microsoft-com:vml namespace

(that is, all elements that begin with vml:) should have the behavior property

url(#VMLRender). This is a relative URL that points to the aforementioned object
element. This tells the Web browser to pass all elements in the VML namespace to

the object with the ID VMLRender for display.

The body element contains several of the usual HTML elements, including div, h1,

hr, and a. However, it also contains vml:oval and vml:polyline elements. The

vml:oval element has a red border (stroke) two pixels wide. In addition, the style
attribute sets the CSS width and height properties of this oval to 200 pixels each.

The vml:polyline element is filled in blue, and also has an area of 200 pixels by

200 pixels. A 5-pointed star has 10 vertices. Therefore, the points attribute pro-

vides 10 pairs of x-y coordinates, one for each vertex.

Drawing with a Keyboard
Writing VML pictures by typing raw XML code in a text editor is not easy, but it can

be done. I suggest that you start any attempt to program vector images with some

graph paper, and draw the images with a pencil the way you wish to see them on

the screen. You can then use the images from the graph paper to determine coordi-

nates for various VML elements, such as shape, oval, and polyline.

942 Part V ✦ XML Applications

The shape element
The fundamental VML element is vml:shape. This describes an arbitrary closed

curve in two dimensions. Most shapes have a path that defines the outline of the

shape. The outline may or may not have a stroke with a particular color and

width — that is, the outline may or may not be visible. The shape may or may not

be filled with a particular color. For example, in Figure 26-1 the circle has a red

stroke but no fill, whereas the star has a blue fill but no stroke.

The properties of a shape are defined in three ways:

✦ By the attributes of the vml:shape element

✦ By the CSS styles of the vml:shape element, which are normally set inside a

style attribute on the vml:shape element

✦ By the child elements of the vml:shape element

At a minimum, each shape must have these three properties:

✦ The height of the element defined by a CSS height property

✦ The width of the element defined by a CSS width property

✦ A path for the outline of the shape, defined either by a path attribute or a

vml:path child element

For example, here’s a vml:shape element that draws an isosceles triangle.

<vml:shape
style=”height: 200px; width: 200px”
path=”M 0,200 L 100,0, 200,200 X E”>

</vml:shape>

The bounding box of the shape, that is, the rectangle that contains the shape and

that will be positioned on the page in the midst of the HTML elements, is 200 pixels

wide by 200 pixels high. This is established by the CSS height and width proper-

ties, which the style attribute provides.

The path attribute contains the instructions that draw an isosceles triangle. Don’t

worry if it isn’t obvious to you that this is an isosceles triangle. In fact, I’d be sur-

prised if it were even obvious that this is a triangle. Most VML elements (including

this one) are drawn using a GUI, and only saved into VML form. Consequently, you

don’t need to know the detailed syntax of each and every VML element and

attribute. However, if you know a little, you can sometimes do some surprising

tricks with the VML file that may prove impossible with a graphical editor. For

example, you can search for all the blue elements, and change them to red.

Here’s how the value of this path attribute is interpreted. Each command is

represented by a letter such as M or L. (Microsoft uses lowercase letters in their

examples, but I prefer uppercase letters because it’s hard to tell the difference

943Chapter 26 ✦ The Vector Markup Language

between the lowercase letter l and the digit 1 in most fonts.) The command is fol-

lowed by zero or more coordinate points. Each point is given as an x coordinate

and a y coordinate, separated by a comma. The commands used here, and their

arguments are:

1. M 0,200: Move the pen to the point x = 0, y = 200.

2. L 100,0, 200,200: Draw a line from the current pen location (x = 0, y = 200)

to x = 100, y = 0. Then draw a line from there to the point x = 200, y = 200.

3. X: Close the shape; that is, draw a line from the last point back to the first

point.

4. E: End the path.

Note that all coordinates are given in the standard computer graphics coordinates

in which x increases to the right and y increases down. Figure 26-2 demonstrates.

Figure 26-2: VML uses a left-handed coordinate system with the origin in the
upper left corner of the window.

944 Part V ✦ XML Applications

Other shape attributes
Additional attributes can be added to a vml:shape element to set its color, stroke

color, alternate text, and more. Table 26-1 summarizes the standard set of these

attributes.

Table 26-1
Standard Attributes of the vml:shape Element

Attribute Name Attribute Value Default

adj A comma-delimited string of up to None
8 integers that provides input parameters
for vml:formulas child elements

alt Alternate text shown if the shape can’t be None
drawn for any reason; similar to the ALT
attribute of HTML’s IMG element

class The class of the shape; used to attach CSS None
styles to groups of elements in the same class

coordorigin The local coordinate of the upper- 0, 0
left corner of the shape’s box

coordsize The width and height of the shape’s Same as the
box in the local coordinate space width and

height of the
entire shape

fillcolor The color the shape is filled with; for example,
red or #66FF33 White

filled A boolean specifying whether the shape is filled False

href The URL to jump to when the shape is clicked None

id A unique XML name for the element
(same as any other XML ID type attribute) None

path Commands that define the shape’s path None

strokecolor The color used to draw the outline of the shape Black

stroked A boolean specifying whether the path True
(outline) of the shape should be drawn

strokeweight The width of the line outlining the shape’s path 1px

style The CSS properties applied to this shape None

target The name of the frame or window that None
a URL loaded when the shape is clicked
will be displayed in

945Chapter 26 ✦ The Vector Markup Language

Attribute Name Attribute Value Default

title The name of the shape; displayed when None
the mouse pointer moves over the shape

type A reference to the ID of a None
vml:shapetype element

Microsoft Office 2000 adds a number of extension attributes as well. Apparently
Microsoft can’t even resist embracing and extending those standards they them-
selves created.

Shape child elements
Some properties of shapes are more convenient to set with child elements than

with attributes. Furthermore, using child elements allows finer control of some

aspects of shapes. Table 26-2 lists the possible child elements of a shape. If a child

element conflicts with an attribute, then the value specified by the child element is

used.

Table 26-2
Shape Child Elements

Element Name Purpose

extrusion A three-dimensional extruded effect

fill Specifies how and with what the shape is filled

formulas Formulas used to calculate the path of the shape

handles Handles by which the shape can be manipulated

imagedata A bitmapped picture from an external source rendered on top
of the shape

path Commands specifying how to draw the shape’s outline

shadow The shadow effect for the shape

skew An angle by which to skew the shape

stroke The visible outline of the shape

textbox Text inside the shape

textpath A path along which the text is drawn

Note

946 Part V ✦ XML Applications

Predefined shapes
Because working with paths manually isn’t very convenient, VML predefines a num-

ber of common shapes with different syntax that can be more naturally specified.

For instance, you could define a rectangle using a path like this:

<vml:shape style=”height: 200px; width: 100px”
path=”M 0,0 L 100,0, 100,200, 0,200 X E”>

</vml:shape>

However it’s easier to specify it by giving the coordinates of its corners, or one cor-

ner and the width and the height; indeed, VML let’s you do this by using a

vml:rect element instead of a vml:shape element like this:

<vml:rect style=”height: 200; width: 100; top: 0; left: 0”>
</vml:rect>

The rectangle is completely specified by the CSS styles. VML predefines eight

shapes, all listed in Table 26-3.

Table 26-3
Predefined Shapes

Element Shape

arc A curved line defined by the arc of a circle between two points
through a specified number of degrees

curve A curved line defined by a cubic Bézier curve

image A bitmapped image loaded from an external source

line A straight line between two points

oval The largest oval that can fit in a rectangular box of specified size

polyline A series of straight lines drawn between successive pairs of points

rect A rectangle oriented parallel to the coordinate axes defined by one
corner and a height and a width

roundrect A rectangle with rounded edges

Each of these child elements can have all the attributes that vml:shape has and

that are shown in Table 26-1: fill, fillcolor, stroke, and so on. In addition, each

has some unique attributes that allow its path to be specified in a more convenient

way. For instance, vml:line, one of the simplest, has from and to attributes that

define the endpoints of the line. The value of each of these attributes is a 2D coordi-

nate in the local coordinate space, such as 0, 5 or 32, 10. Detailed syntax is on

the Microsoft Web site at http://msdn.microsoft.com/standards/vml/.

947Chapter 26 ✦ The Vector Markup Language

The shapetype element
The vml:shapetype element defines a shape that can be reused multiple times, by

referencing it at a later point within a document using a vml:shape element. The

vml:shapetype element itself is never drawn. A vml:shape element references a

vml:shapetype element using a type attribute whose value is a relative URL point-

ing to the id of the vml:shapetype element. The syntax of the vml:shapetype ele-

ment is almost identical to the syntax of the vml:shape element except that a

vml:shapetype generally does not give an explicit width and height because it is

not actually drawn on the page. Instead, a coordsize attribute defines an abstract

coordinate system that is mapped to the width and height of the actual shapes that

reference it.

For example, Listing 26-2 includes a vml:shapetype element that defines a blue

right triangle. It also includes three shape elements that merely reference this

vml:shapetype. Thus, there are three right triangles in Figure 26-3, even though it’s

only defined once. Each of these triangles has a different size as set in the individ-

ual shape elements, even though they’re all calculated from the same formulas.

Listing 26-2: Multiple shape elements copy a single
shapetype

<html xmlns:vml=”urn:schemas-microsoft-com:vml”>

<head>
<title>Example 26-2 from the XML Bible</title>
<object id=”VMLRender”
classid=”CLSID:10072CEC-8CC1-11D1-986E-00A0C955B42E”>

</object>
<style>
vml\:* { behavior: url(#VMLRender) }

</style>
</head>

<body>
<h1>Example 26-2 from the XML Bible</h1>

<vml:shapetype id=”fred”
coordsize=”500,500”
fillcolor=”blue”
path=”m 0,0 l 0,400, 300,400 x e”>

</vml:shapetype>

<vml:shape type=”#fred” style=”width:50px; height:50px” />
<vml:shape type=”#fred” style=”width:100px; height:100px”/>
<vml:shape type=”#fred” style=”width:150px; height:150px”/>

Continued

948 Part V ✦ XML Applications

Listing 26-2: (continued)

<hr></hr>
Last Modified February 17, 2001

Copyright 2001

Elliotte Rusty Harold

</body>

</html>

Figure 26-3: Three triangle shapes copied from
one shapetype element.

When a vml:shape element references a vml:shapetype element, vml:shape may

duplicate some of the attributes applied to the vml:shapetype element. In this

case, the values associated with vml:shape override those of vml:shapetype.

949Chapter 26 ✦ The Vector Markup Language

The group element
The group top-level element combines shapes and other top-level elements. The

group has its own local coordinate space in which its child shapes are placed. This

entire collection of shapes can then be moved and positioned as a unit. The only

attributes the group can have are the core attributes that a shape can have (that is,

id, class, style, title, href, target, alt, coordorigin, and coordsize). For

example, suppose you need a shape that is a star inside a circle. You can create it

by combining an oval with a polyline in a group element like this:

<vml:group style=”width: 6cm; height: 6cm”
coordorigin=”0,0” coordsize=”250,250”>
<vml:oval style=”position: absolute; top: 15; left: 15;

width: 200; height: 200”
filled=”true” fillcolor=”red”>

</vml:oval>

<vml:polyline style=”position: absolute; top: 25; left: 25;
width: 200; height: 200”

filled=”true” fillcolor=”blue”
points=”8, 65, 72, 65, 92, 11, 112, 65, 174, 65, 122,

100, 142, 155, 92, 121, 42, 155, 60, 100”>
</vml:polyline>

</vml:group>

The coordsize and coordorigin attributes define the local coordinate system of

the elements contained in the group. The coordsize attribute defines the dimen-

sions of the containing block. The coordorigin attribute defines the coordinate of

the top-left corner of the containing block.

This is an abstract system, not a system based on any sort of physical units such as

inches, pixels, or ems. The conversion between the local units and the global units

depends on the height and the width of the group. For instance, in the above exam-

ple, the group’s actual height and width is 6cm by 6cm, and its coordsize is

250,250. Thus, each local unit is 0.024 cm (6 cm/250). As the height and width of the

group change, the sizes of the contents of the group scale proportionately.

Inside a group, all the CSS properties used to position VML, such as left and

width, are given as nondimensional numbers in the local coordinate space. In other

words, unlike normal CSS properties, they do not use units, and are only pure num-

bers, not real lengths. All children of the group are positioned and sized according

to the local coordinate system. For example, consider this group:

<vml:group style=”width: 400px; height: 400px”
coordsize=”100,100”
coordorigin=”-50,-50”>

</vml:group>

950 Part V ✦ XML Applications

The containing block is 400 pixels wide by 400 pixels high. The coordsize property

specifies that there are 100 units both horizontally and vertically within this group.

Each of the local units is four pixels long. The coordinate system inside the contain-

ing block ranges from –50.0 to 50.0 along the x-axis and –50.0 to 50.0 along the y-axis

with 0.0, 0.0 at the center of the rectangle. Shapes positioned outside this region

will not be truncated, but they are likely to fall on top of or beneath HTML elements

and other VML shapes on the page.

Positioning VML Shapes with CSS Properties
VML elements fit directly into the CSS Level 2 visual-rendering model, exactly like

HTML elements. This means that each VML element is contained in an implicit box,

which is placed at a certain point on the Web page. The following standard CSS

properties place the box at particular absolute or relative positions on the page:

✦ display

✦ position

✦ float

✦ clear

✦ height

✦ width

✦ top

✦ bottom

✦ left

✦ right

✦ border

✦ margin

✦ visibility

✦ z-index

Chapter 15 discusses the syntax and semantics of these properties.Cross-
Reference

951Chapter 26 ✦ The Vector Markup Language

In addition to supporting the standard CSS2 visual-rendering model, VML adds four

new properties so that shapes can be rotated, flipped, and positioned:

✦ rotation

✦ flip

✦ center-x

✦ center-y

Personally, I think adding nonstandard CSS properties to the style attribute is a
very bad idea. I would much prefer that these properties simply be additional
attributes on the various VML shape elements. The center-x and center-y
properties are particularly annoying because they do nothing the left and right
properties don’t already do.

VML elements use a style attribute to set these properties, just like HTML ele-

ments. This has the same syntax as the HTML style attribute. For example, this

VML oval uses its style attribute to set its position, border, and margin properties:

<vml:oval style=”top: 15; left: 15; width: 200; height: 100;
margin: 10; border-style: solid; border-right-width: 2;
border-left-width: 2; border-top-width: 1.5;
border-bottom-width: 1.5”
stroked=”false” filled=”true” fillcolor=”green”>

</vml:oval>

VML shapes are positioned on the page using the CSS position, left, right,

width, and height properties. If the position property has the value absolute,

the invisible rectangular box that contains the shape is placed at particular coordi-

nates relative to the window that displays the shape, regardless of what else

appears on the page. This means that shapes and HTML elements can overlap. VML

uses the z-index CSS property to layer the first (lowest) to the last (highest) layer,

with the latest elements obscuring the earlier elements. This allows you to stack

elements on top of each other. If elements don’t have z-index properties, then ele-

ments that come later in the document are placed on top of elements that come

earlier in the document.

Listing 26-3 uses absolute positioning to place the blue star on top of the red circle,

which is itself on top of the h1 header and the signature block. Figure 26-4 shows

the result.

The default value of the position property is static, which simply means that

both HTML elements and VML shapes are laid out one after the other, each taking

as much space as it needs, but none laying on top of another.

The position property can also be set to relative, which begins by placing the

box where it would normally be, and then offsetting it from that position by the

amount specified in the top, bottom, left, and right properties.

Note

952 Part V ✦ XML Applications

Figure 26-4: A blue star on top of a red circle on
top of the body of the page

Listing 26-3: VML code that draws a five-pointed blue star on
top of a red circle

<html xmlns:vml=”urn:schemas-microsoft-com:vml”>

<head>
<title>Example 26-3 from the XML Bible</title>
<object id=”VMLRender”
classid=”CLSID:10072CEC-8CC1-11D1-986E-00A0C955B42E”>

</object>
<style>
vml\:* { behavior: url(#VMLRender) }

</style>
</head>

<body>
<h1>Example 26-3 from the XML Bible</h1>

<div>
<vml:polyline
style=”position:absolute; top:0px; left:0px;

width: 250px; height: 250px; z-index: 1”
stroked=”false”
filled=”true”
fillcolor=”blue”
points=”8pt, 65pt, 72pt, 65pt, 92pt, 11pt, 112pt, 65pt,

174pt, 65pt, 122pt, 100pt, 142pt, 155pt, 92pt,

953Chapter 26 ✦ The Vector Markup Language

121pt, 42pt, 155pt, 60pt, 100pt”>
</vml:polyline>

<vml:oval style=”position:absolute; top:25px; left:25px;
width:200px; height: 200px; z-index: 0”

stroked=”false”
filled=”true”
fillcolor=”red”>

</vml:oval>

</div>
<hr></hr>
Last Modified February 17, 2001

Copyright 1999, 2001

Elliotte Rusty Harold

</body>

</html>

The rotation property
The rotation property does not exist in standard CSS, but it can be used as a CSS

property of VML shapes. The rotation property specifies the number of degrees a

shape is rotated in a clockwise direction about an axis passing through the center

of the shape. Negative values rotate the shape counterclockwise. Values are speci-

fied in the format 45deg, 90deg, -30deg, and so forth. Listing 26-4 rotates Listing

26-1’s star by 120 degrees. Figure 26-5 shows the result.

Listing 26-4: A star rotated by 120 degrees

<html xmlns:vml=”urn:schemas-microsoft-com:vml”>

<head>
<title>Example 26-4 from the XML Bible</title>
<object id=”VMLRender”
classid=”CLSID:10072CEC-8CC1-11D1-986E-00A0C955B42E”>

</object>
<style>
vml\:* { behavior: url(#VMLRender) }

</style>
</head>

<body>
<h1>Example 26-4 from the XML Bible</h1>

Continued

954 Part V ✦ XML Applications

Listing 26-4 (continued)

<div>

<vml:polyline
style=”width: 250px; height: 250px; rotation: 120deg”
stroked=”true”
strokecolor=”black”
strokeweight=”5”
filled=”true”
fillcolor=”blue”
points=”8pt, 65pt, 72pt, 65pt, 92pt,11pt, 112pt, 65pt,

174pt, 65pt, 122pt,100pt, 142pt, 155pt, 92pt,
121pt, 42pt, 155pt, 60pt, 100pt, 8pt, 65pt”>

</vml:polyline>
</div>
<hr></hr>
Last Modified February 17, 2001

Copyright 2001

Elliotte Rusty Harold

</body>

</html>

Figure 26-5: A star rotated by 120 degrees

955Chapter 26 ✦ The Vector Markup Language

The flip property
The flip property also does not exist in standard CSS, but it can be used as a CSS

property of VML shapes. It flips a shape around either its x- or y-axis, or both. This

is given as a CSS property on the style attribute of a VML shape element. To flip

the y coordinates about the x-axis, set flip to y. To flip the x coordinates about the

y-axis, set flip to x. The flip property specifies which coordinates are flipped,

not which axis they’re flipped about. Listing 26-5 flips the shape about its x-axis.

Figure 26-6 shows the result.

Figure 26-6: The star flipped about its x-axis

Listing 26-5: A star flipped about its x-axis

<html xmlns:vml=”urn:schemas-microsoft-com:vml”>

<head>
<title>Example 26-5 from the XML Bible</title>
<object id=”VMLRender”
classid=”CLSID:10072CEC-8CC1-11D1-986E-00A0C955B42E”>

</object>
<style>
vml\:* { behavior: url(#VMLRender) }

</style>
</head>

Continued

956 Part V ✦ XML Applications

Listing 26-5 (continued)

<body>
<h1>Example 26-5 from the XML Bible</h1>

<div>

<vml:polyline
style=”width: 250px; height: 250px; flip: y”
stroked=”true”
strokecolor=”black”
strokeweight=”5”
filled=”true”
fillcolor=”blue”
points=”8pt, 65pt, 72pt, 65pt, 92pt,11pt, 112pt, 65pt,

174pt, 65pt, 122pt,100pt, 142pt, 155pt, 92pt,
121pt, 42pt, 155pt, 60pt, 100pt, 8pt, 65pt”>

</vml:polyline>
</div>
<hr></hr>
Last Modified February 17, 2001

Copyright 2001

Elliotte Rusty Harold

</body>

</html>

The center-x and center-y properties
The center-x and center-y properties locate the center of the box that contains

the shape. These properties offer alternatives to the left and right CSS proper-

ties, and ultimately convey the same information. Because center-x and left are

alternatives for each other as are center-y and right, you should not specify

them both. If you do specify both, then the value associated with center-x and

center-y is used.

VML in Microsoft Office
Drawing pictures with a keyboard is more than a little like hammering a nail into

wood with a sponge. A keyboard simply isn’t the right tool with which to draw. A

mouse is better, and a graphics tablet is best of all. In this section, you’ll learn how

to use more traditional graphics tools such as PowerPoint to produce VML docu-

ments. Microsoft Word, Excel, and PowerPoint 2000 and later support VML by con-

verting graphics drawn in these programs into VML markup on HTML pages.

957Chapter 26 ✦ The Vector Markup Language

Settings
VML is not turned on by default in Office 2000. Before you can create VML docu-

ments with any of the Office products, you have to adjust your settings. These are

in essentially the same location in each of the three Office programs that can create

VML. To set VML as the default graphics type, perform these steps as shown in

Figure 26-7:

1. From within Microsoft PowerPoint/Word/Excel, open the Tools menu and

select Options....

2. Select the General tab.

3. Click the Web Options... button.

4. Select the Pictures tab from the Web Options dialog window.

5. Check the option that reads Rely on VML for displaying graphics in browsers,

as shown in Figure 26-7.

6. Click OK in the Web Options window, and then OK again in the Options win-

dow. PowerPoint/Word/Excel is now configured to use VML graphics when-

ever you save a presentation in Web format.

Figure 26-7: Setting VML as the default graphic type in Microsoft Word, PowerPoint,
and Excel are very similar.

958 Part V ✦ XML Applications

Office 2000 will only convert to VML those images that you draw in their documents

using their drawing tools. All other pictures will be saved as bitmapped GIF or PNG

files. This means that you cannot use PowerPoint or Word as a conversion utility

for other graphics that you have embedded in Office documents.

Drawing a house
Office 2000 may not have all the power of Adobe Illustrator or CorelDraw, but it

does make drawing simple graphics easy — much easier than drawing with the key-

board. PowerPoint is the most graphically oriented of the Office components, so

let’s demonstrate by using PowerPoint to draw a little house. By employing the fol-

lowing steps, it’s as simple as drawing a few squares, circles, and triangles.

1. Choose New... from the File menu.

2. In the dialog that appears, select Blank Presentation, and then click OK.

3. In the New Slide window, select the slide with only a title bar at the top, as

shown in Figure 26-8, and then click OK.

Figure 26-8: Selecting a template for the slide

4. Click in the Title bar area, and give your slide a name, for example, My VML

House.

5. On the drawing toolbar at the bottom of the window, click the Rectangle tool.

Use this tool to draw the foundation for the house.

6. On the drawing toolbar, click the AutoShapes button, select the Basic Shapes

option, and then select the Isosceles triangle.

7. Use the Isosceles triangle to draw a roof over the house.

8. Use the Rectangle tool to draw windows and doors on your house, until your

image looks something like the one shown in Figure 26-9.

959Chapter 26 ✦ The Vector Markup Language

Figure 26-9: The VML House in PowerPoint 2000, ready for conversion into VML
text

9. Open the File menu, and select Save As Web Page. Type the name of the page,

for example, VMLHouse.html, and then click Save.

10. Close PowerPoint and open the file you just created using Internet Explorer

5.0 or 5.5. Figure 26-10 shows the resulting Web page.

The HTML and VML code created by PowerPoint to display this slide is shown in

Listing 26-6. It’s pretty messy because it’s not really meant to be seen by humans or

edited by hand. It’s intended purely for Web browsers and authoring tools to read.

The VML house will only display in Internet Explorer 5.0 or later. Other browsers
will only see the embedded images, not the VML.

Note

960 Part V ✦ XML Applications

Figure 26-10: The VML House, shown as a Web
page in Internet Explorer 5.0

Listing 26-6: A PowerPoint slide converted to HTML with
embedded VML

<html xmlns:v=”urn:schemas-microsoft-com:vml”
xmlns:o=”urn:schemas-microsoft-com:office:office”
xmlns:p=”urn:schemas-microsoft-com:office:powerpoint”
xmlns=”http://www.w3.org/TR/REC-html40”>

<head>
<meta http-equiv=Content-Type content=”text/html;
charset=windows-1252”>

<meta name=ProgId content=PowerPoint.Slide>
<meta name=Generator content=”Microsoft PowerPoint 9”>
<link id=Main-File rel=Main-File

href=”../My%20VML%20House.htm”>
<link rel=Preview href=preview.wmf>
<!--[if !mso]>
<style>
v\:* {behavior:url(#default#VML);}
o\:* {behavior:url(#default#VML);}
p\:* {behavior:url(#default#VML);}
.shape {behavior:url(#default#VML);}
v\:textbox {display:none;}
</style>
<![endif]-->
<title>My VML House</title>
<meta name=Description content=”17-Feb-01: My VML House”>

961Chapter 26 ✦ The Vector Markup Language

<link rel=Stylesheet href=”master03_stylesheet.css”>
<![if !ppt]>
<style media=print>
<!--.sld
{left:0px !important;
width:6.0in !important;
height:4.5in !important;
font-size:146% !important;}
-->
</style>
<script src=script.js></script><!--[if vml]><script>g_vml = 1;
</script><![endif]--><script for=window event=onload><!--
LoadSld(gId);
MakeSldVis(0);
//-->
</script><![endif]><o:shapelayout v:ext=”edit”>
<o:idmap v:ext=”edit” data=”2”/>
</o:shapelayout>
</head>

<body lang=EN-US style=’margin:0px;background-color:white’
onresize=”_RSW()”>

<div id=SlideObj class=sld
style=’position:absolute;top:0px;left:0px;
width:394px;height:295px;font-size:16px;
background-color:white;clip:rect(0%, 101%, 101%, 0%);
visibility:hidden’><p:slide coordsize=”720,540”
colors=”#FFFFFF,#000000,#808080,#000000,#00CC99,#3333CC,
#CCCCFF,#B2B2B2”
masterhref=”master03.xml”>
<p:shaperange href=”master03.xml#_x0000_s1026”/>
<![if !ppt]><p:shaperange
href=”master03.xml#_x0000_s1028”/><p:shaperange
href=”master03.xml#_x0000_s1029”/><![endif]><p:shaperange
href=”master03.xml#_x0000_m1026”/>

<v:shape id=”_x0000_s2050” type=”#_x0000_m1026”
style=’position:absolute;left:54pt;top:48pt;width:612pt;

height:90pt’>
<v:fill o:detectmouseclick=”f”/>
<v:stroke o:forcedash=”f”/>
<o:lock v:ext=”edit” text=”f”/>
<p:placeholder type=”title”/></v:shape>

<v:rect id=”_x0000_s2051” style=’position:absolute;
left:252pt;top:312pt;width:3in;height:210pt;

mso-wrap-style:none;
v-text-anchor:middle’ fillcolor=”#0c9 [4]”

strokecolor=”black [1]”>
<v:fill color2=”white [0]”/>
<v:shadow color=”gray [2]”/>
</v:rect><v:shapetype id=”_x0000_t5”

Continued

962 Part V ✦ XML Applications

Listing 26-6 (continued)

coordsize=”21600,21600” o:spt=”5” adj=”10800”
path=”m@0,0l0,21600,21600,21600xe”>
<v:stroke joinstyle=”miter”/>
<v:formulas>
<v:f eqn=”val #0”/>
<v:f eqn=”prod #0 1 2”/>
<v:f eqn=”sum @1 10800 0”/>
</v:formulas>
<v:path gradientshapeok=”t” o:connecttype=”custom”

o:connectlocs=
“@0,0;@1,10800;0,21600;10800,21600;21600,21600;@2,10800”
textboxrect=”0,10800,10800,18000;5400,10800,16200,18000;10800,
10800,21600,18000;0,7200,7200,21600;7200,7200,14400,21600;
14400,7200,21600,21600”/>
<v:handles>
<v:h position=”#0,topLeft” xrange=”0,21600”/>
</v:handles>
</v:shapetype>
<v:shape id=”_x0000_s2052” type=”#_x0000_t5”
style=’position:absolute;
left:210pt;top:162pt;width:300pt;height:150pt;

mso-wrap-style:none;
v-text-anchor:middle’ fillcolor=”#0c9 [4]”
strokecolor=”black [1]”>
<v:fill color2=”white [0]”/>
<v:shadow color=”gray [2]”/>
</v:shape><v:rect id=”_x0000_s2053”
style=’position:absolute;left:336pt;top:420pt;
width:60pt;height:102pt;mso-wrap-style:none;

v-text-anchor:middle’
fillcolor=”white [0]” strokecolor=”black [1]”>
<v:shadow color=”gray [2]”/>
</v:rect><v:rect id=”_x0000_s2054”
style=’position:absolute;left:282pt;top:354pt;
width:18pt;height:30pt;mso-wrap-style:none;

v-text-anchor:middle’ fillcolor=”#ccf [6]”
strokecolor=”#ccf [6]”>
<v:shadow color=”gray [2]”/>
</v:rect><v:rect id=”_x0000_s2055”
style=’position:absolute;left:354pt;top:354pt;
width:18pt;height:30pt;mso-wrap-style:none;

963Chapter 26 ✦ The Vector Markup Language

v-text-anchor:middle’ fillcolor=”#ccf [6]”
strokecolor=”#ccf [6]”>
<v:shadow color=”gray [2]”/>
</v:rect><v:rect id=”_x0000_s2056”
style=’position:absolute;left:426pt;top:354pt;
width:18pt;height:30pt;mso-wrap-style:none;

v-text-anchor:middle’ fillcolor=”#ccf [6]”
strokecolor=”#ccf [6]”>
<v:shadow color=”gray [2]”/>
</v:rect><v:rect id=”_x0000_s2057”
style=’position:absolute;left:426pt;top:450pt;
width:18pt;height:30pt;mso-wrap-style:none;

v-text-anchor:middle’ fillcolor=”#ccf [6]”
strokecolor=”#ccf [6]”>
<v:shadow color=”gray [2]”/>
</v:rect><v:rect id=”_x0000_s2058”
style=’position:absolute;left:4in;top:450pt;
width:18pt;height:30pt;mso-wrap-style:none;

v-text-anchor:middle’ fillcolor=”#ccf [6]”
strokecolor=”#ccf [6]”>
<v:shadow color=”gray [2]”/>
</v:rect>
<div v:shape=”_x0000_s2050”
class=T style=’position:absolute;top:12.88%;
left:8.62%;width:83.24%;height:9.49%’>My VML House</div>
</p:slide></div>

</body>

</html>

As well as a lot of standard HTML and VML code, Listing 26-6 contains a number of

elements in the urn:schemas-microsoft-com:office:office and

urn:schemas-microsoft-com:office:powerpoint namespaces. These contain

information that most Web browsers won’t use, but that PowerPoint will if the

HTML file is opened in PowerPoint. The purpose of these elements is to enable a

document to make a roundtrip from PowerPoint to HTML and back again without

losing anything along the way.

964 Part V ✦ XML Applications

Summary
In this chapter, you learned about Microsoft’s Vector Markup Language, an XML

application for vector graphics used in Internet Explorer 5.0 and Office 2000. In par-

ticular, you learned:

✦ What VML can do for Web graphics.

✦ The various elements and attributes associated with VML shapes, and how to

use them to create the visual images that you need.

✦ How to configure Microsoft Office 2000 applications to use VML when creating

graphics for Web documents and presentations.

✦ How to draw VML figures using PowerPoint 2000.

In the next chapter, we explore another nonstandardized XML application from

Microsoft, the Channel Definition Format (CDF). CDF is used to push content to sub-

scribers through their Web browsers.

✦ ✦ ✦

The Channel
Definition
Format

This chapter discusses Microsoft’s Channel Definition

Format (CDF), an XML application for defining channels.

A channel is a set of Web pages that can be pushed to a sub-

scriber automatically. A CDF document lists the pages to be

pushed, the frequency with which they’re pushed, and similar

information. As well as Web pages, channels can use Dynamic

HTML, Java, and JavaScript to create interactive, continually

updated stock tickers, sports score boxes, and the like.

Subject to security restrictions, channels can even push soft-

ware updates to registered users and install them automati-

cally. Readers can subscribe to channels using Internet

Explorer 4.0 and later.

What Is the Channel Definition
Format?

CDF is an XML application developed by Microsoft to add

push capabilities to Internet Explorer. Channels allow Web

sites to automatically notify readers of changes to critical

information. This method is sometimes called Webcasting or

push. Currently, Internet Explorer (IE) is the only major

browser that implements CDF and broader adoption seems

unlikely. The World Wide Web Consortium (W3C) has not

done more than formally acknowledge receipt of the CDF

specification.

A CDF file is an XML document, separate from, but linked to,

the HTML documents on a site. The CDF document defines

the parameters for a connection between the readers and the

2727C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

What is the Channel
Definition Format?

Creating channels

Describing the
channel

Scheduling updates

Precaching and Web
crawling

The Reader access
log

The BASE attribute

The LASTMOD
attribute

The USAGE element

✦ ✦ ✦ ✦

966 Part V ✦ XML Applications

content on the site. The data can be transferred through push — sending notifica-

tions, or even entire Web sites to registered readers — or through pull — readers

choosing to load the page in their Web browser and get the update information.

You do not need to substantially rearchitect your Web site or rewrite your existing

pages to take advantage of CDF. You simply have to add one CDF file to your site

and make a link to it, probably from the main page of the site. When the reader fol-

lows this link, IE will download a copy of the channel index in the CDF document to

the reader’s machine and put an icon for the site in the Favorites list. Later, the

reader can click this icon to load the current contents of the channel.

Creating Channels
There are three steps to creating a channel:

1. Decide what content to include in the channel.

2. Write the channel definition file that identifies this content.

3. Link from the home page of the Web site to the channel definition file.

Determining channel content
Before you get bogged down in the nitty-gritty technical details of creating a chan-

nel with CDF, you first need to decide what content belongs in the channel and how

it should be delivered.

Your first consideration when converting existing sites to channels is how many

and which pages to include. Human interface factors suggest that no channel

should have more than eight items for readers to choose from. Otherwise, readers

become confused and have trouble finding what they need. However, channels can

be arranged hierarchically. Additional levels of content can be added as subchan-

nels. For example, a newspaper channel might have sections for business, science,

entertainment, sports, international news, national news, and local news. The enter-

tainment section might be divided into subchannels for television, movies, books,

music, and art.

The organization and hierarchy you choose may or may not match the organization

and hierarchy of your existing Web site, just as the organization and hierarchy of

your Web site does not necessarily match the organization and hierarchy of the

files on the server hard drive. However, matching the hierarchy of the channel to

the hierarchy of the Web site will make the channel easier to maintain. Nonetheless,

you can certainly select particular pages out of the site and then arrange them in a

hierarchy specific to the channel if it seems sensible to do so.

967Chapter 27 ✦ The Channel Definition Format

Your second consideration is the way new content will be delivered to subscribers.

When subscribing to a channel, readers are offered three options:

1. The channel can be added to the channel bar and subscribers can check in

when they feel like it.

2. Subscribers can be notified of new content via e-mail and then load the chan-

nel when they feel like it.

3. The browser can periodically check the site for updates and download the

changed content automatically.

Your content should be designed to work well with whichever of these three

options the reader chooses.

Creating CDF files and documents
After you’ve decided what content will be in your channel, and how that content

will be organized and delivered, you’re ready to write the CDF document that

implements these decisions. A CDF document specifies the contents, schedule,

and logos for the channel. All of this information is marked up using a particular

set of XML tags. This document will be placed on the Web server where clients can

download it.

While it would be almost trivial to design a DTD for CDF, and while I suspect
Microsoft has one internally, they have not yet published it for the current version
of CDF. A DTD for a much earlier and obsolete version of CDF can be found in a
W3C note at http://www.w3.org/TR/NOTE-CDFsubmit.html. However, this
really doesn’t come close to describing the current version of CDF. Consequently,
CDF documents can be at most well formed, but not valid.

A CDF document begins with an XML declaration because a CDF document is an

XML document and follows the same rules as all XML documents. The root and

only required element of a CDF document is CHANNEL. The CHANNEL element must

have an HREF attribute that specifies the page being monitored for changes. The

root CHANNEL element usually identifies the key page in the channel. Listing 27-1 is a

simple CDF document that points to a page that is updated more or less daily.

Listing 27-1: The simplest possible CDF document for a page

<?xml version=”1.0”?>
<CHANNEL HREF=”http://www.ibiblio.org/xml/index.html”>
</CHANNEL>

Note

968 Part V ✦ XML Applications

Most Microsoft documentation for CDF is based on a prerelease of the XML speci-
fication that used the uppercase <?XML version=”1.0”?> instead of the now
current lowercase <?xml version=”1.0”?>. However, both case conventions
seem to work with Internet Explorer, so in this chapter, I use the lowercase xml
that conforms to standard XML usage.

As well as the main page, most channels contain a collection of other pages identi-

fied by ITEM children. Each ITEM has an HREF attribute pointing to the page. Listing

27-2 demonstrates a channel that contains a main page (http://www.ibiblio.
org/xml/index.html) with three individual subpages in ITEM elements. Channels

are often shown in a collapsible outline view that allows the user to show or hide

the individual items in the channel as they choose. Figure 27-1 shows this channel

expanded in Internet Explorer 5.0’s Favorites bar.

Listing 27-2: A CDF channel with ITEM children

<?xml version=”1.0”?>
<CHANNEL HREF=”http://www.ibiblio.org/xml/index.html”>
<ITEM HREF=”http://www.ibiblio.org/xml/books.html”>
</ITEM>
<ITEM HREF=”http://www.ibiblio.org/xml/tradeshows.html”>
</ITEM>
<ITEM HREF=”http://www.ibiblio.org/xml/mailinglists.html”>
</ITEM>

</CHANNEL>

Linking the Web page to the channel
The third and final step is to make the CDF file available to the reader. The simplest

way to accomplish this is with a standard HTML A element that readers click to

load the CDF file. Generally, the contents of this element will be some text or an

image asking the reader to subscribe to the channel. For example:

Subscribe to Cafe con Leche

Note

969Chapter 27 ✦ The Channel Definition Format

Figure 27-1: The open channels folder in Internet Explorer 5.0’s Favorites bar with
three sub-pages displayed

When the reader activates this link in a CDF-enabled browser (which is just a fancy

way of saying Internet Explorer 4.0 and later), the browser downloads the CDF file

named in the HREF attribute and adds the channel to its list of subscriptions. Other

browsers that don’t support CDF will probably ask the user to save the document

as shown in Figure 27-2.

Figure 27-2: Netscape Navigator
does not support CDF nor does it
understand CDF files.

970 Part V ✦ XML Applications

After the CDF file has been downloaded, the browser will ask the user how they

wish to be notified of future changes to the channel as shown in Figure 27-3. The

user has three choices:

✦ The channel can be added to the browser and active desktop channel bars.

The subscriber must manually select the channel to get the update. This isn’t

all that different from a bookmark, except that when the user opens the “chan-

nel mark,” all pages in the channel are refreshed rather than just one.

✦ The browser periodically checks the channel for updates and notifies the sub-

scriber of any changes via e-mail. The user must still choose to download the

new content.

✦ The browser periodically checks the channel for updates and notifies the sub-

scriber of any changes via e-mail. However, when a change is detected, the

browser automatically downloads and caches the new content so that it’s

immediately available for the user to view, even if they aren’t connected to the

Internet when they check the channel site.

Listing 27-2 only makes the first choice available because this particular channel

doesn’t provide a schedule for updates. We’ll add that soon.

Figure 27-3: Internet Explorer asks the user
to choose how they wish to be notified of
changes at the site.

Describing the Channel
The channel itself and each item in the channel can have a title, an abstract, and up

to three logos of different sizes. These are established by giving the CHANNEL and

ITEM elements TITLE, ABSTRACT, and LOGO children.

Title
The title of the channel is not the same as the title of the Web page. Rather, the

channel title appears in the channel guide, the channel list, and the channel bar, as

shown in Figure 27-1 where the title is http--www.ibiblio.org-xml-index
(although the subscriber did have the option to customize it by typing a different

971Chapter 27 ✦ The Channel Definition Format

title as shown in Figure 27-3). You can provide a more descriptive default title for

each CHANNEL and ITEM element by giving it a TITLE child. Each TITLE element can

contain only character data, no markup. Listing 27-3 adds titles to the individual

pages in the Cafe con Leche channel as well as to the channel itself. Figure 27-4

shows how this affects the individual items in the channel list.

Listing 27-3: A CDF channel with titles

<?xml version=”1.0”?>
<CHANNEL HREF=”http://www.ibiblio.org/xml/index.html”>
<TITLE>Cafe con Leche</TITLE>
<ITEM HREF=”http://www.ibiblio.org/xml/books.html”>
<TITLE>Books about XML</TITLE>

</ITEM>
<ITEM HREF=”http://www.ibiblio.org/xml/tradeshows.html”>
<TITLE>Trade shows and conferences about XML</TITLE>

</ITEM>
<ITEM HREF=”http://www.ibiblio.org/xml/mailinglists.html”>
<TITLE>Mailing Lists dedicated to XML</TITLE>

</ITEM>
</CHANNEL>

Figure 27-4: Titles are shown in the channels bar and abstracts are shown in
tool tips.

972 Part V ✦ XML Applications

Abstract
Titles may be sufficient for a channel with a well-established brand such as Disney

or MSNBC; but for the rest of us lesser lights in the news firmament, it probably

doesn’t hurt to tell subscribers a little more about what they can expect to find at a

given site. To this end, each CHANNEL and ITEM element can contain a single

ABSTRACT child element. The ABSTRACT element should contain a short (200 char-

acters or less) block of text describing the item or channel. Generally, this descrip-

tion will appear in a tool-tip as shown in Figure 27-4, which is based on Listing 27-4.

Listing 27-4: A CDF channel with titles and abstracts

<?xml version=”1.0”?>
<CHANNEL HREF=”http://www.ibiblio.org/xml/index.html”>
<TITLE>Cafe con Leche</TITLE>
<ABSTRACT>
Independent XML news and information for content
and software developers

</ABSTRACT>

<ITEM HREF=”http://www.ibiblio.org/xml/books.html”>
<TITLE>Books about XML</TITLE>
<ABSTRACT>
A comprehensive list of books about XML
with capsule reviews and ratings

</ABSTRACT>
</ITEM>

<ITEM HREF=”http://www.ibiblio.org/xml/tradeshows.html”>
<TITLE>Trade shows and conferences about XML</TITLE>
<ABSTRACT>
Upcoming conferences and shows with an XML focus

</ABSTRACT>
</ITEM>

<ITEM HREF=”http://www.ibiblio.org/xml/mailinglists.html”>
<TITLE>Mailing Lists dedicated to XML</TITLE>
<ABSTRACT>
Mailing lists where you can discuss XML

</ABSTRACT>
</ITEM>

</CHANNEL>

973Chapter 27 ✦ The Channel Definition Format

Logos
CDF documents can provide logos for channels. These logos appear on the reader’s

machine, either on the desktop or in the browser’s channel list. Logos can be used

in a number of different ways within the channel: icons on the desktop, icons in the

program launcher, and logos in the channel guide and channel bar. Each CHANNEL
and ITEM element can have up to three logos: one for the desktop, one for the pro-

gram launcher, and one for the channel bar.

A particular logo is attached to a channel with the LOGO element. This element is a

child of the CHANNEL it represents. The HREF attribute of the LOGO element is an

absolute or relative URL where the graphic file containing the logo is found.

Internet Explorer supports GIF, JPEG, and ICO format images for logos — but not

animated GIFs. Because logos may appear against a whole range of colors and pat-

terns on the desktop, GIFs with a transparent background that limit themselves to

the Windows halftone palette work best.

The LOGO element also has a required STYLE attribute that specifies the size of the

image. The value of the STYLE attribute must be one of the three keywords ICON,

IMAGE, or IMAGE-WIDE. These are different sizes of images, as given in Table 27-1.

Figure 27-5 shows the logos used for Cafe con Leche in the three different sizes.

Table 27-1
Values for the STYLE Attribute of the LOGO Element

Image Size Description

ICON A 16-pixel-wide by 16-pixel-high icon displayed in the file list and in
the channel bar next to the page and site titles

IMAGE An 80-pixel-wide by 32-pixel-high image displayed in the desktop
channel bar

IMAGE-WIDE A 194-pixel-wide by 32-pixel-high image displayed in the browser’s
channel bar

Figure 27-5: The Cafe con Leche channel icons in three
different sizes

974 Part V ✦ XML Applications

Listing 27-5 is a CDF document that provides various sizes of logos. Figure 27-6

shows the Internet Explorer 5.0 favorites bar with the new Cafe con Leche logo.

Listing 27-5: A CDF channel with logos in various sizes

<?xml version=”1.0”?>
<CHANNEL HREF=”http://www.ibiblio.org/xml/index.html”>
<LOGO HREF=”cup_ICON.gif” STYLE=”ICON”/>
<LOGO HREF=”cup_IMAGE.gif” STYLE=”IMAGE”/>
<LOGO HREF=”cup_IMAGE-WIDE.gif” STYLE=”IMAGE-WIDE”/>
<TITLE>Cafe con Leche</TITLE>
<ABSTRACT>
Independent XML news and information for content
and software developers

</ABSTRACT>

<ITEM HREF=”http://www.ibiblio.org/xml/books.html”>
<TITLE>Books about XML</TITLE>
<ABSTRACT>
A comprehensive list of books about XML
with capsule reviews and ratings

</ABSTRACT>
</ITEM>

<ITEM HREF=”http://www.ibiblio.org/xml/tradeshows.html”>
<TITLE>Trade shows and conferences about XML</TITLE>
<ABSTRACT>
Upcoming conferences and shows with an XML focus

</ABSTRACT>
</ITEM>

<ITEM HREF=”http://www.ibiblio.org/xml/mailinglists.html”>
<TITLE>Mailing Lists dedicated to XML</TITLE>
<ABSTRACT>
Mailing lists where you can discuss XML

</ABSTRACT>
</ITEM>

</CHANNEL>

When the content in the channel changes, the browser places a highlight gleam in

the upper-left corner of the logo image. This gleam hides anything in that corner.

Also, if a reader stretches the window width beyond the recommended 194 pixels,

the browser uses the top-right pixel to fill the expanded logo. Consequently, you

need to pay special attention to the upper-left and upper-right corners of the logo.

975Chapter 27 ✦ The Channel Definition Format

Figure 27-6: The favorites bar now contains the Cafe con Leche icon instead of the
generic channel icon.

Scheduling Updates
The CHANNEL, TITLE, ABSTRACT, and LOGO elements are enough to build a working

channel, but all they provide is a bookmark that readers can use to quickly load

your site. They aren’t enough to push content to the readers. Passive channels —

that is, channels such as Listings 27-1 through 27-5 that don’t have an explicit push

schedule — don’t do very much.

To actually push the contents to subscribers, you have to include a schedule for

updates. You can schedule a download for the entire channel or schedule individual

items in the channel separately. This is accomplished by adding a SCHEDULE child

element to the channel. For example:

<SCHEDULE STARTDATE=”2001-03-29” STOPDATE=”2002-03-29”
TIMEZONE=”-0500”>
<INTERVALTIME DAY=”7”/>
<EARLIESTTIME DAY=”1” HOUR=”0” MIN=”0”/>
<LATESTTIME DAY=”2” HOUR=”12” MIN=”0”/>

</SCHEDULE>

976 Part V ✦ XML Applications

The SCHEDULE element has three attributes: STARTDATE, STOPDATE, and TIMEZONE.

STARTDATE indicates when the schedule begins. STOPDATE indicates when it ends.

Target the period between your usual site overhauls. If you change the structure of

your Web site on a regular interval, use that interval. STARTDATE and STOPDATE use

the same date format: full numeric year, two-digit numeric month, and two-digit day

of month, separated by hyphens; for example, 1999-12-31.

The TIMEZONE attribute shows the difference in hours between the server’s time

zone and Greenwich Mean Time. If the tag does not include the TIMEZONE attribute,

the scheduled update occurs according to the reader’s time zone — not the

server’s. In the continental U.S., Eastern Standard Time is –0500, Central Standard

Time is –0600, Mountain Standard Time is –0700, and Pacific Standard Time is

–0800. Hawaii and Alaska are –1000.

SCHEDULE can have between one and three child elements. INTERVALTIME is a

required, empty element that specifies how often the browser should check

the channel for updates (assuming the user has asked the browser to do so).

INTERVALTIME has DAY, HOUR, and MIN attributes that determine the amount of

time that is allowed to elapse between updates. As long as one is present, the other

two can be omitted.

EARLIESTTIME and LATESTTIME are optional elements that specify times between

which the browser should check for updates. The updates and resulting server load

are distributed over the interval between the earliest and latest times. If you don’t

specify these, the browser simply checks in at its convenience. EARLIESTTIME and

LATESTTIME have DAY and HOUR attributes that specify when updates take place.

DAY ranges from 1 (Sunday) to 7 (Saturday). HOUR ranges from 0 (midnight) to

23 (11:00 p.m.). For instance, the above example says that the browser should

update the channel once a week (<INTERVALTIME DAY=”7”/>) between Sunday

midnight (<EARLIESTTIME DAY=”1” HOUR=”0” MIN=”0”/>) and noon Monday

(<LATESTTIME DAY=”2” HOUR=”12” MIN=”0”/>).

EARLIESTTIME and LATESTTIME may also have a TIMEZONE attribute that specifies

the time zone in which the earliest and latest times are calculated. If a time zone

isn’t specified, the reader’s time zone is used to determine the earliest and latest

times. To force the update to a particular time zone, include the optional TIMEZONE
attribute in the EARLIESTTIME and LATESTTIME tags. For example:

<EARLIESTTIME DAY=”1” HOUR=”0” TIMEZONE=”-0500”/>
<LATESTTIME DAY=”2” HOUR=”12” TIMEZONE=”-0500”/>

To push an update across a LAN, you can choose the day of the week (for example,

Sunday) and the time span (midnight to 5 a.m.). All browsers update during that

five-hour period. If you update across Internet connections, your readers have to be

connected to the Internet for the browser to update the channel.

977Chapter 27 ✦ The Channel Definition Format

Listing 27-6 expands the Cafe con Leche channel to include scheduled updates.

Because content is updated daily, INTERVALTIME is set to one day. Most days the

update takes place between 7:00 a.m. and 12:00 noon Eastern time. Consequently, it

sets EARLIESTTIME to 10:00 a.m. EST and LATESTTIME to 12:00 noon EST. There’s

no particular start or end date for the changes to this content, so the STARTDATE
and STOPDATE attributes are omitted from the schedule.

Listing 27-6: A CDF channel with scheduled updates

<?xml version=”1.0”?>
<CHANNEL HREF=”http://www.ibiblio.org/xml/index.html”>

<TITLE>Cafe con Leche</TITLE>
<ABSTRACT>
Independent XML news and information for content
and software developers

</ABSTRACT>
<LOGO HREF=”cup_ICON.gif” STYLE=”ICON”/>
<LOGO HREF=”cup_IMAGE.gif” STYLE=”IMAGE”/>
<LOGO HREF=”cup_IMAGE-WIDE.gif” STYLE=”IMAGE-WIDE”/>

<SCHEDULE TIMEZONE=”-0500”>
<INTERVALTIME DAY=”1”/>
<EARLIESTTIME HOUR=”10” TIMEZONE=”-0500”/>
<LATESTTIME HOUR=”12” TIMEZONE=”-0500”/>

</SCHEDULE>

<ITEM HREF=”http://www.ibiblio.org/xml/books.html”>
<TITLE>Books about XML</TITLE>
<ABSTRACT>
A comprehensive list of books about XML
with capsule reviews and ratings

</ABSTRACT>
</ITEM>

<ITEM HREF=”http://www.ibiblio.org/xml/tradeshows.html”>
<TITLE>Trade shows and conferences about XML</TITLE>
<ABSTRACT>
Upcoming conferences and shows with an XML focus

</ABSTRACT>
</ITEM>

<ITEM HREF=”http://www.ibiblio.org/xml/mailinglists.html”>
<TITLE>Mailing Lists dedicated to XML</TITLE>
<ABSTRACT>
Mailing lists where you can discuss XML

</ABSTRACT>
</ITEM>

</CHANNEL>

978 Part V ✦ XML Applications

Precaching and Web Crawling
If the subscriber has chosen to download the channel’s contents automatically,

then the site owner has the option of allowing subscribers to view the pages offline

and even to download more than merely those pages identified in the CDF docu-

ment. In particular, you can allow the browser to spider through your site, down-

loading additional pages between one and three levels deep from the specified

pages.

Precaching
By default, browsers precache the pages listed in a channel for offline browsing if

the user has requested that they do so. However, the author can prevent a page

from being precached by including a PRECACHE attribute in the CHANNEL or ITEM
element with the value NO. For example:

<CHANNEL PRECACHE=”NO”
HREF=”http://www.ibiblio.org/xml/index.html”>

...
</CHANNEL>

If the value of PRECACHE is NO, then the content will not be precached regardless of

user settings. If the value of PRECACHE is YES (or if there is no explicit PRECACHE
attribute) and the user requested precaching when they subscribed, then the con-

tent will be downloaded automatically. However, if the user has not requested pre-

caching, then the site channel will not be precached regardless of the value of the

PRECACHE attribute.

When you design a channel, you must remember that some readers will view con-

tent offline almost exclusively. As a result, any links in the channel contents are

effectively dead. If you are pushing documents across an intranet, the cache option

doesn’t make a lot of sense, as you’ll be duplicating the same files on disks across

the corporation. If you are delivering content to readers who pay for online time,

you may want to organize it so that it can be cached and easily browsed offline.

Web crawling
Browsers are not limited to loading only the Web pages specified in CHANNEL and

ITEM elements. If a CHANNEL or ITEM element has a LEVEL attribute with a value

higher than zero, the browser will Web crawl during updates. Web crawling lets the

browser collect more pages than are listed in the channel. For example, if the page

listed in a channel contains a number of links to related topics, it may be easier to

let the browser load them all rather than list them in individual ITEM elements. If

the site has a fairly even hierarchy, you can safely add a LEVEL attribute to the top-

most channel tag and allow the Web crawl to include all of the pages at the subse-

quent levels. LEVEL can range from zero (the default) to three. This specifies how

far down into the site hierarchy you want the browser to dig when caching the

979Chapter 27 ✦ The Channel Definition Format

content. The hierarchy is the abstract hierarchy defined by the document links, not

the hierarchy defined by the directory structure of files on the Web server. Framed

pages are considered to be at the same level as the frameset page, even though an

additional link is required for the former. The LEVEL attribute really only has mean-

ing if precaching is enabled.

Listing 27-7 sets the LEVEL of the Cafe con Leche channel to three. This goes deep

enough to reach most pages on the site. Because the pages previously referenced in

ITEM children are only one level down from the main page, there’s not as much

need to list them separately. However, Web crawling this deep may not be such a

good idea. Most of the pages on the site don’t change daily. Nonetheless, they’ll still

be checked each and every update.

Listing 27-7: A CDF channel that precaches 3 levels deep

<?xml version=”1.0”?>
<CHANNEL LEVEL=”3”

HREF=”http://www.ibiblio.org/xml/index.html”>

<TITLE>Cafe con Leche</TITLE>
<ABSTRACT>
Independent XML news and information for content
and software developers

</ABSTRACT>
<LOGO HREF=”logo_icon.gif” STYLE=”ICON”/>
<LOGO HREF=”corp_logo_regular.gif” STYLE=”IMAGE”/>
<LOGO HREF=”corp_logo_wide.gif” STYLE=”IMAGE-WIDE”/>

<SCHEDULE TIMEZONE=”-0500”>
<INTERVALTIME DAY=”1”/>
<EARLIESTTIME HOUR=”10” TIMEZONE=”-0500”/>
<LATESTTIME HOUR=”12” TIMEZONE=”-0500”/>

</SCHEDULE>

</CHANNEL>

The Reader Access Log
One disadvantage of channels compared to traditional Web browsing is that the

server does not necessarily know which pages the reader actually saw. This can be

important for tracking advertisements, among other things. Internet Explorer can

track the reader’s passage through a site cached offline, and report it back to the

Web server. However, the user always has the option to disable this behavior if they

feel it’s a privacy violation.

980 Part V ✦ XML Applications

To collect statistics about the offline browsing of a site, add LOG and LOGTARGET
child elements to the CHANNEL element. During a channel update, the server sends

the new channel contents to the browser; and the browser sends the log file to the

server. The LOG element always has this form, though other possible values of the

VALUE attribute may be added in the future:

<LOG VALUE=”document:view”/>

The LOGTARGET element has an HREF attribute that identifies the URL it will be sent

to, a METHOD attribute that identifies the HTTP method like POST or PUT that will

be used to upload the log file, and a SCOPE attribute that has one of the three

values —ALL, ONLINE, or OFFLINE— indicating which page views should be

counted. The LOGTARGET element may have a PURGETIME child with an HOUR
attribute that specifies the number of hours for which the logging information is

considered valid. It may also have any number of HTTP-EQUIV children used to set

particular key-value pairs in the HTTP header. Listing 27-8 demonstrates a channel

with a reader-access log.

Listing 27-8: A CDF channel with log reporting

<?xml version=”1.0”?>
<CHANNEL HREF=”http://www.ibiblio.org/xml/index.html”>

<TITLE>Cafe con Leche</TITLE>
<ABSTRACT>
Independent XML news and information for content
and software developers

</ABSTRACT>
<LOGO HREF=”logo_icon.gif” STYLE=”ICON”/>
<LOGO HREF=”corp_logo_regular.gif” STYLE=”IMAGE”/>
<LOGO HREF=”corp_logo_wide.gif” STYLE=”IMAGE-WIDE”/>

<LOG VALUE=”document:view”/>
<LOGTARGET METHOD=”POST” SCOPE=”ALL”
HREF=”http://www.ibiblio.org/xml/cgi-bin/getstats.pl” >
<PURGETIME HOUR=”12”/>
<HTTP-EQUIV NAME=”ENCODING-TYPE” VALUE=”text”/>

</LOGTARGET>

<SCHEDULE TIMEZONE=”-0500”>
<INTERVALTIME DAY=”1”/>
<EARLIESTTIME HOUR=”10” TIMEZONE=”-0500”/>
<LATESTTIME HOUR=”12” TIMEZONE=”-0500”/>

</SCHEDULE>

<ITEM HREF=”http://www.ibiblio.org/xml/books.html”>
<TITLE>Books about XML</TITLE>
<ABSTRACT>
A comprehensive list of books about XML
with capsule reviews and ratings

981Chapter 27 ✦ The Channel Definition Format

</ABSTRACT>
<LOG VALUE=”document:view”/>

</ITEM>

<ITEM HREF=”http://www.ibiblio.org/xml/tradeshows.html”>
<TITLE>Trade shows and conferences about XML</TITLE>
<ABSTRACT>
Upcoming conferences and shows with an XML focus

</ABSTRACT>
<LOG VALUE=”document:view”/>

</ITEM>

<ITEM HREF=”http://www.ibiblio.org/xml/mailinglists.html”>
<TITLE>Mailing Lists dedicated to XML</TITLE>
<ABSTRACT>
Mailing lists where you can discuss XML

</ABSTRACT>
</ITEM>

</CHANNEL>

Only elements with LOG children will be noted in the log file. For instance, in Listing

27-8, hits to http://www.ibiblio.org/xml/index.html, http://www.
ibiblio.org/xml/books.html, and http://www.ibiblio.org/xml/
tradeshows.html will be logged. However hits to http://www.ibiblio.org/
xml/mailinglists.html will not be.

The CDF logging information is stored in the Extended File Log format used by most

modern Web servers. However, the Web server must be configured, most com-

monly through a CGI program, to accept the log file that the client sends and to

merge it into the main server log.

The LOGTARGET element should appear as a child of the top-level CHANNEL tag, and

describes log file handling for all items it contains. However, each CHANNEL and

ITEM element that you want included in the log must have its own LOG child.

The BASE Attribute
The previous examples have all used absolute URLs for CHANNEL and ITEM ele-

ments. However, absolute URLs are inconvenient. For one thing, they’re often long

and easy to mistype. For another, they make site maintenance difficult when pages

are moved from one directory to another, or from one site to another. You can use

relative URLs instead if you add a BASE attribute to the CHANNEL element.

The value of the BASE attribute is a URL to which relative URLs in the channel are

relative. For instance, if the BASE is set to “http://www.ibiblio.org/xml/”,

then an HREF attribute can simply be “books.html” instead of “http://www.
ibiblio.org/xml/books.html”. Listing 27-9 demonstrates.

982 Part V ✦ XML Applications

Listing 27-9: A CDF channel with a BASE attribute

<?xml version=”1.0”?>
<CHANNEL BASE=”http://www.ibiblio.org/xml/”>
<TITLE>Cafe con Leche</TITLE>
<ABSTRACT>
Independent XML news and information for content
and software developers

</ABSTRACT>
<LOGO HREF=”cup_ICON.gif” STYLE=”ICON”/>
<LOGO HREF=”cup_IMAGE.gif” STYLE=”IMAGE”/>
<LOGO HREF=”cup_IMAGE-WIDE.gif” STYLE=”IMAGE-WIDE”/>
<ITEM HREF=”books.html”>
<TITLE>Books about XML</TITLE>
<ABSTRACT>
A comprehensive list of books about XML
with capsule reviews and ratings

</ABSTRACT>
</ITEM>

<ITEM HREF=”tradeshows.html”>
<TITLE>Trade shows and conferences about XML</TITLE>
<ABSTRACT>
Upcoming conferences and shows with an XML focus

</ABSTRACT>
</ITEM>

<ITEM HREF=”mailinglists.html”>
<TITLE>Mailing Lists dedicated to XML</TITLE>
<ABSTRACT>
Mailing lists where you can discuss XML

</ABSTRACT>
</ITEM>

</CHANNEL>

Whichever location you use for the link to the content, you can use a relative URL

in the child elements if you specify a BASE attribute in the parent CHANNEL element.

The LASTMOD Attribute
When a browser requests a document from a Web server, the server sends an HTTP

response header before with the requested file. This header includes various pieces

of information, such as the MIME media type of the file, the length of the file, the

current date and time, and the time the file was last modified. For example:

HTTP/1.1 200 OK
Date: Wed, 27 Jun 1999 21:42:31 GMT
Server: Stronghold/2.4.1 Apache/1.3.3 C2NetEU/2409 (Unix)

983Chapter 27 ✦ The Channel Definition Format

Last-Modified: Tue, 20 Oct 1998 13:15:36 GMT
ETag: “4b94d-c70-362c8cf8”
Accept-Ranges: bytes
Content-Length: 3184
Connection: close
Content-Type: text/html

If a browser sends a HEAD request instead of the more common GET request, only

the header is returned. The browser can then inspect the Last-Modified header to

determine whether a file that was previously loaded from the channel needs to be

reloaded or not. However, although HEAD requests are quicker than GET requests,

a lot of them still eat up server resources.

