
SAS®

 Certification Prep Guide
Advanced Programming for SAS®9 Fourth Edition

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2014. SAS® Certification
Prep Guide: Advanced Programming for SAS®9, Fourth Edition. Cary, NC: SAS Institute Inc.

SAS® Certification Prep Guide: Advanced Programming for SAS®9, Fourth Edition

Copyright © 2014, SAS Institute Inc., Cary, NC, USA

978-1-62959-354-8 (Hardcopy)
978-1-62959-358-6 (EPUB)
978-1-62959-359-3 (MOBI)
978-1-62959-357-9 (PDF)

All rights reserved. Produced in the United States of America.

For a hard-copy book: No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without the prior
written permission of the publisher, SAS Institute Inc.

For a web download or e-book: Your use of this publication shall be governed by the terms established by the
vendor at the time you acquire this publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission
of the publisher is illegal and punishable by law. Please purchase only authorized electronic editions and do not
participate in or encourage electronic piracy of copyrighted materials. Your support of others’ rights is
appreciated.

U.S. Government License Rights; Restricted Rights: The Software and its documentation is commercial
computer software developed at private expense and is provided with RESTRICTED RIGHTS to the United
States Government. Use, duplication or disclosure of the Software by the United States Government is subject
to the license terms of this Agreement pursuant to, as applicable, FAR 12.212, DFAR 227.7202-1(a), DFAR
227.7202-3(a) and DFAR 227.7202-4 and, to the extent required under U.S. federal law, the minimum restricted
rights as set out in FAR 52.227-19 (DEC 2007). If FAR 52.227-19 is applicable, this provision serves as notice
under clause (c) thereof and no other notice is required to be affixed to the Software or documentation. The
Government's rights in Software and documentation shall be only those set forth in this Agreement.

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513-2414.

December 2014

SAS provides a complete selection of books and electronic products to help customers use SAS® software
to its fullest potential. For more information about our offerings, visit sas.com/store/books or call
1-800-727-0025.

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

http://support.sas.com/publishing

Contents

About This Book . xiii

PART 1 SQL Processing with SAS 1

Chapter 1 • Performing Queries Using PROC SQL . 3
Overview . 4
PROC SQL Basics . 4
Writing a PROC SQL Step . 6
Selecting Columns . 8
Specifying the Table . 10
Specifying Subsetting Criteria . 11
Ordering Rows . 11
Querying Multiple Tables . 13
Summarizing Groups of Data . 17
Creating Output Tables . 19
Additional Features . 20
Summary . 20
Quiz . 22

Chapter 2 • Performing Advanced Queries Using PROC SQL . 25
Overview . 26
Viewing SELECT Statement Syntax . 27
Displaying All Columns . 28
Limiting the Number of Rows Displayed . 29
Eliminating Duplicate Rows from Output . 31
Subsetting Rows By Using Conditional Operators . 32
Subsetting Rows By Using Calculated Values . 40
Enhancing Query Output . 42
Summarizing and Grouping Data . 48
Subsetting Data By Using Subqueries . 61
Subsetting Data By Using Noncorrelated Subqueries . 63
Subsetting Data By Using Correlated Subqueries . 69
Validating Query Syntax . 71
Additional Features . 72
Summary . 73
Quiz . 76

Chapter 3 • Combining Tables Horizontally Using PROC SQL . 81
Overview . 82
Understanding Joins . 82
Generating a Cartesian Product . 83
Using Inner Joins . 85
Using Outer Joins . 93
Creating an Inner Join with Outer Join-Style Syntax . 100
Comparing SQL Joins and DATA Step Match-Merges . 100
Using In-Line Views . 105
Joining Multiple Tables and Views . 109

Summary . 116
Quiz . 118

Chapter 4 • Combining Tables Vertically Using PROC SQL . 125
Overview . 126
Understanding Set Operations . 127
Using the EXCEPT Set Operator . 132
Using the INTERSECT Set Operator . 139
Using the UNION Set Operator . 144
Using the OUTER UNION Set Operator . 151
Comparing Outer Unions and Other SAS Techniques . 156
Summary . 157
Quiz . 159

Chapter 5 • Creating and Managing Tables Using PROC SQL . 165
Overview . 167
Understanding Methods of Creating Tables . 168
Creating an Empty Table By Defining Columns . 168
Displaying the Structure of a Table . 173
Creating an Empty Table That Is like Another Table . 174
Creating a Table from a Query Result . 177
Inserting Rows of Data into a Table . 180
Creating a Table That Has Integrity Constraints . 187
Handling Errors in Row Insertions . 193
Displaying Integrity Constraints for a Table . 197
Updating Values in Existing Table Rows . 198
Deleting Rows in a Table . 207
Altering Columns in a Table . 209
Dropping Tables . 216
Summary . 216
Quiz . 221

Chapter 6 • Creating and Managing Indexes Using PROC SQL . 225
Overview . 226
Understanding Indexes . 227
Deciding Whether to Create an Index . 229
Creating an Index . 231
Displaying Index Specifications . 233
Managing Index Usage . 235
Dropping Indexes . 239
Summary . 240
Quiz . 242

Chapter 7 • Creating and Managing Views Using PROC SQL . 247
Overview . 248
Creating and Using PROC SQL Views . 248
Displaying the Definition for a PROC SQL View . 251
Managing PROC SQL Views . 252
Updating PROC SQL Views . 255
Dropping PROC SQL Views . 257
Summary . 258
Quiz . 260

Chapter 8 • Managing Processing Using PROC SQL . 263
Overview . 264
Specifying SQL Options . 264

vi Contents

Controlling Execution . 265
Controlling Output . 267
Testing and Evaluating Performance . 271
Resetting Options . 273
Using Dictionary Tables . 275
Additional Features . 279
Summary . 279
Quiz . 281

PART 2 SAS Macro Language 285

Chapter 9 • Introducing Macro Variables . 287
Overview . 288
Basic Concepts . 289
Using Automatic Macro Variables . 291
Using User-Defined Macro Variables . 293
Processing Macro Variables . 296
Displaying Macro Variable Values in the SAS Log . 299
Using Macro Functions to Mask Special Characters . 302
Using Macro Functions to Manipulate Character Strings . 306
Using SAS Functions with Macro Variables . 314
Combining Macro Variable References with Text . 316
Summary . 320
Quiz . 323

Chapter 10 • Processing Macro Variables at Execution Time . 327
Overview . 328
Creating a Macro Variable during DATA Step Execution . 329
Creating Multiple Macro Variables during DATA Step Execution 343
Referencing Macro Variables Indirectly . 346
Obtaining Macro Variable Values during DATA Step Execution 352
Creating Macro Variables during PROC SQL Step Execution 354
Working with PROC SQL Views . 361
Using Macro Variables in SCL Programs . 362
Summary . 364
Quiz . 367

Chapter 11 • Creating and Using Macro Programs . 371
Overview . 372
Basic Concepts . 373
Developing and Debugging Macros . 378
Using Macro Parameters . 381
Understanding Symbol Tables . 387
Processing Statements Conditionally . 396
Processing Statements Iteratively . 407
Using Arithmetic and Logical Expressions . 411
Summary . 414
Quiz . 417

Chapter 12 • Storing Macro Programs . 421
Overview . 422
Understanding Session-Compiled Macros . 422
Storing Macro Definitions in External Files . 423
Storing Macro Definitions in Catalog SOURCE Entries . 425

Contents vii

Using the Autocall Facility . 429
Using Stored Compiled Macros . 433
Summary . 439
Quiz . 441

PART 3 Advanced SAS Programming Techniques 445

Chapter 13 • Creating Indexes . 447
Overview . 448
Using Indexes . 448
Creating Indexes in the DATA Step . 449
Managing Indexes with PROC DATASETS . 452
Managing Indexes with PROC SQL . 454
Documenting and Maintaining Indexes . 455
Summary . 461
Quiz . 462

Chapter 14 • Combining Data Vertically . 465
Overview . 466
Using a FILENAME Statement . 466
Using the FILEVAR= Option . 469
Appending SAS Data Sets . 477
Additional Features . 485
Summary . 486
Quiz . 488

Chapter 15 • Combining Data Horizontally . 495
Overview . 496
Reviewing Terminology . 497
Working with Lookup Values Outside of SAS Data Sets . 500
Combining Data with the DATA Step Match-Merge . 502
Using PROC SQL to Join Data . 506
Comparing DATA Step Match-Merges and PROC SQL Joins 507
Combining Summary Data and Detail Data . 516
Using an Index to Combine Data . 521
Using a Transaction Data Set . 525
Summary . 528
Quiz . 532

Chapter 16 • Using Lookup Tables to Match Data . 537
Overview . 538
Using Multidimensional Arrays . 538
Populating an Array from a SAS Data Set . 542
Using PROC TRANSPOSE . 548
Merging the Transposed Data Set . 553
Using Hash Objects as Lookup Tables . 558
Summary . 570
Quiz . 573

Chapter 17 • Formatting Data . 579
Overview . 580
Creating Custom Formats Using the VALUE Statement . 580
Creating Custom Formats Using the PICTURE Statement . 583
Managing Custom Formats . 588

viii Contents

Using Custom Formats . 591
Creating Formats from SAS Data Sets . 594
Creating SAS Data Sets from Custom Formats . 598
Summary . 601
Quiz . 603

Chapter 18 • Modifying SAS Data Sets and Tracking Changes . 607
Overview . 608
Using the MODIFY Statement . 609
Modifying All Observations in a SAS Data Set . 610
Modifying Observations Using a Transaction Data Set . 611
Modifying Observations Located by an Index . 614
Controlling the Update Process . 618
Understanding Integrity Constraints . 620
Placing Integrity Constraints on a Data Set . 622
Documenting Integrity Constraints . 626
Removing Integrity Constraints . 627
Understanding Audit Trails . 628
Initiating and Reading Audit Trails . 629
Controlling Data in the Audit Trail . 631
Controlling the Audit Trail . 634
Understanding Generation Data Sets . 636
Initiating Generation Data Sets . 637
Processing Generation Data Sets . 638
Summary . 641
Quiz . 644

PART 4 Optimizing SAS Programs 649

Chapter 19 • Introduction to Efficient SAS Programming . 651
Overview . 651
Overview of Computing Resources . 652
Assessing Efficiency Needs at Your Site . 652
Understanding Efficiency Trade-offs . 654
Using SAS System Options to Track Resources . 655
Using Benchmarks to Compare Techniques . 656
Summary . 658

Chapter 20 • Controlling Memory Usage . 659
Overview . 659
Controlling Page Size and the Number of Buffers . 660
Using the SASFILE Statement . 666
Additional Features . 671
Summary . 672
Quiz . 673

Chapter 21 • Controlling Data Storage Space . 675
Overview . 676
Reducing Data Storage Space for Character Variables . 677
Reducing Data Storage Space for Numeric Variables . 677
Compressing Data Files . 685
Using SAS DATA Step Views to Conserve Data Storage Space 696
Summary . 703
Quiz . 704

Contents ix

Chapter 22 • Using Best Practices . 707
Overview . 708
Executing Only Necessary Statements . 708
Eliminating Unnecessary Passes through the Data . 721
Reading and Writing Only Essential Data . 725
Storing Data in SAS Data Sets . 735
Avoiding Unnecessary Procedure Invocation . 737
Summary . 740
Quiz . 742

Chapter 23 • Querying Data Efficiently . 745
Overview . 747
Using an Index for Efficient WHERE Processing . 747
Identifying Available Indexes . 750
Identifying Conditions That Can Be Optimized . 754
Estimating the Number of Observations . 756
Comparing Probable Resource Usage . 759
Deciding Whether to Create an Index . 761
Comparing Procedures That Produce Detail Reports . 765
Comparing Tools for Summarizing Data . 767
Summary . 784
Quiz . 787

Chapter 24 • Creating Functions with PROC FCMP . 789
Overview . 789
Using PROC FCMP . 789
About PROC FCMP . 790
PROC FCMP Statement . 791
FUNCTION Statement . 791
RETURN Statement . 791
Using the Newly Defined Function . 791
Using PROC FCMP to Create a Subroutine . 792
Quiz . 793

PART 5 Quiz Answer Keys 795

Appendix 1 • Quiz Answer Keys . 797
Chapter 1: Performing Queries Using PROC SQL . 798
Chapter 2: Performing Advanced Queries Using PROC SQL 799
Chapter 3: Combining Tables Horizontally Using PROC SQL 800
Chapter 4: Combining Tables Vertically Using PROC SQL . 801
Chapter 5: Creating and Managing Tables Using PROC SQL 802
Chapter 6: Creating and Managing Indexes Using PROC SQL 803
Chapter 7: Creating and Managing Views Using PROC SQL 804
Chapter 8: Managing Processing Using PROC SQL . 806
Chapter 9: Introducing Macro Variables . 807
Chapter 10: Processing Macro Variables at Execution Time . 808
Chapter 11: Creating and Using Macro Programs . 809
Chapter 12: Storing Macro Programs . 811
Chapter 13: Creating Indexes . 812
Chapter 14: Combining Data Vertically . 813
Chapter 15: Combining Data Horizontally . 814
Chapter 16: Using Lookup Tables to Match Data . 816
Chapter 17: Formatting Data . 817

x Contents

Chapter 18: Modifying SAS Data Sets and Tracking Changes 818
Chapter 19: Introduction to Efficient SAS Programming . 819
Chapter 20: Controlling Memory Usage . 819
Chapter 21: Controlling Data Storage Space . 820
Chapter 22: Using Best Practices . 820
Chapter 23: Querying Data Efficiently . 821
Chapter 24: Creating Functions with PROC FCMP . 822

Index . 823

Contents xi

xii Contents

About This Book

Audience

The SAS Certification Prep Guide: Advanced Programming for SAS®9, Fourth Edition is
for new or experienced SAS programmers who want to prepare for the SAS Advanced
Programming for SAS 9 exam.

Requirements and Details

Purpose and Content
This guide helps prepare you to take the SAS Advanced Programming for SAS 9 exam.
New or experienced SAS users will find this guide to be an invaluable resource that
covers the objectives tested on the exam.

Major topics include SQL processing with SAS and the SAS macro language, advanced
SAS programming techniques, and optimizing SAS programs. You will also become
familiar with the enhancements and new functionality that are available in SAS®9.

The book includes quizzes that test your understanding of material in each chapter. Quiz
solutions are included at the end of the book.

To find updates to this guide, visit the SAS Training and Books website at http://
support.sas.com/publishing/cert.

Note: Exam objectives are subject to change. See the current exam objectives at http://
support.sas.com/certify.

Prerequisites
Candidates must earn the SAS Certified Base Programmer for SAS 9 credential before
taking the SAS Advanced Programming for SAS 9 exam. The SAS Certification Prep
Guide: Base Programming for SAS®9 covers the objectives tested on the SAS Base
Programming for SAS 9 exam, including importing and exporting raw data files;
creating and modifying SAS data sets; and identifying and correcting data, syntax, and
programming logic errors.

To see if you have the necessary prerequisite Base SAS programming knowledge, visit
http://support.sas.com/basepractice.

xiii

http://support.sas.com/publishing/cert
http://support.sas.com/publishing/cert
http://support.sas.com/certify
http://support.sas.com/certify
http://support.sas.com/basepractice

How to Create Practice Data

SAS Windowing Environment
To set up practice data in SAS, select Help ð Learning SAS Programming from the
main SAS menu. When the SAS Online Training Sample Data window appears, click
OK to create sample data.

SAS Studio and SAS University Edition
If you are using SAS Studio or SAS University Edition, you might not have Write access
to the Sasuser directory where the sample data is stored.

To determine whether the Sasuser folder is Read only, submit the following code:

proc options option=rsasuser;
run;

If the result from the PROC OPTIONS code is NORSASUSER, the Sasuser folder is
writable, and you can take the following steps to set up practice data in SAS Studio:

1. Copy the sample data program into a new Code window in SAS Studio. You can
access the sample data at http://support.sas.com/publishing/cert/sampdata.txt.

2. Click Run.

If the result from the PROC OPTIONS code is RSASUSER, the Sasuser folder is Read
only, and you must redirect the Sasuser folder by using the LIBNAME statement. To set
up practice data:

1. In the Folders pane, select My Folders. Then, right-click and select New ð Folder.

2. In the Name box, type a folder name. In our examples, we use the name certprep.
Click Save.

3. Redirect your SASUSER library to the new folder as follows:

If you are using SAS University Edition, submit a LIBNAME statement by copying
the following code into the Code tab:

libname sasuser "/folders/myfolders/certprep";

Note: You must use the filename of the new directory. In our examples, we use the
name certprep. If you use another filename, substitute the name that you
created for certprep.

If you are using SAS Studio, do the following:

a. Right-click the new folder that you created and select Properties.

b. Copy the path in the Location field.

c. Enter the following code, replacing location field with the path that you copied
from the Location field.

libname sasuser "location field";

d. Click Run.

e. Save the program as libname_cert.sas. You must resubmit this LIBNAME
statement program every time you work with the sample data.

xiv About This Book

http://support.sas.com/publishing/cert/sampdata.txt

f. Copy the sample data program into a new Code window in SAS Studio. You can
access the sample data at http://support.sas.com/publishing/cert/sampdata.txt.

g. Click Run.

Now that you have the sample data stored in a permanent directory, reissue the
LIBNAME statement whenever you want to use the data.

SAS Enterprise Guide
To download the sample data:

1. Start SAS Enterprise Guide.

2. In the Welcome to SAS Enterprise window, select New Project.

3. Select File ð New ð Program.

4. Depending on your network configuration, you might not have Write access to the
Sasuser directory where the sample data is stored. To determine the status of the
Sasuser directory, submit the following code:

proc options option=rsasuser;
run;

5. If the result from the PROC OPTIONS code is RSASUSER, you must redirect the
Sasuser folder by creating a new folder. From your server area, open the Files folder,
right-click on a drive or folder, and select New Folder. Enter the new folder name.

Note: If the result from the PROC OPTIONS code is NORSASUSER, the Sasuser
folder is writable, and you do not have to redirect the Sasuser folder. Therefore,
you can skip this step and the next one.

6. Submit the following code in a Code window:

libname sasuser "/folders/myfolders/certprep";

Note: You must use the filename of the new folder. In our examples, we use the
name certprep. If you use another filename, substitute the folder name that
you created for certprep.

7. Copy the sample data program into the Program window and then run the program.
You can access the sample data at http://support.sas.com/publishing/cert/
sampdata.txt.

8. Because you will not need to use these shortcuts, you can delete the Program item
and all the shortcuts from the project. This action will not delete the data that you
created. To delete the item from the project, right-click Program and select Delete.

9. In the Confirmation window, click Yes.

Exams
The SAS Certification Practice Exam: Advanced Programming for SAS 9 helps you
prepare for the SAS Advanced Programming for SAS 9 exam. This practice exam tests
the same knowledge and skills as the official certification exam. You can access this
exam under the SAS Certification category at https://support.sas.com/edu/
schedules.html?id=449. There is a fee for this practice exam.

To register for the official SAS Advanced Programming for SAS 9 exam, visit the SAS
Global Certification website at http://support.sas.com/certify.

Exams xv

http://support.sas.com/publishing/cert/sampdata.txt
http://support.sas.com/publishing/cert/sampdata.txt
http://support.sas.com/publishing/cert/sampdata.txt
https://support.sas.com/edu/schedules.html?id=449
https://support.sas.com/edu/schedules.html?id=449
http://support.sas.com/certify

Additional Resources
The following resources can help you as you learn SAS programming.

From SAS Software

Help For SAS®9, select Help ð SAS Help and
Documentation

SAS Enterprise Guide, select Help ð SAS
Enterprise Guide Help

Documentation For SAS®9, select Help ð SAS Help and
Documentation

SAS Studio, select

On the Web

Bookstore http://support.sas.com/publishing/

Training http://support.sas.com/training/

Documentation (including SAS Enterprise
Guide)

http://support.sas.com/documentation/

Certification http://support.sas.com/certify/

SAS Global Academic Program http://support.sas.com/learn/ap

SAS OnDemand http://support.sas.com/ondemand/

Knowledge Base http://support.sas.com/resources/

Support http://support.sas.com/techsup/

Learning Center http://support.sas.com/learn/

Community http://support.sas.com/community/

Syntax Conventions

The following example shows the general form of SAS code as shown in the book.

xvi About This Book

http://support.sas.com/publishing/
http://support.sas.com/training/
http://support.sas.com/documentation/
http://support.sas.com/certify/
http://support.sas.com/learn/ap
http://support.sas.com/ondemand/
http://support.sas.com/resources/
http://support.sas.com/techsup/
http://support.sas.com/learn/
http://support.sas.com/community/

PROC SQL;
SELECT column-1<,...column-n>

FROM table-1|view-1<,...table-n|view-n>
<WHERE expression>
<GROUP BY column-1<, ... column-n>>
<ORDER BY column-1<,... column-n>>;

PROC SQL
invokes the SQL procedure.

SELECT
specifies the column(s) to be selected.

FROM
specifies the table(s) to be queried.

WHERE
subsets the data based on a condition.

GROUP BY
classifies the data into groups based on the specified column(s).

ORDER BY
sorts the rows that the query returns by the value(s) of the specified column(s).

Here are details.

SELECT, FROM, WHERE, GROUP BY, and ORDER BY
are in uppercase because they must be spelled as shown.

column-1, table-1, view-1, and expression
are in italics because each represents a value that you supply.

<,...column-n>
is enclosed in angle brackets because it is optional syntax.

table-1 and view-1
are separated by a vertical bar (|) to indicate that they are mutually exclusive.

This book covers the basic syntax that you need to know to prepare for the certification
exam. For complete syntax, see the appropriate SAS reference guide.

Syntax Conventions xvii

xviii About This Book

Part 1

SQL Processing with SAS

Chapter 1
Performing Queries Using PROC SQL . 3

Chapter 2
Performing Advanced Queries Using PROC SQL 25

Chapter 3
Combining Tables Horizontally Using PROC SQL 81

Chapter 4
Combining Tables Vertically Using PROC SQL 125

Chapter 5
Creating and Managing Tables Using PROC SQL 165

Chapter 6
Creating and Managing Indexes Using PROC SQL 225

Chapter 7
Creating and Managing Views Using PROC SQL 247

Chapter 8
Managing Processing Using PROC SQL . 263

1

2

Chapter 1

Performing Queries Using PROC
SQL

Overview . 4
Introduction . 4

PROC SQL Basics . 4
Overview . 4
How PROC SQL Is Unique . 5

Writing a PROC SQL Step . 6
Overview . 6
The SELECT Statement . 7

Selecting Columns . 8
Overview . 8
Creating New Columns . 9

Specifying the Table . 10

Specifying Subsetting Criteria . 11

Ordering Rows . 11
Overview . 11
Ordering by Multiple Columns . 12

Querying Multiple Tables . 13
Overview . 13
Specifying Columns That Appear in Multiple Tables . 14
Specifying Multiple Table Names . 15
Specifying a Join Condition . 15
Ordering Rows . 16

Summarizing Groups of Data . 17
Example . 17
Summary Functions . 18

Creating Output Tables . 19
Overview . 19
Example . 19

Additional Features . 20

Summary . 20
Text Summary . 20
Sample Programs . 22
Points to Remember . 22

Quiz . 22

3

Overview

Introduction
Sometimes you need quick answers to questions about your data. You might want to
query (retrieve data from) a single SAS data set or a combination of data sets to do the
following:

• examine relationships between data values

• view a subset of your data

• compute values quickly.

The SQL procedure (PROC SQL) provides an easy, flexible way to query and combine
your data. This chapter shows you how to create a basic query using one or more tables
(data sets). You learn how to create a new table from your query.

PROC SQL Basics

Overview
PROC SQL is the SAS implementation of Structured Query Language (SQL), which is a
standardized language that is widely used to retrieve and update data in tables and in
views that are based on those tables.

The following chart shows terms used in data processing, SAS, and SQL that are
synonymous. The SQL terms are used in this chapter. A SAS data set (or SAS data file)
can be a table or a view.

Data Processing SAS SQL

file SAS data file table

record observation row

field variable column

4 Chapter 1 • Performing Queries Using PROC SQL

PROC SQL can often be used as an alternative to other SAS procedures or the DATA
step. You can use PROC SQL to do the following:

• retrieve data from and manipulate SAS tables

• add or modify data values in a table

• add, modify, or drop columns in a table

• create tables and views

• join multiple tables (whether they contain columns with the same name)

• generate reports.

Like other SAS procedures, PROC SQL also enables you to combine data from two or
more different types of data sources and present them as a single table. For example, you
can combine data from two different types of external databases, or you can combine
data from an external database and a SAS data set.

How PROC SQL Is Unique
PROC SQL differs from most other SAS procedures in several ways:

• Unlike other PROC statements, many statements in PROC SQL include clauses. For
example, the following PROC SQL step contains two statements: the PROC SQL
statement and the SELECT statement. The SELECT statement contains several
clauses: SELECT, FROM, WHERE, and ORDER BY.

proc sql;
 select empid,jobcode,salary,
 salary*.06 as bonus
 from sasuser.payrollmaster
 where salary<32000
 order by jobcode;

• The PROC SQL step does not require a RUN statement. PROC SQL executes each
query automatically. If you use a RUN statement with a PROC SQL step, SAS
ignores the RUN statement, executes the statements as usual, and generates the note
shown below in the SAS log.

PROC SQL Basics 5

Table 1.1 SAS Log

1884 proc sql;
1885 select empid,jobcode,salary,
1886 salary*.06 as bonus
1887 from sasuser.payrollmaster
1888 where salary<32000
1889 order by jobcode;
1890 run;
NOTE: PROC SQL statements are executed immediately;
 The RUN statement has no effect.

• Unlike many other SAS procedures, PROC SQL continues to run after you submit a
step. To end the procedure, you must submit another PROC step, a DATA step, or a
QUIT statement, as shown:

proc sql;
 select empid,jobcode,salary,
 salary*.06 as bonus
 from sasuser.payrollmaster
 where salary<32000
 order by jobcode;
quit;

When you submit a PROC SQL step without ending it, the status bar displays the
message:

PROC SQL running

Note: As a precaution, SAS Enterprise Guide automatically adds a QUIT statement
to your code when you submit it to SAS. However, you should get in the habit of
adding the QUIT statement to your code.

Writing a PROC SQL Step

Overview
Before creating a query, you must first reference the library in which your table is stored.
Then you write a PROC SQL step to query your table.

6 Chapter 1 • Performing Queries Using PROC SQL

General form, basic PROC SQL step to perform a query:

PROC SQL;
SELECT column-1<,...column-n>

FROM table-1|view-1<,...table-n|view-n>
<WHERE expression>
<GROUP BY column-1<, ... column-n>>
<ORDER BY column-1<,... column-n>>;

Here is an explanation of the syntax:

PROC SQL
invokes the SQL procedure

SELECT
specifies the column(s) to be selected

FROM
specifies the table(s) to be queried

WHERE
subsets the data based on one or more conditions

GROUP BY
classifies the data into groups based on the specified column(s)

ORDER BY
sorts the rows that the query returns by the value(s) of the specified column(s).

CAUTION:
Unlike other SAS procedures the order of clauses with a SELECT statement in
PROC SQL is important. Clauses must appear in the order shown above.

Note: A query can also include a HAVING clause, which is introduced at the end of this
chapter. To learn more about the HAVING clause, see Chapter 2, “Performing
Advanced Queries Using PROC SQL,” on page 26.

The SELECT Statement
The SELECT statement, which follows the PROC SQL statement, retrieves and displays
data. It consists of clauses that begin with a keyword, and is followed by one or more
components. The SELECT statement in the following sample code contains four clauses:
the required clauses SELECT and FROM, and the optional clauses WHERE and
ORDER BY. The end of the statement is indicated by a semicolon.

proc sql;
 |-select empid,jobcode,salary,
 | salary*.06 as bonus
 |----from sasuser.payrollmaster
 |----where salary<32000
 |----order by jobcode;

Note: A PROC SQL step that contains one or more SELECT statements is referred to as
a PROC SQL query. The SELECT statement is only one of several statements that
can be used with PROC SQL.

The following PROC SQL query creates the output report that is shown:

Writing a PROC SQL Step 7

proc sql;
 select empid,jobcode,salary,
 salary*.06 as bonus
 from sasuser.payrollmaster
 where salary<32000
 order by jobcode;

A PROC SQL query produces a result set that can be output as a report, a table, or a
PROC SQL view.

Type of Output PROC SQL Statement

report SELECT

table CREATE TABLE

PROC SQL view CREATE VIEW

Note: The CREATE TABLE statement is introduced later in this chapter. You can learn
about creating tables in Chapter 5, “Creating and Managing Tables Using PROC
SQL,” on page 167. You can learn more about PROC SQL views in Chapter 7,
“Creating and Managing Views Using PROC SQL,” on page 248.

You learn more about the SELECT statement in the following sections.

Selecting Columns

Overview
To specify which column(s) to display in a query, you write a SELECT clause, the first
clause in the SELECT statement. After the keyword SELECT, list one or more column
names and separate the column names with commas. In the SELECT clause, you can
both specify existing columns (columns that are already stored in a table) and create new
columns.

8 Chapter 1 • Performing Queries Using PROC SQL

The following SELECT clause specifies the columns EmpID, JobCode, Salary, and
bonus. The columns EmpID, JobCode, and Salary are existing columns. The column
named bonus is a new column.

proc sql;
 select empid,jobcode,salary,
 salary*.06 as bonus
 from sasuser.payrollmaster
 where salary<32000
 order by jobcode;

Creating New Columns
You can create new columns that contain either text or a calculation. New columns
appear in output, along with any existing columns that are selected. Keep in mind that
new columns exist only for the duration of the query, unless a table or a view is created.

To create a new column, include any valid SAS expression in the SELECT clause list of
columns. You can assign a column alias, a name, to a new column by using the keyword
AS followed by the name that you would like to use.

Note: A column alias must follow the rules for SAS names.

In the sample PROC SQL query, shown below, an expression is used to calculate the
new column: the values of Salary are multiplied by .06. The keyword AS is used to
assign the column alias bonus to the new column.

proc sql;
 select empid,jobcode,salary,
 salary*.06 as bonus
 from sasuser.payrollmaster
 where salary<32000
 order by jobcode;

A column alias is useful because it enables you to reference the column elsewhere in the
query.

Note: You can learn more about referencing a calculated column from other clauses in
Chapter 2, “Performing Advanced Queries Using PROC SQL,” on page 26.

Also, the column alias appears as a column heading in the output.

The following output shows how the calculated column bonus is displayed. Notice that
the column alias bonus appears in lowercase, exactly as it is specified in the SELECT
clause.

Selecting Columns 9

In the SELECT clause, you can specify a label for an existing column or a new column.
If both a label alias and a column alias are specified for a new column, the label is
displayed as the column heading in the output1. If only a column alias is specified, it is
important that you specify the column alias exactly as you want it to appear in the
output.

Note: You can learn about creating new columns that contain text and about specifying
labels for columns in Chapter 2, “Performing Advanced Queries Using PROC SQL,”
on page 26.

Specifying the Table
After writing the SELECT clause, you specify the table to be queried in the FROM
clause. Enter the keyword FROM, followed by the name of the table, as shown:

proc sql;
 select empid,jobcode,salary,
 salary*.06 as bonus
 from sasuser.payrollmaster
 where salary<32000
 order by jobcode;

The PROC SQL step above queries the permanent SAS table Payrollmaster, which is
stored in a SAS library to which the libref Sasuser has been assigned.

1 Displaying labels for a column is further determined by the LABEL|NOLABEL system option. If this option is set to NOLABEL,
then the label not displayed as the column heading in the output. This option can be set by your site administrator.

10 Chapter 1 • Performing Queries Using PROC SQL

Specifying Subsetting Criteria
To subset data based on a condition, use a WHERE clause in the SELECT statement. As
in the WHERE statement and the WHERE command used in other SAS procedures, the
expression in the WHERE clause can be any valid SQL expression. In the WHERE
clause, you can specify any column(s) from the underlying table(s). The columns
specified in the WHERE clause do not have to be specified in the SELECT clause.

In the following PROC SQL query, the WHERE clause selects rows in which the value
of the column Salary is less than 32,000. The output is also shown.

proc sql;
 select empid,jobcode,salary,
 salary*.06 as bonus
 from sasuser.payrollmaster
 where salary<32000
 order by jobcode;

Ordering Rows

Overview
The order of rows in the output of a PROC SQL query cannot be guaranteed, unless you
specify a sort order. To sort rows by the values of specific columns, you can use the
ORDER BY clause in the SELECT statement. Specify the keywords ORDER BY,
followed by one or more column names separated by commas.

In the following PROC SQL query, the ORDER BY clause sorts rows by values of the
column JobCode:

proc sql;

Ordering Rows 11

 select empid,jobcode,salary,
 salary*.06 as bonus
 from sasuser.payrollmaster
 where salary<32000
 order by jobcode;

Note: In this example, the ORDER BY clause is the last clause in the SELECT
statement, so the ORDER BY clause ends with a semicolon.

In the output of the sample query, shown below, the rows are sorted by the values of
JobCode. By default, the ORDER BY clause sorts rows in ascending order.

To sort rows in descending order, specify the keyword DESC following the column
name. For example, the preceding ORDER BY clause could be modified as follows:

order by jobcode desc;

In the ORDER BY clause, you can alternatively reference a column by the column's
position in the SELECT clause list rather than by name. Use an integer to indicate the
column's position. The ORDER BY clause in the preceding PROC SQL query has been
modified, below, to specify the column JobCode by the column's position in the
SELECT clause list (2) rather than by name:

proc sql;
 select empid,jobcode,salary,
 salary*.06 as bonus
 from sasuser.payrollmaster
 where salary<32000
 order by 2;

Ordering by Multiple Columns
To sort rows by the values of two or more columns, list multiple column names (or
numbers) in the ORDER BY clause, and use commas to separate the column names (or
numbers). In the following PROC SQL query, the ORDER BY clause sorts by the values
of two columns, JobCode and EmpID:

12 Chapter 1 • Performing Queries Using PROC SQL

proc sql;
 select empid,jobcode,salary,
 salary*.06 as bonus
 from sasuser.payrollmaster
 where salary<32000
 order by jobcode,empid;

The rows are sorted first by JobCode and then by EmpID, as shown in the following
output.

Note: You can mix the two types of column references, names and numbers, in the
ORDER BY clause. For example, the preceding ORDER BY clause could be
rewritten as follows:

order by 2,empid;

You can also reference column aliases in the ORDER BY clause. Here is an
example:

order by 2, empid, bonus;

Querying Multiple Tables

Overview
This topic deals with the more complex task of extracting data from two or more tables.

Previously, you learned how to write a PROC SQL step to query a single table. Suppose
you now want to examine data that is stored in two tables. PROC SQL enables you to
combine tables horizontally, in other words, to combine rows of data.

Querying Multiple Tables 13

In SQL terminology, combining tables horizontally is called joining tables. Joins do not
alter the original tables.

Suppose you want to create a report that displays the following information for
employees of a company: employee identification number, last name, original salary, and
new salary. There is no single table that contains all of these columns, so you must join
the two tables Sasuser.Salcomps and Sasuser.Newsals. In your query, you want to select
four columns, two from the first table and two from the second table. You also need to
ensure that the rows that you join belong to the same employee. To check this, you want
to match employee identification numbers for rows that you merge and to select only the
rows that match.

This type of join is known as an inner join. An inner join returns a result set for all of the
rows in a table that have one or more matching rows in another table.

Note: For more information about PROC SQL joins, see Chapter 3, “Combining Tables
Horizontally Using PROC SQL,” on page 82.

You can write a PROC SQL step to combine tables. To join two tables for a query, you
can use a PROC SQL step such as the one below. This step uses the SELECT statement
to join data from the tables Salcomps and Newsals. Both of these tables are stored in a
SAS library to which the libref Sasuser has been assigned.

proc sql;
 select salcomps.empid,lastname,
 newsals.salary,newsalary
 from sasuser.salcomps,sasuser.newsals
 where salcomps.empid=newsals.empid
 order by lastname;

We examine each clause of this PROC SQL step.

Specifying Columns That Appear in Multiple Tables
When you join two or more tables, list the columns that you want to select from both
tables in the SELECT clause. Separate all column names with commas.

If the tables that you are querying contain same-named columns and you want to list one
of these columns in the SELECT clause, you must specify a table name as a prefix for
that column. Specifying a table-name prefix with a column that only exists in one table
is syntactically acceptable.

Note: Prefixing a table name to a column name is called qualifying the column name.

The following PROC SQL step joins the two tables Sasuser.Salcomps and
Sasuser.Newsals, both of which contain columns named EmpID. To tell PROC SQL

14 Chapter 1 • Performing Queries Using PROC SQL

where to read the column EmpID, the SELECT clause specifies the table name
Salcomps as a prefix for Empid. The Newsals prefix for Salary is not required, but it is
correct syntax and it identifies the source table for this column.

proc sql;
 select salcomps.empid,lastname,
 newsals.salary,newsalary
 from sasuser.salcomps,sasuser.newsals
 where salcomps.empid=newsals.empid
order by lastname;

Specifying Multiple Table Names
When you join multiple tables in a PROC SQL query, you specify each table name in the
FROM clause, as shown below:

proc sql;
 select salcomps.empid,lastname,
 newsals.salary,newsalary
 from sasuser.salcomps,sasuser.newsals
 where salcomps.empid=newsals.empid
 order by lastname;

As in the SELECT clause, you separate names in the FROM clause (in this case, table
names) with commas.

Specifying a Join Condition
As in a query on a single table, the WHERE clause in the SELECT statement selects
rows from two or more tables, based on a condition. When you join multiple tables,
ensure that the WHERE clause specifies columns with data whose values match. If none
of the values match, then zero rows are returned. Also, the columns in the join condition
must be of the same type. The SQL procedure does not attempt to convert data types.

In the following example, the WHERE clause selects only rows in which the value for
EmpID in Sasuser.Salcomps matches the value for EmpID in Sasuser.Newsals. Qualified
column names must be used in the WHERE clause to specify each of the two EmpID
columns.

proc sql;
 select salcomps.empid,lastname,
 newsals.salary,newsalary
 from sasuser.salcomps,sasuser.newsals
 where salcomps.empid=newsals.empid
 order by lastname;

The output is shown, in part, below.

Querying Multiple Tables 15

Note: In the table Sasuser.Newsals, the Salary column has the label Employee Salary, as
shown in this output.

CAUTION:
If you join tables that do not contain one or more columns with tables that do not
have matching data values, several unexpected results might occur. Either you might
produce a large amount of data or you might produce all possible row combinations.

Ordering Rows
As in PROC SQL steps that query just one table, the ORDER BY clause specifies which
column(s) should be used to sort rows in the output. In the following query, the rows are
sorted by LastName:

16 Chapter 1 • Performing Queries Using PROC SQL

proc sql;
 select salcomps.empid,lastname,
 newsals.salary,newsalary
 from sasuser.salcomps,sasuser.newsals
 where salcomps.empid=newsals.empid
 order by lastname;

Summarizing Groups of Data
We can use PROC SQL steps to create detail reports. But you might also want to
summarize data in groups. To group data for summarizing, you can use the GROUP BY
clause. The GROUP BY clause is used in queries that include one or more summary
functions. Summary functions produce a statistical summary for each group that is
defined in the GROUP BY clause.

Example
The following example demonstrates the GROUP BY clause and summary functions.

Suppose you want to determine the total number of miles traveled by frequent-flyer
program members in each of three membership classes (Gold, Silver, and Bronze).
Frequent-flyer program information is stored in the table Sasuser.Frequentflyers. To
summarize your data, you can submit the following PROC SQL step:

proc sql;
 select membertype,
 sum(milestraveled) as TotalMiles
 from sasuser.frequentflyers
 group by membertype;

In this case, the SUM function totals the values of the MilesTraveled column to create
the TotalMiles column. The GROUP BY clause groups the data by the values of
MemberType.

As in the ORDER BY clause, in the GROUP BY clause that you specify the keywords
GROUP BY, followed by one or more column names separated by commas.

The results show total miles by membership class (MemberType).

Summarizing Groups of Data 17

Note: If you specify a GROUP BY clause in a query that does not contain a summary
function, your clause is changed to an ORDER BY clause, and a message to that
effect is written to the SAS log.

Summary Functions
To summarize data, you can use the following summary functions with PROC SQL.
Notice that some functions have more than one name to accommodate both SAS and
SQL conventions. Where multiple names are listed, the first name is the SQL name.

AVG,MEAN mean or average of values

COUNT, FREQ, N number of nonmissing values

CSS corrected sum of squares

CV coefficient of variation (percent)

MAX largest value

MIN smallest value

NMISS number of missing values

PRT probability of a greater absolute value of student's t

RANGE range of values

STD standard deviation

STDERR standard error of the mean

SUM sum of values

T student's t value for testing the hypothesis that the
population mean is zero

USS uncorrected sum of squares

VAR variance

18 Chapter 1 • Performing Queries Using PROC SQL

Creating Output Tables

Overview
To create a new table from the results of a query, use a CREATE TABLE statement that
includes the keyword AS and the clauses that are used in a PROC SQL query: SELECT,
FROM, and any optional clauses, such as ORDER BY. The CREATE TABLE statement
stores your query results in a table instead of displaying the results as a report.

General form, basic PROC SQL step for creating a table from a query result:

PROC SQL;
CREATE TABLE table-name AS
SELECT column-1<,...column-n>

FROM table-1|view-1<,...table-n|view-n>
<WHERE expression>
<GROUP BY column-1<,... column-n>>
<ORDER BY column-1<,... column-n>>;

Here is an explanation of the syntax:

table-name
specifies the name of the table to be created.

Note: A query can also include a HAVING clause, which is introduced at the end of this
chapter. To learn more about the HAVING clause, see Chapter 2, “Performing
Advanced Queries Using PROC SQL,” on page 26.

Note: The CREATE TABLE statement does not generate output. To view the contents
of the table, use a SELECT statement as described in “The SELECT Statement” on
page 7.

Example
Suppose that after determining the total miles traveled for each frequent-flyer
membership class in the Sasuser.Frequentflyers table, you want to store this information
in the temporary table Work.Miles. To do so, you can submit the following PROC SQL
step:

proc sql;
 create table work.miles as
 select membertype,
 sum(milestraveled) as TotalMiles
 from sasuser.frequentflyers
 group by membertype;

Because the CREATE TABLE statement is used, this query does not create a report. The
SAS log verifies that the table was created and indicates how many rows and columns
the table contains.

Creating Output Tables 19

Table 1.2 SAS Log

NOTE: Table WORK.MILES created, with three rows and two columns.

T I P In this example, you are instructed to save the data to a temporary table that is
deleted at the end of the SAS session. To save the table permanently in the Sasuser
library, use the libref Sasuser instead of the libref Work in the CREATE TABLE
clause.

Additional Features
To further refine a PROC SQL query that contains a GROUP BY clause, you can use a
HAVING clause. A HAVING clause works with the GROUP BY clause to restrict the
groups that are displayed in the output, based on one or more specified conditions.

For example, the following PROC SQL query groups the output rows by JobCode. The
HAVING clause uses the summary function AVG to specify that only the groups that
have an average salary that is greater than 40,000 is displayed in the output.

proc sql;
 select jobcode,avg(salary) as Avg
 from sasuser.payrollmaster
 group by jobcode
 having Avg>40000
 order by jobcode;

Note: You can learn more about the use of the HAVING clause in Chapter 2,
“Performing Advanced Queries Using PROC SQL,” on page 26.

Summary

Text Summary

PROC SQL Basics
PROC SQL uses statements that are written in Structured Query Language (SQL), which
is a standardized language that is widely used to retrieve and update data in tables and in
views that are based on those tables. When you want to examine relationships between
data values, subset your data, or compute values, the SQL procedure provides an easy,
flexible way to analyze your data.

PROC SQL differs from most other SAS procedures in several ways:

• Many statements in PROC SQL, such as the SELECT statement, include clauses.

• The PROC SQL step does not require a RUN statement.

• PROC SQL continues to run after you submit a step. To end the procedure, you must
submit another PROC step, a DATA step, or a QUIT statement.

20 Chapter 1 • Performing Queries Using PROC SQL

Writing a PROC SQL Step
Before creating a query, you must assign a libref to the SAS library in which the table to
be used is stored. Then you submit a PROC SQL step. You use the PROC SQL
statement to invoke the SQL procedure.

Selecting Columns
To specify which column(s) to display in a query, you write a SELECT clause as the first
clause in the SELECT statement. In the SELECT clause, you can specify existing
columns and create new columns that contain either text or a calculation.

Specifying Tables
You specify the tables to be queried in the FROM clause.

Specifying Subsetting Criteria
To subset data based on a condition, write a WHERE clause that contains an expression.

Ordering Rows
The order of rows in the output of a PROC SQL query cannot be guaranteed, unless you
specify a sort order. To sort rows by the values of specific columns, use the ORDER BY
clause.

Querying Multiple Tables
You can use a PROC SQL step to query data that is stored in two or more tables. In SQL
terminology, this is called joining tables. Follow these steps to join multiple tables:

1. Specify column names from one or both tables in the SELECT clause and, if you are
selecting a column that has the same name in multiple tables, prefix the table name
to that column name.

2. Specify each table name in the FROM clause.

3. Use the WHERE clause to select rows from two or more tables, based on a
condition.

4. Use the ORDER BY clause to sort rows that are retrieved from two or more tables
by the values of the selected column(s).

Summarizing Groups of Data
You can use a GROUP BY clause in your PROC SQL step to summarize data in groups.
The GROUP BY clause is used in queries that include one or more summary functions.
Summary functions produce a statistical summary for each group that is defined in the
GROUP BY clause.

Creating Output Tables
To create a new table from the results of your query, you can use the CREATE TABLE
statement in your PROC SQL step. This statement enables you to store your results in a
table instead of displaying the query results as a report.

Additional Features
To further refine a PROC SQL query that contains a GROUP BY clause, you can use a
HAVING clause. A HAVING clause works with the GROUP BY clause to restrict the
groups that are displayed in the output, based on one or more specified conditions.

Summary 21

Sample Programs

Querying a Table
proc sql;
 select empid,jobcode,salary,
 salary*.06 as bonus
 from sasuser.payrollmaster
 where salary<32000
 order by jobcode;
quit;

Summarizing Groups of Data
proc sql;
 select membertype,
 sum(milestraveled) as TotalMiles
 from sasuser.frequentflyers
 group by membertype;
quit;

Creating a Table from the Results of a Query on Two Tables
proc sql;
 create table work.miles as
 select salcomps.empid,lastname,
 newsals.salary,newsalary
 from sasuser.salcomps,sasuser.newsals
 where salcomps.empid=newsals.empid
 order by 2;
quit;

Points to Remember
• Do not use a RUN statement with the SQL procedure.

• Do not end a clause with a semicolon unless it is the last clause in the statement.

• When you join multiple tables, be sure to specify columns that have matching data
values in the WHERE clause.

• To end the SQL procedure, you can submit another PROC step, a DATA step, or a
QUIT statement.

Quiz
Select the best answer for each question. After completing the quiz, check your answers
using the answer key in the appendix.

1. Which of the clauses in the PROC SQL program below is written incorrectly?

proc sql;
 select style sqfeet bedrooms
 from choice.houses

22 Chapter 1 • Performing Queries Using PROC SQL

 where sqfeet ge 800;

a. SELECT

b. FROM

c. WHERE

d. both a and c

2. How many statements does the program below contain?

proc sql;
 select grapes,oranges,
 grapes + oranges as sumsales
 from sales.produce
 order by sumsales;

a. two

b. three

c. four

d. five

3. Complete the following PROC SQL query to select the columns Address and SqFeet
from the table List.Size and to select Price from the table List.Price. (Only the
Address column appears in both tables.)

proc sql;

 where size.address = price.address;
 from list.size,list.price;

a. select address,sqfeet,price

b. select size.address,sqfeet,price

c. select price.address,sqfeet,price

d. either b or c

4. Which of the clauses below correctly sorts rows by the values of the columns Price
and SqFeet?

a. order price, sqfeet

b. order by price,sqfeet

c. sort by price sqfeet

d. sort price sqfeet

5. Which clause below specifies that the two tables Produce and Hardware be queried?
Both tables are located in a library to which the libref Sales has been assigned.

a. select sales.produce sales.hardware

b. from sales.produce sales.hardware

c. from sales.produce,sales.hardware

d. where sales.produce, sales.hardware

6. Complete the SELECT clause below to create a new column named Profit by
subtracting the values of the column Cost from those of the column Price.

select fruit,cost,price,

Quiz 23

a. Profit=price-cost

b. price-cost as Profit

c. profit=price-cost

d. Profit as price-cost

7. What happens if you use a GROUP BY clause in a PROC SQL step without a
summary function?

a. The step does not execute.

b. The first numeric column is summed by default.

c. The GROUP BY clause is changed to an ORDER BY clause.

d. The step executes but does not group or sort data.

8. If you specify a CREATE TABLE statement in your PROC SQL step,

a. the results of the query are displayed, and a new table is created.

b. a new table is created, but it does not contain any summarization that was
specified in the PROC SQL step.

c. a new table is created, but no report is displayed.

d. results are grouped by the value of the summarized column.

9. Which statement is true regarding the use of the PROC SQL step to query data that is
stored in two or more tables?

a. When you join multiple tables, the tables must contain a common column.

b. You must specify the table from which you want each column to be read.

c. The tables that are being joined must be from the same type of data source.

d. If two tables that are being joined contain a same-named column, then you must
specify the table from which you want the column to be read.

10. Which clause in the following program is incorrect?

proc sql;
 select sex,mean(weight) as avgweight
 from company.employees company.health
 where employees.id=health.id
 group by sex;

a. SELECT

b. FROM

c. WHERE

d. GROUP BY

24 Chapter 1 • Performing Queries Using PROC SQL

Chapter 2

Performing Advanced Queries
Using PROC SQL

Overview . 26
Introduction . 26

Viewing SELECT Statement Syntax . 27

Displaying All Columns . 28
Using SELECT * . 28
Using the FEEDBACK Option . 29

Limiting the Number of Rows Displayed . 29
Overview . 29
Example . 30

Eliminating Duplicate Rows from Output . 31
Example . 31

Subsetting Rows By Using Conditional Operators . 32
Overview . 32
Using Operators in PROC SQL . 33
Using the BETWEEN-AND Operator to Select within a Range of Values 34
Using the CONTAINS or Question Mark (?) Operator to Select a String 34
Example . 35
Using the IN Operator to Select Values from a List . 35
Using the IS MISSING or IS NULL Operator to Select Missing Values 36
Example . 36
Using the LIKE Operator to Select a Pattern . 37
Specifying a Pattern . 38
Example . 38
Using the Sounds-Like (=*) Operator to Select a Spelling Variation 39

Subsetting Rows By Using Calculated Values . 40
Understanding How PROC SQL Processes Calculated Columns 40
Using the Keyword CALCULATED . 40

Enhancing Query Output . 42
Overview . 42
Specifying Column Formats and Labels . 43
Specifying Titles and Footnotes . 44
Adding a Character Constant to Output . 45

Summarizing and Grouping Data . 48
Overview . 48
Number of Arguments and Summary Function Processing 48
Groups and Summary Function Processing . 49
SELECT Clause Columns and Summary Function Processing 49

25

Using a Summary Function with a Single Argument (Column) 50
Using a Summary Function with Multiple Arguments (Columns) 51
Using a Summary Function without a GROUP BY Clause 51
Using a Summary Function with Columns outside of the Function 52
Using a Summary Function with a GROUP BY Clause . 54
Counting Values By Using the COUNT Summary Function 55
Counting All Rows . 55
Counting All Non-Missing Values in a Column . 56
Counting All Unique Values in a Column . 57
Selecting Groups By Using the HAVING Clause . 58
Understanding Data Remerging . 60
Example . 61

Subsetting Data By Using Subqueries . 61
Introducing Subqueries . 61
Types of Subqueries . 62

Subsetting Data By Using Noncorrelated Subqueries . 63
Using Single-Value Noncorrelated Subqueries . 63
Using Multiple-Value Noncorrelated Subqueries . 64
Example . 64
Using Comparisons with Subqueries . 65
Using the ANY Operator . 66
Example . 66
Using the ALL Operator . 68
Example . 68

Subsetting Data By Using Correlated Subqueries . 69
Overview . 69
Example . 69
Using the EXISTS and NOT EXISTS Conditional Operators 70
Example: Correlated Subquery with NOT EXISTS . 70

Validating Query Syntax . 71
Overview . 71
Using the NOEXEC Option . 71
Using the VALIDATE Keyword . 72

Additional Features . 72

Summary . 73
Text Summary . 73
Sample Programs . 75
Points to Remember . 76

Quiz . 76

Overview

Introduction
The SELECT statement is the primary tool of PROC SQL. Using the SELECT
statement, you can identify, manipulate, and retrieve columns of data from one or more
tables and views.

You should already know how to create basic PROC SQL queries by using the SELECT
statement and most of its subordinate clauses. To build on your existing skills, this

26 Chapter 2 • Performing Advanced Queries Using PROC SQL

chapter presents a variety of useful query techniques, such as the use of subqueries to
subset data.

The PROC SQL query shown below illustrates some of the new query techniques:

proc sql outobs=20;
title 'Job Groups with Average Salary';
title2 '> Company Average';
 select jobcode,
 avg(salary) as AvgSalary format=dollar11.2,
 count(*) as Count
 from sasuser.payrollmaster
 group by jobcode
 having avg(salary) >
 (select avg(salary)
 from sasuser.payrollmaster)
 order by avgsalary desc;

Viewing SELECT Statement Syntax
The SELECT statement and its subordinate clauses are the building blocks for
constructing all PROC SQL queries.

Viewing SELECT Statement Syntax 27

General form, SELECT statement:

SELECT column-1<, ... column-n>
FROM table-1 | view-1<, ... table-n | view-n>
<WHERE expression>
<GROUP BY column-1<, ... column-n>>
<HAVING expression>
<ORDER BY column-1<, ... column-n>>;

Here is an explanation of the syntax:

SELECT
specifies the column(s) that appear in the output

FROM
specifies the table(s) or view(s) to be queried

WHERE
uses an expression to subset or restrict the data based on one or more condition(s)

GROUP BY
classifies the data into groups based on the specified column(s)

HAVING
uses an expression to subset or restrict groups of data based on group condition(s)

ORDER BY
sorts the rows that the query returns by the value(s) of the specified column(s).

Note: The clauses in a PROC SQL SELECT statement must be specified in the order
shown.

You should be familiar with all of the SELECT statement clauses except for the
HAVING clause. The use of the HAVING clause is presented later in this chapter.

Now, we look at some ways that you can limit and subset the number of columns that are
displayed in query output.

Displaying All Columns
You already know how to select specific columns for output by listing them in the
SELECT statement. However, for some tasks, you find it useful to display all columns
of a table concurrently. For example, before you create a complex query, you might want
to see the contents of the table that you are working with.

Using SELECT *
To display all columns in the order in which they are stored in a table, use an asterisk (*)
in the SELECT clause. All rows are displayed, by default, unless you limit or subset
them.

The following SELECT step displays all columns and rows in the table
Sasuser.Staffchanges, which lists all employees in a company who have had changes in
their employment status.

proc sql;
 select *
 from sasuser.staffchanges;

28 Chapter 2 • Performing Advanced Queries Using PROC SQL

As shown in the output, the table contains six columns and six rows.

Using the FEEDBACK Option
When you specify SELECT *, you can also use the FEEDBACK option in the PROC
SQL statement, which writes the expanded list of columns to the SAS log. For example,
the PROC SQL query shown below contains the FEEDBACK option:

proc sql feedback;
 select *
 from sasuser.staffchanges;

This query produces the following feedback in the SAS log.

Table 2.1 SAS Log

202 proc sql feedback;
203 select *
204 from sasuser.staffchanges;
NOTE: Statement transforms to:

 select STAFFCHANGES.EmpID,
STAFFCHANGES.LastName, STAFFCHANGES.FirstName,
STAFFCHANGES.City, STAFFCHANGES.State,
STAFFCHANGES.PhoneNumber
 from SASUSER.STAFFCHANGES

The FEEDBACK option is a debugging tool that lets you see exactly what is being
submitted to the SQL processor. The resulting message in the SAS log not only expands
asterisks (*) into column lists, but it also resolves macro variables and places
parentheses around expressions to show their order of evaluation.

Limiting the Number of Rows Displayed

Overview
When you create PROC SQL queries, you sometimes find it useful to limit the number
of rows that PROC SQL displays in the output. To indicate the maximum number of
rows to be displayed, you can use the OUTOBS= option in the PROC SQL statement.

Limiting the Number of Rows Displayed 29

General form, PROC SQL statement with OUTOBS= option:

PROC SQL OUTOBS= n;

Here is an explanation of the syntax:

n
specifies the number of rows.

Note: The OUTOBS= option restricts the rows that are displayed, but not the rows that
are read. To restrict the number of rows that PROC SQL takes as input from any
single source, use the INOBS= option. For more information about the INOBS=
option, see Chapter 8, “Managing Processing Using PROC SQL,” on page 264.

Example
Suppose you want to quickly review the types of values that are stored in a table, without
printing out all the rows. The following PROC SQL query selects data from the table
Sasuser.Flightschedule, which contains more than 200 rows. To print only the first 10
rows of output, you add the OUTOBS= option to the PROC SQL statement.

proc sql outobs=10;
 select flightnumber, date
 from sasuser.flightschedule;

When you limit the number of rows that are displayed, a message similar to the
following appears in the SAS log.

Table 2.2 SAS Log

WARNING: Statement terminated early due to OUTOBS=10 option.

Note: The OUTOBS= and INOBS= options affect tables that are created by using the
CREATE TABLE statement and your report output.

Note: In many of the examples in this chapter, OUTOBS= is used to limit the number of
rows that are displayed in output.

30 Chapter 2 • Performing Advanced Queries Using PROC SQL

Eliminating Duplicate Rows from Output
In some situations, you might want to display only the unique values or combinations of
values in the column(s) listed in the SELECT clause. You can eliminate duplicate rows
from your query results by using the keyword DISTINCT in the SELECT clause. The
DISTINCT keyword applies to all columns, and only those columns, that are listed in the
SELECT clause. We see how this works in the following example.

Example
Suppose you want to display a list of the unique flight numbers and destinations of all
international flights that are flown during the month.

The following SELECT statement in PROC SQL selects the columns FlightNumber and
Destination in the table Sasuser.Internationalflights:

proc sql outobs=12;
 select flightnumber, destination
 from sasuser.internationalflights;

Here is the output.

As you can see, there are several duplicate pairs of values for FlightNumber and
Destination in the first 12 rows alone. For example, flight number 182 to YYZ appears
in rows 1 and 8. The entire table contains many more rows with duplicate values for
each flight number and destination because each flight has a regular schedule.

To remove rows that contain duplicate values, add the keyword DISTINCT to the
SELECT statement, following the keyword SELECT, as shown in the following
example:

Eliminating Duplicate Rows from Output 31

proc sql;
 select distinct flightnumber, destination
 from sasuser.internationalflights
 order by 1;

With duplicate values removed, the output contains many fewer rows, so the OUTOBS=
option has been removed from the PROC SQL statement. Also, to sort the output by
FlightNumber (column 1 in the SELECT clause list), the ORDER BY clause has been
added.

Here is the output from the modified program.

There are no duplicate rows in the output. There are seven unique FlightNumber-
Destination value pairs in this table.

Subsetting Rows By Using Conditional Operators

Overview
In the WHERE clause of a PROC SQL query, you can specify any valid SAS expression
to subset or restrict the data that is displayed in output. The expression might contain any
of various types of operators, such as the following.

Type of Operator Example

comparison where membertype='GOLD'

logical where visits<=3 or status='new'

concatenation where name=trim(last) ||', '||first

Note: For a complete list of operators that can be used in SAS expressions, see the SAS
documentation.

32 Chapter 2 • Performing Advanced Queries Using PROC SQL

Using Operators in PROC SQL
Comparison, logical, and concatenation operators are used in PROC SQL as they are
used in other SAS procedures. For example, the following WHERE clause contains

• the logical operator AND, which joins multiple conditions

• two comparison operators: an equal sign (=) and a greater than symbol (>).

proc sql;
 select ffid, name, state, pointsused
 from sasuser.frequentflyers
 where membertype='GOLD' and pointsused>0
 order by pointsused;

In PROC SQL queries, you can also use the following conditional operators. All of these
operators except for ANY, ALL, and EXISTS, can also be used in other SAS procedures.

Conditional Operator Tests for ... Example

BETWEEN-AND values that occur within
an inclusive range

where salary between 70000
 and 80000

CONTAINS or ? values that contain a
specified string

where name contains 'ER'
where name ? 'ER'

IN values that match one
of a list of values

where code in ('PT' , 'NA', 'FA')

IS MISSING or IS NULL missing values where dateofbirth is missing
where dateofbirth is null

LIKE (with %, _) values that match a
specified pattern

where address like '% P%PLACE'

=* values that sound like a
specified value

where lastname=* 'Smith'

ANY values that meet a
specified condition with
respect to any one of
the values returned by a
subquery

where dateofbirth < any
 (select dateofbirth
 from sasuser.payrollmaster
 where jobcode='FA3')

ALL values that meet a
specified condition with
respect to all the values
returned by a subquery

where dateofbirth < all
 (select dateofbirth
 from sasuser.payrollmaster
 where jobcode='FA3')

EXISTS the existence of values
returned by a subquery

where exists
 (select *
 from sasuser.flightschedule
 where fa.empid=
 flightschedule.empid)

Subsetting Rows By Using Conditional Operators 33

T I P To create a negative condition, you can precede any of these conditional
operators, except for ANY and ALL, with the NOT operator.

Most of these conditional operators, and their uses, are covered in the next several
sections. ANY, ALL, and EXISTS are discussed later in the chapter.

Using the BETWEEN-AND Operator to Select within a Range of
Values

To select rows based on a range of numeric or character values, you use the BETWEEN-
AND operator in the WHERE clause. The BETWEEN-AND operator is inclusive, so the
values that you specify as limits for the range of values are included in the query results,
in addition to any values that occur between the limits.

General form, BETWEEN-AND operator:

BETWEEN value-1 AND value-2

Here is an explanation of the syntax:

value-1
is the value at the one end of the range

value-2
is the value at the other end of the range.

Note: When specifying the limits for the range of values, it is not necessary to specify
the smaller value first.

Here are several examples of WHERE clauses that contain the BETWEEN-AND
operator. The last example shows the use of the NOT operator with the BETWEEN-
AND operator.

Example Returns rows in which...

where date between '01mar2000'd
 and '07mar2000'd

In this example, the values are specified as
date constants.

the value of Date is 01mar2000,
07mar2000, or any date value in between

where salary between 70000
 and 80000

the value of Salary is 70000, 80000, or any
numeric value in between

where salary not between 70000
 and 80000

the value of Salary is not between or equal to
70000 and 80000

Using the CONTAINS or Question Mark (?) Operator to Select a
String

The CONTAINS or question mark (?) operator is usually used to select rows for which a
character column includes a particular string. These operators are interchangeable.

34 Chapter 2 • Performing Advanced Queries Using PROC SQL

General form, CONTAINS operator:

sql-expression CONTAINS sql-expression
sql-expression ? sql-expression

Here is an explanation of the syntax:

sql-expression
is a character column, string (character constant), or expression. A string is a sequence of
characters to be matched that must be enclosed in quotation marks.

Note: PROC SQL retrieves a row for output no matter where the string (or second sql-
expression) occurs within the column's (or first sql-expression's) values. Matching is
case sensitive when making comparisons.

Note: The CONTAINS or question mark (?) operator is not part of the ANSI standard; it
is a SAS enhancement.

Example
The following PROC SQL query uses CONTAINS to select rows in which the Name
column contains the string ER. As the output shows, all rows that contain ER anywhere
within the Name column are displayed.

proc sql outobs=10;
 select name
 from sasuser.frequentflyers
 where name contains 'ER';

Using the IN Operator to Select Values from a List
To select only the rows that match one of the values in a list of fixed values, either
numeric or character, use the IN operator.

Subsetting Rows By Using Conditional Operators 35

General form, IN operator:

column IN (constant-1<,...constant-n>)

Here is an explanation of the syntax:

column
specifies the selected column name

constant-1 and constant-n
represent a list that contains one or more specific values. The list of values must be enclosed
in parentheses and separated by either commas or spaces. Values can be either numeric or
character. Character values must be enclosed in quotation marks.

Here are examples of WHERE clauses that contain the IN operator.

Example Returns rows in which...

where jobcategory in ('PT','NA','FA') the value of JobCategory is PT, NA, or FA

where dayofweek in (2,4,6) the value of DayOfWeek is 2, 4, or 6

where chesspiece not in

('pawn','king','queen')

the value of chesspiece is rook, knight, or
bishop

Using the IS MISSING or IS NULL Operator to Select Missing Values
To select rows that contain missing values, both character and numeric, use the IS
MISSING or IS NULL operator. These operators are interchangeable.

General form, IS MISSING or IS NULL operator:

column IS MISSING
column IS NULL

Here is an explanation of the syntax:

column
specifies the selected column name.

Note: The IS MISSING operator is not part of the ANSI standard for SQL. It is a SAS
enhancement.

Example
Suppose you want to find out whether the table Sasuser. Marchflights has any missing
values in the column Boarded. You can use the following PROC SQL query to retrieve
rows from the table that have missing values:

proc sql;
 select boarded, transferred,
 nonrevenue, deplaned
 from sasuser.marchflights
 where boarded is missing;

36 Chapter 2 • Performing Advanced Queries Using PROC SQL

The output shows that two rows in the table have missing values for Boarded.

T I P Alternatively, you can specify missing values without using the IS MISSING or
IS NULL operator, as shown in the following examples:

where boarded = .
where flight = ' '

However, the advantage of using the IS MISSING or IS NULL operator is that you
do not have to specify the data type (character or numeric) of the column.

Using the LIKE Operator to Select a Pattern
To select rows that have values that match as specific pattern of characters rather than a
fixed character string, use the LIKE operator. For example, using the LIKE operator, you
can select all rows in which the LastName value starts with H. (If you wanted to select
all rows in which the last name contains the string HAR, you would use the CONTAINS
operator.)

General form, LIKE operator:

column LIKE 'pattern'

Here is an explanation of the syntax:

column
specifies the column name

pattern
specifies the pattern to be matched and contains one or both of the special characters
underscore (_) and percent sign (%). The entire pattern must be enclosed in quotation
marks and matching is case sensitive.

When you use the LIKE operator in a query, PROC SQL uses pattern matching to
compare each value in the specified column with the pattern that you specify using the
LIKE operator in the WHERE clause. The query output displays all rows in which there
is a match.

You specify a pattern using one or both of the special characters shown below.

Special Character Represents

underscore (_) any single character

percent sign (%) any sequence of zero or more characters

Note: The underscore (_) and percent sign (%) are sometimes referred to as wildcard
characters.

Subsetting Rows By Using Conditional Operators 37

Specifying a Pattern
To specify a pattern, combine one or both of the special characters with any other
characters that you want to match. The special characters can appear before, after, or on
both sides of other characters.

Consider how the special characters can be combined to specify a pattern. Suppose you
are working with a table column that contains the following list of names:

• Diana

• Diane

• Dianna

• Dianthus

• Dyan

Here are several patterns that you can use to select one or more of the names from the
list. Each pattern uses one or both of the special characters.

LIKE Pattern Name(s) Selected

LIKE 'D_an' Dyan

LIKE 'D_an_' Diana, Diane

LIKE 'D_an__ Dianna

LIKE 'D_an%' all names from the list

Example
The following PROC SQL query uses the LIKE operator to find all frequent-flyer club
members whose street name begins with P and ends with the word PLACE. The
following PROC SQL step performs this query:

proc sql;
 select ffid, name, address
 from sasuser.frequentflyers
 where address like '% P%PLACE';

The pattern '% P%PLACE' specifies the following sequence:

• any number of characters (%)

• a space

• the letter P

• any number of characters (%)

• the word PLACE.

Here are the results of this query.

38 Chapter 2 • Performing Advanced Queries Using PROC SQL

Using the Sounds-Like (=*) Operator to Select a Spelling Variation
To select rows that contain a value that sounds like another value that you specify, use
the sounds-like operator (=*) in the WHERE clause.

General form, sounds-like (=*) operator:

sql-expression =* sql-expression

Here is an explanation of the syntax:

sql-expression
is a character column, string (character constant), or expression. A string is a sequence of
characters to be matched that must be enclosed in quotation marks.

The sounds-like (=*) operator uses the SOUNDEX algorithm to compare each value of a
column (or other sql-expression) with the word or words (or other sql-expression) that
you specify. Any rows that contain a spelling variation of the value that you specified are
selected for output.

For example, here is a WHERE clause that contains the sounds-like operator:

where lastname =* 'Smith';

The sounds-like operator does not always select all possible values. For example,
suppose you use the preceding WHERE clause to select rows from the following list of
names that sound like Smith:

• Schmitt

• Smith

• Smithson

• Smitt

• Smythe

Two of the names in this list are not selected: Schmitt and Smithson.

Subsetting Rows By Using Conditional Operators 39

Note: The SOUNDEX algorithm is English-biased and is less useful for languages other
than English. For more information about the SOUNDEX algorithm, see the SAS
documentation.

Subsetting Rows By Using Calculated Values

Understanding How PROC SQL Processes Calculated Columns
You should already know how to define a new column by using the SELECT clause and
performing a calculation. For example, the following PROC SQL query creates the new
column Total by adding the values of three existing columns: Boarded, Transferred, and
Nonrevenue:

proc sql outobs=10;
 select flightnumber, date, destination,
 boarded + transferred + nonrevenue
 as Total
 from sasuser.marchflights

You can also use a calculated column in the WHERE clause to subset rows. However,
because of how SQL queries are processed, you cannot just specify the column alias in
the WHERE clause. To see what happens, we take the preceding PROC SQL query and
add a WHERE clause in the SELECT statement to reference the calculated column
Total, as shown below:

proc sql outobs=10;
 select flightnumber, date, destination,
 boarded + transferred + nonrevenue
 as Total
 from sasuser.marchflights
 where total < 100;

When this query is executed, the following error message is displayed in the SAS log.

Table 2.3 SAS Log

519 proc sql outobs=10;
520 select flightnumber, date, destination,
521 boarded + transferred + nonrevenue
522 as Total
523 from sasuser.marchflights
524 where total < 100;
ERROR: The following columns were not found in the contributing tables: total.

This error message is generated because, in SQL queries, the WHERE clause is
processed before the SELECT clause. The SQL processor looks in the table for each
column named in the WHERE clause. The table Sasuser.Marchflights does not contain a
column named Total, so SAS generates an error message.

Using the Keyword CALCULATED
When you use a column alias in the WHERE clause to refer to a calculated value, you
must use the keyword CALCULATED along with the alias. The CALCULATED

40 Chapter 2 • Performing Advanced Queries Using PROC SQL

keyword informs PROC SQL that the value is calculated within the query. Now, the
PROC SQL query looks like this:

 proc sql outobs=10;
 select flightnumber, date, destination,
 boarded + transferred + nonrevenue
 as Total
 from sasuser.marchflights
 where calculated total < 100;

This query executes successfully and produces the following output.

Note: As an alternative to using the keyword CALCULATED, repeat the calculation in
the WHERE clause. However, this method is inefficient because PROC SQL has to
perform the calculation twice. In the preceding query, the alternate WHERE
statement would be:

where boarded + transferred + nonrevenue <100;

You can also use the CALCULATED keyword in other parts of a query. In the following
example, the SELECT clause calculates the new column Total and then calculates a
second new column based on Total. To create the second calculated column, you have to
specify the keyword CALCULATED in the SELECT clause.

proc sql outobs=10;
 select flightnumber, date, destination,
 boarded + transferred + nonrevenue
 as Total,
 calculated total/2 as Half
 from sasuser.marchflights;

This query produces the following output.

Subsetting Rows By Using Calculated Values 41

Note: The CALCULATED keyword is a SAS enhancement and is not specified in the
ANSI Standard for SQL.

Enhancing Query Output

Overview
When you are using PROC SQL, you might find that the data in a table is not formatted
as you would like it to appear. Fortunately, with PROC SQL you can use enhancements,
such as the following, to improve the appearance of your query output:

• column labels and formats

• titles and footnotes

• columns that contain a character constant.

You know how to use the first two enhancements with other SAS procedures. You can
also enhance PROC SQL query output by working with the following query:

 proc sql outobs=15;
 select empid, jobcode, salary,
 salary * .10 as Bonus
 from sasuser.payrollmaster
 where salary>75000
 order by salary desc;

This query limits output to 15 observations. The SELECT clause selects three existing
columns from the table Sasuser.Payrollmaster, and calculates a fourth (Bonus). The
WHERE clause retrieves only rows in which salary is greater than 75,000. The ORDER
BY clause sorts by the Salary column and uses the keyword DESC to sort in descending
order.

Here is the output from this query.

42 Chapter 2 • Performing Advanced Queries Using PROC SQL

Note: The Salary column has the format DOLLAR9. specified in the table.

Look closely at this output and you see that improvements can be made. You learn how
to enhance this output in the following ways:

• replace original column names with new labels

• specify a format for the Bonus column, so that all values are displayed with the same
number of decimal places

• display a title at the top of the output

• add a column using a character constant.

Specifying Column Formats and Labels
By default, PROC SQL formats output using column attributes that are already saved in
the table or, if none are saved, the default attributes. To control the formatting of
columns in output, you can specify column modifiers, such as LABEL= and FORMAT=,
after any column name specified in the SELECT clause. When you define a new column
in the SELECT clause, you can assign a label rather than an alias, if you prefer.

Column
Modifier Specifies... Example

LABEL= the label to be displayed for the column select hiredate
 label='Date of Hire'

Enhancing Query Output 43

Column
Modifier Specifies... Example

FORMAT= the format used to display column data select hiredate
 format=date9.

Note: LABEL= and FORMAT= are not part of the ANSI standard. These column
modifiers are SAS enhancements.

T I P To force PROC SQL to ignore permanent labels in a table, specify the
NOLABEL system option.

Your first task is to specify column labels for the first two columns. Below, the LABEL=
option has been added after both EmpID and JobCode, and the text of each label is
enclosed in quotation marks. For easier reading, each of the four columns in the
SELECT clause is now listed on its own line.

proc sql outobs=15;
 select empid label='Employee ID',
 jobcode label='Job Code',
 salary,
 salary * .10 as Bonus
 from sasuser.payrollmaster
 where salary>75000
 order by salary desc;

Next, you add a format for the Bonus column. Because the Bonus values are dollar
amounts, you use the format Dollar12.2. The FORMAT= modifier has been added to the
SELECT clause, below, immediately following the column alias Bonus:

proc sql outobs=15;
 select empid label='Employee ID',
 jobcode label='Job Code',
 salary,
 salary * .10 as Bonus
 format=dollar12.2
 from sasuser.payrollmaster
 where salary>75000
 order by salary desc;

Now that column formats and labels have been specified, you can add a title to this
PROC SQL query.

Specifying Titles and Footnotes
You should already know how to specify and cancel titles and footnotes with other SAS
procedures. When you specify titles and footnotes with a PROC SQL query, you must
place the TITLE and FOOTNOTE statements in either of the following locations:

• before the PROC SQL statement

• between the PROC SQL statement and the SELECT statement.

In the following PROC SQL query, two title lines have been added between the PROC
SQL statement and the SELECT statement:

 proc sql outobs=15;
 title 'Current Bonus Information';
 title2 'Employees with Salaries > $75,000';

44 Chapter 2 • Performing Advanced Queries Using PROC SQL

 select empid label='Employee ID',
 jobcode label='Job Code',
 salary,
 salary * .10 as Bonus
 format=dollar12.2
 from sasuser.payrollmaster
 where salary>75000
 order by salary desc;

Now that these changes have been made, you can look at the enhanced query output.

The first two columns have new labels, the Bonus values are consistently formatted, and
two title lines are displayed at the top of the output.

Adding a Character Constant to Output
Another way of enhancing PROC SQL query output is to define a column that contains a
character constant. To do this, you include a text string in quotation marks in the
SELECT clause.

T I P You can define a column that contains a numeric constant in a similar way, by
listing a numeric value (without quotation marks) in the SELECT clause.

You can look at the preceding PROC SQL query output again and determine where you
can add a text string.

Enhancing Query Output 45

You can remove the column label Bonus and display the text bonus is: in a new column
to the left of the Bonus column. This is how you want the columns and rows to appear in
the query output.

46 Chapter 2 • Performing Advanced Queries Using PROC SQL

To specify a new column that contains a character constant, you include the text string in
quotation marks in the SELECT clause list. Your modified PROC SQL query is shown
below:

proc sql outobs=15;
title 'Current Bonus Information';
title2 'Employees with Salaries > $75,000';
 select empid label='Employee ID',
 jobcode label='Job Code',
 salary,
 'bonus is:',
 salary * .10 format=dollar12.2
 from sasuser.payrollmaster
 where salary>75000
 order by salary desc;

In the SELECT clause list, the text string bonus is: has been added between Salary
and Bonus.

Note that the code as Bonus has been removed from the last line of the SELECT
clause. Now that the character constant has been added, the column alias Bonus is no
longer needed.

Enhancing Query Output 47

Summarizing and Grouping Data

Overview
Instead of just listing individual rows, you can use a summary function (also called an
aggregate function) to produce a statistical summary of data in a table. For example, in
the SELECT clause in the following query, the AVG function calculates the average (or
mean) miles traveled by frequent-flyer club members. The GROUP BY clause tells
PROC SQL to calculate and display the average for each membership group
(MemberType).

proc sql;
 select membertype,
 avg(milestraveled)
 as AvgMilesTraveled
 from sasuser.frequentflyers
 group by membertype;

You should already be familiar with the list of summary functions that can be used in a
PROC SQL query.

PROC SQL calculates summary functions and outputs results in different ways
depending on a combination of factors. Four key factors are

• whether the summary function specifies one or multiple columns as arguments

• whether the query contains a GROUP BY clause

• if the summary function is specified in a SELECT clause, whether there are
additional columns listed that are outside of a summary function

• whether the WHERE clause, if there is one, contains only columns that are specified
in the SELECT clause.

To ensure that your PROC SQL queries produce the intended output, it is important to
understand how the factors listed above affect the processing of summary functions.
Consider an overview of all the factors, followed by a detailed example that illustrates
each factor.

Number of Arguments and Summary Function Processing
Summary functions specify one or more arguments in parentheses. In the examples
shown in this chapter, the arguments are always columns in the table being queried.

Note: The ANSI-standard summary functions, such as AVG and COUNT, can be used
only with a single argument. The SAS summary functions, such as MEAN and N,
can be used with either single or multiple arguments.

The following chart shows how the number of columns specified as arguments affects
how PROC SQL calculates a summary function.

48 Chapter 2 • Performing Advanced Queries Using PROC SQL

If a summary
function...

Then the
calculation is... Example

specifies one
column as
argument

performed down
the column

proc sql;
 select avg(salary)as AvgSalary
 from sasuser.payrollmaster;

specifies multiple
columns as
arguments

performed across
columns for each
row

proc sql outobs=10;
 select sum(boarded,transferred,nonrevenue)
 as Total
 from sasuser.marchflights;

Groups and Summary Function Processing
Summary functions perform calculations on groups of data. When PROC SQL processes
a summary function, it looks for a GROUP BY clause:

If a GROUP BY
clause... Then PROC SQL... Example

is not present in the
query

applies the function to the
entire table

proc sql outobs=10;
 select jobcode, avg(salary)
 as AvgSalary
 from sasuser.payrollmaster;

is present in the query applies the function to each
group specified in the
GROUP BY clause

proc sql outobs=10;
 select jobcode, avg(salary)
 as AvgSalary
 from sasuser.payrollmaster
 group by jobcode;

If a query contains a GROUP BY
clause, all columns in the SELECT
clause that do not contain a summary
function should be listed in the
GROUP BY clause or unexpected
results might be returned.

SELECT Clause Columns and Summary Function Processing
A SELECT clause that contains a summary function can also list additional columns that
are not specified in the summary function. The presence of these additional columns in
the SELECT clause list causes PROC SQL to display the output differently.

Summarizing and Grouping Data 49

If a SELECT
clause... Then PROC SQL... Example

contains summary
function(s) and no
columns outside of
summary functions

calculates a single value by
using the summary
function for the entire table
or, if groups are specified
in the GROUP BY clause,
for each group combines or
rolls up the information
into a single row of output
for the entire table or, if
groups are specified, for
each group

proc sql;
 select avg(salary)
 as AvgSalary
 from sasuser.payrollmaster;

contains summary
function(s) and
additional columns
outside of summary
functions

calculates a single value for
the entire table or, if groups
are specified, for each
group, and displays all
rows of output with the
single or grouped value(s)
repeated

proc sql;
 select jobcode,
 gender,
 avg(salary)
 as AvgSalary
 from sasuser.payrollmaster
 group by jobcode,gender;

Note: WHERE clause columns also affect summary function processing. If there is a
WHERE clause that references only columns that are specified in the SELECT
clause, PROC SQL combines information into a single row of output. However, this
condition is not covered in this chapter. For more information, see the SAS
documentation for the SQL procedure.

In the next few sections, look more closely at the query examples shown above to see
how the first three factors impact summary function processing.

Compare two PROC SQL queries that contain a summary function: one with a single
argument and the other with multiple arguments. To keep things simple, these queries do
not contain a GROUP BY clause.

Using a Summary Function with a Single Argument (Column)
Below is a PROC SQL query that displays the average salary of all employees listed in
the table Sasuser.Payrollmaster:

 proc sql;
 select avg(salary) as AvgSalary
 from sasuser.payrollmaster;

The SELECT statement contains the summary function AVG with Salary as its
argument. Because there is only one column as an argument, the function calculates the
statistic down the Salary column to display a single value: the average salary for all
employees. The output is shown here.

50 Chapter 2 • Performing Advanced Queries Using PROC SQL

Using a Summary Function with Multiple Arguments (Columns)
Consider a PROC SQL query that contains a summary function with multiple columns
as arguments. This query calculates the total number of passengers for each flight in
March by adding the number of boarded, transferred, and nonrevenue passengers:

 proc sql outobs=10;
 select sum(boarded,transferred,nonrevenue)
 as Total
 from sasuser.marchflights;

The SELECT clause contains the summary function SUM with three columns as
arguments. Because the function contains multiple arguments, the statistic is calculated
across the three columns for each row to produce the following output.

Note: Without the OUTOBS= option, all rows in the table would be displayed in the
output.

Consider how a PROC SQL query with a summary function is affected by including a
GROUP BY clause and including columns outside of a summary function.

Using a Summary Function without a GROUP BY Clause
Once again, here is the PROC SQL query that displays the average salary of all
employees listed in the table Sasuser.Payrollmaster. This query contains a summary
function but, since the goal is to display the average across all employees, there is no
GROUP BY clause.

 proc sql outobs=20;
 select avg(salary) as AvgSalary
 from sasuser.payrollmaster;

Note that the SELECT clause lists only one column: a new column that is defined by a
summary function calculation. There are no columns listed outside of the summary
function.

Summarizing and Grouping Data 51

Here is the query output.

Using a Summary Function with Columns outside of the Function
Suppose you calculate an average for each job group and group the results by job code.
Your first step is to add an existing column (JobCode) to the SELECT clause list. The
modified query is shown here:

proc sql outobs=20;
 select jobcode, avg(salary) as AvgSalary
 from sasuser.payrollmaster;

Consider what the query output looks like now that the SELECT statement contains a
column (JobCode) that is not a summary function argument.

52 Chapter 2 • Performing Advanced Queries Using PROC SQL

Note: Remember that this PROC SQL query uses the OUTOBS= option to limit the
output to 20 rows. Without this limitation, the output of this query would display all
148 rows in the table.

As this result shows, adding a column to the SELECT clause that is not within a
summary function causes PROC SQL to output all rows instead of a single value. To
generate this output, PROC SQL

• calculated the average salary down the column as a single value (54079.62)

• displayed all rows in the output, because JobCode is not specified in a summary
function.

Therefore, the single value for AvgSalary is repeated for each row.

Note: When this query is submitted, the SAS log displays a message indicating that data
remerging has occurred. Data remerging is explained later in this chapter.

This result is interesting, but you have not yet reached your goal: grouping the data by
JobCode. The next step is to add the GROUP BY clause.

Summarizing and Grouping Data 53

Using a Summary Function with a GROUP BY Clause
Below is the PROC SQL query from the previous page, to which has been added a
GROUP BY clause that specifies the column JobCode. (In the SELECT clause, JobCode
is specified but is not used as a summary function argument.) Other changes to the query
include removing the OUTOBS= option (it is unnecessary) and specifying a format for
the AvgSalary column.

 proc sql;
 select jobcode,
 avg(salary) as AvgSalary format=dollar11.2
 from sasuser.payrollmaster
 group by jobcode;

Consider how the addition of the GROUP BY clause affects the output.

Success! The summary function has been calculated for each JobCode group, and the
results are grouped by JobCode.

54 Chapter 2 • Performing Advanced Queries Using PROC SQL

Counting Values By Using the COUNT Summary Function
Sometimes you want to count the number of rows in an entire table or in groups of rows.
In PROC SQL, you can use the COUNT summary function to count the number of rows
that have nonmissing values. There are three main ways to use the COUNT function.

Using this form of
COUNT... Returns... Example

COUNT(*) the total number of
rows in a group or in
a table

select count(*) as Count

COUNT(column) the total number of
rows in a group or in
a table for which
there is a nonmissing
value in the selected
column

select count(jobcode) as Count

COUNT(DISTINCT
column)

the total number of
unique values in a
column

select count(distinct jobcode)
 as Count

CAUTION:
The COUNT summary function counts only the nonmissing values; missing values
are ignored. Many other summary functions also ignore missing values. For
example, the AVG function returns the average of the nonmissing values only. When
you use a summary function with data that contains missing values, the results might
not provide the information that you expect. It is a good idea to familiarize yourself
with the data before you use summary functions in queries.

T I P To count the number of missing values, use the NMISS function. For more
information about the NMISS function, see the SAS documentation.

Consider the three ways of using the COUNT function.

Counting All Rows
Suppose you want to know how many employees are listed in the table Sasuser.
Payrollmaster. This table contains a separate row for each employee, so counting the
number of rows in the table gives you the number of employees. The following PROC
SQL query accomplishes this task:

 proc sql;
 select count(*) as Count
 from sasuser.payrollmaster;

Summarizing and Grouping Data 55

Note: The COUNT summary function is the only function that enables you to use an
asterisk (*) as an argument.

You can also use COUNT(*) to count rows within groups of data. To do this, you specify
the groups in the GROUP BY clause. Consider a more complex PROC SQL query that
uses COUNT(*) with grouping. This time, the goal is to find the total number of
employees within each job category, using the same table that is used above.

proc sql;
 select substr(jobcode,1,2)
 label='Job Category',
 count(*) as Count
 from sasuser.payrollmaster
 group by 1;

This query defines two new columns in the SELECT clause. The first column that is
labeled JobCategory, is created by using the SAS function SUBSTR to extract the
two-character job category from the existing JobCode field. The second column, Count,
is created by using the COUNT function. The GROUP BY clause specifies that the
results are to be grouped by the first defined column (referenced by 1 because the
column was not assigned a name).

CAUTION:
When a column contains missing values, PROC SQL treats the missing values as a
single group. This can sometimes produce unexpected results.

Counting All Non-Missing Values in a Column
Suppose you want to count all of the nonmissing values in a specific column instead of
in the entire table. To do this, you specify the name of the column as an argument of the
COUNT function. For example, the following PROC SQL query counts all nonmissing
values in the column JobCode:

 proc sql;
 select count(JobCode) as Count
 from sasuser.payrollmaster;

56 Chapter 2 • Performing Advanced Queries Using PROC SQL

Because the table has no missing data, you get the same output with this query as you
would by using COUNT(*). JobCode has a nonmissing value for each row in the table.
However, if the JobCode column contained missing values, this query would produce a
lower value of Count than the previous query. For example, if JobCode contained three
missing values, the value of Count would be 145.

Counting All Unique Values in a Column
To count all unique values in a column, add the keyword DISTINCT before the name of
the column that is used as an argument. For example, here is the previous query
modified to count only the unique values:

proc sql;
 select count(distinct jobcode) as Count
 from sasuser.payrollmaster;

This query counts 16 unique values for JobCode.

To display the unique JobCode values, you can apply the method of eliminating
duplicates, which was discussed earlier. The following query lists only the unique values
for JobCode.

proc sql;
 select distinct jobcode
 from sasuser.payrollmaster;

There are 16 job codes, so the output contains 16 rows.

Summarizing and Grouping Data 57

Selecting Groups By Using the HAVING Clause
You have seen how to use the GROUP BY clause to group data. For example, the
following query calculates the average salary within each job-code group, and displays
the average for each job code:

 proc sql;
 select jobcode,
 avg(salary) as AvgSalary
 format=dollar11.2
 from sasuser.payrollmaster
 group by jobcode;

There are 16 job codes in the table, so the output displays 16 rows.

58 Chapter 2 • Performing Advanced Queries Using PROC SQL

Now, suppose you want to select only a subset of groups for your query output. You can
use a HAVING clause, following a GROUP BY clause, to select (or filter) the groups to
be displayed. The way a HAVING clause affects groups is similar to how a WHERE
clause affects individual rows. As in a WHERE clause, the HAVING clause contains an
expression that is used to subset the data. Any valid SAS expression can be used. When
you use a HAVING clause, PROC SQL displays only the groups that satisfy the
HAVING expression.

Note: You can use summary functions in a HAVING clause but not in a WHERE clause,
because a HAVING clause is used with groups, but a WHERE clause can be used
only with individual rows.

Modify the query shown above so that it selects only the JobCode groups with an
average salary of more than $56,000. The HAVING clause has been added at the end of
the query.

 proc sql;
 select jobcode,
 avg(salary) as AvgSalary
 format=dollar11.2
 from sasuser.payrollmaster
 group by jobcode
 having avg(salary) > 56000;

T I P Alternatively, because the average salary is already calculated in the SELECT
clause, the HAVING clause could specify the column alias AvgSalary:

having AvgSalary > 56000

Note that you do not have to specify the keyword CALCULATED in a HAVING
clause; you would have to specify it in a WHERE clause.

Summarizing and Grouping Data 59

The query output is shown below. This output is smaller than the previous output,
because only a subset of the job-code groups is displayed.

If you omit the GROUP BY clause in a query that contains a HAVING clause, then the
HAVING clause and summary functions (if any are specified) treat the entire table as
one group. Without a GROUP BY clause, the HAVING clause in the example shown
above calculates the average salary for the table as a whole (all jobs in the company), not
for each group (each job code). The output contains either all the rows in the table (if the
average salary for the entire table is greater than $56,000) or none of the rows in the
table (if the average salary for the entire table is less than $56,000).

Understanding Data Remerging
Sometimes, when you use a summary function in a SELECT clause or a HAVING
clause, PROC SQL must remerge data (make two passes through the table). Remerging
requires additional processing time and is often unavoidable. However, there are some
situations in which you might be able to modify your query to avoid remerging.
Understanding how and when remerging occurs increases your ability to write efficient
queries.

Consider a PROC SQL query that requires remerging. This query calculates each
navigator's salary as a percentage of all navigators' salaries:

proc sql;
 select empid, salary,
 (salary/sum(salary)) as Percent
 format=percent8.2
 from sasuser.payrollmaster
 where jobcode contains 'NA';

When you submit this query, the SAS log displays the following message.

Table 2.4 SAS Log

NOTE: The query requires remerging summary statistics back
with the original data.

Remerging occurs whenever any of the following conditions exist:

• The values returned by a summary function are used in a calculation.

60 Chapter 2 • Performing Advanced Queries Using PROC SQL

• The SELECT clause specifies a column that contains a summary function and other
column(s) that are not listed in a GROUP BY clause.

• The HAVING clause specifies one or more columns or column expressions that are
not included in a subquery or a GROUP BY clause.

During remerging, PROC SQL makes two passes through the table:

1. PROC SQL calculates and returns the value of summary functions. PROC SQL also
groups data according to the GROUP BY clause.

2. PROC SQL retrieves any additional columns and rows that it needs to display in the
output, and uses the result from the summary function to calculate any arithmetic
expressions in which the summary function participates.

Example
Consider how PROC SQL remerges data when it processes the following query:

proc sql;
 select empid, salary,
 (salary/sum(salary)) as Percent
 format=percent8.2
 from sasuser.payrollmaster
 where jobcode contains 'NA';

In the first pass, for each row in which the jobcode contains 'NA', PROC SQL calculates
and returns the value of the SUM function (specified in the SELECT clause).

In the second pass, PROC SQL retrieves the additional columns and rows that it needs to
display in output (EmpID, Salary) and the rows in which JobCode contains 'NA'. PROC
SQL also uses the result from the SUM function to calculate the arithmetic expression
(salary/sum(salary)).

CAUTION:
Some implementations of SQL do not support remerging and would consider the
preceding example to be in error.

T I P You can obtain the same results by using a subquery. Subqueries are discussed
later in this chapter.

Subsetting Data By Using Subqueries

Introducing Subqueries
The WHERE and HAVING clauses both subset data based on an expression. In the
query examples shown earlier in this chapter, the WHERE and HAVING clauses
contained standard SAS expressions. For example, the expression in the following
WHERE clause uses the BETWEEN-AND conditional operator and specifies the Salary
column as an operand:

where salary between 70000 and 80000

PROC SQL also offers another type of expression that can be used for subsetting in
WHERE and HAVING clauses: a query expression or subquery. A subquery is a query

Subsetting Data By Using Subqueries 61

that is nested in, and is part of, another query. A PROC SQL query might contain
subqueries at one or more levels.

Note: Subqueries are also known as nested queries, inner queries, and sub-selects.

The following PROC SQL query contains a subquery in the HAVING clause that returns
all jobcodes where the average salary for that jobcode is greater than the company
average salary.

proc sql;
 select jobcode,
 avg(salary) as AvgSalary
 format=dollar11.2
 from sasuser.payrollmaster
 group by jobcode
 having avg(salary) >
 (select avg(salary)
 from sasuser.payrollmaster);

T I P It is recommended that you enclose a subquery (inner query) in parentheses, as
shown here.

A subquery selects one or more rows from a table, and then returns single or multiple
values to be used by the outer query. The subquery shown above is a single-value
subquery; it returns a single value, the average salary from the table
Sasuser.Payrollmaster, to the outer query. A subquery can return values for multiple rows
but only for a single column.

The table that a subquery references can be either the same as or different from the table
referenced by the outer query. In the PROC SQL query shown above, the subquery
selects data from the same table as the outer query.

Types of Subqueries
There are two types of subqueries.

Type of Subquery Description

noncorrelated a self-contained subquery that executes independently of the
outer query

correlated a dependent subquery that requires one or more values to be
passed to it by the outer query before the subquery can return
a value to the outer query

Both noncorrelated and correlated subqueries can return either single or multiple values
to the outer query.

The next few sections provide a more in-depth look at noncorrelated and correlated
subqueries, and how they are processed.

62 Chapter 2 • Performing Advanced Queries Using PROC SQL

Subsetting Data By Using Noncorrelated
Subqueries

A noncorrelated subquery is a self-contained subquery that executes independently of
the outer query.

Using Single-Value Noncorrelated Subqueries
The simplest type of subquery is a noncorrelated subquery that returns a single value.

The following PROC SQL query is the same query that is used in the previous section.
This query displays job codes for which the group's average salary exceeds the
company's average salary. The HAVING clause contains a noncorrelated subquery.

proc sql;
 select jobcode,
 avg(salary) as AvgSalary
 format=dollar11.2
 from sasuser.payrollmaster
 group by jobcode
 having avg(salary) >
 (select avg(salary)
 from sasuser.payrollmaster);

PROC SQL always evaluates a noncorrelated subquery before the outer query. If a query
contains noncorrelated subqueries at more than one level, PROC SQL evaluates the
innermost subquery first and works outward, evaluating the outermost query last.

In the query shown above, the inner query and outer query are processed as follows:

1. To complete the expression in the HAVING clause, the subquery calculates the
average salary for the entire company (all rows in the table), using the AVG
summary function with Salary as an argument.

2. The subquery returns the value of the average salary to the outer query.

3. The outer query calculates the average salary (in the SELECT clause) for each
JobCode group (as defined in the GROUP BY clause), and selects only the groups
whose average salary is greater than the company's average salary.

The query output is shown here.

Subsetting Data By Using Noncorrelated Subqueries 63

This noncorrelated subquery returns only a single value, the average salary for the whole
company, to the outer query. Both the subquery query and the outer query use the same
table as a source.

Using Multiple-Value Noncorrelated Subqueries
Some subqueries are multiple-value subqueries: they return more than one value (row) to
the outer query. If your noncorrelated subquery might return a value for more than one
row, be sure to use one of the following operators in the WHERE or HAVING clause
that can handle multiple values:

• the conditional operator IN

• a comparison operator that is modified by ANY or ALL

• the conditional operator EXISTS.

CAUTION:
If you create a noncorrelated subquery that returns multiple values, but the WHERE
or HAVING clause in the outer query contains an operator other than one of the
operators that are specified above, the query fails. An error message is displayed in
the SAS log, which indicates that the subquery evaluated to more than one row. For
example, if you use the equal (=) operator with a noncorrelated subquery that returns
multiple values, the query fails. The equal operator can handle only a single value.

Consider a query that contains both the conditional operator IN and a noncorrelated
subquery that returns multiple values. (The operators ANY, ALL, and EXISTS are
presented later in this chapter.)

Example
Suppose you want to send birthday cards to employees who have birthdays coming up.
You decide to create a PROC SQL query that lists the names and addresses of all
employees who have birthdays in February. This query, unlike the one shown on the
previous page, selects data from two different tables:

• employee names and addresses in the table Sasuser.Staffmaster

• employee birthdates in the table Sasuser.Payrollmaster.

In both tables, the employees are identified by their employee identification number
(EmpID).

64 Chapter 2 • Performing Advanced Queries Using PROC SQL

In the following PROC SQL query, the WHERE clause contains the conditional operator
IN followed by a noncorrelated subquery:

 proc sql;
 select empid, lastname, firstname,
 city, state
 from sasuser.staffmaster
 where empid in
 (select empid
 from sasuser.payrollmaster
 where month(dateofbirth)=2);

This query is processed as follows:

1. To complete the expression in the WHERE clause of the outer query, the subquery
selects the employees whose date of birth is February. Note that the MONTH
function is used in the subquery.

2. The subquery then returns the EmpID values of the selected employees to the outer
query.

3. The outer query displays data (from the columns identified in the SELECT clause)
for the employees identified by the subquery.

The output, shown below, lists the six employees who have February birthdays.

Although an inner join would have generated the same results, it is better to use a
subquery in this example since no columns from the sasuser.payrollmaster table were in
the output.

Using Comparisons with Subqueries
Sometimes it is helpful to compare a value with a set of values returned by a subquery.
When a subquery might return multiple values, you must use one of the conditional
operators ANY or ALL to modify a comparison operator in the WHERE or HAVING
clause immediately before the subquery. For example, the following WHERE clause
contains the less than (<) comparison operator and the conditional operator ANY:

where dateofbirth < any
 <subquery...>

CAUTION:
If you create a noncorrelated subquery that returns multiple values, and if the
WHERE or HAVING clause in the outer query contains a comparison operator that
is not modified by ANY or ALL, the query fails.

Subsetting Data By Using Noncorrelated Subqueries 65

When the outer query contains a comparison operator that is modified by ANY or ALL,
the outer query compares each value that it retrieves against the value(s) returned by the
subquery. All values for which the comparison is true are then included in the query
output. If ANY is specified, then the comparison is true if it is true for any one of the
values that are returned by the subquery. If ALL is specified, then the comparison is true
only if it is true for all values that are returned by the subquery.

Note: The operators ANY and ALL can be used with correlated subqueries, but they are
usually used only with noncorrelated subqueries.

Consider how the operators ANY or ALL are used.

Using the ANY Operator
An outer query that specifies the ANY operator selects values that pass the comparison
test with any of the values that are returned by the subquery.

For example, suppose you have an outer query containing the following WHERE clause:

where dateofbirth < any
 <subquery...>

This WHERE clause specifies that DateofBirth (the operand) should be less than any
(the comparison operator) of the values returned by the subquery.

The following chart shows the effect of using ANY with these common comparison
operators: greater than (>), less than (<) and equal to (=).

Comparison
Operator with ANY Outer Query Selects... Example

> ANY values that are greater than any
value returned by the subquery

If the subquery returns the values 20,
30, 40, then the outer query selects
all values that are > 20 (the lowest
value that was returned by the
subquery).

< ANY values that are less than any
value returned by the subquery

If the subquery returns the values 20,
30, 40, then the outer query selects
all values that are < 40 (the highest
value that was returned by the
subquery).

= ANY values that are equal to any
value returned by the subquery

If the subquery returns the values 20,
30, 40, the outer query selects all
values that are = 20 or = 30 or = 40.

T I P Instead of using the ANY operator with a subquery, there are some SAS
functions that you can use to achieve the same result with greater efficiency. Instead
of > ANY, use the MIN function in the subquery. Instead of < ANY, use the MAX
function in the subquery.

Example
Suppose you want to identify any flight attendants at level 1 or level 2 who are older
than any of the flight attendants at level 3. Job type and level are identified in JobCode;

66 Chapter 2 • Performing Advanced Queries Using PROC SQL

each flight attendant has the job code FA1, FA2, or FA3. The following PROC SQL
query accomplishes this task by using a subquery and the ANY operator:

proc sql;
 select empid, jobcode, dateofbirth
 from sasuser.payrollmaster
 where jobcode in ('FA1','FA2')
 and dateofbirth < any
 (select dateofbirth
 from sasuser.payrollmaster
 where jobcode='FA3');

Here is what happens when this query is processed:

1. The subquery returns the birthdates of all level-3 flight attendants.

2. The outer query selects only those level-1 and level-2 flight attendants whose
birthdate is less than any of the dates returned by the subquery.

Note that both the outer query and subquery use the same table.

Note: Internally, SAS represents a date value as the number of days from January 1,
1960, to the given date. For example, the SAS date for 17 October 1991 is 11612.
Representing dates as the number of days from a reference date makes it easy for the
computer to store them and perform calendar calculations. These numbers are not
meaningful to users, however, so several formats are available for displaying dates
and datetime values in most of the commonly used notations.

Below are the query results.

Subsetting Data By Using Noncorrelated Subqueries 67

T I P Using the ANY operator to solve this problem results in a large number of
calculations, which increases processing time. For this example, it would be more
efficient to use the MAX function in the subquery. The alternative WHERE clause
follows:

where jobcode in ('FA1','FA2')
 and dateofbirth <
 (select max(dateofbirth)
 from [...]

For more information about the MAX function, see the SAS documentation.

Using the ALL Operator
An outer query that specifies the ALL operator selects values that pass the comparison
test with all of the values that are returned by the subquery.

The following chart shows the effect of using ALL with these common comparison
operators: greater than (>) and less than (<).

Comparison
Operator with ALL

Sample Values Returned by
Subquery Signifies...

> ALL (20, 30, 40) > 40

(greater than the highest number in
the list)

< ALL (20, 30, 40) < 20

(less than the lowest number in the
list)

Example
Substitute ALL for ANY in the previous query example. The following query identifies
level-1 and level-2 flight attendants who are older than all of the level-3 flight
attendants:

proc sql;
 select empid, jobcode, dateofbirth
 from sasuser.payrollmaster
 where jobcode in ('FA1','FA2')
 and dateofbirth < all
 (select dateofbirth
 from sasuser.payrollmaster
 where jobcode='FA3');

Here is what happens when this query is processed:

1. The subquery returns the birthdates of all level-3 flight attendants.

2. The outer query selects only those level-1 and level-2 flight attendants whose
birthdate is less than all of the dates returned by the subquery.

The query results, below, show that only two level-1 or level-2 flight attendants are older
than all of the level-3 flight attendants.

68 Chapter 2 • Performing Advanced Queries Using PROC SQL

T I P For this example, it would be more efficient to solve this problem using the MIN
function in the subquery instead of the ALL operator. The alternative WHERE clause
follows:

where jobcode in ('FA1','FA2')
 and dateofbirth <
 (select min(dateofbirth)
 from [...]

For more information about the MIN function, see the SAS documentation.

Subsetting Data By Using Correlated Subqueries

Overview
Correlated subqueries cannot be evaluated independently, but depend on the values
passed to them by the outer query for their results. Correlated subqueries are evaluated
for each row in the outer query and therefore tend to require more processing time than
noncorrelated subqueries.

Note: Usually, a PROC SQL join is a more efficient alternative to a correlated subquery.
You should already be familiar with basic PROC SQL joins.

Example
Consider an example of a PROC SQL query that contains a correlated subquery. The
following query displays the names of all navigators who are also managers. The
WHERE clause in the subquery lists the column Staffmaster.EmpID. The outer query
must pass this column to the correlated subquery.

proc sql;
 select lastname, firstname
 from sasuser.staffmaster
 where 'NA'=
 (select jobcategory
 from sasuser.supervisors
 where staffmaster.empid =
 supervisors.empid);

Note: When a column appears in more than one table, the column name is preceded by
the table name or alias to avoid ambiguity. In this example, EmpID appears in both
tables, so the appropriate table name is specified in front of each reference to that
column.

The output from this query is shown below. There are three navigators who are also
managers.

Subsetting Data By Using Correlated Subqueries 69

Using the EXISTS and NOT EXISTS Conditional Operators
In the WHERE clause or in the HAVING clause of an outer query, you can use the
EXISTS or NOT EXISTS conditional operator to test for the existence or non-existence
of a set of values returned by a subquery.

Condition Is true if...

EXISTS the subquery returns at least one row

NOT EXISTS the subquery returns no data

Note: The operators EXISTS and NOT EXISTS can be used with both correlated and
noncorrelated subqueries.

Example: Correlated Subquery with NOT EXISTS
Consider a sample PROC SQL query that includes the NOT EXISTS conditional
operator. Suppose you are working with the following tables:

• Sasuser.Flightattendants contains the names and employee ID numbers of all flight
attendants.

• Sasuser.Flightschedule contains one row for each crew member assigned to a flight
for each date.

As shown in the diagram below, the intersection of these two tables contains data for all
flight attendants who have been scheduled to work.

Now suppose you want to list by name the flight attendants who are not scheduled. That
is, you want to identify the data in the area highlighted below.

70 Chapter 2 • Performing Advanced Queries Using PROC SQL

The following PROC SQL query accomplishes this task by using a correlated subquery
and the NOT EXISTS operator:

 proc sql;
 select lastname, firstname
 from sasuser.flightattendants
 where not exists
 (select *
 from sasuser.flightschedule
 where flightattendants.empid=
 flightschedule.empid);

The output is shown below.

Validating Query Syntax

Overview
When you are building a PROC SQL query, you might find it more efficient to check
your query without actually executing it. To verify the syntax and the existence of
columns and tables that are referenced in the query without executing the query, use
either of the following:

• the NOEXEC option in the PROC SQL statement

• the VALIDATE keyword before a SELECT statement.

Consider how you specify the NOEXEC option and the VALIDATE keyword, and
examine the minor differences between them.

Using the NOEXEC Option
The NOEXEC option is specified in the following PROC SQL statement:

proc sql noexec;

Validating Query Syntax 71

 select empid, jobcode, salary
 from sasuser.payrollmaster
 where jobcode contains 'NA'
 order by salary;

If the query is valid and all referenced columns and tables exist, the SAS log displays the
following message.

Table 2.5 SAS Log

NOTE: Statement not executed due to NOEXEC option.

Or, if there are any errors in the query, SAS displays the standard error messages in the
log.

When you invoke the NOEXEC option, SAS checks the syntax of all queries in that
PROC SQL step for accuracy but does not execute them.

Using the VALIDATE Keyword
You specify the VALIDATE keyword just before a SELECT statement; it is not used
with any other PROC SQL statement.

We will modify the preceding PROC SQL query by using the VALIDATE keyword
instead of the NOEXEC option:

proc sql;
 validate
 select empid, jobcode, salary
 from sasuser.payrollmaster
 where jobcode contains 'NA'
 order by salary;

Note: Note that the VALIDATE keyword is not followed by a semicolon.

If the query is valid, the SAS log displays the following message.

Table 2.6 SAS Log

NOTE: PROC SQL statement has valid syntax.

If there are errors in the query, SAS displays the standard error messages in the log.

The main difference between the VALIDATE keyword and the NOEXEC option is that
the VALIDATE keyword only affects the SELECT statement that immediately follows
it, whereas the NOEXEC option applies to all queries in the PROC SQL step. If you are
working with a PROC SQL query that contains multiple SELECT statements, the
VALIDATE keyword must be specified before each SELECT statement that you want to
check.

Additional Features
In addition to the SELECT statement, PROC SQL supports the following statements.

72 Chapter 2 • Performing Advanced Queries Using PROC SQL

Statement Use to ...

ALTER TABLE expression; add, drop, and modify columns in a table

CREATE expression; build new tables, views, or indexes

DELETE expression; eliminate unwanted rows from a table or view

DESCRIBE expression; display table and view attributes

DROP expression; eliminate entire tables, views, or indexes

INSERT expression add rows of data to tables or views

RESET <option(s)>; add to or change PROC SQL options without re-invoking the
procedure

UPDATE expression; modify data values in existing rows of a table or view

Summary

Text Summary

Viewing SELECT Statement Syntax
The SELECT statement and its subordinate clauses are the building blocks that you use
to construct all PROC SQL queries.

Displaying All Columns
To display all columns in the order in which they are stored in the table, use an asterisk
(*) in the SELECT clause. To write the expanded list of columns to the SAS log, use the
FEEDBACK option in the PROC SQL statement.

Limiting the Number of Rows Displayed
To limit the number of rows that PROC SQL displays as output, use the OUTOBS=n
option in the PROC SQL statement.

Eliminating Duplicate Rows from Output
To eliminate duplicate rows from your query results, use the keyword DISTINCT in the
SELECT clause.

Subsetting Rows By Using Conditional Operators
In a PROC SQL query, use the WHERE clause with any valid SAS expression to subset
data. The SAS expression can contain one or more operators, including the following
conditional operators:

• the BETWEEN-AND operator selects within an inclusive range of values

• the CONTAINS or ? operator selects a character string

Summary 73

• the IN operator selects from a list of fixed values

• the IS MISSING or IS NULL operator selects missing values

• the LIKE operator selects a pattern

• the sounds-like (=*) operator selects a spelling variation

Subsetting Rows By Using Calculated Values
It is important to understand how PROC SQL processes calculated columns. When you
use a column alias in the WHERE clause to refer to a calculated value, you must use the
keyword CALCULATED with the alias.

Enhancing Query Output
You can enhance PROC SQL query output by using SAS enhancements such as column
formats and labels, titles and footnotes, and character constraints.

Summarizing and Grouping Data
PROC SQL calculates summary functions and outputs results differently, depending on a
combination of factors:

• whether the summary function specifies one or more multiple columns as arguments

• whether the query contains a GROUP BY clause

• if the summary function is specified in a SELECT clause, whether there are
additional columns listed that are outside the summary function

• whether the WHERE clause, if there is one, contains only columns that are specified
in the SELECT clause.

To count nonmissing values, use the COUNT summary function.

To select the groups to be displayed, use a HAVING clause following a GROUP BY
clause.

When you use a summary function in a SELECT clause or a HAVING clause, in some
situations, PROC SQL must remerge data. When PROC SQL remerges data, it makes
two passes through the data, and this requires additional processing time.

Subsetting Data By Using Subqueries
In the WHERE clause or the HAVING clause of a PROC SQL query, you can use a
subquery to subset data. A subquery is a query that is nested in, and is part of, another
query. Subqueries can return values from a single row or multiple rows to the outer
query but can return values only from a single column.

Subsetting Data By Using Noncorrelated Subqueries
Noncorrelated subqueries execute independently of the outer query. You can use
noncorrelated subqueries that return a single value or multiple values. To further qualify
a comparison specified in a WHERE clause or a HAVING clause, you can use the
conditional operators ANY and ALL immediately before a noncorrelated (or correlated)
subquery.

Subsetting Data By Using Correlated Subqueries
Correlated subqueries cannot be evaluated independently because their results are
dependent on the values returned by the outer query. In the WHERE clause or the
HAVING clause of an outer query, you can use the EXISTS and NOT EXISTS

74 Chapter 2 • Performing Advanced Queries Using PROC SQL

conditional operators to test for the existence or non-existence of a set of values returned
by the subquery.

Validating Query Syntax
To check the validity of the query syntax without actually executing the query, use the
NOEXEC option or the VALIDATE keyword.

Additional Features
PROC SQL supports many statements in addition to the SELECT statement.

Sample Programs

Displaying All Columns in Output and an Expanded Column List in
the SAS Log

proc sql feedback;
 select *
 from sasuser.staffchanges;
quit;

Eliminating Duplicate Rows from Output
proc sql;
 select distinct flightnumber, destination
 from sasuser.internationalflights
 order by 1;
quit;

Subsetting Rows By Using Calculated Values
proc sql outobs=10;
 validate
 select flightnumber,
 date label="Flight Date", destination,
 boarded + transferred + nonrevenue
 as Total
 from sasuser.marchflights
 where calculated total between 100 and 150;
quit;

Subsetting Data By Using a Noncorrelated Subquery
proc sql noexec;
 select jobcode,
 avg(salary) as AvgSalary
 format=dollar11.2
 from sasuser.payrollmaster
 group by jobcode
 having avg(salary) >
 (select avg(salary)
 from sasuser.payrollmaster);
quit;

Subsetting Data By Using a Correlated Subquery
proc sql;

Summary 75

title 'Frequent Flyers Who Are Not Employees';
 select count(*) as Count
 from sasuser.frequentflyers
 where not exists
 (select *
 from sasuser.staffmaster
 where name=
 trim(lastname)||', '||firstname);
quit;

Points to Remember
• When you use summary functions, look for missing values. If a table contains

missing values, your results might not be what you expect. Many summary functions
ignore missing values when performing calculations, and PROC SQL treats missing
values in a column as a single group.

• When you create complex queries, it is helpful to use the NOEXEC option or the
VALIDATE statement to validate your query without executing it.

Quiz
Select the best answer for each question. After completing the quiz, check your answers
using the answer key in the appendix.

1. Which PROC SQL query removes duplicate values of MemberType from the query
output, so that only the unique values are listed?

a. proc sql nodup;
 select membertype
 from sasuser.frequentflyers;

b. proc sql;
 select distinct(membertype)
 as MemberType
 from sasuser.frequentflyers;

c. proc sql;
 select unique membertype
 from sasuser.frequentflyers
 group by membertype;

d. proc sql;
 select distinct membertype
 from sasuser.frequentflyers;

2. Which of the following causes PROC SQL to list rows that have no data in the
Address column?

a. WHERE address is missing

b. WHERE address not exists

c. WHERE address is null

d. both a and c

76 Chapter 2 • Performing Advanced Queries Using PROC SQL

3. You are creating a PROC SQL query that lists all employees who have spent (or
overspent) their allotted 120 hours of vacation for the current year. The hours that
each employee used are stored in the existing column Spent. Your query defines a
new column, Balance, to calculate each employee's balance of vacation hours.

Which query produces the report that you want?

a. proc sql;
 select name, spent,
 120-spent as calculated Balance
 from Company.Absences
 where balance <= 0;

b. proc sql;
 select name, spent,
 120-spent as Balance
 from Company.Absences
 where calculated balance <= 0;

c. proc sql;
 select name, spent,
 120-spent as Balance
 from Company.Absences
 where balance <= 0;

d. proc sql;
 select name, spent,
 120-spent as calculated Balance
 from Company.Absences
 where calculated balance <= 0;

4. Consider this PROC SQL query:

proc sql;
 select flightnumber,
 count(*) as Flights,
 avg(boarded)
 label="Average Boarded"
 format=3.
 from sasuser.internationalflights
 group by flightnumber
 having avg(boarded) > 150;

The table Sasuser.Internationalflights contains 201 rows, 7 unique values of
FlightNumber, 115 unique values of Boarded, and 4 different flight numbers that
have an average value of Boarded that is greater than 150. How many rows of output
is generated by the query?

a. 150

b. 7

c. 4

d. 1

5. You are writing a PROC SQL query that displays the names of all library cardholders
who work as volunteers for the library, and the number of books that each volunteer
currently has checked out. You use one or both of the following tables:

• Library.Circulation lists the name and contact information for all library
cardholders, and the number of books that each cardholder currently has checked
out.

Quiz 77

• Library.Volunteers lists the name and contact information for all library
volunteers.

Assume that the values of Name are unique in both tables.

Which of the following PROC SQL queries produces your report?

a. proc sql;
 select name, checkedout
 from library.circulation
 where * in
 (select *
 from library.volunteers);

b. proc sql;
 select name, checkedout
 from library.circulation
 where name in
 (select name
 from library.volunteers);

c. proc sql;
 select name
 from library.volunteers
 where name, checkedout in
 (select name, checkedout
 from library.circulation);

d. proc sql;
 select name, checkedout
 from library.circulation
 where name in
 (select name
 from library.volunteers;);

6. By definition, a noncorrelated subquery is a nested query that

a. returns a single value to the outer query.

b. contains at least one summary function.

c. executes independently of the outer query.

d. requires only a single value to be passed to it by the outer query.

7. Which statement about the following PROC SQL query is false?

proc sql;
 validate
 select name label='Country',
 rate label='Literacy Rate'
 from world.literacy
 where 'Asia' =
 (select continent
 from world.continents
 where literacy.name =
 continents.country)
 order by 2;

a. The query syntax is not valid.

b. The outer query must pass values to the subquery before the subquery can return
values to the outer query.

78 Chapter 2 • Performing Advanced Queries Using PROC SQL

c. PROC SQL cannot execute this query when it is submitted.

d. After the query is submitted, the SAS log indicates whether the query has valid
syntax.

8. Consider the following PROC SQL query:

proc sql;
 select lastname, firstname,
 total, since
 from charity.donors
 where not exists
 (select lastname
 from charity.current
 where donors.lastname =
 current.lastname);

The query references two tables:

• Charity.Donors lists name and contact information for all donors who have made
contributions since the charity was founded. The table also contains these two
columns: Total, which shows the total dollars given by each donor, and Since,
which stores the first year in which each donor gave money.

• Charity.Current lists the names of all donors who have made contributions in the
current year, and the total dollars each has given this year (YearTotal).

Assume that the values of LastName are unique in both tables.

The output of this query displays

a. all donors whose rows do not contain any missing values.

b. all donors who made a contribution in the current year.

c. all donors who did not make a contribution in the current year.

d. all donors whose current year's donation in Charity.Current has not yet been
added to Total in Charity.Donors.

9. Which statement about data remerging is true?

a. When PROC SQL remerges data, it combines data from two tables.

b. By using data remerging, PROC SQL can avoid making two passes through the
data.

c. When PROC SQL remerges data, it displays a related message in the SAS log.

d. PROC SQL does not attempt to remerge data unless a subquery is used.

10. A public library has several categories of books. Each book in the library is assigned
to only one category. The table Library.Inventory contains one row for each book in
the library. The Checkouts column indicates the number of times that each book has
been checked out.

You want to display only the categories that have an average circulation (number of
checkouts) that is less than 2500. Does the following PROC SQL query produce the
results that you want?

proc sql;
title 'Categories with Average Circulation';
title2 'Less Than 2500';
 select category,
 avg(checkouts) as AvgCheckouts
 from library.inventory

Quiz 79

 having avg(checkouts) < 2500
 order by 1;

a. No. This query does not run because a HAVING clause cannot contain a
summary function.

b. No. This query does not run because the HAVING clause must include the
CALCULATED keyword before the summary function.

c. No. Because there is no GROUP BY clause, the HAVING clause treats the entire
table as one group.

d. Yes.

80 Chapter 2 • Performing Advanced Queries Using PROC SQL

Chapter 3

Combining Tables Horizontally
Using PROC SQL

Overview . 82
Introduction . 82

Understanding Joins . 82

Generating a Cartesian Product . 83

Using Inner Joins . 85
Introducing Inner Join Syntax . 85
Example . 86
Understanding How Joins Are Processed . 86
Eliminating Duplicate Columns . 87
Renaming a Column By Using a Column Alias . 88
Joining Tables That Have Rows with Matching Values . 88
Specifying a Table Alias . 89
Example: Complex PROC SQL Inner Join . 90
Example: PROC SQL Inner Join with Summary Functions 92

Using Outer Joins . 93
Introducing Types of Outer Joins . 93
Using a Left Outer Join . 95
Using a Right Outer Join . 96
Using a Full Outer Join . 97
Example: Outer Join . 97

Creating an Inner Join with Outer Join-Style Syntax . 100

Comparing SQL Joins and DATA Step Match-Merges . 100
Overview . 100
When All of the Values Match . 101
When Only Some of the Values Match . 102
When Only Some of the Values Match: Using the COALESCE Function 103
Understanding the Advantages of PROC SQL Joins . 104

Using In-Line Views . 105
Introducing In-Line Views . 105
Referencing an In-Line View with Other Views or Tables 106
Referencing Multiple Tables in an In-Line View . 106
Assigning an Alias to an In-Line View . 107
Example: Query That Contains an In-Line View . 107

Joining Multiple Tables and Views . 109
Example: Complex Query That Combines Four Tables . 109
Example: Technique 1 (PROC SQL Subqueries, Joins, and In-Line Views) 110
Example: Technique 2 (PROC SQL Multi-way Join with Reflexive Join) 113

81

Example: Technique 3 (Traditional SAS Programming) . 114

Summary . 116
Text Summary . 116
Sample Programs . 117
Points to Remember . 118

Quiz . 118

Overview

Introduction
When you need to select data from multiple tables and combine the tables horizontally
(side by side), PROC SQL can be an efficient alternative to other SAS procedures or the
DATA step. You can use a PROC SQL join to combine tables horizontally:

proc sql;
 select *
 from a, b
 where a.x=b.x;

A PROC SQL join is a query that specifies multiple tables and/or views to be combined
and, typically, specifies the conditions on which rows are matched and returned in the
result set.

You should already be familiar with the basics of using PROC SQL to join tables. In this
chapter, you take a more in-depth look at joining tables.

Understanding Joins
Joins combine tables horizontally (side by side) by combining rows. The tables being
joined are not required to have the same number of rows or columns.

Note: You can use a join to combine views as well as tables. Most of the following
references to tables are also applicable to views; any exceptions are noted. In-line
views are introduced later in this chapter. For more information about PROC SQL
views, see Chapter 7, “Creating and Managing Views Using PROC SQL,” on page
248.

When you use a PROC SQL query to join tables, you must decide how you want the
rows from the various tables to be combined. There are two main types of joins, as
shown below.

Type of Join Output

Inner join Only the rows that match across all table(s)

82 Chapter 3 • Combining Tables Horizontally Using PROC SQL

Type of Join Output

Outer join Rows that match across tables (as in the inner join) plus
nonmatching rows from one or more tables

When any type of join is processed, PROC SQL starts by generating a Cartesian product,
which contains all possible combinations of rows from all tables. consider how a
Cartesian product is generated.

Generating a Cartesian Product
The most basic type of join combines data from two tables that are specified in the
FROM clause of a SELECT statement. When you specify multiple tables in the FROM
clause but do not include a WHERE statement to subset data, PROC SQL returns the
Cartesian product of the tables. In a Cartesian product, each row in the first table is
combined with every row in the second table. Below is an example of this type of query,
which joins the tables One and Two.

proc sql;
 select *
 from one, two;

The output shown above displays all possible combinations of each row in table One
with all rows in table Two. Note that each table has a column named X, and both of these
columns appear in the output. A Cartesian product includes all columns from the source
tables. Columns that have common names are not overlaid.

Generating a Cartesian Product 83

In most cases, generating all possible combinations of rows from multiple tables does
not yield useful results, so a Cartesian product is rarely the query outcome that you want.
For example, in the Cartesian product of two tables that contain employee information,
each row of output might contain information about two different employees. Usually,
you want your join to return only a subset of rows from the tables.

The size of a Cartesian product can also be problematic. The number of rows in a
Cartesian product is equal to the product of the number of rows in the contributing
tables.

The tables One and Two, used in the preceding example, contain three rows each, as
shown below.

The number of rows in the Cartesian product of tables One and Two is calculated as
follows:

3 x 3 = 9 rows

Joining small tables such as One and Two results in a relatively small Cartesian product.
However, the Cartesian product of large tables can be huge and can require a large
amount of system resources for processing.

For example, joining two tables of 1,000 rows each results in output of the following
size:

1,000 x 1,000 = 1,000,000 rows

When you run a query that involves a Cartesian product that cannot be optimized, PROC
SQL writes the following warning message to the SAS log.

Table 3.1 SAS Log

NOTE: The execution of this query involves performing one or
more Cartesian product joins that cannot be optimized.

Although you often do not choose to create a query that returns a Cartesian product, it is
important to understand how a Cartesian product is built. In all types of joins, PROC
SQL generates a Cartesian product first, and then eliminates rows that do not meet any
subsetting criteria that you have specified.

Note: In many cases, PROC SQL can optimize the processing of a join, thereby
minimizing the resources that are required to generate a Cartesian product.

84 Chapter 3 • Combining Tables Horizontally Using PROC SQL

Using Inner Joins

Introducing Inner Join Syntax
An inner join combines and displays only the rows from the first table that match rows
from the second table, based on the matching criteria (also known as join conditions)
that are specified in the WHERE clause. A join condition is an expression that specifies
the column(s) on which the tables are to be joined.

The following diagram illustrates an inner join of two tables. The shaded area of overlap
represents the matching rows (the subset of rows) that the inner join returns as output.

Note: An inner join is sometimes called a conventional join.

Inner join syntax builds on the syntax of the simplest type of join that was shown earlier.
In an inner join, a WHERE clause is added to restrict the rows of the Cartesian product
that is displayed in output.

General form, SELECT statement for inner join:

SELECT column-1<,...column-n>
FROM table-1 | view-1, table-2 | view-2<,...table-n | view-n>
WHERE join-condition(s)

<AND other subsetting condition(s)>
<other clauses>;

Here is an explanation of the syntax:

join-condition(s)
refers to one or more expressions that specify the column or columns on which the tables are
to be joined.

other subsetting condition(s)
refers to optional expressions that are used to subset rows in the query results.

<other clauses>
refers to optional PROC SQL clauses.

Note: The maximum number of tables that you can combine in a single inner join
depends on your version of SAS. For more information see the SAS documentation.
If the join involves views (either in-line views or PROC SQL views), it is the
number of tables that underlie the views, not the number of views themselves, that
counts toward the limit. In-line views are covered later in this chapter and PROC
SQL views are discussed in Chapter 7, “Creating and Managing Views Using PROC
SQL,” on page 248.

Using Inner Joins 85

Example
When a WHERE clause is added to the PROC SQL query shown earlier, only a subset of
rows is included in output. The modified query, tables, and output are shown below:

proc sql;
 select *
 from one, two
 where one.x = two.x;

Because of the WHERE clause, this inner join does not display all rows from the
Cartesian product (all possible combinations of rows from both tables) but only a subset
of rows. The WHERE clause expression (join condition) specifies that the result set
should include only rows whose values of column X in the table One are equal to values
in column X of the table Two. Only one row from One and one row from Two have
matching values of X. Those two rows are combined into one row of output.

Note: PROC SQL does not perform a join unless the columns that are compared in the
join condition (in this example, One.X, and Two.X) have the same data type.
However, the two columns are not required to have the same name. For example, the
join condition shown in the following WHERE statement is valid if ID and EmpID
have the same data type:

where table1.id = table2.empid

Note: The join condition that is specified in the WHERE clause often contains the equal
(=) operator, but the expression might contain one or more other operators instead.
An inner join that matches rows based on the equal (=) operator, in which the value
of a column or expression in one table must be equivalent to the value of a column or
expression in another table, is called an equijoin.

Consider how PROC SQL processes this inner join.

Understanding How Joins Are Processed
Understanding how PROC SQL processes inner and outer joins helps you understand
which output is generated by each type of join. Conceptually, PROC SQL follows these
steps to process a join:

• builds a Cartesian product of rows from the indicated tables

• evaluates each row in the Cartesian product, based on the join conditions specified in
the WHERE clause (along with any other subsetting conditions), and removes any
rows that do not meet the specified conditions

• if summary functions are specified, summarizes the applicable rows

86 Chapter 3 • Combining Tables Horizontally Using PROC SQL

• returns the rows that are to be displayed in output.

Note: The PROC SQL query optimizer follows a more complex process than the
conceptual approach described here, by breaking the Cartesian product into smaller
pieces. For each query, the optimizer selects the most efficient processing method for
the specific situation.

By default, PROC SQL joins do not overlay columns with the same name. Instead, the
output displays all columns that have the same name. To avoid having columns with the
same name in the output from an inner or outer join, you can eliminate or rename the
duplicate columns.

T I P You can also use the COALESCE function with an inner or outer join to overlay
columns with the same name. The COALESCE function is discussed, along with
outer joins, later in this chapter.

Eliminating Duplicate Columns
Consider the sample PROC SQL query that uses an inner join to combine the tables One
and Two:

proc sql;
 select *
 from one, two
 where one.x = two.x;

The two tables have a column with an identical name (X). Because the SELECT clause
in the query shown above contains an asterisk, the output displays all columns from both
tables.

To eliminate a duplicate column, you can specify just one of the duplicate columns in the
SELECT statement. The SELECT statement in the preceding PROC SQL query can be
modified as follows:

proc sql;
 select one.x, a, b
 from one, two
 where one.x = two.x

Here, the SELECT clause specifies that only the column X from table One is included in
output. The output, which now displays only one column X, is shown below.

Using Inner Joins 87

Note: In an inner equijoin, like the one shown here, it does not matter which of the
same-named columns is listed in the SELECT statement. The SELECT statement in
this example could have specified Two.X instead of One.X.

Another way to eliminate the duplicate X column in the preceding example is shown
below:

proc sql;
 select one.*, b
 from one, two
 where one.x = two.x;

By using the asterisk (*) to select all columns from table One, and only B from table
Two, this query generates the same output as the preceding version.

Renaming a Column By Using a Column Alias
If you are working with several tables that have a column with a common name but
slightly different data, you might want both columns to appear in output. To avoid the
confusion of displaying two different columns with the same name, you can rename one
of the duplicate columns by specifying a column alias in the SELECT statement. For
example, you could modify the SELECT statement of the sample query as follows:

proc sql;
 select one.x as ID, two.x, a, b
 from one, two
 where one.x = two.x;

The output of the modified query is shown here.

Now that the column One.X has been renamed to ID, the output clearly indicates that ID
and X are two different columns.

Joining Tables That Have Rows with Matching Values
Consider what happens when you join two tables in which multiple rows have duplicate
values of the column on which the tables are being joined. Each of the tables Three and
Four has multiple rows that contain the value 2 for column X. The following PROC SQL
inner join matches rows from the two tables based on the common column X:

88 Chapter 3 • Combining Tables Horizontally Using PROC SQL

proc sql;
 select *
 from three, four
 where three.x=four.x;

The output shows how this inner join handles the duplicate values of X.

All possible combinations of the duplicate rows are displayed. There are no matches on
any other values of X, so no other rows are displayed in output.

Note: A DATA step match-merge would output only two rows, because it processes data
sequentially from top to bottom. Later in this chapter, there is a comparison of PROC
SQL joins and DATA step match-merges.

Specifying a Table Alias
To enable PROC SQL to distinguish between same-named columns from different
tables, you use qualified column names. To create a qualified column name, you prefix
the column name with its table name. For example, the following PROC SQL inner join
contains several qualified column names (shown highlighted):

proc sql;
title 'Employee Names and Job Codes';
 select staffmaster.empid, lastname, firstname, jobcode
 from sasuser.staffmaster, sasuser.payrollmaster
 where staffmaster.empid=payrollmaster.empid;

It can be difficult to read PROC SQL code that contains lengthy qualified column
names. In addition, entering long table names can be time-consuming. Fortunately, you
can use a temporary, alternate name for any or all tables in any PROC SQL query. This
temporary name, which is called a table alias, is specified after the table name in the
FROM clause. The keyword AS is often used, although its use is optional.

Using Inner Joins 89

The following modified PROC SQL query specifies table aliases in the FROM clause,
and then uses the table aliases to qualify column names in the SELECT and WHERE
clauses:

proc sql;
title 'Employee Names and Job Codes';
 select s.empid, lastname, firstname, jobcode
 from sasuser.staffmaster as s,
 sasuser.payrollmaster as p
 where s.empid=p.empid;

In this query, the optional keyword AS is used to define the table aliases in the FROM
clause. The FROM clause would be equally valid with AS omitted, as shown below:

from sasuser.staffmaster s,
 sasuser.payrollmaster p

Note: While using table aliases help you work more efficiently, the use of table aliases
does not cause SAS to execute the query more quickly.

Table aliases are usually optional. However, there are two situations that require their
use, as shown below.

Table aliases are required when... Example

a table is joined to itself (called a self-join or
reflexive join)

from airline.staffmaster as s1,
 airline.staffmaster as s2

you need to reference columns from same-
named tables in different libraries

from airline.flightdelays as af,
 work.flightdelays as wf
 where af.delay > wf.delay

So far, you have seen relatively simple examples of inner joins. However, as in any other
PROC SQL query, inner joins can include more advanced components, such as

• titles and footers

• functions and expressions in the SELECT clause

• multiple conditions in the WHERE clause

• an ORDER BY clause for sorting

• summary functions with grouping.

Here are a few examples of more complex inner joins.

Example: Complex PROC SQL Inner Join
Suppose you want to display the names (first initial and last name), job codes, and ages
of all company employees who live in New York. You also want the results to be sorted
by job code and age.

The data that you need is stored in the two tables listed below.

Table Relevant Columns

Sasuser.Staffmaster EmpID, LastName, FirstName, State

90 Chapter 3 • Combining Tables Horizontally Using PROC SQL

Table Relevant Columns

Sasuser.Payrollmaster EmpID, JobCode, DateOfBirth

Of the three columns that you want to display, JobCode is the only column that already
exists in the tables. The other two columns need to be created from existing columns.

