
FLAWFINDER(1) Flawfinder FLAWFINDER(1)

NAME
flawfinder − find potential security flaws ("hits") in source code

SYNOPSIS
flawfinder [−−help] [−−version] [−−context] [-c] [−−columns] [-m X] [-minlevel=X] [−−immediate]
[-i] [−−inputs] [-n] [−−neverignor e] [−−quiet] [−−loadhitlist=F] [−−savehitlist= F] [−−diffhitlist= F]
[−−] [source code file or source root directory]+

DESCRIPTION
Flawfinder searches through C/C++ source code looking for potential security flaws. To run flawfinder,
simply give flawfinder a list of directories or files.For each directory given, all C/C++ files in that direc-
tory (and its subdirectories, recursively) will be examined. Whenflawfinder is given a directory name, files
are determined to be a C/C++ file from its filename extension. Thus,for most projects, simply give
flawfinder the name of the source code’s topmost directory, and flawfinder will examine all of the project’s
source code.Any filename given on the command line will be examined (even if i t doesn’t hav ea usual
C/C++ filename extension); thus you can force flawfinder to examine any specific files you desire.
Flawfinder will produce a list of ‘‘hits’’ (potential security flaws), sorted by risk; the riskiest hits are shown
first.

The risk level varies from 0, very little risk, to 5, great risk.This risk level depends not only on the func-
tion, but on the values of the parameters of the function.For example, constant strings are often less risky
than fully variable strings in many contexts. Flawfinder knows about gettext (a common library for interna-
tionalized programs) and will treat constant strings passed through gettext as though they were constant
strings; this reduces the number of false hits in internationalized programs.Flawfinder correctly ignores
most text inside comments and strings.

Not every hit is actually a security vulnerability, and not every security vulnerability is necessarily found.
Nevertheless, flawfinder can be an aid in finding and removing security vulnerabilities.A common way to
use flawfinder is to first apply flawfinder to a set of source code and examine the highest-risk items.Then,
use −−input to examine the input locations, and check to make sure that only legal and safe input values are
accepted from untrusted users.

Once you’ve audited a program, you can mark source code lines that are actually fine but cause spurious
warnings so that flawfinder will stop complaining about them.To mark a line, put a specially-formatted
comment either on the same line (after the source code) or all by itself in the previous line. The comment
must have one of the two following formats:

• // Flawfinder: ignore

• /* Flawfinder: ignore */

Note that, for compatibility’s sake, you can replace "Flawfinder:" with "ITS4:" or "RATS:" in these spe-
cially-formatted comments.Since it’s possible that such lines are wrong, you can use the ‘‘−−neverignore’’
option, which causes flawfinder to never ignore any line no matter what the comments say. Thus, responses
that would otherwise be ignored would be included (or, more confusingly, −−neverignore ignores the
ignores). Thiscomment syntax is actually a more general syntax for special directives to flawfinder, but
currently only ignoring lines is supported.

Flawfinder uses an internal database called the ‘‘ruleset’’; the ruleset identifies functions that are common
causes of security flaws. Asnoted above, every potential security flaw found in a given source code file
(matching an entry in the ruleset) is called a ‘‘hit,’’ and the set of hits found during any particular run of the
program is called the ‘‘hitlist.’’ H itlists can be saved (using −−savehitlist), reloaded back for redisplay
(using −−loadhitlist), and you can show only the hits that are different from another run (using
−−diffhitlist).

Flawfinder intentionally works similarly to another program, ITS4, which is not fully open source software
(as defined in the Open Source Definition) nor free software (as defined by the Free Software Foundation).
The author of Flawfinder has never seen ITS4’s source code.

Flawfinder 17May 2001 1

FLAWFINDER(1) Flawfinder FLAWFINDER(1)

OPTIONS
−−help Show usage (help) information.

−−version Shows (just) the version number and exits.

−−context

-c Show context, i.e., the line having the "hit"/potential flaw. By default the line is shown
immediately after the warning.

−−columns Show the column number (as well as the file name and line number) of each hit; this is
shown after the line number by adding a colon and the column number in the line (the first
character in a line is column number 1).

-m X

−−minlevel=X
Set minimum risk level to X for inclusion in hitlist. This can be from 0 (‘‘no risk’’) to 5
(‘‘maximum risk’’); the default is 1.

−−neverignor e

-n Never ignore security issues, even if they hav ean ‘‘ignore’’ directive in a comment.

−−immediate

-i Immediately display hits (don’t just wait until the end).

−−inputs Show only functions that obtain data from outside the program; this also sets minlevel to 0.

−−quiet Don’t display status information (i.e., which files are being examined) while the analysis is
going on.

−−loadhitlist=F
Load hits from F instead of analyzing source programs.

−−savehitlist= F
Save all hits (the "hitlist") to F.

−−diffhitlist= F
Show only hits (loaded or analyzed) not in F.

EXAMPLES
flawfinder /usr/src/linux-2.4.12

Examine all the C/C++ files in the directory /usr/src/linux-2.4.12 and all its subdirectories
(recursively), reporting on all hits found.

flawfinder −−quiet −−savehitlist saved.hits *.[ch]
Examine all .c and .h files in the current directory. Don’t report on the status of processing,
and save the resulting hitlist (the set of all hits) in the file saved.hits.

Flawfinder 17May 2001 2

FLAWFINDER(1) Flawfinder FLAWFINDER(1)

flawfinder −−diffhitlist saved.hits *.[ch]
Examine all .c and .h files in the current directory, and show any hits that weren’t already in
the file saved.hits.

BUGS
The database is currently woefully incomplete.Interestingly enough, it can still detect some problems in
real programs in this early form.

Flawfinder is currently limited to C/C++.It’s designed so that adding support for other languages should
be easy.

Flawfinder doesn’t fully parse C/C++ code.Thus, it can be fooled by user-defined functions or method
names that happen to be the same as those defined as ‘‘hits’’ i n its database.

Preprocessor commands embedded in the middle of a parameter list of a call can cause problems in parsing,
in particular, if a string is opened and then closed multiple times using an #ifdef .. #else construct,
flawfinder gets confused.Such constructs are exteremly nasty; for now, rewrite the construct.

Security vulnerabilities might not be identified as such by flawfinder, and conversely, some hits aren’t really
security vulnerabilities.

SEE ALSO
See the flawfinder website at http://www.dwheeler.com/flawfinder. You should also see theSecure Pro-
gramming for Unix and Linux HOWTO at http://www.dwheeler.com/secure-programs.

AUTHOR
David A. Wheeler (dwheeler@dwheeler.com).

Flawfinder 17May 2001 3