To cut down on the load that frequent channel updates place on your server, you

can add LASTMOD attributes to all CHANNEL and ITEM tags. The browser will only

have to check back with the server for modification times for those items and chan-

nels that don’t provide LASTMOD attributes.

The value of the LASTMOD attribute is a date and time in a year-month-dayThour:
minutes form such as 2001-05-23T21:42. This says when the page referenced by the

HREF attribute was last changed. The browser detects and compares the LASTMOD
date given in the CDF file with the last modified date provided by the Web server.

When the content on the Web server has changed, the cache is updated with

the current content. This way the browser only needs to check one file, the CDF

document, for modification times rather than every file that’s part of the channel.

Listing 27-10 demonstrates.

Listing 27-10: A CDF channel with LASTMOD attributes

<?xml version=”1.0”?>
<CHANNEL BASE=”http://www.ibiblio.org/xml/”

LASTMOD=”1999-01-27T12:16” >
<TITLE>Cafe con Leche</TITLE>
<ABSTRACT>
Independent XML news and information for content
and software developers

</ABSTRACT>
<LOGO HREF=”cup_ICON.gif” STYLE=”ICON”/>
<LOGO HREF=”cup_IMAGE.gif” STYLE=”IMAGE”/>
<LOGO HREF=”cup_IMAGE-WIDE.gif” STYLE=”IMAGE-WIDE”/>
<ITEM HREF=”books.html” LASTMOD=”1999-01-03T16:25”>
<TITLE>Books about XML</TITLE>
<ABSTRACT>
A comprehensive list of books about XML
with capsule reviews and ratings

</ABSTRACT>
</ITEM>

Continued

984 Part V ✦ XML Applications

Listing 27-10 (continued)

<ITEM HREF=”tradeshows.html” LASTMOD=”1999-01-10T11:40”>
<TITLE>Trade shows and conferences about XML</TITLE>
<ABSTRACT>
Upcoming conferences and shows with an XML focus

</ABSTRACT>
</ITEM>

<ITEM HREF=”mailinglists.html” LASTMOD=”1999-01-06T10:50”>
<TITLE>Mailing Lists dedicated to XML</TITLE>
<ABSTRACT>
Mailing lists where you can discuss XML

</ABSTRACT>
</ITEM>

</CHANNEL>

In practice, this is way too much trouble to do manually, especially for frequently

changed documents (and the whole point of channels and push is that they provide

information that changes frequently). However, you might be able to write the

CDF document as a file full of server-side includes that automatically incorporate

LASTMOD values in the appropriate format or devise some other programmatic solu-

tion rather than manually adjusting the LASTMOD attribute every time you edit a file.

The USAGE Element
A CHANNEL or ITEM element may contain an optional USAGE child element that

extends the presence of the channel on the subscriber’s desktop. The meaning of

the USAGE element is determined by its VALUE attribute. Possible values for the

VALUE attribute are:

✦ Channel

✦ DesktopComponent

✦ Email

✦ NONE

✦ ScreenSaver

✦ SoftwareUpdate

Most of the time USAGE is an empty element. For example:

<USAGE VALUE=”ScreenSaver” />

985Chapter 27 ✦ The Channel Definition Format

The default value for USAGE is Channel. Items with channel usage appear in the

browser channel bar. All the CHANNEL and ITEM elements you’ve seen until now

have had Channel usage, even though they didn’t have an explicit USAGE element.

Other values for USAGE change the way the reader sees channel content.

Desktop components
Desktop components are small Web pages or images that are displayed directly on

the user’s desktop. Because a Web page can contain a Java applet, fancy DHTML, or

an ActiveX control, a desktop component can actually be a program (assuming the

subscriber has abandoned all semblance of caution and installed Active Desktop).

The desktop component is installed on the subscriber’s desktop with a separate

CDF document containing an ITEM element that points to the document to be dis-

played on the user’s desktop. As well as the usual child elements, this ITEM must

contain a nonempty USAGE element whose VALUE is DesktopComponent. This

USAGE element may contain OPENAS, HEIGHT, WIDTH, and CANRESIZE children.

The VALUE attribute of the OPENAS element specifies the type of file at the location

in the ITEM element’s HREF attribute. This should either be HTML or Image. If no

OPENAS element is present, Internet Explorer assumes it is an HTML file.

The VALUE attributes of the HEIGHT and WIDTH elements specify the number of pix-

els the item occupies on the desktop.

The VALUE attribute of the CANRESIZE element indicates whether the reader can

change the height and width of the component on the fly. Its possible values are

Yes and No. Yes is the default. You can also allow or disallow horizontal or vertical

resizing independently with CANRESIZEX and CANRESIZEY elements.

Listing 27-11 is a simple desktop component that displays a real time image of the

Sun as provided by the friendly folks at the National Solar Observatory in Sunspot,

New Mexico. The image is 640 pixels high and 480 pixels wide. The image is

refreshed every minute between 6:00 a.m. MST and 7:00 p.m. MST. (There’s no point

refreshing the image at night!)

Listing 27-11: A desktop component channel

<?xml version=”1.0”?>
<CHANNEL HREF=”http://www.sunspot.noao.edu/DSTWWW/sunpic.html”>
<TITLE>
Hydrogen Alpha Image of the Sun Desktop Component

</TITLE>
<ABSTRACT>

Continued

986 Part V ✦ XML Applications

Listing 27-11 (continued)

This desktop component shows a picture of the Sun
as it appears this very minute from the top of
Sacramento Peak in New Mexico. The picture is taken
in a single color at the wavelength of the Hydrogen
alpha light (6563 Angstroms) using a monochrome
camera which produces a grayscale image in
which the red light of Hydrogen alpha appears white.
</ABSTRACT>

<ITEM HREF=
“ftp://ftp.sunspot.noao.edu/realtime-images/live-
sun/sunnow.gif”
>
<TITLE>Hydrogen Alpha Image of the Sun</TITLE>

<SCHEDULE TIMEZONE=”-0700”>
<INTERVALTIME MIN=”1”/>
<EARLIESTTIME HOUR=”6”/>
<LATESTTIME HOUR=”19”/>

</SCHEDULE>

<USAGE VALUE=”DesktopComponent”>
<WIDTH VALUE=”640”/>
<HEIGHT VALUE=”480”/>
<CANRESIZE VALUE=”Yes”/>
<OPENAS VALUE=”Image”/>

</USAGE>
</ITEM>

</CHANNEL>

E-mail
Normally, when a site sends a subscriber e-mail to notify them of a change to a

channel, it sends along the main page of the channel as the text of the e-mail mes-

sage. However, you can specify that a different e-mail message be sent by including

an ITEM in the channel whose USAGE element has the value email.

Listing 27-12 specifies that the file at http://www.ibiblio.org/xml/
whatsnew.html is sent to notify subscribers of content changes. If the first ITEM
were not present, then http://www.ibiblio.org/xml/ from the HREF attribute of

the CHANNEL would be sent instead. This gives you an opportunity to send a briefer

message specifying what has changed, rather than sending the entire changed page.

Often “What’s new” information is easier for readers to digest than the entire page,

especially when the changes are relatively minor.

987Chapter 27 ✦ The Channel Definition Format

Listing 27-12: A channel that e-mails notification of changes

<?xml version=”1.0”?>
<CHANNEL BASE=”http://www.ibiblio.org/xml/”>
<TITLE>Cafe con Leche</TITLE>
<ABSTRACT>
Independent XML news and information for content
and software developers

</ABSTRACT>
<LOGO HREF=”cup_ICON.gif” STYLE=”ICON”/>
<LOGO HREF=”cup_IMAGE.gif” STYLE=”IMAGE”/>
<LOGO HREF=”cup_IMAGE-WIDE.gif” STYLE=”IMAGE-WIDE”/>

<ITEM HREF=”whatsnews.html”>
<USAGE VALUE=”Email”/>

</ITEM>

<ITEM HREF=”books.html”>
<TITLE>Books about XML</TITLE>
<ABSTRACT>
A comprehensive list of books about XML
with capsule reviews and ratings

</ABSTRACT>
</ITEM>

<ITEM HREF=”tradeshows.html”>
<TITLE>Trade shows and conferences about XML</TITLE>
<ABSTRACT>
Upcoming conferences and shows with an XML focus

</ABSTRACT>
</ITEM>

<ITEM HREF=”mailinglists.html”>
<TITLE>Mailing Lists dedicated to XML</TITLE>
<ABSTRACT>
Mailing lists where you can discuss XML

</ABSTRACT>
</ITEM>

</CHANNEL>

Precaching
Items whose USAGE value is NONE don’t appear anywhere; not in the channel bar,

not on the Active Desktop, not in the favorites menu, nowhere. However, such items

are precached and are thus more quickly available when the reader follows a link to

them later.

988 Part V ✦ XML Applications

Precaching channel content moves items such as sound and video clips to the

reader’s machine for later use by channel pages. You can precache a single item or

a series of items by defining a channel that includes the set of precached items, as

is demonstrated in this example:

<ITEM HREF=”welcome.wav”> <USAGE VALUE=”NONE”/> </ITEM>
<ITEM HREF=”spacemusic.au”> <USAGE VALUE=”NONE”/> </ITEM>

This example includes two sound files used at the site when the browser down-

loads the channel contents for offline viewing. These two files won’t be displayed in

the channel bar, but if a file in the channel bar does use one of these sound files

then it will be immediately available, already loaded when the page is viewed

offline. The reader won’t have to wait for them to be downloaded from a remote

Web site, an important consideration when dealing with relatively large multimedia

files.

Screen savers
Items whose USAGE value is ScreenSaver point to an HTML page that replaces the

normal desktop after a user-specified period of inactivity. Generally, a screen saver

will be written as a completely separate CDF document from the normal channel,

and will require a separate download and install link. For example:

Download and install the Cafe con Leche Screen Saver!

Unless the subscriber has already selected the Channel Screen Saver as the system

screen saver in the Display control panel as shown in Figure 27-7, the browser will

ask the user whether they want to use the Channel Screen Saver or the currently

selected screen saver. Assuming they choose the Channel Screen Saver, the next

time the screen is saved, the document referenced in the screen saver channel will

be loaded and displayed. If the user has subscribed to more than one screen saver

channel, the browser will rotate through the subscribed screen saver channels

every 30 seconds. The user can change this interval and a few other options

(whether screen savers play sounds, for instance) using the screen saver settings in

the Display control panel.

Listing 27-13 is a simple screen saver channel. The actual document displayed when

the screen is saved is pointed to by the ITEM element’s HREF attribute. This page

will generally make heavy use of Dynamic HTML, JavaScript, and other tricks to ani-

mate the screen. A static screen saver page is a bad idea.

989Chapter 27 ✦ The Channel Definition Format

Listing 27-13: A screen saver channel

<?xml version=”1.0”?>
<CHANNEL BASE=”http://www.ibiblio.org/xml/”>

<ITEM HREF=”http://www.ibiblio.org/screensaver.html”>
<USAGE VALUE=”ScreenSaver”/>

</ITEM>

</CHANNEL>

Figure 27-7: The Screen Saver tab of the
Display Properties control panel in
Windows NT 4.0

Two things you should keep in mind when designing screen savers:

✦ Presumably the user is doing something else when the screen is saved. After

all, inactivity activates the screen saver. Therefore, don’t go overboard or

expect a lot of user attention or interaction with your screen saver.

✦ Although almost no modern monitor really needs its screen saved, screen

savers should save the screen nonetheless. Thus, most of the screen should

be dark most of the time, and no pixel on the screen should ever be continu-

ously on. Most importantly, no pixel should continuously be one non-black

color, especially white.

990 Part V ✦ XML Applications

Software update
The final possible value of the USAGE element is SoftwareUpdate. Channels aren’t

limited to delivering news and Web pages. They can send software, too. Software

update channels can both notify users of updates to software and deliver the prod-

uct across the Internet. Given a sufficiently trusting (perhaps insufficiently paranoid

is more accurate) user, they can even automatically install the software.

To create a software push channel, write a CDF file with a root CHANNEL element

whose USAGE element has the value SoftwareUpdate. This channel can have a

title, abstract, logos, and schedule, just like any other channel. Listing 27-14 is a

fake software update channel.

Listing 27-14: A software update channel

<?xml version=”1.0”?>
<CHANNEL HREF=”http://www.whizzywriter.com/updates/2001.html”>
<TITLE>WhizzyWriter 2001 Update</TITLE>
<ABSTRACT>
WhizzyWriter 2001 offers the same kitchen sink approach
to word processing that WhizzyWriter 2000 was infamous for,
but now with tint control! plus many more six-legged
friends to delight and amuse! Don’t worry though. All the
old arthropods you’ve learned to love and adore in the
last 2000 versions are still here!

</ABSTRACT>

<USAGE VALUE=”SoftwareUpdate”/>
<SOFTPKG NAME=”WhizzyWriter 2001 with tint control 2.1EA3”
HREF=”http://www.whizzywriter.com/updates/2001.cab”
VERSION=”2001,0,d,3245” STYLE=”ActiveSetup”>

<!-- other OSD elements can go here -->

</SOFTPKG>

</CHANNEL>

Besides the VALUE of the USAGE element, the key to a software update channel is its

SOFTPKG child element. The HREF attribute of the SOFTPKG element provides a URL

from which the software can be downloaded and installed. The URL should point to

a compressed archive of the software in Microsoft’s cabinet (CAB) format. This

archive must carry a digital signature from a certificate authority. Furthermore, it

must also contain an OSD file describing the software update. OSD, the Open

Software Description format, is an XML application for describing software updates

invented by Microsoft and Marimba. The OSD file structure and language is

991Chapter 27 ✦ The Channel Definition Format

described on the Microsoft Web site at http://msdn.microsoft.com/
workshop/delivery/download/overview/entry.asp.

OSD is discussed briefly in Chapter 2.

The SOFTPKG element must also have a NAME attribute that contains up to 260

characters describing the application. For example, WhizzyWriter 2100 with tint

control 2.1EA3.

The SOFTPKG element must also have a STYLE attribute with one of two values —

ActiveSetup or MSICD (Microsoft Internet Component Download), which deter-

mines how the software is downloaded and installed.

There are several optional attributes on SOFTPKG as well. The SOFTPKG element

may have a PRECACHE attribute with either the value Yes or No. This has the same

meaning as other PRECACHE attributes; that is, determining whether the package

will be downloaded before the user decides whether they want it. The VERSION
attribute is a comma-separated list of major, minor, custom, and build version num-

bers, such as 6,2,3,3124. Finally, setting the AUTOINSTALL attribute to Yes tells the

browser to download the software package automatically as soon as the CDF docu-

ment is loaded. The value No instructs the browser to wait for a specific user

request and is the default if the AUTOINSTALL attribute is not included.

These child elements can go inside the SOFTPKG element:

✦ TITLE

✦ ABSTRACT

✦ LANGUAGE

✦ DEPENDENCY

✦ NATIVECODE

✦ IMPLEMENTATION

However these elements are not part of CDF. Rather they’re part of OSD.

(Technically, SOFTPKG is also a part of OSD). Consequently, I only summarize them

here:

✦ The TITLE element of the SOFTPKG assigns a name to the package. It contains

only parsed character data.

✦ The ABSTRACT element describes the software and is essentially the same as

the CDF ABSTRACT element.

✦ The LANGUAGE element defines the language supported by this update using a

VALUE attribute whose value is an ISO 639/RFC 1766 two-letter language code

such as EN for English. If multiple languages are supported, the different codes

are separated by semicolons.

Cross-
Reference

992 Part V ✦ XML Applications

✦ DEPENDENCY is an empty element with a single attribute, ACTION, which may

take on one of two values —Assert or Install. Assert is the default and

means that the update will only be installed if the necessary CAB file is

already on the local computer. With a value of Install, the necessary files

will be downloaded from the server.

✦ The NATIVECODE element holds CODE child elements. Each CODE child element

points to the distribution files for a particular architecture, such as Windows

98 on X86 or Windows NT on alpha.

✦ The IMPLEMENTATION element describes the configuration required for the

software package. If the requirements are not met by the reader’s machine,

the download and installation do not proceed. The IMPLEMENTATION element

is an optional element with child elements CODEBASE, LANGUAGE, OS, and

PROCESSOR.

• The CODEBASE element has FILENAME and HREF attributes that say

where the files for the update can be found.

• The LANGUAGE element is the same as the LANGUAGE child element of

SOFTPKG.

• The OS element has a VALUE attribute whose value is Mac, Win95, or

Winnt, thereby identifying the operating system required for the soft-

ware. This element can have an empty child element called OSVERSION
with a VALUE attribute that identifies the required release.

• The PROCESSOR element is an empty element whose VALUE attribute can

have the value Alpha, MIPS, PPC, or x86. This describes the CPU archi-

tecture the software supports.

For more details about OSD, you can consult the OSD specification at

http://msdn.microsoft.com/workshop/delivery/osd/reference/
reference.asp.

Summary
In this chapter, you learned that:

✦ The Channel Definition Format (CDF) is a Microsoft XML application used to

describe data pushed from Web sites to Web browsers.

✦ CDF support is limited to Internet Explorer 4.0 and later.

✦ CDF files are XML documents, although they customarily have the three-letter

extension .cdf instead of .xml.

✦ The root element of a CDF file is CHANNEL.

993Chapter 27 ✦ The Channel Definition Format

✦ Each CHANNEL element must contain an HREF attribute identifying the pushed

page.

✦ A CHANNEL element may contain additional ITEM child elements whose HREF
attributes contain URLs of additional pages to be pushed.

✦ Each CHANNEL and ITEM element may contain TITLE, ABSTRACT, and LOGO
children that describe the content of the page the element references.

✦ The SCHEDULE element specifies when and how often the browser should

check the server for updates.

✦ The LOG element identifies items whose viewing is reported back to the Web

server, though the subscriber can disable this reporting.

✦ The LOGTARGET element defines how logging information from a channel is

reported back to the server.

✦ The BASE attribute provides a starting point from which relative URLs in child

element HREF attributes can be calculated.

✦ The LASTMOD attribute specifies the last time a page was changed so the

browser can tell whether or not it needs to be downloaded.

✦ The USAGE attribute allows you to use Web pages as channels, precached con-

tent, Active Desktop components, screen savers, and software updates.

The last few chapters, including this one, looked at a variety of XML applications

designed by third parties that are ready for you to use today. In the next chapter,

we change gears and design a new XML application from scratch that covers

genealogy.

✦ ✦ ✦

Designing a New
XML Application

The last several chapters discussed XML applications that

were already invented by other people and showed you

how to use them. This chapter shows you how to develop an

XML application from scratch. This chapter builds an XML

application and associated document type definitions (DTDs)

for genealogical data from the ground up.

Organization of the Data
When developing a new XML application, you need to orga-

nize, either in your head or on paper, the data you’re describ-

ing. There are three basic steps in this process:

1. List the elements.

2. Identify the fundamental elements.

3. Relate the elements to each other.

An easy way to start the process is to explore the forms and

reports that are already available from other formats that

describe this data. Genealogy is a fairly well established disci-

pline, and genealogists have a fairly good idea of what infor-

mation is and is not useful and how it should be arranged.

This is often included in a family group sheet, a sample of

which is shown in Figure 28-1.

2828C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Organization of the
data

The person DTD

The family DTD

The source DTD

The family tree

A style sheet for
family trees

✦ ✦ ✦ ✦

996 Part V ✦ XML Applications

Figure 28-1: A family group sheet

You’ll need to duplicate and organize the fields from the standard reports in your

DTD to the extent that they match what you want to do. You can, of course, supple-

ment or modify them to fit your specific needs.

997Chapter 28 ✦ Designing a New XML Application

Object-oriented programmers will note many similarities between what’s
described in this section and the techniques they use to gather user requirements.
This is partly the result of my own experience and prejudices as an object-oriented
programmer, but more of it is due to the similarity of the tasks involved. Gathering
user requirements for software is not that different from gathering user require-
ments for markup languages. Database designers may also notice a lot of similar-
ity between what’s done here and what they do when designing a new database.

Listing the elements
The first step in developing an XML application for a domain is to decide what the

elements are. This isn’t hard. It mostly involves brainstorming to determine what

may appear in the domain. As an exercise, write down everything you can think of

that may be genealogical information. To keep the problem manageable, include

only genealogical data. Assume you can use XHTML for standard text information

such as paragraphs, page titles, and so forth. Again, include only elements that

specifically apply to genealogy.

XHTML is discussed in Chapter 22.

Don’t be shy. It’s easy to remove information later if there’s too much of it or some-

thing doesn’t prove useful. At this stage, expect to have redundant elements or ele-

ments that you’ll throw away after further thought.

Here’s the list I came up with. Your list will be at least a little different. Of course,

you may have used different names for the same things. That’s okay. There’s no one

right answer (which is not to say that all answers are created equal or that some

answers aren’t better than others).

father gravesite birthday uncle

parent niece burial daughter

baptism person surname marriage

note baby grandmother date

aunt gender son middle name

mother source death date nephew

child grandparent grandfather

adoption family given name

Cross-
Reference

Note

998 Part V ✦ XML Applications

Identifying the fundamental elements
The list in the last section has some effective duplicates and some elements that

aren’t really necessary. It’s probably missing a few elements as well, which you’ll

discover as you continue. This is normal. Developing an XML application is an itera-

tive process that takes some time before you feel comfortable with the result.

What you really need to do at this stage is determine the fundamental elements of

the domain. These are likely to be those elements that appear as immediate chil-

dren of the root, rather than contained in some other element. There are two real

possibilities here: family and person. Most of the other items in the list are either

characteristics of a person or family (occupation, birthday, marriage) or they’re a

kind of family or person (uncle, parent, baby).

At this stage, most people’s instinct is to say that family is the only fundamental ele-

ment, and that families contain people. This is certainly consistent with the usage

of the terms parent and child to describe the relationships of XML elements (a

usage I eschew in this chapter to avoid confusion with the human parents and chil-

dren being modeled). For example, you might imagine that a family looks like this:

<FAMILY>
<HUSBAND>Samuel English Anderson</HUSBAND>
<WIFE>Cora Rucker McDaniel</WIFE>
<CHILD>Judson McDaniel Anderson</CHILD>
<CHILD>Thomas Corwin Anderson</CHILD>
<CHILD>Rodger French Anderson</CHILD>
<CHILD>Mary English Anderson</CHILD>

</FAMILY>

However, there’s a problem with this approach. A single person likely belongs to

more than one family. I am both the child of my parents and the husband of my

wife. That’s two different families. Perhaps you can think of this as one extended

family, but how far back does this go? Are my grandparents part of the same family?

My great-grandparents? My in-laws? Genealogists generally agree that for the pur-

poses of keeping records, a family is a mother, a father, and their children.

Of course, the real world isn’t that simple. Some people have both adoptive and

biological parents. Many people have more than one spouse over a lifetime. My

father-in-law, Sidney Hart Anderson, was married 15 separate times to 12 different

women. Admittedly, Sidney is an extreme case. When he died, he was only four mar-

riages away from tying the world record for serial marriage. (Since then, former

Baptist minister Glynn Wolfe pushed the record to 29 consecutive marriages, but he

lived almost 40 years longer than Sidney did.) Nonetheless, you do need to account

for the likelihood that the same people belong to different families.

The standard family group sheets used by the Mormons, a variation of which was

shown in Figure 28-1, account for this by repeating the same people and data on

999Chapter 28 ✦ Designing a New XML Application

different sheets. But for computer applications it’s better not to store the same

information more than once. Among other things, this avoids problems where data

stored in one place is updated while data stored in another is not. Instead, you can

make connections between different elements by using ID and IDREF attributes.

Thus, it is not enough to have only a single fundamental family element. There must

be at least one other fundamental element — the person. Each person is unique.

Each has a single birthday, a single death date, most of the time (though not

always) a single name, and various other data. Families are composed of different

collections of persons. By defining the persons who make up a family, as well as

their roles inside the family, you define the family.

We often think of our family as an extended family including grandparents, daugh-
ters-in-law, uncles, aunts, and cousins, and perhaps biologically unrelated individ-
uals who happen to live in the same house. However, in the context of genealogy,
a family is a single pair of parents and their children. In some cases, the names of
these people may be unknown, and in many cases there may be no children or no
husband or wife (a single individual qualifies as a family of one). However, a fam-
ily does not include more distant relationships. A large part of genealogy is the
establishment of the actual biological or adoptive relationships between people.
It’s not uncommon to discover in the course of one’s research that the Cousin
Puss or Aunt Moot referred to in old letters was in fact no relation at all! Such peo-
ple should certainly be included in your records, but failure to keep their actual
connections straight can only lead to confusion farther down the road.

There’s one more key element that may or may not be a direct child of the root.

That’s the source for information. A source is like a bibliographical footnote, speci-

fying where each piece of information came from. The source may be a magazine

article such as “Blaise Pradel, Man At Arms, May/June 1987, pp. 26–31”; a book like

“A Sesquicentennial History of Kentucky by Frederik A. Wallis & Hambleon Tapp,

1945, The Historical Record Association, Hopkinsville, KY”; a family bible such as

“English-Demint Anderson Bible, currently held by Beth Anderson in Brooklyn”; or

simply word of mouth such as “Anne Sandusky, interview, 6-12-1995”.

Tracking the source for a particular datum is important because different sources

often disagree. It’s not uncommon to see birth and death dates that differ by a day

or a year, plus or minus. Less common, but still too frequent, are confusions

between parents and grandparents, aunts and cousins, names of particular people,

and more. When you uncover information that disputes information you’ve already

collected, it’s important to make a reasonable judgment about whether the new

information is more reliable than the old. Not all sources are equally reliable. In my

own research I’ve found a document claiming to trace my wife’s lineage back to

Adam and Eve through assorted biblical figures and various English royalty from

the Middle Ages. Needless to say, I don’t take this particular source very seriously.

Note

1000 Part V ✦ XML Applications

I can think of plausible reasons to make the source a child of the individual ele-

ments it documents, but ultimately I think the source is not part of a person or a

family in the same way that a birth date or marriage date belongs to a particular

person. Rather, it is associated information that should be stored separately and

referenced through an ID. The main reason is that a single source, such as an old

family bible, may well contain data about many different people and families. In

keeping with principles of data normalization, I’d prefer not to repeat the informa-

tion about the source more than once in the document. If you like, think of this as

akin to using endnotes rather than footnotes.

Establishing relationships among the elements
The third and final step before actually designing the application and writing the

DTD is to identify how the different pieces of information you want to track are con-

nected. You’ve determined that the three fundamental elements are the person, the

family, and the source. Now you must decide what you want to include in these fun-

damental elements.

Family
A family is generally composed of a husband, a wife, and zero or more children.

Either the husband or the wife is optional. If you wish to account for same-sex mar-

riages (something most genealogy software couldn’t do until recently), simply

require one or two parents or spouses without specifying gender. Gender may then

be included as an attribute of a person, which is where it probably belongs anyway.

Is there other information associated with a family, as opposed to individuals in the

family? I can think of one thing that is important to genealogists: marriage informa-

tion. The date and place a couple was married (if any) and the date and place a cou-

ple was divorced (again, if any), are important information. Although you could

include such dates as part of each married individual, it really makes sense to make

it part of the family. Given that, a family looks something like this:

<FAMILY>
<MARRIAGE>
<DATE>...</DATE>
<PLACE>...</PLACE>

</MARRIAGE>
<DIVORCE>
<DATE>...</DATE>
<PLACE>...</PLACE>

</DIVORCE>
<HUSBAND>...</HUSBAND>
<WIFE>...</WIFE>
<CHILD>...</CHILD>
<CHILD>...</CHILD>
<CHILD>...</CHILD>

</FAMILY>

1001Chapter 28 ✦ Designing a New XML Application

Information can be omitted if it isn’t relevant (for instance, you wouldn’t include a

DIVORCE element for a couple that never divorced) or if you don’t know it.

Person
The PERSON element is likely to be more complex. Let’s review the standard infor-

mation you’d want to store about a person:

✦ Name

✦ Gender

✦ Birth date

✦ Baptism date

✦ Death date

✦ Burial date and place

✦ Father

✦ Mother

Of these, name, birth, baptism, death, and burial are likely to be elements contained

inside a person. Gender is probably best modeled as an optional attribute with a

fixed value list. Father and mother are likely to be attributes of the person that refer

back to the person elements for those people. Furthermore, a person needs an ID
attribute so he or she can be referred to by family and other person elements.

Father and mother seem to be borderline cases where you might get away with
using attributes, but there is the potential to run into trouble. Although everyone
has exactly one biological mother and one biological father, many people have
adoptive parents that may also need to be connected to the person.

Names are generally divided into family name and given name. This allows you to do

things like write a style sheet that boldfaces all people with the last name Harold.

Birth, death, burial (and possibly baptism — sometimes a baptismal record is all

that’s available for an individual) can all be divided into a date (possibly including a

time) and a place. Again, the place may simply be CDATA, or it can even be a full

address element. However, in practice, full street addresses a post office could

deliver mail to are not available. Much more common are partial addresses such as

Mount Sterling, Kentucky, or the name of an old family farm.

Dates can either be stored as text or broken up into day, month, and year. In gen-

eral, it’s easier to break them into day, month, and year than to stick to a common

format for dates. On the other hand, allowing arbitrary text inside a date element

also allows for imprecise dates such as 1919-20, before 1753, or about 1800.

That may seem like everything, but we’ve left out one of the most interesting and

important pieces of all — notes. A note about a person may contain simple data

such as “first Eagle Scout in Louisiana,” or it may contain a complete story, such as

Caution

1002 Part V ✦ XML Applications

how Sam Anderson was killed in the field. This may be personal information such

as religious affiliation, or it may be medical information like which ancestors died of

stomach cancer. If you’ve got a special interest in particular information like reli-

gion or medical history, you can make that a separate element of its own, but you

should still include some element that can hold arbitrary information of interest

that you dig up during your research.

There are other things that you could include in a PERSON element, photographs for

instance, but I’ll stop here so that this chapter remains manageable. Let’s move on

to the SOURCE element.

Source
The third and final top-level element is SOURCE. A source is bibliographic informa-

tion that says where you learned a particular fact. It can be a standard citation to a

published article or book such as Collin’s History of Kentucky, Volume II, p. 325,

1840, 1875. Sources such as this have a lot of internal structure that could be cap-

tured with elements like BOOK, AUTHOR, VOLUME, PAGE_RANGE, YEAR, and so forth.

Several efforts are currently underway to produce DTDs for generic bibliographies.

The one that seems furthest along is BiblioML (http://www.culture.fr/
BiblioML/) from France’s Ministère de la culture et de la communication Mission

de la recherche et de la technologie. BiblioML is based on the international stan-

dard Unimarc Bibliographic Format. Unfortunately, this isn’t finished as of early

2001.

Furthermore, sources in genealogy tend to be lot messier than in the typical term

paper. For instance, one of the most important sources in genealogy can be the fam-

ily bible with records of births, dates, and marriages. In such a case, it’s not the edi-

tion, translation, or the publisher of the bible that’s important; it’s the individual

copy that resides in Aunt Doodie’s house. For another example, exactly how do you

cite an obituary you found in a 50-year-old newspaper clipping in a deceased

relative’s purse? Chances are the information in the obituary is accurate, but it’s

not easy to figure out exactly what page of what newspaper on what date it came

from.

Because developing an XML application for bibliographies could easily be more

than a chapter of its own, and is a task best left to professional informaticians, I will

satisfy myself with making the SOURCE element contain only character data. It will

also have an ID attribute in the form s1, s2, s3, and so forth, so that each source

can be referred to by different elements. Let’s move on to writing the DTD that doc-

uments this XML application.

The Person DTD
By using external entity references, it’s possible to store individual people in sepa-

rate files, and then pull them together into families and family trees later. So, let’s

begin with a DTD that works for a single person. We’ll merge this into a DTD for

families and family trees in the next section.

1003Chapter 28 ✦ Designing a New XML Application

To develop a DTD, it’s often useful to work backwards — that is, first write out the

XML markup you’d like to see using a real example or two, then write the DTD that

matches the data. I’m going to use my great-grandfather-in-law Samuel English

Anderson as an example, because I have enough information about him to serve as

a good example, and also because he’s been dead long enough that no one should

get upset over anything I say about him. (You’d be amazed at the scandals and gos-

sip you dig up when doing genealogical research.) Here’s the information I have

about Samuel English Anderson, more or less as it appears in a standard genealogy

database:

Name: Samuel English Anderson29, 43

Birth: 25 Aug 1871 Sideview

Death: 10 Nov 1919 Mt. Sterling, KY

Father: Thomas Corwin Anderson (1845-1889)

Mother: LeAnah (Lee Anna, Annie) DeMint English (1843-1898)

Misc. Notes219

Samuel English Anderson was known in Montgomery County for his red hair

and the temper that went with it. He did once kill a man, but the court found

that it was in self-defense.

He was shot by a farm worker whom he had fired the day before for smoking

in a tobacco barn. Hamp says this may have been self-defense, because he

threatened to kill the workers for smoking in the barn. Hamp also claims that

old-time rumors say they mashed his head with a fence post. Beth heard he

was cut to death with machetes in the field, but Hamp says they wouldn’t be

cutting tobacco in November, only stripping it in the barn.

Now let’s reformat this into XML as shown in Listing 28-1:

Listing 28-1: An XML document for Samuel English Anderson

<?xml version=”1.0”?>
<!DOCTYPE PERSON SYSTEM “person.dtd”>
<PERSON ID=”p37” SEX=”M”>
<REFERENCE SOURCE=”s29”/>
<REFERENCE SOURCE=”s43”/>
<NAME>
<GIVEN>Samuel English</GIVEN>
<SURNAME>Anderson</SURNAME>

</NAME>
<BIRTH>
<PLACE>Sideview</PLACE>
<DATE>25 Aug 1871</DATE>

</BIRTH>
<DEATH>

Continued

1004 Part V ✦ XML Applications

Listing 28-1 (continued)

<PLACE>Mt. Sterling, KY</PLACE>
<DATE>10 Nov 1919</DATE>

</DEATH>
<SPOUSE PERSON=”p1099”/>
<SPOUSE PERSON=”p2660”/>
<FATHER PERSON=”p1035”/>
<MOTHER PERSON=”p1098”/>
<NOTE>
<REFERENCE SOURCE=”s219”/>
<body>
<p>
Samuel English Anderson was known in Montgomery County
for his red hair and the temper that went with it. He
did once kill a man, but the court
found that it was in self-defense.

</p>

<p>
He was shot by a farm worker whom he had
fired the day before for smoking in a tobacco barn.
Hamp says this may have been self-defense, because he
threatened to kill the workers for smoking in the barn.
Hamp also says old-time rumors say they mashed his head
with a fence post. Beth heard he was cut to death with
machetes in the field, but Hamp says they wouldn’t be
cutting tobacco in November, only stripping it in the
barn.

</p>
</body>

</NOTE>
</PERSON>

The information about other people has been removed and replaced with refer-

ences to them. The ID numbers are provided by the database I use to store this

information (Reunion 5.0 for the Mac from Leister Productions, http://www.
leisterpro.com). The endnote numbers become SOURCE attributes of REFERENCE
elements. HTML tags are used to mark up the note.

Now let’s see what a DTD for this would look like. The first element is PERSON. This

element may contain names, references, births, deaths, burials, baptisms, notes,

spouses, fathers, and mothers. I’m going to allow zero or more of each in any order.

<!ELEMENT PERSON (NAME | REFERENCE | BIRTH | DEATH | BURIAL
| BAPTISM | NOTE | SPOUSE | FATHER | MOTHER)*>

At first glance it may seem strange not to require a BIRTH or some of the other ele-

ments. After all, everybody has exactly one birthday. However, keep in mind that

what’s being described here is more your knowledge of the person than the person

1005Chapter 28 ✦ Designing a New XML Application

him- or herself. You often know about a person without knowing the exact day or

even year they were born. Similarly, you may sometimes have conflicting sources

that give different values for birthdays or other information. Therefore, it may be

necessary to include extra data.

The PERSON element has two attributes, an ID, which I’ll require, and a SEX, which

I’ll make optional. (Old records often contain children of unspecified gender, some-

times named, sometimes not. Even photographs can be unclear about gender, espe-

cially when children who died very young are involved.)

<!ATTLIST PERSON
ID ID #REQUIRED
SEX (M | F) #IMPLIED>

Next the child elements must be declared. Four of them —BIRTH, DEATH, BURIAL,

and BAPTISM— consist of a place and a date, and are otherwise the same. This is a

good place for a parameter entity reference:

<!ENTITY % event “(REFERENCE*, PLACE?, DATE?)*”>
<!ELEMENT BIRTH %event;>
<!ELEMENT BAPTISM %event;>
<!ELEMENT DEATH %event;>
<!ELEMENT BURIAL %event;>

I’ve also added one or more optional REFERENCE elements at the start, even though

this example doesn’t have a SOURCE for any event information. Sometimes, you’ll

have different sources for different pieces of information about a person. In fact, I’ll

add REFERENCE elements as potential children of almost every element in the DTD.

I declare REFERENCE like this, along with a comment in case it isn’t obvious from

glancing over the DTD exactly what’s supposed to be found in the reference:

<!-- The ID number of a SOURCE element
that documents this entry -->

<!ELEMENT REFERENCE EMPTY>
<!ATTLIST REFERENCE SOURCE NMTOKEN #REQUIRED>

Here the SOURCE attribute merely contains the number of the corresponding

source. When actual SOURCE elements are added to the DTD below, this can become

the ID of the SOURCE element.

A PLACE contains only text. A DATE contains a date string. I decided against requir-

ing a separate year, date, and month to allow for less-certain dates that are common

in genealogy such as “about 1876” or “sometime before 1920”.

<!ELEMENT PLACE (#PCDATA)>
<!ELEMENT DATE (#PCDATA)>

The SPOUSE, FATHER, and MOTHER attributes each contain a link to the ID of a PER-
SON element via a PERSON attribute. Again, this is a good opportunity to use a

parameter entity reference:

1006 Part V ✦ XML Applications

<!ENTITY % personref “PERSON NMTOKEN #REQUIRED”>
<!ELEMENT SPOUSE EMPTY>
<!ATTLIST SPOUSE %personref;>
<!ELEMENT FATHER EMPTY>
<!ATTLIST FATHER %personref;>
<!ELEMENT MOTHER EMPTY>
<!ATTLIST MOTHER %personref;>

Ideally, the PERSON attribute would have type IDREF. However, as long as the per-

son being identified may reside in another file, the best you can do is require a

name token type.

The NAME element may contain any number of REFERENCE elements and zero or one

SURNAME and GIVEN elements. Each of these may contain text.

<!ELEMENT NAME (REFERENCE*, GIVEN?, SURNAME?)>
<!ELEMENT GIVEN (#PCDATA)>
<!ELEMENT SURNAME (#PCDATA)>

The NOTE element may contain an arbitrary amount of text. Some standard markup

would be useful here. The easiest solution is to adopt XHTML. Simply use a parame-

ter entity reference to import the XHTML DTD. I’ll allow each NOTE to contain zero

or more REFERENCE elements and a single body element.

<!ENTITY % xhtml PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“xhtml1-strict.dtd”>

%xhtml;
<!ELEMENT NOTE (REFERENCE*, body)>

Those three little lines get you the entire XHTML markup set. There’s no need to

invent your own. You can use the already familiar and well-supported HTML tags. I

have left out the header, although that would be easy to include — just replace body
with html in the above. (I left it out because including it would also require you to

include head and title elements, which seemed superfluous here.) This does

assume that the file xhtml1-strict.dtd can be found in the same directory as this

DTD, although that’s easy to adjust if you want to put it somewhere else. You could

even use the absolute URL at the W3C Web site, http://www.w3.org/TR/
xhtml1/DTD/xhtml1-strict.dtd, although I prefer not to make my documents

dependent on the availability of a Web site I don’t control. Listing 28-2 shows the

complete person DTD.

Listing 28-2: person.dtd: The complete PERSON DTD

<!ELEMENT PERSON (NAME | REFERENCE | BIRTH | DEATH | BURIAL
| BAPTISM | NOTE | FATHER | MOTHER | SPOUSE)* >

<!ATTLIST PERSON ID ID #REQUIRED>

<!--M means male, F means female -->
<!ATTLIST PERSON SEX (M | F) #IMPLIED>

1007Chapter 28 ✦ Designing a New XML Application

<!-- The ID number of a SOURCE element that documents
this entry -->

<!ELEMENT REFERENCE EMPTY>
<!ENTITY % sourceref “SOURCE NMTOKEN #REQUIRED”>
<!ATTLIST REFERENCE %sourceref;>

<!ENTITY % event “(REFERENCE*, PLACE?, DATE?)”>
<!ELEMENT BIRTH %event;>
<!ELEMENT BAPTISM %event;>
<!ELEMENT DEATH %event;>
<!ELEMENT BURIAL %event;>

<!ELEMENT PLACE (#PCDATA)>
<!ELEMENT DATE (#PCDATA)>

<!ENTITY % personref “PERSON NMTOKEN #REQUIRED”>
<!ELEMENT SPOUSE EMPTY>
<!ATTLIST SPOUSE %personref;>
<!ELEMENT FATHER EMPTY>
<!ATTLIST FATHER %personref;>
<!ELEMENT MOTHER EMPTY>
<!ATTLIST MOTHER %personref;>

<!ELEMENT NAME (GIVEN?, SURNAME?)>
<!ELEMENT GIVEN (#PCDATA)>
<!ELEMENT SURNAME (#PCDATA)>

<!ENTITY % xhtml PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“xhtml1-strict.dtd”>

%xhtml;

<!ELEMENT NOTE (REFERENCE*, body)>

The Family DTD
The next step is to write a DTD for a family. Let’s begin with a sample family XML

document, as shown in Listing 28-3:

Listing 28-3: An XML document for Samuel English
Anderson’s family

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE FAMILY SYSTEM “family.dtd”>
<FAMILY ID=”f25”>
<HUSBAND PERSON=”p37”/>
<WIFE PERSON=”p1099”/>

Continued

1008 Part V ✦ XML Applications

Listing 28-3 (continued)

<CHILD PERSON=”p23”/>
<CHILD PERSON=”p36”/>
<CHILD PERSON=”p1033”/>
<CHILD PERSON=”p1034”/>
<MARRIAGE>
<PLACE>Cincinatti, OH</PLACE>
<DATE>15 Jul 1892</DATE>

</MARRIAGE>
</FAMILY>

All that’s needed here are references to the members of the family, not the actual

family members themselves. The reference PERSON IDs are again provided from the

database where this information is stored. Their exact values aren’t important as

long as they’re reliably unique and stable.

Now that you’ve got a sample family, you have to prepare the DTD for all families,

similar to the one shown in Listing 28-4. Don’t forget to include items that are

needed for some families — even if not for this example — such as a divorce. A

parameter entity reference will pull in the declarations from the person DTD of

Listing 28-2.

Listing 28-4: family.dtd: A DTD that describes a family

<!ENTITY % person SYSTEM “person.dtd”>
%person;

<!ELEMENT FAMILY (REFERENCE*, HUSBAND?, WIFE?, CHILD*,
MARRIAGE*, DIVORCE*, NOTE*)>

<!ATTLIST FAMILY ID ID #REQUIRED>

<!ELEMENT HUSBAND EMPTY>
<!ATTLIST HUSBAND %personref;>
<!ELEMENT WIFE EMPTY>
<!ATTLIST WIFE %personref;>
<!ELEMENT CHILD EMPTY>
<!ATTLIST CHILD %personref;>
<!ELEMENT DIVORCE %event;>
<!ELEMENT MARRIAGE %event;>

I’m assuming no more than one HUSBAND or WIFE per FAMILY element. This is a

fairly standard assumption in genealogy, even in cultures where plural marriages

are common, because it helps to keep the children sorted out. When documenting

1009Chapter 28 ✦ Designing a New XML Application

genealogy in a polygamous society, the same HUSBAND may appear in multiple FAM-
ILY elements. When documenting genealogy in a polyandrous society, the same

WIFE may appear in multiple FAMILY elements. Aside from overlapping dates, this

is essentially the same procedure that’s followed when documenting serial mar-

riages. Of course, there’s nothing in the DTD that actually requires people to be

married in order to have children, any more than there’s anything in biology that

requires it.

Overall, this scheme is very flexible, much more so than if a FAMILY element had to

contain individual PERSON elements rather than merely pointers to them. That

would almost certainly require duplication of data across many different elements

and files. The only thing this DTD doesn’t handle well are same-sex marriages, and

that could easily be fixed by changing the FAMILY declaration to the following:

<!ELEMENT FAMILY (((HUSBAND, WIFE) | (HUSBAND, HUSBAND?)
| (WIFE, WIFE?)), MARRIAGE*, DIVORCE*, CHILD*)>

Allowing multiple marriages and divorces in a single family may seem a little

strange, but it does happen. My mother-in-law married and divorced my father-in-

law three separate times. Remarriages to the same person aren’t common, but they

do happen.

The Source DTD
The third and final top-level element is SOURCE. I’m using a watered-down SOURCE ele-

ment with little internal structure. However, storing the DTD in a separate file makes

it easy to add structure to it later. Some typical SOURCE elements look like this:

<SOURCE ID=”s218”>Hamp Hoskins interview, 11-28-1996</SOURCE>
<SOURCE ID=”s29”>English-Demint Anderson Bible</SOURCE>
<SOURCE ID=”s43”>Anderson Bible</SOURCE>
<SOURCE ID=”s43”>
Letter from R. Foster Adams to Beth Anderson, 1972

</SOURCE>
<SOURCE ID=”s66”>
Collin’s History of Kentucky, Volume II, p. 325, 1840, 1875

</SOURCE>

A SOURCE element has a lot of internal structure. Work is ongoing in several places

to produce a generic DTD for bibliographic information with elements for articles,

authors, pages, publication dates, and more. However, this is quite a complex topic

when considered in its full generality; and, as previously mentioned, it doesn’t work

quite the same for genealogy as it does for most fields. The individual copy of a

family bible or newspaper clipping with handwritten annotations may be more sig-

nificant than the more generic, standard author, title, publisher data used in most

bibliographies.

1010 Part V ✦ XML Applications

Because developing an XML application for bibliographies could easily be more

than a chapter of its own, and is a task best left to experts in the field, I will satisfy

myself with making the SOURCE element contain only character data. It will also

have an ID attribute in the form s1, s2, s3, and so forth, so that each source can be

referred to by different elements. Listing 28-5 shows the extremely simple DTD for

sources.

Listing 28-5: source.dtd: A simple SOURCE DTD

<!ELEMENT SOURCE (#PCDATA)>
<!ATTLIST SOURCE ID ID #REQUIRED>

The Family Tree DTD
It’s now possible to combine the various people, families, and sources into a

single grouping that includes everyone. I’ll call the root element of this document

FAMILY_TREE. It will include PERSON, FAMILY, and SOURCE elements in no particular

order:

<!ELEMENT FAMILY_TREE (PERSON | FAMILY | SOURCE)*>

It’s not necessary to redeclare the PERSON, FAMILY, and SOURCE elements and their

children. Instead, these can be imported by importing the family and source DTDs

with external parameter entity references. The family DTD then imports the person

DTD:

<!ENTITY % family SYSTEM “family.dtd”>
%family;
<!ENTITY % source SYSTEM “source.dtd”>
%source;

One thing you want to do at this point is switch from using NMTOKEN types for

spouses, parents, and references, to actual ID types. This is because a FAMILY ele-

ment that’s part of a FAMILY_TREE should include all necessary PERSON elements.

You can do that by overriding the personref and sourceref parameter entity dec-

larations in the DTD for the family tree:

<!ENTITY % personref “PERSON IDREF #REQUIRED”>
<!ENTITY % sourceref “SOURCE IDREF #REQUIRED”>

That’s all you need. Everything else is contained in the imported person and family

DTDs. Listing 28-6 shows the family tree DTD. Listing 28-7 shows a complete family

tree document that includes 11 people, 3 families, and 7 sources.

1011Chapter 28 ✦ Designing a New XML Application

Listing 28-6: familytree.dtd: The family tree DTD

<!ENTITY % personref “PERSON IDREF #REQUIRED”>
<!ENTITY % sourceref “SOURCE IDREF #REQUIRED”>

<!ENTITY % family SYSTEM “family.dtd”>
%family;

<!ENTITY % source SYSTEM “source.dtd”>
%source;

<!ELEMENT FAMILY_TREE (SOURCE | PERSON | FAMILY)*>

Listing 28-7: An XML document of a complete family tree

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE FAMILY_TREE SYSTEM “familytree.dtd”>
<FAMILY_TREE>

<PERSON ID=”p23” SEX=”M”>
<REFERENCE SOURCE=”s44”/>
<FATHER PERSON=”p37”/>
<MOTHER PERSON=”p1099”/>
<NAME>
<GIVEN>Judson McDaniel</GIVEN>
<SURNAME>Anderson</SURNAME>

</NAME>
<BIRTH>
<PLACE>Montgomery County, KY, 1893</PLACE>
<DATE>19 Jul 1894</DATE>

</BIRTH>
<DEATH>
<PLACE>Mt. Sterling, KY</PLACE>
<DATE>27 Apr 1941</DATE>

</DEATH>
<NOTE><body>
<p>Agriculture College in Iowa</p>
<p>Farmer</p>
<p>32nd degree Mason</p>
<p>
He shot himself in the pond in the back of Sideview
when he found that he was terminally ill. It has also
been claimed that he was having money and wife
troubles. (He and Zelda did not get along and he was
embarrassed to have married her.) It has further been
claimed that this was part of the Anderson family
curse.

Continued

1012 Part V ✦ XML Applications

Listing 28-7 (continued)

</p>
</body></NOTE>

</PERSON>

<PERSON ID=”p36” SEX=”F”>
<REFERENCE SOURCE=”s43”/>
<FATHER PERSON=”p37”/>
<MOTHER PERSON=”p1099”/>
<NAME>
<GIVEN>Mary English</GIVEN>
<SURNAME>Anderson</SURNAME>

</NAME>
<BIRTH>
<PLACE>August 4, 1902?, Sideview, KY</PLACE>
<DATE>8 Apr 1902</DATE>

</BIRTH>
<DEATH>
<PLACE>Mt. Sterling, KY</PLACE>
<DATE>19 Dec 1972</DATE>

</DEATH>
</PERSON>

<PERSON ID=”p37” SEX=”M”>
<REFERENCE SOURCE=”s29”/>
<REFERENCE SOURCE=”s43”/>
<FATHER PERSON=”p1035”/>
<MOTHER PERSON=”p1098”/>
<NAME>
<GIVEN>Samuel English</GIVEN>
<SURNAME>Anderson</SURNAME>

</NAME>
<BIRTH>
<PLACE>Sideview</PLACE>
<DATE>25 Aug 1871</DATE>

</BIRTH>
<DEATH>
<PLACE>Mt. Sterling, KY</PLACE>
<DATE>10 Nov 1919</DATE>

</DEATH>
<NOTE>
<body>
<p>
Samuel English Anderson was known in Montgomery
County for his red hair and the temper that went
with it. He did once kill a man,
but the court found that it was in self-defense.

</p>

<p>
He was shot by a farm worker whom he had
fired the day before for smoking in a tobacco barn.

1013Chapter 28 ✦ Designing a New XML Application

Hamp says this may have been self-defense, because he
threatened to kill the workers for smoking in the
barn. Hamp also says old-time rumors say they mashed
his head with a fence post. Beth heard he was cut to
death with machetes in the field, but Hamp says they
wouldn’t be cutting tobacco in November, only
stripping it in the barn.

</p>
</body>

</NOTE>

</PERSON>

<PERSON ID=”p1033” SEX=”M”>
<REFERENCE SOURCE=”s43”/>
<FATHER PERSON=”p37”/>
<MOTHER PERSON=”p1099”/>
<NAME>
<GIVEN>Thomas Corwin</GIVEN>
<SURNAME>Anderson</SURNAME>

</NAME>
<BIRTH>
<DATE>16 Jan 1898</DATE>

</BIRTH>
<DEATH>
<PLACE>Probably Australia</PLACE>

</DEATH>
<NOTE>
<body><p>

Corwin fought with his father and then left home.
His last letter was from Australia.

</p></body>
</NOTE>

</PERSON>

<PERSON ID=”p1034” SEX=”M”>
<REFERENCE SOURCE=”s43”/>
<FATHER PERSON=”p37”/>
<MOTHER PERSON=”p1099”/>
<NAME>
<GIVEN>Rodger French</GIVEN>
<SURNAME>Anderson</SURNAME>

</NAME>
<BIRTH>
<DATE>26 Nov 1899</DATE>

</BIRTH>
<DEATH>
<PLACE>Birmingham, AL</PLACE>

</DEATH>
<NOTE>
<body><p>

Continued

1014 Part V ✦ XML Applications

Listing 28-7 (continued)

Killed when the car he was driving hit a pig in the
road; Despite the many suicides in the family, this is
the only known sowicide.

</p></body>
</NOTE>

</PERSON>

<PERSON ID=”p1035” SEX=”M”>
<NAME>
<GIVEN>Thomas Corwin</GIVEN>
<SURNAME>Anderson</SURNAME>

</NAME>
<BIRTH>
<DATE>24 Aug 1845</DATE>

</BIRTH>
<DEATH>
<PLACE>Mt. Sterling, KY</PLACE>
<DATE>18 Sep 1889</DATE>

</DEATH>
<NOTE>
<body>
<p>Yale 1869 (did not graduate)</p>
<p>Breeder of short horn cattle</p>
<p>He was named after an Ohio senator. The name Corwin
is from the Latin <i>corvinus</i> which means

<i>raven</i> and is akin to <i>corbin</i>/<i>corbet</i>.
In old French it was <i>cord</i> and in Middle English
<i>Corse</i> which meant <i>raven</i> or <i>cow</i>.
</p>
<p>Attended Annapolis for one year, possibly to
avoid service in the Civil War.</p>

<p>He farmed the old Mitchell farm
and became known as a leading short horn breeder.
He suffered from asthma and wanted to move to
Colorado in 1876 to avoid the Kentucky weather, but
he didn’t.
</p>

</body>
</NOTE>

</PERSON>
<PERSON ID=”p1098” SEX=”F”>
<REFERENCE SOURCE=”s29”/>
<NAME>
<GIVEN>LeAnah (Lee Anna, Annie) DeMint</GIVEN>
<SURNAME>English</SURNAME>

</NAME>
<BIRTH>
<PLACE>Louisville, KY</PLACE>
<DATE>1 Mar 1843</DATE>

</BIRTH>
<DEATH>

1015Chapter 28 ✦ Designing a New XML Application

<REFERENCE SOURCE=”s16”/>
<PLACE>acute Bright’s disease, 504 E. Broadway</PLACE>
<DATE>31 Oct 1898</DATE>

</DEATH>
<NOTE>
<body>
<p>Writer (pseudonymously) for Louisville Herald</p>
<p>Ann or Annie was from Louisville. She wrote under

an assumed name for the Louisville Herald.</p>
</body>

</NOTE>
</PERSON>

<PERSON ID=”p1099” SEX=”F”>
<REFERENCE SOURCE=”s39”/>
<FATHER PERSON=”p1100”/>
<MOTHER PERSON=”p1101”/>
<NAME>
<GIVEN>Cora Rucker (Blevins?)</GIVEN>
<SURNAME>McDaniel</SURNAME>

</NAME>
<BIRTH>
<DATE>1 Aug 1873</DATE>

</BIRTH>
<DEATH>
<REFERENCE SOURCE=”s41”/>
<REFERENCE SOURCE=”s60”/>
<PLACE>Sideview, bronchial trouble TB</PLACE>
<DATE>21 Jul 1909</DATE>

</DEATH>
<NOTE>
<body>
<p>She was engaged to General Hood of the Confederacy,
but she was seeing Mr. Anderson on the side. A servant
was posted to keep Mr. Anderson away. However the girl
fell asleep, and Cora eloped with Mr. Anderson.</p>
</body>

</NOTE>
</PERSON>

<PERSON ID=”p1100” SEX=”M”>
<NAME>
<GIVEN>Judson</GIVEN>
<SURNAME>McDaniel</SURNAME>

</NAME>
<BIRTH>
<DATE>21 Feb 1834</DATE>

</BIRTH>
<DEATH>
<DATE>9 Dec 1905</DATE>

Continued

1016 Part V ✦ XML Applications

Listing 28-7 (continued)

</DEATH>
</PERSON>

<PERSON ID=”p1101” SEX=”F”>
<NAME>
<GIVEN>Mary E.</GIVEN>
<SURNAME>Blevins</SURNAME>

</NAME>
<BIRTH>
<DATE>1847</DATE>

</BIRTH>
<DEATH>
<DATE>1886</DATE>

</DEATH>
<BURIAL>
<PLACE>Machpelah Cemetery, Mt. Sterling KY</PLACE>

</BURIAL>
</PERSON>

<PERSON ID=”p1102” SEX=”M”>
<REFERENCE SOURCE=”s29”/>
<NAME>
<GIVEN>John Jay (Robin Adair)</GIVEN>
<SURNAME>Anderson</SURNAME>

</NAME>
<BIRTH>
<REFERENCE SOURCE=”s43”/>
<PLACE>Sideview</PLACE>
<DATE>13 May 1873</DATE>

</BIRTH>
<DEATH>
<DATE>18 Sep 1889</DATE>

</DEATH>
<NOTE><body><p>
Died of flux. Rumored to have been killed by his brother.

</p></body></NOTE>
</PERSON>

<FAMILY ID=”f25”>
<HUSBAND PERSON=”p37”/>
<WIFE PERSON=”p1099”/>
<CHILD PERSON=”p23”/>
<CHILD PERSON=”p36”/>
<CHILD PERSON=”p1033”/>
<CHILD PERSON=”p1034”/>

</FAMILY>

<FAMILY ID=”f732”>

1017Chapter 28 ✦ Designing a New XML Application

<HUSBAND PERSON=”p1035”/>
<WIFE PERSON=”p1098”/>
<CHILD PERSON=”p1102”/>
<CHILD PERSON=”p37”/>

</FAMILY>

<FAMILY ID=”f779”>
<HUSBAND PERSON=”p1102”/>

</FAMILY>

<SOURCE ID=”s16”>newspaper death notice in purse</SOURCE>
<SOURCE ID=”s29”>English-Demint Anderson Bible</SOURCE>
<SOURCE ID=”s39”>
Judson McDaniel & Mary E. Blevins Bible

</SOURCE>
<SOURCE ID=”s41”>
Cora McDaniel obituary, clipping from unknown newspaper

</SOURCE>
<SOURCE ID=”s43”>Anderson Bible</SOURCE>
<SOURCE ID=”s44”>
A Sesquicentenial History of Kentucky
Frederik A. Wallis & Hambleon Tapp, 1945,
The Historical Record Association, Hopkinsville, KY

</SOURCE>
<SOURCE ID=”s60”>
Interview with Ann Sandusky, May 1996

</SOURCE>

</FAMILY_TREE>

Designing a Style Sheet for Family Trees
The family tree document is organized as a data file rather than as a narrative. To

get a reasonably pleasing view of the document, you need to reorder and reorganize

the contents before displaying them. CSS really isn’t powerful enough for this task.

Consequently, an XSLT style sheet is called for.

It’s best to begin with the root node. Here the root node is merely replaced by the

standard html, head and body elements. Templates are applied to the

FAMILY_TREE root element to continue processing.

<xsl:template match=”/”>
<html>
<head>
<title>Family Tree</title>

</head>

1018 Part V ✦ XML Applications

<body>
<xsl:apply-templates select=”FAMILY_TREE”/>

</body>
</html>

</xsl:template>

The template rule for the FAMILY_TREE element divides the document into three

parts, one each for the families, people, and sources. Templates are applied to each

separately:

<xsl:template match=”FAMILY_TREE”>

<h1>Family Tree</h1>

<h2>Families</h2>
<xsl:apply-templates select=”FAMILY”/>

<h2>People</h2>
<xsl:apply-templates select=”PERSON”/>

<h2>Sources</h2>

<xsl:apply-templates select=”SOURCE”/>

</xsl:template>

The SOURCE rule is quite simple. Each source is wrapped in a li element.

Furthermore, its ID is attached using the name attribute of the HTML a element.

This allows for cross-references directly to the source, as shown below:

<xsl:template match=”SOURCE”>

<xsl:element name=”a”>
<xsl:attribute name=”name”>
<xsl:value-of select=”@ID”/>

</xsl:attribute>
<xsl:value-of select=”.”/>

</xsl:element>

</xsl:template>

The PERSON element is much more complex, so I’ll break it up into several template

rules. The PERSON template rule selects the individual parts, and formats those that

aren’t too complex. It applies templates to the rest. The name is placed in an h3
header. This is surrounded with an HTML anchor whose name is the person’s ID.

The BIRTH, DEATH, BAPTISM, and BURIAL elements are formatted as list items, as

demonstrated here:

1019Chapter 28 ✦ Designing a New XML Application

<xsl:template match=”PERSON”>

<h3>
<xsl:element name=”a”>
<xsl:attribute name=”name”>
<xsl:value-of select=”@ID”/>

</xsl:attribute>
<xsl:value-of select=”NAME”/>
</xsl:element>

</h3>

<xsl:if test=”BIRTH”>
Born: <xsl:value-of select=”BIRTH”/>

</xsl:if>
<xsl:if test=”DEATH”>
Died: <xsl:value-of select=”DEATH”/>

</xsl:if>
<xsl:if test=”BAPTISM”>
Baptism: <xsl:value-of select=”BAPTISM”/>

</xsl:if>
<xsl:if test=”BURIAL”>
Burial: <xsl:value-of select=”BURIAL”/>

</xsl:if>
<xsl:apply-templates select=”FATHER”/>
<xsl:apply-templates select=”MOTHER”/>

<p>
<xsl:apply-templates select=”NOTE”/>

</p>

</xsl:template>

The FATHER and MOTHER elements are also list items, but they need to be linked to

their respective people. These two template rules do that:

<xsl:template match=”FATHER”>

<xsl:element name=”a”>
<xsl:attribute name=”href”>
#<xsl:value-of select=”@PERSON”/>

</xsl:attribute>
Father

</xsl:element>

</xsl:template>

<xsl:template match=”MOTHER”>

<xsl:element name=”a”>
<xsl:attribute name=”href”>
#<xsl:value-of select=”@PERSON”/>

</xsl:attribute>

1020 Part V ✦ XML Applications

Mother
</xsl:element>

</xsl:template>

The final thing you need to do to format PERSON elements is to copy the contents of

the NOTE into the finished document. Because the body of the NOTE uses standard

HTML tags that don’t need to be changed, an xsl:copy element is useful. The first

of these rules copies the body element itself and all its contents:

<xsl:template match=”body | body//*”>
<xsl:copy>
<xsl:apply-templates select=”node()”/>
</xsl:copy>

</xsl:template>

The template rule for FAMILY elements will list the name and role of each member

of the family as a list item in an unordered list. Each member will be linked to the

description of that individual. The rules to do this look like the following:

<xsl:template match=”FAMILY”>

<xsl:apply-templates select=”HUSBAND”/>
<xsl:apply-templates select=”WIFE”/>
<xsl:apply-templates select=”CHILD”/>

</xsl:template>
<xsl:template match=”HUSBAND”>

Husband:
<xsl:value-of select=”id(@PERSON)/NAME”/>

</xsl:template>

<xsl:template match=”WIFE”>
Wife:
<xsl:value-of select=”id(@PERSON)/NAME”/>

</xsl:template>

<xsl:template match=”CHILD”>
Child:
<xsl:value-of select=”id(@PERSON)/NAME”/>

</xsl:template>

The trickiest thing about these rules is the insertion of data from one element (the

PERSON) in a template that matches a different element (HUSBAND, WIFE, CHILD).