The PROC SQL query shown here uses an inner join to generate the output that you
want:

 proc sql outobs=15;
 title 'New York Employees';
 select substr(firstname,1,1) || '. ' || lastname
 as Name,
 jobcode,
 int((today() - dateofbirth)/365.25)
 as Age
 from sasuser.payrollmaster as p,
 sasuser.staffmaster as s
 where p.empid =
 s.empid
 and state='NY'
 order by 2, 3;

Using Inner Joins 91

The SELECT clause, shown below, specifies the new column Name, the existing column
JobCode, and the new column Age:

select substr(firstname,1,1) || '. ' || lastname
 as Name,
 jobcode,
 int((today() - dateofbirth)/365.25)
 as Age

To create the two new columns, the SELECT clause uses functions and expressions as
follows:

• To create Name, the SUBSTR function extracts the first initial from FirstName. Then
the concatenation operator combines the first initial with a period, a space, and then
the contents of the LastName column. Finally, the keyword AS names the new
column.

• To calculate Age, the INT function returns the integer portion of the result of the
calculation. In the expression that is used as an argument of the INT function, the
employee's birthdate (DateOfBirth) is subtracted from today's date (returned by the
TODAY function), and the difference is divided by the number of days in a year
(365.25).

The WHERE clause contains two expressions linked by the logical operator AND:

where p.empid =
 s.empid
 and state='NY'

This query only outputs rows that have matching values of EmpID and rows in which
the value of State is NY. You do not need to prefix the column name State with a table
name, because State occurs in only one of the tables.

Example: PROC SQL Inner Join with Summary Functions
You can also summarize and group data in a PROC SQL join. To illustrate, modify the
previous PROC SQL inner join so that the output displays the following summarized
columns for New York employees in each job code: number of employees and average
age. The modified query is shown below:

proc sql outobs=15;
title 'Avg Age of New York Employees';
 select jobcode,
 count(p.empid) as Employees,
 avg(int((today() - dateofbirth)/365.25))
 format=4.1 as AvgAge
 from sasuser.payrollmaster as p,
 sasuser.staffmaster as s
 where p.empid =
 s.empid
 and state='NY'
 group by jobcode
 order by jobcode;

To create two new columns, the SELECT clause uses summary functions as follows:

• To create Employees, the COUNT function is used with p.EmpID
(Payrollmaster.EmpID) as its argument.

92 Chapter 3 • Combining Tables Horizontally Using PROC SQL

• To create AvgAge, the AVG function is used with an expression as its argument. As
described in the previous example, the expression uses the INT function to calculate
each employee's age.

The output of this modified query is shown below.

Using Outer Joins

Introducing Types of Outer Joins
An outer join combines and displays all rows that match across tables, based on the
specified matching criteria (also known as join conditions), plus some or all of the rows
that do not match. You can think of an outer join as an augmentation of an inner join: an
outer join returns all rows generated by an inner join, plus additional (nonmatching)
rows.

Using Outer Joins 93

Type of Outer Join Output

Left All matching rows plus nonmatching rows from the first table
specified in the FROM clause (the left table)

Right All matching rows plus nonmatching rows from the second table
specified in the FROM clause (the right table)

Full All matching rows plus nonmatching rows in both tables

The syntax of an outer join is shown below.

General form, SELECT statement for outer join:

SELECT column-1<,...column-n>
FROM table-1 | view-1

LEFT JOIN | RIGHT JOIN | FULL JOIN
table-2 | view-2
ON join-condition(s)

<other clauses>;

Here is an explanation of the syntax:

LEFT JOIN, RIGHT JOIN, FULL JOIN
are keywords that specify the type of outer join.

ON
specifies join-condition(s), which are expression(s) that specify the column or columns on
which the tables are to be joined.

<other clauses>
refers to optional PROC SQL clauses.

Note: To further subset the rows in the query output, you can follow the ON clause with
a WHERE clause. The WHERE clause subsets the individual detail rows before the
outer join is performed. The ON clause then specifies how the remaining rows are to
be selected for output.

Note: You can perform an outer join on only two tables or views at a time. Views are
covered later in this chapter.

Consider how each type of outer join works.

94 Chapter 3 • Combining Tables Horizontally Using PROC SQL

Using a Left Outer Join
A left outer join retrieves all rows that match across tables, based on the specified
matching criteria (join conditions), plus nonmatching rows from the left table (the first
table specified in the FROM clause).

Suppose you are using the following PROC SQL left join to combine the two tables One
and Two. The join condition is stated in the expression following the ON keyword. The
two tables and the three rows of output are shown below:

proc sql;
 select *
 from one
 left join
 two
 on one.x=two.x;

In each row of output, the first two columns correspond to table One (the left table) and
the last two columns correspond to table Two (the right table).

Because this is a left join, all rows (both matching and nonmatching) from table One (the
left table) are included in the output (the first two columns). Rows from table Two (the
right table) are displayed in the output (the last two columns) only if they match a row
from table One.

In this example, the second row of output is the only row in which the row from table
One matched a row from table Two, based on the matching criteria (join conditions)
specified in the ON clause. In the first and third rows of output, the row from table One
had no matching row in table Two.

Note: In all three types of outer joins (left, right, and full), the columns in the result
(combined) row that are from the unmatched row are set to missing values.

To eliminate one of the duplicate columns (in this case, X) in any outer join, as shown
earlier with an inner join, you can modify the SELECT clause to list the specific
columns that is displayed. Here, the SELECT clause from the preceding query has been
modified to remove the duplicate X column:

Using Outer Joins 95

proc sql;
 select one.x, a, b
 from one
 left join
 two
 on one.x=two.x;

Using a Right Outer Join
A right outer join retrieves all rows that match across tables, based on the specified
matching criteria (join conditions), plus nonmatching rows from the right table (the
second table specified in the FROM clause).

Consider what happens when you use a right join to combine the two tables used in the
previous example. The following PROC SQL query uses a right join to combine rows
from One and Two, based on the join conditions specified in the ON clause:

proc sql;
 select *
 from one
 right join
 two
 on one.x=two.x;

In each row of output, the first two columns correspond to table One (the left table) and
the last two columns correspond to table Two (the right table).

Because this is a right join, all rows (both matching and nonmatching) from table Two
(the right table) are included in the output (the last two columns). Rows from table One

96 Chapter 3 • Combining Tables Horizontally Using PROC SQL

(the left table) are displayed in the output (the first two columns) only if they match a
row from table Two.

In this example, there is only one row in table One that matches a value of X in table
Two, and these two matching rows combine to form the first row of output. In the
remaining rows of output, there is no match and the columns corresponding to table One
are set to missing values.

Using a Full Outer Join
A full outer join retrieves both matching rows and nonmatching rows from both tables.

Combine the same two tables again, this time using a full join. The PROC SQL query,
the tables, and the output are shown below:

proc sql;
 select *
 from one
 full join
 two
 on one.x=two.x;

Because this is a full join, all rows (both matching and nonmatching) from both tables
are included in the output. There is only one match between table One and table Two, so
only one row of output displays values in all columns. All remaining rows of output
contain only values from table One or table Two. The remaining columns are set to
missing values.

Example: Outer Join
Now that you have seen how the three types of outer joins work, consider a realistic
situation requiring the use of an outer join.

Suppose you want to list all of an airline's flights that were scheduled for March, along
with corresponding delay information (if it exists). Each flight is identified by both a
flight date and a flight number. Your output should display the following data: flight
date, flight number, destination, and length of delay in minutes.

The data that you need is stored in the two tables shown below. The applicable columns
from each table are identified.

Using Outer Joins 97

Table Relevant Columns

Sasuser.Marchflights Date, FlightNumber,
Destination

Sasuser.Flightdelays Date, FlightNumber,
Destination, Delay

Your output should include the columns that are listed above and all of the following
rows:

• rows that have matching values of Date and FlightNumber across the two tables

• rows from Sasuser.Marchflights that have no matching row in Sasuser.Flightdelays.

To generate the output that you want, the following PROC SQL query uses a left outer
join. Sasuser.Marchflights is specified as the left (first) table.

proc sql outobs=20;
title 'All March Flights';
 select m.date,
 m.flightnumber
 label='Flight Number',
 m.destination
 label='Left',
 f.destination
 label='Right',
 delay
 label='Delay in Minutes'
 from sasuser.marchflights as m
 left join
 sasuser.flightdelays as f
 on m.date=f.date
 and m.flightnumber=
 f.flightnumber
 order by delay;

Notice the following:

• The SELECT clause eliminates the duplicate Date and FlightNumber columns by
specifying their source as Sasuser.Marchflights. However, the SELECT clause list
specifies the Destination columns from both tables and assigns a table alias to each
to distinguish between them.

• The ON clause contains two join conditions, which match the tables on the two
columns Date and FlightNumber.

The query output is shown below.

98 Chapter 3 • Combining Tables Horizontally Using PROC SQL

The first 12 rows of output display rows from Sasuser.Marchflights (the left table) that
have no matching rows in Sasuser.Flightdelays. Therefore, in these 12 rows, the last 2
columns are set to missing values.

Note: The same results could be generated by using a right outer join.
Sasuser.Marchflights is specified as the right (second) table.

Using Outer Joins 99

Creating an Inner Join with Outer Join-Style
Syntax

If you want to use a consistent syntax for all joins, you can write an inner join using the
same style of syntax that is used for an outer join.

General form, SELECT statement for inner join (alternate syntax):

SELECT column-1<,...column-n>
FROM table-1 | view-1

INNER JOIN
table-2 | view-2
ON join-condition(s)

<other clauses>;

Here is an explanation of the syntax:

INNER JOIN
is a keyword.

ON
specifies join-condition(s), which are expression(s) that specify the column or columns on
which the tables are to be joined.

<other clauses>
refers to optional PROC SQL clauses.

Note: An inner join that uses this syntax can be performed on only two tables or views
at a time. When an inner join uses the syntax that was presented earlier, up to 256
tables or views can be combined at once. In-line views are covered later in this
chapter.

Comparing SQL Joins and DATA Step Match-
Merges

Overview
You should be familiar with the use of the DATA step to merge data sets. DATA step
match-merges and PROC SQL joins can produce the same results. However, there are
important differences between these two techniques. For example, a join does not require
that you sort the data first; a DATA step match-merge requires that the data be sorted.

Compare the use of SQL joins and DATA step match-merges in the following situations:

• when all of the values of the selected variable (column) match

• when only some of the values of the selected variable (column) match.

100 Chapter 3 • Combining Tables Horizontally Using PROC SQL

When All of the Values Match
When all of the values of the BY variable match, you can use a PROC SQL inner join to
produce the same results as a DATA step match-merge.

Suppose you want to combine the tables One and Two, as shown below.

These two tables have the column X in common, and all values of X in each row match
across the two tables. Both tables are already sorted by X.

The following DATA step match-merge (followed by a PROC PRINT step) and the
PROC SQL inner join produce identical reports.

DATA Step Match-Merge PROC SQL Inner Join

data merged;
 merge one two;
 by x; run;

 proc print data=merged noobs;
 title 'Table Merged';
 run;

proc sql;
 title 'Table Merged';
 select one.x, a, b
 from one, two
 where one.x = two.x
 order by x;

Note: The DATA step match-merge creates a data set whereas the PROC SQL inner
join, as shown here, creates only a report as output. To make these two programs
completely identical, the PROC SQL inner join could be rewritten to create a table.

Comparing SQL Joins and DATA Step Match-Merges 101

For detailed information about creating tables with PROC SQL, see Chapter 5,
“Creating and Managing Tables Using PROC SQL,” on page 167.

Note: If the order of rows in the output does not matter, the ORDER BY clause can be
removed from the PROC SQL join. Without the ORDER BY clause, this join is more
efficient, because PROC SQL does not need to make a second pass through the data.

When Only Some of the Values Match
When only some of the values of the BY variable match, you can use a PROC SQL full
outer join to produce the same result as a DATA step match-merge. Unlike the DATA
step match-merge, however, a PROC SQL outer join does not overlay the two common
columns by default. To overlay common columns, you must use the COALESCE
function in the PROC SQL full outer join.

Note: The COALESCE function can also be used with inner join operators.

Consider what happens when you use a PROC SQL full outer join without the
COALESCE function. Suppose you want to combine the tables Three and Four. These
two tables have the column X in common, but most of the values of X do not match
across tables. Both tables are already sorted by X. The following DATA step match-
merge (followed by a PROC PRINT step) and the PROC SQL outer join combine these
tables, but do not generate the same output. The COALESCE function can also be used
with inner join operators.

DATA Step Match-Merge PROC SQL Full Outer Join

data merged;
 merge three four;
 by x;
run;

proc print data=merged noobs;
 title 'Table Merged';
run;

proc sql;
title 'Table Merged';
 select three.x, a, b
 from three
 full join
 four
 on three.x = four.x
 order by x;

102 Chapter 3 • Combining Tables Horizontally Using PROC SQL

The DATA step match-merge automatically overlays the common column, X. The PROC
SQL outer join selects the value of X from just one of the tables, table Three, so that no
X values from table Four are included in the PROC SQL output. However, the PROC
SQL outer join cannot overlay the columns by default. The values that vary across the
two merged tables are in bold above.

Consider how the COALESCE function is used in the PROC SQL outer join to overlay
the common columns.

When Only Some of the Values Match: Using the COALESCE
Function

When you add the COALESCE function to the SELECT clause of the PROC SQL outer
join, the PROC SQL outer join can produce the same result as a DATA step match-
merge.

General form, COALESCE function in a basic SELECT clause:

SELECT COALESCE (column-1<,...column-n>)

Here is an explanation of the syntax:

column-1 through column-n
are the names of two or more columns to be overlaid. The COALESCE function requires
that all arguments have the same data type.

Comparing SQL Joins and DATA Step Match-Merges 103

The COALESCE function overlays the specified columns by

• checking the value of each column in the order in which the columns are listed

• returning the first value that is a SAS nonmissing value.

Note: If all returned values are missing, COALESCE returns a missing value.

When the COALESCE function is added to the preceding PROC SQL full outer join, the
DATA step match-merge (with PROC PRINT step) and the PROC SQL full outer join
will combine rows in the same way. The two programs, the tables, and the output are
shown below.

DATA Step Match-Merge PROC SQL Full Outer Join

data merged;
 merge three four;
 by x;
run;
proc print data=merged noobs;
 title 'Table Merged';
run;

proc sql;
 title 'Table Merged';
 select coalesce(three.x, four.x)
 as X, a, b
 from three
 full join
 four
 on three.x = four.x;

Understanding the Advantages of PROC SQL Joins
DATA step match-merges and PROC SQL joins both have advantages and
disadvantages. Here are some of the main advantages of PROC SQL joins.

104 Chapter 3 • Combining Tables Horizontally Using PROC SQL

Advantage Example

PROC SQL joins do not require sorted or
indexed tables.

proc sql;
 select table1.x, a, b
 from table1
 full join
 table2
 on table1.x = table2.x;

where table-1 is sorted by column X and
table-2 is not

PROC SQL joins do not require that the
columns in join expressions have the same
name.

proc sql;
 select table1.x, lastname,
 status
 from table1, table2
 where table1.id =
 table2.custnum;

PROC SQL joins can use comparison
operators other than the equal sign (=).

proc sql;
 select a.itemnumber, cost,
 price
 from table1 as a,
 table2 as b
 where a.itemnumber = b.itemnumber
 and a.cost>b.price;

Note: Join performance can be substantially improved when the tables are indexed on
the column(s) on which the tables are being joined. You can learn more about
indexing in Chapter 6, “Creating and Managing Indexes Using PROC SQL,” on page
226.

Using In-Line Views

Introducing In-Line Views
Sometimes, you might want to specify an in-line view rather than a table as the source of
data for a PROC SQL query. An in-line view is a nested query that is specified in the
outer query's FROM clause. (You should already be familiar with a subquery, which is a
nested query that is specified in a WHERE clause.) An in-line view selects data from
one or more tables in order to produce a temporary (or virtual) table that the outer query
then uses to select data for output.

For example, the following FROM clause specifies an in-line view:

 from (select flightnumber, date,
 boarded/passengercapacity*100
 as pctfull
 format=4.1 label='Percent Full'
 from sasuser.marchflights)

This in-line view selects two existing columns (FlightNumber and Date) and defines the
new column PctFull based on the table Sasuser.Marchflights.

Using In-Line Views 105

Unlike a table, an in-line view exists only during query execution. Because it is
temporary, an in-line view can be referenced only in the query in which it is defined. In
addition, an in-line view can be assigned an alias but it cannot be assigned a permanent
name.

Note: In a FROM clause, you can also specify a PROC SQL view, which is a query that
has been created (using the CREATE statement) and stored. You can learn more
about creating PROC SQL views in Chapter 7, “Creating and Managing Views
Using PROC SQL,” on page 248.

Note: Unlike other queries, an in-line view cannot contain an ORDER BY clause.

There are two potential advantages to using an in-line view instead of a table in a PROC
SQL query:

• The complexity of the code is usually reduced, so that the code is easier to write, and
understand.

• In some cases, PROC SQL might be able to process the code more efficiently.

Referencing an In-Line View with Other Views or Tables
The preceding FROM clause is from a simple PROC SQL query that references just one
data source: the in-line view. However, a PROC SQL query can join multiple tables and
in-line views. For example, the FROM clause shown below specifies both a table
(Sasuser.Flightschedule) and an in-line view.

 from sasuser.flightschedule,
 (select flightnumber, date,
 boarded/passengercapacity*100
 as pctfull
 format=4.1 label='Percent Full'
 from sasuser.marchflights)

Referencing Multiple Tables in an In-Line View
You can specify more than one table in the FROM clause of an in-line view, as shown in
the following example:

 from (select marchflights.flightnumber,
 marchflights.date,
 boarded/passengercapacity*100
 as pctfull
 format=4.1 label='Percent Full',
 delay
 from sasuser.marchflights,
 sasuser.flightdelays
 where marchflights.flightnumber=
 flightdelays.flightnumber
 and marchflights.date=
 flightdelays.date)

In other words, you can base an in-line view on a join.

Note: Remember that each table that is referenced in an in-line view counts toward the
256-table limit for an inner join.

106 Chapter 3 • Combining Tables Horizontally Using PROC SQL

Assigning an Alias to an In-Line View
You can assign an alias to an in-line view just as you can to a table. In the following
example, the alias f has been added in the first FROM clause to reference the table
Sasuser.Flightschedule and the alias m is associated with the results from the in-line
view. After the main FROM clause, a WHERE clause that uses both of the aliases has
been added.

from sasuser.flightschedule as f,
 (select flightnumber, date
 boarded/passengercapacity*100
 as pctfull
 format=4.1 label='Percent Full'
 from sasuser.marchflights) as m
where m.flightnumber=f.flightnumber
 and m.date=f.date

Example: Query That Contains an In-Line View
Suppose you want to identify the air travel destinations that experienced the worst delays
in March. You would like your output to show all of the following data:

• destination

• average delay

• maximum delay

• probability of delay.

Your PROC SQL query uses an in-line view to calculate all of the new columns except
for the last one:

proc sql;
title "Flight Destinations and Delays";
 select destination,
 average format=3.0 label='Average Delay',
 max format=3.0 label='Maximum Delay',
 late/(late+early) as prob format=5.2
 label='Probability of Delay'
 from (select destination,
 avg(delay) as average,
 max(delay) as max,
 sum(delay > 0) as late,
 sum(delay <= 0) as early
 from sasuser.flightdelays
 group by destination)
 order by average;

Consider each clause of the outer query, starting with the FROM clause, because PROC
SQL evaluates the FROM clause before the SELECT clause.

The FROM clause specifies an in-line view rather than a table. The in-line view (nested
query) specifies the following columns that are in the table Sasuser.Flightdelays or are
based on a column in that table:

• the existing column Destination

• the new column Average

Using In-Line Views 107

• the new column Max

• the new column Late

• the new column Early.

The columns Average, Max, Late, and Early are all calculated by using summary
functions.

In the calculation for the columns Late and Early, a Boolean expression is used as the
argument for the summary function. A Boolean function resolves either to 1 (true) or 0
(false). For example, Late is calculated by taking the sum of the Boolean expression
delay > 0. For every value of Delay that is greater than 0, the Boolean expression
resolves to 1; values that are equal to or less than 0 resolve to 0. The SUM function adds
all values of Delay to indicate the number of delays that occurred for each destination.

The in-line view concludes with the clause group by destination, specifying that
the in-line view data should be grouped, and summarized by the values of Destination.

If you submitted this in-line view (nested query) as a separate query, it would generate
the following output.

Consider the outer query's SELECT and ORDER BY clauses:

proc sql;
title "Flight Destinations and Delays";
 select destination,
 average format=3.0 label='Average Delay',
 max format=3.0 label='Maximum Delay',
 late/(late+early) as prob format=5.2
 label='Probability of Delay'
 from (select destination,
 avg(delay) as average,
 max(delay) as max,
 sum(delay > 0) as late,
 sum(delay <= 0) as early
 from sasuser.flightdelays
 group by destination)
 order by average;

108 Chapter 3 • Combining Tables Horizontally Using PROC SQL

The outer query's SELECT clause specifies columns as follows:

• Destination is an existing column in the table.

• Average and Max are calculated in the in-line view, and are assigned labels and
formats in this SELECT clause.

• Prob (with the label “Probability of Delay”) is calculated in this SELECT clause by
using two columns that were calculated in the in-line view: Late and Early. The outer
query's SELECT clause can refer to the calculated columns Late and Early without
using the keyword CALCULATED because PROC SQL evaluates the in-line view
(the outer query's FROM clause) first.

The outer query's last clause is an ORDER BY clause. The output is sorted by the values
of Average.

This PROC SQL query generates the following output.

Later in this chapter, a PROC SQL query that combines multiple tables and uses an in-
line view is explained.

Joining Multiple Tables and Views
So far, this chapter has presented PROC SQL queries that combine only two tables
horizontally. However, there might be situations in which you have to create complex
queries to combine more than two tables. Here is an example of a complex query that
combines four different tables.

Example: Complex Query That Combines Four Tables
Suppose you want to list the names of supervisors for the crew on the flight to
Copenhagen on March 4, 2000. To solve this problem, you need to use the following
four tables.

Joining Multiple Tables and Views 109

Table Relevant Columns

Sasuser.Flightschedule identifies the crew who flew
to Copenhagen on March 4, 2000

EmpID, Date, Destination

Sasuser.Staffmaster identifies the names and states
of residence for the employees

EmpID, FirstName, LastName, State

Sasuser.Payrollmaster identifies the job categories
for the employees

EmpID, JobCode

Sasuser.Supervisors identifies the employees who
are supervisors

EmpID, State, JobCategory

Note: Supervisors live in the same state as the employees that they supervise. There is
one supervisor for each state and job category.

This problem can be handled in a number of different ways. Examine and compare three
different techniques:

• Technique 1: using PROC SQL subqueries, joins, and in-line views

• Technique 2: using a multi-way join that combines four different tables and a
reflexive join (joining a table with itself)

• Technique 3: using traditional SAS programming (a series of PROC SORT and
DATA steps, followed by a PROC PRINT step)

Example: Technique 1 (PROC SQL Subqueries, Joins, and In-Line
Views)

Overview

Task
List the names of supervisors for the crew on the flight to
Copenhagen on March 4, 2000.

Data Sasuser.Flightschedule (EmpID, Date, Destination)

Sasuser.Staffmaster (EmpID, FirstName, LastName, State)

Sasuser.Payrollmaster (EmpID, JobCode)

Sasuser.Supervisors (EmpID, State, JobCategory)

Note: Supervisors live in the same state as the employees that they supervise. There is
one supervisor for each state and job category.

Completing the stated task requires a complex query that includes several subqueries,
joins, and an in-line view. To make the task more manageable, build the complex query
piece-by-piece in four steps:

1. Identify the crew for the Copenhagen flight.

2. Find the states and job categories of the crew members that were returned by the first
query.

3. Find the employee numbers of the crew supervisors, based on the states and job
categories that were returned by the second query.

110 Chapter 3 • Combining Tables Horizontally Using PROC SQL

4. Find the names of the supervisors, based on the employee numbers that were
returned by the third query.

Note that at each of the four steps, a new piece of the final query is added. The final
query is included in the four separate pieces.

Query 1: Identify the Crew for the Copenhagen (CPH) Flight
This query lists the employee ID numbers of all six crew members on the Copenhagen
flight:

proc sql;
 select empid
 from sasuser.flightschedule
 where date='04mar2000'd
 and destination='CPH';

Query 2: Find the States and Job Categories of the Crew Members
Query 1 becomes a subquery and returns the employee ID numbers of the six
Copenhagen crew members to the outer query, Query 2. (Query 2 is shaded.) Query 2
uses an inner join to combine two tables. Query 2 selects the job category (by using the
SUBSTR function to extract the job category from JobCode) and state for each of the six
crew members.

proc sql;
 select substr(JobCode,1,2) as JobCategory,
 state
 from sasuser.staffmaster as s,
 sasuser.payrollmaster as p
 where s.empid=p.empid and s.empid in
 (select empid
 from sasuser.flightschedule
 where date='04mar2000'd
 and destination='CPH');

Query 3: Find the Employee Numbers of the Crew Supervisors
Query 2 becomes an in-line view within Query 3, and the alias c has been assigned to
the in-line view. Query 2 returns to Query 3 the job category and state for each crew
member. Query 3 selects the employee ID numbers for supervisors whose job category
and state match the job category and state of a crew member.

Joining Multiple Tables and Views 111

Note: Sasuser.Supervisors specifies the label Supervisor ID for the EmpID column, and
this label appears in the output.

proc sql;
 select empid
 from sasuser.supervisors as m,
 (select substr(jobcode,1,2) as JobCategory,
 state
 from sasuser.staffmaster as s,
 sasuser.payrollmaster as p
 where s.empid=p.empid and s.empid in
 (select empid
 from sasuser.flightschedule
 where date='04mar2000'd
 and destination='CPH')) as c
 where m.jobcategory=c.jobcategory
 and m.state=c.state;

Note that two rows contain the same value of EmpID: 1983. This duplication indicates
that two different crew members have the same manager. In all, there are five
supervisors for the six crew members of the Copenhagen flight.

Query 4: Find the Names of the Supervisors
Query 3 becomes a subquery within Query 4. Query 3 returns to Query 4 the employee
numbers (supervisor IDs) for the supervisors of the Copenhagen crew. Query 4 selects
the names of the supervisors.

proc sql;
 select firstname, lastname
 from sasuser.staffmaster
 where empid in
 (select empid
 from sasuser.supervisors as m,
 (select substr(jobcode,1,2)
 as JobCategory,
 state
 from sasuser.staffmaster as s,
 sasuser.payrollmaster as p
 where s.empid=p.empid
 and s.empid in
 (select empid
 from sasuser.flightschedule
 where date='04mar2000'd
 and destination='CPH'))
 as c
 where m.jobcategory=c.jobcategory
 and m.state=c.state);

Note that the output has five rows, one for each supervisor. The duplicate name of a
supervisor has been eliminated.

Technique 1 produces a PROC SQL query that includes

• four SELECT statements

112 Chapter 3 • Combining Tables Horizontally Using PROC SQL

• four tables, each read separately.

This program is not optimized and, in addition, includes complex code that is likely to
take a long time to write.

Example: Technique 2 (PROC SQL Multi-way Join with Reflexive
Join)

Task
List the names of supervisors for the crew on the flight to
Copenhagen on March 4, 2000.

Data Sasuser.Flightschedule (EmpID, Date, Destination)

Sasuser.Staffmaster (EmpID, FirstName, LastName, State)

Sasuser.Payrollmaster (EmpID, JobCode)

Sasuser.Supervisors (EmpID, State, JobCategory)

Note: Supervisors live in the same state as the employees that they supervise. There is
one supervisor for each state and job category.

You can also solve this problem by using a multi-way join with a reflexive join (joining
a table to itself). The code is shown below:

proc sql;
 select distinct e.firstname, e.lastname
 from sasuser.flightschedule as a,
 sasuser.staffmaster as b,
 sasuser.payrollmaster as c,
 sasuser.supervisors as d,
 sasuser.staffmaster as e
 where a.date='04mar2000'd and
 a.destination='CPH' and
 a.empid=b.empid and
 a.empid=c.empid and
 d.jobcategory=substr(c.jobcode,1,2)
 and d.state=b.state
 and d.empid=e.empid;

Technique 2, which uses a multi-way join, provides a more efficient solution to the
problem than Technique 1. In a multi-way join, PROC SQL joins two tables at a time
and performs the joins in the most efficient order (the order minimizes the size of the
Cartesian product). This multi-way join code is more difficult to build step-by-step than
the code in Technique 1.

Note that Sasuser.Staffmaster is read two separate times in this query: this is the
reflexive join. As you can see in the FROM clause, Sasuser.Staffmaster is assigned a
different table alias each time it is read: first b, then e. The table is read the first time
(alias b) to look up the states of the Copenhagen crew members, the second time (alias
e) to look up the names of the supervisors.

Joining Multiple Tables and Views 113

Example: Technique 3 (Traditional SAS Programming)

Task
List the names of supervisors for the crew on the flight to
Copenhagen on March 4, 2000.

Data Sasuser.Flightschedule (EmpID, Date, Destination)

Sasuser.Staffmaster (EmpID, FirstName, LastName, State)

Sasuser.Payrollmaster (EmpID, JobCode)

Sasuser.Supervisors (EmpID, State, JobCategory)

Note: Supervisors live in the same state as the employees that they supervise. There is
one supervisor for each state and job category.

For comparison, look at the traditional SAS programming that can be used to solve this
problem. The code is shown below, followed by the output.

/* Find the crew for the flight. */

proc sort data=sasuser.flightschedule (drop=flightnumber)
 out=crew (keep=empid);
 where destination='CPH' and date='04MAR2000'd;
 by empid;
run;

/* Find the State and job code for the crew. */

proc sort data=sasuser.payrollmaster
 (keep=empid jobcode)
 out=payroll;
 by empid;
run;

proc sort data=sasuser.staffmaster
 (keep=empid state firstname lastname)
 out=staff;
 by empid;
run;

data st_cat (keep=state jobcategory);
 merge crew (in=c)
 staff
 payroll;
 by empid;
 if c;
 jobcategory=substr(jobcode,1,2);
run;

/* Find the supervisor IDs. */

proc sort
 data=st_cat;
 by jobcategory state;
run;

114 Chapter 3 • Combining Tables Horizontally Using PROC SQL

proc sort data=sasuser.supervisors
 out=superv;
 by jobcategory state;
run;

data super (keep=empid);
 merge st_cat(in=s)
 superv;
 by jobcategory state;
 if s;
run;

/* Find the names of the supervisors. */

proc sort data=super;
 by empid;
run;

data names(drop=empid);
 merge super (in=super)
 staff (keep=empid firstname lastname);
 by empid;
 if super;
run;

proc print data=names noobs uniform;
run;

This output is not identical to the output of the PROC SQL approaches (Techniques 1
and 2). The SQL queries eliminated the duplicate names that are seen here. When you
use Technique 3, you can eliminate duplicates by adding the NODUPKEY option to the
last PROC SORT statement, as shown below:

proc sort data=super nodupkey;

Based on a mainframe benchmark in batch mode, the SQL queries use less CPU time,
but more I/O operations, than this non-SQL program.

Joining Multiple Tables and Views 115

Summary

Text Summary

Understanding Joins
A PROC SQL join is a query that combines tables horizontally (side by side) by
combining rows. The two main types of joins are inner joins and outer joins.

Generating a Cartesian Product
When you specify multiple tables in the FROM clause but do not include a WHERE
statement to subset data, PROC SQL returns the Cartesian product of the tables. In a
Cartesian product, each row in the first table is combined with every row in the second
table. In all types of joins, PROC SQL generates a Cartesian product first, and then
eliminates rows that do not meet any subsetting criteria that you have specified.

Using Inner Joins
An inner join combines and displays the rows from the first table that match rows from
the second table, based on the matching criteria (also known as join conditions) that are
specified in the WHERE clause. When the tables that are being joined contain a column
with a common name, you might want to eliminate the duplicate column from results or
specify a column alias to rename one of the duplicate columns. To refer to tables in an
inner join, or in any PROC SQL step, you can specify a temporary name called a table
alias.

Using Outer Joins
An outer join combines and displays all rows that match across tables, based on the
specified matching criteria (also known as join conditions), plus some or all of the rows
that do not match. There are three types of outer joins:

• A left outer join retrieves all rows that match across tables, based on the specified
matching criteria (join conditions), plus nonmatching rows from the left table (the
first table specified in the FROM clause).

• A right outer join retrieves all rows that match across tables, based on the specified
matching criteria (join conditions), plus nonmatching rows from the right table (the
second table specified in the FROM clause).

• A full outer join retrieves both matching rows and nonmatching rows from both
tables.

Creating an Inner Join with Outer Join-Style Syntax
If you want to use a consistent syntax for all joins, you can write an inner join using the
same style of syntax as used for an outer join.

Comparing SQL Joins and DATA Step Match-Merges
DATA step match-merges and PROC SQL joins can produce the same results, although
there are important differences between these two techniques.

• When all the values of the BY variable (column) match and there are no duplicate
BY variables, you can use a PROC SQL inner join.

116 Chapter 3 • Combining Tables Horizontally Using PROC SQL

• When only some of the values of the BY variable match, you can use a PROC SQL
full outer join. To overlay common columns, you must use the COALESCE function
with the PROC SQL join.

Using In-Line Views
An in-line view is a subquery that appears in a FROM clause. An in-line view selects
data from one or more tables to produce a temporary (or virtual) table that the outer
query uses to select data for output. You can reference an in-line view with other views
or tables, reference multiple tables in an in-line view, and assign an alias to an in-line
view.

Joining Multiple Tables and Views
When you perform a complex query that combines more than two tables or views, you
might need to choose between several techniques.

Sample Programs

Combining Tables By Using an Inner Join
proc sql outobs=15;
title 'New York Employees';
 select substr(firstname,1,1) || '. ' || lastname
 as Name,
 jobcode,
 int((today() - dateofbirth)/365.25)
 as Age
 from sasuser.payrollmaster as p,
 sasuser.staffmaster as s
 where p.empid =
 s.empid
 and state='NY'
 order by 2, 3;
quit;

Combining Tables By Using a Left Outer Join
proc sql outobs=20;
title 'All March Flights';
 select m.date,
 m.flightnumber
 label='Flight Number',
 m.destination
 label='Left',
 f.destination
 label='Right',
 delay
 label='Delay in Minutes'
 from sasuser.marchflights as m
 left join
 sasuser.flightdelays as f
 on m.date=f.date
 and m.flightnumber=
 f.flightnumber
 order by delay;
quit;

Summary 117

Overlaying Common Columns in a Full Outer Join
 proc sql;
 select coalesce(p.empid, s.empid)
 as ID, firstname, lastname, gender
 from sasuser.payrollmaster as p
 full join
 sasuser.staffmaster as s
 on p.empid = s.empid
 order by id;
quit;

Joining Tables By Using a Subquery and an In-Line View
 proc sql;
 select empid
 from sasuser.supervisors as m,
 (select substr(jobcode,1,2) as JobCategory,
 state
 from sasuser.staffmaster as s,
 sasuser.payrollmaster as p
 where s.empid=p.empid and s.empid in
 (select empid
 from sasuser.flightschedule
 where date='04mar2000'd
 and destination='CPH')) as c
 where m.jobcategory=c.jobcategory
 and m.state=c.state;
quit;

Points to Remember
• In most cases, generating all possible combinations of rows from multiple tables

does not yield useful results, so a Cartesian product is rarely the query outcome that
you want.

• The maximum number of tables that you can combine in a single inner join depends
on your version of SAS. If the join involves views, it is the number of tables that
underlie the views, not the number of views, that counts toward the limit. An outer
join can be performed on only two tables or views at a time.

Quiz
Select the best answer for each question. After completing the quiz, check your answers
using the answer key in the appendix.

1. A Cartesian product is returned when

a. join conditions are not specified in a PROC SQL join.

b. join conditions are not specified in a PROC SQL set operation.

c. more than two tables are specified in a PROC SQL join.

d. the keyword ALL is used with the OUTER UNION operator.

2. Given the PROC SQL query and tables shown below, which output is generated?

118 Chapter 3 • Combining Tables Horizontally Using PROC SQL

proc sql;
 select *
 from store1,
 store2
 where store1.wk=
 store2.wk;

a.

b.

c.

d.

Quiz 119

3. Given the PROC SQL query and tables shown below, which output is generated?

proc sql;
 select s.*, bonus
 from bonus as b
 right join
 salary as s
 on b.id=
 s.id;

a.

b.

c.

d.

4. Which PROC SQL query produces the same output as the query shown here?

proc sql;
 select a.*,
 duration
 from groupa as a,
 groupb as b
 where a.obs=b.obs;

Note: Assume that the table Groupa contains the columns Obs and Med. Groupb
contains the columns Obs and Duration.

120 Chapter 3 • Combining Tables Horizontally Using PROC SQL

a. proc sql;
 select a.obs label='Obs',
 med
 b.obs label='Obs',
 duration
 from groupa as a, groupb as b
 where a.obs=b.obs;

b. proc sql;
 select coalesce(a.obs, b.obs)
 label='Obs', med, duration
 from groupa as a
 full join
 groupb as b
 on a.obs=b.obs;

c. proc sql;
 select a.*, duration
 from groupa as a
 left join
 groupb as b
 where a.obs=b.obs;

d. proc sql;
 select a.*, duration
 from groupa as a
 inner join
 groupb as b
 on a.obs=b.obs;

5. Which output is generated by the following PROC SQL query?

proc sql;
 select *
 from table1
 left join
 table2
 on table1.g3=
 table2.g3;

a.

b.

c.

Quiz 121

d.

6. In order for PROC SQL to perform an inner join,

a. the tables being joined must contain the same number of columns.

b. the tables must be sorted before they are joined.

c. the columns that are specified in a join condition in the WHERE clause must
have the same data type.

d. the columns that are specified in a join condition in the WHERE clause must
have the same name.

7. Which statement about in-line views is false?

a. Once defined, an in-line view can be referenced in any PROC SQL query in the
current SAS session.

b. An in-line view can be assigned a table alias but not a permanent name.

c. In-line views can be combined with tables in PROC SQL joins.

d. This PROC SQL query contains an in-line view that uses valid syntax:

proc sql;
 select name, numvisits
 from (select name, sum(checkin)
 as numvisits
 from facility as f, members as m
 where area='POOL' and
 f.id=m.id
 group by name)
 where numvisits<=10
 order by 1;

8. Which PROC SQL query generates the same output as the DATA step match-merge
and PRINT step shown below?

data merged;
 merge table1 table2;
 by g3;
run;

proc print data=merged
 noobs;
 title 'Merged';
run;

a. proc sql;

122 Chapter 3 • Combining Tables Horizontally Using PROC SQL

title 'Merged';
 select a.g3, z, r
 from table1 as a
 full join
 table2 as b
 on a.g3 = b.g3
 order by 1;

b. proc sql;
title 'Merged';
 select a.g3, z, r
 from table1 as a
 table2 as b
 on a.g3 = b.g3
 order by 1;

c. proc sql;
title 'Merged';
 select coalesce(a.g3, b.g3)
 label='G3', z, r
 from table1 as a
 full join
 table2 as b
 on a.g3 = b.g3
 order by 1;

d. proc sql;
title 'Merged';
 select g3, z, r
 from table1 as a
 full join
 table2 as b
 on a.g3 = b.g3
 order by 1;

9. A PROC SQL inner join can combine

a. a maximum of 2 tables or in-line views, but multiple joins can be chained
together.

b. a maximum of 256 tables or 2 in-line views.

c. a maximum of 256 tables, which includes any tables referenced by an in-line
view.

d. a maximum of 2 tables and 32 columns.

10. Which statement about the use of table aliases is false?

a. Table aliases must be used when referencing identical table names from different
libraries.

b. Table aliases can be referenced by using the keyword AS.

c. Table aliases (or full table names) must be used when referencing a column name
that is the same in two or more tables.

d. Table aliases must be used when using summary functions.

Quiz 123

124 Chapter 3 • Combining Tables Horizontally Using PROC SQL

Chapter 4

Combining Tables Vertically Using
PROC SQL

Overview . 126
Introduction . 126

Understanding Set Operations . 127
Overview . 127
Example . 127
Processing a Single Set Operation . 128
Using Multiple Set Operators . 128
Example . 128
Processing Multiple Set Operations . 128
Introducing Set Operators . 129
Processing Unique versus Duplicate Rows . 130
Combining and Overlaying Columns . 130
Modifying Results By Using Keywords . 131

Using the EXCEPT Set Operator . 132
Overview . 132
Using the EXCEPT Operator Alone . 133
Using the Keyword ALL with the EXCEPT Operator . 135
Using the Keyword CORR with the EXCEPT Operator . 135
Using the Keywords ALL and CORR with the EXCEPT Operator 136
Example: EXCEPT Operator . 137
Example: EXCEPT Operator in an In-Line View . 139

Using the INTERSECT Set Operator . 139
Overview . 139
Using the INTERSECT Operator Alone . 140
Using the Keyword ALL with the INTERSECT Operator 140
Using the Keyword CORR with the INTERSECT Operator 141
Using the Keywords ALL and CORR with the INTERSECT Operator 142
Example: INTERSECT Operator . 143

Using the UNION Set Operator . 144
Overview . 144
Using the UNION Operator Alone . 145
Using the Keyword ALL with the UNION Operator . 146
Using the Keyword CORR with the UNION Operator . 147
Using the Keywords ALL and CORR with the UNION Operator 148
Example: UNION Operator . 149
Example: UNION Operator and Summary Functions . 150

Using the OUTER UNION Set Operator . 151
Overview . 151
Using the OUTER UNION Operator Alone . 152

125

Using the Keyword CORR with the OUTER UNION Operator 153
Example: OUTER UNION Operator . 154

Comparing Outer Unions and Other SAS Techniques . 156
Program 1: PROC SQL OUTER UNION Set Operation with CORR 156
Program 2: DATA Step, SET Statement, and PROC PRINT Step 156

Summary . 157
Text Summary . 157
Sample Program . 158
Points to Remember . 158

Quiz . 159

Overview

Introduction
Suppose you are generating a report based on data from a health clinic. You want to
display the results of individual patient stress tests taken in 1998 (which are stored in
Table A), followed by the results from stress tests taken in 1999 (which are stored in
Table B). Instead of combining the table rows horizontally, as you would in a PROC
SQL join, you want to combine the table rows vertically (one on top of the other).

When you need to select data from multiple tables and combine the tables vertically,
PROC SQL can be an efficient alternative to using other SAS procedures or the DATA
step. In a PROC SQL set operation, you use one of four set operators (EXCEPT,
INTERSECT, UNION, and OUTER UNION) to combine tables (and views) vertically
by combining the results of two queries:

proc sql;
 select *
 from a
 set-operator
 select *
 from b;

Each set operator combines the query results in a different way.

In this chapter, you learn how to use the various set operators, with or without the
optional keywords ALL and CORR (CORRESPONDING), to combine the results of
multiple queries.

Note: In this chapter, the references to tables are also applicable to views, unless
otherwise noted.

126 Chapter 4 • Combining Tables Vertically Using PROC SQL

Understanding Set Operations

Overview
A set operation contains

• two queries (each beginning with a SELECT clause)

• a set operator

• one or both of the keywords ALL and CORR (CORRESPONDING).

General form of an SQL query using a set operator:

SELECT column-1<, ... column-n>
FROM table-1 | view-1<, ... table-n | view-n>
<optional query clauses>

set-operator <ALL> <CORR>
SELECT column-1<, ... column-n>

FROM table-1 | view-1<, ... table-n | view-n>
<optional query clauses>;

Here is an explanation of the syntax:

SELECT
specifies the column(s) that will appear in the result.

FROM
specifies the table(s) or view(s) to be queried.

optional query clauses
are used to refine the query further and include the clauses WHERE, GROUP BY, HAVING,
and ORDER BY.

• the set-operator is one of the following: EXCEPT | INTERSECT | UNION | OUTER
UNION.

• the optional keywords ALL and CORR (CORRESPONDING) further modify the set
operation.

The query or set operation contains one semicolon, which is placed after the last SELECT
statement.

Example
In the following PROC SQL step, the SELECT statement contains one set operation.
The set operation uses the set operator UNION to combine the result of a query on the
table Sasuser.Stress98 with the result of a query on the table Sasuser.Stress99.

proc sql;
 select *
 from sasuser.stress98
 union
 select *
 from sasuser.stress99;

Understanding Set Operations 127

You learn the details about using each set operator later in this chapter.

Processing a Single Set Operation
PROC SQL evaluates a SELECT statement with one set operation as follows:

1. Each query is evaluated to produce an intermediate (internal) result table.

2. Each intermediate result table then becomes an operand linked with a set operator to
form an expression (for example, Table1 UNION Table2).

3. PROC SQL evaluates the entire expression to produce a single output result set.

Using Multiple Set Operators
A single SELECT statement can contain more than one set operation. Each additional set
operation includes a set operator and a group of query clauses, as shown in the following
example:

proc sql;
 select *
 from table1
 set-operator
 select *
 from table2
 set-operator
 select *
 from table3;

This SELECT statement uses two set operators to link together three queries.

Regardless of the number of set operations in a SELECT statement, the statement
contains only one semicolon, which is placed after the last query.

Example
The following PROC SQL step contains two set operators (both are OUTER UNION)
that combine three queries:

 proc sql;
 select *
 from sasuser.mechanicslevel1
 outer union
 select *
 from sasuser.mechanicslevel2
 outer union
 select *
 from sasuser.mechanicslevel3;

Processing Multiple Set Operations
When PROC SQL evaluates a SELECT statement that contains multiple set operations,
an additional processing step (step 3 below) is required:

1. Each query is evaluated to produce an intermediate (internal) result table.

128 Chapter 4 • Combining Tables Vertically Using PROC SQL

2. Each intermediate result table then becomes an operand linked with a set operator to
form an expression (for example, Table1 UNION Table2).

3. If the set operation contains more than two queries, then the result from the first two
queries (enclosed in parentheses in the following examples) becomes an operand for
the next set operator and operand. For example:

• with two set operators: (Table1 UNION Table2) EXCEPT Table3

• with three set operators: ((Table1 UNION Table2) EXCEPT Table3)
INTERSECT Table4.

4. PROC SQL evaluates the entire expression to produce a single output result set.

Note: When processing set operators, PROC SQL follows a default order of precedence,
unless this order is overridden by parentheses in the expression(s). By default,
INTERSECT is evaluated first. OUTER UNION, UNION, and EXCEPT all have the
same level of precedence.

Introducing Set Operators
Each of the four set operators EXCEPT, INTERSECT, UNION, and OUTER UNION
selects rows and handles columns in a different way, as described below.

Note: In the following chart, Table 1 is the table that is referenced in the first query and
Table 2 is the table that is referenced in the second query.

Set Operator Treatment of Rows Treatment of Columns Example

EXCEPT Selects unique rows from
the first table that are not
found in the second table.

Overlays columns based on
their position in the
SELECT clause without
regard to the individual
column names.

proc sql;
 select *
 from table1
 except
 select *
 from table2;

INTERSECT Selects unique rows that are
common to both tables.

Overlays columns based on
their position in the
SELECT clause without
regard to the individual
column names.

proc sql;
 select *
 from table1
 intersect
 select *
 from table2;

UNION Selects unique rows from
both tables.

Overlays columns based on
their position in the
SELECT clause without
regard to the individual
column names.

proc sql;
 select *
 from table1
 union
 select *
 from table2;

Understanding Set Operations 129

Set Operator Treatment of Rows Treatment of Columns Example

OUTER UNION Selects all rows from both
tables.

The OUTER UNION
operator concatenates the
results of the queries.

Does not overlay columns. proc sql;
 select *
 from table1
 outer union
 select *
 from table2;

Note: A set operator that selects only unique rows displays one occurrence of a given
row in output.

Processing Unique versus Duplicate Rows
When processing a set operation that displays only unique rows (a set operation that
contains the set operator EXCEPT, INTERSECT, or UNION), PROC SQL makes two
passes through the data, by default:

1. PROC SQL eliminates duplicate (nonunique) rows in the tables.

2. PROC SQL selects the rows that meet the criteria and, where requested, overlays
columns.

For set operations that display both unique and duplicate rows, only one pass through the
data (step 2 above) is required.

Combining and Overlaying Columns
You can use a set operation to combine tables that have different numbers of columns
and rows or that have columns in a different order.

Three of the four set operators (EXCEPT, INTERSECT, and UNION) combine columns
by overlaying them. (The set operator OUTER UNION does not overlay columns.)

By default, the set operators EXCEPT, INTERSECT, and UNION overlay columns
based on the relative position of the columns in the SELECT clause. Column names are
ignored. You control how PROC SQL maps columns in one table to columns in another
table by specifying the columns in the appropriate order in the SELECT clause. The first
column specified in the first query's SELECT clause and the first column specified in the
second query's SELECT clause are overlaid, and so on.

When columns are overlaid, PROC SQL uses the column name from the first table (the
table referenced in the first query). If there is no column name in the first table, the
column name from the second table is used. When the SELECT clause contains an
asterisk (*) instead of a list of column names, the set operation combines the tables (and,
if applicable, overlays columns) based on the positions of the columns in the tables.

For example, the following set operation uses the set operator EXCEPT, so columns are
overlaid. The SELECT clause in each query uses an asterisk (*), so the columns are
overlaid based on their positions in the tables. The first column in table One (X) is
overlaid on the first column in table Two (X), and so on.

130 Chapter 4 • Combining Tables Vertically Using PROC SQL

proc sql;
 select *
 from one
 except
 select *
 from two;

In order to be overlaid, columns in the same relative position in the two SELECT clauses
must have the same data type. If they do not, PROC SQL generates a warning message
in the SAS log and stops executing. For example, in the tables shown above, if the
column One.X had a different data type than column Two.X, the SAS log would display
the following error message.

Table 4.1 SAS Log

ERROR: Column 1 from the first contributor of EXCEPT
is not the same type as its counterpart from the second.

Next, we use the keywords ALL and CORR to modify the default action of the set
operators.

Modifying Results By Using Keywords
To modify the behavior of set operators, you can use either or both of the keywords ALL
and CORR immediately following the set operator:

proc sql;
 select *

Understanding Set Operations 131

 from table1
 set-operator <all> <corr>
 select *
 from table2;

The use of each keyword is described below.

Keyword Action Used When...

ALL Makes only one pass through the data
and does not remove duplicate rows.

You do not care if there
are duplicates.

Duplicates are not
possible.

ALL cannot be used
with OUTER UNION.

CORR (or
CORRESPONDING)

Compares and overlays columns by
name instead of by position:

• When used with EXCEPT,
INTERSECT, and UNION,
removes any columns that do not
have the same name in both tables.

• When used with OUTER UNION,
overlays same-named columns and
displays columns that have
nonmatching names without
overlaying.

If an alias is assigned to a column in
the SELECT clause, CORR use the
alias instead of the permanent column
name.

Two tables have some
or all columns in
common, but the
columns are not in the
same order.

In the remainder of this chapter, you learn more about the use of each set operator, with
and without the keywords ALL and CORR.

Using the EXCEPT Set Operator

Overview
The set operator EXCEPT does both of the following:

• selects unique rows from the first table (the table specified in the first query) that are
not found in the second table (the table specified in the second query)

• overlays columns.

132 Chapter 4 • Combining Tables Vertically Using PROC SQL

Consider how EXCEPT works when used alone and with the keywords ALL and CORR.

Using the EXCEPT Operator Alone
Suppose you want to display the unique rows in table One that are not found in table
Two. The PROC SQL set operation that includes the EXCEPT operator, the tables One
and Two, and the output of the set operation are shown below:

proc sql;
 select *
 from one
 except
 select *
 from two;

The set operator EXCEPT overlays columns by their position. In this output, the
following columns are overlaid:

• the first columns, One.X, and Two.X, both of which are numeric

• the second columns, One.A, and Two.B, both of which are character.

The column names from table One are used, so the second column of output is named A
rather than B.

Consider how PROC SQL selects rows from table One to display in output.

In the first pass, PROC SQL eliminates any duplicate rows from the tables. As shown
below, there is one duplicate row: in table One, the second row is a duplicate of the first
row. All remaining rows in table One are still candidates in PROC SQL's selection
process.

Using the EXCEPT Set Operator 133

proc sql;
 select *
 from one
 except
 select *
 from two;

In the second pass, PROC SQL identifies any rows in table One for which there is a
matching row in table Two and eliminates them. There is one matching row in the two
tables, as shown below, which is eliminated.

proc sql;
 select *
 from one
 except
 select *
 from two;

The five remaining rows in table One, the unique rows, are displayed in the output.

134 Chapter 4 • Combining Tables Vertically Using PROC SQL

Using the Keyword ALL with the EXCEPT Operator
To select all rows in the first table (both unique and duplicate) that do not have a
matching row in the second table, add the keyword ALL after the EXCEPT set operator.
The modified PROC SQL set operation, the tables One and Two, and the output are
shown below:

proc sql;
 select *
 from one
 except all
 select *
 from two;

The output now contains six rows. PROC SQL has again eliminated the one row in table
One (the fifth row) that has a matching row in table Two (the fourth row). Remember
that when the keyword ALL is used with the EXCEPT operator, PROC SQL does not
make an extra pass through the data to remove duplicate rows within table One.
Therefore, the second row in table One, which is a duplicate of the first row, is now
included in the output.

Using the Keyword CORR with the EXCEPT Operator
To display both of the following, add the keyword CORR after the set operator.

• only columns that have the same name

• all unique rows in the first table that do not appear in the second table.

The modified PROC SQL set operation, the tables One and Two, and the output are
shown below:

Using the EXCEPT Set Operator 135

proc sql;
 select *
 from one
 except corr
 select *
 from two;

X is the only column that has the same name in both tables, so X is the only column that
PROC SQL examines and displays in the output.

In the first pass, PROC SQL eliminates the second and third rows of table One from the
output because they are not unique within the table; they contain values of X that
duplicate the value of X in the first row of table One. In the second pass, PROC SQL
eliminates the first, fourth, and fifth rows of table One because each contains a value of
X that matches a value of X in a row of table Two. The output displays the two
remaining rows in table One, the rows that are unique in table One and that do not have a
row in table Two that has a matching value of X.

Using the Keywords ALL and CORR with the EXCEPT Operator
If the keywords ALL and CORR are used together, the EXCEPT operator displays all
unique and duplicate rows in the first table that do not appear in the second table, and
overlays and display only columns that have the same name. The modified PROC SQL
set operation, the tables One and Two, and the output are shown below:

136 Chapter 4 • Combining Tables Vertically Using PROC SQL

proc sql;
 select *
 from one
 except all corr
 select *
 from two;

Once again, PROC SQL looks at and displays only the column that has the same name in
the two tables: X. Because the ALL keyword is used, PROC SQL does not eliminate any
duplicate rows in table One. Therefore, the second and third rows in table One, which
are duplicates of the first row in table One, appear in the output. PROC SQL does
eliminate the first, fourth, and fifth rows in table One from the output because for each
one of these three rows there is a corresponding row in table Two that has a matching
value of X.

As this example shows, when the ALL keyword is used with the EXCEPT operator, a
row in table One cannot be eliminated from the output unless it has a separate matching
row in table Two. Table One contains three rows in which the value of X is 1, but table
Two contains only one row in which the value of X is 1. That one row in table Two
causes the first of the three rows in table One that have a matching value of X to be
eliminated from the output. However, table Two does not have two additional rows in
which the value of X is 1, so the other two rows in table One are not eliminated, and do
appear in the output.

Example: EXCEPT Operator
The EXCEPT operator can be used to solve a realistic business problem. Suppose you
want to display the names of all new employees of a company. There is no table that
contains information for only the new employees, so you use data from the following
two tables.

Using the EXCEPT Set Operator 137

Table Relevant Columns

Sasuser.Staffchanges lists information for all new employees and
existing employees who have had a change in salary or job code

FirstName, LastName

Sasuser.Staffmaster lists information for all existing employees FirstName, LastName

The relationship between these two tables is shown in the diagram below:

The intersection of these two tables includes information for all existing employees who
have had changes in job code or salary. The shaded portion, the portion of
Sasuser.Staffchanges that does not overlap with Sasuser.Staffmaster, includes
information for the people that you want: new employees.

To separate the new employees from the existing employees in Sasuser.Staffchanges,
you create a set operation that displays all rows from the first table
(Sasuser.Staffchanges) that do not exist in the second table (Sasuser.Staffmaster). The
following PROC SQL step solves the problem:

proc sql;
 select firstname, lastname
 from sasuser.staffchanges
 except all
 select firstname, lastname
 from sasuser.staffmaster;

This PROC SQL set operation includes the operator EXCEPT and the keyword ALL.
Although you do not want the output to contain duplicate rows, you already know that
there are no duplicates in these two tables. Therefore, ALL is specified to prevent PROC
SQL from making an extra pass through the data, which speeds up the processing of this
query.

PROC SQL compares only the columns that are specified in the SELECT clauses, and
these columns are compared in the order in which they are specified. The output displays
the first and last names of the two new employees.

Note: In a set operation that uses the EXCEPT operator, the order in which the tables
are listed in the SELECT statement makes a difference. If the tables in this example
were listed in the opposite order, the output would display all existing employees
who have had no changes in salary or job code.

138 Chapter 4 • Combining Tables Vertically Using PROC SQL

Example: EXCEPT Operator in an In-Line View
This example is a variation of the preceding set operation. Suppose you want to display
the number of existing employees who have had no changes in salary or job code. Once
again, the query uses the following tables and columns.

Table Relevant Columns

Sasuser.Staffchanges lists information for all new employees and
existing employees who have had a change in salary or job code

FirstName, LastName

Sasuser.Staffmaster lists information for all existing employees FirstName, LastName

The following PROC SQL query solves this problem:

proc sql;
 select count(*) label='No. of Persons'
 from (select EmpID
 from sasuser.staffmaster
 except all
 select EmpID
 from sasuser.staffchanges);

This PROC SQL query uses

• the COUNT function with an asterisk (*) as an argument to count the number of
employee IDs returned from the set operation

• the set operator EXCEPT within an in-line view.

The in-line view returns a virtual table that contains employees who have had no
changes in salary or job code. This virtual table is then passed to the COUNT(*)
summary function, which counts the number of rows in the virtual table. The output
shows that there are 144 existing employees who have had no changes in salary or job
code.

Using the INTERSECT Set Operator

Overview
The set operator INTERSECT does both of the following:

• selects unique rows that are common to both tables

• overlays columns.

Using the INTERSECT Set Operator 139

The following example demonstrates how INTERSECT works when used alone and
with the keywords ALL and CORR.

Using the INTERSECT Operator Alone
The INTERSECT operator compares and overlays columns in the same way as the
EXCEPT operator, by column position instead of column name. However, INTERSECT
selects rows differently and is displayed in output the unique rows that are common to
both tables. The following PROC SQL set operation uses the INTERSECT operator to
combine the tables One and Two, which were introduced previously:

proc sql;
 select *
 from one
 intersect
 select *
 from two;

Tables One and Two have only one unique row in common and this row is displayed in
the output. (This is the same row that was eliminated in the earlier example that
contained the EXCEPT operator.)

Using the Keyword ALL with the INTERSECT Operator
Adding the keyword ALL to the preceding PROC SQL query prevents PROC SQL from
making an extra pass through the data. If there were any rows common to tables One and
Two that were duplicates of other common rows, they would also be included in output.
However, as you have seen, there is only one common row in these tables. The modified
PROC SQL query, the tables One and Two, and the output are shown below:

140 Chapter 4 • Combining Tables Vertically Using PROC SQL

proc sql;
 select *
 from one
 intersect all
 select *
 from two;

As before, there is just one row of output.

Using the Keyword CORR with the INTERSECT Operator
To display the unique rows that are common to the two tables based on the column name
instead of the column position, add the CORR keyword to the PROC SQL set operation.
The modified query, the tables One and Two, and the output are shown below:

Using the INTERSECT Set Operator 141

proc sql;
 select *
 from one
 intersect corr
 select *
 from two;

X is the only column name that is common to both tables, so X is the only column that
PROC SQL examines and displays in the output. In the first pass, PROC SQL eliminates
the rows that are duplicated within each table: the second and third rows in table One
contain the same value for X as the first row, and the fourth row in table Two contains
the same value for X as the third row. In the second pass, PROC SQL eliminates any
rows that are not common across tables: the fourth and fifth rows in table One and the
fifth row in table Two do not have a matching value of X in the other table. The output
displays the three rows with unique values of X that are also common to both tables.

Using the Keywords ALL and CORR with the INTERSECT Operator
If the keywords ALL and CORR are used together, the INTERSECT operator displays
all unique and nonunique (duplicate) rows that are common to the two tables, based on
columns that have the same name. The modified query, the tables One and Two, and the
output are shown below:

142 Chapter 4 • Combining Tables Vertically Using PROC SQL

proc sql;
 select *
 from one
 intersect all corr
 select *
 from two;

PROC SQL examines and displays only the column with the same name, X. There are
three common rows across the two tables, which are highlighted above, and these are the
three rows that are displayed in the output.

Note that each of the tables contains at least one other row that duplicates a value of X in
one of the common rows. For example, in the second and third rows in table One, the
value of X is 1, as in one of the common rows. However, in order to be considered a
common row and to be included in the output, every duplicate row in one table must
have a separate duplicate row in the other table. In this example, there are no rows that
have duplicate values and that are also common across tables. Therefore, in this
example, the set operation with the keywords ALL and CORR generates the same output
as with the keyword CORR alone.

Example: INTERSECT Operator
Now that you have seen how the INTERSECT set operator works with very small tables,
we can use INTERSECT in a realistic business problem. Suppose you want to display
the names of the existing employees who have changed their salary or job code. (This
query is the opposite of the query that you solved with the EXCEPT operator.)

Once again, you use the following tables.

Table Relevant Columns

Sasuser.Staffchanges lists information for all new employees and
existing employees who have had a change in salary or job code

FirstName, LastName

Using the INTERSECT Set Operator 143

Table Relevant Columns

Sasuser.Staffmaster lists information for all existing employees FirstName, LastName

The relationship between these two tables is shown in the diagram below:

As shown in the earlier example with EXCEPT, the intersection of these two tables
includes information for all existing employees who have had changes in job code or
salary. It is the intersection of these two tables, shaded above, that you want to display.

To display the unique rows that are common to both tables, you use a PROC SQL set
operation that contains INTERSECT. It is known that these tables contain no duplicates,
so ALL is used to speed up query processing. The PROC SQL set operation is shown
below:

proc sql;
 select firstname, lastname
 from sasuser.staffchanges
 intersect all
 select firstname, lastname
 from sasuser.staffmaster;

Note: In this PROC SQL step, which contains just one INTERSECT set operator, the
order in which you list the tables in the SELECT statement does not make a
difference. However, in a more complex PROC SQL step that contains multiple
stacked INTERSECT set operators, it is important to think through the table order
carefully, depending on when you want the non-matches to be eliminated. The output
shows that there are four existing employees who have changed their salary or job
code.

Using the UNION Set Operator

Overview
The set operator UNION does both of the following:

144 Chapter 4 • Combining Tables Vertically Using PROC SQL

• selects unique rows from both tables

• overlays columns.

The following example demonstrates how UNION works when used alone and with the
keywords ALL and CORR.

Using the UNION Operator Alone
To display all rows from the tables One and Two that are unique in the combined set of
rows from both tables, use a PROC SQL set operation that includes the UNION
operator:

Using the UNION Set Operator 145

proc sql;
 select *
 from one
 union
 select *
 from two;

With the UNION operator, PROC SQL first concatenates and sorts the rows from the
two tables, and eliminates any duplicate rows. In this example, two rows are eliminated:
the second row in table One is a duplicate of the first row, and the fourth row in table
Two matches the fifth row in table One. All remaining rows, the unique rows, are
included in the output. The columns are overlaid by position.

Using the Keyword ALL with the UNION Operator
When the keyword ALL is added to the UNION operator, the output displays all rows
from both tables, both unique and duplicate. The modified PROC SQL set operation, the
tables One and Two, and the new output are shown below:

146 Chapter 4 • Combining Tables Vertically Using PROC SQL

proc sql;
 select *
 from one
 union all
 select *
 from two;

When the ALL keyword is used, PROC SQL does not remove duplicates or sort the
rows. The output now includes the two duplicate rows that were eliminated in the
previous example: the second row in table One and the fourth row in table Two. Note
that the rows are in a different order in this output than they were in the output from the
previous set operation.

Using the Keyword CORR with the UNION Operator
To display all rows from the tables One and Two that are unique in the combined set of
rows from both tables, based on columns that have the same name rather than the same
position, add the keyword CORR after the set operator. The modified query, the tables
One and Two, and the output are shown below:

Using the UNION Set Operator 147

proc sql;
 select *
 from one
 union corr
 select *
 from two;

X is the only column name that is common to both tables, so X is the only column that
PROC SQL examines and displays in the output. In the combined set of rows from the
two tables, there are duplicates of the values 1, 2, and 3, and these duplicate rows are
eliminated from the output. The output displays the six unique values of X.

Using the Keywords ALL and CORR with the UNION Operator
If the keywords ALL and CORR are used together, the UNION operator displays all
rows in the two tables both unique and duplicate, based on the columns that have the
same name. In this example, the output displays all 12 values for X, the one column that
has the same name in both tables.

148 Chapter 4 • Combining Tables Vertically Using PROC SQL

proc sql;
 select *
 from one
 union all corr
 select *
 from two;

Example: UNION Operator
The UNION operator can be used to solve a realistic business problem. Suppose you are
generating a report based on data from a health clinic. You want to display the results of
individual patient stress tests taken in 1998, followed by the results from stress tests
taken in 1999. To do this, you use the UNION operator to combine the tables
Sasuser.Stress98 and Sasuser.Stress99. These two tables are similar in structure:

• both tables contain nine columns that have the same names

• each row contains data for an individual patient.

You are not sure whether the tables contain duplicate records, but you do not want
duplicates in your output. Because the tables have the same column structure, you can
overlay the columns by position, and the CORR keyword is not necessary. The PROC
SQL set operation and output are shown below (the rows are ordered by IDs.):

Using the UNION Set Operator 149

proc sql;
 select *
 from sasuser.stress98
 union
 select *
 from sasuser.stress99;

T I P If you can determine that these tables have no duplicate records, you could add
the keyword ALL to speed up processing by avoiding an extra pass through the data.

Example: UNION Operator and Summary Functions
We can demonstrate another realistic business problem, to see how summary functions
can be used with a set operator (in this case, UNION). Suppose you want to display the
following summarized data for members of a frequent-flyer program: total points earned,
total points used, and total miles traveled. All three values can be calculated from
columns in the table Sasuser.Frequentflyers by using summary functions.

You might wonder why set operations are needed when only one table is involved. If you
wanted to display the three summarized values horizontally, in three separate columns,
you could solve the problem without a set operation, using the following simple
SELECT statement:

proc sql;
 select sum(pointsearned) format=comma12.
 label='Total Points Earned',
 sum(pointsused) format=comma12.
 label='Total Points Used',
 sum(milestraveled) format=comma12.
 label='Total Miles Traveled'
 from sasuser.frequentflyers;

150 Chapter 4 • Combining Tables Vertically Using PROC SQL

Assume, however, that you want the three values to be displayed vertically in a single
column. To generate this output, you create three different queries on the same table, and
then use two UNION set operators to combine the three query results:

proc sql;
title 'Points and Miles Traveled';
title2 'by Frequent Flyers';
 select 'Total Points Traveled:',
 sum(MilesTraveled) format=comma12.
 from sasuser.frequentflyers
 union
 select 'Total Points Earned:',
 sum(PointsEarned) format=comma12.
 from sasuser.frequentflyers
 union
 select 'Total Points Used:',
 sum(PointsUsed) format=comma12.
 from sasuser.frequentflyers;

Each SELECT clause defines two columns: a character constant as a label and the
summarized value. The output is shown below.

Note: The preceding program reads the same table three times, so it is not the most
efficient way to solve this problem.

Using the OUTER UNION Set Operator

Overview
The set operator OUTER UNION concatenates the results of the queries by the
following:

• selecting all rows (both unique and nonunique) from both tables

• not overlaying columns.

Using the OUTER UNION Set Operator 151

We can demonstrate how OUTER UNION works when used alone and with the keyword
CORR. The ALL keyword is not used with OUTER UNION because this operator's
default action is to include all rows in output.

Using the OUTER UNION Operator Alone
Suppose you want to display all rows from both of the tables One and Two, without
overlaying columns. The PROC SQL set operation that includes the OUTER UNION
operator, the two tables, and the output are shown below:

152 Chapter 4 • Combining Tables Vertically Using PROC SQL

proc sql;
 select *
 from one
 outer union
 select *
 from two;

In the output, the columns are not overlaid. Instead, all four columns from both tables
are displayed. Each row of output contains missing values in the two columns that
correspond to the other table.

Using the Keyword CORR with the OUTER UNION Operator
The output from the preceding set operation contains two columns with the same name.
To overlay the columns with a common name, add the CORR keyword to the set
operation:

Using the OUTER UNION Set Operator 153

proc sql;
 select *
 from one
 outer union corr
 select *
 from two;

The output from the modified set operation contains only three columns, because the two
columns named X are overlaid.

Example: OUTER UNION Operator
There are many business situations that require two or more tables to be concatenated.
For example, suppose you want to display the employee numbers, job codes, and salaries
of all mechanics working for an airline. The mechanic job has three levels and there is a
separate table containing data for the mechanics at each level: Sasuser.Mechanicslevel1,
Sasuser.Mechanicslevel2, and Sasuser.Mechanicslevel3. These tables all contain the
same three columns.

The following PROC SQL step uses two OUTER UNION operators to concatenate the
tables, and the CORR keyword to overlay the columns that have common names:

154 Chapter 4 • Combining Tables Vertically Using PROC SQL

proc sql;
 select *
 from sasuser.mechanicslevel1
 outer union corr
 select *
 from sasuser.mechanicslevel2
 outer union corr
 select *
 from sasuser.mechanicslevel3;

Using the OUTER UNION Set Operator 155

Comparing Outer Unions and Other SAS
Techniques

A PROC SQL set operation that uses the OUTER UNION operator is just one SAS
technique that you can use to concatenate tables, as shown in the following programs.
Program 1 is the PROC SQL set operation that was shown earlier in this chapter.
Program 2 uses a different SAS technique to concatenate the hypothetical tables One and
Two.

Program 1: PROC SQL OUTER UNION Set Operation with CORR
proc sql;
 create table three as
 select * from one
 outer union corr
 select * from two;
quit;

Program 2: DATA Step, SET Statement, and PROC PRINT Step
 data three;
 set one two;
 run;
 proc print data=three noobs;
 run;

These two programs create the same table as output, as shown below.

156 Chapter 4 • Combining Tables Vertically Using PROC SQL

When tables have a same-named column, the PROC SQL outer union does not produce
the same output unless the keyword CORR is also used. CORR causes the same-named
columns (in this example, the two columns named X) to be overlaid; without CORR, the
OUTER UNION operator includes both of the same-named columns in the result set.
The DATA step program generates only one column X.

The two concatenation techniques shown above also vary in efficiency. A PROC SQL
set operation generally requires more computer resources but might be more convenient
and flexible than the DATA step equivalent.

Summary

Text Summary

Understanding Set Operations
A set operation combines tables or views vertically (one on top of the other) by
combining the results of two queries. A set operation is a SELECT statement that
contains

• two queries (each beginning with a SELECT clause)

• one of the set operators EXCEPT, INTERSECT, UNION, and OUTER UNION

• one or both of the keywords ALL and CORR (CORRESPONDING) as modifiers.

A single SELECT statement can contain multiple set operations.

Summary 157

When processing a set operation that displays only unique rows (a set operation that
contains the set operator EXCEPT, INTERSECT, or UNION), PROC SQL makes two
passes through the data, by default. For set operations that display both unique and
duplicate rows, only one pass through the data is required.

For the set operators EXCEPT, INTERSECT, and UNION, columns are overlaid based
on the relative position of the columns in the SELECT clause rather than by column
name. In order to be overlaid, columns in the same relative position in the two SELECT
clauses must have the same data type.

One or both keywords can be used to modify the default action of a set operator.

Using the EXCEPT Set Operator
The set operator EXCEPT selects unique rows from the first table (the table specified in
the first query) that are not found in the second table (the table specified in the second
query) and overlays columns. This set operation can be modified by using either or both
of the keywords ALL and CORR.

Using the INTERSECT Set Operator
The set operator INTERSECT selects unique rows that are common to both tables and
overlays columns. This set operation can be modified by using either or both of the
keywords ALL and CORR.

Using the UNION Set Operator
The set operator UNION selects unique rows from both tables and overlays columns.
This set operation can be modified by using either or both of the keywords ALL and
CORR.

Using the OUTER UNION Set Operator
The set operator OUTER UNION concatenates the results of two queries by selecting all
rows (both unique and nonunique) from both tables and not overlaying columns. This set
operation can be modified by using the keyword CORR.

Comparing Outer Unions and Other SAS Techniques
A PROC SQL set operation that uses the OUTER UNION set operator is not the only
way to concatenate tables in SAS. Other SAS techniques can be used, such as a program
that consists of a DATA step, a SET statement, and a PROC PRINT step.

Sample Program
proc sql;
 select firstname, lastname
 from sasuser.staffchanges
 intersect all
 select firstname, lastname
 from sasuser.staffmaster;
quit;

Points to Remember
• Regardless of the number of set operations in a SELECT statement, the statement

contains only one semicolon, which is placed after the last query.

• In order to be overlaid, columns must have the same data type.

158 Chapter 4 • Combining Tables Vertically Using PROC SQL

Quiz
Select the best answer for each question. After completing the quiz, check your answers
using the answer key in the appendix.

1. Which statement is false with respect to a set operation that uses the EXCEPT,
UNION, or INTERSECT set operator without a keyword?

a. Column names in the result set are determined by the first table.

b. To be overlaid, columns must be of the same data type.

c. To be overlaid, columns must have the same name.

d. By default, only unique rows are displayed in the result set.

2. The keyword ALL cannot be used with which of the following set operators?

a. EXCEPT

b. INTERSECT

c. UNION

d. OUTER UNION

3. Which PROC SQL step combines the tables Summer and Winter to produce the
output displayed below?

a. proc sql;
 select *
 from summer
 intersect all
 select *
 from winter;

b. proc sql;
 select *
 from summer

Quiz 159

 outer union
 select *
 from winter;

c. proc sql;
 select *
 from summer
 union corr
 select *
 from winter;

d. proc sql;
 select *
 from summer
 union
 select *
 from winter;

4. Which PROC SQL step combines tables but does not overlay any columns?

a. proc sql;
 select *
 from groupa
 outer union
 select *
 from groupb;

b. proc sql;
 select *
 from groupa as a
 outer union corr
 select *
 from groupb as b;

c. proc sql;
 select coalesce(a.obs, b.obs)
 label='Obs', med, duration
 from groupa as a
 full join
 groupb as b
 on a.obs=b.obs;

d. proc sql;
 select *
 from groupa as a
 intersect
 select *
 from groupb as b;

5. Which statement is false regarding the keyword CORRESPONDING?

a. It cannot be used with the keyword ALL.

b. It overlays columns by name, not by position.

c. When used in EXCEPT, INTERSECT, and UNION set operations, it removes
any columns not found in both tables.

d. When used in OUTER UNION set operations, it causes same-named columns to
be overlaid.

160 Chapter 4 • Combining Tables Vertically Using PROC SQL

6. Which PROC SQL step generates the following output from the tables Dogs and
Pets?

a. proc sql;
 select name, price
 from pets
 except all
 select *
 from dogs;

b. proc sql;
 select name, price
 from pets
 except
 select *
 from dogs;

c. proc sql;
 select name, price
 from pets
 except corr all
 select *
 from dogs;

d. proc sql;
 select *
 from dogs
 except corr
 select name, price
 from pets;

7. The PROG1 and PROG2 tables list students who took the PROG1 and PROG2
courses, respectively. Which PROC SQL step gives you the names of the students
who took only the PROG1 class?

Quiz 161

a. proc sql;
 select fname, lname
 from prog1
 intersect
 select fname, lname
 from prog2;

b. proc sql;
 select fname, lname
 from prog1
 except all
 select fname, lname
 from prog2;

c. proc sql;
 select *
 from prog2
 intersect corr
 select *
 from prog1;

d. proc sql;
 select *
 from prog2
 union
 select *
 from prog1;

8. Which PROC SQL step returns the names of all the students who took PROG1,
PROG2, or both classes?

a. proc sql;
 select fname, lname
 from prog1
 intersect
 select fname, lname
 from prog2;

b. proc sql;
 select fname, lname
 from prog1
 outer union corr
 select fname, lname
 from prog2;

c. proc sql;
 select fname, lname
 from prog1

162 Chapter 4 • Combining Tables Vertically Using PROC SQL

 union
 select fname, lname
 from prog2;

d. proc sql;
 select fname, lname
 from prog1
 except corr
 select fname, lname
 from prog2;

9. Which PROC SQL step returns the names of all the students who took both the
PROG1 and PROG2 classes?

a. proc sql;
 select fname, lname
 from prog1
 union
 select fname, lname
 from prog2;

b. proc sql;
 select fname, lname
 from prog1
 except corr
 select fname, lname
 from prog2;

c. proc sql;
 select fname, lname
 from prog1
 intersect all
 select fname, lname
 from prog2;

d. proc sql;
 select fname, lname
 from prog1
 union corr
 select fname, lname
 from prog2;

10. Which PROC SQL step generates the same results as the following DATA step?

Quiz 163

data allstudents;
 set prog1 prog2;
 by lname;
run;
proc print noobs;
run;

a. proc sql;
 select fname, lname
 from prog1
 outer union corr
 select fname, lname
 from prog2
 order by lname;

b. proc sql;
 select fname, lname
 from prog1
 union
 select fname, lname
 from prog2
 order by lname;

c. proc sql;
 select fname, lname
 from prog2
 outer union
 select fname, lname
 from prog1
 order by lname;

d. proc sql;
 select fname, lname
 from prog2
 union corr
 select fname, lname
 from prog1
 order by lname;

164 Chapter 4 • Combining Tables Vertically Using PROC SQL

Chapter 5

Creating and Managing Tables
Using PROC SQL

Overview . 167
Introduction . 167

Understanding Methods of Creating Tables . 168

Creating an Empty Table By Defining Columns . 168
Overview . 168
Example . 169
Specifying Data Types . 170
Specifying Column Widths . 171
Specifying Column Modifiers . 172
Example . 172

Displaying the Structure of a Table . 173
Overview . 173
Example . 173

Creating an Empty Table That Is like Another Table . 174
Overview . 174
Example . 174
Specifying a Subset of Columns from a Table . 175
Example . 175

Creating a Table from a Query Result . 177
Overview . 177
Example . 178
Copying a Table . 178
Example . 179

Inserting Rows of Data into a Table . 180
Overview . 180
Inserting Rows By Using the SET Clause . 181
Example . 181
Inserting Rows By Using the VALUES Clause . 182
Example . 184
Inserting Rows from a Query Result . 185
Example . 186

Creating a Table That Has Integrity Constraints . 187
Overview . 187
General Integrity Constraints . 188
Referential Integrity Constraints . 188
Creating a Constraint in a Column Specification . 188
Example . 190
Creating a Constraint By Using a Constraint Specification 191

165

Example . 193

Handling Errors in Row Insertions . 193
Overview . 193
Example . 193
Using the UNDO_POLICY= Option to Control UNDO Processing 194
Example . 195

Displaying Integrity Constraints for a Table . 197
Overview . 197
Example . 197

Updating Values in Existing Table Rows . 198
Overview . 198
Updating Rows By Using the Same Expression . 199
Example . 199
Updating Rows By Using Different Expressions . 201
Example . 202
How PROC SQL Updates Rows Based on a CASE Expression 203
How the Case Operand Works . 203
Updating Rows By Using the CASE Expression without a Case Operand 203
Example . 203
Updating Rows By Using the CASE Expression with a Case Operand 205
Example . 205
Using the CASE Expression in the SELECT Statement . 206
Example . 206

Deleting Rows in a Table . 207
Overview . 207
Example . 208

Altering Columns in a Table . 209
Overview . 209
Adding Columns to a Table . 209
Example . 210
Dropping Columns from a Table . 211
Example . 211
Modifying Columns in a Table . 212
Example . 213
Adding, Dropping, and Modifying Columns in a Single Statement 214
Example . 214

Dropping Tables . 216
Overview . 216
Example . 216

Summary . 216
Text Summary . 216
Sample Programs . 218
Points to Remember . 221

Quiz . 221

166 Chapter 5 • Creating and Managing Tables Using PROC SQL

Overview

Introduction
By using PROC SQL, you can create, modify, and drop (delete) tables quickly and
efficiently. Many PROC SQL statements are quite versatile, enabling you to perform the
same action in several ways. For example, there are three methods of creating a table by
using the CREATE TABLE statement:

• creating an empty table (a table without rows) by defining columns

• creating an empty table that has the same columns and attributes as another table

• creating a table from a query result.

The following PROC SQL step uses the CREATE TABLE statement to create an empty
table by defining columns, and uses the DESCRIBE TABLE statement to display
information about the table's structure in the SAS log:

 proc sql;
 create table work.discount
 (Destination char(3),
 BeginDate num Format=date9.,
 EndDate num format=date9.,
 Discount num);
 describe table work.discount;

Table 5.1 SAS Log

1 proc sql;
2 create table work.discount
3 (Destination char(3),
4 BeginDate num Format=date9.,
5 EndDate num format=date9.,
6 Discount num);
NOTE: Table WORK.DISCOUNT created, with 0 rows and 4 columns.
7 describe table work.discount;
NOTE: SQL table WORK.DISCOUNT was created like:

create table WORK.DISCOUNT(bufsize=4096)
 (
 Destination char(3),
 BeginDate num format=DATE9.,
 EndDate num format=DATE9.,
 Discount num
);

Overview 167

Understanding Methods of Creating Tables
You can use PROC SQL to create a table in three ways. The CREATE TABLE statement
is used for all three methods, although the syntax of the statement varies for each
method.

Method of Creating a Table Example

create an empty table by defining columns proc sql;
 create table work.discount
 (Destination char(3),
 BeginDate num Format=date9.,
 EndDate num format=date9.,
 Discount num);

create an empty table that is like (has the
same columns and attributes as) an existing
table

proc sql;
 create table work.flightdelays2
 like sasuser.flightdelays;

create a populated table (a table with both
columns and rows of data) from a query
result

proc sql;
 create table work.ticketagents as
 select lastname, firstname,
 jobcode, salary
 from sasuser.payrollmaster,
 sasuser.staffmaster
 where payrollmaster.empid
 = staffmaster.empid
 and jobcode contains 'TA';

The CREATE TABLE statement generates only a table as output, not a report. The SAS
log displays a message that indicates that the table has been created, and the number of
rows and columns that it contains.

Table 5.2 SAS Log

NOTE: Table WORK.FLIGHTDELAYS2 created, with 0 rows and 8 columns.

Note: You can display additional information about a table's structure in the SAS log by
using the DESCRIBE TABLE statement in PROC SQL. The DESCRIBE TABLE
statement is discussed later in this chapter.

Creating an Empty Table By Defining Columns

Overview
Sometimes you want to create a new table that is unlike any existing table. In this case,
you need to define all of the table’s columns and attributes. To accomplish this, use the

168 Chapter 5 • Creating and Managing Tables Using PROC SQL

CREATE TABLE statement that includes column specifications for the columns that you
want to include. This statement creates a table without rows (an empty table).

Note: In addition, integrity constraints can be specified in the CREATE TABLE
statement. Integrity constraints are discussed later in this chapter.

General form, basic CREATE TABLE statement with column specifications:

CREATE TABLE table-name
(column-specification-1<,
...column-specification-n>);

Here is an explanation of the syntax:

table-name
specifies the name of the table to be created.

column-specification
specifies a column to be included in the table, and consists of

column-definition <column-constraint-1<, ...column-constraint-n>>
<MESSAGE='message-string'<MSGTYPE=message-type>>

Here is an explanation of the syntax:

column-definition consists of the following:
column-name data-type<(column-width)><column-modifier-1<... column-modifier-n>>

column-name
specifies the name of the column. The column name is stored in the table in the same
case that is used in column-name.

data-type
is enclosed in parentheses and specifies one of the following: CHARACTER (or CHAR)
| VARCHAR | INTEGER (or INT) | SMALLINT | DECIMAL (or DEC) | NUMERIC (or
NUM) | FLOAT | REAL | DOUBLE PRECISION | DATE.

column-width
which is enclosed in parentheses, is an integer that specifies the width of the column.
(PROC SQL processes this value only for the CHARACTER and VARCHAR data
types.)

column-modifier
is one of the following: INFORMAT= | FORMAT= | LABEL= . More than one column-
modifier might be specified.

column-constraint
specifies an integrity constraint.

MESSAGE= and MSGTYPE=
specify an error message that is related to an integrity constraint. (Integrity constraints, the
column-constraint, MESSAGE=, and MSGTYPE= are not elaborated here, but are discussed
in detail later in this chapter.)

Note: The entire set of column-specifications must be enclosed in parentheses. Multiple
column-specifications must be separated by commas. Elements within a column-
specification must be separated by spaces.

Example
Suppose you want to create the temporary table Work.Discount, which contains data
about discounts that are offered by an airline. There is no existing table that contains the
four columns (and column attributes) that you would like to include: Destination,

Creating an Empty Table By Defining Columns 169

BeginDate, EndDate, and Discount. You use the following PROC SQL step to create the
table, based on column definitions that you specify:

 proc sql;
 create table work.discount
 (Destination char(3),
 BeginDate num Format=date9.,
 EndDate num format=date9.,
 Discount num);

The SAS log confirms that the table has been created.

Table 5.3 SAS Log

NOTE: Table WORK.DISCOUNT created, with 0 rows and 4 columns.

T I P In this example and all other examples in this chapter, you are instructed to save
your data to a temporary table (in the library Work) that is deleted at the end of the
SAS session. To save the table permanently in a different library, use the appropriate
libref instead of the libref Work in the CREATE TABLE clause.

In the next few sections, you learn more about specifying data types and column
modifiers in a column specification.

Note: You learn to insert rows of data in a table later in this chapter.

Specifying Data Types
When you create a table by defining columns, you must specify a data type for each
column, following the column name:

column-name data-type <(column-width)> <column-modifier-1<...column-modifier-n>>

For example, the following PROC SQL step (shown also in the previous section) defines
four columns: one-character column (Destination) and three numeric columns
(BeginDate, EndDate, and Discount):

proc sql;
 create table work.discount
 (Destination char(3),
 BeginDate num format=date9.,
 EndDate num format=date9.,
 Discount num);

SAS tables use two data types: numeric and character. However, PROC SQL supports
additional data types (many, but not all, of the data types that SQL-based databases
support). Therefore, in the CREATE TABLE statement, you can specify any of 10
different data types. When the table is created, PROC SQL converts the supported data
types that are not SAS data types to either numeric or character format.

Table 5.4 Character Data Types Supported by PROC SQL

Specified Data Type SAS Data Type

CHARACTER (or CHAR) CHARACTER

VARCHAR CHARACTER

170 Chapter 5 • Creating and Managing Tables Using PROC SQL

Table 5.5 Numeric Data Types Supported by PROC SQL

Specified Data Type Description SAS Data Type

NUMERIC (or NUM) floating-point NUMERIC

DECIMAL (or DEC) floating-point NUMERIC

FLOAT floating-point NUMERIC

REAL floating-point NUMERIC

DOUBLE PRECISION floating-point NUMERIC

INTEGER (or INT) integer NUMERIC

SMALLINT integer NUMERIC

DATE date NUMERIC with a DATE.7
informat and format

The following PROC SQL step is very similar to the previous example. The only
difference is that this step specifies three supported data types other than CHAR and
NUM: VARCHAR, DATE, and FLOAT.

proc sql;
 create table work.discount2
 (Destination varchar(3),
 BeginDate date,
 EndDate date,
 Discount float);

PROC SQL converts these data types to either character or numeric, as indicated in the
charts above. Therefore, the table Work.Discount2 (created by this PROC SQL step) and
Work.Discount (created by the previous PROC SQL step) contains identical columns.

By supporting data types other than SAS data types, PROC SQL can save you time. In
many cases, you can copy native code from an implementation of SQL that is external to
SAS without having to modify the data types.

Specifying Column Widths
In SAS, the default column width for both character and numeric columns is 8 bytes.
However, character and numeric data values are stored differently:

• Character data is stored one character per byte.

• Numeric data is stored as floating point numbers in real binary representation, which
allows for 16- or 17-digit precision within 8 bytes.

PROC SQL enables you to specify a column width for character columns but not for
numeric columns.

Note: PROC SQL allows the WIDTH and NDEC (decimal places) arguments to be
included in the column specification for the DECIMAL, NUMERIC, and FLOAT

Creating an Empty Table By Defining Columns 171

data types. However, PROC SQL ignores this specification and uses the SAS
defaults.

In a column specification, the column width follows the data type and is specified as an
integer enclosed in parentheses:

column-name data-type <(column-width)> <column-modifier-1<...column-modifier-n>>

In the following PROC SQL step, the first column specification indicates a column
width of 3 for the character column Destination:

proc sql;
 create table work.discount
 (Destination char(3),
 BeginDate num format=date9.,
 EndDate num format=date9.,
 Discount num);

Because the last three columns are numeric, no width is specified and these columns
have the default column width of 8 bytes.

Specifying Column Modifiers
In the CREATE TABLE statement, a column specification might include one or more of
the following SAS column modifiers: INFORMAT=, FORMAT=, and LABEL=.
Column modifiers, if used, are specified at the end of the column specification.

column-name data-type <(column-width)> <...column-modifier-1 <...column-modifier-n>>

Note: A fourth SAS column modifier, LENGTH=, is not allowed in a CREATE TABLE
clause. It can be used in a SELECT clause.

Example
The following PROC SQL step creates the table Work.Departments by specifying 4
columns. The column modifiers LABEL= and FORMAT= are used to specify additional
column attributes.

proc sql;
 create table work.departments
 (Dept varchar(20) label='Department',
 Code integer label='Dept Code',
 Manager varchar(20),
 AuditDate num format=date9.);

The SAS log verifies that the table was created.

Table 5.6 SAS Log

NOTE: Table WORK.DEPARTMENTS created, with 0 rows and 4 columns.

172 Chapter 5 • Creating and Managing Tables Using PROC SQL

Displaying the Structure of a Table

Overview
Sometimes you want to look at the structure (the columns and column attributes) of a
table that you created or of a table that was created by someone else. When you create a
table, the CREATE TABLE statement writes a message to the SAS log, which indicates
the number of rows and columns in the table that was created. However, that message
does not contain information about column attributes.

If you are working with an existing table that contains rows of data, you can use a PROC
SQL query to generate a report that shows all of the columns in a table. However, the
report does not list the column attributes, and a PROC SQL query does not generate
output for an empty table.

To display a list of columns and column attributes for one or more tables in the SAS log,
regardless of whether the tables contain rows of data, you can use the DESCRIBE
TABLE statement in PROC SQL.

General form, DESCRIBE TABLE statement:

DESCRIBE TABLE table-name-1<, ... table-name-n>;

Here is an explanation of the syntax:

table-name
specifies the table to be described as one of the following:

• a one-level name

• a two-level libref.table name

• a physical pathname that is enclosed in single quotation marks.

The DESCRIBE TABLE statement writes a CREATE TABLE statement that includes
column definitions to the SAS log for the specified table, regardless of how the table was
originally created. For example, if the DESCRIBE TABLE statement specifies a table
that was created with the DATA step, a CREATE TABLE statement is still displayed.

Note: The DESCRIBE TABLE statement also displays information about any indexes
that are defined on a table. You can learn more about using the DESCRIBE TABLE
statement to display information about indexes in Chapter 6, “Creating and
Managing Indexes Using PROC SQL,” on page 226.

T I P As an alternative to the DESCRIBE TABLE statement, you can use other SAS
procedures, like PROC CONTENTS, to list a table's columns and column attributes.
PROC CONTENTS generates a report instead of writing a message to the SAS log,
as the DESCRIBE TABLE statement does.

Example
Earlier in this chapter, the empty table Work.Discount was created by using the CREATE
TABLE statement and column specifications shown below:

proc sql;
 create table work.discount

Displaying the Structure of a Table 173

 (Destination char(3),
 BeginDate num format=date9.,
 EndDate num format=date9.,
 Discount num);

The following DESCRIBE TABLE statement writes a CREATE TABLE statement to the
SAS log for the table Work.Discount:

proc sql;
 describe table work.discount;

Note: For more information about the BUFSIZE= option, see “Using the BUFSIZE=
Option” on page 661.

Table 5.7 SAS Log

NOTE: SQL table WORK.DISCOUNT was created like:

create table WORK.DISCOUNT(bufsize=4096)
 (
 Destination char(3),
 BeginDate num format=DATE9.,
 EndDate num format=DATE9.,
 Discount num
)

Creating an Empty Table That Is like Another
Table

Overview
Sometimes you want to create a new table that has the same columns and attributes as an
existing table, but has no rows. To create an empty table that is like another table, use a
CREATE TABLE statement with a LIKE clause.

General form, CREATE TABLE statement with a LIKE clause:

CREATE TABLE table-name
LIKE table-1;

Here is an explanation of the syntax:

table-name
specifies the name of the table to be created.

table-1
specifies the table whose columns and attributes are copied to the new table.

Example
Suppose you want to create a new table, Work.Flightdelays2, that contains data about
flight delays. You would like the new table to contain the same columns and attributes as
the existing table Sasuser.Flightdelays, but you do not want to include any of the existing

174 Chapter 5 • Creating and Managing Tables Using PROC SQL

data. The following PROC SQL step uses a CREATE TABLE statement and a LIKE
clause to create Work.Flightdelays2:

proc sql;
 create table work.flightdelays2
 like sasuser.flightdelays;

The following DESCRIBE TABLE statement displays the structure of the empty table
Work.Flightdelays2:

proc sql;
 describe table work.flightdelays2;

Table 5.8 SAS Log

NOTE: SQL table WORK.FLIGHTDELAYS2 was created like:

create table WORK.FLIGHTDELAYS2(bufsize=8192)
 (
 Date num format=DATE9. informat=DATE9.,
 FlightNumber char(3),
 Origin char(3),
 Destination char(3),
 DelayCategory char(15),
 DestinationType char(15),
 DayOfWeek num,
 Delay num
);

Work.Flightdelays2 contains eight columns, as listed.

Specifying a Subset of Columns from a Table
If you want to create an empty table that contains only a specified subset of columns
from an existing table, use the SAS data set options DROP= or KEEP=.

General form, DROP=, and KEEP= data set options:

(DROP | KEEP =column-1< ...column-n>)

Here is an explanation of the syntax:

column
specifies the name of a column to be dropped or kept. Multiple column names must be
separated by spaces. The entire option must be enclosed in parentheses.

In the CREATE TABLE statement, the DROP= or KEEP= option can be inserted in
either of the following locations:

• between the name of the table that is being created and the LIKE clause (as shown in
the following example)

• after the name of the source table, at the end of the LIKE clause.

Example
The following PROC SQL step creates the new table Work.Flightdelays3 that contains a
subset of columns from the table Sasuser.Flightdelays. The DROP= option is used to

Creating an Empty Table That Is like Another Table 175

specify that all columns except DelayCategory and DestinationType are included in the
new table.

proc sql;
 create table work.flightdelays3
 (drop=delaycategory destinationtype)
 like sasuser.flightdelays;

For comparison, the results of running the DESCRIBE TABLE statement for the original
table and the new table are shown below.

Table 5.9 SAS Log

NOTE: SQL table WORK.FLIGHTDELAYS was created like:

create table SASUSER.FLIGHTDELAYS(bufsize=8192)
 (
 Date num format=DATE9. informat=DATE9.,
 FlightNumber char(3),
 Origin char(3),
 Destination char(3),
 DelayCategory char(15),
 DestinationType char(15),
 DayOfWeek num,
 Delay num
);

Table 5.10 SAS Log

NOTE: SQL table WORK.FLIGHTDELAYS was created like:

create table WORK.FLIGHTDELAYS3(bufsize=4096)
 (
 Date num format=DATE9. informat=DATE9.,
 FlightNumber char(3),
 Origin char(3),
 Destination char(3),
 DayOfWeek num,
 Delay num
);

As these messages show, Sasuser.Flightdelays contains the columns DelayCategory and
DestinationType. Work.Flightdelays3 does not contain the columns.

Note: In PROC SQL, you can apply most of the SAS data set options, such as DROP=
and KEEP=, to tables anytime that you specify a table. You can use a more limited
set of SAS data set options with PROC SQL views. However, because the DROP=
and KEEP= options are SAS options and not part of the ANSI standard for SQL, you
can use the DROP= and KEEP= options only with the SAS implementation of SQL.

176 Chapter 5 • Creating and Managing Tables Using PROC SQL

Creating a Table from a Query Result

Overview
Sometimes you want to create a new table that contains both columns and rows that are
derived from an existing table or set of tables. In this situation, you can submit one
PROC SQL step that does both of the following:

• creates a new table

• populates the table with data from the result of a PROC SQL query.

To create a table from a query result, use a CREATE TABLE statement that includes the
keyword AS and the clauses that are used in a query: SELECT, FROM, and any optional
clauses, such as ORDER BY.

General form, CREATE TABLE statement with query clauses:

CREATE TABLE table-name AS
SELECT column-1<, ... column-n>

FROM table-1 | view-1<, ... table-n | view-n>
<optional query clauses>;

Here is an explanation of the syntax:

table-name
specifies the name of the table to be created.

SELECT
specifies the column(s) that appear in the table.

FROM
specifies the table(s) or view(s) to be queried.

optional query clauses
are used to refine the query further and include WHERE, GROUP BY, HAVING, and
ORDER BY.

You should be familiar with the use of the CREATE TABLE statement to create a table
from a query result. Here is a review of this method.

When a table is created from a query result,

• the new table is populated with data that is derived from one or more tables or views
that are referenced in the query's FROM clause

• the new table contains the columns that are specified in the query's SELECT clause

• the new table's columns have the same column attributes (type, length, informat, and
format) as those of the selected source columns.

Note: When you are creating a table, if you do not specify a column alias for a
calculated column, SAS assigns a column name, such as _TEMA001.

When query clauses are used within a CREATE TABLE statement, that query's
automatic report generation is shut off. Only the new table is generated as output.

Creating a Table from a Query Result 177

Example
Suppose you want to create a new, temporary table that contains data for ticket agents
who are employed by an airline. The data that you need is a subset of the data contained
in two existing tables, Sasuser.Payrollmaster and Sasuser.Staffmaster. The following
PROC SQL step creates the new table Work.Ticketagents from the result of a query on
the two existing tables. The WHERE clause joins the table by matching EMPID and
selects the subset of rows for employees whose JobCode contains TA.

proc sql;
 create table work.ticketagents as
 select lastname, firstname,
 jobcode, salary
 from sasuser.payrollmaster,
 sasuser.staffmaster
 where payrollmaster.empid
 = staffmaster.empid
 and jobcode contains 'TA';

.

Note: Because this query lists two tables in the FROM clause and subsets rows based on
a WHERE clause, the query is actually a PROC SQL inner join.

The new table Work.Ticketagents is not empty; it contains rows of data. Therefore, you
can submit a SELECT statement to display Work.Ticketagents as a report:

select *
 from work.ticketagents;

The first four rows of Work.Ticketagents are shown below.

The SAS log also displays a message, indicating that the table has been created.

Table 5.11 SAS Log

NOTE: Table WORK.TICKETAGENTS created, with 41 rows and 4 columns.

Copying a Table
To copy a table quickly, you can use the CREATE TABLE statement with a query that
returns an entire table instead of a subset of columns and rows. The CREATE TABLE
statement should contain only the following clauses:

178 Chapter 5 • Creating and Managing Tables Using PROC SQL

• a SELECT clause that specifies that all columns from the source table should be
selected

• a FROM clause that specifies the source table.

Note: Remember that the order of rows in a PROC SQL query result cannot be
guaranteed, unless you use an ORDER BY clause. Therefore, a CREATE TABLE
statement without an ORDER BY clause can create a table that contains the same
rows as the original table, but the rows might be in a different order.

Example
The following PROC SQL step creates the new table Work.Supervisors2, which is an
exact duplicate of the source table Sasuser.Supervisors:

proc sql;
 create table work.supervisors2 as
 select *
 from sasuser.supervisors;

The first four rows of the two tables are shown below.

Figure 5.1 Source Table: Sasuser.Supervisors

Figure 5.2 New Table: Work.Supervisors2

Creating a Table from a Query Result 179

Inserting Rows of Data into a Table

Overview
After you have created an empty table, you will want to insert rows of data. You might
also want to insert additional rows of data into tables that already contain data. You can
use the INSERT statement in three different ways to insert rows of data into existing
tables, either empty or populated.

Note: You can also use the INSERT statement to insert rows of data in a single table
that underlies a PROC SQL view. To learn more about PROC SQL views, see
Chapter 7, “Creating and Managing Views Using PROC SQL,” on page 248.

Method of Inserting Row Example

insert values by column name by
using the SET clause

proc sql;
 insert into work.discount
 set destination='LHR',
 begindate='01MAR2000'd,
 enddate='05MAR2000'd,
 discount=.33
 set destination='CPH',
 begindate='03MAR2000'd,
 enddate='10MAR2000'd,
 discount=.15;

insert lists of values by using the
VALUES clause

proc sql;
 insert into work.discount (destination,
 begindate,enddate,discount)
 values ('LHR','01MAR2000'd,
 '05MAR2000'd,.33)
 values ('CPH','03MAR2000'd,
 '10MAR2000'd,.15);

insert rows that are copied from
another table by using a query result

proc sql;
 insert into payrollchanges2
 select empid,salary,dateofhire
 from sasuser.payrollmaster
 where empid in ('1919','1350','1401');

In each method, the INSERT statement inserts new rows of data into the table. To
indicate that the rows have been inserted, the SAS log displays a message similar to the
following.

Table 5.12 SAS Log

NOTE: 1 row was inserted into WORK.DISCOUNT.

Here is information about how to use each of these methods to insert rows of data into a
table.

180 Chapter 5 • Creating and Managing Tables Using PROC SQL

Inserting Rows By Using the SET Clause
Sometimes you need to add rows of data to a table, but the data is not currently
contained in any table. In this situation, you can use either the SET clause or the
VALUES clause in the INSERT statement to specify the data to be added.

The SET clause in the INSERT statement enables you to specify new data to be added to
a table. The SET clause specifies column names and values in pairs. PROC SQL reads
each column name-value pair and assigns the value to the specified column. A separate
SET clause is used for each row to be added to the table.

The syntax of the INSERT statement that contains the SET clause is shown below.

General form, INSERT statement containing the SET clause:

INSERT INTO table-name <(target-column-1<, ... target-column-n)>
SET column-1=value-1<, ... column-n=value-n>
<... SET column-1=value-1<, ... column-n=value-n>>;

Here is an explanation of the syntax:

table-name
specifies the name of the table to which rows are inserted.

target-column
specifies the name of a column into which data is inserted.

each SET clause
specifies one or more values to be inserted in one or more specified columns in a row.
Multiple SET clauses are not separated by commas.

column
specifies the name of a column into which data is inserted.

value
specifies a data value to be inserted into the specified column. Character values must be
enclosed in quotation marks.

multiple column=value pairs in a SET clause
are separated by commas.

Note: It is optional to include a list of target column names after the table name in the
INSERT TABLE statement that includes a SET clause. The list can include the
names of all or only a subset of columns in the table. If you specify an optional list of
target column names, then you can specify values only for columns that are in the
list. You can list target columns in any order, regardless of their position in the table.
Any columns that are in the table but not listed are given missing values in the
inserted rows.

Note: Although it is recommended that the SET clause list column-value pairs in order
(as they appear in the table column list or the optional column list), it is not required.

Example
Consider the table Work.Discount, which was presented in the last topic. Work.Discount
stores airline discounts for certain flight destinations and time periods in March. By
submitting a DESCRIBE TABLE statement, you can see this table's columns and
column attributes.

Inserting Rows of Data into a Table 181

Table 5.13 SAS Log

NOTE: SQL table WORK.DISCOUNT was created like:

create table WORK.DISCOUNT(bufsize=4096)
 (
 Destination char(3),
 BeginDate num format=DATE9.,
 EndDate num format=DATE9.,
 Discount num
);

The following PROC SQL step does both of the following:

• adds two rows of new data to Work.Discount by using an INSERT statement that
contains two SET clauses, one for each row

• generates a report that displays Work.Discount, with its two new rows, by using a
SELECT statement.

In this situation, you do not need to include an optional list of column names.

proc sql;
 insert into work.discount
 set destination='LHR',
 begindate='01MAR2000'd,
 enddate='05MAR2000'd,
 discount=.33
 set destination='CPH',
 begindate='03MAR2000'd,
 enddate='10MAR2000'd,
 discount=.15;
 select *
 from discount;

Inserting Rows By Using the VALUES Clause
The INSERT statement uses the VALUES clause to insert a list of values into a table.
Unlike the SET clause, the VALUES clause does not specify a column name for each
value, so the values must be listed in the correct order. Values must be specified in the
order in which the columns appear in the table or, if an optional column list is specified,
in the order in which the columns appear in that list. A separate VALUES clause is used
for each row to be added to the table.

182 Chapter 5 • Creating and Managing Tables Using PROC SQL

General form, INSERT statement containing the VALUES clause:

INSERT INTO table-name <(target-column-1<, ... target-column-n)>

VALUES (value-1<, ... value-n)>
<... VALUES (value-1<, ... value-n>)>;

Here is an explanation of the syntax:

table-name
specifies the name of the table to which rows are inserted.

target-column
specifies the name of a column into which data is inserted.

each VALUES clause
lists the values to be inserted in some or all columns in one row, which is enclosed in
parentheses. Multiple VALUES clauses are not separated by commas.

value
specifies a data value to be added. Character values must be enclosed in quotation marks.
Multiple values must be separated by commas. Values must be listed in positional order,
either as they appear in the table or, if the optional column list is specified, as they appear in
the column list.

Note: It is optional to include a list of target column names after the table name in the
INSERT TABLE statement that includes a VALUES clause. The list can include the
names of all or only a subset of columns in the table. If an optional list of target
column names is specified, then only those columns are given values by the
statement. Target columns can be listed in any order, regardless of their position in
the table. Any columns that are in the table but not listed are given missing values in
the inserted rows.

You can use the VALUES clause to insert a value for all or only some of the columns in
the table.

If you want to ... Then ... Example

insert a value for all
columns in the table

You can omit the optional list
of column names in the
INSERT statement.

PROC SQL

• reads values in the order in
which they are specified in
the VALUES clause

• inserts the values into
columns in the order in
which the columns appear
in the table.

insert into work.newtable
 values ('WI','FLUTE',6)
 values ('ST','VIOLIN',3);

Inserting Rows of Data into a Table 183

If you want to ... Then ... Example

insert a value for only
some of the columns in
the table

You must include a list of
column names in the INSERT
statement.

PROC SQL

• reads values in the order in
which they are specified in
the VALUES clause

• inserts the values into
columns in the order in
which the columns are
specified in the column list.

insert into work.newtable
 (item,qty)
 values ('FLUTE',6)
 values ('VIOLIN',3);

You must list a value for every column into which PROC SQL inserts values (as
specified in either the table list or the optional list of column names). To specify that a
value is missing, use a space enclosed in single quotation marks for character values and
a period for numeric values. For example, the following VALUES clause specifies
values to be inserted in three columns; the first two values are missing:

values (' ', ., 45)

In this example, the first value specified is a missing value for a character column, and
the second value is a missing value for a numeric column.

Example
Suppose you want to insert two more rows into the table Work.Discount, which stores
airline discounts for certain flight destinations and time periods in March. In the
previous section, you inserted two rows into Work.Discount by using the SET clause, so
the table now looks like the following table.

Add two more rows, by using the VALUES clause. The following PROC SQL step adds
two rows of new data to Work.Discount and generates a report that displays the updated
table:

proc sql;
 insert into work.discount (destination,
 begindate,enddate,discount)
 values ('ORD','05MAR2000'd,'15MAR2000'd,.25)
 values ('YYZ','06MAR2000'd,'20MAR2000'd,.10);
 select *
 from work.discount;

184 Chapter 5 • Creating and Managing Tables Using PROC SQL

The two rows that were just inserted by using the VALUES clause are the third and
fourth rows above.

You might have noticed that the INSERT statement in this example includes an optional
list of column names. In this example, data is being inserted into all columns of the table,
and the values are listed in the order in which the columns appear in the table, so it is not
strictly necessary to use a column list. However, including the list of column names
makes it easier to read the code and understand what the code is doing.

Inserting Rows from a Query Result
The fastest way to insert rows of data into a table is to use a query to select existing rows
from one or more tables (or views) and to insert the rows into another table. You can
insert rows from a query result into either an empty table or a table that already contains
rows of data. When you add rows of data to a table that already contains rows, the new
rows are added at the end of the table.

To insert rows from a query result, use an INSERT statement that includes the clauses
that are used in a query: SELECT, FROM, and any optional clauses, such as ORDER
BY. Values from the query result are inserted into columns in the order in which the
columns appear in the table or, if an optional column list is specified, in the order in
which the columns appear in that list.

General form, INSERT statement containing query clauses:

INSERT INTO table-name <(target-column-1<, ... target-column-n)>
SELECT column-1<, ... column-n>

FROM table-1 | view-1<, ... table-n | view-n>
<optional query clauses>;

Here is an explanation of the syntax:

table-name
specifies the name of the table to which rows are inserted.

target-column
specifies the name of a column into which data is inserted.

SELECT
specifies the column(s) that is inserted.

FROM
specifies the table(s) or view(s) to be queried.

optional query clauses
are used to refine the query further. These include the WHERE, GROUP BY, and HAVING,
clauses.

Inserting Rows of Data into a Table 185

Note: It is optional to include a list of target column names after the table name in the
INSERT TABLE statement that includes query clauses. The list can include the
names of all or only a subset of columns in the table. If an optional list of target
column names is specified, then only those columns are given values by the
statement. Target columns might be listed in any order, regardless of their position in
the table. Any columns that are in the table but not listed are given missing values in
the inserted rows.

Example
A mechanic at a company has been promoted from level 2 to level 3, and you need to
add this employee to Sasuser.Mechanicslevel3, a table that lists all level-3 mechanics.
Create a temporary copy of Sasuser.Mechanicslevel3 called
Work.Mechanicslevel3_New, and display the new table in a report:

proc sql;
 create table work.mechanicslevel3_new as
 select *
 from sasuser.mechanicslevel3;

Next, you insert a row into Work.Mechanicslevel3_New for the new level-3 employee,
whose EmpID is 1653. This employee is currently listed in Sasuser.Mechanicslevel2, so
your INSERT statement queries the table Sasuser.Mechanicslevel2. Your PROC SQL
step ends with a SELECT statement that outputs the revised table
Work.Mechanicslevel3_New to a report.

proc sql;
 insert into work.mechanicslevel3_new
 select empid, jobcode, salary
 from sasuser.mechanicslevel2
 where empid='1653';
 select *
 from work.mechanicslevel3_new;

The row that you have inserted into Work.Mechanicslevel3_New is row 8 above. As you
can see, the values for JobCode and Salary for the new employee have to be changed.
Updating existing values in a table is covered later in this chapter.

Note: Although the new row is shown here at the bottom of the table, the order of rows
in a PROC SQL query cannot be guaranteed if an ORDER BY clause is not used.

186 Chapter 5 • Creating and Managing Tables Using PROC SQL

Creating a Table That Has Integrity Constraints

Overview
Integrity constraints are rules that you can specify in order to restrict the data values that
can be stored for a column in a table. SAS enforces integrity constraints when values
associated with a column are added, updated, or deleted. Integrity constraints help you
preserve the validity and consistency of your data.

You can create integrity constraints by using either PROC SQL or PROC DATASETS.
PROC DATASETS can assign constraints only to an existing table. PROC SQL can
assign constraints either as it creates a new table or as it modifies an existing table. This
chapter discusses the use of PROC SQL to Create integrity constraints while creating a
table.

Note: To learn more about the use of PROC DATASETS to Create integrity constraints,
see Chapter 18, “Modifying SAS Data Sets and Tracking Changes,” on page 608.
For additional information about integrity constraints, see the SAS documentation.

Note: To add integrity constraints to an existing table using PROC SQL, use the ALTER
TABLE statement.

When you place integrity constraints on a table, you specify the type of constraint that
you want to create. Each constraint has a different action.

Constraint Type Action

CHECK Ensures that a specific set or range of values are the only values in
a column. It can also check the validity of a value in one column
based on a value in another column within the same row.

NOT NULL Guarantees that a column has nonmissing values in each row.

UNIQUE Enforces uniqueness for the values of a column.

PRIMARY KEY Uniquely defines a row within a table, which can be a single
column or a set of columns. A table can have only one PRIMARY
KEY. The PRIMARY KEY includes the attributes of the
constraints NOT NULL and UNIQUE.

FOREIGN KEY Links one or more rows in a table to a specific row in another
table by matching a column or set of columns (a FOREIGN KEY)
in one table with the PRIMARY KEY in another table. This
parent/child relationship limits modifications made to both
PRIMARY KEY and FOREIGN KEY constraints. The only
acceptable values for a FOREIGN KEY are values of the
PRIMARY KEY or missing values.

Note: When you add an integrity constraint to a table that contains data, SAS checks all
data values to determine whether they satisfy the constraint before the constraint is
added.

Creating a Table That Has Integrity Constraints 187

You can use integrity constraints in two ways, general and referential. General
constraints enable you to restrict the data values accepted for a column in a single table.
Referential constraints enable you to link the data values of a column in one table to the
data values of columns in another table.

General Integrity Constraints
General integrity constraints enable you to restrict the values of columns within a single
table. The following four integrity constraints can be used as general integrity
constraints:

• CHECK

• NOT NULL

• UNIQUE

• PRIMARY KEY.

Note: A PRIMARY KEY constraint is a general integrity constraint if it does not have
any FOREIGN KEY constraints referencing it. A PRIMARY KEY used as a general
constraint is a shortcut for assigning the constraints NOT NULL and UNIQUE.

Referential Integrity Constraints
A referential integrity constraint is created when a PRIMARY KEY integrity constraint
in one table is referenced by a FOREIGN KEY integrity constraint in another table.
There are two steps that must be followed to create a referential integrity constraint:

1. Define a PRIMARY KEY constraint on the first table.

2. Define a FOREIGN KEY constraint on other tables.

Note: Integrity constraints

• follow ANSI standards

• cannot be defined for views

• cannot be defined for historical versions of generation data sets.

To create a table that has integrity constraints, use a CREATE TABLE statement that
specifies both columns and constraints. There are two ways to specify integrity
constraints in the CREATE TABLE statement:

• in a column specification

• as a separate constraint specification.

You can use either or both of these methods in the same CREATE TABLE statement.

Creating a Constraint in a Column Specification
Earlier in this chapter, you learned how to create a table by using a CREATE TABLE
statement that contains column specifications:

CREATE TABLE table-name
(column-specification-1<,
...column-specification-n>);

You also learned that a column specification consists of these elements:

188 Chapter 5 • Creating and Managing Tables Using PROC SQL

column-definition <column-constraint-1<, ... column-constraint-n>>
<MESSAGE='message-string' <MSGTYPE=message-type>>

The column specifications used in earlier examples contained only the column
definition. Now we learn how to create an integrity constraint with a column, by
specifying the optional column constraint in the column specification:

General form, column-constraint in a column-specification:

column-definition <column-constraint-1<, ... column-constraint-n>>
<MESSAGE='message-string' <MSGTYPE=message-type>>

Here is an explanation of the syntax:

column-constraint
is one of the following:

CHECK (expression)
specifies that all rows in the table (which is specified in the CREATE TABLE statement)
satisfy the expression, which can be any valid where-expression.

DISTINCT
specifies that the values of the column must be unique within the table. This constraint is
identical to UNIQUE.

NOT NULL
specifies that the column does not contain a null or missing value, including special
missing values.

PRIMARY KEY
specifies that the column is a PRIMARY KEY column, that is, a column that does not
contain missing values and whose values are unique.

REFERENCES table-name <ON DELETE referential-action> <ON UPDATE referential-
action>

specifies that the column is a FOREIGN KEY, that is, a column whose values are linked
to the values of the PRIMARY KEY column in another table (the table-name that is
specified for REFERENCES). The referential-actions are performed when the values of
a PRIMARY KEY column that is referenced by the FOREIGN KEY are updated or
deleted. The referential-action specifies the type of action to be performed on all
matching FOREIGN KEY values and is one of the following:

CASCADE
allows PRIMARY KEY data values to be updated, and updates matching values in the
FOREIGN KEY to the same values.

Note: This referential action is currently supported for
updates only.

RESTRICT
occurs only if there are matching FOREIGN KEY values. This referential action is the
default.

SET NULL
sets all matching FOREIGN KEY values to NULL.

UNIQUE
specifies that the values of the column must be unique within the table. This constraint is
identical to DISTINCT.

Note: The optional MSGTYPE= and MESSAGE= elements are discussed later in this
chapter.

Just like a column, an integrity constraint must have a unique name within the table. If
you create an integrity constraint by specifying a column constraint in a column

Creating a Table That Has Integrity Constraints 189

specification, then SAS automatically assigns a name to the constraint. The form of the
constraint name depends on the type of constraint, as shown below:

Constraint Type Default Name

CHECK _CKxxxx_

FOREIGN KEY _FKxxxx_

NOT NULL _NMxxxx_

PRIMARY KEY _PKxxxx_

UNIQUE _UNxxxx_

Note: xxxx is a counter that begins at 0001.

Here is an example of a PROC SQL step that creates integrity constraints by specifying
one or more column constraints in a column specification.

Example
Suppose you need to create the table Work.Employees to store the identification number,
name, gender, and hire date for all employees. In addition, you want to ensure the
following:

• the ID column contains only values that are nonmissing and unique

• the Gender column contains only the values M and F.

The following PROC SQL step creates the table Work.Employees, that contains four
columns and integrity constraints for two of those columns:

proc sql;
 create table work.employees
 (ID char (5) primary key,
 Name char(10),
 Gender char(1) not null check(gender in ('M','F')),
 HDate date label='Hire Date');

In the column specification for ID, the PRIMARY KEY column constraint ensures that
the ID column contains only values that are nonmissing and unique.

The column specification for Gender defines two integrity constraints:

• The NOT NULL column constraint ensures that the values of Gender are nonmissing
values.

• The CHECK column constraint ensures that the values of Gender satisfy the
expression gender in ('M','F').

Here is another method of creating integrity constraints: specifying a constraint
specification in the CREATE TABLE statement.

190 Chapter 5 • Creating and Managing Tables Using PROC SQL

Creating a Constraint By Using a Constraint Specification
Sometimes you might prefer to Create integrity constraints outside of column
specifications, by specifying individual constraint specifications in the CREATE TABLE
statement:

CREATE TABLE table-name
(column-specification-1<,
...column-specification-n><,
constraint-specification-1><,
...constraint-specification-n>);

The first specification in the CREATE TABLE statement must be a column
specification. However, following the initial column specification in the statement, you
can include multiple additional column specifications, constraint specifications, or both.
All specifications after the first column specification can be listed in any order. The
entire list of column specifications and constraint specifications follows the same
guidelines that were presented earlier for column specifications:

• The entire set of column specifications and constraint specifications must be
enclosed in parentheses.

• Multiple column specifications and constraint specifications must be separated by
commas.

There are several important differences between specifying an integrity constraint within
a column specification and specifying an integrity constraint by using a separate
constraint specification. Using a constraint specification offers the following advantages:

• You can specify a name for the constraint. In fact, you must specify a name, because
SAS does not automatically assign one.

• For certain constraint types, you can define a constraint for multiple columns in a
single specification.

The syntax of a constraint specification is shown below.

CONSTRAINT constraint-name constraint <MESSAGE='message-string'
<MSGTYPE=message-type>>

constraint-name
specifies a name for the constraint that is being specified. The name must be a valid
SAS name.

CAUTION:
PRIMARY, FOREIGN, MESSAGE, UNIQUE, DISTINCT, CHECK, and NOT
cannot be used as values for constraint-name.

constraint
is one of the following:

CHECK (expression)
specifies that all rows in table-name (which is specified in the CREATE TABLE
statement) satisfy the expression, which can be any valid where-expression.

DISTINCT (column-1<, ... column-n>)
specifies that the values of each column must be unique within the table. This
constraint is identical to UNIQUE.

Creating a Table That Has Integrity Constraints 191

FOREIGN KEY (column-1<, ... column-n>)
REFERENCES table-name
<ON DELETE referential-action>
<ON UPDATE referential-action>

specifies a FOREIGN KEY, that is, a set of columns whose values are linked to
the values of the PRIMARY KEY column in another table (the table name that is
specified for REFERENCES). The referential-actions are performed when the
values of a PRIMARY KEY column that is referenced by the FOREIGN KEY
are updated or deleted. The referential-action specifies the type of action to be
performed on all matching FOREIGN KEY values, and is one of the following:

• CASCADE

allows PRIMARY KEY data values to be updated, and updates matching
values in the FOREIGN KEY to the same values.

Note: This referential action is currently supported for updates only.

• RESTRICT

occurs only if there are matching FOREIGN KEY values. This referential
action is the default.

• SET NULL

sets all matching FOREIGN KEY values to NULL.

NOT NULL (column)
specifies that the column does not contain a null or missing value, including
special missing values.

PRIMARY KEY (column-1<, ... column-n>)
specifies one or more columns as PRIMARY KEY columns, that is, columns that
do not contain missing values and whose values are unique.

UNIQUE (column-1<, ... column-n>)
specifies that the values of each column must be unique within the table. This
constraint is identical to DISTINCT.

MESSAGE=
specifies a message-string that specifies the text of an error message that is
written to the SAS log when the integrity constraint is not met. The maximum
length of message-string is 250 characters.

MSGTYPE=
specifies the message-type, which specifies how the error message is displayed in
the SAS log when an integrity constraint is not met. The message-type is one of
the following:

NEWLINE the text that is specified for MESSAGE= is displayed in
addition to the default error message for that integrity
constraint.

USER only the text that is specified for MESSAGE= is displayed.

Note: Elements within a constraint-specification must be separated by spaces.

You might have noticed another difference between the two methods of creating an
integrity constraint. When you use a column specification to create a FOREIGN KEY
integrity constraint, you use the keyword FOREIGN KEY in addition to the keyword
REFERENCES.

Here is an example of a PROC SQL step that uses column specifications to Create
integrity constraints on a column.

192 Chapter 5 • Creating and Managing Tables Using PROC SQL

Example
In an example earlier in this chapter, the table Work.Discount was created to hold data
about discounts that are offered by an airline. Suppose you now want to ensure that the
table

• holds only discounts that are less than or equal to .5

• does not allow missing values for Destination.

Create a new version of the table Work.Discount, called Work.Discount3, that includes
two integrity constraints. One integrity constraint limits the values that can be entered in
the Discount column and the other prevents missing values from being entered in the
Destination column. The following PROC SQL step creates Work.Discount3 by
specifying four columns and two integrity constraints:

proc sql;
 create table work.discount3
 (Destination char(3),
 BeginDate num Format=date9.,
 EndDate num format=date9.,
 Discount num,
 constraint ok_discount check (discount le .5),
 constraint notnull_dest not null(destination));

The CHECK integrity constraint named OK_Discount uses the WHERE expression
discount le .5 to limit the values that can be added to the Discount column.

The NOT NULL integrity constraint named NotNull_Dest prevents missing values from
being entered in Destination.

Handling Errors in Row Insertions

Overview
When you add rows to a table that has integrity constraints, PROC SQL evaluates the
new data to ensure that it meets the conditions that are determined by the integrity
constraints. If the new (or modified) data complies with the integrity constraints, the
rows are added. However, if you add data that does not comply with the integrity
constraints, the rows are not added. To find out whether rows of data have been
successfully added, you need to check the SAS log.

Note: PROC SQL also evaluates changes that are made to existing data by using the
UPDATE and DELETE statements. These statements are discussed later in this
chapter.

Example
In a previous section of this chapter, the following PROC SQL step was used to create
the table Work.Discount3 with two integrity constraints, one on the column Discount and
the other on the column Destination:

proc sql;
 create table work.discount3

Handling Errors in Row Insertions 193

 (Destination char(3),
 BeginDate num Format=date9.,
 EndDate num format=date9.,
 Discount num,
 constraint ok_discount check (discount le .5),
 constraint notnull_dest not null(destination));

This table does not yet contain any rows, so add some data. The following INSERT
statement uses the VALUES clause to add two rows of data to the table:

proc sql;
 insert into work.discount3
 values('CDG','03MAR2000'd,'10MAR2000'd,.15)
 values('LHR','10MAR2000'd,'12MAR2000'd,.55);

When this PROC SQL step is submitted, the following messages are displayed in the
SAS log.

Table 5.14 SAS Log

ERROR: Add/Update failed for data set WORK.DISCOUNT3
because data value(s) do not comply with integrity constraint
ok_discount.
NOTE: This insert failed while attempting to add data from
VALUES clause 2 to the data set.
NOTE: Deleting the successful inserts before error noted above
to restore table to a consistent state.

The three parts of this message explain what the problem is:

• The error message indicates that this attempt to add rows failed. One or more of the
data values for Discount does not comply with the integrity constraint OK_Discount,
which specifies that values in the column Discount must be less than or equal to .5.

• The first note indicates that there is a problem with the second VALUES clause. This
clause specifies a value of .55 for the column Discount, which does not comply.

CAUTION:
Even if multiple VALUES clauses specify non-compliant data values, the SAS
log lists only the first VALUES clause that violates the constraint.

• The second note indicates that SAS is “deleting the successful inserts” before the
error. Even though all the other specified data is valid, none of the data has been
added to the table.

We need to consider why SAS prevented any of the data from being added to the table.

Using the UNDO_POLICY= Option to Control UNDO Processing
When you use the INSERT or UPDATE statement to add or modify data in a table, you
can control how PROC SQL handles updated data if any errors occur during the
insertion or update process. You can use the UNDO_POLICY= option in the PROC SQL
statement to specify whether PROC SQL accepts or unaccepts the changes that you
submitted up to the point of the error.

You can specify one of the following values for the UNDO_POLICY= option.

194 Chapter 5 • Creating and Managing Tables Using PROC SQL

UNDO_POLICY=Setting Description

REQUIRED PROC SQL performs UNDO processing for INSERT and
UPDATE statements. If the UNDO operation cannot be done
reliably, PROC SQL does not execute the statement and
issues an ERROR message.

This is the PROC SQL default.

NONE PROC SQL skips records that cannot be inserted or updated,
and writes a warning message to the SAS log similar to that
written by PROC APPEND. Any data that meets the integrity
constraints is added or updated.

OPTIONAL PROC SQL performs UNDO processing if it can be done
reliably. If the UNDO cannot be done reliably, then no UNDO
processing is attempted.

This action is a combination of REQUIRED and NONE. If
UNDO can be done reliably, then it is done, and PROC SQL
proceeds as if UNDO_POLICY=REQUIRED is in effect.
Otherwise, it proceeds as if UNDO_POLICY=NONE was
specified.

CAUTION:
In the following two situations, you cannot reliably attempt the UNDO
operation:

A SAS data set that is accessed through a SAS/SHARE server and opened with
CNTLLEV=RECORD can allow other users to update newly inserted records. An
error during the insert deletes the record that the other user updated.

Changes made through a SAS/ACCESS view might not be able to reverse changes
made by the INSERT or UPDATE statement without reversing other changes at the
same time.

Note: The ANSI standard for SQL includes a ROLLBACK statement that is used for
UNDO processing. The ROLLBACK statement is not currently supported in PROC
SQL.

Note: When you use the UNDO_POLICY= option, the value that you set remains in
effect for the entire PROC SQL statement or until a RESET statement is used to
change the option. To learn more about the RESET statement, see Chapter 8,
“Managing Processing Using PROC SQL,” on page 264.

Example
In the last example, the INSERT step was used to insert two rows of data into the table
Work.Discount3, which has two integrity constraints. Because the UNDO_POLICY=
option was not specified in the code, PROC SQL used the default policy, which is
UNDO_POLICY=REQUIRED. When PROC SQL encountered a value in the INSERT
statement that violated an integrity constraint, none of the new values specified in the
INSERT statement were added to the table.

Handling Errors in Row Insertions 195

Consider what happens when we submit the same INSERT statement and specify the
option UNDO_POLICY=NONE.

The following PROC SQL step creates the table Work.Discount4, which has four
columns and two integrity constraints, and inserts the same two rows of data that were
inserted in the earlier example. In this case, however, the option
UNDO_POLICY=NONE is specified.

proc sql undo_policy=none;
 create table work.discount4
 (Destination char(3),
 BeginDate num Format=date9.,
 EndDate num format=date9.,
 Discount num,
 constraint ok_discount check (discount le .5),
 constraint notnull_dest not null(destination));
 insert into work.discount4
 values('CDG','03MAR2000'd,'10MAR2000'd,.15)
 values('LHR','10MAR2000'd,'12MAR2000'd,.55);

As you know, one of the data values for the column Discount violates the specified
constraint. When this step is submitted, the SAS log displays the following messages.

Table 5.15 SAS Log

WARNING: The SQL option UNDO_POLICY=REQUIRED is not in effect.
If an error is detected when processing this INSERT statement,
that error will not cause the entire statement to fail.
ERROR: Add/Update failed for data set WORK.DISCOUNT4 because
data value(s) do not comply with integrity constraint ok_discount.
NOTE: This insert failed while attempting to add data from VALUES
clause 2 to the data set.

NOTE: 2 rows were inserted into WORK.DISCOUNT4 -- of these 1 row
was rejected as an ERROR, leaving 1 row that was inserted
successfully.

The four parts of this message explain what the problem is and how PROC SQL will
handle UNDO processing:

• The warning tells you that you have specified a setting for the UNDO_POLICY=
option that is different from the default (REQUIRED). The warning also explains
that, as a result, if an error is detected, the error does not cause the entire INSERT
statement to fail.

• The error message was also displayed in the earlier example, when the default setting
of UNDO_POLICY= was in effect. This message states that the INSERT statement
failed and explains why.

• The first note was also displayed in the earlier example, when the default setting of
UNDO_POLICY= was in effect. This note identifies the first VALUES clause that
contains non-compliant data.

• The second note tells you that one row (the first row of the two rows that you
specified) was inserted successfully into the table.

196 Chapter 5 • Creating and Managing Tables Using PROC SQL

Displaying Integrity Constraints for a Table

Overview
Sometimes you want to add data to a table but you are not sure what integrity
constraints, if any, the table has. To display only the integrity constraints for a specified
table, use a DESCRIBE TABLE CONSTRAINTS statement. (The DESCRIBE TABLE
statement, which is discussed earlier in this chapter, lists both a CREATE TABLE
statement and the table's integrity constraints in the SAS log.)

Note: Some versions of SAS display information about integrity constraints in output as
well as in the SAS log.

General form, DESCRIBE TABLE CONSTRAINTS statement:

DESCRIBE TABLE CONSTRAINTS table-name-1<, ... table-name-n>;

Here is an explanation of the syntax:

table-name
specifies the table to be described as one of the following:

• a one-level name

• a two-level libref.table name

• a physical pathname that is enclosed in single quotation marks.

Example
To display only the table constraints for the table Work.Discount4 that was created
earlier, you submit the following PROC SQL step:

proc sql;
 describe table constraints work.discount4;

Table 5.16 SAS Log

NOTE: SQL table WORK.DISCOUNT4 (bufsize=4096) has the
following integrity constraint(s):

-----Alphabetic List of Integrity Constraints-----

 Integrity Where
 * Constraint Type Variables Clause

1 notnull_dest Not Null Destination
2 ok_discount Check Discount<=0.5

Displaying Integrity Constraints for a Table 197

As shown, Work.Discount4 has two integrity constraints: NotNull_Dest and
OK_Discount.

Updating Values in Existing Table Rows

Overview
To modify data values in some or all of the existing rows in a table, you use the
UPDATE statement in PROC SQL. In the UPDATE statement, for each column whose
rows you want to modify, you specify an expression that indicates how the values should
be modified. For example, the following expression indicates that the values for the
column Units should be multiplied by 4:

units=units*4

You can use the UPDATE statement in two main ways.

Method of Updating Table Example

update all (or a subset of) rows in a
column with the same expression

proc sql;
 update work.payrollmaster_new
 set salary=salary*1.05
 where jobcode like '__1';

update different rows in a column with
different expressions

proc sql;
 update work.payrollmaster_new
 set salary=salary*
 case when substr(jobcode,3,1)='1'
 then 1.05
 when substr(jobcode,3,1)='2'
 then 1.10
 when substr(jobcode,3,1)='3'
 then 1.15
 else 1.08
 end;

Note: The UPDATE statement does not insert new rows into the table. To insert rows,
you must use the INSERT statement.

Note: You can also use the UPDATE statement to update existing values in a table that
underlies a PROC SQL view. For details, see Chapter 7, “Creating and Managing
Views Using PROC SQL,” on page 248.

We consider each of these methods for updating existing rows in a table.

198 Chapter 5 • Creating and Managing Tables Using PROC SQL

Updating Rows By Using the Same Expression
To update all (or a subset of) rows in a column with the same expression, use an
UPDATE statement that contains a SET clause and a possible WHERE clause.

General form, basic UPDATE statement for updating table rows:

UPDATE table-name
SET column-1=expression<, ... column-n=expression>>
<WHERE expression>;

Here is an explanation of the syntax:

table-name
specifies the name of the table in which values are updated.

SET
specifies one or more pairs of column names to be updated, and expressions that indicate
how each column is to be updated.

WHERE
is used to specify an expression that subsets the rows to be updated.

CAUTION:
If you want to update only a subset of rows in the table, you must specify a WHERE
clause or all rows of the table that are updated.

Example
Suppose a company is considering giving all level-1 employees a 5% raise. Employee
salaries are stored in the table Sasuser.Payrollmaster. You do not want to update the
original table, so you create a temporary copy of Sasuser.Payrollmaster, called
Work.Payrollmaster_New. The following PROC SQL step creates
Work.Payrollmaster_New based on a query result and generates an output report of the
new table:

proc sql;
 create table work.payrollmaster_new as
 select *
 from sasuser.payrollmaster;
 select *
 from work.payrollmaster_new;

The first 10 rows of Work.Payrollmaster_New, the table in which you update salaries,
are shown below.