The ID of the PERSON stored in the HUSBAND/WIFE/CHILD’s PERSON attribute is used

to locate the right PERSON element; then its NAME child is selected.

1021Chapter 28 ✦ Designing a New XML Application

Listing 28-8 is the finished family tree style sheet. Figure 28-2 shows the beginning

of the document after it’s been converted into HTML and loaded into Netscape

Navigator.

Listing 28-8: The complete family tree style sheet

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0”

xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:template match=”/”>
<html>
<head>
<title>Family Tree</title>

</head>
<body>
<xsl:apply-templates select=”FAMILY_TREE”/>

</body>
</html>

</xsl:template>

<xsl:template match=”FAMILY_TREE”>

<h1>Family Tree</h1>

<h2>Families</h2>
<xsl:apply-templates select=”FAMILY”/>

<h2>People</h2>
<xsl:apply-templates select=”PERSON”/>

<h2>Sources</h2>

<xsl:apply-templates select=”SOURCE”/>

</xsl:template>

<xsl:template match=”PERSON”>

<h3>
<xsl:element name=”a”>
<xsl:attribute name=”name”>
<xsl:value-of select=”@ID”/>

</xsl:attribute>
<xsl:value-of select=”NAME”/>

Continued

1022 Part V ✦ XML Applications

Listing 28-8 (continued)

</xsl:element>
</h3>

<xsl:if test=”BIRTH”>
Born: <xsl:value-of select=”BIRTH”/>

</xsl:if>
<xsl:if test=”DEATH”>
Died: <xsl:value-of select=”DEATH”/>

</xsl:if>
<xsl:if test=”BAPTISM”>
Baptism: <xsl:value-of select=”BAPTISM”/>

</xsl:if>
<xsl:if test=”BURIAL”>
Burial: <xsl:value-of select=”BURIAL”/>

</xsl:if>
<xsl:apply-templates select=”FATHER”/>
<xsl:apply-templates select=”MOTHER”/>

<p>
<xsl:apply-templates select=”NOTE”/>

</p>

</xsl:template>

<xsl:template match=”FATHER”>

<xsl:element name=”a”>
<xsl:attribute name=”href”>
#<xsl:value-of select=”@PERSON”/>

</xsl:attribute>
Father

</xsl:element>

</xsl:template>

<xsl:template match=”MOTHER”>

<xsl:element name=”a”>
<xsl:attribute name=”href”>
#<xsl:value-of select=”@PERSON”/>

</xsl:attribute>
Mother

</xsl:element>

</xsl:template>

1023Chapter 28 ✦ Designing a New XML Application

<xsl:template match=”body | body//*”>
<xsl:copy>
<xsl:apply-templates select=”node()”/>

</xsl:copy>
</xsl:template>

<xsl:template match=”SOURCE”>

<xsl:element name=”a”>
<xsl:attribute name=”name”>
<xsl:value-of select=”@ID”/>

</xsl:attribute>
<xsl:value-of select=”.”/>

</xsl:element>

</xsl:template>

<xsl:template match=”FAMILY”>

<xsl:apply-templates select=”HUSBAND”/>
<xsl:apply-templates select=”WIFE”/>
<xsl:apply-templates select=”CHILD”/>

</xsl:template>

<xsl:template match=”HUSBAND”>
Husband:
<xsl:value-of select=”id(@PERSON)/NAME”/>

</xsl:template>

<xsl:template match=”WIFE”>
Wife:
<xsl:value-of select=”id(@PERSON)/NAME”/>

</xsl:template>

<xsl:template match=”CHILD”>
Child:
<xsl:value-of select=”id(@PERSON)/NAME”/>

</xsl:template>

</xsl:stylesheet>

1024 Part V ✦ XML Applications

Figure 28-2: The family tree after conversion to HTML

Summary
In this chapter, you saw an XML application for genealogy developed from scratch.

Along the way you have learned to:

✦ Always begin a new XML application by considering the domain you’re

describing.

✦ Try to identify the fundamental elements of the domain. Everything else is

likely to either be contained in or to be an attribute of one of these.

✦ Try to avoid including the same data in more than one place. Instead, use ID
and IDREF attributes to establish pointers from one element to another.

✦ Be sure to consider special cases. Don’t base your entire design on the most

obvious cases.

✦ Use parameter entities to merge the DTDs for each piece of the XML applica-

tion into one complete DTD.

This concludes the main body of The XML Bible, Second Edition. Go forth and write

your own XML applications! The following appendixes provide a variety of useful

reference information and the official XML 1.0 Specification.

✦ ✦ ✦

What’s on the
CD-ROM

The CD that comes with this book should be readable on a

Mac, Solaris, Linux, and Windows 95/98/Me/NT/2000. Just

put the CD in the drive, and mount it using whatever method

you normally use to load a CD on your platform, probably file-

manager in Solaris, and just stick it in the drive if you’re using

a Mac, Linux or Windows. There’s no fancy installer. You can

browse the directories as you would a hard drive.

All CD-ROM files are read-only. Therefore, if you open a file

from the CD-ROM and make any changes to it, you’ll need to

save it to your hard drive. If you copy a file from the CD-ROM

to your hard drive on Windows, the file retains its read-only

attribute. To change this attribute after copying a file, right-

click the file name or icon and select Properties from the

shortcut menu. In the Properties dialog box, click the General

tab and remove the checkmark from the Read-only checkbox.

The CD is divided into seven main directories:

✦ Browsers

✦ Parsers

✦ Specifications

✦ Examples

✦ Source Code

✦ Utilities

✦ PDFs

AAA P P E N D I X

✦ ✦ ✦ ✦

1026 Appendixes

Browsers
This directory contains a number of Web browsers that support XML to a greater or

lesser extent including:

✦ Microsoft Internet Explorer 5.5 for Windows

✦ Microsoft Internet Explorer 5.0 for MacOS

✦ Mozilla 0.8 (various platforms)

✦ Amaya 4.3 (various platforms)

Parsers
This directory contains a variety of open source XML parsers including:

✦ The Xerces Java XML parser

✦ The Xerces-C XML parser for C++

✦ The Xerces-Perl XML parser for Perl

✦ The expat parser for C++

Most of the examples in this book that have used a specific parser have used

Xerces Java, in particular, the sax.SAXCount program, To install it, just copy the

xerces.jar and xercesSamples.jar archives to your jre\lib\ext directory. You’ll need

the Java Runtime Environment (JRE) 1.2 or later, which you can download from

http://java.sun.com/. If you’ve installed the Java Development Kit (JDK) instead

of the JRE on Windows, you may have two ext directories, one somewhere like

C:\jdk1.3\jre\lib\ext and the other somewhere like C:\Program

Files\Javasoft\jre\1.3\lib\ext. You need to copy the jar archive into both ext direc-

tories. Putting one copy in one directory and an alias into the other directory does

not work. You must place complete, actual copies into each ext directory.

Specifications
This directory contains the XML Specifications from the World Wide Web

Consortium (W3C) including:

✦ XML 1.0, second edition

✦ Namespaces in XML

✦ CSS Level 1

✦ CSS Level 2

1027Appendix A ✦ What’s on the CD-ROM

✦ XSLT 1.0

✦ XPath 1.0

✦ HTML 4.0

✦ XHTML 1.0

✦ MathML 2.0

✦ The Resource Description Framework

✦ SMIL

These are all included in HTML format, and most are available in XML as well. Some

are also provided in additional formats such as PDF or plain text. Many technolo-

gies discussed in this book are not yet finalized (for example, XLinks). You can find

the current draft specifications for these on the World Wide Web Consortium (W3C)

Web site at http://www.w3.org/TR/.

Examples
This directory contains several examples of large XML files and large collections of

XML documents. Some (but not all) of these are based on smaller examples printed

in the book. For instance, you’ll find complete statistics for the 1998 Major League

Baseball season including all players and teams. Examples include:

✦ The 1998 Major League Baseball season

✦ The complete works of Shakespeare (courtesy of Jon Bosak)

✦ The Old Testament (courtesy of Jon Bosak)

✦ The New Testament (courtesy of Jon Bosak)

✦ The Koran (courtesy of Jon Bosak)

✦ The Book of Mormon (courtesy of Jon Bosak)

✦ The periodic table of the elements

Source Code
All complete numbered code listings from this book are on the CD-ROM in a direc-

tory called source. They are organized by chapter. Very simple HTML indexes are

provided for the examples in each chapter. However, because most of the examples

are raw XML files and because most don’t have style sheets, some Web browsers

won’t display them very well. Internet Explorer 5.x probably does the best job with

most of these files. Otherwise, you’re probably better off just opening the directo-

ries in Windows Explorer, the Finder or the equivalent on your platform of choice,

and reading the files with a text editor.

1028 Appendixes

Most of the files are named according to the listing number in the book (for exam-

ple, 6-1.xml, 27-1.cdf). However, in a few cases in which a specific name is used in

the book, such as family.dtd or family.xml, then that name is also used on the CD.

The files on the CD appear exactly as they do in the book’s listings.

Utilities
The utilities directory contains assorted programs that will be useful for processing

XML documents of one type or another. These include:

✦ Dave Raggett’s HTML Tidy, compiled for a variety of platforms. Tidy can clean

up most HTML files so that they become well-formed XML. Tidy can correct

many common problems and warn you about the ones you need to fix your-

self. The latest version can be found at

http://www.w3.org/People/Raggett/tidy

✦ The Xalan-J XSLT Processor from the XML Apache Project

✦ Michael Kay’s SAXON XSLT Processor

✦ James Clark’s XT XSLT Processor

✦ The Batik SVG Viewer from the XML Apache Project

✦ FOP, a print formatter driven by XSL formatting objects from the XML Apache

Project

PDF
The pdf directory contains Acrobat PDF files for this entire book. To read them,

you’ll need the free Acrobat Reader software included on the CD-ROM. Feel free to

put them on your local hard disk for easy access. I don’t really care if you loan the

CD-ROM to some cash-strapped undergrad who finds it cheaper to tie up a school

printer for a few hours printing all 1200+ pages rather than spend $49.99 for a

printed copy. (If you’re using your own printer, toner, and paper, it’s much cheaper

to buy the book.) However, I would very much appreciate it if you do not place

these files on Web, FTP, Gnutella, Publius, or any other servers. This includes

intranet servers, password-protected sites, and other things that aren’t meant for

the public at large. Most local sites and intranets are far more exposed to the

broader Internet than most people think. Today’s search engines are very good at

locating content that is supposed to be hidden. Putting mirror copies of these files

around the Web makes it extremely difficult to keep all the files up to date and to

make sure that search engines find the right copies.

✦ ✦ ✦

XML Reference
Material

This appendix contains XML reference material. It is

divided into three main parts:

1. XML BNF Grammar

2. Well-Formedness Constraints

3. Validity Constraints

The XML BNF grammar reference section shows you how to

read a BNF Grammar, and includes the BNF rules for XML 1.0,

second edition, and examples of the productions. The well-

formedness constraints reference section explains what a well-

formedness constraint is. Then it lists and explains all

12 well-formedness constraints. The validity constraints refer-

ence section explains what a validity constraint is and lists and

explains the 25 validity constraints in XML 1.0, second edition.

XML BNF Grammar
According to the XML 1.0 specification, an XML document is

well formed if:

1. Taken as a whole it matches the production-labeled

document.

2. It meets all the well-formedness constraints given in this

specification.

3. Each parsed entity that is referenced directly or indi-

rectly within the document is well formed.

This section is designed to help you understand the first of

those requirements and to more quickly determine whether

your documents meet that requirement.

BBA P P E N D I X

✦ ✦ ✦ ✦

1030 Appendixes

Reading a BNF grammar
BNF is an abbreviation for Backus-Naur-Form. BNF grammars are an outgrowth of

compiler theory. A BNF grammar defines what is and is not a syntactically correct

program or, in the case of XML, a syntactically correct document. It is possible to

compare a document to a BNF grammar and determine precisely whether it does or

does not meet the conditions of that grammar. There are no borderline cases. BNF

grammars, properly written, have the advantage of leaving no room for interpreta-

tion. The advantage of this should be obvious to anyone who’s had to struggle with

HTML documents that display in one browser but not in another.

Technically, XML uses an Extended-Backus-Naur-Form (EBNF) grammar, which adds
a few pieces not normally found in traditional, compiler-oriented BNF grammars.

Syntactical correctness is a necessary but not sufficient condition for XML docu-

ments. A document may strictly adhere to the BNF grammar, and yet fail to be well

formed or valid. For a document to be well formed, it must also meet all the well-

formedness constraints of the XML 1.0 specification. Well-formedness is the mini-

mum level that a document must achieve to be parsed. To be valid, a document

must also meet all the validity constraints of the XML 1.0 specification. The well-

formedness and validity constraints are discussed in the next two sections of this

appendix.

BNF grammar parts
A BNF grammar has three parts:

1. A set of literal strings called terminals. For example, CDATA, </, <, >,

#REQUIRED, and <!ENTITY are all terminals used in the XML 1.0 grammar.

2. A set of nonterminals that will ultimately be replaced by terminals.

3. A list of productions or rules that map nonterminals to particular sequences of

terminals and other nonterminals, including one specially identified as the

start or document production.

If you’re not a compiler theorist, that list probably could have been written in

ancient Etruscan and made about as much sense. Let’s see if we can make things

clearer with a simple example before we dive into the complexities of the XML 1.0

grammar.

Consider strings composed of nonnegative, single-digit integers added to or sub-

tracted from each other, such as these:

9+8+1+2+3
8-1-2-4-5
9+8-9-0+5+3
4
4+3

Note

1031Appendix B ✦ XML Reference Material

Notice a few things that are not in the list, and that we want to forbid in our

grammar:

✦ Any character except the digits 0 through 9 and the plus (+) and the minus (–)

signs

✦ White space

✦ A string that begins with a + or a –

✦ Numbers less than 0 or greater than 9

✦ The empty string

Here’s a BNF grammar that defines precisely those strings that we want, and none

of those strings that we don’t want:

[1] string ::= digit
[2] digit ::= ‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’

| ‘8’ | ‘9’
[3] string ::= string ‘+’ digit
[4] string ::= string ‘-’ digit

Suppose you want to determine whether the string “9+3-2” satisfies this grammar.

You begin by looking at the first production. This says that a string is the nontermi-

nal digit. So, you move to Production [2], which defines digit. Indeed, 9 is one of the

terminals listed as a digit. Thus, the string “9” is a legitimate string. Production [3]

says that a string followed by the plus sign and another digit is also a legitimate

string. Thus “9+3” satisfies the grammar. Furthermore, it itself is a string.

Production [4] says that a string followed by the minus sign and another digit is a

legitimate string. Thus “9+3–2” is a legitimate string and satisfies the grammar.

Now consider the string “–9+1”. According to Production [1], a string must begin

with a digit. This string doesn’t begin with a digit, so it’s illegal. Or consider the

string “99+100”. This begins with a digit. However, no production allows a digit to

be followed by a digit. Therefore, this is also an illegal string.

The XML 1.0 grammar is much larger and more complicated than this simple gram-

mar. The next section lists its 83 productions. The following section elaborates on

each of these productions in detail.

The 83 productions are numbered from 1 to 89. Productions 33 through 38 and
Production 79 were never actually used and have been deleted from the second
edition of XML. Furthermore, production 28a was added between production 28
and 29 in the second edition, resulting in 83 productions.

Note

1032 Appendixes

BNF symbols
In XML’s EBNF grammar, the following basic symbols are used on the right-hand

sides of productions:

#xN N is a hexadecimal integer, and #xN is the Unicode

character with the number N

[a-zA-Z] Matches any character in the specified range

[#xN-#xN] Matches any character in the specified range where N
is the hexadecimal value of a Unicode character

[^a-z] Matches any character not in the specified range

[^#xN-#xN] Matches any character not in the specified range where

N is the hexadecimal value of a Unicode character

[^abc] Matches any character not in the list

[^#xN#xN#xN] Matches any character whose hexadecimal value is

not in the list

‘string’ Matches the literal string inside the single quotes

“string” Matches the literal string inside the double quotes

These nine basic patterns may be grouped to match more complex expressions:

(contents) The contents of the parentheses are treated as a unit

A? Matches zero or one occurrences of A

A B Matches A followed by B

A | B Matches A or B, but not both

A - B Matches any string that matches A and does not

match B

A+ Matches one or more occurrences of A

A* Matches zero or more occurrences of A

The XML specification also uses three forms that you probably won’t encounter in

non-XML–related specifications:

/* text of comment */ This is a comment, and any text inside the comment is

ignored.

[WFC: name] This names a well-formedness constraint associated

with this production that documents must meet in

order to qualify as well formed. Well-formedness con-

straints are a necessary part of the XML specification,

but they are not part of the BNF grammar. They state

rules that are difficult to impossible to describe in BNF

form.

1033Appendix B ✦ XML Reference Material

[VC: name] This names a validity constraint associated with this

production that documents must meet in order to

qualify as valid. Validity constraints are an optional

part of the XML specification, but they are also not

part of the BNF grammar.

The BNF rules for XML 1.0
The complete BNF grammar for XML is given in the XML 1.0 specification, which

you’ll find in Appendix C of this book. However, if you’re merely trying to match up

your markup against productions in the grammar, it can be inconvenient to flip

through the pages hunting for the necessary rules. For that purpose, the BNF rules,

and only the BNF rules for XML 1.0, are reproduced here.

Document
[1] document ::= prolog element Misc*

Character range
[2] Char ::= #x9 | #xA | #xD | [#x20-#xD7FF] | [#xE000-#xFFFD]

| [#x10000-#x10FFFF]

White space
[3] S ::= (#x20 | #x9 | #xD | #xA)+

Names and tokens
[4] NameChar ::= Letter | Digit | ‘.’ | ‘-’ | ‘_’ | ‘:’

| CombiningChar | Extender
[5] Name ::= (Letter | ‘_’ | ‘:’) (NameChar)*
[6] Names ::= Name (S Name)*
[7] Nmtoken ::= (NameChar)+
[8] Nmtokens ::= Nmtoken (S Nmtoken)*

Literals
[9] EntityValue ::= ‘“‘ ([^%&”] | PEReference | Reference)*

‘“‘ | “‘“ ([^%&’] | PEReference
| Reference)* “‘“

[10] AttValue ::= ‘“‘ ([^<&”] | Reference)* ‘“‘
| “‘“ ([^<&’] | Reference)* “‘“

[11] SystemLiteral ::= (‘“‘ [^”]* ‘“‘) | (“‘“ [^’]* “‘“)
[12] PubidLiteral ::= ‘“‘ PubidChar* ‘“‘

| “‘“ (PubidChar - “‘“)* “‘“
[13] PubidChar ::= #x20 | #xD | #xA | [a-zA-Z0-9]

| [-’()+,./:=?;!*#@$_%]

1034 Appendixes

Character data
[14] CharData ::= [^<&]* - ([^<&]* ‘]]>’ [^<&]*)

Comments
[15] Comment ::= ‘<!--’ ((Char - ‘-’)

| (‘-’ (Char - ‘-’)))* ‘-->’

Processing instructions
[16] PI ::= ‘<?’ PITarget

(S (Char* - (Char* ‘?>’ Char*)))? ‘?>’
[17] PITarget ::= Name - ((‘X’ | ‘x’) (‘M’ | ‘m’) (‘L’ | ‘l’))

CDATA sections
[18] CDSect ::= CDStart CData CDEnd
[19] CDStart ::= ‘<![CDATA[‘
[20] CData ::= (Char* - (Char* ‘]]>’ Char*))
[21] CDEnd ::= ‘]]>’

Prolog
[22] prolog ::= XMLDecl? Misc* (doctypedecl Misc*)?
[23] XMLDecl ::= ‘<?xml’ VersionInfo EncodingDecl? SDDecl?

S? ‘?>’
[24] VersionInfo ::= S ‘version’ Eq (“‘“ VersionNum “‘“

| ‘“‘ VersionNum ‘“‘)
[25] Eq ::= S? ‘=’ S?
[26] VersionNum ::= ([a-zA-Z0-9_.:] | ‘-’)+
[27] Misc ::= Comment | PI | S

Document type definition
[28] doctypedecl ::= ‘<!DOCTYPE’ S Name (S ExternalID)? S?

(‘[‘ (markupdecl | DeclSep)* ‘]’ S?)? ‘>’
[VC: Root Element Type]
[WFC: External Subset]

[28a] DeclSep ::= PEReference | S
[WFC: PE Between Declarations]

[29] markupdecl ::= elementdecl | AttlistDecl | EntityDecl
| NotationDecl | PI | Comment

[VC: Proper Declaration/PE Nesting]
[WFC: PEs in Internal Subset]

1035Appendix B ✦ XML Reference Material

External subset
[30] extSubset ::= TextDecl? extSubsetDecl
[31] extSubsetDecl ::= (markupdecl | conditionalSect |

DeclSep)*

Standalone document declaration
[32] SDDecl ::= S ‘standalone’ Eq ((“‘“ (‘yes’ | ‘no’)

“‘“) | (‘“‘ (‘yes’ | ‘no’) ‘“‘))
[VC: Standalone Document Declaration]

Element
[39] element ::= EmptyElemTag | STag content ETag

[WFC: Element Type Match]
[VC: Element Valid]

Start tag
[40] STag ::= ‘<’ Name (S Attribute)* S? ‘>’

[WFC: Unique Att Spec]
[41] Attribute ::= Name Eq AttValue

[VC: Attribute Value Type]
[WFC: No External Entity References]
[WFC: No < in Attribute Values]

End tag
[42] ETag ::= ‘</’ Name S? ‘>’

Content of elements
[43] content ::= CharData?

((element | Reference | CDSect | PI | Comment)
CharData?)*

Tags for empty elements
[44] EmptyElemTag ::= ‘<’ Name (S Attribute)* S? ‘/>’

[WFC: Unique Att Spec]

1036 Appendixes

Element type declaration
[45] elementdecl ::= ‘<!ELEMENT’ S Name S contentspec S? ‘>’

[VC: Unique Element Type Declaration]
[46] contentspec ::= ‘EMPTY’ | ‘ANY’ | Mixed | children

Element-content models
[47] children ::= (choice | seq) (‘?’ | ‘*’ | ‘+’)?
[48] cp ::= (Name | choice | seq) (‘?’ | ‘*’ | ‘+’)?
[49] choice ::= ‘(‘ S? cp (S? ‘|’ S? cp)+ S? ‘)’

[VC: Proper Group/PE Nesting]
[50] seq ::= ‘(‘ S? cp (S? ‘,’ S? cp)* S? ‘)’

[VC: Proper Group/PE Nesting]

Mixed-content declaration
[51] Mixed ::= ‘(‘ S? ‘#PCDATA’ (S? ‘|’ S? Name)* S? ‘)*’

| ‘(‘ S? ‘#PCDATA’ S? ‘)’
[VC: Proper Group/PE Nesting]
[VC: No Duplicate Types]

Attribute-list declaration
[52] AttlistDecl ::= ‘<!ATTLIST’ S Name AttDef* S? ‘>’
[53] AttDef ::= S Name S AttType S DefaultDecl

Attribute types
[54] AttType ::= StringType | TokenizedType | EnumeratedType
[55] StringType ::= ‘CDATA’
[56] TokenizedType ::= ‘ID’ | ‘IDREF’ | ‘IDREFS’ | ‘ENTITY’

| ‘ENTITIES’ | ‘NMTOKEN’ | ‘NMTOKENS’
[VC: ID]
[VC: One ID per Element Type]
[VC: ID Attribute Default]
[VC: IDREF]
[VC: Entity Name]
[VC: Name Token]

Enumerated attribute types
[57] EnumeratedType ::= NotationType | Enumeration
[58] NotationType ::= ‘NOTATION’ S ‘(‘ S? Name (S? ‘|’ S?

Name)* S? ‘)’
[VC: Notation Attributes]

1037Appendix B ✦ XML Reference Material

[VC: One Notation Per Element Type]
[VC: No Notation on Empty Element]

[59] Enumeration ::= ‘(‘ S? Nmtoken (S? ‘|’ S? Nmtoken)* S? ‘)’
[VC: Enumeration]

Attribute defaults
[60] DefaultDecl ::= ‘#REQUIRED’ | ‘#IMPLIED’

| ((‘#FIXED’ S)? AttValue)
[VC: Required Attribute]
[VC: Attribute Default Legal]
[WFC: No < in Attribute Values]
[VC: Fixed Attribute Default]

Conditional section
[61] conditionalSect ::= includeSect | ignoreSect
[62] includeSect ::= ‘<![‘ S? ‘INCLUDE’ S? ‘[‘

extSubsetDecl ‘]]>’
[VC: Proper Conditional Section/PE Nesting]

[63] ignoreSect ::= ‘<![‘ S? ‘IGNORE’ S? ‘[‘
ignoreSectContents* ‘]]>’

[VC: Proper Conditional Section/PE Nesting]
[64] ignoreSectContents ::= Ignore (‘<![‘ ignoreSectContents

‘]]>’ Ignore)*
[65] Ignore ::= Char* - (Char* (‘<![‘ | ‘]]>’) Char*)

Character reference
[66] CharRef ::= ‘&#’ [0-9]+ ‘;’ | ‘&#x’ [0-9a-fA-F]+ ‘;’

[WFC: Legal Character]

Entity reference
[67] Reference ::= EntityRef | CharRef
[68] EntityRef ::= ‘&’ Name ‘;’

[WFC: Entity Declared]
[VC: Entity Declared]
[WFC: Parsed Entity]
[WFC: No Recursion]

[69] PEReference ::= ‘%’ Name ‘;’
[VC: Entity Declared]
[WFC: No Recursion]
[WFC: In DTD]

1038 Appendixes

Entity declaration
[70] EntityDecl ::= GEDecl | PEDecl
[71] GEDecl ::= ‘<!ENTITY’ S Name S EntityDef S? ‘>’
[72] PEDecl ::= ‘<!ENTITY’ S ‘%’ S Name S PEDef S? ‘>’
[73] EntityDef ::= EntityValue | (ExternalID NDataDecl?)
[74] PEDef ::= EntityValue | ExternalID

External entity declaration
[75] ExternalID ::= ‘SYSTEM’ S SystemLiteral

| ‘PUBLIC’ S PubidLiteral S SystemLiteral
[76] NDataDecl ::= S ‘NDATA’ S Name

[VC: Notation Declared]

Text declaration
[77] TextDecl ::= ‘<?xml’ VersionInfo? EncodingDecl S? ‘?>’

Well-formed external parsed entity
[78] extParsedEnt ::= TextDecl? content

Encoding declaration
[80] EncodingDecl ::= S ‘encoding’ Eq (‘“‘ EncName ‘“‘

| “‘“ EncName “‘“)
[81] EncName ::= [A-Za-z] ([A-Za-z0-9._] | ‘-’)*

Notation declarations
[82] NotationDecl ::= ‘<!NOTATION’ S Name S (ExternalID

| PublicID) S? ‘>’
[VC: Unique Notation Name]

[83] PublicID ::= ‘PUBLIC’ S PubidLiteral

Characters
[84] Letter ::= BaseChar | Ideographic
[85] BaseChar ::= [#x0041-#x005A] | [#x0061-#x007A]

| [#x00C0-#x00D6] | [#x00D8-#x00F6]
| [#x00F8-#x00FF] | [#x0100-#x0131]
| [#x0134-#x013E] | [#x0141-#x0148]
| [#x014A-#x017E] | [#x0180-#x01C3]
| [#x01CD-#x01F0] | [#x01F4-#x01F5]
| [#x01FA-#x0217] | [#x0250-#x02A8]
| [#x02BB-#x02C1] | #x0386 | [#x0388-#x038A]
| #x038C | [#x038E-#x03A1] | [#x03A3-#x03CE]
| [#x03D0-#x03D6] | #x03DA | #x03DC | #x03DE

1039Appendix B ✦ XML Reference Material

| #x03E0 | [#x03E2-#x03F3] | [#x0401-#x040C]
| [#x040E-#x044F] | [#x0451-#x045C]
| [#x045E-#x0481] | [#x0490-#x04C4]
| [#x04C7-#x04C8] | [#x04CB-#x04CC]
| [#x04D0-#x04EB] | [#x04EE-#x04F5]
| [#x04F8-#x04F9] | [#x0531-#x0556] | #x0559
| [#x0561-#x0586] | [#x05D0-#x05EA]
| [#x05F0-#x05F2] | [#x0621-#x063A]
| [#x0641-#x064A] | [#x0671-#x06B7]
| [#x06BA-#x06BE] | [#x06C0-#x06CE]
| [#x06D0-#x06D3] | #x06D5 | [#x06E5-#x06E6]
| [#x0905-#x0939] | #x093D | [#x0958-#x0961]
| [#x0985-#x098C] | [#x098F-#x0990]
| [#x0993-#x09A8] | [#x09AA-#x09B0]
| #x09B2 | [#x09B6-#x09B9] | [#x09DC-#x09DD]
| [#x09DF-#x09E1] | [#x09F0-#x09F1]
| [#x0A05-#x0A0A] | [#x0A0F-#x0A10]
| [#x0A13-#x0A28] | [#x0A2A-#x0A30]
| [#x0A32-#x0A33] | [#x0A35-#x0A36]
| [#x0A38-#x0A39] | [#x0A59-#x0A5C]
| #x0A5E | [#x0A72-#x0A74] | [#x0A85-#x0A8B]
| #x0A8D | [#x0A8F-#x0A91] | [#x0A93-#x0AA8]
| [#x0AAA-#x0AB0] | [#x0AB2-#x0AB3]
| [#x0AB5-#x0AB9] | #x0ABD | #x0AE0
| [#x0B05-#x0B0C] | [#x0B0F-#x0B10]
| [#x0B13-#x0B28] | [#x0B2A-#x0B30]
| [#x0B32-#x0B33] | [#x0B36-#x0B39]
| #x0B3D | [#x0B5C-#x0B5D] | [#x0B5F-#x0B61]
| [#x0B85-#x0B8A] | [#x0B8E-#x0B90]
| [#x0B92-#x0B95] | [#x0B99-#x0B9A] | #x0B9C
| [#x0B9E-#x0B9F] | [#x0BA3-#x0BA4]
| [#x0BA8-#x0BAA] | [#x0BAE-#x0BB5]
| [#x0BB7-#x0BB9] | [#x0C05-#x0C0C]
| [#x0C0E-#x0C10] | [#x0C12-#x0C28]
| [#x0C2A-#x0C33] | [#x0C35-#x0C39]
| [#x0C60-#x0C61] | [#x0C85-#x0C8C]
| [#x0C8E-#x0C90] | [#x0C92-#x0CA8]
| [#x0CAA-#x0CB3] | [#x0CB5-#x0CB9] | #x0CDE
| [#x0CE0-#x0CE1] | [#x0D05-#x0D0C]
| [#x0D0E-#x0D10] | [#x0D12-#x0D28]
| [#x0D2A-#x0D39] | [#x0D60-#x0D61]
| [#x0E01-#x0E2E] | #x0E30 | [#x0E32-#x0E33]
| [#x0E40-#x0E45] | [#x0E81-#x0E82] | #x0E84
| [#x0E87-#x0E88] | #x0E8A | #x0E8D
| [#x0E94-#x0E97] | [#x0E99-#x0E9F]
| [#x0EA1-#x0EA3] | #x0EA5 | #x0EA7

1040 Appendixes

| [#x0EAA-#x0EAB] | [#x0EAD-#x0EAE] | #x0EB0
| [#x0EB2-#x0EB3] | #x0EBD | [#x0EC0-#x0EC4]
| [#x0F40-#x0F47] | [#x0F49-#x0F69]
| [#x10A0-#x10C5] | [#x10D0-#x10F6] | #x1100
| [#x1102-#x1103] | [#x1105-#x1107] | #x1109
| [#x110B-#x110C] | [#x110E-#x1112] | #x113C
| #x113E | #x1140 | #x114C | #x114E | #x1150
| [#x1154-#x1155] | #x1159 | [#x115F-#x1161]
| #x1163 | #x1165 | #x1167 | #x1169
| [#x116D-#x116E] | [#x1172-#x1173] | #x1175
| #x119E | #x11A8 | #x11AB | [#x11AE-#x11AF]
| [#x11B7-#x11B8] | #x11BA | [#x11BC-#x11C2]
| #x11EB | #x11F0 | #x11F9 | [#x1E00-#x1E9B]
| [#x1EA0-#x1EF9] | [#x1F00-#x1F15]
| [#x1F18-#x1F1D] | [#x1F20-#x1F45]
| [#x1F48-#x1F4D] | [#x1F50-#x1F57] | #x1F59
| #x1F5B | #x1F5D | [#x1F5F-#x1F7D]
| [#x1F80-#x1FB4] | [#x1FB6-#x1FBC] | #x1FBE
| [#x1FC2-#x1FC4] | [#x1FC6-#x1FCC]
| [#x1FD0-#x1FD3] | [#x1FD6-#x1FDB]
| [#x1FE0-#x1FEC] | [#x1FF2-#x1FF4]
| [#x1FF6-#x1FFC] | #x2126 | [#x212A-#x212B]
| #x212E | [#x2180-#x2182] | [#x3041-#x3094]
| [#x30A1-#x30FA] | [#x3105-#x312C]
| [#xAC00-#xD7A3]

[86] Ideographic ::= [#x4E00-#x9FA5] | #x3007
| [#x3021-#x3029]

[87] CombiningChar ::= [#x0300-#x0345] | [#x0360-#x0361]
| [#x0483-#x0486] | [#x0591-#x05A1]
| [#x05A3-#x05B9] | [#x05BB-#x05BD]
| #x05BF | [#x05C1-#x05C2] | #x05C4
| [#x064B-#x0652] | #x0670
| [#x06D6-#x06DC] | [#x06DD-#x06DF]
| [#x06E0-#x06E4] | [#x06E7-#x06E8]
| [#x06EA-#x06ED] | [#x0901-#x0903]
| #x093C | [#x093E-#x094C] | #x094D
| [#x0951-#x0954] | [#x0962-#x0963]
| [#x0981-#x0983] | #x09BC | #x09BE
| #x09BF | [#x09C0-#x09C4]
| [#x09C7-#x09C8] | [#x09CB-#x09CD]
| #x09D7 | [#x09E2-#x09E3] | #x0A02
| #x0A3C | #x0A3E | #x0A3F
| [#x0A40-#x0A42] | [#x0A47-#x0A48]
| [#x0A4B-#x0A4D] | [#x0A70-#x0A71]
| [#x0A81-#x0A83] | #x0ABC
| [#x0ABE-#x0AC5] | [#x0AC7-#x0AC9]

1041Appendix B ✦ XML Reference Material

| [#x0ACB-#x0ACD] | [#x0B01-#x0B03]
| #x0B3C | [#x0B3E-#x0B43]
| [#x0B47-#x0B48] | [#x0B4B-#x0B4D]
| [#x0B56-#x0B57] | [#x0B82-#x0B83]
| [#x0BBE-#x0BC2] | [#x0BC6-#x0BC8]
| [#x0BCA-#x0BCD] | #x0BD7
| [#x0C01-#x0C03] | [#x0C3E-#x0C44]
| [#x0C46-#x0C48] | [#x0C4A-#x0C4D]
| [#x0C55-#x0C56] | [#x0C82-#x0C83]
| [#x0CBE-#x0CC4] | [#x0CC6-#x0CC8]
| [#x0CCA-#x0CCD] | [#x0CD5-#x0CD6]
| [#x0D02-#x0D03] | [#x0D3E-#x0D43]
| [#x0D46-#x0D48] | [#x0D4A-#x0D4D]
| #x0D57 | #x0E31 | [#x0E34-#x0E3A]
| [#x0E47-#x0E4E] | #x0EB1
| [#x0EB4-#x0EB9] | [#x0EBB-#x0EBC]
| [#x0EC8-#x0ECD] | [#x0F18-#x0F19]
| #x0F35 | #x0F37 | #x0F39 | #x0F3E
| #x0F3F | [#x0F71-#x0F84]
| [#x0F86-#x0F8B] | [#x0F90-#x0F95]
| #x0F97 | [#x0F99-#x0FAD]
| [#x0FB1-#x0FB7] | #x0FB9
| [#x20D0-#x20DC] | #x20E1
| [#x302A-#x302F] | #x3099 | #x309A

[88] Digit ::= [#x0030-#x0039] | [#x0660-#x0669]
| [#x06F0-#x06F9] | [#x0966-#x096F]
| [#x09E6-#x09EF] | [#x0A66-#x0A6F]
| [#x0AE6-#x0AEF] | [#x0B66-#x0B6F]
| [#x0BE7-#x0BEF] | [#x0C66-#x0C6F]
| [#x0CE6-#x0CEF] | [#x0D66-#x0D6F]
| [#x0E50-#x0E59] | [#x0ED0-#x0ED9]
| [#x0F20-#x0F29]

[89] Extender ::= #x00B7 | #x02D0 | #x02D1 | #x0387
| #x0640 | #x0E46 | #x0EC6 | #x3005
| [#x3031-#x3035] | [#x309D-#x309E]
| [#x30FC-#x30FE]

Examples of the XML 1.0 productions
This section shows you some instances of the productions to give you a better idea

of what each one means.

1042 Appendixes

Document
[1] document ::= prolog element Misc*

This rule says that an XML document is composed of a prolog (Production [22]), fol-

lowed by a single root element (Production [39]), followed by any number of miscel-

laneous items (Production [27]). In other words, a typical document looks like this:

<?xml version=”1.0”?>
<!-- a DTD might go here -->
<ROOT_ELEMENT>
Content

</ROOT_ELEMENT>
<!-- comments can go here -->
<?Reader processing instructions can also go here?>

In practice, it’s rare for anything to follow the close of the root element.

Production [1] rules out documents with more than one root element like this:

<?xml version=”1.0”?>
<ELEMENT1>
Content

</ELEMENT1>
<ELEMENT2>
Content

</ELEMENT2>
<ELEMENT1>
Content

</ELEMENT1>

Character range
[2] Char ::= #x9 | #xA | #xD | [#x20-#xD7FF] | [#xE000-#xFFFD] | [#x10000-
#x10FFFF]

Production [2] defines the subset of Unicode characters that may appear in an XML

document. The main items of interest here are the characters not included.

Specifically, these are the nonprinting ASCII control characters of which the most

common are the bell, vertical tab, and form feed; the surrogates block; and the non-

characters #xFFFE and #xFFFF. The control characters are not needed in XML and

may cause problems in files displayed on old terminals or passed through old ter-

minal servers and software.

The surrogates block between #xD800 to #xDFFF will eventually be used to extend

Unicode to support over one million different characters. However, when pro-

cessed, each surrogate pair is converted into a single character in the range

#x10000 to #x10FFFF. The parser should do this before checking the document for

well-formedness (just as it would convert any other character encoding), so that an

application receiving data from the parser never sees surrogates.

1043Appendix B ✦ XML Reference Material

The noncharacters #xFFFE and #xFFFF are not defined in Unicode. The appearance

of xFFFE, especially at the start of a document, indicates that you’re reading the

document with the wrong byte order; that is, little endian instead of big endian, or

vice versa.

Not all the code points used in this production are actually defined in Unicode. You

should avoid undefined code points in your documents. However, these undefined

characters are allowed to support future developments of Unicode. For instance,

when the first edition of XML 1.0 was released in February 1998, the current version

of Unicode was 2.0 with 38,885 characters. Today, in April 2001, the current version

of Unicode is 3.1 with 94,140 characters. XML parsers accept the 55,255 new charac-

ters added in Unicode 3.0 without any complaint. Although these characters can’t

be used in XML names and name tokens like the Unicode 2.0 characters can be

used, they can be used in the character data of the document. This makes it

possible to write XML documents in scripts such as Cherokee, Deseret, Gothic,

Tenguas, and Ethiopic that weren’t included since Unicode 2.0 but were added to

Unicode 3.0.

White space
[3] S ::= (#x20 | #x9 | #xD | #xA)+

Production [3] defines white space as a run of one or more space characters (#x20),

the horizontal tab (#x9), the carriage return (#xD), and the linefeed (#xA). Because

of the +, 20 of these characters in a row are treated exactly the same as one.

Other ASCII white space characters such as the vertical tab (#xB) are prohibited by

Production [2]. Other non-ASCII, Unicode white space characters, such as the non-

breaking space (#xA0), are not considered white space for the purposes of XML.

Names and tokens
[4] NameChar ::= Letter | Digit | ‘.’ | ‘-’ | ‘_’ | ‘:’ | CombiningChar | Extender

Production [4] defines the characters that may appear in an XML name. XML names

may only contain letters (Production [84]), digits (Production [88]), periods,

hyphens, underscores, colons, combining characters (Production [87]), and exten-

ders (Production [89]).

Although the XML 1.0 BNF grammar allows names to contain colons, the second

edition adds the following note:

The Namespaces in XML Recommendation [XML Names] assigns a meaning to

names containing colon characters. Therefore, authors should not use the

colon in XML names except for namespace purposes, but XML processors

must accept the colon as a name character.

[5] Name ::= (Letter | ‘_’ | ‘:’) (NameChar)*

1044 Appendixes

Production [5] says an XML name must begin with a letter (Production [84]), an

underscore, or a colon. It may not begin with a digit, a period, or a hyphen.

Subsequent characters in an XML name may include any XML name character

(Production [4]) including digits, periods, and hyphens. The following are accept-

able XML names:

airplane
text.encoding
r
SEAT
Pilot
Pilot1
OscarWilde
BOOK_TITLE
_8ball
ετνους

These are unacceptable XML names:

air plane
.encoding
-r
Wilde,Oscar
BOOK TITLE
8ball
AHA!

Although this rule allows names to begin with colons, the Namespaces in XML

Recommendation does not. You should not use names that begin with colons.

[6] Names ::= Name (S Name)*

Production [6] defines a group of names as one or more XML names (Production

[5]) separated by white space. This is a valid group of XML names:

BOOK AUTHOR TITLE PAGE EDITOR CHAPTER

This is not a valid group of XML names:

BOOK, AUTHOR, TITLE, PAGE, EDITOR, CHAPTER

[7] Nmtoken ::= (NameChar)+

Production [7] defines a name token as any sequence of one or more name charac-

ters (Production [4]). Unlike an XML name, a name token has no restrictions on

what the first character is as long as it is a valid name character. In other words,

XML name tokens may begin with a digit, a period, or a hyphen, whereas an XML

name may not. All XML names are XML name tokens, but not all XML name tokens

are XML names.

1045Appendix B ✦ XML Reference Material

The following are acceptable name tokens:

airplane
text.encoding
r
SEAT
Pilot
Pilot1
OscarWilde
BOOK_TITLE
:TITLE
_8ball
ετνους
.encoding
-r
8ball

The following are unacceptable name tokens:

air plane
Wilde,Oscar
BOOK TITLE
AHA!

[8] Nmtokens ::= Nmtoken (S Nmtoken)*

Production [8] says a group of name tokens is one or more XML name tokens

(Production [7]) separated by white space. This is a valid group of XML name

tokens:

1POTATO 2POTATO 3POTATO 4

This is not a valid group of XML name tokens:

1POTATO, 2POTATO, 3POTATO, 4

Literals
[9] EntityValue ::= ' " ' ([^%&"] | PEReference | Reference)* ' " ' | " ' " ([^%&'] |
PEReference | Reference)* " ' "

Production [9] defines an entity value as any string of characters enclosed in dou-

ble quotes or single quotes except for %, &, and the quote character (single or dou-

ble) used to delimit the string. % and & may be used, however, if and only if they’re

the start of a parameter entity reference (Production [69]), a general entity refer-

ence (Production [67]), or a character reference (Production [66]). If you really

need to include % and & in your entity values, you can escape them with the charac-

ter references % and &, respectively.

1046 Appendixes

These are legal entity values:

“This is an entity value”
‘This is an entity value’
“75% off”
“Ben & Jerry’s New York Super Fudge Chunk Ice Cream”
<YEAR>2001</YEAR>

These are illegal entity values:

“This is an entity value’
‘This is an entity value”
“75% off”
“Ben & Jerry’s New York Super Fudge Chunk Ice Cream”
‘Ben & Jerry’s New York Super Fudge Chunk Ice Cream

[10] AttValue ::= '"' ([^<&"] | Reference)* '"' | "'" ([^<&'] | Reference)* "'"

Production [10] says that an attribute value may consist of any characters except <,

&, and “ enclosed in double quotes, or any characters except <, &, and ‘ enclosed in

single quotes. The & may appear, however, only if it’s used as the start of a refer-

ence (Production [67]) (either general or character).

These are legal attribute values:

“This is an attribute value”
‘This is an attribute value’
‘#FFCC33’
“75% off”
“Ben & Jerry’s New York Super Fudge Chunk Ice Cream”
“i < j”

These are illegal attribute values:

“This is an attribute value’
‘This is an attribute value”
“Ben & Jerry’s New York Super Fudge Chunk Ice Cream”
‘Ben and Jerry’s New York Super Fudge Chunk Ice Cream’
“i < j”

[11] SystemLiteral ::= ('"' [^"]* '"') | ("'" [^']* "'")

Production [11] defines a system literal as any string of text that does not contain

the double quote mark enclosed in double quotes. Alternately, a system literal may

be any string of text that does not contain the single quote mark enclosed in single

quotes. These are grammatical system literals:

“spec.dtd”
“http://www.w3.org/XML/1998/06/xmlspec-v21.dtd”

1047Appendix B ✦ XML Reference Material

“Jimmy’s Bar”
“ Hello there! “
‘ Hello
there!’

“Embedded markup is <OK/> in system literals”

These are ungrammatical system literals:

“ He said, “Get out of here!””
‘Bailey’s Cove’

Although this production is extremely liberal in what it accepts, non-BNF considera-

tions require that all system literals be relative or absolute Uniform Resource

Identifiers (URIs). In particular, system-literal URIs are used to locate a document’s

DTD in the document type declaration, and to locate the source of an external

entity reference. URIs have much stricter rules, including that all non-ASCII charac-

ters (and quite a few ASCII characters as well) must be escaped using a percent sign

and the hexadecimal form of their encoding in UTF-8.

[12] PubidLiteral ::= '"' PubidChar* '"' | "'" (PubidChar - "'")* "'"

Production [12] says that a public ID literal is either zero or more public ID charac-

ters (Production [13]) enclosed in double quotes, or zero or more public ID charac-

ters except the single quote mark enclosed in single quotes.

These are grammatical public ID literals:

“-//IETF//NONSGML Media Type application/pdf//EN”
‘-//IETF//NONSGML Media Type application/pdf//EN’
“-//W3C//DTD XHTML 1.0 Strict + Math//EN”

These are ungrammatical public ID literals:

“{-//IETF//NONSGML Media Type application/pdf//EN}”
“-//IETF//NONSGML Media Type application/@@lcpi__//GR}”

XML 1.0 does not provide any additional hints about what a proper public ID string

should look like or how it is resolved. This is left up to the parser. For this reason,

some people have suggested that public IDs should be deprecated in favor of sys-

tem IDs that contain a well-understood standard form of a URI.

[13] PubidChar ::= #x20 | #xD | #xA | [a-zA-Z0-9] | [-’()+,./:=?;!*#@$_%]

Production [13] lists the permissible public ID characters, essentially, the ASCII

space, carriage return, and linefeed, the letters a through z and A through Z, the

digits 0 through 9, and the punctuation characters -'()+,./:=?;!*#@$_%.

1048 Appendixes

Character data
[14] CharData ::= [^<&]* - ([^<&]* ']]>' [^<&]*)

Production [14] defines character data as any number of any characters except for

< and &. Furthermore, the CDEnd string]]> may not appear as part of the charac-

ter data. Character data may contain as few as zero characters.

Comments
[15] Comment ::= '<!--' ((Char - '-') | ('-' (Char - '-')))* '-->'

Production [15] defines a comment as any string of text enclosed between <!-- and

--> marks with the single exception of the double hyphen --. These are all valid

comments:

<!--Hello-->
<!--Hello there!-->
<!-- Hello there! -->
<!-- Hello

there! -->
<!--<Hello/> <there/>!-->
<!-- Grade: B- -->

These are illegal comments:

<!-- Hello--there! -->
<!-- Grade: A--->

Processing instructions
[16] PI ::= '<?' PITarget (S (Char* - (Char* '?>' Char*)))? '?>'

Production [16] says that a processing instruction starts with the literal <?, fol-

lowed by the name of the processing instruction target (Production [17]), option-

ally followed by white space, followed by any number of characters except ?>.

Finally, the literal ?> closes the processing instruction.

These are all legal processing instructions:

<?gcc version=”2.9.5” options=”-O4”?>
<?Terri Do you think this is a good example?>

These are illegal processing instructions:

<? I have to remember to fix this next part?>
<?Terri This is a good example!>

1049Appendix B ✦ XML Reference Material

[17] PITarget ::= Name - (('X' | 'x') ('M' | 'm') ('L' | 'l'))

Production [17] says that a processing instruction target may be any XML name

(Production [5]) except the string XML (in any combination of case). Thus, these

are all acceptable processing instruction targets:

gcc
acrobat
Acrobat
Joshua
Acrobat_301
xml-stylesheet
XML_Whizzy_Writer_2000

These are unacceptable processing instruction targets:

xml
XML
xmL
-renfield
123
Terri,

CDATA sections
[18] CDSect ::= CDStart CData CDEnd

Production [18] states that a CData section is composed of a CDStart (Production

[19]), CData (Production [20]), and a CDEnd (Production [21]), in that order.

[19] CDStart ::= '<![CDATA['

Production [19] defines a CDStart as the literal string <![CDATA[and nothing else.

[20] CData ::= (Char* - (Char* ']]>' Char*))

Production [20] says that a CData section may contain absolutely any characters

except the CDEnd string]]>.

[21] CDEnd ::= ']]>'

Production [21] defines a CDEnd as the literal string]]> and nothing else.

These are correct CDATA sections:

<![CDATA[The < character starts a tag in XML]]>
<![CDATA[CDATA sections begin with the literal <![CDATA[]]>

1050 Appendixes

This is an illegal CDATA section:

<![CDATA[
The three characters]]> terminate a CDATA section

]]>

Prolog
[22] prolog ::= XMLDecl? Misc* (doctypedecl Misc*)?

Production [22] says that a prolog consists of an optional XML declaration, fol-

lowed by zero or more miscellaneous items (Production [27]), followed by an

optional document type declaration (Production [28]), followed by zero or more

miscellaneous items. For instance, this is a legal prolog:

<?xml version=”1.0”?>

This is also a legal prolog:

<?xml version=”1.0” standalone=”yes”?>
<?xml-stylesheet type=”text/css” href=”greeting.css”?>
<!DOCTYPE greeting [
<!ELEMENT greeting (#PCDATA)>

]>

This is also a legal prolog:

<!--This strange document really doesn’t have anything
in its prolog! -->

This is an illegal prolog because a comment precedes the XML declaration:

<!--This is from the example in Chapter 8 -->
<?xml version=”1.0” standalone=”yes”?>
<?xml-stylesheet type=”text/css” href=”greeting.css”?>
<!DOCTYPE greeting [
<!ELEMENT greeting (#PCDATA)>

]>

[23] XMLDecl ::= '<?xml' VersionInfo EncodingDecl? SDDecl? S? '?>'

Production [23] defines an XML declaration as the literal string <?xml followed by a

mandatory version info string (Production [24]), optionally followed by an encod-

ing declaration (Production [80]), optionally followed by a stand-alone document

declaration (Production [32]), optionally followed by white space, followed by the

literal string ?>. These are legal XML declarations:

<?xml version=”1.0”?>
<?xml version=”1.0” encoding=”Big5”?>

1051Appendix B ✦ XML Reference Material

<?xml version=”1.0” encoding=”ISO-8859-1” standalone=”yes”?>
<?xml version=”1.0” standalone=”no”? >
<?xml version=”1.0” encoding=”ISO-8859-5”?>

These are illegal XML declarations:

<?xml?>
<?xml version=1.0 encoding=Big5?>
<?xml encoding=”Big5”?>
<?xml version=”1.0” standalone=”yes”? encoding=”ISO-8859-1” ?>
<?xml version=”1.0” standalone=”no”? stylesheet=”poems.css”?>

[24] VersionInfo ::= S 'version' Eq ("'" VersionNum "'" | '"' VersionNum '"')

Production [24] defines the version info string as white space followed by the literal

string version, followed by an equals sign (Production [25]), followed by a version

number enclosed in either single or double quotes. These are legal version info

strings:

version=”1.0”
version=’1.0’
version = ‘1.0’

These are ungrammatical version info strings:

version=1.0
version=’1.0”
“1.0”=version

[25] Eq ::= S? '=' S?

Production [25] defines the string Eq in the grammar as a stand-in for the equals

sign (=) in documents. White space (Production [3]) may or may not appear on

either side of the equals sign. The reason for this production is to say that white

space around equals signs is always optional without having to repeat that in every

production that uses an equals sign.

[26] VersionNum ::= ([a-zA-Z0-9_.:] | '-')+

Production [26] says that a version number consists of one or more of the letters a
through z, the capital letters A through Z, the underscore, the period, and the

hyphen. The following are grammatically correct version numbers:

1.0
1.x
1.1.3
1.5EA2
v1.5
EA_B

1052 Appendixes

The following are ungrammatical version numbers:

version 1.5
1,5
1!1
1 5 3
v 1.5

The only version number currently used in XML documents is 1.0. Parsers are
allowed but not required to signal an error if some other value is used. For now,
this production might as well read:

VersionNum ::= “1.0”

[27] Misc ::= Comment | PI | S

Production [27] defines the miscellaneous items in an XML document as comments

(Production [15]), processing instructions (Production [16]), and white space

(Production [3]).

Document type definition
[28] doctypedecl ::= '<!DOCTYPE' S Name (S ExternalID)? S? ('[' (markupdecl |
DeclSep)* ']' S?)? '>'

Production [28] says that a document type declaration consists of the literal string

<!DOCTYPE, followed by white space (Production [3]), followed by an XML name

(Production [5]), optionally followed by white space and an external ID (Production

[75]), optionally followed by more white space, followed by a left square bracket

([), followed by zero or more markup declarations (Production [29]) and/or decla-

ration separators (Production [28a]), followed by a right square bracket (]) and

white space, followed by a closing angle bracket.

These are all legal document type declarations:

<!DOCTYPE SEASON SYSTEM “baseball.dtd”>
<!DOCTYPE smil PUBLIC
“-//W3C//ENTITIES SMIL 2.0 Modular Framework 1.0//EN”
“smil-framework-1.mod”>

<!DOCTYPE DOCUMENT SYSTEM “greeting.dtd” [
<!ELEMENT DOCUMENT (GREETING, DATE)>
<!ELEMENT DATE (#PCDATA)>

]>
<!DOCTYPE GREETING [
<!ELEMENT GREETING (#PCDATA)>

]>

Note

1053Appendix B ✦ XML Reference Material

This is an illegal document type declaration:

<!DOCTYPE smil PUBLIC
“-//W3C//ENTITIES SMIL 2.0 Modular Framework 1.0//EN”>

[28a] DeclSep ::= PEReference | S

Production [28a] defines a declaration separator as either a parameter entity refer-

ence (Production [69]) or white space (Production [3]). The unusual number is

because it was necessary to add this production between the existing productions

28 and 29 in the second edition of the XML 1.0 specification.

[29] markupdecl ::= elementdecl | AttlistDecl | EntityDecl | NotationDecl | PI |
Comment

Production [29] says that a markup declaration may be either an element declara-

tion (Production [45]), an attribute list declaration (Production [52]), an entity dec-

laration (Production [70]), a notation declaration (Production [82]), a processing

instruction (Production [16]), or a comment (Production [15]).

External subset
[30] extSubset ::= TextDecl? extSubsetDecl

Production [30] says that an external subset consists of an optional text declaration

(Production [77]), followed by an external subset declaration (Production [31]).

[31] extSubsetDecl ::= (markupdecl | conditionalSect | DeclSep)

Production [31] says the external subset declaration contains any number of

markup declarations (Production [29]), conditional sections (Production [61]), or

declaration separators (Production [28a]) in any order. In essence, the external sub-

set can contain everything that the internal DTD can contain plus conditional sec-

tions (INCLUDE and IGNORE blocks). The internal DTD subset may not contain

conditional sections.

Standalone document declaration
[32] SDDecl ::= S 'standalone' Eq (("'" ('yes' | 'no') "'") | ('"' ('yes' | 'no') '"'))

Production [32] says that the standalone document declaration consists of the lit-

eral standalone, followed by an equals sign (which may be surrounded by white

space), followed by either yes or no enclosed in single or double quotes. Legal

standalone document declarations include:

standalone=”yes”
standalone=”no”

1054 Appendixes

standalone=’yes’
standalone=’no’
standalone = “yes”
standalone= “no”

Language identification
Productions [33] through [38] were included in the first edition of XML 1.0.

However, they were unreachable; that is, they were not start productions and they

were not referenced by any other production. Nonetheless, some parsers (incor-

rectly) chose to implement them to specify the format for language codes used in

xml:lang attribute values. To clarify matters, these productions have been deleted

from the second edition of the XML 1.0 specification.

Element
[39] element ::= EmptyElemTag | STag content ETag

Production [39] defines an element as either an empty element tag (production

[44]) or a start tag (production [40]), followed by content (production [43]), fol-

lowed by an end tag (production [42]).

These are legal elements:

<P>Hello!</P>
<P>Hello!</P>
<P/>
<P></P>

These are illegal elements:

<P>Hello!</p>
<P>
</Q>

This production does not actually require that the name in an end tag match the

name in the corresponding start tag. That actually proves to be impossible to do

using only BNF. Therefore, this constraint is instead imposed by a well-formedness

constraint.

Start tag
[40] STag ::= '<' Name (S Attribute)* S? '>'

Production [40] says that a start tag begins with a < followed by an XML name

(Production [5]), followed by any number of attributes (Production [41]) separated

by white space, followed by a closing >. These are legal start tags:

<DOCUMENT>

<DOCUMENT >

1055Appendix B ✦ XML Reference Material

<DOCUMENT TITLE=”The Red Badge of Courage” >
<DOCUMENT TITLE=”The Red Badge of Courage” PAGES=”129”>

These are illegal start tags:

< DOCUMENT>
<>
<12091998>

[41] Attribute ::= Name Eq AttValue

Production [41] says that an attribute consists of an XML name (Production [5]),

followed by an equals sign (which may be encased in white space) followed by an

attribute value (Production [10]). Grammatical attributes include:

TITLE=”The Red Badge of Courage”
PAGES=”129”
TITLE = “The Red Badge of Courage”
PAGES = “129”
TITLE=’The Red Badge of Courage’
PAGES=’129’
SENTENCE=’Jim said, “I didn't expect to see you here.”’

Ungrammatical attributes include:

TITLE=”The Red Badge of Courage’
PAGES=129
SENTENCE=’Jim said, “I didn’t expect to see you here.”’

End tag
[42] ETag ::= '</' Name S? '>'

Production [42] defines an end tag as the literal string </ immediately followed by

an XML name, optionally followed by white space, followed by the > character. For

example, these are grammatical XML end tags:

</PERSON>
</PERSON >
</AbrahamLincoln>

These are ungrammatical XML end tags:

</ PERSON>
</Abraham Lincoln>
</PERSON NAME=”Abraham Lincoln”>
</>

1056 Appendixes

Content of elements
[43] content ::= CharData? ((element | Reference | CDSect | PI | Comment)
CharData?)*

Production [43] defines content as optional character data (Production [14]), fol-

lowed by elements (Production [39]), references (Production [67]), CDATA sections

(Production [18]), processing instructions (Production [16]), and comments

(Production [15]) optionally interspersed with more character data in any order.

This production lists everything that can appear inside an element.

Tags for empty elements
[44] EmptyElemTag ::= '<' Name (S Attribute)* S? '/>'

Production [44] defines an empty element tag as the character <, followed by an

XML name, followed by white space, followed by zero more attributes separated

from each other by white space, optionally followed by white space, followed by

the literal />. These are grammatical empty element tags:

<PERSON/>
<PERSON />
<Person/>
<person />
<AbrahamLincoln/>

These are ungrammatical empty tags:

< PERSON/>
<PERSON>
</Person>
</person/>
</>

(The second and third are grammatical start and end tags, respectively.)

Element type declaration
[45] elementdecl ::= '<!ELEMENT' S Name S contentspec S? '>'

Production [45] says that an element declaration consists of the literal <!ELEMENT,

followed by white space, followed by an XML name (Production [5]), followed by a

content specification (Production [46]), optionally followed by white space, fol-

lowed by the > character.

1057Appendix B ✦ XML Reference Material

Grammatical element declarations include:

<!ELEMENT DOCUMENT ANY>
<!ELEMENT HR EMPTY>
<!ELEMENT DOCUMENT (#PCDATA | P | H)>

[46] contentspec ::= 'EMPTY' | 'ANY' | Mixed | children

Production [46] defines a content specification as either the literals EMPTY or ANY, a

list of children (Production [47]), or mixed content (Production [51]).

Element-content models
[47] children ::= (choice | seq) (‘?' | '*' | '+')?

Production [47] says that a list of children consists of either a choice (Production

[49]) or a sequence (Production [50]) optionally followed by one of the characters

?, *, or +.

[48] cp ::= (Name | choice | seq) ('?' | '*' | '+')?

Production [48] defines a content particle as an XML name (Production [5]),

choice, (Production [49]), or sequence (Production [50], optionally suffixed with a

?, *, or +.

[49] choice ::= '(' S? cp (S? '|' S? cp)+ S? ‘)'

Production [49] says that a choice is one or more content particles (Production

[48]) enclosed in parentheses and separated from each other by vertical bars and

optional white space. Grammatical choices include:

(P | UL | H1 | H2 | H3 | H4 | H5 | BLOCKQUOTE | PRE | HR | DIV)
(P|UL|H1|H2|H3|H4|H5|H6|BLOCKQUOTE|PRE|HR|DIV)
(SON | DAUGHTER)
(SON | DAUGHTER)
(ADDRESS | (NAME, STREET, APT, CITY, STATE, ZIP))

[50] seq ::= '(' S? cp (S? ',' S? cp)* S? ')'

Production [50] says that a sequence is one or more content particles (Production

[48]) enclosed in parentheses and separated from each other by commas and

optional white space. Grammatical sequences include:

(NAME, STREET, APT, CITY, STATE, ZIP)
(NAME , STREET , APT , CITY , STATE , ZIP)
(NAME,STREET,APT,CITY,STATE,ZIP)
(NAME,STREET,APT, CITY,STATE,ZIP)
(NAME, (STREET|BOX), (APT|SUITE), CITY, STATE, ZIP, COUNTRY?)
(NAME)

1058 Appendixes

Mixed-content declaration
[51] Mixed ::= '(' S? '#PCDATA' (S? '|' S? Name)* S? ')*' | '(' S? '#PCDATA' S? ')'

Production [51] says that mixed content is either the literal (#PCDATA) (with

allowances for optional white space) or a choice that includes the literal #PCDATA
as its first content particle and is suffixed by an asterisk. These are grammatical

mixed-content models:

(#PCDATA)
(#PCDATA)*
(#PCDATA)
(#PCDATA | PERSON)*
(#PCDATA | PERSON)*
(#PCDATA | TITLE | JOURNAL | MONTH | YEAR | SERIES | VOLUME)*

These are ungrammatical mixed-content models:

(PERSON | #PCDATA)*
(#PCDATA | PERSON)
(#PCDATA, TITLE, #PCDATA, JOURNAL, MONTH, YEAR, #PCDATA)*
(#PCDATA | (NAME, STREET, APT, CITY, STATE, ZIP))*

Attribute list declaration
[52] AttlistDecl ::= '<!ATTLIST' S Name AttDef* S? '>'

Production [52] says that an attribute list declaration consists of the literal

<!ATTLIST, followed by white space, followed by an XML name (Production [5]),

followed by zero or more attribute definitions (Production [53]), optionally fol-

lowed by white space, followed by the > character.

Grammatical attribute list declarations include:

<!ATTLIST IMG ALT CDATA #REQUIRED
WIDTH NMTOKEN #REQUIRED
HEIGHT NMTOKEN #REQUIRED

>
<!ATTLIST REC WIDTH NMTOKEN #REQUIRED HEIGHT NMTOKEN #REQUIRED>
<!ATTLIST AUTHOR EXTENSION CDATA #IMPLIED>
<!ATTLIST AUTHOR COMPANY CDATA #FIXED “TIC”>
<!ATTLIST P VISIBLE (TRUE | FALSE) “TRUE”>
<!ATTLIST ADDRESS STATE NMTOKEN #REQUIRED>
<!ATTLIST ADDRESS STATES NMTOKENS #REQUIRED>
<!ATTLIST P PNUMBER ID #REQUIRED>
<!ATTLIST PERSON FATHER IDREF #IMPLIED>
<!ATTLIST SLIDESHOW SOURCES ENTITIES #REQUIRED>
<!ATTLIST SOUND PLAYER NOTATION (MP) #REQUIRED>

1059Appendix B ✦ XML Reference Material

[53] AttDef ::= S Name S AttType S DefaultDecl

Production [53] defines an attribute definition as white space, an XML name

(Production [5]), more white space, an attribute type (Production [54]), more white

space, and a default declaration (Production [60]). Grammatical attribute defini-

tions include:

IMG ALT CDATA #REQUIRED
AUTHOR EXTENSION CDATA #IMPLIED
AUTHOR COMPANY CDATA #FIXED “TIC”
P VISIBLE (TRUE | FALSE) “TRUE”
ADDRESS STATE NMTOKEN #REQUIRED
ADDRESS STATES NMTOKENS #REQUIRED
P PNUMBER ID #REQUIRED
PERSON FATHER IDREF #IMPLIED
SLIDESHOW SOURCES ENTITIES #REQUIRED
SOUND PLAYER NOTATION (MP) #REQUIRED

Attribute types
[54] AttType ::= StringType | TokenizedType | EnumeratedType

Production [54] defines an attribute type as either a string type (Production [55]), a

tokenized type (Production [56]), or an enumerated type (Production [57]).

[55] StringType ::= ‘CDATA’

Production [55] defines a string type as the literal CDATA.

[56] TokenizedType ::= 'ID' | 'IDREF' | 'IDREFS' | 'ENTITY' | 'ENTITIES' |
'NMTOKEN' | 'NMTOKENS'

Production [56] defines a tokenized type as any one of these seven literals:

ID

IDREF

IDREFS

ENTITY

ENTITIES

NMTOKEN

NMTOKENS

1060 Appendixes

Enumerated attribute types
[57] EnumeratedType ::= NotationType | Enumeration

Production [57] defines an enumerated type as either a notation type (Production

[58]) or an enumeration (Production [59]).

[58] NotationType ::= 'NOTATION' S '(' S? Name (S? '|' S? Name)* S? ')'

Production [58] defines a notation type as the literal NOTATION, followed by white

space, followed by one or more XML names (Production [5]), separated by vertical

bars, and enclosed in parentheses. These are grammatical notation types:

NOTATION (MP)
NOTATION (MP | PDF)
NOTATION (mp | gcc | xv)
NOTATION (A | B | C)

These are ungrammatical notation types:

NOTATION (“MP”)
NOTATION (MP PDF)
NOTATION (mp, gcc, xv)
NOTATION (“A” | “B” | “C”)

[59] Enumeration ::= '(' S? Nmtoken (S? '|' S? Nmtoken)* S? ')'

Production [59] defines an enumeration as one or more XML name tokens

(Production [7]) separated by vertical bars and enclosed in parentheses. These are

grammatical enumerations:

(airplane)
(airplane | train | car | horse)
(airplane | train | car | horse)
(cavalo | carro | trem |avião)

The following are ungrammatical enumerations:

()
(airplane train car horse)
(airplane, train, car, horse)
airplane | train | car | horse

Attribute defaults
[60] DefaultDecl ::= '#REQUIRED' | '#IMPLIED' | (('#FIXED' S)? AttValue)

1061Appendix B ✦ XML Reference Material

Production [60] defines the default declaration as one of these four things:

✦ The literal #REQUIRED

✦ The literal #IMPLIED

✦ The literal #FIXED followed by white space (Production [3]), followed by an

attribute value (Production [10])

✦ An attribute value (Production [10])

Conditional section
[61] conditionalSect ::= includeSect | ignoreSect

Production [61] defines a conditional section as either an include section

(Production [62]) or an ignore section (Production [63]).

[62] includeSect ::= '<![' S? 'INCLUDE' S? '[' extSubsetDecl ']]>'

Production [62] defines an include section as an external subset declaration

(Production [31]) sandwiched between <![INCLUDE[]]>, modulo white space.

These are grammatical include sections:

<![INCLUDE []]>
<![INCLUDE[]]>
<![INCLUDE[]]>

[63] ignoreSect ::= '<![' S? 'IGNORE' S? '[' ignoreSectContents* ']]>'

Production [63] defines an ignore section as ignore section contents (Production

[64]) sandwiched between <![IGNORE[]]>, modulo white space. These are gram-

matical ignore sections:

<![IGNORE []]>
<![IGNORE[]]>
<![IGNORE[]]>

[64] ignoreSectContents ::= Ignore ('<![' ignoreSectContents ']]>' Ignore)*

Production [64] defines an ignore section’s contents as an ignore block (Production

[65]), optionally followed by a block of text sandwiched between <![and]]> liter-

als, followed by more text. This may be repeated as many times as desired. This

allows ignore sections to nest.

[65] Ignore ::= Char* - (Char* ('<![' | ']]>') Char*)

Production [65] defines an ignore block as any run of text that contains neither the

<![nor the]]> literals. This prevents any possible confusion about where an

ignore block ends.

1062 Appendixes

Character reference
[66] CharRef ::= '&#' [0-9]+ ';' | '&#x' [0-9a-fA-F]+ ';'

Production [66] defines two forms for character references. The first is the literal

&# followed by one or more of the ASCII digits 0 through 9. The second form is the

literal &#x followed by one or more of the hexadecimal digits 0 through F. The digits

representing 10 through 16 (A through F) may be either lowercase or uppercase.

Entity reference
[67] Reference ::= EntityRef | CharRef

Production [67] defines a reference as either an entity reference (Production [68])

or a character reference (Production [66]).

[68] EntityRef ::= '&' Name ';'

Production [68] defines an entity reference as an XML name (Production [5]) sand-

wiched between the ampersand character and a semicolon. These are grammatical

entity references:

&
à
&my_abbreviation;

These are ungrammatical entity references:

&
& agrave ;
& my_abbreviation;

[69] PEReference ::= '%' Name ';'

Production [69] defines a parameter entity reference as an XML name (Production

[5]) sandwiched between the percent character and a semicolon. These are gram-

matical parameter entity references:

%inlines;
%mathml;
%MyElements;

These are ungrammatical parameter entity references:

%inlines
% mathml ;
%my elements;

1063Appendix B ✦ XML Reference Material

Entity declaration
[70] EntityDecl ::= GEDecl | PEDecl

Production [70] defines an entity declaration as either a general entity declaration

(Production [71]) or a parameter entity declaration (Production [71]).

[71] GEDecl ::= '<!ENTITY' S Name S EntityDef S? '>'

Production [71] defines a general entity declaration as the literal <!ENTITY fol-

lowed by white space (Production [3]), followed by an XML name (Production [5]),

followed by an entity definition (Production [73]), optionally followed by white

space, followed by the > character. These are grammatical general entity declara-

tions:

<!ENTITY alpha “α”>
<!ENTITY Alpha “Α”>
<!ENTITY SPACEMUSIC SYSTEM “/sounds/space.wav” NDATA MP >
<!ENTITY LOGO SYSTEM “logo.gif”>
<!ENTITY COPY01 “Copyright 2001 %erh;”>

These are ungrammatical general entity declarations:

<!ENTITY alpha α>
<!ENTITY Capital Greek Alpha “Α”>
<!ENTITY LOGO SYSTEM logo.gif>

[72] PEDecl ::= '<!ENTITY' S '%' S Name S PEDef S? '>'

Production [72] defines a parameter entity declaration as the literal <!ENTITY fol-

lowed by white space (Production [3]), followed by a percent sign and more white

space, followed by an XML name (Production [5]), followed by an entity definition

(Production [73]), optionally followed by white space, followed by the > character.

In essence, this says that parameter entity declarations are the same as general

entity declarations except for the % between the <!ENTITY and the name. These are

grammatical parameter entity declarations:

<!ENTITY % fulldtd “IGNORE”>
<!ENTITY % ERH “Elliotte Rusty Harold”>
<!ENTITY % inlines
“(person | degree | model | product | animal | ingredient)*”>

These are ungrammatical parameter entity declarations:

<!ENTITY %fulldtd; “IGNORE”>
<!ENTITY % ERH Elliotte Rusty Harold>
<!ENTITY % inlines
“(person | degree | model | product | animal | ingredient)*’>

1064 Appendixes

[73] EntityDef ::= EntityValue | (ExternalID NDataDecl?)

Production [73] says that an entity definition is either an entity value (Production

[9]) or an external ID (Production [75]) optionally followed by an NData declaration

(Production [76]).

[74] PEDef ::= EntityValue | ExternalID

Production [74] says that the definition of a parameter entity may be either an

entity value (Production [9]) or an external ID (Production [75]).

External entity declaration
[75] ExternalID ::= 'SYSTEM' S SystemLiteral | 'PUBLIC' S PubidLiteral S
SystemLiteral

Production [75] defines an external ID as either the keyword SYSTEM followed by

white space and a system literal (Production [11]) or the keyword PUBLIC followed

by white space, a public ID literal (Production [12]), more white space, and a sys-

tem literal (Production [11]). These are grammatical external IDs:

SYSTEM “logo.gif”
SYSTEM “/images/logo.gif”
SYSTEM “http://www.idgbooks.com/logo.gif”
SYSTEM “../images/logo.gif”

PUBLIC “-//IETF//NONSGML Media Type image/gif//EN”
“http://www.isi.edu/in-notes/iana/assignments/media-

types/image/gif”

These are ungrammatical external IDs:

SYSTEM logo.gif
SYSTEM “/images/logo.gif’
SYSTEM http://www.idgbooks.com/logo.gif
PUBLIC “-//IETF//NONSGML Media Type image/gif//EN”
PUBLIC “http://www.isi.edu/in-notes/iana/assignments/media-
types/image/gif”

[76] NDataDecl ::= S 'NDATA' S Name

Production [76] defines an NData declaration as white space (Production [3]), fol-

lowed by the NDATA literal, followed by white space, followed by an XML name

(Production [5]). For example:

NDATA PDF
NDATA MIDI

1065Appendix B ✦ XML Reference Material

Text declaration
[77] TextDecl ::= '<?xml' VersionInfo? EncodingDecl S? '?>'

Production [77] says that a text declaration looks almost like an XML declaration

(Production [23]) except that it may not have a standalone document declaration

(Production [32]) and it must have an encoding declaration. These are grammatical

text declarations:

<?xml version=”1.0” encoding=”Big5”?>
<?xml version=”1.0” encoding=”ISO-8859-5”?>
<?xml encoding=”Big5”?>

These are ungrammatical text declarations:

<?xml version=”1.0”?>
<?xml encoding=”Big5” version=”1.0” ?>
<?xml version=”1.0” standalone=”yes”? encoding=”ISO-8859-1” >
<?xml version=”1.0” styles=”poems.css”>
<?xml version=”1.0” encoding=”ISO-8859-1” standalone=”yes”?>
<?xml version=”1.0” standalone=”no”? >

Well-formed external parsed entity
[78] extParsedEnt ::= TextDecl? content

Production [78] says that an external general parsed entity consists of an optional

text declaration followed by content (Production [43]). The main point of this pro-

duction is that the content may not include a document type declaration.

Production [79] was removed from the second edition of the XML 1.0 specification.

Encoding declaration
[80] EncodingDecl ::= S 'encoding' Eq ('"' EncName '"' | "'" EncName "'")

Production [80] defines an encoding declaration as white space (Production [3]),

followed by the string “encoding”, followed by an equals sign (Production [25]),

followed by the name of the encoding (Production [81]) enclosed in either single or

double quotes. These are all legal encoding declarations:

encoding=”Big5”
encoding=”ISO-8859-5”
encoding = “Big5”
encoding = “ISO-8859-5”
encoding= ‘Big5’
encoding= ‘ISO-8859-5’

1066 Appendixes

These are illegal encoding declarations:

encoding “Big5”
encoding=”ISO-8859-51’
encoding = “Big5
encoding = ‘ISO-8859-5”

[81] EncName ::= [A-Za-z] ([A-Za-z0-9._] | ‘-’)*

Production [81] says the name of an encoding begins with one of the ASCII letters A
through Z or a through z, followed by any number of ASCII letters, digits, periods,

underscores, and hyphens. These are legal encoding names:

ISO-8859-8
Big5
GB2312

These are illegal encoding names:

ISO 8859-8
Big5 Chinese
GB 2312
ελοτ851

Notation declarations
[82] NotationDecl ::= '<!NOTATION' S Name S (ExternalID | PublicID) S? '>'

Production [82] defines a notation declaration as the literal string “<!NOTATION”,

followed by white space (Production [3]), followed by an XML name

(Production[5]) for the notation, followed by white space, followed by either an

external ID (Production [75]) or a public ID (Production [83]), optionally followed

by white space, followed by the literal string “>”. These are grammatical notation

declarations:

<!NOTATION GIF SYSTEM “image/gif”>
<!NOTATION GIF SYSTEM “image/gif” >
<!NOTATION GIF PUBLIC

“-//IETF//NONSGML Media Type image/gif//EN”
“http://www.isi.edu/in-notes/iana/assignments/media-

types/image/gif”>

These are ungrammatical notation declarations:

<! NOTATION GIF SYSTEM “image/gif” >
< !NOTATION GIF SYSTEM “image/gif” >
<!NOTATION GIF “image/gif”>
<!NOTATION GIF SYSTEM image/gif>
<!NOTATION GIF PUBLIC

“http://www.isi.edu/in-notes/iana/assignments/media-
types/image/gif”>

1067Appendix B ✦ XML Reference Material

[83] PublicID ::= 'PUBLIC' S PubidLiteral

Production [83] defines a public ID as the literal string PUBLIC, followed by white

space (Production [3]), followed by a public ID literal (Production [12]). These are

grammatical public IDs:

PUBLIC “-//IETF//NONSGML Media Type image/gif//EN”
PUBLIC “ISO 8879:1986//ENTITIES Added Latin 1//EN//XML”

These are ungrammatical public IDs:

PUBLIC -//IETF//NONSGML Media Type image/gif//EN
PUBLIC ‘ISO 8879:1986//ENTITIES Added Latin 1//EN//XML”

Characters
[84] Letter ::= BaseChar | Ideographic

Production [84] defines a letter as either a base character or an ideographic

character.

[85] BaseChar ::= [#x0041-#x005A] | [#x0061-#x007A] | [#x00C0-#x00D6] |
[#x00D8-#x00F6] | [#x00F8-#x00FF] | [#x0100-#x0131] | [#x0134-#x013E] |
[#x0141-#x0148] | [#x014A-#x017E] | [#x0180-#x01C3] | [#x01CD-#x01F0] |
[#x01F4-#x01F5] | [#x01FA-#x0217] | [#x0250-#x02A8] | [#x02BB-#x02C1] |
#x0386 | [#x0388-#x038A] | #x038C | [#x038E-#x03A1] | [#x03A3-#x03CE] |
[#x03D0-#x03D6] | #x03DA | #x03DC | #x03DE | #x03E0 | [#x03E2-#x03F3] |
[#x0401-#x040C] | [#x040E-#x044F] | [#x0451-#x045C] | [#x045E-#x0481] |
[#x0490-#x04C4] | [#x04C7-#x04C8] | [#x04CB-#x04CC] | [#x04D0-#x04EB] |
[#x04EE-#x04F5] | [#x04F8-#x04F9] | [#x0531-#x0556] | #x0559 | [#x0561-
#x0586] | [#x05D0-#x05EA] | [#x05F0-#x05F2] | [#x0621-#x063A] | [#x0641-
#x064A] | [#x0671-#x06B7] | [#x06BA-#x06BE] | [#x06C0-#x06CE] |
[#x06D0-#x06D3] | #x06D5 | [#x06E5-#x06E6] | [#x0905-#x0939] | #x093D |
[#x0958-#x0961] | [#x0985-#x098C] | [#x098F-#x0990] | [#x0993-#x09A8] |
[#x09AA-#x09B0] | #x09B2 | [#x09B6-#x09B9] | [#x09DC-#x09DD] | [#x09DF-
#x09E1] | [#x09F0-#x09F1] | [#x0A05-#x0A0A] | [#x0A0F-#x0A10] | [#x0A13-
#x0A28] | [#x0A2A-#x0A30] | [#x0A32-#x0A33] | [#x0A35-#x0A36] |
[#x0A38-#x0A39] | [#x0A59-#x0A5C] | #x0A5E | [#x0A72-#x0A74] | [#x0A85-
#x0A8B] | #x0A8D | [#x0A8F-#x0A91] | [#x0A93-#x0AA8] | [#x0AAA-#x0AB0] |
[#x0AB2-#x0AB3] | [#x0AB5-#x0AB9] | #x0ABD | #x0AE0 | [#x0B05-#x0B0C] |
[#x0B0F-#x0B10] | [#x0B13-#x0B28] | [#x0B2A-#x0B30] | [#x0B32-#x0B33] |
[#x0B36-#x0B39] | #x0B3D | [#x0B5C-#x0B5D] | [#x0B5F-#x0B61] | [#x0B85-
#x0B8A] | [#x0B8E-#x0B90] | [#x0B92-#x0B95] | [#x0B99-#x0B9A] | #x0B9C |
[#x0B9E-#x0B9F] | [#x0BA3-#x0BA4] | [#x0BA8-#x0BAA] | [#x0BAE-#x0BB5] |
[#x0BB7-#x0BB9] | [#x0C05-#x0C0C] | [#x0C0E-#x0C10] | [#x0C12-#x0C28] |
[#x0C2A-#x0C33] | [#x0C35-#x0C39] | [#x0C60-#x0C61] | [#x0C85-#x0C8C] |
[#x0C8E-#x0C90] | [#x0C92-#x0CA8] | [#x0CAA-#x0CB3] | [#x0CB5-#x0CB9] |
#x0CDE | [#x0CE0-#x0CE1] | [#x0D05-#x0D0C] | [#x0D0E-#x0D10] | [#x0D12-
#x0D28] | [#x0D2A-#x0D39] | [#x0D60-#x0D61] | [#x0E01-#x0E2E] | #x0E30 |

1068 Appendixes

[#x0E32-#x0E33] | [#x0E40-#x0E45] | [#x0E81-#x0E82] | #x0E84 | [#x0E87-
#x0E88] | #x0E8A | #x0E8D | [#x0E94-#x0E97] | [#x0E99-#x0E9F] | [#x0EA1-
#x0EA3] | #x0EA5 | #x0EA7 | [#x0EAA-#x0EAB] | [#x0EAD-#x0EAE] | #x0EB0 |
[#x0EB2-#x0EB3] | #x0EBD | [#x0EC0-#x0EC4] | [#x0F40-#x0F47] | [#x0F49-
#x0F69] | [#x10A0-#x10C5] | [#x10D0-#x10F6] | #x1100 | [#x1102-#x1103] |
[#x1105-#x1107] | #x1109 | [#x110B-#x110C] | [#x110E-#x1112] | #x113C |
#x113E | #x1140 | #x114C | #x114E | #x1150 | [#x1154-#x1155] | #x1159 |
[#x115F-#x1161] | #x1163 | #x1165 | #x1167 | #x1169 | [#x116D-#x116E] |
[#x1172-#x1173] | #x1175 | #x119E | #x11A8 | #x11AB | [#x11AE-#x11AF] |
[#x11B7-#x11B8] | #x11BA | [#x11BC-#x11C2] | #x11EB | #x11F0 | #x11F9 |
[#x1E00-#x1E9B] | [#x1EA0-#x1EF9] | [#x1F00-#x1F15] | [#x1F18-#x1F1D] |
[#x1F20-#x1F45] | [#x1F48-#x1F4D] | [#x1F50-#x1F57] | #x1F59 | #x1F5B |
#x1F5D | [#x1F5F-#x1F7D] | [#x1F80-#x1FB4] | [#x1FB6-#x1FBC] | #x1FBE |
[#x1FC2-#x1FC4] | [#x1FC6-#x1FCC] | [#x1FD0-#x1FD3] | [#x1FD6-#x1FDB] |
[#x1FE0-#x1FEC] | [#x1FF2-#x1FF4] | [#x1FF6-#x1FFC] | #x2126 | [#x212A-
#x212B] | #x212E | [#x2180-#x2182] | [#x3041-#x3094] | [#x30A1-#x30FA] |
[#x3105-#x312C] | [#xAC00-#xD7A3]

Production [85] lists the base characters. These are the characters that Unicode 2.0
defines as alphabetic. It does not include punctuation marks or digits. It does not

include new alphabetic characters added in Unicode 3.0 and later. For instance, A-Z
and a-z are base characters but 0-9 and !, “, #, $, and so forth, are not. This list is

so long because it contains characters from not only the English alphabet but also

from the Greek, Hebrew, Arabic, Cyrillic, and all the other alphabetic scripts that

Unicode supports.

[86] Ideographic ::= [#x4E00-#x9FA5] | #x3007 | [#x3021-#x3029]

Production [86] lists the ideographic characters. #x4E00-#x9FA5 are Unicode 2.0’s

Chinese-Japanese-Korean unified ideographs. #x3007 is the ideographic number

zero. Characters #x3021 through #x3029 are the Hangzhou style numerals.

[87] CombiningChar ::= [#x0300-#x0345] | [#x0360-#x0361] | [#x0483-#x0486] |
[#x0591-#x05A1] | [#x05A3-#x05B9] | [#x05BB-#x05BD] | #x05BF | [#x05C1-
#x05C2] | #x05C4 | [#x064B-#x0652] | #x0670 | [#x06D6-#x06DC] | [#x06DD-
#x06DF] | [#x06E0-#x06E4] | [#x06E7-#x06E8] | [#x06EA-#x06ED] |
[#x0901-#x0903] | #x093C | [#x093E-#x094C] | #x094D | [#x0951-#x0954] |
[#x0962-#x0963] | [#x0981-#x0983] | #x09BC | #x09BE | #x09BF | [#x09C0-
#x09C4] | [#x09C7-#x09C8] | [#x09CB-#x09CD] | #x09D7 | [#x09E2-#x09E3] |
#x0A02 | #x0A3C | #x0A3E | #x0A3F | [#x0A40-#x0A42] | [#x0A47-#x0A48] |
[#x0A4B-#x0A4D] | [#x0A70-#x0A71] | [#x0A81-#x0A83] | #x0ABC | [#x0ABE-
#x0AC5] | [#x0AC7-#x0AC9] | [#x0ACB-#x0ACD] | [#x0B01-#x0B03] | #x0B3C |
[#x0B3E-#x0B43] | [#x0B47-#x0B48] | [#x0B4B-#x0B4D] | [#x0B56-#x0B57] |
[#x0B82-#x0B83] | [#x0BBE-#x0BC2] | [#x0BC6-#x0BC8] | [#x0BCA-#x0BCD] |
#x0BD7 | [#x0C01-#x0C03] | [#x0C3E-#x0C44] | [#x0C46-#x0C48] | [#x0C4A-
#x0C4D] | [#x0C55-#x0C56] | [#x0C82-#x0C83] | [#x0CBE-#x0CC4] | [#x0CC6-
#x0CC8] | [#x0CCA-#x0CCD] | [#x0CD5-#x0CD6] | [#x0D02-#x0D03] |
[#x0D3E-#x0D43] | [#x0D46-#x0D48] | [#x0D4A-#x0D4D] | #x0D57 | #x0E31 |
[#x0E34-#x0E3A] | [#x0E47-#x0E4E] | #x0EB1 | [#x0EB4-#x0EB9] | [#x0EBB-

1069Appendix B ✦ XML Reference Material

#x0EBC] | [#x0EC8-#x0ECD] | [#x0F18-#x0F19] | #x0F35 | #x0F37 | #x0F39 |
#x0F3E | #x0F3F | [#x0F71-#x0F84] | [#x0F86-#x0F8B] | [#x0F90-#x0F95] |
#x0F97 | [#x0F99-#x0FAD] | [#x0FB1-#x0FB7] | #x0FB9 | [#x20D0-#x20DC] |
#x20E1 | [#x302A-#x302F] | #x3099 | #x309A

Production [87] lists the combining characters. These are characters that are gen-

erally combined with the preceding character to form the appearance of a single

character. For example, character ̀ is the combining accent grave. The let-

ter a (a) followed by a combining accent grave would generally be rendered

as à and occupy only a single character width, even in a monospaced font.

[88] Digit ::= [#x0030-#x0039] | [#x0660-#x0669] | [#x06F0-#x06F9] | [#x0966-
#x096F] | [#x09E6-#x09EF] | [#x0A66-#x0A6F] | [#x0AE6-#x0AEF] | [#x0B66-
#x0B6F] | [#x0BE7-#x0BEF] | [#x0C66-#x0C6F] | [#x0CE6-#x0CEF] |
[#x0D66-#x0D6F] | [#x0E50-#x0E59] | [#x0ED0-#x0ED9] | [#x0F20-#x0F29]

Production [88] lists the characters that are considered to be digits. These include

not only the usual European numerals 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9, but also the

Arabic-Indic digits used primarily in Egyptian Arabic, the Eastern Arabic Indic digits

used in Persian and Urdu, and many more.

[89] Extender ::= #x00B7 | #x02D0 | #x02D1 | #x0387 | #x0640 | #x0E46 |
#x0EC6 | #x3005 | [#x3031-#x3035] | [#x309D-#x309E] | [#x30FC-#x30FE]

Production [89] lists the characters that are considered to be extenders. In order,

these characters are the middle dot; the modifier letter triangular colon; the modi-

fier letter half-triangular colon; the Greek middle dot; the Arabic tatweel; the Thai

maiyamok; the Lao ko la; the ideographic iteration mark; five Japanese Kana repeat

marks; the Japanese Hiragana iteration mark and voiced iteration mark; and the

Japanese Katakana and Hiragana sound mark and prolonged sound mark. An exten-

der is a character that’s neither a letter nor a combining character, but that is

nonetheless included in words as part of the word. The closest equivalent in

English is perhaps the hyphen used in words such as mother-in-law and well-off.
However, the hyphen is not considered to be an extender in XML.

#x0387, the triangular colon, was removed from the extender class in a Unicode
erratum sheet, but this change has not yet trickled down into XML.

Well-Formedness Constraints
According to the XML 1.0 specification, an XML document is well formed if:

1. Taken as a whole it matches the production-labeled document.

2. It meets all the well-formedness constraints given in this specification.

3. Each parsed entity that is referenced directly or indirectly within the docu-

ment is well formed.

Note

1070 Appendixes

This reference section is designed to help you understand the second of those

requirements and to more quickly determine whether your documents meet that

requirement.

What is a well-formedness constraint?
As you read the XML specification, you’ll notice that some BNF productions have

associated well-formedness constraints, abbreviated WFC. For example, here’s pro-

duction [40]:

[40] STag ::= ‘<’ Name (S Attribute)* S? ‘>’
[WFC: Unique Att Spec]

What follows WFC: is the name of the well-formedness constraint, Unique Att
Spec in this example. Generally, if you look a little below the production you’ll find

the constraint with the given name. For example, looking below Production [40]

you’ll find this:

Well-Formedness Constraint: Unique Att Spec
No attribute name may appear more than once in the same start tag or empty-

element tag.

This says that a given attribute may not appear more than once in a single element.

For example, the following tag violates well-formedness:

<P COLOR=”red” COLOR=”blue”>

Well-formedness constraints are used for requirements such as this that are diffi-

cult or impossible to state in the form of a BNF grammar. As XML parsers read a

document, they must not only check that the document matches the document pro-

duction of the BNF grammar; they must also check that it satisfies all well-formed-

ness constraints.

There are also validity constraints that must be satisfied by valid documents. XML
processors are not required to check validity constraints if they do not wish to,
however. Most validity constraints deal with declarations in the DTD. Validity con-
straints are discussed later in this appendix.

Productions associated with well-formedness
constraints
This section lists the productions associated with well-formedness constraints and

explains those constraints. Most productions don’t have any well-formedness con-

straints, so most productions are not listed here. The complete list of productions

is found in the BNF Grammar portion of this appendix.

Note

1071Appendix B ✦ XML Reference Material

Document type definition
[28] doctypedecl ::= '<!DOCTYPE' S Name (S ExternalID)? S? ('[' (markupdecl |
DeclSep)* ']' S?)? '>'

[Well-formedness Constraint: External Subset]

This well-formedness constraint states that if the DTD has one or more external

DTD subsets, then each of those subsets must independently match Production

[30], external subset.

[28a] DeclSep ::= PEReference | S

[Well-formedness Constraint: PE Between Declarations]

This well-formedness constraint states that the replacement text of a parameter

entity used between markup declarations (rather than inside markup declarations)

must match Production [31] for external subset declarations. In effect, this says

that replacing the parameter entity with its replacement text should not produce a

malformed document.

[29] markupdecl ::= elementdecl | AttlistDecl | EntityDecl | NotationDecl | PI |
Comment

[Well-formedness Constraint: PEs in Internal Subset]

This well-formedness constraint states that parameter entity references defined in

the internal DTD subset cannot be used inside a markup declaration. For example,

the following is illegal inside the internal DTD subset:

<!ENTITY % INLINES SYSTEM “(I | EM | B | STRONG | CODE)*”>
<!ELEMENT P %INLINES; >

On the other hand, the above would be legal in the external DTD subset.

[39] element ::= EmptyElemTag | STag content ETag

[Well-Formedness Constraint: Element Type Match]

This well-formedness constraint simply says that the name of the start tag must

match the name of the corresponding end tag. For instance, these elements are well

formed:

<TEST>content</TEST>
<test>content</test>

1072 Appendixes

However, these elements are not well formed:

<TEST>content</test>
<Fred>content</Ethel>

[40] STag ::= '<' Name (S Attribute)* S? '>'

[Well-formedness Constraint: Unique Att Spec]

This constraint says that a given attribute may not appear more than once in a sin-

gle element. For example, the following tags violate well-formedness:

<P COLOR=”red” COLOR=”blue”>
<P COLOR=”red” COLOR=”red”>

The problem is that the COLOR attribute appears twice in the same tag. In the sec-

ond case, it doesn’t matter that the value is the same both times. It’s still mal-

formed. The following two tags are well-formed because the attributes have slightly

different names:

<P COLOR1=”red” COLOR2=”blue”>
<P COLOR1=”red” COLOR2=”red”>

[41] Attribute ::= Name Eq AttValue

[Well-formedness Constraint: No External Entity References]

This constraint says that attribute values may not contain entity references that

point to data in other documents. For example, consider this attribute:

<BOX COLOR=”&RED;” />

Whether this is well formed depends on how the entity RED is defined. If it’s com-

pletely defined in the DTD, either in the internal or external subset, this tag is

acceptable. For example:

<!ENTITY RED “#FF0000”>

However, if the RED entity is defined as an external entity whose replacement text

comes from a separate file, then it’s not well defined. In that case, the ENTITY decla-

ration would look something like this:

<!ENTITY RED SYSTEM “red.txt” NDATA COLOR>

This constraint only applies to parsed entities. It does not apply to unparsed enti-

ties given as the value of an attribute of type ENTITY or ENTITIES. For example, the

following is legal even though RED is an external entity used as an attribute value.

<?xml version=”1.0”?>
<!DOCTYPE EXAMPLE [

1073Appendix B ✦ XML Reference Material

<!ELEMENT EXAMPLE (#PCDATA)>
<!NOTATION COLOR SYSTEM “x-color”>
<!ENTITY RED SYSTEM “red.txt” NDATA COLOR>
<!ATTLIST EXAMPLE HUE ENTITY #REQUIRED>

]>
<EXAMPLE HUE=”RED”>
testing 1 2 3
</EXAMPLE>

[Well-formedness Constraint: No < in Attribute Values]

This constraint is very simple. The less than sign (<) cannot be part of an attribute

value. For example, the following tags are malformed:

<BOX COLOR=”<6699FF>” />
<HALFPLANE REGION=”X < 8” />

Technically, these tags are already forbidden by Production [10]. The real purpose

of this constraint is to make sure that a < doesn’t slip in through an external entity

reference. The correct way to embed a < in an attribute value is to use the <
entity reference like this:

<BOX COLOR=”<6699FF>” />
<HALFPLANE REGION=”X < 8” />

[44] EmptyElemTag ::= '<' Name (S Attribute)* S? '/>'

[Well-formedness Constraint: Unique Att Spec]

This is the same constraint as seen in Production [40]. This constraint says that a

given attribute may not appear more than once in a single, empty element. For

example, the following tags violate well-formedness:

<P COLOR=”red” COLOR=”blue” />
<P COLOR=”red” COLOR=”red” />

Look at the second example. Even the purely redundant attribute violates well-

formedness.

[60] DefaultDecl ::= '#REQUIRED' | '#IMPLIED' | (('#FIXED' S)? AttValue)

[Well-formedness Constraint: No < in Attribute Values]

This is the same constraint as seen in Production [41]. This merely states that you

can’t place a < in a default attribute value in a <!ATTLIST> declaration. For exam-

ple, these are malformed attribute declarations:

<!ATTLIST RECTANGLE COLOR CDATA “<330033>”>
<!ATTLIST HALFPLANE REGION CDATA “X < 0” />

1074 Appendixes

[66] CharRef ::= '&#' [0-9]+ ';' | '&#x' [0-9a-fA-F]+ ';'

[Well-formedness Constraint: Legal Character]

This constraint says that characters referred to by character references must be

legal characters if they were simply typed in the document. Character references

are convenient for inputting legal characters that are difficult to type on a particu-

lar system. They are not a means to input otherwise forbidden characters.

The definition of a legal character is given by Production [2]:

[2] Char ::= #x9 | #xA | #xD | [#x20-#xD7FF]
| [#xE000-#xFFFD] | [#x10000-#x10FFFF]

The main items of interest here are the characters not included. Specifically, these

are the nonprinting ASCII control characters of which the most common are the

bell, vertical tab, and form feed; the surrogates block from #xD800 to #xDFFF, and

the noncharacters #xFFFE and #xFFFF.

[68] EntityRef ::= '&' Name ';'

[Well-formedness Constraint: Entity Declared]

The intent of this well-formedness constraint is to make sure that all entities used

in the document are declared in the DTD using <!ENTITY>. However, there are two

loopholes:

1. The five predefined entities —<, ', >, ", and &— are

not required to be declared, although they may be.

2. A nonvalidating processor can allow undeclared entities if it’s possible that

they may have been declared in the external DTD subset (which a nonvalidat-

ing processor is not required to read). Specifically, it’s possible that entities

were declared in an external DTD subset if:

a. The standalone document declaration does not have

standalone=”yes”.

b. The DTD contains at least one parameter entity reference.

If either of these conditions is violated, then undeclared entities (other than the five

in loophole 1) are not allowed.

This constraint also specifies that if entities are declared, they must be declared

before they’re used in a default value in an ATTLIST declaration.

1075Appendix B ✦ XML Reference Material

[Well-formedness Constraint: Parsed Entity]

This constraint states that entity references may only contain the names of parsed

entities. Unparsed entity names are only contained in attribute values of type

ENTITY or ENTITIES. For example, this is a malformed document:

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE DOCUMENT [
<!ELEMENT DOCUMENT (IMAGE)>
<!ENTITY LOGO SYSTEM “http://www.ibiblio.org/xml/logo.gif”

NDATA GIF>
<!NOTATION GIF SYSTEM “image/gif”>
]>
<DOCUMENT>
&LOGO;

</DOCUMENT>

This is the correct way to embed the unparsed entity LOGO in the document:

<?xml version=”1.0” standalone=”no”?>
<!DOCTYPE DOCUMENT [

<!ELEMENT DOCUMENT (IMAGE)>
<!ENTITY LOGO SYSTEM “http://www.ibiblio.org/xml/logo.gif”

NDATA GIF>
<!NOTATION GIF SYSTEM “image/gif”>
<!ELEMENT IMAGE EMPTY>
<!ATTLIST IMAGE SOURCE ENTITY #REQUIRED>

]>
<DOCUMENT>
<IMAGE SOURCE=”LOGO” />

</DOCUMENT>

[Well-formedness Constraint: No Recursion]

This well-formedness constraint states that a parsed entity cannot refer to itself.

For example, this free software classic is malformed:

<!ENTITY GNU “&GNU;’s not Unix!”>

Circular references are a little trickier to spot, but are equally illegal:

<!ENTITY LEFT “Left &RIGHT; Left!”>
<!ENTITY RIGHT “Right &LEFT; Right!”>

Note that it’s only the recursion that’s malformed, not the mere use of one entity

reference inside another. The following is legal because although the COPY01 entity

depends on the ERH entity, the ERH entity does not depend on the COPY01 entity.

<!ENTITY ERH “Elliotte Rusty Harold”>
<!ENTITY COPY01 “Copyright 2001 &ERH;”>

1076 Appendixes

[69] PEReference ::= '%' Name ';'

[Well-formedness Constraint: No Recursion]

This is the same constraint that applies to Production [68]. Parameter entities can’t

recurse any more than general entities can. For example, this entity declaration is

malformed:

<!ENTITY % GNU “%GNU;’s not Unix!”>

And this entity declaration is illegal:

<!ENTITY % LEFT “Left %RIGHT; Left!”>
<!ENTITY % RIGHT “Right %LEFT; Right!”>

[Well-formedness Constraint: In DTD]

This well-formedness constraint requires that parameter entity references can only

appear in the DTD. They may not appear in the content of the document or any-

where else that’s not the DTD.

This constraint is a little funny because it’s not actually an error to include some-

thing that looks like a parameter entity reference and even has the same name as a

parameter entity in the document content. However, that will simply be interpreted

as raw character data. It is not treated as a parameter entity reference.

Validity Constraints
This reference section is designed to help you understand what is required in order

for an XML document to be valid. Validity is often useful, but is not always required.

You can do a lot with simply well-formed documents, and such documents are often

easier to write because there are fewer rules to follow. For valid documents, you

must follow the BNF grammar, the well-formedness constraints, and the validity

constraints discussed in this section.

What is a validity constraint?
A validity constraint is a rule that must be adhered to by a valid document. Not all

XML documents are, or need to be, valid. It is not necessarily an error for a docu-

ment to fail to satisfy a validity constraint. Validating processors have the option of

reporting violations of these constraints as errors, but they do not have to. All syn-

tax (BNF) errors and well-formedness violations must still be reported, however.

Only documents with DTDs may be validated. Almost all the validity constraints

deal with the relationships between the content of the document and the declara-

tions in the DTD.

1077Appendix B ✦ XML Reference Material

Validity constraints in XML 1.0
This section lists and explains all of the validity constraints in the XML 1.0 stan-

dard. These are organized according to the BNF rule each applies to.

[28] doctypedecl ::= '<!DOCTYPE' S Name (S ExternalID)? S? ('[' (markupdecl |
PEReference | S)* ']' S?)? '>'

Validity Constraint: Root Element Type

This constraint simply states that the name given in the DOCTYPE declaration must

match the name of the root element. In other words, the bold parts below all have

to be the same.

<?xml version=”1.0”?>
<!DOCTYPE ROOTNAME [
<!ELEMENT ROOTNAME (#PCDATA)>

]>
<ROOTNAME>
content

</ROOTNAME>

It’s also true that the root element must be declared — that’s done by the line in

italic; however, that declaration is required by a different validity constraint, not

this one.

[29] markupdecl ::= elementdecl | AttlistDecl | EntityDecl | NotationDecl | PI |
Comment

Validity Constraint: Proper Declaration/PE Nesting

This constraint requires that a markup declaration contain or be contained in one

or more parameter entities, but that it may not be split across a parameter entity.

For example, consider this element declaration:

<!ELEMENT PARENT (FATHER | MOTHER)>

The parameter entity declared by the following entity declaration is a valid substi-

tute for the content model, because the parameter entity contains both the < and

the >:

<!ENTITY % PARENT_DECL “<!ELEMENT PARENT (FATHER | MOTHER)>”>

Given that entity, you can rewrite the element declaration like this:

%PARENT_DECL;

1078 Appendixes

This is valid because the parameter entity contains both the < and the >. Another

option is to include only part of the element declaration in the parameter entity. For

example, if you had many elements whose content model was (FATHER | MOTHER),

then it might be useful to do something like this:

<!ENTITY % PARENT_TYPES “(FATHER | MOTHER)”>
<!ELEMENT PARENT %PARENT_TYPES;>

Here, neither the < or > is included in the parameter entity. You cannot enclose one

of the angle brackets in the parameter entity without including its mate. The follow-

ing, for example, is invalid, even though it appears to expand into a legal element

declaration:

<!ENTITY % PARENT_TYPES “(FATHER | MOTHER)>”>
<!ELEMENT PARENT %PARENT_TYPES;

Note that the problem is not that the parameter entity’s replacement text contains a

> character. That’s legal. The problem is how the > character is used to terminate

an element declaration that began in another entity.

[32] SDDecl ::= S 'standalone' Eq (("'" ('yes' | 'no') "'") | ('"' ('yes' | 'no') '"'))

Validity Constraint: Standalone Document Declaration

In short, this constraint says that a document must have a standalone document

declaration with the value no (standalone=”no”) if any other files are required to

process this file and determine its validity. Mostly this affects external DTD subsets

linked in through parameter entities. This is the case if any of the following are true:

✦ An entity used in the document is declared in an external DTD subset.

✦ The external DTD subset provides default values for attributes that appear in

the document without values.

✦ The external DTD subset changes how attribute values in the document may

be normalized.

✦ The external DTD subset declares elements whose children are only elements

(no character data or mixed content) when those children may themselves

contain white space.

Only if none of these are true may standalone have the value yes. However, it

always acceptable to give standalone the value no, even if these constraints are

satisfied and the document could stand alone.

[39] element ::= EmptyElemTag | STag content ETag

Validity Constraint: Element Valid

1079Appendix B ✦ XML Reference Material

This constraint simply states that this element matches an element declaration in

the DTD. More precisely, one of the following conditions must be true:

1. The element has no content and the element declaration declares the element

EMPTY.

2. The element contains only child elements that match the regular expression

in the element’s content model.

3. The element is declared to have mixed content, and the element’s content

contains character data and child elements that are declared in the mixed-

content declaration.

4. The element is declared ANY, and all child elements are declared.

[41] Attribute ::= Name Eq AttValue

Validity Constraint: Attribute Value Type

This constraint simply states that the attribute’s name must have been declared in

an ATTLIST declaration for the element the attribute is attached to in the DTD.

Furthermore, the attribute value must match the declared type in the ATTLIST
declaration.

[45] elementdecl ::= '<!ELEMENT' S Name S contentspec S? '>'

Validity Constraint: Unique Element Type Declaration

An element cannot be declared more than once in the DTD, whether the declara-

tions are compatible or not. For example, this is valid:

<!ELEMENT EM (#PCDATA)>

This, however, is invalid:

<!ELEMENT EM (#PCDATA)>
<!ELEMENT EM (#PCDATA | B)>

And this is also invalid:

<!ELEMENT EM (#PCDATA)>
<!ELEMENT EM (#PCDATA)>

This is most likely to cause problems when merging external DTD subsets from dif-

ferent sources that both declare some of the same elements. To a limited extent,

namespaces can help resolve this.

1080 Appendixes

[49] choice ::= '(‘'S? cp (S? '|' S? cp)* S? ')'

Validity Constraint: Proper Group/PE Nesting

This constraint states that a choice may contain or be contained in one or more

parameter entities, but that it may not be split across a parameter entity. For exam-

ple, consider this element declaration:

<!ELEMENT PARENT (FATHER | MOTHER)>

The parameter entity declared by the following entity declaration is a valid substi-

tute for the content model because the parameter entity contains both the (and

the):

<!ENTITY % PARENT_TYPES “(FATHER | MOTHER)”>

That is, you can rewrite the element declaration like this:

<!ELEMENT PARENT %PARENT_TYPES;>

This is valid because the parameter entity contains both the (and the). Another

option is to include only the child elements, and leave out both parentheses. For

example:

<!ENTITY % PARENT_TYPES “ FATHER | MOTHER “>
<!ELEMENT PARENT (%PARENT_TYPES;)>

The advantage here is that you can easily add additional elements not defined in

the parameter entity. For example:

<!ELEMENT PARENT (UNKNOWN | %PARENT_TYPES;) >

What you cannot do, however, is enclose one of the parentheses in the parameter

entity without including its mate. The following, for example, is invalid, even though

it appears to expand into a legal element declaration.

<!ENTITY % FATHER “ FATHER)”>
<!ENTITY % MOTHER “ (MOTHER | “>
<!ELEMENT PARENT %FATHER; %MOTHER;) >

The problem in this example is the ELEMENT declaration, not the ENTITY declara-

tions. It is valid to declare the entities as done here; it’s their use in the context of a

choice that makes them invalid.

[50] seq ::= '(' S? cp (S? ',' S? cp)* S? ')'

Validity Constraint: Proper Group/PE Nesting

1081Appendix B ✦ XML Reference Material

This is exactly the same constraint as in Production [49], except that it’s being

applied to sequences rather than to choices. It requires that a sequence may con-

tain or be contained in one or more parameter entities, but it may not be split

across a parameter entity. For example, consider this element declaration:

<!ELEMENT ADDRESS (NAME, STREET, CITY, STATE, ZIP)>

The parameter entity declared by the following entity declaration is a valid substi-

tute for the content model because the replacement text contains both the (and

the):

<!ENTITY % SIMPLE_ADDRESS “(NAME, STREET, CITY, STATE, ZIP)”>

That is, you can rewrite the element declaration like this:

<!ELEMENT ADDRESS %SIMPLE_ADDRESS;>

This is valid because the parameter entity contains both the (and the). Another

option is to include only the child elements, but leave out both parentheses. For

example:

<!ENTITY % SIMPLE_ADDRESS “ NAME, STREET, CITY, STATE, ZIP “>
<!ELEMENT ADDRESS(%SIMPLE_ADDRESS;)>

The advantage here is that you can easily add additional elements not defined in

the parameter entity. For example:

<!ENTITY % INTERNATIONAL_ADDRESS “ NAME, STREET, CITY,
PROVINCE?, POSTAL_CODE?, COUNTRY “>

<!ELEMENT ADDRESS ((%SIMPLE_ADDRESS;)
| (%INTERNATIONAL_ADDRESS;)) >

What you cannot do, however, is enclose one of the parentheses in the parameter

entity without including its mate. The following, for example, is invalid, even though

it appears to expand into a legal element declaration:

<!ENTITY % SIMPLE_ADDRESS_1 “(NAME, STREET, “>
<!ENTITY % SIMPLE_ADDRESS_2 “CITY, STATE, ZIP)”>
<!ELEMENT ADDRESS %SIMPLE_ADDRESS_1; %SIMPLE_ADDRESS_2; >

The problem in this example is the ELEMENT declaration, not the ENTITY declara-

tions. It is valid to declare the entities like this; it’s their use in the context of a

sequence that makes them invalid.

[51] Mixed ::= '(' S? '#PCDATA' (S? '|' S? Name)* S? ')*' | '(' S? '#PCDATA' S? ')'

Validity Constraint: Proper Group/PE Nesting

1082 Appendixes

This is exactly the same constraint as in the two previous productions, except that

it’s being applied to mixed content rather than to choices or sequences. It requires

that a mixed-content model may contain or be contained in a parameter entity, but

that the mixed-content model may not be split across a parameter entity. For exam-

ple, consider this element declaration:

<!ELEMENT P (#PCDATA | I | EM | B | STRONG)>

The parameter entity declared by the following entity declaration is a valid substi-

tute for the content model because the replacement text contains both the (and

the):

<!ENTITY % INLINES “(#PCDATA | I | EM | B | STRONG)”>

That is, you can rewrite the element declaration like this:

<!ELEMENT P %INLINES;>

This is valid because the parameter entity contains both the (and the). Another

option is to include only the content particles, but leave out both parentheses. For

example:

<!ENTITY % INLINES “ #PCDATA | I | EM | B | STRONG “>
<!ELEMENT P (%INLINES;) >

The advantage here is that you can easily add additional elements not defined in

the parameter entity. For example:

<!ELEMENT QUOTE (%INLINES; | SPEAKER) >

What you cannot do, however, is enclose one of the parentheses in the parameter

entity without including its mate. The following, for example, is invalid, even though

it appears to expand into a legal element declaration:

<!ENTITY % INLINES1 “ (#PCDATA | SPEAKER | “>
<!ENTITY % INLINES2 “ I | EM | B | STRONG)”>
<!ELEMENT QUOTE %INLINES1; %INLINES2; >

The problem in this example is the ELEMENT declaration, not the ENTITY declara-

tions. It is valid to declare the entities as is done here. It’s their use in the context of

a mixed content declaration that makes them invalid.

Validity Constraint: No Duplicate Types

No element can be repeated in a mixed-content declaration. For example, the fol-

lowing is invalid:

(#PCDATA | I | EM | I | EM)

1083Appendix B ✦ XML Reference Material

There’s really no reason to write a mixed-content declaration like this, but at the

same time, it’s not obvious what the harm is. Interestingly, pure choices do allow

content models like this:

(I | EM | I | EM)

It only becomes a problem when #PCDATA is mixed in.

This choice is ambiguous; that is, when the parser encounters an I or an EM, it
doesn’t know whether it matches the first or the second instance in the content
model. So, although legal, some parsers will report it as an error, and it should be
avoided if possible.

[56] TokenizedType ::= 'ID' | 'IDREF' | 'IDREFS' | 'ENTITY' | 'ENTITIES' |
'NMTOKEN' | 'NMTOKENS'

Validity Constraint: ID

Attribute values of ID type must be valid XML names (Production [5]). Furthermore,

a single name cannot be used more than once in the same document as the value of

an ID type attribute. For example, this is invalid given that ID is declared to be of

type ID:

<BOX ID=”B1” WIDTH=”50” HEIGHT=”50” />
<BOX ID=”B1” WIDTH=”250” HEIGHT=”250” />

This is also invalid because XML names cannot begin with numbers:

<BOX ID=”1276” WIDTH=”50” HEIGHT=”50” />

This is valid if NAME does not have type ID:

<BOX ID=”B1” WIDTH=”50” HEIGHT=”50” />
<BOX NAME=”B1” WIDTH=”250” HEIGHT=”250” />
<BOX NAME=”1276” WIDTH=”50” HEIGHT=”50” />

On the other hand, this example is invalid if NAME does have type ID, even though

the NAME attribute is different from the ID attribute. Furthermore, the following is

invalid if NAME has type ID, even though two different elements are involved:

<BOX NAME=”FRED” WIDTH=”50” HEIGHT=”50” />
<PERSON NAME=”FRED” />

ID attribute values must be unique across all elements and ID type attributes, not

just a particular class of elements or attributes.

Caution

1084 Appendixes

Validity Constraint: One ID per Element Type

Each element can have at most one attribute of type ID. For example, the following

is invalid:

<!ELEMENT PERSON (ANY) >
<!ATTLIST PERSON SS_NUMBER ID #REQUIRED>
<!ATTLIST PERSON EMPLOYEE_ID ID #REQUIRED>

Validity Constraint: ID Attribute Default

All attributes of ID type must be declared #IMPLIED or #REQUIRED. #FIXED is not

allowed. For example, the following is invalid:

<!ATTLIST PERSON SS_NUMBER ID #FIXED “SS123-45-6789”>

The problem is that if there’s more than one PERSON element in the document, the

ID validity constraint will automatically be violated.

Validity Constraint: IDREF

The IDREF validity constraint specifies that an attribute value of an IDREF type

attribute must be the same as the value of an ID type attribute of an element in the

document. Multiple IDREF attributes in the same or different elements may point to

a single element. ID attribute values must be unique (at least among other ID
attribute values in the same document), but IDREF attributes do not need to be.

Additionally, attribute values of type IDREFS must be a white space-separated list

of ID attribute values from elements in the document.

Validity Constraint: Entity Name

The value of an attribute whose declared type is ENTITY must be the name of an

unparsed general (nonparameter) entity declared in the DTD, whether in the inter-

nal or external subset.

The value of an attribute whose declared type is ENTITIES must be a white-

space–separated list of the names of unparsed general (nonparameter) entities

declared in the DTD, whether in the internal or external subset.

Validity Constraint: Name Token

The value of an attribute whose declared type is NMTOKEN must be a name token.

That is, it must be composed of one or more name characters.

The value of an attribute whose declared type is NMTOKENS must be a white-

space–separated list of name tokens. For example, this is a valid element with a

COLORS attribute of type NMTOKENS:

<BOX WIDTH=”50” HEIGHT=”50” COLORS=”red green blue” />

1085Appendix B ✦ XML Reference Material

This is an invalid element with a COLORS attribute of type NMTOKENS:

<BOX WIDTH=”50” HEIGHT=”50” COLORS=”red, green, blue” />

[58] NotationType ::= 'NOTATION' S '(' S? Name (S? '|' S? Name)* S? ')'

Validity Constraint: Notation Attributes

The value of an attribute whose declared type is NOTATION must be the name of a

notation that’s been declared in the DTD.

Validity Constraint: One Notation Per Element Type

An element cannot have more than one attribute with the notation type. A notation

describes the type of an element’s content. This constraint limits each element to

one notation type.

Validity Constraint: No Notation on Empty Element

An element that must be empty — that is, an element with the content model

EMPTY, not merely an element which in a particular instance happens to be

empty — may not have an attribute with the notation type. The reason for this con-

straint is that the notation is supposed to describe the type of the content of an ele-

ment. If the element has no content, then it can’t have a type.

[59] Enumeration ::= '(' S? Nmtoken (S? '|' S? Nmtoken)* S? ')'

Validity Constraint: Enumeration

The value of an attribute whose declared type is ENUMERATION must be a white-

space–separated list of name tokens. These name tokens do not necessarily have to

be the names of anything declared in the DTD or elsewhere. They simply have to

match the NMTOKEN production (Production [7]). For example, this is an invalid enu-

meration because commas, rather than white space, are used to separate the name

tokens:

(red, green, blue)

This is an invalid enumeration because the name tokens are enclosed in quote

marks:

(“red” “green” “blue”)

Neither commas nor quote marks are valid name characters, so there’s no possibil-

ity for these common mistakes to be misinterpreted as a white-space–separated list

of unusual name tokens.

1086 Appendixes

[60] DefaultDecl ::= '#REQUIRED' | '#IMPLIED' | (('#FIXED' S)? AttValue)

Validity Constraint: Required Attribute

If an attribute of an element is declared to be #REQUIRED, then it is a validity error

for any instance of the element not to provide a value for that attribute.

Validity Constraint: Attribute Default Legal

This common-sense validity constraint merely states that any default attribute

value provided in an ATTLIST declaration must satisfy the constraints for an

attribute of that type. For example, the following is invalid because the default

value, UNKNOWN, is not one of the choices given by the content model.

<!ATTLIST CIRCLE VISIBLE (TRUE | FALSE) “UNKNOWN”>

UNKNOWN would be invalid for this attribute whether it was provided as a default

value or in an actual element like the following:

<CIRCLE VISIBLE=”UNKNOWN” />

Validity Constraint: Fixed Attribute Default

This common sense validity constraint merely states that if an attribute is declared

#FIXED in its ATTLIST declaration, then that same ATTLIST declaration must also

provide a default value. For example, the following is invalid:

<!ATTLIST AUTHOR COMPANY CDATA #FIXED>

This is a corrected declaration:

<!ATTLIST AUTHOR COMPANY CDATA #FIXED “TIC”>

[62] includeSect ::= '<![' S? 'INCLUDE' S? '[' extSubsetDecl ']]>'

Validity Constraint: Proper Conditional Section/PE Nesting

This constraint states that if a parameter entity contains the start of an include sec-

tion, <![, or the second [in an include section, then it must also contain the end of

the same include section,]]>, and vice versa. A parameter entity may contain only

some pieces of the include section, for instance the included markup declarations

or the word INCLUDE, in which case the include section is assembled from multiple

entities. However, if it provides any one of the <![, [, or]]>, then it has to provide

the other two as well.

1087Appendix B ✦ XML Reference Material

[63] ignoreSect ::= '<![' S? 'IGNORE' S? '[' ignoreSectContents* ']]>'

Validity Constraint: Proper Conditional Section/PE Nesting

This constraint states that if a parameter entity contains the start of an ignore sec-

tion, <![, or the second [in an ignore section, then it must also contain the end of

the same ignore section,]]>, and vice versa. A parameter entity may contain only

some pieces of the ignore section, for instance the included markup declarations or

the literal IGNORE, in which case the ignore section is assembled from multiple enti-

ties. However, if it provides any one of the <![, [, or]]>, then it has to provide the

other two as well.

[68] EntityRef ::= '&' Name ';'

Validity Constraint: Entity Declared

This constraint expands on the well-formedness constraint of the same name. In a

valid document, all referenced entities must be defined by <!ENTITY> declarations

in the DTD. Definitions must precede any use of the entity they define in default

attribute values.

The loophole for standalone=”no” documents that applies to merely well-formed

documents is no longer available. The loophole for the five predefined entities —

<, ', >, ", and &— is still available. However, it is recom-

mended that you declare them, even though you don’t absolutely have to. Those

declarations would look like this:

<!ENTITY lt “&#60;”>
<!ENTITY gt “>”>
<!ENTITY amp “&#38;”>
<!ENTITY apos “'”>
<!ENTITY quot “"”>

[69] PEReference ::= '%' Name ';'

Validity Constraint: Entity Declared

This is the same constraint as the previous one, merely applied to parameter entity

references instead of to general entity references.

[76] NDataDecl ::= S 'NDATA' S Name

Validity Constraint: Notation Declared

1088 Appendixes

The name used in a notation data declaration (which is, in turn, used in an entity

definition for an unparsed entity) must be the name of a notation declared in the

DTD. For example, the following document is valid. However, if you take away the

line declaring the GIF notation (shown in bold) it becomes invalid.

<?xml version=”1.0” standalone=”yes”?>
<!DOCTYPE DOCUMENT [
<!ELEMENT DOCUMENT (IMAGE)>
<!ELEMENT IMAGE EMPTY>
<!ATTLIST IMAGE SOURCE ENTITY #REQUIRED>
<!NOTATION GIF SYSTEM “image/gif”>
<!ENTITY LOGO SYSTEM “http://www.ibiblio.org/xml/logo.gif”

NDATA GIF>
]>
<DOCUMENT>
<IMAGE SOURCE=”LOGO”/>

</DOCUMENT>

✦ ✦ ✦

The XML 1.0
Specification,
Second Edition

This appendix contains the complete second edition of the

XML 1.0 specification as published by the World Wide

Web Consortium (W3C). This document has been reviewed by

W3C Members and other interested parties and has been

endorsed by the Director as a W3C Recommendation. It is a

stable document and may be used as reference material or

cited as a normative reference from another document.

This document isn’t always easy reading. Precision is pre-

ferred over clarity. However, when you’re banging your head

against the wall, and trying to decide whether the problem is

with your XML processor or with your XML code, this is the

deciding document. Therefore, it’s important to have at least a

cursory familiarity with it, and to be able to find things in it

when you need to.

What’s New in the Second Edition
The second edition of XML does not change the allowed

syntax of XML documents in any way. Therefore, this is still

XML 1.0. The changes are mostly editorial. A number of points

that proved confusing have been clarified. Some examples

that didn’t show what they were supposed to show have been

fixed. Unreachable, and therefore irrelevant, rules in the BNF

grammar have been deleted. And the writing has been tight-

ened up considerably.

However, all documents that were well formed with respect to

the first edition are still well formed. All documents that were

not well formed with respect to the first edition are still not

well formed. All documents that were valid with respect to the

first edition are still valid, and all documents that were invalid

with respect to the first edition are still invalid.

CCA P P E N D I X

✦ ✦ ✦ ✦

1090 Appendixes

In a few cases, the second edition clarifies points which particular parsers got

wrong in the past. For instance, the rules that led some parser vendors to incor-

rectly believe that three-letter language codes in xml:lang attributes were illegal

have been deleted. Therefore, a few documents that XML first-edition parsers

reported as malformed may now seem to have become well formed when checked

with a newer version of the parser. However, in these cases, it was the parser that

was giving incorrect information. These documents were always well formed. The

parser misinterpreted the specification and therefore gave faulty results. The sec-

ond edition of the specification leaves much less room for misinterpretation.