Updating Values in Existing Table Rows 199

Next, you write a PROC SQL step that updates the specified rows. The UPDATE
statement contains both of the following:

• a SET clause that specifies the expression to be used in updating Salary

• a WHERE clause that specifies a subset of rows (level-1 employees) to be updated.

proc sql;
 update work.payrollmaster_new
 set salary=salary*1.05
 where jobcode like '__1';

Finally, you can use a SELECT statement to display the updated table as a report. The
first 10 rows of Work.Payrollmaster_New, with updates, are shown below.

200 Chapter 5 • Creating and Managing Tables Using PROC SQL

The third row lists data for a level-1 employee, and that person's salary has been
updated.

If you wanted to increase all of the salaries, you would simply remove the WHERE
clause from the UPDATE statement:

proc sql;
 update work.payrollmaster_new
 set salary=salary*1.05;

Updating Rows By Using Different Expressions
Sometimes you want to use different expressions to modify values for different subsets
of rows within a column.

For example, instead of only raising the salary of level-1 employees by 5%, you might
also want to raise the salaries of level-2 employees by 10%, and so on, using a different
percentage increase for each group of employees.

There are two possible ways to use different expressions to update different subsets of
rows.

Method of Updating Table Example

use multiple UPDATE statements
subset of rows

A single UPDATE statement can
contain only a single WHERE clause,
so multiple UPDATE statements are
needed to specify expressions for
multiple subsets of rows.

proc sql;
 update work.payrollmaster_new
 set salary=salary*1.05
 where substr(jobcode,3,1)='1';
 update work.payrollmaster_new
 set salary=salary*1.10
 where substr(jobcode,3,1)='2';
 update work.payrollmaster_new
 set salary=salary*1.15
 where substr(jobcode,3,1)='3';

use a single UPDATE statement that
contains a CASE expression

proc sql;
 update work.payrollmaster_new
 set salary=salary*
 case
 when substr(jobcode,3,1)='1'
 then 1.05
 when substr(jobcode,3,1)='2'
 then 1.10
 when substr(jobcode,3,1)='3'
 then 1.15
 else 1.08
 end;

The first method, which requires the use of multiple UPDATE statements, is
cumbersome because the SET statement and expression must be repeated in each
UPDATE statement. In this example, the first method is inefficient because the table
Work.Payrollmaster_New must be read three times.

The second method, which uses conditional processing (the CASE expression), is
recommended. We now consider the second method.

Updating Values in Existing Table Rows 201

To update different subsets of rows in a table in different ways, you can incorporate
conditional processing by using the CASE expression in the SET clause of an UPDATE
statement. The CASE expression selects result values that satisfy specified conditions.

General form, CASE expression:

CASE <case-operand>
WHEN when-condition THEN result-expression
<...WHEN when-condition THEN result-expression>
<ELSE result-expression>

END;

Here is an explanation of the syntax:

CASE
performs conditional processing.

case-operand
is an optional expression that resolves to a table column whose values are compared to all
the when-conditions.

WHEN
specifies a when-condition, a shortened expression that assumes case-operand as one of its
operands, and that resolves to true or false.

THEN
specifies a result-expression, an expression that resolves to a value.

ELSE
specifies a result-expression, which provides an alternate action if none of the when-
conditions is executed.

END
indicates the end of the CASE expression.

CAUTION:
Although the ELSE clause is optional, its use is strongly recommended. If you omit
the ELSE clause, each row that is not described in one of the WHEN clauses
receives a missing value for the column that you are updating.

Note: You can also use the CASE expression in the INSERT and SELECT statements.

Example
In the following UPDATE statement, the CASE expression contains three WHEN-
THEN clauses that specify three different subsets of rows in the table Work.Insure_New:

• homeowners that are insured by Acme

• homeowners that are insured by Reliable

• homeowners that are insured by Homelife.

update work.insure_new
 set pctinsured=pctinsured*
 case
 when company='ACME'
 then 1.10
 when company='RELIABLE'
 then 1.15
 when company='HOMELIFE'

202 Chapter 5 • Creating and Managing Tables Using PROC SQL

 then 1.25
 else 1
 end;

PROC SQL updates each specified subset of rows differently, according to the
corresponding WHEN-THEN (or ELSE) clause.

How PROC SQL Updates Rows Based on a CASE Expression
When you specify a CASE expression, PROC SQL updates each row as follows:

1. In the CASE expression, PROC SQL finds the WHEN-THEN clause that contains a
condition that the row matches.

2. The CASE expression then returns the result from the matching WHEN-THEN
clause to the SET clause. The returned value completes the expression in the SET
clause.

3. The SET clause uses the completed expression to update the value of the specified
column in the current row.

The use of the CASE expression is efficient because of how PROC SQL processes the
WHEN-THEN clauses. The WHEN-THEN clauses in the CASE expression are
evaluated sequentially. When a matching case is found, the THEN expression is
evaluated and set, and the remaining WHEN cases are not considered.

How the Case Operand Works
In the next few sections, you learn about the use of the CASE expression in the
UPDATE statement, without and with the optional case operand:

CASE <case-operand>

Updating Rows By Using the CASE Expression without a Case
Operand

Here is an example of an UPDATE statement that uses the CASE expression for
conditional processing. This example shows the form of the CASE expression that does
not include the optional case operand.

Example
Suppose a company is considering giving raises to all of its employees, with a different
percentage for each employee level:

• level-1 employees get a 5% raise

• level-2 employees get a 10% raise

• level-3 employees get a 15% raise.

First, you create the temporary table Work.Payrollmaster3, which is a copy of
Sasuser.Payrollmaster, the table containing the employee salary data. The first 10 rows
of Work.Payrollmaster3 are shown below.

Updating Values in Existing Table Rows 203

Next, you create a PROC SQL step that updates rows by using an UPDATE statement
that contains a SET clause and a CASE expression:

proc sql;
 update work.payrollmaster3
 set salary=salary*
 case
 when substr(jobcode,3,1)='1'
 then 1.05
 when substr(jobcode,3,1)='2'
 then 1.10
 when substr(jobcode,3,1)='3'
 then 1.15
 else 1.08
 end;

In this example, the CASE expression contains three WHEN clauses, one for each subset
of rows (level-1, level-2, and level-3 employees), followed by an ELSE clause to handle
any rows that do not meet the expected conditions.

The first 10 rows of Work.Payrollmaster3, after the rows have been updated, are shown
below.

204 Chapter 5 • Creating and Managing Tables Using PROC SQL

By comparing the values of Salary in the original and updated versions of
Work.Payrollmaster3 (as shown above), you can see how the values changed according
to the job level indicated in the JobCode.

Updating Rows By Using the CASE Expression with a Case
Operand

If the expression in the SET clause uses an equals (=) comparison operator, you might
use the optional case operand in the CASE expression. Consider PROC SQL step that
was shown in the preceding example, and see how the CASE expression in the UPDATE
statement can be rewritten by using the alternate syntax.

Example
In the following PROC SQL step, which was shown earlier, the CASE expression
contains three WHEN-THEN clauses. These clauses contain similar expressions, each of
which specifies the same SUBSTR function:

proc sql;
 update work.payrollmaster_new2
 set salary=salary*
 case
 when substr(jobcode,3,1)='1'
 then 1.05
 when substr(jobcode,3,1)='2'
 then 1.10
 when substr(jobcode,3,1)='3'
 then 1.15
 else 1.08
 end;

Because the expression in this SET clause uses an equals (=) operator, you can
restructure the CASE expression for more efficient processing. In the alternate syntax,

Updating Values in Existing Table Rows 205

the repeated SUBSTR function is removed from each WHEN-THEN clause and is
placed after the keyword CASE, as an operand:

proc sql;
 update work.payrollmaster_new2
 set salary=salary*
 case substr(jobcode,3,1)
 when '1'
 then 1.05
 when '2'
 then 1.10
 when '3'
 then 1.15
 else 1.08
 end;

Using the alternate syntax, the SUBSTR function is evaluated only once, so this PROC
SQL step is more efficient than the original version.

Note: You might use the case operand syntax only if the SET clause expression uses the
equals (=) comparison operator.

Using the CASE Expression in the SELECT Statement
You can use the CASE expression in three different PROC SQL statements: UPDATE,
INSERT, and SELECT. In the SELECT statement, you can use the CASE expression
within a new column definition to specify different values for different subsets of rows.

Example
Suppose you want to generate an output report that displays employee names, job codes,
and job levels. Your PROC SQL query selects LastName and FirstName from
Sasuser.Staffmaster, and JobCode from Sasuser.Payrollmaster. The SELECT statement
must define JobLevel as a new column, because it does not exist as a separate column in
either table.

You want to assign the values of JobLevel, based on the number at the end of each
jobcode. (The number at the end of each JobCode value is expected to be 1, 2, or 3.) To
create JobLevel, you can use the case operand form of the CASE expression to specify
the three possible conditions (plus an ELSE condition, just in case).

The PROC SQL query is shown below:

206 Chapter 5 • Creating and Managing Tables Using PROC SQL

proc sql outobs=10;
 select lastname, firstname, jobcode,
 case substr(jobcode,3,1)
 when '1'
 then 'junior'
 when '2'
 then 'intermediate'
 when '3'
 then 'senior'
 else 'none'
 end as JobLevel
 from sasuser.payrollmaster,
 sasuser.staffmaster
 where staffmaster.empid=
 payrollmaster.empid;

The SELECT clause uses the CASE expression to assign a value of junior,
intermediate, senior, or none to each row in the new JobLevel column.

Deleting Rows in a Table

Overview
To delete some or all of the rows in a table, use the DELETE statement. When the
statement is successfully executed, the SAS log shows a message that indicates the
number of rows that have been deleted.

General form, DELETE statement for deleting rows in a table:

DELETE FROM table-name
<WHERE expression>;

Here is an explanation of the syntax:

table-name
specifies the name of the table in which rows will be deleted.

WHERE
is used to specify an expression that subsets the rows to be deleted.

CAUTION:
If you want to delete only a subset of rows in the table, you must specify a WHERE
clause or all rows in the table will be deleted.

Note: You can also use the DELETE statement to delete rows in a table that underlies a
PROC SQL view. For more information about referencing a PROC SQL view in a
DELETE statement, see Chapter 7, “Creating and Managing Views Using PROC
SQL,” on page 248.

Deleting Rows in a Table 207

Example
Suppose you want to delete the records for all frequent-flyer program members who
have used up all of their frequent flyer miles or have spent more miles than they had in
their accounts.

First, you create the temporary table Work.Frequentflyers2 by copying a subset of
columns from the existing table Sasuser.Frequentflyers:

proc sql;
 create table work.frequentflyers2 as
 select ffid, milestraveled,
 pointsearned, pointsused
 from sasuser.frequentflyers;

The first 10 rows of Work.Frequentflyers2 are shown below.

Next, you write a PROC SQL step that deletes the specified rows:

proc sql;
 delete from work.frequentflyers2
 where pointsearned-pointsused <= 0;

A message in the SAS log tells you how many rows were deleted.

Table 5.17 SAS Log

NOTE: 13 rows were deleted from WORK.FREQUENTFLYERS2

T I P To delete all of the rows in the table, remove the WHERE clause from the
DELETE statement.

208 Chapter 5 • Creating and Managing Tables Using PROC SQL

Altering Columns in a Table

Overview
You have seen how to delete rows in a table using the DELETE statement. To add, drop
(delete), or modify columns in a table, use the ALTER TABLE statement.

General form, ALTER TABLE statement:

ALTER TABLE table-name
<ADD column-definition-1<, ... column-definition-n>>
<DROP column-name-1<, ... column-name-n>>
<MODIFY column-definition-1<, ... column-definition-n>>;

Here is an explanation of the syntax:

table-name
specifies the name of the table in which columns will be added, dropped, or modified.

<ADD, DROP, MODIFY>
at least one of the following clauses must be specified:

ADD
specifies one or more column-definitions for columns to be added.

DROP
specifies one or more column-names for columns to be dropped (deleted).

MODIFY
specifies one or more column-definitions for columns to be modified, where column-
definition specifies a column to be added or modified, and is formatted as follows:

column-name data-type <(column-width)> <column-modifier-1
<...column-modifier-n>>

In all three clauses, multiple column-definitions or column-names must be separated by
commas.

Note: You cannot use the ALTER TABLE statement with views.

Note: The ALTER TABLE statement also supports similar clauses that add, drop, and
modify integrity constraints in an existing table. These clauses are not discussed in
this chapter. To find out more about adding, dropping, and modifying integrity
constraints, see the SAS documentation for the SQL procedure.

Consider each type of modification that can be made to a column by using the ALTER
TABLE statement.

Adding Columns to a Table
To add columns to a table, use the ADD clause in the ALTER TABLE statement. The
ADD clause specifies one or more column definitions. The syntax of a column definition
is the same as in the CREATE TABLE statement:

column-name data-type <(column-width)> <column-modifier-1< ...column-modifier-n>>

However, in the ALTER statement, the entire group of column definitions is not
enclosed in parentheses.

Altering Columns in a Table 209

Example
Suppose you are working with the temporary table Work.Payrollmaster4, which is an
exact copy of the existing table Sasuser.Payrollmaster. The first 10 rows of
Work.Payrollmaster4 are shown below.

The following PROC SQL step uses the ADD clause in the ALTER TABLE statement to
add the columns Bonus and Level to Work.Payrollmaster4:

proc sql;
 alter table work.payrollmaster4
 add Bonus num format=comma10.2,
 Level char(3);

The first 10 rows of Work.Payrollmaster4, with the two new columns, are shown below.

210 Chapter 5 • Creating and Managing Tables Using PROC SQL

Use the UPDATE statement to populate the new columns.

Dropping Columns from a Table
To drop (delete) existing columns from a table, use the DROP clause in the ALTER
TABLE statement. The DROP clause specifies one or more column names, and multiple
column names are separated by commas.

Example
Suppose you want to drop the existing columns Bonus and Level from the temporary
table Work.Payrollmaster4. (These two columns were added to the table in the example
in the previous section.) The first 10 rows of Work.Payrollmaster4 are shown below.

The following PROC SQL step uses the DROP clause in the ALTER TABLE statement
to drop the columns Bonus and Level from Work.Payrollmaster4:

Altering Columns in a Table 211

proc sql;
 alter table work.payrollmaster4
 drop bonus, level;

The first 10 rows of Work.Payrollmaster4, without Bonus and Level, are shown below.

Modifying Columns in a Table
To modify the attributes of one or more existing columns in a table, use the MODIFY
clause in the ALTER TABLE statement. You can use the MODIFY clause to change a
column's

• length (column width) — for a character column only

• informat

• format

• label.

Note: You cannot use the MODIFY clause to do the following:

• change a character column to numeric or vice versa. To change a column's data
type, drop the column and then add it (and its data) again, or use the DATA step.

• change a column's name. You cannot change this attribute by using the ALTER
TABLE statement. Instead, you can use the SAS data set option RENAME= or
the DATASETS procedure with the RENAME statement. You can find out more
about the DATASETS procedure with the RENAME statement in Chapter 13,
“Creating Indexes,” on page 448.

Like the ADD clause, the MODIFY clause specifies one or more column definitions,
each of which consists of the following:

column-name <data-type (column-width)> <column-modifier-1 < ...column-modifier-n>>

212 Chapter 5 • Creating and Managing Tables Using PROC SQL

In each column definition, you specify the required element (the column name),
followed by any of the optional attributes that you want to modify.

Note: When you use a column definition to add a new column by using the ADD clause
in the ALTER TABLE statement, or to specify a new column in the CREATE
TABLE statement, data-type is a required element. However, when you are using a
column definition in the MODIFY clause in the ALTER TABLE statement, as shown
in the following example, data-type is never required for numeric columns and is
optional for character columns. You must specify data-type (column-width) only if
you want to modify the column width of a character column.

Note: When modifying the width of a character variable, it is possible to truncate the
variable's value if the length specification is too small.

alter table work.payrollmaster
modify jobcode char(2);
select * from payrollmaster;

Example
Suppose you want to modify the attributes of the existing column Salary in the
temporary table Work.Payrollmaster4. The first 10 rows of Work.Payrollmaster4 (as it
existed at the end of the previous example) are shown below.

The column Salary is a numeric field that currently has the format DOLLAR9. The
following PROC SQL step modifies the format and adds a label for Salary:

proc sql;
 alter table work.payrollmaster4
 modify salary format=dollar11.2 label="Salary Amt";

The first 10 rows of Work.Payrollmaster4, with the new column attributes for Salary, are
shown below.

Altering Columns in a Table 213

Adding, Dropping, and Modifying Columns in a Single Statement
In the last few examples, the ALTER TABLE statement has made only one alteration to
columns in a table, by using just one clause. However, you can include multiple clauses
in a single ALTER TABLE statement to add, drop, and modify columns all at once.

Example
Suppose you want to use a single ALTER TABLE statement to make all of the following
alterations to the table Work.Payrollmaster4:

• add the new column Age, by using the ADD clause

• change the format of the DateOfHire column (which is currently DATE9.) to
MMDDYY10., by using the MODIFY clause

• drop the DateOfBirth and Gender columns, by using the DROP clause.

The first 10 rows of Work.Payrollmaster4, as it was at the end of the last example, are
shown below.

214 Chapter 5 • Creating and Managing Tables Using PROC SQL

The following PROC SQL step uses multiple clauses in the ALTER TABLE statement to
make all three of the alterations listed above:

proc sql;
 alter table work.payrollmaster4
 add Age num
 modify dateofhire date format=mmddyy10.
 drop dateofbirth, gender;

The first 10 rows of Work.Payrollmaster4, with the three alterations, are shown below.

Use the UPDATE statement to populate the new columns.

Altering Columns in a Table 215

Dropping Tables

Overview
To drop (delete) one or more entire tables, use the DROP TABLE statement.

General form, DROP TABLE statement:

DROP TABLE table-name-1 <, ... table-name-n>;

Here is an explanation of the syntax:

table-name
specifies the name of a table to be dropped, and can be one of the following:

• a one-level name

• a two-level libref.table name

• a physical pathname that is enclosed in single quotation marks.

Example
In the last few examples, you made several alterations to the temporary table
Work.Payrollmaster4. Now you decide that you do not need this table anymore. The
following PROC SQL step uses the DROP TABLE statement to drop
Work.Payrollmaster4:

 proc sql;
 drop table work.payrollmaster4;

The SAS log displays a message indicating that the table has been dropped:

Table 5.18 SAS Log

NOTE: Table WORK.PAYROLLMASTER4 has been dropped.

Summary

Text Summary

Understanding Methods of Creating Tables
You can use the CREATE TABLE statement to create a table in three different ways:

• create a table with no rows (an empty table) by defining columns

• create an empty table that is like another table

• create a table that contains rows, based on a query result.

216 Chapter 5 • Creating and Managing Tables Using PROC SQL

Creating an Empty Table By Defining Columns
You can create a table with no rows by using a CREATE TABLE statement that contains
column specifications. A column specification includes the following elements: column
name (required), data type (required), column width (optional), one or more column
modifiers (optional), and a column constraint (optional).

Displaying the Structure of a Table
To display, in the SAS log, a list of a table's columns and their attributes and other
information about a table, use the DESCRIBE TABLE statement.

Creating an Empty Table That Is like Another Table
To create a table with no rows that has the same structure as an existing table, use a
CREATE TABLE statement that contains the keyword LIKE. To specify a subset of
columns to be copied from the existing table, use the SAS data set options DROP= or
KEEP= in your CREATE TABLE statement.

Creating a Table from a Query Result
To create a new table that contains both columns and rows that are derived from an
existing table or set of tables, use a CREATE TABLE statement that includes the
keyword AS and the clauses that are used in a query. This method enables you to copy
an existing table quickly.

Inserting Rows of Data into a Table
The INSERT statement can be used in three ways to insert rows of data in existing
tables, either empty or populated. You can insert rows by using

• the SET clause to specify column names and values in pairs

• the VALUES clause to specify a list of values

• the clauses that are used in a query to return rows from an existing table.

Creating a Table That Has Integrity Constraints
Integrity constraints are rules that you can specify in order to restrict the data values that
can be stored for a column in a table. To create a table that has integrity constraints, use a
CREATE TABLE statement. Integrity constraints can be defined in two different ways in
the CREATE TABLE statement:

• by specifying a column constraint in a column specification

• by using a constraint specification.

Handling Errors in Row Insertions
When you add rows to a table that has integrity constraints, PROC SQL evaluates the
new data to ensure that it meets the conditions that are determined by the integrity
constraints. When you use the INSERT or UPDATE statement to add or modify data in a
table, you can use the UNDO_POLICY= option in the PROC SQL statement to specify
whether PROC SQL will make or undo the changes that you submitted up to the point of
the error.

Displaying Integrity Constraints for a Table
To display the integrity constraints for a specified table in the SAS log, use the
DESCRIBE TABLE CONSTRAINTS statement.

Summary 217

Updating Values in Existing Table Rows
To modify data values in some or all of the existing rows in a table, use the UPDATE
statement with the following:

• a SET clause and possibly a WHERE clause that specifies a single expression to
update rows. To update rows with multiple expressions, use multiple UPDATE
statements.

• a CASE expression that specifies multiple expressions to update rows. The CASE
expression can be specified without an optional case operand or, if the expression in
the SET clause uses an equals (=) comparison operator, with a case operand.

The CASE expression can also be used in the SELECT statement in a new column
definition to specify different values for different subsets of rows.

Deleting Rows in a Table
To delete some or all of the rows in a table, use the DELETE statement.

Altering Columns in a Table
To alter columns in a table, use the ALTER TABLE statement that contains one or more
of the following clauses:

• the ADD clause, to add one or more columns to a table

• the DROP clause, to drop (delete) one or more columns in a table

• the MODIFY clause, to modify the attributes of columns in a table.

Dropping Tables
To drop (delete) one or more entire tables, use the DROP TABLE statement.

Sample Programs

Creating an Empty Table By Defining Columns
 proc sql;
 create table work.discount
 (Destination char(3),
 BeginDate num Format=date9.,
 EndDate num format=date9.,
 Discount num);
quit;

Creating an Empty Table That Is like Another Table
proc sql;
 create table work.flightdelays2
 (drop=delaycategory destinationtype)
 like sasuser.flightdelays;
quit;

Creating a Table from a Query Result
proc sql;
 create table work.ticketagents as
 select lastname, firstname,
 jobcode, salary
 from sasuser.payrollmaster,

218 Chapter 5 • Creating and Managing Tables Using PROC SQL

 sasuser.staffmaster
 where payrollmaster.empid
 = staffmaster.empid
 and jobcode contains 'TA';
quit;

Displaying the Structure of a Table
proc sql;
 describe table work.discount;
quit;

Inserting Rows into a Table By Specifying Column Names and
Values

proc sql;
 insert into work.discount
 set destination='LHR',
 begindate='01MAR2000'd,
 enddate='05MAR2000'd,
 discount=.33
 set destination='CPH',
 begindate='03MAR2000'd,
 enddate='10MAR2000'd,
 discount=.15;
quit;

Inserting Rows into a Table By Specifying Lists of Values
proc sql;
 insert into work.discount (destination,
 begindate,enddate, discount)
 values ('LHR','01MAR2000'd,
 '05MAR2000'd,.33)
 values ('CPH','03MAR2000'd,
 '10MAR2000'd,.15);
quit;

Inserting Rows into a Table from a Query Result
proc sql;
 insert into work.payrollchanges2
 select empid, salary, dateofhire
 from sasuser.payrollmaster
 where empid in ('1919','1350','1401');
quit;

Creating a Table That Has Integrity Constraints
proc sql;
 create table work.employees
 (Name char(10),
 Gender char(1),
 HDate date label='Hire Date' not null,
 constraint prim_key primary key(name),
 constraint gender check(gender in ('M' 'F')));
quit;

Summary 219

Displaying Integrity Constraints for a Table
proc sql;
 describe table constraints work.discount4;
quit;

Updating Rows in a Table Based on an Expression
proc sql;
 update work.payrollmaster_new
 set salary=salary*1.05
 where jobcode like '__1';
quit;

Updating Rows in a Table By Using a CASE Expression
proc sql;
 update work.payrollmaster_new
 set salary=salary*
 case
 when substr(jobcode,3,1)='1'
 then 1.05
 when substr(jobcode,3,1)='2'
 then 1.10
 when substr(jobcode,3,1)='3'
 then 1.15
 else 1.08
 end;
quit;

Updating Rows in a Table By Using a CASE Expression (Alternate
Syntax)

proc sql outobs=10;
 select lastname, firstname, jobcode,
 case substr(jobcode,3,1)
 when '1'
 then 'junior'
 when '2'
 then 'intermediate'
 when '3'
 then 'senior'
 else 'none'
 end as JobLevel
 from sasuser.payrollmaster,
 sasuser.staffmaster
 where staffmaster.empid=
 payrollmaster.empid;
quit;

Deleting Rows in a Table
proc sql;
 delete from work.frequentflyers2
 where pointsearned-pointsused<=0;
quit;

220 Chapter 5 • Creating and Managing Tables Using PROC SQL

Adding, Modifying, and Dropping Columns in a Table
proc sql;
 alter table work.payrollmaster4
 add Age num
 modify dateofhire date format=mmddyy10.
 drop dateofbirth, gender;
quit;

Dropping a Table
proc sql;
 drop table work.payrollmaster4;
quit;

Points to Remember
• The CREATE TABLE statement generates only a table as output, not a report.

• The UPDATE statement does not insert new rows into a table. To insert rows, you
must use the INSERT statement.

Quiz
Select the best answer for each question. After completing the quiz, check your answers
using the answer key in the appendix.

1. Which of the following PROC SQL steps creates a new table by copying only the
column structure (but not the rows) of an existing table?

a. proc sql;
 create table work.newpayroll as
 select *
 from sasuser.payrollmaster;

b. proc sql;
 create table work.newpayroll
 like sasuser.payrollmaster;

c. proc sql;
 create table work.newpayroll
 copy sasuser.payrollmaster;

d. proc sql;
 create table work.newpayroll
 describe sasuser.payrollmaster;

2. Which of the following PROC SQL steps creates a table that contains rows for the
level-1 flight attendants only?

a. proc sql;
 create table work.newpayroll as
 select *
 from sasuser.payrollmaster
 where jobcode='FA1';

b. proc sql;
 create work.newpayroll as

Quiz 221

 select *
 from sasuser.payrollmaster
 where jobcode='FA1';

c. proc sql;
 create table work.newpayroll
 copy sasuser.payrollmaster
 where jobcode='FA1';

d. proc sql;
 create table work.newpayroll as
 sasuser.payrollmaster
 where jobcode='FA1';

3. Which of the following statements is true regarding the
UNDO_POLICY=REQUIRED option?

a. It must be used with the REQUIRED integrity constraint.

b. It ignores the specified integrity constraints if any of the rows that you want to
insert or update do not meet the constraint criteria.

c. It restores your table to its original state if any of the rows that you try to insert or
update do not meet the specified integrity constraint criteria.

d. It allows rows that meet the specified integrity constraint criteria to be inserted or
updated, but rejects rows that do not meet the integrity constraint criteria.

4. Which of the following is not a type of integrity constraint?

a. CHECK

b. NULL

c. UNIQUE

d. PRIMARY KEY

5. Which of the following PROC SQL steps deletes rows for all frequent-flyer program
members who traveled less than 10,000 miles?

a. proc sql;
 delete rows
 from work.frequentflyers
 where milestraveled < 10000;

b. proc sql;
 drop rows
 from work.frequentflyers
 where milestraveled < 10000;

c. proc sql;
 drop table
 from work.frequentflyers
 where milestraveled < 10000;

d. proc sql;
 delete
 from work.frequentflyers
 where milestraveled < 10000;

6. Which of the following PROC SQL steps gives bonuses (in points) to frequent-flyer
program members as follows:

• a 50% bonus for members who traveled less than 10,000 miles

222 Chapter 5 • Creating and Managing Tables Using PROC SQL

• a 100% bonus for members who traveled 10,000 miles or more?

a. proc sql;
 update work.frequentflyers
 set pointsearned=pointsearned*
 case if milestraveled < 10000
 then 1.5
 if milestraveled >= 10000
 then 2
 else 1
 end;

b. proc sql;
 update work.frequentflyers
 set pointsearned=pointsearned*
 case when milestraveled < 10000
 then 1.5
 when milestraveled >= 10000
 then 2
 else 1
 end;

c. proc sql;
 update work.frequentflyers
 set pointsearned=pointsearned*
 case if milestraveled < 10000
 then pointsearned*1.5
 if milestraveled >= 10000
 then pointsearned*2
 else 1
 end;

d. proc sql;
 update work.frequentflyers
 set pointsearned=pointsearned*
 case if milestraveled < 10000
 then pointsearned*1.5
 if milestraveled >= 10000
 then pointsearned*2
 else pointsearned*1
 end;

7. Which of the following statements is used to add new rows to a table?

a. INSERT

b. LOAD

c. VALUES

d. CREATE TABLE

8. Which of the following statements regarding the ALTER TABLE statement is false?

a. It enables you to update column attributes.

b. It enables you to add new columns in your table.

c. It enables you to drop columns in your table.

d. It enables you to change a character column to a numeric column.

9. Which of the following displays the structure of a table in the SAS log?

Quiz 223

a. proc sql;
 describe as
 select *
 from sasuser.payrollmaster;

b. proc sql;
 describe contents sasuser.payrollmaster;

c. proc sql;
 describe table sasuser.payrollmaster;

d. proc sql;
 describe * from sasuser.payrollmaster;

10. Which of the following creates an empty table that contains the two columns
FullName and Age?

a. proc sql;
 create table work.names
 (FullName char(25), Age num);

b. proc sql;
 create table work.names as
 (FullName char(25), Age num);

c. proc sql;
 create work.names
 (FullName char(25), Age num);

d. proc sql;
 create table work.names
 set (FullName char(25), Age num);

224 Chapter 5 • Creating and Managing Tables Using PROC SQL

Chapter 6

Creating and Managing Indexes
Using PROC SQL

Overview . 226
Introduction . 226

Understanding Indexes . 227
Accessing Rows in a Table . 227
Simple and Composite Indexes . 227
Unique Indexes . 228
Example . 228

Deciding Whether to Create an Index . 229
Overview . 229
PROC SQL Queries That Can Be Optimized by an Index 229
Benefits of Using an Index . 230
Example: Using an Index to Access a Small Subset of Data 230
Understanding the Costs of Using an Index . 230
Guidelines for Creating Indexes . 231

Creating an Index . 231
Overview . 231
Creating Multiple Indexes . 232
Example: Creating a Simple Index . 232
Example: Creating a Composite, Unique Index . 233

Displaying Index Specifications . 233
Overview . 233
Example . 234
Alternatives to the DESCRIBE TABLE Statement . 235

Managing Index Usage . 235
Overview . 235
Understanding How SAS Decides Whether to Use an Index 235
Determining Whether SAS Is Using an Index . 235
Example: Query That Uses an Index . 236
Example: Query That Does Not Use an Index . 236
Controlling Index Usage . 237
Using IDXWHERE= to Direct SAS to Use or Not to Use an Index 237
Example . 237
Using IDXNAME= to Direct SAS to Use a Specified Index 238
Example . 238

Dropping Indexes . 239
Overview . 239
Example: Dropping a Composite Index . 240

Summary . 240

225

Text Summary . 240
Sample Programs . 241
Points to Remember . 242

Quiz . 242

Overview

Introduction
When processing a query that contains a subsetting WHERE clause or that joins multiple
tables, PROC SQL must locate specific rows in the referenced table(s). Creating an
index for a table enables PROC SQL, in certain circumstances, to locate specific rows
more quickly and efficiently. An index is an auxiliary file that stores the physical
location of values for one or more specified columns (key columns) in a table. In an
index, each unique value of the key column(s) is paired with a location identifier for the
row that contains that value. In the same way that you use a book's subject index to find
a page that discusses a particular subject, PROC SQL uses the system of directions in an
index to access specific rows in the table directly, by index value. You can create more
than one index for a single table. All indexes for a SAS table are stored in one index file.

Note: You cannot create an index on a view.

The following PROC SQL step uses the CREATE INDEX statement to create an index
for a table, and uses the DESCRIBE TABLE statement to display information about the
index, along with other information about the table, in the SAS log:

proc sql;
 create unique index empid
 on work.payrollmaster(empid);
 describe table work.payrollmaster;

Note: For more information about the BUFSIZE= option, see “Using the BUFSIZE=
Option” on page 661.

Table 6.1 SAS Log

create table WORK.PAYROLLMASTER(bufsize=4096)
 (
 DateOfBirth num format=DATE9. informat=DATE9.,
 DateOfHire num format=DATE9. informat=DATE9.,
 EmpID char(4),
 Gender char(1),
 JobCode char(3),
 Salary num format=DOLLAR9.
);
create unique index EmpID on WORK.PAYROLLMASTER(EmpID);

In this chapter, you learn to create and manage various types of indexes with PROC
SQL.

226 Chapter 6 • Creating and Managing Indexes Using PROC SQL

Understanding Indexes

Accessing Rows in a Table
When you submit a query on a table that does not have an index, PROC SQL accesses
rows sequentially, in the order in which they are stored in the table. For example,
suppose you are working with a table that contains information about employees. You
have written a PROC SQL query to select the rows in which the value of Name (the first
column) is Smith. To access the rows that you want, PROC SQL begins with the first
row and reads through all rows in the table, selecting the rows that satisfy the condition
that is expressed in the WHERE clause.

When you execute a program that retrieves a small subset of rows from a large table, it
can be time-consuming for PROC SQL to read the rows sequentially. In some situations,
using an index on a table allows PROC SQL to access a subset of rows more efficiently.

An index stores unique values for a specified column or columns in ascending value
order, and includes information about the location of those values in the table. That is, an
index includes value/identifier pairs that enable you to access a row directly, by value.
For example, suppose you have created an index on your table that is based on the
column Name. Using the index, PROC SQL accesses the row(s) that you want directly,
without having to read all the other rows.

Simple and Composite Indexes
You can create two types of indexes:

• simple

• composite.

A simple index is based on one column that you specify. The indexed column can be
either character or numeric. When you create a simple index by using PROC SQL, you
must specify the name of the indexed column as the name of the index.

Understanding Indexes 227

A composite index is based on two or more columns that you specify. The indexed
columns can be character, numeric, or a combination of both. In the index, the values of
the key columns are concatenated to form a single value.

For example, if you build a composite index on the key columns LastName and
FirstName, a value for the index consists of the value for LastName followed by the
value for FirstName. Often, a WHERE clause might use only the first column (the
primary key) of a composite index, which means that the program reads only the first
part of each concatenated value.

When you create a composite index, you must specify a unique name for the index that
is not the name of any existing column or index in the table. In the example described
above, the composite index cannot be named Lastname or Firstname.

Unique Indexes
If you want to require that values for the key column(s) are unique for each row, you can
create either a simple index or a composite index as a unique index. Once a unique index
is defined on one or more columns in a table, SAS rejects any change to the table that
would cause more than one row to have the same value(s) for the specified column or
composite group of columns.

Example
Suppose you are working with the table Sasuser.Payrollmaster. The first eight rows of
this table are shown below.

DateOfBirth DateOfHire EmpID Gender JobCode Salary

16SEP1958 07JUN1985 1919 M TA2 $48,126

19OCT1962 12AUG1988 1653 F ME2 $49,151

08NOV1965 19OCT1988 1400 M ME1 $41,677

04SEP1963 01AUG1988 1350 F FA3 $46,040

19DEC1948 21NOV1983 1401 M TA3 $54,351

29APR1952 11JUN1978 1499 M ME3 $60,235

09JUN1960 04OCT1988 1101 M SCP $26,212

03APR1959 14FEB1979 1333 M PT2 $124,048

If you know that the column JobCode is often specified in a WHERE clause expression,
you might want to create a simple index on the column JobCode. You must specify the
name of the key column, JobCode, as the index name.

Now suppose you are planning to write many queries that specify both EmpID and
DateOfHire in a WHERE clause expression. In this case, you might want to create a
composite index on these two columns. Because employee identification numbers should
be unique, it is appropriate to create this index as a unique index. Therefore, you should
specify a name for your index that is not the same as the name of any existing column or
index in the table. For example, you could name this index Whenhired.

228 Chapter 6 • Creating and Managing Indexes Using PROC SQL

Deciding Whether to Create an Index

Overview
An index can reduce the time required to locate a set of rows, especially for a large data
file. However, there are costs associated with creating, storing, and maintaining the
index. When deciding whether to create an index, you must weigh any benefits in
performance improvement against the costs of increased resource usage.

Note: This chapter discusses the benefits and costs that are associated with using
indexes specifically with PROC SQL. To learn about the costs and benefits of using
indexes with other SAS procedures, see the SAS documentation.

PROC SQL Queries That Can Be Optimized by an Index
To use indexes effectively with PROC SQL, it is important to know the classes of
queries that can be processed more efficiently by using an index. The classes of queries
that can be optimized are specified below.

Query performance is optimized when the
key column occurs in ... Example

a WHERE clause expression that contains

• a comparison operator

• the TRIM or SUBSTR function

• the CONTAINS operator

• the LIKE operator.

proc sql;
 select empid, jobcode, salary
 from sasuser.payrollmaster
 where jobcode='FA3'
 order by empid;

Key Column(s): JobCode

a subquery returning values to the IN operator. proc sql;
 select empid, lastname, firstname,
 city, state
 from sasuser.staffmaster
 where empid in
 (select empid
 from sasuser.payrollmaster
 where salary>40000);

Key Column(s): EmpID

a correlated subquery, in which the column
being compared with the correlated reference
is indexed

proc sql;
 select lastname, firstname
 from sasuser.staffmaster
 where 'NA'=
 (select jobcategory
 from sasuser.supervisors
 where staffmaster.empid =
 supervisors.empid);

Key Column(s): Supervisors.EmpID

Deciding Whether to Create an Index 229

Query performance is optimized when the
key column occurs in ... Example

a join in which

• the join expression contains the equals (=)
operator (an equijoin)

• all the columns in the join expression are
indexed in one of the tables being joined.

proc sql;
 select *
 from sasuser.payrollmaster as p,
 sasuser.staffmaster as s
 where p.empid =
 s.empid
 order by jobcode;

Key Column(s): Payrollmaster.EmpID or
Staffmaster.EmpID

Benefits of Using an Index
For PROC SQL, there are three main benefits to using an index to access data directly
(instead of reading the data sequentially):

• A small subset of data (<15% of rows) can be accessed more quickly. (As the size of
the subset increases, the advantage of using an index decreases.)

• Equijoins can be performed without internal sorts.

• Uniqueness can be enforced by creating a unique index.

Example: Using an Index to Access a Small Subset of Data
Suppose you are writing a query that references the table Work.Payrollmaster.
(Work.Payrollmaster is a duplicate of the table Sasuser.Payrollmaster.)
Work.Payrollmaster stores payroll information for employees, and a simple index is
defined on the column JobCode. Your query's WHERE clause expression references the
key column:

proc sql;
 select empid, jobcode, salary
 from work.payrollmaster
 where jobcode='FA3'
 order by empid;

If the value of JobCode for most of the rows in the table is FA3, then the use of an index
does not significantly improve the efficiency of the following query. In fact, performance
might be degraded.

However, if only 10% of the rows have a value of FA3, then PROC SQL can process the
query more efficiently by using the index.

Note: In this chapter, if you want to submit any sample code that references a temporary
table (a table that is stored in the Work library), you first need to create the
temporary table by copying the table in the Sasuser library that has the same name.

Understanding the Costs of Using an Index
When you are deciding whether to create an index, you should consider the associated
increase in resource usage, which includes the following:

230 Chapter 6 • Creating and Managing Indexes Using PROC SQL

• Additional CPU time is necessary to create an index, to maintain the index when the
table is modified, and to use an index to read a row from a table.

• Using an index to read rows from a table might require additional I/O (input/output)
requests when compared to reading the table sequentially.

• Using an index requires additional memory for buffers into which the index pages
and code are loaded for processing.

• Additional disk space is required to store the index file, which can show up as a
separate file (in the Windows and UNIX operating environments, for example) or
can appear to be part of the data file (in the z/OS operating environment).

Guidelines for Creating Indexes
To use indexes effectively, follow these guidelines for creating indexes:

• Keep the number of indexes to a minimum to reduce disk storage and update costs.

• Do not create an index for small tables. Sequential access is faster on small tables.

• Do not create an index based on columns that have a very small number of distinct
values, low cardinality (for example, a Gender column that contains only the two
values Male and Female).

• Use indexes for queries that retrieve a relatively small subset of rows — that is, less
than 15%.

• Do not create more than one index that is based on the same column as the primary
key.

T I P Many factors affect the processing of SAS programs. The most accurate way to
find out whether to create an index for a particular table or column is to perform
benchmarking tests.

Creating an Index

Overview
To create an index on one or more columns of a table, use the CREATE INDEX
statement.

Creating an Index 231

General form, CREATE INDEX statement:

CREATE <UNIQUE> INDEX index-name
ON table-name (column-name-1<, ...column-name-n>);

Here is an explanation of the syntax:

UNIQUE
is a keyword that specifies that all values of the column(s) specified in the statement must be
unique.

index-name
specifies the name of the index to be created. If you are creating an index on one column
only, then index-name must be the same as column-name-1. If you are creating an index on
more than one column, then index-name cannot be the same as the name of any existing
column or index in the table.

table-name
specifies the name of the table on which the index is created.

column-name
specifies a column to be indexed. Columns can be specified in any order. However, column
order is important for data retrieval. The first-named column is the primary key, the second-
named column is the secondary key, and so on.

T I P When creating a composite index, specify the columns in the same order as you
would specify them in an ORDER BY clause.

T I P You can achieve improved index performance if you create the index on a pre-
sorted table.

SAS maintains indexes for all changes to the table, whether the changes originate from
PROC SQL or some other source, as long as the entire table is not re-created. If you alter
a column's definition or update its values, then SAS updates the indexes also. However,
if a key column in a table is dropped (deleted), then the index on that column is also
dropped.

Creating Multiple Indexes
You cannot create multiple simple indexes that are based on the same column or multiple
composite indexes that are based on the same set of columns. Although it is possible to
create both a simple index and a composite index on the same column, it is usually not
advantageous to do this. If a simple index is defined on a column and that column is also
the primary key in a composite index, PROC SQL uses the composite index in
processing a query that references that column.

You can create multiple indexes on the same table, but you must use a separate CREATE
INDEX statement for each index that you want to create.

Example: Creating a Simple Index
The following PROC SQL step uses the CREATE INDEX statement to create a simple,
unique index that is based on the column EmpID in the temporary table
Work.Payrollmaster. (Work.Payrollmaster is a duplicate of the table
Sasuser.Payrollmaster.)

proc sql;
 create unique index EmpID
 on work.payrollmaster(empid);

The specified index name (EmpID) must be the same as the name of the key column.

232 Chapter 6 • Creating and Managing Indexes Using PROC SQL

When this step is submitted, the SAS log displays the following message.

Table 6.2 SAS Log

NOTE: Simple index EmpID has been defined.

Example: Creating a Composite, Unique Index
The following PROC SQL step uses the CREATE INDEX statement to create the
composite, unique index daily on the columns FlightNumber and Date:

proc sql;
 create unique index daily
 on work.marchflights(flightnumber,date);

When this step is submitted, the SAS log displays the following message.

Table 6.3 SAS Log

NOTE: Composite index daily has been defined.

Note: The note in the SAS log displays the index name exactly as you specified it. In
this example, the index name daily was specified in lowercase. In the previous
example, the index name EmpID was specified in mixed case. However, the use of
uppercase and lowercase for index names is not significant because SAS recognizes
index names regardless of how they are formatted in code.

If the set of key columns FlightNumber and Date had duplicate values, the index would
not be created. Instead, the SAS log would display a message like the following.

Table 6.4 SAS Log

ERROR: Duplicate values not allowed on index daily for file MARCHFLIGHTS.

Displaying Index Specifications

Overview
Sometimes you want to know whether an existing table has any indexes. To display a
CREATE INDEX statement in the SAS log for each index that is defined for one or
more specified tables, you can use the DESCRIBE TABLE statement. (The DESCRIBE
TABLE statement also writes a CREATE TABLE statement to the SAS log for each
specified table.)

Displaying Index Specifications 233

General form, DESCRIBE TABLE statement:

DESCRIBE TABLE table-name-1<, ... table-name-n>;

Here is an explanation of the syntax:

table-name
specifies the table to be described as one of the following:

• a one-level name

• a two-level libref.table name

• a physical pathname that is enclosed in single quotation marks.

If a specified table has no indexes, a CREATE INDEX statement does not appear.

Example
Earlier in this chapter, the following code was used to create a unique composite index
named daily on the columns FlightNumber and Date in the temporary table
Marchflights.

proc sql;
 create unique index daily
 on work.marchflights(flightnumber,date);

The following DESCRIBE TABLE statement writes a CREATE INDEX statement to the
SAS log (after the CREATE TABLE statement) for the table Marchflights:

proc sql;
 describe table marchflights;

Table 6.5 SAS Log

NOTE: SQL table WORK.MARCHFLIGHTS was created like:

create table WORK.MARCHFLIGHTS(bufsize=8192)
 (
 Date num format=DATE9. informat=DATE9.,
 DepartureTime num format=TIME5. informat=TIME5.,
 FlightNumber char(3),
 Origin char(3),
 Destination char(3),
 Distance num,
 Mail num,
 Freight num,
 Boarded num,
 Transferred num,
 NonRevenue num,
 Deplaned num,
 PassengerCapacity num
);
create unique index daily on WORK.MARCHFLIGHTS(FlightNumber,Date);

If the table Marchflights had no index defined, no CREATE INDEX statement would
appear in the SAS log.

234 Chapter 6 • Creating and Managing Indexes Using PROC SQL

Alternatives to the DESCRIBE TABLE Statement
The DESCRIBE TABLE statement is only one of several methods that can be used to
list information about indexes that are defined on a table. One alternative is to query the
special table Dictionary.Indexes, which contains information about indexes that are
defined for all tables that are known to the current SAS session. (Dictionary.Indexes is
one of many read-only dictionary tables that are created at PROC SQL initialization.
These tables contain information about SAS libraries, SAS macros, and external files
that are in use or available in the current SAS session.)

You can also use other SAS procedures, such as PROC CONTENTS and PROC
DATASETS, to generate a report that contains information about indexes.

Note: To learn more about the use of dictionary tables, see Chapter 8, “Managing
Processing Using PROC SQL,” on page 264. To learn more about using PROC
CONTENTS and PROC DATASETS, see Chapter 13, “Creating Indexes,” on page
448.

Managing Index Usage

Overview
To manage indexes effectively, it is important to know

• how SAS decides whether to use an index and which index to use

• how to determine whether SAS is using an index

• how to control whether SAS uses an index, or which index it uses.

Understanding How SAS Decides Whether to Use an Index
By default, each time you submit a query (or other SAS program) that contains a
WHERE expression, SAS decides whether to use an index, or to read all the
observations in the data file sequentially. To make this decision, SAS does the following:

1. Identifies an available index or indexes.

2. Estimates the number of rows that would be qualified. If multiple indexes are
available, SAS selects the index that it estimates returns the smallest subset of rows.

3. Compares resource usage to decide whether it is more efficient to satisfy the
WHERE expression by using the index or by reading all the observations
sequentially.

Next, consider how you can find out whether SAS is using an index.

Determining Whether SAS Is Using an Index
After you create an index, it is important to monitor whether the index is being used. If
an index is not being used, the costs of maintaining the index might be greater than the
benefits, and you should consider dropping (deleting) the index.

Managing Index Usage 235

By default, when a PROC SQL query or any other program is submitted in SAS, only
notes, warnings, and error messages are written to the SAS log. To display additional
messages, such as information about indexes that have been defined and that have been
used in processing the program, specify the SAS system option MSGLEVEL=I. You
specify the MSGLEVEL= option in the OPTIONS statement, before the PROC SQL
statement.

General form, MSGLEVEL= option:

OPTIONS MSGLEVEL=N | I;

Here is an explanation of the syntax:

N
displays notes, warnings, and error messages only. This is the default.

I
displays additional notes pertaining to index usage, merge processing, and sort utilities along
with standard notes, warnings, and error messages.

Usually, the option MSGLEVEL= is set to I for debugging and testing, and set to N for
production jobs.

Example: Query That Uses an Index
Suppose you are writing a PROC SQL query that references the temporary table
Marchflights. Earlier in this chapter, a unique composite index named daily was created
on the columns FlightNumber and Date in Marchflights. The WHERE expression in
your query specifies the key column FlightNumber. To determine whether PROC SQL
uses the index daily when your query is processed, you specify MSGLEVEL=I before
the query:

options msglevel=i;
proc sql;
 select *
 from marchflights
 where flightnumber='182';

The message in the SAS log shows that the index was used in processing.

Table 6.6 SAS Log

INFO: Index daily selected for WHERE clause optimization.

Example: Query That Does Not Use an Index
Suppose you submit a different query that also references the key column FlightNumber:

proc sql;
 select *
 from marchflights
 where flightnumber in ('182','202');

In this example, the SAS log shows that the query does not use the index.

236 Chapter 6 • Creating and Managing Indexes Using PROC SQL

Table 6.7 SAS Log

INFO: Index daily not used. Sorting into index order may help.
INFO: Index daily not used. Increasing bufno to 8 may help.

Note: For more information about the BUFSIZE= option, see “Using the BUFSIZE=
Option” on page 661.

Note: SAS Version 8 displays informational messages that indicate when an index is
used, but does not display messages that indicate when an index is not used.

T I P Because the OPTIONS statement is global, the settings remain in effect until you
modify them or until you end your SAS session. Therefore, you do not need to
specify MSGLEVEL=I in this second query or any subsequent queries until you
want to change the setting or until your SAS session ends.

Controlling Index Usage
In general, it is recommended that you allow SAS to decide whether to use an index, or
which index to use, in processing a PROC SQL query (or other SAS program).
However, in some situations, such as testing, you might find it useful to control the use
of indexes by SAS.

To control index usage, use the IDXWHERE= and IDXNAME= SAS data set options to
override the default settings. You can use either of these options, but you cannot use both
options at the same time. As with other SAS data set options, you specify the
IDXWHERE= or IDXNAME= option in parentheses after the table name in the FROM
clause of a PROC SQL query.

Using IDXWHERE= to Direct SAS to Use or Not to Use an Index
The IDXWHERE= option enables you to override the decision that SAS makes about
whether to use an index.

General form, IDXWHERE= option:

IDXWHERE=YES | NO;

Here is an explanation of the syntax:

YES
tells SAS to choose the best index to optimize a WHERE expression, and to disregard the
possibility that a sequential search of the table might be more resource-efficient.

NO
tells SAS to ignore all indexes and satisfy the conditions of a WHERE expression with a
sequential search of the table.

Note: Use the IDXWHERE=NO option when you know an available index does not
optimize WHERE clause processing.

Example
In an earlier example, you used the option MSGLEVEL=I to verify that PROC SQL
does use an index to process the following query:

Managing Index Usage 237

options msglevel=i;
proc sql;
 select *
 from marchflights
 where flightnumber='182';

To force SAS to ignore the index and to process the rows of the table sequentially,
specify IDXWHERE=NO in the query:

proc sql;
 select *
 from marchflights (idxwhere=no)
 where flightnumber='182';

A message in the SAS log indicates that SAS was forced to process the data sequentially.

Table 6.8 SAS Log

INFO: Data set option (IDXWHERE=NO) forced a sequential pass of the data
rather than use of an index for where-clause processing.

Using IDXNAME= to Direct SAS to Use a Specified Index
The IDXNAME= option directs SAS to use an index that you specify, even if SAS
would have selected not to use an index or to use a different index.

General form, IDXNAME= option:

IDXNAME=index-name;

Here is an explanation of the syntax:

index-name
specifies the name of the index that should be used for processing.

SAS uses the specified index if the following conditions are true:

• The specified index must exist.

• The specified index must be suitable by having at least its first or only column match
a condition in the WHERE expression.

Note: Use the IDXNAME= option when you know the better index so that SAS does
not have to do the evaluation.

Example
In an earlier example, a composite index named daily was defined on the columns
FlightNumber and Date in the temporary table Marchflights. Suppose you create a
second index, a simple index, on the column Date (the secondary key in the composite
index) by using the following PROC SQL step:

proc sql;
 create index Date
 on work.marchflights(Date);

Next, you submit the following query:

238 Chapter 6 • Creating and Managing Indexes Using PROC SQL

proc sql;
 select *
 from marchflights
 where date='01MAR2000'd;

The WHERE clause in this query references the key column Date. By default, SAS
decides whether to use an index and, if an index is used, which index to use. The SAS
log indicates that, with both a simple index and a composite index defined on Date,
PROC SQL used the simple index Date to process the query.

Table 6.9 SAS Log

INFO: Index Date selected for WHERE clause optimization.

Note: This example assumes that the option MSGLEVEL=I, which was specified in the
previous example, is still in effect.

You decide that you want to force PROC SQL to use the index daily instead of Date, so
you add IDXNAME= to your query:

proc sql;
 select *
 from marchflights (idxname=daily)
 where flightnumber='182';

After this query is submitted, a message in the SAS log indicates that PROC SQL used
the index daily:

Table 6.10 SAS Log

INFO: Index daily selected for WHERE clause optimization.

Dropping Indexes

Overview
To drop (delete) one or more indexes, use the DROP INDEX statement.

Dropping Indexes 239

General form, DROP INDEX statement:

DROP INDEX index-name-1 <, ...index-name-2>
FROM table-name;

Here is an explanation of the syntax:

index-name
specifies an index that exists.

table-name
specifies a table that contains the specified index(es). The table-name can be one of the
following:

• a one-level name

• a two-level libref.table name

• a physical pathname that is enclosed in single quotation marks.

Example: Dropping a Composite Index
The following PROC SQL step uses the DROP INDEX statement to drop the composite,
unique index daily from the temporary table Marchflights. (This index was created in an
example earlier in this chapter.)

proc sql;
 drop index daily
 from work.marchflights;

When this step is submitted, the SAS log displays a message indicating that the index
has been dropped.

Table 6.11 SAS Log

NOTE: Index daily has been dropped.

Summary

Text Summary

Understanding Indexes
An index is an auxiliary file that is defined on one or more of a table's columns, which
are called key columns. The index stores the unique column values and a system of
directions that enable access to rows in that table by index value. When an index is used
to process a PROC SQL query, PROC SQL accesses directly (without having to read all
the prior rows) instead of sequentially.

You can create two types of indexes:

• simple index (an index on one column)

• composite index (an index on two or more columns).

240 Chapter 6 • Creating and Managing Indexes Using PROC SQL

You can define either type of index as a unique index, which requires that values for the
key column(s) be unique for each row.

Deciding Whether to Create an Index
When deciding whether to create an index, you must weigh any benefits in performance
improvement against the costs of increased resource usage. Certain classes of PROC
SQL queries can be optimized by using an index. To optimize the performance of your
PROC SQL queries, you can follow some basic guidelines for creating indexes.

Creating an Index
To create an index on one or more columns of a table, use the CREATE INDEX
statement. To specify a unique index, you add the keyword UNIQUE.

Displaying Index Specifications
To display a CREATE INDEX statement in the SAS log for each index that is defined
for one or more specified tables, use the DESCRIBE TABLE statement.

Managing Index Usage
To manage indexes effectively, it is important to know how SAS decides whether to use
an index and which index to use.

To find out whether an index is being used, specify the SAS option MSGLEVEL=I in an
OPTIONS statement before the PROC SQL statement. This option enables SAS to write
informational messages about index usage (and other additional information) to the SAS
log. The default setting MSGLEVEL=N displays notes, warnings, and error messages
only.

To force SAS to use the best available index, to use a specific index, or not to use an
index at all, include either the SAS data set option IDXWHERE= or IDXNAME= in
your PROC SQL query.

Dropping Indexes
To drop (delete) one or more indexes, use the DROP INDEX statement.

Sample Programs

Creating a Simple, Unique Index, and a Composite Index
proc sql;
 create unique index EmpID
 on work.payrollmaster(empid);
 create index daily
 on work.marchflights(flightnumber,date);
quit;

Displaying Index Specifications
proc sql;
 describe table marchflights;
quit;

Determining Whether SAS Is Using an Index
options msglevel=i;
proc sql;

Summary 241

 select *
 from marchflights
 where flightnumber='182';
quit;

Directing SAS to Ignore All Indexes
proc sql;
 select *
 from marchflights (idxwhere=no)
 where flightnumber='182';
quit;

Directing SAS to Use a Specified Index
proc sql;
 select *
 from marchflights (idxname=daily)
 where flightnumber='182';
quit;

Dropping an Index
proc sql;
 drop index daily
 from work.marchflights;
quit;

Points to Remember
• An index cannot be created on a view.

• Keep the number of indexes to a minimum to reduce disk storage and update costs.

• Do not create an index for small tables; sequential access is faster on small tables.

• Do not create an index based on columns that have a very small number of distinct
values, low cardinality (for example, a Gender column that contains only the two
values Male and Female).

• Use indexes for queries that retrieve a relatively small subset of rows — that is, less
than 15%.

• Do not create more than one index that is based on the same column as the primary
key.

Quiz
Select the best answer for each question. After completing the quiz, check your answers
using the answer key in the appendix.

1. Which of the following creates an index on the column EmpID for the table
Sasuser.Staffmaster?

a. proc sql;
 create simple index(empid)
 on sasuser.staffmaster;

242 Chapter 6 • Creating and Managing Indexes Using PROC SQL

b. proc sql;
 create empid index
 on sasuser.staffmaster(empid);

c. proc sql;
 create simple index
 on empid from sasuser.staffmaster;

d. proc sql;
 create index empid
 on sasuser.staffmaster(empid);

2. Which keyword must you add to your index definition in the CREATE INDEX
statement to ensure that no duplicate values of the key column can exist?

a. KEY

b. UNIQUE

c. NODUPS

d. NODUPKEY

3. Which of the following creates a composite index for the table Sasuser.Flightdelays?
(Sasuser.Flightdelays contains the following columns: Date, FlightNumber, Origin,
Destination, DelayCategory, DestinationType, DayOfWeek, and Delay.)

a. proc sql;
 create index destination
 on sasuser.flightdelays(flightnumber,
 destination);

b. proc sql;
 create composite index places
 on sasuser.flightdelays (flightnumber,
 destination);

c. proc sql;
 create index on flightnumber,destination
 from sasuser.flightdelays (places);

d. proc sql;
 create index places
 on sasuser.flightdelays (flightnumber,
 destination);

4. Which of the following writes a message to the SAS log that shows whether PROC
SQL has used an index?

a. options msglevel=i;
proc sql;
 select *
 from sasuser.internationalflights
 where date between '01mar2000'd
 and '07mar2000'd;

b. options index=yes;
proc sql;
 select *
 from sasuser.internationalflights
 where date between '01mar2000'd
 and '07mar2000'd;

c. proc sql;

Quiz 243

 select * (idxwhere=yes)
 from sasuser.internationalflights
 where date between '01mar2000'd
 and '07mar2000'd;

d. proc sql;
 select * (msglevel=i)
 from sasuser.internationalflights
 where date between '01mar2000'd
 and '07mar2000'd;

5. Which of the following drops (deletes) an index from a table?

a. proc sql;
 drop composite index flights
 from sasuser.marchflights;

b. proc sql;
 delete index flights
 on sasuser.staffmaster(flightnumber, date);

c. proc sql;
 drop index flights
 from sasuser.marchflights;

d. proc sql;
 delete index
 on sasuser.marchflights(flightnumber,
 flightdate);

6. Which of the following statements shows you all the indexes that are defined for a
table?

a. DESCRIBE INDEX

b. DESCRIBE TABLE

c. SELECT

d. IDXNAME

7. What is the purpose of specifying the data set option IDXWHERE=YES?

a. It forces SAS to use the best available index to process the WHERE expression.

b. It creates an index from the expression in the WHERE clause.

c. It writes messages about index usage to the SAS log.

d. It stops SAS from using any index.

8. Which of the following is false regarding the use of an index?

a. Equijoins can be performed without internal sorts.

b. Indexes provide fast access to a small subset of data.

c. Indexes can be created for numeric columns only.

d. Indexes can enforce uniqueness.

9. Using an index is not likely to optimize a PROC SQL query in which of the
following situations?

a. The query contains an IN subquery that references the key column.

244 Chapter 6 • Creating and Managing Indexes Using PROC SQL

b. The key column is specified in a WHERE clause expression that contains a
comparison operator, the TRIM or SUBSTR function, the CONTAINS operator,
or the LIKE operator.

c. The query is an equijoin, and all the columns in the join expression are indexed
in one of the tables being joined.

d. The key column is specified only in a SELECT clause.

10. Which of the following is false regarding the IDXNAME= data set option?

a. The specified index must exist.

b. The specified index must be suitable by having at least its first or only column
match a condition in the WHERE expression.

c. The option enables you to create and name an index on the table.

d. The option directs SAS to use an index that you specify.

Quiz 245

246 Chapter 6 • Creating and Managing Indexes Using PROC SQL

Chapter 7

Creating and Managing Views
Using PROC SQL

Overview . 248
Introduction . 248

Creating and Using PROC SQL Views . 248
PROC SQL Views . 248
Creating PROC SQL Views . 249
Example . 249
Using PROC SQL Views . 250

Displaying the Definition for a PROC SQL View . 251
Overview . 251
Example . 252

Managing PROC SQL Views . 252
Guidelines for Using PROC SQL Views . 252
Omitting the Libref . 253
Using an Embedded LIBNAME Statement . 253
Example . 254
Creating a View to Enhance Table Security . 254
Example . 254

Updating PROC SQL Views . 255
Overview . 255
Example . 255

Dropping PROC SQL Views . 257
Overview . 257
Example . 257

Summary . 258
Text Summary . 258
Sample Programs . 259
Points to Remember . 260

Quiz . 260

247

Overview

Introduction
A PROC SQL view is a stored query expression that reads data values from its
underlying files, which can include SAS data files, DATA step views, other PROC SQL
views, or DBMS data.

You can refer to views in queries as if they were tables. The view derives its data from
the tables or views that are listed in its FROM clause. The data that is accessed by a view
is a subset or superset of the data that is in its underlying table(s) or view(s).

proc sql;
 create view sasuser.raisev as
 select empid, jobcode,
 salary format=dollar12.2,
 salary/12 as MonthlySalary
 format=dollar12.2
 from payrollmaster;
 select *
 from sasuser.raisev
 where jobcode in ('PT2','PT3');

PROC SQL views

• can be used in SAS programs in place of an actual SAS data file

• can be joined with tables or other views

• can be derived from one or more tables, PROC SQL views, or DATA step views

• can access data from a SAS data set, a DATA step view, a PROC SQL view, or a
relational database table

• extract underlying data, which enables you to access the most current data.

Creating and Using PROC SQL Views

PROC SQL Views
A PROC SQL view is a stored query that is executed when you use the view in a SAS
procedure or DATA step. A view contains only the descriptor and other information
required to retrieve the data values from other SAS files (SAS data files, DATA step

248 Chapter 7 • Creating and Managing Views Using PROC SQL

views, or other PROC SQL views) or external files (DBMS data files). The view
contains only the logic for accessing the data, not the data itself.

Because PROC SQL views are not separate copies of data, they are referred to as virtual
tables. They do not exist as independent entities like real tables. However, views use the
same naming conventions as tables and can be used in SAS programs in place of an
actual SAS table. Like tables, views are considered to be SAS data sets.

Views are useful because they do the following:

• often save space (a view is usually quite small compared with the data that it
accesses)

• prevent users from continually submitting queries to omit unwanted columns or rows

• ensure that input data sets are always current, because data is derived from tables at
execution time

• shield sensitive or confidential columns from users while enabling the same users to
view other columns in the same table

• hide complex joins or queries from users.

Creating PROC SQL Views
You use the CREATE VIEW statement to create a view.

General form, CREATE VIEW statement:

CREATE VIEW proc-sql-view AS
SELECT column-1<, ... column-n>

FROM table-1 | view-1<, ... table-n | view-n>
<optional query clauses>;

Here is an explanation of the syntax:

• proc-sql-view specifies the name of the PROC SQL view that you are creating.

• SELECT specifies the column(s) that appear in the table.

• FROM specifies the table(s) or view(s) to be queried.

• optional query clauses are used to refine the query further and include the WHERE,
GROUP BY, HAVING, and ORDER BY clauses.

A PROC SQL view derives its data from the tables or views that are listed in the FROM
clause. The data that is accessed by a view is a subset or superset of the data that is in its
underlying table(s) or view(s). When a view is referenced by a SAS procedure or in a
DATA step, it is executed and, conceptually, an internal table is built. PROC SQL
processes this internal table as if it were any other table.

Example
The following PROC SQL step creates a view that contains information for flight
attendants. The view always returns the employee's age as of the current date.

The view Sasuser.Faview creates a virtual table from the accompanying SELECT
statement. Although the underlying tables, Sasuser.Payrollmaster and
Sasuser.Staffmaster, can change, the instructions that comprise the view stay constant.
The libref specified in the FROM clause is optional. It is assumed that the contributing
tables are stored in the same library as the view itself, unless otherwise specified.

Creating and Using PROC SQL Views 249

proc sql;
 create view sasuser.faview as
 select lastname, firstname, gender,
 int((today()-dateofbirth)/365.25) as Age,
 substr(jobcode,3,1) as Level,
 salary
 from sasuser.payrollmaster,
 sasuser.staffmaster
 where jobcode contains 'FA' and
 staffmaster.empid=
 payrollmaster.empid;

When this PROC SQL step is submitted, SAS does not actually execute the SELECT
statement that follows the AS keyword, but partially compiles and stores the SELECT
statement in a data file with a member type of VIEW. A message in the SAS log
confirms that the view has been defined.

Table 7.1 SAS Log

1 proc sql;
2 create view sasuser.faview as
3 select lastname, firstname, gender,
4 int((today()-dateofbirth)/365.25)
5 as Age,
6 substr(jobcode,3,1) as Level,
7 salary
8 from sasuser.payrollmaster,
9 sasuser.staffmaster
10 where jobcode contains 'FA' and
11 staffmaster.empid=
12 payrollmaster.empid;
NOTE: SQL view SASUSER.FAVIEW has been defined.

T I P It is helpful to give a PROC SQL view a name that easily identifies it as a view,
for example, Faview or Fav.

Note: In the Windows and UNIX operating environments, the default extension for
PROC SQL views (and DATA step views) is .sas7bvew.

Using PROC SQL Views
You can use a view in a subsequent PROC SQL step, or later in the same step, just as
you would use an actual SAS table. In the following example, the PROC SQL view
Sasuser.Faview is used in a query. Because the query stored in the view calculates the
age of each flight attendant based on the current date, the resulting output from this
PROC SQL step shows each flight attendant's age as of the current date. If
Sasuser.Faview were a static table, instead of a view, the age shown for each flight
attendant would never change.

proc sql;
 select *
 from sasuser.faview;

Partial output is shown below.

250 Chapter 7 • Creating and Managing Views Using PROC SQL

T I P You can use PROC SQL views in other SAS procedures and DATA steps. In the
following example, PROC TABULATE calculates the flight attendants' mean age by
level, using the view Sasuser.Faview:

proc tabulate data=sasuser.faview;
 class level;
 var age;
 table level*age*mean;
run;

Note: The values for the variable Age vary, because the calculation is dependent on the
date on which the code is executed.

Note: For information about the TABULATE procedure, see the SAS documentation.

Displaying the Definition for a PROC SQL View

Overview
You can use a DESCRIBE VIEW statement to display a definition of a view in the SAS
log.

Displaying the Definition for a PROC SQL View 251

General form, DESCRIBE VIEW statement:

DESCRIBE VIEW proc-sql-view-1<,...proc-sql-view-n>;

Here is an explanation of the syntax:

proc-sql-view
specifies a PROC SQL view and can be one of the following:

• a one-level name

• a two-level libref.view name

• a physical pathname that is enclosed in single quotation marks.

T I P If you use a PROC SQL view in a DESCRIBE VIEW statement that is based on
or derived from another view, then you might want to use the FEEDBACK option in
the PROC SQL statement. This option is displayed in the SAS log how the
underlying view is defined and expands any expressions that are used in this view
definition.

Example
The following PROC SQL step writes the view definition for Sasuser.Faview to the SAS
log:

proc sql;
 describe view sasuser.faview;

Table 7.2 SAS Log

NOTE: SQL view SASUSER.FAVIEW is defined as:
 select lastname, firstname, gender,
 INT((TODAY()-dateofbirth)/365.25) as Age,
 SUBSTR(jobcode, 3, 1) as Level, salary
 from SASUSER.PAYROLLMASTER, SASUSER.STAFFMASTER
 where jobcode contains 'FA' and
 (staffmaster.empid=payrollmaster.empid);

Managing PROC SQL Views

Guidelines for Using PROC SQL Views
When you are working with PROC SQL views, it is best to follow these guidelines:

• Avoid using an ORDER BY clause in a view definition, which causes the data to be
sorted every time the view is executed. Users of the view might differ in how or
whether they want the data to be sorted, so it is more efficient to specify an ORDER
BY clause in a query that references the view.

• If the same data is used many times in one program or in multiple programs, it is
more efficient to create a table rather than a view because the data must be accessed
at each view reference. (This table can be a temporary table in the Work library.)

252 Chapter 7 • Creating and Managing Views Using PROC SQL

• Avoid creating views that are based on tables whose structure might change. A view
is no longer valid when it references a nonexistent column.

• If a view resides in the same SAS library as the contributing table(s), it is best to
specify a one-level name in the FROM clause.

Omitting the Libref
The default libref for the table or tables in the FROM clause is the libref of the library
that contains the view. Using a one-level name in the FROM clause prevents you from
having to change the view if you assign a different libref to the SAS library that contains
the view and its contributing table or tables.

The following PROC SQL step creates the view Sasuser.Payrollv. The FROM clause
specifies a two-level name for the contributing table, Sasuser.Payrollmaster. However, it
is not necessary to specify the libref Sasuser because the contributing table is assumed to
be stored in the same library as the view.

proc sql;
 create view sasuser.payrollv as
 select *
 from sasuser.payrollmaster;

When the one-level name Payrollmaster is used in the FROM clause,
Sasuser.Payrollmaster is being specified, though it appears that Work.Payrollmaster is
being specified.

proc sql;
 create view sasuser.payrollv as
 select *
 from payrollmaster;

CAUTION:
If you are creating a view that is stored in a different library than the table(s)
referenced in the FROM clause, you must specify a two-level name for the table(s).

Using an Embedded LIBNAME Statement
As an alternative to omitting the libref in the FROM clause, you can embed a
LIBNAME statement in a USING clause to store a SAS libref in a view. Embedding a
LIBNAME statement is a more flexible approach because

• it can be used regardless of whether the view table and the underlying table reside in
the same library

• it avoids the confusion that might arise if a libref is omitted from a table name in the
FROM clause.

An embedded LIBNAME statement can be used only with a PROC SQL view. A libref
created with an embedded LIBNAME statement does not conflict with an identically
named libref in the SAS session.

Managing PROC SQL Views 253

General form, USING clause:

USING libname-clause-1<,... libname-clause-n>;

Here is an explanation of the syntax:

libname-clause
is one of the following:

• a valid LIBNAME statement

• a valid SAS/ACCESS LIBNAME statement.

CAUTION:
The USING clause must be the last clause in the CREATE VIEW statement.

Example
In the following example, while the view Sasuser.Payrollv is executing in the PROC
PRINT step, the libref Airline is dynamically assigned in the USING clause.

proc sql;
 create view sasuser.payrollv as
 select*
 from airline.payrollmaster
 using libname airline 'SAS-library-one';
quit;
proc print data=sasuser.payrollv;
run;

If an earlier assignment of the libref AIRLINE exists, the EMBEDDED LIBNAME
statement overrides the assignment for the duration of the view’s execution. After the
view executes, the original libref assignment is reestablished and the embedded
assignment is cleared.

Creating a View to Enhance Table Security
One advantage of PROC SQL views is that they can bring data together from separate
sources. This enables views to be used to shield sensitive or confidential columns from
some users while enabling the same users to view other columns in the same table.

CAUTION:
Although PROC SQL views can be used to enhance table security, it is strongly
recommended that you use the security features that are available in your operating
environment to maintain table security.

Example
The following PROC SQL step creates the view Manager.Infoview. The view accesses
data about flight attendants that is stored in three SAS libraries: Fa1, Fa2, and Fa3. The
Fa1, Fa2, and Fa3 libraries can be assigned access privileges at the operating system
level to prevent

• Level 1 flight attendants from reading the data stored in the Fa2 and Fa3 libraries

• Level 2 flight attendants from reading the data stored in the Fa1 and Fa3 libraries

• Level 3 flight attendants from reading the data stored in the Fa1 and Fa2 libraries.

254 Chapter 7 • Creating and Managing Views Using PROC SQL

Access privileges can also be assigned to permit managers (who are authorized to access
all SAS libraries) to view all of the information.

proc sql;
 create view manager.infoview as
 select *
 from fa1.info
 outer union corr
 select *
 from fa2.info
 outer union corr
 select *
 from fa3.info;

Updating PROC SQL Views

Overview
You can update the data underlying a PROC SQL view using the INSERT, DELETE,
and UPDATE statements under the following conditions:

• You can update only a single table through a view. The table cannot be joined or
linked to another table, nor can it contain a subquery.

• You can update a column using the column's alias, but you cannot update a derived
column (a column that is produced by an expression).

• You can update a view that contains a WHERE clause. The WHERE clause can be
specified in the UPDATE clause or in the view. You cannot update a view that
contains any other clause such as an ORDER BY or a HAVING clause.

• You cannot update a summary view (a view that contains a GROUP BY clause).

Updating a view does not change the stored instructions for the view. Only the data in
the underlying table(s) is updated.

Example
The following PROC SQL step creates the view Sasuser.Raisev, which includes the
columns Salary and MonthlySalary. A subsequent query that references the view shows
the columns.

Updating PROC SQL Views 255

proc sql;
 create view sasuser.raisev as
 select empid, jobcode,
 salary format=dollar12.,
 salary/12 as MonthlySalary
 format=dollar12.
 from payrollmaster;

proc sql;
 select *
 from sasuser.raisev
 where jobcode in ('PT2','PT3');

Suppose you want to update the view to show a salary increase for employees whose job
code is PT3. You can use an UPDATE statement to change the column Salary and a
WHERE clause in the UPDATE clause to identify the rows where the value of JobCode
equals PT3. Though MonthlySalary is a derived column and cannot be changed using an
UPDATE statement, it is updated because it is derived from Salary.

When the PROC SQL step is submitted, a note appears in the SAS log that indicates how
many rows were updated:

proc sql;
 update sasuser.raisev
 set salary=salary * 1.20
 where jobcode='PT3';

Table 7.3 SAS Log

116 proc sql;
117 update sasuser.raisev
118 set salary=salary * 1.20
119 where jobcode='PT3';
NOTE: 2 rows were updated in SASUSER.RAISEV.

Note: Remember that the rows were updated in the table that underlies the view
Sasuser.Raisev.

When you resubmit the query, the updated values for Salary and MonthlySalary appear
in the rows where JobCode equals PT3:

256 Chapter 7 • Creating and Managing Views Using PROC SQL

proc sql;
 select *
 from sasuser.raisev
 where jobcode in ('PT2','PT3');

Dropping PROC SQL Views

Overview
To drop (delete) a view, use the DROP VIEW statement.

General form, DROP VIEW statement:

DROP VIEW view-name-1 <,...view-name-n>;

Here is an explanation of the syntax:

view-name
specifies a SAS data view of any type (PROC SQL view or DATA step view) and can be one
of the following:

• a one-level name

• a two-level libref.view name

• a physical pathname that is enclosed in single quotation marks.

Example
The following PROC SQL step drops the view Sasuser.Raisev. After the step is
submitted, a message appears in the SAS log to confirm that the view has been dropped.

proc sql;
 drop view sasuser.raisev;

Dropping PROC SQL Views 257

Table 7.4 SAS Log

21 proc sql;
22 drop view sasuser.raisev;
NOTE: View SASUSER.RAISEV has been dropped.

Summary

Text Summary

Using PROC SQL Views
A PROC SQL view is a stored query that is executed when you use the view in a SAS
procedure or DATA step. A view contains only the descriptor and other information
required to retrieve the data values from other SAS files (SAS data files, DATA step
views, or other PROC SQL views) or external files (DBMS data files). When executed, a
PROC SQL view's output can be a subset or superset of one or more underlying files. A
view contains no data, but describes or defines data that is stored elsewhere.

PROC SQL views

• can be used in SAS programs in place of an actual SAS data file

• can be joined with tables or other views

• can be derived from one or more tables, PROC SQL views, DATA step views, or
SAS/ACCESS views.

• extract underlying data, which enables you to access the most current data.

Because PROC SQL views are not separate copies of data, they are referred to as virtual
tables. They do not exist as independent entities like real tables. However, views use the
same naming conventions as tables and can be used in SAS programs in place of an
actual SAS table. Like tables, views are considered to be SAS data sets.

Creating SQL Views
You use the CREATE VIEW statement to create a view. A PROC SQL view derives its
data from the tables or views that are listed in the FROM clause. The data that is
accessed by a view is a subset or superset of the data that is in its underlying tables(s) or
view(s). When a view is referenced by a SAS procedure or in a DATA step, it is
executed and, conceptually, an internal table is built. PROC SQL processes this internal
table as if it were any other table. A view can be used in a subsequent PROC SQL step
just as you would use an actual SAS table.

Displaying the Definition for a PROC SQL View
You can use a DESCRIBE VIEW statement to display a definition of a view in the SAS
log.

Managing PROC SQL Views
The default libref for the table or tables in the FROM clause is the libref of the library
that contains the view. Using a one-level name prevents you from having to change the

258 Chapter 7 • Creating and Managing Views Using PROC SQL

view if you assign a different libref to the SAS library that contains the view and its
contributing table or tables.

As a more flexible alternative to omitting the libref in the FROM clause, you can embed
a LIBNAME statement in a USING clause if you want to store a SAS libref in a view.
Embedding a LIBNAME statement in a USING clause does not conflict with an
identically named libref in the SAS session.

One advantage of PROC SQL views is that they can bring data together from separate
sources. This enables views to be used to shield sensitive or confidential columns from
some users while enabling the same users to view other columns in the same table.
Although PROC SQL views can be used to enhance table security, it is strongly
recommended that you use the security features that are available in your operating
environment to maintain table security.

Updating PROC SQL Views
You can update the data underlying a PROC SQL view using the INSERT, DELETE,
and UPDATE statements under the following conditions:

• You can update only a single table through a view. The table cannot be joined or
linked to another table, nor can it contain a subquery.

• You can update a column using the column's alias, but you cannot update a derived
column (a column that is produced by an expression).

• You can update a view that contains a WHERE clause. The WHERE clause can be in
the UPDATE clause or in the view. You cannot update a view that contains any other
clause such as an ORDER BY or a HAVING clause.

• You cannot update a summary view (a view that contains a GROUP BY clause).

Dropping PROC SQL Views
To drop (delete) a view, use the DROP VIEW statement.

Sample Programs

Creating a PROC SQL View
proc sql;
 create view sasuser.raisev as
 select empid, jobcode,
 salary format=dollar12.2,
 salary/12 as MonthlySalary
 format=dollar12.
 from payrollmaster
 using libname airline 'c:\data\ia';
quit;

Displaying the Definition for a PROC SQL View
proc sql;
 describe view sasuser.raisev;
quit;

Using a PROC SQL View in a Query
proc sql;
 select *

Summary 259

 from sasuser.raisev
 where jobcode in ('PT2','PT3');
quit;

Updating a PROC SQL View
proc sql;
 update sasuser.raisev
 set salary=salary * 1.20
 where jobcode='PT3';
quit;

Dropping a PROC SQL View
proc sql;
 drop view sasuser.raisev;
quit;

Points to Remember
• Avoid using an ORDER BY clause in a view definition, which causes the data to be

sorted every time the view is executed. Users of the view might differ in how or
whether they want the data to be sorted, so it is more efficient to specify an ORDER
BY clause in a query that references the view.

• If the same data is used many times in one program or in multiple programs, it is
more efficient to create a table rather than a view because the data must be accessed
at each view reference. (This table can be a temporary table in the Work library.)

• Avoid creating views that are based on tables whose structure might change. A view
is no longer valid when it references a nonexistent column.

• If a view resides in the same SAS library as the contributing table(s), it is best to
specify a one-level name in the FROM clause.

Quiz
Select the best answer for each question. After completing the quiz, check your answers
using the answer key in the appendix.

1. Which of the following statements is false regarding a PROC SQL view?

a. A view cannot be used in a join.

b. A view accesses the most current underlying data.

c. A view follows the same naming conventions as a table.

d. A view can be used in SAS programs in place of an actual SAS data file.

2. Which of the following statements describes an advantage of using a PROC SQL
view?

a. Views often save space, because a view is usually quite small compared with the
data that it accesses.

b. Views prevent users from continually submitting queries to omit unwanted
columns or rows.

260 Chapter 7 • Creating and Managing Views Using PROC SQL

c. Views hide complex joins or queries from users.

d. all of the above

3. Which PROC SQL step creates a view that queries the table Sasuser.Payrollmaster?

a. proc sql;
 insert into sasuser.newview
 select * from sasuser.payrollmaster;

b. proc sql;
 create sasuser.newview as
 select * from sasuser.payrollmaster;

c. proc sql;
 create view sasuser.newview as
 select * from sasuser.payrollmaster;

d. proc sql;
 select * from sasuser.payrollmaster
 into view sasuser.newview;

4. Which of the following PROC SQL steps enables you to see a description of the
view definition?

a. proc sql;
 select * from sasuser.payrollmasterv;

b. proc sql;
 describe view sasuser.payrollmasterv;

c. proc sql;
 list sasuser.payrollmasterv;

d. proc sql;
 contents view=sasuser.payrollmasterv;

5. Which PROC SQL step correctly references the view Data.Empview?

a. proc sql;
 select *
 from data.empview;

b. proc sql;
 select *
 from view data.empview;

c. proc sql;
 select view *
 from data.empview;

d. proc sql;
 select *
 from data
 where view='empview';

6. Which of the following PROC SQL steps correctly embeds a LIBNAME statement
with a view definition?

a. proc sql;
 insert into sasuser.newview
 select * from airline.supervisors
 libname airline 'c:\mysql';

b. proc sql;

Quiz 261

 create view sasuser.newview as
 from airline.supervisors
 embed libname airline 'c:\mysql';

c. proc sql;
 using airline 'c:\mysql';
 insert into sasuser.newview
 select * from airline.supervisors;

d. proc sql;
 create view sasuser.newview as
 select * from airline.supervisors
 using libname airline 'c:\mysql';

7. PROC SQL views can access data from:

a. a SAS data file.

b. another PROC SQL view.

c. a relational database table.

d. all of the above

8. When you are working with PROC SQL views, it is best to:

a. avoid using an ORDER BY clause in a view.

b. avoid creating views that are based on tables whose structure might change.

c. specify a one-level name in the FROM clause if the view resides in the same
SAS library as the contributing table(s).

d. all of the above

9. You can update the data underlying PROC SQL view using the INSERT, DELETE,
and UPDATE statements under which of the following conditions:

a. The view is joined or linked to another table.

b. The view contains a subquery.

c. The view contains a WHERE clause.

d. all of the above

10. Which of the following programs drops (deletes) a view?

a. proc sql;
 delete sasuser.newview;

b. proc sql;
 drop view sasuser.newview;

c. proc sql;
 erase view sasuser.newview;

d. proc sql;
 remove newview from sasuser;

262 Chapter 7 • Creating and Managing Views Using PROC SQL

Chapter 8

Managing Processing Using
PROC SQL

Overview . 264
Introduction . 264

Specifying SQL Options . 264

Controlling Execution . 265
Restricting Row Processing . 265
Example . 266

Controlling Output . 267
Including a Column of Row Numbers . 267
Example . 267
Double-Spacing Output . 268
Example . 268
Flowing Characters within a Column . 269
Example . 270

Testing and Evaluating Performance . 271
Writing Timing Information for Each Statement . 271
Example . 271

Resetting Options . 273
Overview . 273
Example . 273

Using Dictionary Tables . 275
Overview . 275
Exploring and Using Dictionary Tables . 276
Example . 276
Example . 277

Additional Features . 279
Restricting the Number of Loops . 279
Stopping Execution in PROC SQL after an Error . 279

Summary . 279
Text Summary . 279
Sample Programs . 281
Points to Remember . 281

Quiz . 281

263

Overview

Introduction
The SQL procedure offers a variety of options that control processing. Some options
control execution. For example, you can limit the number of rows read or written during
a query. Other options control output. For example, you can control the appearance of
long character columns, double-space output, or (as shown below) number your rows.
Options are also available for testing and evaluating performance.

Metadata is a description or definition of data or information. SAS session metadata is
stored in Dictionary tables, which are special, read-only SAS tables that contain
information about SAS libraries, SAS data sets, SAS macros, and external files that are
available in the current SAS session. Dictionary tables also contain the settings for SAS
system options and SAS titles and footnotes that are currently in effect. You can use the
SQL procedure to access the metadata stored in Dictionary tables. For example, you can
query a Dictionary table to find out which tables in a SAS library contain a specified
column.

Specifying SQL Options
Remember that PROC SQL options are specified in the PROC SQL statement.

264 Chapter 8 • Managing Processing Using PROC SQL

General form, PROC SQL statement:

PROC SQL <option(s)>;

Here is an explanation of the syntax:

option(s)
names the option(s) to be used.

CAUTION:
After you specify an option, it remains in effect until you change it or you re-invoke
PROC SQL.

The following tables list the options for controlling processing that are covered in this
chapter. A complete description and an example of each option appears in the following
sections.

Table 8.1 Options to Control Execution

To do this... Use this option...

Restrict the number of input rows INOBS=

Restrict the number of output rows OUTOBS=

Table 8.2 Options to Control Output

To do this... Use this option...

Double-space the output DOUBLE | NODOUBLE

Flow characters within a column FLOW | NOFLOW |
FLOW=n | FLOW=n m

Table 8.3 Options for Testing and Evaluating Performance

To do this... Use this option...

Specify whether PROC SQL writes timing information for each
statement to the SAS log

STIMER | NOSTIMER

Note: For a complete list of options, see the SAS documentation for the SQL procedure.

Controlling Execution

Restricting Row Processing
When you are developing queries against large tables, you can reduce the amount of
time that it takes for the queries to run by reducing the number of rows that PROC SQL

Controlling Execution 265

processes. Subsetting the tables with WHERE clauses is one way to do this. Using the
INOBS= and OUTOBS= options in PROC SQL is another way.

You already know that you can use the OUTOBS= option to restrict the number of rows
that PROC SQL displays or writes to a table. However, the OUTOBS= option does not
restrict the rows that are read. The INOBS= option restricts the number of rows that
PROC SQL takes as input from any single source. The INOBS= option is similar to the
SAS system option OBS= and is useful for debugging queries on large tables.

Note: For more information about the OUTOBS= option, see Chapter 2, “Performing
Advanced Queries Using PROC SQL,” on page 26.

Example
In the following PROC SQL set operation, INOBS=5 is specified. As indicated in the
log, only five rows from each source table, Sasuser.Mechanicslevel1 and
Sasuser.Mechanicslevel2, are used. The resulting table contains 10 rows.

proc sql inobs=5;
 select *
 from sasuser.mechanicslevel1
 outer union corr
 select *
 from sasuser.mechanicslevel2;

Table 8.4 SAS Log

183 proc sql inobs=5;
184 select *
185 from sasuser.mechanicslevel1
186 outer union corr
187 select *
188 from sasuser.mechanicslevel2;

WARNING: Only 5 records were read from SASUSER.MECHANICSLEVEL1
 due to INOBS= option.
WARNING: Only 5 records were read from SASUSER.MECHANICSLEVEL2
 due to INOBS= option.

266 Chapter 8 • Managing Processing Using PROC SQL

T I P You can use the PROMPT | NOPROMPT option with the INOBS= and
OUTOBS= options so that you are prompted to stop or continue processing when the
limits set by these options are reached.

Note: For more information about PROC SQL set operations, see Chapter 4,
“Combining Tables Vertically Using PROC SQL,” on page 126.

CAUTION:
In a simple query, there might be no apparent differences between using INOBS= or
OUTOBS=. Other times, it is important to choose the correct option. For example,
using the average function on a column with the PROC SQL option INOBS=10
returns an average of only the 10 values read for that column.

Controlling Output

Including a Column of Row Numbers
The NUMBER | NONUMBER option specifies whether the output from a query should
include a column named ROW, which displays row numbers. NONUMBER is the
default. The option is similar to the NOOBS option in the PRINT procedure.

Example
The following PROC SQL step specifies the NUMBER option. Output from the step
includes a column named Row, which contains row numbers.

Controlling Output 267

proc sql inobs=10 number;
 select flightnumber, destination
 from sasuser.internationalflights;

Double-Spacing Output
In some cases, double-spacing your output can make it easier to read. The
DOUBLE | NODOUBLE option specifies whether PROC SQL output is double-spaced.
The default is NODOUBLE.

Note: The DOUBLE | NODOUBLE option does not affect the appearance of the
HTML, PDF, or RTF output. To see the effect of this option, select the text in SAS
Enterprise Guide.

Example
The following PROC SQL step specifies the DOUBLE option. The listing output from
this step is double spaced. The HTML output from this step remains single-spaced.

proc sql inobs=10 double;
 select flightnumber, destination
 from sasuser.internationalflights;

268 Chapter 8 • Managing Processing Using PROC SQL

Figure 8.1 Listing Output

Figure 8.2 HTML Output

Flowing Characters within a Column
The FLOW | NOFLOW | FLOW=n | FLOW=n m option controls the appearance of wide
character columns in listing output. The FLOW option causes text to be flowed in its
column instead of wrapping the entire row. Specifying n sets the width of the flowed

Controlling Output 269

column. Specifying n and m floats the width of the column between limits to achieve a
balanced layout.

Note: The FLOW | NOFLOW | FLOW=n | FLOW=nm option does not affect the
appearance of HTML, PDF, or RTF output. To see the effect of this option, select the
text output in SAS Enterprise Guide.

Example
The following PROC SQL step does not specify the FLOW option. Notice that in the
output the name and values for the column ZipCode appear under the name and values
for the column FFID due to the wide character columns.

proc sql inobs=5;
 select ffid, membertype, name, address, city,
 state, zipcode
 from sasuser.frequentflyers
 order by pointsused;

Figure 8.3 Output from PROC SQL Step without FLOW Option

Specifying flow=10 15 causes the text within each character column to float between
10 and 15 spaces, which prevents the ZipCode column from wrapping underneath the
FFID column.

 proc sql inobs=5 flow=10 15;
 select ffid, membertype, name, address, city,
 state, zipcode
 from sasuser.frequentflyers
 order by pointsused;

Figure 8.4 Output from PROC SQL Step with FLOW Option

270 Chapter 8 • Managing Processing Using PROC SQL

Testing and Evaluating Performance

Writing Timing Information for Each Statement
The PROC SQL option STIMER | NOSTIMER specifies whether PROC SQL writes
timing information for each statement to the SAS log, instead of writing a cumulative
value for the entire procedure. NOSTIMER is the default.

In order to use the STIMER option in PROC SQL, the SAS system option STIMER (the
default) must also be in effect. Some host operating environments require that you
specify the SAS system option STIMER when you invoke SAS. The STIMER system
option controls the printing of performance statistics in the SAS log. If you use the
system option alone, the results will contain timing information for the entire procedure,
not on a statement-by-statement basis.

You can use the OPTIONS procedure to list the current settings of SAS system options.
To find out if the SAS system STIMER option is enabled on your operating
environment, submit the following program:

proc options option=stimer value;
run;

Table 8.5 SAS Log

Option Value Information For SAS Option STIMER
 Option Value: STIMER
 Option Scope: SAS Session
 How option value set: Shipped Default

Note: PROC OPTIONS produces additional information that is specific to the operating
environment under which you are running SAS. For more information about this and
for descriptions of host-specific options, see the SAS documentation for your
operating environment.

Example
Both of the queries in the following PROC SQL step list the name, address, city, state,
and ZIP code of customers listed in the Sasuser.FrequentFlyers table. However, the
second query lists only this information for customers who have earned more than 7000
points and used less than 3000 points.

When the PROC SQL statement is submitted without the STIMER option, timing
information for both queries is written to the SAS log as a cumulative value for the
entire procedure.

proc sql;
 select name, address, city, state, zipcode
 from sasuser.frequentflyers;
 select name, address, city, state, zipcode
 from sasuser.frequentflyers
 where pointsearned gt 7000 and pointsused lt 3000;
quit;

Testing and Evaluating Performance 271

Note: Timing information for a PROC SQL step is not written to the SAS log until a
QUIT statement is submitted or another PROC or DATA step is started.

Table 8.6 SAS Log

28 proc sql;
29 select name, address, city, state, zipcode
 from sasuser.frequentflyers;
30 select name, address, city, state, zipcode
 from sasuser.frequentflyers
31 where pointsearned gt 7000 and pointsused lt 3000;
32 quit;
NOTE: PROCEDURE SQL used (Total process time):
 real time 0.34 seconds
 cpu time 0.30 seconds

When the PROC SQL statement is submitted with the STIMER option, timing
information is written to the SAS log for each SELECT statement.

proc sql stimer;
 select name, address, city, state, zipcode
 from sasuser.frequentflyers;
 select name, address, city, state, zipcode
 from sasuser.frequentflyers
 where pointsearned gt 7000 and pointsused lt 3000;
quit;

Table 8.7 SAS Log

33 proc sql stimer;
NOTE: SQL Statement used (Total process time):
 real time 0.00 seconds
 cpu time 0.00 seconds

34 select name, address, city, state, zipcode
 from sasuser.frequentflyers;
NOTE: SQL Statement used (Total process time):
 real time 0.22 seconds
 cpu time 0.17 seconds

35 select name, address, city, state, zipcode
 from sasuser.frequentflyers
36 where pointsearned gt 7000 and pointsused lt 3000;
NOTE: SQL Statement used (Total process time):
 real time 0.25 seconds
 cpu time 0.08 seconds

37 quit;
NOTE: PROCEDURE SQL used (Total process time):
 real time 0.29 seconds
 cpu time 0.03 seconds

Note: When the STIMER option is used in PROC SQL, the exact wording of the Notes
that are written to the SAS log might vary for different versions of SAS.

Note: The STIMER option in PROC SQL is useful when an operation can be
accomplished in more than one way and you are benchmarking each technique.

272 Chapter 8 • Managing Processing Using PROC SQL

Although factors such as code readability and maintenance come into consideration,
you might also want to know which PROC SQL step runs the fastest.

Resetting Options

Overview
After you specify an option, it remains in effect until you change it, or you re-invoke
PROC SQL. You can use the RESET statement to add, drop, or change PROC SQL
options without re-invoking the SQL procedure.

General form, RESET statement:

RESET <option(s)>;

Here is an explanation of the syntax:

option(s)
lists the options in any order.

Options are additive. For example, you can specify the NOPRINT option in a PROC
SQL statement, submit a query, and submit the RESET statement with the NUMBER
option, without affecting the NOPRINT option.

Example
Suppose you want to submit two PROC SQL queries in a single PROC SQL step. You
want

• both queries to display only the first five rows of output

• the second query to display row numbers in the output.

In the following PROC SQL step, the PROC SQL statement specifies the OUTOBS=
option to restrict the number of rows that is displayed in the output. After the first
SELECT statement, the RESET statement adds the NUMBER option to display row
numbers in the result set.

proc sql outobs=5;
 select flightnumber, destination
 from sasuser.internationalflights;
reset number;
 select flightnumber, destination
 from sasuser.internationalflights
 where boarded gt 200;

The output, which contains two result sets, is shown below. The result set from the first
SELECT statement reflects only by the OUTOBS= option. The result set from the
second SELECT statement reflects both the OUTOBS= option and the NUMBER option
that is specified in the RESET statement.

Resetting Options 273

Now suppose you want to modify the PROC SQL step so that the result set from only
the first SELECT statement is restricted to five rows of output. In the modified PROC
SQL step, the OUTOBS= option is added to the RESET statement to change (reset) the
OUTOBS= option that is specified in the PROC SQL statement. The modified step
follows:

 proc sql outobs=5;
 select flightnumber, destination
 from sasuser.internationalflights;
 reset outobs= number;
 select flightnumber, destination
 from sasuser.internationalflights
 where boarded gt 200;

In the output, the result set from the second SELECT statement now contains all the
rows that are generated by the query.

274 Chapter 8 • Managing Processing Using PROC SQL

Using Dictionary Tables

Overview
Dictionary tables are commonly used to monitor and manage SAS sessions because the
data is easier to manipulate than the output from procedures such as PROC DATASETS.

Dictionary tables are special, read-only SAS tables that contain information about SAS
libraries, SAS macros, and external files that are in use or available in the current SAS
session. Dictionary tables also contain the settings for SAS system options and SAS
titles and footnotes that are currently in effect. For example, the Dictionary.Columns
table contains information (such as name, type, length, and format) about all columns in
all tables that are known to the current SAS session.

Dictionary tables are

• created each time they are referenced in a SAS program

• updated automatically

• limited to Read-Only access.

Accessing a Dictionary table causes SAS to determine the current state of the SAS
session and return the information that you want. Dictionary tables can be accessed by
running a PROC SQL query against the table, using the Dictionary libref. Though SAS
librefs are usually limited to eight characters, Dictionary is an automatically assigned,
reserved word. You can also access a Dictionary table by referring to the PROC SQL
view of the table that is stored in the Sashelp library.

The following table describes some of the Dictionary tables that are available and lists
the corresponding Sashelp views. For a complete list of Dictionary tables, see the SAS
documentation for the SQL procedure.

Dictionary table Sashelp view Contains

Catalogs Vcatalg information about catalog entries

Columns Vcolumn detailed information about variables and their
attributes

Extfiles Vextfl currently assigned filerefs

Indexes Vindex information about indexes defined for data
files

Macros Vmacro information about both user and system
defined macro variables

Members VmemberVsaccesVs
catlgVslibVstableVst
abvwVsview

general information about data library
members

Options Voption current settings of SAS system options

Using Dictionary Tables 275

Dictionary table Sashelp view Contains

Tables Vtable detailed information about data sets

Titles Vtitle text assigned to titles and footnotes

Views Vview general information about data views

Exploring and Using Dictionary Tables
You can query Dictionary tables the same way you query any other table, including
subsetting with a WHERE clause, ordering the results, creating tables, and creating
PROC SQL views. Because Dictionary tables are read-only objects, you cannot insert
rows or columns, alter column attributes, or add integrity constraints to them.

To see how each Dictionary table is defined, submit a DESCRIBE TABLE statement.
The DESCRIBE TABLE statement writes a CREATE TABLE statement to the SAS log
for the table specified in the DESCRIBE TABLE statement. After you know how a table
is defined, you can use its column names in a subsetting WHERE clause in order to
retrieve specific information.

Example
The Dictionary.Tables table contains detailed information about tables. The following
DESCRIBE TABLE statement displays information about the Dictionary.Tables table in
the log window. The information includes the names of the columns stored in the table.

proc sql;
 describe table dictionary.tables;

Table 8.8 SAS Log

create table DICTIONARY.TABLES
 (
 libname char(8) label='Library Name',
 memname char(32) label='Member Name',
 memtype char(8) label='Member Type',
 memlabel char(256) label='Dataset Label',
 typemem char(8) label='Dataset Type',
 crdate num format=DATETIME informat=DATETIME label='Date Created',
...);

To display information about the files in a specific library, specify the column names in a
SELECT statement and the Dictionary table name in the FROM clause.

For example, the following PROC SQL step displays the columns

• Memname (name)

• Nobs (number of observations)

• Nvar (number of variables)

• Crdate (creation date) of the tables in the Sasuser library.

276 Chapter 8 • Managing Processing Using PROC SQL

The Dictionary column names are specified in the SELECT statement and the Dictionary
table name, Dictionary.Tables, is specified in the FROM clause. The library name,
Sasuser, is specified in the WHERE clause.

CAUTION:
Note that you must specify the library name in the WHERE clause in uppercase
letters (because that is how it is stored within SAS) and enclose it in quotation
marks.

proc sql;
 select memname format=$20., nobs, nvar, crdate
 from dictionary.tables
 where libname='SASUSER';

Partial output is shown below.

Note: The nobs value for ALL is missing because it is a view, not a table.

Note: Your output might differ from that shown above, depending on the contents of
your Sasuser library.

You can also use Dictionary tables to determine more specific information such as which
tables in a SAS library contain a specific column.

Example
The Dictionary.Columns table contains detailed information about variables and their
attributes. As in Dictionary.Tables, the Dictionary.Columns table contains a column that
is titled Memname, which lists the name of each table within a library.

proc sql;
 describe table dictionary.columns;

Table 8.9 SAS Log

create table DICTIONARY.COLUMNS
 (
 libname char(8) label='Library Name',
 memname char(32) label='Member Name',
 memtype char(8) label='Member Type',
 name char(32) label='Column Name',
 type char(4) label='Column Type',
 length num label='Column Length',
...);

Using Dictionary Tables 277

The following PROC SQL step lists all the tables in the Sasuser library that contain a
column named EmpID. The dictionary column name, Memname, is specified in the
SELECT statement. The Dictionary table, Dictionary.Columns, is specified in the
FROM clause. The library name, Sasuser, and the column name, EmpID, are specified in
the WHERE clause.

proc sql;
 select memname
 from dictionary.columns
 where libname='SASUSER'
 and name='EmpID';

Partial output is shown below.

Remember that you can also access a Dictionary table by referring to the PROC SQL
view of the table that is stored in the Sashelp library. In the following PROC PRINT
step, the Sashelp view Vcolumn is specified in the DATA= option. The results of the
PROC PRINT step are identical to the preceding output.

proc print data=sashelp.vcolumn;
 var memname;
 where libname='SASUSER' and name='EmpID';
run;

CAUTION:
Note that column names in the WHERE clause must be specified in the same case
that is used in the Dictionary table and must be enclosed in quotation marks.

Note: You can use Sashelp views in any SAS procedure or DATA step. However,
Dictionary tables can be read only by using the SQL procedure.

278 Chapter 8 • Managing Processing Using PROC SQL

Additional Features

Restricting the Number of Loops
The LOOPS= option restricts the number of iterations of the inner loop in PROC SQL.
By setting a limit, you can prevent queries from consuming excessive resources.

For example, joining three large tables without meeting the join-matching conditions
could create a huge internal table that would be inefficient to process. Use the LOOPS=
option to prevent this from happening.

You can use the PROMPT | NOPROMPT option to modify the effect of the LOOPS=
option so that you are prompted to stop or continue processing when the limit set by the
LOOPS= option is reached.

Note: You can use the number of iterations that are reported in the SQLOOPS macro
variable (after each PROC SQL statement is executed) to gauge an appropriate value
for the LOOPS= option. For more information about the SQLOOPS macro variable,
see the SAS documentation for the SQL procedure.

Stopping Execution in PROC SQL after an Error
You already know that you can use the EXEC | NOEXEC option to specify whether a
statement should be executed after its syntax is checked for accuracy. If the EXEC
option is in effect, SAS checks the PROC SQL syntax for accuracy and, if no error is
found, executes the SQL statement.

The ERRORSTOP | NOERRORSTOP option specifies whether PROC SQL stops
executing if it encounters an error. This option is useful only when the EXEC option is in
effect. The default is ERRORSTOP in batch or in a noninteractive session and
NOERRORSTOP in an interactive SAS session.

ERRORSTOP instructs PROC SQL to stop executing the statements but to continue
checking the syntax after it has encountered an error. ERRORSTOP has an effect only
when SAS is running in batch or in noninteractive execution mode.

NOERRORSTOP instructs PROC SQL to execute the statements and to continue
checking the syntax after an error occurs. NOERRORSTOP is useful if you want a batch
job to continue executing SQL procedure statements after an error is encountered.

Summary

Text Summary

Specifying SQL Options
The SQL procedure offers a variety of options that affect processing. Some options
control execution. For example, you can limit the number of rows read or written during
a query or limit the number of internal loops PROC SQL performs. Other options control
output. For example, you can flow character columns, number your rows, or double-

Summary 279

space output. Options are also available for testing and evaluating performance. Options
are specified in the PROC SQL statement.

Restricting Row Processing
The OUTOBS= option restricts the number of rows that PROC SQL displays or writes
to a table. The INOBS= option restricts the number of rows that PROC SQL takes as
input from any single source. The INOBS= option is similar to the SAS system option
OBS= and is useful for debugging queries on large tables.

Controlling Output
The NUMBER | NONUMBER option specifies whether the SELECT statement should
include a column named ROW, which is the row number of the data as it is retrieved.
NONUMBER is the default. The option is similar to the NOOBS option in the PRINT
procedure.

In some cases, double-spacing your output can make it easier to read. The
DOUBLE | NODOUBLE option specifies whether PROC SQL output is double-spaced
in the listing output. The default is NODOUBLE.

The FLOW | NOFLOW | FLOW=n| FLOW=n m option controls the appearance of wide
character columns in the listing output. The FLOW option causes text to be flowed in its
column instead of wrapping the entire row. Specifying n sets the width of the flowed
column. Specifying n and m floats the width of the column between limits to achieve a
balanced layout.

Testing and Evaluating Performance
The STIMER | NOSTIMER option specifies whether PROC SQL writes timing
information for each statement to the SAS log, in addition to writing a cumulative value
for the entire procedure. NOSTIMER is the default. In order to use the STIMER option
in PROC SQL, the SAS system option STIMER (the default) must also be in effect.

Resetting Options
After you specify an option, it remains in effect until you change it or you re-invoke
PROC SQL. You can use the RESET statement to add, drop, or change PROC SQL
options without re-invoking the SQL procedure.

Using Dictionary Tables
SAS session metadata is stored in Dictionary tables, which are special, read-only SAS
tables that contain information about SAS libraries, SAS macros, and external files that
are available in the current SAS session. A Dictionary table also contains the settings for
SAS system options and SAS titles and footnotes that are currently in effect.

Accessing a Dictionary table causes PROC SQL to determine the current state of the
SAS session and return the information that you want. Dictionary tables can be accessed
by running a PROC SQL query against the table, using the Dictionary libref. You can
also access a Dictionary table by referring to the PROC SQL view of the table that is
stored in the Sashelp library.

To see how each Dictionary table is defined, submit a DESCRIBE TABLE statement.
After you know how a table is defined, you can use its column names in a subsetting
WHERE clause in order to retrieve specific information. To display information about
the files in a specific library, specify the column names in a SELECT statement and the
dictionary table name in the FROM clause. You can also use Dictionary tables to
determine more specific information such as which tables in a SAS library contain a
specific column.

280 Chapter 8 • Managing Processing Using PROC SQL

Additional Features
The LOOPS= option restricts the number of iterations of the inner loop in PROC SQL.
By setting a limit, you can prevent queries from consuming excessive resources.

The ERRORSTOP | NOERRORSTOP option specifies whether PROC SQL stops
executing if it encounters an error.

Sample Programs

Querying a Table Using PROC SQL Options
proc sql outobs=5;
 select flightnumber, destination
 from sasuser.internationalflights;
reset number;
 select flightnumber, destination
 from sasuser.internationalflights
 where boarded gt 200;
quit;

Describing and Querying a Dictionary Table
proc sql;
 describe table dictionary.columns;
 select memname
 from dictionary.columns
 where libname='SASUSER'
 and name='EmpID';
quit;

Points to Remember
• After you specify an option, it remains in effect until you change it or you re-invoke

PROC SQL.

• The DOUBLE | NODOUBLE and the FLOW | NOFLOW | FLOW=n| FLOW=n m
options do not affect the appearance of HTML, PDF, or RTF output that is created
with the Output Delivery System.

• If you query a Dictionary table about the files in a specific library, the library name
used in the WHERE clause must be specified in uppercase letters because that is how
it is stored in SAS. Column names used in the WHERE clause must be specified in
the same case as they appear in the Dictionary table.

Quiz
Select the best answer for each question. After completing the quiz, check your answers
using the answer key in the appendix.

1. PROC SQL options are specified in

a. the PROC SQL statement.

b. an OPTIONS statement.

c. a SELECT statement.

Quiz 281

d. the OPTIONS procedure.

2. Which of the following SQL options restricts the number of rows that PROC SQL
takes as input from any single source?

a. OUTOBS=

b. INOBS=

c. OBS=

d. none of the above

3. Which PROC SQL step creates the output shown below?

a. proc sql nonumber outobs=10;
 select *
 from sasuser.flightattendants
 where jobcode='FA1';
 select *
 from sasuser.flightattendants
 where jobcode='FA2';

b. proc sql number;
 select *
 from sasuser.flightattendants
 where jobcode='FA1';

282 Chapter 8 • Managing Processing Using PROC SQL

reset nonumber outobs=10;
 select *
 from sasuser.flightattendants
 where jobcode='FA2';

c. proc sql nonumber;
 select *
 from sasuser.flightattendants
 where jobcode='FA1';
reset number outobs=10;
 select *
 from sasuser.flightattendants
 where jobcode='FA2';

d. proc sql;
 select *
 from sasuser.flightattendants
 where jobcode='FA1';
reset outobs=10;
 select *
 from sasuser.flightattendants
 where jobcode='FA2';

4. Which of the following options does not affect the appearance of HTML, PDF, or
RTF output?

a. NUMBER | NONUMBER

b. DOUBLE | NODOUBLE

c. FLOW | NOFLOW | FLOW=n | FLOW=n m

d. b and c

5. Which of the following statements is true regarding the STIMER option in PROC
SQL?

a. The STIMER option in PROC SQL writes timing information for each statement
to the SAS log.

b. The STIMER option in PROC SQL writes only cumulative timing information
for the entire procedure to the SAS log.

c. When using the STIMER option in PROC SQL, the SAS system option STIMER
must also be in effect.

d. a and c

6. A Dictionary table contains which of the following?

a. information about SAS libraries.

b. information about SAS data sets.

c. information about SAS macros.

d. all of the above

7. Dictionary tables are

a. created each time they are referenced in a SAS program.

b. updated automatically.

c. limited to Read-Only access.

d. all of the above

Quiz 283

8. Dictionary tables can be accessed

a. by running a PROC SQL query against the table, using the Dictionary libref.

b. by referring to the PROC SQL view of the table that is stored in the Sashelp
library.

c. by referring to the PROC SQL view of the table that is stored in the Sasuser
library.

d. a and b

9. Which of the following PROC SQL steps displays information about the Dictionary
table Dictionary.Titles?

a. proc sql;
 describe dictionary.titles;

b. proc sql;
 describe table dictionary.titles;

c. proc sql describe table dictionary.titles;

d. proc sql describe dictionary titles;

10. Which of the following PROC SQL steps displays the name (Memname),
modification date (Modate), number of variables (Nvar), and the number of
observations (Nobs) for each table in the Sasuser library?

a. proc sql;
 select memname, modate, nvar, nobs
 from dictionary.tables
 where libname='SASUSER';

b. proc sql;
 select memname, modate, nvar, nobs
 from dictionary.tables
 where libname='Sasuser';

c. proc sql;
 select memname, modate, nvar, nobs
 from 'SASUSER'
 where table=dictionary.tables;

d. proc sql;
 select SASUSER
 from dictionary.tables
 where cols= 'memname, modate, nvar, nobs';

284 Chapter 8 • Managing Processing Using PROC SQL

Part 2

SAS Macro Language

Chapter 9
Introducing Macro Variables . 287

Chapter 10
Processing Macro Variables at Execution Time 327

Chapter 11
Creating and Using Macro Programs . 371

Chapter 12
Storing Macro Programs . 421

285

286

Chapter 9

Introducing Macro Variables

Overview . 288
Introduction . 288

Basic Concepts . 289
Overview . 289
Macro Variables . 289
Referencing Macro Variables . 290
Example: Referencing a Macro Variable . 291
Example: Referencing a Macro Variable in a Title . 291

Using Automatic Macro Variables . 291
Overview . 291
Example . 292

Using User-Defined Macro Variables . 293
The %LET Statement . 293
Example . 294
%LET Statement Examples . 294

Processing Macro Variables . 296
SAS Processing . 296
Tokenization . 297
Examples . 298
Macro Triggers . 298

Displaying Macro Variable Values in the SAS Log . 299
The SYMBOLGEN Option . 299
Example . 299
The %PUT Statement . 300
Example . 300

Using Macro Functions to Mask Special Characters . 302
Macro Quoting Functions . 302
Example . 302
The %STR Function . 303
Example . 304
The %NRSTR Function . 305
Example . 305
The %BQUOTE Function . 305
Example . 306

Using Macro Functions to Manipulate Character Strings 306
Macro Character Functions . 306
The %UPCASE Function . 306
Example . 307

287

The %QUPCASE Function . 308
Example . 308
The %SUBSTR Function . 309
Example . 310
The %QSUBSTR Function . 310
Example . 310
The %INDEX Function . 311
Example . 311
The %SCAN Function . 312
Example . 312
The %QSCAN Function . 313
Example . 313

Using SAS Functions with Macro Variables . 314
The %SYSFUNC Function . 314
Example . 315
Quoting with %QSYSFUNC . 315
Example . 315

Combining Macro Variable References with Text . 316
Overview . 316
Delimiters in Macro Variable Names . 318

Summary . 320
Text Summary . 320
Sample Programs . 322
Points to Remember . 323

Quiz . 323

Overview

Introduction
SAS macro variables enable you to substitute text in your SAS programs. Macro
variables can supply a variety of information, including

• operating system information

• SAS session information

• text strings.

When you reference a macro variable in a SAS program, SAS replaces the reference
with the text value that has been assigned to that macro variable. By substituting text
into programs, SAS macro variables make your programs more reusable and dynamic.

The following sample code shows how a macro variable might be used to substitute a
year value throughout a program, enabling you to quickly and easily change the value of
year throughout the program:

%let year=2002;
proc print data=sasuser.schedule;
 where year(begin_date)=&year;
 title "Scheduled Classes for &year";
run;
proc means data=sasuser.all sum;
 where year(begin_date)=&year;

288 Chapter 9 • Introducing Macro Variables

 class location;
 var fee;
 title1 "Total Fees for &year Classes";
 title2 "by Training Center";
run;

Basic Concepts

Overview
In the SAS programs that you write, you might find that you need to reference the same
variable, data set, or text string multiple times.

title "Total Sales for 2002";
data perm.sales2002;
 set perm.sales;
 if year(enddate)=2002;
run;
proc print data=perm.sales2002;
run;

Then, you might need to change the references in your program in order to reference a
different variable, data set, or text string. Especially if your programs are lengthy,
scanning for specific references and updating them manually can take a lot of time, and
it is easy to overlook a reference that needs to be updated.

title "Total Sales for 2001";
data perm.sales2001;
 set perm.sales;
 if year(enddate)=2002;
run;
proc print data=perm.sales2001;
run;

If you use a macro variable in your program, these updates are quick and easy because
you need to make the change in only one place.

%let year=2002;
title "Total Sales for &year";
data perm.sales&year;
 set perm.sales;
 if year(enddate)=&year;
run;
proc print data=perm.sales&year;
run;

The value of the macro variable is inserted into your program, so you can make one
change and have the change appear throughout the program.

Macro Variables
Macro variables are part of the SAS macro facility, which is a tool for extending and
customizing SAS and for reducing the amount of program code that you must enter in
order to perform common tasks. The macro facility has its own language, which enables

Basic Concepts 289

you to package small or large amounts of text into units that have names. From then on,
you can work with the names rather than with the text itself.

There are two types of macro variables:

• automatic macro variables, which are provided by SAS

• user-defined macro variables, whose values you create and define.

Whether automatic or user-defined, a macro variable is independent of a SAS data set
and contains one text string value that remains constant until you change it. The value of
a macro variable is substituted into your program wherever the macro variable is
referenced.

The value of a macro variable is stored in a symbol table. The values of automatic macro
variables are always stored in the global symbol table, meaning that these values are
always available in your SAS session. The values of user-defined macro variables are
often stored in the global symbol table as well.

%let city=Dallas;
%let date=05JAN2000;
%let amount=975;

Macro variables can be defined and referenced anywhere in a SAS program except
within the data lines of a DATALINES statement. You learn more about how to define
and reference macro variables throughout this chapter.

Referencing Macro Variables
In order to substitute the value of a macro variable in your program, you must reference
the macro variable. A macro variable reference is created by preceding the macro
variable name with an ampersand (&). The reference causes the macro processor to
search for the named variable in the symbol table and to return the value of the variable
if the variable exists. If you need to reference a macro variable within quotation marks,
such as in a title, you must use double quotation marks. The macro processor does not
resolve macro variable references that appear within single quotation marks.

Note: You learn more about the macro processor later in this chapter.

290 Chapter 9 • Introducing Macro Variables

Example: Referencing a Macro Variable
To reference the macro variable amount from the global symbol table that is represented
above, you place &amount in your program, as follows:

data new;
 set perm.mast;
 where fee>&amount;
run;
proc print;
run;

Code After Substitution

data new;
 set perm.mast;
 where fee>975;
run;
proc print;
run;

Note: You will see representations of code after substitution throughout this chapter. In a
SAS session, you do not see this code. These representations are meant to show you
what happens to your code behind the scenes, after macro processing.

Example: Referencing a Macro Variable in a Title
To reference the macro variable city in a title, you must use double quotation marks to
enclose the title text in the TITLE statement, as follows:

title "Students from &city";

When the macro processor cannot resolve a macro variable reference, a message is
printed in the SAS log. For example, referencing a nonexistent macro variable results in
a warning message. Referencing an invalid macro variable name results in an error
message.

Table 9.1 SAS Log

34 title "Students from &cityst";
WARNING: Apparent symbolic reference CITYST not resolved.
35
36 title "Students from "the_city_in_which_the_student_is_located";
ERROR: Symbolic variable name THE_CITY_IN_WHICH_THE_STUDENT_I must
 be 32 or fewer characters long.

Using Automatic Macro Variables

Overview
SAS creates and defines several automatic macro variables for you. Automatic macro
variables contain information about your computing environment, such as the date and
time of the session, and the version of SAS that you are running. These automatic macro
variables

• are created when SAS is invoked

Using Automatic Macro Variables 291

• are global (always available)

• are usually assigned values by SAS

• can be assigned values by the user in some cases.

Some automatic macro variables have fixed values that are set when SAS is invoked.

Name Value

SYSDATE the date of the SAS invocation (DATE7.)

SYSDATE9 the date of the SAS invocation (DATE9.)

SYSDAY the day of the week of the SAS invocation

SYSTIME the time of the SAS invocation

SYSENV FORE (interactive execution) or BACK (noninteractive or batch execution)

SYSSCP an abbreviation for the operating system that is being used, such as WIN or
LINUX

SYSVER the release of SAS that is being used

SYSJOBID an identifier for the current SAS session or for the current batch job (the user
ID or job name for mainframe systems, the process ID (PID) for other
systems)

Some automatic macro variables have values that automatically change based on
submitted SAS statements.

Name Value

SYSLAST the name of the most recently created SAS data set, in the form
LIBREF.NAME. This value is always stored in all capital letters. If no data
set has been created, the value is _NULL_

Note: Throughout this book, the keyword _NULL_ is often used in place of
the data set name in sample programs. Using _NULL_ suppresses the
creation of an output data set. Using _NULL_ when benchmarking enables
you to determine what resources are used to read a SAS data set.

SYSPARM text that is specified when SAS is invoked

SYSERR contains a return code status that is set by the DATA step and some SAS
procedures to indicate whether the step or procedure executed successfully

Example
You can substitute system information such as the time, day, and date on which your
SAS session was invoked and the version of SAS that you are running in footnotes for a
report.

292 Chapter 9 • Introducing Macro Variables

footnote1 "Created &systime &sysday, &sysdate9";
footnote2 "on the &sysscp system using Release &sysver";
title "REVENUES FOR DALLAS TRAINING CENTER";
proc tabulate data=sasuser.all(keep=location course_title fee);
 where upcase(location)="DALLAS";
 class course_title;
 var fee;
 table course_title=" " all="TOTALS",
 fee=" "*(n*f=3. sum*f=dollar10.)
 / rts=30 box="COURSE";
run;

1. time of day (SYSTIME)

2. day of the week (SYSDAY)

3. date (day, month, and year) (SYSDATE9)

4. operating environment (SYSSCP)

5. release of SAS (SYSVER)

Using User-Defined Macro Variables

The %LET Statement
You have seen that SAS provides a variety of automatic macro variables for you. You
can also create your own macro variables.

Using User-Defined Macro Variables 293

The simplest way to define your own macro variables is to use a %LET statement. The
%LET statement enables you to define a macro variable and to assign a value to it.

General form, %LET statement:

%LET variable=value;

Here is an explanation of the syntax:

variable
is any name that follows the SAS naming convention.

value
can be any string from 0 to 65,534 characters.

variable or value
if either contains a reference to another macro variable (such as &macvar), the reference is
evaluated before the assignment is made.

Note: If variable already exists, value replaces the current value.

Example
To create a macro variable named time and assign a value of afternoon to it, you
would submit the following %LET statement:

%let time=afternoon;

When you use the %LET statement to define macro variables, you should keep in mind
the following rules:

• All values are stored as character strings.

• Mathematical expressions are not evaluated.

• The case of the value is preserved.

• Quotation marks that enclose literals are stored as part of the value.

• Leading and trailing blanks are removed from the value before the assignment is
made.

%LET Statement Examples
When you define a macro variable, remember that its value is always a character string.
This table provides examples of macro variable assignment statements to illustrate the
rules that are listed in the previous section.

%LET Statement Variable Name Variable Value Length

%let name= Ed Norton ; name Ed Norton 9

%let name2=' Ed Norton '; name2 ' Ed Norton ' 13

%let title="Joan's Report"; title "Joan's Report" 15

%let start=; start 0

294 Chapter 9 • Introducing Macro Variables

%LET Statement Variable Name Variable Value Length

%let total=0; total 0 1

%let sum=4+3; sum 4+3 3

%let total=&total+&sum total 0+4+3 5

%let x=varlist; x varlist 7

%let &x=name age height; varlist name age height 15

In the following example, the value DALLAS is assigned to the macro variable site.
The macro variable site is then used to control program output.

%let site=DALLAS;
title "REVENUES FOR &site TRAINING CENTER";
proc tabulate data=sasuser.all(keep=location
 course_title fee);
 where upcase(location)="&site";
 class course_title;
 var fee;
 table course_title=' ' all='TOTALS',
 fee=' '*(n*f=3. sum*f=dollar10.)
 / rts=30 box='COURSE';
run;

Using User-Defined Macro Variables 295

Processing Macro Variables

SAS Processing
You have seen how to create and reference macro variables. In order to work with macro
variables in the programs that you write, you need to understand how macro variables
are processed and stored. First, it is important that you understand how SAS processing
works.

A SAS program can be any combination of the following:

• DATA steps and PROC steps

• global statements

• SAS Component Language (SCL) code

• Structured Query Language (SQL) code

• SAS macro language code.

When you submit a program, it goes to an area of memory called the input stack. This is
true for all code that you submit, such as a DATA step, SCL code, or SQL code.

Once SAS code is in the input stack, SAS

• reads the text in the input stack (left-to-right, top-to-bottom)

• routes text to the appropriate compiler upon demand

• suspends this activity when a step boundary such as a RUN statement is reached

• executes the compiled code if there are no compilation errors

• repeats this process for any subsequent steps.

296 Chapter 9 • Introducing Macro Variables

Tokenization
Between the input stack and the compiler, SAS programs are tokenized into smaller
pieces. A component of SAS known as the word scanner divides program text into
fundamental units called tokens.

• Tokens are passed on demand to the compiler.

• The compiler requests tokens until it receives a semicolon.

• The compiler performs a syntax check on the statement.

SAS stops sending statements to the compiler when it reaches a step boundary.
Examples of step boundaries include a RUN statement (run;) or the beginning of a new
DATA or PROC step. Once the entire step has been compiled, it is executed.

The word scanner recognizes four types of tokens:

• A literal token is a string of characters that are treated as a unit. The string is
enclosed in either single or double quotation marks.

Examples: "Any text" 'Any text'

Processing Macro Variables 297

• A number token is a string of numerals that can include a period or E notation (real
numbers). Date constants, time constants, datetime constants, and hexadecimal
constants are also number tokens.

Examples: 23 109 '01jan2002'd 5e8 42.7

• A name token is a string of characters that begins with a letter or underscore and that
continues with underscores, letters, or digits. A period can sometimes be part of a
name.

Examples: infile _n_ item3 univariate dollar10.2

• A special token is any character or group of characters that has a reserved meaning to
the compiler.

Examples: * / + - ** ; $ () . & %

A token ends when the word scanner detects

• the beginning of another token

• a blank after a token.

The maximum length of any token is 32,767 characters.

Examples
• var x1-x10 z ;

This example contains six tokens: var x1 - x10 z ;

• title 'Report for May';

This example contains three tokens: title 'Report for May' ;

Macro Triggers
Macro variable references and %LET statements are part of the macro language. The
macro facility includes a macro processor that is responsible for handling all macro
language elements. Certain token sequences, known as macro triggers, alert the word
scanner that the subsequent code should be sent to the macro processor.

The word scanner recognizes the following token sequences as macro triggers:

• % followed immediately by a name token (such as %let)

• & followed immediately by a name token (such as &amt).

When a macro trigger is detected, the word scanner passes it to the macro processor for
evaluation. The macro processor

• examines these tokens

• requests additional tokens as necessary

• performs the action indicated.

For macro variables, the processor does one of the following:

• creates a macro variable in the symbol table and assigns a value to the variable

• changes the value of an existing macro variable in the symbol table

• looks up an existing macro variable in the symbol table and returns the variable's
value to the input stack in place of the original reference.

298 Chapter 9 • Introducing Macro Variables

The word scanner then resumes processing tokens from the input stack.

Note: The word scanner does not recognize macro triggers that are enclosed in single
quotation marks. Remember that if you need to reference a macro variable within a
literal token, such as the title text in a TITLE statement, you must enclose the text
string in double quotation marks or the macro variable reference is not resolved.

Displaying Macro Variable Values in the SAS Log

The SYMBOLGEN Option
When you submit a macro variable reference, the macro processor resolves the reference
and passes the value directly back to the input stack. Therefore, you do not see the value
that the compiler receives. In order to debug your programs, it might be useful for you to
see the value that replaces your macro variable reference. You can use the
SYMBOLGEN system option to monitor the value that is substituted for a macro
variable reference.

General form, OPTIONS statement with SYMBOLGEN option:

OPTIONS NOSYMBOLGEN | SYMBOLGEN;

Here is an explanation of the syntax:

NOSYMBOLGEN
specifies that log messages about macro variable references are not displayed. This is the
default.

SYMBOLGEN
specifies that log messages about macro variable references are displayed.

This system option displays the results of resolving macro variable references in the SAS
log. That is, when the SYMBOLGEN option is turned on, SAS writes a message to the
log for each macro variable that is referenced in your program. The message states the
macro variable name and the resolved value.

Note: Remember that since SYMBOLGEN is a system option, its setting remains in
effect until you modify it or until you end your SAS session.

Example
Suppose you have previously assigned values to the macro variables amount, city,
and company, and you submit the following code:

data new;
 set sasuser.all;
 where fee>&amount;
 where also city_state contains "&city";
 where also student_company contains '&company';
run;

Here is a sample SAS log that shows the messages that are generated by the
SYMBOLGEN option for this code. The WHERE ALSO conditions augment the initial
WHERE condition using the AND operator. In this example, the where processing is

Displaying Macro Variable Values in the SAS Log 299

done for the following condition: (fee>&amount) AND (city_state contains "&city")
AND (student_company contains '&company').

Table 9.2 SAS Log

110 where fee>&amount;
SYMBOLGEN: Macro variable AMOUNT resolves to 975
111 where city_state contains "&city";
SYMBOLGEN: Macro variable CITY resolves to Dallas
112 where student_company contains '&company';

Notice that no message is displayed for the final macro variable reference
('&company'). Because this macro variable reference is enclosed in single quotation
marks rather than in double quotation marks, the word scanner does not call the macro
facility to resolve it.

The %PUT Statement
Another way of verifying the values of macro variables is to write your own messages to
the SAS log. The %PUT statement writes text to the SAS log.

General form, basic %PUT statement:

%PUT text;

Here is an explanation of the syntax:

text
is any text string.

The %PUT statement

• writes only to the SAS log

• always writes to a new log line, starting in column one

• writes a blank line if text is not specified

• does not require quotation marks around text

• resolves macro triggers in text before text is written

• removes leading and trailing blanks from text unless a macro quoting function is
used

• wraps lines when the length of text is greater than the current line size setting

• can be used either inside or outside a macro definition.

Example
Suppose you want to verify the value of the macro variable city. Since the %PUT
statement resolves macro references in text before writing text to the SAS log, you can
use it to show the stored value of city.

%put The value of the macro variable CITY is: &city;

300 Chapter 9 • Introducing Macro Variables

Table 9.3 SAS Log

120 %put The value of the macro variable CITY is: &city;
The value of the macro variable CITY is: Dallas

You can also simply submit the statement &put &city; without any additional text.
This statement writes the resolved value of the macro variable city to the SAS log.
However, it does not write any additional text to the log. You might find that it is a good
idea to add explanatory text to your %PUT statements in order to maintain clarity in the
SAS log. The %PUT statement has several optional arguments that you can add.

Argument Result in SAS Log

ALL Lists the values of all macro variables

AUTOMATIC Lists the values of all automatic macro variables

LOCAL Lists user-generated local macro variables

USER Lists the values of all user-defined macro variables

Table 9.4 SAS Log

121 %let year=2002;
122 %let city=New York;
123 %let region=South;
124 %put _all_;
GLOBAL YEAR 2002
GLOBAL REGION South
GLOBAL CITY New York
AUTOMATIC AFDSID 0
AUTOMATIC AFDSNAME
AUTOMATIC AFLIB
AUTOMATIC AFSTR1
AUTOMATIC AFSTR2
AUTOMATIC FSPBDV
AUTOMATIC SYSBUFFR
AUTOMATIC SYSCC 0
AUTOMATIC SYSCHARWIDTH 1
AUTOMATIC SYSCMD
AUTOMATIC SYSDATE 29MAY02

Notice that when you use optional arguments such as _ALL_, each macro variable name
is also written to the SAS log, along with a label of either AUTOMATIC or GLOBAL.

Displaying Macro Variable Values in the SAS Log 301

Using Macro Functions to Mask Special
Characters

Macro Quoting Functions
The SAS programming language uses matched pairs of either double or single quotation
marks to distinguish character constants from names. The quotation marks are not stored
as part of the token that they define. For example, in the following program, var is
stored as a four-byte variable that has the value text. If text were not enclosed in
quotation marks, it would be treated as a variable name. var2 is stored as a seven-byte
variable that has the value example.

data one;
 var='text';
 text='example';
 var2=text;
run;

Similarly, the title text in the following example is Joan's Report. Although the
TITLE statement contains a matched pair of double quotation marks, the title itself does
not include these outer quotation marks. However, the outer quotation marks cause the
unmatched single quotation mark within the text to be interpreted as an apostrophe that
is part of the title text.

proc print;
 title "Joan's Report";
run;

Example
Earlier you learned that macro variable values are character strings, and you saw
examples of macro variables whose values included special characters. Now, suppose
you want to store one or more SAS statements in a macro variable. For example,
suppose you want to create a macro variable named prog with data new; x=1;
run; stored as its value.

options symbolgen;
%let prog=data new; x=1; run;;
&prog
proc print;
run;

Here is part of the SAS log that results from the above program.

302 Chapter 9 • Introducing Macro Variables

Table 9.5 SAS Log

25 options symbolgen;
26
27 %let prog=data new; x=1; run;
27 %let prog=data new; x=1; run;
 -
 180
ERROR 180-322: Statement is not valid or it is used out of proper order.
SYMBOLGEN: Macro variable PROG resolves to data new
28 &prog
29 proc print;
30 run;
NOTE: The data set WORK.NEW has 1 observations and 0 variables.
NOTE: The data set WORK.PROC has 1 observations and 0 variables.
NOTE: The data set WORK.PRINT has 1 observations and 0 variables.
NOTE: DATA statement used (Total process time):
 real time 0.25 seconds
 cpu time 0.07 seconds

Notice that according to the SYMBOLGEN statement in the log, the macro variable
prog has been assigned a value of data new. SAS interpreted the first semicolon as
the end of the macro assignment statement. In this case, we want the semicolon to be
part of the macro variable value, but SAS has no way of knowing that. In this situation,
you need to mask text that you want to assign to a macro variable. That is, you need to
hide the normal meaning of the semicolon from the macro processor. You can use a
macro quoting function to do this.

The %STR Function
The %STR function is used to mask (or write quotation marks around) tokens during
compilation so that the macro processor does not interpret them as macro-level syntax.
That is, the %STR function hides the normal meaning of a semicolon and other special
tokens and mnemonic equivalents of comparison or logical operators so that they appear
as constant text. Special tokens and mnemonic equivalents include

; + - * / , < > = blank ^ ~ # |
LT EQ GT AND OR NOT LE GE NE IN

The %STR function also

• enables macro triggers to work normally

• preserves leading and trailing blanks in its argument.

General form, %STR function:

%STR (argument)

Here is an explanation of the syntax:

argument
is any combination of text and macro triggers.

Applying this to our previous example, there are a number of ways that text can be
quoted. Remember that we wanted to create a macro variable named prog that has
data new; x=1; run; as its value.

Using Macro Functions to Mask Special Characters 303

Method One
You could quote all text. %let prog=%str(data new; x=1; run;);

Method Two
You could quote only the semicolons. %let prog=data new%str(;)
x=1%str(;)run%str(;);

Method Three
You could create an additional macro variable, assign a quoted value to it, and
reference it in the assignment statement for the prog macro variable. %let s=
%str(;); %let prog=data new&s x=1&s run&s;

Each of these methods accomplishes the same thing: they all assign the value
data=new; x=1; run; to the macro variable prog.

The %STR function can also be used to quote tokens that typically occur in pairs:

' ") (

Example
Suppose you want to assign text that contains an apostrophe (') to a macro variable.
Without any quoting, this leads to errors.

options symbolgen;
%let text=Joan's Report;
proc print data=sasuser.courses;
 where days > 3;
title "&text";
run;

Table 9.6 SAS Log

75 %let text=Joan's Report;

 32
WARNING 32-169: The quoted string currently being processed has
 become more than 262 characters long. You may
 have unbalanced quotation marks.