Extensible Markup Language (XML) 1.0
(Second Edition)

W3C Recommendation 6 October 2000
This version:

http://www.w3.org/TR/2000/REC-xml-20001006 (XHTML, XML, PDF, XHTML

review version with color-coded revision indicators)

Latest version:

http://www.w3.org/TR/REC-xml

Previous versions:

http://www.w3.org/TR/2000/WD-xml-2e-20000814

http://www.w3.org/TR/1998/REC-xml-19980210

Editors:

Tim Bray, Textuality and Netscape <tbray@textuality.com>

Jean Paoli, Microsoft <jeanpa@microsoft.com>

C. M. Sperberg-McQueen, University of Illinois at Chicago and Text Encoding

Initiative <cmsmcq@uic.edu>

Eve Maler, Sun Microsystems, Inc. <eve.maler@east.sun.com> - Second Edition

1091Appendix C ✦ The XML 1.0 Specification, Second Edition

Copyright © 2000 W3C® (MIT, INRIA, Keio), All Rights Reserved. W3C liability,
trademark, document use, and software licensing rules apply.

Abstract
The Extensible Markup Language (XML) is a subset of SGML that is completely

described in this document. Its goal is to enable generic SGML to be served,

received, and processed on the Web in the way that is now possible with HTML.

XML has been designed for ease of implementation and for interoperability with

both SGML and HTML.

Status of this Document
This document has been reviewed by W3C Members and other interested parties

and has been endorsed by the Director as a W3C Recommendation. It is a stable

document and may be used as reference material or cited as a normative reference

from another document. W3C’s role in making the Recommendation is to draw

attention to the specification and to promote its widespread deployment. This

enhances the functionality and interoperability of the Web.

This document specifies a syntax created by subsetting an existing, widely used

international text processing standard (Standard Generalized Markup Language,

ISO 8879:1986(E) as amended and corrected) for use on the World Wide Web.

It is a product of the W3C XML Activity, details of which can be found at

http://www.w3.org/XML. The English version of this specification is the only

normative version. However, for translations of this document, see

http://www.w3.org/XML/#trans. A list of current W3C Recommendations

and other technical documents can be found at http://www.w3.org/TR.

This second edition is not a new version of XML (first published 10 February 1998);

it merely incorporates the changes dictated by the first-edition errata (available at

http://www.w3.org/XML/xml-19980210-errata) as a convenience to readers.

The errata list for this second edition is available at http://www.w3.org/XML/
xml-V10-2e-errata.

Please report errors in this document to xml-editor@w3.org; archives are available.

NOTE: C. M. Sperberg-McQueen’s affiliation has changed since the publication of
the first edition. He is now at the World Wide Web Consortium, and can be con-
tacted at cmsmcq@w3.org.

1092 Appendixes

Table of Contents
1 Introduction

1.1 Origin and Goals

1.2 Terminology

2 Documents

2.1 Well-Formed XML Documents

2.2 Characters

2.3 Common Syntactic Constructs

2.4 Character Data and Markup

2.5 Comments

2.6 Processing Instructions

2.7 CDATA Sections

2.8 Prolog and Document Type Declaration

2.9 Standalone Document Declaration

2.10 White Space Handling

2.11 End-of-Line Handling

2.12 Language Identification

3 Logical Structures

3.1 Start-Tags, End-Tags, and Empty-Element Tags

3.2 Element Type Declarations

3.2.1 Element Content

3.2.2 Mixed Content

3.3 Attribute-List Declarations

1093Appendix C ✦ The XML 1.0 Specification, Second Edition

3.3.1 Attribute Types

3.3.2 Attribute Defaults

3.3.3 Attribute-Value Normalization

3.4 Conditional Sections

4 Physical Structures

4.1 Character and Entity References

4.2 Entity Declarations

4.2.1 Internal Entities

4.2.2 External Entities

4.3 Parsed Entities

4.3.1 The Text Declaration

4.3.2 Well-Formed Parsed Entities

4.3.3 Character Encoding in Entities

4.4 XML Processor Treatment of Entities and References

4.4.1 Not Recognized

4.4.2 Included

4.4.3 Included If Validating

4.4.4 Forbidden

4.4.5 Included in Literal

4.4.6 Notify

4.4.7 Bypassed

4.4.8 Included as PE

1094 Appendixes

4.5 Construction of Internal Entity Replacement Text

4.6 Predefined Entities

4.7 Notation Declarations

4.8 Document Entity

5 Conformance

5.1 Validating and Non-Validating Processors

5.2 Using XML Processors

6 Notation

Appendices
A References

A.1 Normative References

A.2 Other References

B Character Classes

C XML and SGML (Non-Normative)

D Expansion of Entity and Character References (Non-Normative)

E Deterministic Content Models (Non-Normative)

F Autodetection of Character Encodings (Non-Normative)

F.1 Detection Without External Encoding Information

F.2 Priorities in the Presence of External Encoding Information

G W3C XML Working Group (Non-Normative)

H W3C XML Core Group (Non-Normative)

I Production Notes (Non-Normative)

1095Appendix C ✦ The XML 1.0 Specification, Second Edition

1 Introduction
Extensible Markup Language, abbreviated XML, describes a class of data objects

called XML documents and partially describes the behavior of computer programs

which process them. XML is an application profile or restricted form of SGML, the

Standard Generalized Markup Language [ISO 8879]. By construction, XML docu-

ments are conforming SGML documents.

XML documents are made up of storage units called entities, which contain either

parsed or unparsed data. Parsed data is made up of characters, some of which form

character data, and some of which form markup. Markup encodes a description of

the document’s storage layout and logical structure. XML provides a mechanism to

impose constraints on the storage layout and logical structure.

[Definition: A software module called an XML processor is used to read XML docu-

ments and provide access to their content and structure.] [Definition: It is assumed

that an XML processor is doing its work on behalf of another module, called the

application.] This specification describes the required behavior of an XML proces-

sor in terms of how it must read XML data and the information it must provide to

the application.

1.1 Origin and Goals
XML was developed by an XML Working Group (originally known as the SGML

Editorial Review Board) formed under the auspices of the World Wide Web

Consortium (W3C) in 1996. It was chaired by Jon Bosak of Sun Microsystems with

the active participation of an XML Special Interest Group (previously known as the

SGML Working Group) also organized by the W3C. The membership of the XML

Working Group is given in an appendix. Dan Connolly served as the WG’s contact

with the W3C.

The design goals for XML are:

1. XML shall be straightforwardly usable over the Internet.

2. XML shall support a wide variety of applications.

3. XML shall be compatible with SGML.

4. It shall be easy to write programs which process XML documents.

5. The number of optional features in XML is to be kept to the absolute mini-

mum, ideally zero.

6. XML documents should be human-legible and reasonably clear.

7. The XML design should be prepared quickly.

8. The design of XML shall be formal and concise.

9. XML documents shall be easy to create.

10. Terseness in XML markup is of minimal importance.

1096 Appendixes

This specification, together with associated standards (Unicode and ISO/IEC 10646

for characters, Internet RFC 1766 for language identification tags, ISO 639 for lan-

guage name codes, and ISO 3166 for country name codes), provides all the informa-

tion necessary to understand XML Version 1.0 and construct computer programs to

process it.

This version of the XML specification may be distributed freely, as long as all text

and legal notices remain intact.

1.2 Terminology
The terminology used to describe XML documents is defined in the body of this

specification. The terms defined in the following list are used in building those defi-

nitions and in describing the actions of an XML processor:

may

[Definition: Conforming documents and XML processors are permitted to but need

not behave as described.]

must

[Definition: Conforming documents and XML processors are required to behave as

described; otherwise they are in error.]

error

[Definition: A violation of the rules of this specification; results are undefined.

Conforming software may detect and report an error and may recover from it.]

fatal error

[Definition: An error which a conforming XML processor must detect and report to

the application. After encountering a fatal error, the processor may continue pro-

cessing the data to search for further errors and may report such errors to the

application. In order to support correction of errors, the processor may make

unprocessed data from the document (with intermingled character data and

markup) available to the application. Once a fatal error is detected, however, the

processor must not continue normal processing (i.e., it must not continue to pass

character data and information about the document’s logical structure to the appli-

cation in the normal way).]

1097Appendix C ✦ The XML 1.0 Specification, Second Edition

at user option

[Definition: Conforming software may or must (depending on the modal verb in the

sentence) behave as described; if it does, it must provide users a means to enable

or disable the behavior described.]

validity constraint

[Definition: A rule which applies to all valid XML documents. Violations of validity

constraints are errors; they must, at user option, be reported by validating XML

processors.]

well-formedness constraint

[Definition: A rule which applies to all well-formed XML documents. Violations of

well-formedness constraints are fatal errors.]

match

[Definition: (Of strings or names:) Two strings or names being compared must be

identical. Characters with multiple possible representations in ISO/IEC 10646 (e.g.

characters with both precomposed and base+diacritic forms) match only if they

have the same representation in both strings. No case folding is performed. (Of

strings and rules in the grammar:) A string matches a grammatical production if it

belongs to the language generated by that production. (Of content and content

models:) An element matches its declaration when it conforms in the fashion

described in the constraint [VC: Element Valid].]

for compatibility

[Definition: Marks a sentence describing a feature of XML included solely to ensure

that XML remains compatible with SGML.]

for interoperability

[Definition: Marks a sentence describing a non-binding recommendation included

to increase the chances that XML documents can be processed by the existing

installed base of SGML processors which predate the WebSGML Adaptations Annex

to ISO 8879.]

2 Documents
[Definition: A data object is an XML document if it is well-formed, as defined in this

specification. A well-formed XML document may in addition be valid if it meets cer-

tain further constraints.]

1098 Appendixes

Each XML document has both a logical and a physical structure. Physically, the

document is composed of units called entities. An entity may refer to other entities

to cause their inclusion in the document. A document begins in a “root” or docu-

ment entity. Logically, the document is composed of declarations, elements, com-

ments, character references, and processing instructions, all of which are indicated

in the document by explicit markup. The logical and physical structures must nest

properly, as described in 4.3.2 Well-Formed Parsed Entities.

2.1 Well-Formed XML Documents
[Definition: A textual object is a well-formed XML document if:]

1. Taken as a whole, it matches the production labeled document.

2. It meets all the well-formedness constraints given in this specification.

3. Each of the parsed entities which is referenced directly or indirectly within

the document is well-formed.

Document
[1] document ::= prolog element Misc*

Matching the document production implies that:

1. It contains one or more elements.

2. [Definition: There is exactly one element, called the root, or document ele-

ment, no part of which appears in the content of any other element.] For all

other elements, if the start-tag is in the content of another element, the end-

tag is in the content of the same element. More simply stated, the elements,

delimited by start- and end-tags, nest properly within each other.

[Definition: As a consequence of this, for each non-root element C in the document,

there is one other element P in the document such that C is in the content of P, but

is not in the content of any other element that is in the content of P. P is referred to

as the parent of C, and C as a child of P.]

2.2 Characters
[Definition: A parsed entity contains text, a sequence of characters, which may rep-

resent markup or character data.] [Definition: A character is an atomic unit of text

as specified by ISO/IEC 10646 [ISO/IEC 10646] (see also [ISO/IEC 10646-2000]). Legal

characters are tab, carriage return, line feed, and the legal characters of Unicode

and ISO/IEC 10646. The versions of these standards cited in A.1 Normative
References were current at the time this document was prepared. New characters

may be added to these standards by amendments or new editions. Consequently,

XML processors must accept any character in the range specified for Char. The use

1099Appendix C ✦ The XML 1.0 Specification, Second Edition

of “compatibility characters”, as defined in section 6.8 of [Unicode] (see also D21 in

section 3.6 of [Unicode3]), is discouraged.]

Character Range
[2] Char ::= #x9 | #xA | #xD | [#x20-#xD7FF] /* any Unicode

| [#xE000-#xFFFD] | [#x10000-#x10FFFF] character,
excluding the
surrogate
blocks, FFFE,
and FFFF. */

The mechanism for encoding character code points into bit patterns may vary from

entity to entity. All XML processors must accept the UTF-8 and UTF-16 encodings of

10646; the mechanisms for signaling which of the two is in use, or for bringing other

encodings into play, are discussed later, in 4.3.3 Character Encoding in Entities.

2.3 Common Syntactic Constructs
This section defines some symbols used widely in the grammar.

S (white space) consists of one or more space (#x20) characters, carriage returns,

line feeds, or tabs.

White Space
[3] S ::= (#x20 | #x9 | #xD | #xA)+

Characters are classified for convenience as letters, digits, or other characters. A

letter consists of an alphabetic or syllabic base character or an ideographic charac-

ter. Full definitions of the specific characters in each class are given in B Character
Classes.

[Definition: A Name is a token beginning with a letter or one of a few punctuation

characters, and continuing with letters, digits, hyphens, underscores, colons, or full

stops, together known as name characters.] Names beginning with the string “xml”,

or any string which would match ((‘X’|’x’) (‘M’|’m’) (‘L’|’l’)), are

reserved for standardization in this or future versions of this specification.

NOTE: The Namespaces in XML Recommendation [XML Names] assigns a mean-
ing to names containing colon characters. Therefore, authors should not use the
colon in XML names except for namespace purposes, but XML processors must
accept the colon as a name character.

An Nmtoken (name token) is any mixture of name characters.

1100 Appendixes

Names and Tokens
[4] NameChar ::= Letter | Digit | ‘.’ | ‘-’ | ‘_’ | ‘:’ |

CombiningChar | Extender
[5] Name ::= (Letter | ‘_’ | ‘:’) (NameChar)*
[6] Names ::= Name (S Name)*
[7] Nmtoken ::= (NameChar)+
[8] Nmtokens ::= Nmtoken (S Nmtoken)*

Literal data is any quoted string not containing the quotation mark used as a delim-

iter for that string. Literals are used for specifying the content of internal entities

(EntityValue), the values of attributes (AttValue), and external identifiers

(SystemLiteral). Note that a SystemLiteral can be parsed without scanning for

markup.

Literals
[9] EntityValue ::= ‘“‘ ([^%&”] | PEReference | Reference)* ‘“‘

| “‘“ ([^%&’] | PEReference | Reference)* “‘“
[10] AttValue ::= ‘“‘ ([^<&”] | Reference)* ‘“‘

| “‘“ ([^<&’] | Reference)* “‘“
[11] SystemLiteral ::= (‘“‘ [^”]* ‘“‘) | (“‘“ [^’]* “‘“)
[12] PubidLiteral ::= ‘“‘ PubidChar* ‘“‘

| “‘“ (PubidChar - “‘“)* “‘“
[13] PubidChar ::= #x20 | #xD | #xA | [a-zA-Z0-9]

| [-’()+,./:=?;!*#@$_%]

NOTE: Although the EntityValue production allows the definition of an entity con-
sisting of a single explicit < in the literal (e.g. <!ENTITY mylt “<”>), it is strongly
advised to avoid this practice since any reference to that entity will cause a well-
formedness error.

2.4 Character Data and Markup
Text consists of intermingled character data and markup. [Definition: Markup takes

the form of start-tags, end-tags, empty-element tags, entity references, character ref-

erences, comments, CDATA section delimiters, document type declarations, pro-

cessing instructions, XML declarations, text declarations, and any white space that

is at the top level of the document entity (that is, outside the document element

and not inside any other markup).]

[Definition: All text that is not markup constitutes the character data of the

document.]

The ampersand character (&) and the left angle bracket (<) may appear in their lit-

eral form only when used as markup delimiters, or within a comment, a processing

instruction, or a CDATA section. If they are needed elsewhere, they must be

escaped using either numeric character references or the strings “&” and

“<” respectively. The right angle bracket (>) may be represented using the string

1101Appendix C ✦ The XML 1.0 Specification, Second Edition

“>”, and must, for compatibility, be escaped using “>” or a character refer-

ence when it appears in the string “]]>” in content, when that string is not marking

the end of a CDATA section.

In the content of elements, character data is any string of characters which does

not contain the start-delimiter of any markup. In a CDATA section, character data is

any string of characters not including the CDATA-section-close delimiter, “]]>”.

To allow attribute values to contain both single and double quotes, the apostrophe

or single-quote character (') may be represented as “'”, and the double-quote

character (") as “"”.

Character Data
[14] CharData ::= [^<&]* - ([^<&]* ‘]]>’ [^<&]*)

2.5 Comments
[Definition: Comments may appear anywhere in a document outside other markup;

in addition, they may appear within the document type declaration at places

allowed by the grammar. They are not part of the document’s character data; an

XML processor may, but need not, make it possible for an application to retrieve

the text of comments. For compatibility, the string “--” (double-hyphen) must not

occur within comments.] Parameter entity references are not recognized within

comments.

Comments
[15] Comment ::= ‘<!--’ ((Char - ‘-’)|(‘-’ (Char - ‘-’)))*’-->’

An example of a comment:

<!-- declarations for <head> & <body> -->

Note that the grammar does not allow a comment ending in --->. The following

example is not well-formed.

<!-- B+, B, or B--->

2.6 Processing Instructions
[Definition: Processing instructions (PIs) allow documents to contain instructions

for applications.]

Processing Instructions
[16] PI ::= ‘<?’ PITarget

(S (Char* - (Char* ‘?>’ Char*)))? ‘?>’
[17] PITarget ::= Name - ((‘X’ | ‘x’) (‘M’ | ‘m’) (‘L’ | ‘l’))

1102 Appendixes

PIs are not part of the document’s character data, but must be passed through to

the application. The PI begins with a target (PITarget) used to identify the applica-

tion to which the instruction is directed. The target names “XML”, “xml”, and so on

are reserved for standardization in this or future versions of this specification. The

XML Notation mechanism may be used for formal declaration of PI targets.

Parameter entity references are not recognized within processing instructions.

2.7 CDATA Sections
[Definition: CDATA sections may occur anywhere character data may occur; they

are used to escape blocks of text containing characters which would otherwise be

recognized as markup. CDATA sections begin with the string “<![CDATA[“ and end

with the string “]]>”:]

CDATA Sections
[18] CDSect ::= CDStart CData CDEnd
[19] CDStart ::= ‘<![CDATA[‘
[20] CData ::= (Char* - (Char* ‘]]>’ Char*))
[21] CDEnd ::= ‘]]>’

Within a CDATA section, only the CDEnd string is recognized as markup, so that left

angle brackets and ampersands may occur in their literal form; they need not (and

cannot) be escaped using “<” and “&”. CDATA sections cannot nest.

An example of a CDATA section, in which “<greeting>” and “</greeting>” are

recognized as character data, not markup:

<![CDATA[<greeting>Hello, world!</greeting>]]>

2.8 Prolog and Document Type Declaration
[Definition: XML documents should begin with an XML declaration which specifies

the version of XML being used.] For example, the following is a complete XML docu-

ment, well-formed but not valid:

<?xml version=”1.0”?> <greeting>Hello, world!</greeting>

and so is this:

<greeting>Hello, world!</greeting>

The version number “1.0” should be used to indicate conformance to this version

of this specification; it is an error for a document to use the value “1.0” if it does

not conform to this version of this specification. It is the intent of the XML working

group to give later versions of this specification numbers other than “1.0”, but this

intent does not indicate a commitment to produce any future versions of XML, nor

if any are produced, to use any particular numbering scheme. Since future versions

1103Appendix C ✦ The XML 1.0 Specification, Second Edition

are not ruled out, this construct is provided as a means to allow the possibility of

automatic version recognition, should it become necessary. Processors may signal

an error if they receive documents labeled with versions they do not support.

The function of the markup in an XML document is to describe its storage and logi-

cal structure and to associate attribute-value pairs with its logical structures. XML

provides a mechanism, the document type declaration, to define constraints on the

logical structure and to support the use of predefined storage units. [Definition: An

XML document is valid if it has an associated document type declaration and if the

document complies with the constraints expressed in it.]

The document type declaration must appear before the first element in the docu-

ment.

Prolog
[22] prolog ::= XMLDecl? Misc* (doctypedecl Misc*)?
[23] XMLDecl ::= ‘<?xml’ VersionInfo EncodingDecl?

SDDecl? S? ‘?>’
[24] VersionInfo ::= S ‘version’ Eq (“‘“ VersionNum “‘“

| ‘“‘ VersionNum ‘“‘)/* */
[25] Eq ::= S? ‘=’ S?
[26] VersionNum ::= ([a-zA-Z0-9_.:] | ‘-’)+
[27] Misc ::= Comment | PI | S

[Definition: The XML document type declaration contains or points to markup dec-

larations that provide a grammar for a class of documents. This grammar is known

as a document type definition, or DTD. The document type declaration can point to

an external subset (a special kind of external entity) containing markup declara-

tions, or can contain the markup declarations directly in an internal subset, or can

do both. The DTD for a document consists of both subsets taken together.]

[Definition: A markup declaration is an element type declaration, an attribute-list

declaration, an entity declaration, or a notation declaration.] These declarations

may be contained in whole or in part within parameter entities, as described in the

well-formedness and validity constraints below. For further information, see 4
Physical Structures.

Document Type Definition
[28] doctypedecl ::= ‘<!DOCTYPE’ S Name (S ExternalID)?

S? (‘[‘ (markupdecl | DeclSep)* ‘]’
S?)? ‘>’
[VC: Root Element Type]
[WFC: External Subset] /* */

[28a] DeclSep ::= PEReference | S
[WFC: PE Between Declarations] /* */

[29] markupdecl ::= elementdecl | AttlistDecl | EntityDecl |
NotationDecl | PI | Comment
[VC: Proper Declaration/PE Nesting]
[WFC: PEs in Internal Subset]

1104 Appendixes

Note that it is possible to construct a well-formed document containing a doctype-

decl that neither points to an external subset nor contains an internal subset.

The markup declarations may be made up in whole or in part of the replacement

text of parameter entities. The productions later in this specification for individual

nonterminals (elementdecl, AttlistDecl, and so on) describe the declarations after
all the parameter entities have been included.

Parameter entity references are recognized anywhere in the DTD (internal and

external subsets and external parameter entities), except in literals, processing

instructions, comments, and the contents of ignored conditional sections (see 3.4
Conditional Sections). They are also recognized in entity value literals. The use of

parameter entities in the internal subset is restricted as described below.

Validity constraint: Root Element Type

The Name in the document type declaration must match the element type of the

root element.

Validity constraint: Proper Declaration/PE Nesting

Parameter-entity replacement text must be properly nested with markup declara-

tions. That is to say, if either the first character or the last character of a markup

declaration (markupdecl above) is contained in the replacement text for a parame-

ter-entity reference, both must be contained in the same replacement text.

Well-formedness constraint: PEs in Internal Subset

In the internal DTD subset, parameter-entity references can occur only where

markup declarations can occur, not within markup declarations. (This does not

apply to references that occur in external parameter entities or to the external

subset.)

Well-formedness constraint: External Subset

The external subset, if any, must match the production for extSubset.

Well-formedness constraint: PE Between Declarations

The replacement text of a parameter entity reference in a DeclSep must match the

production extSubsetDecl.

Like the internal subset, the external subset and any external parameter entities ref-

erenced in a DeclSep must consist of a series of complete markup declarations of

the types allowed by the non-terminal symbol markupdecl, interspersed with white

space or parameter-entity references. However, portions of the contents of the

1105Appendix C ✦ The XML 1.0 Specification, Second Edition

external subset or of these external parameter entities may conditionally be

ignored by using the conditional section construct; this is not allowed in the inter-

nal subset.

External Subset
[30] extSubset ::= TextDecl? extSubsetDecl
[31] extSubsetDecl ::= (markupdecl | conditionalSect |

DeclSep)* /* */

The external subset and external parameter entities also differ from the internal

subset in that in them, parameter-entity references are permitted within markup

declarations, not only between markup declarations.

An example of an XML document with a document type declaration:

<?xml version=”1.0”?> <!DOCTYPE greeting SYSTEM “hello.dtd”>
<greeting>Hello, world!</greeting>

The system identifier “hello.dtd” gives the address (a URI reference) of a DTD for

the document.

The declarations can also be given locally, as in this example:

<?xml version=”1.0” encoding=”UTF-8” ?>
<!DOCTYPE greeting [
<!ELEMENT greeting (#PCDATA)>

]>
<greeting>Hello, world!</greeting>

If both the external and internal subsets are used, the internal subset is considered

to occur before the external subset. This has the effect that entity and attribute-

list declarations in the internal subset take precedence over those in the external

subset.

2.9 Standalone Document Declaration
Markup declarations can affect the content of the document, as passed from an

XML processor to an application; examples are attribute defaults and entity decla-

rations. The standalone document declaration, which may appear as a component

of the XML declaration, signals whether or not there are such declarations which

appear external to the document entity or in parameter entities. [Definition: An

external markup declaration is defined as a markup declaration occurring in the

external subset or in a parameter entity (external or internal, the latter being

included because non-validating processors are not required to read them).]

1106 Appendixes

Standalone Document Declaration
[32] SDDecl ::= S ‘standalone’ Eq ((“‘“ (‘yes’ | ‘no’) “‘“)

| (‘“‘ (‘yes’ | ‘no’) ‘“‘))
[VC: Standalone Document Declaration]

In a standalone document declaration, the value “yes” indicates that there are no

external markup declarations which affect the information passed from the XML

processor to the application. The value “no” indicates that there are or may be

such external markup declarations. Note that the standalone document declaration

only denotes the presence of external declarations; the presence, in a document, of

references to external entities, when those entities are internally declared, does not

change its standalone status.

If there are no external markup declarations, the standalone document declaration

has no meaning. If there are external markup declarations but there is no stan-

dalone document declaration, the value “no” is assumed.

Any XML document for which standalone=”no” holds can be converted algorith-

mically to a standalone document, which may be desirable for some network deliv-

ery applications.

Validity constraint: Standalone Document Declaration

The standalone document declaration must have the value “no” if any external

markup declarations contain declarations of:

✦ attributes with default values, if elements to which these attributes apply

appear in the document without specifications of values for these attributes, or

✦ entities (other than amp, lt, gt, apos, quot), if references to those entities

appear in the document, or

✦ attributes with values subject to normalization, where the attribute appears in

the document with a value which will change as a result of normalization, or

✦ element types with element content, if white space occurs directly within any

instance of those types.

An example XML declaration with a standalone document declaration:

<?xml version=”1.0” standalone=’yes’?>

2.10 White Space Handling
In editing XML documents, it is often convenient to use “white space” (spaces, tabs,

and blank lines) to set apart the markup for greater readability. Such white space is

typically not intended for inclusion in the delivered version of the document. On

the other hand, “significant” white space that should be preserved in the delivered

version is common, for example in poetry and source code.

1107Appendix C ✦ The XML 1.0 Specification, Second Edition

An XML processor must always pass all characters in a document that are not

markup through to the application. A validating XML processor must also inform

the application which of these characters constitute white space appearing in ele-

ment content.

A special attribute named xml:space may be attached to an element to signal an

intention that in that element, white space should be preserved by applications. In

valid documents, this attribute, like any other, must be declared if it is used. When

declared, it must be given as an enumerated type whose values are one or both of

“default” and “preserve”. For example:

<!ATTLIST poem xml:space (default|preserve) ‘preserve’>

<!-- -->
<!ATTLIST pre xml:space (preserve) #FIXED ‘preserve’>

The value “default” signals that applications’ default white-space processing modes

are acceptable for this element; the value “preserve” indicates the intent that appli-

cations preserve all the white space. This declared intent is considered to apply to

all elements within the content of the element where it is specified, unless overri-

den with another instance of the xml:space attribute.

The root element of any document is considered to have signaled no intentions as

regards application space handling, unless it provides a value for this attribute or

the attribute is declared with a default value.

2.11 End-of-Line Handling
XML parsed entities are often stored in computer files which, for editing conve-

nience, are organized into lines. These lines are typically separated by some combi-

nation of the characters carriage-return (#xD) and line-feed (#xA).

To simplify the tasks of applications, the characters passed to an application by the

XML processor must be as if the XML processor normalized all line breaks in exter-

nal parsed entities (including the document entity) on input, before parsing, by

translating both the two-character sequence #xD #xA and any #xD that is not fol-

lowed by #xA to a single #xA character.

2.12 Language Identification
In document processing, it is often useful to identify the natural or formal language

in which the content is written. A special attribute named xml:lang may be

inserted in documents to specify the language used in the contents and attribute

values of any element in an XML document. In valid documents, this attribute, like

any other, must be declared if it is used. The values of the attribute are language

identifiers as defined by [IETF RFC 1766], Tags for the Identification of Languages, or

its successor on the IETF Standards Track.

1108 Appendixes

[IETF RFC 1766] tags are constructed from two-letter language codes as defined by
[ISO 639], from two-letter country codes as defined by [ISO 3166], or from lan-
guage identifiers registered with the Internet Assigned Numbers Authority [IANA-
LANGCODES]. It is expected that the successor to [IETF RFC 1766] will introduce
three-letter language codes for languages not presently covered by [ISO 639].

(Productions 33 through 38 have been removed.)

For example:

<p xml:lang=”en”>The quick brown fox jumps over the lazy
dog.</p>
<p xml:lang=”en-GB”>What colour is it?</p>
<p xml:lang=”en-US”>What color is it?</p>
<sp who=”Faust” desc=’leise’ xml:lang=”de”>
<l>Habe nun, ach! Philosophie,</l>
<l>Juristerei, und Medizin</l>
<l>und leider auch Theologie</l>
<l>durchaus studiert mit heißem Bem±h’n.</l>

</sp>

The intent declared with xml:lang is considered to apply to all attributes and con-

tent of the element where it is specified, unless overridden with an instance of

xml:lang on another element within that content.

A simple declaration for xml:lang might take the form

xml:lang NMTOKEN #IMPLIED

but specific default values may also be given, if appropriate. In a collection of

French poems for English students, with glosses and notes in English, the xml:lang
attribute might be declared this way:

<!ATTLIST poem xml:lang NMTOKEN ‘fr’>
<!ATTLIST gloss xml:lang NMTOKEN ‘en’>
<!ATTLIST note xml:lang NMTOKEN ‘en’>

3 Logical Structures
[Definition: Each XML document contains one or more elements, the boundaries of

which are either delimited by start-tags and end-tags, or, for empty elements, by an

empty-element tag. Each element has a type, identified by name, sometimes called

its “generic identifier” (GI), and may have a set of attribute specifications.] Each

attribute specification has a name and a value.

Element
[39] element ::= EmptyElemTag | STag content ETag

[WFC: Element Type Match]
[VC: Element Valid]

Note

1109Appendix C ✦ The XML 1.0 Specification, Second Edition

This specification does not constrain the semantics, use, or (beyond syntax) names

of the element types and attributes, except that names beginning with a match to

((‘X’|’x’)(‘M’|’m’)(‘L’|’l’)) are reserved for standardization in this or

future versions of this specification.

Well-formedness constraint: Element Type Match

The Name in an element’s end-tag must match the element type in the start-tag.

Validity constraint: Element Valid

An element is valid if there is a declaration matching elementdecl where the Name

matches the element type, and one of the following holds:

1. The declaration matches EMPTY and the element has no content.

2. The declaration matches children and the sequence of child elements belongs

to the language generated by the regular expression in the content model,

with optional white space (characters matching the nonterminal S) between

the start-tag and the first child element, between child elements, or between

the last child element and the end-tag. Note that a CDATA section containing

only white space does not match the nonterminal S, and hence cannot appear

in these positions.

3. The declaration matches Mixed and the content consists of character data

and child elements whose types match names in the content model.

4. The declaration matches ANY, and the types of any child elements have been

declared.

3.1 Start-Tags, End-Tags, and Empty-Element Tags
[Definition: The beginning of every non-empty XML element is marked by a start-
tag.]

Start-tag
[40] STag ::= ‘<’ Name (S Attribute)* S? ‘>’

[WFC: Unique Att Spec]
[41] Attribute ::= Name Eq AttValue

[VC: Attribute Value Type]
[WFC: No External Entity References]
[WFC: No < in Attribute Values]

The Name in the start- and end-tags gives the element’s type. [Definition: The Name-

AttValue pairs are referred to as the attribute specifications of the element],

[Definition: with the Name in each pair referred to as the attribute name] and

[Definition: the content of the AttValue (the text between the ‘ or “ delimiters) as

the attribute value.] Note that the order of attribute specifications in a start-tag or

empty-element tag is not significant.

1110 Appendixes

Well-formedness constraint: Unique Att Spec

No attribute name may appear more than once in the same start-tag or empty-

element tag.

Validity constraint: Attribute Value Type

The attribute must have been declared; the value must be of the type declared for

it. (For attribute types, see 3.3 Attribute-List Declarations.)

Well-formedness constraint: No External Entity References

Attribute values cannot contain direct or indirect entity references to external

entities.

Well-formedness constraint: No < in Attribute Values

The replacement text of any entity referred to directly or indirectly in an attribute

value must not contain a <.

An example of a start-tag:

<termdef id=”dt-dog” term=”dog”>

[Definition: The end of every element that begins with a start-tag must be marked

by an end-tag containing a name that echoes the element’s type as given in the

start-tag:]

End-tag
[42] ETag ::= ‘</’ Name S? ‘>’

An example of an end-tag:

</termdef>

[Definition: The text between the start-tag and end-tag is called the element’s

content:]

Content of Elements
[43] content ::= CharData? ((element | Reference | CDSect

| PI | Comment) CharData?)* /* */

[Definition: An element with no content is said to be empty.] The representation of

an empty element is either a start-tag immediately followed by an end-tag, or an

empty-element tag. [Definition: An empty-element tag takes a special form:]

1111Appendix C ✦ The XML 1.0 Specification, Second Edition

Tags for Empty Elements
[44] EmptyElemTag ::= ‘<’ Name (S Attribute)* S? ‘/>’

[WFC: Unique Att Spec]

Empty-element tags may be used for any element which has no content, whether

or not it is declared using the keyword EMPTY. For interoperability, the empty-

element tag should be used, and should only be used, for elements which are

declared EMPTY.

Examples of empty elements:

<IMG align=”left”
src=”http://www.w3.org/Icons/WWW/w3c_home” />

</br>

3.2 Element Type Declarations
The element structure of an XML document may, for validation purposes, be con-

strained using element type and attribute-list declarations. An element type decla-

ration constrains the element’s content.

Element type declarations often constrain which element types can appear as chil-

dren of the element. At user option, an XML processor may issue a warning when a

declaration mentions an element type for which no declaration is provided, but this

is not an error.

[Definition: An element type declaration takes the form:]

Element Type Declaration
[45] elementdecl ::= ‘<!ELEMENT’ S Name S contentspec S? ‘>’

[VC: Unique Element Type Declaration]
[46] contentspec ::= ‘EMPTY’ | ‘ANY’ | Mixed | children

where the Name gives the element type being declared.

Validity constraint: Unique Element Type Declaration

No element type may be declared more than once.

Examples of element type declarations:

<!ELEMENT br EMPTY>
<!ELEMENT p (#PCDATA|emph)* >
<!ELEMENT %name.para; %content.para; >
<!ELEMENT container ANY>

1112 Appendixes

3.2.1 Element Content
[Definition: An element type has element content when elements of that type must

contain only child elements (no character data), optionally separated by white

space (characters matching the nonterminal S).] [Definition: In this case, the con-

straint includes a content model, a simple grammar governing the allowed types of

the child elements and the order in which they are allowed to appear.] The gram-

mar is built on content particles (cps), which consist of names, choice lists of con-

tent particles, or sequence lists of content particles:

Element-content Models
[47] children ::= (choice | seq) (‘?’ | ‘*’ | ‘+’)?
[48] cp ::= (Name | choice | seq) (‘?’ | ‘*’ | ‘+’)?
[49] choice ::= ‘(‘ S? cp (S? ‘|’ S? cp)+ S? ‘)’ /* */

/* */ [VC: Proper Group/PE Nesting]
[50] seq ::= ‘(‘ S? cp (S? ‘,’ S? cp)* S? ‘)’ /* */

[VC: Proper Group/PE Nesting]

where each Name is the type of an element which may appear as a child. Any con-

tent particle in a choice list may appear in the element content at the location

where the choice list appears in the grammar; content particles occurring in a

sequence list must each appear in the element content in the order given in the list.

The optional character following a name or list governs whether the element or the

content particles in the list may occur one or more (+), zero or more (*), or zero or

one times (?). The absence of such an operator means that the element or content

particle must appear exactly once. This syntax and meaning are identical to those

used in the productions in this specification.

The content of an element matches a content model if and only if it is possible to

trace out a path through the content model, obeying the sequence, choice, and rep-

etition operators and matching each element in the content against an element type

in the content model. For compatibility, it is an error if an element in the document

can match more than one occurrence of an element type in the content model. For

more information, see E Deterministic Content Models.

Validity constraint: Proper Group/PE Nesting

Parameter-entity replacement text must be properly nested with parenthesized

groups. That is to say, if either of the opening or closing parentheses in a choice,

seq, or Mixed construct is contained in the replacement text for a parameter entity,

both must be contained in the same replacement text.

For interoperability, if a parameter-entity reference appears in a choice, seq, or

Mixed construct, its replacement text should contain at least one non-blank charac-

ter, and neither the first nor last non-blank character of the replacement text should

be a connector (| or ,).

1113Appendix C ✦ The XML 1.0 Specification, Second Edition

Examples of element-content models:

<!ELEMENT spec (front, body, back?)>
<!ELEMENT div1 (head, (p | list | note)*, div2*)>
<!ELEMENT dictionary-body (%div.mix; | %dict.mix;)*>

3.2.2 Mixed Content
[Definition: An element type has mixed content when elements of that type may

contain character data, optionally interspersed with child elements.] In this case,

the types of the child elements may be constrained, but not their order or their

number of occurrences:

Mixed-content Declaration
[51] Mixed ::= ‘(‘ S? ‘#PCDATA’ (S? ‘|’ S? Name)* S? ‘)*’

| ‘(‘ S? ‘#PCDATA’ S? ‘)’
[VC: Proper Group/PE Nesting]
[VC: No Duplicate Types]

where the Names give the types of elements that may appear as children. The key-

word #PCDATA derives historically from the term “parsed character data.”

Validity constraint: No Duplicate Types

The same name must not appear more than once in a single mixed-content

declaration.

Examples of mixed content declarations:

<!ELEMENT p (#PCDATA|a|ul|b|i|em)*>
<!ELEMENT p (#PCDATA | %font; | %phrase; | %special; | %form;)*
>
<!ELEMENT b (#PCDATA)>

3.3 Attribute-List Declarations
Attributes are used to associate name-value pairs with elements. Attribute specifi-

cations may appear only within start-tags and empty-element tags; thus, the pro-

ductions used to recognize them appear in 3.1 Start-Tags, End-Tags, and
Empty-Element Tags. Attribute-list declarations may be used:

✦ To define the set of attributes pertaining to a given element type.

✦ To establish type constraints for these attributes.

✦ To provide default values for attributes.

1114 Appendixes

[Definition: Attribute-list declarations specify the name, data type, and default

value (if any) of each attribute associated with a given element type:]

Attribute-list Declaration
[52] AttlistDecl ::= ‘<!ATTLIST’ S Name AttDef* S? ‘>’
[53] AttDef ::= S Name S AttType S DefaultDecl

The Name in the AttlistDecl rule is the type of an element. At user option, an XML

processor may issue a warning if attributes are declared for an element type not

itself declared, but this is not an error. The Name in the AttDef rule is the name of

the attribute.

When more than one AttlistDecl is provided for a given element type, the contents

of all those provided are merged. When more than one definition is provided for the

same attribute of a given element type, the first declaration is binding and later dec-

larations are ignored. For interoperability, writers of DTDs may choose to provide

at most one attribute-list declaration for a given element type, at most one attribute

definition for a given attribute name in an attribute-list declaration, and at least one

attribute definition in each attribute-list declaration. For interoperability, an XML

processor may at user option issue a warning when more than one attribute-list

declaration is provided for a given element type, or more than one attribute defini-

tion is provided for a given attribute, but this is not an error.

3.3.1 Attribute Types
XML attribute types are of three kinds: a string type, a set of tokenized types, and

enumerated types. The string type may take any literal string as a value; the tok-

enized types have varying lexical and semantic constraints. The validity constraints

noted in the grammar are applied after the attribute value has been normalized as

described in 3.3 Attribute-List Declarations.

Attribute Types
[54] AttType ::= StringType | TokenizedType | EnumeratedType
[55] StringType ::= ‘CDATA’
[56] TokenizedType ::= ‘ID’ [VC: ID]

[VC: One ID per Element Type]
[VC: ID Attribute Default]

| ‘IDREF’ [VC: IDREF]
| ‘IDREFS’ [VC: IDREF]
| ‘ENTITY’ [VC: Entity Name]
| ‘ENTITIES’ [VC: Entity Name]
| ‘NMTOKEN’ [VC: Name Token]
| ‘NMTOKENS’ [VC: Name Token]

Validity constraint: ID

Values of type ID must match the Name production. A name must not appear more

than once in an XML document as a value of this type; i.e., ID values must uniquely

identify the elements which bear them.

1115Appendix C ✦ The XML 1.0 Specification, Second Edition

Validity constraint: One ID per Element Type

No element type may have more than one ID attribute specified.

Validity constraint: ID Attribute Default

An ID attribute must have a declared default of #IMPLIED or #REQUIRED.

Validity constraint: IDREF

Values of type IDREF must match the Name production, and values of type IDREFS
must match Names; each Name must match the value of an ID attribute on some

element in the XML document; i.e., IDREF values must match the value of some ID

attribute.

Validity constraint: Entity Name

Values of type ENTITY must match the Name production, values of type ENTITIES
must match Names; each Name must match the name of an unparsed entity

declared in the DTD.

Validity constraint: Name Token

Values of type NMTOKEN must match the Nmtoken production; values of type

NMTOKENS must match Nmtokens.

[Definition: Enumerated attributes can take one of a list of values provided in the

declaration]. There are two kinds of enumerated types:

Enumerated Attribute Types
[57] EnumeratedType ::= NotationType | Enumeration
[58] NotationType ::= ‘NOTATION’ S ‘(‘ S? Name

(S? ‘|’ S? Name)* S? ‘)’
[VC: Notation Attributes]
[VC: One Notation Per Element Type]
[VC: No Notation on Empty Element]

[59] Enumeration ::= ‘(‘ S? Nmtoken (S? ‘|’ S? Nmtoken)*
S? ‘)’ [VC: Enumeration]

A NOTATION attribute identifies a notation, declared in the DTD with associated

system and/or public identifiers, to be used in interpreting the element to which

the attribute is attached.

Validity constraint: Notation Attributes

Values of this type must match one of the notation names included in the declara-

tion; all notation names in the declaration must be declared.

1116 Appendixes

Validity constraint: One Notation Per Element Type

No element type may have more than one NOTATION attribute specified.

Validity constraint: No Notation on Empty Element

For compatibility, an attribute of type NOTATION must not be declared on an ele-

ment declared EMPTY.

Validity constraint: Enumeration

Values of this type must match one of the Nmtoken tokens in the declaration.

For interoperability, the same Nmtoken should not occur more than once in the

enumerated attribute types of a single element type.

3.3.2 Attribute Defaults
An attribute declaration provides information on whether the attribute’s presence

is required, and if not, how an XML processor should react if a declared attribute is

absent in a document.

Attribute Defaults
[60] DefaultDecl ::= ‘#REQUIRED’ | ‘#IMPLIED’

| ((‘#FIXED’ S)? AttValue)
[VC: Required Attribute]
[VC: Attribute Default Legal]
[WFC: No < in Attribute Values]
[VC: Fixed Attribute Default]

In an attribute declaration, #REQUIRED means that the attribute must always be

provided, #IMPLIED that no default value is provided. [Definition: If the declaration

is neither #REQUIRED nor #IMPLIED, then the AttValue value contains the declared

default value; the #FIXED keyword states that the attribute must always have the

default value. If a default value is declared, when an XML processor encounters an

omitted attribute, it is to behave as though the attribute were present with the

declared default value.]

Validity constraint: Required Attribute

If the default declaration is the keyword #REQUIRED, then the attribute must be

specified for all elements of the type in the attribute-list declaration.

Validity constraint: Attribute Default Legal

The declared default value must meet the lexical constraints of the declared

attribute type.

1117Appendix C ✦ The XML 1.0 Specification, Second Edition

Validity constraint: Fixed Attribute Default

If an attribute has a default value declared with the #FIXED keyword, instances of

that attribute must match the default value.

Examples of attribute-list declarations:

<!ATTLIST termdef
id ID #REQUIRED
name CDATA #IMPLIED>

<!ATTLIST list
type (bullets|ordered|glossary) “ordered”>

<!ATTLIST form
method CDATA #FIXED “POST”>

3.3.3 Attribute-Value Normalization
Before the value of an attribute is passed to the application or checked for validity,

the XML processor must normalize the attribute value by applying the algorithm

below, or by using some other method such that the value passed to the applica-

tion is the same as that produced by the algorithm.

1. All line breaks must have been normalized on input to #xA as described in

2.11 End-of-Line Handling, so the rest of this algorithm operates on text nor-

malized in this way.

2. Begin with a normalized value consisting of the empty string.

3. For each character, entity reference, or character reference in the unnormal-

ized attribute value, beginning with the first and continuing to the last, do the

following:

• For a character reference, append the referenced character to the nor-

malized value.

• For an entity reference, recursively apply step 3 of this algorithm to the

replacement text of the entity.

• For a white space character (#x20, #xD, #xA, #x9), append a space char-

acter (#x20) to the normalized value.

• For another character, append the character to the normalized value.

If the attribute type is not CDATA, then the XML processor must further process the

normalized attribute value by discarding any leading and trailing space (#x20) char-

acters, and by replacing sequences of space (#x20) characters by a single space

(#x20) character.

Note that if the unnormalized attribute value contains a character reference to a

white space character other than space (#x20), the normalized value contains the

referenced character itself (#xD, #xA or #x9). This contrasts with the case where

1118 Appendixes

the unnormalized value contains a white space character (not a reference), which is

replaced with a space character (#x20) in the normalized value and also contrasts

with the case where the unnormalized value contains an entity reference whose

replacement text contains a white space character; being recursively processed,

the white space character is replaced with a space character (#x20) in the normal-

ized value.

All attributes for which no declaration has been read should be treated by a non-

validating processor as if declared CDATA.

Following are examples of attribute normalization. Given the following declarations:

<!ENTITY d “”>
<!ENTITY a “
”>
<!ENTITY da “
”>

the attribute specifications in the left column below would be normalized to the

character sequences of the middle column if the attribute a is declared NMTOKENS
and to those of the right columns if a is declared CDATA.

Attribute specification a is NMTOKENS a is CDATA

a=”

xyz” x y z #x20 #x20 x y z

a=”&d;&d;A&a;&a;B&da;” A #x20 B #x20 #x20 A
#x20 #x20 B
#x20 #x20

a=

“A

B
” #xD #xD A #xA #xD #xD A #xA
#xA B #xD #xA #xA B #xD #xD

Note that the last example is invalid (but well-formed) if a is declared to be of type

NMTOKENS.

3.4 Conditional Sections
[Definition: Conditional sections are portions of the document type declaration

external subset which are included in, or excluded from, the logical structure of the

DTD based on the keyword which governs them.]

1119Appendix C ✦ The XML 1.0 Specification, Second Edition

Conditional Section
[61] conditionalSect ::= includeSect | ignoreSect
[62] includeSect ::= ‘<![‘ S? ‘INCLUDE’ S?

‘[‘ extSubsetDecl ‘]]>’ /* */
[VC: Proper Conditional Section/PE Nesting]

[63] ignoreSect ::= ‘<![‘ S? ‘IGNORE’ S? ‘[‘
ignoreSectContents* ‘]]>’ /* */

[VC: Proper Conditional Section/PE Nesting]
[64] ignoreSectContents ::= Ignore (‘<![‘ ignoreSectContents

‘]]>’ Ignore)*
[65] Ignore ::= Char* - (Char* (‘<![‘ | ‘]]>’) Char*)

Validity constraint: Proper Conditional Section/PE Nesting

If any of the “<![“, “[“, or “]]>” of a conditional section is contained in the replace-

ment text for a parameter-entity reference, all of them must be contained in the

same replacement text.

Like the internal and external DTD subsets, a conditional section may contain one

or more complete declarations, comments, processing instructions, or nested con-

ditional sections, intermingled with white space.

If the keyword of the conditional section is INCLUDE, then the contents of the con-

ditional section are part of the DTD. If the keyword of the conditional section is

IGNORE, then the contents of the conditional section are not logically part of the

DTD. If a conditional section with a keyword of INCLUDE occurs within a larger con-

ditional section with a keyword of IGNORE, both the outer and the inner condi-

tional sections are ignored. The contents of an ignored conditional section are

parsed by ignoring all characters after the “[“ following the keyword, except condi-

tional section starts “<![“ and ends “]]>”, until the matching conditional section

end is found. Parameter entity references are not recognized in this process.

If the keyword of the conditional section is a parameter-entity reference, the param-

eter entity must be replaced by its content before the processor decides whether to

include or ignore the conditional section.

An example:

<!ENTITY % draft ‘INCLUDE’ >
<!ENTITY % final ‘IGNORE’ >

<![%draft;[
<!ELEMENT book (comments*, title, body, supplements?)>
]]>
<![%final;[
<!ELEMENT book (title, body, supplements?)>
]]>

1120 Appendixes

4 Physical Structures
[Definition: An XML document may consist of one or many storage units. These are

called entities; they all have content and are all (except for the document entity

and the external DTD subset) identified by entity name.] Each XML document has

one entity called the document entity, which serves as the starting point for the

XML processor and may contain the whole document.

Entities may be either parsed or unparsed. [Definition: A parsed entity’s contents

are referred to as its replacement text; this text is considered an integral part of the

document.]

[Definition: An unparsed entity is a resource whose contents may or may not be

text, and if text, may be other than XML. Each unparsed entity has an associated

notation, identified by name. Beyond a requirement that an XML processor make

the identifiers for the entity and notation available to the application, XML places

no constraints on the contents of unparsed entities.]

Parsed entities are invoked by name using entity references; unparsed entities by

name, given in the value of ENTITY or ENTITIES attributes.

[Definition: General entities are entities for use within the document content. In

this specification, general entities are sometimes referred to with the unqualified

term entity when this leads to no ambiguity.] [Definition: Parameter entities are

parsed entities for use within the DTD.] These two types of entities use different

forms of reference and are recognized in different contexts. Furthermore, they

occupy different namespaces; a parameter entity and a general entity with the same

name are two distinct entities.

4.1 Character and Entity References
[Definition: A character reference refers to a specific character in the ISO/IEC

10646 character set, for example one not directly accessible from available input

devices.]

Character Reference
[66] CharRef ::= ‘&#’ [0-9]+ ‘;’ | ‘&#x’ [0-9a-fA-F]+ ‘;’

[WFC: Legal Character]

Well-formedness constraint: Legal Character

Characters referred to using character references must match the production for

Char.

If the character reference begins with “&#x”, the digits and letters up to the termi-

nating ; provide a hexadecimal representation of the character’s code point in

ISO/IEC 10646. If it begins just with “&#”, the digits up to the terminating ; provide a

decimal representation of the character’s code point.

1121Appendix C ✦ The XML 1.0 Specification, Second Edition

[Definition: An entity reference refers to the content of a named entity.] [Definition:

References to parsed general entities use ampersand (&) and semicolon (;) as

delimiters.] [Definition: Parameter-entity references use percent-sign (%) and semi-

colon (;) as delimiters.]

Entity Reference
[67] Reference ::= EntityRef | CharRef
[68] EntityRef ::= ‘&’ Name ‘;’ [WFC: Entity Declared]

[VC: Entity Declared]
[WFC: Parsed Entity]
[WFC: No Recursion]

[69] PEReference ::= ‘%’ Name ‘;’ [VC: Entity Declared]
[WFC: No Recursion]
[WFC: In DTD]

Well-formedness constraint: Entity Declared

In a document without any DTD, a document with only an internal DTD

subset which contains no parameter entity references, or a document with

“standalone=’yes’”, for an entity reference that does not occur within the exter-

nal subset or a parameter entity, the Name given in the entity reference must match

that in an entity declaration that does not occur within the external subset or a

parameter entity, except that well-formed documents need not declare any of the

following entities: amp, lt, gt, apos, quot. The declaration of a general entity must

precede any reference to it which appears in a default value in an attribute-list dec-

laration.

Note that if entities are declared in the external subset or in external parameter

entities, a non-validating processor is not obligated to read and process their decla-

rations; for such documents, the rule that an entity must be declared is a well-

formedness constraint only if standalone=’yes’.

Validity constraint: Entity Declared

In a document with an external subset or external parameter entities with

“standalone=’no’”, the Name given in the entity reference must match that in an

entity declaration. For interoperability, valid documents should declare the entities

amp, lt, gt, apos, quot, in the form specified in 4.6 Predefined Entities. The decla-

ration of a parameter entity must precede any reference to it. Similarly, the declara-

tion of a general entity must precede any attribute-list declaration containing a

default value with a direct or indirect reference to that general entity.

Well-formedness constraint: Parsed Entity

An entity reference must not contain the name of an unparsed entity. Unparsed enti-

ties may be referred to only in attribute values declared to be of type ENTITY or

ENTITIES.

1122 Appendixes

Well-formedness constraint: No Recursion

A parsed entity must not contain a recursive reference to itself, either directly or

indirectly.

Well-formedness constraint: In DTD

Parameter-entity references may only appear in the DTD.

Examples of character and entity references:

Type <key>less-than</key> (<) to save options.
This document was prepared on &docdate; and
is classified &security-level;.

Example of a parameter-entity reference:

<!-- declare the parameter entity “ISOLat2”... -->
<!ENTITY % ISOLat2

SYSTEM “http://www.xml.com/iso/isolat2-xml.entities” >
<!-- ... now reference it. -->
%ISOLat2;

4.2 Entity Declarations
[Definition: Entities are declared thus:]

Entity Declaration
[70] EntityDecl ::= GEDecl | PEDecl
[71] GEDecl ::= ‘<!ENTITY’ S Name S EntityDef S? ‘>’
[72] PEDecl ::= ‘<!ENTITY’ S ‘%’ S Name S PEDef S? ‘>’
[73] EntityDef ::= EntityValue | (ExternalID NDataDecl?)
[74] PEDef ::= EntityValue | ExternalID

The Name identifies the entity in an entity reference or, in the case of an unparsed

entity, in the value of an ENTITY or ENTITIES attribute. If the same entity is

declared more than once, the first declaration encountered is binding; at user

option, an XML processor may issue a warning if entities are declared multiple

times.

4.2.1 Internal Entities
[Definition: If the entity definition is an EntityValue, the defined entity is called an

internal entity. There is no separate physical storage object, and the content of the

entity is given in the declaration.] Note that some processing of entity and charac-

ter references in the literal entity value may be required to produce the correct

replacement text: see 4.5 Construction of Internal Entity Replacement Text.

An internal entity is a parsed entity.

1123Appendix C ✦ The XML 1.0 Specification, Second Edition

Example of an internal entity declaration:

<!ENTITY Pub-Status “This is a pre-release of the
specification.”>

4.2.2 External Entities
[Definition: If the entity is not internal, it is an external entity, declared as follows:]

External Entity Declaration
[75] ExternalID ::= ‘SYSTEM’ S SystemLiteral

| ‘PUBLIC’ S PubidLiteral S SystemLiteral
[76] NDataDecl ::= S ‘NDATA’ S Name [VC: Notation Declared]

If the NDataDecl is present, this is a general unparsed entity; otherwise it is a

parsed entity.

Validity constraint: Notation Declared

The Name must match the declared name of a notation.

[Definition: The SystemLiteral is called the entity’s system identifier. It is a URI

reference (as defined in [IETF RFC 2396], updated by [IETF RFC 2732]), meant to be

dereferenced to obtain input for the XML processor to construct the entity’s

replacement text.] It is an error for a fragment identifier (beginning with a # charac-

ter) to be part of a system identifier. Unless otherwise provided by information out-

side the scope of this specification (e.g. a special XML element type defined by a

particular DTD, or a processing instruction defined by a particular application spec-

ification), relative URIs are relative to the location of the resource within which the

entity declaration occurs. A URI might thus be relative to the document entity, to

the entity containing the external DTD subset, or to some other external parameter

entity.

URI references require encoding and escaping of certain characters. The disallowed

characters include all non-ASCII characters, plus the excluded characters listed in

Section 2.4 of [IETF RFC 2396], except for the number sign (#) and percent sign (%)

characters and the square bracket characters re-allowed in [IETF RFC 2732].

Disallowed characters must be escaped as follows:

1. Each disallowed character is converted to UTF-8 [IETF RFC 2279] as one or

more bytes.

2. Any octets corresponding to a disallowed character are escaped with the URI

escaping mechanism (that is, converted to %HH, where HH is the hexadecimal

notation of the byte value).

3. The original character is replaced by the resulting character sequence.

1124 Appendixes

[Definition: In addition to a system identifier, an external identifier may include a

public identifier.] An XML processor attempting to retrieve the entity’s content

may use the public identifier to try to generate an alternative URI reference. If the

processor is unable to do so, it must use the URI reference specified in the system

literal. Before a match is attempted, all strings of white space in the public identifier

must be normalized to single space characters (#x20), and leading and trailing

white space must be removed.

Examples of external entity declarations:

<!ENTITY open-hatch
SYSTEM “http://www.textuality.com/boilerplate/OpenHatch.xml”>

<!ENTITY open-hatch PUBLIC
“-//Textuality//TEXT Standard open-hatch boilerplate//EN”
“http://www.textuality.com/boilerplate/OpenHatch.xml”>

<!ENTITY hatch-pic
SYSTEM “../grafix/OpenHatch.gif”
NDATA gif >

4.3 Parsed Entities
4.3.1 The Text Declaration
External parsed entities should each begin with a text declaration.

Text Declaration
[77] TextDecl ::= ‘<?xml’ VersionInfo? EncodingDecl S? ‘?>’

The text declaration must be provided literally, not by reference to a parsed entity.

No text declaration may appear at any position other than the beginning of an

external parsed entity. The text declaration in an external parsed entity is not con-

sidered part of its replacement text.

4.3.2 Well-Formed Parsed Entities
The document entity is well-formed if it matches the production labeled document.

An external general parsed entity is well-formed if it matches the production

labeled extParsedEnt. All external parameter entities are well-formed by definition.

Well-Formed External Parsed Entity
[78] extParsedEnt ::= TextDecl? content

An internal general parsed entity is well-formed if its replacement text matches

the production labeled content. All internal parameter entities are well-formed by

definition.

1125Appendix C ✦ The XML 1.0 Specification, Second Edition

A consequence of well-formedness in entities is that the logical and physical struc-

tures in an XML document are properly nested; no start-tag, end-tag, empty-element

tag, element, comment, processing instruction, character reference, or entity refer-

ence can begin in one entity and end in another.

4.3.3 Character Encoding in Entities
Each external parsed entity in an XML document may use a different encoding for

its characters. All XML processors must be able to read entities in both the UTF-8

and UTF-16 encodings. The terms “UTF-8” and “UTF-16” in this specification do not

apply to character encodings with any other labels, even if the encodings or labels

are very similar to UTF-8 or UTF-16.

Entities encoded in UTF-16 must begin with the Byte Order Mark described by

Annex F of [ISO/IEC 10646], Annex H of [ISO/IEC 10646-2000], section 2.4 of

[Unicode], and section 2.7 of [Unicode3] (the ZERO WIDTH NO-BREAK SPACE char-

acter, #xFEFF). This is an encoding signature, not part of either the markup or the

character data of the XML document. XML processors must be able to use this

character to differentiate between UTF-8 and UTF-16 encoded documents.

Although an XML processor is required to read only entities in the UTF-8 and UTF-

16 encodings, it is recognized that other encodings are used around the world, and

it may be desired for XML processors to read entities that use them. In the absence

of external character encoding information (such as MIME headers), parsed entities

which are stored in an encoding other than UTF-8 or UTF-16 must begin with a text

declaration (see 4.3.1 The Text Declaration) containing an encoding declaration:

Encoding Declaration
[80] EncodingDecl ::= S ‘encoding’ Eq (‘“‘ EncName ‘“‘

| “‘“ EncName “‘“)
[81] EncName ::= [A-Za-z] ([A-Za-z0-9._] | ‘-’)*

/* Encoding name contains only Latin characters */

In the document entity, the encoding declaration is part of the XML declaration.

The EncName is the name of the encoding used.

In an encoding declaration, the values “UTF-8”, “UTF-16”, “ISO-10646-UCS-2”, and

“ISO-10646-UCS-4” should be used for the various encodings and transformations

of Unicode/ISO/IEC 10646, the values “ISO-8859-1”, “ISO-8859-2”, . . . “ISO-8859-
n” (where n is the part number) should be used for the parts of ISO 8859, and the

values “ISO-2022-JP”, “Shift_JIS”, and “EUC-JP” should be used for the various

encoded forms of JIS X-0208-1997. It is recommended that character encodings regis-

tered (as charsets) with the Internet Assigned Numbers Authority [IANA-CHARSETS],

other than those just listed, be referred to using their registered names; other encod-

ings should use names starting with an “x-” prefix. XML processors should match

1126 Appendixes

character encoding names in a case-insensitive way and should either interpret an

IANA-registered name as the encoding registered at IANA for that name or treat it as

unknown (processors are, of course, not required to support all IANA-registered

encodings).

In the absence of information provided by an external transport protocol (e.g. HTTP

or MIME), it is an error for an entity including an encoding declaration to be pre-

sented to the XML processor in an encoding other than that named in the declara-

tion, or for an entity which begins with neither a Byte Order Mark nor an encoding

declaration to use an encoding other than UTF-8. Note that since ASCII is a subset of

UTF-8, ordinary ASCII entities do not strictly need an encoding declaration.

It is a fatal error for a TextDecl to occur other than at the beginning of an external

entity.

It is a fatal error when an XML processor encounters an entity with an encoding

that it is unable to process. It is a fatal error if an XML entity is determined (via

default, encoding declaration, or higher-level protocol) to be in a certain encoding

but contains octet sequences that are not legal in that encoding. It is also a fatal

error if an XML entity contains no encoding declaration and its content is not legal

UTF-8 or UTF-16.

Examples of text declarations containing encoding declarations:

<?xml encoding=’UTF-8’?>
<?xml encoding=’EUC-JP’?>

4.4 XML Processor Treatment of Entities and References
The table below summarizes the contexts in which character references, entity ref-

erences, and invocations of unparsed entities might appear and the required behav-

ior of an XML processor in each case. The labels in the leftmost column describe

the recognition context:

Reference in Content

as a reference anywhere after the start-tag and before the end-tag of an element;

corresponds to the nonterminal content.

Reference in Attribute Value

as a reference within either the value of an attribute in a start-tag, or a default value

in an AttValue.