The word scanner interprets the apostrophe as the beginning of a literal that is defined by
a pair of single quotation marks. You can use the %STR function to avoid this error. In
the last section you saw several methods of using the %STR function to mask the normal
meaning of a semicolon. However, none of the methods shown correctly mask the
apostrophe in our current example.

When you quote tokens that typically appear in pairs, such as quotation marks or
parentheses, you must take one additional step. To perform this quoting, you precede the
token that you want to quote with a percent sign (%) within the %STR function
argument.

%let text=%str(Joan%'s Report);
%let text=Joan%str(%')s Report;

The value of text is Joan's Report in both cases.

304 Chapter 9 • Introducing Macro Variables

The %NRSTR Function
Sometimes you might want to hide the normal meaning of an ampersand or a percent
sign. The %NRSTR function performs the same quoting function as %STR, except it
also masks macro triggers (& and %). The NR in the name %NRSTR stands for No
Resolution. %NRSTR has the same syntax as %STR.

Example
Suppose you want to create a macro variable named period and to assign a value of
May&Jun to it. If you attempt to use the %STR function in the assignment statement,
SAS interprets the ampersand as a macro trigger and generate a warning message. You
need to use the %NRSTR function instead.

%let Period=%str(May&Jun);
%put Period resolves to: .
%let Period=%nrstr(May&Jun);
%put Period resolves to: .

The following portion of a SAS log shows the results of both the %STR function and the
%NRSTR function for this example.

Table 9.7 SAS Log

1 %let Period=%str(May&Jun);
WARNING: Apparent symbolic reference JUN not resolved.
2 %put Period resolves to &period:
WARNING: Apparent symbolic reference JUN not resolved.
Period resolves to: May&Jun
3
4 %let Period=%nrstr(May&Jun);
5 %put Period resolves to .
Period resolves to: May&Jun

The %BQUOTE Function
Like the %STR function, the %BQUOTE function is used to mask (or write quotation
marks around) special characters and mnemonic operators. The %STR function performs
during compilation, and the %BQUOTE function performs during execution. That is, the
%BQUOTE function masks a character string or resolved value of a text expression
during execution of a macro or macro language statement so that special characters and
mnemonic operators are not interpreted as anything other than plain text. Special tokens
and mnemonic equivalents include

' " () + - * / < > = ¬ ^ ~ ; , # blank
AND OR NOT EQ NE LE LT GE GT IN

The %BQUOTE function also

• does not require that quotation marks be marked

• enables macro triggers to work normally

• preserves leading and trailing blanks in its argument.

Using Macro Functions to Mask Special Characters 305

General form, %BQUOTE function:

%BQUOTE (argument)

Here is an explanation of the syntax:

argument
is any combination of text and macro triggers.

Example
Remember the example where you want to assign text that contains an apostrophe (') to
a macro variable. You used the %STR function to mask the apostrophe.

%let text=%str(Joan%'s Report);
%let text=Joan%str(%')s Report;

You can accomplish this task using the %BQUOTE function. The %BQUOTE function
does not require that unmatched quotation marks be marked, so the title that contains an
apostrophe requires no special syntax.

%let text=%bquote(Joan's Report);

Using Macro Functions to Manipulate Character
Strings

Macro Character Functions
Often when working with macro variables, you need to manipulate character strings.
You can do this by using macro character functions. With macro character functions, you
can do the following:

• change lowercase letters to uppercase

• produce a substring of a character string

• extract a word from a character string

• determine the length of a character string, and more.

Macro character functions have the same basic syntax as the corresponding DATA step
functions, and they yield similar results. It is important to remember that although they
might be similar, macro character functions are distinct from DATA step functions. As
part of the macro language, macro functions enable you to communicate with the macro
processor in order to manipulate text strings that you insert into your SAS programs. The
next few sections explore several macro character functions in greater detail.

The %UPCASE Function
The %UPCASE function enables you to change the value of a macro variable from
lowercase to uppercase before substituting that value in a SAS program. Since most
comparison operators in the SAS language are case sensitive, it is often necessary to
change values to uppercase.

306 Chapter 9 • Introducing Macro Variables

General form, %UPCASE function:

%UPCASE (argument)

Here is an explanation of the syntax:

argument
is a character string.

Example
The Sasuser.All data set contains student information and registration information for
computer training courses. Suppose you want to create a summary of the uncollected
course fees:

%let paidval=n;
proc means data=sasuser.all sum maxdec=0;
 where paid="&paidval";
 var fee;
 class course_title;
title "Uncollected Fees for Each Course";
run;

Table 9.8 SAS Log

163 %let paidval=n;
164 proc means data=sasuser.all sum maxdec=0;
165 where paid="&paidval";
166 var fee;
167 class course_title;
168 title "Uncollected Fees for Each Course";
169 run;

NOTE: No observations were selected from data set SASUSER.ALL.

Because the value of the macro variable paidval was specified in lowercase, the
WHERE expression finds no matching observations. All the values of the data set
variable Paid are stored in uppercase.

Now we can use the %UPCASE function in the WHERE statement:

%let paidval=n;
proc means data=sasuser.all sum maxdec=0;
 where paid="%upcase(&paidval)";
 var fee;
 class course_title;
title "Uncollected Fees for Each Course";
run;

You can see that this time the WHERE expression does find matching observations.

Using Macro Functions to Manipulate Character Strings 307

The %QUPCASE Function
If the argument contains a special character, a mnemonic operator, or a macro trigger,
you need to use the %QUPCASE function. %QUPCASE has the same syntax as the
%UPCASE function, and it works the same as %UPCASE except that it also masks
mnemonic operators and special characters (including macro triggers) in the function
result.

Example
These statements show the results produced by %UPCASE and %QUPCASE:

%let a=begin;
%let b=%nrstr(&a);

%put UPCASE produces: %upcase(&b);
%put QUPCASE produces: %qupcase(&b);

In the first %PUT statement, the macro reference &b resolves to &a, which is converted
to &A because of the %UPCASE function. Since the resolved value contains a macro
trigger, it is treated as a macro variable reference and &A resolves to the value begin.
The second %PUT statement uses the %QUPCASE function, which masks the
ampersand in the resolved value of the macro variable b so that this value is not treated
as another macro variable reference. Executing these statements produces the following
messages in the SAS log.

308 Chapter 9 • Introducing Macro Variables

Table 9.9 SAS Log

6 %let a=begin;
7 %let b=%nrstr(&a);
8
9 %put UPCASE produces: %upcase(&b);
UPCASE produces: begin
10 %put QUPCASE produces: %qupcase(&b);
QUPCASE produces: &A

The %SUBSTR Function
The %SUBSTR function enables you to extract part of a character string from the value
of a macro variable.

General form, %SUBSTR function:

%SUBSTR (argument, position<,n>)

Here is an explanation of the syntax:

argument
is a character string or a text expression from which a substring is returned.

position
is an integer or an expression (text, logical, or mathematical) that yields an integer, which
specifies the position of the first character in the substring.

n
is an optional integer or an expression (text, logical, or mathematical) that yields an integer
that specifies the number of characters in the substring.

Note: If the length of n is greater than the number of characters following position in
argument, %SUBSTR issues a warning message and returns a substring that contains
the characters from position to the end of the string. If n is not specified, %SUBSTR
also returns a substring that contains the characters from position to the end of the
string.

For example, assume that the macro variable date has the value 05JAN2002.

• The code %substr(&date,3) returns the value JAN2002.

• The code %substr(&date,3,3) returns the value JAN.

• The code %substr(&date,3,9) returns the value JAN2002 and produces a
warning message.

The values of position and n can also be the result of a mathematical expression that
yields an integer. For example, %substr(&var,%length(&var)-1) returns the last
two characters of the value of the macro variable var.

Note: The %LENGTH function accepts an argument that is either a character string or a
text expression. If the argument is a character string, %LENGTH returns the length
of the string. If the argument is a text expression, %LENGTH returns the length of
the resolved value. If the argument has a null value, %LENGTH returns 0.

Using Macro Functions to Manipulate Character Strings 309

Example
Suppose you want to print a report on all courses that have been taught since the start of
the current month. You can use the %SUBSTR function and the SYSDATE9 macro
variable to determine the month and year. To start, we need to create an updated class
schedule based on the data in sasuser.schedule, which is too old for this example:

* Update the class schedule based on previous ;
data update_schedule;
 set sasuser.schedule;
 begin_date + 3652;
run;

Next, we select observations from the updated schedule that are within the current
month:

* Print a list of courses that started this month;
proc print data=update_schedule;
 where begin_date between
 "01%substr(&sysdate9,3)"d and
 "&sysdate9"d;
 title "All Courses Held So Far This Month";
 title2 "(as of &sysdate9)";
run;

The %QSUBSTR Function
If the argument contains a special character, a mnemonic operator, or a macro trigger,
you need to use the %QSUBSTR function. %QSUBSTR has the same syntax as the
%SUBSTR function, and it works the same as %SUBSTR except that it also masks
mnemonic operators and special characters (including macro triggers) in the function
result.

Example
These statements show the results produced by %SUBSTR and %QSUBSTR:

%let a=one;
%let b=two;
%let c=%nrstr(&a &b);

%put C: &c;
%put With SUBSTR: %substr(&c,1,2);
%put With QSUBSTR: %qsubstr(&c,1,2);

310 Chapter 9 • Introducing Macro Variables

Executing these statements produces the following messages in the SAS log. As you can
see, the first %PUT statement shows that &c resolves to the value &a &b. In the second
%PUT statement, the %SUBSTR function extracts the value &a from the resolved value
of the macro variable reference &c, and resolves &a to one. The third %PUT statement
shows that the %QSUBSTR function prevents the value &a from being resolved further.

Table 9.10 SAS Log

11 %let a=one;
12 %let b=two;
13 %let c=%nrstr(&a &b);
14
15 %put C: &c;
C: &a &b
16 %put With SUBSTR: %substr(&c,1,2);
With SUBSTR: one
17 %put With QSUBSTR: %qsubstr(&c,1,2);
With QSUBSTR: &a

The %INDEX Function
The %INDEX function enables you to determine the position of the first character of a
string within another string.

General form, %INDEX function:

%INDEX (source,string)

Here is an explanation of the syntax:

source and string
both are character strings or text expressions that can include

• constant text

• macro variable references

• macro functions

• macro calls.

The %INDEX function

• searches source for the first occurrence of string

• returns a number representing the position in source of the first character of string
when there is an exact pattern match

• returns 0 when there is no pattern match.

Example
The following statements find the first character V in a string:

%let a=a very long value;
%let b=%index(&a,v);
%put The character v appears at position &b.;

Using Macro Functions to Manipulate Character Strings 311

Executing these statements writes the following line to the SAS log.

Table 9.11 SAS Log

The character v appears at position 3.

The %SCAN Function
The %SCAN function enables you to extract words from the value of a macro variable.

General form, %SCAN function:

%SCAN (argument, n<,delimiters>)

Here is an explanation of the syntax:

argument
consists of constant text, macro variable references, macro functions, or macro calls.

n
is an integer or a text expression that yields an integer, which specifies the position of the
word to return. If n is greater than the number of words in argument, the functions return a
null string.

delimiters
specifies an optional list of one or more characters that separate "words" or text expressions
that yield one or more characters.

CAUTION:
If argument contains a comma, you must enclose argument in a quoting function.
Similarly, in order to use a single blank or a single comma as the only delimiter, you
must enclose the character in the %STR function.

The delimiters that %SCAN recognizes vary between ASCII and EBCDIC systems. If
you omit delimiters, SAS treats the following characters as default delimiters:

• ASCII systems: blank . < (+ & ! $ *) ; ^ - / , % |

• EBCDIC systems: blank . < (+ | & ! $ *) ; ¬ - / , % ¦ ¢

If the delimiter list includes any of the default delimiters for your system, the remaining
default delimiters are treated as text.

Example
You can use PROC DATASETS along with the %SCAN function and the SYSLAST
macro variable to investigate the structure of the most recently created data set:

data work.thisyear;
 set sasuser.schedule;
 where year(begin_date) =
 year("&sysdate9"d);
run;

%let libref=%scan(&syslast,1,.);
%let dsname=%scan(&syslast,2,.);
proc datasets lib=&libref nolist;

312 Chapter 9 • Introducing Macro Variables

title "Contents of the Data Set &syslast";
 contents data=&dsname;
run;
quit;

The %QSCAN Function
If the argument contains a special character, a mnemonic operator, or a macro trigger,
you need to use the %QSCAN function. %QSCAN has the same syntax as the %SCAN
function, and it works the same as %SCAN except that it also masks mnemonic
operators and special characters (including macro triggers) in the function result.

Example
These statements show the results produced by %SCAN and %QSCAN:

%let a=one;
%let b=two;
%let c=%nrstr(&a*&b);

%put C: &c;
%put With SCAN: %scan(&c,1,*);
%put With QSCAN: %qscan(&c,1,*);

Executing these statements produces the following messages in the SAS log.

Using Macro Functions to Manipulate Character Strings 313

Table 9.12 SAS Log

47 %let a=one;
48 %let b=two;
49 %let c=%nrstr(&a*&b);
50
51 %put C: &c;
C: &a*&b
52 %put With SCAN: %scan(&c,1,*);
With SCAN: one
53 %put With QSCAN: %qscan(&c,1,*);
With QSCAN: &a

Using SAS Functions with Macro Variables

The %SYSFUNC Function
You have learned that by using the automatic macro variables SYSDATE9 and
SYSTIME you can include the date and time in a title:

title1 "Report Produced on &sysdate9";
title2 "at &systime";

SYSDATE9 represents the date on which the SAS session started, and SYSTIME
represents the time at which the SAS session started. Suppose you would rather see the
date in some other format, or suppose you would rather see the current date or time. You
can use the %SYSFUNC function to execute other SAS functions as part of the macro
facility.

General form, %SYSFUNC function:

%SYSFUNC (function (argument(s)) <,format>)

Here is an explanation of the syntax:

function
is the name of the SAS function to execute.

argument(s)
is one or more arguments that are used by function. Use commas to separate all arguments.
An argument can be a macro variable reference or a text expression that produces arguments
for a function.

format
is an optional format to apply to the result of function. By default, numeric results are
converted to a character string using the BEST12. format, and character results are used as
they are, without formatting or translation.

 All SAS functions can be used with %SYSFUNC except

314 Chapter 9 • Introducing Macro Variables

ALLCOMB LEXCOMB
ALLPERM LEXCOMBI
DIF LEXPERK
DIM LEXPERM
HBOUND MISSING
INPUT PUT
IORCMSG RESOLVE
LAG SYMGET
LBOUND Variable information functions

Note: Variable information functions include functions such as VNAME and VLABEL.
For a complete list of variable information functions, see "Functions and CALL
Routines by Category" in SAS Functions and CALL Routines: Reference.

Note: You can use the INPUTC or INPUTN function in place of the INPUT function.
Similarly, you can use the PUTC or PUTN function in place of the PUT function
with %SYSFUNC.

Example
Suppose the following code was submitted on Friday, November 4, 2011:

 title "%sysfunc(today(),weekdate.) - SALES REPORT";

The title on the next report would be Friday, November 4, 2011 - SALES REPORT.

Quoting with %QSYSFUNC
As with macro character functions, if the argument for a %SYSFUNC function contains
special characters or mnemonic operators, you must use the quoting version of the
function. The %QSYSFUNC function has the same syntax as the %SYSFUNC function.
%QSYSFUNC works the same as %SYSFUNC except that it also masks mnemonic
operators and special characters in the function result.

Example
Suppose you want to create a report title that includes the current date in WORDDATE.
format. You could use this statement:

 title "Report Produced on %sysfunc(today(),worddate.)";

However, that would result in the following title:

Report Produced on November 4, 2011

Note: The extra blanks are displayed in the listing output. The blanks are not displayed
in an HTML output.

The extra blanks are from the default length of the WORDDATE. format. You need to
left-justify the resulting formatted date. You cannot nest functions within %SYSFUNC,
but you can use a %SYSFUNC for each function that you need, as shown in this
example:

title "Report Produced on
 %sysfunc(left(%sysfunc(today(),worddate.)))";

Using SAS Functions with Macro Variables 315

However, this statement results in the following error message.

Table 9.13 SAS Log

ERROR: The function LEFT referenced by the %SYSFUNC or
 %QSYSFUNC macro function has too many arguments.

The LEFT function expects only one argument, but you are passing “November 4, 2011”
to it. It interprets the comma as the delimiter between two arguments.

You can mask the comma by using the %QSYSFUNC function instead, as follows:

 title "Report Produced on
 %sysfunc(left(%qsysfunc(today(),worddate.)))";

The modified statement generates the following title:

Report Produced on November 4, 2011

Combining Macro Variable References with Text

Overview
You can reference macro variables anywhere in your program. Some applications might
require placing a macro variable reference adjacent to leading text (text&variable) or
trailing text (&variabletext) or referencing adjacent macro variables
(&variable&variable) in order to build a new token. When you combine macro variable
references and text, it is important to keep in mind how SAS interprets tokens.

Remember that a token ends when the word scanner detects either the beginning of a
new token or a blank after a token.

You can place text immediately before a macro variable reference to build a new token.
For example, suppose that data sets are stored in a SAS library, using the naming
convention Yyymon, where yy is a two-digit year such as 02 or 01, and mon is a three-
letter month such as JUN or AUG. Data set names could include examples such as
Y01DEC and Y02MAR. You can write a program that uses a macro variable to build the
month portion of the SAS data set name.

%let month=jan;
proc chart data=sasuser.y02&month;
 hbar week / sumvar=sale;
run;
proc plot data=sasuser.y02&month;
 plot sale*day;
run;

316 Chapter 9 • Introducing Macro Variables

Table 9.14 Code after Substitution

proc chart data=sasuser.y02jan;
 hbar week / sumvar=sale;
run;
proc plot data=sasuser.y02jan;
 plot sale*day;
run;

You can reference macro variables that have no blanks between them to build new
tokens.

For example, you can modify the previous program to enable both the month and the
year to be substituted:

%let year=02;
%let month=jan;
proc chart data=sasuser.y&year&month;
 hbar week / sumvar=sale;
run;
proc plot data=sasuser.y&year&month;
 plot sale*day;
run;

Table 9.15 Code after Substitution

proc chart data=sasuser.y02jan;
 hbar week / sumvar=sale;
run;
proc plot data=sasuser.y02jan;
 plot sale*day;
run;

The generated program is identical to the program in the previous example. That is, the
compiler sees the same code for both of these examples.

You can place text immediately after a macro variable reference as long as the macro
variable name can still be tokenized correctly.

For example, you can modify the previous program to substitute the name of an analysis
variable:

%let year=02;
%let month=jan;
%let var=sale;
proc chart data=sasuser.y&year&month;
 hbar week / sumvar=&var;
run;
proc plot data=sasuser.y&year&month;
 plot &var*day;
run;

Combining Macro Variable References with Text 317

Table 9.16 Code after Substitution

proc chart data=sasuser.y02jan;
 hbar week / sumvar=sale;
run;
proc plot data=sasuser.y02jan;
 plot sale*day
run;

The generated program is identical to the program in the previous two examples. That is,
although you are changing the code that you submit, you are not changing the code that
the compiler sees.

Delimiters in Macro Variable Names
Sometimes you might want to place a macro variable name immediately before text
other than a special character. For example, you might want to modify the previous
program so that it is easy to switch between using the CHART and PLOT procedures of
Base SAS software and the GCHART and GPLOT procedures of SAS/GRAPH
software.

/* GRAPHICS should be null or G */
%let graphics=g;
%let year=02;
%let month=jan;
%let var=sale;
proc &graphicschart data=sasuser.y&year&month;
 hbar week / sumvar=&var;
run;
proc &graphicsplot data=sasuser.y&year&month;
 plot &var*day;
run;

The messages written to the SAS log reveal problems with this program.

Table 9.17 SAS Log

13 %let graphics=g;
14 %let year=02;
15 %let month=jan;
16 %let var=sale;
17 proc &graphicschart data=sasuser.y&year&month;
 -
 10

WARNING: Apparent symbolic reference GRAPHICSCHART not resolved.

ERROR 10-205: Expecting the name of the procedure to be executed.

SAS interprets the macro variable's name to be graphicschart instead of graphics
because there is no delimiter between the macro variable reference and the trailing text.

The word scanner recognizes the end of a macro variable name when it encounters a
special character that cannot be part of the name token. In other words, the special
character acts as a delimiter. For example, a period (.) is a special character that is treated

318 Chapter 9 • Introducing Macro Variables

as part of the macro variable reference and that does not appear when the macro variable
is resolved.

To correct the problem in the previous example, you need to add a period after the
reference to the macro variable graphics.

 %let graphics=g;
 %let year=02;
 %let month=jan;
 %let var=sale;
 proc &graphics.chart data=sasuser.y&year&month;
 hbar week / sumvar=&var;
run;
proc &graphics.plot data=sasuser.y&year&month;
 plot &var*day;
run;

When these SAS statements are executed

• the word scanner treats &graphics. as the reference

• the value of the macro variable graphics is returned to the input stack

• the word scanner processes gchart as one token.

Table 9.18 Code after Substitution

proc gchart data=sasuser.y02jan;
 hbar week / sumvar=sale;
run;
proc gplot data=sasuser.y02jan;
 plot sale*day;
run;

We can extend this example and further modify the previous program to include a macro
variable that is used to define the libref:

%let lib=sasuser;
%let graphics=g;
%let year=02;
%let month=jan;
%let var=sale;
libname &lib 'SAS-data-library';
proc &graphics.chart data=&lib.y&year&month;
 hbar week / sumvar=&var;
run;
proc &graphics.plot data=&lib.y&year&month;
 plot &var*day;
run;

Notice, however, that this code does not perform the desired substitutions.

Combining Macro Variable References with Text 319

Table 9.19 Code after Substitution

libname sasuser 'SAS-data-library';
proc gchart data=sasusery02jan;
 hbar week / sumvar=sale;
run;
proc gplot data=sasusery02jan;
 plot sale*day;
run;

The period after &lib is interpreted as a delimiter. You need to use a second period after
the delimiter period to supply the necessary token:

%let lib=sasuser;
...
libname &lib 'SAS-data-library';
proc &graphics.chart data=&lib..y&year&month;
...
proc &graphics.plot data=&lib..y&hear&month;

The first period is treated as a delimiter, and the second period is treated as text.

Table 9.20 Code after Substitution

proc gchart data=sasuser.y02jan;
...
proc gplot data=sasuser.y02jan;

Summary

Text Summary

Basic Concepts
Macro variables can supply a variety of information, from operating system information,
to SAS session information, to any text string that you define. Updating multiple
references to a variable, data set, or text string is a simple process if you use macro
variables in your programs. Macro variables are part of the SAS macro facility, which is
a tool for extending and customizing SAS and for reducing the amount of text that you
must enter in order to perform common tasks.

Values of macro variables are stored in symbol tables. Values that are stored in the global
symbol table are always available. In order to substitute the value of a macro variable in
your program, you must reference that macro variable by preceding the macro variable
name with an ampersand. You can reference a macro variable anywhere in a SAS
program except within data lines.

Using Automatic Macro Variables
SAS provides automatic macro variables that contain information about your computing
environment. Automatic macro variables are created when SAS is invoked. Many of
these variables have fixed values that are assigned by SAS and which remain constant

320 Chapter 9 • Introducing Macro Variables

for the duration of your SAS session. Others have values that are updated automatically
based on submitted SAS statements.

Using User-Defined Macro Variables
You can create and define your own macro variables with the %LET statement. The
%LET statement enables you to assign a value for your new macro variable and to store
that value in the global symbol table. Macro variable values are character strings; except
for leading and trailing blanks, values are stored exactly as they appear in the statement.

Processing Macro Variables
When submitted, a SAS program goes to an area of memory called the input stack. From
there, the word scanner divides the program into small chunks called tokens and passes
them to the appropriate compiler for eventual execution. Certain token sequences are
macro triggers, which are sent to the macro processor for resolution. Once a macro
variable has been resolved by the macro processor, the stored value is substituted back
into the program in the input stack, and word scanning continues.

Displaying Macro Variable Values in the SAS Log
You can use the SYMBOLGEN system option to monitor the value that is substituted for
a macro variable reference. You can also use the %PUT statement to write messages,
which can include macro variable values, to the SAS log.

Using Macro Functions to Mask Special Characters
The %STR function enables you to quote tokens during compilation in order to mask
them from the macro processor. The %NRSTR function enables you to quote tokens that
include macro triggers from the macro processor. The %BQUOTE function enables you
to quote a character string or resolved value of a text expression during execution of a
macro or macro language statement.

Using Macro Functions to Manipulate Character Strings
You can use macro character functions to apply character string manipulations to the
values of macro variables. The %UPCASE function enables you to change values from
lowercase to uppercase. The %QUPCASE function works the same as %UPCASE
except that it also masks special characters and mnemonic operators in the function
result. The %SUBSTR function enables you to extract part of a string from a macro
variable value. The %QSUBSTR function works the same as %SUBSTR except that it
also masks special characters and mnemonic operators in the function result. The
%INDEX function enables you to determine the location of the first character of a
character string within a source. Using the %SCAN function, you can extract words
from the value of a macro variable. The %QSCAN function works the same as %SCAN
except that it also masks special characters and mnemonic operators in the function
result.

Using SAS Functions with Macro Variables
You can use the %SYSFUNC function to execute other SAS functions. The
%QSYSFUNC function works the same as the %SYSFUNC function except that it also
masks special characters and mnemonic operators in the function result.

Combining Macro Variable References with Text
You might sometimes need to combine a macro variable reference with other text. You
can place text immediately before or immediately after a macro variable reference. You

Summary 321

can also combine two macro variable references in order to create a new token. You
might need to use a delimiter when you combine macro variable references with text.

Sample Programs

Creating Macro Variables with a %LET Statement
options symbolgen;
%let year=2002;
proc print data=sasuser.schedule;
 where year(begin_date)=&year;
 title "Scheduled Classes for &year";
run;
proc means data=sasuser.all sum;
 where year(begin_date)=&year;
 class location;
 var fee;
 title1 "Total Fees for &year Classes";
 title2 "by Training Center";
run;

Using Automatic Macro Variables
footnote1 "Created &systime &sysday, &sysdate9";
footnote2 "on the &sysscp system using Release &sysver";
title "REVENUES FOR DALLAS TRAINING CENTER";
proc tabulate data=sasuser.all(keep=location course_title fee);
 where upcase(location)="DALLAS";
 class course_title;
 var fee;
 table course_title=" " all="TOTALS",
 fee=" "*(n*f=3. sum*f=dollar10.)
 / rts=30 box="COURSE";
run;

Inserting Macro Variables Immediately after Text
%let year=02;
%let month=jan;
proc chart data=sasuser.y&year&month;
 hbar week / sumvar=sale;
run;
proc plot data=sasuser.y&year&month;
 plot sale*day;
run;

Inserting Macro Variables Immediately before Text
%let graphics=g;
%let year=02;
%let month=jan;
%let var=sale;
proc &graphics.chart data=sasuser.y&year&month;
 hbar week / sumvar=&var;
run;
proc &graphics.plot data=sasuser.y&year&month;
 plot &var*day;

322 Chapter 9 • Introducing Macro Variables

run;

Points to Remember
• Macro variables can make your programs more reusable and dynamic.

• When you submit code to SAS, macro variable references are resolved by the macro
processor, and their values are substituted into your program.

• You can use the %PUT statement to write any text, including resolved macro
variables, to the SAS log.

• If you reference a macro variable within quotation marks, you must use double
quotation marks. Macro variable references that are enclosed in single quotation
marks cannot be resolved.

• Most macro character functions have corresponding functions (such as %QSUBSTR
and %QSCAN) that also mask special characters and mnemonic operators in the
function result.

Quiz
Select the best answer for each question. After completing the quiz, check your answers
using the answer key in the appendix.

1. Which of the following statements is false?

a. A macro variable can be defined and referenced anywhere in a SAS program
except within data lines.

b. Macro variables are always user-defined, and their values remain constant until
they are changed by the user.

c. Macro variables are text strings that are independent of SAS data sets.

d. The values of macro variables can be up to 65,534 characters long.

2. Which of the following TITLE statements correctly references the macro variable
month?

a. title "Total Sales for '&month' ";

b. title "Total Sales for 'month'";

c. title "Total Sales for &month";

d. title Total Sales for "&month";

3. Which of the following statements generates an error message while trying to display
the value of the macro variable month in the SAS log?

a. options &month;

b. %PUT &month;

c. options symbolgen;

d. %PUT the macro variable MONTH has the value &month.;

4. Which statement creates a macro variable named location that has the value
storage?

a. &let location = storage;

Quiz 323

b. let &location = storage;

c. %let location = "storage";

d. %let location = storage;

5. What value do these statements assign to the macro variable reptitle:

%let area = "Southeast";
%let reptitle = * Sales Report for &area Area *;

a. Sales Report for Southeast Area

b. Sales Report for "Southeast" Area

c. *Sales Report for "Southeast" Area*

d. * Sales Report for "Southeast" Area *

6. Assuming that you began your SAS session today, which of the following statements
correctly sets the macro variable currdate to today's date:

a. %let currdate = %sysfunc(today(), worddate.);

b. %let currdate = &sysdate9;

c. %let currdate = %sysfunc(date());

d. all of the above

7. Macro character functions

a. can be used to manipulate character strings in macro variable values.

b. have the same basic syntax as the corresponding DATA step functions and yield
similar results.

c. all of the above

d. none of the above

8. The four types of tokens that SAS recognizes are

a. expressions, literals, names, and special characters.

b. literals, names, numbers, and special characters.

c. expressions, names, numbers, and special characters.

d. expressions, literals, numbers, and special characters.

9. What are the resulting values for the macro variables that are defined here?

 %let month1 = June;
 %let month2 = July;
 %let period1 = &month1&month2;
 %let period2 = May&month1;
 %let period3 = &month2.Aug;

a. month1 Junemonth2 Julyperiod1 June Julyperiod2 May Juneperiod3 July Aug

b. month1 Junemonth2 Julyperiod1 JuneJulyperiod2 MayJuneperiod3 July.Aug

c. month1 Junemonth2 Julyperiod1 JuneJulyperiod2 MayJuneperiod3 JulyAug

d. month1 Junemonth2 Julyperiod1 junejulyperiod2 Mayjuneperiod3 julyaug

10. Which of the following correctly produces a title in which the current date is left-
justified in order to remove extra blanks?

324 Chapter 9 • Introducing Macro Variables

a. title "Report for %sysfunc(left(%sysfunc(today(),worddate.)))";

b. title "Report for %sysfunc(left(today(), worddate.))";

c. title "Report for %sysfunc(left(%qsysfunc(today(), worddate.)))";

d. title "Report for %left(today(), worddate.))";

Quiz 325

326 Chapter 9 • Introducing Macro Variables

Chapter 10

Processing Macro Variables at
Execution Time

Overview . 328
Introduction . 328

Creating a Macro Variable during DATA Step Execution 329
Overview . 329
Example . 330
The SYMPUT Routine . 332
Using SYMPUT with a Literal . 333
Example . 333
Using SYMPUT with a DATA Step Variable . 334
Example . 335
Using CALL SYMPUT with DATA Step Expressions . 336
Example . 338
PUT Function . 339
Example . 340
The SYMPUTX Routine . 341
Example . 342

Creating Multiple Macro Variables during DATA Step Execution 343
Creating Multiple Macro Variables with CALL SYMPUT 343
Example . 344

Referencing Macro Variables Indirectly . 346
Introduction . 346
The Forward Re-Scan Rule . 347
Example . 347
Example . 348
Example . 350

Obtaining Macro Variable Values during DATA Step Execution 352
The SYMGET Function . 352
Example . 353

Creating Macro Variables during PROC SQL Step Execution 354
The INTO Clause and the NOPRINT Option . 354
Example . 355
Creating Variables with the INTO Clause . 356
Example . 357
Example . 358
Creating a Delimited List of Values . 359
Example . 360

Working with PROC SQL Views . 361

Using Macro Variables in SCL Programs . 362

327

Overview . 362
The SYMPUTN Routine . 363
Example . 363
The SYMGETN Function . 363
Example . 364

Summary . 364
Text Summary . 364
Sample Programs . 365
Points to Remember . 366

Quiz . 367

Overview

Introduction
Because the macro facility performs its tasks before SAS programs execute, the
information that the macro facility supplies does not depend on values that are accessed
or computed during the execution of a SAS program. However, sometimes it is
necessary to access or create macro variables during the execution of a SAS program.
There are several methods that enable the macro facility to create or access macro
variables at execution time. In this chapter, you learn to use macro variables during
execution of the following:

• a DATA step

• a PROC SQL step

• an SCL program.

328 Chapter 10 • Processing Macro Variables at Execution Time

Creating a Macro Variable during DATA Step
Execution

Overview
In many applications, you need to create macro variables during DATA step execution.
You might need to create macro variables and to assign values to them based on the
following:

• data values in SAS data sets or in external files

• programming logic

• computed values.

For example, suppose you want to create a report that lists students who are enrolled in a
specific course, according to data in the Sasuser.All data set. Suppose you want to
include a footnote in your report to indicate whether any student fees are unpaid.

The following program uses SAS programming logic to determine which value is
assigned to the macro variable foot. Then foot is referenced in the FOOTNOTE
statement later in the program.

options symbolgen pagesize=30;
%let crsnum=3;
data revenue;
 set sasuser.all end=final;
 where course_number=&crsnum;
 total+1;
 if paid='Y' then paidup+1;
 if final then do;
 put total= paidup=; /* Write information
 to the log. */
 if paidup<total then do;
 %let foot=Some Fees Are Unpaid;
 end;
 else do;
 %let foot=All Students Have Paid;
 end;
 end;
run;

proc print data=revenue;
 var student_name student_company paid;
 title "Payment Status for Course &crsnum";
 footnote "&foot";
run;

Running the program produces the following report:

Creating a Macro Variable during DATA Step Execution 329

Although you can see that several students still have unpaid fees, the footnote indicates
that all students have paid. Obviously, the footnote is wrong. That is, the macro variable
foot resolves to the value All Students Have Paid when it should not do so.
Look at the following example.

Example
In order to understand the problem with this example, you should consider how macro
variable processing works in conjunction with SAS processing. Remember that when
both macro language statements and SAS language statements occur in the same step,
the macro processor executes macro language statements before any SAS language
statements are executed.

Remember, you want to create a report that lists students who are enrolled in a specific
course, according to data in the Sasuser.All data set, and you want to include a footnote

330 Chapter 10 • Processing Macro Variables at Execution Time

in your report to indicate whether any student fees are unpaid. The following program
uses SAS programming logic to determine which value is assigned to the macro variable
foot. Then foot is referenced in the FOOTNOTE statement later in the program.

options symbolgen pagesize=30;
%let crsnum=3;
data revenue;
 set sasuser.all end=final;
 where course_number=&crsnum;
 total+1;
 if paid='Y' then paidup+1;
 if final then do;
 put total= paidup=; /* Write information
 to the log. */
 if paidup<total then do;
 %let foot=Some Fees Are Unpaid;
 end;
 else do;
 %let foot=All Students Have Paid;
 end;
 end;
run;

proc print data=revenue;
 var student_name student_company paid;
 title "Payment Status for Course &crsnum";
 footnote "&foot";
run;

In this example, the first %LET statement inside the DATA step is passed to the macro
processor as soon as the word scanner encounters it. The macro processor then creates a
macro variable named foot in the symbol table and assigns the value Some Fees Are
Unpaid to the variable.

The word scanner then continues to read the program and passes the second %LET
statement in the DATA step to the macro processor as well. This time, the macro
processor reassigns the value All Students Have Paid to foot in the symbol
table.

When the RUN statement in the DATA step is encountered, SAS recognizes that the step
is complete, and executes it. Remember that at this point the DATA step no longer
includes any of the %LET statements (which have already been executed by the macro
processor). Because the %LET statements are always processed by the macro processor
before the DATA step is executed, the value of foot is always whatever the last %LET
statement assigns.

Here is a representation of the program that is processed by the DATA step compiler as a
result of the above code.

Creating a Macro Variable during DATA Step Execution 331

Table 10.1 Code after Substitution

data revenue;
 set sasuser.all end=final;
 where course_number=3;
 total+1;
 if paid='Y' then paidup+1;
 if final then do;
 put total= paidup=;
 if paidup<total then do;
 end;
 else do;
 end;
 end;
run;
proc print data=revenue;
 var student_name student_company paid;
 title "Payment Status for Course 3";
 footnote "All Students Have Paid";
run;

We can solve this problem with the following information.

The SYMPUT Routine
The DATA step provides functions and a CALL routine that enable you to transfer
information between an executing DATA step and the macro processor. You can use the
SYMPUT routine to create a macro variable and to assign to that variable any value that
is available in the DATA step.

General form, SYMPUT routine:

CALL SYMPUT(macro-variable,text);

Here is an explanation of the syntax:

macro-variable
is assigned the character value of text.

macro-variable and text
can each be specified as

• a literal, enclosed in quotation marks

• a DATA step variable

• a DATA step expression.

Note: If macro-variable already exists, the value of text replaces the former value.

When you use the SYMPUT routine to create a macro variable in a DATA step, the
macro variable is not actually created and assigned a value until the DATA step is
executed. Therefore, you cannot successfully reference a macro variable that is created
with the SYMPUT routine by preceding its name with an ampersand until after the step
boundary that causes DATA step execution.

In the next few sections that you will see several examples of how the SYMPUT routine
can be used in different situations.

332 Chapter 10 • Processing Macro Variables at Execution Time

Using SYMPUT with a Literal
In the SYMPUT routine, you use a literal string for the following:

• the first argument to specify an exact name for the name of the macro variable

• the second argument to specify the exact character value to assign to the macro
variable.

To use a literal with the SYMPUT routine, you enclose the literal string in quotation
marks.

CALL SYMPUT('macro-variable', 'text');

Example
Remember the previous example, in which you wanted to conditionally assign a value to
the macro variable foot based on values that are generated during DATA step
execution. You can use the SYMPUT routine with literal strings as both arguments in
order to accomplish this.

options symbolgen pagesize=30;
%let crsnum=3;
data revenue;
 set sasuser.all end=final;
 where course_number=&crsnum;
 total+1;
 if paid='Y' then paidup+1;
 if final then do;
 if paidup<total then do;
 call symput('foot','Some Fees Are Unpaid');
 end;
 else do;
 call symput('foot','All Students Have Paid');
 end;
end;
run;

proc print data=revenue;
 var student_name student_company paid;
 title "Payment Status for Course &crsnum";
 footnote "&foot";
run;

This time, the value assigned to foot is either Some Fees Are Unpaid or All
Students Have Paid, depending on the value of the DATA step variable Paidup,
because the value is assigned during the execution of the DATA step. When you submit
this code, you get the following output.

Creating a Macro Variable during DATA Step Execution 333

Using SYMPUT with a DATA Step Variable
You can assign the value of a DATA step variable as the value for a macro variable by
using the DATA step variable's name as the second argument to the SYMPUT routine.

To use a DATA step variable as the value for a macro variable in the SYMPUT routine,
you place the name of the DATA step variable after the name of the macro variable,
separated by a comma. You do not enclose the name of the DATA step variable in
quotation marks.

CALL SYMPUT('macro-variable',DATA-step-variable);

This form of the SYMPUT routine creates the macro variable named macro-variable and
assigns to it the current value of DATA-step-variable.

When you use a DATA step variable as the second argument,

334 Chapter 10 • Processing Macro Variables at Execution Time

• a maximum of 32,767 characters can be assigned to the receiving macro variable.

• any leading or trailing blanks that are part of the DATA step variable's value are
stored in the macro variable.

• values of numeric variables are automatically converted to character values, using
the BEST12. format.

CAUTION:
If you enclose the DATA step variable name in quotation marks, SAS interprets the
name as a literal value rather than as a variable name, and the DATA step variable's
value is not resolved.

Example
Once again, suppose you want to create a report about students who are enrolled in a
particular course. This time, suppose you want to add a title that contains the course title
and the course number, and you want to include a footnote that summarizes how many
students have paid their fees.

In this example, a DATA step variable named paidup records the number of students
that have paid, and a DATA step variable named total records the total number of
students who are registered for the class. Macro variables are created to record the values
of paidup, the value of total, and the value of Course_title. These macro
variables are referenced later in the program.

%let crsnum=3;
data revenue;
 set sasuser.all end=final;
 where course_number=&crsnum;
 total+1;
 if paid='Y' then paidup+1;
 if final then do;
 call symput('numpaid',paidup);
 call symput('numstu',total);
 call symput('crsname',course_title);
 end;
run;
proc print data=revenue noobs;
 var student_name student_company paid;
 title "Fee Status for &crsname (#&crsnum)";
 footnote "Note: &numpaid Paid out of &numstu Students";
run;

This time the footnote shows the correct information for how many students have paid.

Creating a Macro Variable during DATA Step Execution 335

Using CALL SYMPUT with DATA Step Expressions
If you had run the last example using listing output rather than HTML output, you would
have seen extra blanks in the title between the course title and the course number, as well
as in the footnote.

336 Chapter 10 • Processing Macro Variables at Execution Time

Table 10.2 SAS Listing Output

 Fee Status for Local Area Networks (#3)

 Student_Name Student_Company Paid

 Bills, Ms. Paulette Reston Railway Y
 Chevarley, Ms. Arlene Motor Communications N
 Clough, Ms. Patti Reston Railway N
 Crace, Mr. Ron Von Crump Seafood Y
 Davis, Mr. Bruce Semi;Conductor Y
 Elsins, Ms. Marisa F. SSS Inc. N
 Gandy, Dr. David Paralegal Assoc. Y
 Gash, Ms. Hedy QA Information Systems Center Y
 Haubold, Ms. Ann Reston Railway Y
 Hudock, Ms. Cathy So. Cal. Medical Center Y
 Kimble, Mr. John Alforone Chemical N
 Kochen, Mr. Dennis Reston Railway Y
 Larocque, Mr. Bret Physicians IPA Y
 Licht, Mr. Bryan SII Y
 McKnight, Ms. Maureen E. Federated Bank Y
 Scannell, Ms. Robin Amberly Corp. N
 Seitz, Mr. Adam Lomax Services Y
 Smith, Ms. Jan Reston Railway N
 Sulzbach, Mr. Bill Sailbest Ships Y
 Williams, Mr. Gene Snowing Petroleum Y

 Note: 14 Paid out of 20 Students

You do not see these blanks if you are using HTML output, but they are still stored in the
value of your macro variable.

Remember that when a DATA step variable is used as the second argument in a
SYMPUT routine, any leading, or trailing blanks that are part of the DATA step
variable's value are stored in the macro variable. Because the value of a macro variable
is always a text string, numeric variables are automatically converted using the BEST12.
format, and blanks are stored as part of the macro variable's value. In order to avoid
including extra blanks, you need to use a DATA step function to remove them.

In these situations that you can use DATA step functions before the SYMPUT routine
executes, in order to do the following:

• left-align character strings that have been created by numeric-to-character
conversions

• remove extraneous leading and trailing blanks.

Often you want to combine several DATA step functions in order to create a DATA step
expression as the second argument of the SYMPUT routine.

CALL SYMPUT('macro-variable',expression);

Note: A DATA step expression can be any combination of DATA step functions, DATA
step variables, constants, and logical or arithmetic operators that resolves to a
character or numeric constant.

When you use a DATA step expression as the second argument, its current value is
evaluated according to the following rules:

Creating a Macro Variable during DATA Step Execution 337

• Numeric expressions are automatically converted to character constants using the
BEST12. format.

• The resulting value can be up to 32,767 characters long.

• Any leading or trailing blanks that are part of the expression are stored in the macro
variable.

Example
In order to remove the extra blanks from the title and footnote of the previous example,
you can use DATA step functions. To remove trailing blanks from crsname, you can
use the TRIM function. To remove leading and trailing blanks from the macro variables
numstu and numpaid, you can use the STRIP function.

%let crsnum=3;
data revenue;
 set sasuser.all end=final;
 where course_number=&crsnum;
 total+1;
 if paid='Y' then paidup+1;
 if final then do;

 call symput('numpaid',strip(paidup));
 call symput('numstu',strip(total));
 call symput('crsname',trim(course_title));
 end;
run;

proc print data=revenue noobs;
 var student_name student_company paid;
 title "Fee Status for &crsname (#&crsnum)";
 footnote "Note: &numpaid Paid out of &numstu Students";
run;

338 Chapter 10 • Processing Macro Variables at Execution Time

Table 10.3 SAS Listing Output

 Fee Status for Local Area Networks (#3)

 NAME COMPANY PAID

 Bills, Ms. Paulette Reston Railway Y
 Chevarley, Ms. Arlene Motor Communications N
 Clough, Ms. Patti Reston Railway N
 Crace, Mr. Ron Von Crump Seafood Y
 Davis, Mr. Bruce Semi;Conductor Y
 Elsins, Ms. Marisa F. SSS Inc. N
 Gandy, Dr. David Paralegal Assoc. Y
 Gash, Ms. Hedy QA Information Systems Center Y
 Haubold, Ms. Ann Reston Railway Y
 Hudock, Ms. Cathy So. Cal. Medical Center Y
 Kimble, Mr. John Alforone Chemical N
 Kochen, Mr. Dennis Reston Railway Y
 Larocque, Mr. Bret Physicians IPA Y
 Licht, Mr. Bryan SII Y
 McKnight, Ms. Maureen E. Federated Bank Y
 Scannell, Ms. Robin Amberly Corp. N
 Seitz, Mr. Adam Lomax Services Y
 Smith, Ms. Jan Reston Railway N
 Sulzbach, Mr. Bill Sailbest Ships Y
 Williams, Mr. Gene Snowing Petroleum Y

 Note: 14 Paid out of 20 Students

PUT Function
Remember that the values of macro variables are always character strings. You have
seen that in the DATA step the SYMPUT routine performs automatic numeric-to-
character conversion on any numeric value that you attempt to assign to a macro
variable. Messages are written to the SAS log to alert you that automatic conversion has
occurred. Remember that the SYMPUT routine automatically uses the BEST12. format
for the conversion.

Sometimes you might want to have explicit control over the numeric-to-character
conversion. The PUT function returns a character string that is formed by writing a value
with a specified format.

You can use the PUT function to do the following:

• perform explicit numeric-to-character conversions

• format the result of a numeric expression.

Creating a Macro Variable during DATA Step Execution 339

General form, PUT function:

PUT(source,format.)

Here is an explanation of the syntax:

source
is a constant, a variable, or an expression (numeric or character).

format.
is any SAS format or user-defined format, which determines

• the length of the resulting string

• whether the string is right- or left-aligned.

source and format.
must be the same type (numeric or character).

Example
Suppose you want to create a report that shows the amount of fees that are unpaid for a
specific course. In the following example, you use the SYMPUT routine to format the
value of the numeric variable Begin_date with the MMDDYY10. format and assign
that value to the macro variable date. Then you also use another call to the SYMPUT
routine to format the result of an expression involving Fee, total, and paidup as a
dollar amount and assign that value to the macro variable due.

%let crsnum=3;
data revenue;
 set sasuser.all end=final;
 where course_number=&crsnum;
 total+1;
 if paid='Y' then paidup+1;
 if final then do;
 call symput('crsname',trim(course_title));
 call symput('date',put(begin_date,mmddyy10.));
 call symput('due',strip(put(fee*(total-paidup),dollar8.)));
 end;
run;

You can use the macro variables date and due in a PROC PRINT step to create your
report. The values of these macro variables appear in the report with the formatting that
you assigned to them when you created them.

proc print data=revenue;
 var student_name student_company paid;
 title "Fee Status for &crsname (#&crsnum) Held &date";
 footnote "Note: &due in Unpaid Fees";
run;

340 Chapter 10 • Processing Macro Variables at Execution Time

The SYMPUTX Routine
The SYMPUTX routine is very similar to the SYMPUT routine. In addition to creating a
macro variable and assigning a value to it, the SYMPUTX routine also automatically
removes leading and trailing blanks from both arguments.

Creating a Macro Variable during DATA Step Execution 341

General form, SYMPUTX routine:

CALL SYMPUTX(macro-variable,expression);

Here is an explanation of the syntax:

macro-variable
is assigned the character value of expression, and any leading or trailing blanks are removed
from both macro-variable and expression.

macro-variable and expression
can each be specified as

• a literal, enclosed in quotation marks

• a DATA step variable

• a DATA step expression.

Note: If macro-variable already exists, the value of expression replaces the former
value.

Example
Remember the example where you created a report about students who are enrolled in a
particular course. This time, suppose you want the title to contain the course name and
the course number, as well as the date on which the course was held. Also, you want the
footnote to list the current amount of unpaid fees for the course.

In this example, three macro variables are created. The macro variable csrname records
the value of the DATA step variable Course_title. The macro variable date records
the value of the DATA step variable Begin_date in MMDDYY10. format. Finally, the
macro variable due uses the values of the DATA step variables paidup, total, and
fee to record the current amount of unpaid fees in DOLLAR8. format. These macro
variables are referenced later in the program in the title and footnote statements.

%let crsnum=3;
data revenue;
 set sasuser.all end=final;
 where course_number=&crsnum;
 total+1;
 if paid='Y' then paidup+1;
 if final then do;
 call symputx('crsname',course_title);
 call symputx('date',put(begin_date,mmddyy10.));
 call symputx('due',put(fee*(total-paidup),dollar8.));
 end;
run;
proc print data=revenue;
 var student_name student_company paid;
 title "Fee Status for &crsname (#&crsnum) Held &date";
 footnote "Note: &due in Unpaid Fees";
run;

342 Chapter 10 • Processing Macro Variables at Execution Time

Creating Multiple Macro Variables during DATA
Step Execution

Creating Multiple Macro Variables with CALL SYMPUT
Sometimes you might want to create multiple macro variables within one DATA step.
For example, suppose you want to write a program that lists all of the scheduled dates
for a particular course, using a macro variable to record the title of the course.

%let crsid=C005;
data _null_;
 set sasuser.courses;
 where course_code="&crsid";
 call symput('title',trim(course_title));

Creating Multiple Macro Variables during DATA Step Execution 343

run;

proc print data=sasuser.schedule noobs label;
 where course_code="&crsid";
 var location begin_date teacher;
 title1 "Schedule for &title";
 options nodate nonumber;
run;

In this example, the value of the data set variable Course_title for the course whose
Course_code is C005 is assigned as a value for the macro variable title. The value
null on the data statement is used because we do not need a data set to be created in
this example.

In order to create a listing for a different course, you would need to change the %LET
statement and resubmit the DATA step to assign a new value to title. Then you would
need to resubmit the PROC PRINT step. Although you would need to resubmit both the
DATA step and the PROC PRINT step, these two steps would be identical to the steps
that you submitted for the first report. This is an extremely inefficient program.

%let crsid=C004;
data _null_;
 set sasuser.courses;
 where course_code="&crsid";
 call symput('title',trim(course_title));
run;

proc print data=sasuser.schedule noobs label;
 where course_code="&crsid";
 var location begin_date teacher;
 title1 "Schedule for &title";
 options nodate nonumber;
run;

Instead of executing separate DATA steps to update the same macro variable, you can
create related macro variables in one DATA step. To create multiple macro variables,
you use the SYMPUT routine with DATA step expressions for both arguments.

General form, SYMPUT routine with DATA step expressions:

CALL SYMPUT(expression1,expression2);

Here is an explanation of the syntax:

expression1
evaluates to a character value that is a valid macro variable name. This value should change
each time you want to create another macro variable.

expression2
is the value that you want to assign to a specific macro variable.

Example
In this example, you use one call to the SYMPUT routine in order to create one macro
variable for each value of the DATA step variable Course_code and to assign the
corresponding value of Course_title to each macro variable. That is, for each
observation in Sasuser.Courses, the macro processor creates a new macro variable. The
new macro variable has the same name as the value of the data set variable

344 Chapter 10 • Processing Macro Variables at Execution Time

Course_code for that observation. The value of the new macro variable is the value of
the data set variable Course_title for that observation.

data _null_;
 set sasuser.courses;
 call symput(course_code, trim(course_title));
run;
%put _user_;

The SAS log shows that six observations were read from the data set Sasuser.Courses
and that six global macro variables were created and were assigned values.

Table 10.4 SAS Log

2 data _null_;
3 set sasuser.courses;
4 call symput(course_code, trim(course_title));
5 run;

NOTE: There were 6 observations read from the dataset
 SASUSER.COURSES.
NOTE: DATA statement used:
 real time 0.52 seconds
 cpu time 0.13 seconds

7 %put _user_;
GLOBAL C006 Computer Aided Design
GLOBAL C001 Basic Telecommunications
GLOBAL C002 Structured Query Language
GLOBAL C003 Local Area Networks
GLOBAL C004 Database Design
GLOBAL C005 Artificial Intelligence

You can then use these new macro variables to print listings of information for various
courses, using only one DATA step, as follows:

data _null_;
 set sasuser.courses;
 call symput(course_code,trim(course_title));
run;

%let crsid=C005;
proc print data=sasuser.schedule noobs label;
 where course_code="&crsid";
 var location begin_date teacher;
 title1 "Schedule for &c005";
run;

%let crsid=C002;
proc print data=sasuser.schedule noobs label;
 where course_code="&crsid";
 var location begin_date teacher;
 title1 "Schedule for &c002";
run;

This is the output from the first PROC PRINT step.

Creating Multiple Macro Variables during DATA Step Execution 345

This is the output from the second PROC PRINT step.

The program in this section is more efficient than the program shown in the previous
section since the Sasuser.Courses data set is read only once in the latest example.
However, there is still room for improvement.

Referencing Macro Variables Indirectly

Introduction
In the last example, you saw how to use the SYMPUT routine to create a series of macro
variables whose names are based on the values of Course_code. However, you still
needed to modify the TITLE statement in each PROC PRINT step in order to print
output for each course.

Suppose you want to write a PROC PRINT step that you can reuse without any
modification to print information about each course. You can do this by using an indirect
reference in the TITLE statement.

data _null_;
 set sasuser.courses;
 call symput(course_code,trim(course_title));
run;

%let crsid=C002;
proc print data=sasuser.schedule noobs label;
 where course_code="&crsid";
 var location begin_date teacher;
 title1 "Schedule for ???";
run;

346 Chapter 10 • Processing Macro Variables at Execution Time

In the example above, the macro variable C002 (as created by the SYMPUT routine) has
a value of Structured Query Language. Therefore, the TITLE statement should
reference a macro variable that resolves to Structured Query Language.
Remember that you want this reference to be flexible enough to apply to any of the
macro variables that the SYMPUT routine creates, such as C003 or C004, by changing
only the %LET statement.

To obtain the value Structured Query Language, you need to indirectly reference
the macro variable C002 through a reference to the macro variable crsid. If the value
of the macro variable crsid is C002, then you need to proceed in several steps:

1. Resolve the macro variable crsid to the value C002.

2. Attach an ampersand (&) to the front of the resolved value in order to create a new
reference (&C002).

3. Resolve the resulting macro variable reference to the value Structured Query
Language.

This sequence seems to imply that you should use the reference &&crsid to convert the
value of the macro variable crsid to the corresponding course description. However,
the Forward Re-Scan rule indicates that this is not the correct solution.

The Forward Re-Scan Rule
The Forward Re-Scan rule can be summarized as follows:

• When multiple ampersands or percent signs precede a name token, the macro
processor resolves two ampersands (&&) to one ampersand (&), and re-scans the
reference.

• To re-scan a reference, the macro processor scans and resolves tokens from left to
right from the point where multiple ampersands or percent signs are coded, until no
more triggers can be resolved.

According to the Forward Re-Scan rule, you need to use three ampersands in front of a
macro variable name when its value matches the name of a second macro variable. This
indirect reference resolves to the value of the second macro variable.

Example
Suppose you want to use the macro variable crsid to indirectly reference the macro
variable C002.

Referencing Macro Variables Indirectly 347

The following table shows several references along with their resolved values.

By preceding a macro variable reference with two ampersands, you delay the resolution
of the reference until the second scan. The first time the reference is scanned, only the
double ampersands are resolved (to one ampersand). In order to create an indirect
reference (a reference whose value is a reference to a different macro variable), you must
use three ampersands. Therefore, to use an indirect reference that resolves to
Structured Query Language, the original reference must be &&&crsid.

Example
You can use indirect referencing to improve the last example. By using an indirect
reference to the macro variable whose name is the same as the current value of the
macro variable crsid, you can write a PROC PRINT step that you can reuse without
modification in order to print a report for each different course.

options symbolgen;
data _null_;
 set sasuser.courses;
 call symput(course_code, trim(course_title));
run;

%let crsid=C005;
proc print data=sasuser.schedule noobs label;
 where course_code="&crsid";
 var location begin_date teacher;
 title1 "Schedule for &&&crsid";
run;

%let crsid=C002;
proc print data=sasuser.schedule noobs label;
 where course_code="&crsid";
 var location begin_date teacher;
 title1 "Schedule for &&&crsid";
run;

The SAS log shows the steps that lead to the resolution of these macro variables for each
PROC PRINT step.

348 Chapter 10 • Processing Macro Variables at Execution Time

Table 10.5 SAS Log

43 options symbolgen;
44 data _null_;
45 set sasuser.courses;
46 call symput(course_code, trim(course_title));
47 run;
NOTE: There were 6 observations read from the dataset
 SASUSER.COURSES.
NOTE: DATA statement used:
 real time 0.07 seconds
 cpu time 0.05 seconds

48
49 %let crsid=C005;
50 proc print data=sasuser.schedule noobs label;
51 where course_code="&crsid";
SYMBOLGEN: Macro variable CRSID resolves to C005
52 var location begin_date teacher;
SYMBOLGEN: && resolves to &.
SYMBOLGEN: Macro variable CRSID resolves to C005
SYMBOLGEN: Macro variable C005 resolves to Artificial
 Intelligence
53 title1 "Schedule for &&&crsid";
54 run;

NOTE: There were 3 observations read from the dataset
 SASUSER.SCHEDULE.
 WHERE course_code='C005';
NOTE: PROCEDURE PRINT used:
 real time 0.09 seconds
 cpu time 0.04 seconds

55
56 %let crsid=C002;
57 proc print data=sasuser.schedule noobs label;
58 where course_code="&crsid";

SYMBOLGEN: Macro variable CRSID resolves to C002
59 var location begin_date teacher;
SYMBOLGEN: && resolves to &.
SYMBOLGEN: Macro variable CRSID resolves to C002
SYMBOLGEN: Macro variable C002 resolves to Structured
 Query Language
60 title1 "Schedule for &&&crsid";
61 run;

NOTE: There were 3 observations read from the dataset
 SASUSER.SCHEDULE.
 WHERE course_code='C002';
NOTE: PROCEDURE PRINT used:
 real time 0.06 seconds
 cpu time 0.04 seconds

This is the output from the first PROC PRINT step.

Referencing Macro Variables Indirectly 349

This is the output from the second PROC PRINT step.

Note that the PROC PRINT steps that produced these reports were identical. Only the
%LET statement that precedes each PROC PRINT step and the resolved values of the
macro variables changed.

Indirect referencing is especially useful when you are working with a series of related
macro variables. In Chapter 9, “Introducing Macro Variables,” on page 288, you learned
how to combine multiple macro variable references in order to build new tokens. You
can combine indirect macro variable references with other macro variable references as
well. That is, you can use two ampersands in a reference when the value of one macro
variable matches part of the name of a second macro variable.

Example
You can create a series of macro variables, teach1 to teachn, each containing the
name of the instructor who is assigned to a specific course.

options symbolgen;
data _null_;
 set sasuser.schedule;
 call symput('teach'||left(course_number),
 trim(teacher));
run;

Note: The concatenation operator || combines text. In the example above, the literal
string teach is concatenated to the text that results from left-aligning the resolved
value of the variable Course_number.

350 Chapter 10 • Processing Macro Variables at Execution Time

Then, you can reference one of these variables when a course number is designated. If
you designate a course number in a %LET statement, you can use multiple ampersands
in order to create a reference to the teachn macro variable that corresponds to the
current course number.

%let crs=3;
proc print data=sasuser.register noobs;
 where course_number=&crs;
 var student_name paid;
 title1 "Roster for Course &crs";
 title2 "Taught by &&teach&crs";
run;

The SAS log shows the steps that lead to the resolution of the reference &&teach&crs.

Table 10.6 SAS LOG

65 %let crs=3;
66 proc print data=sasuser.register noobs;
67 where course_number=&crs;
SYMBOLGEN: Macro variable CRS resolves to 3
68 var student_name paid;
SYMBOLGEN: Macro variable CRS resolves to 3
69 title1 "Roster for Course &crs";
SYMBOLGEN: && resolves to &.
SYMBOLGEN: Macro variable CRS resolves to 3
SYMBOLGEN: Macro variable TEACH3 resolves to
 Forest, Mr. Peter
70 title2 "Taught by &&teach&crs";
71 run;

This is the output from the example.

Referencing Macro Variables Indirectly 351

Obtaining Macro Variable Values during DATA
Step Execution

The SYMGET Function
Earlier you learned how to use the SYMPUT routine to create macro variables in a
DATA step. You are also familiar with using a macro variable reference such as
&macvar to obtain the value of a macro variable before a DATA step executes. Now,
suppose you want to obtain the value of a macro variable during DATA step execution.
You can obtain a macro variable's value during DATA step execution by using the
SYMGET function. The SYMGET function returns the value of an existing macro
variable.

352 Chapter 10 • Processing Macro Variables at Execution Time

General form, SYMGET function:

SYMGET(macro-variable)

Here is an explanation of the syntax:

macro-variable
can be specified as one of the following:

• a macro variable name, enclosed in quotation marks

• a DATA step variable name whose value is the name of a macro variable

• a DATA step character expression whose value is the name of a macro variable.

Example
You can use the SYMGET function to obtain the value of a different macro variable for
each iteration of a DATA step. In this example, the data set variable Teacher is
assigned the value of the macro variable teachn for each observation in the
Sasuser.Register data set, where n is the value of the data set variable Course_number
for that observation.

Note: This example assumes that a macro variable named teachn has already been
created for each observation in Sasuser.Register.

data teachers;
 set sasuser.register;
 length Teacher $ 20;
 teacher=symget('teach'||left(course_number));
run;

proc print data=teachers;
 var student_name course_number teacher;
 title1 "Teacher for Each Registered Student";
run;

Part of the SAS output that this program creates is shown below. Notice that the new
data set Teachers contains a variable named Teacher and that the values of this
variable are the same as the values of the macro variables teach1-teach3 in the
global symbol table above.

Obtaining Macro Variable Values during DATA Step Execution 353

Creating Macro Variables during PROC SQL Step
Execution

The INTO Clause and the NOPRINT Option
You have seen how to create macro variables during DATA step execution. You can also
create or update macro variables during the execution of a PROC SQL step. Remember
that the SELECT statement in a PROC SQL step retrieves and displays data. The INTO
clause in a SELECT statement enables you to create or update macro variables.

When you create or update macro variables during execution of a PROC SQL step, you
might not want any output to be displayed. The PRINT | NOPPRINT option specifies
whether a SELECT statement's results are displayed in output. PRINT is the default
setting.

354 Chapter 10 • Processing Macro Variables at Execution Time

General form, PROC SQL with the NOPRINT option and the INTO clause:

PROC SQL NOPRINT;
SELECT column1<,column2,...>

INTO :macro-variable-1<,:macro-variable-2,...>
FROM table-1 | view-1
<WHERE expression>
<other clauses>;

QUIT;

Here is an explanation of the syntax:

column1, column2,...
specifies one or more columns of the SQL table specified by table-1 | view-1.

:macro-variable-1, :macro-variable-2,...
names the macro variables to create.

expression
produces a value that is used to subset the data.

other clauses
are other valid clauses that group, subset, or order the data.

Note: Macro variable names are preceded by a colon.

Note: For more information about PROC SQL, see the SAS documentation.

This form of the INTO clause does not trim leading or trailing blanks. Also, the INTO
clause cannot be used when you create a table or a view.

Example
You can create a macro variable named totalfee that contains the total of all course
fees, and use this macro variable in a later step. You use the NOPRINT option to
suppress the output from the PROC SQL step.

proc sql noprint;
 select sum(fee) format=dollar10. into :totalfee
 from sasuser.all;
quit;
%let totalfee=&totalfee;

proc means data=sasuser.all sum maxdec=0;
 class course_title;
 var fee;
 title "Grand Total for All Courses Is &totalfee";
run;

Note: This form of the INTO clause does not trim leading or trailing blanks, but the
%LET statement removes any leading or trailing blanks that are stored in the value
of totalfee.

The output from this PROC MEANS step shows the sum of all course fees in the
DOLLAR10. format.

Creating Macro Variables during PROC SQL Step Execution 355

Creating Variables with the INTO Clause
Earlier you learned how to create a series of related macro variables during execution of
the DATA step by using the SYMPUT routine. Sometimes you might want to create a
series of related macro variables during execution of a PROC SQL step. You can use the
INTO clause to create one new macro variable for each row in the result of the SELECT
statement.

General form, SELECT statement with the INTO clause for a range of macro variables:

PROC SQL NOPRINT;
SELECT column1

INTO :macro-variable-1 - :macro-variable-n
 FROM table-1 | view-1
<WHERE expression>
<other clauses>;

QUIT;

Here is an explanation of the syntax:

column1
specifies the column of the SQL table specified by table-1 | view-1.

:macro-variable-1 - :macro-variable-n,...
names the macro variables to create.

expression
produces a value that is used to subset the data.

other clauses
are other valid clauses that group, subset, or order the data.

When storing values into a range of macro variables, or when using the SEPARATED
BY option to store multiple values in one macro variable, the INTO clause of PROC
SQL trims any leading and trailing blanks. Use the NOTRIM option if you want the
blanks to be preserved. This treatment of leading and trailing blanks is in contrast to

356 Chapter 10 • Processing Macro Variables at Execution Time

assigning the value of a DATA step variable for a macro variable in the SYMPUT
routine on page 334.

Example
You can create a series of macro variables that contain the course code, location, and
starting date of the first three courses that are scheduled in 2002. In this example, the
macro variables crsid1-crsid3 are assigned values of the data set variable
Course_code from each of the first three rows of the PROC SQL result:

proc sql;
 select course_code, location, begin_date format=mmddyy10.
 into :crsid1-:crsid3,
 :place1-:place3,
 :date1-:date3
 from sasuser.schedule
 where year(begin_date)=2002
 order by begin_date;
quit;

This is the result of the PROC SQL step.

This is a representation of the symbol table after this PROC SQL step has run.

If you do not know how many macro variables are created, you can issue a query to
determine how many macro variables are needed and to create a macro variable to store
that number. You can then run the query, using the macro variable as the suffix of the
final macro variable in each series of macro variables.

Creating Macro Variables during PROC SQL Step Execution 357

Example
Suppose you want to create ranges of macro variables that contain the course code,
location, and starting date of all courses that are scheduled in 2002. You do not know the
number of courses. If you assign an arbitrarily large number as the suffix of the final
macro variable range, only macro variables corresponding to the query result set are
created. The macro variable SQLOBS is assigned a value reflecting the number of rows
in the result set, matching the number of macro variables created in each range.

proc sql noprint;
 select course_code, location,
 begin_date format=mmddyy10.
 into :crsid1-:crsid999,
 :place1-:place999,
 :date1-:date999
 from sasuser.schedule
 where year(begin_date)=2002
 order by begin_date;
 %let numrows=&sqlobs;
 %put There are &numrows courses in 2002;
 %put _user_;
quit;

The SAS log shows that numrows is assigned a value of 4. The %PUT statement at the
end of the program shows the names and values of all the macro variables that are
created in the SELECT statement.

358 Chapter 10 • Processing Macro Variables at Execution Time

Table 10.7 SAS Log

114 proc sql noprint;
115 select course_code, location,
116 begin_date format=mmddyy10.
117 into :crsid1-:crsid999,
118 :place1-:place999,
119 :date1-:date999
120 from sasuser.schedule
121 where year(begin_date)=2002
122 order by begin_date;
123 %let numrows=&sqlobs;
124 %put There are &numrows courses in 2002;
There are 4 courses in 2002
125 %put _user_;
GLOBAL SQLOBS 4
GLOBAL CRSID2 C004
GLOBAL SQLOOPS 20
GLOBAL CRSID3 C005
GLOBAL DATE4 03/25/2002
GLOBAL PLACE1 Dallas
GLOBAL CRSID1 C003
GLOBAL PLACE2 Boston
GLOBAL PLACE3 Seattle
GLOBAL SYS_SQL_IP_ALL -1
GLOBAL SYS_SQL_IP_STMT
GLOBAL CRSNUM 3
GLOBAL DATE 01/08/2001
GLOBAL DATE1 01/07/2002
GLOBAL CRSID4 C006
GLOBAL DATE2 01/21/2002
GLOBAL DATE3 02/25/2002
GLOBAL NUMPAID 14
GLOBAL SQLXOBS 0
GLOBAL SQLRC 0
GLOBAL NUMROWS 4
GLOBAL NUMSTU 20
GLOBAL CRSNAME Local Area Networks
GLOBAL DUE $3,900
GLOBAL SQLEXITCODE 0
GLOBAL PLACE4 Dallas
126 quit;

Creating a Delimited List of Values
Sometimes, during execution of a PROC SQL step, you might want to create one macro
variable that holds all values of a certain data set variable. You can use an alternate form
of the INTO clause in order to take all of the values of a column (variable) and
concatenate them into the value of one macro variable.

Creating Macro Variables during PROC SQL Step Execution 359

General form, SELECT statement with INTO clause for combining values into one macro
variable:

PROC SQL NOPRINT;
SELECT column1

INTO :macro-variable-1
SEPARATED BY 'delimiter1'
FROM table-1 | view-1
<WHERE expression>
<other clauses>;

QUIT;

Here is an explanation of the syntax:

column1
specifies the column of the SQL table specified by table-1 | view-1.

:macro-variable-1
names the macro variable to create.

delimiter1
is enclosed in quotation marks and specifies the character that is used as a delimiter in the
value of the macro variable.

expression
produces a value that is used to subset the data.

other clauses
are other valid clauses that group, subset, or order the data.

This form of the INTO clause removes leading and trailing blanks from each value
before performing the concatenation of values.

Example
You can use the SQL procedure to create one macro variable named sites that contains
the names of all training centers that appear in the Sasuser.Schedule data set. The names
are separated by blanks.

proc sql noprint;
 select distinct location into :sites separated by ' '
 from sasuser.schedule;
quit;

Here is a representation of the macro variable sites as it is stored in the global symbol
table after this PROC SQL step has run.

Now you can use the new macro variable in a title.

proc means data=sasuser.all sum maxdec=0;
 var fee;
 title1 'Total Revenue';
 title2 "from Course Sites: &sites";
run;

360 Chapter 10 • Processing Macro Variables at Execution Time

This is the output from the PROC MEANS step.

Working with PROC SQL Views

When you submit a PROC SQL step, the PROC SQL program code is placed into the
input stack, and word scanning is performed for macro triggers in the same process as in
other SAS programs.

In the following code, the macro variable reference &crsid is resolved during the
creation of the PROC SQL view, resulting in a constant value whenever the view is used.
For example, if the value of crsid is C003 when this code is submitted, the view
Subcrsid is based on the course code C003.

proc sql;
 create view subcrsid as
 select student_name, student_company,paid
 from sasuser.all
 where course_code="&crsid";
quit;

A better approach would be to use the SYMGET function to enable the view to look up
the macro variable value. In the following example, the view Subcrsid is based on the
value of crsid when the view is used:

proc sql;
 create view subcrsid as
 select student_name,student_company,paid
 from sasuser.all
 where course_code=symget('crsid');
quit;

%let crsid=C003;
proc print data=subcrsid noobs;
 title "Status of Students in Course Code &crsid";
run;

%let crsid=C004;
proc print data=subcrsid noobs;
 title "Status of Students in Course Code &crsid";

Working with PROC SQL Views 361

run;

PROC SQL does not perform automatic data conversion. You must use the INPUT
function to convert the macro variable value to numeric if it is compared to a numeric
variable.

The following code performs a query that is based on the numeric equivalent of the
current value of the macro variable crsnum. The INPUT function is necessary in this
WHERE statement because the value of the data set variable Course_number is
numeric, but crsnum has a character value because it is a macro variable.

proc sql;
 create view subcnum as
 select student_name, student_company, paid
 from sasuser.all
 where course_number=input(symget('crsnum'),2.);
quit;

%let crsnum=4;
proc print data=subcnum noobs;
 title "Status of Students in Course Number &crsnum";
run;

Using Macro Variables in SCL Programs

Overview
SAS Component Language (SCL) programs are placed into the input stack, and word
scanning is performed for macro triggers in the same process as in other SAS programs.
Macro variable references that are outside of SUBMIT blocks are resolved before
execution. Therefore, in the following example, a constant value is compared to the SCL
variable Wage during SCL execution:

MAIN:
 erroroff wage;
 if wage gt &max then erroron wage;
return;

Any text within a SUBMIT block is assumed to be SAS code and is therefore ignored by
the SCL compiler when the SCL program is compiled. Macro variable references within
SUBMIT blocks are not resolved until the SUBMIT block executes and the SAS code
within the SUBMIT block is tokenized.

When a SUBMIT block executes, SAS attempts to resolve a macro variable reference
(&name) to a corresponding SCL variable. If there is no corresponding SCL variable, the
reference is passed to the macro processor for lookup in the global symbol table. You
can force a reference (&name) within a SUBMIT block to be passed as a macro variable
reference by preceding the name with two ampersands (&&name).

Also, there are several functions and routines that enable SCL programs and the macro
facility to exchange information at execution time. We examine these functions and
routines.

You have already learned how to use the SYMPUT routine and the SYMGET function
in a DATA step. Both the SYMPUT routine and the SYMGET function can be used in
SCL programs. The syntax for each is exactly the same as it is in the DATA step.

362 Chapter 10 • Processing Macro Variables at Execution Time

Also, both the SYMPUT routine and the SYMGET function have numeric equivalents
for use in SCL programs.

The SYMPUTN Routine
The SYMPUTN routine enables you to create a macro variable during execution of an
SCL program and to assign a numeric value to it.

General form, SYMPUTN routine:

CALL SYMPUTN('macro-variable', value);

Here is an explanation of the syntax:

macro-variable
is the name of a global macro variable enclosed in single quotation marks with no
ampersand. Alternatively, it is the name of an SCL variable (not enclosed in quotation
marks) whose value is the name of a global macro variable.

value
is the numeric value that is assigned to macro-variable, which can be a number of the name
of a numeric SCL variable.

Example
Suppose the SCL variable unitvar has a value of unit and the SCL variable
unitnum has a numeric value of 200. To create a macro variable whose name is the
value of unitvar (in this case, unit) and assign a value equal to the value of the SCL
variable unitnum (in this case, 200) you submit the following statement within a
SUBMIT block:

call symputn(unitvar, unitnum);

Similarly, to create a macro variable named unitvar and assign a numeric value of 500
to it, you submit the following statement within a SUBMIT block.

call symputn('unitvar', 500);

The SYMGETN Function
The SYMGETN function enables you to obtain the numeric value of a macro variable
during execution of an SCL program.

General form, SYMGETN function:

SCL-variable = SYMGETN('macro-variable');

Here is an explanation of the syntax:

SCL-variable
is the name of a numeric SCL variable to which the value of macro-variable is assigned.

macro-variable
is the name of a global macro variable enclosed in single quotation marks with no
ampersand. Alternatively, it is the name of an SCL variable (not enclosed in quotation
marks) whose value is the name of a global macro variable.

Using Macro Variables in SCL Programs 363

Example
Suppose the SCL variable unitvar has a value of unit, the macro variable unit has
a value of 200, and the macro variable unitvar has a value of 500. The first statement
below creates an SCL variable named unitnum and assigns to it a value of 200. The
second statement creates an SCL variable named unit and assigns it a value of 500.

unitnum=symgetn(unitvar);
unit=symgetn('unitvar');

Note: For more information about using macro variables in SCL, see the SAS
documentation for the macro language.

Summary

Text Summary

Creating a Macro Variable during DATA Step Execution
When you create or update a macro variable with the %LET statement, all macro
processing takes place before the execution of the DATA step. The SYMPUT routine
enables you to create or update macro variables during DATA step execution. Depending
on how the arguments are coded, you can create either a single macro variable or
multiple macro variables. You can use the SYMPUT routine with literal strings to create
a macro variable and to assign either an exact name or an exact text value to it. You can
use the SYMPUT routine with a DATA step variable to assign the value of that DATA
step variable to a macro variable.

You can use the SYMPUTX routine to create or update a macro variable during DATA
step execution, and to automatically strip leading and trailing blanks from the macro
variable name and value. You can also use a DATA step expression as an argument to the
SYMPUT routine in order to apply DATA step functions to a value before you assign
that value to a macro variable. The PUT function is often useful in conjunction with the
SYMPUT and SYMPUTX routines.

Creating Multiple Macro Variables during DATA Step Execution
You can use the SYMPUT or SYMPUTX routine with two DATA step expressions to
create a series of related macro variables within one DATA step.

Referencing Macro Variables Indirectly
Sometimes, it is useful to use indirect references to macro variables. For example, you
might want to use a macro variable to construct the name of another macro variable. You
can reference a macro variable indirectly by preceding the macro variable name with two
or more ampersands.

Obtaining Macro Variable Values during DATA Step Execution
The SYMGET function is used by both the DATA step and the SQL procedure to obtain
the value of a macro variable during execution. You can use the SYMGET function to
assign a macro variable value to a DATA step variable.

364 Chapter 10 • Processing Macro Variables at Execution Time

Creating Macro Variables during PROC SQL Step Execution
You can access the macro facility in a PROC SQL step by using the INTO clause in the
SELECT statement. Various forms of the INTO clause enable you to create a series of
macro variables, a varying number of macro variables, or a single macro variable that
records a value that is created by concatenating the unique values of an SQL variable.
You can use the NOPRINT option to prevent a PROC SQL step from creating output.

Working with PROC SQL Views
When you submit a PROC SQL step, the PROC SQL program code is placed into the
input stack, and word scanning is performed for macro triggers in the same process as in
other SAS programs.

Using Macro Variables in SCL Programs
SAS Component Language (SCL) also has routines and functions that assign values to
macro variables and that obtain values from a macro symbol table. The SYMPUT
routine and the SYMGET function can be used in an SCL program in the same way that
they can be used in a DATA step program. Also, the SYMPUTN routine can be used to
create macro variables and to assign numeric values to those variables during the
execution of an SCL program. The SYMGETN function can be used to obtain the
numeric value of a macro variable during the execution of an SCL program.

Sample Programs

Using CALL SYMPUT to Create Macro Variables
 options symbolgen pagesize=30;
 %let crsnum=3;
 data revenue;
 set sasuser.all end=final;
 where course_number=&crsnum;
 total+1;
 if paid='Y' then paidup+1;
 if final then do;
 if paidup<total then do;
 call symput('foot','Some Fees Are Unpaid');
 end;
 else do;
 call symput('foot','All Students Have Paid');
 end;
 end;
run;
proc print data=revenue;
 var student_name student_company paid;
 title "Payment Status for Course &crsnum";
 footnote "&foot";
run;

Referencing Macro Variables Indirectly
options symbolgen;
data _null_;
 set sasuser.courses;
 call symput(course_code, trim(course_title));
run;

Summary 365

%let crsid=C005;
proc print data=sasuser.schedule noobs label;
 where course_code="&crsid";
 var location begin_date teacher;
 title1 "Schedule for &&&crsid";
run;

%let crsid=C002;
proc print data=sasuser.schedule noobs label;
 where course_code="&crsid";
 var location begin_date teacher;
 title1 "Schedule for &&&crsid";
run;

Using SYMGET to Obtain Macro Variable Values
data teachers;
 set sasuser.register;
 length Teacher $ 20;
 teacher=symget('teach'||left(course_number));
run;

proc print data=teachers;
 var student_name course_number teacher;
title1 "Teacher for Each Registered Student";
run;

Creating Macro Variables with the INTO Clause
proc sql noprint;
 select course_code, location, begin_date format=mmddyy10.
 into :crsid1-:crsid3,
 :place1-:place3,
 :date1-:date3
 from sasuser.schedule
 where year(begin_date)=2002
 order by begin_date;
quit;

Points to Remember
• The SYMPUT routine can be used to create or update macro variables during DATA

step execution.

• The values of macro variables are always character values. In the DATA step,
SYMPUT performs automatic numeric to character conversion on any numeric value
that you attempt to assign to a macro variable.

• The SYMGET function can be used to obtain the value of a macro variable during
the execution of a DATA step, a PROC SQL step, or an SCL program.

• The INTO clause can be used in the SELECT statement to create or update macro
variables during execution of a PROC SQL step.

• The SYMPUT and SYMPUTN routines can be used to create or update macro
variables during the execution of an SCL program.

366 Chapter 10 • Processing Macro Variables at Execution Time

Quiz
Select the best answer for each question. After completing the quiz, check your answers
using the answer key in the appendix.

1. Which of the following is false?

a. A %LET statement causes the macro processor to create a macro variable before
the program is compiled.

b. To create a macro variable that is based on data calculated by the DATA step, you
use the SYMPUT function.

c. Macro functions are always processed during the execution of the DATA step.

d. Macro variable references in a DATA step are always resolved before DATA step
execution.

2. Which of the following correctly creates a macro variable named region and
assigns to it a value that is based on the value of the data set variable Location?

a. data new;
 set sasuser.all;
 if location='Boston' then do;
 call symput('region', 'East');
 end;
 else do;
 call symput('region', 'West');
 end;
run;

b. data new;
 set sasuser.all;
 if location='Boston' then do;
 %let region=East;
 end;
 else
 %let region=West;
 end;
run;

c. data new;
 set sasuser.all;
 if location='Boston' then do;
 call symput(region, "East");
 end;
 else
 call symput(region, "West");
 end;
run;

d. data new;
 set sasuser.all;
 if location='Boston' then do;
 symput(region, East);
 end;

Quiz 367

 else
 symput(region, West);
 end;
run;

3. The SYMPUT routine cannot

a. be used to assign a data set variable as a value to a macro variable.

b. create a series of macro variables in one DATA step.

c. automatically convert a numeric value to a character value when used to assign a
value to a macro variable in a DATA step.

d. be used to assign a numeric value to a macro variable in an SCL program.

4. Which of the following programs correctly creates a series of macro variables whose
names are values of the data set variable Course_code, then indirectly references
one of those macro variables in a later step?

a. data _null_;
 set sasuser.courses;
 call symput(course_code, trim(course_title));
%let crsid=C005;
proc print data=sasuser.schedule noobs label;
 where course_code="&crsid";
 var location begin_date teacher;
 title1 "Schedule for &c005";
run;

b. data _null_;
 set sasuser.courses;
 call symput(course_code, trim(course_title));
run;
%let crsid=C005;
proc print data=sasuser.schedule noobs label;
 where course_code="&crsid";
 var location begin_date teacher;
 title1 "Schedule for &&&crsid";
run;

c. data _null_;
 set sasuser.courses;
 call symput('course_code', trim(course_title));
run;
%let crsid=C005;
proc print data=sasuser.schedule noobs label;
 where course_code="&crsid";
 var location begin_date teacher;
 title1 "Schedule for &&&crsid";
run;

d. data _null_;
 set sasuser.courses;
 call symget(course_code, trim(course_title));
run;

%let crsid=C005;
proc print data=sasuser.schedule noobs label;
 where course_code="&crsid";
 var location begin_date teacher;

368 Chapter 10 • Processing Macro Variables at Execution Time

 title1 "Schedule for &&&crsid";
run;

5. Which of the following statements about the resolution of macro variable references
is false?

a. Two ampersands resolve to one ampersand.

b. If more than four consecutive ampersands precede a name token, the macro
processor generates an error message.

c. Re-scanning continues until there are no remaining macro triggers that the macro
processor can resolve.

d. The macro processor always re-scans a name token that is preceded by multiple
ampersands or by multiple percent signs.

6. In which of the following situations would you use SYMGET rather than a macro
variable reference (&macvar)?

a. to create a DATA step variable from a macro variable value during the execution
of the DATA step

b. to include a macro variable reference in a PROC SQL view

c. to access the value of a macro variable during the execution of an SCL program

d. all of the above

7. Which of the following correctly creates a macro variable in a PROC SQL step?

a. call symput(daily_fee, put(fee/days, dollar8.);

b. %let daily_fee=put(fee/days, dollar8.)

c. select fee/days format=dollar8.
into :daily_fee from sasuser.all;

d. select fee/days format=dollar8.
into daily_fee from sasuser.all;

8. According to the global symbol table shown here, what is the resolved value for a
reference to &&teach&crs?

a. &TEACH3

b. TEACH3

c. Forest, Mr. Peter

d. none of the above

9. Which of the following statements correctly creates a DATA step variable named
Price and assigns to it the value of the macro variable daily_fee during DATA
step execution?

a. price=&daily_fee;

Quiz 369

b. price=symget(daily_fee);

c. price=symget(&daily_fee);

d. price=symget("daily_fee");

10. Which of the following is false?

a. The SYMPUT routine can be used to create a macro variable during execution of
the DATA step or during execution of an SCL program.

b. In the DATA step, the SYMPUT routine automatically converts to a character
value any numeric value that you attempt to assign as the value of a macro
variable.

c. PROC SQL automatically converts to a numeric value any macro variable value
that you attempt to compare to a numeric value.

d. In an SCL program, the SYMPUTN routine can be used to assign a numeric
value to a macro variable.

370 Chapter 10 • Processing Macro Variables at Execution Time

Chapter 11

Creating and Using Macro
Programs

Overview . 372
Introduction . 372

Basic Concepts . 373
Defining a Macro . 373
Example . 373
Compiling a Macro . 373
The MCOMPILENOTE= Option . 374
Example . 374
Calling a Macro . 375
Example . 375
Macro Execution . 376
Example . 376

Developing and Debugging Macros . 378
Monitoring Execution with System Options . 378
The MPRINT Option . 378
Example . 379
The MLOGIC Option . 379
Example . 380
Comments in Macro Programs . 380
Example . 381

Using Macro Parameters . 381
Example . 381
Macros That Include Positional Parameters . 383
Example . 383
Macros That Include Keyword Parameters . 384
Example . 384
Macros That Include Mixed Parameter Lists . 385
Example . 385
Macros That Include the PARMBUFF Option . 386
Example . 386

Understanding Symbol Tables . 387
The Global Symbol Table . 387
The %GLOBAL Statement . 388
Example . 388
The Local Symbol Table . 388
The %LOCAL Statement . 389
Example . 390
Rules for Creating and Updating Variables . 390
Multiple Local Symbol Tables . 392

371

Example . 392
The MPRINTNEST Option . 393
Example . 394
The MLOGICNEST Option . 395
Example . 395

Processing Statements Conditionally . 396
Conditional Execution . 396
%IF-%THEN Compared to IF-THEN . 397
Example . 397
Example . 399
Macro Execution with Conditional Processing . 400
Example . 400
Example . 400
Conditional Processing of Parts of Statements . 403
Example . 403
Case Sensitivity in Macro Comparisons . 406
Example . 406

Processing Statements Iteratively . 407
Overview . 407
Example . 408
Example . 409
Generating Complete Steps . 410
Example . 410

Using Arithmetic and Logical Expressions . 411
The %EVAL Function . 411
Examples . 412
Example . 413
Automatic Evaluation . 413

Summary . 414
Text Summary . 414
Sample Programs . 415
Points to Remember . 416

Quiz . 417

Overview

Introduction
Like macro variables, macro programs (also known as macros) enable you to substitute
text into your SAS programs. Macros are different from macro variables because they
can use conditional logic to make decisions about the text that you substitute into your
programs. Using macros can help make your SAS programs more dynamic and reusable.

For example, suppose you submit a SAS program every day to create registration listings
for courses that are to be held later in the current month. Then, suppose that every Friday
you also submit a SAS program to create a summary of revenue that has been generated
so far in the current month. By using a macro, you can automate the process so that only
one SAS program is required. This program submits the daily report and conditionally
submits the weekly report if it is Friday. Furthermore, you could create and store a macro
that would automate this process, and the only code that you would need to submit each
day is this:

372 Chapter 11 • Creating and Using Macro Programs

%reports

Basic Concepts

Defining a Macro
In order to create a macro program, you must first define it. You begin a macro
definition with a %MACRO statement, and you end the definition with a %MEND
statement.

General form, %MACRO statement, and %MEND statement:

%MACRO macro-name;
text

%MEND <macro-name>;

Here is an explanation of the syntax:

macro-name
names the macro. The value of macro-name can be any valid SAS name that is not a
reserved word in the SAS macro facility.

text
can be

• constant text, possibly including SAS data set names, SAS variable names, or SAS
statements

• macro variables, macro functions, or macro program statements

• any combination of the above.

T I P You might want to include macro-name in the %MEND statement in order to
make your program more readable. However, the inclusion of macro-name in the
%MEND statement is entirely optional.

Example
This program creates a macro named Prtlast that prints the most recently created data
set. (Remember that the automatic macro variable SYSLAST stores the name of the
most recently created data set.)

%macro prtlast;
 proc print data=&syslast (obs=5);
 title "Listing of &syslast data set";
 run;
%mend;

Compiling a Macro
In order to use this macro later in your SAS programs, you must first compile it by
submitting the macro definition, as follows:

%macro prtlast;
 proc print data=&syslast (obs=5);

Basic Concepts 373

 title "Listing of &syslast data set";
 run;
%mend;

When you submit this code, the word scanner divides the macro into tokens and sends
the tokens to the macro processor for compilation. The macro processor

• checks all macro language statements for syntax errors (non-macro language
statements are not checked until the macro is executed).

• writes error messages to the SAS log and creates a dummy (non-executable) macro if
any syntax errors are found in the macro language statements.

• stores all compiled macro language statements and constant text in a SAS catalog
entry if no syntax errors are found in the macro language statements. By default, a
catalog named Work.Sasmacr is opened, and a catalog entry named Macro-
name.Macro is created.

That is, if there are no syntax errors in the macro language statements within the macro,
the text between the %MACRO statement and the %MEND statement is stored under
the name Prtlast for execution at a later time.

Note: You can also store a compiled macro in a permanent SAS catalog. You can learn
how to do this in Chapter 12, “Storing Macro Programs,” on page 422.

The MCOMPILENOTE= Option
The MCOMPILENOTE= option causes a note to be issued to the SAS log when a macro
has completed compilation.

General form, MCOMPILENOTE= option:

OPTIONS MCOMPILENOTE= NONE | NOAUTOCALL | ALL;

The option can take one of the three values listed. Here is an explanation of the syntax:

NONE
is the default value, which specifies that no notes are issued to the log.

NOAUTOCALL
specifies that a note is issued to the log for completed macro compilations for all macros
except autocall macros.

ALL
specifies that a note is issued to the log for all completed macro compilations.

Note: You can learn more about autocall macros in Chapter 12, “Storing Macro
Programs,” on page 422.

Example
A macro might actually compile and still contain errors. If there are any errors, an
ERROR message is written to the SAS log in addition to the note. Here is an example of
the note that is written to the log when a macro compiles without errors:

options mcompilenote=all;
%macro mymacro;
%mend mymacro;

374 Chapter 11 • Creating and Using Macro Programs

Table 11.1 SAS Log

1 options mcompilenote=all;
2 %macro mymacro;
3 %mend mymacro;
NOTE: The macro MYMACRO completed compilation without errors.

Calling a Macro
After the macro is successfully compiled, you can use it in your SAS programs for the
duration of your SAS session without resubmitting the macro definition. Just as you
must reference macro variables in order to access them in your code, you must call a
macro program in order to execute it within your SAS program.

A macro call

• is specified by placing a percent sign (%) before the name of the macro

• can be made anywhere in a program except within the data lines of a DATALINES
statement (similar to a macro variable reference)

• requires no semicolon because it is not a SAS statement.

To execute the macro Prtlast you would call the macro as follows:

%prtlast

CAUTION:
A semicolon after a macro call might insert an inappropriate semicolon into the
resulting program, leading to errors during compilation or execution.

Macros come in three types, depending on how they are called: name style, command
style, and statement style. Of the three, name style is the most efficient. This is because
calls to name style macros always begin with a percent sign (%), which immediately
tells the word scanner to pass the token to the macro processor. With the other two types,
the word scanner does not know immediately whether the token should be sent to the
macro processor or not. Therefore, time is wasted while the word scanner determines
this. All of the macros in this chapter are name style macros.

Example
Suppose a SAS program consists of several program steps that create SAS data sets.
Suppose that after each of these program steps that you want to print out the data set that
has been created. Remember that the macro Prtlast prints the most recently created
data set. If Prtlast has been compiled, you can call it after each step in order to print
each data set.

proc sort data=sasuser.courses out=courses;
 by course_code;
run;

%prtlast

proc sort data=sasuser.schedule out=schedule;
 by begin_date;
run;

Basic Concepts 375

%prtlast

proc sort data=sasuser.students out=students;
 by student_name;
run;

%prtlast

Note: The example above is simply meant to show you how you can incorporate a
macro into your SAS program. Although this is a valid use of the Prtlast macro,
this might not be the best way to code this example. Since the Prtlast macro uses
no conditional logic or macro programming statements and it makes no decisions,
this example does not illustrate the full power of a macro program. In the rest of this
chapter, you see examples of macro programs that are more useful than this one.

Macro Execution
When you call a macro in your SAS program, the word scanner passes the macro call to
the macro processor, because the percent sign that precedes the macro name is a macro
trigger. When the macro processor receives %macro-name, it

1. searches the designated SAS catalog (Work.Sasmacr by default) for an entry named
Macro-name.Macro

2. executes compiled macro language statements within Macro-name

3. sends any remaining text in Macro-name to the input stack for word scanning

4. suspends macro execution when the SAS compiler receives a global SAS statement
or when it encounters a SAS step boundary

5. resumes execution of macro language statements after the SAS code executes.

Later in this chapter you see detailed examples of macro execution. These examples
make more sense once you have learned how to write a more complex macro program
than you have seen so far in this chapter.

For now, remember that the macro call is processed by the macro processor before any
SAS language statements such as DATA steps are compiled or executed. During macro
execution, the macro processor can communicate directly with the following:

• both global and local symbol tables. For example, the macro processor can store
macro variable values with a %LET statement and can resolve macro variable
references.

• the input stack. For example, the macro processor can generate SAS code for
tokenization by the word scanner.

Note: You learn more about global and local symbol tables later in this chapter.

Example
This example demonstrates macro execution. Assume that the Prtlast macro has been
compiled and that it has been stored in the Work.Sasmacr catalog.

1. First, you submit the macro call, as follows:

%prtlast

376 Chapter 11 • Creating and Using Macro Programs

2. When the word scanner encounters this call, it passes the call to the macro processor.
The macro processor searches for the compiled macro in the catalog entry
Work.Sasmacr.Prtlast.Macro.

Catalog Entry

%macro prtlast;
 proc print data=&syslast(obs=5);
 title "Listing of &syslast data set";
 run;
%mend;

3. The macro processor begins executing compiled macro language statements.
However, in this example, no compiled macro statements are included in the macro.

4. The macro processor places noncompiled items (SAS language statements) on the
input stack, and pauses as the word scanner tokenizes the inserted text. In this
example, the macro processor places the PROC PRINT step on the input stack.

Input Stack

proc print data=&syslast(obs=5);
 title "Listing of &syslast data set";
run;

5. The word scanner passes these tokens to the compiler. When the word scanner
encounters a macro variable reference such as &syslast, it passes the reference to the
macro processor for resolution. The macro processor returns the macro variable
value to the input stack and word scanning continues.

6. After all of the statements in the PROC PRINT step have been compiled, the PROC
PRINT step is executed, and SAS creates output that includes only the first five
observations of the most recently created data set.

7. Once the PROC PRINT step has been executed, the macro processor resumes
execution of any remaining macro language statements in the macro (there are none
in this example). The macro processor ends execution when it reaches the %MEND
statement.

Assume that the most recently created data set is Work.Practice (which is a copy of
Sasuser.Courses). Here is the output that is generated by calling the Prtlast macro.

Here is an example of messages that are written to the SAS log when %prtlast is
submitted, assuming that the most recently created data set is Work.Practice.

Basic Concepts 377

Table 11.2 SAS Log

37 %prtlast

NOTE: Writing HTML Body file: sashtm3.htm
NOTE: There were 5 observations read from the data set
 WORK.PRACTICE.
NOTE: PROCEDURE PRINT used (Total process time):
 real time 0.04 seconds
 cpu time 0.03 seconds

Notice that in this SAS log message, you see a note from PROC PRINT, but not the
PROC PRINT code itself since the call to the macro does not display the text that is sent
to the compiler.

This example depicts the processing and execution of a simple macro. Later in this
chapter you see how more-complex macros that include compiled macro language
statements are handled by the macro processor.

Developing and Debugging Macros

Monitoring Execution with System Options
In the last example, you saw that when you call a macro, the text that is sent to the
compiler does not appear in the SAS log. But sometimes you might want to see this text.
There are SAS system options that can display information about the execution of a
macro in the SAS log. This can be especially helpful for debugging purposes.

The MPRINT Option
When the MPRINT option is specified, the text that is sent to the SAS compiler as a
result of macro execution is printed in the SAS log.

General form, MPRINT | NOMPRINT option:

OPTIONS MPRINT | NOMPRINT;

Here is an explanation of the syntax:

NOMPRINT
is the default setting, and specifies that the text that is sent to the compiler when a macro
executes is not printed in the SAS log.

MPRINT
specifies that the text that is sent to the compiler when a macro executes is printed in the
SAS log.

You might want to specify the MPRINT system option with the following conditions:

• you have a SAS syntax error or execution error

• you want to see the generated SAS code.

The MPRINT system option is often synchronized with the SOURCE system option to
show, or hide, executed SAS code.

378 Chapter 11 • Creating and Using Macro Programs

Example
Suppose you want to call the Prtlast macro and to use the MPRINT system option to
show the SAS code that results from the macro execution.

Catalog Entry

%macro prtlast;
 proc print data=&syslast (obs=5);
 title "Listing of &syslast data set";
 run;
%mend;

The following sample code creates a data set named Sales, specifies the MPRINT
option, and references the Prtlast macro:

data sales;
 price_code=1;
run;
options mprint;
%prtlast

The messages that are written to the SAS log show the text that is sent to the compiler.
Notice that the macro variable reference (&SYSLAST) is resolved to the value
Work.Sales in the MPRINT messages that are written to the SAS log.

Table 11.3 SAS Log

101 %prtlast
MPRINT(PRTLAST): proc print data=WORK.SALES (obs=5);
MPRINT(PRTLAST): title "Listing of WORK.SALES";
MPRINT(PRTLAST): run;
NOTE: There were 1 observations read from the dataset WORK.SALES.
NOTE: PROCEDURE PRINT used:
 real time 0.04 seconds
 cpu time 0.04 seconds

The MLOGIC Option
Another system option that might be useful when you debug your programs is the
MLOGIC option. The MLOGIC option prints messages that indicate macro actions that
were taken during macro execution.

General form, MLOGIC | NOMLOGIC option:

OPTIONS MLOGIC | NOMLOGIC;

Here is an explanation of the syntax:

NOMLOGIC
is the default setting, and specifies that messages about macro actions are not printed to the
SAS log during macro execution.

MLOGIC
specifies that messages about macro actions are printed to the log during macro execution.

Developing and Debugging Macros 379

When the MLOGIC system option is in effect, the information that is displayed in SAS
log messages includes

• the beginning of macro execution

• the values of macro parameters at invocation

• the execution of each macro program statement

• whether each %IF condition is true or false

• the end of macro execution.

Example
Suppose you want to repeat the previous example with only the MLOGIC system option
in effect. This sample code creates a data set named Sales, sets the MLOGIC system
option, and calls the Prtlast macro.

data sales;
 price_code=1;
run;
options nomprint mlogic;
%prtlast

When this code is submitted, the messages that are written to the SAS log show the
beginning and the end of macro processing.

Table 11.4 SAS Log

107 %prtlast
MLOGIC(PRTLAST): Beginning execution.
NOTE: There were 1 observations read from the dataset WORK.SALES.
NOTE: PROCEDURE PRINT used:
 real time 0.02 seconds
 cpu time 0.02 seconds
MLOGIC(PRTLAST): Ending execution.

The MLOGIC option, along with the SYMBOLGEN option, is typically turned

• on for development and debugging purposes

• off when the application is in production mode.

Comments in Macro Programs
As with any other programs, your macro programs might benefit from comments.
Comments can be especially helpful if you plan to save your macros permanently or to
share them with other users. You can place comments within a macro definition by using
the macro comment statement.

380 Chapter 11 • Creating and Using Macro Programs

General form, macro comment statement:

%*comment;

Here is an explanation of the syntax:

comment
can be any message. Like other SAS statements, each macro comment statement ends with a
semicolon.

Example
The following code uses macro comments to describe the functionality of the macro:

%macro printit;
 %* The value of &syslast will be substituted appropriately ;
 %* as long as a data set has been created during this session. ;
 proc print data=&syslast(obs=5);
/* Print only the first 5 observations */
 title "Last Created Data Set Is &syslast";
 run;
%mend;

Note: You can also use the comment symbols /* and */ inside a macro. When these
symbols appear, the macro processor ignores the text within the comment.

Using Macro Parameters
You have seen the basic form for a macro definition. Your macros often contain macro
variables. To make your macros more dynamic, you could use the %LET statement to
update the values of the macro variables that are used within the macros. However,
parameter lists in your macro definitions enable you to update the macro variables within
your macro programs more conveniently. A parameter list is an optional part of the
%MACRO statement that names one or more macro variables whose values you specify
when you call the macro.

Example
Suppose the compiled macro Printdsn contains references to the macro variables dsn
(which records a data set name) and vars (which records a list of data set variables), as
follows:

%macro printdsn;
 proc print data=&dsn;
 var &vars;
 title "Listing of %upcase(&dsn) data set";
 run;
%mend;

You could modify the behavior of Printdsn by changing the value of macro variable
dsn or vars with a %LET statement before you call the macro. For example, you could
substitute sasuser.courses for dsn and course_code course_title days for vars at macro
execution, as follows:

Using Macro Parameters 381

%let dsn=sasuser.courses;
%let vars=course_code course_title days;
%printdsn

If the MPRINT system option is turned on when this code is submitted, the following
messages are written to the SAS log. Notice that the values that you provided in the
%LET statements have been substituted into the macro when it appears in the SAS log.

Table 11.5 SAS Log

7 options mprint;
8 %let dsn=sasuser.courses;
9 %let vars=course_code course_title days;
10 %printdsn
NOTE: Writing HTML Body file: sashtm.htm
MPRINT(PRINTDSN): proc print data=sasuser.courses;
MPRINT(PRINTDSN): var course_code course_title days;
MPRINT(PRINTDSN): title "Listing of SASUSER.COURSES data set";
MPRINT(PRINTDSN): run;
NOTE: There were 6 observations read from the data set
 SASUSER.COURSES.
NOTE: PROCEDURE PRINT used (Total process time):
 real time 6.59 seconds
 cpu time 0.28 seconds

Then you could submit new %LET statements in order to change the value of dsn to
sasuser.schedule and to change the value of vars to course_code location begin_date
when the macro executes, as follows:

%let dsn=sasuser.schedule;
%let vars=course_code location begin_date;
%printdsn

The messages that are written to the SAS log when this code is submitted show that the
new values have been substituted for the macro variable references in the macro.

Table 11.6 SAS Log

11 %let dsn=sasuser.schedule;
12 %let vars=course_code location begin_date;
13 %printdsn
MPRINT(PRINTDSN): proc print data=sasuser.schedule;
MPRINT(PRINTDSN): var course_code location begin_date;
MPRINT(PRINTDSN): title "Listing of SASUSER.SCHEDULE data set";
MPRINT(PRINTDSN): run;
NOTE: Writing HTML Body file: sashtm1.htm
NOTE: There were 18 observations read from the data set
 SASUSER.SCHEDULE.
NOTE: PROCEDURE PRINT used (Total process time):
 real time 0.76 seconds
 cpu time 0.08 seconds

You can make these macro variables easier to update by using parameters in the macro
definition to create the macro variables. Then you can pass values to the macro variables
each time you call the macro rather than using separate %LET statements. The next few
sections show how to use various types of parameters to create macro variables.

382 Chapter 11 • Creating and Using Macro Programs

Macros That Include Positional Parameters
When you include positional parameters in a macro definition, a macro variable is
automatically created for each parameter when you call the macro. To define macros that
include positional parameters, you list the names of macro variables in the %MACRO
statement of the macro definition. Positional parameters are so named because the order
in which you specify them in a macro definition determines the order in which they are
assigned values from the macro call. That is, when you call a macro that includes
positional parameters, you specify the values of the macro variables that are defined in
the parameters in the same order in which they are defined.

General form, macro definition that includes positional parameters:

%MACRO macro-name(parameter-1<,...,parameter-n>);
text

%MEND <macro-name>;

Here is an explanation of the syntax:

parameter-1<,...,parameter-n>
specifies one or more positional parameters, separated by commas. You must supply each
parameter with a name: you cannot use a text expression to generate it.

To call a macro that includes positional parameters, precede the name of the macro with
a percent sign, and enclose the parameter values in parentheses. List the values in the
same order in which the parameters are listed in the macro definition, and separate them
with commas, as follows:

%macro-name(value-1<,...,value-n>)

The values listed in a macro call

• can be null values, text, macro variable references, or macro calls

• are assigned to the parameter variables using a one-to-one correspondence.

Example
You can use positional parameters to create the macro variables dsn and vars in the
Printdsn macro definition, as follows:

%macro printdsn(dsn,vars);
 proc print data=&dsn;
 var &vars;
 title "Listing of %upcase(&dsn) data set";
 run;
%mend;

In this case, when you call the Printdsn macro you assign values to the macro
variables that are created in the parameters. In the following example, the value
sasuser.courses is assigned to the macro variable dsn, and the value
course_codecourse_title days is assigned to the macro variable vars. Notice
that the value for dsn is listed first and the value for vars is listed second, since this is
the order in which they are listed in the macro definition.

%printdsn(sasuser.courses,course_code course_title days)

Using Macro Parameters 383

Note: To substitute a null value for one or more positional parameters, use commas as
placeholders for the omitted values, as follows:

%printdsn(,course_code course_title days)

Macros That Include Keyword Parameters
You can also include keyword parameters in a macro definition. Like positional
parameters, keyword parameters create macro variables. However, when you use
keyword parameters to create macro variables, you specify the name, followed by the
equal sign, and the value of each macro variable in the macro definition.

Keyword parameters can be listed in any order. Whatever value you assign to each
parameter (or variable) in the %MACRO statement becomes its default value. Null
values are allowed.

General form, macro definition that includes keyword parameters:

%MACRO macro-name(keyword-1=<value-1><,...,keyword-n=<value-n>>);
text

%MEND <macro-name>;

Here is an explanation of the syntax:

keyword-1=<value-1><,...,keyword-n=<value-n>>
names one or more macro parameters followed by equal signs. You can specify default
values after the equal signs. If you omit a default value, the keyword parameter has a null
value.

When you call a macro whose definition includes keyword parameters, you specify the
keyword, followed by the equal sign, and the value for each parameter. The order is not
important. If you omit a keyword parameter from the macro call, the keyword variable
retains its default value, as follows:

%macro-name(keyword-1=value-1<,...,keyword-n=value-n>)

Example
You can use keyword parameters to create the macro variables dsn and vars in the
Printdsn macro. This example assigns a default value of sasuser.courses to the
macro variable dsn and assigns a default value of course_codecourse_title
days to the macro variable vars:

%macro printdsn(dsn=sasuser.courses,
 vars=
course_code course_title days);
 proc print data=&dsn;
 var &vars;
 title "Listing of %upcase(&dsn) data set";
 run;
%mend;

To invoke the Printdsn macro with a value of sasuser.schedule for dsn and a
value of teacher course_titlebegin_date for vars, issue the following call:

%printdsn(dsn=sasuser.schedule, vars=teacher course_code begin_date)

384 Chapter 11 • Creating and Using Macro Programs

To call the Printdsn macro with default values for the parameters
(sasuser.courses as the value for dsn and course_codecourse_title days
as the value for vars), you could issue the following call:

%printdsn()

Note: To call the macro Printdsn with default values for the parameters, you could
also issue a macro call that specified these values explicitly, as follows:

%printdsn(dsn=sasuser.courses,vars=course_code course_title days)

Macros That Include Mixed Parameter Lists
You can also include a parameter list that contains both positional and keyword
parameters in your macro definitions. All positional parameter variables in the
%MACRO statement must be listed before any keyword parameter variable is listed.

General form, macro definition that includes mixed parameters:

%MACRO macro-name(parameter-1<,...,parameter-n>,
keyword-1=<value-1><,...,keyword-n=<value-n>>);
text

%MEND;

Here is an explanation of the syntax:

parameter-1<,...,parameter-n>
is listed before keyword-1=<value-1><,...,keyword-n=<value-n>>.

Similarly, when you call a macro that includes a mixed parameter list, you must list the
positional values before any keyword values, as follows:

%macro-name(value-1<,...,value-n>,
 keyword-1=value-1<,...,keyword-n=value-n>)

Example
You can use a combination of positional and keyword parameters to create the macro
variables in the Printdsn macro definition. This code uses a positional parameter to
create the macro variable dsn, and a keyword parameter to create the macro variable
vars:

%macro printdsn(dsn, vars=course_title course_code days);
 proc print data=&dsn;
 var &vars;
 title "Listing of %upcase(&dsn) data set";
 run;
%mend;

The following call to the Printdsn macro assigns the value sasuser.schedule to
the macro variable dsn and assigns the value teacher location begin_date to
the macro variable vars. Notice that the value for dsn is listed first, since dsn is the
positional parameter.

%printdsn(sasuser.schedule, vars=teacher location begin_date)

Now, suppose you want to execute the Printdsn macro, assigning the default value
course_titlecourse_code days to the macro variable vars and assigning the

Using Macro Parameters 385

value sasuser.courses to the macro variable dsn. You could issue the following
call:

%printdsn(sasuser.courses)

Because this call omits the keyword parameter (vars), the default value for that
parameter is used.

Macros That Include the PARMBUFF Option
You can use the PARMBUFF option in a macro definition to create a macro that can
accept a varying number of parameters at each invocation. The PARMBUFF option
assigns the entire list of parameter values in a macro call, including the parentheses in a
name-style invocation, as the value of the automatic macro variable SYSPBUFF.

General form, macro definition with the PARMBUFF option:

%MACRO macro-name /PARMBUFF;
text

%MEND;

Here is an explanation of the syntax:

text
contains a reference to the automatic macro variable SYSPBUFF.

Example
The following macro definition creates a macro named Printz. Printz uses a varying
number of parameters and the automatic macro variable SYSPBUFF to display the
parameters that are specified in the macro call. The macro also uses a loop to print the
data sets that are named as parameters.

%macro printz/parmbuff;
 %put Syspbuff contains: &syspbuff;
 %local num;
 %do num=1 %to %sysfunc(countw(&syspbuff));
 %let dsname=%scan(&syspbuff,&num);
 proc print data=sasuser.&dsname;
 run;
 %end;
%mend printz;

If you submit a call to the macro that includes two parameters, the Printz macro writes
the following line to the SAS log and causes two data sets to be printed

%printz(courses, schedule)

Table 11.7 SAS Log

Syspbuff contains: (courses,schedule)

If you submit a call to the macro that includes one parameter, the Printz macro writes
the following line to the SAS log and causes one data set to be printed:

%printz(courses)

386 Chapter 11 • Creating and Using Macro Programs

Table 11.8 SAS Log

Syspbuff contains: (courses)

Note: If the macro definition includes both a set of parameters and the PARMBUFF
option, the macro invocation causes the parameters to receive values and the entire
invocation list of values to be assigned to SYSPBUFF.

Understanding Symbol Tables

The Global Symbol Table
You are already somewhat familiar with the global symbol table. Remember that
automatic macro variables are stored in the global symbol table. User-defined macro
variables that you create with a %LET statement in open code (code that is outside of a
macro definition) are also stored in the global symbol table.

The global symbol table is created during the initialization of a SAS session and is
deleted at the end of the session. Macro variables in the global symbol table

• are available anytime during the session

• can be created by a user

• have values that can be changed during the session (except for some automatic
macro variables).

You can create a global macro variable with the following:

• a %LET statement (used outside a macro definition)

• a DATA step that contains a SYMPUT routine

• a DATA step that contains a SYMPUTX routine

• a SELECT statement that contains an INTO clause in PROC SQL

• a %GLOBAL statement.

You should already be familiar with the %LET statement, the SYMPUT routine, and the
INTO clause. Let’s examine the %GLOBAL statement.

Understanding Symbol Tables 387

The %GLOBAL Statement
The %GLOBAL statement

• creates one or more macro variables in the global symbol table and assigns null
values to them

• can be used either inside or outside a macro definition

• has no effect on variables that are already in the global symbol table.

General form, %GLOBAL statement:

%GLOBAL macro-variable-1 <...macro-variable-n>;

Here is an explanation of the syntax:

macro-variable
is either the name of a macro variable or a text expression that generates a macro
variable name.

Example
To create a global macro variable inside a macro definition, you can use the %GLOBAL
statement. The %GLOBAL statement in the following example creates two global macro
variables, dsn and vars. The %LET statements assign values to the new global macro
variables, as follows:

%macro printdsn;
 %global dsn vars;
 %let dsn=sasuser.courses;
 %let vars=course_title course_code days;
 proc print data=&dsn;
 var &vars;
 title "Listing of &dsn data set";
 run;
%mend;

%printdsn

Note: You use the %SYMDEL statement to delete a macro variable from the global
symbol table during a SAS session. To remove the macro variable dsn from the
global symbol table, you submit the following statement:

%symdel dsn;

The Local Symbol Table
A local symbol table is created when a macro that includes a parameter list is called or
when a request is made to create a local variable during macro execution. The local
symbol table is deleted when the macro finishes execution. That is, the local symbol
table exists only while the macro executes.

388 Chapter 11 • Creating and Using Macro Programs

The local symbol table contains macro variables that can be

• created and initialized at macro invocation (that is, by parameters)

• created or updated during macro execution

• referenced anywhere within the macro.

You can create local macro variables with the following:

• parameters in a macro definition

• a %LET statement within a macro definition

• a DATA step that contains a SYMPUT routine within a macro definition

• a DATA step that contains a SYMPUTX routine within a macro definition

• a SELECT statement that contains an INTO clause in PROC SQL within a macro
definition

• a %LOCAL statement.

Note: The SYMPUT routine can create a local macro variable if a local symbol table
already exists. If no local symbol table exists when the SYMPUT routine executes, it
creates a global macro variable.

You have already learned about using parameters in macro definitions. You should also
already be familiar with the %LET statement, the SYMPUT routine, and the INTO
clause. Let’s examine the %LOCAL statement.

The %LOCAL Statement
The %LOCAL statement

• can appear only inside a macro definition

• creates one or more macro variables in the local symbol table and assigns null values
to them

• has no effect on variables that are already in the local symbol table.

A local symbol table is not created until a request is made to create a local variable.
Macros that do not create local variables do not have a local table. Remember, the
SYMPUT routine can create local variables only if the local table already exists.

Since local symbol tables exist separately from the global symbol table, it is possible to
have a local macro variable and a global macro variable that have the same name and
different values.

Understanding Symbol Tables 389

Example
In this example, the first %LET statement creates a global macro variable named dsn
and assigns a value of sasuser.courses to it.

The %LOCAL statement within the macro definition creates a local macro variable
named dsn, and the %LET statement within the macro definition assigns a value of
sasuser.register to the local variable dsn.

The %PUT statement within the macro definition writes the value of the local variable
dsn to the SAS log, whereas the %PUT statement that follows the macro definition
writes the value of the global variable dsn to the SAS log:

%let dsn=sasuser.courses;

%macro printdsn;
 %local dsn;
 %let dsn=sasuser.register;
 %put The value of DSN inside Printdsn is &dsn;
%mend;

%printdsn
%put The value of DSN outside Printdsn is &dsn;

When you submit this code, the following statements are written to the SAS log.

Table 11.9 SAS Log

199 %let dsn=sasuser.courses;
200
201 %macro printdsn;
202 %local dsn;
203 %let dsn=sasuser.register;
204 %put The value of DSN inside Printdsn is &dsn;
205 %mend;
206
207 %printdsn
The value of DSN inside Printdsn is sasuser.register
208 %put The value of DSN outside Printdsn is &dsn;
The value of DSN outside Printdsn is sasuser.courses

Rules for Creating and Updating Variables
When the macro processor receives a request to create or update a macro variable during
macro execution, the macro processor follows certain rules.

Suppose the macro processor receives a %LET statement during a macro call, as
follows:

%let macvar=value;

The macro processor processes the following steps:

1. The macro processor checks to see whether the macro variable macvar already
exists in the local symbol table. If so, the macro processor updates macvar in the

390 Chapter 11 • Creating and Using Macro Programs

local symbol table with the value value. If macvar does not exist in the local table,
the macro processor goes on to step 2.

2. The macro processor checks to see whether the macro variable macvar already
exists in the global symbol table. If so, the macro processor updates macvar in the
global symbol table with the value value. If macvar does not exist in the global
symbol table, the macro processor goes on to step 3.

3. The macro processor creates a macro variable named macvar in the local symbol
table and assigns a value of value to it.

Similarly, suppose the macro processor receives the following reference during a macro
call:

&macvar

The macro processor takes the following steps:

1. The macro processor checks to see whether the macro variable macvar exists in the
local symbol table. If so, the macro processor retrieves the value of macvar from the
local symbol table. If macvar does not exist in the local table, the macro processor
goes on to step 2.

2. The macro processor checks to see whether the macro variable macvar exists in the
global symbol table. If so, the macro processor retrieves the value of macvar from
the global symbol table. If macvar does not exist in the global symbol table, the
macro processor goes on to step 3.

3. The macro processor returns the tokens to the word scanner. A warning message is
written to the SAS log to indicate that the reference was not resolved.

Note: Remember that if the macro processor receives either a %LET statement or a
macro variable reference (&macvar) in open code, it checks only the global symbol
table for existence of the macro variable. If a macro program is not currently
executing, a local symbol table does not currently exist.

Understanding Symbol Tables 391

Multiple Local Symbol Tables
Multiple local symbol tables can exist concurrently during macro execution if you have
nested macros. That is, if you define a macro program that calls another macro program,
and if both macros create local symbol tables, then two local symbol tables exists while
the second macro executes.

Example
Suppose the following two macros, Outer and Inner, have been compiled. The macro
named Outer creates a local macro variable named variX and assigns a value of one
to it. Then Outer calls another macro program named Inner. The macro named Inner
creates a local macro variable named variY and assigns the value of variX to it.

%macro outer;
 %local variX;
 %let variX=one;
 %inner
%mend outer;

%macro inner;
 %local variY;
 %let variY=&variX;
%mend inner;

We examine what happens to the symbol tables when you submit the following code:

%let variX=zero;
%outer

1. The macro processor receives %let variX=zero;. It checks the global symbol
table for a macro variable named variX. There is none, so the macro processor
creates variX and assigns a value of zero to it.

2. The macro processor receives %outer. The macro processor retrieves the macro
Outer from Work.Sasmacr, and begins executing it.

3. The macro processor encounters %local variX;. It creates a local symbol table.
The macro processor creates the macro variable variX in this local table and assigns
a null value to it. This does not affect the macro variable variX that is stored in the
global symbol table.

4. The macro processor encounters %let variX=one;. The macro processor checks
the local symbol table for variX and assigns a value of one to it.

392 Chapter 11 • Creating and Using Macro Programs

5. The macro processor receives %inner. It retrieves the macro Inner from
Work.Sasmacr, and begins executing it.

6. The macro processor encounters %local variY;. It creates a local symbol table.
The macro processor creates a macro variable variY in this table and assigns a null
value to it. There are now two local symbol tables in existence.

7. The macro processor encounters %let variY=&variX;. It checks the most
recently created local table for variX. There is no such macro variable in that
symbol table, so the macro processor then checks the other local symbol table. It
retrieves the value one from that symbol table and substitutes the value into the
%LET statement. Then the macro processor checks the most recently created local
symbol table for a macro variable named variY. When it finds this macro variable,
it assigns the value one to it.

8. The 4Inner macro finishes executing, and the local symbol table that was created
within this macro is deleted. There is now only one local symbol table in existence.

9. The Outer macro finishes executing, and the local symbol table that was created
within this macro is deleted. There are now no local symbol tables in existence. The
global symbol table has not been changed since variX was created and was
assigned a value of zero.

As you can see, each macro program in the example above has its own local symbol
table that exists as long as the macro executes. When a macro finishes executing, its
local symbol table and all of the local macro variables that are contained in that table are
erased. The global symbol table and all of the global macro variables that are contained
in it remain.

The MPRINTNEST Option
The MPRINTNEST option allows the macro nesting information to be written to the
SAS log in the MPRINT output. This has no effect on the MPRINT output that is sent to
an external file.

Understanding Symbol Tables 393

General form, MPRINTNEST option:

OPTIONS MPRINTNEST | NOMPRINTNEST;

Here is an explanation of the syntax:

MPRINTNEST
specifies that macro nesting information is written in the MPRINT output in the SAS log.

NOMPRINTNEST
specifies that macro nesting information is not written in the MPRINT output in the SAS
log.

The setting of the MPRINTNEST option does not imply the setting of MPRINT. You
must set both MPRINT and MPRINTNEST for output with the nesting information to be
written to the SAS log.

Example
Suppose that you have defined three nested macros, as follows:

%macro outer;
 data _null_;
 %inner
 run;
%mend outer;

%macro inner;
 put %inrmost;
%mend inner;

%macro inrmost;
 'This is the text of the PUT statement'
%mend inrmost;

The SAS log below shows the messages that are written when you set both the MPRINT
and MPRINTNEST options and submit a call to the Outer macro, as follows:

options mprint mprintnest;
%outer

Table 11.10 SAS Log

MPRINT(OUTER): data _null_;
MPRINT(OUTER.INNER): put
MPRINT(OUTER.INNER.INRMOST): 'This is the text of the PUT statement'
MPRINT(OUTER.INNER): ;
MPRINT(OUTER): run;

This is the text of the PUT statement
NOTE: DATA statement used (Total process time):
 real time 0.00 seconds
 cpu time 0.00 seconds

394 Chapter 11 • Creating and Using Macro Programs

The MLOGICNEST Option
The MLOGICNEST option allows the macro nesting information to be displayed in the
MLOGIC output in the SAS log. The setting of MLOGICNEST does not affect the
output of any currently executing macro.

General form, MLOGICNEST option:

OPTIONS MLOGICNEST | NOMLOGICNEST;

Here is an explanation of the syntax:

MLOGICNEST
specifies that macro nesting information is written in the MLOGIC output in the SAS log.

NOMLOGICNEST
specifies that macro nesting information is not written in the MLOGIC output in the SAS
log.

The setting of MLOGICNEST does not imply the setting of MLOGIC. You must set
both MLOGIC and MLOGICNEST for output with nesting information to be written to
the SAS log.

Example
Suppose that you have defined three nested macros, as follows:

%macro outer;
 %put THIS IS OUTER;
 %inner
%mend outer;

%macro inner;
 %put THIS IS INNER;
 %inrmost
%mend inner;

%macro inrmost;
 %put THIS IS INRMOST;
%mend inrmost;

The SAS log below shows the messages that are written when you set both the MLOGIC
and MLOGICNEST options and submit a call to the Outer macro, as follows:

options mlogic mlogicnest;
%outer

Understanding Symbol Tables 395

Table 11.11 SAS Log

MLOGIC(OUTER): Beginning execution.
MLOGIC(OUTER): %PUT THIS IS OUTER
THIS IS OUTER
MLOGIC(OUTER.INNER): Beginning execution.
MLOGIC(OUTER.INNER): %PUT THIS IS INNER
THIS IS INNER
MLOGIC(OUTER.INNER.INRMOST): Beginning execution.
MLOGIC(OUTER.INNER.INRMOST): %PUT THIS IS INRMOST
THIS IS INRMOST
MLOGIC(OUTER.INNER.INRMOST): Ending execution.
MLOGIC(OUTER.INNER): Ending execution.
MLOGIC(OUTER): Ending execution.

Processing Statements Conditionally

Conditional Execution
You can use macros to control conditional execution of statements. Remember the
example from the beginning of this chapter where you wanted to run a daily report to
create registration listings for courses to be held later in the month. Remember that you
also wanted to run a weekly report each Friday to create a summary of revenue that has
been generated so far in the current month. You can accomplish these tasks with one
program if you use conditional execution to determine whether the second report should
be run.

You can perform conditional execution at the macro level with %IF-%THEN and
%ELSE statements.

General form, %IF-%THEN and %ELSE statements:

%IF expression %THEN text;
<%ELSE text;>

Here is an explanation of the syntax:

expression
can be any valid macro expression that resolves to an integer.

text
can be specified as

• constant text

• a text expression

• a macro variable reference, a macro call, or a macro program statement.

If expression resolves to zero, then it is false and the %THEN text is not processed (the
optional %ELSE text is processed instead). If it resolves to any integer other than zero,
then the expression is true and the %THEN text is processed. If it resolves to null or to
any noninteger value, an error message is issued.

The %ELSE statement is optional. However, the macro language does not contain a
subsetting %IF statement. Thus, you cannot use %IF without %THEN.

396 Chapter 11 • Creating and Using Macro Programs

%IF-%THEN Compared to IF-THEN
Although they look similar, the %IF-%THEN/%ELSE statement and the IF-THEN/
ELSE statement belong to two different languages. Most of the same rules that apply to
the DATA step IF-THEN/ELSE statement also apply to the %IF-%THEN/%ELSE
statement. However, there are several important differences between the macro %IF-
%THEN statement and the DATA step IF-THEN statement.

%IF-%THEN... IF-THEN...

is used only in a macro program. is used only in a DATA step program.

executes during macro execution. executes during DATA step execution.

uses macro variables in logical expressions
and cannot refer to DATA step variables in
logical expressions.

uses DATA step variables in logical
expressions.

determines what text should be copied to the
input stack.

determines what DATA step statement(s)
should be executed. When inside a macro
definition, it is copied to the input stack as
text.

Simple %DO and %END statements often appear in conjunction with %IF-%THEN/
%ELSE statements in order to designate a section of the macro to be processed
depending on whether the %IF condition is true or false. Use %DO and %END
statements following %THEN or %ELSE in order to conditionally place text that
contains multiple statements onto the input stack. Each %DO statement must be paired
with an %END statement.

General form, %DO-%END with %IF-%THEN and %ELSE statements:

%IF expression %THEN %DO;
text and/or macro language statements

%END;
%ELSE %DO;

text and/or macro language statements
%END;

Here is an explanation of the syntax:

text and/or macro language statements
is either constant text, a text expression, and/or a macro statement.

Note: The statements %IF-%THEN, %ELSE, %DO, and %END are macro language
statements that can be used only inside a macro program.

Example
You can control text that is copied to the input stack with the %IF-%THEN while
controlling DATA step logic with IF-THEN. In this example, the value of the macro
variable status determines which variables are included in the new data set. The value

Processing Statements Conditionally 397

of the data set variable Location determines the value of the new data set variable
Totalfee.

%macro choice(status);
 data fees;
 set sasuser.all;
 %if &status=PAID %then %do;
 where paid='Y';
 keep student_name course_code begin_date totalfee;
 %end;
 %else %do;
 where paid='N';
 keep student_name course_code
 begin_date totalfee latechg;
 latechg=fee*.10;
 %end;
 /* add local surcharge */
 if location='Boston' then totalfee=fee*1.06;
 else if location='Seattle' then totalfee=fee*1.025;
 else if location='Dallas' then totalfee=fee*1.05;
 run;
%mend choice;

If the MPRINT and MLOGIC system options are both set, the SAS log displays
messages showing the text that is sent to the compiler. For example, suppose you submit
the following macro call:

options mprint mlogic;
%choice(PAID)

The following messages are written to the log. Notice that the MLOGIC option shows
the evaluation of the expression in the %IF statement, but it does not show the
evaluation of the expression in the IF statement.

Table 11.12 SAS Log

160 %choice(PAID)
MLOGIC(CHOICE): Beginning execution.
MLOGIC(CHOICE): Parameter STATUS has value PAID
MPRINT(CHOICE): data fees;
MPRINT(CHOICE): set sasuser.all;
MLOGIC(CHOICE): %IF condition &status=PAID is TRUE
MPRINT(CHOICE): where paid='Y';
MPRINT(CHOICE): keep student_name course_code begin_date totalfee;
MPRINT(CHOICE): if location='Boston' then totalfee=fee*1.06;
MPRINT(CHOICE): else if location='Seattle' then totalfee=fee*1.025;
MPRINT(CHOICE): else if location='Dallas' then totalfee=fee*1.05;
MPRINT(CHOICE): run;

Suppose you submit the following macro call:

options mprint mlogic;
%choice(OWED)

The following messages are sent to the SAS log. Notice that the text that is written to the
input stack is different this time.

398 Chapter 11 • Creating and Using Macro Programs

Table 11.13 SAS Log

161 %choice(OWED)
MLOGIC(CHOICE): Beginning execution.
MLOGIC(CHOICE): Parameter STATUS has value OWED
MPRINT(CHOICE): data fees;
MPRINT(CHOICE): set sasuser.all;
MLOGIC(CHOICE): %IF condition &status=PAID is FALSE
MPRINT(CHOICE): where paid='N';
MPRINT(CHOICE): keep student_name course_code begin_date totalfee
 latechg;
MPRINT(CHOICE): latechg=fee*.10;
MPRINT(CHOICE): if location='Boston' then totalfee=fee*1.06;
MPRINT(CHOICE): else if location='Seattle' then totalfee=fee*1.025;
MPRINT(CHOICE): else if location='Dallas' then totalfee=fee*1.05;
MPRINT(CHOICE): run;

Earlier you learned the process that occurs when a macro program is compiled. Now that
you have seen more-complex macro programs, we can examine this process again.

Remember that during macro compilation, macro statements are checked for syntax
errors. If a macro definition contains macro statement syntax errors, error messages are
written to the SAS log, and a non-executable (dummy) macro is created.

Example
Suppose you attempt to compile a macro that contains a syntax error. For example, the
following program is missing a percent sign in the %IF-%THEN statement:

%macro printit;
 %if &syslast ne _NULL_ then %do;
 proc print data=_last_(obs=5);
 title "Last Created Data Set Is &syslast";
 run;
 %end;
%mend;

When you submit this macro definition, the macro processor checks the %IF-%THEN
statement and the %DO and %END statements for syntax errors. Since there is a syntax
error in the %IF-%THEN statement, the following error messages are written to the SAS
log.

Table 11.14 SAS Log

10 %macro printit;
11 %if &syslast ne _NULL_ then %do;
ERROR: Macro keyword DO appears as text. A semicolon or other
 delimiter may be missing.
ERROR: Expected %THEN statement not found. A dummy macro will be
 compiled.
12 proc print data=_last_(obs=5);
13 title "Last Created Data Set Is &syslast";
14 run;
15 %end;
ERROR: There is no matching %DO statement for the %END. This
 statement will be ignored.
16 %mend;

Processing Statements Conditionally 399

Macro Execution with Conditional Processing
Earlier you learned that when the macro processor receives %macro-name, it executes
compiled macro language statements such as %IF-%THEN. The values of macro
variables that are used within the %IF logical expression are resolved during macro
execution. The %IF logical expression is automatically evaluated.

Example
Suppose the Printit macro has been compiled and has been stored in the
Work.Sasmacr catalog.

1. First, you submit a call to the Printit macro, as follows:

%printit

2. The macro processor locates the macro in the SAS catalog Work.Sasmacr.

Catalog Entry Work.Sasmacr.Printit.Macro

%macro printit;
 %if &syslast ne _NULL_ %then %do;
 proc print data=_last_(obs=5);
 title "Last Created Data Set Is &syslast";
 run;
 %end;
%mend;

3. The macro processor begins to execute compiled macro language statements from
Printit (that is, the %IF-%THEN statement). Because the %IF expression is true,
the %DO block is processed.

4. The macro processor places the text that follows the %DO statement (that is, the
PROC PRINT step) on the input stack.

Input Stack

proc print data=_last_(obs=5);
 title "Last Created Data Set Is &syslast";
run;

5. Word scanning proceeds as usual on the PROC PRINT step. When a macro trigger
such as &syslast is encountered, the macro reference is passed to the macro
processor for resolution. The macro processor returns resolved values to the input
stack.

6. After the word scanner sends all of the tokens from the PROC PRINT step to the
compiler, and the RUN statement is encountered, the PROC PRINT step executes.

7. Macro execution pauses while the PROC PRINT step executes, and macro execution
stops when the %MEND statement is encountered.

It is possible to conditionally insert individual statements into the input stack, even in the
middle of a step.

Example
Suppose you want to generate a report of enrollment at each training center as listed in
the data set Sasuser.All. You can specify your macro program so that if a specific course

400 Chapter 11 • Creating and Using Macro Programs

is requested, the macro inserts a WHERE ALSO statement in order to restrict the report
to that course. This example also customizes the second title line based on whether a
course was selected, as follows:

%macro attend(crs,start=01jan2001,stop=31dec2001);
 %let start=%upcase(&start);
 %let stop=%upcase(&stop);
 proc freq data=sasuser.all;
 where begin_date between "&start"d and "&stop"d;
 table location / nocum;
 title "Enrollment from &start to &stop";
 %if &crs= %then %do;
 title2 "for all Courses";
 %end;
 %else %do;
 title2 "for Course &crs only";
 where also course_code="&crs";
 %end;
 run;
%mend;

Note: In the program above, the %IF statement %if &crs= is true when crs has a
value of null.

Suppose you submit the following call, which specifies a specific course:

%attend(C003)

This call results in the following output. Notice that the second title has been written
according to the %ELSE %DO statement in the macro.