Occurs as Attribute Value

as a Name, not a reference, appearing either as the value of an attribute which has

been declared as type ENTITY, or as one of the space-separated tokens in the value

of an attribute which has been declared as type ENTITIES.

1127Appendix C ✦ The XML 1.0 Specification, Second Edition

Reference in Entity Value

as a reference within a parameter or internal entity’s literal entity value in the

entity’s declaration; corresponds to the nonterminal EntityValue.

Reference in DTD

as a reference within either the internal or external subsets of the DTD, but outside

of an EntityValue, AttValue, PI, Comment, SystemLiteral, PubidLiteral, or the con-

tents of an ignored conditional section (see 3.4 Conditional Sections).

.

Entity Type

Character

External
Internal Parsed

Parameter General General Unparsed

Reference in Not Included Included if Forbidden Included
Content recognized validating

Reference in Not Included in Forbidden Forbidden Included
Attribute Value recognized literal

Occurs as Not Forbidden Forbidden Notify Not
Attribute Value recognized recognized

Reference in Included in Bypassed Bypassed Forbidden Included
EntityValue literal

Reference in Included as Forbidden Forbidden Forbidden Forbidden
DTD PE

4.4.1 Not Recognized
Outside the DTD, the % character has no special significance; thus, what would be

parameter entity references in the DTD are not recognized as markup in content.

Similarly, the names of unparsed entities are not recognized except when they

appear in the value of an appropriately declared attribute.

4.4.2 Included
[Definition: An entity is included when its replacement text is retrieved and pro-

cessed, in place of the reference itself, as though it were part of the document at

the location the reference was recognized.] The replacement text may contain both

character data and (except for parameter entities) markup, which must be recog-

nized in the usual way. (The string “AT&T;” expands to “AT&T;” and the

remaining ampersand is not recognized as an entity-reference delimiter.) A charac-

ter reference is included when the indicated character is processed in place of the

reference itself.

1128 Appendixes

4.4.3 Included If Validating
When an XML processor recognizes a reference to a parsed entity, in order to vali-

date the document, the processor must include its replacement text. If the entity is

external, and the processor is not attempting to validate the XML document, the

processor may, but need not, include the entity’s replacement text. If a non-validat-

ing processor does not include the replacement text, it must inform the application

that it recognized, but did not read, the entity.

This rule is based on the recognition that the automatic inclusion provided by the

SGML and XML entity mechanism, primarily designed to support modularity in

authoring, is not necessarily appropriate for other applications, in particular docu-

ment browsing. Browsers, for example, when encountering an external parsed

entity reference, might choose to provide a visual indication of the entity’s pres-

ence and retrieve it for display only on demand.

4.4.4 Forbidden
The following are forbidden, and constitute fatal errors:

✦ the appearance of a reference to an unparsed entity.

✦ the appearance of any character or general-entity reference in the DTD except

within an EntityValue or AttValue.

✦ a reference to an external entity in an attribute value.

4.4.5 Included in Literal
When an entity reference appears in an attribute value, or a parameter entity refer-

ence appears in a literal entity value, its replacement text is processed in place of

the reference itself as though it were part of the document at the location the refer-

ence was recognized, except that a single or double quote character in the replace-

ment text is always treated as a normal data character and will not terminate the

literal. For example, this is well-formed:

<!-- -->
<!ENTITY % YN ‘“Yes”’ >
<!ENTITY WhatHeSaid “He said %YN;” >

while this is not:

<!ENTITY EndAttr “27’” >
<element attribute=’a-&EndAttr;>

4.4.6 Notify
When the name of an unparsed entity appears as a token in the value of an attribute

of declared type ENTITY or ENTITIES, a validating processor must inform the appli-

cation of the system and public (if any) identifiers for both the entity and its associ-

ated notation.

1129Appendix C ✦ The XML 1.0 Specification, Second Edition

4.4.7 Bypassed
When a general entity reference appears in the EntityValue in an entity declaration,

it is bypassed and left as is.

4.4.8 Included as PE
Just as with external parsed entities, parameter entities need only be included if val-
idating. When a parameter-entity reference is recognized in the DTD and included,

its replacement text is enlarged by the attachment of one leading and one following

space (#x20) character; the intent is to constrain the replacement text of parameter

entities to contain an integral number of grammatical tokens in the DTD. This

behavior does not apply to parameter entity references within entity values; these

are described in 4.4.5 Included in Literal.

4.5 Construction of Internal Entity Replacement Text
In discussing the treatment of internal entities, it is useful to distinguish two forms

of the entity’s value. [Definition: The literal entity value is the quoted string actu-

ally present in the entity declaration, corresponding to the non-terminal

EntityValue.] [Definition: The replacement text is the content of the entity, after

replacement of character references and parameter-entity references.]

The literal entity value as given in an internal entity declaration (EntityValue) may

contain character, parameter-entity, and general-entity references. Such references

must be contained entirely within the literal entity value. The actual replacement

text that is included as described above must contain the replacement text of any

parameter entities referred to, and must contain the character referred to, in place

of any character references in the literal entity value; however, general-entity refer-

ences must be left as-is, unexpanded. For example, given the following declarations:

<!ENTITY % pub “Éditions Gallimard” >
<!ENTITY rights “All rights reserved” >
<!ENTITY book “La Peste: Albert Camus,
© 1947 %pub;. &rights;” >

then the replacement text for the entity “book” is:

La Peste: Albert Camus,
C 1947 Editions Gallimard. &rights;

The general-entity reference “&rights;” would be expanded should the reference

“&book;” appear in the document’s content or an attribute value.

These simple rules may have complex interactions; for a detailed discussion of a

difficult example, see D Expansion of Entity and Character References.

1130 Appendixes

4.6 Predefined Entities
[Definition: Entity and character references can both be used to escape the left

angle bracket, ampersand, and other delimiters. A set of general entities (amp, lt,

gt, apos, quot) is specified for this purpose. Numeric character references may

also be used; they are expanded immediately when recognized and must be treated

as character data, so the numeric character references “<” and “&” may

be used to escape < and & when they occur in character data.]

All XML processors must recognize these entities whether they are declared or not.

For interoperability, valid XML documents should declare these entities, like any

others, before using them. If the entities lt or amp are declared, they must be

declared as internal entities whose replacement text is a character reference to the

respective character (less-than sign or ampersand) being escaped; the double

escaping is required for these entities so that references to them produce a well-

formed result. If the entities gt, apos, or quot are declared, they must be declared

as internal entities whose replacement text is the single character being escaped

(or a character reference to that character; the double escaping here is unneces-

sary but harmless). For example:

<!ENTITY lt “&#60;”>
<!ENTITY gt “>”>
<!ENTITY amp “&#38;”>
<!ENTITY apos “'”>
<!ENTITY quot “"”>

4.7 Notation Declarations
[Definition: Notations identify by name the format of unparsed entities, the format

of elements which bear a notation attribute, or the application to which a process-

ing instruction is addressed.]

[Definition: Notation declarations provide a name for the notation, for use in entity

and attribute-list declarations and in attribute specifications, and an external identi-

fier for the notation which may allow an XML processor or its client application to

locate a helper application capable of processing data in the given notation.]

Notation Declarations
[82] NotationDecl ::= ‘<!NOTATION’ S Name S (ExternalID

| PublicID) S? ‘>’
[VC: Unique Notation Name]

[83] PublicID ::= ‘PUBLIC’ S PubidLiteral

Validity constraint: Unique Notation Name

Only one notation declaration can declare a given Name.

1131Appendix C ✦ The XML 1.0 Specification, Second Edition

XML processors must provide applications with the name and external identifier(s)

of any notation declared and referred to in an attribute value, attribute definition,

or entity declaration. They may additionally resolve the external identifier into the

system identifier, file name, or other information needed to allow the application to

call a processor for data in the notation described. (It is not an error, however, for

XML documents to declare and refer to notations for which notation-specific appli-

cations are not available on the system where the XML processor or application is

running.)

4.8 Document Entity
[Definition: The document entity serves as the root of the entity tree and a starting-

point for an XML processor.] This specification does not specify how the document

entity is to be located by an XML processor; unlike other entities, the document

entity has no name and might well appear on a processor input stream without any

identification at all.

5 Conformance
5.1 Validating and Non-Validating Processors
Conforming XML processors fall into two classes: validating and non-validating.

Validating and non-validating processors alike must report violations of this specifi-

cation’s well-formedness constraints in the content of the document entity and any

other parsed entities that they read.

[Definition: Validating processors must, at user option, report violations of the con-

straints expressed by the declarations in the DTD, and failures to fulfill the validity

constraints given in this specification.] To accomplish this, validating XML proces-

sors must read and process the entire DTD and all external parsed entities refer-

enced in the document.

Non-validating processors are required to check only the document entity, includ-

ing the entire internal DTD subset, for well-formedness. [Definition: While they are

not required to check the document for validity, they are required to process all the

declarations they read in the internal DTD subset and in any parameter entity that

they read, up to the first reference to a parameter entity that they do not read; that

is to say, they must use the information in those declarations to normalize attribute

values, include the replacement text of internal entities, and supply default attribute
values.] Except when standalone=”yes”, they must not process entity declara-

tions or attribute-list declarations encountered after a reference to a parameter

entity that is not read, since the entity may have contained overriding declarations.

5.2 Using XML Processors
The behavior of a validating XML processor is highly predictable; it must read

every piece of a document and report all well-formedness and validity violations.

1132 Appendixes

Less is required of a non-validating processor; it need not read any part of the docu-

ment other than the document entity. This has two effects that may be important to

users of XML processors:

✦ Certain well-formedness errors, specifically those that require reading exter-

nal entities, may not be detected by a non-validating processor. Examples

include the constraints entitled Entity Declared, Parsed Entity, and No
Recursion, as well as some of the cases described as forbidden in 4.4 XML
Processor Treatment of Entities and References.

✦ The information passed from the processor to the application may vary,

depending on whether the processor reads parameter and external entities.

For example, a non-validating processor may not normalize attribute values,

include the replacement text of internal entities, or supply default attribute val-
ues, where doing so depends on having read declarations in external or

parameter entities.

For maximum reliability in interoperating between different XML processors, appli-

cations which use non-validating processors should not rely on any behaviors not

required of such processors. Applications which require facilities such as the use of

default attributes or internal entities which are declared in external entities should

use validating XML processors.

6 Notation
The formal grammar of XML is given in this specification using a simple Extended

Backus-Naur Form (EBNF) notation. Each rule in the grammar defines one symbol,

in the form

symbol ::= expression

Symbols are written with an initial capital letter if they are the start symbol of a reg-

ular language, otherwise with an initial lower case letter. Literal strings are quoted.

Within the expression on the right-hand side of a rule, the following expressions are

used to match strings of one or more characters:

#xN

where N is a hexadecimal integer, the expression matches the character in ISO/IEC

10646 whose canonical (UCS-4) code value, when interpreted as an unsigned binary

number, has the value indicated. The number of leading zeros in the #xN form is

insignificant; the number of leading zeros in the corresponding code value is gov-

erned by the character encoding in use and is not significant for XML.

1133Appendix C ✦ The XML 1.0 Specification, Second Edition

[a-zA-Z], [#xN-#xN]

matches any Char with a value in the range(s) indicated (inclusive).

[abc], [#xN#xN#xN]

matches any Char with a value among the characters enumerated. Enumerations

and ranges can be mixed in one set of brackets.

[^a-z], [^#xN-#xN]

matches any Char with a value outside the range indicated.

[^abc], [^#xN#xN#xN]

matches any Char with a value not among the characters given. Enumerations and

ranges of forbidden values can be mixed in one set of brackets.

“string”

matches a literal string matching that given inside the double quotes.

‘string’

matches a literal string matching that given inside the single quotes.

These symbols may be combined to match more complex patterns as follows,

where A and B represent simple expressions:

(expression)

expression is treated as a unit and may be combined as described in this list.

A?

matches A or nothing; optional A.

A B

matches A followed by B. This operator has higher precedence than alternation;

thus A B | C D is identical to (A B) | (C D).

A | B

matches A or B but not both.

1134 Appendixes

A - B

matches any string that matches A but does not match B.

A+

matches one or more occurrences of A.Concatenation has higher precedence than

alternation; thus A+ | B+ is identical to (A+) | (B+).

A*

matches zero or more occurrences of A. Concatenation has higher precedence than

alternation; thus A* | B* is identical to (A*) | (B*).

Other notations used in the productions are:

/* ... */

comment.

[wfc: ...]

well-formedness constraint; this identifies by name a constraint on well-formed doc-

uments associated with a production.

[vc: ...]

validity constraint; this identifies by name a constraint on valid documents associ-

ated with a production.

A References
A.1 Normative References
IANA-CHARSETS

(Internet Assigned Numbers Authority) Official Names for Character Sets, ed. Keld

Simonsen et al. See ftp://ftp.isi.edu/in-notes/iana/assignments/character-sets.

IETF RFC 1766

IETF (Internet Engineering Task Force). RFC 1766: Tags for the Identification of
Languages, ed. H. Alvestrand. 1995. (See http://www.ietf.org/rfc/
rfc1766.txt.)

1135Appendix C ✦ The XML 1.0 Specification, Second Edition

ISO/IEC 10646

ISO (International Organization for Standardization). ISO/IEC 10646-1993 (E).
Information technology -- Universal Multiple-Octet Coded Character Set (UCS) - - Part 1:
Architecture and Basic Multilingual Plane. [Geneva]: International Organization for

Standardization, 1993 (plus amendments AM 1 through AM 7).

ISO/IEC 10646-2000

ISO (International Organization for Standardization). ISO/IEC 10646-1:2000.
Information technology -- Universal Multiple-Octet Coded Character Set (UCS) - - Part 1:
Architecture and Basic Multilingual Plane. [Geneva]: International Organization for

Standardization, 2000.

Unicode

The Unicode Consortium. The Unicode Standard, Version 2.0. Reading, Mass.:

Addison-Wesley Developers Press, 1996.

Unicode3

The Unicode Consortium. The Unicode Standard, Version 3.0. Reading, Mass.:

Addison-Wesley Developers Press, 2000. ISBN 0-201-61633-5.

A.2 Other References
Aho/Ullman

Aho, Alfred V., Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques,
and Tools. Reading: Addison-Wesley, 1986, rpt. corr. 1988.

Berners-Lee et al.

Berners-Lee, T., R. Fielding, and L. Masinter. Uniform Resource Identifiers (URI):
Generic Syntax and Semantics. 1997. (Work in progress; see updates to RFC1738.)

Brüggemann-Klein

Brüggemann-Klein, Anne. Formal Models in Document Processing.

Habilitationsschrift. Faculty of Mathematics at the University of Freiburg, 1993.

(See ftp://ftp.informatik.uni-freiburg.de/documents/papers/brueggem/
habil.ps.)

1136 Appendixes

Brüggemann-Klein and Wood

Brüggemann-Klein, Anne, and Derick Wood. Deterministic Regular Languages.
Universität Freiburg, Institut für Informatik, Bericht 38, Oktober 1991. Extended

abstract in A. Finkel, M. Jantzen, Hrsg., STACS 1992, S. 173-184. Springer-Verlag,

Berlin 1992. Lecture Notes in Computer Science 577. Full version titled One-
Unambiguous Regular Languages in Information and Computation 140 (2): 229-253,

February 1998.

Clark

James Clark. Comparison of SGML and XML. See http://www.w3.org/TR/NOTE-
sgml-xml-971215.

IANA-LANGCODES

(Internet Assigned Numbers Authority) Registry of Language Tags, ed. Keld

Simonsen et al. (See http://www.isi.edu/in-notes/iana/assignments/lan-
guages/.)

IETF RFC2141

IETF (Internet Engineering Task Force). RFC 2141: URN Syntax, ed. R. Moats. 1997.

(See http://www.ietf.org/rfc/rfc2141.txt.)

IETF RFC 2279

IETF (Internet Engineering Task Force). RFC 2279: UTF-8, a transformation format of
ISO 10646, ed. F. Yergeau, 1998. (See http://www.ietf.org/rfc/rfc2279.txt.)

IETF RFC 2376

IETF (Internet Engineering Task Force). RFC 2376: XML Media Types. ed. E.

Whitehead, M. Murata. 1998. (See http://www.ietf.org/rfc/rfc2376.txt.)

IETF RFC 2396

IETF (Internet Engineering Task Force). RFC 2396: Uniform Resource Identifiers (URI):
Generic Syntax. T. Berners-Lee, R. Fielding, L. Masinter. 1998. (See http://www.
ietf.org/rfc/rfc2396.txt.)

IETF RFC 2732

IETF (Internet Engineering Task Force). RFC 2732: Format for Literal IPv6 Addresses
in URL’s. R. Hinden, B. Carpenter, L. Masinter. 1999. (See

http://www.ietf.org/rfc/rfc2732.txt.)

1137Appendix C ✦ The XML 1.0 Specification, Second Edition

IETF RFC 2781

IETF (Internet Engineering Task Force). RFC 2781: UTF-16, an encoding of ISO 10646,
ed. P. Hoffman, F. Yergeau. 2000. (See http://www.ietf.org/rfc/rfc2781.txt.)

ISO 639

(International Organization for Standardization). ISO 639:1988 (E). Code for the
representation of names of languages. [Geneva]: International Organization for

Standardization, 1988.

ISO 3166

(International Organization for Standardization). ISO 3166-1:1997 (E). Codes for the

representation of names of countries and their subdivisions — Part 1: Country

codes [Geneva]: International Organization for Standardization, 1997.

ISO 8879

ISO (International Organization for Standardization). ISO 8879:1986(E). Information
processing — Text and Office Systems — Standard Generalized Markup Language
(SGML). First edition — 1986-10-15. [Geneva]: International Organization for

Standardization, 1986.

ISO/IEC 10744

ISO (International Organization for Standardization). ISO/IEC 10744-1992 (E).

Information technology — Hypermedia/Time-based Structuring Language (HyTime).

[Geneva]: International Organization for Standardization, 1992. Extended Facilities

Annexe. [Geneva]: International Organization for Standardization, 1996.

WEBSGML

ISO (International Organization for Standardization). ISO 8879:1986 TC2. Information
technology — Document Description and Processing Languages. [Geneva]: Inter-

national Organization for Standardization, 1998. (See http://www.sgmlsource.
com/8879rev/n0029.htm.)

XML Names

Tim Bray, Dave Hollander, and Andrew Layman, editors. Namespaces in XML.
Textuality, Hewlett-Packard, and Microsoft. World Wide Web Consortium, 1999. (See

http://www.w3.org/TR/REC-xml-names/.)

1138 Appendixes

B Character Classes
Following the characteristics defined in the Unicode standard, characters are classed

as base characters (among others, these contain the alphabetic characters of the

Latin alphabet), ideographic characters, and combining characters (among others,

this class contains most diacritics). Digits and extenders are also distinguished.

Characters
[84] Letter ::= BaseChar | Ideographic
[85] BaseChar ::= [#x0041-#x005A] | [#x0061-#x007A]

| [#x00C0-#x00D6] | [#x00D8-#x00F6]
| [#x00F8-#x00FF] | [#x0100-#x0131]
| [#x0134-#x013E] | [#x0141-#x0148]
| [#x014A-#x017E] | [#x0180-#x01C3]
| [#x01CD-#x01F0] | [#x01F4-#x01F5]
| [#x01FA-#x0217] | [#x0250-#x02A8]
| [#x02BB-#x02C1] | #x0386 | [#x0388-#x038A]
| #x038C | [#x038E-#x03A1] | [#x03A3-#x03CE]
| [#x03D0-#x03D6] | #x03DA | #x03DC | #x03DE
| #x03E0 | [#x03E2-#x03F3] | [#x0401-#x040C]
| [#x040E-#x044F] | [#x0451-#x045C]
| [#x045E-#x0481] | [#x0490-#x04C4]
| [#x04C7-#x04C8] | [#x04CB-#x04CC]
| [#x04D0-#x04EB] | [#x04EE-#x04F5]
| [#x04F8-#x04F9] | [#x0531-#x0556] | #x0559
| [#x0561-#x0586] | [#x05D0-#x05EA]
| [#x05F0-#x05F2] | [#x0621-#x063A]
| [#x0641-#x064A] | [#x0671-#x06B7]
| [#x06BA-#x06BE] | [#x06C0-#x06CE]
| [#x06D0-#x06D3] | #x06D5 | [#x06E5-#x06E6]
| [#x0905-#x0939] | #x093D | [#x0958-#x0961]
| [#x0985-#x098C] | [#x098F-#x0990]
| [#x0993-#x09A8] | [#x09AA-#x09B0]
| #x09B2 | [#x09B6-#x09B9] | [#x09DC-#x09DD]
| [#x09DF-#x09E1] | [#x09F0-#x09F1]
| [#x0A05-#x0A0A] | [#x0A0F-#x0A10]
| [#x0A13-#x0A28] | [#x0A2A-#x0A30]
| [#x0A32-#x0A33] | [#x0A35-#x0A36]
| [#x0A38-#x0A39] | [#x0A59-#x0A5C]
| #x0A5E | [#x0A72-#x0A74] | [#x0A85-#x0A8B]
| #x0A8D | [#x0A8F-#x0A91] | [#x0A93-#x0AA8]
| [#x0AAA-#x0AB0] | [#x0AB2-#x0AB3]
| [#x0AB5-#x0AB9] | #x0ABD | #x0AE0
| [#x0B05-#x0B0C] | [#x0B0F-#x0B10]
| [#x0B13-#x0B28] | [#x0B2A-#x0B30]
| [#x0B32-#x0B33] | [#x0B36-#x0B39]

1139Appendix C ✦ The XML 1.0 Specification, Second Edition

| #x0B3D | [#x0B5C-#x0B5D] | [#x0B5F-#x0B61]
| [#x0B85-#x0B8A] | [#x0B8E-#x0B90]
| [#x0B92-#x0B95] | [#x0B99-#x0B9A] | #x0B9C
| [#x0B9E-#x0B9F] | [#x0BA3-#x0BA4]
| [#x0BA8-#x0BAA] | [#x0BAE-#x0BB5]
| [#x0BB7-#x0BB9] | [#x0C05-#x0C0C]
| [#x0C0E-#x0C10] | [#x0C12-#x0C28]
| [#x0C2A-#x0C33] | [#x0C35-#x0C39]
| [#x0C60-#x0C61] | [#x0C85-#x0C8C]
| [#x0C8E-#x0C90] | [#x0C92-#x0CA8]
| [#x0CAA-#x0CB3] | [#x0CB5-#x0CB9] | #x0CDE
| [#x0CE0-#x0CE1] | [#x0D05-#x0D0C]
| [#x0D0E-#x0D10] | [#x0D12-#x0D28]
| [#x0D2A-#x0D39] | [#x0D60-#x0D61]
| [#x0E01-#x0E2E] | #x0E30 | [#x0E32-#x0E33]
| [#x0E40-#x0E45] | [#x0E81-#x0E82] | #x0E84
| [#x0E87-#x0E88] | #x0E8A | #x0E8D
| [#x0E94-#x0E97] | [#x0E99-#x0E9F]
| [#x0EA1-#x0EA3] | #x0EA5 | #x0EA7
| [#x0EAA-#x0EAB] | [#x0EAD-#x0EAE] | #x0EB0
| [#x0EB2-#x0EB3] | #x0EBD | [#x0EC0-#x0EC4]
| [#x0F40-#x0F47] | [#x0F49-#x0F69]
| [#x10A0-#x10C5] | [#x10D0-#x10F6] | #x1100
| [#x1102-#x1103] | [#x1105-#x1107] | #x1109
| [#x110B-#x110C] | [#x110E-#x1112] | #x113C
| #x113E | #x1140 | #x114C | #x114E | #x1150
| [#x1154-#x1155] | #x1159 | [#x115F-#x1161]
| #x1163 | #x1165 | #x1167 | #x1169
| [#x116D-#x116E] | [#x1172-#x1173] | #x1175
| #x119E | #x11A8 | #x11AB | [#x11AE-#x11AF]
| [#x11B7-#x11B8] | #x11BA | [#x11BC-#x11C2]
| #x11EB | #x11F0 | #x11F9 | [#x1E00-#x1E9B]
| [#x1EA0-#x1EF9] | [#x1F00-#x1F15]
| [#x1F18-#x1F1D] | [#x1F20-#x1F45]
| [#x1F48-#x1F4D] | [#x1F50-#x1F57] | #x1F59
| #x1F5B | #x1F5D | [#x1F5F-#x1F7D]
| [#x1F80-#x1FB4] | [#x1FB6-#x1FBC] | #x1FBE
| [#x1FC2-#x1FC4] | [#x1FC6-#x1FCC]
| [#x1FD0-#x1FD3] | [#x1FD6-#x1FDB]
| [#x1FE0-#x1FEC] | [#x1FF2-#x1FF4]
| [#x1FF6-#x1FFC] | #x2126 | [#x212A-#x212B]
| #x212E | [#x2180-#x2182] | [#x3041-#x3094]
| [#x30A1-#x30FA] | [#x3105-#x312C]
| [#xAC00-#xD7A3]

[86] Ideographic ::= [#x4E00-#x9FA5] | #x3007
| [#x3021-#x3029]

1140 Appendixes

[87] CombiningChar ::= [#x0300-#x0345] | [#x0360-#x0361]
| [#x0483-#x0486] | [#x0591-#x05A1]
| [#x05A3-#x05B9] | [#x05BB-#x05BD]
| #x05BF | [#x05C1-#x05C2] | #x05C4
| [#x064B-#x0652] | #x0670
| [#x06D6-#x06DC] | [#x06DD-#x06DF]
| [#x06E0-#x06E4] | [#x06E7-#x06E8]
| [#x06EA-#x06ED] | [#x0901-#x0903]
| #x093C | [#x093E-#x094C] | #x094D
| [#x0951-#x0954] | [#x0962-#x0963]
| [#x0981-#x0983] | #x09BC | #x09BE
| #x09BF | [#x09C0-#x09C4]
| [#x09C7-#x09C8] | [#x09CB-#x09CD]
| #x09D7 | [#x09E2-#x09E3] | #x0A02
| #x0A3C | #x0A3E | #x0A3F
| [#x0A40-#x0A42] | [#x0A47-#x0A48]
| [#x0A4B-#x0A4D] | [#x0A70-#x0A71]
| [#x0A81-#x0A83] | #x0ABC
| [#x0ABE-#x0AC5] | [#x0AC7-#x0AC9]
| [#x0ACB-#x0ACD] | [#x0B01-#x0B03]
| #x0B3C | [#x0B3E-#x0B43]
| [#x0B47-#x0B48] | [#x0B4B-#x0B4D]
| [#x0B56-#x0B57] | [#x0B82-#x0B83]
| [#x0BBE-#x0BC2] | [#x0BC6-#x0BC8]
| [#x0BCA-#x0BCD] | #x0BD7
| [#x0C01-#x0C03] | [#x0C3E-#x0C44]
| [#x0C46-#x0C48] | [#x0C4A-#x0C4D]
| [#x0C55-#x0C56] | [#x0C82-#x0C83]
| [#x0CBE-#x0CC4] | [#x0CC6-#x0CC8]
| [#x0CCA-#x0CCD] | [#x0CD5-#x0CD6]
| [#x0D02-#x0D03] | [#x0D3E-#x0D43]
| [#x0D46-#x0D48] | [#x0D4A-#x0D4D]
| #x0D57 | #x0E31 | [#x0E34-#x0E3A]
| [#x0E47-#x0E4E] | #x0EB1
| [#x0EB4-#x0EB9] | [#x0EBB-#x0EBC]
| [#x0EC8-#x0ECD] | [#x0F18-#x0F19]
| #x0F35 | #x0F37 | #x0F39 | #x0F3E
| #x0F3F | [#x0F71-#x0F84]
| [#x0F86-#x0F8B] | [#x0F90-#x0F95]
| #x0F97 | [#x0F99-#x0FAD]
| [#x0FB1-#x0FB7] | #x0FB9
| [#x20D0-#x20DC] | #x20E1
| [#x302A-#x302F] | #x3099 | #x309A

[88] Digit ::= [#x0030-#x0039] | [#x0660-#x0669]
| [#x06F0-#x06F9] | [#x0966-#x096F]
| [#x09E6-#x09EF] | [#x0A66-#x0A6F]

1141Appendix C ✦ The XML 1.0 Specification, Second Edition

| [#x0AE6-#x0AEF] | [#x0B66-#x0B6F]
| [#x0BE7-#x0BEF] | [#x0C66-#x0C6F]
| [#x0CE6-#x0CEF] | [#x0D66-#x0D6F]
| [#x0E50-#x0E59] | [#x0ED0-#x0ED9]
| [#x0F20-#x0F29]

[89] Extender ::= #x00B7 | #x02D0 | #x02D1 | #x0387
| #x0640 | #x0E46 | #x0EC6 | #x3005
| [#x3031-#x3035] | [#x309D-#x309E]
| [#x30FC-#x30FE]

The character classes defined here can be derived from the Unicode 2.0 character

database as follows:

Name start characters must have one of the categories Ll, Lu, Lo, Lt, Nl.

✦ Name characters other than Name-start characters must have one of the cate-

gories Mc, Me, Mn, Lm, or Nd.

✦ Characters in the compatibility area (i.e. with character code greater than

#xF900 and less than #xFFFE) are not allowed in XML names.

✦ Characters which have a font or compatibility decomposition (i.e. those with

a “compatibility formatting tag” in field 5 of the database — marked by field 5

beginning with a “<”) are not allowed.

✦ The following characters are treated as name-start characters rather than

name characters, because the property file classifies them as Alphabetic:

[#x02BB-#x02C1], #x0559, #x06E5, #x06E6.

✦ Characters #x20DD-#x20E0 are excluded (in accordance with Unicode 2.0, sec-

tion 5.14).

✦ Character #x00B7 is classified as an extender, because the property list so

identifies it.

✦ Character #x0387 is added as a name character, because #x00B7 is its canoni-

cal equivalent.

✦ Characters ‘:’ and ‘_’ are allowed as name-start characters.

✦ Characters ‘-’ and ‘.’ are allowed as name characters.

C XML and SGML (Non-Normative)
XML is designed to be a subset of SGML, in that every XML document should also

be a conforming SGML document. For a detailed comparison of the additional

restrictions that XML places on documents beyond those of SGML, see [Clark].

1142 Appendixes

D Expansion of Entity and Character References
(Non-Normative)
This appendix contains some examples illustrating the sequence of entity- and

character-reference recognition and expansion, as specified in 4.4 XML Processor
Treatment of Entities and References.

If the DTD contains the declaration

<!ENTITY example “<p>An ampersand (&#38;) may be escaped
numerically (&#38;#38;) or with a general entity
(&amp;).</p>” >

then the XML processor will recognize the character references when it parses the

entity declaration, and resolve them before storing the following string as the value

of the entity “example”:

<p>An ampersand (&) may be escaped
numerically (&#38;) or with a general entity
(&amp;).</p>

A reference in the document to “&example;” will cause the text to be reparsed, at

which time the start- and end-tags of the p element will be recognized and the three

references will be recognized and expanded, resulting in a p element with the fol-

lowing content (all data, no delimiters or markup):

An ampersand (&) may be escaped
numerically (&) or with a general entity
(&).

A more complex example will illustrate the rules and their effects fully. In the follow-

ing example, the line numbers are solely for reference.

1 <?xml version=’1.0’?>
2 <!DOCTYPE test [
3 <!ELEMENT test (#PCDATA) >
4 <!ENTITY % xx ‘%zz;’>
5 <!ENTITY % zz ‘<!ENTITY tricky “error-prone” >’ >
6 %xx;
7]>
8 <test>This sample shows a &tricky; method.</test>

This produces the following:

✦ in line 4, the reference to character 37 is expanded immediately, and the

parameter entity “xx” is stored in the symbol table with the value “%zz;”.

Since the replacement text is not rescanned, the reference to parameter entity

1143Appendix C ✦ The XML 1.0 Specification, Second Edition

“zz” is not recognized. (And it would be an error if it were, since “zz” is not

yet declared.)

✦ in line 5, the character reference “<” is expanded immediately and the

parameter entity “zz” is stored with the replacement text “<!ENTITY tricky
“error-prone” >”, which is a well-formed entity declaration.

✦ in line 6, the reference to “xx” is recognized, and the replacement text of “xx”

(namely “%zz;”) is parsed. The reference to “zz” is recognized in its turn, and

its replacement text (“<!ENTITY tricky “error-prone” >”) is parsed. The

general entity “tricky” has now been declared, with the replacement text

“error-prone”.

✦ in line 8, the reference to the general entity “tricky” is recognized, and it is

expanded, so the full content of the test element is the self-describing (and

ungrammatical) string This sample shows a error-prone method.

E Deterministic Content Models (Non-Normative)
As noted in 3.2.1 Element Content, it is required that content models in element

type declarations be deterministic. This requirement is for compatibility with SGML

(which calls deterministic content models “unambiguous”); XML processors built

using SGML systems may flag non-deterministic content models as errors.

For example, the content model ((b, c) | (b, d)) is non-deterministic, because

given an initial b the XML processor cannot know which b in the model is being

matched without looking ahead to see which element follows the b. In this case, the

two references to b can be collapsed into a single reference, making the model read

(b, (c | d)). An initial b now clearly matches only a single name in the content

model. The processor doesn’t need to look ahead to see what follows; either c or d
would be accepted.

More formally: a finite state automaton may be constructed from the content model

using the standard algorithms, e.g. algorithm 3.5 in section 3.9 of Aho, Sethi, and

Ullman [Aho/Ullman]. In many such algorithms, a follow set is constructed for each

position in the regular expression (i.e. each leaf node in the syntax tree for the regu-

lar expression); if any position has a follow set in which more than one following

position is labeled with the same element type name, then the content model is in

error and may be reported as an error.

Algorithms exist which allow many but not all non-deterministic content models to

be reduced automatically to equivalent deterministic models; see Brüggemann-

Klein 1991 [Brüggemann-Klein].

1144 Appendixes

F Autodetection of Character Encodings
(Non-Normative)
The XML encoding declaration functions as an internal label on each entity, indicat-

ing which character encoding is in use. Before an XML processor can read the inter-

nal label, however, it apparently has to know what character encoding is in use —

which is what the internal label is trying to indicate. In the general case, this is a

hopeless situation. It is not entirely hopeless in XML, however, because XML limits

the general case in two ways: each implementation is assumed to support only a

finite set of character encodings, and the XML encoding declaration is restricted in

position and content in order to make it feasible to autodetect the character encod-

ing in use in each entity in normal cases. Also, in many cases other sources of infor-

mation are available in addition to the XML data stream itself. Two cases may be

distinguished, depending on whether the XML entity is presented to the processor

without, or with, any accompanying (external) information. We consider the first

case first.

F.1 Detection Without External Encoding Information
Because each XML entity not accompanied by external encoding information and not

in UTF-8 or UTF-16 encoding must begin with an XML encoding declaration, in which

the first characters must be ‘<?xml’, any conforming processor can detect, after two

to four octets of input, which of the following cases apply. In reading this list, it may

help to know that in UCS-4, ‘<’ is “#x0000003C” and ‘?’ is “#x0000003F”, and the Byte

Order Mark required of UTF-16 data streams is “#xFEFF”. The notation ## is used to

denote any byte value except that two consecutive ##s cannot be both 00.

With a Byte Order Mark:

00 00 FE FF UCS-4, big-endian machine (1234 order)

FF FE 00 00 UCS-4, little-endian machine (4321 order)

00 00 FF FE UCS-4, unusual octet order (2143)

FE FF 00 00 UCS-4, unusual octet order (3412)

FE FF ## ## UTF-16, big-endian

FF FE ## ## UTF-16, little-endian

EF BB BF UTF-8

1145Appendix C ✦ The XML 1.0 Specification, Second Edition

Without a Byte Order Mark:

00 00 00 3C UCS-4 or other encoding with a 32-bit code unit and ASCII
characters encoded as ASCII values, in respectively big-endian
(1234), little-endian (4321) and two unusual byte orders (2143 and
3412). The encoding declaration must be read to determine which
of UCS-4 or other supported 32-bit encodings applies.

3C 00 00 00

00 00 3C 00

00 3C 00 00

00 3C 00 3F UTF-16BE or big-endian ISO-10646-UCS-2 or other encoding with a
16-bit code unit in big-endian order and ASCII characters encoded as
ASCII values (the encoding declaration must be read to determine
which).

3C 00 3F 00 UTF-16LE or little-endian ISO-10646-UCS-2 or other encoding with a
16-bit code unit in little-endian order and ASCII characters encoded
as ASCII values (the encoding declaration must be read to determine
which).

3C 3F 78 6D UTF-8, ISO 646, ASCII, some part of ISO 8859, Shift-JIS, EUC, or any
other 7-bit, 8-bit, or mixed-width encoding which ensures that the
characters of ASCII have their normal positions, width, and values;
the actual encoding declaration must be read to detect which of
these applies, but since all of these encodings use the same bit
patterns for the relevant ASCII characters, the encoding declaration
itself may be read reliably.

4C 6F A7 94 EBCDIC (in some flavor; the full encoding declaration must be read
to tell which code page is in use).

Other UTF-8 without an encoding declaration, or else the data stream is
mislabeled (lacking a required encoding declaration), corrupt,
fragmentary, or enclosed in a wrapper of some kind.

NOTE: In cases above which do not require reading the encoding declaration to
determine the encoding, section 4.3.3 still requires that the encoding declaration,
if present, be read and that the encoding name be checked to match the actual
encoding of the entity. Also, it is possible that new character encodings will be
invented that will make it necessary to use the encoding declaration to determine
the encoding, in cases where this is not required at present.

This level of autodetection is enough to read the XML encoding declaration and

parse the character-encoding identifier, which is still necessary to distinguish the

individual members of each family of encodings (e.g. to tell UTF-8 from 8859, and

the parts of 8859 from each other, or to distinguish the specific EBCDIC code page

in use, and so on).

1146 Appendixes

Because the contents of the encoding declaration are restricted to characters from

the ASCII repertoire (however encoded), a processor can reliably read the entire

encoding declaration as soon as it has detected which family of encodings is in use.

Since in practice, all widely used character encodings fall into one of the categories

above, the XML encoding declaration allows reasonably reliable in-band labeling of

character encodings, even when external sources of information at the operating-

system or transport-protocol level are unreliable. Character encodings such as UTF-

7 that make overloaded usage of ASCII-valued bytes may fail to be reliably detected.

Once the processor has detected the character encoding in use, it can act appropri-

ately, whether by invoking a separate input routine for each case, or by calling the

proper conversion function on each character of input.

Like any self-labeling system, the XML encoding declaration will not work if any

software changes the entity’s character set or encoding without updating the

encoding declaration. Implementors of character-encoding routines should be care-

ful to ensure the accuracy of the internal and external information used to label the

entity.

F.2 Priorities in the Presence of External Encoding Information
The second possible case occurs when the XML entity is accompanied by encoding

information, as in some file systems and some network protocols. When multiple

sources of information are available, their relative priority and the preferred

method of handling conflict should be specified as part of the higher-level protocol

used to deliver XML. In particular, please refer to [IETF RFC 2376] or its successor,

which defines the text/xml and application/xml MIME types and provides some

useful guidance. In the interests of interoperability, however, the following rule is

recommended.

If an XML entity is in a file, the Byte Order Mark and encoding declaration are used

(if present) to determine the character encoding.

G W3C XML Working Group (Non-Normative)
This specification was prepared and approved for publication by the W3C XML

Working Group (WG). WG approval of this specification does not necessarily imply

that all WG members voted for its approval. The current and former members of

the XML WG are:

Jon Bosak, Sun (Chair)

James Clark (Technical Lead)

Tim Bray, Textuality and Netscape (XML Co-editor)

Jean Paoli, Microsoft (XML Co-editor)

1147Appendix C ✦ The XML 1.0 Specification, Second Edition

C. M. Sperberg-McQueen, U. of Ill. (XML Co-editor)

Dan Connolly, W3C (W3C Liaison)

Paula Angerstein, Texcel

Steve DeRose, INSO

Dave Hollander, HP

Eliot Kimber, ISOGEN

Eve Maler, ArborText

Tom Magliery, NCSA

Murray Maloney, SoftQuad, Grif SA, Muzmo and Veo Systems

MURATA Makoto (FAMILY Given), Fuji Xerox Information Systems

Joel Nava, Adobe

Conleth O’Connell, Vignette

Peter Sharpe, SoftQuad

John Tigue, DataChannel

H W3C XML Core Group (Non-Normative)
The second edition of this specification was prepared by the W3C XML Core

Working Group (WG). The members of the WG at the time of publication of this edi-

tion were:

Paula Angerstein, Vignette

Daniel Austin, Ask Jeeves

Tim Boland

Allen Brown, Microsoft

Dan Connolly, W3C (Staff Contact)

John Cowan, Reuters Limited

John Evdemon, XMLSolutions Corporation

1148 Appendixes

Paul Grosso, Arbortext (Co-Chair)

Arnaud Le Hors, IBM (Co-Chair)

Eve Maler, Sun Microsystems (Second Edition Editor)

Jonathan Marsh, Microsoft

MURATA Makoto (FAMILY Given), IBM

Mark Needleman, Data Research Associates

David Orchard, Jamcracker

Lew Shannon, NCR

Richard Tobin, University of Edinburgh

Daniel Veillard, W3C

Dan Vint, Lexica

Norman Walsh, Sun Microsystems

François Yergeau, Alis Technologies (Errata List Editor)

Kongyi Zhou, Oracle

I Production Notes (Non-Normative)
This Second Edition was encoded in the XMLspec DTD (which has documentation

available). The HTML versions were produced with a combination of the

xmlspec.xsl, diffspec.xsl, and REC-xml-2e.xsl XSLT stylesheets. The PDF version was

produced with the html2ps facility and a distiller program.

Errata for Extensible Markup Language (XML)
1.0 (Second Edition)

No document is perfect. The second edition of the XML 1.0 specification was pub-

lished to correct errors and misinterpretations of the first edition. And within the

less-than-a-year since the second edition was published, errors have been spotted

in the second edition as well. Indeed Richard H. Adin, the copy editor for this book,

found one while he was editing this appendix! Eventually, there’ll have to be a third

edition of the XML 1.0 specification that corrects the errors in the second edition,

1149Appendix C ✦ The XML 1.0 Specification, Second Edition

and a fourth edition that corrects the errors in the third, and a fifth edition that cor-

rects the errors in the fourth, and so on, at least until XML 1.0 is replaced by some-

thing better.

In the meantime, the W3C has published a list of known errata in the second edi-

tion. Due to copyright problems, we were not allowed to correct the mistakes in the

specification itself. Instead, we reproduce the complete list of acknowledged errata

here. This list is current as of January 12, 2001. For the most up-to-date list, see

http://www.w3.org/XML/xml-V10-2e-errata

XML 1.0 Second Edition Specification Errata
Abstract
This document records all known errors in the Second Edition of the Extensible
Markup Language (XML) 1.0 Specification; for updates see the latest version.

The errata are numbered, classified as Substantive, Editorial or Clarification and

listed in reverse chronological order of their date of publication.

Please email error reports to xml-editor@w3.org.

Known Errors
Errata as of 2000-12-06
E6 Editorial

Section 3.3.3

Modify the second example in the table at the end of the section to read as follows

(add a in the middle):

a=”&d;&d;A&a;&a;B&da;” A #x20 B #x20 #x20 A #x20 #x20 #x20 B #x20 #x20

Rationale

Illustrate how space characters (#x20) get normalized no matter whether they

come from a character reference or not.

Errata as of 2000-12-01
E5 Editorial

Section 4.2.2

In the numbered list explaining the escaping of disallowed characters in URI refer-

ences, changes “octets” to “bytes”.

1150 Appendixes

Rationale

For consistency. We had “octets” and “bytes” meaning the same thing, but appar-

ently suggesting that they were different. “bytes” won by majority rule.

Errata as of 2000-11-22
E4 Clarification

Section 4.2.2

Replace the last sentence of the paragraph beginning with “URI references require

encoding and escaping of certain characters.” with the following: “The XML proces-

sor must escape disallowed characters as follows:”

Rationale

The fact that the XML processor is responsible for escaping disallowed characters

when resolving URI references was lost in the modifications of the 2nd edition.

E3 Clarification

Section 4.2.2

After the sentence reading “A URI might thus be relative to the document entity, to

the entity containing the external DTD subset, or to some other external parameter

entity.”, which follows the definition of SystemLiteral, add the following:

Attempts to retrieve the resource identified by a URI may be redirected at the

parser level (for example, in an entity resolver) or below (at the protocol level, for

example, via an HTTP Location: header). In the absence of additional information

outside the scope of this specification within the resource, the base URI of a

resource is always the URI of the actual resource returned. In other words, it is the

URI of the resource retrieved after all redirection has occurred.

Errata as of 2000-11-16
E2 Substantive

Section 3.3.1

Add a validity constraint applying to productions [58] NotationType and [59]

Enumeration as follows:

Validity constraint: No duplicate tokens

1151Appendix C ✦ The XML 1.0 Specification, Second Edition

The notation names in a single NotationType attribute declaration, as well as the

NmTokens in a single Enumeration attribute declaration, must all be distinct.

Rationale

Necessary to maintain compatibility with SGML.

Errata as of 2000-11-02
E1 Editorial

Section 3.3.3

In the set of examples at the end of the section, change the last character of the 3rd

column of the last example from “#xD” to “#xA”. The change makes the third col-

umn identical to the second column (for that third example).

Rationale

“#xD” was a typo.

Last updated $Date: 2000/12/06 19:05:38 $ by $Author: fyergeau $

xml-editor

✦ ✦ ✦

Symbols & Numbers
!= (exclamation mark, equals sign) boolean

XPath operator, 524, 525

' ' (single quotes)

attribute value delimiters, 154, 743

attribute values, in, 295

quotations, nested, 467

'' '' (double quotes)

attribute value delimiters, 58, 153–154,

165–166, 743

attribute values, in, 295

content property, insertion using,

466–467

entity replacement text delimiters, 259, 269

entity values, in, 261

(sharp sign)

Cascading Style Sheet (CSS) selector, 361,

366–367

Uniform Resource Locator (URL) fragment

identifier separator, 679

$ (dollar sign) variable prefix, 554, 816, 818

% (percent sign)

entity reference prefix, 268

entity values, in, 261

& (ampersand)

attribute values, in, 295

entity reference prefix, 154, 259

entity values, in, 261

specifications related to, 1100

&# (ampersand, sharp sign) character

reference prefix, 169

& entity reference, 154, 160, 166

' entity reference, 154

© entity reference, 169

> entity reference, 154

∞ entity reference, 169

< entity reference, 154, 160

 entity reference, 799

π entity reference, 169

" entity reference, 154

­ entity reference, 799

™ entity reference, 169

* (asterisk)

Cascading Style Sheet (CSS) selector, 360,

362–363

content property, inserting in text using,

465–466

element name wild card, 241, 244, 246,

502–503, 692

multiplication operator, 527

namespace wild card, 508, 692

*|/ (asterisk, bar, slash) XPath shorthand

operator, 531

*/ (asterisk, slash) Cascading Style Sheet

(CSS) comment delimiter, 359

+ (plus sign)

Cascading Style Sheet (CSS) selector, 360

child list operator, 240

Document Type Definition (DTD) name

prefix, 218

XPath addition operator, 527

, (comma)

Cascading Style Sheet (CSS) selector, 363

child list operator, 239

- (hyphen)

Cascading Style Sheet (CSS) selector, 360

Document Type Definition (DTD) name

prefix, 218, 219

XPath subtraction operator, 527

- - (double-hyphen) in comments, 1101

- -> (double hyphen, bracket) comment

delimiter, 156

.. (double period) XPath abbreviation, 519

. (period) XPath abbreviation, 519

Index

1154 Index ✦ Symbols & Numbers

/ (slash)

Extensible Stylesheet Language

Transformations (XSLT) hierarchy

operator, 504–505, 511

location step separator, 685

XPath hierarchy operator, 517

// (double slash)

Document Type Definition (DTD) name

suffix, 218

Extensible Stylesheet Language

Transformations (XSLT) hierarchy

operator, 505

XPath hierarchy operator, 517

XPath syntax abbreviation, 519

/* (slash, asterisk)

Cascading Style Sheet (CSS) comment

delimiter, 359

Extensible Stylesheet Language

Transformations (XSLT)

hierarchical operator, 505

/>(slash, bracket) tag closing delimiter, 4,

148, 168, 742

: (colon)

names, in, 259, 1099

namespace prefix element, 336

:: (double colon) node axis suffix, 514–515

; (semicolon) entity reference suffix, 154

= (equals sign)

attribute assignment operator, 58, 152

boolean XPath operator, 524

Cascading Style Sheet (CSS) selector,

361, 366

string equality operator, 512

?> (question mark, bracket) processing

instruction delimiter, 158, 326

@ (at sign)

attribute prefix, 139, 506–508

XPath expression abbreviation prefix, 519

@* (at sign, asterisk) wild card operator,

508, 691

[] (square brackets)

Extensible Stylesheet Language

Transformations (XSLT) selection

operator, 511–513

Uniform Resource Locators (URLs), in, 681

XPointer selection operator, 694

\ (backslash) Cascading Style Sheet (CSS)

escape character, 388

]] (square brackets) Document Type

Definition (DTD) delimiters, 215

]]> (square brackets, angle bracket) CDATA

section delimiter, 160

< (angle bracket)

boolean XPath operator, 524

specifications related to, 1100

tag opening delimiter, 4, 148, 155, 166

well-formedness constraints, 1073, 1110

<= (angle bracket, equal sign)

boolean XPath operator, 524

Java comparison operator, 155

<! (angle bracket, exclamation mark)

Document Type Definition (DTD)

declaration prefix, 213

<!- - (angle bracket, exclamation mark,

double hyphen) comment

delimiter, 156

<? (angle bracket, question mark) processing

instruction delimiter, 158, 326

> (angle bracket)

boolean XPath operator, 524

e-mail-style quoting character, 467

shell redirection operator, 769

specifications related to, 1100–1101

tag closing delimiter, 148, 155, 166

>= (angle bracket, equal sign)

boolean XPath operator, 524

Cascading Style Sheet (CSS) selector,

360, 364

| (bar)

child list operator, 246

Extensible Stylesheet Language

Transformations (XSLT) OR

operator, 510–511

1155Index ✦ Symbols & Numbers–A

|= (bar, equals sign) Cascading Style Sheet

(CSS) selector, 361, 366

~= (tilde, equals sign) Cascading Style Sheet

(CSS) selector, 361, 366

« » (guillemets) insertion using content
property, 466

1998fullstatistics.xml file

(on the CD), 83

1998shortstats.xml file, 87

A
about attributes, 724, 727, 729

ABSTRACT element, 972, 991

access element, 814–815

accessibility

alternate text, 751, 944

speech synthesis, 472–478, 640–641

Acrobat Reader, 328, 581

:active pseudo-class, 369

ActiveBorder system color keyword, 387

ActiveCaption system color keyword, 387

Additional Arabic Unicode script block, 201

Adj attribute, 944

Adobe FrameMaker, 9

Adobe SVG Viewer Plug-In, 889, 890

:after pseudo-element, 90, 368–369, 395.

See also content property

align attribute, 163, 796, 797

alignment

background images, 458–462

block-level elements, 89, 445

Cascading Style Sheet (CSS) operations,

444, 445–446

Extensible HyperText Markup Language

(XHTML), 750–751, 759

Hypertext Markup Language (HTML), in,

163

images, 458–462, 760–761, 890

leaders, 602

Scalable Vector Graphics (SVG), 890

style rules, setting in, 89

table elements, 750–751

text, 444, 445–446, 632–633

Vector Markup Language (VML), 951, 956

Wireless Markup Language (WML), 796,

797–798

all media type, 375

allelements.xml (on the CD), 483

Alphabetic Presentation Forms Unicode

script block, 201

alphaWorks' XML Enabler, 488

alt attribute, 751, 944

Alt containers, 723–724, 727

alternate text, 751, 944

Amaya browser (on the CD)

CDATA section support, 784

downloading, 889

drawing tool, 936

Mathematical Markup Language

(MathML) support, 20

Scalable Vector Graphics (SVG) support,

881–882, 889

ancestor axis, 514, 687, 689

ancestor-or-self axis, 514, 687, 689

anchor element, 806

anchors

Hypertext Markup Language (HTML), 647,

677, 679

Wireless Markup Language (WML),

804–807

XPointer compared, 679

animated GIFs, 973

ANSI character set, 194–195

ANY content model, 233–234

Apache project

Batik SVG Viewer, 29, 885, 1028

FOP software, 581, 1028

Xalan software, 488–491, 1028

Xerces software, 221–222, 835, 1026

application design

attributes, identifying, 1001

CDATA sections, 1001

data organization, 995–1002

Document Type Definition (DTD) design,

1002–1010

Continued

1156 Index ✦ A–A

application design (continued)

element identification, 997–1000

element relationships, establishing,

1000–1002

flexibility, 1009

object-oriented programming, similarity

to, 997

style sheet design, 1017–1024

application/xml+xslt MIME media

type, 119

application/xslt+xml MIME media

type, 491

AppWorkspace system color keyword, 387

Arabic

page layout regions, 584

right to left direction, 185, 389, 639

Unicode script blocks, 197, 201

Arabic Presentation Forms Unicode script

block, 201

arcs, 902–905

arithmetic operations

division, 99

Extensible Stylesheet Language

Transformations (XSLT), 542–548

nodes, counting, 542–548

schema numeric data types, 854–855

string type, converting before, 153

XPath, in, 526–529

Armenian Unicode script block, 197

Arrows Unicode script block, 199

ASCII character set, 7, 57, 186–189, 278

<!ATTLIST> tag, 290–291, 292, 302–303, 313

attr() function, 467

attribute axis, 514, 687, 691

Attribute defaults Backus-Naur-Form (BNF)

rule, 1037, 1060–1061

Attribute types Backus-Naur-Form (BNF)

rule, 1036, 1059

attributeFormDefault attribute, 874

Attribute-list declaration Backus-Naur-Form

(BNF) rule, 1036, 1058–1059

attributes. See also specific attributes

application design, identifying in, 1001

binary data, linking to external, 300

Cascading Style Sheet (CSS) operations

involving, 114–115, 360–361, 366, 467

CDATA attribute type, 290, 295

data appropriate for, 107, 112–113

data type, unique, 153, 290

dates stored as, 108–109, 310

declaration in Document Type Definition

(DTD), 290–292, 310–313

default, 291, 292–294, 349, 1086,

1116–1117

default, Backus-Naur-Form (BNF) rule,

1037, 1060–1061

elements versus, 102, 107–113

ENTITIES attribute type, 290, 300

ENTITY attribute type, 290, 300

enumerated, 290, 296–297, 1060,

1085–1086, 1115

Enumerated attribute types Backus-Naur-

Form (BNF) rule, 1036–1037, 1060

extensibility, lack of, 112

grouping, 548

Hypertext Markup Language (HTML)

attributes, 101–102, 113,

165–166, 743

ID attribute type, 290, 297–298, 366–367,

506, 1083–1084

IDREF attribute type, 290, 298–299, 1084

IDREFS attribute type, 290, 299, 1084

images, linking to, 300

list declaration, 1036, 1058–1059,

1113–1118

metadata stored as, 107

multiple, 291–292, 310

names, 153, 751

namespace, 343–344, 348

naming, 102, 153

NMTOKEN attribute type, 290, 295–296,

1006, 1010, 1044–1045

NMTOKENS attribute type, 290, 296, 1045

nodes, 129–134, 498, 506–508, 532, 691

1157Index ✦ A–B

NOTATION attribute type, 290, 301, 320

predefined, 301–308

pseudo-attributes, 146, 159

required, 292–293, 311, 1116

reserved characters, 153, 295

schemas, in, 867–871

sets, 537–538

specifications related to, 1109–1110,

1113–1118

strings, 153, 290

style information stored as, 113

style sheet access to, 114–115

syntax, basic, 58, 102, 165–166

types, 290, 294–301, 1036, 1059–1060

validity constraints, 1079, 1083–1084, 1086

value templates, 533–535

values, extraction using Extensible

Stylesheet Language

Transformations (XSLT), 119–120,

122–128, 497–498

values, fixed, 294

values, implied, 293, 312

values, insertion using Extensible

Stylesheet Language

Transformations (XSLT), 121,

126–134, 536–537

values, normalization, 1117–1118

values, notation names as, 301

values, quotation mark delimiters, 58,

153–154, 165–166

values, requiring, 292–293, 311

values, reserved characters in, 295

values, restricting to preset list, 296–297

values, restricting to unique element IDs,

297–299

values, restricting to valid XML names,

295–296, 297

values, selecting by, 129–134

values, white space prohibition in, 295

well-formedness, 152–154, 743, 1070, 1072,

1073–1074

white space treatment, specifying,

301–303

aural media type, 375

aural properties, 472–478, 640–641. See also

speech synthesis

AUTOINSTALL attribute, 991

axes. See also specific axes

XPath node selection using, 514–519

XPointer node selection using, 684,

686–691

azimuth property, 475, 640

B
background property, 462–463

background-attachment property,

457–458, 634

background-color property, 380, 384, 452,

633, 758

background-image property, 380, 383,

452–454, 633

background-position property,

458–462, 634

background-repeat property, 454–457, 634

backgrounds

Cascading Style Sheets (CSS) operations,

452–462, 758

color, 88–89, 386, 452, 462, 633

Extensible HyperText Markup Language

(XHTML), 758, 759

Extensible Stylesheet Language

Formatting Objects (XSL-FO),

633–634

images, 383, 452–462, 633–634

sound, 474

transparent, 452

Backus-Naur-Form (BNF). See also validation

Extended Backus-Naur Form (EBNF),

1132–1134

grammar, 1030–1032

introduced, 144–145

nonterminals, 1030

productions, 1030, 1031

symbols, 1032–1033

terminals, 1030

1158 Index ✦ B–B

Backus-Naur-Form (BNF) rules

Attribute defaults, 1037, 1060–1061

Attribute types, 1036, 1059

Attribute-list declaration, 1036, 1058–1059

CDATA sections, 1034, 1049–1050

Character data, 1044, 1048

Character range, 1033, 1042–1043

Character reference, 1037, 1062

Characters, 1038–1041, 1067–1069

Comments, 1044, 1048

Conditional section, 1037, 1061

Content of elements, 1035, 1056

Document, 1033, 1042

Document type definition, 1034,

1052–1053

Element, 1035, 1054

Element type declaration, 1036,

1056–1057

Element-content models, 1036, 1057

Encoding declaration, 1038, 1065–1066

End tag, 1035, 1055

Entity declaration, 1038, 1063–1064

Entity reference, 1037, 1062

Enumerated attribute types,

1036–1037, 1060

External entity declaration, 1038, 1064

External subset, 1035, 1053

Language identification, 1054

Literals, 1033, 1045–1047

Mixed-content declaration, 1036, 1058

Names and tokens, 1033, 1043–1045

Notation declarations, 1038, 1066–1067

Processing instructions, 1044, 1048–1049

Prolog, 1034, 1050–1052

Standalone document declaration, 1035,

1053–1054

Start tag, 1035, 1054–1055

Tags for empty elements, 1035, 1056

Text declaration, 1038, 1065

Well-formed external parsed entity,

1038, 1065

White space, 1033, 1043

Bag element, 720

bags, 720–722, 727–729

base attribute

Channel Definition Format (CDF) BASE
attribute, 981–982

xsd:simpleType element base
attribute, 865

basefont element, 759

Basic Latin Unicode script block, 196

Batik SVG Viewer (on the CD), 29, 885, 1028

Bean Markup Language, 326

before attribute, 624

:before pseudo-element, 90, 368–369, 395.