Processing Statements Conditionally 401

Table 11.15 SAS Log

18 %attend(C003)
MPRINT(ATTEND): proc freq data=sasuser.all;
MPRINT(ATTEND): where begin_date between "01JAN2001"d and "31DEC2001"d;
MPRINT(ATTEND): table location / nocum;
MPRINT(ATTEND): title "Enrollment from 01JAN2001 to 31DEC2001";
MPRINT(ATTEND): title2 "for Course C003 only";
MPRINT(ATTEND): where also course_code="C003";
NOTE: WHERE clause has been augmented.
MPRINT(ATTEND): run;

NOTE: Writing HTML Body file: sashtml.htm
NOTE: There were 2 observations read from the data set SASUSER.SCHEDULE.
 WHERE (Course_Code='C003') and (Begin_Date>='01JAN2001'D and
 Begin_Date<='31DEC2001'D);
NOTE: There were 207 observations read from the data set SASUSER.STUDENTS.
NOTE: There were 434 observations read from the data set SASUSER.REGISTER.
NOTE: There were 1 observations read from the data set SASUSER.COURSES.
 WHERE Course_Code='C003';
NOTE: There were 50 observations read from the data set SASUSER.ALL.
 WHERE (begin_date>='01JAN2001'D and begin_date<='31DEC2001'D)
 and (course_code='C003');

Now suppose you submit the following call, which specifies a start date but does not
specify a course:

%attend(start=01jul2001)

This call results in the following output. Notice that in this output, the second title line is
written according to the %IF-%THEN statement in the macro.

402 Chapter 11 • Creating and Using Macro Programs

Table 11.16 SAS Log

19 %attend(start=01jul2001)
MPRINT(ATTEND): options mprint;
MPRINT(ATTEND): proc freq data=sasuser.all;
MPRINT(ATTEND): where begin_date between "01JUL2001"d and "31DEC2001"d;
MPRINT(ATTEND): table location / nocum;
MPRINT(ATTEND): title "Enrollment from 01JUL2001 to 31DEC2001";
MPRINT(ATTEND): title2 "for all Courses";
MPRINT(ATTEND): run;

NOTE: There were 6 observations read from the data set SASUSER.SCHEDULE.
 WHERE Course_Code in ('C001', 'C002', 'C003', 'C004', 'C005', 'C006') and
 (Begin_Date>='01JUL2001'D and Begin_Date<='31DEC2001'D);
NOTE: There were 207 observations read from the data set SASUSER.STUDENTS.
NOTE: There were 434 observations read from the data set SASUSER.REGISTER.
NOTE: There were 6 observations read from the data set SASUSER.COURSES.
NOTE: There were 162 observations read from the data set SASUSER.ALL.
 WHERE (begin_date>='01JUL2001'D and begin_date<='31DEC2001'D);

Conditional Processing of Parts of Statements
The text that is processed as the result of conditional logic can be a small part of a SAS
statement. This makes it possible to conditionally insert text into the middle of a
statement.

Example
Suppose you want to print a table of frequency counts from a SAS data set. You can
generate either a one-way table or a two-way table, based on the value of a macro
parameter. This example creates a one-way table if only the cols parameter is specified
in the call. It creates a two-way table if the rows parameter is also specified.

%macro counts (cols=_all_,rows=,dsn=&syslast);
 title "Frequency Counts for %upcase(&dsn) data set";
 proc freq data=&dsn;
 tables
 %if &rows ne %then &rows *;
 &cols;
 run;
%mend counts;

Suppose you submit the following call, which specifies both cols and rows:

%counts(dsn=sasuser.all, cols=paid, rows=course_number)

Part of the resulting output from this call is shown below. Notice that the macro has
created a two-way table.

Processing Statements Conditionally 403

The log shows the generated PROC FREQ code from this macro.

404 Chapter 11 • Creating and Using Macro Programs

Table 11.17 SAS Log

28 %counts(dsn=sasuser.all, cols=paid, rows=course_number)
MPRINT(COUNTS): title "Frequency Counts for SASUSER.ALL data set";
MPRINT(COUNTS): proc freq data=sasuser.all;
MPRINT(COUNTS): tables course_number * paid;
MPRINT(COUNTS): run;

NOTE: There were 18 observations read from the data set SASUSER.SCHEDULE.
 WHERE Course_Code in ('C001', 'C002', 'C003', 'C004', 'C005', 'C006');
NOTE: There were 207 observations read from the data set SASUSER.STUDENTS.
NOTE: There were 434 observations read from the data set SASUSER.REGISTER.
NOTE: There were 6 observations read from the data set SASUSER.COURSES.
NOTE: There were 434 observations read from the data set SASUSER.ALL.
NOTE: PROCEDURE FREQ used (Total process time):

Now suppose you submit the following call, which specifies cols but does not specify
rows:

%counts(dsn=sasuser.all, cols=paid)

The output that results from this call is shown below. Notice that this time the macro has
created a one-way table.

The log shows the generated TABLES statement.

Processing Statements Conditionally 405

Table 11.18 SAS Log

29 %counts(dsn=sasuser.all, cols=paid)
MPRINT(COUNTS): title "Frequency Counts for SASUSER.ALL data set";
MPRINT(COUNTS): proc freq data=sasuser.all;
MPRINT(COUNTS): tables paid;
MPRINT(COUNTS): run;

NOTE: There were 18 observations read from the data set SASUSER.SCHEDULE.
 WHERE Course_Code in ('C001', 'C002', 'C003', 'C004', 'C005', 'C006');
NOTE: There were 207 observations read from the data set SASUSER.STUDENTS.
NOTE: There were 434 observations read from the data set SASUSER.REGISTER.
NOTE: There were 6 observations read from the data set SASUSER.COURSES.
NOTE: There were 434 observations read from the data set SASUSER.ALL.
NOTE: PROCEDURE FREQ used (Total process time):

Case Sensitivity in Macro Comparisons
Remember that comparisons that are made in %IF expressions are case sensitive.

Example
If you construct your %IF statement using incorrect case in any program text, the
statement is never true. For example, the %IF statement below is always false because
null is specified in lowercase but is always stored in SAS in uppercase:

%macro prtlast;
 %if &syslast=_null_ %then %do;
 %put No data sets created yet.;
 %end;
 %else %do;
 proc print;
 title "Last Created Data Set is &syslast";
 run;
 %end;
%mend;
options mprint mlogic symbolgen;
%prtlast

Suppose SYSLAST has a value of _NULL_ when you submit this example. The
following messages are written to the SAS log.

406 Chapter 11 • Creating and Using Macro Programs

Table 11.19 SAS Log

29 %prtlast
MLOGIC(PRTLAST): Beginning execution.
SYMBOLGEN: Macro variable SYSLAST resolves to _NULL_
MLOGIC(PRTLAST): %IF condition &syslast = _null_ is FALSE

NOTE: The SAS System stopped processing this step because of errors.
NOTE: PROCEDURE PRINT used:
 real time 1:32.58
 cpu time 0.05 seconds

MPRINT(PRTLAST): proc print;
ERROR: There is not a default input data set (_LAST_ is _NULL_).
SYMBOLGEN: Macro variable SYSLAST resolves to _NULL_
MPRINT(PRTLAST): title "Last Created Data Set is _NULL_";
MPRINT(PRTLAST): run;

NOTE: The SAS System stopped processing this step because of errors.
NOTE: PROCEDURE PRINT used:
 real time 0.01 seconds
 cpu time 0.01 seconds
MLOGIC(PRTLAST): Ending execution.

T I P The %UPCASE function is often useful when you construct %IF statements. For
more information about the %UPCASE function, see Chapter 9, “Introducing Macro
Variables,” on page 288.

Processing Statements Iteratively

Overview
Many macro applications require iterative processing. With the iterative %DO statement
that you can repeatedly

• execute macro programming code

• generate SAS code.

Processing Statements Iteratively 407

General form, iterative %DO statement with %END statement:

%DO index-variable=start %TO stop <%BY increment>;
text

%END;

Here is an explanation of the syntax:

index-variable
is either the name of a macro variable or a text expression that generates a macro variable
name.

start and stop
specify either integers or macro expressions that generate integers to control how many
times the portion of the macro between the iterative %DO and %END statements is
processed.

increment
specifies either an integer (other than 0) or a macro expression that generates an integer to be
added to the value of the index variable in each iteration of the loop. By default, increment is
1.

text
can be

• constant text, possibly including SAS data set names, SAS variable names, or SAS
statements

• macro variables, macro functions, or macro program statements

• any combination of the above.

%DO and %END statements are valid only inside a macro definition. The index-variable
is created in the local symbol table if it does not appear in any existing symbol table.

The iterative %DO statement evaluates the value of the index variable at the beginning
of each loop iteration. The loop stops processing when the index variable has a value
that is outside the range of the start and stop values.

Example
You can use a macro loop to create and display a series of macro variables.

This example creates a series of macro variables named teach1-teachn, one for each
observation in the Sasuser.Schedule data set, and assigns teacher names to them as
values. Then the Putloop macro uses a %DO statement and a %END statement to
create a loop that writes these macro variables and their values to the SAS log, as
follows:

data _null_;
 set sasuser.schedule end=no_more;
 call symput('teach'||left(_n_),(trim(teacher)));
 if no_more then call symput('count',_n_);
run;

%macro putloop;
 %local i;
 %do i=1 %to &count;
 %put TEACH&i is &&teach&i;
 %end;
%mend putloop;

408 Chapter 11 • Creating and Using Macro Programs

%putloop

T I P It is a good idea to specifically declare the index variable of a macro loop as a
local variable to avoid the possibility of accidentally changing the value of a macro
variable that has the same name in other symbol tables.

When the Putloop macro is executed, no code is sent to the compiler, because the
%PUT statements are executed by the macro processor. The following messages are
written to the SAS log.

Table 11.20 SAS Log

TEACH1 is Hallis, Dr. George
TEACH2 is Wickam, Dr. Alice
TEACH3 is Forest, Mr. Peter
TEACH4 is Tally, Ms. Julia
TEACH5 is Hallis, Dr. George
TEACH6 is Berthan, Ms. Judy
TEACH7 is Hallis, Dr. George
TEACH8 is Wickam, Dr. Alice
TEACH9 is Forest, Mr. Peter
TEACH10 is Tally, Ms. Julia
TEACH11 is Tally, Ms. Julia
TEACH12 is Berthan, Ms. Judy
TEACH13 is Hallis, Dr. George
TEACH14 is Wickam, Dr. Alice
TEACH15 is Forest, Mr. Peter
TEACH16 is Tally, Ms. Julia
TEACH17 is Hallis, Dr. George
TEACH18 is Berthan, Ms. Judy

You can also use a macro loop to generate statements that can be placed inside a SAS
program step.

Example
The following macro generates a series of statements within a DATA step. On each
iteration, the macro writes a message to the SAS log that puts the current value of the
index variable into HEX6. format.

%macro hex(start=1,stop=10,incr=1);
 %local i;
 data _null_;
 %do i=&start %to &stop %by &incr;
 value=&i;
 put "Hexadecimal form of &i is " value hex6.;
 %end;
 run;
%mend hex;

Note: The HEX6. format converts a number to hexadecimal format.

Suppose you submit the following call:

options mprint mlogic;
%hex(start=20,stop=30,incr=2)

Some of the messages that are written to the SAS log when Hex executes are shown
below. Notice that according to the MLOGIC messages, the loop stops processing when

Processing Statements Iteratively 409

the value of the index variable is 32 (which is beyond the value that is specified for
Stop).

Table 11.21 SAS Log

MLOGIC(HEX): %DO loop index variable I is now 30; loop will
 iterate again.
MPRINT(HEX): value=30;
MPRINT(HEX): put "Hexadecimal form of 30 is " value hex6.;
MLOGIC(HEX): %DO loop index variable I is now 32; loop will
 not iterate again.
MPRINT(HEX): run;

Hexadecimal form of 20 is 000014
Hexadecimal form of 22 is 000016
Hexadecimal form of 24 is 000018
Hexadecimal form of 26 is 00001A
Hexadecimal form of 28 is 00001C
Hexadecimal form of 30 is 00001E
NOTE: DATA statement used:
 real time 0.06 seconds
 cpu time 0.06 seconds

MLOGIC(HEX): Ending execution.

Generating Complete Steps
You can use the iterative %DO statement to build macro loops that create complete SAS
steps.

Example
Suppose course offerings for several years are stored in a series of external files that are
named by year, such as Raw1999.dat and Raw2000.dat. All the files have the same
record layout. Suppose you want to read each file into a separate SAS data set.

The following macro uses a %DO statement to create a loop that creates a data set from
each of the specified external files:

%macro readraw(first=1999,last=2005);
 %local year;
 %do year=&first %to &last;
 data year&year;
 infile "raw&year..dat";
 input course_code $4.
 location $15.
 begin_date date9.
 teacher $25.;
 run;

 proc print data=year&year;
 title "Scheduled classes for &year";
 format begin_date date9.;
 run;
 %end;

410 Chapter 11 • Creating and Using Macro Programs

%mend readraw;

Suppose you submit the following call to the Readraw macro:

%readraw(first=2000,last=2002)

The macro creates three data sets named Year2000, Year2001, and Year2002. Remember
that in order for this program to run properly, the raw data files must be named
appropriately, and they must be stored in the location that the program specifies. The
generated DATA step is shown in the log.

Table 11.22 SAS Log

336 %readraw(first=2000,last=2002)
MLOGIC(READRAW): Beginning execution.
MLOGIC(READRAW): Parameter FIRST has value 2000
MLOGIC(READRAW): Parameter LAST has value 2002
MLOGIC(READRAW): %LOCAL YEAR
MLOGIC(READRAW): %DO loop beginning; index variable YEAR; start value is 2000;
 stop value is 2002; by value is 1.
MPRINT(READRAW): data year2000;
MPRINT(READRAW): infile "raw2000.dat";
MPRINT(READRAW): input course_code $4. location $15. begin_date date9.
 teacher $25.;
MPRINT(READRAW): run;

Using Arithmetic and Logical Expressions

The %EVAL Function
The %EVAL function evaluates integer arithmetic or logical expressions. Logical
expressions and arithmetic expressions are sequences of operators and operands forming
sets of instructions that are evaluated to produce a result.

• An arithmetic expression contains an arithmetic operator.

• A logical expression contains a logical operator.

General form, %EVAL function:

%EVAL(arithmetic or logical expression)

The %EVAL function

• translates integer strings and hexadecimal strings to integers

• translates tokens representing arithmetic, comparison, and logical operators to
macro-level operators

• performs arithmetic and logical operations.

For arithmetic expressions, if an operation results in a non-integer value, %EVAL
truncates the value to an integer. Also, %EVAL returns a null value and issues an error
message when non-integer values are used in arithmetic expressions.

Using Arithmetic and Logical Expressions 411

%EVAL evaluates logical expressions and returns a value to indicate whether the
expression is true or false. A value of 0 indicates that the expression is false, and a value
of 1 or any other numeric value indicates that the expression is true.

The %EVAL function does not convert the following to numeric values:

• numeric strings that contain a period or E notation

• SAS date and time constants.

Here are some examples.

Examples
The following table shows several examples of arithmetic and logical expressions, as
well as the results that %EVAL produces when it evaluates these expressions.

If you submit these statements...
These messages are
written to the log...

%put value=%eval(10 lt 2); value=0

%put value=10+2;
%put value=%eval(10+2);

value=10+2
value=12

%let counter=2;
%let counter=%eval(&counter+1);
%put counter=&counter;

counter=3

%let numer=2;
%let denom=8;
%put value=%eval(&numer/&denom);

value=0

%let numer=2;
%let demon=8;
%put value=%eval(&numer/&denom*&denom);
%put value=%eval(&denom*&numer/&denom);

value=0
value=2

%let real=2.4;
%let int=8;
%put value=%eval(&real+&int);

value=

In the last example above, the decimal value of the real variable causes an error
message to be written to the SAS log, as shown here.

Table 11.23 SAS Log

1 %let real=2.4;
2 %let int=8;
3 %put value=%eval(&real+&int);
ERROR: A character operand was found in the %EVAL function
or %IF condition where a numeric operand is required.
The condition was: 2.4+8
value=

412 Chapter 11 • Creating and Using Macro Programs

Because %EVAL does not convert a value that contains a period to a number, the
operands are evaluated as character operands.

You have seen that the %EVAL function generates ERROR messages in the log when it
encounters an expression that contains non-integer values. In order to avoid these
ERROR messages, you can use the %SYSEVALF function. The %SYSEVALF function
evaluates arithmetic and logical expressions using floating-point arithmetic.

General form, %SYSEVALF function:

%SYSEVALF(expression<, conversion-type>)

Here is an explanation of the syntax:

expression
is an arithmetic or logical expression to evaluate.

conversion-type
converts the value returned by %SYSEVALF to the type of value specified. Conversion-type
can be BOOLEAN, CEIL, FLOOR, or INTEGER.

The %SYSEVALF function performs floating-point arithmetic and returns a value that is
formatted using the BEST16. format. The result of the evaluation is always text.

Example
The macro in the following example performs all types of conversions for values in the
%SYSEVALF function:

%macro figureit(a,b);
 %let y=%sysevalf(&a+&b);
 %put The result with SYSEVALF is: &y;
 %put BOOLEAN conversion: %sysevalf(&a +&b, boolean);
 %put CEIL conversion: %sysevalf(&a +&b, ceil);
 %put FLOOR conversion: %sysevalf(&a +&b, floor);
 %put INTEGER conversion: %sysevalf(&a +&b, integer);
 %mend figureit;

%figureit(100,1.59)

Executing this program writes the following lines to the SAS log.

Table 11.24 SAS Log

The result with SYSEVALF is: 101.59
BOOLEAN conversion: 1
CEIL conversion: 102
FLOOR conversion: 101
INTEGER conversion: 101

Automatic Evaluation
%SYSEVALF is the only macro function that can evaluate logical expressions that
contain floating point, date, time, datetime, or missing values. Specifying a conversion
type can prevent problems when %SYSEVALF returns missing or floating-point values

Using Arithmetic and Logical Expressions 413

to macro expressions or macro variables that are used in other macro expressions that
require an integer value.

Keep in mind that any macro language function or statement that requires a numeric or
logical expression automatically invokes the %EVAL function. This includes the
%SCAN function, the %SUBSTR function, the %IF-%THEN statement, and more.

Summary

Text Summary

Basic Concepts
A macro program is created with a macro definition, which consists of a %MACRO
statement and a %MEND statement. The %MACRO statement also provides a name for
the macro. Any combination of macro language statements and SAS language
statements can be placed in a macro definition. The macro definition must be compiled
before it is available for execution. The MCOMPILENOTE= option causes a note to be
issued to the SAS log when a macro has completed compilation. To execute a name style
macro, you submit a call to the macro by preceding the macro name with a percent sign.

Developing and Debugging Macros
Two system options, MLOGIC, and MPRINT, are useful for macro development and
debugging. The MLOGIC option writes messages that trace macro execution to the SAS
log. The MPRINT option prints the text that is sent to the compiler after all macro
resolution has taken place. The SYMBOLGEN option and macro comments are also
useful for macro development and debugging.

Using Macro Parameters
You can use parameter lists in your macro definition in order to make your macros more
flexible and easier to adapt. Parameters can be either positional or keyword. You can
also use mixed parameter lists that contain both positional and keyword parameters.
Parameters define macro variables that can take on different values when you call the
macro, including null values. You can use the PARMBUFF option in conjunction with
the automatic macro variable SYSPBUFF to define a macro that accepts a varying
number of parameters each time you call it.

Understanding Symbol Tables
When a macro executes, it sometimes creates its own temporary symbol table, called a
local symbol table. The local symbol table exists in addition to the global symbol table.
If a macro creates or resolves macro variables, a local symbol table might be used. In
order to fully control macro behavior, you must understand the basic rules that the macro
processor uses to determine which symbol table to access under specific circumstances.
Statements such as %GLOBAL and %LOCAL enable you to explicitly define where
macro variables are stored. The %SYMDEL statement enables you to delete a macro
variable from the global symbol table during a SAS session.

You can call a macro within a macro definition. That is, you can nest macros. When a
nested macro is called, multiple local symbol tables can exist. The MPRINTNEST and
MLOGICNEST options provide nesting information in the messages that are written to
the SAS log for the MPRINT and MLOGIC options.

414 Chapter 11 • Creating and Using Macro Programs

Processing Statements Conditionally
Conditional processing is available with the %IF-%THEN/%ELSE statements. These
statements control what action the macro processor takes when an expression evaluates
to true or to false. The action could be the execution of other macro programming
statements or the placement of text onto the input stack. If the code that is used to
describe this action includes multiple statements, you must enclose this code between a
%DO statement and a %END statement.

It is possible to conditionally place whole SAS steps, whole SAS statements, or parts of
SAS statements onto the input stack.

Processing Statements Iteratively
To perform repetitive actions, you can use %DO loops. You can use iterative processing
to generate complete SAS steps, individual statements, or data-dependent steps.

Using Arithmetic and Logical Expressions
You use the %EVAL function to evaluate arithmetic or logical expressions that do not
contain any non-integer or missing values. Macro language functions and statements that
require a numeric or logical expression automatically use the %EVAL function. You use
the %SYSEVALF function to evaluate arithmetic or logical expressions that contain
non-integer or missing values.

Sample Programs

Defining a Basic Macro
%macro prtlast;
 proc print data=&syslast (obs=5);
 title "Listing of &syslast data set";
 run;
%mend;

Defining a Macro with Positional Parameters
%macro printdsn(dsn,vars);
 proc print data=&dsn;
 var &vars;
 title "Listing of %upcase(&dsn) data set";
 run;
%mend;

Defining a Macro with Keyword Parameters
%macro printdsn(dsn=sasuser.courses,
 vars=course_code
 course_title days);
 proc print data=&dsn;
 var &vars;
 title "Listing of %upcase(&dsn) data set";
 run;
%mend;

Defining a Macro with Mixed Parameters
%macro printdsn(dsn, vars=course_title course_code days);
 proc print data=&dsn;

Summary 415

 var &vars;
 title "Listing of %upcase(&dsn) data set";
 run;
%mend;

Using the %IF-%THEN Statement
%macro choice(status);
 data fees;
 set sasuser.all;
 %if &status=PAID %then %do;
 where paid='Y';
 keep student_name course_code begin_date totalfee;
 %end;
 %else %do;
 where paid='N';
 keep student_name course_code
 begin_date totalfee latechg;
 latechg=fee*1.10;
 %end;
 /* add local surcharge */
 if location='Boston' then totalfee=fee*1.06;
 else if location='Seattle' then totalfee=fee*1.025;
 else if location='Dallas' then totalfee=fee*1.05;
 run;
%mend choice;

Using the Iterative %DO Statement
%macro hex(start=1,stop=10,incr=1);
 %local i;
 data _null_;
 %do i=&start %to &stop %by &incr;
 value=&i;
 put "Hexadecimal form of &i is " value hex6.;
 %end;
 run;
%mend hex;
options mprint mlogic symbolgen;
%hex(start=20,stop=30,incr=2)

Points to Remember
• Macro programs are defined by using a %MACRO statement and a %MEND

statement.

• Macros are executed and called by entering a % before the name of the macro.

• The MPRINT, MLOGIC, and SYMBOLGEN system options can be useful for
developing and debugging macro programs.

• Parameters can make your macro programs more flexible by creating local macro
variables whose values can be updated by the macro call.

• You can use the %IF-%THEN statement to conditionally process whole SAS steps,
SAS statements, or parts of statements.

• You can use the iterative %DO statement to create macro loops that can process
repetitive tasks.

416 Chapter 11 • Creating and Using Macro Programs

Quiz
Select the best answer for each question. After completing the quiz, check your answers
using the answer key in the appendix.

1. Which of the following is false?

a. A %MACRO statement must always be paired with a %MEND statement.

b. A macro definition can include macro variable references, but it cannot include
SAS language statements.

c. Only macro language statements are checked for syntax errors when the macro is
compiled.

d. Compiled macros are stored in a temporary SAS catalog by default.

2. Which of the following examples correctly defines a macro named Print that
implements parameters named vars and total?

a. %macro print(vars, total);
 proc print data=classes;
 var vars;
 sum total;
 run;
%mend print;

b. %macro print('vars', 'total');
 proc print data=classes;
 var &vars;
 sum &total;
 run;
%mend print;

c. %macro print(vars, total);
 proc print data=classes;
 var &vars;
 sum &total;
 run;
%mend print;

d. %macro print(vars, total);
 proc print data=classes;
 var :vars;
 sum :total;
 run;
%mend print;

3. Which of the following correctly references the macro named Printdsn as shown
here:

%macro printdsn(dsn,vars);
 %if &vars= %then %do;
 proc print data=&dsn;
 title "Full Listing of %upcase(&dsn) data set";
 run;
 %end;

Quiz 417

 %else %do;
 proc print data=&dsn;
 var &vars;
 title "Listing of %upcase(&dsn) data set";
 run;
 %end;
%mend;

a. %printdsn(sasuser.courses, course_title days);

b. %printdsn(dsn=sasuser.courses, vars=course_title days)

c. %printdsn(sasuser.courses, course_title days)

d. %printdsn(sasuser.courses, course_title, days)

4. If you use a mixed parameter list in your macro program definition, which of the
following is false?

a. You must list positional parameters before any keyword parameters.

b. Values for both positional and keyword parameters are stored in a local symbol
table.

c. Default values for keyword parameters are the values that are assigned in the
macro definition, whereas positional parameters have a default value of null.

d. You can assign a null value to a keyword parameter in a call to the macro by
omitting the parameter from the call.

5. Which of the following is false?

a. A macro program is compiled when you submit the macro definition.

b. A macro program is executed when you call it (%macro-name).

c. A macro program is stored in a SAS catalog entry only after it is executed.

d. A macro program is available for execution throughout the SAS session in which
it is compiled.

6. When you use an %IF-%THEN statement in your macro program,

a. you must place %DO and %END statements around code that describes the
conditional action, if that code contains multiple statements.

b. the %ELSE statement is optional.

c. you cannot refer to DATA step variables in the logical expression of the %IF
statement.

d. all of the above.

7. Which of the following can be placed onto the input stack?

a. only whole steps.

b. only whole steps or whole statements.

c. only whole statements or pieces of text within a statement.

d. whole steps, whole statements, or pieces of text within statements.

8. Which of the following creates a macro variable named class in a local symbol
table?

a. data _null_;
 set sasuser.courses;
 %let class=course_title;

418 Chapter 11 • Creating and Using Macro Programs

run;

b. data _null_;
 set sasuser.courses;
 call symput('class', course_title);
run;

c. %macro sample(dsn);
 %local class;
 %let class=course_title;
 data_null_;
 set &dsn;
 run;
%mend;

d. %global class;
%macro sample(dsn);
 %let class=course_title;
 data _null_;
 set &dsn;
 run;
%mend;

9. Which of the following examples correctly defines the macro program Hex?

a. %macro hex(start=1, stop=10, incr=1);
 %local i;
 data _null_;
 %do i=&start to &stop by &incr;
 value=&i;
 put "Hexadecimal form of &i is " value hex6.;
 %end;
 run;
%mend hex;

b. %macro hex(start=1, stop=10, incr=1);
 %local i;
 data _null_;
 %do i=&start %to &stop %by &incr;
 value=&i;
 put "Hexadecimal form of &i is " value hex6.;
 %end;
 run;
%mend hex;

c. %macro hex(start=1, stop=10, incr=1);
 %local i;
 data _null_;
 %do i=&start to &stop by &incr;
 value=&i;
 put "Hexadecimal form of &i is " value hex6.;
 run;
%mend hex;

d. %macro hex(start=1, stop=10, incr=1);
 %local i;
 data _null_;
 %do i=&start to &stop by &incr;
 value=&i;
 put "Hexadecimal form of &i is " value hex6.;

Quiz 419

 %end
 run;
%mend hex;

10. When you submit a call to a compiled macro, what happens?

a. First, the macro processor checks all macro programming statements in the
macro for syntax errors.

Then the macro processor executes all statements in the macro.

b. The macro processor executes compiled macro programming statements.

Then any SAS programming language statements are executed by the macro
processor.

c. First, all compiled macro programming statements are executed by the macro
processor.

After all macro statements have been processed, any SAS language statements
are passed back to the input stack in order to be passed to the compiler and then
executed.

d. The macro processor executes compiled macro statements.

If any SAS language statements are encountered, they are passed back to the
input stack.

The macro processor pauses while those statements are passed to the compiler
and then executed.

Then the macro processor continues to repeat these steps until it reaches the
%MEND statement.

420 Chapter 11 • Creating and Using Macro Programs

Chapter 12

Storing Macro Programs

Overview . 422
Introduction . 422

Understanding Session-Compiled Macros . 422

Storing Macro Definitions in External Files . 423
Overview . 423
Example . 423

Storing Macro Definitions in Catalog SOURCE Entries . 425
Overview . 425
Example . 425
The CATALOG Procedure . 426
Example . 426
The CATALOG Access Method . 427
Example . 427
Example . 428

Using the Autocall Facility . 429
Overview . 429
Creating an Autocall Library . 429
Example . 430
Default Autocall Library . 430
Example . 431
Accessing Autocall Macros . 431
Example . 432

Using Stored Compiled Macros . 433
The Stored Compiled Macro Facility . 433
Creating a Stored Compiled Macro . 434
Using the SOURCE Option . 435
Example . 435
Accessing Stored Compiled Macros . 436
Example . 436
Accessing Stored Macro Code . 437
Example . 437

Summary . 439
Text Summary . 439
Sample Programs . 440
Points to Remember . 441

Quiz . 441

421

Overview

Introduction
One of the most useful aspects of macro programming is the ability to reuse your macro
programs. In Chapter 11, “Creating and Using Macro Programs,” on page 372, you
learned that compiled macros are stored in a temporary SAS catalog by default and are
available for execution anytime during the current SAS session. You also learned that
macros stored in this temporary SAS catalog are deleted at the end of the SAS session.

You might want to store your macros permanently so that you can reuse them in later
SAS sessions or share them with others. There are several ways of storing your macro
programs permanently and of making them accessible during a SAS session. The
methods that you learn in this chapter are

• the %INCLUDE statement

• the autocall macro facility

• permanently stored compiled macros.

Understanding Session-Compiled Macros
In Chapter 11, “Creating and Using Macro Programs,” on page 372, you learned that you
can submit a macro definition in order to compile a macro. For example, when you
submit the macro definition shown here, the macro processor compiles the macro
Prtlast:

%macro prtlast;
 %if &syslast ne _NULL_ %then %do;
 proc print data=&syslast(obs=5);
 title "Listing of &syslast data set";
 run;
 %end;
 %else
 %put No data set has been created yet.;
%mend;

By default, the Prtlast macro is stored in a temporary SAS catalog as
Work.Sasmacr.Prtlast.Macro. Macros that are stored in this temporary SAS catalog are
known as session-compiled macros. Once a macro has been compiled, it can be invoked
from a SAS program as shown here:

proc sort data=sasuser.courses out=bydays;
 by days;
run;

%prtlast

Session-compiled macros are available for execution during the SAS session in which
they are compiled. They are deleted at the end of the session. But suppose you want to
save your macros so that they are not deleted at the end of the SAS session. The rest of
this chapter looks at methods of storing macros permanently.

422 Chapter 12 • Storing Macro Programs

Storing Macro Definitions in External Files

Overview
One way to store macro programs permanently is to save them to an external file. You
can then use the %INCLUDE statement to insert the statements that are stored in the
external file into a program. If the external file contains a macro definition, the macro is
compiled when the %INCLUDE statement is submitted. Then the macro can be called
again later in the same program, or anytime later in the current SAS session.

General form, %INCLUDE statement:

%INCLUDE file-specification </SOURCE2>;

Here is an explanation of the syntax:

file-specification
describes the location of the file that contains the SAS code to be inserted.

SOURCE2
causes the SAS statements that are inserted into the program to be displayed in the SAS log.
If SOURCE2 is not specified in the %INCLUDE statement, then the setting of the SAS
system option SOURCE2 controls whether the inserted code is displayed.

By storing your macro program externally and using the %INCLUDE statement, you
gain several advantages over using session-compiled macros.

• The source code for the macro definition does not need to be part of your program.

• A single copy of a macro definition can be shared by many programs.

• Macro definitions in external files are easily viewed and edited with any text editor.

• No special SAS system options are required in order to access a macro definition that
is stored in an external file.

Example
You can compile a macro by using the %INCLUDE statement to insert its definition into
a program. Then you can call the macro in order to execute it.

Suppose the following macro definition is stored in the external file
C:\sasfiles\prtlast.sas:

%macro prtlast;
 %if &syslast ne _NULL_ %then %do;
 proc print data=&syslast (obs=5);
 title "Listing of &syslast data set";
 run;
 %end;
 %else
 %put No data set has been created yet.;
%mend;

Storing Macro Definitions in External Files 423

You could submit the following code to access, compile, and execute the Prtlast
macro. The PROC SORT step is included in this example in order to create a data set
that the Prtlast macro can print.

%include 'c:\sasfiles\prtlast.sas' /source2;

proc sort data=sasuser.courses out=bydays;
 by days;
run;

%prtlast

Note: The location and names of external files are specific to your operating
environment.

The following messages are written to the SAS log when this code is submitted. Notice
that the macro definition is written to the log because SOURCE2 was specified in the
%INCLUDE statement.

Table 12.1 SAS Log

NOTE: %INCLUDE (level 1) file prtlast.sas is file
 C:\sasfiles\prtlast.sas.
31 +%macro prtlast;
32 + %if &syslast ne _NULL_ %then %do;
33 + proc print data=&syslast(obs=5);
34 + title “Listing of &syslast data set”;
35 + run;
36 + %end;
37 + %else
38 + %put No data set has been created yet.;
39 +%mend;
NOTE: %INCLUDE (level 1) ending.
40
41 proc sort data=sasuser.courses out=bydays;
42 by days;
43 run;

NOTE: There were 6 observations read from the dataset
 SASUSER.COURSES.
NOTE: The data set WORK.BYDAYS has 6 observations and
 4 variables.
NOTE: PROCEDURE SORT used:
 real time 0.04 seconds
 cpu time 0.04 seconds

44
45 %prtlast
NOTE: There were 5 observations read from the dataset
 WORK.BYDAYS.
NOTE: PROCEDURE PRINT used:
 real time 1.07 seconds
 cpu time 0.26 seconds

Here is the output that the code generates.

424 Chapter 12 • Storing Macro Programs

Storing Macro Definitions in Catalog SOURCE
Entries

Overview
Another way of permanently storing macros is to store a macro definition in a SOURCE
entry in a SAS catalog. If you decide to store your macro programs in a SAS catalog,
you must store each macro program in a separate SOURCE entry. It is a good idea to
give each SOURCE entry the same name as the macro program that is stored within it.
For example, a macro named Printit would be stored in a SOURCE entry that is also
named Printit.

Note: SAS catalogs are members of SAS libraries that store program source code and
other types of content.

To store a macro definition as a SOURCE entry in a SAS catalog, you use the Save As
Object window.

Example
To save the Printit macro definition to the Sasuser.Mymacs catalog, perform these
steps:

1. Select File ð Save As Object. In the Save As Object window, select the Sasuser
library.

2. If the Sasuser.Mymacs catalog does not already exist, you need to create it. You can
either select the Create New Catalog icon or right-click the Save As Object window
and select New in order to open the New Catalog window. Enter Mymacs as the
name for the new catalog and click OK.

3. Enter Printit in the Entry Name field. Make sure that the Entry Type is set to
SOURCE entry (SOURCE), and click Save.

T I P If you use the Program Editor, you could also use the SAVE command to save
your macro definition as a catalog SOURCE entry. To use the SAVE command, you
enter save libref.catalog.entry.source in the command line where libref.catalog.entry
is the libref, the catalog name, and the entry name.

Storing Macro Definitions in Catalog SOURCE Entries 425

The CATALOG Procedure
If you store your macros in a SAS catalog, you might want to view the contents of a
particular catalog to see the macros that you have stored there. You can use the Explorer
window to view the contents of a SAS catalog by navigating to the catalog and double
clicking it. You can also use the CATALOG procedure to list the contents of a SAS
catalog. The CONTENTS statement of the CATALOG procedure lists the contents of a
catalog in the procedure output.

General form, CATALOG procedure with CONTENTS statement:

PROC CATALOG CATALOG=libref.catalog;
CONTENTS;

QUIT;

Here is an explanation of the syntax:

libref.catalog
is a valid two-level catalog name.

Note: CAT= is an alias for CATALOG.

Example
You can use PROC CATALOG to view all of the macros that are stored in the temporary
Work.Sasmacr catalog, as follows:

proc catalog cat=work.sasmacr;
 contents;
 title "Default Storage of SAS Macros";
quit;

This PROC CATALOG step produces results that are similar to the output shown below.
The macros that are actually listed are the macros that have been compiled during the
current SAS session.

PROC CATALOG can display the names and attributes of compiled macros, but the
macro definition itself cannot be viewed.

426 Chapter 12 • Storing Macro Programs

The CATALOG Access Method
If you store a macro definition in a SOURCE entry of a SAS catalog, you can use the
CATALOG access method in a FILENAME statement in conjunction with the
%INCLUDE statement to insert the macro definition into a SAS program.

General form, CATALOG access method to reference a single SOURCE entry:

FILENAME fileref
CATALOG 'libref.catalog.entry-name.entry-type';

%INCLUDE fileref;

Here is an explanation of the syntax:

fileref
is a valid fileref.

libref.catalog.entry-name.entry-type
is a four-level SAS catalog entry name.

entry-type
is SOURCE.

Example
Suppose you have stored the following macro definition as a SOURCE entry in the SAS
catalog Sasuser.Mymacs:

%macro prtlast;
 %if &syslast ne _NULL_ %then %do;
 proc print data=&syslast(obs=5);
 title "Listing of &syslast data set";
 run;
 %end
 %else
 %put No data set has been created yet.;
%mend;

You can use the CATALOG access method along with the %INCLUDE statement to
compile the macro Prtlast. Then you can reference the macro later in the program.

filename prtlast catalog 'sasuser.mymacs.prtlast.source';
%include prtlast;
proc sort data=sasuser.courses out=bydays;
 by days;
run;
%prtlast

You can also use the CATALOG access method to reference multiple SOURCE entries
as long as the entries are stored in the same SAS catalog.

Storing Macro Definitions in Catalog SOURCE Entries 427

General form, CATALOG access method to reference multiple SOURCE entries:

FILENAME fileref CATALOG 'libref.catalog';
%INCLUDE fileref(entry-1);
%INCLUDE fileref(entry-2);

Here is an explanation of the syntax:

fileref
is a valid fileref.

libref.catalog
is a two-level catalog name.

entry-1 and entry-2
are names of SOURCE entries in library.catalog.

Example
Suppose you have two macros, named Prtlast and Sortlast, that are stored in a
SAS catalog.

Catalog Entry: Sasuser.Mymacs.Prtlast.Source

%macro prtlast;
 %if &syslast ne _NULL_ %then %do;
 proc print data=&syslast(obs=5);
 title "Listing of &syslast data set";
 run;
 %end;
 %else
 %put No data set has been created yet.;
%mend;

Catalog Entry: Sasuser.Mymacs.Sortlast.Source

%macro sortlast(sortby);
 %if &syslast ne _NULL_ %then %do;
 proc sort data=&syslast out=sorted;
 by &sortby;
 run;
 %end;
 %else
 %put No data set has been created yet.;
%mend;

You can use the CATALOG access method in conjunction with the %INCLUDE
statement to compile both macros. Then you can call the macros later in the program. In
this example, assume that the macros have the same names as the SOURCE entries in
which they are stored:

filename prtsort catalog 'sasuser.mymacs';
%include prtsort(prtlast) / source2;
%include prtsort(sortlast) / source2;

data current(keep=student_name course_title begin_date location);
 set sasuser.all;
 if year(begin_date)=2001;
 diff=year(today())-year(begin_date);

428 Chapter 12 • Storing Macro Programs

 begin_date=begin_date+(365*diff);
run;

%sortlast(begin_date)
%prtlast

This code produces the following output:

Using the Autocall Facility

Overview
You can make macros accessible to your SAS session or program by using the autocall
facility to search predefined source libraries for macro definitions. These predefined
source libraries are known as autocall libraries. You can store your macro definitions
permanently in an autocall library, and you can set up multiple autocall libraries.

When you use this approach, you do not need to compile the macro in order to make it
available for execution. That is, if the macro definition is stored in an autocall library,
then you do not need to submit or include the macro definition before you submit a call
to the macro.

Suppose you have stored a file that contains a macro definition in your autocall library.
When you submit a call to that macro

• the macro processor searches the autocall library for the macro

• the macro is compiled and stored as it would be if you had submitted it (that is, the
compiled macro is stored in the default location of Work.Sasmacr)

• the macro is executed.

Once it has been compiled, the macro can be executed as needed throughout the same
SAS session. At the end of the SAS session, the compiled macro is deleted from the
Work.Sasmacr catalog, but the source code remains in the autocall library.

Creating an Autocall Library
An autocall library can be either

• a directory that contains source files

Using the Autocall Facility 429

• a partitioned data set (PDS)

• a SAS catalog.

The method for creating an autocall library depends on the operating environment that
you are using.

To create an autocall library in a directory-based operating system, such as Windows or
UNIX, create a directory in which to store macro definitions. Each macro definition in
this directory is a separate file that has the extension .sas and that has the same name as
the macro that it contains.

Example
Suppose you want to save the macro Prtlast in an autocall library. In a directory-
based operating system, the first step is to create a directory that holds your macro
source files. You can use the Save As window to create the directory, and to save the
macro definition in that directory. With the Prtlast definition in an active code editing
window, select File ð Save As. In the Save As window, navigate to the location where
you want to create your autocall library. Select New Folder, enter the directory name,
and click OK. Then enter Prtlast as the filename, make sure the file type is .sas, and
click Save.

T I P You could also use the FILE command to save your macro definition in an
autocall library. To use the FILE command, you enter
file '<path>external-file-name' in the command line.

Default Autocall Library
SAS provides several macros in a default autocall library for you. Some of the macros in
the autocall library that SAS provides are listed here.

Macro Syntax Purpose

%LOWCASE(argument) converts letters in its argument from uppercase to lowercase

%QLOWCASE(argument) converts letters in its argument from uppercase to lowercase,
and returns a result that masks special characters and
mnemonic operators

%LEFT(argument) removes leading blanks from the argument

%TRIM(argument) removes trailing blanks from the argument

%CMPRES(argument) removes multiple blanks from the argument

%DATATYP(argument) returns the string NUMERIC or CHAR, depending on
whether the argument is an integer or a character string

You might be familiar with SAS functions such as TRIM and LEFT. The macros that
SAS supplies look like macro functions, but they are in fact macros. One of the useful
things about these macros is that in addition to using them in your SAS programs, you
can see their source code.

430 Chapter 12 • Storing Macro Programs

Example
The macro definition for the Lowcase macro is shown below. Notice that the comments
that are included in this macro provide information about using the macro. All of the
macros that SAS provides in the autocall library include explanatory comments so that
they can be easy for you to understand and use.

%macro lowcase(string);
%**;
%* *;
%* MACRO: LOWCASE *;
%* *;
%* USAGE: 1) %lowcase(argument) *;
%* *;
%* DESCRIPTION: *;
%* This macro returns the argument passed to *;
%* it unchanged except that all upper-case *;
%* alphabetic characters are changed to their *;
%* lower-case equivalents. *;
%* *;
%* E.g.: %let macvar=%lowcase(SAS Institute Inc.); *;
%* The variable macvar gets the value *;
%* "sas institute inc." *;
%* NOTES: *;
%* Although the argument to the %UPCASE macro *;
%* function may contain commas, the argument to *;
%* %LOWCASE may not, unless they are quoted. *;
%* Because %LOWCASE is a macro, not a function, *;
%* it interprets a comma as the end of a parameter. *;
%**;
%sysfunc(lowcase(%nrbquote(&string)))
%mend;

Accessing Autocall Macros
Remember that an autocall library is either a SAS catalog, an external directory, or a
partitioned data set. This is true both for the default autocall library that SAS supplies
and for autocall libraries that you create.

In order to access a macro definition that is stored in an autocall library, you must use
two SAS system options, as follows:

• The MAUTOSOURCE system option must be specified.

• The SASAUTOS= system option must be set to identify the location of the autocall
library or libraries.

Both the MAUTOSOURCE and SASAUTOS= system options can be set either at SAS
invocation or with an OPTIONS statement during program execution.

The MAUTOSOURCE system option controls whether the autocall facility is available.

Using the Autocall Facility 431

General form, MAUTOSOURCE system option:

OPTIONS MAUTOSOURCE | NOMAUTOSOURCE;

Here is an explanation of the syntax:

MAUTOSOURCE
is the default setting, and specifies that the autocall facility is available.

NOMAUTOSOURCE
specifies that the autocall facility is not available.

The SASAUTOS= system option controls where the macro facility looks for autocall
macros.

General form, SASAUTOS= system option:

OPTIONS SASAUTOS=library-1;
OPTIONS SASAUTOS=(library-1,...,library-n);

Here is an explanation of the syntax:

the values of library-1 through library-n
are references to source libraries that contain macro definitions. To specify a source library
that you can

• use a fileref to refer to its location

• specify the pathname (enclosed in quotation marks) for the library.

Unless your system administrator has changed the default value for the SASAUTOS=
system option, its value is the fileref Sasautos, and that fileref points to the location
where the default autocall library was created during installation. The Sasautos fileref
can refer to multiple locations that are concatenated.

Generally, it is a good idea to concatenate any autocall libraries that you create yourself
with the default autocall library in the value of the SASAUTOS= system option.
Otherwise, the new autocall library replaces the default or existing libraries in the value
of SASAUTOS=, and the autocall facility has access to only the new autocall library.

Example
Suppose you want to access the Prtlast macro, which is stored in the autocall library
C:\Mysasfiles. You also want to make sure that the default autocall library (which the
fileref Sasautos points to) is still available to the autocall facility. You would submit the
following code:

options mautosource sasautos=('c:\mysasfiles',sasautos);
%prtlast

Note: The MAUTOLOCDISPLAY option is a Boolean option that causes a note to be
issued to the SAS log indicating where the source code was obtained to compile an
autocall macro. The note is similar to the information displayed when using the
MLOGIC option. The default setting of this option is NOMAUTOLOCDISPLAY.

When the autocall facility is in effect, if you invoke a macro that has not been previously
compiled, the macro facility automatically

1. searches the autocall library (or each autocall library in turn if multiple libraries are
identified in the SASAUTOS= system option) for a member that has the same name
as the invoked macro

432 Chapter 12 • Storing Macro Programs

2. brings the source statements into the current SAS session if the member is found

3. issues an error message if the member is not found

4. submits all statements in the member in order to compile the macro

5. stores the compiled macro in the temporary catalog Work.Sasmacr

6. calls the macro.

The autocall facility does not search for a macro in the autocall library if the macro has
already been compiled during the current SAS session. In that case, the session-compiled
macro is executed.

Using Stored Compiled Macros

The Stored Compiled Macro Facility
Remember that when a macro is compiled, it is stored in the temporary SAS catalog
Work.Sasmacr by default. You can also store compiled macros in a permanent SAS
catalog. Then you can use the Stored Compiled Macro Facility to access permanent SAS
catalogs that contain compiled macros.

There are several advantages to using stored compiled macros:

• SAS does not need to compile a macro definition when a macro call is made.

• Session-compiled macros and the autocall facility are also available in the same
session.

• Users cannot modify compiled macros.

Two SAS system options affect stored compiled macros: MSTORED and
SASMSTORE=. The MSTORED system option controls whether the Stored Compiled
Macro Facility is available.

General form, MSTORED system option:

OPTIONS MSTORED | NOMSTORED;

Here is an explanation of the syntax:

NOMSTORED
is the default setting, and specifies that the Stored Compiled Macro Facility does not search
for compiled macros.

MSTORED
specifies that the Stored Compiled Macro Facility searches for stored compiled macros in a
catalog in the SAS library that is referenced by the SASMSTORE= option.

The SASMSTORE= system option controls where the macro facility looks for stored
compiled macros.

Using Stored Compiled Macros 433

General form, SASMSTORE= system option:

OPTIONS SASMSTORE=libref;

Here is an explanation of the syntax:

libref
specifies the libref of a SAS library that contains, or contains, a catalog of stored compiled
SAS macros. This libref cannot be Work.

The MSTORED and SASMSTORE= system options can be set either at SAS invocation
or with an OPTIONS statement during program execution.

Creating a Stored Compiled Macro
To create a permanently stored compiled macro, you must do the following:

1. assign a libref to the SAS library in which the compiled macro is stored

2. set the system options MSTORED and SASMSTORE=libref

3. use the STORE option in the %MACRO statement when you submit the macro
definition.

General form, macro definition with STORE option:

%MACRO macro-name <(parameter-list)> /STORE
<DES='description'>;
text

%MEND <macro-name>;

Here is an explanation of the syntax:

description
is an optional 156-character description that appears in the catalog directory.

macro-name
names the macro.

parameter-list
names one or more local macro variables whose values you specify when you invoke the
macro.

text
can be

• constant text, possibly including SAS data set names, SAS variable names, or SAS
statements

• macro variables, macro functions, or macro program statements

• any combination of the above.

There are several restrictions on stored compiled macros.

• Sasmacr is the only catalog in which compiled macros can be stored. You can create
a catalog named Sasmacr in any SAS library. You should not rename this catalog or
its entries.

• You cannot copy stored compiled macros across operating systems. You must copy
the source program and re-create the stored compiled macro.

• The source cannot be re-created from the compiled macro. You should retain the
original source program. For convenience, you can store the source program in an

434 Chapter 12 • Storing Macro Programs

autocall library. Alternatively, you can store the source program as a source entry in
the same catalog as the compiled macro.

Using the SOURCE Option
An alternative to saving your source program separately from the stored compiled macro
is to use the SOURCE option in the %MACRO statement to combine and store the
source of the compiled macro with the compiled macro code. The SOURCE option
requires that the STORE option and the MSTORED option be set. The %MACRO
statement below shows the correct syntax for using the SOURCE option.

%macro macro-name<(parameter list)> /STORE SOURCE;

The source code that is saved by the SOURCE option begins with the %MACRO
keyword and ends with the semicolon following the %MEND statement.

T I P The SOURCE option cannot be used on nested macro definitions.

Example
Suppose you want to store the Words macro in compiled form in a SAS library. This
example shows the macro definition for Words. The macro takes a text string, divides it
into words, and creates a series of macro variables to store each word.

Notice that both the STORE option and the SOURCE option are used in the macro
definition so that Words is permanently stored as a compiled macro and the macro
source code is stored with it, as follows:

libname macrolib 'c:\storedlib';
options mstored sasmstore=macrolib;

%macro words(text,root=w,delim=%str())/store source;
 %local i word;
 %let i=1;
 %let word=%scan(&text,&i,&delim);
 %do %while (&word ne);
 %global &root&i;
 %let &root&i=&word;
 %let i=%eval(&i+1);
 %let word=%scan(&text,&i,&delim);
 %end;
 %global &root.num;
 %let &root.num=%eval(&i-1);
%mend words;

If the Sasmacr catalog does not exist in the Macrolib library, it is automatically created.
You can list the contents of the Macrolib.Sasmacr catalog to verify that the compiled
macro was created, as follows:

proc catalog cat=macrolib.sasmacr;
 contents;
 title "Stored Compiled Macros";
quit;

Here is the output from the PROC CATALOG step if no other compiled macros are
stored in Macrolib.Sasmacr.

Using Stored Compiled Macros 435

Accessing Stored Compiled Macros
In order to access a stored compiled macro, you must do the following:

1. assign a libref to the SAS library that contains a Sasmacr catalog in which the macro
was stored

2. set the system options MSTORED and SASMSTORE=libref

3. call the macro.

Example
The following program calls the Words macro. Assume that the Words macro was
compiled and stored in an earlier SAS session.

libname macrolib 'c:\storedlib';
options mstored sasmstore=macrolib;

%words(This is a test)
%put Number of Words (wnum): &wnum;
%put Word Number 1 (w1): &w1;
%put Word Number 2 (w2): &w2;
%put Word Number 3 (w3): &w3;
%put Word Number 4 (w4): &w4;

Here is a portion of the messages that are written to the SAS log when this code is
submitted.

436 Chapter 12 • Storing Macro Programs

Table 12.2 SAS Log

9 libname macrolib 'c:\storedlib';
NOTE: Libref MACROLIB was successfully assigned as follows:
 Engine: V9
 Physical Name: c:\storedlib
10 options mstored sasmstore=macrolib;
11
12 %words(This is a test)
13 %put Number of Words (wnum): &wnum;
Number of Words (wnum): 4
14 %put Word Number 1 (w1): &w1;
Word Number 1 (w1): This
15 %put Word Number 2 (w2): &w2;
Word Number 2 (w2): is
16 %put Word Number 3 (w3): &w3;
Word Number 3 (w3): a
17 %put Word Number 4 (w4): &w4;
Word Number 4 (w4): test

Accessing Stored Macro Code
If you use the SOURCE option of the %MACRO statement to store your macro source
code along with the stored compiled macro, you can use the %COPY statement to access
the stored source code.

General form, %COPY statement:

%COPY macro-name /SOURCE <other option(s)>;

Here is an explanation of the syntax:

macro-name
is the name of the macro whose source code is accessed.

SOURCE
specifies that the source code of the macro is copied to the output destination. If no output
destination is specified, the source is written to the SAS log.

other options
include the following options:

• LIBRARY= specifies the libref of a SAS library that contains a catalog of stored
compiled SAS macros. If no library is specified, the libref specified by the
SASMSTORE= option is used. The libref cannot be Work.

• OUTFILE= specifies the output destination of the %COPY statement. The value can be
a fileref or an external file.

Example
Suppose you submitted the program below to create a stored compiled macro named
Words.

libname macrolib 'c:\storedlib';
options mstored sasmstore=macrolib;

Using Stored Compiled Macros 437

%macro words(text,root=w,delim=%str())/store source;
 %local i word;
 %let i=1;
 %let word=%scan(&text,&i,&delim);
 %do %while (&word ne);
 %global &root&i;
 %let &root&i=&word;
 %let i=%eval(&i+1);
 %let word=%scan(&text,&i,&delim);
 %end;
 %global &root.num;
 %let &root.num=%eval(&i-1);
%mend words;

The %COPY statement writes the source code for the Words macro to the SAS log.
Here is an example:

%copy words/source;

The partial SAS log below shows the source code of the Words macro.

Table 12.3 SAS Log

17 %copy words/source;
%macro words(text,root=w,delim=%str())/store source;

 %local i word;
 %let i=1;
 %let word=%scan(&text,&i,&delim);
 %do %while (&word ne);
 %global &root&i;
 %let &root&i=&word;
 %let i=%eval(&i+1);
 %let word=%scan(&text,&i,&delim);
 %end;
 %global &root.num;
 %let &root.num=%eval(&i-1);
%mend words;

The Stored Compiled Macro Facility can be used in conjunction with the Autocall
Facility and with session-compiled macros. When you submit a macro call such as
%words, the macro processor searches for the macro Words as

1. an entry named Words.Macro in the temporary Work.Sasmacr catalog.

2. an entry named Words.Macro in the Libref.Sasmacr catalog. The MSTORED
option must be specified, and the SASMSTORE= option must have a value of Libref.

3. an autocall library member named Words that contains the macro definition for the
macro Words. The MAUTOSOURCE option must be specified, and the value of the
SASAUTOS= option must point to the autocall library.

438 Chapter 12 • Storing Macro Programs

Summary

Text Summary

Understanding Session-Compiled Macros
You can make a macro available to your SAS session by submitting the macro definition
before calling the macro. This creates a session-compiled macro. Session-compiled
macros are deleted from the temporary SAS catalog Work.Sasmacr at the end of the
session.

Storing Macro Definitions in External Files
One way to store your macro definitions permanently is to save them in external files.
You can make a macro definition that is stored in an external file accessible to your SAS
programs by using the %INCLUDE statement.

Storing Macro Definitions in Catalog SOURCE Entries
You can also store your macro definitions permanently as SOURCE entries in SAS
catalogs. You can use the catalog access method to make these macros accessible to your
SAS programs. The PROC CATALOG statement enables you to view a list of the
contents of a SAS catalog.

Using the Autocall Facility
You can permanently store macro definitions in source libraries called autocall libraries.
SAS provides several macro definitions for you in a default autocall library. You can
concatenate multiple autocall libraries. To access macros that are stored in an autocall
library, you specify the SASAUTOS= and MAUTOSOURCE system options.

Using Stored Compiled Macros
Another efficient way to make macros available to a program is to store them in
compiled form in a SAS library. To store a compiled macro permanently, you must set

Summary 439

two system options, MSTORED and SASMSTORE=. Then you submit one or more
macro definitions, using the STORE option in the %MACRO statement. The compiled
macro is stored as a catalog entry in Libref.Sasmacr. The source program is not stored as
part of the compiled macro. You should always maintain the original source program for
each macro definition in case you need to redefine the macro. You can use the SOURCE
option in the %MACRO statement to store the macro source code with the compiled
macro. If you use the SOURCE option in the %MACRO statement, you can use the
%COPY statement to access the macro source code later.

Sample Programs

Compiling an Externally Stored Macro Definition with the
%INCLUDE Statement

%include 'c:\sasfiles\prtlast.sas' / source2;

proc sort data=sasuser.courses out=bydays;
 by days;
run;

%prtlast

Listing the Contents of a Catalog
proc catalog cat=work.sasmacr;
 contents;
 title "Default Storage of SAS Macros";
quit;

Using the Catalog Access Method
filename prtlast catalog 'sasuser.mymacs.prtlast.source';
%include prtlast;
proc sort data=sasuser.courses out=bydays;
 by days;
run;
%prtlast

Accessing an Autocall Macro
options mautosource sasautos=('c:\mysasfiles',sasautos);
%prtlast

Creating a Stored Compiled Macro
libname macrolib 'c:\storedlib';
options mstored sasmstore=macrolib;

%macro words(text,root=w,delim=%str())/store;
 %local i word;
 %let i=1;
 %let word=%scan(&text,&i,&delim);
 %do %while (&word ne);
 %global &root&i;
 %let &root&i=&word;
 %let i=%eval(&i+1);
 %let word=%scan(&text,&i,&delim);

440 Chapter 12 • Storing Macro Programs

 %end;
 %global &root.num;
 %let &root.num=%eval(&i-1);
%mend words;

Points to Remember
• You can make macros available to your programs in four ways: as session-compiled

macros, with a %INCLUDE statement, through the autocall facility, or as stored
compiled macros.

• If you use the autocall facility, you must specify the MAUTOSOURCE and
SASAUTOS= system options.

• If you use the stored compiled macro facility, you must specify the MSTORED and
SASMSTORE= system options.

• The point at which macro compilation occurs depends on which method you use to
access the macro.

Quiz
Select the best answer for each question. After completing the quiz, check your answers
using the answer key in the appendix.

1. The %INCLUDE statement

a. can be used to insert the contents of an external file into a program.

b. can cause a macro definition that is stored in an external file to be compiled when
the contents of that file are inserted into a program and submitted.

c. can be specified with the SOURCE2 option in order to write the contents of the
external file that is inserted into a program to the SAS log.

d. all of the above

2. If you store a macro definition in a SAS catalog SOURCE entry

a. the macro definition can be submitted for compilation by using the FILENAME
and %INCLUDE statements.

b. you can use the PROC CATALOG statement to compile the macro.

c. the SOURCE entry is deleted at the end of the session.

d. you do not need to compile the macro before you invoke it in a program.

3. Which of the following programs correctly sets the appropriate system options and
calls the macro Prtlast? Assume that Prtlast is stored in an autocall library as a
text file and that it has not been compiled during the current SAS session.

a. libname mylib 'c:\mylib';
filename macsrc 'mylib.macsrc';
options mautosource sasautos=(macsrc, sasautos);
%prtlast

b. libname mylib 'c:\mylib';
filename macsrc catalog 'mylib.macsrc';

Quiz 441

%prtlast

c. filename mylib 'c:\mylib';
options mautosource sasautos=(sasautos,mylib);
%prtlast

d. libname mylib 'c:\mylib';
options mautosource sasautos=mylib;
%prtlast

4. If you use the Stored Compiled Macro Facility,

a. the macro processor does not compile a macro every time it is used.

b. the only compiled macros that the Stored Compiled Macro Facility can access
are those that are stored in the Sasmacr catalog.

c. you need to specify the MSTORED and SASMSTORE= system options.

d. all of the above

5. Which of the following correctly creates a permanently stored compiled macro?

a. libname macrolib 'c:\mylib';
options sasmstore;
%macro prtlast; / store
 proc print data=&syslast (obs=5);
 title "Listing of &syslast data set";
 run;
%mend;

b. libname macrolib 'c:\mylib';
options mstored sasmstore=macrolib;
%macro prtlast / store;
 proc print data=&syslast (obs=5);
 title "Listing of &syslast data set";
 run;
%mend;

c. libname macrolib 'c:\mylib';
options mstored sasmstore=macrolib;
%macro prtlast;
 proc print data=&syslast (obs=5);
 title "Listing of &syslast data set";
 run;
%mend;

d. libname macrolib 'c:\mylib';
%macro prtlast / store;
 proc print data=&syslast (obs=5);
 title "Listing of &syslast data set";
 run;
%mend;

6. When you submit the following code, what happens?

%macro prtlast;
 proc print data=&syslast (obs=5);
 title "Listing of &syslast data set";
 run;
%mend;

a. A session-compiled macro named Prtlast is stored in Work.Sasmacr.

442 Chapter 12 • Storing Macro Programs

b. A macro named Prtlast is stored in the autocall library.

c. The Prtlast macro is stored as a stored compiled macro.

d. The Prtlast macro is stored as a SOURCE entry in a permanent SAS catalog.

7. Why would you want to store your macros in external files?

a. You could easily share your macros with others.

b. You could edit your macros with any text editor.

c. Your macros would be available for use in later SAS sessions.

d. all of the above

8. What does the following PROC CATALOG step do?

proc catalog cat=mylib.sasmacr;
 contents;
quit;

a. Copy the contents of the Sasmacr catalog to a temporary data set.

b. List the contents of the Sasmacr catalog as output.

c. Copy the contents of the output window to the Sasmacr catalog.

d. none of the above

9. Which of the following is not true about stored compiled macros?

a. Because these stored macros are compiled, you should save and maintain the
source for the macro definitions in a different location.

b. The Stored Compiled Macro Facility compiles and saves compiled macros in a
permanent catalog, in a library that you specify.

c. You do not need to specify any system options in order to use the Stored
Compiled Macro Facility.

d. You cannot move a stored compiled macro to another operating system.

10. Which of the following is not true?

a. The autocall macro facility stores compiled SAS macros in a collection of
external files called an autocall library.

b. Autocall libraries can be concatenated together.

c. One disadvantage of the autocall facility is that the first time you call an autocall
macro in a SAS session, the macro processor must use system resources to
compile it.

d. The autocall facility can be used in conjunction with the Stored Compiled Macro
Facility.

Quiz 443

444 Chapter 12 • Storing Macro Programs

Part 3

Advanced SAS Programming
Techniques

Chapter 13
Creating Indexes . 447

Chapter 14
Combining Data Vertically . 465

Chapter 15
Combining Data Horizontally . 495

Chapter 16
Using Lookup Tables to Match Data . 537

Chapter 17
Formatting Data . 579

Chapter 18
Modifying SAS Data Sets and Tracking Changes 607

445

446

Chapter 13

Creating Indexes

Overview . 448
Introduction . 448

Using Indexes . 448
Overview . 448
Types of Indexes . 449

Creating Indexes in the DATA Step . 449
Overview . 449
Examples . 450
Example . 451
Determining Whether SAS Used an Index . 452
Example . 452

Managing Indexes with PROC DATASETS . 452
Overview . 452
Example . 453

Managing Indexes with PROC SQL . 454
Overview . 454
Example . 454

Documenting and Maintaining Indexes . 455
Overview . 455
Example . 456
Example . 457
Copying Data Sets . 458
Examples . 459
Renaming Data Sets . 459
Example . 459
Renaming Variables . 460
Example . 460

Summary . 461
Text Summary . 461
Sample Programs . 461
Points to Remember . 462

Quiz . 462

447

Overview

Introduction
This chapter considers direct access technique. For example, you might want to select a
subset based on a value within your data, such as a CustomerID number. You can
accomplish this action by creating an index on your CustomerID variable using the
INDEX= data set option. A WHERE clause can then use this index. By accessing the
desired observations directly, rather than all observations sequentially, your program
runs faster.

Using Indexes

Overview
An index can help you quickly locate one or more observations that you want to read.
Indexes provide direct access to observations in SAS data sets based on values of one or
more key variables. Index applications include the following:

• yield faster access to small subsets of observations for WHERE processing

• perform table lookup operations

• join observations

Without an index, SAS accesses observations sequentially, in the order in which they are
stored in a data set. For example, to access the observation in the sample SAS data set
shown below that has a value of Smith for the variable Name, SAS begins with the first
observation and reads through each one until it reaches the observation that satisfies the
condition.

When you index a SAS data set, SAS creates an index file that stores values in ascending
value order for a specific variable or variables and includes information about the
location of those values in the data file. That is, an index consists of value/identifier pairs
that enable you to locate an observation by value. For example, if you create an index on
the sample SAS data set that is shown below based on the variable Name, SAS uses the
index to find the observation that has a value of Smith for Name directly without
having to read all the prior observations.

448 Chapter 13 • Creating Indexes

Types of Indexes
You can create two types of indexes:

• a simple index

• a composite index

A simple index consists of the values of one key variable, which can be character or
numeric. When you create a simple index, SAS names the index after the key variable.

A composite index consists of the values of multiple key variables, which can be
character, numeric, or a combination. The values of these key variables are concatenated
to form a single value. For example, if an index is built on the key variables Lastname
and Firstname, a value for the index includes the value for Lastname followed by the
value for Firstname. When you create a composite index, you must specify a unique
index name that is not the name of any existing variable or index in the data set.

Often, only the first variable of a composite index is used. In the example, you could use
the composite index that is specified in the example above (Lastname plus Firstname)
for a WHERE expression that uses only Lastname. For example, the expression where
Lastname='Smith' uses the composite index because Lastname is the first variable in
the index. That is, the value for Lastname is the first part of the value that is listed in the
index.

Creating Indexes in the DATA Step

Overview
To create an index at the same time that you create a data set, use the INDEX= data set
option in the DATA statement.

Creating Indexes in the DATA Step 449

General form, DATA statement with the INDEX= option:

DATA SAS-data-file-name (INDEX=
(index-specification-1</UNIQUE><...index-specification-n>
</UNIQUE>));

Here is an explanation of the syntax:

SAS-data-file-name
is a valid SAS data set name.

index-specification
for a simple index is the name of the key variable.

index-specification
for a composite index is (index-name=(variable-1...variable-n)).

UNIQUE
specifies that values for the key variable must be unique for each observation.

You can create multiple indexes on a single SAS data set. However, keep in mind that
creating and storing indexes does use system resources. Therefore, you should create
indexes only on variables that are commonly used to select observations.

The UNIQUE option guarantees that values for the key variable or the combination of a
composite group of variables remain unique for every observation in the data set. In an
existing data set, if the variable or variables on which you attempt to create a unique
index have duplicate values, the index is not created. Similarly, if an update tries to add
an observation with a duplicate value for the index variable to that data set, the update is
rejected.

Examples
The following example creates a simple index on the Simple data set. The index is
named Division, and it contains values of the Division variable.

data simple (index=(division));
 set sasuser.empdata;
run;

The following example creates two simple indexes on the Simple2 data set. The first
index is named Division, and it contains values of the Division variable. The second
index is called EmpID, and it contains unique values of the EmpID variable.

data simple2 (index=(division empid/unique));
 set sasuser.empdata;
run;

The following example creates a composite index on the Composite data set. The index
is named Empdiv, and it contains concatenated values of the Division variable and the
EmpID variable.

data composite (index=(Empdiv=(division empid)));
 set sasuser.empdata;
run;

When you create or use an index, you might want to verify that it has been created or
used correctly. To display information in the SAS log concerning index creation or index
usage, set the value of the MSGLEVEL= system option to I.

450 Chapter 13 • Creating Indexes

General form, MSGLEVEL= system option:

OPTIONS MSGLEVEL= N|I;

Here is an explanation of the syntax:

N
prints notes, warnings, and error messages only. This is the default.

I
prints additional notes or INFO messages pertaining to index usage, merge processing, and
sort utilities along with standard notes, warnings, and error messages.

Example
The following code sets the MSGLEVEL= system option to I and creates the
Sasuser.Sale2000 data set with two indexes:

options msglevel=i;
data sasuser.sale2000(index=(origin
 flightdate=(flightid date)/unique));
 infile sale2000 dsd;
 input FlightID $ RouteID $ Origin $
 Dest $ Cap1st CapBusiness
 CapEcon CapTotal CapCargo
 Date Psgr1st PsgrBusiness
 PsgrEcon Rev1st RevBusiness
 RevEcon SaleMon $ CargoWgt
 RevCargo;
 format date date9.;
run;

Here are the messages that are written to the SAS log when the program above is
submitted.

Table 13.1 SAS Log

NOTE: The infile SALE2000 is:
 File Name=C:\My SAS Files\9.0\sale2000.dat,
 RECFM=V,LRECL=256

NOTE: 153 records were read from the infile SALE2000.
 The minimum record length was 82.
 The maximum record length was 100.
NOTE: The data set SASUSER.SALE2000 has 153 observations
 and 19 variables.
NOTE: Composite index flightdate has been defined.
NOTE: Simple index origin has been defined.
NOTE: DATA statement used (Total process time):
 real time 1.08 seconds
 cpu time 0.04 seconds

Creating Indexes in the DATA Step 451

Determining Whether SAS Used an Index
It is not always possible or more efficient for SAS to use an existing index to access
specific observations directly. An index is not used in these circumstances:

• with a subsetting IF statement in a DATA step

• with particular WHERE expressions

• if SAS determines it is more efficient to read the data sequentially

Example
You can use the MSGLEVEL= option to determine whether SAS used an index. The
following SAS logs show examples of the INFO messages that indicate whether an
index was used.

Table 13.2 SAS Log

6 options msglevel=i;
7
8 proc print data=sasuser.revenue;
9 where flightid ne 'IA11200';
INFO: Index FlightID not used. Increasing bufno to 3 may help.

Table 13.3 SAS Log

11 options msglevel=i;
12
13 data somflights;
14 set sasuser.revenue;
15 where flightid > 'IA11200';
INFO: Index FlightID selected for WHERE clause optimization.

Managing Indexes with PROC DATASETS

Overview
You have seen how to create an index at the same time that you create a data set. You
can also create an index on an existing data set or delete an index from a data set. One
way to accomplish either of these tasks is to rebuild the data set. However, rebuilding the
data set is not the most efficient method for managing indexes.

You can use the DATASETS procedure to manage indexes on an existing data set. This
uses fewer resources than rebuilding the data set. You use the MODIFY statement with
the INDEX CREATE statement to create indexes on a data set. You use the MODIFY
statement with the INDEX DELETE statement to delete indexes from a data set. You can
also use the INDEX CREATE statement and the INDEX DELETE statement in the same
step.

452 Chapter 13 • Creating Indexes

General form, PROC DATASETS to create and delete an index:

PROC DATASETS LIBRARY= libref <NOLIST>;
MODIFY SAS-data-set-name;
INDEX DELETE index-name;
INDEX CREATE index-specification;

QUIT;

Here is an explanation of the syntax:

libref
points to the SAS library that contains SAS-data-set-name.

NOLIST
option suppresses the printing of the directory of SAS files in the SAS log and as ODS
output.

index-name
is the name of an existing index to be deleted.

index-specification
for a simple index is the name of the key variable.

index-specification
for a composite index is index-name=(variable-1...variable-n).

The INDEX CREATE statement in PROC DATASETS cannot be used if the index to be
created already exists. In this case, you must delete the existing index of the same name,
and then create the new index.

T I P PROC DATASETS executes statements in order. Therefore, if you delete and
create indexes in the same step, you should delete the old indexes first so that the
newly created indexes can reuse the space that the deleted indexes had occupied.

Example
The following example creates an index named Origin on the Sasuser.Sale2000 data set.
Origin is a simple index that is based on the key variable Origin.

proc datasets library=sasuser nolist;
 modify sale2000;
 index create origin;
quit;

The following example first deletes the Origin index from the Sasuser.Sale2000 data set,
and creates two new indexes on the Sasuser.Sale2000 data set. FlightID is a simple index
that is based on the values of the key variable FlightID. Fromto is a composite index that
is based on the concatenated values of the key variables Origin and Dest.

proc datasets library=sasuser nolist;
 modify sale2000;
 index delete origin;
 index create flightid;
 index create Fromto=(origin dest);
quit;

Managing Indexes with PROC DATASETS 453

Managing Indexes with PROC SQL

Overview
You can also create or delete indexes from an existing data set within a PROC SQL step.
The CREATE INDEX statement enables you to create an index on a data set. The DROP
INDEX statement enables you to delete an index from a data set.

General form, PROC SQL to create and delete an index:

PROC SQL;
CREATE <UNIQUE > INDEX index-name

ON table-name(column-name-1<...,column-name-n>);
DROP INDEX index-name FROM table-name;

QUIT;

Here is an explanation of the syntax:

index-name
is the same as column-name-1 if the index is based on the values of one column only.

index-name
is not the same as any column-name if the index is based on multiple columns.

table-name
is the name of the data set that index-name is associated with.

Example
The following example creates a simple index named Origin on the Sasuser.Sale2000
data set. The index is based on the values of the Origin column.

proc sql;
 create index origin on sasuser.sale2000(origin);
quit;

The following example deletes the Origin index from the Sasuser.Sale2000 data set and
creates a new index named Tofrom that is based on the concatenation of the values from
the columns Origin and Dest:

proc sql;
 drop index origin from sasuser.sale2000;
 create index Tofrom
 on sasuser.sale2000(origin, dest);
quit;

454 Chapter 13 • Creating Indexes

Documenting and Maintaining Indexes

Overview
Indexes are stored in the same SAS library as the data set that they index, but in a
separate SAS file from the data set. Index files have a member type of INDEX. There is
only one index file per data set; all indexes for a data set are stored together in a single
file.

The following figure shows the relationship of SAS data set files and SAS index files in
a Windows operating environment. Notice that the index files have the same name as the
data set with which they are associated, but they have different file extensions. Also,
notice that each index file can contain one or more indexes, and that different index files
can contain indexes with identical names.

Note: Index files are stored in the same location as the data sets with which they are
associated. However, keep the following in mind:

• Index files do not appear in the SAS Explorer window.

• Index files do not appear as separate files in z/OS operating environment file
lists.

Sometimes, you might want to view a list of the indexes that exist for a data set. You
might also want to see information about the indexes such as whether they are unique,
and what key variables they use. Let us consider some ways to document indexes.

Information about indexes is stored in the descriptor portion of the data set. You can use
either the CONTENTS procedure or the CONTENTS statement in PROC DATASETS to
list information from the descriptor portion of a data set.

Output from the CONTENTS procedure or from the CONTENTS statement in PROC
DATASETS contains the following information about the data set:

• general and summary information

• engine/host dependent information

• alphabetic list of variables and attributes

• alphabetic list of integrity constraints

• alphabetic list of indexes and attributes

Documenting and Maintaining Indexes 455

General form, PROC CONTENTS:

PROC CONTENTS DATA=<libref.>SAS-data-set-name;
RUN;

Here is an explanation of the syntax:

SAS-data-set-name
specifies the data set for which the information is listed.

General form, PROC DATASETS with the CONTENTS statement:

PROC DATASETS <LIBRARY=libref> <NOLIST>;
CONTENTS DATA=<libref.>SAS-data-set-name;

QUIT;

Here is an explanation of the syntax:

SAS-data-set-name
specifies the data set for which the information is listed.

NOLIST
suppresses the printing of the directory of SAS files in the SAS log and as ODS output.

Note: If you use the LIBRARY= option, you do not need to specify a libref in the
DATA= option. Likewise, if you specify a libref in the DATA= option, you do not
need to use the LIBRARY= option.

Example
The following example prints information about the Sasuser.Sale2000 data set. Notice
that the library is specified in the LIBRARY= option of the PROC DATASETS
statement.

proc datasets library=sasuser nolist;
 contents data=sale2000;
quit;

The following example also prints information about the Sasuser.Sale2000 data set.
Notice that the library is specified in the CONTENTS statement.

proc datasets nolist;
 contents data=sasuser.sale2000;
quit;

The following example also prints information about the Sasuser.Sale2000 data set:

proc contents data=sasuser.sale2000;
run;

The PROC DATASETS and PROC CONTENTS output from these programs is
identical. The last piece of information that is printed in each set of output is a list of the
indexes that have been created for Sasuser.Sale2000, as shown below.

456 Chapter 13 • Creating Indexes

You can also use either of these methods to list information about an entire SAS library
rather than an individual data set. To list the contents of all files in a SAS library with
either PROC CONTENTS or with the CONTENTS statement in PROC DATASETS,
you specify the keyword _ALL_ in the DATA= option.

Example
The following example prints information about all of the files in the Work data library:

proc contents data=work._all_;
run;

The following example also prints information about all of the files in the Work data
library:

proc datasets library=work nolist;
 contents data=_all_;
quit;

Remember that indexes are stored in a separate SAS file. When you perform
maintenance tasks on a data set, there might be resulting effects on the index file. If you
alter the variables or values within a data set, there might be a resulting effect on the
value/identifier pairs within a particular index.

The following table describes the effects on an index file or an index file that result from
several common maintenance tasks.

Task Effect

Add an observation or observations to a data
set.

Value/identifier pairs are added to the index or
indexes.

Delete an observation or observations from a
data set.

Value/identifier pairs are deleted from the
index or indexes.

Update an observation or observations in a
data set.

Value/identifier pairs are updated in the index
or indexes.

Delete a data set. The index file is deleted.

Rebuild a data set with the DATA step. The index file is deleted.

Sort the data in place with the FORCE option
in PROC SORT.

The index file is deleted.

Documenting and Maintaining Indexes 457

Let us consider some of the other common tasks that you might perform on your data
sets, as well as the actions that SAS performs on the index files as a result.

Copying Data Sets
You might want to copy an indexed data set to a new location. You can copy a data set
with the COPY statement in a PROC DATASETS step. When you use the COPY
statement to copy a data set that has an associated index, a new index file is
automatically created for the new data file.

General form, PROC DATASETS with the COPY statement:

PROC DATASETS LIBRARY=old-libref <NOLIST>;
COPY OUT=new-libref;
SELECT SAS-data-set-name;

QUIT;

Here is an explanation of the syntax:

old-libref
names the library from which the data set is copied.

new-libref
names the library to which the data set is copied.

SAS-data-set-name
names the data set that is copied.

You can also use the COPY procedure to copy data sets to a new location. Generally,
PROC COPY functions the same as the COPY statement in the DATASETS procedure.
When you use PROC COPY to copy a data set that has an associated index, a new index
file is automatically created for the new data file. If you use the MOVE option in the
COPY procedure, the index file is deleted from the original location and rebuilt in the
new location.

General form, PROC COPY step:

PROC COPY OUT=new-libref IN=old-libref
<MOVE>;
SELECT SAS-data-set-name(s);

RUN;
QUIT;

Here is an explanation of the syntax:

old-libref
names the library from which the data set is copied.

new-libref
names the library to which the data set is copied.

SAS-data-set-name
names the data set or data sets that are copied.

458 Chapter 13 • Creating Indexes

Examples
The following programs produce the same result. Both programs copy the Sale2000 data
set from the Sasuser library and place it in the Work library. Likewise, both of these
programs cause a new index file to be created for Work.Sale2000 that contains all
indexes that exist in Sasuser.Sale2000.

proc datasets library=sasuser nolist;
 copy out=work;
 select sale2000;
quit;

proc copy out=work in=sasuser;
 select sale2000;
run;

Note: If you copy and paste a data set in either SAS Explorer or in SAS Enterprise
Guide, a new index file is automatically created for the new data file.

Renaming Data Sets
Another common task is to rename an indexed data set. To preserve the index, you can
use the CHANGE statement in PROC DATASETS to rename a data set. The index file is
automatically renamed as well.

General form, PROC DATASETS with the CHANGE statement:

PROC DATASETS LIBRARY=libref <NOLIST>;
CHANGE old-data-set-name = new-data-set-name;

QUIT;

Here is an explanation of the syntax:

libref
names the SAS library where the data set is stored.

old-data-set-name
is the current name of the data set.

new-data-set-name
is the new name of the data set.

Example
The following example copies the Revenue data set from Sasuser into Work, and
renames the Work.Revenue data set to Work.Income. The index file that is associated
with Work.Revenue is also renamed to Work.Income.

proc copy out=work in=sasuser;
 select revenue;
run;

proc datasets library=work nolist;
 change revenue=income;
quit;

Documenting and Maintaining Indexes 459

Renaming Variables
You have seen how to use PROC DATASETS to rename an indexed data set. Similarly,
you might want to rename one or more variables within an indexed data set. In order to
preserve any indexes that are associated with the data set, you can use the RENAME
statement in the DATASETS procedure to rename variables.

General form, PROC DATASETS with the RENAME statement:

PROC DATASETS LIBRARY=libref <NOLIST>;
MODIFY SAS-data-set-name;
RENAME old-var-name-1 = new-var-name-1
<...old-var-name-n = new-var-name-n>;

QUIT;

Here is an explanation of the syntax:

libref
names the SAS library where the data set is stored.

SAS-data-set-name
is the name of the data set that contains the variables to be renamed.

old-var-name
is the original variable name.

new-var-name
is the new name to be assigned to the variable.

When you use the RENAME statement to change the name of a variable for which there
is a simple index, the statement also renames the index. If the variable that you are
renaming is used in a composite index, the composite index automatically references the
new variable name. However, if you attempt to rename a variable to a name that has
already been used for a composite index, you receive an error message.

Example
The following example renames the variable FlightID as FlightNum in the Work.Income
data set. If a simple index exists that is named FlightID, the index is renamed
FlightNum.

proc datasets library=work nolist;
 modify income;
 rename flightid=FlightNum;
quit;

460 Chapter 13 • Creating Indexes

Summary

Text Summary

Using Indexes
An index is a SAS file that is associated with a data set and that contains information
about the location and the values of key variables in the data set. Indexes enable SAS to
directly access specific observations rather than having to read all observations
sequentially. An index can be simple or composite.

Creating Indexes in the DATA Step
You can create an index at the same time that you create a data set by using the INDEX=
option in the DATA statement. Both simple and composite indexes can be unique, if
there are no duplicate values for any key variable in the data set. You can create multiple
indexes on one data set. You can use the MSGLEVEL= system option to write
informational messages to the SAS log that pertain to indexes. Indexes can improve the
efficiency of SAS, but there are certain instances where indexes do not improve
efficiency and therefore should not be used.

Managing Indexes with PROC DATASETS and PROC SQL
You can use the INDEX CREATE statement or the INDEX DELETE statement in PROC
DATASETS to create or delete an index from an existing data set. Using PROC
DATASETS to manage indexes uses less system resources than it would to rebuild the
data set and update indexes in the DATA step. If you want to delete an index and create
an index in the same PROC DATASETS step, you should delete the old index before you
create the new index so that SAS can reuse space from the deleted index. You can also
use PROC SQL to create or delete an index from an existing data set.

Documenting and Maintaining Indexes
All indexes that are created for a particular data set are stored in one file in the same
SAS library as the data set. You can use PROC CONTENTS to print a list of all indexes
that exist for a data set, along with other information about the data set. The
CONTENTS statement of the PROC DATASETS step can generate the same list of
indexes and other information about a data set.

Many of the maintenance tasks that you perform on your data sets affect the index file
that is associated with the data set. When you copy a data set with the COPY statement
in PROC DATASETS, the index file is reconstructed for you. When you rename a data
set or rename a variable with PROC DATASETS, the index file is automatically updated
to reflect this change.

Sample Programs

Creating an Index in the DATA Step
options msglevel=i;
data sasuser.sale2000(index=(origin FlightDate=
 (flightid date)/unique));
 infile 'sale2000.dat';

Summary 461

 input FlightID $7. RouteID $7. Origin $3.
 Dest $3. Cap1st 8. CapBusiness 8.
 CapEcon 8. CapTotal 8. CapCargo 8.
 Date date9. Psgr1st 8./
 PsgrBusiness 8. PsgrEcon 8.
 Rev1st dollar15.2
 RevBusiness dollar15.2
 RevEcon dollar15.2 SaleMon $7.
 CargoWgt 8./ RevCargo dollar15.2;
run;

Managing Indexes with PROC DATASETS
proc datasets library=sasuser nolist;
 modify sale2000;
 index delete origin;
 index create flightid;
 index create Tofrom=(origin dest);
quit;

Managing Indexes with PROC SQL
proc sql;
 create index Tofrom on
 sasuser.sale2000(origin, dest);
 drop index origin from sasuser.sale2000;
quit;

You can also generate reports using the Dictionary.Indexes table

proc sql;
 select *
 from dictionary.indexes
 where libname='SASUSER' and
memname='SALE2000';
 quit;

Points to Remember
• An index can enable SAS to more efficiently access specific observations of a data

set. However, because indexes use system resources, they should be created only on
variables that are commonly used to select observations.

• An index is associated with a data set but is stored as a separate file. You can use
PROC DATASETS or PROC CONTENTS to generate a report on a data set's
indexes. You can also right-click on a data set in SAS Explorer and select view
columns to view a list of the data set's indexes. You should view this information
after you have performed maintenance tasks on your data set to ensure that the index
file has been maintained.

Quiz
Select the best answer for each question. After completing the quiz, check your answers
using the answer key in the appendix.

462 Chapter 13 • Creating Indexes

1. Which statement is true about an index?

a. It is an optional file that is associated with a data set.

b. It provides direct access to specific observations of a data set, based on the value
of one or more key variables.

c. It can be classified as simple or composite, either of which can consist of unique
values.

d. All of the above.

2. Which of the following correctly creates a data set named Flights from the
Sasuser.Revenue data set, creates a composite index named Fromto that is based on
the values of Origin and Dest, and prints informational messages about the index to
the SAS log?

a. options msglevel=i;
data flights index=(Fromto=origin dest);
 set sasuser.revenue;
run;

b. options msglevel=n;
data flights (index=(Fromto=origin dest));
 set sasuser.revenue;
run;

c. options msglevel=i;
data flights (index=(Fromto=(origin dest)));
 set sasuser.revenue;
run;

d. options msglevel=n;
data flights (index=Fromto);
 set sasuser.revenue;
run;

3. Which of the following is true?

a. When you add observations to a data set, the index or indexes are automatically
updated with additional value/identifier pairs.

b. When you rename a variable that is used as the key variable in a simple index,
you must re-create the index.

c. When you delete a data set, the index file remains until you delete it as well.

d. When you copy a data set with the COPY statement, you must also copy the
index file in another step.

4. To create an index on an existing data set, you use which of the following?

a. PROC DATASETS

b. PROC SQL

c. the DATA step with the INDEX= option, to rebuild the data set

d. any of the above

5. Which of the following correctly creates a simple index named Origin on the
Revenue data set?

a. proc sql;
 create index origin on revenue(origin);
quit;

Quiz 463

b. proc sql;
 modify revenue;
 index=origin;
quit;

c. proc sql data=revenue;
 create index origin;
quit;

d. proc sql;
 index=origin on revenue;
quit;

6. To view a list of the indexes that are associated with a data set, you use which of the
following?

a. PROC COPY or the COPY statement in PROC DATASETS

b. PROC CONTENTS or the CONTENTS statement in PROC DATASETS

c. the MSGLEVEL= system option and a PROC PRINT step

d. any of the above

7. Suppose that the Sasuser.Revenue data set has a simple index named FlightID.
Which of the following programs use the index?

a. proc print data=sasuser.revenue;
 where flightid ne 'IA11200';
run;

b. data someflights;
 set sasuser.revenue;
 where flightid > 'IA11200';
run;

c. data someflights;
 set sasuser.revenue;
 if flightid > 'IA11200';
run;

d. proc print data=sasuser.revenue;
 where origin='RDU' or flightid='IA03400';
run;

464 Chapter 13 • Creating Indexes

Chapter 14

Combining Data Vertically

Overview . 466
Introduction . 466

Using a FILENAME Statement . 466
Overview . 466
Example . 467

Using the FILEVAR= Option . 469
Overview . 469
Example . 470
Assigning the Names of the Files to Read . 471
Example . 471
Using the COMPRESS Function . 472
Example . 472
Using the END= Option . 473
Example . 474
Using Date Functions . 474
Example . 474
Using the INTNX Function . 476
Example . 476

Appending SAS Data Sets . 477
Overview . 477
Example . 478
Using the FORCE Option . 479
Example . 479
Appending Variables with Different Lengths . 480
Example . 480
Appending Variables with Different Types . 482
Example . 483

Additional Features . 485
Storing Raw Data Filenames in a SAS Data Set . 485
Storing Raw Data Filenames in an External File . 485

Summary . 486
Text Summary . 486
Sample Programs . 487
Points to Remember . 488

Quiz . 488

465

Overview

Introduction
Combining data vertically refers to the process of concatenating or interleaving data. In
some cases the data might be in SAS data sets. In other cases the data might be stored in
raw data files.

In this chapter you learn how to create a SAS data set by concatenating multiple raw
data files using the FILENAME and INFILE statements. You also learn how to
concatenate SAS data sets using PROC APPEND.

Using a FILENAME Statement

Overview
You already know that you can use a FILENAME statement to associate a fileref with a
single raw data file. You can also use a FILENAME statement to concatenate raw data
files by assigning a single fileref to the raw data files that you want to combine.

466 Chapter 14 • Combining Data Vertically

General form, FILENAME statement:

FILENAME fileref ('external-file1' 'external-file2' ...'external-filen');

Here is an explanation of the syntax:

fileref
is any SAS name that is eight characters or fewer.

external-file
is the physical name of an external file. The physical name is the name that is recognized by
the operating environment.

CAUTION:
All of the file specifications must be enclosed in one set of parentheses.

When the fileref is specified in an INFILE statement, each raw data file that has been
referenced can be sequentially read into a data set using an INPUT statement.

T I P If you are not familiar with the content and structure of your raw data files, you
can use PROC FSLIST to view them.

Example
In the following program, the FILENAME statement creates the fileref Qtr1, which
references the raw data files Month1.dat, Month2.dat, and Month3.dat. The files are
stored in the C:\Sasuser directory in the Windows operating environment. In the DATA
step, the INFILE statement identifies the fileref, and the INPUT statement describes the
data, just as if Qtr1 referenced a single raw data file.

filename qtr1 ('c:\sasuser\month1.dat''c:\sasuser\month2.dat'
 'c:\sasuser\month3.dat');
data work.firstqtr;
 infile qtr1;
 input Flight $ Origin $ Dest $
 Date : date9. RevCargo : comma15.;
run;

Table 14.1 RAW Data File Month1.dat (first five records)

----+----10---+----20---+----30---+----40
IA10200 SYD HKG 01JAN2000 $191,187.00
IA10201 SYD HKG 01JAN2000 $169,653.00
IA10300 SYD CBR 01JAN2000 $850.00
IA10301 SYD CBR 01JAN2000 $970.00
IA10302 SYD CBR 01JAN2000 $1,030.00

Table 14.2 Raw Data File Month2.dat (first five records)

----+----10---+----20---+----30---+----40
IA10200 SYD HKG 01FEB2000 $177,801.00
IA10201 SYD HKG 01FEB2000 $174,891.00
IA10300 SYD CBR 01FEB2000 $1,070.00
IA10301 SYD CBR 01FEB2000 $1,310.00
IA10302 SYD CBR 01FEB2000 $850.00

Using a FILENAME Statement 467

Table 14.3 Raw Data File Month3.dat (first five records)

----+----10---+----20---+----30---+----40
IA10200 SYD HKG 01MAR2000 $181,293.00
IA10201 SYD HKG 01MAR2000 $173,727.00
IA10300 SYD CBR 01MAR2000 $1,150.00
IA10301 SYD CBR 01MAR2000 $910.00
IA10302 SYD CBR 01MAR2000 $1,170.00

The SAS log indicates that the raw data files referenced by Qtr1 are sequentially read
into the SAS data set Work.FirstQtr.

Note: The Read count for the three raw data files is 50 records each. The Write count to
the output SAS data set is 150 observations.

Table 14.4 SAS Log

9 filename qtr1 ('c:\sasuser\month1.dat''c:\sasuser\month2.dat'
10 'c:\sasuser\month3.dat');

11 data work.firstqtr;
12 infile qtr1;
13 input Flight $ Origin $ Dest $
14 Date : date9. RevCargo : comma15.;
15 run;

NOTE: The infile QTR1 is:
 File Name=c:\sasuser\month1.dat,
 File List=('c:\sasuser\month1.dat' 'c:\sasuser\month2.dat'
 'c:\sasuser\month3.dat'),
 RECFM=V,LRECL=256

NOTE: The infile QTR1 is:
 File Name=c:\sasuser\month2.dat,
 File List=('c:\sasuser\month1.dat' 'c:\sasuser\month2.dat'
 'c:\sasuser\month3.dat'),
 RECFM=V,LRECL=256

NOTE: The infile QTR1 is:
 File Name=c:\sasuser\month3.dat,
 File List=('c:\sasuser\month1.dat' 'c:\sasuser\month2.dat'
 'c:\sasuser\month3.dat'),
 RECFM=V,LRECL=256

NOTE: 50 records were read from the infile QTR1.
 The minimum record length was 33.
 The maximum record length was 37.
NOTE: 50 records were read from the infile QTR1.
 The minimum record length was 33.
 The maximum record length was 37.
NOTE: 50 records were read from the infile QTR1.
 The minimum record length was 33.
 The maximum record length was 37.
NOTE: The data set WORK.FIRSTQTR has 150 observations
 and 5 variables.
NOTE: DATA statement used (Total process time):
 real time 4.02 seconds
 cpu time 0.93 seconds

468 Chapter 14 • Combining Data Vertically

The following PROC PRINT output shows a portion of the observations in the
Work.FirstQtr data set.

proc print
 data=work.firstqtr (firstobs=45 obs=55);
 format date date9.
 revcargo dollar11.2;
run;

Using the FILEVAR= Option

Overview
You can make the process of concatenating raw data files more flexible by using an
INFILE statement with the FILEVAR= option. The FILEVAR= option enables you to
dynamically change the currently opened input file to a new input file.

General form, INFILE statement with the FILEVAR= option:

INFILE file-specification FILEVAR= variable;

Here is an explanation of the syntax:

FILEVAR= variable
names a variable whose change in value causes the INFILE statement to close the current
input file and open a new input file.

variable
contains a character string that is a physical filename.

When you use an INFILE statement with the FILEVAR= option, the file specification is
a placeholder, not an actual filename or fileref that had been assigned previously to a
file. SAS uses this placeholder for reporting processing information to the SAS log. The
file specification must conform to the same rules as a fileref.

When the INFILE statement executes, it reads from the file that the FILEVAR= variable
specifies. Like automatic variables, this variable is not written to the data set.

Using the FILEVAR= Option 469

Example
Suppose you want to create a SAS data set that contains three months of data stored in
three raw data files. The three months are the current month, and the previous two
months are a rolling quarter.

In the following INFILE statement, Temp is an arbitrarily named placeholder, not an
actual filename or fileref that had been assigned to a file previously. The FILEVAR=
variable Nextfile contains the name of the raw data file to read (for example,
Month9.dat, Month10.dat, or Month11.dat). A RUN statement is not included because
the program is not complete.

data work.quarter;
 infile temp filevar=nextfile;
 input Flight $ Origin $ Dest $
 Date : date9. RevCargo : comma15.;

Table 14.5 Raw Data File Month9.dat (first five records)

----+----10---+----20---+----30---+----40
IA10200 SYD HKG 01SEP2000 $189,441.00
IA10201 SYD HKG 01SEP2000 $175,473.00
IA10300 SYD CBR 01SEP2000 $1,370.00
IA10301 SYD CBR 01SEP2000 $710.00
IA10302 SYD CBR 01SEP2000 $1,210.00

Table 14.6 Raw Data File Month10.dat (first five records)

----+----10---+----20---+----30---+----40
IA10200 SYD HKG 01OCT2000 $182,457.00
IA10201 SYD HKG 01OCT2000 $160,923.00
IA10300 SYD CBR 01OCT2000 $1,030.00
IA10301 SYD CBR 01OCT2000 $870.00
IA10302 SYD CBR 01OCT2000 $770.00

Table 14.7 Raw Data File Month11.dat (first five records)

----+----10---+----20---+----30---+----40
IA10200 SYD HKG 01NOV2000 $176,637.00
IA10201 SYD HKG 01NOV2000 $164,997.00
IA10300 SYD CBR 01NOV2000 $1,230.00
IA10301 SYD CBR 01NOV2000 $1,230.00
IA10302 SYD CBR 01NOV2000 $790.00

470 Chapter 14 • Combining Data Vertically

Note: You can also use multiple INFILE statements or operating system techniques to
combine raw data files. This chapter discusses only the FILENAME statement and
the INFILE statement with the FILEVAR= option.

Assigning the Names of the Files to Read
The next step is to assign the names of the three files to read to the variable Nextfile:

 data work.quarter;
 infile temp filevar=nextfile;
 input Flight $ Origin $ Dest $
 Date : date9. RevCargo : comma15.;

In this case, use the raw data files Month9.dat, Month10.dat, and Month11.dat. Notice
that the titles of the raw data files are very similar. They each start with “Month” and are
followed by numerals and the file extension .dat:

• Month9.dat

• Month10.dat

• Month11.dat

You can use an iterative DO loop and the PUT function to automatically change the
values that are assigned to Nextfile.

Example
In the following code, the DO statement creates the index variable Month and assigns it
the values of 9, 10, and 11. The assignment statement then assigns the name of the raw
data file to Nextfile using the current value of Month and the PUT function. The PUT
function converts the numeric value of Month to a text value with a length of 2.

Month9.dat, Month10.dat, and Month11.dat are stored in the C:\Sasuser directory in the
Windows operating environment. On the right side of the assignment statement, the text
string c:\sasuser\month is concatenated with the current value of Month using the double
exclamation point (!!) concatenation operator. c:\sasuser\monthMonth is then
concatenated with the text string .dat.

data work.quarter;
 do Month = 9, 10, 11;
 nextfile="c:\sasuser\month"
 !!put(Month,2.)!!".dat";
 infile temp filevar=nextfile;
 input Flight $ Origin $ Dest $
 Date : date9. RevCargo : comma15.;
 end;

The following table shows the value of Nextfile as the value of Month changes.

When Month= Nextfile=

9 c:\sasuser\Month 9.dat

10 c:\sasuser\Month10.dat

11 c:\sasuser\Month11.dat

Using the FILEVAR= Option 471

T I P Depending on the characters that are available on your keyboard, the symbol that
you use as the concatenation operator can be a double vertical bar (||), a double
broken vertical bar (¦¦), or a double exclamation point (!!).

Using the COMPRESS Function
Note the space between Month and 9 in c:\sasuser\month 9.dat. You can eliminate the
space by using the COMPRESS function.

When Month= Nextfile=

9 c:\sasuser\Month 9.dat

10 c:\sasuser\Month10.dat

11 c:\sasuser\Month11.dat

General form, COMPRESS function:

COMPRESS(source, <characters-to-remove>);

Here is an explanation of the syntax:

source
specifies a source string that contains the characters to remove.

characters-to-remove
specifies the character or characters that SAS removes from the source string.

Note: If a value for characters-to-remove is omitted, the COMPRESS function removes
blank spaces from the source.

Example
In the following code, the COMPRESS function removes blank spaces from the value of
Nextfile:

data work.quarter;
 do Month = 9, 10, 11;
 nextfile="c:\sasuser\month"!!put(Month,2.)!!".dat";
 nextfile=compress (nextfile,' ');
 infile temp filevar=nextfile;
 input Flight $ Origin $ Dest $
 Date : date9. RevCargo : comma15.;
 end;

The COMPRESS function can be combined with the assignment statement for greater
efficiency:

data work.quarter;
 do Month = 9, 10, 11;
 nextfile="c:\sasuser\month"!!compress(put(Month,2.)!!".dat",' ');
 infile temp filevar=nextfile;
 input Flight $ Origin $ Dest $
 Date : date9. RevCargo : comma15.;

472 Chapter 14 • Combining Data Vertically

 end;

With the addition of the COMPRESS function, when the value of Month equals 9,
Nextfile is assigned the correct value, c:\sasuser\month9.dat.

When Month= Nextfile=

9 c:\sasuser\Month9.dat

10 c:\sasuser\Month10.dat

11 c:\sasuser\Month11.dat

An OUTPUT statement within the DO loop outputs each observation to the SAS data set
Work.Quarter. A STOP statement prevents an infinite loop of the DATA step.

data work.quarter;
 do Month = 9, 10, 11;
 nextfile="c:\sasuser\month"
 !!compress(put(Month,2.)!!".dat",' ');
 infile temp filevar=nextfile;
 input Flight $ Origin $ Dest $ Date : date9.
 RevCargo : comma15.;
 output;
 end;
 stop;

The program is almost complete.

Using the END= Option
When you read past the last row in an input file, the DATA step normally stops
processing. In this example, we are reading three raw data files. We must not read past
the last record in the first two files, because that would cause the DATA step to
prematurely stop processing. You can use the END= option with the INFILE statement
to determine when you are reading the last record in the last raw data file.

General form, INFILE statement with the END= option:

INFILE file-specification END=variable;

Here is an explanation of the syntax:

variable
names a variable that SAS sets to these values:

• 0 (false) when the current input data record is not the last record in the input file

• 1 (true) when the current input record is the last record in the input file.

Note: Like automatic variables, the END= variable is not written to the SAS data set.

You can test the value of the END= variable to determine whether the DATA step should
continue processing.

Using the FILEVAR= Option 473

Example
The END= variable Lastobs is created in the INFILE statement. The DO UNTIL
statement conditionally executes until the value of Lastobs equals 1 (true). A RUN
statement completes the program.

data work.quarter;
 do Month = 9, 10, 11;
 nextfile="c:\sasuser\month"
 !!compress(put(Month,2.)!!".dat",' ');
 do until (lastobs);
 infile temp filevar=nextfile end=lastobs;
 input Flight $ Origin $ Dest $ Date : date9.
 RevCargo : comma15.;
 output;
 end;
 end;
 stop;
run;

PROC PRINT output shows a portion of the observations in the SAS data set
Work.Quarter. Notice that the variables Nextfile and Lastobs are not written to the data
set.

 proc print
 data=work.quarter
 (firstobs=45 obs=55);
 format date date9.
 revcargo dollar11.2;
run;

Using Date Functions
You can make your program more flexible by eliminating the need to include explicit
month numbers in your SAS statements. To create a program that always reads the
current month and the previous two months, you can use date functions to obtain the
current month number to begin the rolling quarter.

Example
In the following program, the MONTH and TODAY functions are used to obtain the
value of the variable Monthnum. The TODAY function returns the current date from the
system clock as a SAS date value. The month number is then extracted from the current
date using the MONTH function.

474 Chapter 14 • Combining Data Vertically

The value of Midmon is calculated by subtracting 1 from the value of Monthnum. The
value of Lastmon is then calculated by subtracting 1 from the values of Midmon. The
following table shows the values Monthnum, Midmon, and Lastmon if the current date is
October 22, 2013.

In the previous example, the DO statement created the index variable Month and
assigned it the values of 9, 10, and 11. Here, the DO statement assigns Month the values
of Monthnum, Midmon, and Lastmon:

data work.quarter (drop=monthnum midmon lastmon);
 monthnum=month(today());
 midmon=monthnum-1;
 lastmon=midmon-1;
 do Month = monthnum, midmon, lastmon;
 nextfile="c:\sasuser\month"
 !!compress(put(Month,2.)!!".dat",' ');
 do until (lastobs);
 infile temp filevar=nextfile end=lastobs;
 input Flight $ Origin $ Dest $ Date : date9.
 RevCargo : comma15.;
 output;
 end;
 end;
 stop;
run;

The following PROC PRINT output shows a portion of the observations in
Work.Quarter.

proc print data=work.quarter
 (firstobs=45 obs=55);
 format date date9.
 revcargo dollar11.2;
run;

Using the FILEVAR= Option 475

Using the INTNX Function
In the previous example the current month was October. What happens if the current
month is January or February?

Suppose the current date is February 16, 2013. Using the following program, the values
for Midmon (January) and Lastmon (December) would be 1 and 0 respectively. Since
there is no “0” month, the program would fail to read the third raw data file.

data work.quarter (drop=monthnum midmon lastmon);
 thisday=today();
 monthnum=month(thisday);
 midmon=month(intnx('month',thisday,-1));
 lastmon=month(intnx('month',thisday,-2));
 do Month = monthnum, midmon, lastmon;
 nextfile="c:\sasuser\month"
 !!compress(put(Month,2.)!!".dat",' ');
 do until (lastobs);
 infile temp filevar=nextfile end=lastobs;
 input Flight $ Origin $ Dest $ Date : date9.
 RevCargo : comma15.;
 output;
 end;
 end;
 stop;
run;

You can use the INTNX function with the TODAY and MONTH functions to correctly
determine the values of Midmon and Lastmon for any given date. Remember that the
INTNX function increments a date, time, or datetime value by a given interval or
intervals, and returns a date, time, or datetime value.

Example
Suppose the current date is January 30, 2013. In the following program Monthnum is
assigned a value of 1 using the TODAY and MONTH functions. The INTNX function is
used with the TODAY and MONTH functions to assign a value of 12 to Midmon and a
value of 11 to Lastmon.

data work.quarter (drop=monthnum midmon lastmon);
 monthnum=month(today());
 midmon=month(intnx('month',today(),-1));
 lastmon=month(intnx('month',today(),-2));
 do Month = monthnum, midmon, lastmon;
 nextfile="c:\sas\month"!!compress(put(Month,2.)!!".dat",' ');
 do until (lastobs);
 infile temp filevar=nextfile end=lastobs;
 input Flight $ Origin $ Dest $ Date : date9.
 RevCargo : comma15.;
 output;
 end;
 end;
 stop;
run;

476 Chapter 14 • Combining Data Vertically

The following PROC PRINT output shows a portion of the observations in
Work.Quarter.

proc print data=work.quarter
 (firstobs=45 obs=55);
 format date date9.
 revcargo dollar11.2;
run;

Appending SAS Data Sets

Overview
Now that you have seen several methods for concatenating raw data files, use the
APPEND procedure to concatenate two SAS data sets.

General form, PROC APPEND:

PROC APPEND BASE=SAS-data-set DATA=SAS-data-set;
RUN;

Here is an explanation of the syntax:

BASE=SAS-data-set
names the data set to which you want to add observations.

DATA=SAS-data-set
names the SAS data set containing observations that you want to append to the end of the
BASE= data set.

PROC APPEND reads only the data in the DATA= SAS data set, not the BASE= SAS
data set. Therefore, this action is very efficient. PROC APPEND concatenates data sets
even though there might be variables in the BASE= data set that do not exist in the
DATA= data set.

When the BASE= data set contains more variables than the DATA= data set, missing
values for the additional variables are assigned to the observations that are read in from
the DATA= data set, and a warning message is written to the SAS log.

Appending SAS Data Sets 477

Example
The SAS data sets Work.Cap2001 and Work.Capacity both contain the following
variables: Cap1st, CapBusiness, CapEcon, Dest, FlightID, Origin, and RouteID.
However, the BASE= data set (Work.Cap2001) contains an additional variable, Date,
that is not included in the DATA= data set (Work.Capacity).

When the following program is submitted, the SAS log indicates that the variable Date
was not found in the DATA= file.

proc append base=work.cap2001
 data=work.capacity;
run;

Table 14.8 SAS Log

NOTE: Appending WORK.CAPACITY to WORK.CAP2001.
WARNING: Variable Date was not found on DATA file.
NOTE: There were 50 observations read from the data set WORK.CAPACITY.
NOTE: 50 observations added.
NOTE: The data set WORK.CAP2001 has 100 observations and 8 variables.
NOTE: PROCEDURE APPEND used (Total process time):

The PROC PRINT output of the appended version of Work.Cap2001 shows that missing
values have been assigned to Date in the observations that were read in from the DATA=
data set.

proc print data=work.cap2001
 (firstobs=45 obs=55);
run;

Note: You can also use the DATA step SET statement to combine SAS data vertically. If
multiple data set names appear in the SET statement, the resulting output data set is a
concatenation of all the data sets listed. Unlike the APPEND procedure, the SET
statement in the DATA step reads all observations in all input data sets in order to
concatenate them. Therefore, the APPEND procedure is more efficient than the SET
statement in the DATA step for concatenating data sets because it reads only the data
in the DATA= data set.

In the following program, SAS reads all of the observations from Work.Cap2001, and it
then reads all of the observations from Work.Capacity.

data work.new;

478 Chapter 14 • Combining Data Vertically

 set work.cap2001 work.capacity;
run;

Note: You can also use the SQL procedure to combine SAS data vertically. For
information about using the SQL procedure to combine data vertically, see Chapter
4, “Combining Tables Vertically Using PROC SQL,” on page 126.

Using the FORCE Option
In the previous example, the DATA= data set (Work.Capacity) contained fewer variables
than the BASE= data set (Work.Cap2001). However, you might need to append data sets
when the DATA= data set contains more variables than the BASE= data set.

You must use the FORCE option with the APPEND procedure to concatenate data sets
when the DATA= data set contains variables that are not in the BASE= data set.

General form, PROC APPEND with the FORCE option:

PROC APPEND BASE=SAS-data-set DATA=SAS-data-set <FORCE>;

CAUTION:
The FORCE option can cause loss of data due to truncation or dropping of variables.

The structure of the BASE= data set is used for the appended data set.

Example
Remember that the SAS data sets Work.Cap2001 and Work.Capacity both contain the
following variables: Cap1st, CapBusiness, CapEcon, Dest, FlightID, Origin, and
RouteID. In this case, the DATA= data set (Work.Cap2001) contains an additional
variable, Date, that is not included in the BASE= data set (Work.Capacity).

When the following program is submitted, the SAS log indicates that the data sets were
not appended because the variable Date was not found in the BASE= file.

proc append base=work.capacity
 data=work.cap2001;
run;

Table 14.9 SAS Log

NOTE: Appending WORK.CAP2001 to WORK.CAPACITY.
WARNING: Variable Date was not found on BASE file.
ERROR: No appending done because of anomalies listed above.
 Use FORCE option to append these files.
NOTE: 0 observations added.
NOTE: The data set WORK.CAPACITY has 50 observations and 7 variables.
NOTE: Statements not processed because of errors noted above.
NOTE: PROCEDURE APPEND used (Total process time):
 real time 0.02 seconds
 cpu time 0.03 seconds
NOTE: The SAS System stopped processing this step because of errors.

When the FORCE option is used with PROC APPEND, the SAS log indicates that
observations have been read from the DATA= data set, but that dropping or truncating
occurs.

Appending SAS Data Sets 479

proc append base=work.capacity
 data=work.cap2001 force;
run;

Table 14.10 SAS Log

NOTE: Appending WORK.CAP2001 to WORK.CAPACITY.
WARNING: Variable Date was not found on BASE file.
NOTE: FORCE is specified, so dropping/truncating will occur.
NOTE: There were 50 observations read from the data set WORK.CAP2001.
NOTE: 50 observations added.
NOTE: The data set WORK.CAPACITY has 100 observations and 7 variables.
NOTE: PROCEDURE APPEND used (Total process time):
 real time 0.03 seconds
 cpu time 0.03 seconds

PROC PRINT output shows that the variable Date has been dropped from the appended
version of Work.Capacity.

proc print
 data=work.capacity
 (firstobs=45 obs=55);
run;

Appending Variables with Different Lengths
If the DATA= data set contains variables with greater lengths than like-named variables
in the BASE= data set, the FORCE option must be used with PROC APPEND. Using
the FORCE option enables you to append the data sets. However, the DATA= variable
values might be truncated.

Example
In the SAS data set Work.Acities, the variable City has a length of 22. In the SAS data
set Work.WestAust, City has a length of 50. You can use the CONTENTS procedure to
view the attributes of the variables in each data set.

480 Chapter 14 • Combining Data Vertically

proc contents data=work.acities;
run;

proc contents data=work.westaust;
run;

When the following program is submitted, the SAS log indicates that the data sets were
not appended because of different lengths for City in the BASE= and DATA= data sets.

proc append base=work.acities
 data=work.westaust;
run;

Table 14.11 SAS Log

NOTE: Appending WORK.WESTAUST to WORK.ACITIES.
WARNING: Variable City has different lengths on BASE and
 DATA files (BASE 22 DATA 50).
ERROR: No appending done because of anomalies listed above.
 Use FORCE option to append these files.
NOTE: 0 observations added.
NOTE: The data set WORK.ACITIES has 50 observations and 4 variables.
NOTE: Statements not processed because of errors noted above.
NOTE: PROCEDURE APPEND used (Total process time):
 real time 1.44 seconds
 cpu time 0.06 seconds
NOTE: The SAS System stopped processing this step because of errors.

When the FORCE option is used, the SAS log indicates that the data sets are appended,
but that dropping or truncating occurs.

proc append base=work.acities
 data=work.westaust force;
run;

Appending SAS Data Sets 481

Table 14.12 SAS Log

NOTE: Appending WORK.WESTAUST to WORK.ACITIES.
WARNING: Variable City has different lengths on BASE and DATA files
 (BASE 22 DATA 50).
NOTE: FORCE is specified, so dropping/truncating will occur.
NOTE: There were 50 observations read from the data set WORK.WESTAUST.
NOTE: 50 observations added.
NOTE: The data set WORK.ACITIES has 100 observations and 4 variables.
NOTE: PROCEDURE APPEND used (Total process time):
 real time 1.44 seconds
 cpu time 0.06 seconds

PROC CONTENTS output for the appended version of Work.Acities shows that the
variable City has retained a length of 22 from the BASE= data set. Also notice that the
variable Code has retained the label Start Point from the BASE= data set.

proc contents
 data=work.acities;
run;

PROC PRINT output shows that some of the values of City are truncated in the
appended version of Work.Acities.

proc print
 data=work.acities
 (firstobs=45 obs=55);
run;

Appending Variables with Different Types
If the DATA= data set contains a variable that does not have the same type as the
corresponding variable in the BASE= data set, the FORCE option must be used with

482 Chapter 14 • Combining Data Vertically

PROC APPEND. Using the FORCE option enables you to append the data sets.
However, missing values are assigned to the DATA= variable values for the variable
whose type did not match.

Example
In the SAS data set Work.Allemps, the variable Phone is a character variable. In the SAS
data set Work.Newemps, Phone is a numeric variable. You can use PROC CONTENTS
to view the attributes of the variables in each data set.

proc contents data=work.allemps;
run;

proc contents data=work.newemps;
run;

When the following program is submitted, the SAS log indicates that there is a type
mismatch for the variable Phone and that data sets were not appended.

proc append base=work.allemps
 data=work.newemps;
run;

Table 14.13 SAS Log

NOTE: Appending WORK.NEWEMPS to WORK.ALLEMPS.
WARNING: Variable Phone not appended because of type mismatch.
ERROR: No appending done because of anomalies listed above.
 Use FORCE option to append these files.
NOTE: 0 observations added.
NOTE: The data set WORK.ALLEMPS has 550 observations and 5 variables.
NOTE: Statements not processed because of errors noted above.
NOTE: PROCEDURE APPEND used (Total process time):
 real time 0.08 seconds
 cpu time 0.01 seconds
NOTE: The SAS System stopped processing this step because of errors.

Appending SAS Data Sets 483

When the FORCE option is used, the SAS log indicates that the data sets are appended,
but that the variable Phone is not appended due to the type mismatch.

proc append base=work.allemps
 data=work.newemps force;
run;

Table 14.14 SAS Log

NOTE: Appending WORK.NEWEMPS to WORK.ALLEMPS.
WARNING: Variable Phone not appended because of type mismatch.
NOTE: FORCE is specified, so dropping/truncating will occur.
NOTE: There were 19 observations read from the data set WORK.NEWEMPS.
NOTE: 19 observations added.
NOTE: The data set WORK.ALLEMPS has 569 observations and 5 variables.
NOTE: PROCEDURE APPEND used (Total process time):
 real time 0.05 seconds
 cpu time 0.02 seconds

PROC CONTENTS output for the appended version of Work.Allemps shows that the
variable Phone has retained the type of character from the BASE= data set.

proc contents
 data=work.allemps;
run;

PROC PRINT output of the appended version of Work.Allemps shows that the values
for Phone are missing in the records that were read in from the DATA= data set.

proc print
 data=work.allemps
 (firstobs=45 obs=55);
run;

484 Chapter 14 • Combining Data Vertically

Additional Features
In addition to using the methods for appending raw data files that were discussed earlier
in this chapter, you can also append raw data files using a SAS data set or an external file
that contains the names of the raw data files to be appended.

Storing Raw Data Filenames in a SAS Data Set
In the following program, five raw data files, Route1.dat, Route2.dat, Route3.dat,
Route4.dat, and Route5.dat, are concatenated to create the SAS data set
Work.NewRoute. The names of the raw data files are stored in the SAS data set
Sasuser.Rawdata, which is referenced using a SET statement. The name of the
FILEVAR= variable, Readit, is the name of the variable in Sasuser.Rawdata whose value
is the name of the file to be read.

data work.newroute;
 set sasuser.rawdata;
 infile in filevar = readit end = lastfile;
 do while(lastfile = 0);
 input @1 RouteID $7. @8 Origin $3. @11 Dest $3.
 @14 Distance 5. @19 Fare1st 4.
 @23 FareBusiness 4. @27 FareEcon 4.
 @31 FareCargo 5.;
 output;
 end;
run;

Storing Raw Data Filenames in an External File
In the following program, Route1.dat, Route2.dat, Route3.dat, Route4.dat, and
Route5.dat are also concatenated to create the SAS data set Work.NewRoute. In this
example, the names of the raw data files are stored in the external file Rawdatafiles.dat,
which is referenced in the first INFILE statement. The name of the FILEVAR= variable,
Readit, is the name of the variable read from Rawdatafiles.dat. The value of Readit is the
name of the raw data file to be read.

Table 14.15 Raw Data File Rawdatafiles.dat

1---+----10---+----20
route1.dat
route2.dat
route3.dat
route4.dat
route5.dat

data work.newroute;
 infile 'rawdatafiles.dat';
 input readit $10.;
 infile in filevar=readit end=lastfile;

Additional Features 485

 do while(lastfile = 0);
 input @1 RouteID $7. @8 Origin $3. @11 Dest $3.
 @14 Distance 5. @19 Fare1st 4.
 @23 FareBusiness 4. @27 FareEcon 4.
 @31 FareCargo 5.;
 output;
 end;
run;

Summary

Text Summary

Using a FILENAME Statement
You can use a FILENAME statement to concatenate raw data files by assigning a single
fileref to the raw data files that you want to combine. When the fileref is specified in an
INFILE statement, each raw data file that has been referenced can be sequentially read
into a data set using an INPUT statement.

Using an INFILE Statement
You can make the process of concatenating raw data files more flexible by using an
INFILE statement with the FILEVAR= option. The FILEVAR= option enables you to
dynamically change the currently opened input file to a new input file. When the INFILE
statement executes, it reads from the file that the FILEVAR= variable specifies.

In some cases, you might need to use the COMPRESS function to eliminate spaces in
the filenames that you generate.

When you read the last record in a raw data file, the DATA step normally stops
processing. When you are concatenating raw data files, you do not want to read past the
last record until you reach the end of the last input file. You can determine whether you
are reading the last record in the last raw data file by using the END= option with the
INFILE statement. You can then test the value of the END= variable to determine
whether the DATA step should continue processing.

If you are working with date-related data, you might be able to make your program more
flexible by eliminating the need to include explicit month numbers in your SAS
statements. To create a program that always reads the current month and the previous
two months, you can use the MONTH and TODAY functions to obtain the month
number of today's date to begin the rolling quarter. In some cases, you might need to use
the INTNX function with the TODAY and MONTH functions to correctly determine the
month numbers.

Appending SAS Data Sets
You can use PROC APPEND to concatenate two SAS data sets. PROC APPEND reads
only the data in the DATA= SAS data set, not in the BASE= SAS data set. PROC
APPEND concatenates data sets even though there might be variables in the BASE=
data set that do not exist in the DATA= data set.

The FORCE option must be used if the DATA= data set contains variables that have the
following characteristics:

• They are not in the BASE= data set.

486 Chapter 14 • Combining Data Vertically

• They are longer than the variables in the BASE= data set.

• They do not have the same type as the variables in the BASE= data set.

The FORCE option can cause loss of data because of truncation or dropping of variables.
The following table summarizes the consequences of using the FORCE option.

Characteristics of variables in
the DATA= data set

FORCE
required?

Consequences of using the
FORCE option

They are in the BASE=data set, but
the BASE= data set has more
variables.

no Missing values are assigned to the
extra BASE= data set variables.

They are not in the BASE= data set. yes Extra DATA= data set variables are
dropped.

They are longer than the
corresponding variables in the
BASE= data set.

yes DATA= data set variable values
might be truncated.

They do not have the same type as
the corresponding variables in the
BASE= data set.

yes Missing values are assigned to the
DATA= data set variables with the
data type mismatch.

Additional Features
You can also append raw data files using a SAS data set or an external file that contains
the names of the raw data files to be appended.

Sample Programs

Combining Raw Data Files Using a FILENAME Statement
filename qtr1 ('c:\data\month1.dat''c:\data\month2.dat'
 'c:\data\month3.dat');
data work.firstqtr;
 infile qtr1;'
 input Flight $ Origin $ Dest $
 Date : date9. RevCargo : comma15.;
run;

Combining Raw Data Files Using an INFILE Statement
data quarter (drop=monthnum midmon lastmon);
 monthnum=month(today());
 midmon=month(intnx('month',today(),-1));
 lastmon=month(intnx('month',today(),-2));
 do month = monthnum, midmon, lastmon;
 nextfile="c:\sasuser\month"
 !!compress(put(month,2.)!!".dat",' ');
 do until (lastobs);
 infile temp filevar=nextfile end=lastobs;
 input Flight $ Origin $ Dest $ Date : date9.
 RevCargo : comma15.;
 output;

Summary 487

 end;
 end;
 stop;
run;

Combining SAS Data Sets Using PROC APPEND
proc append base=work.acities
 data=work.airports force;
run;

Points to Remember
• When you use an INFILE statement with the FILEVAR= option, the file

specification is just a placeholder, not an actual filename or fileref that has been
previously assigned to a file.

• Like automatic variables, the FILEVAR= variable and the END= variable are not
written to the data set.

• Using the FORCE option with PROC APPEND can cause loss of data because of
truncation or dropping of variables.

• The structure of the BASE= data set is used for the appended data set.

Quiz
Select the best answer for each question. After completing the quiz, check your answers
using the answer key in the appendix.

1. Which of the following statements associates the fileref OnSale with the raw data
files London.dat, Paris.dat, and Zurich.dat? The files are stored in the C:\Routes\New
directory in the Windows operating environment.

a. filename onsale (c:\routes\new\london.dat,
 c:\routes\new\paris.dat,
 c:\routes\new\zurich.dat);

b. filename onsale 'c:\routes\new\london.dat'
 'c:\routes\new\paris.dat'
 'c:\routes\new\zurich.dat';

c. filename onsale ('c:\routes\new\london.dat'
 'c:\routes\new\paris.dat'
 'c:\routes\new\zurich.dat');

d. filename onsale 'c:\routes\new\london.dat
 c:\routes\new\paris.dat
 c:\routes\new\zurich.dat';

2. Which of the following statements is true?

a. The FILEVAR= option can be used to dynamically change the currently opened
input file to a new physical file.

b. The FILEVAR= variable is not written to the data set.

c. The FILEVAR= variable must contain a character string that is a physical
filename.

488 Chapter 14 • Combining Data Vertically

d. all of the above

3. Given the following program, which table correctly shows the corresponding values
of the variables Month and Readfile?

data work.revenue;
 do month = 8, 9, 10;
 readfile=compress("c:\data\month"
 !!put(month,2.)!!".dat");
 do until (lastobs);
 infile temp filevar=readfile
 end=lastobs;
 input Date : date7. Location $
 Sales : dollar10.;
 output;
 end;
 end;
 stop;
run;

a.

When x= readfile=

8 month8.dat

9 month9.dat

10 month10.dat

b.

When x= readfile=

8 c:\data\month8.dat

9 c:\data\month9.dat

10 c:\data\month10.dat

c.

When x= readfile=

8 c:\data\month 8.dat

9 c:\data\month 9.dat

10 c:\data\month10.dat

d.

Quiz 489

When x= readfile=

8 month8

9 month9

10 month10

4. If the current date is March 30, 2003, which table correctly shows the corresponding
values of the variables y1, y2, y3, and Nextfile?

data work.quarter (drop=monthnum midmon lastmon);
 y3=year(today());
 y2=y3-1;
 y1=y3-2;
 do i = y3, y2, y1;
 nextfile="c:\data\Y"!!put(i,4.)!!".dat";
 do until (lastobs);
 infile temp filevar=nextfile
 end=lastobs;
 input Flight $ Origin $ Dest $
 Date : date9.;
 output;
 end;
 end;
 stop;
run;

a.

When i= Nextfile=

y1 c:\data\Y2001.dat

y2 c:\data\Y2002.dat

y3 c:\data\Y2003.dat

b.

When i= Nextfile=

y1 Y2001.dat

y2 Y2002.dat

y3 Y2003.dat

c.

490 Chapter 14 • Combining Data Vertically

When i= Nextfile=

y1 c:\data\Y2003.dat

y2 c:\data\Y2002.dat

y3 c:\data\Y2001.dat

d.

When i= Nextfile=

y1 c:\data\Y3.dat

y2 c:\data\Y2.dat

y3 c:\data\Y1.dat

5. What happens when SAS processes the last data record in an input file?

a. The END= variable is set to 1.

b. The END= variable is set to 0.

c. The END= variable is set to the number of records in the input file.

d. The END= variable is written to the SAS data set.

6. Which program appends Work.London to Work.Flights?

a. proc append base=work.london
 data=work.flights;
run;

b. proc append data=work.london
 base=work.flights;
run;

c. proc append data=work.london work.flights;
run;

d. proc append data=work.flights work.london;
run;

7. What happens when the following program is submitted?

proc append base=staff.marketing
 data=staff.sales force;
run;

Quiz 491

Data Set Description for Staff.Marketing Data Set Description for Staff.Sales

a. The length of LastName is converted to 20 in Staff.Marketing.

b. LastName is dropped from Staff.Marketing.

c. Missing values are assigned to LastName observations that are read in from
Staff.Sales.

d. Some of the values of LastName might be truncated in the observations that are
read in from Staff.Sales.

8. Which program appends Work.April to Work.Y2003?

Data Set Description for Work.Y2003 Data Set Description for Work.April

a. proc append base=work.y2003
 data=work.april;
run;

b. proc append base=work.april
 data=work.y2003 force;
run;

c. proc append base=work.y2003
 data=work.april force;
run;

d. proc append base=work.april
 data=work.y2003;
run;

9. What happens when the SAS data set Work.NewHires is appended to the SAS data
set Work.Employees using PROC APPEND?

492 Chapter 14 • Combining Data Vertically

Data Set Description for
Work.Employees

Data Set Description for
Work.NewHires

a. Missing values are assigned to Room for the observations that are read in from
Work.NewHires.

b. Missing values are assigned to Room for all of the observations in
Work.Employees.

c. Room is dropped from Work.Employees.

d. The values of Name are truncated in the observations that are read in from
Work.NewHires.

10. You do not need to use the FORCE option with PROC APPEND when the following
is true:

a. the DATA= data set contains variables that are not in the BASE= data set.

b. the BASE= data set contains variables that are not in the DATA= data set.

c. the variables in the DATA= data set are longer than the corresponding variables
in the BASE= data set.

d. the variables in the DATA= data set have a different type than the corresponding
variables in the BASE= data set.

Quiz 493

494 Chapter 14 • Combining Data Vertically

Chapter 15

Combining Data Horizontally

Overview . 496
Introduction . 496

Reviewing Terminology . 497
Overview . 497
Relationships between Input Data Sources . 498

Working with Lookup Values Outside of SAS Data Sets . 500
Overview . 500
The IF-THEN/ELSE Statement . 500
Example: Using the IF-THEN/ELSE Statement to Combine Data 500
SAS Arrays . 501
Example: Using the ARRAY Statement to Combine Data 501
User-Defined SAS Formats . 501
Example: Using the FORMAT Procedure to Combine Data 502

Combining Data with the DATA Step Match-Merge . 502
The DATA Step Match-Merge . 502
Working with Multiple Lookup Tables . 503
Example . 504

Using PROC SQL to Join Data . 506
The SQL Procedure . 506
Example: Working with Multiple Lookup Tables . 506

Comparing DATA Step Match-Merges and PROC SQL Joins 507
Overview . 507
Examples . 508
DATA Step Match-Merge . 511
Execution of a DATA Step Match-Merge . 511
PROC SQL Join . 512
Execution of a PROC SQL Join . 512
Example: Combining Data from a Many-to-Many Match 513
Using Multiple SET Statements . 514
Example: Using Multiple SET Statements with a Many-to-Many Match 515

Combining Summary Data and Detail Data . 516
Overview . 516
The MEANS Procedure . 517
Example . 518
Example . 518
The Sum Statement . 519
Example . 520

Using an Index to Combine Data . 521

495

Overview . 521
The KEY= Option . 522
Example . 523
Example . 524
The _IORC_ Variable . 524
Example . 525

Using a Transaction Data Set . 525
Overview . 525
Using the UPDATE Statement . 526
Example . 527

Summary . 528
Text Summary . 528
Sample Programs . 529
Points to Remember . 532

Quiz . 532

Overview

Introduction
Combining data horizontally refers to the process of merging or joining multiple data
sets into one data set. This process is referred to as a horizontal combination because, in
the final data set, each observation (or horizontal row) will have variables from more
than one input data set.

It is useful to combine data horizontally if you have several data sets that contain
different but related information. For example, suppose you have one data set that
contains employee data with the variables IDNumber, Name, and Address, and another
data set that contains employee data with the variables IDNumber and Salary. You can
combine the data from these two input data sets horizontally to create an output data set
that contains IDNumber, Name, Address, and Salary.

This chapter focuses on several methods of combining data horizontally in the DATA
step, and compares a DATA step match-merge with a PROC SQL join. This chapter also

496 Chapter 15 • Combining Data Horizontally

covers several techniques for horizontally combining data from an input data set with
values that are not stored in a SAS data set.

Reviewing Terminology

Overview
Before you examine the various techniques for combining data horizontally, here is a
review of some of the terminology that this chapter uses.

Term Definition

combining data
horizontally

A technique in which data is retrieved from an auxiliary source or
sources, based on the values of variables in the primary source.

performing a table lookup A technique in which data is retrieved from an auxiliary source or
sources, based on the values of variables in the primary source.

base table The primary source in a horizontal combination. In this chapter,
the base table is always a SAS data set.

lookup table or tables Any input data source, except the base table, that is used in a
horizontal combination.

lookup values or return
value

The data value or values that are retrieved from the lookup table
or tables during a horizontal combination.

key variable or variables One or more variables that reside in both the base table and the
lookup table. Usually, key values are unique in the lookup table
but are not necessarily unique in the base table.

key value or values A lookup is successful when the key value in the base table finds
a matching key value in the lookup table.

Note: The terms combining data horizontally and performing a table lookup are
synonymous and are used interchangeably throughout this chapter.

Note: This chapter compares PROC SQL techniques with DATA step techniques. In
PROC SQL terms, a SAS data set is usually referred to as a table, a variable is
usually referred to as a column, and an observation is usually referred to as a row.

The following figure illustrates a base table and a lookup table that are used in a
horizontal combination. The key variable is Num. The key values are listed vertically
below Num.

Reviewing Terminology 497

Relationships between Input Data Sources
One important factor to consider when you perform a table lookup is the relationship
between the input data sources. In order to combine data horizontally, you must be able
to match observations from each input data source. For example, there might be one or
more variables that are common to each input data source. The relationship between
input data sources describes how the observations in one source relate to the
observations in the other source according to these key values.

The following terms describe the possible relationships between base tables and lookup
tables:

• one-to-one match

• one-to-many match

• many-to-many match

• nonmatching data

In a one-to-one match, key values in both the base table and the lookup table are unique.
Therefore, for each observation in the base table, no more than one observation in the
lookup table has a matching key value.

In a one-to-many match, key values in the base table are unique, but key values in the
lookup table are not unique. That is, for each observation in the base table, there can be
one observation or possibly multiple observations in the lookup table that have a
matching key value.

498 Chapter 15 • Combining Data Horizontally

In a many-to-many match, key values are not unique in the base table or in the lookup
table. That is, at least one observation in the base table matches multiple observations in
the lookup table, and at least one observation in the lookup table matches multiple
observations in the base table.

Many-to-many is a theoretical or mathematical possibility, but it rarely represents a
legitimate business application. If a business application appears to be many-to-many, it
is usually because a duplicate row was accidentally added to the lookup table.

Sometimes you will have a one-to-one, a one-to-many, or a many-to-many match that
also includes nonmatching data. That is, there are observations in the base table that do
not match any observations in the lookup table, or there are observations in the lookup
table that do not have matching observations in the base table. If your base table or
lookup table or tables include nonmatching data, you will have one of the following:

• a dense match, in which every or nearly every observation in one table has a
matching observation in the other table. In the following figure, the first observation
in the base table is unmatched.

• a sparse match, in which there are many nonmatching observations.

Reviewing Terminology 499

Working with Lookup Values Outside of SAS Data
Sets

Overview
Remember that it is not necessary for your lookup table to be a SAS data set. Suppose
you want to combine the data from your base table with lookup values that are not stored
in a SAS data set. You can use the following techniques to hardcode lookup values into
your program:

• the IF-THEN/ELSE statement

• SAS arrays

• user-defined SAS formats

• hash objects.

The IF-THEN/ELSE Statement
You should be familiar with the syntax and use of the IF-THEN/ELSE statement.
Overall, this technique is easy to use and easy to understand. Because of its simplicity
and because you can use other DATA step syntax with it, the IF-THEN/ELSE statement
can be quite versatile as a technique for performing lookup operations. You can use this
technique if your lookup values are not stored in a data set, and you can use it to handle
any of the possible relationships between your base table and your lookup table. You can
use it to retrieve single or multiple values. For example, you can use DO groups to
provide multiple values based on a condition.

Keep in mind that this technique requires maintenance. If you expect your lookup values
to change, or you have a large number of lookup values, or if you use the lookup values
in multiple programs, the resources required for maintaining the IF-THEN/ELSE
statements in your programs might make this technique inappropriate. Also, this
technique might result in a prohibitively long program or even in a program that will not
execute because it times out.