See also content property

Beginner's Guide to HTML, A (National Center

for Supercomputing Applications

(NCSA)), 782

Bengali Unicode script block, 197

Bézier curves, 905–907

bgcolor attribute, 758, 759

bibliographic data standard vocabulary, 709,

712–713

BiblioML software, 1002

bitmaps. See also images

bitmaps versus vector, 884–885

Scalable Vector Graphics (SVG), in, 882,

913–914

vector graphics verses, 884–885

Vector Markup Language (VML), in,

884–885

Wireless Bitmap format, 798

blank space. See white space

blank-or-not-blank attribute, 598

blind users. See visually impaired users

Block Elements Unicode script block, 199

block-level formatting

alignment, 89, 445

boxes, 394

described, 92–93, 393

Extensible Stylesheet Language

Formatting Objects (XSL-FO),

599–600

images, 605

indentation, 397, 446

1159Index ✦ B–B

inheritance, 392

list-items, 397, 614

margins, 635–637

positioning, 415

size, 410

BNF. See Backus-Naur-Form (BNF)

body element, 741, 750, 758, 941, 1017

body-start() function, 616

boilerplate content, 99, 553

bold font, 92, 431. See also font

boolean() function, 524

Bopomofo Unicode script block, 200

border attribute, 751, 760

border properties

Cascading Style Sheets (CSS), 387, 388,

403–406, 760–761, 950

Extensible Stylesheet Language

Formatting Objects (XSL-FO),

634–635

borders

Cascading Style Sheet (CSS) operations,

387, 388, 403–406, 760–761, 950

color, 387, 405–406, 634

described, 401

Extensible HyperText Markup Language

(XHTML), 760

Extensible Stylesheet Language

Formatting Objects (XSL-FO),

634–635

horizontal rules using, 406

image borders, 760

length measurements, 381–383

outlines compared, 406

padding, 401, 409–410, 635

style, 403–404, 406, 634

width, 404–405, 406, 634, 760

Bosak, Jon, 23

bottom property, 416, 417, 950

Box Drawing Unicode script block, 199

boxes (layout blocks). See also page

formatting

block elements, as, 394

borders, 403–406

Cascading Style Sheet (CSS) appearance

properties, 379, 400–410

Cascading Style Sheet (CSS) positioning

properties, 415–421

Cascading Style Sheet (CSS) size

properties, 410–415

clipping, 414–415

compact, 394

described, 379

Extensible Stylesheet Language (XSL),

573, 636

Extensible Stylesheet Language

Formatting Objects (XSL-FO) box-

related properties, 636–640

float properties, 420–421, 623–624

height properties, 410–413, 637–638

inline boxes, 444, 637

margins, in, 394

measurement, 381–383

orientation (rotation) of contents, 585,

638–639

outline properties, 406–409

overflow, 413–414, 597–599, 638

overlapping, 419

padding, 401, 409–410, 635

page boxes, 422

positioning, 415–421

run-in, 394

stacking, 419

text flow (left/right), 420

visibility properties, 463–464

width properties, 410–413, 637–638

braille media type, 375

Braille Unicode script block, 200

break-after property, 626

break-before property, 626

Brown University Scholarly Technology

Group validator, 223, 224–225

browser status bar font, 439

browser support

:after pseudoselector, 90

application/xml+xslt MIME media

type, 119

Continued

1160 Index ✦ B–C

browser support (continued)

background-attachment property, 458

:before pseudoselector, 90

Cascading Style Sheets (CSS), 140, 353,

358, 379, 427

CDATA sections, 784

Channel Definition Format (CDF), 965, 969

clip property, 415

content property, 90, 465

counters, 470

Cyrillic alphabet, 176, 177–178

display property, 396, 397

Extensible HyperText Markup Language

(XHTML), 750, 759, 767–768

Extensible Markup Language (XML), 11,

49, 170

Extensible Stylesheet Language (XSL), 482

Extensible Stylesheet Language

Formatting Objects (XSL-FO), 581

Extensible Stylesheet Language

Transformations (XSLT), 115, 140,

492–493, 533

first-letter pseudo-element, 431

HTML+TIME application, 27

Hypertext Markup Language (HTML)

backward compatibility, 161, 170

Hypertext Markup Language (HTML),

bad, 736, 737–740

Mathematical Markup Language

(MathML), 20

media types, 375

outlines, 406

Scalable Vector Graphics (SVG), 881–882,

889

tables, 95, 396

Vector Markup Language (VML), 30, 959

white-space property, 450

Wireless Markup Language (WML), 790,

795, 799

word-spacing property, 441

XInclude, 286

XLinks, 648, 656

XPointer, 677

z-index property, 419

Bukiet, Bruce, 64

ButtonFace system color keyword, 387

ButtonHighlight system color keyword,

387

buttons, Cascading Style Sheet (CSS)

operations, 387

ButtonShadow system color keyword, 387

ButtonText system color keyword, 387

byte ranges, 678

C
C++ namespaces, 331

Canadian Aboriginal Syllabics Unicode script

block, 198

CANRESIZE elements, 985

captions

Cascading Style Sheet (CSS) operations,

387

colors, 387

table captions, 395, 616–617

CaptionText system color keyword, 387

card element, 788, 794–795

Cascading Style Sheets (CSS). See also style

sheets; specific CSS properties

alignment, 444, 445–446

attribute operations, 114–115, 360–361,

366, 467

aural properties, 472–478

background properties, 452–462, 758

border properties, 387, 388, 403–406,

760–761, 950

box properties, appearance-related, 379,

400–410

box properties, position-related, 415–421

box properties, size-related, 410–415

browser status bar properties, 439

browser support, 140, 353, 358, 379, 427

browsers not supporting, hiding from,

758–759

caption properties, 387

cascades, 372–373

character set written in, 376–377

color properties, 384–388, 439–440,

452, 887

1161Index ✦ C–C

commenting, 359

counters, 468–472

cursor properties, 464–465

defining, 60–61

described, 353–354

dialog box properties, 439

document content, adding, 90–91,

465–472

documents, attaching to, 61–62, 87,

354–357, 372–373

element display options, 388–389,

392–400

embedding in other style sheets, 375–376

entities, as, 258

escapes, 384, 388

Extensible HyperText Markup Language

(XHTML) element replacement by,

755, 758–761

Extensible Stylesheet Language (XSL)

compared, 99

Extensible Stylesheet Language

Formatting Objects (XSL-FO)

property similarities, 574, 625

Extensible Stylesheet Language

Transformations (XSLT), applying

to, 537, 538

Extensible Stylesheet Language

Transformations (XSLT)

compared, 140

filenames, 61, 354

font properties, 88–89, 387, 427

font properties, case-related, 431

font properties, color-related, 439–440

font properties, family-related, 428–429,

438–439

font properties, size-related, 432–439

font properties, style-related, 430,

438–439

font properties, weight-related, 431–432,

438–439

foreground operations, 88–89, 386, 387

Hypertext Markup Language (HTML)

documents, in, 353–354, 357

icon properties, 439

ID selectors, 366–367

importing, 375–376

indentation, 397

inheritance, 371–372

introduced, 12

keyword values, 388

language attribute, triggered by, 370

length values, 381–383

Level 1, 140, 358, 1026

Level 2, 140, 358, 1026

Level 3, 358–359

list properties, 397–400, 472

margin properties, 400–403

media type, 356, 374–375

menu properties, 387, 439

multiple on same document, 373

outline properties, 406–409

padding properties, 409–410

page properties, 422–425

page selectors, 422

property names, 380

property values, 380–388

pseudo selectors, 90

pseudo-class selectors, 369–370

pseudo-element selectors, 367–369

push button properties, 387

rollover, applying at, 361, 369, 370

rules, 354

rules, combining, 363

Scalable Vector Graphics (SVG)

documents, using with, 887, 911,

915–916

scroll bar properties, 387

selection of all elements, 360, 362–363

selection of child/grandchild elements,

360, 364–365, 369

selection of elements at focus, 361, 370

selection of elements at rollover, 361, 369,

370

selection of elements by attributes,

360–361, 366

Continued

1162 Index ✦ C–C

Cascading Style Sheets (continued)

selection of elements by content

language, 361, 370

selection of elements by ID, 366–367

selection of elements within links, 361, 370

selection of inline elements, 388–389, 393

selection of locations preceding/following

elements, 368–369

selection of portions of elements,

367–368, 431

selection of sibling elements, 360, 365

selection of specified elements, 354, 363,

366–367

selection properties, 387

selector patterns, 360–361

selectors, 354, 360–370

specification (on the CD), 358–359, 1026

speech synthesis properties, 472–478

string values, 388

table properties, 389, 395–396

text properties, 441–451

tooltip properties, 387

Uniform Resource Locator (URL) values,

383–384

Vector Markup Language (VML), using

with, 949–956

versions, 358–359

visibility-related properties, 393–394,

463–464

widget properties, 387, 439

window properties, 387

case sensitivity

attribute names, 153, 751

element names, 71, 148, 149

Hypertext Markup Language (HTML),

149, 167

tags, 167

CDATA attribute type, 290, 295

CDATA sections

application design, in, 1001

Backus-Naur-Form (BNF) rule, 1034,

1049–1050

browser support, 784

defined, 1102

described, 159–160

Extensible HyperText Markup Language

(XHTML), in, 782–784

Extensible Stylesheet Language

Transformations (XSLT), in, 567

schema CDATA data type, 858

specifications related to, 1102, 1118

well-formedness, 159–160

cdata-section-elements attribute, 567

CDF. See Channel Definition Format (CDF)

CDF files, 967

CD-ROM with this book

1998 Major League Baseball season, 83,

1027

Amaya, 20, 1026

Bible, 25, 1027

Book of Mormon, 25, 1027

expat parser for C++, 1026

FOP, 581, 1028

HTML Tidy, 172, 769–772, 1028

Internet Explorer, 1026

Koran, 25, 1027

Mozilla, 1026

PDF files of this book, 1028

periodic table of the elements, 483, 1027

SAXON XSLT Processor, 488, 1028

Shakespeare, complete works of, 24, 1027

source code, 1027–1028

specifications, 1026–1027

Xalan, 488–491, 1028

Xerces parsers, 1026

XT XSLT Processor, 1028

ceiling() function, 528

cell phones, browsing from, 788, 790–791.

See also Wireless Markup Language

(WML)

center element, 760–761

center-x property, 951, 956

center-y property, 951, 956

CGM files, 881, 883

1163Index ✦ C–C

Channel Definition Format (CDF)

abstracts, 972

animated GIFs, 973

browser support, 965, 969

case conventions, 967

channel creation, 966–970

channel organization, 966

channels, passive, 975

described, 22–23, 965–966

desktop components, 985–986

Document Type Definitions (DTDs),

using, 967

history, reporting back to Web server,

979–981

image formats supported, 973

key-value pairs, 980

Last-Modified header, examining, 982–984

logos, 973–975

precaching, 978, 987–988

reader-access log, 979–981

root element, 967

screen savers, displaying Web pages as,

988–989

software update channels, 27–28, 990–992

timezone considerations, 976

titles, 970–971

tooltips title display, 971

Uniform Resource Locators (URLs),

relative, 981

updates, browser handling options,

967, 970

updates, checking last modification time

before, 982–984

updates, delivery options, 967

updates, e-mail notification, 967, 970,

986–987

updates, scheduling, 975–977

Web crawling, 978–979

Web pages, linking, 968–970

XML declaration, 967

CHANNEL element

BASE attribute, 981–982

HREF attribute, 967

LASTMOD attribute, 982–984

LEVEL attribute, 978

PRECACHE attribute, 978

Channel Screen Saver, 988

channels, 22, 965. See also Channel

Definition Format (CDF)

character data

Backus-Naur-Form (BNF) rule, 1044, 1048

defined, 1100–1101

specifications related to, 1100–1101

character range

Backus-Naur-Form (BNF) rule, 1033,

1042–1043

specifications related to, 1099

Character reference Backus-Naur-Form

(BNF) rule, 1037, 1062

character references

defined, 1120

expansion, 1142–1143

Extensible HyperText Markup Language

(XHTML), 773–777

processor handling of, 1126–1129

specifications related to, 1120–1122

Unicode character set, 204–205, 862–864

well-formedness constraints, 1074

character replacement. See also CDATA

sections; entity references

Extensible HyperText Markup Language

(XHTML), in, 773–777

hexadecimal values, with, 169–170,

204–205, 773

inline images, with, 170

character sets. See also language attribute;

language codes; Unicode

character set

ANSI character set, 194–195

ASCII character set, 7, 57, 186–189, 278

Cascading Style Sheets (CSS), 376–377

common sets listed, 206

declaration, 169, 205, 565

default, 195

Document Type Definitions (DTDs),

for, 214

encoding, autodetection, 1144–1146

Continued

1164 Index ✦ C–C

character sets (continued)

encoding declaration, 780, 1038,

1065–1066, 1125–1126

Encoding declaration Backus-Naur-Form

(BNF) rule, 1038, 1065–1066

Extensible HyperText Markup Language

(XHTML), 780

font, relation to, 182

Hypertext Transfer Protocol (HTTP)

declaration, 780

input methods, 182–185

International Standards Organization

(ISO) sets, 189–193

Mac versus PC, 195

MacRoman character set, 193–194

Scalable Vector Graphics (SVG)

documents, 888

schemas, 832

semantic encodings, 182

subsets, defining, 1042–1043

well-formedness, 147

Windows ANSI character set, 194–195

Windows support, 185, 186

Wireless Markup Language (WML),

declaration in, 815

characters

Backus-Naur-Form (BNF) rule, 1038–1041,

1067–1069

defined, 1098

specifications related to, 1098–1099,

1100–1101

Charbonnel, Laurent, 798

charset pseudo-attribute, 376, 780

@charset rule, 376–377

Chemical Markup Language (CML), 4,

18–19, 271

Cherokee Unicode script block, 198

child axis, 514, 515, 687–688

child elements. See elements, child

child sequences, 239–240, 704–705

Chinese-Japanese-Korean (CJK). See also

character sets

browser display, 176–177, 178–179

character sets, specialized, 206

file size issues, 202

fonts, 179–180

inputting, 183–185

International Standards Organization

(ISO) character set support, 191

Japanese Language Kit (Apple), 179

Japanese Language Pack (Microsoft), 179

operating system support, 185–186

screen resolution issues, 180

Unicode support, 197, 200, 201,

202–203, 862

circle element, 886, 894–895

CJK and KangXi Radicals Unicode script

block, 200

CJK Compatibility Forms Unicode script

block, 201

CJK Compatibility Ideographs Unicode script

block, 201

CJK Compatibility Unicode script block, 200

CJK Symbols and Punctuation Unicode

script block, 200

CJK Unified Ideographs Unicode script

block, 200

Clark, James, 830, 1028

class attribute, 742–743, 944

clear attribute, 624

clear property, 421, 950

clip property, 414–415, 638

CML. See Chemical Markup Language (CML)

CODE element, 567, 992

CODEBASE element, 992

coding style

indentation, 71

terseness, 72, 75

white space, 71, 148

color

background colors, 88–89, 386, 452,

462, 633

border colors, 387, 634

browsersafe, 385

caption colors, 387

Cascading Style Sheet (CSS) operations,

384–388, 439–440, 452, 887

Extensible HyperText Markup Language

(XHTML), 758

1165Index ✦ C–C

fills, 887, 899, 944, 945

foreground colors, 88–89, 386, 387, 629

gamma correction, 384–385, 386

leaders, 602

link color, 759

menu colors, 387

monitor display differences, 384, 385, 386

outline colors, 408

push buttons, 387

RGB values, 384, 385

Scalable Vector Graphics (SVG), 887

scroll bar colors, 387

selection colors, 387

Standard Default Color Space for the

Internet (sRGB), 384

system colors, 386–387

text colors, 88–89, 387, 439–440

tooltip colors, 387

Vector Markup Language (VML)

attributes, 944

widget colors, 387

window colors, 387

color property

Cascading Style Sheets (CSS), 380, 384,

439–440, 887

Extensible Stylesheet Language

Formatting Objects (XSL-FO), 629

columns attribute, 797

Combining Half Marks Unicode script block,

201

Combining Marks for Symbols Unicode

script block, 199

Combining Marks Unicode script block, 197

comment() node test, 508–509, 517, 693–694

comments

Backus-Naur-Form (BNF) rule, 1044, 1048

Cascading Style Sheets (CSS), in, 359

characters, reserved, 157–158

defined, 1101

Document Type Definitions (DTDs), in,

249–255, 329

Extensible Stylesheet Language

Transformations (XSLT) operations,

496, 508–509, 517, 539, 541

nested, 158

nodes, 498

nodes, selection, 496, 508–509, 517,

693–694

processing instructions as alternative to,

158, 325–326

processing unintentionally, 325–326

root element, placement in relation to, 156

schemas, commenting, 879

specifications related to, 1101

syntax, 156

tags, commenting out, 157

tags, inside, 156

well-formedness, 156–158

Compaq, 26

compression of Extensible Markup Language

(XML) files, 85–86, 253

concat() function, 530

Conditional section Backus-Naur-Form (BNF)

rule, 1037, 1061

conditional sections, 329–330, 1037, 1061,

1086–1087, 1118–1119

Connection Factory, 31

constants, Extensible Stylesheet Language

Transformations (XSLT), 553–554

containers

Alt, 723–724

bag, 720–722, 727–729

ID attribute, 724

Resource Description Framework (RDF),

in, 719–729

sequence (Seq), 722–723, 727

contains() function, 529

content attribute, 815

content models. See element content models

Content of elements Backus-Naur-Form

(BNF) rule, 1035, 1056

content property. See also :after pseudo-

element; :before pseudo-element

attribute values, inserting, 467

browser support, 90, 465

counters, 468–472

line breaks, 466

Continued

1166 Index ✦ C–D

content property (continued)

quotation mark insertion, 466–467

string values, 388

Uniform Resource Identifier (URI)

insertion, 467–468

content-height attribute, 610

content-type attribute, 610

Content-type field, 780

content-width attribute, 610

Control Pictures Unicode script block, 199

coordorigin attribute, 944, 949

coordsize attribute, 944, 947, 949

count attribute, 546

count() function, 521

counter() function, 471

counter-increment property, 468, 471

counter-reset property, 468

counters

browser support, 470

content property, using, 468–472

numbering style, 471, 547

country attribute, 593, 594

country codes, 304–306, 594

CSS. See Cascading Style Sheets (CSS)

.css files, 61, 354

Cuan Unicode script block, 200

cue properties, 474, 640

currency symbols, 199, 859–860, 861–862,

864–865

Currency Symbols Unicode script block, 199

cursors

Cascading Style Sheet (CSS) properties,

464–465

icon, changing, 464–465

curves, 905–907

cx attribute, 894, 895

cy attribute, 894, 895

Cyrillic alphabet. See also character sets

browser display, 176, 177–178

character references for, 204–205

character set support, 192, 197, 206

inputting, 183

operating system support, 185–186

Unicode script block, 197

D
d attribute, 900

data structure. See also document structure

elements, grouping data into, 72–76,

91, 107

extensibility, 112

Extensible Stylesheet Language (XSL)

advantages, 8–9

hierarchical (tree) approach, 91, 152,

483–486

non-XML data, 317

style sheet, reorganizing for, 93

tables, using for data overview, 64–68

data type, element

anonymous, 844–846

boolean, 524, 859

built-in, 838, 853–854

complex, 836

conversion, 522, 526, 529, 547–548

derived, 859–867

Extensible Markup Language (XML),

857–858

number, 526, 549

numeric, 854–855

reference, 859

restricting to smaller subset, 860, 867

simple, 836, 851–854

string, 522, 524, 529, 858–859

time, 856

user-defined, 838, 842, 865–867

databases, working with, 69

data-type attribute, 549

dates

attributes, stored as, 108–109, 310

child elements, stored as, 108–109

format, 109, 310, 319–320

International Standards Organization

(ISO) standards, 320, 853, 856

notations, using, 319–320

schemas, in, 852–853, 856

uncertain, 1005

DAY attribute, 976

DCD. See Document Content Description

(DCD)

1167Index ✦ D–D

DDML. See Document Definition Markup

Language (DDML)

defs element, 922

DEPENDENCY element, 992

desc element, 933–936

descendant axis, 514, 687, 688

descendant-or-self axis, 514, 687, 689

Description element

about attributes, 724

aboutEachPrefix attribute, 729

described, 710–711

implicit Bags in, 729

nesting, 715–716

properties, specifying multiple, 713–714

resource attribute, 716, 721

Resource Description Framework (RDF)

properties as attributes of, 718–719

destination-placement-offset attribute, 611,

612

Devanagari Unicode script block, 197

dialog boxes, 439

digital signatures, 39–41

Dingbats Unicode script block, 200

direction property, 389

disable-output-escaping attribute, 486,

540

display: block property, 89

display property

block elements, 389, 393

browser support, 396, 397

inline elements, 389, 393

list-item elements, 397–400

marker, 395, 472

none value, 393–394

table elements, 389, 395–396

values possible, 388–389

Vector Markup Language (VML), using

with, 950

display: table property, 94

display: table-caption property, 94

display: table-cell property, 94

display: table-row property, 94

div element, 761

div XPath division operator, 527

division (math operation), 99

do element, 801–803, 809

<!DOCTYPE declaration, 215, 485, 565–566,

737, 747

doctype-public attribute, 565–566

doctype-system attribute, 565–566

Document Backus-Naur-Form (BNF) rule,

1033, 1042

Document Content Description (DCD), 830

document declaration, standalone

Backus-Naur-Form (BNF) rule, 1035,

1053–1054

specifications related to, 1105–1106

validity constraints, 1078

Document Definition Markup Language

(DDML), 830

document entity, 257, 258, 1131

document() function, 522, 531

document structure. See also data structure

Document Type Definition (DTD) design

in relation to, 227–232

Document Type Definitions (DTDs),

stored in, 212, 217

Extensible Markup Language (XML) as

description of, 5

introduced, 59

splitting documents into manageable

pieces, 276–286

document type declarations

defined, 1103

described, 215

entity references, in, 267, 280

Extensible HyperText Markup Language

(XHTML), 737, 747, 755

Extensible Stylesheet Language

Transformations (XSLT), 565–566

specifications related to, 1102–1105

syntax, 215–216

tree structure, place in, 483

Wireless Markup Language (WML),

788–789

1168 Index ✦ D–E

Document type definition Backus-Naur-Form

(BNF) rule, 1034, 1052–1053

Document Type Definitions (DTDs)

attribute declaration in, 290–292, 310–313

bibliographic data, for, 1002, 1009–1010

changing, compatibility issues in, 211

Channel Definition Format (CDF)

documents, 967

character set written in, 214

Chemical Markup Language (CML), 271

comments in, 249–255, 329

design, 227–233, 1002–1010

document structure stored in, 212, 217

document type declaration versus, 215

entity references, 262–263, 270–276,

777–779

Extensible HyperText Markup Language

(XHTML), 735, 755–761, 768

external, 211, 215, 216, 217–218, 270–276

files stored in, 214

frameset, 735, 768

IGNORE blocks, 329–330

importing, 1006

INCLUDE blocks, 329–330

internal, 216–218

introduced, 4

limitations, 827–828

linking, 270–271

local copies, keeping, 747

Mathematical Markup Language

(MathML), 271

modular, 270–271, 350

namespace validation against, 349–350

namespaces, compatibility with, 828

naming, 218–219

nested, 270, 280

private, 273

public, 218–219

root element, 215

Scalable Vector Graphics (SVG), 271

schemas versus, 829, 834, 874

sections, conditional, 329–330, 1037, 1061,

1086–1087, 1118–1119

security, 834

shared, 211–212, 262

style sheets, applying to documents

having, 357

style sheets, combining with, 219–220

tree structure, place in, 483

Uniform Resource Locators (URLs), 215,

216, 218

validating against, 220–225, 234–236,

349–350, 834

well-formedness constraints, 1071–1076

XLink attribute declaration, 650–652, 657,

660–661, 662, 668

documents

Cascading Style Sheets (CSS), attaching

to, 61–62, 87, 354–357, 372–373

defined, 1097–1098

embedding using entity references,

276–286

life cycle, 9–11

recursion, 264

domain attribute, 814

drawing

Amaya drawing tool, 936

Scalable Vector Graphics (SVG) pen

drawing, 899–902

Vector Markup Language (VML) images,

941–950, 958–960

DTD files, 214

DTDs. See Document Type Definitions

(DTDs)

Dublin Core standard vocabulary, 44, 45, 709,

712–713

E
EARLIESTTIME element, 976, 977

EBNF. See Extended Backus-Naur Form

(EBNF)

editors, 9–10, 56

Educom (firm), 44

Element Backus-Naur-Form (BNF) rule, 1035,

1054

1169Index ✦ E–E

element content models. See also Document

Type Definitions (DTDs)

ANY content model, 233–234

Backus-Naur-Form (BNF) rules, 1036, 1057

defined, 1112

described, 227

deterministic, 1143

Extensible HyperText Markup Language

(XHTML), 752

grouping elements in, 244–245

parameter entity references, using, 269

#PCDATA content model, 213, 232,

234–237, 249

schemas, 843–844

shared, 843–844

specifications related to, 1112–1113

element declaration. See also element

content models

child element specifications in, 230–231,

237–243, 246–247

container elements, 269

described, 212–214, 230

empty elements, 248–249

grouping elements, 244–245, 847–851

IGNORE blocks, 329–330

INCLUDE blocks, 329–330

language of content, 303–308

name conflicts, 218

parsed character data, 213, 232, 234–237

pixel info, 321

schemas, in, 833, 842

specifications relating to, 1111–1113

syntax, 213

type, specification, 1111–1113

validity constraints, 1078–1079

white space, 301–303

<!ELEMENT declaration, 233

element, root

Channel Definition Format (CDF) root

element, 967

defined, 1098

Document Type Definitions (DTDs), in, 215

end tag, 70

Extensible HyperText Markup Language

(XHTML) root element, 737, 747

Extensible Stylesheet Language

Formatting Object (XSL-FO) root

element, 579, 583

Hypertext Markup Language (HTML) root

element, 168, 740–741, 941

mandatory for well-formedness, 146–147,

168

namespace declaration on, 339–341

naming, 70–71

nodes, 498, 531–532, 686

Resource Description Framework (RDF)

root element, 710

root node versus, 686

Scalable Vector Graphics (SVG) root

element, 886

schemas, 830

start tag, 70

style rule assignment to, 88–89

validity constraints, 1077

Wireless Markup Language (WML) root

element, 795

Element type declaration Backus-Naur-Form

(BNF) rule, 1036, 1056–1057

Element-content models Backus-Naur-Form

(BNF) rule, 1036, 1057

elementFormDefault attribute, 874

elements. See also nodes; specific elements

attributes versus, 102, 107–113

Backus-Naur-Form (BNF) rules relating to,

1035, 1056

block-level, 92–93, 393

Cascading Style Sheet (CSS) application

to all, 362–363

Cascading Style Sheet (CSS) application

to at focus, 361, 370

Cascading Style Sheet (CSS) application

to at rollover, 369, 370

Cascading Style Sheet (CSS) application

to child/grandchild, 364–365, 369

Continued

1170 Index ✦ E–E

elements (continued)

Cascading Style Sheet (CSS) application

to individual, 354, 366–367

Cascading Style Sheet (CSS) application

to link elements, 370

Cascading Style Sheet (CSS) application

to locations before/after, 368–369

Cascading Style Sheet (CSS) application

to portions of, 367–368, 431

Cascading Style Sheet (CSS) application

to specified, 363

Cascading Style Sheet (CSS) content,

adding, 90–91

Cascading Style Sheet (CSS) display

options, 388–389, 392–400

Cascading Style Sheet (CSS), visibility-

related properties, 393–394,

463–464

compact, 394

concatenating, 92

connections between using unique IDs,

299, 999, 1020

content defined, 1112

data organization into, 72–76, 91, 107

defined, 1108

design, 997–1002

entity references, in, 261, 262, 269

extensibility, 112

Extensible Stylesheet Language

Formatting Object (XSL-FO)

elements, 571–573

Extensible Stylesheet Language

Transformations (XSLT) documents,

in, 134–140, 531–532, 535–536,

548–551

hiding, 393–394, 463–464

IDs, applying to, 625

ignoring, 329–330

inline, 89, 92, 389, 393

iteration using xsl:for-each loops,

122–123, 125, 126, 521

links to, 113

mixed content, 69, 247–248, 693, 846–847

mixed content, defined, 1113

mixed content, specifications related to,

1113

mixed content validity constraints,

1082–1083

Mixed-content declaration Backus-Naur-

Form (BNF) rule, 1036, 1058

naming, 58–60, 71, 72, 148–149

nesting, 69, 151–152

nodes, 498, 531–532, 691

nodes, ID, 505–506, 521, 686, 697–698

overlapping, 151–152

parent elements, 88, 151–152, 1098

phantom, 97–98

processing instructions as, 327

pseudo-elements, 367–369

relationships, establishing in application

design, 1000–1002

reserved characters, 148

run-in, 394

semantic, 59

specifications related to, 1108–1113

structural, 59

style rules, assigning to, 88–95

stylistic, 59

types, 232

well-formedness, 146–152, 1071–1072,

1109

XLink elements, 648–649

elements attribute, 558

elements, child

attributes versus, 102, 107–113

Cascading Style Sheets (CSS) inheritance,

371–372

choice of, offering, 246–247

defined, 1098

described, 151–152

element declaration, specifications in,

230–231, 237–243, 246–247

existence of, specifying, 230–231

introduced, 69

iteration using xsl:for-each loops, 123

metadata in, 107–108, 111

node axis, 514, 515

number of, specifying, 239–243

1171Index ✦ E–E

parents, connecting to using unique IDs,

298–299

sequences, 239–240, 704–705

style rule inheritance, 88

tree structure, place in, 483

elements, empty

declaration, 248–249

defined, 1110

processor handling of, 149–150

schemas, in, 867

specifications related to, 1110–1111

usage, basic, 114, 148, 149–150

validity constraints, 1085

elevation property, 476, 640

ellipse element, 895–896

embossed media type, 375

EMPTY keyword, 248

emptyok attribute, 820

Enclosed Alphanumerics Unicode script

block, 199

Enclosed CJK Letters and Months Unicode

script block, 200

encoding attribute, 564–565

Encoding declaration Backus-Naur-Form

(BNF) rule, 1038, 1065–1066

encoding pseudo-attribute, 266

end attribute, 624

end notes, 623

End tag Backus-Naur-Form (BNF) rule, 1035,

1055

end tags

defined, 1110

Hypertext Markup Language (HTML),

163–165, 741

root element, 70

specifications related to, 1109–1110

well-formedness, 148, 149, 741, 1071–1072

end-indent attribute, 615–616

end-indent property, 628, 636

End-of-Line Handling specification, 1107

end-point() function, 702

entities. See also entity references

character encoding in, 1125

content, 258, 270, 1120

defined, 1120

described, 145, 257–258

document entity, 257, 258, 1131

external, 258, 1038, 1065, 1123

footers, using for, 258

general, 257, 259–263, 268, 1120

included, 1127–1128

internal, 258, 1122, 1129–1130

names, 258, 259, 1084, 1120

parameter, 257, 270, 1071, 1120

parameter, nesting, 1077–1078,

1080–1082, 1087

parsed, defined, 1120

parsed, introduced, 258

parsed, specifications relating to,

1124–1126

parsed, well-formedness, 1065, 1074–1075

predefined, 154, 263, 1130

processor handling of, 257–258,

1126–1129

public identifier, 1124

replacement text, 1129

schemas, in, 867

specifications related to, 1120–1130, 1131

style sheets as, 258

subsets, external, 1071, 1103, 1104–1105

system identifier, 1123

unparsed, 258, 317, 1075, 1120

validity constraints, 1084, 1087

values, literal, 1033, 1045–1047, 1100, 1129

well-formedness constraints, 1071, 1110

ENTITIES attribute type, 290, 300

ENTITY attribute type, 290, 300

Entity declaration Backus-Naur-Form (BNF)

rule, 1038, 1063–1064

<!ENTITY> declarations, 259, 1074

Entity reference Backus-Naur-Form (BNF)

rule, 1037, 1062

entity references. See also entities

characters disallowed in, 261

circular references, 262

content models using, 269

custom, 777–779

Continued

1172 Index ✦ E–E

entity references (continued)

data, passing to, 262

defined, 1121

document type declarations in, 267, 280

Document Type Definitions (DTDs), in,

262–263, 270–276, 777–779

documents, embedding using, 276–286

elements in, 261, 262, 269

Extensible HyperText Markup Language

(XHTML), 777–779

Extensible Stylesheet Language

Transformations (XSLT), 563

external, 264–268, 1064, 1072–1073

external, binary, 300

external, document references using,

276–286

external, non-XML, 300, 322

external, parsed, 1124–1125

general, 259–263, 268

hexadecimal values, 169–170, 204–205

Hypertext Markup Language (HTML)

model, 154, 166–167, 169–170,

264, 783

internal, 258–263, 268–270

markup characters, representing using,

154, 263

nesting, 262

parameter, 257, 268–276

parameter, specifications relating to,

1104–1105, 1112–1113

parameter, validity constraints,

1077–1078, 1080–1082, 1086–1087

parameter, well-formedness constraints,

1071, 1076

parameters in, 262

parser handling of, 257–258, 260, 266,

268, 279

recursion, 1075–1076

signature blocks using, 264–265

specifications related to, 1120–1122

syntax, 154–155, 259, 261–262, 268–269

text declaration, 266–268, 277–278

Uniform Resource Identifiers (URIs) in,

264–265

Uniform Resource Locators (URLs) in, 265

unparsed entities, declaring, 321–322

unparsed entities, embedding, 322–325

unparsed entities, passing parameters to,

327–328

validation, 257, 260

well-formedness, 154–156, 746, 1071,

1072–1073, 1074–1076

Wireless Markup Language (WML),

799–800

Enumerated attribute types Backus-Naur-

Form (BNF) rule, 1036–1037, 1060

EPS files, 881, 882

equations, representing, 4, 19–22

Ericsson WAP IDE, 791

error defined, 1096

escapes

Cascading Style Sheets (CSS), 384, 388

defined, 1130

Extensible Stylesheet Language

Transformations (XSLT), 467, 563

XPath, 524

XPointer, 680–681

Ethiopic Unicode script block, 198

Excel, 956–963

expat parser for C++ (on the CD), 1026

Extended Backus-Naur Form (EBNF),

1132–1134

Extended File Log format, 981

Extensible Forms Description Language

(XFDL), 39–41

Extensible HyperText Markup Language

(XHTML)

alignment, 750–751, 759

background, 758, 759

borders, 760

browser support, 750, 759, 767–768

Cascading Style Sheets (CSS),

replacement of presentational

elements by, 755, 758–761

CDATA sections, 782–784

1173Index ✦ E–E

character references, 773–777

character set encoding declaration, 780

color attributes, 758

content model, 752

document type declaration, 737, 747, 755

Document Type Definition (DTD),

frameset, 735, 768

Document Type Definition (DTD), strict,

735, 755–761

Document Type Definition (DTD),

transitional, 735

entity references, 777–779

font, 759

Formal Public Identifiers, 737

frames, 768

Hypertext Markup Language (HTML)

compared, 736–737

Hypertext Markup Language (HTML)

conversion utility, 769–772

images, 751, 760

language of content declaration, 781

legacy HTML documents, 735

margins, 750

metadata, 934–936

namespace, 332

root element, 737, 747

specification (on the CD), 737, 1027

Strictly Conforming Documents, 737

tables, 750–751

text, using for arbitrary, 1006

transition to, 737–738, 755

validity, checking, 748–755

validity, conditions for, 747

XML declaration, 747

Extensible Stylesheet Language (XSL)

box formatting model, 573, 636

browser support, 482

Cascading Style Sheets (CSS) compared, 99

component parts, 115

described, 481–482

development, state of, 482, 573

introduced, 12–13, 46–47

MSXML (Microsoft XML parser/ XSLT

processor), 115, 482

namespace, 486

specification, 486

World Wide Web Consortium (W3C)

Recommendation, 122, 482, 573

Extensible Stylesheet Language Formatting

Objects (XSL-FO)

aural properties, 640–641

background properties, 633–634

block areas, 574

block-level objects, 599–600

border properties, 634–635

box-related properties, 636–640

browser support, 581

Cascading Style Sheet (CSS) property

similarities, 574, 625

content, elements stored in, 599

content, filling regions with, 587, 588–592

content, repeating on every page, 588

content, static, 588, 590–592

country code, 594

document markup, basic, 579–581

filenames, 579

floating objects, 601, 623–624

flows, 588–590

font properties, 574–575, 579, 629, 643

footers, 584

footnotes, 623

formatting properties, 574–578, 624–625

formatting supported by, 571

functions performed by, 115, 116

headers, 584, 589

headers, images in, 607–609

hyphenation, 627–628

images, 604–611

indentation, 615–616, 628

inline areas, 574

inline objects, 600, 622, 637

introduced, 12–13, 46

language code, 594, 625

leaders, 602–604

Continued

1174 Index ✦ E–E

Extensible Stylesheet Language Formatting

Objects (XSL-FO) (continued)

line areas, 574

links, 611–612

lists, 588, 600, 612–616

margins, 585, 587, 635–637

media type, 610

namespace, 571, 583

object elements, 571–573

orientation (rotation), 585, 638–639

out-of-line formatting objects, 601,

623–624

overflow, 597–599, 638

padding properties, 635

pages, 573

pages, master, 579, 584–587, 596–599

page numbering, 593–596

page sequence, 579

page sequence masters, 596–599

page sequence, page master association

with, 587–588

page sequence, repeating content, 588

page size, 584

PDF files, conversion to, 581–583

regions, 574, 585, 586–587

regions, after, 584, 586

regions, before, 584, 589

regions, body, 584, 586, 587, 589

regions, end, 584, 586, 589

regions, start, 584, 586, 589

root element, 579, 583

rules, horizontal, 602–604

Scalable Vector Graphics (SVG) in, 607, 883

speech synthesis properties, 640–641

tables, 601, 616–622

text-related properties, 585, 629–633,

639–640

title, document, 588

well-formedness, 579

white space, 633

Extensible Stylesheet Language

Transformations (XSLT)

attribute sets, 537–538

attribute value templates, 533–535

browser support, 115, 140, 492–493, 533

Cascading Style Sheet (CSS) properties,

applying, 537, 538

Cascading Style Sheets (CSS) compared,

140

CDATA sections, 567

client-side processing, 488, 491–493

constants, defining, 553–554

context node, copying, 540–542

design, 1017–1024

document type declaration, 565–566

elements default rule, 531–532

end notes, 623

entity references, using in, 563

escapes, 467, 563

footnote numbering, 623

functions performed by, 115

hierarchy operators, 504–505, 507

if/else arguments, 559–560

indentation, 566

input documents, format, 116, 485

input documents, retrieving values from,

119–120, 122–128, 497–498

introduced, 12–13, 46–47

iteration, 122–123, 125, 126, 521

macro facility, 555

media type, 567

Microsoft-only version, 121–122

modes, 551–553

namespace, 121–122, 343, 492

namespace nodes, 483, 498, 522

node values, retrieving, 497–498

nodes, counting, 542–548

operator precedence, 511

output changes based on input, 559–560

output documents, Extensible Markup

Language (XML), 563–565

output documents, format, 116, 485–486,

563–567

output documents, Hypertext Markup

Language (HTML), 563, 567

output documents, inserting attribute

values, 121, 126–134, 536–537

1175Index ✦ E–F

output documents, inserting comments,

539

output documents, inserting element

values, 134–140, 535–536

output documents, inserting processing

instructions, 538–539

output documents, inserting text, 539–540

output documents, inserting values into

tables, 126–134

output documents, inserting variable

values, 553–554

output documents, media type, 567

output documents, sorting elements in,

548–551

output documents, stripping comments,

541

output documents, stripping/preserving

white space, 557–559

output documents, text, 563, 567

output methods, 563–567

selection of ancestor nodes, 516

selection of attribute nodes, 129–134,

506–508

selection of child/grandchild nodes,

494–496, 504–505, 512, 515

selection of comment nodes, 496,

508–509, 517

selection of context nodes, 515

selection of element nodes, 497, 499,

501–504, 505–506

selection of nodes by content, 511–513

selection of nodes by Uniform Resource

Identifier (URI), 522

selection of processing instruction nodes,

496, 509, 517

selection of root node, 486–487, 493–494,

500–501, 1017

selection of sibling nodes, 514, 518

selection of text nodes, 496, 510, 517

selection using boolean XPath

expressions, 524–526

selection using multiple patterns, 510–511

selection using node set XPath

expressions, 520–523

selection using number XPath

expressions, 526–529

selection using result tree fragment XPath

expressions, 529–531

selection using string XPath expressions,

529–531

selection using wildcards, 502–504, 505,

508, 517, 558

server-side includes compared, 116

server-side processing, 488

sorting, 548–551

style sheet application, 486

style sheet attachment to XML document,

491

style sheets, importing, 560–561

template rules, 486–487, 1018

template rules, default, 531–533

templates, applying multiple times,

551–553

templates, attribute value, 533–535

templates, named, 555–556

templates, passing parameters to,

556–557

third program processing, 488

tree construction function, 485–486

variables, 553–554

white space, 557–559

XLinks attributes, matching, 508

extent attribute, 586

External entity declaration Backus-Naur-

Form (BNF) rule, 1038, 1064

External subset Backus-Naur-Form (BNF)

rule, 1035, 1053

external-destination attribute, 611

Extrusion element, 945

F
face attribute, 760

false() function, 526

fatal error defined, 1096

field-specific markup languages, 7

Fill element, 945

fillcolor attribute, 944

filled attribute, 944

1176 Index ✦ F–F

fills, color, 887, 899, 944, 945

financial transactions. See transactions,

financial

:first pseudo-class, 369

:first pseudo-class selector, 422

:first-child pseudo-class, 369

first-letter pseudo-element, 367–368,

431

first-line pseudo-element, 368

#FIXED keyword, 294, 1116

flip property, 951, 955–956

float attribute, 624

float property, 420, 950

floating objects, 420–421, 601, 623–624

floor() function, 528

flow-name attribute, 589

.fo files, 579

fo prefix, 571

.fob files, 579

fo:basic-link element, 611–612

fo:bidi-override element, 600

fo:block element

content types contained by, 600

display: block element compared, 600

DIV element compared, 588, 600

font-family attribute, 575, 579

images, block-level, 605

fo:block-container element, 588, 599, 600

fo:caption element, 616

fo:character element, 600

focus, Cascading Style Sheet (CSS)

application at, 361, 370

:focus pseudo-class, 369, 370

fo:external-graphic element, 600,

604–607, 609–611

fo:float element, 601, 623–624

fo:flow element, 579, 587, 588–589

fo:footnote element, 601, 623

fo:footnote-body element, 601, 623

fo:initial-property-set element, 600

fo:inline element, 600, 622, 629

fo:inline-container element, 600

fo:instream-foreign-object element,

600, 607–611

fo:layout-master-set element, 579,

584–587

fo:leader element, 600, 602–604

fo:list-block element, 588, 600, 612–614

fo:list-item elements, 573, 612–613

following axis, 514, 687, 690

following-sibling axis, 514, 518, 687,

690–691

font. See also text formatting

aspect value, 435–437

bold, 92, 431, 629

browser status bar, 439

Cascading Style Sheets (CSS) properties,

88–89, 387, 427

Cascading Style Sheets (CSS) properties,

case-related, 431

Cascading Style Sheets (CSS) properties,

color, 439–440

Cascading Style Sheets (CSS) properties,

family, 428–429, 438–439

Cascading Style Sheets (CSS) properties,

size, 432–439

Cascading Style Sheets (CSS) properties,

style, 430, 438–439

Cascading Style Sheets (CSS) properties,

weight, 431–432, 438–439

character set, relation to, 182

colors, 88–89, 387, 439–440

cursive, 428

default, 759

dialog box font, 439

Extensible HyperText Markup Language

(XHTML), 759

Extensible Stylesheet Language

Formatting Objects (XSL-FO),

574–575, 579, 629, 643

family, 388, 428–429, 579, 602, 629

fantasy, 428

icons, 439

italic, 92, 430, 629

Japanese, 179–180

1177Index ✦ F–F

kerning, 437–438, 631

leaders, 602

measurement units, 435

menu items, 439

monospace, 428

non-Roman encoding, 178

normal, 430, 431, 629

oblique, 430, 629

sans-serif, 428

Scalable Vector Graphics (SVG), in,

911–912

serif, 428

size, 88–89, 432–437, 438–439, 629

small caps, 431, 629

weight, 431–432, 438–439, 629

widget font, 439

Wireless Markup Language (WML), 795

font element, 760, 761

font property, 438–439

font-family property

Cascading Style Sheets (CSS), 388,

428–429, 760

Extensible Stylesheet Language

Formatting Objects (XSL-FO),

574–575, 579, 629, 643

font-size property, 88, 380, 432–435, 629,

760

font-size-adjust property, 435–437, 629

font-stretch property, 437–438, 629

font-style property, 92, 380, 430, 629

font-variant property, 431, 629

font-weight property, 92, 431–432, 629

footers

entities, using for, 258

Extensible Stylesheet Language

Formatting Objects (XSL-FO), 584

tables, 617

footnotes, 601, 623

FOP software (on the CD)

block-level element support, 600

described, 581–583

downloading, 581

floating object support, 601, 624

image formats supported, 605

inline element support, 600

installation, 581–582

lists support, 613

Mathematical Markup Language

(MathML) support, 609

regions support, 586

table support, 601, 619

fo:page-number element, 594, 600

fo:page-number-citation element, 600

fo:page-sequence element

described, 579, 583

master-name attribute, 579, 587, 596

page numbering, 593–596

fo:page-sequence-master element, 596

force-page-count attribute, 593

fo:region-after element, 586

fo:region-before element, 586

fo:region-body element, 586

fo:region-end element, 586

fo:region-start element, 586

foreground

Cascading Style Sheet (CSS) operations,

88–89, 386, 387

color, 88–89, 386, 387, 629

fo:repeatable-page-master-
alternatives element, 596,

598–599

fo:repeatable-page-master-reference
element, 596, 598

Formal Public Identifiers, 737

format attribute, 547, 593, 820

format-number() function, 530

forms, legally-binding, 39–41

Formulas element, 945

fo:root element, 579, 583

forua attribute, 815

fo:simple-page-master element, 579,

584–586

fo:single-page-master-reference
element, 596–597

fo:static-content element, 587, 588, 590

fo:table element, 588, 600, 601, 616–617

1178 Index ✦ F–H

fo:table-and-caption element, 588, 600,

601, 616–617, 619

fo:table-body element, 601, 616, 617

fo:table-caption element, 601, 616–617,

619

fo:table-cell element, 601, 616, 617

fo:table-column element, 601, 616, 617,

619

fo:table-footer element, 601, 616, 617

fo:table-header element, 601, 616, 617,

619

fo:table-row element, 601, 616, 617

fo:title element, 588

FrameMaker, 9

frames, 768

French keyboards, 182–183

from attribute, 547

G
g element, 921, 924–932

General Punctuation Unicode script block,

199

generate-id() function, 522, 611, 625

Geometric Shapes Unicode script block, 199

Georgian Unicode script block, 198

GET method, 823

GIFs, animated, 973

go element, 803, 823

graphics. See images

GrayText system color keyword, 387

Greek Extended Unicode script block, 199

Greek letters, 169, 197, 199, 773–779

Greek Unicode script block, 197

grouping-separator attribute, 548, 593

grouping-size attribute, 548, 593

Gujarati Unicode script block, 198

Gurmukhi Unicode script block, 197

H
Half-width and Full-width Forms Unicode

script block, 201

handheld media type, 375

Handles element, 945

Hangul Compatibility Jamo Unicode script

block, 200

Hangul Jamo Unicode script block, 198

Hangul Syllables Unicode script block, 200

hash codes, 39

head element, 814, 941

headers

Extensible Stylesheet Language

Formatting Objects (XSL-FO), 584,

589, 607–609

images, 607–609

tables, 617, 619

Wireless Markup Language (WML),

814–815

headings

content, building from attribute data, 125

style rules duplicating functionality of,

91–92

Hebrew

keyboards, 183

page layout regions, 584

right to left direction, 185, 389, 639

Unicode script block, 197

height attribute

fo:external-graphic element, of, 610

fo:instream-foreign-object element,

of, 610

g element, of, 921

image element, of, 913

img element, of, 798

rect element, of, 892

svg element, of, 886, 915

HEIGHT Channel Definition Format (CDF)

element, 985

height property, 410–412, 637, 951

here() function, 698–699

hexadecimal value character replacement,

169–170, 204–205. See also entity

references

Highlight system color keyword, 387

HighlightText system color keyword, 387

Hiragana Unicode script block, 200

horizontal rules, 406, 602–604

1179Index ✦ H–H

HotJava, 115

HOUR attribute, 976, 980

:hover pseudo-class, 369, 370

HREF attribute

CHANNEL element, of, 967

ITEM element, of, 968, 985

LOGO element, of, 973

LOGTARGET element, of, 980

SOFTPKG element, of, 990

href attribute

passing value of, 556

vml:shape element, of, 944

xml-stylesheet processing instruction,

in, 61, 491, 561

xsl:import element, of, 560

xsl:include element, of, 561

href pseudo-attribute, 119, 356

HR-XML, 41–44

HR-XML Consortium, 41

<html> _ </html> elements, 168

HTML Tidy (on the CD), 172, 769–772, 1028

HTML+TIME application, 25–27

HTTP. See HyperText Transfer Protocol

(HTTP)

httpd.conf file, 789

http-equiv attribute, 780, 790, 815

HTTP-EQUIV element, 980

human resources applications, 41–44

Hypertext Markup Language (HTML). See

also Extensible HyperText Markup

Language (XHTML)

alignment, 163

anchors, 647, 677, 679

attributes, 101–102, 113, 165–166, 743

backward compatibility, 11, 161, 170

browser tolerance for bad markup, 144,

161, 736, 737–740

Cascading Style Sheets (CSS), with,

353–354, 357

case consistency, 167, 741

case sensitivity, 149, 167

checklist of common problems, 161

compatibility with, 113

elements, closing, 162–163

elements, overlapping, 163–165

entity references, 154, 166–167, 169–170,

264, 783

Extensible HyperText Markup Language

(XHTML) compared, 736–737

Extensible Markup Language (XML)

compared, 3, 5–6, 9, 11–12, 321

Extensible Markup Language (XML),

converting to, 740–746

Extensible Stylesheet Language

Transformations (XSLT) output

documents, 563, 567

granularity, 678

Java applets, referencing, 321

language declaration, 781

line breaks, 168

links, converting XML markup to, 535,

536, 556

links, XLinks versus, 647–648, 671

Mathematical Markup Language

(MathML) elements, embedding,

347–348

meta element, 780

namespace, 332, 334–338, 344–347

paragraphs, 163

root element, 168, 740–741, 941

Scalable Vector Graphics (SVG)

documents relation to, 889

Scalable Vector Graphics (SVG) images,

embedding, 888–891

scope of, 11

specification (on the CD), 319, 1027

tags, empty, 168, 742–743

tags, end, 163–165, 741

tags, overlapping, 742

tags, start, 741

validation, 735–737

Vector Markup Language (VML) images,

embedding, 939–941

well-formedness, 161–170

white space in, 302

XML declarations, 170

1180 Index ✦ H–I

HyperText Transfer Protocol (HTTP),

678, 780

hyphenate property, 627

hyphenation, 627–628, 799–800

hyphenation-character property, 627

hyphenation-keep property, 627

hyphenation-ladder-count property, 627

hyphenation-push-character-count
property, 627

hyphenation-remain-character-count
property, 627

I
IANA. See Internet Assigned Numbers

Authority (IANA)

IBM alphaWorks' XML Enabler, 488

IBM Tech Explorer, 20

icons

Cascading Style Sheets (CSS)

properties, 439

cursor icon, changing, 464–465

font, 439

id
Extensible Stylesheet Language

Formatting Objects (XSL-FO)

property, 625

Vector Markup Language (VML)

attribute, 944

ID attribute type, 290, 297–298, 366–367, 506,

1083–1084

ID characters, public, 1047

id() function, 505–506, 521, 686, 697–698

Ideographic Description Unicode script

block, 200

IDG.net Web site, 22

IDREF attribute type, 290, 298–299, 1084

IDREFS attribute type, 290, 299, 1084

IGNORE directive, 329–330, 1119

image element, 913–914

IMAGE tag, 300

Imagedata element, 945

images. See also Scalable Vector Graphics

(SVG); Vector Markup Language

(VML)

alignment, 458–462, 760–761, 890

alternate text, 751, 944

arcs, 902–905

aspect ratio, 920

background images, 383, 452–462,

633–634

bitmaps, 798, 882, 913–914, 945

bitmaps verses vector, 884–885

block-level formatting, 605

borders, 760

canvas size, 886

Channel Definition Format (CDF), formats

supported by, 973

channel logos, 973–975

character replacement using, 170

curves, 905–907, 946

elements, storing pixel info as, 321

Extensible HyperText Markup Language

(XHTML), 751, 760

Extensible Stylesheet Language

Formatting Objects (XSL-FO),

604–611

external, 604–606

file formats, 318, 881–883

flipping, 925, 931–932, 951, 955–956

GIFs, animated, 973

headers, in, 607–609

linking, 932–933

linking to external, 300, 325

maps, image, 932–933

metadata, 751, 933–937

notations for, 318–319

preloading, 656

resolution, 883–884

rotating, 925, 931, 953–954

scaling, 610–611, 928–929

schema operations, 868–871, 875–876

shadow effects, 945

shapes, grouping, 921–922

shapes, referencing, 922–924

1181Index ✦ I–I

size attributes, 610, 798

skew effects, 925, 929–931, 945

slide shows, 300, 325, 669, 698–699,

958–963

text, incorporating in, 907–912

transformations, 924–932

Uniform Resource Locators (URLs) of,

604–605

vector, 28–31, 882

vector verses bitmapped, 884–885

Web pages, embedding images in, 30–31,

888–891, 939–941, 960–963

Wireless Bitmap format, 798

Wireless Markup Language (WML),

798–799

XLinks, embedding using, 875–878

img element, 751, 752, 760, 798

IMPLEMENTATION element, 992

#IMPLIED keyword, 293, 312, 1116

@import rule, 375–376

!important declaration, 373

IMS. See Instructional Metadata System

(IMS)

InactiveBorder system color keyword, 387

InactiveCaption system color keyword,

387

InactiveCaptionText system color

keyword, 387

iname attribute, 821

INCLUDE directive, 329–330, 1119

indent attribute, 566

indentation

block-level, 397, 446

Cascading Style Sheet (CSS) operations,

397

coding, in, 71

Extensible Stylesheet Language

Formatting Objects (XSL-FO),

615–616, 628

Extensible Stylesheet Language

Transformations (XSLT), in, 566

lists, 397, 615–616

margins, via, 397

padding, via, 397

indicate-destination attribute, 611, 612

InfoBackground system color keyword, 387

InfoText system color keyword, 387

inherit attribute, 624

inhibit-line-breaks property, 627

initial-page-number attribute, 593

inline elements

boxes (layout blocks), inline, 444, 637

boxes, margin properties, 637

boxes, text alignment within, 444

Cascading Style Sheets (CSS), in, 388–389,

393

Extensible Stylesheet Language

Formatting Objects (XSL-FO), 574,

600, 622, 637

links, 669

tables, 395, 601

inline-table display property value, 395

input element, 819–820

Instant SAXON program, 490

Instructional Metadata System (IMS), 44

internal-destination attribute, 611

International Standards Organization (ISO)

character sets, 189–193

standard 639 (language codes), 219, 303,

306, 1096

standard 3166 (country codes), 304, 1096

standard 8601 (dates and times

representations), 320, 853, 856

standard 8859 (character sets), 186,

189–193, 206, 214

standard 8879 (Standard Generalized

Markup Language), 1091

Internet Assigned Numbers Authority

(IANA), 205, 304–306, 1108

Internet Explorer

background-attachment property

support, 458

Cascading Style Sheet (CSS) support, 140,

353, 379, 396, 397

CDATA section support, 784

CD-ROM, included on, 1026

Continued

1182 Index ✦ I–L

Internet Explorer (continued)

Channel Definition Format (CDF)

support, 965

content property support, 90, 465

counter support, 470

encoding, 178

entity references, external, 268, 279

Extensible Stylesheet Language (XSL)

issues, 482

Extensible Stylesheet Language

Transformations (XSLT) support,

115, 492–493, 533

MIME media type values needed, 119,

492–493

pseudoselector support, 90

source code view, 88

table properties support, 95

Vector Markup Language (VML) support,

30, 959

VMLRender program, 941

white-space property support, 450

word-spacing property support, 441

XLinks support, 648

Internet Forms Viewer, 40

INTERVALTIME element, 976, 977

IPA Extensions Unicode script block, 197

ISO. See International Standards

Organization (ISO)

italic font, 92, 430. See also font

ITEM element

BASE attribute, 981–982

HREF attribute, 968, 985

LASTMOD attribute, 982–984

LEVEL attribute, 978

PRECACHE attribute, 978

iteration

elements, using xsl:for-each loops,

122–123, 125, 126, 521

links, 698–699

ivalue attribute, 821

J
Japanese characters. See Chinese-Japanese-

Korean (CJK)

Japanese Language Kit (Apple), 179

Japanese Language Pack (Microsoft), 179

Java

applets, referencing in Hypertext Markup

Language (HTML), 321

Extensible Markup Language (XML)

parser code treatment, 155, 158, 167

Unicode escapes, 203

Java 2 Platform, Standard Edition Product

Family Web site, 203

Java Development Kit, 203

JavaBeans (Harold), 176

java.sun.com Web site, 203

Jelliffe, Rick, 830

JUMBO XML browser, 19

justification (text), 441, 445–446. See also

text formatting

K
Kanbun Unicode script block, 200

Kannada Unicode script block, 198

Katakana Unicode script block, 200

Kay, Michael, 488

keep-together property, 626

keep-with-next property, 626

keep-with-previous property, 626

kerning, 437–438, 631. See also text

formatting

key() function, 521

keys, private, 39

Khmer Unicode script block, 198

Korean characters. See Chinese-Japanese-

Korean (CJK)

L
lang attribute, 781

lang() function, 526

:lang() pseudo-class, 369, 370

language attribute, 593, 594

1183Index ✦ L–L

LANGUAGE attribute (Extensible Markup

Language (XML)), 289–290, 291

language codes. See also character sets

Extensible Stylesheet Language

Formatting Object (XSL-FO)

documents, 594, 625

International Standards Organization

(ISO), 219, 306

Internet Assigned Numbers Authority

(IANA), 304–306, 1108

user-defined, 308

LANGUAGE element, 991, 992

language identification. See also character

sets

Backus-Naur-Form (BNF) Language

identification rule, 1054

Cascading Style Sheets (CSS) triggered

by, 370

element content, of, 303–308

Extensible HyperText Markup Language

(XHTML) content, 781

Extensible Stylesheet Language Formatting

Objects (XSL-FO), 594, 625

Hypertext Markup Language (HTML), 781

node set keys, 551

none (default=English), 291

page numbering, 594

precedence, 781

schemas, 857

software update channels, 991

specifications related to, 1107–1108

language property, 625

Lao Unicode script block, 198

last() function, 521

last-line-end-indent property, 628

LASTMOD attribute, 982–984

LATESTTIME element, 976, 977

Latin Extended Unicode script block, 199

Latin Extended-A Unicode script block, 196

Latin Extended-B Unicode script block, 197

Latin-1 Supplement Unicode script block, 196

layout. See boxes (layout blocks); page

formatting; text formatting

leader-alignment attribute, 602

leader-length attribute, 602

leader-pattern attribute, 602

leader-pattern-width attribute, 602

left attribute, 624

left property, 416, 417, 951

:left pseudo-class, 369, 422

leftmargin attribute, 750

length measurement units, 382, 383, 435,

914–915, 949

Letter like Symbols Unicode script block, 199

letter-spacing property, 441–442, 631

letter-value attribute, 548, 593

level attribute

CHANNEL element LEVEL attribute,

978–979

xsl:number element level attribute,

545–546

library catalog standard vocabulary, 44, 45,

709, 712–713

line breaks, 168, 451, 466, 1107

line element, 896–897

line formatting. See text formatting

line wrap, 451, 633, 796

line-height property, 380, 448–449, 631

line-height-shift-adjustment
property, 631

line-stacking-strategy property, 632

:link pseudo-class, 369, 370

linkbase, 669. See also XLinks

links. See also XLinks; XPointer

applications related to, 47

Cascading Style Sheets (CSS) application

to, 361, 370

color, 759

converting XML markup to, 535, 536, 556

elements, to, 113

Extensible Stylesheet Language

Formatting Objects (XSL-FO),

611–612

granularity, 678

image maps, 932–933

images, 300, 325, 932–933, 944

Continued

1184 Index ✦ L–M

links (continued)

inline, 669

iteration, 698–699

out-of-line links, 657, 669–674

parts of documents, selecting, 647,

677, 679

QuickTime movies, linking to, 669

relative, 612

Scalable Vector Graphics (SVG)

documents, in, 932–933

source document link, referencing

back, 699

style sheet of target, overriding, 612

targets, 612

Wireless Markup Language (WML),

800–807, 814

lists

block-level formatting, 397, 614

bullet characters, 397–400, 471–472,

612–613

Cascading Style Sheet (CSS) operations,

397–400, 472

Extensible Stylesheet Language

Formatting Objects (XSL-FO), 588,

600, 612–616

indentation, 397, 615–616

markers, 397

numbering style, 471, 547, 612–613

numbers with commas, 548

spacing attributes, 613–614

list-style shorthand property, 400

list-style-image property, 380, 383,

398–399

list-style-position property, 397, 400

list-style-type property, 397–398

literals

Backus-Naur-Form (BNF) rule, 1033,

1045–1047

specifications related to, 1100

local-name() function, 522

location paths, 684–685. See also XPath;