Example: Using the IF-THEN/ELSE Statement to Combine Data
Suppose you have a data set, Mylib.Employees, that contains information about
employees. Mylib.Employees contains a variable named IDnum that records each
employee's unique identification number. If you want to combine the data from

500 Chapter 15 • Combining Data Horizontally

Mylib.Employees with a list of employees' birthdates that is not stored in a data set, you
can use the IF-THEN/ELSE statement to do so.

data mylib.employees_new;
 set mylib.employees;
 if IDnum=1001 then Birthdate='01JAN1963'd;
 else if IDnum=1002 then Birthdate='08AUG1946'd;
 else if IDnum=1003 then Birthdate='23MAR1950'd;
 else if IDnum=1004 then Birthdate='17JUN1973'd;
run;

SAS Arrays
You should be familiar with the syntax and use of the ARRAY statement. With the
ARRAY statement, you can either hardcode your lookup values into the program, or you
can read them into the array from a data set. Elements of a SAS array are referenced
positionally. That is, you use a numeric value as a pointer to the array element, so you
must be able to identify elements of the array either by position or according to another
numeric value. You can use multiple values or numeric mathematical expressions to
determine the array element to be returned.

This technique is capable of returning only a single value from the lookup operation. The
dimensions of the array must be supplied at compile time either by hardcoding or
through the use of macro variables.

Example: Using the ARRAY Statement to Combine Data
We will consider our example of combining the data from Mylib.Employees with a list
of lookup values. Remember that Mylib.Employees contains data about employees,
which includes their identification numbers (IDnum) but does not include their
birthdates. You can use the ARRAY statement to hardcode the birthdates into a
temporary array named Birthdates, and then use the array to combine the birthdates with
the data in Mylib.Employees.

In the following DATA step, the values that are specified as subscripts for the array
correspond to values of the variable IDnum in the base table, Mylib.Employees. The
assignment statement for the new variable Birthdate retrieves a value from the Birthdates
array according to the current value of IDnum.

data mylib.employees_new;
 array birthdates{1001:1004} _temporary_ ('01JAN1963'd
 '08AUG1946'd '23MAR1950'd '17JUN1973'd);
 set mylib.employees;
 Birthdate=birthdates{IDnum};
run;

User-Defined SAS Formats
You should be familiar with the syntax and use of the FORMAT procedure with the
VALUE statement. Formats can be referenced in FORMAT statements, PUT statements,
and PUT functions in assignment WHERE or IF statements.

The FORMAT procedure uses a binary search (a rapid search technique) through the
lookup table. Another benefit of using this technique is that maintenance is centralized;
if a lookup value changes, you have to change it in only one place (in the format), and
every program that uses the format will use the new value.

Working with Lookup Values Outside of SAS Data Sets 501

Example: Using the FORMAT Procedure to Combine Data
Once again, suppose the data set Mylib.Employees contains information about
employees according to their employee identification numbers (IDnum), but does not
contain employees' birthdates. You can use a format to combine employees' birthdates
with the data that is stored in Mylib.Employees.

The following PROC FORMAT step uses a VALUE statement to hardcode the lookup
values in the BIRTHDATE format. The DATA step uses the PUT function to associate
the lookup values from the format with the values of IDnum. The INPUT function
associates the lookup value with the DATE9. informat, and assigns the formatted values
to a new variable named Birthdate.

proc format;
 value birthdate 1001 = '01JAN1963'
 1002 = '08AUG1946'
 1003 = '23MAR1950'
 1004 = '17JUN1973';
 run;

 data mylib.employees_new;
 set mylib.employees;
 Birthdate=input(put(IDnum,birthdate.),date9.);
run;

Combining Data with the DATA Step Match-Merge

The DATA Step Match-Merge
You should already know how to merge multiple data sets in the DATA step when there
is a BY variable that is common to each of the input data sets. When you use the
MERGE statement to perform a table lookup operation, your lookup values must be
stored in one or more SAS data sets. This technique requires that both the base table and
the lookup table or tables be either sorted by or indexed on the BY variable or variables.

You can specify any number of input data sets in the MERGE statement as long as all
input data sets have a common BY variable. The MERGE statement can combine data
sets of any size. The MERGE statement is capable of returning multiple values. You can
use multiple BY variables to perform lookups that are dependent on more than one
variable. The MERGE statement returns both matches and nonmatches by default, but
you can use DATA step syntax to return only exact matches or to include only specific
variables from the lookup table.

CAUTION:
Although you can use the MERGE statement to combine data from sources that have
any type of relationship, this technique might not produce the desired results when
you are working with a many-to-many match. When the data sets are merged in a
DATA step, the observations are matched and combined sequentially. Once an
observation is read, it is never reread. That is, the DATA step MERGE statement
does not create a Cartesian product. Therefore, the DATA step MERGE statement is
probably not an appropriate technique to use for performing lookup operations when
you are working with a many-to-many match.

502 Chapter 15 • Combining Data Horizontally

Working with Multiple Lookup Tables
Sometimes you might need to combine data from three or more related SAS data sets in
order to create one new data set. For example, the three data sets listed below all contain
different data about a fictional airline's flights and airports. Sasuser.Acities contains data
about various airports, Sasuser.Revenue contains data about the revenue generated by
various flights, and Sasuser.Expenses contains data about the expenses incurred by
various flights. The variables in each of these data sets are listed here.

Suppose you want to create a new data set, named Sasuser.Alldata, that contains data
from each of these three input data sets. As shown below, the Sasuser.Alldata data set
contains the new variable Profit, which is calculated from the revenue values that are
stored in Sasuser.Revenue and the expense values that are stored in Sasuser.Expenses.

You can specify any number of input data sets in the MERGE statement as long as all
input data sets have a common BY variable. However, you can see from the data set
variable lists above that these three data sets do not have one common variable. We will
consider a method for performing a match-merge on these three data sets.

Although the three data sets Sasuser.Acities, Sasuser.Revenue, and Sasuser.Expenses do
not have a common BY variable, there are several variables that are common to two of
the three data sets. As shown below, Date and FlightID are both common to Revenue
and Expenses. The variable Code in the Acities data set and the variable Dest in the
Revenue data set, while named differently, contain the same data with the same type and
length.

Combining Data with the DATA Step Match-Merge 503

Notice that Code in Acities and Dest in Revenue are listed as corresponding to one
another even though they have different names. When you are looking for common
variables between data sets, the variable names are not important since they can be
changed with the RENAME= option in the MERGE statement. Instead, you should look
for variables that record the same information and that have the same type in each input
data set. Common variables do not need to have the same length, although you should
remember that the length of the variable in the first-listed data set will determine the
length of the variable in the output data set.

Note: Any variables that have the same name in multiple data sets in the MERGE
statement must also have the same type. If any variables in different input data sets
have identical names but do not have identical types, ERROR and WARNING
messages are written to the SAS log, and the match-merge fails.

In this case, both Code in Acities and Dest in Revenue record the three-letter
abbreviation of an airport.

T I P You can use PROC CONTENTS to view information about variables such as
type, length, and description.

Since there are variables that are common to two different pairs of the three data sets
shown above, you can combine these data sets into one data set by using the MERGE
statement in two subsequent DATA steps. That is, you can perform one match-merge on
two of the data sets to create one new data set that combines data from both. Then you
can perform another match-merge on the new data set and the remaining original data
set. Consider the following example.

Example
In the following program, both Sasuser.Expenses and Sasuser.Revenue are sorted by
FlightID and Date and are placed into temporary data sets in preparation for the merge.
Then these two sorted data sets are merged in a DATA step that creates a temporary
output data set named Revexpns. In order to reduce the total number of variables in the
output data set, a new variable named Profit is created, and the variables that are used to
create Profit are dropped from Revexpns.

proc sort data=sasuser.expenses out=expenses;
 by flightid date;
run;

proc sort data=sasuser.revenue out=revenue;
 by flightid date;
run;

data revexpns (drop=rev1st revbusiness revecon expenses);
 merge expenses(in=e) revenue(in=r);
 by flightid date;

504 Chapter 15 • Combining Data Horizontally

 if e and r;
 Profit=sum(rev1st, revbusiness, revecon, -expenses);
run;

Note: The use of the temporary IN= variables E and R in the IF statement above ensures
that only observations that contain data from each of the two input data sets are
included in the output data set.

In the following program, the output data set named Revexpns is sorted by Dest.
Sasuser.Actities is sorted by Code and is placed in a temporary data set. Remember that
Dest and Code are corresponding variables even though they have different names.

The sorted data sets are then merged in a DATA step. Since two data sets must have at
least one variable that matches exactly in order to be merged, the RENAME= option
renames Code to Dest in the output data set. The DATA step merges Revexpns and
Acities into a new output data set named Alldata.

proc sort data=revexpns;
 by dest;
run;

proc sort data=sasuser.acities out=acities;
 by code;
run;

data sasuser.alldata;
 merge revexpns(in=r) acities
 (in=a rename=(code=dest) keep=city name code);
 by dest;
 if r and a;
run;

proc print data=sasuser.alldata(obs=5) noobs;
 title 'Result of Merging Three Data Sets';
 format Date date9.;
run;

The PROC PRINT step prints the first five observations in the Sasuser.Alldata data set
that is created in this example, as shown here.

Combining Data with the DATA Step Match-Merge 505

Using PROC SQL to Join Data

The SQL Procedure
Another method that you can use to join data sets that do not have a common variable is
the SQL procedure. You should already be familiar with using PROC SQL to create a
table from the results of an inner join.

In a PROC SQL step, you can choose from each input data set only the specific variables
that you want to include in the new data set. The input data sets do not need to contain a
common BY variable, nor do they need to be sorted or indexed. However, if the lookup
table has an index, the SQL procedure can take advantage of the index to provide faster
retrieval of lookup values.

You can join up to 256 tables by using the SQL procedure, to combine data horizontally
from sources that have any type of relationship (one-to-one, one-to-many, many-to-
many, or nonmatching).

Note: Although numerous types of joins are possible with PROC SQL, only inner joins
are discussed in this chapter. Therefore, in the remainder of this chapter, a PROC
SQL join refers to an inner join on multiple tables, whose results are stored in a new
table. You can learn more about PROC SQL joins in Chapter 3, “Combining Tables
Horizontally Using PROC SQL,” on page 82.

One drawback to using the SQL procedure to perform table lookups is that you cannot
use DATA step syntax with PROC SQL. Therefore, complex business logic is difficult to
incorporate into the join. However, by using PROC SQL you can often accomplish in
one step what it takes multiple PROC SORT and DATA steps to accomplish.

Example: Working with Multiple Lookup Tables
The following example joins Sasuser.Revenue, Sasuser.Expenses, and Sasuser.Acities
into a new data set named Work.Sqljoin:

proc sql;
 create table sqljoin as
 select revenue.flightid, revenue.date format=date9.,
 revenue.origin, revenue.dest,
 sum(revenue.rev1st,
 revenue.revbusiness,
 revenue.revecon)
 -expenses.expenses as Profit,
 acities.city,
 acities.name
 from sasuser.expenses, sasuser.revenue,
 sasuser.acities
 where expenses.flightid=revenue.flightid
 and expenses.date=revenue.date
 and acities.code=revenue.dest
 order by revenue.dest,
 revenue.flightid,
 revenue.date;
quit;

506 Chapter 15 • Combining Data Horizontally

proc print data=work.sqljoin(obs=5);
 title 'Result of Joining Three Data Sets';
run;

The PROC PRINT step produces the first five observations of the Work.Sqljoin data set
that is created in the PROC SQL step above, as shown here:

Note: Notice that the Work.Sqljoin data set is identical to the Sasuser.Alldata data set
that was previously created in the DATA step merge.

Comparing DATA Step Match-Merges and PROC
SQL Joins

Overview
You have seen that it is possible to create identical results with a DATA step match-
merge and a PROC SQL inner join. Although the results might be identical, these two
processes are very different, and trade-offs are associated with choosing one method
over the other. The following tables summarize some of the advantages and
disadvantages of each of these two methods.

Table 15.1 DATA Step Match-Merge

Advantages Disadvantages

• There is no limit to the number of input
data sets.

• Allows for complex business logic to be
incorporated into the new data set by using
DATA step processing, including arrays
and DO loops, in addition to MERGE
features.

• Multiple BY variables enable lookups that
depend on more than one variable.

• Data sets must be sorted by or indexed on
the BY variable or variables before
merging.

• The BY variable or variable must be
present in all data sets, and the names of
the key variable or variables must match
exactly.

• An exact match on the key value or value
must be found.

Comparing DATA Step Match-Merges and PROC SQL Joins 507

Table 15.2 PROC SQL Join

Advantages Disadvantages

• Data sets do not have to be sorted or
indexed, but an index can be used to
improve performance.

• Multiple data sets can be joined in one step
without having common variables in all
data sets.

• You can create data sets (tables), views, or
reports with the combined data.

• The maximum number of tables that can
be joined at one time is 256.

• Complex business logic is difficult to
incorporate into the join.

• PROC SQL might require more resources
than the DATA step with the MERGE
statement for simple joins.

Although it is possible to produce identical results with a DATA step match-merge and a
PROC SQL join, these two processes will not always produce results that are identical
by default.

Consider the following simplified examples to see how each method works in various
circumstances.

The following two steps show two different ways to produce the same combination of
two data sets, Data1 and Data2, that have a common variable, X. If Data1 contains two
variables, X and Y, and Data2 contains two variables, X and Z, then both of the
following steps produce an output data set named Data3 that contains three variables, X,
Y, and Z.

Note: The code shown in the following two steps illustrates a simple comparison of a
DATA step match-merge and a PROC SQL join. This comparison will be explored in
the next several sections.

data data3;
 merge data1 data2;
 by x;
run;

proc sql;
 create table data3 as
 select data1.x, data1.y, data2.z
 from data1, data2
 where data1.x=data2.x;
quit;

The contents of Data3 will vary depending on the values that are in each input data set
and on the method used for merging. Consider the following examples.

Examples
One-to-one matches produce identical results whether the data sets are merged in a
DATA step or joined in a PROC SQL step. Suppose that Data1 and Data2 contain the
same number of observations. Also, suppose that in each data set, the values of X are
unique, and that each value appears in both data sets.

When these data sets are either merged in a DATA step or joined in a PROC SQL step,
Data3 will contain one observation for each unique value of X, and it will have the same
number of observations as Data1 and Data2.

508 Chapter 15 • Combining Data Horizontally

One-to-many matches produce identical results whether the data sets are merged in a
DATA step or joined in a PROC SQL step. Suppose that Data1contains unique values for
X, but that Data2 does not contain unique values for X. That is, Data2 contains multiple
observations that have the same value of X and therefore contains more observations
than Data1.

When these two data sets are either merged in a DATA step or joined in a PROC SQL
step, Data3 will contain the same number of observations as Data2. In Data3, one
observation from Data1 that has a particular value for X might be matched with multiple
observations from Data2 that have the same value for X.

Many-to-many matches produce different results depending on whether the data sets are
merged in a DATA step or joined in a PROC SQL step. Suppose the values of X are not
unique in both Data1 and Data2.

When the data sets are merged in a DATA step, the observations are matched and
combined sequentially.

In the example below, Data3 will contain the same number of observations as the larger
of the two input sets. In cases where there is a many-to-many match on the values of the
BY variable, a DATA step match-merge probably does not produce the desired output
because the output data set will not contain all of the possible combinations of matching
observations.

Comparing DATA Step Match-Merges and PROC SQL Joins 509

When the data sets are joined in a PROC SQL step, each match appears as a separate
observation in the output data set. In the example below, the first observation that has a
value of 1 for X in Data1 is matched and combined with each observation from Data2
that has a value of 1 for X. Then, the second observation that has a value of 1 for X in
Data1is matched and combined with each observation from Data2 that has a value of 1
for X, and so on.

Nonmatching data between the data sets produces different results depending on whether
the data sets are merged in a DATA step or combined by using a PROC SQL inner join.

When data sets that contain nonmatching values for the BY variable are merged in a
DATA step, the observations in each are processed sequentially. Data3 will contain one
observation for each unique value of X that appears in either Data1 or Data2. For
nonmatching values of X, the observation in Data3 will have a missing value for the
variable that is taken from the other input data set.

In this PROC SQL step, the output data set will contain only those observations that
have matching values for the BY variable. In the example below, Data3 does not have
any observations with missing values, because any observation from Data1 or from
Data2 that contains a nonmatching value for X is not included in Data3.

510 Chapter 15 • Combining Data Horizontally

You have seen the results of DATA step match-merges and PROC SQL joins in several
simple scenarios. To help you understand the differences more fully, consider how the
DATA step processes a match-merge and how PROC SQL processes a join.

DATA Step Match-Merge
When you merge data sets in a DATA step, the observations in each input data set are
read sequentially and are matched and combined in the output data set. The example
below depicts a DATA step match-merge of two simple input data sets.

Execution of a DATA Step Match-Merge
1. This example shows the execution of the DATA step below. This DATA step creates

a new data set by performing a basic match-merge on two input data sets.

data work.data3;
 merge data1 data2;
 by x;
run;

2. During the compilation phase, SAS reads the descriptor portions of the input data
sets and creates the PDV with every variable from every input data set, by default.

3. Execution begins. SAS looks at the first observation in each input data set to
determine whether the BY values match. If so, SAS reads the first observation from
each data set into the PDV.

4. SAS writes the merged observation to the output data set.

5. If the BY values do not match, SAS reads from the input data set with the lowest BY
value. If the BY value matches the BY value from the previous observation, SAS
does not reinitialize the PDV but overwrites the values in the PDV. If the BY value
does not match the previous BY value, SAS reinitializes the PDV. The PDV and the
output data set then contain missing values for variables that are unique to the other
data set.

Comparing DATA Step Match-Merges and PROC SQL Joins 511

6. SAS continues to match-merge observations until all observations from all input data
sets have been read and written to the new data set. In this example, Work.Data3
contains three variables and four observations.

PROC SQL Join
A PROC SQL join uses a different process than a DATA step merge to combine tables

Conceptually, PROC SQL first creates a Cartesian product of all input tables. That is,
PROC SQL first matches each row with every other row in the other input tables. Then,
PROC SQL eliminates any observations from the result set that do not satisfy the
WHERE clause. The PROC SQL query optimizer uses methods to minimize the
Cartesian product that must be built.

Execution of a PROC SQL Join
1. This example shows the execution of the PROC SQL step below. This PROC SQL

step creates a new table to hold the results of an inner join on two input tables. This
discussion provides a conceptual view of how PROC SQL works rather than a literal
depiction of the join process. In reality, PROC SQL uses optimization routines that
make the process more efficient.

proc sql;
 create table work.data3 as
 select *
 from data1, data 2
 where data1.x=data2.x;
quit;

2. Conceptually, PROC SQL first creates a Cartesian product of the two input tables,
where each row from the first table is combined with each row from the second
table. PROC SQL starts by taking the first row from Work.Data1 and combining it
with every row of Work.Data2.

3. Next, PROC SQL takes the second row from Work.Data1 and combines it with every
row from Work.Data2.

4. PROC SQL continues in this manner until it has combined each row from
Work.Data1 with every row from Work.Data2. This is the Cartesian product of the
two input tables.

5. Finally, PROC SQL eliminates from the output table those rows that do not satisfy
the condition in the WHERE clause. In this example, rows that do not have matching
values for X are eliminated so that the two columns for X have identical values for
each row.

6. The results are written to the output table. In SAS tables, column names must be
unique. Only one column X is in the output table Work.Data4. In this example,
Work.Data3 contains three columns and four rows. None of the rows in Work.Data3
contains any missing values.

Earlier in this chapter, you learned that a DATA step match-merge will probably not
produce the desired results when the data sources that you want to combine have a
many-to-many match. You also learned that PROC SQL and the DATA step match-
merge do not, by default, produce the same results when you combine data sources that
contain nonmatching data. Now that you have seen how DATA step match-merges and

512 Chapter 15 • Combining Data Horizontally

PROC SQL joins work, consider an example of using each of these techniques to
combine data from a many-to-many match that also contains nonmatching data.

Example: Combining Data from a Many-to-Many Match
Suppose you want to combine the data from Sasuser.Flightschedule and
Sasuser.Flightattendants. The Sasuser.Flightschedule data set contains data about flights
that have been scheduled for a fictional airline. The data set Sasuser.Flightattendants
contains information about the flight attendants of a fictional airline. A partial listing of
each of these data sets is shown below.

Table 15.3 SASuser.Flightschedule (Partial Listing)

Date Destination FlightNumber EmpID

01MAR2000 YYZ 132 1739

01MAR2000 YYZ 132 1478

01MAR2000 YYZ 132 1130

01MAR2000 YYZ 132 1390

01MAR2000 YYZ 132 1983

01MAR2000 YYZ 132 1111

01MAR2000 YYZ 182 1076

01MAR2000 YYZ 182 1118

Table 15.4 Sasuser.Flightattendants (Partial Listing)

EmpID JobCode LastName FirstName

1350 FA3 Arthur Barbara

1574 FA2 Cahill Marshall

1437 FA3 Carter Dorothy

1988 FA3 Dean Sharon

1983 FA2 Dunlap Donna

1125 FA2 Eaton Alicia

1475 FA1 Fields Diana

1422 FA1 Fletcher Marie

Comparing DATA Step Match-Merges and PROC SQL Joins 513

Suppose you want to combine all variables from the Sasuser.Flightschedule data set with
the first and last names of each flight attendant who is scheduled to work on each flight.
Sasuser.Flightschedule contains data for 45 flights. Three flight attendants are scheduled
to work on each flight. Therefore, your output data set should contain 135 observations
(three for each flight).

You could use the following PROC SQL step to combine Sasuser.Flightschedule with
Sasuser.Flightattendants.

proc sql;
 create table flightemps as
 select flightschedule.*, firstname, lastname
 from sasuser.flightschedule, sasuser.flightattendants
 where flightschedule.empid=flightattendants.empid;
quit;

The resulting Flightemps data set contains 135 observations.

Now, suppose you use the following DATA step match-merge to combine these two data
sets.

proc sort data=sasuser.flightattendants out=fa;
 by empid;
run;

proc sort data=sasuser.flightschedule out=fs;
 by empid;
run;

data flightemps2;
 merge fa fs;
 by empid;
run;

The resulting Flightemps2 data set contains 272 observations. The DATA step match-
merge does not produce the correct results because it combines the data sequentially. In
the correct results, there are three observations for each unique flight from
Sasuser.Flightschedule, and there are no missing values in any of the observations. By
contrast, the results from the DATA step match-merge contain six observations for each
unique flight and many observations that have missing values.

In the last example, data was combined from two data sets that have a many-to-many
match. The PROC SQL join produced the correct results, but the DATA step match-
merge did not. However, you can produce the correct results in a DATA step. First,
consider using multiple SET statements to combine data.

Using Multiple SET Statements
You can use multiple SET statements to combine observations from several SAS data
sets.

For example, the following DATA step creates a new data set named Combine. Each
observation in Combine contains data from one observation in Dataset1 and data from
one observation in Dataset2.

data combine;
 set dataset1;
 set dataset2;
run;

514 Chapter 15 • Combining Data Horizontally

When you use multiple SET statements, the following results occur:

• Processing stops when SAS encounters the end-of-file (EOF) marker on either data
set (even if there is more data in the other data set). Therefore, the output data set
contains the same number of observations as the smallest input data set.

• The variables in the program data vector (PDV) are not reinitialized when a second
SET statement is executed.

• For any variables that are common to both input data sets, the value or values from
the data set in the second SET statement will overwrite the value or values from the
data set in the first SET statement in the PDV.

Keep in mind that using multiple SET statements to combine data from multiple input
sources that do not have a one-to-one match can be complicated. If you are working with
data sources that do not have a one-to-one match, or that contain nonmatching data, you
will need to add additional DATA step syntax in order to produce the results that you
want.

Example: Using Multiple SET Statements with a Many-to-Many
Match

Remember that in the previous example you wanted to combine Sasuser.Flightschedule
with Sasuser.Flightattendants. Your resulting data set should contain all variables from
the Sasuser.Flightschedule data set with the first and last names of each flight attendant
who is scheduled to work on each flight. Sasuser.Flightschedule contains data for 45
flights, and three flight attendants are scheduled to be on each flight. Therefore, your
output data set should contain 135 observations (three for each flight).

You can use the following DATA step to perform this table lookup operation. In this
program, the first SET statement reads an observation from the Sasuser.Flightschedule
data set. Then the DO loop executes, and the second SET statement reads each
observation in Sasuser.Flightattendants. The EmpID variable in Sasuser.Flightattendants
is renamed so that it does not overwrite the value for EmpID that has been read from
Sasuser.Flightschedule. Instead, these two values are used for comparison to control
which observations from Sasuser.Flightattendants should be included in the output data
set for each observation from Sasuser.Flightschedule.

data flightemps3(drop=empnum jobcode);
 set sasuser.flightschedule;
 do i=1 to num;
 set sasuser.flightattendants
 (rename=(empid=empnum))
 nobs=num point=i;
 if empid=empnum then output;
 end;
run;

The resulting Flightemps3 data set contains 135 observations and no missing values.
Keep in mind that although it is possible to use a DATA step to produce the same results
that a PROC SQL join creates by default, the PROC SQL step might be much more
efficient.

Comparing DATA Step Match-Merges and PROC SQL Joins 515

Combining Summary Data and Detail Data

Overview
You have seen how to combine data from multiple data sets. Suppose you want to
calculate percentages based on individual values from a data set as compared to a
summary statistic of the data. You need to complete these tasks:

• create a summary statistic

• combine the summary data with the detail rows of the original data set

• calculate the percentages

For example, the data set Sasuser.Monthsum has one row for every value of SalesMonth
(month and year) from 1997 to 1999. Each row contains information about the revenue
generated by an airline.

Table 15.5 SAS Data Set Sasuser.Monthsum (Partial Listing)

Sales Month RevCargo

JAN1997 $171,520,869.10

JAN1998 $238,786,807.60

JAN1999 $280,350,393.00

FEB1997 $177,671,530.40

FEB1998 $215,959,695.50

FEB1999 $253,999,924.00

Suppose you want to produce a report that shows what percentage of the total cargo
revenue for the three-year period was generated in each month of each year. You could
summarize the data to get the total revenue for cargo for the three-year period and assign
that value to a new variable called Cargosum in a summary data set.

Table 15.6 Summary Data Set

Cargosum

$8,593,432,002.35

Combine the summary data (Cargosum) with the detail data in Sasuser.Monthsum to
calculate percentages of the total cargo revenue for each month.

516 Chapter 15 • Combining Data Horizontally

Table 15.7 Partial Listing of the Combined Data Set

Sales Month RevCargo
Month

No Cargosum PctRev

JAN1997 $171,520,869.10 1 $8,593,432,002.3
5

<RevCargo/Cargosum>

JAN1998 $238,786,807.60 1 $8,593,432,002.3
5

<RevCargo/Cargosum>

JAN1999 $280,350,393.00 1 $8,593,432,002.3
5

<RevCargo/Cargosum>

FEB1997 $177,671,530.40 2 $8,593,432,002.3
5

<RevCargo/Cargosum>

FEB1998 $215,959,695.50 2 $8,593,432,002.3
5

<RevCargo/Cargosum>

FEB1999 $253,999,924.00 2 $8,593,432,002.3
5

<RevCargo/Cargosum>

We will examine this task more closely.

The MEANS Procedure
You should already know how to use the MEANS procedure for producing summary
statistics. By default, PROC MEANS generates a report that contains descriptive
statistics. The descriptive statistics can be routed to a SAS data set by using an OUTPUT
statement. The default report can be suppressed by using the NOPRINT option.

General form, PROC MEANS with OUTPUT statement:

PROC MEANS DATA=input-SAS-data-set NOPRINT;
<VAR variable(s);>
OUTPUT OUT= output-SAS-data-set

statistic=output-variable(s);
RUN;

Here is an explanation of the syntax:

input-SAS-data-set
identifies the data set on which the summary statistic is generated.

variable(s)
is the name or names of the variable or variables that are being analyzed.

output-SAS-data-set
names the data set where the descriptive statistics will be stored.

statistic
is one of the summary statistics generated.

output-variable(s)
names the variable or variables in which to store the value or values of statistic in the output
data set.

Combining Summary Data and Detail Data 517

The output data set that a PROC MEANS step creates contains the requested statistics as
values for output-variable(s), as well as two additional variables that are automatically
included, as follows:

• _TYPE_ contains information about the class variables

• _FREQ_ contains the number of observations that an output level represents.

Example
The following program creates a summary data set named Sasuser.Summary.
Sasuser.Summary contains the sum of the values of Revcargo from Sasuser.Monthsum,
stored in the variable Cargosum.

proc means data=sasuser.monthsum noprint;
 var revcargo;
 output out=sasuser.summary sum=Cargosum;
run;

proc print data=sasuser.summary;
run;

Because of the NOPRINT option, the PROC MEANS step does not produce a report.
Printing the Sasuser.Summary data set produces the following report.

Once you have created the summary statistic, you need to combine this summary
information with the detail rows of the data set so that you can calculate the percentages.
Remember that you can use multiple SET statements to combine data horizontally.
Consider how this process works by using multiple set statements to combine the detail
rows of Sasuser.Monthsum with the summary data that we created in Sasuser.Summary.

Example
This example creates a new data set named Percent1 that combines

• summary data (total revenue for cargo from the three-year period) from
Sasuser.Summary

• detail data (month and total cargo for the month) from Sasuser.Monthsum.

Percent1 also contains a new variable named PctRev that records the calculated
percentage of the total revenue that each observation represents.

Remember, the automatic variable _N_ tracks of how many times the DATA step
iterates. The following DATA step uses _N_ to prevent SAS from reaching end of file on
Sasuser.Summary after the first iteration of the step. Since variables read from a SAS
data set are not reinitialized, the value of Cargosum is retained in the PDV as each
observation is read from Sasuser.Monthsum.

1. This example shows the compilation and execution of the DATA step below. This
DATA step creates a new data set that combines summary data from one input data
set (Sasuser.Summary) and detail data from a second input data set
(Sasuser.Monthsum).

518 Chapter 15 • Combining Data Horizontally

data sasuser.percent1(drop=cargosum);
 if _N_=1 then set sasuser.summary(keep=cargosum);
 set sasuser.monthsum(keep=salemon revcargo);
 PctRev=revcargo/cargosum;
run;

2. During the compilation phase, SAS reads the descriptor portion of the input data set
and creates the PDV. _N_ is a temporary variable that is included in the PDV,
although it will not be included in the output data set.

3. Execution begins. On the first iteration of the DATA step, _N_ has a value of 1. The
IF statement evaluates as true, so the first SET statement reads the value of
Cargosum from Sasuser.Summary into the PDV.

4. The second SET statement reads the first observation in Sasuser.Monthsum into the
PDV.

5. SAS calculates the value of PctRev and records it in the PDV.

6. At the bottom of the DATA step, SAS writes the values in the PDV to the output data
set. _N_ is not included in the output data set since it is a temporary variable.
CargoSum is dropped from the output data set as well.

7. On the second iteration of the DATA step, the value of _N_ is 2, so the IF statement
evaluates to false and the first SET statement does not execute. However, the value
of CargoSum is retained in the PDV.

8. The second SET statement reads the second observation from Sasuser.Monthsum
into the PDV.

9. The value for PctRev is calculated and recorded in the PDV. SAS writes the values in
the PDV to the output data set (except for _N_ and CargoSum).

10. The DATA step continues to execute until all observations have been read from
Sasuser.Monthsum.

Another method of combining summary data and detail data is to create the summary
statistic in a DATA step and combine it with the detail data in the same step. To do this
you must do the following:

• read the data once and calculate the summary statistic

• re-read the data to combine the summary statistic with the detail data to calculate the
percentages

The Sum Statement
You can use the sum statement to obtain a summary statistic within a DATA step. The
sum statement adds the result of an expression to an accumulator variable.

General form, sum statement:

variable+expression;

Here is an explanation of the syntax:

variable
specifies the name of the accumulator variable. This variable must be numeric. The variable
is automatically set to 0 before the first observation is read. The variable's value is retained
from one DATA step iteration to the next.

expression
is any numeric SAS expression.

Combining Summary Data and Detail Data 519

CAUTION:
If the expression produces a missing value, the sum statement ignores it. This action
is different from the assignment statements that assign a missing value if the
expression produces a missing value.

Note: The sum statement and assignment statement are among the few SAS statements
that does not begin with a keyword.

The sum statement adds the result of the expression that is on the right side of the plus
sign (+) to the numeric variable that is on the left side of the plus sign. At the top of the
DATA step, the value of the numeric variable is not set to missing as it usually is when
reading raw data. Instead, the variable retains the new value in the program data vector
for use in processing the next observation.

Example
The following example uses a sum statement to generate the summary statistic in a DO
UNTIL loop. On the first iteration of the DATA step, the DO UNTIL loop reads each
observation of Sasuser.Monthsum and keeps a running tally of the total value of
RevCargo from each observation. On each subsequent iteration of the DATA step, this
tally (stored in the variable TotalRev) is divided into RevCargo to calculate the new
variable PctRev.

Note: Remember that the END= a set statement option creates a temporary variable that
contains an end-of-file indicator.

1. This example shows the execution of the DATA step below. This DATA step reads
the same data set, Sasuser.Monthsum, twice: first, to create a summary statistic;
second, to merge the summary statistic back into the detail data to calculate
PCTREV and create a new data set, Sasuser.Percent2.

data sasuser.percent2(drop=totalrev);
 if _N_=1 then do until (LastObs);
 set sasuser.monthsum(keep=revcargo) end=lastobs;
 TotalRev+revcargo;
 end;
 set sasuser.monthsum(keep=salemon revcargo);
 PctRev=revcargo/totalrev;
run;

2. During the compilation phase, SAS reads the descriptor portion of the input data set
and creates the PDV. _N_, LastObs, and TotalRev are temporary variables that are
included in the PDV but not written to the output data set.

3. Execution begins. The temporary variables are initialized with values. The IF
statement resolves to true on the first iteration of the DATA step, so the DO UNTIL
loop begins to execute. Remember, in a DO UNTIL loop, the condition is evaluated
at the bottom of the loop.

4. The first SET statement reads the first observation from Sasuser.Monthsum and
writes the value for RevCargo to the PDV.

5. The value of TotalRev is increased by the value of RevCargo and overwritten in the
PDV.

6. At the bottom of the DO loop, SAS evaluates the UNTIL expression. It resolves to
false since the value of LastObs is 0, so the loop continues to execute.

520 Chapter 15 • Combining Data Horizontally

7. The first SET statement reads the second observation from Sasuser.Monthsum,
overwriting the value for RevCargo in the PDV and adding this value to the
accumulator variable TotalRev.

8. The DO UNTIL loop continues to execute until the first SET statement reads the last
observation from Sasuser.Monthsum and the value of LastObs is set to 1. At this
point, the value for TotalRev in the PDV is the sum of all values for RevCargo in
Sasuser.Monthsum. The loop is satisfied.

9. The second SET statement reads the same data set as the first SET statement.
However, this time SaleMon and RevCargo are read into the PDV. TotalRev remains
populated in the PDV.

10. PctRev is calculated for observation 1 and recorded in the PDV. Then, SAS writes
the values in the PDV to the output data set Sasuser.Percent2, except for the
temporary variables and the variable TotalRev.

11. On the second iteration of the DATA step, the value of _N_ increases to 2, so the IF
expression is false. The second SET statement reads from the second observation of
Sasuser.Monthsum into the PDV.

12. The value for the accumulator variable TotalRev is retained from the previous
iteration and used to calculate a new value for PctRev, which is recorded in the PDV.
SAS writes the values in the PDV to the output data set.

13. The DATA step iterates until end-of-file on Sasuser.Monthsum.

Using an Index to Combine Data

Overview
Suppose you want to combine data from two data sets, and one of the data sets is much
larger than the other. Also, suppose you want to select only those observations from the
larger data set that match an observation from the smaller data set according to the value
of one or more common variables.

You should already know how to create an index on a SAS data set. You have learned
that PROC SQL can take advantage of an index to improve performance on a join. You
can also take advantage of an index in a DATA step to combine data from matching
observations in multiple data sets if the index is built on variables that are common to all
input data sets.

For example, suppose you want to combine data from the matching observations in
Sasuser.Dnunder and Sasuser.Sale2000. Only a portion of the flights that are in
Sasuser.Sale2000 (which has 156 observations) are also in Sasuser.Dnunder (which has
only 57 observations). Suppose you want to select only the matching observations.

Assume that Sasuser.Sale2000 has a composite index named Flightdate associated with
it. The values for Flightdate are unique and are based on the values of the variables
FlightID and Date. You can use the FLIGHTDATE index to efficiently select only the
matching observations via direct access.

Using an Index to Combine Data 521

The next few sections show how to use the Flightdate index to combine matching
observations from the Sasuser.Sale2000 data set and the Sasuser.Dnunder data set.

The KEY= Option
You have seen how to use multiple SET statements in a DATA step in order to combine
summary data and detail data in a new data set. You can also use multiple SET
statements to read only the matching observations.

You specify the KEY= option in the SET statement to use an index to retrieve matching
observations from the lookup data set.

General form, SET statement with KEY= option:

SET SAS-data-set-name KEY= index-name;

Here is an explanation of the syntax:

index-name
is the name of an index that is associated with the SAS-data-set-name data set.

To use the SET statement with the KEY= option to perform a lookup operation, your
lookup values must be stored in a SAS data set that has an index. This technique is
appropriate only when you are working with one-to-one matches, with a lookup table of
any size. It is possible to return multiple values with this technique and use other DATA
step syntax as well.

When SAS encounters a SET statement with the KEY= option, SAS uses the index to
retrieve an observation with a key value that matches the key value from the PDV.

For example, if the Sasuser.Sale2000 data set has an index named Flightdate associated
with it, the following SET statement uses the Flightdate index to locate observations in
Sale2000 that have specific values for FlightID and Date:

522 Chapter 15 • Combining Data Horizontally

set sasuser.sale2000 key=flightdate;

When the SET statement in the example above begins to execute, there must already be
a value for FlightID and a value for Date in the PDV. SAS then uses the Flightdate index
to retrieve an observation from Sasuser.Sale2000. This observation must have values for
FlightID and Date that match the values for FlightID and Date that are already in the
PDV.

In order to assign a key value in the PDV before the SET statement with the KEY=
option executes, you precede that SET statement with another SET statement in the
DATA step. Consider this example in context.

Example
Remember that you want to combine Sasuser.Sale2000 and Sasuser.Dnunder, and that
Sasuser.Sale2000 has an index named Flightdate that is based on the values of the
FlightID and Date variables. You can use two SET statements to combine these two data
sets, and use the KEY= option in the second SET statement to take advantage of the
index.

In the following example, these results occur:

• the first SET statement reads an observation sequentially from the Sasuser.Dnunder
data set. SAS writes the values from this observation to the PDV, and then moves to
the second SET statement.

• the second SET statement uses the Flightdate index on Sasuser.Sale2000 to find an
observation in Sasuser.Sale2000 that has values for FlightID and Date that match the
values of FlightID and Date that were populated by the first SET statement.

• Work.Profit is the output data set.

CAUTION:
If you use the KEY= option to read a SAS data set, you cannot use WHERE
processing on that data set in the same DATA step.

1. This example shows the execution of a DATA step that uses two SET statements to
combine data from two input data sets (Sasuser.Sale2000 and Sasuser.Dnunder) into
one output data set (Work.Profit). The DATA step uses an index on the larger of the
two input data sets, Sasuser.Sale2000, to find matching observations.

data work.profit;
 set sasuser.dnunder;
 set sasuser.sale2000(keep=routeid flightid date rev1st
 revbusiness revecon revcargo)
 key=flightdate;
 Profit=sum(rev1st, revbusiness, revecon, revcargo,
 -expenses);
run;

2. SAS reads the descriptor portions of the input data sets and creates the PDV.

3. The first SET statement executes and creates the PDV. SAS reads the first
observation in Sasuser.Dnunder into the PDV.

4. When the second SET statement executes, the KEY= option uses the Flightdate
index to directly access the observation in Sasuser.Sale2000 that has values for
FlightID and Date that match the values already in the PDV. The matching
observation is then read into the PDV.

5. SAS calculates the value for Profit and records it in the PDV. Then, SAS writes the
current observation from the PDV to the output data set.

Using an Index to Combine Data 523

6. The DATA step continues to iterate. Only the variable Profit is reinitialized to
missing. The first SET statement reads the second observation in Sasuser.Dnunder
into the PDV, overwriting the previous values.

7. The second SET statement uses the Flightdate index to find a matching observation
in Sasuser.Sale2000. The matching observation is read into the PDV, overwriting the
previous values. A new value for Profit is calculated and recorded. The current
observation is written to the output data set.

8. The DATA step continues to iterate until end of file on Sasuser.Dnunder.

Remember that when SAS encounters a SET statement with the KEY= option, the value
of the key variable on which the KEY= index is built must already exist in the PDV.
Therefore, it is very important for the two SET statements to be in the exact order
shown.

Example
If you examine the Work.Profit output data set closely, you will notice that the final
observation in the output data set contains values for several variables that are identical
to values in the previous observation. This action happened when the second SET
statement failed to find a matching observation in sasuser.sale2000.

The observation that contains unmatched data is printed to the log. As you can see in the
log sample below, the unmatched observation includes an _Error_ variable whose value
is 1, which indicates unmatched data. The _N_ variable indicates the iteration of the
DATA step in which the error occurred.

Table 15.8 SAS Log

FlightID=IA11802 RouteID=0000108 Date=30DEC2000 Expenses=3720
Rev1st=1270 RevBusiness=. RevEcon=5292 RevCargo=1940 Profit=4782

ERROR=1 _IORC_=1230015 _N_=57
NOTE: There were 57 observations read from the data set
 SASUSER.DNUNDER.
NOTE: The data set WORK.PROFIT has 57 observations and 9 variables.
NOTE: DATA statement used (Total process time):
 real time 0.38 seconds
 cpu time 0.04 seconds

Notice that the observation that is printed in the SAS log above also contains a variable
named _IORC_.

The _IORC_ Variable
When you use the KEY= option, SAS creates an automatic variable named _IORC_,
which stands for INPUT/OUTPUT Return Code. You can use _IORC_ to determine
whether the index search was successful. If the value of _IORC_ is zero, SAS found a
matching observation. If the value of _IORC_ is not zero, SAS did not find a matching
observation.

To prevent writing the data error to the log (and to your output data set), do the
following:

• check the value of _IORC_ to determine whether a match has been found

524 Chapter 15 • Combining Data Horizontally

• set _ERROR_ to 0 if there is no match

• delete the nonmatching data or write the nonmatching data to an errors data set

Example
The following example uses the Flightdate index to combine data from Sasuser.Sale2000
with data from Sasuser.Dnunder, and writes the combined data to a new data set named
Work.Profit3. Unmatched observations are written to Work.Errors. No observations
should be written to the SAS log.

data work.profit3 work.errors;
 set sasuser.dnunder;
 set sasuser.sale2000(keep=routeid flightid date rev1st
 revbusiness revecon revcargo)key=flightdate;
 if _iorc_=0 then do;
 Profit=sum(rev1st, revbusiness, revecon, revcargo,
 -expenses);
 output work.profit3;
 end;
 else do;
 error=0;
 output work.errors;
 end;
run;

If you examine the results from the program above, you will notice that there is one
fewer observation in the Work.Profit3 output data set than there was in the Work.Profit
output data set. The unmatched observation is written to the Work.Errors data set.

Using a Transaction Data Set

Overview
Sometimes, rather than just combining data from two data sets, you might want to
update the data in one data set with data that is stored in another data set. That is, you
might want to update a master data set by overwriting certain values with values that are
stored in a transaction data set.

For example, suppose the data set Mylib.Empmaster contains data that is outdated. The
current data is stored in another data set named Mylib.Empchanges. Mylib.Empmaster
contains 148 observations, and Mylib.Empchanges contains six observations. The
variable EmpID contains unique values in both data sets.

A partial listing of Mylib.Empmaster and the full listing of Mylib.Empchanges is shown
below. Notice that there is one observation in each data set with a value of 1065 for
EmpID. The values of JobCode and Salary are different in these observations.

Table 15.9 Mylib.Empmaster (Partial Listing)

DateOfBirth DateOfHire EmpID Gender JobCode Salary

05MAR1957 30MAR1990 1009 M TA1 $40,432

Using a Transaction Data Set 525

DateOfBirth DateOfHire EmpID Gender JobCode Salary

01JAN1956 20OCT1979 1017 M TA3 $57,201

23MAY1963 27OCT1982 1036 F TA3 $55,149

14APR1962 17SEP1990 1037 F TA1 $39,98

13NOV1967 26NOV1989 1038 F TA1 $37,146

17JUL1961 27AUG1984 1050 M ME2 $49,234

29JAN1942 10JAN1985 1065 M ME2 $49,126

18OCT1970 06OCT1989 1076 M PT1 $93,181

Table 15.10 Mylib.Empchanges

DateOfBirth DateOfHire EmpID Gender JobCode Salary

30JUN1955 31JAN1982 1639 F TA3 $59,164

29JAN1942 10JAN1985 1065 M ME3 $53,326

03DEC1961 10Oct1985 1561 M TA3 $51,120

25SEP1965 07OCT1989 1221 F FA3 $41,854

11AUG1970 01NOV2000 1447 F FA1 $30,340

13SEP1968 05NOV2000 1998 M SCP $32,240

If you could see the full listing of Mylib.Empmaster, you would see that each of the
observations in Mylib.Empchanges has a matching observation in Mylib.Empmaster
based on the values of EmpID. There are also many observations in Mylib.Empmaster
that do not have a matching observation in Mylib.Empchanges. To update
Mylib.Empmaster, you want to find all of the matching observations and change their
values for JobCode and Salary to the new values from Mylib.Empchanges. You can use
the UPDATE statement to make these changes.

Using the UPDATE Statement
You use the UPDATE statement to update a master data set with a transaction data set.
The UPDATE statement can perform the following tasks:

• change the values of variables in the master data set

• add observations to the master data set

• add variables to the master data set

526 Chapter 15 • Combining Data Horizontally

General form, UPDATE statement:

DATA master-data-set;
UPDATE master-data-set transaction-data-set;
BY by-variable(s);

RUN;

Here is an explanation of the syntax:

master-data-set
names the SAS data set used as the master file.

transaction-data-set
names the SAS data set that contains the changes to be applied to the master data set.

by-variable(s)
names a variable that appears in both master-data-set and in transaction-data-set. Each
observation in master-data-set must have a unique value for by-variable, but transaction-
data-set can contain more than one observation with the same by-variable value.

The UPDATE statement replaces values in the master data set with values from the
transaction data set for each observation with a matching value of the BY variable. Any
observations in either the master data set or the transactional data set that have
nonmatching values for the BY variable are included in the output data set. Also, by
default, SAS does not replace existing values in the master data set with missing values
if those values are coded as periods (for numeric variables) or blanks (for character
variables) in the transaction data set.

When you use the UPDATE statement, keep in mind the following restrictions.

• Only two data set names can appear in the UPDATE statement.

• The master data set must be listed first.

• A BY statement that gives the matching variable must be used.

• Both data sets must be sorted by or have indexes based on the BY variable.

• In the master data set, each observation must have a unique value for the BY
variable.

Example
Remember that you want to update the master data set Mylib.Empmaster with the
transactional data set Mylib.Empchanges. You can use the UPDATE statement to
accomplish this task, as shown in the program below. Remember, both data sets must be
sorted by or indexed on the BY variable.

proc sort data=mylib.empmaster;
 by empid;
run;

proc sort data=mylib.empchanges;
 by empid;
run;

data mylib.empmaster;
 update mylib.empmaster mylib.empchanges;
 by empid;
run;

Using a Transaction Data Set 527

The first eight observations of the updated Mylib.Empmaster data set are shown below.
Notice that the observation that has a value of 1065 for EmpID now contains the
updated values for JobCode and Salary.

proc print data=mylib.empmaster (obs=8) noobs;
run;

Summary

Text Summary

Reviewing Terminology
You can review definitions of terms that are important in this chapter. You can also
review diagrams and descriptions of the various relationships between input sources for
a table lookup operation.

Working with Lookup Values Outside of SAS Data Sets
You can use the IF-THEN/ELSE statement in the DATA step to combine data from a
base table with lookup values that are not stored in a SAS data set. You can also use the
FORMAT procedure or the ARRAY statement to combine data from a base table with
lookup values that are not stored in a SAS data set.

Combining Data with the DATA Step Match-Merge
You can use the MERGE statement in the DATA step to combine data from multiple data
sets as long as the input data sets have a common variable. You can merge more than
two data sets that lack a common variable in multiple DATA steps if each input data set
contains at least one variable that is also in at least one other input data set.

528 Chapter 15 • Combining Data Horizontally

Using PROC SQL to Join Data
You can also use PROC SQL to join data from multiple tables if there is no single
column that is common to all input tables. If you create a new table with the results of an
inner join in a PROC SQL step, the results can be very similar to the results of a DATA
step match-merge.

Comparing DATA Step Match-Merges and PROC SQL Joins
It is possible to create identical results with a basic DATA step match-merge and a
PROC SQL join. However, there are significant differences between these two methods,
as well as advantages and disadvantages to each. In some cases, such as when there is a
one-to-one or a one-to-many match on values of the BY variables in the input data sets,
these two methods produce identical results. In other cases, such as when there is a
many-to-many match on values of the BY variables, or if there are nonmatching values
of the BY variables, these two methods produce different results. These differences
reflect the fact that the processing is different for a DATA step match-merge and a PROC
SQL join. Even if you are working with many-to-many matches or nonmatching data, it
is possible to use other DATA step techniques such as multiple SET statements to create
results that are identical to the results that a PROC SQL step creates.

Combining Summary Data and Detail Data
In order to perform tasks such as calculating percentages based on individual values
from a data set based on a summary statistic of the data, you need to combine summary
data and detail data. One way to create a summary data set is to use PROC MEANS.
Once you have a summary data set, you can use multiple SET statements to combine the
summary data with the detail data in the original data set. It is also possible to create
summary data with a sum statement and to combine it with detail data in one DATA step.

Using an Index to Combine Data
You can use an index to combine data from matching observations in multiple data sets
if the index is built on variables that are common to all input data sets. Especially if one
of the input data sets is very large, an index can improve the efficiency of the merge. You
use the KEY= option in a SET statement in conjunction with another SET statement to
use an index to combine data. You can use the _IORC_ variable to prevent unmatched
data from being included in the output data set.

Using a Transaction Data Set
Sometimes, you might want to update the data in one data set with data that is stored in
another data set. You use the UPDATE statement to update a master data set with a
transaction data set. The UPDATE statement replaces values in the master data set with
values from the transaction data set for each observations with a matching value of the
BY variable.

Sample Programs

Combining Data with the IF-THEN/ELSE Statement
data mylib.employees_new;
 set mylib.employees;
 if IDnum=1001 then Birthdate='01JAN1963'd;
 else if IDnum=1002 then Birthdate='08AUG1946'd;
 else if IDnum=1003 then Birthdate='23MAR1950'd;
 else if IDnum=1004 then Birthdate='17JUN1973'd;
run;

Summary 529

Combining Data with the ARRAY Statement
data mylib.employees_new;
 array birthdates{1001:1004} _temporary_ ('01JAN1963'd
 '08AUG1946'd '23MAR1950'd '17JUN1973'd);
 set mylib.employees;
 Birthdate=birthdates(IDnum);
run;

Combining Data with the FORMAT Procedure
proc format;
 value birthdate 1001 = '01JAN1963'
 1002 = '08AUG1946'
 1003 = '23MAR1950'
 1004 = '17JUN1973';
run;

data mylib.employees_new;
 set mylib.employees;
 Birthdate=input(put(IDnum,birthdate.),date9.);
run;

Performing a DATA Step Match-Merge
proc sort data=sasuser.expenses out=expenses;
 by flightid date;
run;

proc sort data=sasuser.revenue out=revenue;
 by flightid date;
run;

data revexpns (drop=rev1st revbusiness revecon
 expenses);
 merge expenses(in=e) revenue(in=r);
 by flightid date;
 if e and r;
 Profit=sum(rev1st, revbusiness, revecon,
 -expenses);
run;

proc sort data=revexpns;
 by dest;
run;

proc sort data=sasuser.acities out=acities;
 by code;
run;

data sasuser.alldata;
 merge revexpns(in=r) acities
 (in=a rename=(code=dest)
 keep=city name code);
 by dest;
 if r and a;
run;

530 Chapter 15 • Combining Data Horizontally

Performing a PROC SQL Join
proc sql;
 create table sqljoin as
 select revenue.flightid,
 revenue.date format=date9.,
 revenue.origin, revenue.dest,
 sum(revenue.rev1st,
 revenue.revbusiness,
 revenue.revecon)
 -expenses.expenses as Profit,
 acities.city, acities.name
 from sasuser.expenses, sasuser.revenue,
 sasuser.acities
 where expenses.flightid=revenue.flightid
 and expenses.date=revenue.date
 and acities.code=revenue.dest
 order by revenue.dest, revenue.flightid,
 revenue.date;
quit;

Combining Summary Data and Detail Data
proc means data=sasuser.monthsum noprint;
 var revcargo;
 output out=sasuser.summary sum=Cargosum;
run;

data sasuser.percent1;
 if _n_=1 then set sasuser.summary
 (keep=cargosum);
 set sasuser.monthsum
 (keep=salemon revcargo);
 PctRev=revcargo/cargosum;
run;

data sasuser.percent2(drop=totalrev);
 if _n_=1 then do until(lastobs);
 set sasuser.monthsum(keep=revcargo)
 end=lastobs;
 totalrev+revcargo;
 end;
 set sasuser.monthsum (keep=salemon revcargo);
 PctRev=revcargo/totalrev;
run;

Using an Index to Combine Data
data work.profit work.errors;
 set sasuser.dnunder;
 set sasuser.sale2000(keep=routeid
 flightid date rev1st revbusiness
 revecon revcargo)key=flightdate;
 if _iorc_=0 then do;
 Profit=sum(rev1st, revbusiness, revecon,
 revcargo, -expenses);
 output work.profit;
 end;

Summary 531

 else do;
 error=0;
 output work.errors;
 end;
run;

Using a Transaction Data Set
proc sort data=mylib.empmaster;
 by empid;
run;

proc sort data=mylib.empchanges;
 by empid;
run;

data mylib.empmaster;
 update mylib.empmaster mylib.empchanges;
 by empid;
run;

Points to Remember
• In a DATA step match-merge, you can use the RENAME= option to give identical

names to variables in input data sets if those variables contain the same data and
have the same type and length.

• You use the OUTPUT statement and the NOPRINT option with the MEANS
procedure to route the statistics to an output data set and suppress the default report.

• The automatic variable _N_ tracks how many times a DATA step has iterated. The
N variable is useful when combining data from a summary data set with data from
a larger detail data set.

• When you use the UPDATE statement, both data sets must be sorted by or have
indexes based on the BY variable.

Quiz
Select the best answer for each question. After completing the quiz, check your answers
using the answer key in the appendix.

1. According to the data set descriptions below, which of the variables that are listed
qualify as BY variables for a DATA step match-merge?

532 Chapter 15 • Combining Data Horizontally

a. Code and IDnum

b. Manager and Supervisor

c. Manager and IDnum

d. There are no variables that are common to both of these data sets.

2. Suppose you want to merge Dataset1, Dataset2, and Dataset3. Also suppose that
Dataset1 and Dataset2 have the common variable Startdate, that Dataset2 and
Dataset3 have the common variable Instructor, and that these data sets have no other
common variables. How can you use a DATA step to merge these three data sets into
one new data set?

a. You use a MERGE statement in one DATA step to merge Dataset1, Dataset2, and
Dataset3 by Startdate and Instructor.

b. You sort Dataset1 and Dataset2 by Startdate and merge them into a temporary
data set in a DATA step. Then you sort the temporary data set and Dataset3 by
Instructor and merge them into a new data set in a DATA step.

c. You can merge these data sets only with a PROC SQL step.

d. You cannot merge these three data sets at all because they do not have a common
variable.

3. Which of the following programs correctly creates a table with the results of a PROC
SQL inner join matched on the values of empcode?

a. proc sql;
 select newsals.empcode allemps.lastname
 newsals.salary contrib.amount
 from sasuser.allemps, sasuser.contrib,
 sasuser.newsals
 where empcode=allemps.empid
 and empcode=contrib.empid;
quit;

b. proc sql;
 create table usesql as
 select newsals.empcode allemps.lastname
 newsals.salsry contrib.amount
 from sasuser.allemps, sasuser.contrib,
 sasuser.newsals
quit;

c. proc sql;
 create table usesql as;
 select newsals.empcode, allemps.lastname,
 newsals.salary, contrib.amount;
 from sasuser.allemps, sasuser.contrib,
 sasuser.newsals;
 where empcode=allemps.empid

Quiz 533

 and empcode=contrib.empid;
quit;

d. proc sql;
 create table usesql as
 select newsals.empcode, allemps.lastname,
 newsals.salary, contrib.amount
 from sasuser.allemps, sasuser.contrib,
 sasuser.newsals
 where empcode=allemps.empid
 and empcode=contrib.empid;
quit;

4. To process a default DATA step match-merge, SAS first reads the descriptor portion
of each input data set to create the PDV and the descriptor portion of the new data
set. Which of the following accurately describes the rest of this process?

a. Next, SAS sequentially match-merges observations reading them into the PDV,
and then writes them to the new data set. When the BY value changes in all the
input data sets, the PDV is initialized to missing. Missing values for variables, as
well as missing values that result from unmatched observations, are written to the
new data set.

b. Next, SAS sequentially match-merges observations reading them into the PDV,
and then writes them to the new data set. After each DATA step iteration, the
PDV is initialized to missing. Missing values for variables, as well as missing
values that result from unmatched observations, are omitted from the new data
set.

c. Next, SAS creates a Cartesian product of all possible combinations of
observations, writes them to the PDV, and then to the new data set. Then SAS
goes through the new data set and eliminates all observations that do not have
matching values of the BY variable.

d. Next, SAS creates a Cartesian product of all possible combinations of
observations, writes them to the PDV, and then to the new data set. The new data
set is then ordered by values of the BY variable.

5. Which of the following statements is false about using multiple SET statements in
one DATA step?

a. You can use multiple SET statements to combine observations from several SAS
data sets.

b. Processing stops when SAS encounters the end-of-file (EOF) marker on either
data set (even if there is more data in the other data set).

c. You can use multiple SET statements in one DATA step only if the data sets in
each SET statement have a common variable.

d. The variables in the PDV are not reinitialized when a second SET statement is
executed.

6. Select the program that correctly creates a new data set named Sasuser.Summary that
contains one observation with summary data that was created from the Salary
variable of the Sasuser.Empdata data set.

a. proc sum data=sasuser.emdata noprint;
 output out=sasuser.summary sum=Salarysum;
run;

b. proc means data=sasuser.empdata noprint;
 var salary;

534 Chapter 15 • Combining Data Horizontally

 output out=sasuser.summary sum=Salarysum;
run;

c. proc sum data=sasuser.empdata noprint;
 var salary;
 output out=sasuser.summary sum=Salarysum;
run;

d. proc means data=sasuser.empdata noprint;
 output=sasuser.summary sum=Salarysum;
run;

7. If the value of Cargosum is $1000 at the end of the first iteration of the DATA step
shown below, what is the value of Cargosum in the PDV when the DATA step is in
its third iteration?

data sasuser.percent1;
 if _n_=1 then set sasuser.summary (keep=cargosum);
 set sasuser.monthsum (keep=salemon revcargo);
 PctRev=revcargo/cargosum;
run;

a. $1000

b. $3000

c. The value is missing.

d. The value cannot be determined without seeing the data that is in
Sasuser.Summary.

8. According to the data set shown, what is the value of Totalrev in the PDV at the end
of the fourth iteration of the DATA step?

data sasuser.percent2(drop=totalrev);
 if _n_=1 then do until(lastobs);
 set sasuser.monthsum2(keep=revcargo)
 end=lastobs;
 totalrev+revcargo;
 end;
 set sasuser.monthsum2
 (keep=salemon revcargo);
 PctRev=revcargo/totalrev;
run;

a. The value is missing.

b. $350.00

c. $520.00

d. $1100.00

9. Which of the following programs correctly uses an index to combine data from two
input data sets?

a. data work.profit;
 set sasuser.sale2000(keep=routeid flightid date
 rev1st revbusiness revecon revcargo)
 key=flightdate;
 set sasuser.dnunder;

Quiz 535

 Profit=sum(rev1st, revbusiness, revecon, revcargo,
 -expenses);
run;

b. data work.profit;
 set sasuser.dnunder;
 set sasuser.sale2000(keep=routeid flightid date
 rev1st revbusiness revecon revcargo)
 key=flightdate;
 where routeid='0000103';
 Profit=sum(rev1st, revbusiness, revecon, revcargo,
 -expenses);
run;

c. data work.profit;
 set sasuser.dnunder;
 set sasuser.sale2000(keep=routeid flightid date
 rev1st revbusiness revecon revcargo);
 key=flightdate;
 Profit=sum(rev1st, revbusiness, revecon, revcargo,
 -expenses);
run;

d. data work.profit;
 set sasuser.dnunder;
 set sasuser.sale2000(keep=routeid flightid date
 rev1st revbusiness revecon revcargo)
 key=flightdate;
 Profit=sum(rev1st, revbusiness, revecon, revcargo,
 -expenses);
run;

10. Which of the following statements about the _IORC_ variable is false?

a. It is automatically created when you use either a SET statement with the KEY=
option or the MODIFY statement with the KEY= option in a DATA step.

b. A value of zero for _IORC_ means that the most recent SET statement with the
KEY= option (or MODIFY statement with the KEY= option) did not execute
successfully.

c. A value of zero for _IORC_ means that the most recent SET statement with the
KEY= option (or MODIFY statement with the KEY= option) executed
successfully.

d. You can use the _IORC_ variable to prevent nonmatching data from being
included when you use an index to combine data from multiple data sets.

536 Chapter 15 • Combining Data Horizontally

Chapter 16

Using Lookup Tables to Match
Data

Overview . 538
Introduction . 538

Using Multidimensional Arrays . 538
Review of the Multidimensional Array Statement . 538
Example . 539

Populating an Array from a SAS Data Set . 542
Overview . 542
Example . 542
Creating an Array . 543
Loading the Array Elements . 544
Reading the Actual Values . 546

Using PROC TRANSPOSE . 548
Overview . 548
Example . 550
Adding Descriptive Variable Names . 551

Merging the Transposed Data Set . 553
Structuring the Data for a Merge . 553
Using a BY Statement with PROC TRANSPOSE . 553
Sorting the Work.Ctarget2 Data Set . 554
Reorganizing the Sasuser.Monthsum Data Set . 555
Sorting the Work.Mnthsum2 Data Set . 556
Completing the Merge . 557

Using Hash Objects as Lookup Tables . 558
Overview . 558
The Structure of a Hash Object . 559
Example . 559
DATA Step Component Objects . 560
Declaring the Hash Object . 560
Defining Keys and Data . 561
Using the Call Missing Routine . 562
Loading Key and Data Values . 562
Retrieving Matching Data . 562
Hash Object Processing . 563
Creating a Hash Object from a SAS Data Set . 564
Using a Non-Executing SET Statement . 565
Working with Multiple Data Variables . 565
Retrieving Multiple Data Values . 566
Using Return Codes with the FIND Method . 567
Example . 567

537

Summary . 570
Text Summary . 570
Sample Programs . 571
Points to Remember . 573

Quiz . 573

Overview

Introduction
Sometimes, you need to combine data from two or more data sets into a single
observation in a new data set according to the values of a common variable. When the
data sources are two or more data sets that have a common structure, you can use a
match-merge to combine the data sets. However, in some cases the data sources do not
share a common structure. When data sources do not have a common structure, you can
use a lookup table to match them. A lookup table is a table that contains key values.

The technique that you use to perform a table lookup is dependent on your data. This
chapter focuses on using multidimensional arrays to perform table lookups and
transposing SAS data sets in preparation for a match-merge.

Using Multidimensional Arrays

Review of the Multidimensional Array Statement
When a lookup operation depends on more than one ordinal numeric key, you can use a
multidimensional array. You use an ARRAY statement to create an array. The ARRAY
statement defines a set of elements that you process as a group.

538 Chapter 16 • Using Lookup Tables to Match Data

General form, multidimensional ARRAY statement:

ARRAY array-name {rows,cols,...} <$> <length>
<array-elements> <(initial values)>;

Here is an explanation of the syntax:

array-name
names the array.

rows
specifies the number of array elements in the row dimension.

cols
specifies the number of array elements in the column dimension.

array-elements
names the variables that make up the array.

initial values
specifies initial values for the corresponding elements in the array, separated by commas or
spaces.

Note: The keyword _TEMPORARY_ might be used instead of array-elements to avoid
creating new data set variables.

When you work with arrays, remember the following:

• the name of the array must be a SAS name that is not the name of a SAS function or
variable in the same DATA step

• the variables listed as array elements must all be the same type (either all numeric or
all character)

• the initial values that are specified can be numbers or character strings. You must
enclose all character strings in quotation marks

Note: If you use the _TEMPORARY_ keyword in an array statement, remember that
temporary data elements behave like DATA step variables with the following
exceptions:

• They do not have names. Refer to temporary data elements by the array name
and dimension.

• They do not appear in the output data set.

• You cannot use the special subscript asterisk (*) to refer to all the elements.

• Temporary data element values are always automatically retained, rather than
being reset to missing at the beginning of the next iteration of the DATA step.

Example
Suppose you need to determine the wind chill values for the flights that are represented
in the SAS data set Sasuser.Flights. The data set contains three variables: Flight (the
flight number), Temp (the average outdoor temperature during the flight), and Wspeed
(the average wind speed during the flight).

Using Multidimensional Arrays 539

Figure 16.1 SAS Data Set Sasuser.Flights

Wind chill values are derived from the air temperature and wind speed as shown in the
following wind chill lookup table. To determine the wind chill for each flight, you can
create a multidimensional array that stores the wind chill values shown in the table. You
can then match the values of Temp and Wspeed with the wind chill values that are stored
in the array.

Figure 16.2 Temperature (in degrees Fahrenheit)

In the following program, the ARRAY statement creates the two-dimensional array WC
and specifies the dimensions of the array: four rows and two columns. No variables are
created from the array because the keyword _TEMPORARY_ is used. The initial values
that are specified correspond to the values in the wind chill lookup table. For this
example, only the values in the first two columns and four rows in the wind chill lookup
table are included in the array.

data work.wndchill (drop=column row);
 array WC{4,2} _temporary_
 (-22,-16,-28,-22,-32,-26,-35,-29);
 set sasuser.flights;
 row=round(wspeed,5)/5;
 column=(round(temp,5)/5)+3;
 WindChill=wc{row,column};
run;

540 Chapter 16 • Using Lookup Tables to Match Data

Figure 16.3 Temperature (in degrees Fahrenheit)

The value of WindChill for each flight is determined by referencing the array based on
the values of Wspeed and Temp in the Sasuser.Flights data set. The row number for the
array reference is determined by the value of Wspeed. The column number for the array
reference is determined by the value of Temp.

Table Representation of the WC Array

data work.wndchill (drop = column row);
 array WC{4,2} _temporary_
 (-22,-16,-28,-22,-32,-26,-35,-29);
 set sasuser.flights;
 row = round(wspeed,5)/5;
 column = (round(temp,5)/5)+3;
 WindChill= wc{row,column};
run;

The rounding unit for the value of Wspeed is 5 because the values for wind speed in the
wind chill table are rounded to every 5 miles-per-hour. Wspeed is then divided by 5 to
derive the row number for the array reference.

Like the value for Wspeed, the value of Temp is rounded to the nearest 5, and then
divided by 5. The offset of 3 is added to the value because the third column in the wind
chill lookup table represents 0 degrees.

data work.wndchill (drop = column row);
 array WC{4,2} _temporary_
 (-22,-16,-28,-22,-32,-26,-35,-29);
 set sasuser.flights;
 row = round(wspeed,5)/5;
 column = (round(temp,5)/5)+3;
 WindChill= wc{row,column};
run;

PROC PRINT output shows the completed data set.

Using Multidimensional Arrays 541

proc print data=work.wndchill;
run;

Populating an Array from a SAS Data Set

Overview
In the previous section, the wind chill lookup table was loaded into the WC array when
the array was created. In many cases, you might prefer to load an array with values that
are stored in a SAS data set rather than loading them in an ARRAY statement. Lookup
values should be stored in a SAS data set when the following conditions are true:

• there are too many values to initialize easily in the array

• the values change frequently

• the same values are used in many programs

Example
Suppose you want to compare the actual cargo revenue values in the SAS data set
Sasuser.Monthsum to the target cargo revenue values in the SAS data set
Sasuser.Ctargets.

Sasuser.Monthsum contains the actual cargo and passenger revenue figures for each
month from 1997 through 1999.

Table 16.1 SAS Data Set Sasuser.Monthsum (first five observations of selected variables)

Obs SaleMon RevCargo MonthNo

1 JAN1997 $171,520,869.10 1

2 JAN1998 $238,786,807.60 1

3 JAN1999 $280,350,393.00 1

4 FEB1997 $177,671,530.40 2

5 FEB1998 $215,959,695.50 2

The SAS data set Sasuser.Ctargets contains the target cargo revenue figures for each
month from 1997 through 1999.

542 Chapter 16 • Using Lookup Tables to Match Data

Table 16.2 SAS Data Set Sasuser.Ctargets

Obs Year Jan Feb Mar Apr May Jun

1 1997 192284420 86376721 28526103 260386468 109975326 102833104

2 1998 108645734 147656369 202158055 41160707 264294440 267135485

3 1999 85730444 74168740 39955768 312654811 318149340 187270927

Obs Jul Aug Sep Oct Nov Dec

1 196728648 236996122 112413744 125401565 72551855 136042505

2 208694865 83456868 286846554 275721406 230488351 24901752

3 123394421 34273985 151565752 141528519 178043261 181668256

You want to create a new SAS data set, Work.Lookup1, that lists the actual and target
values for each month. Work.Lookup1 should have the same structure as
Sasuser.Monthsum: an observation for each month and year, as well as a new variable,
Ctarget (target cargo revenues). The value of Ctarget is derived from the target values in
Sasuser.Ctargets.

Table 16.3 SAS Data Set Work.Lookup1 (first five observations of selected variables)

Obs SaleMon RevCargo Ctarget

1 JAN1997 $171,520,869.10 $192,284,420.00

2 JAN1998 $238,786,807.60 $108,645,734.00

3 JAN1999 $280,350,393.00 $85,730,444.00

4 FEB1997 $177,671,530.40 $86,376,721.00

5 FEB1998 $215,959,695.50 $147,656,369.00

Sasuser.Monthsum and Sasuser.Ctargets cannot be merged because they have different
structures:

• Sasuser.Monthsum has an observation for each month and year.

• Sasuser.Ctargets has one column for each month and one observation for each year.

However, the data sets have two common factors: month and year. You can use a
multidimensional array to match the actual values for each month and year in
Sasuser.Monthsum with the target values for each month and year in Sasuser.Ctargets.

Creating an Array
The first step is to create an array to hold the values in the target data set,
Sasuser.Ctargets. The array needs two dimensions: one for the year values and one for

Populating an Array from a SAS Data Set 543

the month values. In the following program, the first ARRAY statement creates the two-
dimensional array, Targets.

Remember that the dimension of an array does not have to range from one to the number
of elements. You can specify a range for the values of the dimension when you define
the array. In this case, the dimensions of the array are specified as 3 rows (one for each
year: 1997, 1998, and 1999) and 12 columns (one for each month).

data work.lookup1;
 array Targets{1997:1999,12} _temporary_;
 if _n_=1 then do i= 1 to 3;
 set sasuser.ctargets;
 array mnth{*} Jan--Dec;
 do j=1 to dim(mnth);
 targets{year,j}=mnth{j};
 end;
 end;
 set sasuser.monthsum(keep=salemon revcargo monthno);
 year=input(substr(salemon,4),4.);
 Ctarget=targets{year,monthno};
 format ctarget dollar15.2;
run;

The following table represents the Targets array. Notice that the array is not populated.
The next step is to load the array elements from Sasuser.Ctargets.

Table 16.4 Table Representation of Targets Array

1 2 3 4 5 6 7 8 9 10 11 12

1997

1998

1999

Note: The row dimension for the Targets array could have been specified using the
value 3. Here is an example:

array Targets{3,12} _temporary_;

However, using the notation 1997:1999 simplifies the program by eliminating the need
to map numeric values to the year values.

Loading the Array Elements
The Targets array needs to be loaded with the values in Sasuser.Ctargets. One method for
accomplishing this task is to load the array within a DO loop.

Table 16.5 SAS Data Set Sasuser.Ctargets

Year Jan Feb Mar Apr May Jun

1997 192284420 86376721 28526103 260386468 109975326 102833104

1998 108645734 147656369 202158055 41160707 264294440 267135485

544 Chapter 16 • Using Lookup Tables to Match Data

Year Jan Feb Mar Apr May Jun

1999 85730444 74168740 39955768 312654811 318149340 187270927

Jul Aug Sep Oct Nov Dec

196728648 236996122 112413744 125401565 72551855 136042505

208694865 83456868 286846554 275721406 230488351 24901752

123394421 34273985 151565752 141528519 178043261 181668256

The IF-THEN statement specifies that the Targets array is loaded only once, during the
first iteration of the DATA step. The DO loop executes three times, once for each
observation in Sasuser.Ctargets.

The ARRAY statement within the DO loop creates the Mnth array, which stores the
values from Sasuser.Ctargets. The dimension of the Mnth array is specified using an
asterisk, which enables SAS to automatically count the array elements.

Note: If you use an asterisk to specify the dimensions of an array, you must list the array
elements. You cannot use an asterisk to specify an array's dimensions if the elements
of the array are specified with the _TEMPORARY_ keyword.

The array elements Jan through Dec are listed using a double hyphen (- -). The double
hyphen (- -) is used to read the specified values based on their positions in the PDV.

data work.lookup1;
 array Targets{1997:1999,12} _temporary_;
 if _n_=1 then do i= 1 to 3;
 set sasuser.ctargets;
 array Mnth{*} Jan--Dec;
 do j=1 to dim(mnth);
 targets{year,j}=mnth{j};
 end;
 end;
 set sasuser.monthsum(keep=salemon revcargo monthno);
 year=input(substr(salemon,4),4.);
 Ctarget=targets{year,monthno};
 format ctarget dollar15.2;
run;

The following table shows the values in the Mnth array after the first iteration of the DO
loop.

Table 16.6 Table Representation of Mnth Array (after the first iteration of the DO loop)

Jan Feb Mar... ...Oct Nov Dec

192284420 86376721 260386468 125401565 72551855 136042505

Within the nested DO loop, the Targets array reference is matched to the Mnth array
reference in order to populate the Targets array. The DIM function returns the number of
elements in the Mnth array (in this case 12) and provides an ending point for the nested
DO loop.

Populating an Array from a SAS Data Set 545

data work.lookup1;
 array Targets{1997:1999,12} _temporary_;
 if _n_=1 then do i= 1 to 3;
 set sasuser.ctargets;
 array Mnth{*} Jan--Dec;
 do j=1 to dim(mnth);
 targets{year,j}=mnth{j};
 end;
 end;
 set sasuser.monthsum(keep=salemon revcargo monthno);
 year=input(substr(salemon,4),4.);
 Ctarget=targets{year,monthno};
 format ctarget dollar15.2;
run;

Table 16.7 Table Representation of Mnth Array (after the second iteration of the DO loop)

Jan Feb Mar... ...Oct Nov Dec

108645734 147656369 202158055 275721406 230488351 24901752

Table 16.8 Table Representation of Mnth Array (after the third iteration of the DO loop)

Jan Feb Mar... ...Oct Nov Dec

85730444 74168740 39955768 141528519 178043261 181668256

Table 16.9 Table Representation of Populated Targets Array

1 2 3... ...10 11 12

1997 192284420 86376721 260386468 125401565 72551855 136042505

1998 108645734 147656369 202158055 275721406 230488351 24901752

1999 85730444 74168740 39955768 141528519 178043261 181668256

Note: The dimension of the Mnth array could also be specified using the numeric value
12. However, the asterisk notation enables the program to be more flexible. For
example, using the asterisk, the program would not need to be edited if the target
data set contained data for only 11 months. Remember that if you use an asterisk to
count the array elements, you must list the array elements.

Reading the Actual Values
The last step is to read the actual values stored in Sasuser.Monthsum. Remember that
you need to know the month and year values for each observation in order to locate the
correct target revenue values.

546 Chapter 16 • Using Lookup Tables to Match Data

Table 16.10 SAS Data Set Sasuser.Monthsum (first five observations of selected variables)

SaleMon RevCargo MonthNo

JAN1997 $171,520,869.10 1

JAN1998 $238,786,807.60 1

JAN1999 $280,350,393.00 1

FEB1997 $177,671,530.40 2

FEB1998 $215,959,695.50 2

The values for month are read from the numeric variable MonthNo. The year values are
contained within the character variable SaleMon and can be extracted using the
SUBSTR function. In this example, the SUBSTR function extracts four characters from
SaleMon, starting at the fourth character. Note that the INPUT function is used to
convert the value that is extracted from SaleMon from character to numeric in the
assignment statement for Year. A numeric format performs the character to numeric
conversion so the value of Year is used as an array reference.

The values of Ctarget are then looked up from the Targets array based on the values of
Year and MonthNo.

data work.lookup1;
 array Targets{1997:1999,12} _temporary_;
 if _n_=1 then do i= 1 to 3;
 set sasuser.ctargets;
 array Mnth{*} Jan--Dec;
 do j=1 to dim(mnth);
 targets{year,j}=mnth{j};
 end;
 end;
 set sasuser.monthsum(keep=salemon revcargo monthno);
 year=input(substr(salemon,4),4.);
 Ctarget=targets{year,monthno};
 format ctarget dollar15.2;
run;

Table 16.11 Table Representation of Targets Array

1 2 3... ...10 11 12

1997 192284420 86376721 260386468 125401565 72551855 136042505

1998 108645734 147656369 202158055 275721406 230488351 24901752

1999 85730444 74168740 39955768 141528519 178043261 181668256

PROC PRINT output shows the new data set Work.Lookup1, which contains the actual
cargo values (RevCargo) and the target cargo values (Ctarget).

Populating an Array from a SAS Data Set 547

Work.Lookup1 (first ten observations)

proc print data=work.lookup1 (obs=10);
 var salemon revcargo ctarget;
run;

Using PROC TRANSPOSE

Overview
In the previous section, we compared actual revenue values to target revenue values
using an array as a lookup table. Remember the following:

• Sasuser.Monthsum has an observation for each month and year.

Table 16.12 SAS Data Set Sasuser.Monthsum (first five observations of selected
variables)

SaleMon RevCargo MonthNo

JAN1997 $171,520,869.10 1

JAN1998 $238,786,807.60 1

JAN1999 $280,350,393.00 1

FEB1997 $177,671,530.40 2

FEB1998 $215,959,695.50 2

• Sasuser.Ctargets has one variable for each month and one observation for each year.

Table 16.13 SAS Data Set Sasuser.Ctargets (selected variables)

Year Jan Feb Mar Apr May Jun

1997 192284420 86376721 28526103 260386468 109975326 102833104

548 Chapter 16 • Using Lookup Tables to Match Data

Year Jan Feb Mar Apr May Jun

1998 108645734 147656369 202158055 41160707 264294440 267135485

1999 85730444 74168740 39955768 312654811 318149340 187270927

Using arrays was a good solution because the orientation of the data sets differed. An
alternate solution is to transpose Sasuser.Ctargets using PROC TRANSPOSE, and then
merge the transposed data set with Sasuser.Monthsum by the values of Year and Month.

General form, PROC TRANSPOSE:

PROC TRANSPOSE <DATA=input-data-set>
<OUT=output-data-set>
<NAME=prefix text>
<PREFIX=variable-name>;

BY <DESCENDING> variable-1
<...<DESCENDING> variable-n>
<NOTSORTED>;

VAR variable(s);
RUN;

Here is an explanation of the syntax:

DATA=input-data-set
names the SAS data set to transpose.

OUT=output-data-set
names the output data set.

NAME=variable-name
specifies the name for the variable in the output data set that contains the name of the
variable that is being transposed to create the current observation.

PREFIX=variable-name
specifies a prefix to use in constructing names for transposed variables in the output data set.
For example, if PREFIX=VAR, the names of the variables are VAR1, VAR2, ...,VARn.

BY statement
is used to transpose each BY group.

VAR variable(s)
names one or more variables to transpose.

Note: If output-data-set does not exist, PROC TRANSPOSE creates it by using the
DATAn naming convention.

Note: If you omit the VAR statement, the TRANSPOSE procedure transposes all of the
numeric variables in the input data set that are not listed in another statement.

Note: You must list character variables in a VAR statement if you want to transpose
them.

The TRANSPOSE procedure creates an output data set by restructuring the values in a
SAS data set. When the data set is restructured, selected variables are transposed into
observations. The TRANSPOSE procedure can often eliminate the need to write a
lengthy DATA step to achieve the same result. The output data set can be used in
subsequent DATA or PROC steps for analysis, reporting, or further data manipulation.

Using PROC TRANSPOSE 549

PROC TRANSPOSE does not print the output data set. Use PROC PRINT, PROC
REPORT, or some other SAS reporting tool to print the output data set.

Example
The following program transposes the SAS data set Sasuser.Ctargets. The OUT= option
specifies the name of the output data set, Work.Ctarget2. All of the variables in
Sasuser.Ctargets are transposed because all of the variables are numeric and a VAR
statement is not used in the program.

proc transpose data=sasuser.ctargets
 out=work.ctarget2;
run;

Table 16.14 Input Data Set Sasuser.Ctargets (selected variables)

Year Jan Feb Mar Apr May Jun

1997 192284420 86376721 28526103 260386468 109975326 102833104

1998 108645734 147656369 202158055 41160707 264294440 267135485

1999 85730444 74168740 39955768 312654811 318149340 187270927

550 Chapter 16 • Using Lookup Tables to Match Data

Table 16.15 Output Data Set: Work.Ctarget2

Obs _NAME_ COL1 COL2 COL3

1 Year 1997 1998 1999

2 Jan 192284420 108645734 85730444

3 Feb 86376721 147656369 74168740

4 Mar 28526103 202158055 39955768

5 Apr 260386468 41160707 31265481

6 May 109975326 264294440 318149340

7 Jun 102833104 267135485 187270927

8 Jul 196728648 208694865 123394421

9 Aug 236996122 83456868 34273985

10 Sep 112413744 286846554 151565752

11 Oct 125401565 275721406 141528519

12 Nov 72551855 230488351 178043261

13 Dec 136042505 24901752 181668256

Notice that in the output data set, the variables are named _NAME_, COL1, COL2, and
COL3.

NAME is the default name of the variable that PROC TRANSPOSE creates to
identify the source of the values in each observation in the output data set. This variable
is a character variable whose values are the names of the variables that are transposed
from the input data set. For example, in Work.Ctarget2 the values in the first observation
in the output data set come from the values of the variable Year in the input data set.

The remaining transposed variables are named COL1...COLn by default. In
Work.Ctarget2, the values of the variables COL1, COL2, and COL3 represent the target
cargo revenue for each month in the years 1997, 1998, and 1999.

Adding Descriptive Variable Names
You can use PROC TRANSPOSE options to give the variables in the output data set
more descriptive names. The NAME= option specifies a name for the _NAME_
variable.

The PREFIX= option specifies a prefix to use in constructing names for transposed
variables in the output data set. For example, if PREFIX=Ctarget, the names of the
variables are Ctarget1, Ctarget2, and Ctarget3.

proc transpose data=sasuser.ctargets
 out=work.ctarget2
 name=Month
 prefix=Ctarget;
run;

Using PROC TRANSPOSE 551

Table 16.16 Output Data Set: Work.Ctarget2

Obs Month Ctarget1 Ctarget2 Ctarget3

1 Year 1997 1998 1999

2 Jan 192284420 108645734 85730444

3 Feb 86376721 147656369 74168740

4 Mar 28526103 202158055 39955768

5 Apr 260386468 41160707 31265481

6 May 109975326 264294440 318149340

7 Jun 102833104 267135485 187270927

8 Jul 196728648 208694865 123394421

9 Aug 236996122 83456868 34273985

10 Sep 112413744 286846554 151565752

11 Oct 125401565 275721406 141528519

12 Nov 72551855 230488351 178043261

13 Dec 136042505 24901752 181668256

Note: The RENAME=data set option can also be used with PROC TRANSPOSE to
change variable names.

proc transpose data=sasuser.ctargets
 out=work.ctarget2 (rename=(col1=Ctarget1
 col2=Ctarget2 col3=Ctarget3))
 name=Month;
run;

The default label for the _NAME_ variable is NAME OF FORMER VARIABLE. To see
this, print the transposed data set using PROC PRINT with the LABEL option. You can
use a LABEL statement to override the default label.

proc transpose data=sasuser.ctargets
 out=work.ctarget2
 name=Month
 prefix=Ctarget;
run;
proc print data=work.ctarget2 label;
label Month=MONTH;
run;

552 Chapter 16 • Using Lookup Tables to Match Data

Merging the Transposed Data Set

Structuring the Data for a Merge
Remember that the transposed data set, Work.Ctarget2, needs to be merged with
Sasuser.Monthsum by the values of Year and Month. Neither data set is currently
structured correctly for the merge.

Table 16.17 SAS Data Set: Work.Ctarget2 (first five observations)

Obs Month Ctarget1 Ctarget2 Ctarget3

1 Year 1997 1998 1999

2 Jan 192284420 108645734 85730444

3 Feb 86376721 147656369 74168740

4 Mar 28526103 202158055 39955768

5 Apr 260386468 41160707 31265481

Table 16.18 SAS Data Set Sasuer.Monthsum (first five observations of selected variables)

Obs SaleMon RevCargo MonthNo

1 JAN1997 $171,520,869.10 1

2 JAN1998 $238,786,807.60 1

3 JAN1999 $280,350,393.00 1

4 FEB1997 $177,671,530.40 2

5 FEB1998 $215,959,695.50 2

Using a BY Statement with PROC TRANSPOSE
In order to correctly structure Work.Ctarget2 for the merge, a BY statement needs to be
used with PROC TRANSPOSE. For each BY group, PROC TRANSPOSE creates one
observation for each variable that it transposes. The BY variable itself is not transposed.

The following program transposes Sasuser.Ctargets by the value of Year. The resulting
output data set, Work.Ctarget2, now contains 12 observations for each year (1997, 1998,
and 1999).

proc transpose data=sasuser.ctargets
 out=work.ctarget2
 name=Month

Merging the Transposed Data Set 553

 prefix=Ctarget;
 by year;
run;

Table 16.19 Input Data Set Sasuser.Ctargets (selected variables)

Obs Year Jan Feb Mar Apr May Jun

1 1997 192284420 86376721 28526103 260386468 109975326 102833104

2 1998 108645734 147656369 202158055 41160707 264294440 267135485

3 1999 85730444 74168740 39955768 312654811 318149340 187270927

Table 16.20 Output Data Set Work.Ctarget2 (first 12 observations)

Obs Year Month Ctarget1

1 1997 Jan 192284420

2 1997 Feb 86376721

3 1997 Mar 28526103

4 1997 Apr 260386468

5 1997 May 109975326

6 1997 Jun 102833104

7 1997 Jul 196728648

8 1997 Aug 236996122

9 1997 Sep 112413744

10 1997 Oct 125401565

11 1997 Nov 72551855

12 1997 Dec 136042505

CAUTION:
The original SAS data set must be sorted or indexed before using a BY statement
with PROC TRANSPOSE unless you use the NOTSORTED option.

Sorting the Work.Ctarget2 Data Set
The last step in preparing Work.Ctarget2 for the merge is to use the SORT procedure to
sort the data set by Year and Month as shown in the following program:

proc sort data=work.ctarget2;

554 Chapter 16 • Using Lookup Tables to Match Data

 by year month;
run;

Notice that in the sorted version of Work.Ctarget2, the values of month are sorted
alphabetically within year.

Table 16.21 SAS Data Set Work.Ctarget2 (sorted, first 12 observations)

Obs Year Month Ctarget1

1 1997 Apr 260386468

2 1997 Aug 236996122

3 1997 Dec 136042505

4 1997 Feb 86376721

5 1997 Jan 192284420

6 1997 Jul 196728648

7 1997 Jun 102833104

8 1997 Mar 28526103

9 1997 May 109975326

10 1997 Nov 72551855

11 1997 Oct 125401565

12 1997 Sep 112413744

Reorganizing the Sasuser.Monthsum Data Set
The data in Sasuser.Monthsum must also be reorganized for the merge because the
month and year values in that data set are combined in the variable SaleMon.

Table 16.22 SAS Data Set Sasuser.Monthsum (first five observations of selected variables)

Obs SaleMon RevCargo MonthNo

1 JAN1997 $171,520,869.10 1

2 JAN1998 $238,786,807.60 1

3 JAN1999 $280,350,393.00 1

4 FEB1997 $177,671,530.40 2

Merging the Transposed Data Set 555

Obs SaleMon RevCargo MonthNo

5 FEB1998 $215,959,695.50 2

The following program creates two new variables, Year and Month, to hold the year and
month values. The values for Year are created from SaleMon using the INPUT and
SUBSTR functions. The values for Month are extracted from SaleMon using the
LOWCASE and SUBSTR functions.

data work.mnthsum2;
 set sasuser.monthsum(keep=SaleMon RevCargo);
 length Month $ 3;
 Year=input(substr(SaleMon,4),4.);
 Month=propcase(SaleMon);
 run;

Table 16.23 SAS Data Set Work.Mnthsum2 (first six observations)

Obs SaleMon RevCargo Month Year

1 JAN1997 $171,520,869.10 Jan 1997

2 JAN1998 $238,786,807.60 Jan 1998

3 JAN1999 $280,350,393.00 Jan 1999

4 FEB1997 $177,671,530.40 Feb 1997

5 FEB1998 $215,959,695.50 Feb 1998

6 FEB1999 $253,999,924.00 Feb 1999

Sorting the Work.Mnthsum2 Data Set
As with Work.Ctarget2, the last step in preparing for the merge is to sort the data set by
the values of Year and Month as shown in the following program:

proc sort data=work.mnthsum2;
 by year month;
run;

Notice that in the sorted version of Work.Mnthsum2, the values of month are sorted
alphabetically within year.

Table 16.24 SAS Data Set Work.Mnthsum2 (sorted, first twelve observations)

Obs SaleMon RevCargo Month Year

1 APR1997 $380,804,120.20 Apr 1997

2 AUG1997 $196,639,501.10 Aug 1997

3 DEC1997 $196,504,413.00 Dec 1997

556 Chapter 16 • Using Lookup Tables to Match Data

Obs SaleMon RevCargo Month Year

4 FEB1997 $177,671,530.40 Feb 1997

5 JAN1997 $171,520,869.10 Jan 1997

6 JUL1997 $197,163,278.20 Jul 1997

7 JUN1997 $190,560,828.50 Jun 1997

8 MAR1997 $196,591,378.20 Mar 1997

9 MAY1997 $196,261,573.20 May 1997

10 NOV1997 $190,228,066.70 Nov 1997

11 OCT1997 $196,957,153.40 Oct 1997

12 SEP1997 $190,535,012.50 Sep 1997

Completing the Merge
When the data is structured correctly, Work.Mnthsum2 and Work.Ctarget2 can be
merged by the values of Year and Month as shown in the following program:

data work.merged;
 merge work.mnthsum2 work.ctarget2;
 by year month;
run;

Table 16.25 SAS Data Set Work.Mnthsum2 (first five observations)

Obs SaleMon RevCargo Month Year

1 APR1997 $380,804,120.20 Apr 1997

2 AUG1997 $196,639,501.10 Aug 1997

3 DEC1997 $196,504,413.00 Dec 1997

4 FEB1997 $177,671,530.40 Feb 1997

5 JAN1997 $171,520,869.10 Jan 1997

Table 16.26 SAS Data Set Work.Ctarget2 (first five observations)

Obs Year Month Ctarget1

1 1997 Apr 260386468

2 1997 Aug 236996122

3 1997 Dec 136042505

Merging the Transposed Data Set 557

Obs Year Month Ctarget1

4 1997 Feb 86376721

5 1997 Jan 192284420

PROC PRINT output shows the resulting data set Work.Merged. The values of
RevCargo represent the actual cargo revenue for each month. The values of Ctarget1
represent the target cargo values for each month.

proc print
 data=work.merged (obs=10);
 format ctarget1 dollar15.2;
 var month year revcargo ctarget1;
run;

Using Hash Objects as Lookup Tables

Overview
Beginning with SAS 9, the hash object is available for use in a DATA step. The hash
object provides an efficient, convenient mechanism for quick data storage and retrieval.

Unlike an array, which uses a series of consecutive integers to address array elements, a
hash object can use any combination of numeric and character values as addresses. Also
unlike arrays, which return only a single value, hash objects can return multiple values
from a given lookup. A hash object can be loaded from hardcoded values or a SAS data
set, is sized dynamically, and exists for the duration of the DATA step.

The hash object is a good choice for lookups that use unordered data that can fit into
memory because it provides in-memory storage and retrieval and does not require the
data to be sorted or indexed.

558 Chapter 16 • Using Lookup Tables to Match Data

The Structure of a Hash Object
When a lookup depends on character key values, you can use the hash object. A hash
object resembles a table with rows and columns and contains a key component and a
data component.

The key component has these characteristics:

• might consist of numeric and character values

• maps key values to data rows

• must be unique

• can be a composite

The data component has these characteristics:

• can contain multiple data values per key value

• can consist of numeric and character values

Example
Suppose you have a data set named Sasuser.Contrib that lists the quarterly contributions
to a retirement fund. You can use the hash object to calculate the difference between the
actual contribution and the goal amount for each quarter.

Using Hash Objects as Lookup Tables 559

The following program creates a hash object that stores the quarterly goal for employee
contributions to the retirement fund. To calculate the difference between actual
contribution and the goal amount, the program retrieves the goal amount from the hash
object based on the key values.

data work.difference (drop= goalamount);
 if _N_ = 1 then do;
 declare hash goal();
 goal.definekey("QtrNum");
 goal.definedata("GoalAmount");
 goal.definedone();
 call missing(goalamount);
 goal.add(key:'qtr1', data:10);
 goal.add(key:'qtr2', data:15);
 goal.add(key:'qtr3', data: 5);
 goal.add(key:'qtr4', data:15);
 end;
 set sasuser.contrib;
 goal.find();
 Diff = amount - goalamount;
run;

We will see how the hash object is set up.

DATA Step Component Objects
The hash object is a DATA step component object. Component objects are data elements
that consist of attributes and methods. Attributes are the properties that specify the
information that is associated with an object. Methods define the operations that an
object can perform.

To use a DATA step component object in your SAS program, you must first declare and
create (instantiate) the object.

Declaring the Hash Object
You declare a hash object using the DECLARE statement.

560 Chapter 16 • Using Lookup Tables to Match Data

General form, DECLARE statement:

DECLARE object-name <(<argument_tag-1: value-1<, ...argument_tag-n: value-n>>)>;

object
specifies the component object.

object-name
specifies the name for the component object.

arg_tag
specifies the information that is used to create an instance of the component object.

value
specifies the value for an argument tag. Valid values depend on the component object.

Valid values for object are as follows:

• hash indicates a hash object.

• hiter indicates a hash iterator object.

Note: The hash iterator object retrieves data from the hash object in ascending or
descending key order.

The following DECLARE statement creates a hash object named Goal.

data work.difference (drop= goalamount);
 if _N_ = 1 then do;
 declare hash goal();

At this point, you have declared a hash object named Goal.

Note: The DECLARE statement is an executable statement.

Defining Keys and Data
Remember that the hash object uses lookup keys to store and retrieve data. The keys and
the data are DATA step variables that you use to initialize the hash object by using object
dot notation method calls.

General form, object dot notation method calls:

object.method(<argument_tag-1: value-1<, ...argument_tag-n: value-n>>);

Here is an explanation of the syntax:

object
specifies the name for the DATA step component object.

method
specifies the name of the method to invoke.

argument-tag
identifies the arguments that are passed to the method.

value
specifies the argument value.

A key component is defined by passing the key variable name to the DEFINEKEY
method. A data component is defined by passing the data variable name to the
DEFINEDATA method. When all key and data components are defined, the
DEFINEDONE method is called. Keys and data can consist of any number of character
or numeric DATA step variables.

Using Hash Objects as Lookup Tables 561

The following code initializes the key variable QtrNum and the data variable
GoalAmount.

data work.difference (drop= goalamount);
 length goalamount 8;
 if _N_ = 1 then do;
 declare hash goal();
 goal.definekey ("QtrNum");
 goal.definedata ("GoalAmount");
 goal.definedone();

Using the Call Missing Routine
Since the variable GOALAMOUNT is not in an input data set and does not appear on
the left side of an equal sign in an assignment statement, SAS issues a note stating that
this variable is not initialized.

To avoid receiving these notes, use the CALL MISSING routine with the key and data
variables as parameters. The CALL MISSING routine assigns a missing value to the
specified character or numeric variables.

data Work.Difference (drop= goalamount);
if _N_ = 1 then do; declare hash goal();
 goal.definekey("QtrNum");
 goal.definedata("GoalAmount");
 goal.definedone();
 call missing(goalamount);

Loading Key and Data Values
So far, you have declared and instantiated the hash object, and initialized the hash
object's key and data variables. You are now ready to populate the hash object using the
ADD method. The following code uses the ADD method to load the key values qtr1,
qtr2, qtr3, and qtr4 and the corresponding data values 10, 15, 5, and 15 into the hash
object.

data work.difference (drop= goalamount);
if _N_ = 1 then do;
 declare hash goal();
 goal.definekey("QtrNum");
 goal.definedata("GoalAmount");
 goal.definedone();
 call missing(goalamount);
 goal.add(key:'qtr1', data:10);
 goal.add(key:'qtr2', data:15);
 goal.add(key:'qtr3', data: 5);
 goal.add(key:'qtr4', data:15);
end;

Retrieving Matching Data
Use the FIND method to retrieve matching data from the hash object. The FIND method
generates a numeric return code that indicates whether the key is found in the hash
object. A return code of zero indicates a successful find. A nonzero value indicates a find

562 Chapter 16 • Using Lookup Tables to Match Data

failure. If the key is in the hash object, then the FIND method also sets the data variable
to the value of the data item so that it is available for use after the method call.

data work.difference (drop= goalamount);
 if _N_ = 1 then do;
 declare hash goal();
 goal.definekey("QtrNum");
 goal.definedata("GoalAmount");
 goal.definedone();
 call missing(goalamount);
 goal.add(key:'qtr1', data:10);
 goal.add(key:'qtr2', data:15);
 goal.add(key:'qtr3', data: 5);
 goal.add(key:'qtr4', data:15);
 end;
 set sasuser.contrib;
 rc=goal.find();
 Diff = amount - goalamount;
run;

Hash Object Processing
We will consider what happens when the program is submitted for execution.

data Work.Difference (drop= goalamount);
 if _N_ = 1 then do;
 declare hash goal();
 goal.definekey("QtrNum");
 goal.definedata("GoalAmount");
 goal.definedone();
 call missing(goalamount);
 goal.add(key:'qtr1', data:10);
 goal.add(key:'qtr2', data:15);
 goal.add(key:'qtr3', data: 5);
 goal.add(key:'qtr4', data:15);
 end;
 set sasuser.contrib;
 rc=goal.find();
 Diff = amount - goalamount;
run;

The program executes until the SET statement encounters end of file on sasuser.contrib.
PROC PRINT output shows the completed data set.

Using Hash Objects as Lookup Tables 563

proc print data=work.difference;
run;

Creating a Hash Object from a SAS Data Set
Suppose you need to create a report that shows revenue, expenses, profits, and airport
information. You have two data sets that contain portions of the required data. The SAS
data set Sasuser.Revenue contains flight revenue data. The SAS data set Sasuser.Acities
contains airport data, including the airport code, location, and name.

Table 16.27 SAS Data Set Sasuser.Revenue (first five observations)

Origin Dest FlightID Date Rev1st RevBusiness
RevEco
n

ANC RDU IA03400 02DEC1999 15829 28420 68688

ANC RDU IA03400 14DEC1999 20146 26460 72981

ANC RDU IA03400 26DEC1999 20146 23520 59625

ANC RDU IA03401 09DEC1999 15829 22540 58671

ANC RDU IA03401 21DEC1999 20146 22540 65826

Table 16.28 SAS Data Set Sasuser.Acities (first five observations)

City Code Name Country

Auckland AKL International New Zealand

Amsterdam AMS Schiphol Netherlands

Anchorage, AK ANC Anchorage International Airport USA

Stockholm ARN Arlanda Sweden

Athens (Athinai) ATH Hellinikon International Airport Greece

564 Chapter 16 • Using Lookup Tables to Match Data

To create the report, you can use a hash object to retrieve matching airport data from
Sasuser.Acities.

In the following code, the DECLARE statement creates the Airports hash object and
loads it from Sasuser.Acities.

data work.report;
 if _N_=1 then do;
 declare hash airports (dataset: "sasuser.acities");

Using a Non-Executing SET Statement
To initialize the attributes of hash variables that originate from an existing SAS data set,
you can use a non-executing SET statement.

Because the IF condition is false during execution, the SET statement is compiled but
not executed. The PDV is created with the variables Code, City, and Name from
Sasuser.Acities.

data work.report;
 if _N_=1 then do;
 if 0 then
 set sasuser.acities (keep=Code City Name);

When you use this technique, CALL MISSING is not required.

Working with Multiple Data Variables
The hash object that you worked with earlier in this chapter contains one key variable
and one data variable. In this example, you need to associate more than one data value
with each key.

In the following code, the DECLARE statement creates the Airports hash object and
loads it from Sasuser.Acities. The DEFINEKEY method call defines the key to be the
value of the variable Code. The DEFINEDATA method call defines the data to be the
values of the variables City and Name.

data work.report;
 if 0 then
 set sasuser.acities (keep=Code City Name);
 if _N_=1 then do;
 declare hash airports (dataset: "sasuser.acities")
 airports.definekey ("Code");
 airports.definedata ("City", "Name");
 airports.definedone();
end;

Table 16.29 Hash Object Airports

Key: Code Data: City Data: Name

ANC Anchorage, AK Anchorage International Airport

BNA Nashville, TN Nashville International Airport

CDG Paris Charles de Gaulle

Using Hash Objects as Lookup Tables 565

Key: Code Data: City Data: Name

LAX Los Angeles, CA Los Angeles International Airport

RDU Raleigh-Durham, NC Raleigh-Durham International Airport

Note: To define all data set variables as data variables for the hash object, use the ALL:
“YES” option. Here is an example:

hashobject.DEFINEDATA (ALL:“YES”);

Note: The hash object can store multiple key variables as well as multiple data
variables.

Retrieving Multiple Data Values
You can use the FIND method multiple times in order to retrieve multiple data values. In
the following program, the FIND method retrieves the values of City and Name from the
Airports hash object based on the value of Origin.

data work.report;
 if _N_=1 then do;
 if 0 then set sasuser.acities (keep=Code City Name);
 declare hash airports (dataset: "sasuser.acities");
 airports.definekey ("Code");
 airports.definedata ("City", "Name");
 airports.definedone();
 end;
 set sasuser.revenue;
 rc=airports.find(key:origin);
 OriginCity=city;
 OriginAirport=name;
 rc=airports.find(key:dest);
DestCity=city;
DestAirport=name;
run;

PROC PRINT output shows the completed data set.

proc print data=work.report;
 var origin dest flightid date origincity originairport
 destcity destairport;
run;

566 Chapter 16 • Using Lookup Tables to Match Data

Figure 16.4 Partial Output (first five observations of selected variables)

Using Return Codes with the FIND Method
Remember that method calls generate a numeric return code that indicates whether the
method succeeded or failed. A value of 0 indicates that the method succeeded. A
nonzero value indicates that the method failed.

To store the value of the return code in a variable, specify the variable name RC at the
beginning of the method call. Here is an example:

 rc=hashobject.find (key:keyvalue);

The return code variable can be used in conditional logic to ensure that the FIND method
found a KEY value in the hash object that matches the KEY value from the PDV.

Example
Error messages are written to the log when the following program is submitted.

data work.report;
 if _N_=1 then do;
 if 0 then set sasuser.acities (keep=Code City Name);
 declare hash airports (dataset: "sasuser.acities");
 airports.definekey ("Code");
 airports.definedata ("City", "Name");
 airports.definedone();
 end;
set sasuser.revenue;
airports.find(key:origin);
OriginCity=city;
OriginAirport=name;
airports.find(key:dest);
DestCity=city;
DestAirport=name;

Using Hash Objects as Lookup Tables 567

run;

Table 16.30 SAS Log

NOTE: There were 50 observations read from the data set SASUSER.ACITIES.
ERROR: Key not found.
ERROR: Key not found.
ERROR: Key not found.
ERROR: Key not found.
ERROR: Key not found.
ERROR: Key not found.
NOTE: The SAS System stopped processing this step because of errors.
NOTE: There were 142 observations read from the data set SASUSER.REVENUE.
WARNING: The data set WORK.REPORT1 may be incomplete. When this step was
 stopped there were 142 observations and 14 variables.

A closer examination of the output shows that the data set Work.Report contains errors.
For example, notice that in observations 6 through 8 the value of both OriginCity and
DestCity is Canberra, Australian C and the values of OriginAirport and
DestAirport are missing.

The errors occur because the Airports hash object does not include the key value WLG
or a corresponding Name value for the key value CBR.

Figure 16.5 SAS Data Set Work.Report (observations 6 through 8 of selected variables)

Conditional logic can be added to the program to create blank values if the values loaded
from the input data set, Sasuser.Revenue, cannot be found in the Airports hash object:

• If the return code for the FIND method call has a value of 0, indicating that the
method succeeded, the values of City and Name are assigned to the appropriate
variables (OriginCity and OriginAirport or DestCity and DestAirport).

• If the return code for the FIND method call has a nonzero value, indicating the
method failed, the values of City and Name are assigned blank values.

data work.report;
 if _N_=1 then do;
 if 0 then set sasuser.acities(keep=Code City Name);
 declare hash airports (dataset: "sasuser.acities");
 airports.definekey ("Code");
 airports.definedata ("City", "Name");
 airports.definedone();
end;
set sasuser.revenue;
rc=airports.find(key:origin);

568 Chapter 16 • Using Lookup Tables to Match Data

if rc=0 then do;
 OriginCity=city;
 OriginAirport=name;
end;
else do;
 OriginCity='';
 OriginAirport='';
end;
rc=airports.find(key:dest);
if rc=0 then do;
 DestCity=city;
 DestAirport=name;
end;
else do;
 DestCity='';
 DestAirport='';
end;
run;

PROC PRINT output shows the completed data set. Notice that in observations 6
through 8, the value of DestCity is now blank and no error messages appear in the log.

proc print data=work.report;
 var origin dest flightid date origincity originairport
 destcity destairport;
run;

Figure 16.6 SAS Data Set Work.Report (first eight observations of selected variables)

Using Hash Objects as Lookup Tables 569

Table 16.31 SAS Log

NOTE: There were 50 observations read from the data set SASUSER.ACITIES.
NOTE: There were 142 observations read from the data set SASUSER.REVENUE.
NOTE: The data set WORK.REPORT2 has 142 observations and 15 variables.

Summary

Text Summary

Introduction
Sometimes, you need to combine data from two or more data sets into a single
observation in a new data set according to the values of a common variable. When data
sources do not have a common structure, you can use a lookup table to match them.

Using Multidimensional Arrays
When a lookup operation depends on more than one ordinal numeric key, you can use a
multidimensional array. Use an ARRAY statement to create an array. The ARRAY
statement defines a set of elements that you plan to process as a group.

Using Stored Array Values
In many cases, you might prefer to load an array with values that are stored in a SAS
data set rather than loading them in an ARRAY statement. Lookup tables should be
stored in a SAS data set when the following conditions are true:

• there are too many values to initialize easily in the array

• the values change frequently

• the same values are used in many programs

The first step in loading an array from a data set is to create an array to hold the values
from the source data set. The next step is to load the array elements. One method for
accomplishing this task is to load the array within a DO loop. The last step is to read the
base data set.

Using PROC TRANSPOSE
The TRANSPOSE procedure can be used to prepare data when the orientation of the
data sets differs. PROC TRANSPOSE creates an output data set by restructuring the
values in a SAS data set, thereby transposing selected variables into observations. The
transposed (output) data set can then be merged with another data set in order to match
the data.

The output data set contains several default variables.

• _NAME_ is the default name of the variable that PROC TRANSPOSE creates to
identify the source of the values in each observation in the output data set. This
variable is a character variable whose values are the names of the variables that are
transposed from the input data set. To override the default name, use the NAME=
option.

570 Chapter 16 • Using Lookup Tables to Match Data

• The remaining transposed variables are named COL1...COLn by default. To override
the default names, use the PREFIX= option.

Merging the Transposed Data Set
You might need to use a BY statement with PROC TRANSPOSE in order to correctly
structure the data for a merge. For each BY group, PROC TRANSPOSE creates one
observation for each variable that it transposes. The BY variable itself is not transposed.
In order to structure the data for a merge, you might also need to sort the output data set.
Any other source data sets might need to be reorganized and sorted as well. When the
data is structured correctly, the data sets can be merged.

Using Hash Objects as Lookup Tables
Beginning with SAS 9, the hash object is available for use in a DATA step. The hash
object provides an efficient, convenient mechanism for quick data storage and retrieval.

A hash object resembles a table with rows and columns; it contains a key component and
a data component. Unlike an array, which uses a series of consecutive integers to address
array elements, a hash object can use any combination of numeric and character values
as addresses.

The hash object is a DATA step component object. Component objects are data elements
that consist of attributes and methods. To use a DATA step component object in your
SAS program, you must first declare and create (instantiate) the object. After you declare
the hash object's key and data components, you can populate the hash object from
hardcoded values or a SAS data set.

Use the FIND method call return code that is a numeric value. The value specifies
whether the method succeeded or failed. A value of 0 indicates that the method
succeeded. A nonzero value indicates that the method failed. The return code variable
can be used in conditional logic to ensure that the FIND method found a KEY value in
the hash object that matches the KEY value from the PDV.

Sample Programs

Using a Multidimensional Array
data work.wndchill (drop = column row);
 array WC{4,2} _temporary_
 (-22,-16,-28,-22,-32,-26,-35,-29);
 set sasuser.flights;
 row = round(wspeed,5)/5;
 column = (round(temp,5)/5)+3;
 WindChill= wc{row,column};
run;

Using Stored Array Values
data work.lookup1;
 array Targets{1997:1999,12} _temporary_;
 if _n_=1 then do i= 1 to 3;
 set sasuser.ctargets;
 array Mnth{*} Jan--Dec;
 do j=1 to dim(mnth);
 targets{year,j}=mnth{j};
 end;
 end;

Summary 571

 set sasuser.monthsum(keep=salemon revcargo monthno);
 year=input(substr(salemon,4),4.);
 Ctarget=targets{year,monthno};
 format ctarget dollar15.2;
run;

Using PROC TRANSPOSE and a Merge
 proc transpose data=sasuser.ctargets
 out=work.ctarget2
 name=Month
 prefix=Ctarget;
 by year;
 run;

proc sort data=work.ctarget2;
 by year month;
run;

data work.mnthsum2;
 set sasuser.monthsum(keep=SaleMon RevCargo);
 length Month $ 8;
 Year=input(substr(SaleMon,4),4.);
 Month=substr(SaleMon,1,1)
 ||lowcase(substr(SaleMon,2,2));
run;

proc sort data=work.mnthsum2;
 by year month;
run;

data work.merged;
 merge work.mnthsum2 work.ctarget2;
 by year month;
run;

Loading a Hash Object from Hardcoded Values
data work.difference (drop= goalamount);
 if _N_ = 1 then do;
 declare hash goal();
 goal.definekey("QtrNum");
 goal.definedata("GoalAmount");
 goal.definedone();
 call missing(goalamount);
 goal.add(key:'qtr1', data:10);
 goal.add(key:'qtr2', data:15);
 goal.add(key:'qtr3', data: 5);
 goal.add(key:'qtr4', data:15);
 end;
 set sasuser.contrib;
 rc=goal.find();
 Diff = amount - goalamount;
run;

572 Chapter 16 • Using Lookup Tables to Match Data

Loading a Hash Object from a SAS Data Set
data work.report;
 if _N_=1 then do;
 if 0 then set sasuser.acities(keep=Code City Name);
 declare hash airports (dataset: "sasuser.acities");
 airports.definekey ("Code");
 airports.definedata ("City", "Name");
 airports.definedone();
end;
set sasuser.revenue;
rc=airports.find(key:origin);
if rc=0 then do;
 OriginCity=city;
 OriginAirport=name;
end;
else do;
 OriginCity='';
 OriginAirport='';
end;
rc=airports.find(key:dest);
if rc=0 then do;
 DestCity=city;
 DestAirport=name;
end;
else do;
 DestCity='';
 DestAirport='';
end;
run;

Points to Remember
• The name of an array must be a SAS name that is not the name of a SAS function or

SAS variable in the same DATA step.

• Array elements must be either all numeric or all character.

• The initial values specified for an array can be numeric values or character strings.
You must enclose all character strings in quotation marks.

• The input SAS data set must be sorted or indexed before using a BY statement with
PROC TRANSPOSE unless you use the NOTSORTED option.

• The hash object is a good choice for lookups using unordered data that can fit into
memory because it provides in-memory storage and retrieval and does not require
the data to be sorted.

• The hash object is sized dynamically, and exists for the duration of the DATA step.

Quiz
Select the best answer for each question. After completing the quiz, check your answers
using the answer key in the appendix.

Quiz 573

1. Which SAS statement correctly specifies the array Sales as illustrated in the
following table?

Table Representation of Sales Array

a. array Sales{3,4} m1-m12;

b. array Sales{4,3} m1-m12;

c. array {3,4} Sales m1-m12;

d. array {4,12} Sales m1-m12;

2. Which of the following statements creates temporary array elements?

a. array new {*} _temporary_;

b. array new {6} _temporary_;

c. array new {*} _temporary_ Jan Feb Mar Apr May Jun;

d. array _temporary_ new {6} Jan Feb Mar Apr May Jun;

3. Which DO statement processes all of the elements in the Yearx array?

array Yearx{12} Jan--Dec;

a. do i=1 to dim(yearx);

b. do i=1 to 12;

c. do i=Jan to Dec;

d. a and b

4. Given the following program, what is the value of Points in the fifth observation in
the data set Work.Results?

SAS Data Set Work.Contest

data work.results;
 array score{2,4} _temporary_
 (40,50,60,70,40,50,60,70);
 set work.contest;
 Points=score{week,finish};
run;

a. 40

b. 50

c. 60

574 Chapter 16 • Using Lookup Tables to Match Data

d. 70

5. Array values should be stored in a SAS data set when which of the following is true?

a. There are too many values to initialize easily in an array.

b. The values change frequently.

c. The same values are used in many programs.

d. All of the above.

6. Given the following program, which statement is not true?

data work.lookup1;
 array Targets{1997:1999,12} _temporary_;
 if _n_=1 then do i= 1 to 3;
 set sasuser.ctargets;
 array Mnth{*} Jan--Dec;
 do j=1 to dim(mnth);
 targets{year,j}=mnth{j};
 end;
 end;
 set sasuser.monthsum(keep=salemon revcargo monthno);
 year=input(substr(salemon,4),4.);
 Ctarget=targets{year,monthno};
run;

a. The IF-THEN statement specifies that the Targets array is loaded once.

b. During the first iteration of the DATA step, the outer DO loop executes three
times.

c. After the first iteration of the DO loop, the pointer drops down to the second SET
statement.

d. During the second iteration of the DATA step, the condition _N_=1 is false. So,
the DO loop does not execute.

7. Given the following program, which variable names will appear in the data set
Work.New?

SAS Data Set Work.Revenue

proc transpose
 data=work.revenue
 out=work.new;
run;

a. Year, Jan, Feb, Mar, Apr

b. Year, 2000, 2001, 2002

c. _NAME_, Col1, Col2, Col3

d. _NAME_, Jan, Feb, Mar, Apr

8. Which program creates the output data set Work.Temp2?

Quiz 575

SAS Data Set Work.Temp SAS Data Set Work.Temp2

a. proc transpose data=work.temp
 out=work.temp2
 prefix=Quarter;
run;

b. proc transpose data=work.temp
 out=work.temp2
 name=Month
 prefix=Quarter;
run;

c. proc transpose data=work.temp
 out=work.temp2
 prefix=Month
 name=Quarter;
 run;

d. proc transpose data=work.temp
 out=work.temp2
 prefix=Month
 index=Quarter;
run;

9. Which version of the data set Work.Sales2 is created by the following program?

SAS Data Set Work.Sales

proc transpose data=work.sales
 out=work.sales2
 name=Week;
 by employee;
run;

a.

b.

576 Chapter 16 • Using Lookup Tables to Match Data

c.

d.

10. Which program creates the data set Work.Fishsize?

SAS Data Set Work.Fishdata

Quiz 577

SAS Data Set Work.Fishsize

a. proc transpose data=work.fishdata
 out=work.fishsize
 prefix=Measurement;
run;

b. proc transpose data=work.fishdata
 out=work.fishsize
 prefix=Measurement;
 by location;
run;

c. proc transpose data=work.fishdata
 out=work.fishsize
 prefix=Measurement;
 by date;
run;

d. proc transpose data=work.fishdata
 out=work.fishsize
 prefix=Measurement;
 by location date;
run;

578 Chapter 16 • Using Lookup Tables to Match Data

Chapter 17

Formatting Data

Overview . 580
Introduction . 580

Creating Custom Formats Using the VALUE Statement . 580
Review of Creating Non-Overlapping Formats . 580
Creating a Format with Overlapping Ranges . 581
Example . 582

Creating Custom Formats Using the PICTURE Statement 583
Overview . 583
Ways to Specify Pictures . 584
Example . 585
Guidelines for Specifying Directives . 586
Example . 587

Managing Custom Formats . 588
Using FMTLIB with PROC FORMAT to Document Formats 588
Example . 589
Using PROC CATALOG to Manage Formats . 589
Example . 590

Using Custom Formats . 591
Overview . 591
Example . 591
Using a Permanent Storage Location for Formats . 592
Example . 592
Avoiding Format Errors . 593
Example . 593

Creating Formats from SAS Data Sets . 594
Overview . 594
Example . 595
Rules for Control Data Sets . 595
Example . 595
Apply the Format . 598

Creating SAS Data Sets from Custom Formats . 598
Overview . 598
Example . 599

Summary . 601
Text Summary . 601
Sample Programs . 602
Points to Remember . 603

579

Quiz . 603

Overview

Introduction
Custom formats are used to display variable values in certain ways, such as formatting a
product number so that it is displayed as descriptive text. You should already be familiar
with using the FORMAT procedure to create and store formats.

In this chapter you learn to document formats, use formats located in any catalog, create
formats with overlapping ranges, and use the PICTURE statement to create a format for
inserting message characters into numbers. You also learn an easy way to update formats
by creating a SAS data set from a format, updating the data set, and then re-creating the
format from the updated SAS data set.

Creating Custom Formats Using the VALUE
Statement

Review of Creating Non-Overlapping Formats
You can use the VALUE statement in the FORMAT procedure to create a custom format
for displaying data in a particular way. For example, suppose you have airline data and
you want to create several custom formats that you can use for your report-writing tasks.
You need formats that enable you to do the following:

• group airline routes into zones

• label airport codes as International or Domestic

• group cargo revenue figures into ranges.

The following PROC FORMAT step creates these three formats:

proc format;
 value $routes
 'Route1' = 'Zone 1'
 'Route2' - 'Route4' = 'Zone 2'
 'Route5' - 'Route7' = 'Zone 3'
 ' ' = 'Missing'
 other = 'Unknown';
 value $dest
 'AKL','AMS','ARN','ATH','BKK','BRU',
 'CBR','CCU','CDG','CPH','CPT','DEL',
 'DXB','FBU','FCO','FRA','GLA','GVA',
 'HEL','HKG','HND','JED','JNB','JRS',
 'LHR','LIS','MAD','NBO','PEK','PRG',

580 Chapter 17 • Formatting Data

 'SIN','SYD','VIE','WLG' = 'International'
 'ANC','BHM','BNA','BOS','DFW','HNL',
 'IAD','IND','JFK','LAX','MCI','MIA',
 'MSY','ORD','PWM','RDU','SEA','SFO' = 'Domestic';
 value revfmt
 . = 'Missing'
 low - 10000 = 'Up to $10,000'
 10000 <- 20000 = '$10,000+ to $20,000'
 20000 <- 30000 = '$20,000+ to $30,000'
 30000 <- 40000 = '$30,000+ to $40,000'
 40000 <- 50000 = '$40,000+ to $50,000'
 50000 <- 60000 = '$50,000+ to $60,000'
 60000 <- HIGH = 'More than $60,000';
run;

The PROC FORMAT step creates three formats: $ROUTES. and $DEST., which are
character formats, and REVFMT., which is numeric.

$ROUTES. groups airline routes into zones. In $ROUTES., the following is true:

• both single values and ranges are assigned labels

• missing values are designated by a space in quotation marks and are assigned the
label “Missing”

• the keyword OTHER is used to assign the label “Unknown” to any values that are
not addressed in the range

$DEST. labels airport codes as either International or Domestic. In $DEST., the
following is true:

• unique character values are enclosed in quotation marks and separated by commas

• both missing values and values that are not included in the range are not handled in
this format

REVFMT. groups cargo revenue figures into ranges. In REVFMT., the following is true:

• the less than operator (<) is used to show a non-inclusive range (10000<-20000
indicates that the first value is not included in the range)

• the keyword LOW is used to specify the lower limit of a variable's value range, but it
does not include missing values

• missing values are designated with a period (.) and assigned the label Missing

• the keyword HIGH is used to specify the upper limit of a variable's value range

Creating a Format with Overlapping Ranges
There are times when you need to create a format that groups the same values into
different ranges. To create overlapping ranges, use the MULTILABEL option in the
VALUE statement in PROC FORMAT.

General form, VALUE statement with the MULTILABEL option:

VALUE format-name (MULTILABEL);

Here is an explanation of the syntax:

format-name
is the name of the character or numeric format that is being created.

Creating Custom Formats Using the VALUE Statement 581

Example
Suppose you want to create a format that groups dates into overlapping categories. In the
table below, notice that each month appears in two groups.

Value Label

Jan - Mar 1st Quarter

Apr - Jun 2nd Quarter

Jul - Sep 3rd Quarter

Oct - Dec 4th Quarter

Jan - Jun First Half of Year

Jul- Dec Second Half of Year

In the PROC FORMAT step below, the MULTILABEL option has been added to
indicate that the DATES. format has values with overlapping ranges:

proc format;
 value dates (multilabel)
 '01jan2000'd - '31mar2000'd = '1st Quarter'
 '01apr2000'd - '30jun2000'd = '2nd Quarter'
 '01jul2000'd - '30sep2000'd = '3rd Quarter'
 '01oct2000'd - '31dec2000'd = '4th Quarter'
 '01jan2000'd - '30jun2000'd = 'First Half of Year'
 '01jul2000'd - '31dec2000'd = 'Second Half of Year';
run;

Multilabel formatting allows an observation to be included in multiple rows or
categories. To use the multilabel formats, you can specify the MLF option on class
variables in procedures that support it:

• PROC TABULATE

• PROC MEANS

• PROC SUMMARY

The MLF option activates multilabel format processing when a multilabel format is
assigned to a class variable. For example, these statements are true of the following
TABULATE procedure code:

• The FORMAT= option specifies DOLLAR15.2 as the format for the value in each
table cell

• The CLASS statement identifies Date as the class variable and uses the MLF option
to activate multilabel format processing.

• The row dimension of the TABLE statement creates a row for each formatted value
of Date.

• The FORMAT statement references the new format DATES. for the class variable
Date.

582 Chapter 17 • Formatting Data

proc tabulate data = sasuser.sale2000 format = dollar15.2;
 class Date / mlf;
 var RevCargo;
 table Date, RevCargo*(mean median);
 format Date dates.;
run;

T I P For more information about using the MULTILABEL option, see the SAS
documentation for the FORMAT procedure.

Creating Custom Formats Using the PICTURE
Statement

Overview
You have learned that the VALUE statement can associate a text label with a discrete
numeric or character value. Suppose you want to insert text characters into a numeric
value. For example, you might have stored phone numbers as numeric values like
1111231234 that you want to display as (111) 123-1234. You can use the PICTURE
statement to create a template for printing numbers.

Creating Custom Formats Using the PICTURE Statement 583

General form, PROC FORMAT with the PICTURE statement:

PROC FORMAT;
PICTURE format-name

value-or-range='picture';
RUN;

Here is an explanation of the syntax:

format-name
is the name of the format that you are creating.

value-or-range
is the individual value or range of values that you want to label.

picture
specifies a template for formatting values of numeric variables. The template is a sequence
of characters enclosed in quotation marks. The maximum length for a picture is 40
characters.

Ways to Specify Pictures
Pictures are specified with three types of characters:

• digit selectors

• message characters

• directives.

Consider using digit selectors and message characters first. You learn about directives in
a later topic.

Digit selectors are numerals (0 through 9) that define positions for numbers. If you use
nonzero digit selectors, zeros are added to the formatted value as needed. If you use
zeros as digit selectors, no zeros are added to the formatted value.

In the picture definitions below, you can see the difference between using nonzero digit
selectors (99) and zero digit selectors (00) on the formatted values.

Picture Definition Data Values Formatted Values

picture month 1-12='99'; 1

12

01

12

picture month 1-12='00'; 1

12

1

12

Message characters are nonnumeric characters that are printed as specified in the picture.
They are inserted into the picture after the numeric digits are formatted. Digit selectors
must come before message characters in the picture definition. The prefix option can be
used to append text in front of any digits. In the picture definition below, the text string
JAN consists of message characters.

584 Chapter 17 • Formatting Data

Picture Definition Data Value Formatted Value

picture month 1='99 JAN'; 1 01 JAN

Example
The following PICTURE statement contains both digit selectors and message characters.
Because the RAINAMT. format has nonzero digit selectors, values are printed with
leading zeros. The keyword OTHER is used to print values and message characters for
any values that do not fall into a specified range.

proc format;
 picture rainamt
 0-2='9.99 slight'
 2<-4='9.99 moderate'
 4<-<10='9.99 heavy'
 other='999 check value';
run;
data rain;
 input Amount;
 datalines;
 4
 3.9
 20
 .5
 6
 ;
proc print data=rain;
 format amount rainamt.;
run;

The following output shows the values with the RAINAMT. format applied.

The final way to specify a picture is with a directive. Directives are special characters
that you can use in the picture to format date, time, or datetime values. If you use a
directive, you must specify the DATATYPE= option in the PICTURE statement. This
option specifies that the picture applies to a SAS date, SAS time, or SAS datetime value.

Creating Custom Formats Using the PICTURE Statement 585

General form, PICTURE statement with the DATATYPE= option:

PICTURE format-name
value-or-range, 'picture' (DATATYPE=SAS-date-value-type);

Here is an explanation of the syntax:

format-name
is the name of the format that you are creating.

value-or-range
is the individual value or range of values that you want to label.

picture
specifies a template with directives for formatting numeric values.

SAS-date-value-type
is either DATE, TIME, or DATETIME.

Guidelines for Specifying Directives
The percent sign (%) followed by a letter indicates a directive. Directives that you can
use to create a picture format are listed in the table below.

Directive Result

%a abbreviated weekday name

%A full weekday name

%b abbreviated month name

%B full month name

%d day of the month as a number 1-31, with no leading zero

%H 24-hour clock as a number 0-23, with no leading zero

%I 12-hour clock as a number 1-12, with no leading zero

%j day of the year as a number 1-366, with no leading zero

%m month as a number 1-12, with no leading zero

%M minute as a decimal number 0-59, with no leading zero

%p AM or PM

%S second as a number 0-59, with no leading zero

%U week number of the year (Sunday is the first day of the week) as a number
0-53, with no leading zero

%w weekday as a number (1=Sunday, to 7)

586 Chapter 17 • Formatting Data

Directive Result

%y year without century as a number 0-99, with no leading zero

%Y year with century as a number

Although directives generally return numbers with no leading zeros, you can add 0 in the
directive so that if a one-digit numeric value is returned, it is preceded by a 0.

As shown below, when you create a picture with directives, the number of characters
inside quotation marks is the maximum length of the formatted value. You must add
trailing blanks to the directive if your values contain more characters than the picture.
The formatted value is truncated if you do not.

Example
Suppose you want to display values for employee hire dates in the format dd-mmmyyyy
(such as 25-JAN2000). This format requires spaces for 10 characters.

The following code creates this format. There are a few things that you should notice
about the picture definition:

• The keywords LOW and HIGH are used to include all values.

• The 0 in the %d directive indicates that if the day of the month is one digit, it should
be preceded by a 0.

• Because there are only eight characters inside the single quotation marks, you must
add two blank spaces to set the length to 10.

proc format;
 picture mydate
 low-high='%0d-%b%Y ' (datatype=date);
run;

proc print data=sasuser.empdata
 (keep=division hireDate lastName obs=5);
 format hiredate mydate.;
run;

The output below shows the values for HireDate formatted with the MYDATE. picture
format.

Creating Custom Formats Using the PICTURE Statement 587

T I P For more information about using the PICTURE statement, see the
documentation for the FORMAT procedure.

Managing Custom Formats

Using FMTLIB with PROC FORMAT to Document Formats
When you have created a large number of permanent formats, it can be easy to forget the
exact spelling of a specific format name or its range of values. Remember that adding
the keyword FMTLIB to the PROC FORMAT statement displays a list of all the formats
in the specified catalog, along with descriptions of their values.

libname myfmts 'c:\sas\newfmt';
proc format lib=myfmts fmtlib;
run;

You can also use the SELECT and EXCLUDE statements to process specific formats
rather than an entire catalog.

General form, PROC FORMAT with FMTLIB and the SELECT and EXCLUDE statements:

PROC FORMAT LIB=library FMTLIB;
SELECT format-name;
EXCLUDE format-name;

RUN;

Here is an explanation of the syntax:

library
is the name of the library where the formats are stored. If you do not specify the LIB=
option, formats in the Work library are listed.

format-name
is the name of the format that you want to select or exclude.

588 Chapter 17 • Formatting Data

Example
The following code displays only the documentation for the $ROUTES. format. Notice
that you do not use a period at the end of the format name when you specify the format
in the SELECT statement.

libname myfmts 'c:\sas\newfmt';
proc format lib=myfmts fmtlib;
 select $routes;
run;

Table 17.1 SAS Output

FORMAT NAME : $ROUTES LENGTH: 7 NUMBER OF VALUES: 5 MIN LENGTH: 1 MAX
LENGTH: 40 DEFAULT LENGTH: 7 FUZZ: 0

START END LABEL (VER. V7|V8
29AUG2002:11:13:14)

Missing

Route1 Route1 Zone 1

Route2 Route4 Zone 2

Route5 Route7 Zone 3

OTHER **OTHER** Unknown

T I P If you specify more than one format on the SELECT or EXCLUDE statement,
separate each format name with a space as follows:

select $routes newdate;

Using PROC CATALOG to Manage Formats
Because formats are saved as catalog entries, you can use the CATALOG procedure to
manage your formats. Using PROC CATALOG enables you to do the following:

• create a listing of the contents of a catalog

• copy a catalog or selected entries within a catalog

• delete or rename entries within a catalog

Managing Custom Formats 589

General form, PROC CATALOG step:

PROC CATALOG CATALOG=libref.catalog;
CONTENTS <OUT=SAS-data-set>;
COPY OUT=libref.catalog <options>;
SELECT entry-name.entry-type(s);
EXCLUDE entry-name.entry-type(s);
DELETE entry-name.entry-type(s);

RUN;
QUIT;

Here is an explanation of the syntax:

libref.catalog
with the CATALOG= argument is the SAS catalog to be processed.

SAS-data-set
is the name of the data set that will contain the list of the catalog contents.

libref.catalog
with the OUT= argument is the SAS catalog to which the catalog entries will be copied.

entry-name.entry-type(s)
are the full names of catalog entries (in the form name.type) that you want to process.

Example
The first PROC CATALOG step below copies the $ROUTES. format from the
Library.Formats catalog to the Work.Formats catalog. Notice that in the SELECT
statement, you specify the $ROUTES. character format using the full catalog entry
name, ROUTES.FORMATC.

proc catalog catalog=myfmts.formats;
 copy out=work.formats;
 select routes.formatc;
run;
proc catalog cat=work.formats;
 contents;
run;
quit;

The second PROC CATALOG step displays the contents of the Work.Formats catalog. A
note is written to the log when the format is copied from one catalog to another.

T I P For more information about PROC CATALOG, including other statements and
options that you can use, see the SAS documentation.

590 Chapter 17 • Formatting Data

Using Custom Formats

Overview
After you have created a custom format, you can use SAS statements to permanently
assign the format to a variable in a DATA step, or you can temporarily specify a format
in a PROC step to determine how the data values appear in output. You should already
be familiar with referencing a format in a FORMAT statement.

Another way to assign, change, or remove the format that is associated with a variable in
an existing SAS data set is to use the DATASETS procedure to modify the descriptor
portion of a data set.

General form, DATASETS procedure with the MODIFY and FORMAT statements:

PROC DATASETS LIB=SAS-library <NOLIST>;
MODIFY SAS-data-set;
FORMAT variable(s) format;

QUIT;

Here is an explanation of the syntax:

SAS-library
is the name of the SAS library that contains the data that you want to modify.

NOLIST
suppresses the directory listing.

SAS-data-set
is the name of the SAS data set you want to modify.

variable
is the name of one or more variables whose format you want to assign, change, or remove.

format
is the name of a format to apply to the variable or variables that are listed before it. If you do
not specify a format, any format that is associated with the variable is removed.

Note: The DATASETS procedure is interactive and remains in memory until you issue
the QUIT statement.

Example
In the following code, two variables in the SAS data set Flights are changed. The format
$DEST. is associated with the variable Dest and the format is removed from the variable
Baggage.

proc datasets lib=Mylib;
 modify flights;
 format dest $dest.;
 format baggage;
quit;

Using Custom Formats 591

Using a Permanent Storage Location for Formats
When you permanently associate a format with a variable in a data set, it is important to
ensure that the format that you are referencing is stored in a permanent location.
Remember that the storage location for the format is determined when the format is
created in the FORMAT procedure.

When you create formats that you want to use in subsequent SAS sessions, it is useful to
take these steps:

1. Assign the Library libref to a SAS library in the SAS session in which you are
running the PROC FORMAT step.

2. Specify LIB=LIBRARY in the PROC FORMAT step that creates the format.

3. Include a LIBNAME statement in the program that references the format to assign
the Library libref to the library that contains the permanent format catalog.

You can store formats in any catalog that you choose. However, you must identify the
format catalogs to SAS before you can access them. You learn about this in a later topic.

When a format is referenced, SAS automatically looks through the following libraries in
this order:

1. Work.Formats

2. Library.Formats

The Library libref is recommended for formats because it is automatically searched
when a format is referenced. If you store formats in libraries or catalogs other than those
in the default search path, you must use the FMTSEARCH= system option to tell SAS
where to find your formats.

General form, FMTSEARCH= system option:

OPTIONS FMTSEARCH= (catalog-1 catalog-2...catalog-n);

Here is an explanation of the syntax:

catalog
is the name of one or more catalogs to search. The value of catalog can be either libref or
libref.catalog. If only the libref is given, SAS assumes that Formats is the catalog name.

The Work.Formats catalog is always searched first, and the Library.Formats catalog is
searched next, unless one or both catalogs appear in the FMTSEARCH= list.

Example
Suppose you have formats that are stored in the Rpt library and in the Prod.Newfmt
catalog. The following OPTIONS statement tells SAS where to find your formats:

options fmtsearch=(rpt prod.newfmt);

Because no catalog is specified with the Rpt libref, the default catalog name Formats is
assumed. This OPTIONS statement creates the following search order:

592 Chapter 17 • Formatting Data

Because the Work and Library librefs were not specified in the FMTSEARCH= option,
they are searched in default order.

Avoiding Format Errors
Consider what happens if you forget to specify a catalog in the FMTSEARCH= option,
misspell a format name, or make some other mistake that causes SAS to fail to locate the
format that you have specified.

By default, the FMTERR system option is in effect. If you use a format that SAS cannot
load, SAS issues an error message and stops processing the step. To prevent this, you
must change the system option FMTERR to NOFMTERR. When NOFMTERR is in
effect, SAS substitutes a default format for the missing format and continues processing.

General form, FMTERR system option:

OPTIONS FMTERR | NOFMTERR;

Here is explanation of the syntax:

FMTERR
specifies that when SAS cannot find a specified variable format, it generates an error
message and stops processing. Substitution of a default format does not occur.

NOFMTERR
replaces missing formats with the w. or $w. default format and continues processing.

Example
Suppose the FMTERR system option is in effect. In a previous example, we created the
$ROUTES. format to group airline routes into zones. In the following code, the
$ROUTES. format is misspelled:

proc print data=sasuser.cargorev(obs=10);
 format route $route.;
run;

Because FMTERR is in effect, the format cannot be located and SAS stops processing
the step. An error message is written to the log.

Using Custom Formats 593

Table 17.2 SAS Log

30 proc print data=sasuser.cargorev(obs=10);
31 format route $route.;
ERROR: The format $ROUTE was not found or could not be loaded.
32 run;

NOTE: The SAS System stopped processing this step because of errors.

If the NOFMTERR system option is specified, substitution of a default format occurs,
and SAS continues to process the step.

options nofmterr;
proc print data=sasuser.cargorev(obs=10);
 format Route $route.;
run;

SAS substitutes the $w. format for the $ROUTE. format that it could not locate. No
message is written to the log and processing continues. You can see from the output that
the format that you intended to use has not been applied.

Creating Formats from SAS Data Sets

Overview
You have seen that you can create a format by specifying values and labels in a PROC
FORMAT step. You can also create a format from a SAS data set that contains value
information (called a control data set). To do this, you use the CNTLIN= option to read
the data and create the format.

594 Chapter 17 • Formatting Data

General form, CNTLIN= option in PROC FORMAT:

PROC FORMAT LIBRARY=libref.catalog
CNTLIN=SAS-data-set;

Here is an explanation of the syntax:

libref.catalog
is the name of the catalog in which you want to store the format.

SAS-data-set
is the name of the SAS data set that you want to use to create the format.

Example
Suppose you have a SAS data set named Routes that has variables that are required to
create a format. You specify the data set in the CNTLIN= option as follows:

proc format lib=myfmts cntlin=routes;
run;

As you can see, the code for creating a format from a SAS data set is simple. However,
the control data set must contain certain variables before it can be used to create a
format. Therefore, most data sets must be restructured before they can be used.

Rules for Control Data Sets
When you create a format using programming statements, you specify the name of the
format, the range or value, and the label for each range or value as shown in the VALUE
statement below:

value rainfall 0='none';

The control data set you use to create a format must contain variables that supply this
same information. That is, the data set that is specified in the CNTLIN= option must
meet the following requirements:

• It must contain the variables FmtName, Start, and Label, which contain the format
name, value or beginning value in the range, and label.

• It must contain the variable End if a range is specified. If there is no End variable,
SAS assumes that the ending value of the format range is equal to the value of Start.

• It must contain the variable Type for character formats, unless the value for
FmtName begins with a $.

• It must be grouped by FmtName if multiple formats are specified.

Example

Overview
Suppose you want to create a format that labels a three-letter airport code with the name
of the city where the airport is located. You have a data set, Sasuser.Acities, that contains
airport codes and airport cities. However, the data does not have the required variables
for the CNTLIN= option.

Creating Formats from SAS Data Sets 595

Table 17.3 SAS Data Set Sasuser.Acities (Partial Listing)

City Where
Airport Is
Located

Start
Point Airport Name

Country
Where Airport
Is Located

Auckland AKL International New Zealand

Amsterdam AMS Schiphol Netherlands

Anchorage, AK ANC Anchorage International Airport USA

Stockholm ARN Arlanda Sweden

Athens (Athinai) ATH Hellinikon International Airport Greece

Birmingham, AL BHM Birmingham International Airport USA

Bangkok BKK Don Muang International Airport Thailand

To create a format from this data set, you need to do these things:

1. List data set variables.

2. Restructure the data.

Step 1: List Data Set Variables
Remember that you need to have the variables FmtName, Start, and Label. You can
submit a PROC CONTENTS step to get a listing of the variables in the Sasuser.Acities
data set.

Partial Output

proc contents data=sasuser.acities;
run;

T I P You can also get a list of variable names by using PROC DATASETS with a
CONTENTS statement or by viewing the properties of the SAS data set in the SAS
Explorer window.

Step 2: Restructure the Data
Once you have looked at the data and know the variable names, you are ready to write a
DATA step to manipulate the data. The variable Code is the three-letter airport code and
the variable City is the city where the airport is located. You can rename the variable
Code to Start and the variable City to Label, but you also need to create the variable
FmtName.

596 Chapter 17 • Formatting Data

The code below is an efficient way to prepare your data. The DATA step uses the
following statements:

• the KEEP statement to write only the specified variables to the output data set

• the RETAIN statement to create the variable FmtName and set the value to '$airport'

• the RENAME data set option to rename the variable Code to Start (you do not need a
variable named End because you are labeling discrete values rather than ranges) and
to rename the variable City to Label

data sasuser.aports;
 keep Start Label FmtName;
 retain FmtName '$airport';
 set sasuser.acities (rename=(Code=Start
 City= Label));
run;

proc print data=sasuser.aports(obs=10) noobs;
run;

Below is the listing of the first ten observations in the new data set Sasuser.Aports.

This data set is now in the proper format to be used to create a format with the
CNTLIN= option.

Once you have the data in the proper format, you can use the CNTLIN= option to create
the format. The first PROC FORMAT step creates a format from the data set
Sasuser.Aports. The second PROC FORMAT step documents the new format.

proc format library=sasuser cntlin=sasuser.aports;
run;

proc format library=sasuser fmtlib;
 select $airport;
run;

The first few lines of the output are shown below.

Creating Formats from SAS Data Sets 597

Table 17.4 Partial SAS Output

FORMAT NAME : $AIRPORT LENGTH: 22 NUMBER OF VALUES: 52 MIN LENGTH: 1
MAX LENGTH: 40 DEFAULT LENGTH: 22 FUZZ: 0

START END LABEL (VER. V7|V8 21OCT2002:14:13:14)

AKL AKL Auckland

AMS AMS Amsterdam

ANC ANC Anchorage, AK

ARN ARN Stockholm

ATH ATH Athens (Athinai)

BHM BHM Birmingham, AL

BKK BKK Bangkok

Apply the Format
Consider the format that is applied to the data set Sasuser.Cargo99. The following PROC
PRINT code assigns the $AIRPORT. format to both the Dest and Origin variables:

options fmtsearch=(sasuser);
proc print data=sasuser.cargo99 (obs=5);
 var origin dest cargorev;
 format origin dest $airport.;
run;

T I P For more information about using the CNTLIN= option, see the SAS
documentation for the FORMAT procedure.

Creating SAS Data Sets from Custom Formats

Overview
You know how to create a format from a SAS data set, but what if you want to create a
SAS data set from a format? To do this, you use the CNTLOUT= option.

598 Chapter 17 • Formatting Data

General form, CNTLOUT= option in PROC FORMAT:

PROC FORMAT LIBRARY=libref.catalog CNTLOUT=SAS-data-set;
SELECT format-name format-name...;
EXCLUDE format-name format-name...;

RUN;

Here is an explanation of the syntax:

libref.catalog
is the name of the catalog in which the format is located.

SAS-data-set
is the name of the SAS data set that you want to create.

format-name
is the name of the format that you want to select or exclude.

The output control data set will contain variables that completely describe all aspects of
each format, including optional settings. The output data set contains one observation
per range per format in the specified catalog. You can use either the SELECT or
EXCLUDE statement to include specific formats in the data set.

Creating a SAS data set from a format is very useful when you need to modify a format
but no longer have the SAS data set you used to create the format. When you need to
update a format, you take the following actions:

1. Create a SAS data set from the values in a format using CNTLOUT=.

2. Edit the data set using any number of methods.

3. Create a format from the updated SAS data set using CNTLIN=.

Example

Overview
In the last example, you created the $AIRPORT. format. Suppose you want to add the
following airport codes to the format:

Step 1: Create a SAS Data Set from the Format
First, you write the $AIRPORT. format as a SAS data set. In the code below, the output
data set is named Sasuser.Fmtdata. The SELECT statement is used so that the resulting
data set has only the data for the $AIRPORT. format. Without the SELECT statement,
the data would have observations for all the formats in the Sasuser.Formats catalog.

proc format lib=sasuser cntlout=sasuser.fmtdata;
 select $airport;
run;

Creating SAS Data Sets from Custom Formats 599

When you use the CNTLOUT= option, SAS creates an output data set that has many
variables for storing information about the format. The output data set Sasuser.Fmtdata
has 50 rows and 21 columns. In the PRINT procedure below, the VAR statement
specifies that only a few of the variables are printed:

proc print data=sasuser.fmtdata (obs=5) noobs;
 var fmtname start end label min max
 default length fuzz;
run;

As you can see, the data set contains End and other variables that were not in the original
data. When you use the CNTLIN= option, if there is no End variable in the data set, SAS
assumes that the Start and End variables have the same value. When you write the
format as a data set using the CNTLOUT= option, both variables are in the data set.

Step 2: Edit the Data Set
The next step in updating the format is to edit the data set. You could use PROC SQL or
a DATA step to add observations to the data set, or you could add observations using the
VIEWTABLE window. Whatever method you choose, you must add values for the
FmtName, Start, End, and Label variables. If Start and End are both present, you must
enter values for both variables. Otherwise, SAS will return an error. You do not have to
add values for the other variables in the data set.

Step 3: Create a Format from the SAS Data Set
Once the data set is edited and saved, you can create a format from the data set using the
CNTLIN= option. The following code creates the $AIRPORT. format and then uses
FMTLIB to document it:

proc format library=sasuser cntlin=sasuser.fmtdata;
run;

proc format lib=sasuser fmtlib;
 select $airport;
run;

The partial output shown below includes the new airports in the format.

Table 17.5 Partial SAS Output

FORMAT NAME : $AIRPORT LENGTH: 22 NUMBER OF VALUES: 56 MIN LENGTH: 1
MAX LENGTH: 40 DEFAULT LENGTH: 22 FUZZ: 0

START END LABEL (CONT'D)

600 Chapter 17 • Formatting Data

FORMAT NAME : $AIRPORT LENGTH: 22 NUMBER OF VALUES: 56 MIN LENGTH: 1
MAX LENGTH: 40 DEFAULT LENGTH: 22 FUZZ: 0

SYD END Sydney, New South Wales

VIE VIE Wien (Vienna)

WLG WLG Wellington

YQB YQB Quebec, QC

YUL YUL Montreal, QC

YYC YYC Calgary, AB

YYZ YYZ Toronto, ON

T I P For more information about using the CNTLOUT= option, see the SAS
documentation for the FORMAT procedure.

Summary

Text Summary

Creating Custom Formats Using the VALUE Statement
Character and numeric formats are created by using VALUE statements in a FORMAT
procedure. When you specify a libref in the LIBRARY= option, the format is stored in
the specified library. If no catalog name is specified, the format is saved in the Formats
catalog by default.

Creating Formats with Overlapping Ranges
Use the MULTILABEL option to create a format that has overlapping ranges. When a
format has overlapping ranges, the values in the format might have more than one label.
This format can be used in procedures that support the MLF option.

Creating Custom Formats Using the PICTURE Statement
The PICTURE statement is used to create a template for formatting values of numeric
variables. Pictures are specified using digit selectors, message characters, and directives.

Documenting Formats
Use the FMTLIB keyword in the PROC FORMAT statement to get documentation about
the formats in the specified catalog. The output displays the format name, start and end
values, and the label. You can also use the SELECT and EXCLUDE statements to
process specific formats rather than an entire catalog.

Summary 601

Managing Formats
Because formats are saved as catalog entries, you use PROC CATALOG to copy,
rename, delete, or create a listing of the entries in a catalog.

Using Custom Formats
Once you have created a format, you can reference it as you would reference a SAS
format. If you have stored the format in a location other than Work.Formats, you must
use the FMTSEARCH= system option to add the location to the search path so that SAS
can locate the format. It can be useful to change the default FMTERR system option to
NOFMTERR. Changing the default system option enables SAS to substitute the w. or
$w. format and continue processing if SAS does not find a format you reference.

You can permanently associate a format with a variable by modifying the data set using
PROC DATASETS.

Creating Formats from SAS Data Sets
Use the CNTLIN= option to specify a SAS data set that you want to use to create a
format. The SAS data set must contain the variables FmtName, Start, and Label. If the
values have ranges, there must also be an End variable.

Creating SAS Data Sets from Formats
Use the CNTLOUT= option to create a SAS data set from a format. This is useful for
maintaining formats because you can easily update a SAS data set.

Sample Programs

Creating a Multilabel Format
proc format;
 value dates (multilabel)
 '01jan2000'd - '31mar2000'd = '1st Quarter'
 '01apr2000'd - '30jun2000'd = '2nd Quarter'
 '01jul2000'd - '30sep2000'd = '3rd Quarter'
 '01oct2000'd - '31dec2000'd = '4th Quarter'
 '01jan2000'd - '30jun2000'd = 'First Half of Year'
 '01jul2000'd - '31dec2000'd = 'Second Half of Year';
run;

Creating a Picture Format
proc format;
 picture rainamt
 0-2='9.99 slight'
 2<-4='9.99 moderate'
 4<-<10='9.99 heavy'
 other='999 check value';
run;

Creating a Picture Format Using Directives
proc format;
 picture mydate
 low-high='%0d-%b%Y ' (datatype=date);
run;

602 Chapter 17 • Formatting Data

Restructuring a SAS Data Set and Creating a Format from the Data
data sasuser.aports;
 keep Start Label FmtName;
 retain FmtName '$airport';
 set sasuser.acities (rename=(Code=Start
 City= Label));
run;

proc format library=sasuser cntlin=sasuser.aports;
run;

Creating a SAS Data Set from a Format
proc format lib=sasuser cntlout=sasuser.fmtdata;
 select $airport;
run;

Points to Remember
• By default, SAS searches for formats in the Work.Formats and Library.Formats

catalogs. If you store formats in other catalogs, you must use the FMTSEARCH=
system option to tell SAS where to look for your formats.

• You can use the CNTLIN= option to create a format from a SAS data set, but the
data set must contain the following variables:

• FmtName, Start, and Label

• Type for character formats, unless the value for FmtName begins with a $

• End if a range is specified

Quiz
Select the best answer for each question. After completing the quiz, check your answers
using the answer key in the appendix.

1. Which SAS system option is used to identify format catalogs to SAS?

a. FMTERR

b. FMTLIB

c. NOFMTERR

d. FMTSEARCH=

2. Given the following PROC FORMAT step, how is the value 70 displayed when the
AGEGRP. format is applied?

proc format;
 picture agegrp
 1-<13='00 Youth'
 13-<20='00 Teen'
 20-<70='00 Adult'
 70-high='000 Senior';
run;

Quiz 603

a. 000 Senior

b. 70 Adult

c. 70 Senior

d. 070 Senior

3. When the NOFMTERR system option is in effect, what happens when SAS
encounters a format that it cannot locate?

a. Creates the format in the default Work.Formats directory and continues
processing.

b. Substitutes the $w. or w. format and continues processing.

c. Stops processing and writes an error message to the log.

d. Skips processing at that step and continues with the next step and writes a note to
the log.

4. Which of the following variables must be in the data set that is specified in the
CNTLIN= option?

a. End

b. FmtName

c. Value

d. Description

5. Given the following code, what option is missing?

proc format;
 value times (?)
 '00:00't-'04:59't = 'Red Eye'
 '05:00't-'11:59't = 'Morning'
 '12:00't-'17:59't = 'Afternoon'
 '18:00't-'23:59't = 'Evening'
 '00:00't-'11:59't = 'AM'
 '12:00't-'23:59't = 'PM';
run;

a. MULTILABEL

b. MULTIRANGE

c. MLF

d. MULTIFORMAT

6. Which PROC FORMAT option is used to create a SAS data set from a format?

a. CNTLIN=

b. LIB=

c. CNTLOUT=

d. FMTLIB

7. Given the following OPTIONS statement, in what order will SAS search to find a
user-defined format?

options fmtsearch=(work abc.newfmt sasuser);

a. Work.Formats ð Abc.Newfmt ð Sasuser.Formats ð Library.Formats

604 Chapter 17 • Formatting Data

b. Work.Formats ð Library.Formats ð Abc.Newfmt ð Sasuser.Formats

c. Work.Formats ð Abc.Newfmt ð Sasuser.Format

d. the default search order

8. What option is used with PROC FORMAT to document the formats in a particular
format catalog?

a. FMTSEARCH

b. FMTERR

c. CATALOG

d. FMTLIB

9. Which set of statements would you add to the PROC CATALOG code to copy the
LEVELS. and $PICKS. formats from the Sasuser.Formats catalog to the
Work.Formats catalog?

 proc catalog cat=sasuser.formats;
 ?
 ?
run;

a. copy out=sasuser.formats;
select levels.format $picks.format;

b. copy out=work.formats;
select levels $picks;

c. copy out=work.formats;
select levels.format picks.formatc;

d. copy out=work.formats;
select levels.format $picks.format;

10. Given the following PROC FORMAT step, how is the value 6.1 displayed when the
SKICOND format is applied?

proc format;
 value skicond
 0-3='Poor'
 3<-6='Fair'
 6<-9='Good'
 9<-high='Excellent';
run;

a. 6.1

b. Fair

c. Good

d. .

Quiz 605

606 Chapter 17 • Formatting Data

Chapter 18

Modifying SAS Data Sets and
Tracking Changes

Overview . 608
Introduction . 608

Using the MODIFY Statement . 609

Modifying All Observations in a SAS Data Set . 610
Overview . 610
Example . 610

Modifying Observations Using a Transaction Data Set . 611
Overview . 611
Example . 612
Handling Duplicate Values . 613
Handling Missing Values . 614

Modifying Observations Located by an Index . 614
Overview . 614
Example . 615
Handling Duplicate Values . 616

Controlling the Update Process . 618
Overview . 618
Example . 618
Monitoring I/O Error Conditions . 619
Using _IORC_ with %SYSRC . 619
Example . 620

Understanding Integrity Constraints . 620
Overview . 620
General Integrity Constraints . 621
Referential Integrity Constraints . 621

Placing Integrity Constraints on a Data Set . 622
Overview . 622
Example . 623
How Constraints Are Enforced . 624
Example . 624
Copying a Data Set and Preserving Integrity Constraints 625

Documenting Integrity Constraints . 626
Overview . 626
Example . 626

Removing Integrity Constraints . 627
Overview . 627
Example . 627

607

Understanding Audit Trails . 628

Initiating and Reading Audit Trails . 629
Overview . 629
Example . 629
Reading Audit Trail Files . 630
Examples . 630

Controlling Data in the Audit Trail . 631
Overview . 631
Data Set Variables . 631
Audit Trail Variables . 631
Values of the _ATOPCODE_ Variable . 632
Using the LOG Statement to Control the Data in the Audit Trail 632
Example . 633
User Variables . 633
Example . 634

Controlling the Audit Trail . 634
Overview . 634
Example . 635

Understanding Generation Data Sets . 636

Initiating Generation Data Sets . 637
Overview . 637
Example . 637
Creating Generation Data Sets . 637

Processing Generation Data Sets . 638
Overview . 638
Examples . 638
How Generation Numbers Change . 639
Examples . 641

Summary . 641
Text Summary . 641
Sample Programs . 643
Points to Remember . 644

Quiz . 644

Overview

Introduction
There are times when you want to modify the observations in a SAS data set without
replacing the data set. You can do this in a DATA step with the MODIFY statement.
Using the MODIFY statement, you can replace, delete, or append observations in an
existing data set without creating an additional copy of the data. In this chapter, you
learn to modify all the observations in a data set, match observations using a BY
statement, and locate observations using an index.

When you modify data, it is often essential to safeguard your data and track the changes
that are made. In this chapter you learn how to create integrity constraints to protect your
data. You also learn two different methods of tracking changes, audit trails and
generation data sets. You use audit trails to track changes that are made to a data set in

608 Chapter 18 • Modifying SAS Data Sets and Tracking Changes

place, and you use generation data sets to track changes that are made when the data set
is rebuilt.

Using the MODIFY Statement
When you submit a DATA step with a MERGE, UPDATE, or SET statement, and if the
output data set already exists, SAS creates a second copy of the output data set. Once
execution is complete, SAS deletes the original copy of the data set. As a result, the
original data set is replaced by the new data set with the same name. The new data set
can contain a different set of variables than the original data set. The attributes of the
variables in the new data set can be different from those of the original data set.

In contrast, when you submit a DATA step with a MODIFY statement, the input and
output data sets must be the same. SAS does not create a second copy of the data, but
updates the data set in place. New variables can be added to the program data vector
(PDV), but they are not written to the data set. Therefore, the set of variables in the data
set does not change when the data is modified.

When you use the MODIFY statement, there is an implied REPLACE statement at the
bottom of the DATA step instead of an OUTPUT statement. Using the MODIFY
statement, you can update the following:

• every observation in a data set

• observations using a transaction data set and a BY statement

Using the MODIFY Statement 609

• observations located using an index

CAUTION:
If the system terminates abnormally while a DATA step that is using the MODIFY
statement is processing, you can lose data and possibly damage your master data set.
You can recover from the failure by doing the following:

• restoring the master data set from a backup and restarting the step, or

• keeping an audit trail file and using it to determine which master observations have
been updated.

First we consider using the MODIFY statement to modify all the observations in the data
set.

Modifying All Observations in a SAS Data Set

Overview
When every observation in a SAS data set requires the same modification, you can use
the MODIFY statement and specify the modification using an assignment statement.

General form, MODIFY statement with an assignment statement:

DATA SAS-data-set;
MODIFY SAS-data-set;
existing-variable = expression;

RUN;

Here is an explanation of the syntax:

SAS-data-set
is the name of the SAS data set that you want to modify.

existing-variable
is the name of the variable whose values you want to update.

expression
is a function or other expression that you want to apply to the variable.

Example
Suppose an airline has decided to give passengers more leg room. The airline must
decrease the number of seats in the business and economy classes. The SAS data set
Capacity has the variables CapEcon and CapBusiness that hold values for the number of
seats in the economy and business classes.

In the program below, the assignment statement for CapEcon reduces the number of
seats in the economy class to 95% of the original number, and the assignment statement
for CapBusiness reduces the number of seats in the business class to 90% of the original
number. The INT function is used in both assignment statements to return the integer
portion of the result.

Note: If you choose to run this example, you must copy the data set Capacity from the
Sasuser library to the Work library.

610 Chapter 18 • Modifying SAS Data Sets and Tracking Changes

proc print data=capacity (obs=4);
run;

data capacity;
 modify capacity;
 CapEcon = int(CapEcon * .95);
 CapBusiness = int(CapBusiness * .90);
run;

proc print data=capacity (obs=4);
run;

The following output shows the data before the MODIFY statement.

The following output shows the data after the MODIFY statement. You can see that the
values in CapBusiness and CapEcon have been reduced.

Modifying Observations Using a Transaction Data
Set

Overview
You can use a MODIFY statement to update all observations in a data set, but there are
times when you want to update only selected observations. You can modify a master
SAS data set with values in a transaction data set by using the MODIFY statement with
a BY statement to apply updates by matching observations.

Modifying Observations Using a Transaction Data Set 611

General form, MODIFY statement with a BY statement:

DATA SAS-data-set;
MODIFY SAS-data-set transaction-data-set;
BY key-variable;

RUN;

Here is an explanation of the syntax:

SAS-data-set
is the name of the SAS data set that you want to modify (also called the master data set).

transaction-data-set
is the name of the SAS data set with updated values.

key-variable
is the name of the variable whose values are matched in the master and transaction data sets.

Note: In the MODIFY statement, you must list the master data set followed by the
transaction data set.

The BY statement matches observations from the transaction data set with observations
in the master data set. When the MODIFY statement reads an observation from the
transaction data set, it uses dynamic WHERE processing (SAS internally generates a
WHERE statement) to locate the matching observation in the master data set. The
matching observation in the master data set can be replaced, deleted, or appended. By
default, the observation is replaced.

Note: Because the MODIFY statement uses WHERE processing to locate matching
observations, neither data set requires sorting. However, having the master data set
sorted or indexed and the transaction data set sorted reduces processing overhead,
especially for large files.

Example
Suppose you have a master data set, Capacity, which has route numbers for an airline.
Some of the route numbers have changed, and the changes are stored in a transaction
data set, Newrtnum. The master data set is updated by matching values of the variable
FlightID.

proc print data=capacity(obs=5);
run;

data capacity;
 modify capacity sasuser.newrtnum;
 by flightid;
run;

proc print data=capacity(obs=5);
run;

The following PROC PRINT output displays the first five rows of the data set Capacity
before updates were applied.

612 Chapter 18 • Modifying SAS Data Sets and Tracking Changes

For each matching observation, the values for RouteID are updated.

Handling Duplicate Values
When you use the MODIFY and BY statements to update a data set, WHERE processing
starts at the top of the master data set, finds the first match, and updates it. Consider
what happens if there are duplicate values in the master or transaction data sets. Suppose
you have the following code to make updates to the master data set M using the
transaction data set T:

data m;
 modify m t;
 by a;
run;

If duplicate values of the BY variable exist in the master data set, only the first
observation in the group of duplicate values is updated.

If duplicate values of the BY variable exist in the etransaction data set, the transactions
overwrite each other so that only the last transaction in the group is the result in the
master data set.

Modifying Observations Using a Transaction Data Set 613

Alternatively, you can write code to accumulate the numeric value of each transaction.

Handling Missing Values
If there are missing values in the transaction data set, SAS does not replace the data in
the master data set with missing values unless they are special missing values.

Note: A special missing value is a type of numeric missing value that enables you to
represent different categories of missing data by using the letters A-Z or an
underscore. You designate special missing values using the MISSING statement in
the DATA step. For more information, see the SAS documentation.

You can specify how missing values in the transaction data set are handled by using the
UPDATEMODE= option in the MODIFY statement.

General form, MODIFY statement with the UPDATEMODE= option:

MODIFY master-data-set transaction-data-set
UPDATEMODE=MISSINGCHECK | NOMISSINGCHECK;

Here is an explanation of the syntax:

master-data-set
is the name of the SAS data set that you want to modify.

transaction-data-set
is the name of the SAS data set in which the updated values are stored.

MISSINGCHECK
prevents missing values in the transaction data set from replacing values in the master data
set unless they are special missing values. MISSINGCHECK is the default.

NOMISSINGCHECK
allows missing values in the transaction data set to replace the values in the master data set.
Special missing values in the transaction data set still replace values in the master data set.

Modifying Observations Located by an Index

Overview
You have learned that you can use a BY statement to access values that you want to
update in a master data set by matching. When you have an indexed master data set, you
can use the index to directly access the observations that you want to update. To do this,
you use the following statements:

• a MODIFY statement with the KEY= option to name an index to locate the
observations for updating

614 Chapter 18 • Modifying SAS Data Sets and Tracking Changes

• a SET statement or INPUT statement to read a transaction data set with a like-named
variable or variables whose values are supplied to the index

General form, MODIFY statement with the KEY= option:

MODIFY SAS-data-set KEY=index-name;

Here is an explanation of the syntax:

SAS-data-set
is the master data set, or the data set that you want to update.

index-name
is the name of the simple or composite index that you are using to locate observations.

Updating with an index is different from updating using a BY statement. When you use
the MODIFY statement with the KEY= option to name an index, the following must
occur:

• You must explicitly specify the update that you want to occur.

• Each observation in the transaction data set must have a matching observation in the
master data set. If you have multiple observations in the transaction data set for one
master observation, only the first observation in the transaction data set is applied.
The other observations generate run-time errors and terminate the DATA step (unless
you use the UNIQUE option, which is discussed later in this chapter).

Example
Suppose that airline cargo weights for 1999 are stored in the master data set Cargo99,
which has a composite index named FlghtDte on the variables FlightID and Date. Some
of the data is incorrect and the data set needs to be updated. The correct cargo data is
stored in the transaction data set Newcgnum.

In the program below, the KEY= option specifies the FlghtDte index. When a matching
observation is found in Cargo99, three variables (CapCargo, CargoWgt, and CargoRev)
are updated.

Note: If you choose to run this example, you must copy the data set Cargo99 from the
Sasuser library to the Work library.

proc print data=cargo99(obs=5);
run;

data cargo99;
 set sasuser.newcgnum (rename =
 (capcargo = newCapCargo
 cargowgt = newCargoWgt
 cargorev = newCargoRev));
 modify cargo99 key=flghtdte;
 capcargo = newcapcargo;
 cargowgt = newcargowgt;
 cargorev = newcargorev;
run;

proc print data=cargo99(obs=5);
run;

The output below shows the first five observations of the SAS data set Cargo99 before it
was modified by Newcgnum.

Modifying Observations Located by an Index 615

The output below shows the first five observations of the SAS data set Cargo99 after it
was modified by Newcgnum. Notice that the three variables in the first observation were
updated by the values in Newcgnum.

Handling Duplicate Values
When you use an index to locate observations to update, duplicate values of the indexed
variable in the transaction data set might cause problems. We consider what happens
with various scenarios when you use the following code to update the master data set M
with values from the transaction data set T. The index on the M data set is built on the
variable A:

data m;
 set t (rename=(b=newb));
 modify m key=a;
 b=newb;
run;

If there are duplications in the master data set, only the first occurrence is updated.

T I P If you want all duplicates in the master data set to be updated with the
transaction value, use a DO loop to execute a SET statement with the KEY= option
multiple times.

If there are nonconsecutive duplications in the transaction data set, SAS updates the first
match in the master data set. The last duplicate transaction value is the result in the
master data set after the update.

616 Chapter 18 • Modifying SAS Data Sets and Tracking Changes

If there are consecutive duplications in the transaction data set (that is, some that do not
have a match in the master data set), then SAS performs a one-to-one update until it
finds a non-match. At that time, the DATA step terminates with an error.

Adding the UNIQUE option to the MODIFY statement enables you to avoid the error in
the DATA step. The UNIQUE option causes the DATA step to return to the top of the
index each time it looks for a match. The UNIQUE option can be used only with the
KEY= option.

General form, MODIFY statement with the UNIQUE option:

MODIFY SAS-data-set KEY=index-name /UNIQUE;

Here is an explanation of the syntax:

SAS-data-set
is the name of the SAS data set that you want to modify (the master data set).

index-name
is the name of the simple or composite index that you are using to locate observations.

You can specify the UNIQUE option in order to do one of the following:

• apply multiple transactions to one master observation

• identify that each observation in the master data set contains a unique value of the
index variable.

When you use the UNIQUE option and there are consecutive duplications in the
transaction data set, SAS updates the first observation in the master data set. This is
similar to what happens when you have nonconsecutive duplications in the transaction
data set. If the values in the transaction data set should be added to the value in the
master data set, you can write a statement to accumulate the values from all the
duplicates.

Modifying Observations Located by an Index 617

Controlling the Update Process

Overview
When the DATA step contains a MODIFY statement, SAS writes the current observation
to its original place in the SAS data set. This action occurs by default through an implied
REPLACE statement at the bottom of the DATA step.

However, you can override this default behavior by explicitly adding the OUTPUT,
REPLACE, or REMOVE statement.

General form for OUTPUT, REPLACE, and REMOVE statements:

OUTPUT;
REPLACE;
REMOVE;

Here is an explanation of the syntax:

OUTPUT
adds the current observation to the end of the data set.

REPLACE
writes the current observation to the same location in the data set.

REMOVE
removes the current observation from the data set.

Using OUTPUT, REPLACE, or REMOVE statements in a DATA step with a MODIFY
statement can change the default replacement of observations. You can use these three
statements together as long as the sequence is logical.

CAUTION:
If you use an OUTPUT statement in conjunction with a REPLACE or REMOVE
statement, make sure that the OUTPUT statement is executed after any REPLACE or
REMOVE statements to ensure the integrity of the index position.

Example
If the SAS data set Transaction has a variable named Code that has values of yes, no,
and new, you can submit the following program in order to do one of the following:

• delete rows where the value of Code is no

• update rows where the value of Code is yes

• append rows where the value of Code is new.

data master;
 set transaction;
 modify master key = id;
 a = b;
 if code = 'no' then remove;
 else if code = 'yes' then replace;
 else if code = 'new' then output;

618 Chapter 18 • Modifying SAS Data Sets and Tracking Changes

run;

Note: You cannot run this example because Transaction and Master are fictitious data
sets.

Monitoring I/O Error Conditions
When you use the MODIFY statement with a BY statement or KEY= option to update a
data set, error checking is important for several reasons. The most important reason is
that these tools use nonsequential access methods, so there is no guarantee that an
observation is located so that it satisfies the request. Error checking enables you to
perform updates or not, depending on the outcome of the I/O condition.

The automatic variable _IORC_ (Input Output Return Code) is created when you use the
MODIFY statement with the BY statement or KEY= option. The value of _IORC_ is a
numeric return code that indicates the status of the most recently executed I/O operation.
Checking the value of this variable enables you to detect abnormal I/O conditions and
direct execution in particular ways rather than having the application terminate
abnormally.

Using _IORC_ with %SYSRC
Because the values of the _IORC_ automatic variable are internal and subject to change,
%SYSRC, an autocall macro, was created to enable you to test for specific I/O
conditions while protecting your code from future changes in _IORC_ values.

General form, _IORC_ with the %SYSRC autocall macro:

IF _IORC_=%SYSRC (mnemonic) THEN executable_statement;

Here is an explanation of the syntax:

mnemonic
is a code for a specific I/O condition.

Note: %SYSRC is in the autocall library. You must have the MACRO system option in
effect to use this macro.

When you use %SYSRC, you can check the value of _IORC_ by specifying one of the
mnemonics listed below.

Mnemonic Meaning

_DSENMR The observation in the transaction data set does not exist in the master
data set (used only with the MODIFY and BY statements).

_DSEMTR Multiple transaction data set observations do not exist in the master data
set (used only with the MODIFY and BY statements).

_DSENOM No matching observation (used with the KEY= option).

_SOK The observation was located.

Controlling the Update Process 619

Example
Suppose you are using the MODIFY statement with the KEY= option to update a SAS
data set. In the program below, when _IORC_ has the value _SOK, the observation is
updated. When _IORC_ has the value _DSENOM, no matching observation is found, so
the observation is appended to the data set by the OUTPUT statement and _ERROR_ is
reset to 0 in the do group.

data master;
 set transaction;
 modify master key = id;
 if _IORC_=%sysrc(_sok) then
 do;
 a = b;
 replace;
 end;
 else
 if _IORC_=%sysrc(_dsenom) then
 do;
 output;
 ERROR = 0;
 end;
run;

T I P For more information about the _IORC_ automatic variable and %SYSRC, see
information about error-checking tools in the SAS documentation.

Understanding Integrity Constraints

Overview
Now that you know how to modify data in place, you might be wondering how you can
protect or ensure the integrity of your data when it is modified. Integrity constraints are
rules that you can specify in order to restrict the data values that can be stored for a
variable in a data set. SAS enforces integrity constraints when values that are associated
with a variable are added, updated, or deleted using techniques that modify data in place,
such as the following:

• a DATA step with the MODIFY statement

• an interactive data editing window

• PROC SQL with the INSERT INTO, SET, or UPDATE statements

• PROC APPEND

When you add an integrity constraint to the table that contains data, SAS checks all data
values to determine whether they satisfy the constraint before the constraint is added.

Type Action

CHECK ensures that a specific set or range of values are the only values in a
column. It can also check the validity of a value in one column based on a
value in another column within the same row.

620 Chapter 18 • Modifying SAS Data Sets and Tracking Changes

Type Action

NOT NULL guarantees that a column has nonmissing values in each row.

UNIQUE enforces uniqueness for the values of a column.

PRIMARY KEY uniquely defines a row within a table, which can be a single column or a
set of columns. A table can have only one primary key. The PRIMARY
KEY constraint includes the attributes of the NOT NULL and UNIQUE
constraints.

FOREIGN KEY specifies variables whose values are linked to the values of the primary
key variables in another data set. This parent/child relationship limits
modifications that are made to both tables.

Note: When you place integrity constraints on a SAS data set, you specify the type of
constraint that you want to create. Each constraint has a different action.

You can use integrity constraints in two ways, general and referential. General
constraints operate within a data set, and referential constraints operate between data
sets.

General Integrity Constraints
General integrity constraints enable you to restrict the values of variables within a single
data set. The following integrity constraints can be used as general integrity constraints:

• CHECK

• NOT NULL

• UNIQUE

• PRIMARY KEY.

Note: A PRIMARY KEY constraint is a general integrity constraint as long as it does
not have any FOREIGN KEY constraints referencing it. When PRIMARY KEY is
used as a general constraint, it is simply a shortcut for assigning the NOT NULL and
UNIQUE constraints.

Referential Integrity Constraints
Referential constraints enable you to link the data values of a column in one data set to
the data values of columns in another data set. You create a referential integrity
constraint when a FOREIGN KEY integrity constraint in one data set references a
PRIMARY KEY integrity constraint in another data set. To create a referential integrity
constraint, you must do the following:

1. Define a PRIMARY KEY constraint on the first data set.

2. Define a FOREIGN KEY constraint on other data sets.

Understanding Integrity Constraints 621

Placing Integrity Constraints on a Data Set

Overview
Integrity constraints can be created using either the DATASETS procedure or the SQL
procedure.

Although you can use either procedure to create integrity constraints on existing data
sets, you must use PROC SQL if you want to create integrity constraints at the same
time that you create the data set. In this chapter you learn to use PROC DATASETS to
place integrity constraints on an existing data set.

General form, DATASETS procedure with the IC CREATE statement:

PROC DATASETS LIB=libref <NOLIST>;
MODIFY SAS-data-set;
IC CREATE constraint-name=constraint

<MESSAGE='Error Message'>;
QUIT;

Here is an explanation of the syntax:

libref
is the library in which the data set is stored. If you do not specify the LIB= option, the
procedure uses the Work library.

NOLIST
suppresses the directory listing.

SAS-data-set
is the name of the data set to which you want to apply the integrity constraint.

constraint-name
is any name that you want to give the integrity constraint.

constraint
is the type of constraint that you are creating, specified in the following format:

• NOT NULL (variable)

• UNIQUE (variables)

• CHECK (where-expression)

• PRIMARY KEY (variables)

• FOREIGN KEY (variables) REFERENCES table-name.

Error Message
is an optional message written to the log when the constraint is violated.

Note: You can use IC or INTEGRITY CONSTRAINT interchangeably.

T I P To learn how to create integrity constraints using the SQL procedure, see
Chapter 5, “Creating and Managing Tables Using PROC SQL,” on page 167.

622 Chapter 18 • Modifying SAS Data Sets and Tracking Changes

Example
Suppose you have a data set that contains route information and passenger capacity for
each class in an airline. You need to create integrity constraints to ensure that, when the
data set is updated, the following conditions are true:

• The route ID number is both unique and required (PRIMARY KEY).

• The capacity for business class passengers must either be missing or be greater than
the capacity for first class passengers (CHECK).

In the code below, the IC CREATE statement is used to create two general integrity
constraints on variables in the data set Capinfo:

• The PRIMARY KEY constraint is placed on the RouteID variable. This constraint
ensures that when values of RouteID are updated, they must be unique and
nonmissing.

Note: The same effect could be achieved by applying both the UNIQUE and NOT
NULL constraints, but the PRIMARY KEY constraint is used as a shortcut.

• The CHECK constraint uses the WHERE expression to ensure that the only values of
CapBusiness that are allowed are those greater than Cap1st or missing.

Note: If you choose to run this example, you must copy the data set Capinfo from the
Sasuser library to the Work library.

proc datasets nolist;
 modify capinfo;
 ic create PKIDInfo=primary key(routeid)
 message='You must supply a Route ID Number';
 ic create Class1=check(where=(cap1st<capbusiness or capbusiness=.))
 message='Cap1st must be less than CapBusiness';
quit;

Notice that the NOLIST option is used to prevent a listing of the Work library that
PROC DATASETS produces by default. When the constraint is created, a message is
written to the SAS log.

Table 18.1 SAS Log

45 modify capinfo;
46 ic create PKIDInfo = primary key (routeid)
47 message = 'You must supply a Route ID Number';
NOTE: Integrity constraint PKIDInfo defined.
48 ic create Class1 = check (where = (cap1st < capbusiness
49 or capbusiness = .)) message = 'Cap1st must be less
50 than CapBusiness';
NOTE: Integrity constraint Class1 defined.
51 run;

Note: For the UNIQUE and PRIMARY KEY constraints, SAS builds indexes on the
columns that are involved if an appropriate index does not already exist. Any index
that is created by an integrity constraint can be used for other purposes, such as
WHERE processing or the KEY= option in a SET statement.

T I P For more information about creating integrity constraints, see the SAS
documentation for the DATASETS procedure.

Placing Integrity Constraints on a Data Set 623

How Constraints Are Enforced
Once integrity constraints are in place, SAS enforces them whenever you modify the
data set in place. Techniques for modifying data in place include using the following
elements:

• a DATA step with the MODIFY statement

• interactive data editing windows

• PROC SQL with the INSERT INTO, SET, or UPDATE statements

• PROC APPEND

Example
The code in the previous example placed a check constraint on Cap1st and CapBusiness
to ensure that values for the capacity in business class were either greater than first class
or missing. Suppose you ran the following program to triple the capacity in first class.
This would probably violate the check constraint for some observations.

data capinfo;
 modify capinfo;
 cap1st=cap1st*3;
run;

The observations that failed to pass the integrity constraint are written to the SAS log.
As you can see, all these observations would have had values of Cap1st greater than
those of CapBusiness.

624 Chapter 18 • Modifying SAS Data Sets and Tracking Changes

Table 18.2 SAS Log

FlightID=IA00100 RouteID=0000001 Origin=RDU Dest=LHR Cap1st=42
CapBusiness=30 CapEcon=163
ERROR=1 _IORC_=660130 _N_=1
FlightID=IA00201 RouteID=0000002 Origin=LHR Dest=RDU Cap1st=42
CapBusiness=30 CapEcon=163
ERROR=1 _IORC_=660130 _N_=2
FlightID=IA00300 RouteID=0000003 Origin=RDU Dest=FRA Cap1st=42
CapBusiness=30 CapEcon=163
ERROR=1 _IORC_=660130 _N_=3
FlightID=IA00400 RouteID=0000004 Origin=FRA Dest=RDU Cap1st=42
CapBusiness=30 CapEcon=163
ERROR=1 _IORC_=660130 _N_=4
FlightID=IA02900 RouteID=0000029 Origin=SFO Dest=HNL Cap1st=42
CapBusiness=30 CapEcon=163
ERROR=1 _IORC_=660130 _N_=29
FlightID=IA03000 RouteID=0000030 Origin=HNL Dest=SFO Cap1st=42
CapBusiness=30 CapEcon=163
ERROR=1 _IORC_=660130 _N_=30
FlightID=IA03300 RouteID=0000033 Origin=RDU Dest=ANC Cap1st=42
CapBusiness=30 CapEcon=163
ERROR=1 _IORC_=660130 _N_=33
FlightID=IA03400 RouteID=0000034 Origin=ANC Dest=RDU Cap1st=42
CapBusiness=30 CapEcon=163
ERROR=1 _IORC_=660130 _N_=34
NOTE: There were 50 observations read from the data set WORK.CAPINFO.
NOTE: The data set WORK.CAPINFO has been updated. There were 42
 observations rewritten, 0 observations added and 0
 observations deleted.
NOTE: There were 8 rejected updates, 0 rejected adds, and 0 rejected
 deletes.

If you used the VIEWTABLE window or another interactive window to make this
update, SAS displays the error message that is defined for the integrity constraint.

Note: Rejected observations can be collected in a special file using the audit trail
functionality that you learn about later in this chapter.

Copying a Data Set and Preserving Integrity Constraints
The APPEND, COPY, CPORT, CIMPORT, and SORT procedures preserve integrity
constraints when their operation results in a copy of the original data file. Integrity
constraints are also preserved if you copy a data set using the SAS Explorer window.

T I P For more information about preserving integrity constraints, see the SAS
documentation.

Placing Integrity Constraints on a Data Set 625

Documenting Integrity Constraints

Overview
To view the descriptor portion of your data, including the integrity constraints that you
have placed on a data set, you can use the CONTENTS statement in the DATASETS
procedure.

General form, DATASETS procedure with the CONTENTS statement:

PROC DATASETS LIB=libref <NOLIST>;
CONTENTS DATA=SAS-data-set;

QUIT;

Here is an explanation of the syntax:

libref
is the library in which the data set is stored.

NOLIST
suppresses the directory listing.

SAS-data-set
is the name of the data set that you want information about.

Note: The CONTENTS statement in the DATASETS procedure results in the same
information as the CONTENTS procedure.

Example
The following code displays information about the Capinfo data set, including the
integrity constraints that were added to this data set in the last example. Notice that the
NOLIST option is used here to suppress the listing of all data sets in the Work library.
With this option, only the information for the Capinfo data set is listed.

proc datasets nolist;
 contents data=capinfo;
quit;

Only the integrity constraints portion of the output is shown below.

626 Chapter 18 • Modifying SAS Data Sets and Tracking Changes

Removing Integrity Constraints

Overview
To remove an integrity constraint from a data set, use the DATASETS procedure with
the IC DELETE statement.

General form, DATASETS procedure with the IC DELETE statement:

PROC DATASETS LIB=libref <NOLIST>;
MODIFY SAS-data-set;
IC DELETE constraint-name;

QUIT;

Here is an explanation of the syntax:

libref
is the name of the library in which the data set is stored. If you do not specify the LIB=
option, the procedure uses the Work library.

NOLIST
suppresses the directory listing.

SAS-data-set
is the name of the data set that has the integrity constraint.

constraint-name
is the name of the integrity constraint that you want to delete.

Example
The code below removes the integrity constraints on the Capinfo data set:

proc datasets;
 modify capinfo;
 ic delete pkidinfo;
 ic delete class1;
 quit;

A message is written to the SAS log when the integrity constraint is deleted.

Table 18.3 SAS Log

53 modify capinfo;
54 ic delete pkidinfo;
NOTE: Integrity constraint PKIDInfo deleted.
55 ic delete class1;
NOTE: All integrity constraints defined on WORK.CAPINFO.DATA
 have been deleted.
56 run;NOTE: Integrity constraint PKIDInfo deleted.

Removing Integrity Constraints 627

Understanding Audit Trails
As you modify a data set, you might want to track the changes that you make by using
an audit trail. An audit trail is an optional SAS file that logs modifications to a SAS
table. Audit trails are used to track changes that are made to the data set in place.
Specifically, audit trails track changes that are made with the following:

• the VIEWTABLE window

• the data grid

• the MODIFY statement in the DATA step

• the UPDATE, INSERT, or DELETE statement in PROC SQL

For each addition, deletion, and update to the data, the audit trail automatically stores a
copy of the variables in the observation that was updated, and also stores information
such as who made the modification, what was modified, and when the modification was
made. The audit trail can also store additional information in user-defined variables.

The following PROC CONTENTS output lists the variables in an audit trail file for a
data set that has two variables, A and B. You learn more about these variables later in
this chapter.

CAUTION:
Any procedure or action that replaces the data set (such as the DATA step, CREATE
TABLE in PROC SQL, or SORT without the OUT= option) deletes the audit trail.
Audit trails should not be deleted with system tools such as Windows Explorer.

A SAS table can have only one audit trail file. The following statements are true about
the audit trail file:

• It is a read-only file.

• It is created by PROC DATASETS.

• It must be in the same library as the data file that is associated with it.

• It has the same name as the data set it is monitoring, but with a member type of
AUDIT.

628 Chapter 18 • Modifying SAS Data Sets and Tracking Changes

Initiating and Reading Audit Trails

Overview
You initiate an audit trail using the DATASETS procedure with the AUDIT and
INITIATE statements.

General form, DATASETS procedure to initiate an audit trail:

PROC DATASETS LIB=libref <NOLIST>;
AUDIT SAS-data-set <SAS-password>;
INITIATE;

QUIT;

Here is an explanation of the syntax:

AUDIT
initiates and controls event logging to an audit file.

libref
is the name of the library where the data set to be audited resides.

NOLIST
suppresses the directory listing.

SAS-data-set
is the name of the SAS data set that you want to audit.

SAS-password
is the SAS data set password, if one exists.

INITIATE
begins the audit trail on the data set specified in the AUDIT statement.

Example
The following code initiates an audit trail on the data set Capinfo.

Note: If you choose to run this example, you must copy the data set Capinfo from the
Sasuser library to the Work library.

proc datasets nolist;
 audit capinfo;
 initiate;
quit;

Initiating and Reading Audit Trails 629

Table 18.4 SAS Log

60 audit capinfo;
61 initiate;
WARNING: The audited data file WORK.CAPINFO.DATA is not
 password protected.
 Apply an ALTER password to prevent accidental
 deletion or replacement of it and any associated
 audit files.
62 quit;
NOTE: The data set WORK.CAPINFO.AUDIT has 0 observations
 and 13 variables.

Note: The audit trail file uses the SAS password that is assigned to the parent data set.
Therefore, it is recommended that you alter the password for the parent data set. Use
the ALTER= data set option to assign an alter-password to a SAS data set or to
access a Read-, Write-, or Alter- protected SAS data set. If another password is used
or no password is used, then the audit file is still created, but is not protected.

T I P For more information about audit trails, see the SAS documentation for the
DATASETS procedure.

Reading Audit Trail Files
When the audit trail is initiated, it has no observations until the first modification is
made to the audited data set. When the audit trail file contains data, you can read it with
any component of SAS that reads a data set. To refer to the audit trail file, use the
TYPE= data set option.

General form, TYPE= data set option to specify an audit file:

(TYPE=AUDIT)

Examples
The following PROC CONTENTS code displays the contents of the audit trial file:

proc contents data=mylib.sales (type=audit);
run;

The following PROC PRINT code lists the data in the audit trail file for the data set
Capinfo:

proc print data=capinfo (type=audit);
run;

630 Chapter 18 • Modifying SAS Data Sets and Tracking Changes

Controlling Data in the Audit Trail

Overview
Now that you have seen how to initiate audit trails and read an audit trail file, consider
the information the audit trail file contains. The audit trail file can contain three types of
variables:

• data set variables that store copies of the columns in the audited SAS data set

• audit trail variables that automatically store information about data modifications

• user variables that store user-entered information

You can use additional statements in the PROC DATASETS step to control which
variables appear in the audit trail. We consider each of the three types of variables that
can be found in an audit trail.

Data Set Variables
As you might expect, the audit trail file has the same set of variables that are in the
audited data set. If the data set contains the variables A and B, the variables A and B are
also in the audit trail file.

Next consider the audit trail variables that automatically store information about changes
that you make to the data.

Audit Trail Variables
Audit trail variables automatically store information about data modifications. Audit trail
variable names begin with AT followed by a specific string, such as DATETIME.

Controlling Data in the Audit Trail 631

Audit Trail Variable Information Stored

ATDATETIME date and time of a modification

ATUSERID login user ID associated with a modification

ATOBSNO observation number affected by the modification unless
REUSE=YES

ATRETURNCODE event return code

ATMESSAGE SAS log message at the time of the modification

ATOPCODE code describing the type of operation

Values of the _ATOPCODE_ Variable
The _ATOPCODE_ variable contains a code that describes the type of operation that
wrote the observation to the audit file. For example, if you modified all observations in
an audited data set, the audit file would contain twice as many observations as the
original data set. The audit file would contain one observation that matched the original
observation with an _ATOPCODE_ value of DR, and one updated observation with an
ATOPCODE value of DW.

Here are the possible values of the _ATOPCODE_ variable.

ATOPCODE Event

DA added data record image

DD deleted data record image

DR before-update record image

DW after-update record image

EA observation add failed

ED observation delete failed

EU observation update failed

You can define what information is stored in the audit file by using the LOG statement
when you initiate the audit trail.

Using the LOG Statement to Control the Data in the Audit Trail
When you initiate an audit trail, options in the LOG statement determine the type of
entries that are stored in the audit trail, along with their corresponding _ATOPCODE_
values. The ERROR_IMAGE option controls E operation codes. The BEFORE_IMAGE
option controls the DR operation code, and the DATA_IMAGE option controls all other

632 Chapter 18 • Modifying SAS Data Sets and Tracking Changes

D operation codes. If you omit the LOG statement when you initiate the audit trail, the
default behavior is to log all images.

General form, LOG statement:

LOG <audit-settings>;

Here is an explanation of the syntax:

audit-settings
are any of the following:

• BEFORE_IMAGE=YES|NO controls storage of before-update record images (the 'DR'
operation).

• DATA_IMAGE=YES|NO controls storage of after-update record images (for example,
other operations starting with 'D').

• ERROR_IMAGE=YES|NO controls storage of unsuccessful update record images (for
example, operations starting with 'E').

Example
The following code initiates an audit trail on the data set Capinfo but stores only error
record images. This means that the audit file contains only records where an error
occurred. The _ATOPCODE_ values can be only EA, ED, and EU.

Note: If you choose to run this example, you must copy the data set Capinfo from the
Sasuser library to the Work library.

proc datasets nolist;
 audit capinfo;
 initiate;
 log data_image=NO before_image=NO;
quit;

User Variables
User variables allow the person editing the file to enter information about changes that
they are making to the data. Although the data values are stored in the audit file, you can
update them in the data set like any other variable.

User variables are created by using the USER_VAR statement in the audit trail
specification.

Controlling Data in the Audit Trail 633

General form, USER_VAR statement:

USER_VAR variable-name <$><length><LABEL='variable-label'>;

Here is an explanation of the syntax:

variable-name
is the name of the user variable that you are creating.

$
indicates the variable is a character variable.

length
specifies the length of the variable (the default is 8).

variable-label
specifies a label for the variable enclosed in quotation marks.

Note: You can create more than one user variable in a single USER_VAR statement.

User variables are unique in SAS in that they are stored in one file (the audit file) and
opened for update in another file (the data set). When the data set is opened for update,
the user variables are displayed, and you can edit them as if they are part of the data set.

Example
Suppose you must monitor the updates for the data set Capinfo. The following code
initiates an audit trail for the data set Capinfo and creates two user variables, who and
why, to store who made changes to the data set and why the changes were made.

Note: If you choose to run this example, you must copy the data set Capinfo from the
Sasuser library to the Work library.

proc datasets nolist;
 audit capinfo;
 initiate;
 user_var who $20 label = 'Who made the change'
 why $20 label = 'Why the change was made';
quit;

Once these user variables are set up, they are retrieved from the audit trail and displayed
when the data set is opened for update. You can enter data values for the user variables
as you would for any data variable. The data values are saved to the audit trail as each
observation is saved. The user variables are not available when the data is opened for
browsing or printing. To rename a user variable or modify its attributes, you modify the
data set, not the audit file.

Controlling the Audit Trail

Overview
Once you activate an audit trail, you can suspend and resume logging, and terminate
(delete) the audit trail by resubmitting a PROC DATASETS step with additional
statements. You use the DATASETS procedure to suspend and then resume the audit
trail. You also use this procedure to delete or terminate an audit trail.

634 Chapter 18 • Modifying SAS Data Sets and Tracking Changes

General form, DATASETS procedure to suspend, resume, or terminate an audit trail:

PROC DATASETS LIB=libref<NOLIST>;
AUDIT SAS-data-set <SAS-password>;
SUSPEND | RESUME | TERMINATE;

QUIT;

Here is an explanation of the syntax:

libref
is the name of the library where the table to be audited resides.

NOLIST
suppresses the directory listing.

SAS-data-set
is the name of the SAS data set that you want to audit.

SAS-password
is the SAS data file password, if one exists.

SUSPEND
suspends event logging to the audit file, but does not delete the audit file.

RESUME
resumes event logging to the audit file, if it was suspended.

TERMINATE
terminates event logging and deletes the audit file.

T I P Because each update to the data file is also written to the audit file, the audit trail
can negatively affect system performance. You might want to consider suspending
the audit trail for large, regularly scheduled batch updates.

Example
The following code terminates the audit trail on the data set Capinfo.

Note: If you choose to run this example, you must copy the data set Capinfo from the
Sasuser library to the Work library.

proc datasets nolist;
 audit capinfo;
 terminate;
quit;

A message is written to the log when the audit trail is terminated.

Table 18.5 SAS Log

65 audit capinfo;
66 terminate;
NOTE: Deleting WORK.CAPINFO (memtype=AUDIT).
67 quit;

Controlling the Audit Trail 635

Understanding Generation Data Sets
You have learned that you can keep an audit trail to track observation updates made to an
individual data set in place. However, if you replace the data set, the audit trail is lost.
Generation data sets enable you to maintain multiple versions or generations of a SAS
data set. A new generation is created each time the file is replaced.

By default, generation data sets are not in effect. As the SAS data set A is replaced, there
are two copies of A in the SAS library. When the DATA step completes execution, SAS
removes the original copy of the data set A from the library.

When generation data sets are in effect and the SAS data set A is replaced, there are two
copies of A in the SAS library. When the DATA step completes execution, SAS keeps
the original copy of the SAS data set A in the library and renames it.

Each generation of a generation data set is stored as part of a generation group. Each
generation data set in a generation group has the same root member name, but each has a
different version number. The most recent version is called the base version. When
generations are in effect, SAS filenames are limited to 28 characters. The last four
characters are reserved for the version numbers.

Note: Generation data sets are not supported on VMS.

636 Chapter 18 • Modifying SAS Data Sets and Tracking Changes

Initiating Generation Data Sets

Overview
To initiate generation data sets and to specify the maximum number of versions to
maintain, you use the output data set option GENMAX= when creating or replacing a
data set. If the data set already exists, you can use the GENMAX= option with the
DATASETS procedure and the MODIFY statement.

General form, DATASETS procedure, and MODIFY statement with the GENMAX= option:

PROC DATASETS LIB=libref <NOLIST>;
MODIFY SAS-data-set (GENMAX=n);

QUIT;

Here is an explanation of the syntax:

libref
is the library that contains the data that you want to modify.

NOLIST
suppresses the directory listing.

SAS-data-set
is the name of the SAS data set that you want to modify.

n
is the number of historical versions that you want to keep, including the base version:

• n=0, no historical versions are kept (this is the default).

• n>0, the specified number of versions of the file that are are kept. The number includes
the base version.

Example
The following DATASETS procedure modifies the data set Cargorev and requests that
up to four versions be kept (one base version and three historical versions).

Note: If you choose to run this example, you must copy the data set Cargorev from the
Sasuser library to the Work library.

proc datasets nolist;
 modify cargorev (genmax=4);
quit;

No message is written to the log when you specify the GENMAX= option.

Creating Generation Data Sets
Remember, new versions of a generation data set are created only when a data set is
replaced, not when it is modified in place. To create new generations, use one of the
following approaches:

• a DATA step with a SET statement

Initiating Generation Data Sets 637

• a DATA step with a MERGE statement

• PROC SORT without the OUT= option

• PROC SQL with a CREATE TABLE statement

Processing Generation Data Sets

Overview
Once you have a generation group that contains more than one generation data set, you
might want to select a particular data set to process. To select a particular generation,
you use the GENNUM= data set option.

General form, GENNUM= data set option:

GENNUM=n

Here is an explanation of the syntax:

n
specifies a particular historical version of a data set:

• n>0 is an absolute reference to a historical version by its generation number.

• n<0 is a relative reference to a historical version.

• n=0 is the current version.

Examples
To print the current version of the data, you do not need to use the GENNUM= option.
Simply use code such as the following:

proc print data=year;
run;

To print the youngest historical version, you have several choices. You can specify either
the absolute or relative reference in the GENNUM= option, as shown:

proc print data=year(gennum=4); /*absolute reference*/
run;

proc print data=year(gennum=-1); /*relative reference*/
run;

You can also view information about a specific generation using the GENNUM= option
with PROC CONTENTS, as shown:

proc contents data=year(gennum=-1); /*relative reference*/
run;

Now that you have seen a few examples of using the GENNUM= option, consider how
generation numbers change.

638 Chapter 18 • Modifying SAS Data Sets and Tracking Changes

How Generation Numbers Change
When you use the GENNUM= option, you can refer to either the absolute or relative
generation number. It is helpful to understand how generation numbers change so that
you can identify the generation that you want to process.

First, consider how SAS names generation data sets. The first time a data set with
generations in effect is replaced, SAS keeps the replaced data set, and appends a four-
character version number to its member name. The name includes the pound symbol (#)
and a three-digit number. That is, for a data set named A, the replaced data set becomes
A#001. When the data set is replaced for the second time, the replaced data set becomes
A#002. That is, A#002 is the version that is chronologically closest to the base version.
The table below shows the result after three replacements.

Data Set Name Explanation

A base (current) version

A#003 most recent (youngest) historical version

A#002 second most recent historical version

A#001 oldest historical version

The limit for version numbers that SAS can append is #999. After 1000 replacements,
SAS rolls over the youngest version number to #000.

Now we consider how absolute and relative generation numbers (specified on the
GENNUM= option) change. Each time SAS creates a new generation, the absolute
generation number increases sequentially. As older generations are deleted, their
absolute generation numbers are retired.

In contrast, the relative generation number always refers to generations in relation to the
base generation. The base or current generation is always 0 and -1 is the youngest
historical version.

The following table shows data set names and their absolute and relative GENNUM=
numbers.

Table 18.6 Data Set Names with GENNUM= Numbers

Iteration SAS Code
Data Set
Names

GENNUM=Absolute
Reference

GENNUM=Relative
Reference Explanation

1 data
Year
(genmax=
3);

Year 1 0 The data set Year is
created, and three
generations are
requested.

2 data
Year;

Year

Year#001

2

1

0

-1

Year is replaced. Year
from iteration 1 is
renamed Year#001.

Processing Generation Data Sets 639

Iteration SAS Code
Data Set
Names

GENNUM=Absolute
Reference

GENNUM=Relative
Reference Explanation

3 data
Year;

Year

Year#002

Year#001

3

2

1

0

-1

-2

Year is replaced. Year
from iteration 2 is
renamed Year#002.

4 data
Year;

Year

Year#003

Year#002

4

3

2

0

-1

-2

Year is replaced. Year
from iteration 3 is
renamed Year#003.
Year#001 from
iteration 1, which is the
oldest, is deleted.

5 data
Year
(genmax=
2);

Year

Year#004

5

4

0

-1

Year is replaced, and
the number of
generations is changed
to 2. Year from
iteration 4 is renamed
Year#004. The two
oldest versions are
deleted.

You have learned that you use PROC DATASETS to initiate generation data sets on an
existing SAS data set. Once you have created generation data sets, you can use PROC
DATASETS to perform management tasks such as the following:

• deleting all or some of the generations

• renaming an entire generation group or any member of the group to a new base
name.

General form, PROC DATASETS with the CHANGE and DELETE statements:

PROC DATASETS LIB=libref <NOLIST>;
CHANGE SAS-data-set<(GENNUM=n)>=new-data-set-name;
DELETE SAS-data-set<(GENNUM=n | HIST | ALL)>;

QUIT;

Here is an explanation of the syntax:

libref
is the library that contains the data that you want to modify.

NOLIST
suppresses the directory listing.

SAS-data-set
is the name of the SAS data set you want to change or delete.

new-data-set-name
is the new name for the SAS data set in the CHANGE statement.

n
is the absolute or relative reference to a generation number.

HIST
refers to all generations except the base version.

ALL
refers to the base version and all generations.

640 Chapter 18 • Modifying SAS Data Sets and Tracking Changes

Examples
The following code uses the CHANGE statement to rename the data set SalesData to
Sales. If generations have been created, the base name of all generations is renamed.

proc datasets library=quarter1 nolist;
 change salesData=sales;
quit;

The following code uses the GENNUM= option to rename only the second historical
data set:

proc datasets library=quarter1 nolist;
 change sales(gennum=2)=newsales;
quit;

The following code deletes one historical version. This action might leave a hole in the
generation group.

proc datasets library=quarter1 nolist;
 delete newsales(gennum=-1);
quit;

When you use the GENNUM= option with the DELETE statement, you can use the
HIST and ALL keywords. The following code uses the HIST keyword to delete all of
the historical versions:

proc datasets library=quarter1 nolist;
 delete newsales(gennum=HIST);
quit;

The following code uses the ALL keyword in the GENNUM= option to delete all of the
SAS data sets in a generation group:

proc datasets library=quarter1 nolist;
 delete newsales(gennum=ALL);
quit;

T I P For more information about using the DATASETS procedure to process data,
see the SAS documentation.

Summary

Text Summary

Using the MODIFY Statement
When you use the MODIFY statement to modify a SAS data set, SAS does not create a
second copy of the data as it does when you use the SET, MERGE, or UPDATE
statements. The descriptor portion of the SAS data set stays the same. Updated
observations are written back to the same location as the original observation.

Modifying All Observations in a SAS Data Set
You can use the MODIFY statement with an assignment statement to modify all the
observations in a SAS data set.

Summary 641

Modifying Observations Using a Transaction Data Set
To modify a master data set using a transaction data set, you use the MODIFY statement
with a BY statement to specify the matching variable or variables. When you use the
MODIFY or BY statements, SAS uses a dynamic WHERE clause to locate observations
in the master data set. You can specify how missing values in the transaction data set are
handled by using the UPDATEMODE= option in the MODIFY statement.

Modifying Observations Located by an Index
You can use the MODIFY statement with the KEY= option to name a simple or
composite index for the SAS data set that is being modified. The KEY= argument
retrieves observations from the master data set based on index values that are supplied
by like-named variables in a transaction data set. If you have contiguous duplications in
the transaction data set (that is, some that have no match in the master data set), you can
use the UNIQUE option to cause a KEY= search to always begin at the top of the index
file for each duplicate transaction.

Controlling the Update Process
When the DATA step contains a MODIFY statement, SAS writes the current observation
back to its original place in the SAS data set. This action by default occurs as the last
action in the step as if a REPLACE statement were the last statement in the step.
However, you can override this default behavior by explicitly adding the OUTPUT,
REPLACE, or REMOVE statement.

You can use the automatic variable _IORC_ with the %SYSRC autocall macro to test for
specific I/O error conditions that are created when you use the BY statement or the
KEY= option in the MODIFY statement. The automatic variable _IORC_ contains a
return code for each I/O operation that the MODIFY statement attempts to perform. The
best way to test for values of _IORC_ is to use the mnemonic codes that are provided by
the SYSRC autocall macro.

Placing Integrity Constraints on a Data Set
Integrity constraints are rules that you can specify in order to restrict the data values that
can be stored for a variable in a SAS data file. SAS enforces integrity constraints when
values that are associated with a variable are added, updated, or deleted. You can place
integrity constraints on an existing data set using the IC CREATE statement in the
DATASETS procedure.

Documenting and Removing Integrity Constraints
You can view information about the integrity constraints on a data set using the
CONTENTS statement in the DATASETS procedure. If you want to remove integrity
constraints from a file, you use the IC DELETE statement.

Initiating and Terminating Audit Trails
An audit trail is an optional SAS file that logs modifications to a SAS table. You initiate
an audit trail using the DATASETS procedure with the AUDIT and INITIATE
statements. You also suspend, resume, and terminate audit trails using the DATASETS
procedure. Once there is data in the audit trail file, you can read it with the TYPE= data
set option.

Controlling Data in the Audit Trail
The audit trail file can contain three types of variables:

• data set variables that store copies of the columns in the audited SAS data file

642 Chapter 18 • Modifying SAS Data Sets and Tracking Changes

• audit trail variables that automatically store information about data modifications

• user variables that store user-entered information

You can use the LOG statement to control which types of records are written to an audit
trail file.

Initiating Generation Data Sets
Each generation of a generation data set is stored as part of a generation group. A new
generation is created each time the data set is replaced. Each generation in a generation
group has the same root member name, but each has a different version number. You
initiate generation data sets by using the GENMAX= option to specify the number of
generation data sets to keep.

Processing Generation Data Sets
To select a particular generation to process, you use the GENNUM= data set option.
GENNUM= is an input data set option that identifies which generation to open. The
GENNUM can be a relative or absolute reference to a generation within a generation
group. You can rename or delete generations using the CHANGE and DELETE
statements in a PROC DATASETS step.

Sample Programs

Modifying a Data Set Using the MODIFY Statement with a BY
Statement or the KEY= Option

data capacity;
 modify capacity sasuser.newrtnum;
 by flightid;
run;

data cargo99;
 set sasuser.newcgnum (rename =
 (capcargo = newCapCargo
 cargowgt = newCargoWgt
 cargorev = newCargoRev));
 modify cargo99 key=flghtdte;
 capcargo = newcapcargo;
 cargowgt = newcargowgt;
 cargorev = newcargorev;
run;

Placing Integrity Constraints on Data
proc datasets nolist;
 modify capinfo;
 ic create PKIDInfo=primary key(routeid)
 message='You must supply a Route ID Number';
 ic create Class1=check(where=(cap1st<capbusiness
 or capbusiness=.))
 message='Cap1st must be less than CapBusiness';
quit;

Initiating an Audit Trail
proc datasets nolist;

Summary 643

 audit capinfo;
 initiate;
quit;

Initiating Generation Data Sets
proc datasets nolist;
 modify cargorev (genmax=4);
quit;

Points to Remember
• The MODIFY statement in a DATA step is used to make updates to a SAS data set in

place. The descriptor portion of the SAS data set cannot be changed.

• Integrity constraints are enforced only when modifications are made to the data. If
the data set is replaced, integrity constraints are lost.

• Audit trail files track changes made to data sets in place with the following:

• the MODIFY statement in the DATA step

• the UPDATE, INSERT, or DELETE statement in PROC SQL

• Generation data sets are used to track changes that are made when a data set is
replaced by the following:

• using the SET, MERGE, or UPDATE statements in the DATA step

• sorting data in place with PROC SORT

• using the CREATE TABLE statement in PROC SQL

Quiz
Select the best answer for each question. After completing the quiz, check your answers
using the answer key in the appendix.

1. Which type of integrity constraint would you place on the variable StoreID to ensure
that there are no missing values and that there are no duplicate values?

a. UNIQUE

b. CHECK

c. PRIMARY KEY

d. NOT NULL

2. Which code creates an audit trail on the SAS data set Reports.Quarter1?

a. proc datasets nolist;
 audit quarter1;
 initiate;
quit;

b. proc datasets lib=reports nolist;
 audit initiate reports.quarter1;
quit;

644 Chapter 18 • Modifying SAS Data Sets and Tracking Changes

c. proc datasets lib=reports nolist;
 initiate audit quarter1;
quit;

d. proc datasets lib=reports nolist;
 audit quarter1;
 initiate;
quit;

3. Which DATA step uses the transaction data set Records.Overnight to update the
master data set Records.Snowfall by accumAmt?

a. data records.snowfall;
 modify records.snowfall records.overnight
 key=accumAmt;
run;

b. data records.snowfall;
 modify records.overnight records.snowfall;
 by accumAmt;
run;

c. data records.snowfall;
 modify records.snowfall records.overnight;
 by accumAmt;
run;

d. data records.snowfall;
 modify records.snowfall records.overnight;
 update accumAmt;
run;

4. The automatic variable _IORC_ is created when you use the MODIFY statement
with a BY statement or the KEY= option. How can you use the value of _IORC_?

a. to determine whether the index specified on the KEY= option is a valid index

b. to determine the number of observations that were updated in the master data set

c. to determine the status of the I/O operation

d. to determine the number of observations that could not be updated in the master
data set

5. Which PROC DATASETS step creates an integrity constraint named val_age on the
data set Survey to ensure that values of the variable Age are greater than or equal to
18?

a. proc datasets nolist;
 modify age;
 ic create val_age=check(where=(age>=18));
quit;

b. proc datasets nolist;
 modify Survey;
 ic create val_age=check(age>=18);
quit;

c. proc datasets nolist;
 modify survey;
 integrity constraint
 val_age=check(where=(age>=18));

Quiz 645

quit;

d. proc datasets nolist;
 modify survey;
 ic create val_age=check(where=(age>=18));
quit;

6. Which statement about using the MODIFY statement in a DATA step is true?

a. MODIFY creates a second copy of the data while variables in the data are being
matched with a WHERE clause and then deletes the second copy.

b. You cannot modify the descriptor portion of the data set using the MODIFY
statement.

c. You can use the MODIFY statement to change the name of a variable.

d. If the system terminates abnormally while a DATA step that is using the WHERE
statement is processing, SAS automatically saves a copy of the unaltered data set.

7. Which of the following statements about audit trails is true?

a. They create historical versions of data so that a copy of the data set is saved each
time the data is replaced.

b. They record information about changes to observations in a data set each time the
data set is replaced.

c. They record information about changes to observations in a data set each time the
data is modified in place.

d. The audit trail file has the same name as the SAS data file that it is monitoring,
but has #AUDIT at the end of the data set name.

8. Which code initiates generation data sets on the existing SAS data set
Sasuser.Amounts and specifies that five historical versions are saved in addition to
the base version?

a. proc datasets lib=sasuser nolist;
 modify Amounts (genmax=6);
quit;

b. proc datasets lib=sasuser nolist;
 modify Amounts (genmax=5);
quit;

c. proc datasets lib=sasuser nolist;
 modify Amounts (gennum=6);
quit;

d. proc datasets lib=sasuser nolist;
 modify Amounts (gennum=5);
quit;

9. Which statement about using the KEY= option in the MODIFY statement is true?

a. SAS locates the variables to update using the index specified in the KEY= option
and then automatically overlays nonmissing transaction values as it does when
you use the MODIFY or BY statements.

b. When you use the KEY= option, you must explicitly state the update that you
want to make. SAS does not automatically overlay nonmissing transaction
values.

c. The KEY= option is used to specify a variable to match for updating
observations.

646 Chapter 18 • Modifying SAS Data Sets and Tracking Changes

d. The index named in the KEY= option must be a simple index.

10. Which code deletes all generations of the data set Sasuser.Amounts including the
base data set?

a. proc datasets lib=sasuser nolist;
 delete amounts (gennum=ALL);
quit;

b. proc datasets lib=sasuser nolist;
 delete amounts (gennum=HIST);
quit;

c. proc datasets lib=sasuser nolist;
 delete amounts (gennum=0);
quit;

d. proc datasets lib=sasuser nolist;
 delete amounts;
quit;

Quiz 647

648 Chapter 18 • Modifying SAS Data Sets and Tracking Changes

Part 4

Optimizing SAS Programs

Chapter 19
Introduction to Efficient SAS Programming . 651

Chapter 20
Controlling Memory Usage . 659

Chapter 21
Controlling Data Storage Space . 675

Chapter 22
Using Best Practices . 707

Chapter 23
Querying Data Efficiently . 745

Chapter 24
Creating Functions with PROC FCMP . 789

649

650

Chapter 19

Introduction to Efficient SAS
Programming

Overview . 651
Introduction . 651

Overview of Computing Resources . 652

Assessing Efficiency Needs at Your Site . 652
Assessing Your Technical Environment . 653
Assessing Your Programs . 653
Assessing Your Data . 654

Understanding Efficiency Trade-offs . 654

Using SAS System Options to Track Resources . 655

Using Benchmarks to Compare Techniques . 656
Guidelines for Benchmarking . 656

Summary . 658
Overview of Computing Resources . 658
Understanding Efficiency Trade-offs . 658
Using SAS System Options to Track Resources . 658
Using Benchmarks to Compare Techniques . 658

Overview

Introduction
As an experienced programmer, you want your SAS programs to obtain the desired
results while minimizing the use of resources such as CPU time, real time, memory, and
I/O. It is particularly important to optimize your SAS programs if you write or maintain
production programs and work with large data sets. However, before you can select the
most efficient programming technique to perform a particular task, you must carefully
consider the technical environment and the resource constraints at your site. There is no
single set of programming techniques that is most efficient in all situations. Instead,
trade-offs in resource usage are associated with each technique.

In this chapter you learn about analyzing the requirements for efficiency at your site and
about running benchmarks to select the most efficient SAS programming techniques.

Note: This chapter has no quiz.

651

Overview of Computing Resources
The following resources are used to run a SAS program:

Resource Description

CPU time the amount of time that the central processing unit (CPU) uses to
perform requested tasks such as calculations, reading and writing
data, conditional logic, and iterative logic.

real time the clock time (elapsed time) it takes to execute a job or step.
Real time is heavily dependent on the capacity of the system and
on the load (the number of users who are sharing the system's
resources).

Because you cannot always control the capacity demand and the
load demand on your system, real time is sometimes a less useful
measure of program efficiency than CPU time. However,
excessive use of real time often motivates programmers to
improve a program's efficiency. Some procedures enable you to
use threaded processing to reduce real time. Threaded processing
can increase CPU time. Therefore, it is recommended that you
track both CPU time and real time.

memory the size of the work area in volatile memory that is required for
holding executable program modules, data, and buffers.

data storage space the amount of space on a disk or tape that is required for storing
data. Data storage space is measured in a variety of units, some of
which are used only in certain operating environments, as
described below:

• All operating environments use bytes, kilobytes, megabytes,
gigabytes, and terabytes.

• z/OS also uses blocks, tracks, and cylinders.

I/O a measurement of the Read and Write operations that are
performed as data and programs are copied from a storage device
to memory (input) or from memory to a storage or display device
(output).

Assessing Efficiency Needs at Your Site
The first step in making an effective decision about how to optimize your SAS programs
is to assess your site's technical environment, your program or programs, and your data.

652 Chapter 19 • Introduction to Efficient SAS Programming

Assessing Your Technical Environment
To determine which resources are scarce or costly at your site, work with your IT
department to analyze the following characteristics of your technical environment:

Category Characteristics

hardware • amount of available memory

• number of CPUs

• number and type of peripheral devices

• communications hardware

• network bandwidth

• storage capacity

• I/O bandwidth

• capacity to upgrade

operating environment • resource allocation

• scheduling algorithms

• I/O methods

system load • number of users or jobs sharing system resources

• network traffic (expected)

• predicted increase in load in the future

SAS environment • which SAS software products are installed

• number of CPUs and amount of memory that is
allocated for SAS programming

• which methods are available for running SAS
programs at your site

In most cases, one or two resources are the most limited or most expensive for your
programs. You can usually decrease the amount of critical resources that are used if you
are willing to sacrifice some efficiency of the resources that are less critical at your site.

Assessing Your Programs
Developing an efficient program requires time and thought. To determine whether the
additional amount of resources that are saved is worth the time and effort spent to
achieve the savings, consider the following characteristics of each of your programs:

Characteristics Guidelines for Optimizing

size of the program As the program increases in size, the potential for savings increases.
Focus on improving the efficiency of large programs.

Assessing Efficiency Needs at Your Site 653

Characteristics Guidelines for Optimizing

number of times the
program runs

The difference in resources used by an inefficient program and an
efficient program that is run once or a few times is relatively small,
whereas the cumulative difference for a program that is run frequently
is large. Focus on improving the efficiency of programs that are run
many times.

Assessing Your Data
The effectiveness of any efficiency technique depends greatly on your data. When you
know the characteristics of your data, you can select the techniques that take advantage
of those characteristics. Consider the following characteristics of your data:

Characteristic Guidelines for Optimizing

volume of data As the volume of data increases, the potential for savings also
increases. Focus on improving the efficiency of programs that use large
data sets or many data sets.

type of data Specific efficiency techniques might work better with some types of
data (for example, data that has missing values) than with others.

Understanding Efficiency Trade-offs
As you optimize SAS programs, it is important to understand that there are trade-offs.
Decreasing the use of one resource frequently increases the use of another. The
following table shows examples of some common efficiency trade-offs.

Decreased Use of This Resource
Result: Possible Increased Use of This
Resource

disk space CPU time

I/O (by reading or writing more data at one
time)

memory

real time (by enabling threading in SAS 9) CPU time

654 Chapter 19 • Introduction to Efficient SAS Programming

As these trade-offs illustrate, there is no single best way to optimize a SAS program. It
depends on your situation. However, this chapter and the following chapters provide
information that can help you determine which programming techniques are most
efficient in your environment.

• Chapter 20, “Controlling Memory Usage,” on page 659

• Chapter 21, “Controlling Data Storage Space,” on page 676

• Chapter 22, “Using Best Practices,” on page 708

• Chapter 23, “Querying Data Efficiently,” on page 747

Using SAS System Options to Track Resources
You can specify one or more of the SAS system options STIMER, MEMRPT,
FULLSTIMER, and STATS to track and report on resource use. The availability, usage,
and functionality of these options vary by operating environment, as described below:

Option z/OS UNIX and Windows

STIMER Specifies that the CPU time is to be
tracked throughout the SAS session.

Can be set at invocation only.

Is the default setting.

Specifies that CPU time and real-
time statistics are to be tracked and
written to the SAS log throughout
the SAS session.

Can be set either at invocation or by
using an OPTIONS statement.

Is the default setting.

MEMRPT Specifies that memory usage
statistics are to be tracked
throughout the SAS session.

Can be set either at invocation or by
using an OPTIONS statement.

Is the default setting.

Not available as a separate option;
this functionality is part of the
FULLSTIMER option.

FULLSTIMER Specifies that all available resource
usage statistics are to be tracked and
written to the SAS log throughout
the SAS session.

Can be set either at invocation or by
using an OPTIONS statement.

In the z/OS operating environment,
FULLSTIMER is an alias for the
FULLSTATS option.

This option is ignored unless
STIMER or MEMRPT is in effect.

Specifies that all available resource
usage statistics are to be tracked and
written to the SAS log throughout
the SAS session.

Can be set either at invocation or by
using an OPTIONS statement.

In Windows operating
environments, some statistics are not
calculated accurately unless
FULLSTIMER is specified at
invocation.

Using SAS System Options to Track Resources 655

Option z/OS UNIX and Windows

STATS Tells SAS to write statistics that are
tracked by any combination of the
preceding options to the SAS log.

Can be set either at invocation or by
using an OPTIONS statement.

Is the default setting.

Not available as a separate option.

SAS system options are initialized with default settings when SAS is invoked. However,
the default settings for some SAS system options vary both by operating environment
and by site. For details, see the SAS documentation for your operating environment.

You can turn off any of these system options by using the options below:

• NOSTIMER

• NOMEMRPT

• NOFULLSTIMER

• NOSTATS

Note: In the z/OS operating environment, NOFULLSTIMER is an alias for the
NOFULLSTATS option.

Note: Guidelines for interpreting the statistics that are generated by the FULLSTIMER
SAS system option are also available at support.sas.com.

Note: You can also use SAS Application Response Measurement (ARM) macros to
monitor the performance of your applications. ARM macros are not covered in this
course. To learn more about ARM macros, see the SAS documentation and detailed
information about ARM macros at support.sas.com.

Using Benchmarks to Compare Techniques
To decide which SAS programming technique is most efficient for a particular task, you
can benchmark (measure and compare) the resource usage for each technique that you
are comparing. You should benchmark with the actual data to determine the most
efficient technique.

Guidelines for Benchmarking
Your benchmarking is most likely to yield useful results if you follow these guidelines:

• Before you test the programming techniques, turn on the SAS system options that
report resource usage.

As explained earlier, to track and report on resource usage, you can use some or all
of the system options STIMER, MEMRPT, FULLSTIMER, and STATS. The
availability, usage, and functionality of these options vary by operating environment.
You can also specify MSGLEVEL=I to display additional notes in the SAS log. Use
the FULLSTIMER option to log a complete list of the resources that are used.

Note: To turn on the FULLSTIMER option, use the following statement:

options fullstimer;

656 Chapter 19 • Introduction to Efficient SAS Programming

• Execute the code for each programming technique in a separate SAS session.

The first time that program code (including the DATA step, functions, formats, and
SAS procedures) is referenced, the operating system might have to load the code into
memory or assign virtual address space to it. The first time data is read, it is often
loaded into a cache from which it can be retrieved more quickly the next time it is
read. The resource usage that is required for performing these actions is overhead.
Using separate SAS sessions for each technique change can minimize the effect of
the overhead on your resource statistics.

• In each programming technique that you are testing, include only the SAS code that
is essential for performing the task.

If you include too many elements in the code for each technique, you do not know
what caused the results. If the program that you are benchmarking is not large, you
can optimize it by changing individual programming techniques, one at a time, and
running the entire program after each change to measure the effect on resource
usage. However, a more complex program might be easier to optimize by identifying
the steps that use the most resources and extracting those steps into separate
programs. You can measure the effects of different programming techniques by
repeatedly changing, running, and measuring the separate programs. When isolating
parts of your program, be careful to measure their resource usage under the
conditions in which they are used in the complete program.

• If your system is doing other work at the same time that you are running your
benchmarking tests, be sure to run the code for each programming technique several
times.

Running the code several times reduces any variability in resource consumption that
is associated with other work that the system is doing. How you handle multiple
measurements depends on the resource, as indicated below:

• Use the minimum real time and CPU time measurements, because these
represent most closely the amount of time your programming technique actually
requires. The larger time values (especially in the case of real time) are the result
of interference from other work that the computer was doing while your program
ran.

• The amount of memory should not vary from trial to trial. If memory does vary,
it is possible that your program sometimes shares a resource with another
program. In this situation, you must determine whether the higher or lower
memory consumption is more likely to be the case when your program is used in
production.

• I/O can be an especially elusive resource to measure. With modern file systems
and storage systems, the effect of your program on the I/O activity of the
computer sometimes must be observed by operating system tools, file system
tools, or storage system tools because it cannot be captured by your SAS session.
Data is often aggressively cached by modern file systems and storage systems,
and file caches are greatly affected by other activity in the file system. Be
realistic when you measure I/O—it is possible to achieve good performance on a
system that is not doing other work, but performance is likely to worsen when the
application is deployed in a more realistic environment.

• Run your benchmarking tests under the conditions in which your final program will
run.

Results might vary under different conditions, so it is important to control the
conditions under which your benchmarks are tested. For example, if batch execution
and large data sets are used in your environment, you should incorporate these
conditions into your benchmarking environment.

Using Benchmarks to Compare Techniques 657

• After testing is finished, consider turning off the options that report resource usage.

The options that report resource usage are themselves consumers of resources. If it is
a higher priority in your environment to minimize resource usage than to periodically
check an application's resource usage, then it is most efficient to turn off these
options.

Note: To turn off the FULLSTIMER option, use the following statement:

options nofullstimer;

Summary

Overview of Computing Resources
Resources that are required for running a SAS program include the following: CPU time,
real time, memory, data storage space, and I/O.

Understanding Efficiency Trade-offs
It is important to understand the trade-offs that are involved in optimizing your SAS
programs. Decreasing the use of one resource frequently increases the use of another.
There is no single best way to optimize a SAS program; it depends on your situation.

Using SAS System Options to Track Resources
You can specify one or more of the SAS system options STIMER, MEMRPT,
FULLSTIMER, and STATS to track and report on resource use. (In the z/OS
environment, FULLSTIMER is an alias for FULLSTATS.) The availability, usage, and
functionality of these options varies by operating environment.

Using Benchmarks to Compare Techniques
To determine which SAS programming technique is most efficient for a particular task,
you can benchmark (measure and compare) the resource usage of each technique.

658 Chapter 19 • Introduction to Efficient SAS Programming

Chapter 20

Controlling Memory Usage

Overview . 659
Introduction . 659

Controlling Page Size and the Number of Buffers . 660
Measuring I/O . 660
Page Size . 661
Reporting Page Size . 661
Using the BUFSIZE= Option . 661
Using the BUFNO= Option . 663
Comparative Example: Using the BUFSIZE= Option and the BUFNO= Option . 664

Using the SASFILE Statement . 666
Overview . 666
Guidelines for Using the SASFILE Statement . 667
Comparative Example: Using the SASFILE Statement . 667

Additional Features . 671
Using the IBUFSIZE= System Option . 671

Summary . 672
Controlling Page Size and the Number of Buffers . 672
Using the SASFILE Statement . 672
Additional Features . 672

Quiz . 673

Overview

Introduction
As you have learned, there is no single set of programming techniques that is most
efficient or appropriate in all situations. However, if reducing execution time is an
important consideration in your computing environment, one way of achieving that goal
is to reduce the number of times SAS has to read from or write to the storage medium.

In this chapter you learn to use options and a statement to control the size and number of
data buffers, which in turn can affect your programs' execution times by reducing the
number of I/O operations that SAS must perform.

659

Controlling Page Size and the Number of Buffers

Measuring I/O
Improvement in I/O can come at the cost of increased memory consumption. In order to
understand the relationship between I/O and memory, it is helpful to know when data is
copied to a buffer and where I/O is measured. When you create a SAS data set using a
DATA step, the following actions occur:

1. SAS copies a page of data from the input data set to a buffer in memory.

2. One observation at a time is loaded from the buffer into the program data vector.

3. Each observation is written from the PDV to an output buffer.

4. The contents of the output buffer are written to the disk when the buffer is full.

The process for reading external files is similar. However, each record is first read from
the system buffer into the single-record input buffer before it is parsed and read into the
program data vector.

660 Chapter 20 • Controlling Memory Usage

In both cases, I/O is measured when input data is copied to the buffer in memory and
when it is copied from the output buffer to the output data set.

Page Size
Think of a buffer as a container in memory that holds exactly one page of data. A page is
described as follows:

• It is the unit of data transfer between the storage device and memory.

• It is fixed in size when the data set is created, either to a default value or to a user-
specified value.

A larger page size can reduce execution time by reducing the number of times SAS has
to read from or write to the storage medium. However, the improvement in execution
time comes at the cost of increased memory consumption.

Reporting Page Size
You can use the CONTENTS procedure or the CONTENTS statement in the
DATASETS procedure to report the page size and the number of pages.

Partial PROC CONTENTS Output

proc contents
 data=company.order_fact;
run;

The total number of bytes that a data file occupies equals the page size multiplied by the
number of pages. For example, the page size for Company.Order_fact is 8192 and the
number of pages is 9423. Therefore, the data file occupies 77,193,216 bytes.

Note: Information that is available from PROC CONTENTS depends on the operating
environment.

Note: In uncompressed data files, there is a 40-byte overhead (in a 64-bit operating
environment) or a 24-byte overhead (in a 32-bit operating environment) per page
plus a 1-bit per observation overhead (rounded up to the nearest byte), used to denote
an observation's status as deleted or not deleted. You can learn about the structure of
uncompressed and compressed data files in Chapter 21, “Controlling Data Storage
Space,” on page 676.

Using the BUFSIZE= Option
To select a default page size, SAS uses an algorithm that is based on observation length,
engine, and operating environment. The default page size is optimal for most SAS

Controlling Page Size and the Number of Buffers 661

activities, especially on computers that support multiple SAS jobs concurrently.
However, in some cases, choosing a page size or buffer size that is larger than the default
can speed up execution time by reducing the number of times that SAS must read from
or write to the storage medium.

You can use the BUFSIZE= system option or data set option to control the page size of
an output SAS data set. The new buffer size is a permanent attribute of the data set. After
it is specified, it is used whenever the data set is processed.

General form, BUFSIZE= option:

BUFSIZE= MIN | MAX | n;

Here is an explanation of the syntax:

MIN
sets the page size to the smallest possible number in your operating environment.

MAX
sets the page size to the maximum possible number in your operating environment.

n
specifies the page size in bytes. For example, a value of 8 specifies a page size of 8 bytes,
and a value of 4K specifies a page size of 4096 bytes. The default is 0, which causes SAS to
use the optimal page size for the operating environment.

CAUTION:
MIN might cause unexpected results and should be avoided. Use BUFSIZE=0 to
reset the buffer page size to the default value in your operating environment.

Note: The syntax that is shown here applies to the OPTIONS statement. On the
command line or in a configuration file, the syntax is specific to your operating
environment. For details, see the SAS documentation for your operating
environment.

Only certain page size or buffer size values are valid for each operating environment. If
you request an invalid value for your operating environment, SAS automatically rounds
up to the next valid page size or buffer size. BUFSIZE=0 is interpreted as a request for
the default page size or buffer size.

In the following program, the BUFSIZE= system option specifies a page size of 30720
bytes.

options bufsize=30720;
filename orders 'c:\orders.dat';
data company.orders_fact;
 infile orders;
 <more SAS code>
run;

Before you change the default page size, it is important to consider the access pattern for
the data as well as the I/O transfer rate of the underlying hardware. In some cases,
increasing the page size might degrade performance, particularly when the data is
processed using direct (random) access.

Note: The default value for BUFSIZE= is determined by your operating environment
and is set to optimize sequential access. To improve performance for direct access,
you should change the value for BUFSIZE=. For the default setting and possible
settings for direct access, see the BUFSIZE= system option in the SAS
documentation for your operating environment.

662 Chapter 20 • Controlling Memory Usage

Note: You can override the BUFSIZE= system option by using the BUFSIZE= data set
option.

CAUTION:
If you use the COPY procedure to copy a data set to a library that is accessed via a
different engine, the original page size or buffer size is not necessarily retained.

Using the BUFNO= Option
You can use the BUFNO= system or data set option to control the number of buffers that
are available for reading or writing a SAS data set. By increasing the number of buffers,
you can control how many pages of data are loaded into memory with each I/O transfer.

Note: Increasing the number of buffers might not affect performance under the
Windows and UNIX operating environments, especially when you work with large
data sets. By default, the Windows and UNIX operating environments read one
buffer at a time. Under the windowing environment, you can override this default by
turning on the SGIO system option when you invoke SAS. For details about the
SGIO system option, see the SAS documentation for the Windows operating
environment.

The following techniques might help minimize I/O consumption:

• When you work with a small data set, allocate as many buffers as there are pages in
the data set so that the entire data set can be loaded into memory. This technique is
most effective if you read the same observations several times during processing.

• Under the z/OS operating environment, increase the number of buffers that are
allocated, rather than the size of each buffer, as the size of the data set increases.

General form, BUFNO= option:

BUFNO= MIN | MAX |n;

Here is an explanation of the syntax:

MIN
causes SAS to use the minimum optimal value for the operating environment. This is the
default.

MAX
sets the number of buffers to the maximum possible number in your operating environment,
up to the largest four-byte, signed integer, which is 2³¹-1, or approximately 2 billion.

n
specifies the number of buffers to be allocated.

Note: The recommended maximum for this option is 10.

Note: The syntax that is shown here applies to the OPTIONS statement. On the
command line or in a configuration file, the syntax is specific to your operating
environment. For details, see the SAS documentation for your operating
environment.

In the following program, the BUFNO= system option specifies that 4 buffers are
available.

options bufno=4;
filename orders 'c:\orders.dat';
data company.orders_fact;
 infile orders;

Controlling Page Size and the Number of Buffers 663

 <more SAS code>
run;
proc print data=company.orders_fact;
run;

The buffer number is not a permanent attribute of the data set and is valid only for the
current step or SAS session.

Figure 20.1 Current SAS Session

Note: You can override the BUFNO= system option by using the BUFNO= data set
option.

Note: In SAS 9 and later, the BUFNO= option has no effect on thread-enabled
procedures under the z/OS operating environment.

The product of BUFNO= and BUFSIZE=, rather than the specific value of either option,
determines how much data can be transferred in one I/O operation. Increasing the value
of either option increases the amount of data that can be transferred in one I/O operation.

BUFSIZE BUFNO
Bytes Transferred in One I/O

Operation

6144 2 12,288

6144 10 61,440

30,720 2 61,440

30,720 10 307,200

The number of buffers and the buffer size have a minimal effect on CPU usage.

Comparative Example: Using the BUFSIZE= Option and the
BUFNO= Option

Settings for the Examples
Suppose you want to compare the resource usage when a data set is read using different
buffer sizes and a varying number of buffers. The following sample programs compare
settings for the BUFNO= option and the BUFSIZE= option.

You can use these samples as models for creating benchmark programs in your own
environment. Your results might vary depending on the structure of your data, your
operating environment, and the resources that are available at your site.

Note: 6144 bytes is the default page size under the z/OS operating environment.

664 Chapter 20 • Controlling Memory Usage

Programming Techniques

 BUFSIZE=6144, BUFNO=2

This program reads the data set Retail.Order_fact and creates the data set Work.Orders. The
BUFSIZE= option specifies that Work.Orders is created with a buffer size of 6144 bytes. The
BUFNO= option specifies that 2 pages of data are loaded into memory with each I/O transfer.

data work.orders (bufsize=6144 bufno=2);
 set retail.order_fact;
run;

 BUFSIZE=6144, BUFNO=5

This program reads the data set Retail.Order_fact and creates the data set Work.Orders. The
BUFSIZE= option specifies that Work.Orders is created with a buffer size of 6144 bytes. The
BUFNO= option specifies that 5 pages of data are loaded into memory with each I/O transfer.

data work.orders (bufsize=6144 bufno=5);
 set retail.order_fact;
run;

 BUFSIZE=6144, BUFNO=10

This program reads the data set Retail.Order_fact and creates the data set Work.Orders. The
BUFSIZE= option specifies that Work.Orders is created with a buffer size of 6144 bytes. The
BUFNO= option specifies that 10 pages of data are loaded into memory with each I/O transfer.

data work.orders (bufsize=6144 bufno=10);
 set retail.order_fact;
run;

 BUFSIZE=12288, BUFNO=2

This program reads the data set Retail.Order_fact and creates the data set Work.Orders. The
BUFSIZE= option specifies that Work.Orders is created with a buffer size of 12288 bytes. The
BUFNO= option specifies that 2 pages of data are loaded into memory with each I/O transfer.

data work.orders (bufsize=12288 bufno=2);
 set retail.order_fact;
run;

 BUFSIZE=12288, BUFNO=5

This program reads the data set Retail.Order_fact and creates the data set Work.Orders. The
BUFSIZE= option specifies that Work.Orders is created with a buffer size of 12288 bytes. The
BUFNO= option specifies that 5 pages of data are loaded into memory with each I/O transfer.

data work.orders (bufsize=12288 bufno=5);
 set retail.order_fact;
run;

 BUFSIZE=12288, BUFNO=10

This program reads the data set Retail.Order_fact and creates the data set Work.Orders. The
BUFSIZE= option specifies that Work.Orders is created with a buffer size of 12288 bytes. The
BUFNO= option specifies that 10 pages of data are loaded into memory with each I/O transfer.

data work.orders (bufsize=12288 bufno=10);
 set retail.order_fact;
run;

Controlling Page Size and the Number of Buffers 665

Using the SASFILE Statement

Overview
Another way of improving performance is to use the SASFILE statement to hold a SAS
data file in memory so that the data is available to multiple program steps. Keeping the
data file open reduces I/O processing and open/close operations, including the allocation
and freeing of memory for buffers.

General form, SASFILE statement:

SASFILE SAS-data-file <(password-option(s))> OPEN | LOAD | CLOSE;

Here is an explanation of the syntax:

SAS-data-file
is a valid SAS data file (a SAS data set with the member type DATA).

password-option(s)
specifies one or more password options.

OPEN
opens the file and allocates the buffers, but defers reading the data into memory until a
procedure or statement is executed.

LOAD
opens the file, allocates the buffers, and reads the data into memory.

CLOSE
closes the file and frees the buffers.

The SASFILE statement opens a SAS data file and allocates enough buffers to hold the
entire file in memory. Once the data file is read, the data is held in memory, and it is
available to subsequent DATA and PROC steps or applications until either of the
following occurs:

• a SASFILE CLOSE statement frees the buffers and closes the file

• the SAS session ends, which automatically frees the buffers and closes the file

In the following program, the first SASFILE statement opens the SAS data file
Company.Sales, allocates the buffers, and reads the data into memory.

sasfile company.sales load;
proc print data=company.sales;
 var Customer_Age_Group;
run;
proc tabulate data=company.sales;
 class Customer_Age_Group;
 var Customer_BirthDate;
 table Customer_Age_Group,Customer_BirthDate*(mean median);
run;
sasfile company.sales close;

Note: The SASFILE statement can also be used to reduce CPU time and I/O in SAS
programs that repeatedly read one or more SAS data views. Use a DATA step to
create a SAS data file in the Work library that contains the view's result set. Then use
the SASFILE statement to load that data file into memory.

666 Chapter 20 • Controlling Memory Usage

Note: Although a file that is opened with the SASFILE statement can be used for
subsequent input or update processing, it cannot be used for subsequent utility or
output processing. For example, you cannot replace the file or rename its variables.

Guidelines for Using the SASFILE Statement
When the SASFILE statement executes, SAS allocates the number of buffers based on
the number of pages for the data file and index file. If the file in memory increases in
size during processing because of changes or additions to the data, the number of buffers
also increases.

It is important to note that I/O processing is reduced only if there is sufficient real
memory. If there is not sufficient real memory, the operating environment might use the
following:

• virtual memory

• the default number of buffers

If SAS uses virtual memory, there might be a degradation in performance.

If you need to repeatedly process part of a SAS data file and the entire file does not fit
into memory, use a DATA step with the SASFILE statement to create a subset of the file
that does fit into memory. Then process that subset repeatedly. This action saves CPU
time in the processing steps because those steps read a smaller file, in addition to the
benefit of the file being resident in memory.

Note: When using a SASFILE statement, monitor the paging activity (the I/O activity
that is done by the virtual memory management subsystem of your operating
environment) while your program runs. If the paging activity increases substantially,
consider keeping less data in memory.

Comparative Example: Using the SASFILE Statement

Using Different Data File Sizes
Suppose you want to create multiple reports from SAS data files that vary in size. Using
small, medium, and large data files, you can compare the resource usage when the
PRINT, TABULATE, MEANS, and FREQ procedures are used with and without the
SASFILE statement to create reports.

Name of Data
File

Number of
Rows Page Size

Number of
Pages

Number of
Bytes

Retail.Small 45,876 24,576 540 13,279,232

Retail.Medium 458,765 24,576 5,398 132,669,440

Retail.Large 4,587,654 24,576 53,973 1,326,448,640

The following sample programs compare six techniques for using data file sizes. You
can use these samples as models for creating benchmark programs in your own
environment. Your results might vary depending on the structure of your data, your
operating environment, and the resources that are available at your site.

Using the SASFILE Statement 667

Programming Techniques

 Small Data File without the SASFILE Statement

This program creates reports using the PRINT, TABULATE, MEANS, and FREQ procedures.
The SAS data file Retail.Small is opened and closed with each procedure.

proc print data=retail.small;
 where cs=100;
 var Customer_Age_Group;
run;
proc tabulate data=retail.small;
 class Customer_Age_Group;
 var Customer_BirthDate;
 table Customer_Age_Group,Customer_BirthDate*(mean median);
run;
proc means data=retail.small;
 var Customer_Age;
 class Customer_Group;
 output out=summary sum=;
run;
proc freq data=retail.small;
 tables Customer_Country;
run;

 Medium Data File without the SASFILE Statement

This program creates reports using the PRINT, TABULATE, MEANS, and FREQ procedures.
The SAS data file Retail.Medium is opened and closed with each procedure.

proc print data=retail.medium;
 where cm=100;
 var Customer_Age_Group;
run;
proc tabulate data=retail.medium;
 class Customer_Age_Group;
 var Customer_BirthDate;
 table Customer_Age_Group,Customer_BirthDate*(mean median);
run;
proc means data=retail.medium;
 var Customer_Age;
 class Customer_Group;
 output out=summary sum=;
run;
proc freq data=retail.medium;
 tables Customer_Country;
run;

668 Chapter 20 • Controlling Memory Usage

 Large Data File without the SASFILE Statement

This program creates reports using the PRINT, TABULATE, MEANS, and FREQ procedures.
The SAS data file Retail.Large is opened and closed with each procedure.

proc print data=retail.large;
 where cl=100;
 var Customer_Age_Group;
run;
proc tabulate data=retail.large;
 class Customer_Age_Group;
 var Customer_BirthDate;
 table Customer_Age_Group,Customer_BirthDate*(mean median);
run;
proc means data=retail.large;
 var Customer_Age;
 class Customer_Group;
 output out=summary sum=;
run;
proc freq data=retail.large;
 tables Customer_Country;
run;

 Small Data File with the SASFILE Statement

In this program, the SASFILE LOAD statement opens the SAS data file Retail.Small and loads
the entire file into memory. The data is then available to the PRINT, TABULATE, MEANS, and
FREQ procedures. The SASFILE CLOSE statement closes Retail.Small and frees the buffers.

sasfile retail.small load;
proc print data=retail.small;
 where cs=100;
 var Customer_Age_Group;
run;
proc tabulate data=retail.small;
 class Customer_Age_Group;
 var Customer_BirthDate;
 table Customer_Age_Group,Customer_BirthDate*(mean median);
run;
proc means data=retail.small;
 var Customer_Age;
 class Customer_Group;
 output out=summary sum=;
run;
proc freq data=retail.small;
 tables Customer_Country;
run;
sasfile retail.small close;

Using the SASFILE Statement 669

 Medium Data File with the SASFILE Statement

In this program, the SASFILE LOAD statement opens the SAS data file Retail.Medium and
loads the entire file into memory. The data is then available to the PRINT, TABULATE,
MEANS, and FREQ procedures. The SASFILE CLOSE statement closes Retail.Medium and
frees the buffers.

sasfile retail.medium load;
proc print data=retail.medium;
 where cm=100;
 var Customer_Age_Group;
run;
proc tabulate data=retail.medium;
 class Customer_Age_Group;
 var Customer_BirthDate;
 table Customer_Age_Group,Customer_BirthDate*(mean median);
run;
proc means data=retail.medium;
 var Customer_Age;
 class Customer_Group;
 output out=summary sum=;
run;
proc freq data=retail.medium;
 tables Customer_Country;
run;
sasfile retail.medium close;

 Large Data File with the SASFILE Statement

In this program, the SASFILE LOAD statement opens the SAS data file Retail.Large and loads
the entire file into memory. The data is then available to the PRINT, TABULATE, MEANS, and
FREQ procedures. The SASFILE CLOSE statement closes Retail.Large and frees the buffers.

sasfile retail.large load;
proc print data=retail.large;
 where cl=100;
 var Customer_Age_Group;
run;
proc tabulate data=retail.large;
 class Customer_Age_Group;
 var Customer_BirthDate;
 table Customer_Age_Group,Customer_BirthDate*(mean median);
run;
proc means data=retail.large;
 var Customer_Age;
 class Customer_Group;
 output out=summary sum=;
run;
proc freq data=retail.large;
 tables Customer_Country;
run;
sasfile retail.large close;

General Recommendations
• If you need to repeatedly process a SAS data file that fits entirely in memory, use the

SASFILE statement to reduce I/O and some CPU usage.

• If you use the SASFILE statement and the SAS data file does not fit entirely in
memory, the code executes, but there might be a degradation in performance.

670 Chapter 20 • Controlling Memory Usage

• If you need to repeatedly process part of a SAS data file and the entire file does not
fit into memory, use a DATA step with the SASFILE statement to create a subset of
the file that does fit into memory. Then process that subset repeatedly. This action
saves CPU time in the processing steps because those steps read a smaller file, in
addition to the benefit of the file being resident in memory.

Additional Features

Using the IBUFSIZE= System Option
Beginning with SAS 9, you can use the IBUFSIZE= system option to specify the page
size for an index file. Typically, you do not need to specify an index page size. However,
you might need to use the IBUFSIZE= option if you have the following:

• your application is experiencing a lot of I/O in the index file

• the length of an index value is very large

The main resource that is saved when reducing levels in the index is I/O. If your
application is experiencing a lot of I/O in the index file, increasing the page size might
help. However, you must re-create the index file after increasing the page size. The
number of pages that are required for the index varies with the page size, the length of
the index value, and the values themselves.

General form, IBUFSIZE= system option:

IBUFSIZE= MAX | n;

Here is an explanation of the syntax:

MAX
sets the page size for an index file to the maximum possible number. For IBUFSIZE=, the
maximum value is 32,767 bytes.

n
specifies the page size in bytes.

CAUTION:
The MIN setting should be avoided.

When an index is used to process a request, such as for WHERE processing, SAS
searches the index file in order to rapidly locate the requested record or records. The
page size affects the number of levels in the index. The more pages there are, the more
levels in the index. The more levels, the longer the index search takes. Increasing the
page size allows more index values to be stored on each page, thus reducing the number
of pages (and the number of levels).

Use IBUFSIZE=0 to reset the index page size to the default value in your operating
environment.

Note: For details about using the IBUFSIZE= system option, see the SAS
documentation.

Additional Features 671

Summary

Controlling Page Size and the Number of Buffers
When you read a SAS data set or an external file, I/O is measured when input data is
copied to the buffer in memory and when it is copied from the output buffer to the output
data set.

A page is the unit of data transfer between the storage device and memory.

Increasing the page size can speed up execution time by reducing the number of times
SAS has to read from or write to the storage medium. You can use the CONTENTS
procedure to report the page size and the number of pages.

You can use the BUFSIZE= system option or data set option to control the page size of
an output SAS data set. The new buffer size is permanent. After it is specified, it is used
whenever the data set is processed.

You can use the BUFNO= system or data set option to control how many buffers are
available for reading or writing a SAS data set. By increasing the number of buffers, you
can control how many pages of data are loaded into memory with each I/O transfer.

The product of BUFNO= and BUFSIZE=, rather than the specific value of either option,
determines how much data can be transferred in one I/O operation. Increasing either
option increases the amount of data that can be transferred in one I/O operation.
However, the improvement in I/O comes at the cost of increased memory consumption.

Using the SASFILE Statement
Another way to improve performance is to use the SASFILE statement to hold a SAS
data file in memory so that the data is available to multiple program steps. Keeping the
data set open reduces I/O processing and open/close operations, including the allocation
and freeing of memory for buffers.

When the SASFILE statement executes, SAS allocates the number of buffers based on
the number of pages for the data file and index file. If the file in memory increases in
size during processing because of changes or additions to the data, the number of buffers
also increases.

I/O processing is reduced only if there is sufficient real memory. If SAS uses virtual
memory, there can be a degradation in performance.

Additional Features
The IBUFSIZE= system option specifies the page size for an index file. Typically, you
do not need to specify an index page size. However, you might need to use the
IBUFSIZE= option if the following apply:

• your application is experiencing a lot of I/O in the index file

• the length of an index value is very large

The main resource that is saved when reducing levels in the index is I/O. If your
application is experiencing a lot of I/O in the index file, increasing the page size might
help. However, you must re-create the index file after increasing the page size. The

672 Chapter 20 • Controlling Memory Usage

number of pages that are required for the index varies with the page size, the length of
the index value, and the values themselves.

Quiz
Select the best answer for each question. After completing the quiz, check your answers
using the answer key in the appendix.

1. Which of the following statements is true regarding the BUFNO= option?

a. The BUFNO= option specifies the size of each buffer that is used for reading or
writing a SAS data set.

b. The BUFNO= option can improve execution time by limiting the number of
input/output operations that are required.

c. Using the BUFNO= option results in permanent changes to the data set.

d. Using the BUFNO= option to increase the number of buffers results in decreased
memory consumption.

2. Which of the following statements is not true regarding a page?

a. A page is the unit of data transfer between the storage device and memory.

b. A page includes the number of bytes that are used by the descriptor portion, the
data values, and the overhead.

c. The size of a page is analogous to buffer size.

d. The size of a page can be changed at any time.

3. The total number of bytes occupied by a data set equals which of the following?

a. the page size multiplied by the number of pages.

b. the page size multiplied by the number of observations.

c. the sum of the page size and the number of pages.

d. the number of pages multiplied by the number of variables.

4. Which statement opens the file Work.Quarter1, allocates enough buffers to hold the
entire file in memory, and reads the data into memory?

a. sasfile work.quarter1 open;

b. sasfile work.quarter1 load;

c. sasfile work.quarter1 bufno=max;

d. sasfile work.quarter1 bufsize=max;

5. Which of the following statements is true regarding a file that is opened with the
SASFILE statement?

a. The file is available to subsequent DATA and PROC steps or applications until a
SASFILE CLOSE statement is executed or until the program ends.

b. The file is available to subsequent DATA and PROC steps or applications until a
SASFILE END statement is executed.

c. The file is available for subsequent utility or output processing until the program
ends.

Quiz 673

d. If the file increases in size during processing, the number of buffers remains the
same.

674 Chapter 20 • Controlling Memory Usage

Chapter 21

Controlling Data Storage Space

Overview . 676
Introduction . 676

Reducing Data Storage Space for Character Variables . 677
Reducing the Length of Character Data with the LENGTH Statement 677

Reducing Data Storage Space for Numeric Variables . 677
How SAS Stores Numeric Variables . 677
Assigning Lengths to Numeric Variables . 678
Example . 679
Maintaining Precision in Reduced-Length Numeric Variables 679
Using PROC COMPARE . 680
Example . 681
Comparative Example: Creating a SAS Data Set That

Contains Reduced-Length Numeric Variables . 682

Compressing Data Files . 685
Overview . 685
Review of Uncompressed Data File Structure . 685
Compressed Data File Structure . 686
Deciding Whether to Compress a Data File . 686
The COMPRESS= System Option and the COMPRESS= Data Set Option 687
Example . 688
Accessing Observations Directly in a Compressed Data Set 689
The POINTOBS= Data Set Option . 689
Example . 690
The REUSE= System Option and the REUSE= Data Set Option 690
Example . 691
How SAS Compresses Data . 692
Comparative Example: Creating and Reading Compressed Data Files 693
General Recommendations . 696

Using SAS DATA Step Views to Conserve Data Storage Space 696
Overview . 696
DATA Step Views . 697
Example . 698
The DESCRIBE Statement . 698
Creating and Referencing a SAS DATA Step View . 699
Referencing a Data View Multiple Times in One Program 700
Example . 700
Making Multiple Passes through Data in a Data View . 700
Creating Data Views on Unstable Data . 701
Comparative Example: Creating and Reading a SAS Data View 701

675

General Recommendations . 703

Summary . 703
Reducing Data Storage Space for Character Variables . 703
Reducing Data Storage Space for Numeric Variables . 703
Compressing Data Files . 703
Using SAS DATA Step Views to Conserve Data Storage Space 703

Quiz . 704

Overview

Introduction
In many computing environments, data storage space is a limited resource. Therefore, it
might be more important for you to conserve data storage space than to conserve other
resources.

When you store your data in a SAS data file, you use the sum of the data storage space
that is required for the following:

• the descriptor portion

• the observations (data portion)

• any storage overhead

• any associated indexes.

In this chapter you learn to use a variety of techniques for minimizing the amount of
space that your SAS data files occupy.

676 Chapter 21 • Controlling Data Storage Space

Reducing Data Storage Space for Character
Variables

One way to reduce data storage space, which also reduces I/O, is to reduce the length of
character variables, potentially eliminating wasted space. Before discussing how to
reduce the length of a character variable, consider how SAS assigns lengths to character
variables.

Reducing the Length of Character Data with the LENGTH Statement
You can use a LENGTH statement to control the length of character variables.

General form, LENGTH statement for character variables:

LENGTH variable(s) $ length;

Here is an explanation of the syntax:

variable(s)
specifies the name of one or more SAS variables, separated by spaces.

length
is an integer from 1 to 32,767 that specifies the length of the variable(s).

Note: Make sure the LENGTH statement appears before any other reference to the
variable in the DATA step. If the variable has been created by another statement, then
a later use of the LENGTH statement does not change its length.

Reducing Data Storage Space for Numeric
Variables

Another way to reduce data storage space is to reduce the length of numeric variables. In
addition to conserving data storage space, reduced-length numeric variables use less I/O,
both when data is written and when it is read. For a file that is read frequently, this
savings can be significant. However, in order to safely reduce the length of numeric
variables, you need to understand how SAS stores numeric data.

How SAS Stores Numeric Variables
To store numbers of large magnitude and to perform computations that require many
digits of precision to the right of the decimal point, SAS stores all numeric values using
double-precision floating-point representation. SAS numeric variables have a maximum
length of 8 bytes and a minimum length of 2 or 3 bytes, depending on your operating
environment. The default length is 8 bytes. Multiple digits are stored per byte.

Floating-point representation is an implementation of scientific notation. For example,
the number 234 might be written as .234*10**3 with a base of 10. In this example, .234
is referred to as the mantissa, 10 is the base, and 3 is the exponent. The figures below
show how SAS stores a numeric value in 8 bytes. Mainframe environments use base 16.

Reducing Data Storage Space for Numeric Variables 677

The first bit stores the sign, the next seven bits store the exponent, and the remaining 56
bits store the mantissa.

Non-mainframe environments use base 2. The first bit stores the sign, the next 11 bits
store the exponent, and the remaining 52 bits store the mantissa.

Note: The minimum length for a numeric variable is 2 bytes in mainframe environments
and 3 bytes in non-mainframe environments.

Now that you have seen how SAS stores numeric variables, consider how you can assign
a length to your numeric variables that is less than the default length of 8 bytes.

Assigning Lengths to Numeric Variables
You can use a LENGTH statement to assign a length from 2 to 8 bytes to numeric
variables. Remember, the minimum length of numeric variables depends on the
operating environment. Also, keep in mind that the LENGTH statement affects the
length of a numeric variable only in the output data set. Numeric variables always have a
length of 8 bytes in the program data vector and during processing.

General form, LENGTH statement for numeric variables:

LENGTH variable(s) length <DEFAULT=n>;

Here is an explanation of the syntax:

variable(s)
specifies the name of one or more numeric SAS variables, separated by spaces.

length
is an integer that specifies the length of the variable(s).

DEFAULT=n
this optional argument changes the default number of bytes that SAS uses to store any newly
created numeric variables. If you use the DEFAULT= argument, you do not need to list any
variables.

DEFAULT= applies only to numeric variables that are created after the LENGTH
statement. List specific variables, and their lengths, along with the DEFAULT=
argument, if you want the listed variables to receive a specified length. Then the non-
listed variables receive the DEFAULT= length.

CAUTION:

678 Chapter 21 • Controlling Data Storage Space

Numeric values lose precision if truncated. You learn more about the loss of
precision with reduced-length numeric variables in the next section of this chapter.

Example
The following program assigns a length of 4 to the new variable Sale_Percent in the data
set ReducedSales. The LENGTH statement in this DATA step does not apply to the
variables that are read from the Sales data set; those variables maintain whatever length
they had in Sales when they are read into ReducedSales.

data reducedsales;
 length default=4;
 set sales;
 Sale_Percent=15;
run;

Maintaining Precision in Reduced-Length Numeric Variables
There is a limit to the values that you can precisely store in a reduced-length numeric
variable. You have learned that reducing the number of bytes that are used for storing a
numeric variable does not affect how the numbers are stored in the program data vector.
Instead, specifying a value of less than 8 in the LENGTH statement causes the number
to be truncated to the specified length when the value is written to the SAS data set.

You should never use the LENGTH statement to reduce the length of your numeric
variables if the values are not integers. Fractional numbers lose precision if truncated.
Even if the values are integers, you should keep in mind that reducing the length of a
numeric variable limits the integer values that can accurately be stored as a value.

The following table lists the possible storage length for integer values on UNIX or
Windows operating environments.

Table 21.1 UNIX or Windows

Length (bytes) Largest Integer Represented Exactly

3 8,192

4 2,097,152

5 536,870,912

6 137,438,953,472

7 35,184,372,088,832

8 9,007,199,254,740,992

The following table lists the possible storage length for integer values on the z/OS
operating environment.

Reducing Data Storage Space for Numeric Variables 679

Table 21.2 z/OS

Length (bytes) Largest Integer Represented Exactly

2 256

3 65,536

4 16,777,216

5 4,294,967,296

6 1,099,511,627,776

7 281,474,946,710,656

8 72,057,594,037,927,936

Suppose you store an integer that is equal to or less than the number listed above as the
largest integer that can be represented exactly in a reduced-length variable. In such a
case, SAS truncates bytes that contain only zeros. If the integer that is stored in a
reduced-length variable is larger than the recommended limit, SAS truncates bytes that
contain numbers other than zero, and the integer value is changed. Similarly, you should
not reduce the stored size of non-integer data because it can result in a loss of precision
due to the truncation of nonzero bytes.

If you decide to reduce the length of your numeric variables, you might want to verify
that you have not lost any precision in your values. Here is one way to do this action.

Using PROC COMPARE
You can use PROC COMPARE to gauge the precision of the values that are stored in a
shortened numeric variable. You do this by comparing the original variable with the
shortened variable. The COMPARE procedure compares the contents of two SAS data
sets, selected variables in different data sets, or variables within the same data set.

General form, PROC COMPARE step to compare two data sets:

PROC COMPARE BASE=SAS-data-set-one
COMPARE=SAS-data-set-two;

RUN;

Here is an explanation of the syntax:

SAS-data-set-one and SAS-data-set-two
specifies the two SAS data sets that you want to compare.

PROC COMPARE is a good technique to use for gauging the loss of precision in
shortened numeric variables because it shows you whether there are differences in the
stored numeric values even if these differences do not appear once the numeric variables
have been formatted. PROC COMPARE looks at the two data sets and compares the
following:

• data set attributes

680 Chapter 21 • Controlling Data Storage Space

• variable attributes for matching variables

• observations

• values in matching variables

Output from the COMPARE procedure includes the following information:

• a data set summary

• a variables summary

• a listing of common variables that have different attributes

• an observation summary

• a values comparison summary

• a listing of variables that have unequal values

• a detailed list of value comparison results for variables

Example
The data set Company.Discount contains data about sale dates and discounts for certain
retail products. There are 35 observations in Company.Discount, which is described
below.

Variable Type Length Description

Product_ID num 8 product ID number

Start_Date num 4 start date of sale

End_Date num 5 end date of sale

Unit_Sales_Price num 8 discounted sales price per unit

Discount num 8 discount as percent of normal sales price

Suppose you shorten the length of the numeric variable Discount. The DATA step below
creates a new data set named Company.Discount_Short, whose only difference from
Company.Discount is that the length of the variable Discount is 4 instead of 8.

data company.discount_short;
 length Discount 4;
 set Company.Discount;
run;

You can use PROC COMPARE to evaluate whether shortening the length of Discount
affects the precision of its values by comparing Company.Discount to
Company.Discount_Short.

proc compare base=company.discount
 compare=company.discount_short;
run;

If you were to print these two data sets (Company.Discount and
Company.Discount_Short), the values might appear to be identical. However, there are

Reducing Data Storage Space for Numeric Variables 681

differences in the values as they are stored, but those differences are not apparent in the
formatted output.

In the partial output below, you can see that shortening the length of Discount results in a
loss of precision in its values; the values for Discount in Company.Discount_Short differ
by a maximum of 1.9073E-07. The value comparison results show that although the
values for Discount in the first five observations appear as 70% in both data sets, the
precise (unformatted) values differ by −1.907E-7.

Figure 21.1 Partial PROC COMPARE Output

Comparative Example: Creating a SAS Data Set That Contains
Reduced-Length Numeric Variables

Default versus Reduced-Length Numeric Variables
Suppose you want to create a SAS data set to store retail data about a group of orders.
Suppose that the data that you want to include in your data set is all numeric data and
that it is currently stored in a raw data file.

682 Chapter 21 • Controlling Data Storage Space

The following sample programs compare two techniques. You can use these samples as
models for creating benchmark programs in your own environment. Your results might
vary depending on the structure of your data, your operating environment, and the
resources that are available at your site.

Note: Throughout this book, the keyword _NULL_ is often used in place of the data set
name in sample programs. Using _NULL_ suppresses the creation of an output data
set. Using _NULL_ when benchmarking enables you to determine what resources
are used to read a SAS data set.

Programming Techniques

 Default-Length Numeric Variables

This program reads the external data file that is referenced by the fileref Flat1 and creates a new
data set called Retail.Longnums that contains 12 numeric variables. Each of the variables in
Retail.Longnums has the default storage length of 8 bytes. The second DATA step in this
program reads the numeric variables from Retail.Longnums.

data retail.longnums;
 infile flat1;
 input Customer_ID 12.
 Employee_ID 12.
 Street_ID 12.
 Order_Date date9.
 Delivery_Date date9.
 Order_ID 12.
 Order_Type comma16.
 Product_ID 12.
 Quantity 4.
 Total_Retail_Price dollar13.2
 CostPrice_Per_Unit dollar13.2
 Discount 5. ;
run;

data _null_;
 set retail.longnums;
run;

Reducing Data Storage Space for Numeric Variables 683

 Reduced-Length Numeric Variables

This program reads the external data file that is referenced by the fileref Flat1 and creates a new
SAS data set called Retail.Shortnums that contains 12 numeric variables. A LENGTH statement
is used to reduce the storage length of most of the numeric variables in Retail.Shortnums, as
follows:

• Total_Retail_Price and CostPrice_Per_Unit have a storage length of 8 bytes.

• Product_ID has a storage length of 7 bytes.

• Street_ID and Order_ID have a storage length of 6 bytes.

• Employee_ID has a storage length of 5 bytes.

• Customer_ID, Order_Date, Delivery_Date, and Discount have a storage length of 4 bytes.

• Order_Type and Quantity have a storage length of 3 bytes.

The second DATA step reads the reduced-length numeric variables from Retail.Shortnums.

data retail.shortnums;
 infile flat1;
 length Quantity Order_Type 3
 Customer_ID Order_Date
 Delivery_Date Discount 4
 Employee_ID 5
 Street_ID Order_ID 6
 Product_ID 7
 Total_Retail_Price
 CostPrice_Per_Unit 8;
 input Customer_ID 12.
 Employee_ID 12.
 Street_ID 12.
 Order_Date date9.
 Delivery_Date date9.
 Order_ID 12.
 Order_Type comma16.
 Product_ID 12.
 Quantity 4.
 Total_Retail_Price dollar13.2
 CostPrice_Per_Unit dollar13.2
 Discount 5. ;
run;

data _null_;
 set retail.shortnums;
run;

Note: Remember that when you reduce the storage length of numeric variables, you risk
losing precision in their values. You can use PROC COMPARE to verify the
precision of shortened numeric variables.

proc compare base=retail.longnums;
 compare=retail.shortnums;
run;

684 Chapter 21 • Controlling Data Storage Space

Compressing Data Files

Overview
By default, a SAS data file is uncompressed. You can compress your data files in order
to conserve disk space, although some files are not good candidates for compression.
The file structure of a compressed data file is different from the structure of an
uncompressed file. You use the COMPRESS= data set option or system option to
compress a data file. You use the POINTOBS= data set option to enable SAS to access
observations in compressed files directly rather than sequentially. You use the REUSE=
data set option or system option to specify that SAS should reuse space in a compressed
file when observations are added or updated.

Review of Uncompressed Data File Structure
By default, a SAS data file is not compressed. In uncompressed data files, the following
statements are true:

• Each data value of a particular variable occupies the same number of bytes as any
other data value of that variable.

• Each observation occupies the same number of bytes as any other observation.

• Character values are padded with blanks.

• Numeric values are padded with binary zeros.

• There is a 1-bit per observation overhead (rounded up to the nearest byte) at the end
of each page; this bit denotes an observation's status as deleted or not deleted.

• New observations are added at the end of the file. If a new observation does not fit
on the current last page of the file, a whole new data set page is added.

• The descriptor portion of the data file is stored at the end of the first page of the file.

The figure below depicts the structure of an uncompressed data file.

Note: In a 64–bit operating environment, each page has a 40–byte overhead. In a 32–bit
operating environment, each page has a 24–byte overhead.

In comparison, look at the characteristics of a compressed data file.

Compressing Data Files 685

Compressed Data File Structure
In compressed data files, the following statements are true:

• An observation is treated as a single string of bytes by ignoring variable types and
boundaries.

• Consecutive repeating characters and numbers are collapsed into fewer bytes.

• There is a 24-byte overhead at the beginning of each page in a 32–bit operating
environment or 40–byte overhead in a 64–bit operating environment.

• There is a 12-byte- or 24-byte-per-observation overhead following the page
overhead. This space is used for deletion status, compressed length, pointers, and
flags.

Each observation in a compressed data file can have a different length, which means that
some pages in the data file can store more observations than others can. When an
updated observation is larger than its original size, it is stored on the same data file page
and uses available space. If not enough space is available on the original page, the
observation is stored on the next page that has enough space, and a pointer is stored on
the original page.

The figure below depicts the structure of a compressed data file.

Deciding Whether to Compress a Data File
Not all data files are good candidates for compression. Remember that in order for SAS
to read a compressed file, each observation must be uncompressed. This requires more
CPU resources than reading an uncompressed file. However, compression can be
beneficial when the data file has one or more of the following properties:

• It is large.

• It contains many long character values.

• It contains many values that have repeated characters or binary zeros.

• It contains many missing values.

• It contains repeated values in variables that are physically stored next to one another.

In character data, the most frequently encountered repeated value is the blank. Long text
fields, such as comments and addresses, often contain repeated blanks. Likewise, binary

686 Chapter 21 • Controlling Data Storage Space

zeros are used to pad numeric values that can be stored in fewer bytes. This happens
most often when you assign a small or medium-sized integer to an 8-byte numeric
variable.

Note: If saving disk space is crucial, consider storing missing data as a small integer,
such as 0 or 9, rather than as a SAS missing value. Small integers can be compressed
more than SAS missing values can.

A data file is not a good candidate for compression if it has any of the following
characteristics:

• few repeated characters

• small physical size

• few missing values

• short text strings

The following topic explores how to compress a data file.

The COMPRESS= System Option and the COMPRESS= Data Set
Option

To compress a data file, you use either the COMPRESS= data set option or the
COMPRESS= system option. You use the COMPRESS= system option to compress all
data files that you create during a SAS session. Similarly, you use the COMPRESS=
data set option to compress an individual data file.

General form, COMPRESS= system option:

OPTIONS COMPRESS= NO | YES | CHAR | BINARY;

Here is an explanation of the syntax:

NO
is the default setting, which does not compress the data set.

CHAR or YES
uses the Run Length Encoding (RLE) compression algorithm, which compresses repeating
consecutive bytes such as trailing blanks or repeated zeros.

BINARY
uses Ross Data Compression (RDC), which combines run-length encoding and sliding-
window compression.

Note: If you set the COMPRESS= system option to a value other than NO, SAS
compresses every data set that is created during the current SAS session, including
temporary data sets in the Work library. Although this might conserve data storage
space, it uses greater amounts of other resources.

Compressing Data Files 687

General form, COMPRESS= data set option:

DATA SAS-data-set (COMPRESS= NO | YES | CHAR | BINARY);

Here is an explanation of the syntax:

SAS-data-set
specifies the data set that you want to compress.

NO
is the default setting, which does not compress the data set.

CHAR or YES
uses the Run Length Encoding (RLE) compression algorithm, which compresses repeating
consecutive bytes such as trailing blanks or repeated zeros.

BINARY
uses Ross Data Compression (RDC), which combines run-length encoding and sliding-
window compression.

Note: The COMPRESS= data set option overrides the COMPRESS= system option.

The YES or CHAR setting for the COMPRESS= option uses the RLE compression
algorithm. RLE compresses observations by reducing repeated consecutive characters
(including blanks) to two-byte or three-byte representations. Therefore, RLE is most
often useful for character data that contains repeated blanks. The YES or CHAR setting
is also good for compressing numeric data in which most of the values are zero.

The BINARY setting for the COMPRESS= option uses RDC, which combines run-
length encoding and sliding-window compression. This method is highly effective for
compressing medium to large blocks of binary data (numeric variables).

A file that has been compressed using the BINARY setting of the COMPRESS= option
takes significantly more CPU time to uncompress than a file that was compressed with
the YES or CHAR setting. BINARY is more efficient with observations that are several
hundred bytes or more in length. BINARY can also be very effective with character data
that contains patterns rather than simple repetitions.

When you create a compressed data file, SAS compares the size of the compressed file
to the size of the uncompressed file of the same page size. Then SAS writes a note to the
log indicating the size reduction percent that is obtained by compressing the file.

When you use either of the COMPRESS= options, SAS calculates the size of the
overhead that is introduced by compression as well as the maximum size of an
observation in the data set that you are attempting to compress. If the maximum size of
the observation is smaller than the overhead that is introduced by compression, SAS
disables compression, creates an uncompressed data set, and issues a warning message
stating that the file was not compressed.

Once a file is compressed, the setting is a permanent attribute of the file. In order to
change the setting to uncompressed, you must re-create the file.

Note: Compression of observations is not supported by all SAS engines. See the SAS
documentation for the COMPRESS= data set option for more information.

Example
The data set Company.Customer contains demographic information about a retail
company's customers. The data set includes character variables such as Customer_Name,
Customer_FirstName, Customer_LastName, and Customer_Address. These character
variables have the potential to contain many repeated blanks in their values. The
following program creates a compressed data set named

688 Chapter 21 • Controlling Data Storage Space

Company.Customers_Compressed from Company.Customer even if the COMPRESS=
system option is set to NO.

data company.customer_compressed (compress=char);
 set company.customer;
run;

SAS writes a note to the SAS log about the compression of the new data set, as shown
below.