XPointer

location sets, 702

location steps, 684–685, 694. See also

XPointer

LOG element, 980

LOGO element, 973–975

logs

Channel Definition Format (CDF) reader-

access log, 979–981

Extended File Log format, 981

LOGTARGET element, 980–981

looping. See iteration

Lynx Web browser, 115

M
MacOS non-Roman script support, 185

MacRoman character set, 193–194

Macromedia, 26

Makoto, Murata, 830

Malalayam Unicode script block, 198

margin attribute, 585

margin property, 423, 635, 950

margin-bottom attribute, 585

margin-bottom property, 400–403, 635

margin-left attribute, 585

margin-left property, 400–403, 635

margin-right attribute, 585

margin-right property, 400–403, 635

margins

block-level, 635–637

boxes in, 394

Cascading Style Sheet (CSS) operations,

400–403

described, 400–401

Extensible HyperText Markup Language

(XHTML), in, 750

Extensible Stylesheet Language

Formatting Objects (XSL-FO), 585,

587, 635–637

indentation using, 397

length measurements, 381–383

Microsoft extensions, 750

margin-top attribute, 585

margin-top property, 380, 400–403, 635

Marimba (firm), 27

1185Index ✦ M–M

mark property, 423

marker display property value, 395, 472

markup characters, using in text. See CDATA

sections; entity references

markup declaration

defined, 1103

external, defined, 1105

markup defined, 1100

markup languages, field-specific, 7

master-name attribute

fo:page-sequence element, of, 579, 587,

596

fo:repeatable-page-master-
reference element, of, 598

fo:single-page-master-reference
element, of, 597

match attribute

attribute value templates as value of, 535

xsl:template element, of, 118, 486, 493,

499–500

match defined, 1097

math operations. See arithmetic operations

Mathematical Markup Language (MathML)

browser support, 20

Document Type Definition (DTD), 271

FOP support of, 609

Hypertext Markup Language (HTML),

embedding MathML elements in,

347–348

introduced, 19–22

namespace, 332, 347

specification (on the CD), 1027

Mathematical Operators Unicode script

block, 199

max-height property, 413, 637

maxlength attribute, 820

maxOccurs attribute, 838–841, 850

max-width property, 413, 637

measurement, units of, 381–383, 435,

914–915, 949

@media rules, 374–375

media type. See also Multipurpose Internet

Mail Extensions (MIME)

browser support, 375

Cascading Style Sheets (CSS), in, 356,

374–375

Extensible Stylesheet Language (XSL), 356

Extensible Stylesheet Language

Formatting Objects (XSL-FO), 610

Extensible Stylesheet Language

Transformations (XSLT) output, 567

graphics, 610

Internet Explorer values needed, 119,

492–493

Scalable Vector Graphics (SVG), 885

Wireless Markup Language (WML),

789–790, 798

media-type attribute, 567

Menu system color keyword, 387

menus

Cascading Style Sheet (CSS) operations,

387, 439

colors, 387

font, 439

Wireless Markup Language (WML),

809–811

MenuText system color keyword, 387

<META> directive, 169

meta element, 780, 815

metadata, 107–112, 707–708, 751, 933–936

meta-data applications, 44–45

metadata element, 933–936

meta-markup language, XML as, 3–4

method attribute

go element, of, 823

LOGTARGET element METHOD attribute, 980

xsl:output element, of, 563–564

Microsoft

downloads, 115

Japanese Language Pack, 179

namespace, Microsoft-only, 121–122

Open Software Description (OSD) format

documentation, 991, 992

updates, 28

Vector Markup Language (VML)

resources, 941, 946

1186 Index ✦ M–N

Microsoft Office

Extensible Markup Language (XML), use

of, 49

namespace, 963

non-Roman script support, 186

Unicode support, 203–204

Vector Markup Language (VML) in, 30, 49,

956–963

Microsoft Office 2000 Resource Kit, 186

MIME. See Multipurpose Internet Mail

Extensions (MIME)

min-height property, 412–413, 637

minOccurs attribute, 838–841, 850

min-width property, 412–413, 637

Miscellaneous Symbols Unicode script

block, 199

Miscellaneous Technical Unicode script

block, 199

mixed attribute, 847

mixed content. See elements, mixed content

Mixed-content declaration Backus-Naur-

Form (BNF) rule, 1036, 1058

mode attribute, 796

mol.dtd file, 271

Mongolian Unicode script block, 199

monitor resolution

Chinese-Japanese-Korean (CJK) display

issues, 180

image display issues, 883–884

length measurement issues, 381–382, 915

Mosaic browser, 115

Mozilla

background-attachment property

support, 458

Cascading Style Sheet (CSS) support, 140,

353, 379, 397

CDATA section support, 784

CD-ROM, included on, 1026

content property support, 465

counter support, 470

entity references, external, 268

Extensible Stylesheet Language

Transformations (XSLT) support, 115

source code view, 88

table properties support, 95

white-space property support, 450

word-spacing property support, 441

XLinks support, 648

MSXML (Microsoft XML parser/ XSLT

processor), 115, 482

Multipurpose Internet Mail Extensions

(MIME)

future developments, 491

Internet Explorer, in, 119, 492–493

notation external identifiers, as, 319

Scalable Vector Graphics (SVG), 885

Wireless Markup Language (WML),

789–790, 798

xml-stylesheet processing instruction,

in, 356

xsl:output attribute, in, 567

Murray-Rust, Peter, 18

music notation, 5, 31–33

MusicML application, 31–33

Myanmar Unicode script block, 198

N
name attribute

input element, of, 820

meta element, of, 815

xsd:element element, of, 833

xsd:simpleType element, of, 865

xsl:call-template element, of, 556

xsl:element element, of, 535

xsl:param element, of, 557

xsl:template element, of, 555

xsl:variable element, of, 553

name defined, 1099

name() function, 522

names

Names and tokens Backus-Naur-Form

(BNF) rule, 1033, 1043–1045

specifications related to, 1100

namespace attribute, 877

namespace axis, 514, 687, 691

1187Index ✦ N–N

namespaces

attribute namespaces, 343–344, 348

C++, in, 331

controversial nature of, 333

default, 344–348, 349–350, 871–875

Document Type Definitions (DTDs)

compatibility with, 828

Extensible HyperText Markup Language

(XHTML), 332

Extensible Stylesheet Language (XSL), 486

Extensible Stylesheet Language

Formatting Objects (XSL-FO),

571, 583

Extensible Stylesheet Language

Transformations (XSLT), 121–122,

343, 492

Hypertext Markup Language (HTML), 332,

334–338, 344–347

introduced, 72

Mathematical Markup Language

(MathML), 332, 347

Microsoft Office, 963

Microsoft-only versions, 121–122

multiple, declaring on root element,

339–343

names, local, 338

names, qualified, 338

need for, 331–333, 335

nodes, 483, 498, 522, 691

parser handling of, 333

prefixes, mapping, 692–693

prefixes, redeclaring, 343

prefixes, validation considerations, 349

prefixless, 344, 872

Resource Description Framework (RDF),

332, 709, 710, 711–713

root element, declaring on, 339–343

Scalable Vector Graphics (SVG), 331–332,

886

schemas, 833, 835, 838, 871–878

specifications (on the CD), 333, 1026

syntax, basic, 333–334, 336–339

tag names, 148

validation, 333, 349–350

Vector Markup Language (VML), 941

vocabularies, standard, 729–730

well-formedness, 349–350

wild cards, 508, 692

World Wide Web Consortium (W3C)

recommendation, 333

XLinks namespace, 344, 649

namespace-uri() function, 522

NaN. See Not a Number (NaN)

native2ascii utility, 203

NATIVECODE element, 992

Netscape Navigator

Cascading Style Sheet (CSS) support, 140,

353, 379

Channel Definition Format (CDF) support,

969

encoding, 178

entity references, external, 268

Extensible Markup Language (XML)

display support, 49

Extensible Markup Language (XML),

internal use of, 49–52

Extensible Stylesheet Language

Transformations (XSLT) support, 115

line breaks, 168

Mathematical Markup Language

(MathML) support, 20

source code view, 88

table properties support, 95

well-formedness, using to check, 746

XLinks support, 648

NMTOKEN attribute type, 290, 295–296, 1006,

1010, 1045

NMTOKENS attribute type, 290, 296, 1045, 1118

node() node test, 691, 692

node tests, 517, 684, 692–694

nodes

attribute nodes, 498, 532

comment nodes, 498

context node, 514, 520–521, 687

context node, copying, 540–542

context node list, 521

element nodes, 498, 531–532, 691

Continued

1188 Index ✦ N–O

nodes (continued)

IDs, generating for, 522

location sets, 702

match patterns, multiple, 510–511

namespace nodes, 483, 498, 522, 691

processing instruction nodes, 498, 532

root nodes, 498, 531–532, 686

selection by content, 511–513

selection by Uniform Resource Identifier

(URI), 522

selection by value, 511–513

selection of ancestor nodes, 516, 689

selection of attribute nodes, 129–134,

506–508, 691

selection of child/grandchild nodes in

Extensible Stylesheet Language

Transformations (XSLT), 494–496,

504–505, 512, 515

selection of child/grandchild nodes in

XPointer, 687–689, 704–705

selection of comment nodes, 496,

508–509, 517, 693–694

selection of context nodes, 515, 689

selection of element nodes in Extensible

Stylesheet Language

Transformations (XSLT), 497, 499,

501–504, 505–506

selection of element nodes in XPointer,

692, 697–699

selection of processing instruction nodes,

496, 509, 517, 694

selection of root nodes, 486–487, 493–494,

500–501, 686, 1017

selection of sibling nodes, 514, 518, 687,

690–691

selection of text nodes, 496, 510, 517, 693

selection using axes, 514–519, 684,

686–691

sets, 520–523, 694, 697–699

text nodes, 498, 532

types, 483

wildcards, 502–504, 505, 508, 517, 558

xsl:value-of element, computing value

using, 497–498

Nokia WAP Toolkit, 791

none attribute, 624

noop element, 803

normalize-space() function, 558

Not a Number (NaN), 526

not() function, 525, 526

NOTATION attribute type, 290, 301, 320

Notation declarations Backus-Naur-Form

(BNF) rule, 1038, 1066–1067

<!NOTATION tag, 319

notations

controversial nature of, 317

dates, for, 319–320

declarations, 1130–1131

defined, 1130

external identifier, 319

images, for, 318–319

name, 319

names as attribute values, 301

need filled by, 318–319

portable document format (PDF), for, 328

schemas, notation name declaration in,

857

specifications related to, 1115–1116,

1130–1131

validity constraints, 1085, 1087–1088

Notepad, using as file editor, 56–57

Number Forms Unicode script block, 199

number-columns-spanned attribute, 618

number-rows-spanned attribute, 618

O
object element, 941

odd-or-even attribute, 598

Office 2000. See Microsoft Office

OFX. See Open Financial Exchange (OFX)

Ogham Unicode script block, 198

omit-xml-declaration attribute, 564–565

onenterbackward events, 812, 817

onenterforward events, 812, 817

onevent element, 812, 813

ontimer events, 812

Open Financial Exchange (OFX), 8, 35–41

1189Index ✦ O–P

Open Software Description (OSD) format,

27–28, 990–991, 992

OPENAS element, 985

Opera Web browser

background-attachment property

support, 458

Cascading Style Sheet (CSS) support, 140,

353, 379, 397

CDATA section support, 784

content property support, 465

counter support, 470

entity references, external, 268

Extensible Stylesheet Language

Transformations (XSLT) support,

115

source code view, 88

white-space property support, 450

Wireless Markup Language (WML), 790

word-spacing property support, 441

XLinks support, 648

Optical Character Recognition Unicode

script block, 199

order attribute, 551

origin() function, 699

Oriya Unicode script block, 198

orphans property, 424, 425, 626, 640

orphans/widows, 425, 640

OS element, 992

OSD format. See Open Software Description

(OSD) format

outline property, 408

outline-color property, 408

outlines, 406–408

outline-style property, 407–408

outline-width property, 408

out-of-line links, 657, 669–674. See also

XLinks

overflow property, 412, 413–414, 638

P
p element, 794, 796

P3P. See Platform for Privacy Preferences

(P3P)

padding

borders, 401, 409–410, 635

boxes (layout blocks), 401, 409–410, 635

Cascading Style Sheet (CSS) operations,

409–410

described, 401, 409

Extensible Stylesheet Language

Formatting Objects (XSL-FO), 635

indentation using, 397

length measurements, 381–383

padding properties

Cascading Style Sheets (CSS), 409–410

Extensible Stylesheet Language

Formatting Objects (XSL-FO), 635

page formatting. See also boxes (layout

blocks); margins

breaks, 424–425, 626–627

Cascading Style Sheet (CSS) operations,

422–425

height, 422–423

numbering, 593–596

selectors, 422

widows/orphans, 425, 640

width, 422–423

page property, 423–424

@page rule, 422

page-break-after property, 424, 627

page-break-before property, 424, 627

page-break-inside property, 424, 627

page-height attribute, 584

page-position attribute, 598

page-width attribute, 584

Palacios, Jose, 64

paragraph properties. See text formatting

parameters

entities, parameter, 257, 270, 1071, 1120

entity references, in, 262

Extensible Stylesheet Language

Transformations (XSLT) templates,

passing to, 556–557

processing instructions passing to

unparsed entities, 327–328

parent axis, 514, 515, 687, 689

1190 Index ✦ P–P

parent elements, 88, 151–152, 1098

parsed character data (PCDATA), 213, 232,

234–237, 249

parsers. See processors

parseType attribute, 718

path attribute, 814, 900–901, 942, 944

path element, 899–907, 945

pattern element, 865

Paul, Ron, 737

pause properties, 474, 640–641

#PCDATA content model, 213, 232, 234–237,

249

PDF. See portable document format (PDF)

personal finance applications, 35–41

phone response system applications, 33–35

Phone.com UP.SDK developer kit for

Windows, 791

phones, browsing from, 788, 790–791

PICS. See Platform for Internet Content

Selection (PICS)

PICT files, 882

pictures. See images

pitch property, 477, 641

pitch-range property, 477, 641

pixels

elements, storing pixel info as, 321

measurement unit, as, 383, 914–915

Platform for Internet Content Selection

(PICS), 45

Platform for Privacy Preferences (P3P), 45

play-during property, 474, 641

point() node test, 693, 694

points, 700–701

points attribute, 898–899, 941

polygon element, 898–899

polyline element, 899

portability of Extensible Markup Language

(XML) format, 7, 8, 85

portable document format (PDF)

Extensible Stylesheet Language

Formatting Object (XSL-FO)

conversion to, 581–583

notations for, 328

position() function, 521, 523, 527, 544

position property, 415–419, 951

POST method, 823

postfield elements, 823

PowerPoint, 956–963

PRECACHE attribute, 978, 991

preceding axis, 514, 686, 687, 690

preceding-sibling axis, 514, 518, 687, 690

predicates, 684, 694–696. See also XPointer

PRELOAD element, 656

preserveAspectRatio attribute, 920

prev element, 803

print media type, 375

Private Use Unicode script block, 201

processing instructions

Acrobat Reader, to, 328

Backus-Naur-Form (BNF) rule, 1044,

1048–1049

characters, reserved, 159

comments, as alternative to, 158, 325–326

defined, 1101

document, placement in, 326–327

elements, as, 327

entities, passing parameters to unparsed,

327–328

Extensible Stylesheet Language

Transformations (XSLT) output

documents, inserting in, 538–539

name, 326, 327

node selection, 496, 509, 517, 694

nodes, 498, 532

specifications related to, 1101–1102

style sheets, using with, 357

syntax, 158–159, 326

targets, 159

XML declaration as, 158

processing-instruction() node test, 509,

694

PROCESSOR element, 992

processors

CD-ROM, included on, 1026

character references handling, 1126–1129

defined, 1095

described, 10

empty elements handling, 149–150

1191Index ✦ P–R

entity handling, 257–258, 1126–1129

file types, unrecognized, 318

Java code treatment, 155, 158, 167

namespace handling, 333

non-validating processors, 1131

specifications related to, 1131–1132

validating processors, 221–225, 1131

Project FREEDOM Web site, 737

projection media type, 375

prolog

Backus-Naur-Form (BNF) rule, 1034,

1050–1052

introduced, 257, 258

specifications related to, 1102–1103

provisional-distance-between-starts
attribute, 613, 616

provisional-label-separation attribute,

613

pseudo-attributes, 146, 159. See also specific

pseudo-attributes

pseudo-classes, 369–370

pseudo-elements, 367–369

PureEdge, 39

PURGETIME element, 980

push buttons, Cascading Style Sheet (CSS)

operations, 387

push (webcasting), 22, 965–966. See also

Channel Definition Format (CDF)

Q
QuickTime movies, linking to, 669

quotes property, 466–467

R
r attribute, 894

Raggett, Dave, 172, 769

range() function, 702

range() node test, 694

range-inside() function, 702

ranges

byte ranges, 678

character ranges, 1033, 1042–1043, 1099

string ranges, 702–704

XPointer, in, 701–704

RDF. See Resource Description Framework

(RDF)

rdf prefix, 710

rdf:Description element, 710–711,

713–714

rdf:RDF element, 710, 711, 714

Recordare (firm), 33

rect element, 891–894

reference-orientation attribute, 585

reference-orientation property, 638–639

refresh element, 803

Relax schema language, 830

Representations of dates and times

(International Standards

Organization (ISO)), 320, 853, 856

#REQUIRED keyword, 292–293, 311, 1116

resample-any-method method, 610

resource attribute, 716, 721

Resource Description Framework (RDF)

abbreviated syntax, 718–719

containers, 719–729

described, 44–45, 707–708

metadata, 934–936

namespace, 332, 709, 710, 711–713

objects, 709–710, 711

predicates, 709–710, 711

properties attached to multiple

resources, 716–717

properties, type, 708–709

properties, values, 708–709, 711

properties, values containing resources,

715–717

properties, values containing XML

markup, 718

properties, values grouped in containers,

719–729

resources, 708–709, 711

root element, 710

schemas, 709, 729–730

serialization, 713–714, 716–717

specification (on the CD), 730, 1027

statements, 708–710

statements about container members,

727–728

Continued

1192 Index ✦ R–S

Resource Description Framework (continued)

statements about containers, 724–727

statements about implied bags, 729

statements with multiple properties,

713–714

subjects, 709–710, 711

Uniform Resource Identifiers (URIs), 708,

729

vocabularies, 709, 712–713, 729–730

result tree fragments, 529, 531

richness property, 478, 641

right attribute, 624

right property, 416, 417, 951

:right pseudo-class, 369, 422

rollover operations

Cascading Style Sheet (CSS) selection,

361, 369, 370

Vector Markup Language (VML) image

title display, 945

root. See element, root; nodes, root

rotation property, 951, 953–954

round() function, 528

rules. See also well-formedness

Extensible Markup Language (XML),

144–145

Hypertext Markup Language (HTML),

161–170

rules, horizontal, 406, 602–604

rule-style attribute, 602

rule-thickness attribute, 602

Runic Unicode script block, 198

RUWF well-formedness checker, 171–172

rx attribute, 893, 895

ry attribute, 893, 895

S
SAXCount validator, 222, 745, 835

SAXON XSLT Processor (on the CD), 488,

1028

Scalable Vector Graphics (SVG). See also

images; Vector Markup Language

(VML)

alignment, 890

arcs, 902–905

aspect ratio, 920

bitmap images, inserting, 913–914

browser support, 881–882, 889

canvas size, 886

Cascading Style Sheet (CSS) properties,

assigning, 887, 911, 915–916

character set, 888

circles, 886, 894–895, 917–919, 932–933

color, 887

coordinate systems, 886–887, 914–915,

917–921

curves, 905–907

described, 28–29, 882–883

development, state of, 882, 884

Document Type Definition (DTD), 271

documents, combining, 884

editors, 936

ellipses, 895–896

Extensible Stylesheet Language

Formatting Objects (XSL-FO), 607,

883

fills, 887, 899

font, 911–912

Hypertext Markup Language (HTML),

embedding images in, 888–891

Hypertext Markup Language (HTML),

relation to, 889

image maps, 932–933

line wrap, 907

lines, 896–897

linking, 932–933

matrix operations, 931–932

measurement units, 914–915

metadata elements, 933–936

MIME media type, 885

namespace, 331–332, 886

paths, 899–907, 909–911

pen drawing, 899–902

plug-ins needed to view, 881–882, 890

polygons, 898–899

polylines, 898–899

rectangles, 891–894

root element, 886

scaling, 883–884, 928–929

1193Index ✦ S–S

shapes, copying, 922

shapes, flipping, 925, 931–932

shapes, grouping, 921–922

shapes, referencing, 922–924

shapes, rotating, 925, 931

skews, 925, 929–931

stroke-width, 887

text, 907–912

title bar text, 886

transformations, 924–932

viewport, 914–917

Web pages, embedding images in, 888–891

XML declaration, 886

xml-stylesheet processing instructions,

886

scaling attribute, 610–611

scaling-method attribute, 610

SCHEDULE element, 975–977

schema element, 833

Schema for Object-Oriented XML (SOX), 830

Schema Working Group, 730, 831, 838

schemas

annotating, 878–879

attachment to document, 834–835

attributes, 867–871

character set, 832

commenting, 879

content models, 843–844

currency operations, 859–860, 861–862,

864–867

dates, 852–853, 856

described, 47–48, 829–831

Document Type Definitions (DTDs)

versus, 829, 834, 874

element content, controlling, 852–853

element content, no text restrictions on,

833

element data types, 833

element data types, anonymous, 844–846

element data types, boolean, 524, 859

element data types, built-in, 838, 853–854

element data types, complex, 836

element data types, derived, 859–867

element data types, Extensible Markup

Language (XML), 857–858

element data types, numeric, 854–855

element data types, reference, 859

element data types, restricting to smaller

subset, 860, 867

element data types, simple, 836, 851–854

element data types, string, 858–859

element data types, time, 856

element data types, user-defined, 838,

842, 865–867

element declaration, 833, 842

element grouping, 847–851

element occurrence, controlling, 838–841,

846, 850–851

element order, controlling, 838, 840,

847–848

element repetition, 839

elements, empty, 867

entities, 867

expressions, regular, 860–865

images, 868–871, 875–876

importing, 877

language declaration, 857

languages, schema, 830–831

mixed content, 846–847

multiple, 875–878

namespace, 833, 835, 838, 871–878

non-XML structures, handling, 851

notation name declaration, 857

Resource Description Framework (RDF)

schemas, 709, 729–730

root element, 830

sequences, 851

specifications related to, 831

time durations, 852–853, 856

Uniform Resource Identifiers (URIs),

referencing, 859

validation against, 834–836, 872

World Wide Web Consortium (W3C)

plans, 233, 310

XLink schemas, 875, 876–878

Schematron schema language, 830–831

1194 Index ✦ S–S

Scholarly Technology Group (Brown

University) validator, 223, 224–225

Schrödinger equation, 4

SCOPE attribute, 980

score-space property, 630

screen media type, 375

screen resolution. See monitor resolution

screen savers, channel, 988–989

SCRIPT element, 567

scroll bars, Cascading Style Sheet (CSS)

operations, 387

Scrollbar system color keyword, 387

sections, conditional, 329–330, 1037, 1061,

1086–1087, 1118–1119

security

Document Type Definitions (DTDs), 834

Wireless Markup Language (WML), 806,

815, 816

select attribute

attribute value templates as value of, 535

XPath language use of, 513

xsl:apply-templates element, of, 499,

501, 506

xsl:copy-of element, of, 499

xsl:for-each element, of, 499

xsl:sort element, of, 499

xsl:value-of element, of, 134–140,

496–497

select element, 807–808, 821

self axis, 514, 687, 689

sentence properties. See text formatting

Seq containers, 722–723, 727

setvar element, 816

SGML. See Standardized General Markup

Language (SGML)

Shadow element, 945

show-destination attribute, 611, 612

signature blocks using entity references,

264–265

signatures, digital, 39–41

singletons, 685. See also XPointer

Sinhala Unicode script block, 198

size attribute, 761, 820

size property, 422–423

Skew element, 945

slide shows, 300, 325, 669, 698–699, 958–963

Small Form Variants Unicode script block,

201

SMIL. See Synchronized Multimedia

Integration Language (SMIL)

SOFTPKG element, 990–991

software update channels, 27–28, 990–992

sound, background, 474

SOX. See Schema for Object-Oriented XML

(SOX)

space-after property, 636

space-before property, 636

space-treatment property, 633

Spacing Modifier Letters Unicode script

block, 197

span element, 760

spatial properties, 475–476

speak property, 473, 641

speak-header property, 641

speak-numeral property, 478, 641

speak-punctuation property, 478, 641

Specials Forms Unicode script block, 201

specifications. See also specifications under

specific topics

Cascading Style Sheets (CSS), 358–359,

1026

CD-ROM, included on, 1026–1027

Extensible HyperText Markup Language

(XHTML), 737, 1027

Extensible Markup Language (XML), 7,

144–145, 1026, 1089–1091

Extensible Stylesheet Language (XSL), 486

Hypertext Markup Language (HTML), 319,

1027

Mathematical Markup Language

(MathML), 1027

namespaces, 333, 1026

Resource Description Framework (RDF),

730, 1027

schemas, 831

1195Index ✦ S–S

Synchronized Multimedia Integration

Language (SMIL), 1027

Unicode character set, 196

XLinks, 648

XPath, 1027

XPointer, 677

speech synthesis

Cascading Style Sheet (CSS) operations,

472–478

Extensible Stylesheet Language

Formatting Object (XSL-FO)

properties, 640–641

speech-rate property, 476, 641

sRGB. See Standard Default Color Space for

the Internet (sRGB)

standalone attribute, 564–565, 1106

Standalone document declaration Backus-

Naur-Form (BNF) rule, 1035,

1053–1054

standalone pseudo-attribute, 146, 266

Standard Default Color Space for the Internet

(sRGB), 384

Standardized General Markup Language

(SGML), 827, 1091, 1095, 1142

start attribute, 624

start tag

defined, 1109

Hypertext Markup Language (HTML),

163–164, 741

root element, 70

specifications related to, 1109–1110

start tag, 58, 70, 144, 148, 149

well-formedness, 148, 149, 1071–1072,

1109–1110

Start tag Backus-Naur-Form (BNF) rule, 1035,

1054–1055

STARTDATE attribute, 976, 977

start-indent attribute, 615–616

start-indent property, 628, 636

start-point() function, 702

starts-with() function, 529

status bar font, 439

STOPDATE attribute, 976, 977

stress property, 478, 641

string() function, 529, 531

string-length() function, 530

string-range() function, 702–703

strings

ranges, 702–704

Scalable Vector Graphics (SVG)

documents, in, 907–909

schema data type, 858–859

white space, stripping, 557–559

XPath operations, 529–530

XPointer, in, 702–704

Stroke element, 945

strokecolor attribute, 944

stroked attribute, 944

strokeweight attribute, 944

structure. See document structure

STYLE attribute

LOGO element, of, 973

SOFTPKG element, of, 991

style attribute

Extensible Stylesheet Language

Transformations (XSLT) elements,

of, 537, 538

nonstandard CSS properties, adding to,

951

Scalable Vector Graphics (SVG) elements,

of, 887, 911

Vector Markup Language (VML) elements,

of, 941, 942, 951, 955

style element, 758–759, 941

style rules

alignment, 89

attributes, storing as, 113

headings, duplicating functionality of,

91–92

inheritance, 88

root element, assigning to, 88–89

table style rules, 94–95

title element, assigning to, 89–94

titles, for, 89–94

1196 Index ✦ S–T

style sheets. See also Cascading Style Sheets

(CSS)

applications related to, 46–47

attributes, accessing, 114–115

aural style sheets, 472–478

copying, 561

defining, 60–61

design, 1017–1024

document, attaching to, 61–62, 87, 119,

354–357, 491

document reorganizing to

accommodate, 93

embedding in other style sheets, 375–376,

561–562

entities, as, 258

Extensible Stylesheet Language

Transformations (XSLT), in, 117–119

importing, 375–376, 560–561

iterative approach, 87

language used, specifying, 61

link targets, overriding style sheets of, 612

location, declaring Uniform Resource

Locator (URL) of, 61, 87, 356

location on Web server, 356

merging, 560–562

MIME media type, 356

multiple per document, 373

naming, 61, 87

processing instructions, using with, 357

templates, using with, 116

subscript, 444. See also text formatting

substring() function, 529

substring-after() function, 530

substring-before() function, 530

sum() function, 528

Sun Microsystems java.sun.com Web site, 203

superscript, 444. See also text formatting

Superscripts and Subscripts Unicode script

block, 199

Surrogates Unicode script block, 200

SVG. See Scalable Vector Graphics (SVG)

svg element, 883, 886, 888, 915, 917–920

.svg files, 885

svg prefix, 886

Synchronized Multimedia Integration

Language (SMIL), 25, 1027

syntactic constructs specifications,

1099–1100

Syriac Unicode script block, 197

SYSTEM keyword, 215, 218, 319

T
table display property value, 395

table element, 750–751, 797

table-caption display property value,

395

table-cell display property value, 395

table-column display property value, 395

table-column-group display property

value, 395

table-footer-group display property

value, 395

table-header-group display property

value, 395

table-row display property value, 395

table-row-group display property value,

395

tables

alignment, 750–751

browser support, 95, 396

captions, 395, 616–617

Cascading Style Sheet (CSS) operations,

389, 395–396

cell elements, 617

cells, spanning, 618

column elements, 617

column groups, 395

creating using style rules, 94–95

data overview, using for, 64–68

Extensible HyperText Markup Language

(XHTML), 750–751

Extensible Stylesheet Language

Formatting Objects (XSL-FO), 601,

616–622

Extensible Stylesheet Language

Transformations (XSLT), 126–134

1197Index ✦ T–T

footer groups, 395

footers, 617

headers, 395, 617, 619

inline, 395, 601

row elements, 617

row groups, 395

Wireless Markup Language (WML),

796–798

Tags for empty elements Backus-Naur-Form

(BNF) rule, 1035, 1056

Tags for the Identification of Languages (RFC

1766), 1096, 1107–1108

Tamil Unicode script block, 198

target attribute, 761, 944

target-presentation-context attribute,

611, 612

target-processing-context attribute,

611

target-stylesheet attribute, 611

targets, processing instruction, 158, 159

td element, 760

Tech Explorer, 20

Telugu Unicode script block, 198

template element, 810

templates. See Extensible Stylesheet

Language Transformations (XSLT)

TeraFlops online converter, 798

test attribute, 559

Text declaration Backus-Naur-Form (BNF)

rule, 1038, 1065

text defined, 1098

text element, 907–909

text formatting. See also font; margins; page

formatting

alignment, 444, 445–446, 632–633

attributes, inserting values, 467

blink, 443, 630

Cascading Style Sheet (CSS) operations,

441–451

case, forcing, 445, 630

color, 88–89, 387, 439–440

direction, 185, 389, 639

Extensible Stylesheet Language

Formatting Objects (XSL-FO), 585,

629–633, 639–640

images, on, 907–912

justification, 441, 445–446

kerning, 437–438, 631

line breaks, 168, 451, 466

line spacing, 380, 448–449, 631–632

line wrap, 451, 633, 796

overlining, 443, 630

quotations, 466–467

Scalable Vector Graphics (SVG), 907–912

shadow, 446–447, 630

spacing, 441–442, 448–451, 631

strike-through, 443, 630

subscript, 444

superscript, 444

underlining, 443, 630

white space treatment, 449–451

widows/orphans, 425, 640

text() node test, 517, 693

text nodes, 498

text() operator, 510

text-align property, 445–446, 632, 761

text-align-last property, 632–633

text-altitude property, 632

Textbox element, 945

text-decoration property, 443, 630

text-depth property, 632

text-indent property, 397, 446, 628

Textpath element, 945

text-shadow property, 446–447, 630

text-transform property, 445, 630

text/xml stylesheet type value, 119

text/xsl stylesheet type value, 119

Thaana Unicode script block, 197

Thai Unicode script block, 198

ThreeDDarkShadow system color keyword,

387

ThreeDFace system color keyword, 387

ThreeDHighlight system color keyword,

387

1198 Index ✦ T–U

ThreeDLightShadow system color keyword,

387

ThreeDShadow system color keyword, 387

Tibetan Unicode script block, 198

time durations standards, 853

timer events, 812

TIMEZONE attribute, 976

title attribute, 797, 820, 945

title element, 886, 933–936, 971, 991

Tobin, Richard, 223, 224

tokens

NMTOKEN attribute type, 290, 295–296,

1006, 1010, 1044–1045

NMTOKENS attribute type, 290, 296,

1045, 1118

specifications related to, 1100

validity constraints, 1084–1085

xsd:token element, 859

tooltips

Cascading Style Sheet (CSS) operations,

387

title display in Channel Definition Format

(CDF), 971

top property, 417, 950

topmargin attribute, 750

transactions, financial, 35–41

transform attribute, 924–932

translate() function, 530

Tree Regular Expressions for XML (TREX),

830

true() function, 526

tspan element, 912

tty media type, 375

tv media type, 375

type attribute

do element, of, 802, 809

input element, of, 820

onevent element, of, 812

vml:shape element, of, 945

vml:shapetype element, of, 947

xlink element, of, 648–649, 651, 657–658,

663, 875

xml-stylesheet processing instruction,

of, 61, 491

xsd:element element, of, 833, 845

type pseudo-attribute, 119, 356

U
Unicode character set. See also UTF-8

character set

advantages, 180–181

character classes, 1138–1141

character references, 204–205, 862–864

Chinese-Japanese-Korean (CJK) support,

197, 200, 201, 202–203, 862

conversion to/from, 203

described, 15, 195–196

encoding, 201–202

expressions, in regular, 862–864

Extensible Markup Language (XML)

default, 195

Extensible Markup Language (XML),

writing in, 56, 202–203

hexadecimal value replacement, 169–170,

204–205

Java-style Unicode escapes, 203

Microsoft Word support, 203–204

Notepad, saving from, 56

operating system support of, 185–186

script blocks, 196–201

specifications related to, 196

version 3.1, 202

Unicode Consortium Web site, 196

Unicode Standard Version 3.0, 196

Uniform Resource Identifiers (URIs)

content property, insertion using,

467–468

entity references, in, 264–265

introduced, 14

namespace URIs, 332–333, 336, 338, 343,

344

node selection by, 522

Resource Description Framework (RDF),

in, 708, 729

schemas, referencing in, 859

1199Index ✦ U–V

Uniform Resource Locators (URLs)

versus, 264, 332

XPointer, in, 680

Uniform Resource Locators (URLs)

[] (square brackets) in, 681

Cascading Style Sheet (CSS) URL values,

383–384

Document Type Definition (DTD) URLs,

215, 216, 218

entity references, in, 265

escapes, 384

fragment identifiers, 679

graphics, external, 604–605

images, of, 604–605

style sheet URLs, 61, 87

Uniform Resource Identifiers (URIs)

versus, 264, 332

UP.SDK developer kit for Windows, 791

URIs. See Uniform Resource Identifiers

(URIs)

URLs. See Uniform Resource Locators

(URLs)

USAGE element, 984–992

use attribute, 869, 876

use element, 922

use-attribute-sets element, 538

user input

requirements, expressing to user, 310, 311

restricting to list of possible values,

296–297

restricting to valid XML name tokens,

295–296, 297, 312

UTF-8 character set, 56, 169, 202. See also

Unicode character set

V
validation. See also Backus-Naur-Form (BNF)

checkers, Web-based, 222–225

Document Type Definition (DTD), against,

220–225, 234–236, 349–350, 834

entity references, 257, 260

Extensible HyperText Markup Language

(XHTML) documents, 747–755

Hypertext Markup Language (HTML),

735–737

namespaces, 333, 349–350

schemas, against, 834–836, 872

validators, 221–225, 835

validity constraints. See also specifications

under specific topics

attribute-related, 1079, 1083–1084, 1086

Conditional Section/parameter entity

nesting, 1087

declaration/parameter entity nesting,

1077–1078

defined, 1097

described, 1076

document declaration-related, 1078

duplicate types, 1082–1083

element-related, 1077, 1078–1079,

1082–1083, 1085

entity reference-related, 1077–1078,

1080–1082, 1084, 1086–1087

group/parameter entity nesting,

1080–1082

mixed content-related, 1082–1083

notations-related, 1085, 1087–1088

proper declaration, 1077–1078

root element type, 1077

standalone document declaration, 1078

tokens-related, 1084–1085

unique element type declaration,

1078–1079

validity defined, 1103

valign attribute, 750–751, 760

value attribute

option element, of, 821

postfield element, of, 823

timer element, of, 812

xsd:attribute, of, 869

xsd:restriction, of, 865

xsl:number element, of, 542, 543

VALUE (Channel Definition Format (CDF)

elements) attribute, 984, 985, 990

1200 Index ✦ V–V

variables

Extensible Stylesheet Language

Transformations (XSLT), in, 553–554

global, 554

local, 554

precedence, 554

referral, circular, 554

referral, recursive, 554

white space in name, 817

Wireless Markup Language (WML),

816–822

xsl:value-of element, using with, 554

vector graphics. See also images

bitmaps verses, 884–885

Web-related features, 28

Vector Markup Language (VML)

3D effects, 945

alignment, 951, 956

alternate text, 944

arcs, 946

bitmap images, working with, 945

bounding box size, 942, 944

Cascading Style Sheets (CSS), using with,

949–956

color attributes, 944

coordinate system, 943, 949

curves, 946

described, 939–941

fills, 944, 945

handles, 945

lines, 946

links, 944

measurement units, 949

Microsoft Office, in, 30, 49, 956–963

Microsoft Web site resources, 941, 946

namespace, 941

ovals, 946

paths, 942, 944, 945

polylines, 946

rectangles, 946

shadow effects, 945

shapes, drawing, 941–950, 958–960

shapes, flipping, 951, 955–956

shapes, grouping, 949–950

shapes, positioning, 950–956

shapes, predefined, 946

shapes, referencing, 947

shapes, repeating, 947–948

shapes, rotating, 953–954

size attributes, 944, 947

skew, 945

stroke attributes, 944

text, 945

title display at rollover, 945

Web pages, embedding images in, 30–31,

939–941, 960–963

version attribute

SOFTPKG element VERSION attribute, 991

xsl:output, of, 564–565

version declaration, 58, 70

version pseudo-attribute, 266

versions of Extensible Markup Language

(XML)

1.0, second edition, 48

2.0, 48

used in this book, 48

vertical-align property, 444

viewBox attribute, 915, 917–919

View$Encoding, 178

viewports, 914–917. See also Scalable Vector

Graphics (SVG)

visibility property, 463–464, 950

:visited pseudo-class, 369, 370

Visual XML, 9

visually impaired users

alternate text, 751, 944

braille media type, 375

Braille Unicode script block, 200

speech synthesis, 472–478, 640–641

VML. See Vector Markup Language (VML)

vml prefix, 941

vml:arc element, 946

vml:curve element, 946

vml:formulas element, 944

vml:from attribute, 946

vml:group element, 949–950

1201Index ✦ V–W

vml:image element, 946

vml:line element, 946

vml:oval element, 946, 949

vml:path element, 942

vml:polyline element, 941, 946, 949

vml:rect element, 946

VMLRender program, 941

vml:roundrect element, 946

vml:shape element, 942–945

vml:shapetype element, 944, 945, 947–948

vml:to attribute, 946

vocabularies, standard, 44, 45, 709, 712–713,

729–730

voice mail applications, 33–35

voice-family property, 476–477, 641

VoiceXML, 33–35

volume property, 473, 641

W
W3C. See World Wide Web Consortium

(W3C)

WAP. See Wireless Application Protocol

(WAP)

WAP Forum, 818

WAP IDE software, 791

WAP simulator software, 791

WAP Toolkit, 791

WAPTiger software, 798

.wbmp file format, 789, 798

Web crawling, 978–979

webcasting, 22, 965–966. See also Channel

Definition Format (CDF)

Well-formed external parsed entity Backus-

Naur-Form (BNF) rule, 1038, 1065

well-formedness. See also specifications

under specific topics

attributes, 152–154, 743, 1070, 1072,

1073–1074

browser, using to check, 746

CDATA sections, 159–160

character references, 1074

character set, 147

comments, 156–158

constraints, 1069–1076

defined, 1098

Document Type Definitions (DTDs),

1071–1076

elements, 146–152, 1071–1072

end tags, 148, 149, 741, 1071–1072

entity well-formedness constraints, 1071

entity references well-formedness

constraints, 154–156, 746,

1071–1076

entity subsets, external, 1071

Extensible Stylesheet Language

Formatting Objects (XSL-FO), 579

Hypertext Markup Language (HTML),

161–170

introduced, 56

namespaces, 349–350

parsing, prerequisite for, 144

processing instructions, 158–159

root element, 146–147, 168

rules, 144–145

start tags, 148, 149, 1071–1072

tools, 170–172, 223–225, 745–746

validity versus, 220

White House home page, 163–166

white space

attribute values, prohibiting in, 295

attributes, specifying treatment in,

301–303

Backus-Naur-Form (BNF) rule, 1033, 1043

code, in, 71, 148, 302

element names, in, 148

Extensible Stylesheet Language

Formatting Objects (XSL-FO), 633

Extensible Stylesheet Language

Transformations (XSLT), 557–559

Hypertext Markup Language (HTML)

code, in, 302

specifications relating to, 1099, 1106–1107

text, in, 449–451, 557–559, 633

treatment of, default, 71–72, 302

treatment of, specifying, 301–303

variable names, in, 817

XPointer, 701

white-space property, 449–451

1202 Index ✦ W–W

white-space-collapse property, 633

widgets, 387, 439

widows property, 424, 425, 626

widows/orphans, 425, 640

width attribute

fo:external-graphic element, of, 610

fo:instream-foreign-object element,

of, 610

g element, of, 921

image element, of, 913

img element, of, 798

rect element, of, 892

svg element, of, 886, 915

WIDTH Channel Definition Format (CDF)

element, 985

width property, 410–412, 637, 760, 761, 951

Window system color keyword, 387

WindowFrame system color keyword, 387

Windows ANSI character set, 194–195

windows, Cascading Style Sheet (CSS)

operations, 387

Windows character set support, 185, 186

WindowText system color keyword, 387

Wireless Application Protocol (WAP), 787

Wireless Markup Language (WML)

access control, 814–815

action elements, 802–803

alignment, 796, 797–798

anchors, 804–807

browser support, 790, 795, 799

cards, 788, 800

cell phone simulation on PC, 791–794

cell phone support, 791, 799, 818

character set, 815

choice lists, 807–808

client/server communication, 822–824

decks, 788

document type declaration, 788–789

dollar sign, representing in text, 818

dynamic content, 822–824

entity references, 799–800

event handlers, 811–813, 817

font, 795

headers, 814–815

hyphenation, 799–800

Hypertext Markup Language (HTML),

similarity to, 794–795

images, 798–799

input fields, 819–820

introduced, 787–788

limitations of wireless, 788

line wrap, 796

links, 800–807, 814

MIME media type, 789–790, 798

options menus, 809–811

paragraphs, 794, 795, 796

root element, 795

security, 806, 815, 816

selections, 807–808, 821

server-side operations, 822–824

spider crawling of WML documents, 814

tables, 796–798

templates, 810–811

user input, 819–820

variables, 816–822

verbosity, avoiding, 794

WMLScript, 818

WML. See Wireless Markup Language (WML)

wml element, 788

.wmlc file format, 789

.wmls file format, 789

WMLScript, 818

Word, Microsoft, 956–963

word-spacing property, 441, 631

World Wide Web Consortium (W3C)

Amaya browser download, 889

Extensible Markup Language (XML)

recommendations, 1090, 1091

namespace recommendations, 333

schema plans, 233, 310

Schema Working Group, 730, 831, 838

XML Core Group, 1147–1148

XML Fragment Working Group, 678

XML Working Group, 1095, 1146–1147

wrap-option property, 633

writing-mode attribute, 585

writing-mode property, 639

1203Index ✦ X–X

X
x attribute, 892, 907–908

x1 attribute, 896

x2 attribute, 896

Xalan program (on the CD), 488–491, 1028

x-codes, 308

Xerces parsers, 221–222, 835, 1026

XFDL. See Extensible Forms Description

Language (XFDL)

XHTML. See Extensible HyperText Markup

Language (XHTML)

XInclude, 286

xlink element, of, 648–649, 651, 657–658,

663, 875

xlink prefix, 649, 913

xlink:actuate attribute, 650–651, 655–657,

663, 674, 875

xlink:arc element, 665

xlink:arcrole attribute, 674

xlink:from attribute, 665–666, 667

xlink:href attribute

Scalable Vector Graphics (SVG)

operations using, 909, 913, 932

schema operations using, 875, 876

XLink operations using, 649, 650, 658

XPointer operations using, 680

xlink:label attribute, 665

xlink:role attribute, 652, 660

XLinks. See also links; XPointer

arcs, 661, 663–668, 674

attributes, matching in Extensible

Stylesheet Language

Transformations (XSLT), 508

browser override, 654–655

browser support, 648, 656

described, 14–15, 47

development, state of, 648

Document Type Definitions (DTDs),

attribute declaration in, 650–652,

657, 660–661, 662, 668

extended links, 657–661

Hypertext Markup Language (HTML) links

versus, 647–648, 671

images, embedding using, 875–878

link activation from non-XLink markup,

656

link activation inserts resource into

existing document, 654

link activation on document load, 655

link activation on user request only, 655

link activation opens new window,

653–654

link activation references external

markup, 654

link activation replaces current window,

653

linkbase, 669

linking elements, 648–649

links, out-of-line, 657, 669–674

links to parts of non-XML content, 669

locator elements, 658–660

namespace, 344, 649

QuickTime movies, linking to, 669

resources, local, 658

resources, remote, 658

role designations, 652, 660

schemas, XLink, 875, 876–878

specification, 648

target attributes, 649–650, 652

title designations, 652, 660

traversals, 663

xlink:show attribute, 651, 653–655, 761, 875

xlink:title attribute, 652, 660

xlink:to attribute, 665–667

XML Core Working Group, 1147–1148

XML declaration

Channel Definition Format (CDF) files, 967

character set, 169

defined, 1102

Extensible HyperText Markup Language

(XHTML) documents, in, 747

Hypertext Markup Language (HTML)

documents, in, 170

not using, 146, 170

processing instruction, as, 158

Continued

1204 Index ✦ X–X

XML declaration (continued)

Scalable Vector Graphics (SVG)

documents, 886

specification, 1102–1103

standalone pseudo-attribute, 146, 266

version attribute, 58, 70

xsl:output attributes in, 564–567

XML Enabler, 488

.xml files

compressibility, 85–86, 253

loading, 57

naming, 56

saving, 56–57

XML Fragment Working Group, 678

XML Schema language, 830–831

XML well-formedness checker and validator,

223

XML Working Group, 1095, 1146–1147

XML-CML.ORG Web site, 19

XML-Data schema language, 830

xml:lang attribute

described, 303–304

Extensible HyperText Markup Language

(XHTML), in, 781

language identification Backus-Naur-Form

(BNF) rules, 1054

schemas, in, 857

specifications relating to, 1107–1108

xmlns: attributes

attribute value templates as value of, 535

prefix, 336, 691, 692

prefixless, 344, 347, 872

validation considerations, 349–350

xsl, 121

xmlns:fo attribute, 583

xmlns:xlink attribute, 651

xmlns:xsi attribute, 868

xml:space attribute, 301–303, 339, 558, 909,

1107

xml-stylesheet processing instruction

basic use, 61, 158–159

href attribute, 61, 491, 561

Internet Explorer, provisions for handling

media type, 119

Scalable Vector Graphics (SVG)

documents, in, 886

type pseudo-attribute, 61, 119, 491

XPath

arithmetic operations, 526–529

attribute value templates, as, 534

escapes, 524

introduced, 513

node set, 520–524

number, 526–529

result tree fragment, 529, 531

select attribute use of XPath language,

513

selection function, 513

selection of comment nodes, 517

selection of points in non-XML markup,

700–701

selection of processing instruction nodes,

517

selection of text nodes, 517

selection using boolean XPath

expressions, 524–526

selection using hierarchy operators,

517–518

selection using node axes, 514–519

selection using node set expressions,

520–523

selection using node tests, 517

selection using number expressions,

526–529

selection using result tree fragment

expressions, 529–531

selection using string expressions,

529–531

selection using wildcards, 517

specification (on the CD), 1027

string, 526, 529–531

syntax, abbreviated, 519

XPointer use of XPath syntax, 513

XPointer, working with, 700–701

1205Index ✦ X–X

XPointer. See also links; XLinks

anchors compared, 679

browser support, 677

character encoding, 680–681

escapes, 680–681

introduced, 14–15

link iteration, 698–699

link referencing back to source document,

699

location paths, 684–685

location sets, 702

location steps, 684–685, 694

node sets, 694, 697–699

node tests, 684, 692–694

point specification in target document,

684–685

points, 700–701

predicates, 684, 694–696

ranges, working with, 701–704

selection counting down from root node,

686, 704

selection in non-XML markup, 700–701

selection of ancestor nodes, 689

selection of attribute nodes, 691

selection of child/grandchild nodes,

687–689, 704–705

selection of comment nodes, 693–694

selection of context nodes, 689

selection of element nodes, 692, 697–699

selection of namespace nodes, 691

selection of processing instruction nodes,

694

selection of sibling nodes, 687, 690–691

selection of text nodes, 693

selection using axes, 684, 686–691

selection using namespace prefixes,

692–693

selection using specified criteria, 694–696

singletons, 685

specification, 677

strings, working with, 702–704

Uniform Resource Identifiers (URIs), 680

white space, 701

wild cards, 684

XPath, working with, 700–701

XPath syntax, use of, 513

XPointer Last Call Working Draft, 677

xpointer() node test, 692

XSchema schema language, 830

.xsd files, 832

xsd:all element, 848–850

xsd:annotation element, 879

xsd:anyType element, 867

xsd:anyURI element, 859, 869

xsd:appInfo element, 879

xsd:attribute element, 869–871, 876

xsd:boolean element, 859

xsd:byte element, 855

xsd:choice element, 848, 850–851

xsd:complexType element, 838, 844, 847,

850, 869

xsd:date element, 856

xsd:decimal element, 854

xsd:documentation element, 879

xsd:double element, 854

xsd:element element, 833, 838, 845–846, 850

xsd:ENTITIES element, 857

xsd:ENTITY element, 857

xsd:float element, 854

xsd:gMonth element, 856

xsd:gYear element, 856

xsd:ID element, 857

xsd:IDREF element, 857

xsd:IDREFS element, 857

xsd:import element, 877

xsd:int element, 855

xsd:integer element, 854

xsd:language element, 857

xsd:long element, 855

xsd:Name element, 858

xsd:NCName element, 858

xsd:negativeInteger element, 855

xsd:NMTOKEN element, 857

xsd:NMTOKENS element, 857

xsd:nonNegativeInteger element, 855

xsd:nonPositiveInteger element, 855

1206 Index ✦ X–Z

xsd:normalizedString element, 858

xsd:NOTATION element, 857

xsd:positiveInteger element, 855, 869

xsd:QName element, 858

xsd:recurringDate element, 856

xsd:recurringDay element, 856

xsd:restriction element, 865

xsd:schema element, 838, 874, 876, 879

xsd:sequence element, 848, 851

xsd:short element, 855

xsd:simpleType element, 865–867

xsd:string element, 833, 838, 858, 867

xsd:time element, 856

xsd:timeDuration element, 852, 856

xsd:timeInstant element, 856

xsd:token element, 859

xsd:unsignedByte element, 855

xsd:unsignedInt element, 855

xsd:unsignedLong element, 855

xsd:unsignedShort element, 855

xsi prefix, 835

xsi:noNamespaceSchemaLocation
attribute, 834–835

xsi:schemaLocation attribute, 871,

876, 877

XSL. See Extensible Stylesheet Language

(XSL)

xsl: elements, 486

xsl:apply-imports element, 561

xsl:apply-templates element

described, 494–496

mode attribute, 552

select attribute, 499, 501, 506

xsl:apply-imports element compared,

561

xsl:attribute element, 533, 535, 536–537

xsl:attribute-set element, 537

xsl:call-template element, 556

xsl:choose element, 559–560

xsl:comment element, 509, 533, 539

xsl:copy element, 1020

xsl:copy-of element, 499, 540–542

xsl:element element, 533, 535–536

XSL-FO. See Extensible Stylesheet Language

Formatting Objects (XSL-FO)

xsl:for-each element, 123, 125, 126,

499, 521

xsl:if element, 524, 559

xsl:import element, 560–561

xsl:include element, 561

xsl:key element, 521

xsl:number element, 542–548, 594, 623

xsl:otherwise element, 560

xsl:output element, 486, 563–567

xsl:param elements, 556–557

xsl:preserve-space element, 558

xsl:processing-instruction element,

509, 533, 535, 538–539

xsl:sort element, 499, 548–551

xsl:strip-space element, 558

xsl:stylesheet element, 118, 487, 561–562

XSLT. See Extensible Stylesheet Language

Transformations (XSLT)

xsl:template element, 118, 486, 493–494,

499–500, 555

xsl:text element, 533, 539–540, 559

xsl:transform element, 487, 561

xsl:use-attribute-sets attribute,

537, 538

xsl:value-of element

described, 120–121

node value computing, 497–498, 499

select attribute, 134–140, 496–497

variables, using with, 554

xsl:variable element, 553–554

xsl:when element, 559

XT XSLT Processor (on the CD), 1028

Y
y attribute, 892, 907–908

y1 attribute, 896

y2 attribute, 896

Yi Unicode script block, 200

Z
z-index property, 419, 951

Hungry Minds, Inc.
End-User License Agreement

READ THIS. You should carefully read these terms and conditions before opening the
software packet(s) included with this book (“Book”). This is a license agreement
(“Agreement”) between you and Hungry Minds, Inc. (“HMI”). By opening the accompany-
ing software packet(s), you acknowledge that you have read and accept the following
terms and conditions. If you do not agree and do not want to be bound by such terms
and conditions, promptly return the Book and the unopened software packet(s) to the
place you obtained them for a full refund.

1. License Grant. HMI grants to you (either an individual or entity) a nonexclusive
license to use one copy of the enclosed software program(s) (collectively, the
“Software”) solely for your own personal or business purposes on a single com-
puter (whether a standard computer or a workstation component of a multi-hyuser
network). The Software is in use on a computer when it is loaded into temporary
memory (RAM) or installed into permanent memory (hard disk, CD-ROM, or other
storage device). HMI reserves all rights not expressly granted herein.

2. Ownership. HMI is the owner of all right, title, and interest, including copyright, in
and to the compilation of the Software recorded on the disk(s) or CD-ROM
(“Software Media”). Copyright to the individual programs recorded on the
Software Media is owned by the author or other authorized copyright owner of
each program. Ownership of the Software and all proprietary rights relating
thereto remain with HMI and its licensers.

3. Restrictions On Use and Transfer.

(a) You may only (i) make one copy of the Software for backup or archival pur-
poses, or (ii) transfer the Software to a single hard disk, provided that you
keep the original for backup or archival purposes. You may not (i) rent or
lease the Software, (ii) copy or reproduce the Software through a LAN or
other network system or through any computer subscriber system or bul-
letin-board system, or (iii) modify, adapt, or create derivative works based
on the Software.

(b) You may not reverse engineer, decompile, or disassemble the Software. You
may transfer the Software and user documentation on a permanent basis,
provided that the transferee agrees to accept the terms and conditions of
this Agreement and you retain no copies. If the Software is an update or has
been updated, any transfer must include the most recent update and all
prior versions.

4. Restrictions on Use of Individual Programs. You must follow the individual
requirements and restrictions detailed for each individual program in Appendix A
of this Book. These limitations are also contained in the individual license agree-
ments recorded on the Software Media. These limitations may include a require-
ment that after using the program for a specified period of time, the user must pay
a registration fee or discontinue use. By opening the Software packet(s), you will
be agreeing to abide by the licenses and restrictions for these individual programs
that are detailed in Appendix A and on the Software Media. Except as expressly
provided herein, none of the material on this Software Media or listed in this Book
may ever be redistributed, in original or modified form, for commercial purposes.

5. Limited Warranty.

(a) HMI warrants that the Software and Software Media are free from defects in
materials and workmanship under normal use for a period of sixty (60) days
from the date of purchase of this Book. If HMI receives notification within the
warranty period of defects in materials or workmanship, HMI will replace the
defective Software Media.

(b) HMI AND THE AUTHOR OF THE BOOK DISCLAIM ALL OTHER WAR-
RANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE, WITH RESPECT TO THE SOFTWARE, THE PROGRAMS,
THE SOURCE CODE CONTAINED THEREIN, AND/OR THE TECHNIQUES
DESCRIBED IN THIS BOOK. HMI DOES NOT WARRANT THAT THE FUNC-
TIONS CONTAINED IN THE SOFTWARE WILL MEET YOUR REQUIREMENTS
OR THAT THE OPERATION OF THE SOFTWARE WILL BE ERROR FREE.

(c) This limited warranty gives you specific legal rights, and you may have other
rights that vary from jurisdiction to jurisdiction.

6. Remedies.

(a) HMI’s entire liability and your exclusive remedy for defects in materials and
workmanship shall be limited to replacement of the Software Media, which
may be returned to HMI with a copy of your receipt at the following address:
Software Media Fulfillment Department, Attn.: XML Bible, Second Edition,
Hungry Minds, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, or call
1-800-762-2974. Please allow four to six weeks for delivery. This Limited
Warranty is void if failure of the Software Media has resulted from accident,
abuse, or misapplication. Any replacement Software Media will be warranted
for the remainder of the original warranty period or thirty (30) days,
whichever is longer.

(b) In no event shall HMI or the author be liable for any damages whatsoever
(including without limitation damages for loss of business profits, business
interruption, loss of business information, or any other pecuniary loss) aris-
ing from the use of or inability to use the Book or the Software, even if HMI
has been advised of the possibility of such damages.

(c) Because some jurisdictions do not allow the exclusion or limitation of liabil-
ity for consequential or incidental damages, the above limitation or exclu-
sion may not apply to you.

7. U.S. Government Restricted Rights. Use, duplication, or disclosure of the
Software for or on behalf of the United States of America, its agencies and/or
instrumentalities (the “U.S. Government”) is subject to restrictions as stated in
paragraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause
of DFARS 252.227-7013, or subparagraphs (c) (1) and (2) of the Commercial
Computer Software - Restricted Rights clause at FAR 52.227-19, and in similar
clauses in the NASA FAR supplement, as applicable.

8. General. This Agreement constitutes the entire understanding of the parties and
revokes and supersedes all prior agreements, oral or written, between them and
may not be modified or amended except in a writing signed by both parties hereto
that specifically refers to this Agreement. This Agreement shall take precedence
over any other documents that may be in conflict herewith. If any one or more
provisions contained in this Agreement are held by any court or tribunal to be
invalid, illegal, or otherwise unenforceable, each and every other provision shall
remain in full force and effect.

CD-ROM Installation
Instructions

The CD-ROM is divided into several directories that contain source code, exam-

ples, browsers, a PDF version of this book, and other tools and utilities.

To install the software and source code, mount the CD-ROM using whatever method

you normally use on your platform, probably filemanager in Solaris, and just put it

in the drive on Mac or Windows. There isn’t a fancy installer. You can browse the

directories directly from the CD, or copy them onto your local drive. The root direc-

tory contains an index.html file you can load into your Web browser of choice to

provide a simple HTML interface for the CD-ROM.

	XML Bible 2nd Edition
	Praise for Elliotte Rusty Harold’s XML Bible
	XML Bible Second Edition
	Credits
	About the Author
	Preface
	Who You Are
	What’s New in the Second Edition
	What You Need to Know
	What You’ll Learn
	How the Book Is Organized
	What You Need
	How to Use This Book
	What the Icons Mean
	About the Companion CD-ROM
	Reach Out

	Acknowledgments
	Contents at a Glance
	Table of Contents

	Part I: Introducing XML
	Chapter 1: An Eagle’s Eye View of XML
	What Is XML?
	Why Are Developers Excited About XML?
	The Life of an XML Document
	Related Technologies

	Chapter 2: XML Applications
	XML Applications
	XML for XML
	Behind-the-Scene Uses of XML

	Chapter 3: Your First XML Document
	Hello XML
	Exploring the Simple XML Document
	Assigning Meaning to XML Tags
	Writing a Style Sheet for an XML Document
	Attaching a Style Sheet to an XML Document

	Chapter 4: Structuring Data
	Examining the Data
	XMLizing the Data
	The Advantages of the XML Format
	Preparing a Style Sheet for Document Display

	Chapter 5: Attributes, Empty Tags, and XSL
	Attributes
	Attributes versus Elements
	Empty Elements and Empty Element Tags
	XSL

	Chapter 6: Well-formedness
	Well-Formedness Rules
	XML Documents
	Text in XML
	Elements and Tags
	Attributes
	Entity References
	Comments
	Processing Instructions
	CDATA Sections
	Well-Formed HTML

	Chapter 7: Foreign Languages and Non-Roman Text
	Non-Roman Scripts on the Web
	Scripts, Character Sets, Fonts, and Glyphs
	Legacy Character Sets
	The Unicode Character Set
	How to Write XML in Unicode

	Part II: Document Type Definitions
	Chapter 8: DTDs and Validity
	Document Type Definitions
	Element Declarations
	DTD Files
	Document Type Declarations
	Validating Against a DTD

	Chapter 9: Element Declarations
	Analyzing the Document
	The ANY Content Model
	The #PCDATA Content Model
	Child Elements
	Sequences
	One or More Children
	Zero or More Children
	Zero or One Child
	Grouping with Parentheses
	Choices
	Mixed Content
	Empty Elements
	Comments in DTDs

	Chapter 10: Entity Declarations
	What Is an Entity?
	Internal General Entities
	External General Entities
	Internal Parameter Entities
	External Parameter Entities
	Building a Document from Pieces

	Chapter 11: Attribute Declarations
	What Is an Attribute?
	Declaring Attributes in DTDs
	Declaring Multiple Attributes
	Specifying Default Values for Attributes
	Attribute Types
	Predefined Attributes
	A DTD for Attribute-Based Baseball Statistics

	Chapter 12: Unparsed Entities, Notations, and Non-XML Data
	Notations
	Unparsed Entities
	Processing Instructions
	Conditional Sections in DTDs

	Chapter 13: Namespaces
	The Need for Namespaces
	Namespace Syntax
	Namespaces and Validity

	Part III: Style Languages
	Chapter 14: CSS Style Sheets
	What Are Cascading Style Sheets?
	Comments in CSS
	Selecting Elements
	Inheritance
	Cascades
	Different Rules for Different Media
	Importing Style Sheets
	Style Sheet Character Sets

	Chapter 15: CSS Layouts
	CSS Units
	The Display Property
	Box Properties
	Size
	Positioning
	Formatting Pages

	Chapter 16: CSS Text Styles
	Font Properties
	The Color Property
	Text Properties
	Background Properties
	Visibility
	Cursors
	The Content Property
	Aural Style Sheets

	Chapter 17: XSL Transformations
	What Is XSL?
	Overview of XSL Transformations
	XSL Templates
	Computing the Value of a Node with xsl:value-of
	Processing Multiple Elements with xsl:for-each
	Patterns for Matching Nodes
	XPath Expressions for Selecting Nodes
	The Default Template Rules
	Deciding What Output to Include
	Copying the Context Node with xsl:copy
	Counting Nodes with xsl:number
	Sorting Output Elements
	Modes
	Defining Constants with xsl:variable
	Named Templates
	Passing Parameters to Templates
	Stripping and Preserving White Space
	Making Choices
	Merging Multiple Style Sheets
	Output Methods

	Chapter 18: XSL Formatting Objects
	Formatting Objects and Their Properties
	Page Layout
	Content
	Leaders and Rules
	Graphics
	Links
	Lists
	Tables
	Inlines
	Footnotes
	Floats
	Formatting Properties

	Part IV: Supplemental Technologies
	Chapter 19: XLinks
	XLinks versus HTML Links
	Linking Elements
	Descriptions of the Remote Resource
	Link Behavior
	Extended Links
	Extended Link Syntax
	Arcs
	Out-of-Line Links

	Chapter 20: XPointers
	Why Use XPointers?
	XPointer Examples
	A Concrete Example
	Location Paths, Steps, and Sets
	The Root Node
	Axes
	Node Tests
	Predicates
	Functions that Return Node Sets
	Points
	Ranges
	Child Sequences

	Chapter 21: The Resource Description Framework
	What Is RDF?
	RDF Statements
	Basic RDF Syntax
	Abbreviated RDF Syntax
	Containers
	RDF Schemas

	Part V: XML Applications
	Chapter 22: XHTML
	Why Validate HTML?
	Moving to XHTML
	What’s New in XHTML

	Chapter 23: The Wireless Markup Language
	What Is WML?
	Hello WML
	Basic Text Markup
	Cards and Links
	Selections
	The Options Menu
	Events
	The Header
	Variables
	Talking Back to the Server

	Chapter 24: Schemas
	What’s Wrong with DTDs?
	What is a Schema?
	The W3C XML Schema Language
	Hello Schemas
	Complex Types
	Grouping
	Simple Types
	Derived Types
	Empty Elements
	Attributes
	Namespaces
	Annotations

	Chapter 25: Scalable Vector Graphics
	What Is SVG?
	A Simple SVG Document
	Embedding SVG Pictures in Web Pages
	Simple Shapes
	Paths
	Text
	Bitmapped Images
	Coordinate Systems and Viewports
	Grouping Shapes
	Referencing Shapes
	Transformations
	Linking
	Metadata
	SVG Editors

	Chapter 26: The Vector Markup Language
	What Is VML?
	Drawing with a Keyboard
	Positioning VML Shapes with CSS Properties
	VML in Microsoft Office

	Chapter 27: The Channel Definition Format
	What Is the Channel Definition Format?
	Creating Channels
	Describing the Channel
	Scheduling Updates
	Precaching and Web Crawling
	The Reader Access Log
	The BASE Attribute
	The LASTMOD Attribute
	The USAGE Element

	Chapter 28: Designing a New XML Application
	Organization of the Data
	The Person DTD
	The Family DTD
	The Source DTD
	The Family Tree DTD
	Designing a Style Sheet for Family Trees

	Appendix A: What’s on the CD-ROM
	Browsers
	Parsers
	Specifications
	Examples
	Source Code
	Utilities
	PDF

	Appendix B: XML Reference Material
	XML BNF Grammar
	Well-Formedness Constraints
	Validity Constraints

	Appendix C: The XML 1.0 Specification, Second Edition
	What’s New in the Second Edition
	Extensible Markup Language XML 1.0 Second Edition
	Errata for Extensible Markup Language XML 1.0 Second Edition

	Index
	Symbols & Numbers
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Hungry Minds, Inc. End-User License Agreement
	CD-ROM Installation Instructions