Table 21.3 SAS Log

NOTE: There were 89954 observations read from the data
 set COMPANY.CUSTOMER.
NOTE: The data set COMPANY.CUSTOMER_COMPRESSED has 89954
 observations and 11 variables.
NOTE: Compressing data set COMPANY.CUSTOMER_COMPRESSED
 decreased size by 32.81 percent.
 Compressed is 991 pages; un-compressed would require
 1475 pages.
NOTE: DATA statement used (Total process time):
 real time 3.90 seconds
 cpu time 0.96 seconds

In general, you use a compressed data set in your programs in the same way that you
would use an uncompressed data set. However, there are two options that relate
specifically to compressed data sets.

Accessing Observations Directly in a Compressed Data Set
By default, the DATA step processes observations in a SAS data set sequentially.
However, sometimes you might want to access observations directly rather than
sequentially because doing so can conserve resources such as CPU time, I/O, and real
time. You can use the POINT= option in the MODIFY or SET statements to access
observations directly rather than sequentially. You can review information about the
POINT= option in Chapter 13, “Creating Indexes,” on page 448. You can also use the
FSEDIT procedure to access observations directly.

Allowing direct access to observations in a compressed data set increases the CPU time
that is required for creating or updating the data set. You can set an option that does not
allow direct access for compressed data sets. If it is not important for you to be able to
point directly to an observation by number within a compressed data set, it is a good idea
to disallow direct access in order to improve the efficiency of creating and updating the
data set. The following topic explains how to disallow direct access to observations in a
compressed data set.

The POINTOBS= Data Set Option
When you work with compressed data sets, you use the POINTOBS= data set option to
control whether observations can be processed with direct access (by observation
number) rather than with sequential access only.

Compressing Data Files 689

General form, POINTOBS= data set option:

DATA SAS-data-set (COMPRESS=YES | CHAR | BINARY POINTOBS= YES | NO);

Here is an explanation of the syntax:

SAS-data-set
specifies the data set that you want to compress.

YES
is the default setting, which allows random access to the data set.

NO
does not allow random access to the data set.

Note: In order for you to use the POINTOBS= data set option, the COMPRESS= option
must have a value of YES, CHAR, or BINARY for the SAS-data set that is specified.

Allowing random access to a data set does not affect the efficiency of retrieving
information from a data set, but it does increase the CPU usage by approximately 10%
when you create or update a compressed data set. That is, allowing random access
reduces the efficiency of writing to a compressed data set but does not affect the
efficiency of reading from a compressed data set. Therefore, if you do not need to access
data by observation number, specify POINTOBS=NO. Thus, you can improve
performance by approximately 10% when creating a compressed data set and when
updating or adding observations to it.

Example
The following program creates a data set named Company.Customer_Compressed from
the Company.Customer data set and ensures that random access to the compressed data
set is not allowed.

data company.customer_compressed (compress=yes pointobs=no);
 set company.customer;
run;

The following topic explains how to further reduce the data storage space that is required
for your compressed data sets.

The REUSE= System Option and the REUSE= Data Set Option
SAS appends new observations to the end of all data sets by default. If you delete an
observation within the data set, empty disk space remains in its place. However, in
compressed data sets only, it is possible to track and reuse free space when you add or
update observations. By reusing space within a data set, you can conserve data storage
space.

The REUSE= system option and the REUSE= data set option specify whether SAS
reuses space when observations are added to a compressed data set. If you set the
REUSE= data set option to YES in a DATA statement, SAS tracks and reuses space in
the compressed data set that is created in that DATA step. If you set the REUSE= system
option to YES, SAS tracks and reuses free space in all compressed data sets that are
created for the remainder of the current SAS session.

690 Chapter 21 • Controlling Data Storage Space

General form, REUSE= system option:

OPTIONS REUSE= NO | YES;

Here is an explanation of the syntax:

NO
is the default setting, which specifies that SAS does not track unused space in the
compressed data set.

YES
specifies that SAS tracks free space and reuses it whenever observations are added to an
existing compressed data set.

General form, REUSE= data set option:

DATA SAS-data-set (COMPRESS=YES REUSE=NO | YES);

Here is an explanation of the syntax:

SAS-data-set
specifies the data set that you want to compress.

NO
is the default setting, which specifies that SAS does not track unused space in the
compressed data set.

YES
specifies that SAS tracks free space and reuses it whenever observations are added to an
existing compressed data set.

Note: The REUSE= data set option overrides the REUSE= system option.

If the REUSE= option is set to YES, observations that are added to the SAS data set are
inserted wherever enough free space exists, instead of at the end of the SAS data set.

Specifying NO for the REUSE= option results in less efficient usage of space if you
delete or update many observations in a SAS data set because there is unused space
within the data set. With the REUSE= option set to NO, the APPEND procedure, the
FSEDIT procedure, and other procedures that add observations to the SAS data set add
observations to the end of the data set, as they do for uncompressed data sets.

You cannot change the REUSE= attribute of a compressed data set after it is created.
This means that space is tracked and reused in the compressed SAS data set according to
the value of the REUSE= option that was specified when the SAS data set was created,
not when you add and delete observations. Also, you should be aware that even with the
REUSE= option set to YES, the APPEND procedure adds observations to the end of the
data set.

Note: Specifying YES as the value for the REUSE= option causes the POINTOBS=
option to have a value of NO even if you specify YES as the value for POINTOBS=.
The insertion of a new observation into unused space (rather than at the end of the
data set) and the use of direct access are not compatible.

Example
The following program creates a compressed data set named
Company.Customer_Compressed from the Company.Customer data set. Because the
REUSE= option is set to YES, SAS tracks and reuses any empty space within the
compressed data set.

Compressing Data Files 691

data company.customer_compressed (compress=yes reuse=yes);
 set company.customer;
run;

How SAS Compresses Data
Look at how SAS compresses data. A fictional data set named Roster is described in the
table below.

In uncompressed form, each observation in Roster uses a total of 35 bytes to store these
two variables: 20 bytes for the first variable, LastName, and 15 bytes for the second
variable, FirstName. The image below illustrates the storage of the first observation in
the uncompressed version of Roster.

Suppose that you use the CHAR setting for the COMPRESS= option to compress
Roster. In compressed form, the repeated blanks are removed from each value. The first
observation from Roster uses a total of only 13 bytes: 7 for the first variable, LastName,
and 6 for the second variable, FirstName. The image below illustrates the storage of the
first observation in the compressed version of Roster.

The @ indicates the number of uncompressed characters that follow. The # indicates the
number of blanks that are repeated at this point in the observation. Only a SAS engine
can access these bytes. You cannot print or manipulate them.

Ross Data Compression (COMPRESS=BINARY) uses both run-length encoding and
sliding window compression. Suppose a SAS data set has these variables:

Name Type Length

Answer1 Num 8

Answer2 Num 8

...

Answer200 Num 8

In uncompressed form, the SAS data file resembles this:

692 Chapter 21 • Controlling Data Storage Space

1 2 3 4 5 6 7 8 9
@ +/1 1 # @ +/1 2 # %

The @ symbol indicates how many uncompressed characters follow. In the file, +/1 is
the sign and exponent. The # indicates the number of binary zeros that were removed.
The % represents how many times these values are repeated.

Note: Remember that in a compressed data set, observations might not all have the same
length because the length of an observation depends on the length of each value in
the observation.

Comparative Example: Creating and Reading Compressed Data
Files

Overview
Suppose you want to create two SAS data sets from data that is stored in two raw data
files. The raw data file that is referenced by the fileref Flat1 contains numeric data about
customer orders for a retail company; you want to create a SAS data set named
Retail.Orders from this raw data file. The raw data file that is referenced by the fileref
Flat2 contains character data about customers for a retail company; you want to create a
SAS data set named Retail.Customers from this raw data file.

In both cases, you can use the DATA step to create either an uncompressed data file or a
compressed data file. Furthermore, you can use either binary or character compression in
either case.

The following sample programs compare six techniques. You can use these samples as
models for creating benchmark programs in your own environment. Your results might
vary depending on the structure of your data, your operating environment, and the
resources that are available at your site.

Programming Techniques

 Numeric Data, No Compression

The following program creates the SAS data set Retail.Orders, which contains numeric data and
is uncompressed. The second DATA step reads the uncompressed data file.

data retail.orders(compress=no);
 infile flat1;
 input Customer_ID 12.
 Employee_ID 12.
 Street_ID 12.
 Order_Date date9.
 Delivery_Date date9.
 Order_ID 12.
 Order_Type comma16.
 Product_ID 12.
 Quantity 4.
 Total_Retail_Price dollar13.
 CostPrice_Per_Unit dollar13.
 Discount 5. ;
run;

data _null_;
 set retail.orders;
run;

Compressing Data Files 693

 Numeric Data, BINARY Compression

The following program creates the SAS data set Retail.Orders_binary, which contains numeric
data and uses BINARY compression. The second DATA step reads the compressed data file.

data retail.orders_binary(compress=binary);
 infile flat1;
 input Customer_ID 12.
 Employee_ID 12.
 Street_ID 12.
 Order_Date date9.
 Delivery_Date date9.
 Order_ID 12.
 Order_Type comma16.
 Product_ID 12.
 Quantity 4.
 Total_Retail_Price dollar13.
 CostPrice_Per_Unit dollar13.
 Discount 5. ;
run;

data _null_;
 set retail.orders_binary;
run;

 Numeric Data, CHAR Compression

The following program creates the SAS data set Retail.Orders_char, which contains numeric
data and uses CHAR compression. The second DATA step reads the compressed data file.

data retail.orders_char(compress=char);
 infile flat1;
 input Customer_ID 12.
 Employee_ID 12.
 Street_ID 12.
 Order_Date date9.
 Delivery_Date date9.
 Order_ID 12.
 Order_Type comma16.
 Product_ID 12.
 Quantity 4.
 Total_Retail_Price dollar13.
 CostPrice_Per_Unit dollar13.
 Discount 5. ;
run;

data _null_;
 set retail.orders_char;
run;

694 Chapter 21 • Controlling Data Storage Space

 Character Data, No Compression

The following program creates the SAS data set Retail.Customers, which contains character
data and is uncompressed. The second DATA step reads the uncompressed data file.

data retail.customers(compress=no);
 infile flat2;
 input Customer_Country $40.
 Customer_Gender $1.
 Customer_Name $40.
 Customer_FirstName $20.
 Customer_LastName $30.
 Customer_Age_Group $12.
 Customer_Type $40.
 Customer_Group $40.
 Customer_Address $45.
 Street_Number $8. ;
run;

data _null_;
 set retail.cutomers;
run;

 Character Data, BINARY Compression

The following program creates the SAS data set Retail.Customers_binary, which contains
character data and uses BINARY compression. The second DATA step reads the compressed
data file.

data retail.customers_binary(compress=binary);
 infile flat2;
 input Customer_Country $40.
 Customer_Gender $1.
 Customer_Name $40.
 Customer_FirstName $20.
 Customer_LastName $30.
 Customer_Age_Group $12.
 Customer_Type $40.
 Customer_Group $40.
 Customer_Address $45.
 Street_Number $8. ;
run;

data _null_;
 set retail.customers_binary;
run;

Compressing Data Files 695

 Character Data, CHAR Compression

The following program creates the SAS data set Retail.Customers_char, which contains
character data and uses CHAR compression. The second DATA step reads the compressed data
file.

data retail.customers_char(compress=char);
 infile flat2;
 input Customer_Country $40.
 Customer_Gender $1.
 Customer_Name $40.
 Customer_FirstName $20.
 Customer_LastName $30.
 Customer_Age_Group $12.
 Customer_Type $40.
 Customer_Group $40.
 Customer_Address $45.
 Street_Number $8. ;
run;

data _null_;
 set retail.customers_char;
run;

General Recommendations
• Save data storage space by compressing data, but remember that compressed data

causes an increase in CPU usage because the data must be uncompressed for
processing.

• Use binary compression only if the observation length is several hundred bytes or
more.

Using SAS DATA Step Views to Conserve Data
Storage Space

Overview
Another way to save disk space is to leave your data in its original location and use a
SAS data view to access it. First we examine a SAS data view and how it compares to a
SAS data file.

A SAS data file and a SAS data view are both types of SAS data sets. A SAS data file
contains both descriptor information and the data. By contrast, a SAS data view, contains
only descriptor information and instructions on how to retrieve data stored elsewhere.

696 Chapter 21 • Controlling Data Storage Space

The main difference between SAS data files and SAS data views is where the data is
stored. A SAS data file contains data, and a SAS data view does not contain data. Data
views can be particularly useful if you are working with data that changes often.

Suppose you have a flat file that you read into a SAS data file. If the data in the flat file
changes, you need to update the data file to reflect those changes. However, suppose you
use a SAS data view instead of a SAS data file to access the flat file. You do not need to
update the SAS data view when the data in your flat file changes, because each time you
reference the view that it accesses the most recent data in your flat file.

In most cases, you can use a SAS data view as if it were a SAS data file, although there
are a few things to keep in mind when you are working with data views.

Note: There are multiple types of SAS data views. This chapter discusses only DATA
step views. To learn more about PROC SQL views, see Chapter 7, “Creating and
Managing Views Using PROC SQL,” on page 248. For more information about SAS
data views and SAS data files, see the SAS documentation.

Now look at DATA step views.

DATA Step Views
A DATA step view contains a partially compiled DATA step that can read data from a
variety of sources, such as these:

• raw data files

• SAS data files

• PROC SQL views

• SAS/ACCESS views

• DB2, ORACLE, or other DBMS data

A DATA step view can be created only in a DATA step. A DATA step view cannot
contain global statements, host-specific data set options, or most host-specific FILE and
INFILE statement options. Also, a DATA step view cannot be indexed or compressed.

You can use DATA step views to do the following:

• always access the most current data in changing files

• avoid storing a copy of a large data file

Using SAS DATA Step Views to Conserve Data Storage Space 697

• combine data from multiple sources

The compiled DATA step does not use much room for storage, so you can create DATA
step views to conserve disk space. On the other hand, use of DATA step views can
increase CPU usage because SAS must execute the stored DATA step each time you use
the view.

To create a DATA step view, specify the VIEW= option after the final DATA set name in
the DATA statement.

General form, DATA step to create a DATA step view:

DATA SAS-data-view <SAS-data-file-1 ... SAS data-file-n> /
VIEW=SAS-data-view;

<SAS statements>
RUN;

Here is an explanation of the syntax:

SAS-data-view
names the data view to be created.

SAS-data-file-1 ... SAS-data-file-n
is an optional list that names any data files to be created.

SAS statements
includes other DATA step statements to create the data view and any data files that are listed
in the DATA statement.

The VIEW= option tells SAS to compile, but not to execute, the source program and to
store the compiled code in the DATA step view that is named in the option.

Note: If you specify additional data files in the DATA statement, SAS creates these data
files when the view is processed in a subsequent DATA or PROC step. Therefore,
you need to reference the data view before you attempt to reference the data files in
later steps.

Example
The following program creates a DATA step view named Company.Newdata that reads
from the file that is referenced by the fileref in the INFILE statement.

data company.newdata / view=company.newdata;
 infile <fileref>;
 <DATA step statements>
run;

The DESCRIBE Statement
DATA step views retain source statements. You can retrieve these statements by using
the DESCRIBE statement. The following example uses the DESCRIBE statement in a
DATA step to write a copy of the source code for the data view Company.Newdata to the
SAS log:

data view=company.newdata;
 describe;
run;

698 Chapter 21 • Controlling Data Storage Space

Creating and Referencing a SAS DATA Step View
In order to use DATA step views successfully, you need to understand what happens
when you create and reference one.

When you create a DATA step view, the following actions occur:

• The DATA step is partially compiled.

• The intermediate code is stored in the specified SAS library with a member type of
VIEW.

You reference a DATA step view in the same way that you reference a data file. When
you reference the view in a subsequent DATA or PROC step, the following actions
occur:

• The compiler resolves the intermediate code and generates executable code for the
host environment.

• The generated code is executed as the DATA or PROC step requests observations.

You can use a DATA step view as you would use any other SAS data set, with the
exception that you cannot write to the view except under very specific circumstances.
Also, you should keep in mind that a SAS data view reads from its source files each time
it is used. Therefore, if the data changes, the results change. Likewise, if the structure of
the data that a view accesses changes, you probably need to alter the view in order to
account for this change.

Note: The OBSBUF= data set option enables you to specify how many observations to
read at one time from the source data for the DATA step view. The default size of the
view buffer is 32K, which means that the number of observations that can be read
into the view buffer at one time depends on the observation length. If the observation
length is larger than 32K, then only one observation can be read into the buffer at a
time.

Using SAS DATA Step Views to Conserve Data Storage Space 699

Remember that although data views conserve data storage space, processing them can
require more resources than processing a data file. Look at a few situations where using
a data view can adversely affect processing efficiency.

Referencing a Data View Multiple Times in One Program
SAS executes a view each time it is referenced, even within one program. Therefore, if
data is used many times in one program, it is more efficient to create and reference a
temporary SAS data file than to create and reference a view.

Example
Instead of referencing a data view in each step in the program, you could add a DATA
step to the beginning of the program to create a temporary data file and read the data
view into it. Then you could reference the temporary data set in each of the subsequent
steps. By referencing the temporary data file rather than the data view in each of the
PROC steps, SAS executes the data view only once instead of multiple times.

There are other reasons why extracting data to a temporary data file is a good idea.
Suppose you submit this code and it takes a long time to run. If a flat file that is
referenced by a view changes while your code is running, you have inconsistent results
unless you create a SAS data file before submitting the PROC PRINT, PROC FREQ,
and PROC MEANS steps, and reference the data file in your program.

Making Multiple Passes through Data in a Data View
Expect a degradation in performance when you use a SAS data view with a procedure
that requires multiple passes through the data. When multiple passes are requested, the
view must build a cache (spill file) that contains all generated observations. Then SAS
reads the data in the spill file on each of the multiple passes through the data in order to
ensure that subsequent passes read the same data that was read by previous passes.

For example, the UNIFORM option of the PRINT statement makes all the columns
consistent from page to page by determining the longest value of each variable. In order
to do this, SAS must make two passes through the data: one pass to find the longest
value of each variable, and a second pass to print the data. If you use the UNIFORM
option to print a data view, SAS creates a spill file as it generates observations from the
view. Then SAS makes two passes through the observations in the spill file.

Note: Some statistical procedures pass through the data more than once.

700 Chapter 21 • Controlling Data Storage Space

Creating Data Views on Unstable Data
Avoid creating views on files whose structures often change. If the view describes the
structure of a raw data file, you need to change the view each time the file changes.

For example, suppose you create a view that combines the data file Company.Roster
with the data file Company.Demog. Roster contains the variables LastName and
FirstName, and Company.Demog contains the variables LastName, Address, and Age, as
shown below.

Suppose that both Company.Roster and Company.Demog are sorted by LastName. You
could use a MERGE statement to combine these two data files into a view named
Company.Roster_View, as shown below.

data company.roster_view/view=company.roster_view;
 merge company.roster company.demog;
 by lastname;
run;

Now suppose Company.Roster changes so that LastName is named Surname. Your data
view must also be updated.

data roster_view/view=roster_view;
 merge company.roster company.demog(rename=(LastName=Surname));
 by lastname;
run;

If Company.Roster changed again so that Surname and FirstName were combined into
one variable called FullName, the code for your data view would need additional
changes. Although this is a simple example, you can see that a data view that is based on
unstable data requires additional maintenance work.

Comparative Example: Creating and Reading a SAS Data View

Overview
Suppose you have two SAS data sets, Retail.Custview and Retail.Custdata, that have
been created from the same raw data file. Retail.Custview is a DATA step view, and
Retail.Custdata is a data file. You can use these two data sets to compare the disk space

Using SAS DATA Step Views to Conserve Data Storage Space 701

that is required for each as well as the resources that are used to read from each view or
file.

The following sample programs compare two techniques. You can use these samples as
models for creating benchmark programs in your own environment. Your results might
vary depending on the structure of your data, your operating environment, and the
resources that are available at your site.

Programming Techniques

 Data View

This program reads data from a raw data file, creates a SAS DATA step view named
Retail.Custview, and then reads from the new DATA step view. The first DATA step creates the
data view Retail.Custview. The second DATA step reads from the DATA step view.

data retail.custview / view = retail.custview;
 infile flat1;
 input @1 Customer_ID 12.
 @13 Country $2.
 @15 Gender $1.
 @16 Personal_ID $15.
 @31 Customer_Name $40.
 @71 Customer_FirstName $20.
 @91 Customer_LastName $30.
 @121 Birth_Date date9.
 @130 Customer_Address $45.
 @175 Street_ID 12.
 @199 Street_Number $8.
 @207 Customer_Type_ID 8.;
 run;

data _null_;
 set retail.custview;
run;

 Data File

This program reads data from a raw data file, creates a SAS data file named Retail.Custdata,
and reads from the new SAS data file. The first DATA step creates the data file Retail.Custdata.
The second DATA step reads from the data file.

data retail.custdata;
 infile flat1;
 input @1 Customer_ID 12.
 @13 Country $2.
 @15 Gender $1.
 @16 Personal_ID $15.
 @31 Customer_Name $40.
 @71 Customer_FirstName $20.
 @91 Customer_LastName $30.
 @121 Birth_Date date9.
 @130 Customer_Address $45.
 @175 Street_ID 12.
 @199 Street_Number $8.
 @207 Customer_Type_ID 8.;
run;

data _null_;
 set retail.custdata;
run;

702 Chapter 21 • Controlling Data Storage Space

General Recommendations
• Create a SAS DATA step view to avoid storing a SAS copy of a raw data file.

• Use a SAS DATA step view if the content, but not the structure, of the flat file is
dynamic.

• Create a DATA step view to combine multiple SAS data sets with a merge or
concatenation.

• Create a DATA step view to access frequently used subsets.

Summary

Reducing Data Storage Space for Character Variables
SAS stores character data as one character per byte. You can use the LENGTH statement
to increase or reduce the length of a character variable. You can also use other coding
techniques to reduce the space that is needed for storing your character data.

Reducing Data Storage Space for Numeric Variables
SAS stores numeric data in floating-point representation. The default length for a
numeric variable is 8 bytes. You can use a LENGTH statement to reduce the length of a
numeric variable. Reading reduced-length numeric variables requires less I/O but more
CPU resources than reading full-length numeric variables. You can use PROC
COMPARE to see the precision loss, if any, in the values of reduced-length numeric
variables.

Compressing Data Files
By default, a SAS data file is uncompressed. You can compress your data files in order
to conserve disk space, although some files are not good candidates for compression.
Use the COMPRESS= data set option or system option to compress a data file. Use the
POINTOBS=YES data set option to enable SAS to access observations in compressed
files directly rather than sequentially. Use the REUSE=YES data set option or system
option to specify that SAS should reuse space in a compressed file when observations
are added or updated.

Using SAS DATA Step Views to Conserve Data Storage Space
You can leave your data in its original storage location and use SAS data views to access
the data in order to reduce the amount of space needed for storing data on disk. A DATA
step view is a specific type of data view that is created in a DATA step with the VIEW=
option. Use the DESCRIBE statement to write the source code for a data view to the
SAS log. Some of the advantages of using DATA step views rather than data files are
that they always access the most recent data in dynamic files and that they require less
disk space. However, there can be an effect on performance when you use a DATA step
view.

Summary 703

Quiz
Select the best answer for each question. After completing the quiz, check your answers
using the answer key in the appendix.

1. Which of the following statements about uncompressed SAS data files is true?

a. The descriptor portion is stored on whatever page has enough room for it.

b. New observations are always added in the first sufficient available space.

c. Deleted observation space is tracked.

d. New observations are always added at the end of the data set.

2. Which of the following statements about compressed SAS data files is true?

a. The descriptor portion is stored on whatever data set page has enough room for
it.

b. Deleted observation space can be reused.

c. Compressed SAS data files have a smaller overhead than uncompressed SAS
data files.

d. In a compressed SAS data set, each observation must be the same size.

3. Which of the following programs correctly creates reduced-length numeric
variables?

a. data temp;
 infile file1;
 input x 4.
 y 3.
 z 2.;
 run;

b. data temp;
 format x 4.
 y 3.
 z 2.;
 infile file1;
 input x 4.
 y 3.
 z 2.;
run;

c. data temp;
 length x 4
 y 3
 z 2;
 infile file1;
 input x 4.
 y 3.
 z 2.;
 run;

d. data temp;
 informat x 4.
 y 3.

704 Chapter 21 • Controlling Data Storage Space

 z 2.;
 infile file1;
 input x 4.
 y 3.
 z 2.;
run;

4. Which of the following statements about SAS data views is true?

a. SAS data views use less disk space but more CPU resources than SAS data files.

b. SAS data views can be created only in permanent SAS libraries.

c. SAS data views use less CPU resources but more disk space than SAS data files.

d. SAS data views can be created only in temporary SAS libraries.

5. Which of the following programs should you use to detect any loss of precision
between the default-length numeric variables in Company.Regular and the reduced-
length numeric variables in the data set Company.Reduced?

a. proc contents data=company.regular;
 compare data=company.reduced;
run;

b. proc compare base=company.regular
 compare=company.reduced;
run;

c. proc print data=company.regular;
run;

proc print data=company.reduced;
run;

d. proc datasets library=company;
 contents data=regular compare=reduced;
run;

Quiz 705

706 Chapter 21 • Controlling Data Storage Space

Chapter 22

Using Best Practices

Overview . 708
Introduction . 708

Executing Only Necessary Statements . 708
Overview . 708
Positioning of the Subsetting IF Statement . 708
Comparative Example: Creating a Subset of Data . 709
Using Conditional Logic Efficiently . 710
Comparative Example: Creating Variables Conditionally Using DO Groups 711
Comparative Example: Creating Variables Conditionally

When Calling Functions . 713
Using DO Groups Efficiently . 716
Comparative Example: Creating Data in DO Groups . 717

Eliminating Unnecessary Passes through the Data . 721
Comparative Example: Creating Multiple Subsets of a SAS Data Set 721
Using the SORT Procedure with a WHERE Statement to

Create Sorted Subsets . 723
Comparative Example: Creating a Sorted Subset of a SAS Data Set 723
Using the DATASETS Procedure to Modify Variable Attributes 724
Comparative Example: Changing the Variable Attributes of a SAS Data Set 724

Reading and Writing Only Essential Data . 725
Overview . 725
Selecting Observations Using Subsetting IF versus WHERE Statement 725
Comparative Example: Creating a Subset of a SAS Data Set 726
Other Differences between the IF and WHERE Statements 727
Using the WHERE Statement with the OBS= and FIRSTOBS= Options 727
Selecting Observations When Reading Data from External Files 728
Comparative Example: Creating a Subset of Data by Reading

Data from an External File . 728
Subsetting Variables with the KEEP and DROP Statements and Options 730
Comparative Example: Creating a Report That Contains

Average and Median Statistics . 731
Comparative Example: Creating a SAS Data Set That

Contains Only Certain Variables . 733

Storing Data in SAS Data Sets . 735
Overview . 735
Comparative Example: Reading a SAS Data Set Versus an External File 736

Avoiding Unnecessary Procedure Invocation . 737
Overview . 737
Executing the DATASETS Procedure . 737

707

RUN-Group Processing . 737
Using Different Types of RUN Groups with PROC DATASETS 738
Comparative Example: Modifying the Descriptor Portion of SAS Data Sets 739
General Recommendations . 740

Summary . 740
Executing Only Necessary Statements . 740
Eliminating Unnecessary Passes through the Data . 741
Reading and Writing Only Essential Data . 741
Storing SAS Data in SAS Data Sets . 741
Avoiding Unnecessary Procedure Invocation . 741

Quiz . 742

Overview

Introduction
This chapter demonstrates using SAS best programming practices to optimize
performance. As you compare the techniques that are described in this chapter,
remember that differences in the use of resources are affected by the operating
environment you work in and by the characteristics of your data.

Each topic includes examples that can improve program efficiency. Write programs to
generate your own benchmarks, and adopt the programming techniques that produce the
most savings for you.

Note: This chapter does not cover the SAS Scalable Performance Data Engine (SAS
SPD Engine), which is a SAS 9.1 technology for threaded processing. For details
about using the SAS SPD Engine to improve performance, see the SAS
documentation.

Executing Only Necessary Statements

Overview
When you execute the minimum number of statements in the most efficient order, you
minimize the hardware resources that SAS uses. The resources that are affected include
disk usage, memory usage, and CPU usage.

Here are two techniques to keep in mind:

• Subset your data as soon as is logically possible.

• Process your data conditionally by using the most appropriate technique.

Positioning of the Subsetting IF Statement
To subset your data based on a newly derived or computed variable, use the subsetting IF
statement in a DATA step in order to process only those observations that meet a
specified condition.

708 Chapter 22 • Using Best Practices

The subsetting IF statement causes the DATA step to continue processing only those
observations that meet the condition of the expression that is specified in the subsetting
IF statement. The resulting SAS data set or data sets contain a subset of the original
external file or SAS data set.

Position the subsetting IF statement in the program so that it checks the subsetting
condition as soon as it is logically possible. As a result, unnecessary statements do not
execute. When the subsetting condition is false, no further statements are processed for
that observation.

Also, remember to subset data before performing calculations and to minimize the use of
function calls or arithmetic operators. Unnecessary processing of unwanted observations
results in higher expenditure of hardware resources.

Comparative Example: Creating a Subset of Data

Overview
Suppose you want to create a subset of data, calculate six new variables, and
conditionally output data by reading from the SAS data set Retail.Order_fact. The output
data set should contain new variables for the following:

• the month of the order

• the elapsed time between the order date and the delivery date

• the profit, based on the retail price, discount, and unit price

• total profit

• total discount

• total wait time

The subset of data that includes only orders for the month of December is approximately
10% of the data.

You can accomplish this task by using a subsetting IF statement. Placement of this
statement in the DATA step can affect the efficiency of the DATA step in terms of CPU
time and real time.

The following sample programs compare two techniques. You can use these samples as
models for creating benchmark programs in your own environment. Your results might
vary depending on the structure of your data, your operating environment, and the
resources that are available at your site.

Executing Only Necessary Statements 709

Programming Techniques

 A Subsetting IF Statement at the Bottom

This program calculates six new variables before the subsetting IF statement selects only
observations whose values for Month are 12.

data profit;
 retain TotalProfit TotalDiscount TotalWait Count 0;
 set retail.order_fact;
 MonthOfOrder=month(order_date);
 WaitTime=sum(delivery_date,-order_date);
 if discount gt . then
 CalcProfit=sum((total_retail_price*discount),-costprice_per_unit)
 *quantity;
 else CalcProfit=sum(total_retail_price,-costprice_per_unit)
 *quantity;
 TotalProfit=sum(totalprofit,calcprofit);
 TotalDiscount=sum(totaldiscount,discount);
 TotalWait=sum(totalwait,waittime);
 Count+1;
 if monthoforder=12;
run;

 A Subsetting IF Statement near the Top

In this program, the subsetting IF statement is positioned immediately after the value for
MonthofOrder has been calculated. If the value is not 12, then no further statements are
processed for that observation. In this program, calculations are performed on a smaller number
of observations, which results in greater program efficiency.

data profit;
 retain TotalProfit TotalDiscount TotalWait Count 0;
 set retail.order_fact;
 MonthOfOrder=month(order_date);
 if monthoforder=12;
 WaitTime=sum(delivery_date,-order_date);
 if discount gt . then
 CalcProfit=sum((total_retail_price*discount),-costprice_per_unit)
 *quantity;
 else CalcProfit=sum(total_retail_price,-costprice_per_unit)
 *quantity;
 TotalProfit=sum(totalprofit,calcprofit);
 TotalDiscount=sum(totaldiscount,discount);
 TotalWait=sum(totalwait,waittime);
 Count+1;
run;

General Recommendations
Position the subsetting IF statement in a DATA step as soon as is logically possible in
order to save the most resources.

Using Conditional Logic Efficiently
You can use conditional logic to change how SAS processes selected observations. Two
techniques—IF-THEN/ELSE statements and SELECT statements—can be used
interchangeably and perform comparably. Based on the characteristics of your data and
depending on your environment, one of these techniques might give you better

710 Chapter 22 • Using Best Practices

performance. Choose a technique that conserves your programming time and makes the
program easiest to read.

Note: The number of conditions that are tested and the type of variable or variables that
are tested affect CPU resources.

For best practices, follow these guidelines for writing efficient IF/THEN or SELECT
statement logic:

• When using IF/THEN statements for mutually exclusive conditions, use the ELSE IF
statement rather than an IF statement for all conditions except the first.

• Check the most frequently occurring condition first, and continue checking
conditions in descending order of frequency.

• When you execute multiple statements based on a condition, put the statements in a
DO group.

Before writing conditional logic, determine the distribution of your data values. You can
use the following procedures:

• FREQ procedure to examine the distribution of the data values

• GCHART or GPLOT procedure to display the distribution graphically

• UNIVARIATE procedure to examine distribution statistics and to display the
information graphically

Comparative Example: Creating Variables Conditionally Using DO
Groups

Overview
Suppose you want to calculate an adjusted profit based on the values of the variable
Order_Type in the data set Retail.Order_fact. For retail sales, which are represented by
the value 1, the adjusted profit should be calculated as 105% of profit. For catalog sales,
which are represented by the value 2, the adjusted profit should be calculated as 103% of
profit. For Internet sales, which are represented by the value 3, the adjusted profit should
be equal to profit.

The following table shows that the values for the variable Order_Type are not uniformly
distributed.

The following table shows that the values for the variable Discount also are not
uniformly distributed.

Executing Only Necessary Statements 711

The following sample programs compare two techniques. You can use these samples as
models for creating benchmark programs in your own environment. Your results might
vary depending on the structure of your data, your operating environment, and the
resources that are available at your site.

Programming Techniques

 IF-THEN/ELSE Statements

This program uses IF-THEN/ELSE statements with DO groups to conditionally execute
multiple statements that calculate an adjusted profit. Conditions are checked in descending
order of frequency.

data retail.order_info_1;
 set retail.order_fact;
 if order_type=1 then
 do; /* Retail Sale */
 Float=delivery_date-order_date;
 RevenueQuarter=qtr(order_date);
 AveragePrice=total_retail_price/quantity;
 if discount=. then NetPrice=total_retail_price;
 else NetPrice=total_retail_price-discount;
 Profit=netPrice-(quantity*costprice_per_unit)*1.05;
 end;
 else if order_type=2 then
 do; /* Catalog Sale */
 Float=delivery_date-order_date;
 RevenueQuarter=qtr(order_date);
 AveragePrice=total_retail_price/quantity;
 if discount=. then NetPrice=total_retail_price;
 else NetPrice=total_retail_price-discount;
 Profit=netprice-(quantity*costprice_per_unit)*1.03;
 end;
 else
 do; /* Internet Sale */
 Float=delivery_date-order_Date;
 RevenueQuarter=qtr(order_date);
 AveragePrice=total_retail_price/quantity;
 if discount=. then NetPrice=total_retail_price;
 else NetPrice=total_retail_price-discount;
 Profit=netprice-(quantity*costprice_per_unit);
 end;
run;

712 Chapter 22 • Using Best Practices

 SELECT Statements

This program uses SELECT and WHEN statements with DO groups to conditionally execute
multiple statements that calculate an adjusted profit. Conditions are checked in descending
order of frequency.

data retail.order_info_2;
 set retail.order_fact;
 select(order_type);
 when (1)
 do; /* Retail Sale */
 Float=delivery_date-order_date;
 RevenueQuarter=qtr(order_date);
 AveragePrice=total_retail_price/quantity;
 if discount=. then NetPrice=total_retail_price;
 else NetPrice=total_retail_price-discount;
 Profit=netprice-(quantity*costprice_per_unit)*1.05;
 end;
 when (2)
 do; /* Catalog Sale */
 Float=delivery_date-order_date;
 RevenueQuarter=qtr(order_date);
 AveragePrice=total_retail_price/quantity;
 if discount=. then NetPrice=total_retail_price;
 else NetPrice=total_retail_price-discount;
 Profit=netprice-(quantity*costprice_per_unit)*1.03;
 end;
 otherwise
 do; /* Internet Sale */
 Float=delivery_date-order_date;
 RevenueQuarter=qtr(order_date);
 AveragePrice=total_retail_price/quantity;
 if discount=. then NetPrice=total_retail_price;
 else NetPrice=total_retail_price-discount;
 Profit=netprice-(quantity*costprice_per_unit);
 end;
 end;
run;

General Recommendations
• Check the most frequently occurring condition first, and continue checking

conditions in descending order of frequency, regardless of whether you use IF-
THEN/ELSE or SELECT and WHEN statements.

• When you execute multiple statements based on a condition, put the statements in a
DO group.

Comparative Example: Creating Variables Conditionally When
Calling Functions

Overview
Suppose you want to create a report that includes a new variable that is based on the
value of an existing variable in the SAS data set Retail.Order_fact. Values for the new
Month variable are extracted from the existing variable Order_Date by using the
MONTH function.

Executing Only Necessary Statements 713

The following table shows that the values for Month are fairly evenly distributed.

The following sample programs compare several techniques. You can use these samples
as models for creating benchmark programs in your own environment. Your results
might vary depending on the structure of your data, your operating environment, and the
resources that are available at your site.

Programming Techniques

 Parallel IF Statements

This program calls the MONTH function 12 times. With these non-exclusive cases, each IF
statement executes for each observation that is read from Retail.Order_Fact. This is the least
efficient approach.

data retail.orders;
 set retail.order_fact;
 if month(order_date)=1 then Month='Jan';
 if month(order_date)=2 then Month='Feb';
 if month(order_date)=3 then Month='Mar';
 if month(order_date)=6 then Month='Jun';
 if month(order_date)=7 then Month='Jul';
 if month(order_date)=8 then Month='Aug';
 if month(order_date)=9 then Month='Sep';
 if month(order_date)=10 then Month='Oct';
 if month(order_date)=11 then Month='Nov';
 if month(order_date)=12 then Month='Dec';
run;

714 Chapter 22 • Using Best Practices

 ELSE IF Statements, Many Function References

This program uses ELSE IF statements that call the function MONTH. Once the true condition
is found, subsequent ELSE IF statements are not executed. This is more efficient than using
parallel IF statements, but the MONTH function is executed many times.

data retail.orders;
 set retail.order_fact;
 if month(order_date)=1 then Month='Jan';
 else if month(order_date)=2 then Month='Feb';
 else if month(order_date)=3 then Month='Mar';
 else if month(order_date)=4 then Month='Apr';
 else if month(order_date)=5 then Month='May';
 else if month(order_date)=6 then Month='Jun';
 else if month(order_date)=7 then Month='Jul';
 else if month(order_date)=10 then Month='Oct';
 else if month(order_date)=11 then Month='Nov';
 else if month(order_date)=12 then Month='Dec';
run;

 ELSE IF Statements, One Function Reference

This program uses the MONTH function to find the value of Order_Date, but only once. The
MONTH function is called immediately after reading the data set and before any IF-THEN/
ELSE statements execute. This is efficient.

data retail.orders(drop=mon);
 set retail.order_fact;
 mon=month(order_date);
 if mon=1 then Month='Jan';
 else if mon=2 then Month='Feb';
 else if mon=3 then Month='Mar';
 else if mon=4 then Month='Apr';
 else if mon=5 then Month='May';
 else if mon=6 then Month='Jun';
 else if mon=7 then Month='Jul';
 else if mon=8 then Month='Aug';
 else if mon=9 then Month='Sep';
 else if mon=10 then Month='Oct';
 else if mon=11 then Month='Nov';
 else if mon=12 then Month='Dec';
run;

Executing Only Necessary Statements 715

 SELECT Group

In this program, the SELECT statement calls the MONTH function only once, before WHEN
statements execute and assign values for Month. This is efficient.

data retail.orders;
 set retail.order_fact;
 select(month(order_date));
 when (1) Month='Jan';
 when (2) Month='Feb';
 when (3) Month='Mar';
 when (4) Month='Apr';
 when (5) Month='May';
 when (6) Month='Jun';
 when (7) Month='Jul';
 when (8) Month='Aug';
 when (11) Month='Nov';
 when (12) Month='Dec';
 otherwise;
 end;
run;

General Recommendations
• Avoid using parallel IF statements, which use the most resources and are the least

efficient way to conditionally execute statements.

• Use IF-THEN/ELSE statements and SELECT blocks to be more efficient.

• To significantly reduce the amount of resources used, write programs that call a
function only once instead of repetitively using the same function in many
statements. SAS functions are convenient, but they can be expensive in terms of
CPU resources.

Using DO Groups Efficiently
You can conditionally execute only necessary statements by placing them in DO groups
that are associated with IF-THEN/ELSE statements or with SELECT/WHEN statements.
Groups of statements execute only when a particular condition is true.

When using a DO group with IF-THEN/ELSE statements, add DO after the THEN
clause, and add an END statement after all of the statements that you want executed as a
group.

data orders;
 set company.orders;
 if order_type = 1 then
 do;
 <multiple executable statements here>
 end;
 else if order_type = 2 then
 do;
 <multiple executable statements here>
 end;
 else if order_type = 3 then
 do;
 <multiple executable statements here>
 end;

716 Chapter 22 • Using Best Practices

run;

Note: Use an IF-THEN DO group when you create multiple variables based on a
condition.

When using a DO group with SELECT/WHEN statements, add DO after the WHEN
condition, and add an END statement after all of the statements that you want executed
as a group. Use an OTHERWISE statement to specify the statements that you want
executed if no WHEN condition is met.

data orders;
 set company.orders;
 select (order_type);
 when (1)
 do;
 <multiple executable statements here>
 end;
 when (2)
 do;
 <multiple executable statements here>
 end;
 when (3)
 do;
 <multiple executable statements here>
 end;
 otherwise;
 end;
run;

Remember that IF-THEN/ELSE and SELECT/WHEN logic require no intervening
statements between the IF and the ELSE conditions or between the SELECT and the
WHEN conditions.

Comparative Example: Creating Data in DO Groups

Overview
Suppose you want to identify which customer groups are Club Members, Club Gold
Members, or Internet/Catalog members, based on data from the data set
Retail.Customer_hybrid. You also want to identify the nature of customer activity as
inactive, low activity, medium activity, or high activity.

The following table shows the distribution of values for Customer_Type_ID.

Executing Only Necessary Statements 717

The following sample programs compare several techniques. You can use these samples
as models for creating benchmark programs in your own environment. Your results
might vary depending on the structure of your data, your operating environment, and the
resources that are available at your site.

Programming Techniques

 Parallel IF Statements

This program creates a permanent SAS data set named Retail.Customers by reading the
Retail.Customer_hybrid data set. Serial IF statements are used to populate the variables
Customer_Group and Customer_Activity.

data retail.customers;
 length Customer_Group $ 26 Customer_Activity $ 15;
 set retail.customer_hybrid;
 if substr(put(customer_type_ID,4.),1,2)='10' then
 customer_group='Orion Club members';
 if substr(put(customer_type_ID,4.),1,2)='20' then
 customer_group='Orion Club Gold members';
 if substr(put(customer_type_ID,4.),1,2)='30' then
 customer_group='Internet/Catalog Customers';
 if substr(put(customer_type_ID,4.),1,2) in ('10', '20') and
 substr(put(customer_type_ID,4.),3,2)='10' then
 customer_activity='inactive';
 if substr(put(customer_type_ID,4.),1,2) in ('10', '20') and
 substr(put(customer_type_ID,4.),3,2)='20' then
 customer_activity='low activity';
 if substr(put(customer_type_ID,4.),1,2) in ('10', '20') and
 substr(put(customer_type_ID,4.),3,2)='30' then
 customer_activity='medium activity';
 if substr(put(customer_type_ID,4.),1,2) in ('10', '20') and
 substr(put(customer_type_ID,4.),3,2)='40' then
 customer_activity='high activity';
run;

718 Chapter 22 • Using Best Practices

 SELECT, IF/SELECT Statements

This program creates a permanent SAS data set named Retail.Customers by reading the
Retail.Customer_hybrid data set. SELECT/WHEN logic and SELECT/WHEN statements in an
IF/THEN DO group populate the variables Customer_Group and Customer_Activity. If the
value of the first two digits of Customer_Type_ID is 10, 20, or 30, then Customer_Group is
populated. If the value of the first two digits of Customer_Type_ID is 10 or 20, then
Customer_Activity is populated by reading the last two digits of Customer_Type_ID.

data retail.customers;
 length Customer_Group $ 26 Customer_Activity $ 15;
 set retail.customer_hybrid;
 select(substr(put(customer_type_ID,4.),1,2));
 when ('10') customer_group='Orion Club members';
 when ('20') customer_group='Orion Club Gold members';
 when ('30') customer_group='Internet/Catalog Customers';
 otherwise;
 end;
 if substr(put(customer_type_ID,4.),1,2) in ('10', '20') then
 do;
 select(substr(put(customer_type_ID,4.),3,2));
 when ('10') customer_activity='inactive';
 when ('20') customer_activity='low activity';
 when ('30') customer_activity='medium activity';
 when ('40') customer_activity='high activity';
 otherwise;
 end;
 end;
run;

Executing Only Necessary Statements 719

 Nested SELECT Statements

This program creates a permanent SAS data set named Retail.Customers by reading the
Retail.Customer_hybrid data set. Nested SELECT statements are used to populate the variables
Customer_Group and Customer_Activity.

data retail.customers;
 length Customer_Group $ 26 Customer_Activity $ 15;
 set retail.customer_hybrid;
 select(substr(put(customer_type_ID,4.),1,2));
 when ('10')
 do;
 customer_group='Orion Club members';
 select(substr(put(customer_type_ID,4.),3,2));
 when ('10') customer_activity='inactive';
 when ('20') customer_activity='low activity';
 when ('30') customer_activity='medium activity';
 when ('40') customer_activity='high activity';
 otherwise;
 end;
 end;
 when ('20')
 do;
 customer_group='Orion Club Gold members';
 select(substr(put(customer_type_ID,4.),3,2));
 when ('10') customer_activity='inactive';
 when ('20') customer_activity='low activity';
 when ('30') customer_activity='medium activity';
 when ('40') customer_activity='high activity';
 otherwise;
 end;
 end;
 when ('30') customer_group='Internet/Catalog Customers';
 otherwise;
 end;
run;

720 Chapter 22 • Using Best Practices

 IF-THEN/ELSE IF Statements with a Link

This program creates a permanent SAS data set named Retail.Customers by reading the
Retail.Customer_hybrid data set. IF-THEN/ELSE IF statements are used with a link to populate
the variables Customer_Group and Customer_Activity.

data retail.customers;
 length Customer_Group $ 26 Customer_Activity $ 15;
 set retail.customer_hybrid;
 if substr(put(customer_type_ID,4.),1,2)='10' then
 do;
 customer_group='Orion Club members';
 link activity;
 end;
 else if substr(put(customer_type_ID,4.),1,2)='20' then
 do;
 customer_group='Orion Club Gold members';
 link activity;
 end;
 else if substr(put(customer_type_ID,4.),1,2)='30' then
 customer_group='Internet/Catalog Customers';
 return;
 activity:
 if substr(put(customer_type_ID,4.),3,2)='10' then
 customer_activity='inactive';
 else if substr(put(customer_type_ID,4.),3,2)='20' then
 customer_activity='low activity';
 else if substr(put(customer_type_ID,4.),3,2)='30' then
 customer_activity='medium activity';
 else if substr(put(customer_type_ID,4.),3,2)='40' then
 customer_activity='high activity';
 return;
run;

General Recommendations
• Avoid parallel IF statements because they use extra resources.

Eliminating Unnecessary Passes through the
Data

Best practices specify that you should eliminate unnecessary passes through the data. To
minimize I/O operations and CPU time, avoid reading or writing data more than
necessary.

Comparative Example: Creating Multiple Subsets of a SAS Data Set

Overview
Suppose you want to create five subsets of data from the data set Retail.Customer. You
need a subset for each of five countries.

The following sample programs compare two techniques. You can use these samples as
models for creating benchmark programs in your own environment. Your results might

Eliminating Unnecessary Passes through the Data 721

vary depending on the structure of your data, your operating environment, and the
resources that are available at your site.

Programming Techniques

 Multiple DATA Steps

This program includes multiple DATA steps and subsequently reads data five times from the
same Retail.Customer data set. Individual subsetting IF statements appear in five separate
DATA steps.

data retail.UnitedStates;
 set retail.customer;
 if country='US';
run;

data retail.France;
 set retail.customer;
 if country='FR';
run;

data retail.Italy;
 set retail.customer;
 if country='IT';
run;

data retail.Germany;
 set retail.customer;
 if country='DE';
run;

data retail.Spain;
 set retail.customer;
 if country='ES';
run;

 A Single DATA Step

This program uses only one DATA step to create five output data sets. The data set
Retail.Customer is read only once. Also, IF-THEN/ELSE statements are used to conditionally
output data to specific data sets.

data retail.UnitedStates
 retail.France
 retail.Italy
 retail.Germany
 retail.Spain;
 set retail.customer;
 if country='US' then output retail.UnitedStates;
 else if country='FR' then output retail.France;
 else if country='IT' then output retail.Italy;
 else if country='DE' then output retail.Germany;
 else if country='ES' then output retail.Spain;
run;

General Recommendations
When creating multiple subsets from a SAS data set, use a single DATA step with IF-
THEN/ELSE IF logic to output to appropriate data sets.

722 Chapter 22 • Using Best Practices

Using the SORT Procedure with a WHERE Statement to Create
Sorted Subsets

It is good programming practice to take advantage of the SORT procedure's ability to
sort and subset in the same PROC step. This is more efficient than using two separate
steps to accomplish this—a DATA step to subset followed by a procedure step that sorts.

Comparative Example: Creating a Sorted Subset of a SAS Data Set

Overview
Suppose you want to create a sorted subset of a SAS data set named Retail.Customer.
You want only data for customers in the United States, France, Italy, Germany, and
Spain.

The following sample programs compare two techniques. You can use these samples as
models for creating benchmark programs in your own environment. Your results might
vary depending on the structure of your data, your operating environment, and the
resources that are available at your site.

Programming Techniques

 A DATA Step and PROC SORT

This program has two steps. The first step creates a SAS data set by subsetting observations
based on the value of the variable Country. The second step sorts the data according to the
values for each country. Passing through all the data once and the subset again increases I/O and
CPU operations.

data retail.CountrySubset;
 set retail.customer;
 where country in('US','FR','IT','DE','ES');
run;

proc sort data=retail.CountrySubset;
 by country;
run;

 PROC SORT with a WHERE Statement

In one step, this program sorts data and selects only those observations that meet the conditions
of the WHERE statement. Processing only one data set once saves CPU and I/O resources.

Note that if this program did not create a second data set named Retail.CountrySubset, it would
write over the data set named Retail.Customer with only part of the data.

proc sort data=retail.customer out=retail.CountrySubset;
 by country;
 where country in('US','FR','IT','DE','ES');
run;

General Recommendations
• When you need to process a subset of data with a procedure, use a WHERE

statement in the procedure instead of creating a subset of data and reading that data
with the procedure.

Eliminating Unnecessary Passes through the Data 723

• Write one program step that both sorts and subsets. This approach can take less
programmer time and debugging time than writing separate program steps that subset
and sort.

Using the DATASETS Procedure to Modify Variable Attributes
Use PROC DATASETS instead of a DATA step to modify data attributes. The
DATASETS procedure uses fewer resources than the DATA step because it processes
only the descriptor portion of the data set, not the data portion. PROC DATASETS
retains the sort flag, as well as indexes.

Note: You cannot use the DATASETS procedure to modify the type, length, or position
of variables because these attributes directly affect the data portion of the data set. To
perform these operations, use the DATA step.

Comparative Example: Changing the Variable Attributes of a SAS
Data Set

Overview
Suppose you want to change the variable attributes in Retail.NewCustomer to make
them consistent with those in the Retail.Customer data set. The data set
Retail.NewCustomer contains 89954 observations and 12 variables.

The following table shows the variable names and formats in each SAS data set.

SAS Data Set Variable Name Variable Format

Retail.Customer Country $COUNTRY.

Retail.Customer Birth_Date DATE9.

Retail.NewCustomer Country_ID $COUNTRY.

Retail.NewCustomer Birth_Date MMDDYYP10

The following sample programs compare two techniques. You can use these samples as
models for creating benchmark programs in your own environment. Your results might
vary depending on the structure of your data, your operating environment, and the
resources that are available at your site.

Programming Techniques

 A DATA Step

This program uses a DATA step with a RENAME statement and a FORMAT statement to
modify attributes for the variables Country_ID and Birth_Date.

data retail.newcustomer;
 set retail.newcustomer;
 rename Country_ID=country;
 format birth_date date9.;
run;

724 Chapter 22 • Using Best Practices

 PROC DATASETS

This program uses PROC DATASETS to modify the names and formats of the variables
Country_ID and Birth_Date.

proc datasets lib=retail nolist;
 modify newcustomer;
 rename Country_ID=country;
 format birth_date date9.;
quit;

General Recommendations
• To save significant resources, use the DATASETS procedure with the NOLIST

option instead of a DATA step to change the attributes of a SAS data set.

Reading and Writing Only Essential Data

Overview
Best practices specify that you should write programs that read and write only essential
data. If you process fewer observations and variables, you conserve resources. This topic
covers many different techniques that can improve performance.

Selecting Observations Using Subsetting IF versus WHERE
Statement

You can use WHERE statements or subsetting IF statements to subset data. Although
both statements test a condition to determine whether SAS should select an observation,
the WHERE statement is more efficient.

The following graphic illustrates differences between these statements.

I/O operations are measured as data moves between the disk that contains input SAS
data and the input buffer in memory, and when data moves from the output buffer to the

Reading and Writing Only Essential Data 725

disk that contains output data sets. Input data is not affected by the WHERE statement or
subsetting IF statement. However, output data is affected by both.

CPU time is measured when data must be processed in the program data vector. CPU
time can be saved if fewer observations are processed.

A WHERE statement and a subsetting IF statement make different use of the program
data vector. The WHERE statement selects observations before they are loaded into the
program data vector, which results in a savings in CPU operations. The subsetting IF
statement loads each observation sequentially into the program data vector. If the
subsetting condition is true, the observation is processed and is written to the output page
buffer.

WHERE statements work on existing variables in existing SAS data sets. Subsetting IF
statements can work on any variable in the program data vector, including new or
existing variables.

Comparative Example: Creating a Subset of a SAS Data Set

Overview
Suppose you want to create a subset of the data set Retail.Customer. You want to include
data for only the United Kingdom. The subset contains approximately 6% of the
Retail.Customer data.

The following sample programs compare two techniques. You can use these samples as
models for creating benchmark programs in your own environment. Your results might
vary depending on the structure of your data, your operating environment, and the
resources that are available at your site.

Programming Techniques

 Subsetting IF Statement

This program uses the IF statement to select observations if the value for Country is GB.

data retail.UnitedKingdom;
 set retail.customer;
 if country='GB';
run;

 WHERE Statement

This program uses the WHERE statement to select observations when the value for Country is
GB. This can be more efficient than using a subsetting IF statement.

data retail.UnitedKingdom;
 set retail.customer;
 where country='GB';
run;

General Recommendations
• To save CPU resources when the subset is small, use a WHERE statement instead of

a subsetting IF statement to subset a SAS data set.

726 Chapter 22 • Using Best Practices

Other Differences between the IF and WHERE Statements
Review the following table to note other differences between the IF and WHERE
statements.

 Action
The Subsetting IF
Statement The WHERE Statement

Selecting Data Can select records from
external files, observations
from SAS data sets,
observations created with an
INPUT statement, or
observations based on the
value of a computed or
derived variable.

Can select only observations
from SAS data sets.

Conditional Execution Is an executable statement Is not an executable statement

Grouping Data Using a BY
Statement

Has no effect on FIRST. or
LAST. flags.

Affects FIRST. or LAST.
flags, which are set after
processing the WHERE
expression.

Merging Data Selects observations after
combining current
observations.

Applies the selection criteria
to each input data set before
combining observations.

Note: If you use the WHERE= data set option and the WHERE statement in the same
DATA step, SAS ignores the WHERE statement for input data sets. The WHERE=
data set option and the WHERE statement call the same SAS routine.

Using the WHERE Statement with the OBS= and FIRSTOBS=
Options

Another way to read and write only essential data is to process a segment of subsetted
data. You accomplish this specialized task by using a WHERE expression in conjunction
with the OBS= and FIRSTOBS= data set options.

In the following example, the WHERE expression selects observations before the OBS=
and FIRSTOBS= options are applied. The values specified for OBS= and FIRSTOBS=
are the logical observation numbers in the subset, not the physical observation numbers
in the data set.

options fmtsearch=(formats);

proc print
 data=company.organization_dim(firstobs=5 obs=8);
 var employee_id employee_gender salary;
 where salary>40000;
run;

Reading and Writing Only Essential Data 727

FIRSTOBS = 5 is the fifth observation in the subset, whereas it was observation 101 in
the data set Company.Organization.

OBS = 8 is the eighth observation in the subset, whereas it was observation 159 in the
data set Company.Company.Organization..

Selecting Observations When Reading Data from External Files
Positioning a subsetting IF statement in a DATA step so that it reads only the variables
that are needed to select the subset—before reading all the data—can reduce the
overhead required for processing data.

The following graphic illustrates how data is read from an external file, loaded into the
input buffer, and read into the program data vector.

Remember that I/O operations are measured as data moves between disks and buffers—
for both input and output data. Each record is loaded into the input buffer before moving
to the program data vector for processing, so I/O is not affected by the placement of a
subsetting IF statement in the DATA step.

You can reduce the CPU resources that are required for processing data by limiting what
is read into the program data vector. Position a subsetting IF statement after an INPUT
statement that reads only the data that is required in order to check for specific
conditions. Subsequent statements do not execute for unwanted observations.

Note: Converting raw character fields to SAS character variables requires less CPU time
than converting raw numeric fields to the real binary encoding of SAS numeric
variables.

Comparative Example: Creating a Subset of Data by Reading Data
from an External File

Overview
Suppose you want to create a SAS data set by reading a subset of data from an external
file that is referenced by the fileref Customerdata. You want the subset to contain only
customers in the United Kingdom.

The subset is approximately 6% of the countries in the external file, which contains
89,954 records and 12 fields.

728 Chapter 22 • Using Best Practices

The following sample programs compare two techniques. You can use these samples as
models for creating benchmark programs in your own environment. Your results might
vary depending on the structure of your data, your operating environment, and the
resources that are available at your site.

Programming Techniques

 Reading All Variables and Subsetting

In this program, the INPUT statement reads all variables before the subsetting IF statement
checks the value of Country. Then, if the value for Country is GB, the observation is written to
the output data set Retail.UnitedKingdom.

data retail.UnitedKingdom;
 infile customerdata;
 input @1 Customer_ID 12.
 @13 Country $2.
 @15 Gender $1.
 @16 Personal_ID $15.
 @31 Customer_Name $40.
 @71 Customer_FirstName $20.
 @91 Customer_LastName $30.
 @121 Birth_Date date9.
 @130 Customer_Address $45.
 @175 Street_ID 12.
 @199 Street_Number $8.
 @207 Customer_Type_ID 8.;
 if country='GB';
run;

 Reading Selected Variables and Subsetting

In this program, the first INPUT statement reads only Country and holds the record in the input
buffer using the single trailing @ sign. Then the program uses a subsetting IF statement to
check the value of Country. If the value for Country is not GB, other variables are not read in or
written to the output data set Retail.UnitedKingdom. If the value for Country is GB, values for
other variables are input and written to the output data set Retail.UnitedKingdom.

data retail.UnitedKingdom;
 infile customerdata;
 input @13 Country $2. @;
 if country='GB';
 input @1 Customer_ID 12.
 @15 Gender $1.
 @16 Personal_ID $15.
 @31 Customer_Name $40.
 @71 Customer_FirstName $20.
 @91 Customer_LastName $30.
 @121 Birth_Date date9.
 @130 Customer_Address $45.
 @175 Street_ID 12.
 @199 Street_Number $8.
 @207 Customer_Type_ID 8.;
run;

General Recommendations
• Position a subsetting IF statement in a DATA step so that only variables that are

necessary to select the record are read before subsetting. This can result in significant

Reading and Writing Only Essential Data 729

savings in CPU time. There is no difference in I/O or memory usage between the two
techniques.

• When selecting records from an external file, read the field or fields on which the
selection is being made before reading all the fields into the program data vector.

• Use the single trailing @ sign to hold the input buffer so that you can continue to
read the record when the variable or variables satisfy the IF condition.

• Reset the pointer so that you can begin reading the record in the first position by
using @1 Customer_ID.

In addition to subsetting observations, you can subset variables by using statements or
options that efficiently read and write only essential data.

Subsetting Variables with the KEEP and DROP Statements and
Options

To subset variables, you can use either of the following:

• the DROP and KEEP statements

• the DROP= and KEEP= data set options

Use of the KEEP= data set option and the DROP= data set option can affect resource
usage, depending on whether they are used in a SET or MERGE statement or in a DATA
statement.

The following figure shows how options in these statements process data.

730 Chapter 22 • Using Best Practices

When used in the SET or MERGE statement, the KEEP= and DROP= data set options
affect which variables are read into the program data vector. Reading only the variables
that need to be processed in the DATA step can sometimes improve efficiency.

When used in the DATA statement, these same options put drop flags on variables to be
excluded and affect which variables are written to the output data set.

The DROP and KEEP statements work just like the KEEP= or DROP= options in the
DATA statement.

The following table describes differences in how the KEEP statement and the KEEP=
data set option write variables to SAS data sets.

DROP or KEEP Statement
DROP= or KEEP= Output
Data Set Option

DROP= or KEEP= Input
Data Set Option

Writes only the selected
variables to all output data
sets.

Can write different variables
to different output data sets.

Reads only the selected
variables into the PDV.

Available only in the DATA
step.

Available in the DATA step or
most PROC steps.

Available in the DATA step or
most PROC steps.

Comparative Example: Creating a Report That Contains Average
and Median Statistics

Overview
Suppose you want to create a report that contains the average and median values for the
variable Profit, based on the data set Retail.Order_fact. Depending on the number of
variables eliminated, it might be more efficient to use the KEEP= option in a SET
statement to limit which variables are read.

Reading and Writing Only Essential Data 731

The following sample programs compare two techniques for reading and writing
variables to a data set. You can use these samples as models for creating benchmark
programs in your own environment. Your results might vary depending on the structure
of your data, your operating environment, and the resources that are available at your
site.

Programming Techniques

 Without the KEEP= option

This program reads all variables from the data set Retail.Order_fact and does not restrict which
variables are written to the output data set Retail.Profit. PROC MEANS reads all the variables
from the data set.

data retail.profit;
 set retail.order_fact;
 if discount=. then
 Profit=(total_retail_price-costPrice_Per_Unit)*quantity;
 else Profit=((total_retail_price*discount)-costprice_per_unit)*quantity;
run;
proc means data=retail.profit mean median maxdec=2;
 title 'Order Information';
 class employee_id;
 var profit;
run;

 KEEP= in the DATA Statement

This program uses the KEEP= data set option in the DATA statement to write two variables to
the output data set Retail.Profit. PROC MEANS reads only two variables from the data set.

data retail.profit(keep=employee_id profit);
 set retail.order_fact;
 if discount=. then
 Profit=(total_retail_price-costprice_per_unit)*quantity;
 else Profit=((total_retail_price*discount)-costprice_per_unit)*quantity;
run;
proc means data=retail.profit mean median maxdec=2;
 title 'Order Information';
 class employee_id;
 var profit;
run;

732 Chapter 22 • Using Best Practices

 KEEP= in the DATA and SET Statements

This program uses the KEEP= option in the SET statement to read six variables from
Retail.Order_fact, and it uses the KEEP= data set option in the DATA statement to write two
variables to the output data set Retail.Profits. PROC MEANS reads only two variables from the
data set.

data retail.profits(keep=employee_id profit);
 set retail.order_fact(keep=employee_id total_retail_price discount
 costprice_per_unit quantity);
 if discount=. then
 Profit=(total_retail_price-costprice_per_unit)*quantity;
 else Profit=((total_retail_price*discount)-costprice_per_unit)*quantity;
run;
proc means data=retail.profit mean median maxdec=2;
 title 'Order Information';
 class employee_id;
 var profit;
run;

 KEEP= in the SET and MEANS Statements

This program uses the KEEP= option in the SET statement to read selected variables from
Retail.Order_fact, and it uses the KEEP= data set option in the MEANS statement to process
only the variables that are needed for the statistical report. You might do this if you need
additional variables in Retail.Profits for further processing, but only two variables for
processing by PROC MEANS.

data retail.profit;
 set retail.order_fact(keep=employee_id total_retail_price discount
 costprice_per_unit quantity);
 if discount=. then
 Profit=(total_retail_price-costprice_per_unit)*quantity;
 else Profit=((total_retail_price*discount)-costprice_per_unit)*quantity;
run;
proc means data=retail.profit(keep=employee_id profit) mean median maxdec=2;
 title 'Order Information';
 class employee_id;
 var profit;
run;

General Recommendations
• To reduce both CPU time and I/O operations, avoid reading and writing variables

that are not needed.

Comparative Example: Creating a SAS Data Set That Contains Only
Certain Variables

Overview
Suppose you want to read data from an external file that is referenced by the fileref
Rawdata and create a SAS data set that contains only the variables Customer_ID,
Country, Gender, and Customer_Name.

The following sample programs compare two techniques. You can use these samples as
models for creating benchmark programs in your own environment. Your results might

Reading and Writing Only Essential Data 733

vary depending on the structure of your data, your operating environment, and the
resources that are available at your site.

Programming Techniques

 Reading All Fields

In this program, the KEEP= data set option writes only the variables that are needed to the
output data set, whereas the INPUT statement reads all fields from the external file.

data retail.customers(keep=Customer_ID Country Gender Customer_Name);
 infile rawdata;
 input @1 Customer_ID 12.
 @13 Country $2.
 @15 Gender $1.
 @16 Personal_ID $15.
 @31 Customer_Name $40.
 @71 Customer_FirstName $20.
 @91 Customer_LastName $30.
 @121 Birth_Date date9.
 @130 Customer_Address $45.
 @175 Street_ID 12.
 @199 Street_Number $8.
 @207 Customer_Type_ID 8.;
run;

 Reading Selected Fields

In this program, the INPUT statement reads selected fields from the external file, and by
default, these are written to the output data set. This program is an example of efficient
processing.

data retail.customers;
 infile rawdata;
 input @1 Customer_ID 12.
 @13 Country $2.
 @15 Gender $1.
 @31 Customer_Name $40.;
run;

General Recommendations
• Read only the fields you need from an external data file to save CPU and real-time

resources.

• To save CPU resources, avoid converting numeric data that you do not need in
further processing.

Note: Remember that numeric data is moved into the program data vector after being
converted to real binary, floating point numbers; multiple digits are stored in one
byte. Character data is moved into the program data vector with no conversion; one
character is stored in one byte.

734 Chapter 22 • Using Best Practices

Storing Data in SAS Data Sets

Overview
In many cases, it is best practice for you to store data in SAS data sets. You can optimize
performance if you know when you should create a SAS data set and when you should
read data directly from an external file.

Before viewing the comparative example that illustrates different techniques for reading
from a SAS data set versus from an external file, consider the following advantages of
storing data in SAS data sets.

When you use SAS to repeatedly analyze or manipulate any particular group of data, it is
more efficient to create a SAS data set than to read the raw data each time. Although
SAS data sets can be larger than external files and can require more disk space, reading
from SAS data sets saves CPU time that is associated with reading a raw data file.

Here are other reasons for storing data in SAS data sets, rather than external files:

• When the data is already in a SAS data set, you can use a SAS procedure on the data
without further conversion.

• SAS data sets are self-documenting.

The descriptor portion of a SAS data set documents data set properties, including the
following:

• data set labels

• variable labels

• variable formats

• informats

• variable names

Note: Create a temporary SAS data set if the data set is used for intermediate tasks such
as merging and if it is needed in that SAS session only. Create a temporary SAS data
set when the external file on which the data set is based might change between SAS
sessions.

Storing Data in SAS Data Sets 735

Comparative Example: Reading a SAS Data Set Versus an External
File

Overview
Suppose you want to create a SAS data set that contains a large number of variables.
One way to accomplish this task is to read an external file that is referenced by the fileref
Rawdata. Another way to accomplish this is to read the same data from an existing SAS
data set named Retail.Customer.

The following sample programs compare two techniques. You can use these samples as
models for creating benchmark programs in your own environment. Your results might
vary depending on the structure of your data, your operating environment, and the
resources that are available at your site.

Programming Techniques

 Reading from an External File

In this program, the INPUT statement reads fields of data from an external file that is
referenced by the fileref Rawdata and creates 12 variables. For benchmarking purposes, the
DATA statement specifies the _NULL_ argument so that you can measure resources used to
read data isolated from resources used to write data.

data _null_;
 infile rawdata;
 input @1 Customer_ID 12.
 @13 Country $2.
 @15 Gender $1.
 @16 Personal_ID $15.
 @31 Customer_Name $40.
 @71 Customer_FirstName $20.
 @91 Customer_LastName $30.
 @121 Birth_Date date9.
 @130 Customer_Address $45.
 @175 Street_ID 12.
 @199 Street_Number $8.
 @207 Customer_Type_ID 8.;
run;

 Reading from a SAS Data Set

In this program, the SET statement reads data directly from an existing SAS data set. As in the
previous program, the DATA statement uses _NULL_ instead of naming a data set.

data _null_;
 set retail.customer;
run;

General Recommendations
• To save CPU resources, read a SAS data set instead of an external file.

• To reduce I/O operations, read a SAS data set instead of an external file. Savings in
I/O operations are largely dependent on the block size of the external file and the
page size of the SAS data set.

736 Chapter 22 • Using Best Practices

Avoiding Unnecessary Procedure Invocation

Overview
Best practices specify that you avoid unnecessary procedure invocation. One way to do
this is to take advantage of procedures that accomplish multiple tasks with one
invocation.

Several procedures enable you to perform multiple tasks or create multiple reports by
invoking the procedure only once. These include the following:

• the SQL procedure

• the DATASETS procedure

• the FREQ procedure

• the TABULATE procedure.

Note: BY-group processing can also minimize unnecessary invocations of procedures.

To illustrate this principle, examine features of the DATASETS procedure.

Executing the DATASETS Procedure
The DATASETS procedure can use RUN-group processing to process multiple sets of
statements. RUN-group processing enables you to submit groups of statements without
ending the procedure.

When the DATASETS procedure executes, the following actions occur:

• SAS reads the program statements that are associated with one task until it reaches a
RUN statement or an implied RUN statement.

• SAS executes all of the preceding statements immediately, and then continues
reading until it reaches another RUN statement or an implied RUN statement.

To execute the last task, you must use a RUN statement or a QUIT statement.

proc datasets lib=company;
 modify orders;
 rename quantity=Units_Ordered;
 format costprice_per_unit dollar13.2;
 label delivery_date='Date of Delivery';
 run;
 modify customers;
 format customer_birthdate mmddyy10.
 run;
quit;

You can terminate the PROC DATASETS execution by submitting a DATA statement, a
PROC statement, or a QUIT statement.

RUN-Group Processing
RUN-group processing avoids unnecessary procedure invocation. The procedures that
support RUN-group processing include the following:

Avoiding Unnecessary Procedure Invocation 737

• CHART, GCHART

• PLOT, GPLOT

• GIS, GMAP

• GLM

• REG

• DATASETS

Using Different Types of RUN Groups with PROC DATASETS
The DATASETS procedure supports four types of RUN groups. Each RUN group is
defined by the statements that compose it and cause it to execute.

Some statements in PROC DATASETS act as implied RUN statements because they
cause the RUN group that precedes them to execute.

The following statements compose a RUN group and what causes each RUN group to
execute:

• The PROC DATASETS statement always executes immediately. No other statement
is necessary to cause the PROC DATASETS statement to execute. Therefore, the
PROC DATASETS statement alone is a RUN group.

• The MODIFY statement and any of its subordinate statements form a RUN group.
These RUN groups always execute immediately. No other statement is necessary to
cause a MODIFY RUN group to execute.

• The APPEND, CONTENTS, and COPY statements (including EXCLUDE and
SELECT, if present) form their own separate RUN groups. Every APPEND
statement forms a single-statement RUN group, every CONTENTS statement forms
a single-statement RUN group, and every COPY step forms a RUN group. Any other
statement in the procedure, except those that are subordinate to either the COPY or
MODIFY statement, causes the RUN group to execute.

Also, one or more of the following statements form a RUN group:

• AGE

• EXCHANGE

• CHANGE

• REPAIR

If any of these statements appear in sequence in the PROC step, the sequence forms a
RUN group. For example, if a REPAIR statement appears immediately after a SAVE
statement, the REPAIR statement does not force the SAVE statement to execute; it
becomes part of the same RUN group. To execute the RUN group, submit one of the
following statements:

• PROC DATASETS

• MODIFY

• APPEND

• QUIT

• CONTENTS

• RUN

738 Chapter 22 • Using Best Practices

• COPY

• another DATA or PROC step

Comparative Example: Modifying the Descriptor Portion of SAS
Data Sets

Overview
Suppose you want to use the DATASETS procedure to modify the data sets
NewCustomer, NewOrders, and NewItems.

The following sample programs compare two techniques. You can use these samples as
models for creating benchmark programs in your own environment. Your results might
vary depending on the structure of your data, your operating environment, and the
resources that are available at your site.

Programming Techniques

 Multiple DATASETS Procedures

This program invokes PROC DATASETS three times to modify the descriptor portion of the
data set NewCustomer, two times to modify the descriptor portion of the data set NewOrders,
and once to change the name of the data set NewItems.

proc datasets lib=company nolist;
 modify newcustomer;
 rename Country_ID=Country
 Name=Customer_Name;
quit;

proc datasets lib=company nolist;
 modify newcustomer;
 format birth_date date9.;
quit;

proc datasets lib=company nolist;
 modify newcustomer;
 label birth_date='Date of Birth';
quit;

proc datasets lib=company nolist;
 modify neworders;
 rename order=Order_ID
 employee=Employee_ID
 customer=Customer_ID;
quit;

proc datasets lib=company nolist;
 modify neworders;
 format order_date date9.;
quit;

proc datasets lib=company nolist;
 change newitems=NewOrder_Items;
quit;

Avoiding Unnecessary Procedure Invocation 739

 Single DATASETS Procedure

This program invokes PROC DATASETS once to modify the descriptor portion of the data sets
NewCustomer and NewOrders, and to change the name of the data set NewItems. This
technique is more efficient.

proc datasets lib=company nolist;
 modify newcustomer;
 rename country_ID=Country
 name=Customer_Name;
 format birth_date date9.;
 label birth_date='Date of Birth';
 modify neworders;
 rename order=Order_ID
 employee=Employee_ID
 customer=Customer_ID;
 format order_date date9.;
 change newitems=NewOrder_Items;
quit;

General Recommendations
• Invoke the DATASETS procedure once and process all the changes for a library in

one step to save CPU and I/O resources—at the cost of memory resources.

• Use the NOLIST option on the PROC DATASETS statement. The NOLIST option
suppresses printing of the library members in the log. Using NOLIST can save I/O.

Note: Because the specified library could change between invocations of the
DATASETS procedure, the procedure is reloaded into memory for each invocation.

Summary

Executing Only Necessary Statements
You minimize the CPU time that SAS uses when you execute the minimum number of
statements in the most efficient order.

For a more efficient program, place the subsetting IF statement as soon as logically
possible in a DATA step when creating a subset of data.

Review guidelines for using conditional logic efficiently with IF-THEN/ELSE
statements or SELECT statements. Remember to minimize the number of statements
that use SAS functions or arithmetic operators.

Conditionally execute only necessary statements by placing statements in groups that are
associated with IF-THEN/ELSE statements or SELECT/WHEN statements. Groups of
statements execute only when a particular condition is true. Review the criteria for using
DO groups efficiently.

740 Chapter 22 • Using Best Practices

Eliminating Unnecessary Passes through the Data
You should avoid reading or writing data more than necessary in order to minimize I/O
operations.

There are a variety of techniques that you can use. For example, use a single DATA step
to create multiple output data sets from one pass of the input data, rather than using
multiple DATA steps to process the input data each time you create an output data set.
Create sorted subsets by subsetting data with the SORT procedure rather than subsetting
data in a DATA step and then sorting. Change variable attributes by using PROC
DATASETS rather than a DATA step.

Reading and Writing Only Essential Data
If you process fewer observations and variables, SAS performs fewer I/O operations. To
limit the number of observations that are processed, you can use the subsetting IF
statement and the WHERE statement. Best programming practices can be applied if you
understand other differences between subsetting IF and WHERE statements. You can
also improve performance by applying OBS= and FIRSTOBS= processing with a
WHERE statement.

To select observations when reading data from external files, position a subsetting IF
statement in a DATA step so that it reads only the variables that are needed to select the
subset before reading all the data. This can reduce the overhead required to process data.

To limit the number of variables that are processed, you can use either of the following:

• the DROP and KEEP statements

• the DROP= and KEEP= data set options.

In the SET statement, the DROP= or KEEP= data set option controls which variables are
read and subsequently processed. In the DATA statement, the DROP= or KEEP= data set
option controls which variables are written to an output data set after processing. Using
the SET statement with these options is the most efficient and best practice.

Storing SAS Data in SAS Data Sets
When you use SAS to repeatedly analyze or manipulate any particular group of data,
create a SAS data set instead of reading the raw data each time.

Reading data from an external file rather than reading from a SAS data set greatly
increases CPU usage.

Avoiding Unnecessary Procedure Invocation
Invoke procedures once rather than multiple times. Several procedures enable you to
create multiple reports by invoking the procedure only once.

Using a single DATASETS procedure instead of multiple DATASETS procedures to
modify the descriptor portion of a data set results in a noticeable savings in both CPU
and I/O operations. Also, you can take advantage of RUN-group processing to submit
groups of statements without ending the procedure.

Summary 741

Quiz
Select the best answer for each question. After completing the quiz, check your answers
using the answer key in the appendix.

1. Placing the subsetting IF statement at the top rather than near the bottom of a DATA
step results in a savings in CPU usage. What happens if the subset is large rather than
small?

a. The savings in CPU usage increases as the subset grows larger because the I/O
increases.

b. The savings in CPU usage decreases as the subset grows larger. However,
placing the subsetting IF statement at the top of a DATA step always uses fewer
resources than placing it at the bottom.

c. The savings in CPU usage remains constant as the subset grows larger. However,
placing the subsetting IF statement near the bottom of a data set is preferable.

d. The savings in CPU usage decreases as the subset grows larger. However,
placing the subsetting IF statement near the bottom of a data set increases the
I/O.

2. Which of the following statements is true about techniques that are used for
modifying data and attributes?

a. You can use PROC DATASETS to modify both data values and variable
attributes.

b. You can use PROC DATASETS to modify only data values.

c. You can use the DATA step to modify both data values and variable attributes.

d. You can use the DATA step to modify only variable attributes.

3. For selecting observations, is a subsetting IF statement or a WHERE statement more
efficient? Why?

a. A subsetting IF statement is more efficient because it loads all observations
sequentially into the program data vector.

b. A subsetting IF statement is more efficient because it examines what is in the
input buffer and selects observations before they are loaded into the program data
vector, which results in a savings in CPU operations.

c. A WHERE statement is more efficient because it loads all observations
sequentially into the program data vector.

d. A WHERE statement is more efficient because it examines what is in the input
page buffer and selects observations before they are loaded into the program data
vector, which results in a savings in CPU operations.

4. When is it more advantageous to create a temporary SAS data set rather than a
permanent SAS data set?

a. When the external file on which the data set is based might change between SAS
sessions.

b. When the external file on which the data set is based does not change between
SAS sessions.

c. When the data set is needed for more than one SAS session.

742 Chapter 22 • Using Best Practices

d. When you are converting raw numeric values to SAS data values.

5. When you compare the technique of using multiple DATASETS procedures to using
a single DATASETS procedure to modify the descriptor portion of a data set, which
is true?

a. A one-step DATASETS procedure results in an increase in I/O operations.

b. Multiple DATASETS procedures result in a decrease in I/O operations.

c. A one-step DATASETS procedure results in a decrease in CPU usage.

d. Multiple DATASETS procedures result in a decrease in CPU usage.

Quiz 743

744 Chapter 22 • Using Best Practices

Chapter 23

Querying Data Efficiently

Overview . 747
Introduction . 747

Using an Index for Efficient WHERE Processing . 747
Overview . 747
Accessing Data Sequentially . 748
Example . 749
Accessing Data Directly . 749
Example . 749
Benefits and Costs of Using an Index . 749
How SAS Selects an Access Method . 750

Identifying Available Indexes . 750
Overview . 750
Example: Identifying One Available Index . 751
Example: Identifying Multiple Available Indexes . 752
Compound Optimization . 752
Example: Composite Index That Can Be Used to Optimize

Multiple Conditions . 752
Example: Composite Index That Can Be Used to Optimize One Condition 753
Example: Composite Index That Cannot Be Used for Optimizing 753

Identifying Conditions That Can Be Optimized . 754
Requirements for Optimizing a Single WHERE Condition 754
WHERE Conditions That Cannot Be Optimized . 755
Requirements for Compound Optimization . 755
Example: Compound Optimization . 756

Estimating the Number of Observations . 756
Overview . 756
Printing Centile Information . 757
Example . 757

Comparing Probable Resource Usage . 759
Overview . 759
How SAS Compares Resource Usage . 759
Factors That Affect I/O . 759
Subset Size Relative to Data Set Size . 760
Number of Pages in the Data File . 760
Order of the Data . 760
Cost to Uncompress a Compressed File for a Sequential Read 761
Other Factors That Affect Resource Usage . 761

Deciding Whether to Create an Index . 761

745

Guidelines for Deciding Whether to Create an Index . 761
Example: Selecting Subsets of Various Sizes from Data Sets of Various Sizes . . . 762
Query 1: Small Subset from a Large Data Set . 762
Query 2: Large Subset from a Large Data Set . 763
Query 3: Small Subset from a Small Data Set . 763
Using the IDXWHERE= and IDXNAME= Data Set Options 763
Specifying MSGLEVEL=I to Determine Whether SAS Used an Index 764
Example: Using IDXWHERE=NO to Prevent Index Usage 764

Comparing Procedures That Produce Detail Reports . 765
Overview . 765
Example: Using PROC PRINT and PROC SQL to Create Detail Reports 765
Report 1: Simple Detail Report . 766
Report 2: Subset Detail Report . 766
Report 3: Sorted Detail Report . 766
Report 4: Sorted Subset Detail Report . 767

Comparing Tools for Summarizing Data . 767
Overview . 767
Comparing Resource Usage across Summarization Tools 768
Comparative Example: Displaying Summary Statistics for One Class Variable . . 769
Using PROC MEANS to Display Summary Statistics for

Combinations of Class Variables . 771
Comparing Resource Usage across Three Techniques for

Using PROC MEANS . 772
Using a Basic PROC MEANS Step to Combine All Class Variables 772
Example: Displaying Summary Statistics for All

Combinations of the Class Variables . 772
Understanding Types . 774
Using the TYPES Statement in PROC MEANS to Combine Class Variables 776
Example: Using the TYPES Statement in PROC MEANS 776
Using the NWAY Option in PROC MEANS to Combine Class Variables 778
Example: Using the NWAY Option in Multiple PROC MEANS Steps 778
Using the WHERE= Output Data Set Option in PROC

MEANS to Select Desired Types . 780
Example: Using the WHERE= Output Data Set Option in PROC MEANS 781
Comparative Example: Displaying Summary Statistics for

Combinations of Class Variables . 782
Additional Features . 784

Summary . 784
Using an Index for Efficient WHERE Processing . 784
Identifying Available Indexes . 784
Identifying Conditions That Can Be Optimized . 785
Estimating the Number of Observations . 785
Comparing Probable Resource Usage . 785
Deciding Whether to Create an Index . 785
Comparing Procedures That Produce Detail Reports . 786
Comparing Tools for Summarizing Data . 786

Quiz . 787

746 Chapter 23 • Querying Data Efficiently

Overview

Introduction
SAS provides a variety of techniques for querying data. In this chapter, you learn to
select the most efficient query techniques from those listed below, based on comparisons
of resource usage.

Task Techniques

selecting a subset • WHERE statement that references an
indexed data set

creating a detail report • PRINT procedure

• SQL procedure

creating a summary report with one or more
class variables

• MEANS procedure (or SUMMARY
procedure)

• TABULATE procedure

• REPORT procedure

• SQL procedure

• DATA step

Note: This chapter does not cover the SAS Scalable Performance Data Engine (SAS
SPD Engine). For details about using the SAS SPD Engine to improve performance,
see the SAS documentation.

Using an Index for Efficient WHERE Processing

Overview
When processing a WHERE expression, SAS determines which of the following access
methods is likely to be most efficient:

SAS examines all observations sequentially in
their physical order.

Using an Index for Efficient WHERE Processing 747

SAS uses an index to access specific
observations directly. Using an index to
process a WHERE expression is referred to as
optimizing the WHERE expression.

Using an index to process a WHERE expression improves performance in some
situations but not in others. For example, it is more efficient to use an index to select a
small subset than a large subset. In addition, an index conserves some resources at the
expense of others.

After SAS decides whether to create an index, you also play a role in determining which
access method SAS can use. When your program contains a WHERE expression, you
should review your program to see if you agree that direct access is likely to be more
efficient. If it is, you can make sure that an index is available by creating a new index or
by maintaining an existing index.

To help you make a more effective decision about whether to create an index, this topic
and the next few topics provide you with a closer look at the following:

• steps that SAS performs for sequential access and direct access

• benefits and costs of index usage

• steps that SAS performs to determine which access method is most efficient

• factors affecting resource usage for indexed access

• guidelines for deciding whether to create, use, and maintain an index

Note: You should already know how to create and maintain indexes by using the
INDEX= data set option in the DATA statement, the DATASETS procedure, and the
SQL procedure. To review these SAS elements, see Chapter 6, “Creating and
Managing Indexes Using PROC SQL,” on page 226 and Chapter 13, “Creating
Indexes,” on page 448.

Note: SAS can also use an index to process a BY statement. BY processing enables you
to process observations in a specific order according to the values of one or more
variables that are specified in a BY statement. Indexing a data file enables you to use
a BY statement without sorting the data file. When you specify a BY statement, SAS
checks the value of the Sorted indicator. If the Sorted indicator is set to NO, then
SAS looks for an appropriate index. If an appropriate index exists, the software
automatically retrieves the observations from the data file in indexed order. Using an
index to process a BY statement might not always be more efficient than simply
sorting the data file. Therefore, using an index for a BY statement is generally for
convenience, not for performance.

Accessing Data Sequentially
When accessing observations sequentially, SAS must examine all observations in their
physical order within the data file.

748 Chapter 23 • Querying Data Efficiently

Example
Suppose you want to create a new data set, Company.D02jul2000, that contains a subset
of observations from the data set Company.Dates. The following DATA step uses a
WHERE statement to select all observations in which Date_ID is 02JUL2000:

data company.d02jul2000;
 set company.dates;
 where date_id='02JUL2000'd;
run;

The data set Company.Dates does not contain an index that is defined on the variable
Date_ID, so SAS must use sequential access to process the WHERE statement.

Note: If the data set company.dates has been sorted by date_id, SAS searches the data
sequentially until the WHERE criterion (date_id='02JUL2000'd) has been
satisfied.

Accessing Data Directly
When using an index for WHERE processing, SAS accesses each desired observation
without reading every observation in the data set.

Example
Suppose you have defined an index on the variable Date_ID in the Company.Dates data
set. This time, when you submit the following DATA step, SAS uses the index to process
the WHERE statement:

data company.d02jul2000;
 set company.dates;
 where date_id='02JUL2000'd;
run;

The process of retrieving data via an index (direct access) is more complicated than
sequential access, so direct access requires more CPU time per observation retrieved
than sequential access. However, for a small subset, using an index can decrease the
number of pages that SAS loads into input buffers, which reduces the number of I/O
operations.

Note: When the values in the data set are sorted in the order in which they occur in the
index, the qualified observations are adjacent to each other. In this situation, SAS
loads fewer pages into the input buffer than if the data is randomly distributed
throughout the data set. Therefore, fewer I/O operations are required when the data
set is sorted.

Benefits and Costs of Using an Index
As the preceding examples show, both benefits and costs are associated with using an
index. Weighing these benefits and costs is an important part of deciding whether using
an index is efficient.

The main benefits of using an index include the following:

• provides fast access to a small subset of observations

Using an Index for Efficient WHERE Processing 749

• returns values in sorted order

• can enforce uniqueness

The main costs of using an index include the following:

• requires extra CPU cycles and I/O operations for creating and maintaining an index

• requires increased CPU time and I/O activity for reading the data

• requires extra disk space for storing the index file

• requires extra memory for loading index pages and extra code for using the index

Note: SAS requires additional buffers when an index file is used. When a data file is
opened, SAS opens the index file, but not the indexes. Buffers are not required
unless SAS uses an index, but SAS allocates the buffers to prepare for using the
index. The number of levels of an index determines the number of buffers that are
allocated. The maximum number of buffers is three for data files that are open for
input. The maximum number is four for data that is open for update. These buffers
can be used for other processing if they are not used for indexes.

How SAS Selects an Access Method
When SAS processes a WHERE expression, it first determines whether to use direct
access or sequential access by performing the following steps:

1. identifies available indexes

2. identifies conditions that can be optimized

3. estimates the number of observations that qualify

4. compares probable resource usage for both methods

Identifying Available Indexes

Overview
The first step for SAS is to determine whether there are any existing indexes that might
be used to process the WHERE expression. Specifically, SAS checks the variable in each
condition in the WHERE expression to determine whether the variable is a key variable
in an index.

SAS can use either a simple index or a composite index to optimize a WHERE
expression. To be considered for use in optimizing a single WHERE condition, one of
the following requirements must be met:

750 Chapter 23 • Querying Data Efficiently

• the variable in the WHERE condition is the key variable in a simple index

• the variable in the WHERE condition is the first key variable in a composite index

SAS identifies all indexes that are defined on any variable in the WHERE expression.
However, no matter how many indexes are available, SAS can use only one index to
process a WHERE expression. So, if multiple indexes are available, SAS must choose
between them.

When SAS looks for available indexes, there are three possible outcomes:

Index Outcome

There is no index defined on any variables in
the WHERE expression.

SAS does not continue with the decision
process. SAS must use sequential access to
process the WHERE expression.

There is one available index that is defined on
one or more variables in the WHERE
expression.

SAS continues with the decision process and
determines whether using the available index
is more efficient than using sequential access.

There are multiple available indexes. Each is
defined on one or more of the variables in the
WHERE expression.

SAS continues with the decision process. SAS
must choose between the available indexes in
the next few steps. SAS tries to select the
index that satisfies the most conditions and
that selects the smallest subset of
observations.

Note: If a program specifies both a WHERE expression and a BY statement, SAS looks
for one index that satisfies conditions for both. If such an index is not found, the BY
statement takes precedence so that SAS can ensure that the data is returned in sorted
order. With a BY statement, SAS cannot use an index to optimize a WHERE
expression if the optimization invalidates the BY order.

Example: Identifying One Available Index
Suppose you submit a program that contains the following WHERE statement, and
suppose that the data set has one index, as shown below:

WHERE Statement Available Index

where delivery_date='02jul2000'd simple index defined on Delivery_Date

This WHERE expression has one condition, and the variable in that condition
(Delivery_Date) is the key variable in the simple index. If all other requirements for
optimization are met in later steps, then SAS can use this index to optimize the WHERE
expression.

Likewise, if the only available index is a composite index in which Delivery_Date is the
first key variable, then SAS can use the index if all other requirements for optimization
are met.

Even if a WHERE statement has multiple conditions, SAS can use either a simple index
or a composite index to optimize just one of the conditions. For example, suppose your

Identifying Available Indexes 751

program contains a WHERE statement that has two conditions, and suppose that the data
set has one index, as shown below:

WHERE Statement Available Index

where order_date='01jan2000'd and
delivery_date='02jul2000'd';

simple index defined on Delivery_Date

Assuming that all other requirements for optimization are met, SAS can use this index to
optimize the second condition in this WHERE expression.

Example: Identifying Multiple Available Indexes
Suppose your program contains a WHERE statement with two conditions, and suppose
that each condition references a key variable in a different index, as shown below:

WHERE Statement Available Index

where order_date='01jan2000'd and
delivery_date='02jul2000'd';

• simple index defined on Order_Date

• simple index defined on Delivery_Date.

Although two indexes are available, SAS can use only one index to optimize a WHERE
statement. In a later step of the process, SAS tries to select the index that satisfies the
most conditions and that selects the smallest subset of observations.

Compound Optimization
SAS usually uses an index to process just one condition, no matter how many conditions
and variables a WHERE expression contains. However, in a process called compound
optimization, SAS can use a composite index to optimize multiple conditions on
multiple variables, which are joined with a logical operator such as AND. Constructing
your WHERE expression to take advantage of multiple key variables in a single index
can greatly improve performance.

In order for compound optimization to occur, at least the first two key variables in the
composite index must be used in the WHERE conditions. Later in this chapter, you learn
about other requirements that must be met in order for compound optimization to occur.

Note: The WHERE expression can also contain non-indexed variables, and the key
variables and non-indexed variables can appear in any order in the expression.

Example: Composite Index That Can Be Used to Optimize Multiple
Conditions

Suppose your program contains a WHERE statement that has two conditions, and
suppose that each condition references one of the first two key variables in a composite
index:

752 Chapter 23 • Querying Data Efficiently

WHERE Statement Available Index

where order_date='01jan2000'd and
delivery_date='02jul2000'd';

composite index defined on the following
variables:

• Order_Date (first key variable)

• Delivery_Date (second key variable)

• Product_ID (third key variable)

Because the two variables that are referenced in the WHERE expression are the first two
key variables in the composite index, SAS can use the composite index for compound
optimization if the WHERE conditions meet all other requirements for optimization.

Example: Composite Index That Can Be Used to Optimize One
Condition

The following WHERE statement also contains two conditions, and each condition
references one of the variables in the composite index:

WHERE Statement Available Index

where order_date='01jan2000'd and
product_id='220101400106';

composite index defined on the following
variables:

• Order_Date (first key variable)

• Delivery_Date (second key variable)

• Product_ID (third key variable)

As in the previous WHERE statement, Order_Date is the first key variable in the index.
However, in this situation, the composite index can be used to optimize only the first
condition. The second condition references the third key variable, Product_ID, but the
WHERE expression does not reference the second key variable, Delivery_Date. Without
a reference to both the first and second key variables, compound optimization cannot
occur.

Example: Composite Index That Cannot Be Used for Optimizing
Now suppose your program contains a WHERE statement that references only the
second and third key variables in the composite index, as shown below:

WHERE Statement Available Index

where delivery_date='02jul2000'd' and
product_id='220101400106';

composite index defined on the following
variables:

• Order_Date (first key variable)

• Delivery_Date (second key variable)

• Product_ID (third key variable)

In this situation, SAS cannot use the index for optimization at all because the WHERE
statement does not reference the first key variable.

Identifying Available Indexes 753

Identifying Conditions That Can Be Optimized
In addition to containing key variables, WHERE conditions must meet other
requirements in order to be candidates for optimization. SAS considers using an index
only for WHERE conditions that contain certain operators and functions. Therefore, the
next step for SAS is to consider the operators and functions in the conditions that contain
key variables.

Requirements for Optimizing a Single WHERE Condition
SAS considers using an index for a WHERE condition that contains any of the following
operators and functions:

Note: For all of the following examples, assume that the data set has simple indexes on
the variables Quarter, Date_ID, and Region.

Operator Example

comparison operators where quarter = '1998Q1';

where date_id < '03JUL2000'd;

where quarter in ('1998Q2','1998Q3');

comparison operators with NOT where quarter ne '1999Q1';

where quarter not in ('1999Q1','1999Q4');

comparison operators with the colon modifier

You can add a colon modifier (:) to any
comparison operator to compare only a
specified prefix of a character string.

The colon modifier cannot be used with
PROC SQL; use the LIKE operator instead.

where quarter =: '1998';

CONTAINS operator where quarter contains 'Q4';

fully bounded range conditions that specify
both an upper and lower limit, which includes
the BETWEEN-AND operator

where '01Jan1999'd < date_id
 < '31Dec1999'd;

where date_id between '01Jan1999'd
 and '31Dec1999'd

pattern-matching operator LIKE where quarter like '%Q%';

IS NULL or IS MISSING operator where quarter is null;

where quarter is missing;

Function Example

TRIM function where trim(region) = 'Queensland';

754 Chapter 23 • Querying Data Efficiently

Function Example

SUBSTR function in the form of

WHERE SUBSTR
(variable,position,length)='string';

with these conditions:

• position = 1

• length is less than or equal to the length of
variable

• length is equal to the length of the string

where substr(quarter,1,4) = '1998';

CAUTION:
Most but not all of the requirements listed above also apply to compound
optimization. Requirements for compound optimization are covered later in this
chapter.

WHERE Conditions That Cannot Be Optimized
SAS does not use an index to process a WHERE condition that contains any of the
elements listed below.

Note: For all of the following examples, assume that the data set has simple indexes on
the variables Date_ID, Quarter, and Quantity.

Element in WHERE Condition Example

any function other than TRIM or SUBSTR where weekday(date_id)=2;

a SUBSTR function that searches a string
beginning at any position after the first

where substr(quarter,6,1)='1';

the sounds-like operator (=*) where quarter=*'1900Q0';

arithmetic operators where quantity=quantity+1;

a variable-to-variable condition where quantity gt threshold;

Requirements for Compound Optimization
Most of the same operators that are acceptable for optimizing a single condition are also
acceptable for compound optimization. However, compound optimization has special
requirements for the operators that appear in the WHERE expression:

• The WHERE conditions must be connected by using either the AND operator or, if
all conditions refer to the same variable, the OR operator.

• At least one of the WHERE conditions that contain a key variable must contain the
EQ or IN operator.

Identifying Conditions That Can Be Optimized 755

Example: Compound Optimization
Suppose your program contains the following WHERE statement, which selects all
people whose name is John Smith. The WHERE statement contains two conditions.
Each condition references a different variable:

where lastname eq 'Smith' and
 frstname eq 'John';

Suppose Lastname is the first key variable and Frstname is the second key variable in a
compound index. This WHERE statement meets all requirements for compound
optimization:

• The WHERE expression references at least the first two key variables in one
composite index.

• The two WHERE conditions are connected by the AND operator.

• At least one of the conditions contains the EQ operator.

If the two conditions in the WHERE statement are reversed, as shown below, the
statement still meets all requirements for compound optimization. The order in which the
key variables appear does not matter.

where frstname eq 'John' and
 lastname eq 'Smith';

Now suppose that the conditions in the WHERE statement are joined by the operator OR
instead of AND:

where frstname eq 'John' or
 lastname eq 'Smith';

These conditions cannot be optimized because they are joined by OR but they do not
reference the same variable.

Estimating the Number of Observations

Overview
It is more efficient to use indexed access for a small subset and to use sequential access
for a large subset. Therefore, after identifying any available indexes and evaluating the
conditions in the WHERE expression, SAS estimates the number of observations that
will be qualified by the index. Whether SAS uses an index depends on the percentage of
observations that are qualified (the size of the subset relative to the size of the data set),
as shown below:

756 Chapter 23 • Querying Data Efficiently

• If the subset is less than 3% of the data set, direct access is almost certainly more
efficient than sequential access, and SAS will use an index. In this situation, SAS
does not go on to compare probable resource usage.

• If the subset is between 3% and 33% of the data set, direct access is likely to be more
efficient than sequential access, and SAS probably uses an index.

• If the subset is greater than 33% of the data set, it is less likely that direct access is
more efficient than sequential access, and SAS might or might not use an index.

When multiple indexes exist, SAS selects the one that produces the fewest qualified
observations (the smallest subset). SAS does this even when each index returns a subset
that is less than 3% of the data set.

Printing Centile Information
To help SAS estimate the number of observations that would be selected by a WHERE
expression, each index stores 21 statistics called cumulative percentiles, or centiles.
Centiles provide information about the distribution of values for the indexed variable.

Understanding the distribution of values in a data set can help you improve the
efficiency of WHERE processing in your programs. You can print centile information
for an indexed data file by specifying the CENTILES option in either of these places:

• the CONTENTS procedure

• the CONTENTS statement in the DATASETS procedure

PROC CONTENTS <options>;
RUN;

PROC DATASETS <options>;
CONTENTS <options>;

QUIT;

Example
The following SAS program prints centile information for the data set
Company.Organization:

proc contents data=company.organization centiles;
run;

Partial output from this program is shown below. As indicated on the left, an index is
defined on the variable Employee_ID. The 21 centile values are listed on the right.

Estimating the Number of Observations 757

Figure 23.1 Partial PROC CONTENTS Output

The 21 centile values consist of the following:

Position in
List

Value Shown in Output
Above Description

1 (first) 120101 the minimum value of the indexed variable (0%
of values are lower than this value)

2-20 120152 - 121097 each value is greater than or equal to all other
values in one of the 19 percentiles that range
from the bottom 5% to the bottom 95% of
values, in increments of 5%

758 Chapter 23 • Querying Data Efficiently

Position in
List

Value Shown in Output
Above Description

21 (last) 99999999 the maximum value of the indexed variable
(100% of values are lower than or equal to this
value)

Note: For information about updating and refreshing centiles for a data file, see the SAS
documentation.

Comparing Probable Resource Usage

Overview
After SAS estimates the number of qualified observations and selects the index that
qualifies the fewest observations, SAS must then determine whether it is faster (more
efficient) to satisfy the WHERE expression by using the index or by reading all of the
observations sequentially. Specifically, SAS predicts how many I/O operations are
required in order to satisfy the WHERE expression for each of the access methods. Then
it compares the two resource costs.

Note: Remember, if SAS estimates that a subset contains fewer than 3% of the
observations in the data set, SAS does not need to estimate resource usage. In this
situation, SAS uses the index to process the WHERE statement.

How SAS Compares Resource Usage
To compare resource usage, SAS performs the following steps:

1. SAS predicts how many I/O operations are required if it uses the index to satisfy the
WHERE expression. To do so, SAS positions the index at the first entry that contains
a qualified value. In a buffer management simulation that takes into account the
current number of available buffers, the RIDs (record identifiers) on that index page
are processed, indicating how many I/Os are required in order to read the
observations in the data file.

2. SAS calculates the I/O cost of a sequential pass of the entire data file.

3. SAS compares the two resource costs and determines which access method has a
lower cost.

Note: If comparing resource costs results in a tie, SAS chooses the index.

Factors That Affect I/O
Several factors affect the number of I/O operations that are required for WHERE
processing, including the following:

• subset size relative to data set size

• number of pages in the data file

• order of the data

Comparing Probable Resource Usage 759

• cost to uncompress a compressed file for a sequential read

These factors are discussed in more detail below.

Subset Size Relative to Data Set Size
As explained earlier in this chapter, SAS is more likely to use an index to access a small
subset of observations. The process of retrieving data with an index is inherently more
complicated than sequentially processing the data.

For small subsets, however, the benefit of reading only a few observations outweighs the
cost of the complex processing. The smaller the subset, the larger the performance gains.
Remember that SAS uses an index if the subset is less than 3% of the data set, and SAS
probably uses an index if the subset is between 3% and 33% of the data set.

Number of Pages in the Data File
For a small data file, sequential processing is often just as efficient as index processing.
If the data file's page count is less than three pages, then sequential access is faster even
if the subset is less than 3% of the entire data set.

Note: The amount of data that can be transferred to one buffer in a single I/O operation
is referred to as page size. To see how many pages are in a data file, use either the
CONTENTS procedure or the CONTENTS statement in the DATASETS procedure.
For more information about reporting the page size for a data file, see Chapter 20,
“Controlling Memory Usage,” on page 659.

Order of the Data
The order of the data (sort order) affects the number of I/O operations as described
below:

Order of the Data Effect on I/O Operations

observations are randomly
distributed throughout the data file

Qualified observations are located on a larger number of
data file pages. An I/O operation is required each time
that SAS loads a page. Therefore, the more random the
data in the data file, the more I/O operations are needed
to use the index.

observations are sorted on the
indexed variable or variables

The data is ordered more like the index (in ascending
value order), so qualified observations are located on
fewer data file pages. Therefore, the less random the data
in the data file, the fewer I/O operations are needed to
use the index.

Note: In general, sorting the data set by the key variable before indexing results in
greater efficiency. The more ordered the data file is with respect to the key variable,
the more efficient the use of the index. If the data file has more than one index, then
sorting the data by the most frequently used key variable is most efficient. Sorting
the data set results in more efficient WHERE processing even when SAS does not
use an index.

760 Chapter 23 • Querying Data Efficiently

Cost to Uncompress a Compressed File for a Sequential Read
When SAS reads a compressed data file, SAS automatically uncompresses the
observations as they are read into the program data vector. This requires additional CPU
resources, but fewer I/O operations are required because there are fewer data set pages.
When performing a sequential read of a compressed data file, SAS must uncompress all
observations in the file. However, when using direct access, SAS must uncompress only
the qualified observations. Therefore, the resource cost of uncompressing observations is
greater for a sequential read than for direct access.

Note: Compressing a file is a process that reduces the number of bytes that are required
for representing each observation. By default, a SAS data file is not compressed. For
more information about compressing files, see Chapter 21, “Controlling Data
Storage Space,” on page 676.

Other Factors That Affect Resource Usage
Data type and length are two other factors that can affect index efficiency.

Numeric key variables typically result in more CPU usage than character key variables,
because numeric variables must be converted to formats that can be sequenced when
values are read into the index or retrieved from the index. Character values are already in
a format that can be sequenced.

Deciding Whether to Create an Index
In previous sections, you learned how SAS determines whether sequential access or
direct access is likely to be most efficient for WHERE processing. You also learned
about a variety of factors that you can assess to determine which access method is most
efficient. After you have made your determination, you can use the following guidelines
to decide whether it is efficient to create an index.

Guidelines for Deciding Whether to Create an Index
• Minimize the number of indexes to reduce disk storage and update costs. Create

indexes only on variables that are often used in queries or (when data cannot be
sorted) in BY-group processing.

• Create an index when you intend to retrieve a small subset of observations from a
large data file.

• Do not create an index if the data file's page count is less than three pages. It is faster
to access the data sequentially.

• Create indexes on variables that are discriminating. Discriminating variables have
many different values that precisely identify observations. A WHERE expression
that subsets based on a discriminating variable results in a smaller subset than a
WHERE expression that references a non-discriminating variable. A non-
discriminating variable is one that has only two values (for example, gender does not
make a good variable on which to create an index).

• To minimize I/O operations, sort the data by the key variable before creating the
index. Then, to improve performance, maintain the data file in sorted order by the
key variable.

Deciding Whether to Create an Index 761

Note: If you choose not to use an index and the data set is large, it is still more
efficient to sort the data set on the variable or variables that are specified in the
WHERE statement.

• Consider how often your applications use an index. An index must be used often in
order to compensate for the resources that are used in creating and maintaining it.

• Consider the cost of an index for a data file that is frequently changed.

• When you create an index to process a WHERE expression, do not try to create one
index to satisfy all queries.

Consider three sample queries to see how you can apply the guidelines that are listed in
the previous section. These queries illustrate the effect of one factor—the size of the
subset relative to the size of the data set—on the choice of an access method. For each
query, you learn the following:

• which access method SAS is likely to select

• whether you could improve performance by creating an index

Example: Selecting Subsets of Various Sizes from Data Sets of
Various Sizes

Suppose you are working with the following two data sets. Each contains information
about a company's orders:

Data Set Name Pages Observations

Company.Orders_large 285,500 19,033,380

Company.Orders_small 2 140

You want to create queries to generate three subset detail reports, one for each of the
following types of subsets:

• small subset from a large data set

• large subset from a large data set

• small subset from a small data set

In all three queries, the WHERE expression specifies the variable Order_Date. You
know that this variable is used frequently in queries, and that it is a discriminating
variable. According to the guidelines in the previous section, these are both criteria for
creating an index on the variable. However, there is currently no index defined on this
variable in either data set.

Query 1: Small Subset from a Large Data Set
The first report shows all orders in Company.Orders_large that were made on January
10, 1998. Your query is shown below, along with the subset size that you have estimated:

762 Chapter 23 • Querying Data Efficiently

Query Subset Size

data _null_;
 set company.orders_large;
 where order_date='10JAN1998'd;
run;

2232 observations (out of 19,033,380)< .02%
of the data set

Because the subset is less than 3% of the entire data set, using an index on Order_Date
should be more efficient than using sequential access. SAS uses an index for WHERE
processing, if an index is available. To improve performance, you should create an index
on Order_Date before running this program.

Query 2: Large Subset from a Large Data Set
The second report shows all orders in Company.Orders_large that were made before
January 1, 2000. Your query and the estimated subset size are shown below:

Query Subset Size

data _null_;
 set company.orders_large;
 where order_date<'01JAN2000'd;
run;

12,752,365 observations (out of 19,033,380)
=approximately 67% of the data set

Because the subset is more than 33% of the entire data set, using the index is probably
less efficient than using sequential access. SAS probably will not use the index for
WHERE processing.

Query 3: Small Subset from a Small Data Set
The third report shows all orders in the smaller data set Company.Orders_small that
were made on June 30, 1998. Your query and the estimated subset size are shown below:

Query Subset Size

data _null_;
 set company.orders_small;
 where order_date'30JUN1998'd;
run;

2 observations (out of 140) =< 2 % of the data
set

Because the subset is less than 3% of the entire data set, SAS will use the index for
WHERE processing. However, the data file's page count is less than three pages, so it is
more efficient to use sequential access. In this situation, it is best not to create an index.

Using the IDXWHERE= and IDXNAME= Data Set Options
In most situations, it is best to let SAS determine whether to use an index for WHERE
processing. However, sometimes you might want to control whether SAS uses an
existing index. For example, if you know that your query selects a large subset and that
indexed access therefore is not efficient, you can tell SAS to ignore any index and to
satisfy the conditions of the WHERE expression with a sequential search of the data set.

Deciding Whether to Create an Index 763

Alternatively, if your query selects a small subset and there are multiple available
indexes, you can make sure that SAS uses a particular index to process your WHERE
statement. Finally, you might want to force SAS to use (or not use) an index when you
are benchmarking.

The data set options IDXWHERE= and IDXNAME= control index usage.

Option Action

IDXWHERE= specifies whether SAS should use an index to process the WHERE
expression, no matter which access method SAS estimates is faster.

You cannot use IDXWHERE= to override the use of an index for
processing a BY statement.

IDXNAME= causes SAS to use a specific index.

Note: You can use either IDXWHERE= or IDXNAME=, but not both at the same time.

For more information about the IDXWHERE= and IDXNAME= data set options, see
Chapter 6, “Creating and Managing Indexes Using PROC SQL,” on page 226.

Specifying MSGLEVEL=I to Determine Whether SAS Used an Index
To determine whether SAS used an index to process a WHERE expression, specify I as
the value of the MSGLEVEL= system option. MSGLEVEL=I causes SAS to display
information about index usage in the SAS log.

Note: To make the most efficient use of resources, use MSGLEVEL=I only for
debugging and for verifying index usage.

Note: For more information about the MSGLEVEL= system option, see Chapter 13,
“Creating Indexes,” on page 448 or Chapter 6, “Creating and Managing Indexes
Using PROC SQL,” on page 226.

Example: Using IDXWHERE=NO to Prevent Index Usage
Suppose you write the following query, which lists all employees who work in the Sales
department.

proc print data=company.organization;
 where department='Sales';
run;

Now suppose an index is defined on the variable Department in the data set
Company.Organization. You know that Department has the value Sales in 65% of the
observations, so it is not efficient for SAS to use an index for WHERE processing. To
ensure that SAS does not use an index, specify IDXWHERE=NO after the data set
name. At the beginning of the program, you can also add an OPTIONS statement that
specifies MSGLEVEL=I to display a message about index usage in the SAS log. The
revised program is shown below:

options msglevel=i;
proc print data=company.organization (idxwhere=no);
 where department='Sales';
run;

764 Chapter 23 • Querying Data Efficiently

When you run this program, the SAS log indicates that the index was not used for
processing.

Table 23.1 SAS Log

INFO: Data set option (IDXWHERE=NO) forced a sequential pass of the data
rather than use of an index for where-clause processing.

Comparing Procedures That Produce Detail
Reports

Overview
When you want to produce a detail report, you can choose between the PRINT
procedure and the SQL procedure:

Procedure Description

PROC PRINT • can calculate column sums

PROC SQL • can manipulate data and create a SAS data set in the same step that
creates the report

• can calculate column and row statistics

To perform a particular task, a single-purpose tool like PROC PRINT generally uses
fewer computer resources than a multi-purpose tool like PROC SQL.

To illustrate the differences in resource usage between PROC PRINT and PROC SQL,
consider some sample queries.

Example: Using PROC PRINT and PROC SQL to Create Detail
Reports

Suppose you are working with the data set Company.Products and you want to generate
four types of detail reports:

• simple detail report

• subset detail report

• sorted detail report

• sorted subset detail report

For the first three reports, the PROC PRINT program is likely to use fewer resources
than the PROC SQL program. For the last report, the resource usage for the two
programs is likely to be about the same.

Comparing Procedures That Produce Detail Reports 765

Report 1: Simple Detail Report
The simple detail report lists the product ID, product name, and supplier name for all
products. The PROC PRINT program and PROC SQL program for producing this report
are shown below:

PROC PRINT PROC SQL

proc print data=company.products;
 var product_id product_name
 supplier_name;
run;

proc sql;
 select product_id product_name
 supplier_name
 from company.products;
quit;

In this situation, the PROC PRINT program is likely to use fewer CPU and memory
resources than the PROC SQL program. The I/O resource usage should be
approximately the same.

Report 2: Subset Detail Report
The subset detail report lists the product ID, product name, and supplier name for all
products that come from Sweden (SE). The PROC PRINT program and PROC SQL
program for producing this report are shown below:

PROC PRINT PROC SQL

proc print data=company.products;
 var product_id product_name
 supplier_name;
 where supplier_country='SE';
run;

proc sql;
 select product_id product_name
 supplier_name
 from company.products
 where supplier_country='SE';
quit;

Both steps use WHERE processing to subset the data. In this situation, the PROC
PRINT program is likely to use fewer CPU and memory resources than the PROC SQL
program. The I/O resource usage should be approximately the same.

Report 3: Sorted Detail Report
The sorted detail report lists the product ID, product name, and supplier name for all
products, with observations that are sorted by the supplier country. The PROC PRINT
program and PROC SQL program for producing this report are shown below:

766 Chapter 23 • Querying Data Efficiently

PROC PRINT PROC SQL

proc sort data=company.products
 out=product;
 by supplier_country;
run;

proc print data=product;
 var product_id product_name
 supplier_name;
run;

proc sql;
 select product_id product_name
 supplier_name
 from company.products
 order by supplier_country;
quit;

To sort the data, a PROC SORT step has been added to the PROC PRINT program, and
an ORDER BY clause has been added to the PROC SQL program. In this situation, the
PROC PRINT program is likely to use fewer CPU and memory resources than the
PROC SQL program. The I/O resource usage should be approximately the same.

Report 4: Sorted Subset Detail Report
The sorted subset detail report lists the product ID, product name, and supplier name for
all products that come from Sweden (SE), with observations that are sorted by the
supplier name. The PROC PRINT program and PROC SQL program for producing this
report are shown below:

PROC PRINT PROC SQL

proc sort data=company.products
 (keep=Product_ID Product_Name
 Supplier_Name Supplier_Country)
 out=product;
 where supplier_country='SE';
 by supplier_name;
run;

proc print data=product;
 var product_id product_name
 supplier_name;
run;

proc sql;
 select product_id product_name
 supplier_name
 from company.products
 where supplier_country='SE'
 order by supplier_name;
quit;

To sort the data, a PROC SORT step has been added to the PROC PRINT program. The
PROC SORT step uses the KEEP= option to subset the observations, which improves
efficiency. The PROC SQL step uses an ORDER BY clause for sorting and a WHERE
clause for subsetting. In this situation, the CPU and memory usage for the PROC PRINT
program and the PROC SQL program are about the same.

Comparing Tools for Summarizing Data

Overview
SAS provides a variety of tools for summarizing data. These summarization tools
generate similar but not identical output, and they vary in efficiency.

Comparing Tools for Summarizing Data 767

Note: Throughout this section, all references to the MEANS procedure apply also to the
SUMMARY procedure.

Tool Description

MEANS procedure or
SUMMARY procedure

• computes descriptive statistics for numeric variables

• can produce a printed report and create an output data set

TABULATE procedure • produces descriptive statistics in a tabular format

• can produce 1-, 2-, or 3-dimensional tables with descriptive
statistics

• can also create an output data set

REPORT procedure • combines features of the PRINT, MEANS, and TABULATE
procedures with features of the DATA step in a single report-
writing tool that can produce a variety of reports

• can also create an output data set

SQL procedure • computes descriptive statistics for one or more SAS data sets
or DBMS tables

• can produce a printed report or create a SAS data set

DATA step • can produce a printed report

• can also create an output data set

Note: You can also use the FREQ and UNIVARIATE procedures to generate summary
data reports, but these procedures are not covered in this chapter. For more
information about any of these summarization tools, see the SAS documentation for
PROC FREQ and PROC UNIVARIATE in the Base SAS Procedures Guide.

Any of these tools can summarize the entire data set or by any combination of one or
more class variables.

To group data, PROC MEANS, PROC SUMMARY, and PROC TABULATE use a
CLASS statement. PROC SQL uses a GROUP BY clause. Every tool except PROC SQL
accepts a BY statement.

Comparing Resource Usage across Summarization Tools
When summarizing data for one or more class variables, the tools in each of the
following groups are similar in resource usage:

• PROC MEANS (or PROC SUMMARY), PROC REPORT, and PROC TABULATE

• PROC SQL and the DATA step with PROC SORT

However, the relative efficiency of the two groups of tools can vary based on the number
of values of the CLASS variables. You need to test the techniques with your data.

768 Chapter 23 • Querying Data Efficiently

Comparative Example: Displaying Summary Statistics for One
Class Variable

Overview
Suppose you want to summarize the data set Retail.Orders by calculating the average
quantity of products sold for each value of the class variable Order_Type. You can use
several techniques to produce the summary report.

The following programs compare five techniques. You can use these samples as models
for creating benchmark programs in your own environment. Your results might vary
depending on the structure of your data, your operating environment, and the resources
that are available at your site.

Programming Techniques

 PROC MEANS

This PROC MEANS step creates a report that displays the mean of the analysis variable
Quantity for each value of the class variable Order_Type.

proc means data=retail.orders
 (keep=order_type quantity)
 mean maxdec=2;
 class order_type;
 var quantity;
run;

 PROC REPORT

This PROC REPORT step creates a report that displays the mean of the analysis variable
Quantity for each value of the class variable Order_Type.

proc report data=retail.orders
 (keep=order_type quantity);
 column order_type quantity;
 define order_type / group width=13
 'Order Type';
 define quantity / mean format=5.2
 'Average Quantity'
 width=8;
run;

Comparing Tools for Summarizing Data 769

 PROC SORT and a DATA Step

This program uses a PROC SORT step and a DATA step to create a report. The PROC SORT
step sorts the data by the values of the variable Order_Type, keeps only the necessary variables,
and generates the temporary output data set Orders. The DATA step calculates the mean of the
analysis variable Quantity for each value of the BY variable Order_Type and displays these
values in a report.

proc sort data=retail.orders
 (keep=order_type quantity)
 out=orders;
 by order_type;
run;

data _null_;
 set orders;
 by order_type;
 format average_order 5.2;
 if first.order_type then do;
 num=0;
 sum=0;
 end;
 num+1;
 sum+quantity;
 if last.order_type then do;
 average_order=sum / num;
 file print;
 put @5 'Order Type' @20 'Average Order';
 put;
 put @13 Order_type 1. @27 Average_order 5.2;
 end;
run;

 PROC SQL

This PROC SQL step creates a report that displays the mean of the analysis variable Quantity
for each value of the group variable Order_Type.

proc sql;
 select order_type,
 avg(quantity) label='Average Order'
 format=5.2
 from retail.orders
 group by order_type;
quit;

 PROC TABULATE

This PROC TABULATE step creates a report that displays the mean of the analysis variable
Quantity for each value of the class variable Order_Type.

proc tabulate data=retail.orders
 (keep=order_type quantity)
 format=comma8.2;
 class order_type;
 var quantity;
 table order_type, quantity*mean;
run;

770 Chapter 23 • Querying Data Efficiently

General Recommendations
• When summarizing data for one class variable, test your data to determine which

summarization tools are most efficient.

Using PROC MEANS to Display Summary Statistics for
Combinations of Class Variables

To produce summary statistics for combinations of class variables, you can use PROC
MEANS in the following ways. These techniques differ in resource usage.

Combinations of
Class Variables Technique Example

all possible
combinations:

a

b

c

a * b

a * c

b * c

a * b * c

basic PROC MEANS step proc means data=lib.dataset mean;
 class a b c;
 var salary;
 output out=summary1
 mean=average;
run;

specific combinations:

a * b and a * c

TYPES statement in
PROC MEANS

proc means data=lib.dataset mean;
 class a b c;
 var salary;
 types a*b a*c;
 output out=summary2
 mean=average;
run;

specific combinations:

a * b and a * c

NWAY option in multiple
PROC MEANS steps

proc means data=lib.dataset nway;
 class a b;
 var salary;
 output out=summary3a
 mean=average;
run;

proc means data=lib.dataset nway;
 class a c;
 var salary;
 output out=summary3b
 mean=average;
run;

specific combinations:

a * b and a * c

WHERE= option in the
OUTPUT statement in
PROC MEANS

proc means data=lib.dataset;
 class a b c;
 var salary;
 output out=summary4
 (where=(_type_ in (5,3)))
 n=employees
 mean=average;
run;

Comparing Tools for Summarizing Data 771

Comparing Resource Usage across Three Techniques for Using
PROC MEANS

The three techniques for summarizing data for specific combinations of class variables
(all but the basic PROC MEANS step) differ in resource usage as follows:

• The TYPES statement in a PROC MEANS step uses the fewest resources.

• A program that contains the NWAY option in multiple PROC MEANS steps uses the
most resources because SAS must read the data set separately for each PROC
MEANS step. The NWAY option in a single PROC MEANS step is efficient.

• The WHERE= data set option in a PROC MEANS step uses more resources than the
TYPES statement in PROC MEANS because SAS must calculate all possible
combinations of class variables before subsetting. However, the WHERE= data set
option in PROC MEANS uses fewer resources than the NWAY option in multiple
PROC MEANS steps.

We learn how to use a basic PROC MEANS step and the three other techniques that are
listed above.

Using a Basic PROC MEANS Step to Combine All Class Variables
PROC MEANS (or PROC SUMMARY) creates the following:

• An output report that groups data and displays summary statistics for the
combination of all class variables. This is the default action.

• If an OUTPUT statement appears, PROC MEANS creates an output data set with
summary statistics for all possible combinations of the n class variables (from 1-way
to n-way), as well as for the entire data set

Example: Displaying Summary Statistics for All Combinations of the
Class Variables

Suppose you want to calculate average employee salaries and group results for the
combination of the three class variables Employee_Country, Department, and
Employee_Gender.

The following PROC MEANS program creates both a report data set and a SAS data set:

proc means data=company.organization_dim mean;
 class employee_country department
 employee_gender;
 var salary;
 output out=summary mean=average;
run;

The report displays summary statistics for every combination of the three class variables.
A partial report is shown below:

772 Chapter 23 • Querying Data Efficiently

The output data set contains summary statistics for the following:

• all possible combinations (1-way, 2-way, and 3-way) of the three class variables:

• Employee_Gender

• Department

• Employee_Country

• Department and Employee_Gender

• Employee_Country and Employee_Gender

• Employee_Country and Department

• Employee_Country and Department and Employee_Gender

• the entire data set

A partial view of the output data set is shown below:

Comparing Tools for Summarizing Data 773

Understanding Types
Each combination of class variables that is used to calculate and group statistics for
PROC MEANS is called a type.

For example, the following basic PROC MEANS step specifies the three class variables
a, b, and c:

proc means data=lib.dataset mean;
 class a b c;
 var salary;
 output out=summary1
 mean=average;
run;

This PROC MEANS step generates seven possible types (combinations of the three
variables):

Variable Combined Dimension

a 1-way

b 1-way

c 1-way

b * c 2-way

a * b 2-way

a * c 2-way

a * b * c 3-way

The _TYPE_ variable has a unique value for each combination of class variables, based
on their order in the CLASS statement. For example, for each of the seven types (seven
possible combinations of three class variables) shown above, SAS assigns a value to
TYPE as follows:

TYPE
Value Description of Combination

Variables
Combined Dimension

1 rightmost variable only c 1-way

2 middle variable only b 1-way

3 rightmost variable and middle variable b

*

c

2-way

4 leftmost variable a 1-way

774 Chapter 23 • Querying Data Efficiently

TYPE
Value Description of Combination

Variables
Combined Dimension

5 leftmost variable and rightmost variable a

*

c

2-way

6 leftmost variable and middle variable a

*

b

2-way

7 rightmost variable and middle variable and
leftmost variable

a

*

b

*

c

3-way

As the number of class variables increases, so does the number of types. However, the
highest _TYPE_ (7, in this example) always indicates the combination of all class
variables.

SAS includes the _TYPE_ variable in the output data set generated by PROC MEANS.
Observations are generated in order of increasing values of the _TYPE_ variable:

The first observation in the output data set has a _TYPE_ value of 0, which indicates that
the statistics are generated for the entire data set.

By default, the output data set generated by PROC MEANS contains a separate
observation for each unique combination of class variable values within each type. Each
unique combination of values within a type is called a level of that type. In the output
data set linked above, there are 17 levels for type 2. Therefore, 17 observations have a
TYPE value of 2.

The report generated by PROC MEANS contains only the combinations of all class
variables, _TYPE_=7. _TYPE_ is not displayed in the report.

Comparing Tools for Summarizing Data 775

Using the TYPES Statement in PROC MEANS to Combine Class
Variables

The TYPES statement specifies the desired combinations of class variables. The CLASS
statement is required with the TYPES statement.

General form, TYPES statement:

TYPES request(s);

Here is an explanation of the syntax:

request(s)
specifies the desired combination or combinations of class variables. A request includes one
of the following:

• one class variable name

• several class variable names separated by asterisks

• () to request overall results (_TYPE_=0)

To request combinations of class variables more concisely, you can use a grouping
syntax by placing parentheses around several variables and joining other variables or
variable combinations. The following examples of TYPES statements illustrate the use
of grouping syntax:

Example with Grouping Syntax
Equivalent Example without Grouping
Syntax

types a*(b c); types a*b a*c;

types (a b)*(c d); types a*c a*d b*c b*d;

types (a b c)*d; types a*d b*d c*d;

types () a*(b c); types a*b*c a*b a*c;

Example: Using the TYPES Statement in PROC MEANS
Suppose you want to calculate average employee salaries, as in the previous example.
This time, you want the two combinations of class variables shown below:

• Employee_Country and Department

• Employee_Country and Employee_Gender

To do this, you can add a TYPES statement to the PROC MEANS step:

proc means data=company.organization_dim mean;
 class employee_country department
 employee_gender;
 var salary;
 types employee_country*department
 employee_country*employee_gender;
 output out=summary mean=average;

776 Chapter 23 • Querying Data Efficiently

run;

This PROC MEANS step generates both a report data set and an output data set. The
report, shown below, has a separate table for each of the two combinations specified in
the TYPES statement:

The output data set includes only the combinations that are specified in the TYPES
statement. A partial view of the output data set is shown below:

Comparing Tools for Summarizing Data 777

Using the NWAY Option in PROC MEANS to Combine Class
Variables

Another way to specify a combination of class variables is to use the NWAY option in
PROC MEANS:

General form, NWAY option in the PROC MEANS statement:

PROC MEANS NWAY;

Here is an explanation of the syntax:

NWAY
specifies that the output data set contains statistics for the combination of all specified class
variables (only observations with the highest _TYPE_ value).

The NWAY option generates summary statistics for every combination of all class
variables. Therefore, to generate statistics for different combinations of class variables,
you can specify a separate PROC MEANS step with the NWAY option for each
combination.

Example: Using the NWAY Option in Multiple PROC MEANS Steps
Suppose you want to calculate average employee salaries and to group results for the
following combinations of class variables:

• Employee_Country and Department

• Employee_Country and Employee_Gender

You can use two PROC MEANS steps, each containing the NWAY option, as shown
below. The first PROC MEANS step generates statistics for the first combination of
class variables, and the second PROC MEANS step generates statistics for the second
combination of class variables.

proc means data=company.organization_dim nway;
 class employee_country department;
 var salary;
 output out=summary1
 n=employees
 mean=average;
run;

proc means data=company.organization_dim nway;

778 Chapter 23 • Querying Data Efficiently

 class employee_country employee_gender;
 var salary;
 output out=summary2
 n=employees
 mean=average;
run;

When processing this program, SAS must read the data set once for each PROC
MEANS step. This processing is not efficient.

This program generates two reports and two output data sets. The report, shown in part
below, has a separate table for each PROC MEANS step:

A partial view of each output data set is shown below:

Comparing Tools for Summarizing Data 779

Figure 23.2 SAS Data Set Work.Summary1

Figure 23.3 SAS Data Set Work.Summary2

Using the WHERE= Output Data Set Option in PROC MEANS to
Select Desired Types

Yet another way to select desired types is to use the WHERE= output data set option in
the OUTPUT statement:

General form, WHERE= output data set option in a basic OUTPUT statement:

OUTPUT <OUT=SAS-data-set> (WHERE=
(where-expression-1 <logical-operator where-expression-n>));

Here is an explanation of the syntax:

SAS-data-set
specifies the output data set as a 1-level or 2-level name.

where-expression
is an arithmetic or logical expression that consists of a sequence of operators, operands, and
SAS functions. The expression must be enclosed in parentheses.

logical-operator
can be AND, AND NOT, OR, or OR NOT.

When you use the WHERE= output data set option in the OUTPUT statement, SAS
must calculate all possible combinations of class variables. Subsetting does not occur
until the results are written to the output data set.

780 Chapter 23 • Querying Data Efficiently

Example: Using the WHERE= Output Data Set Option in PROC
MEANS

Suppose you want to calculate average employee salaries and select results for two 2-
way combinations of the three class variables Employee_Country, Department, and
Employee_Gender. All possible combinations of these variables are listed below:

TYPE Value Variables Combined Dimension

1 Employee_Gender 1-way

2 Department 1-way

3 Department * Employee_Gender 2-way

4 Employee_Country 1-way

5 Employee_Country * Employee_Gender 2-way

6 Employee_Country * Department 2-way

7 Employee_Country * Department * Employee_Gender 3-way

To specify the types by _TYPE_ value, you can use the WHERE= output data set option
in the OUTPUT statement as shown below:

proc means data=company.organization_dim;
 class employee_country department
 employee_gender;
 var salary;
 output out=summary
 (where=(_type_ in (5,6)))
 n=employees
 mean=average;
run;

A partial view of the report is shown below. The PROC MEANS report represents the
highest type, the NWAY combination, type 7, which was not requested.

Comparing Tools for Summarizing Data 781

A partial view of the output data set Work.Summary is shown below. The output data set
includes types 5 and 6, as requested.

Next, compare the resources used by these summarization techniques:

• the TYPES statement in PROC MEANS

• the NWAY option in multiple PROC MEANS steps

• the WHERE= output data set option in PROC MEANS

Comparative Example: Displaying Summary Statistics for
Combinations of Class Variables

Overview
Suppose you want to summarize the data set Retail.Organization by calculating average
employee salaries for two 3-way combinations of four class variables:

• Employee_Country, Department, and Employee_Gender

• Department, Section, and Employee_Gender

You can use several techniques to produce a report and one or more output data sets.

The following programs compare three techniques. You can use these samples as models
for creating benchmark programs in your own environment. Your results might vary
depending on the structure of your data, your operating environment, and the resources
that are available at your site.

782 Chapter 23 • Querying Data Efficiently

Programming Techniques

 TYPES Statement in PROC MEANS

This program calculates the average employee salary for two 3-way combinations of the class
variables Employee_Country, Department, Employee_Gender, and Section. The TYPES
statement requests the two combinations. The program generates a report data set and an output
data set named Summary.

proc means data=retail.organization mean;
 class employee_country department
 employee_gender section;
 var salary;
 types employee_country*department*employee_gender
 department*section*employee_gender;
 output out=summary
 n=employees
 mean=average;
run;

 NWAY Option in Two PROC MEANS Steps

Each of the two PROC MEANS steps in this program calculates the average employee salary
for a combination of three of the four class variables Employee_Country, Department,
Employee_Gender, and Section. In each step, the NWAY option specifies that all three variables
that are specified in the CLASS statement should be combined. The program generates two
reports and two output data sets named Summary1 and Summary2.

proc means data=retail.organization nway;
 class employee_country department
 employee_gender;
 var salary;
 output out=summary1
 n=employees
 mean=average;
run;

proc means data=retail.organization nway;
 class department section
 employee_gender;
 var salary;
 output out=summary2
 n=employees
 mean=average;
run;

 WHERE= Option in PROC MEANS

This program calculates the average employee salary for two 3-way combinations of the class
variables Employee_Country, Department, Employee_Gender, and Section. The WHERE= data
set option in the OUTPUT statement specifies the two combinations by their _TYPE_ values.
The program generates a report and an output data set named Summary3.

proc means data=retail.organization;
 class employee_country department
 employee_gender section;
 var salary;
 output out=summary3 (where=(_type_ in (7,14)))
 n=employees
 mean=average;
run;

Comparing Tools for Summarizing Data 783

General Recommendations
• To summarize data for particular combinations of class variables, use the TYPES

statement in PROC MEANS.

Additional Features
The WAYS statement in PROC MEANS provides yet another way to display summary
statistics for combinations of class variables. In the WAYS statement, you specify one or
more integers that define the number of class variables to combine in order to form all
the unique combinations of class variables.

For example, the following program uses the WAYS statement to create summary
statistics for the following combinations of the three class variables Employee_Country,
Department, and Employee_Gender:

• each individual variable (all 1-way combinations)

• all 2-way combinations (Employee_Country and Department, Employee_Country
and Employee_Gender, and Employee_Gender and Department)

proc means data=company.organization mean;
 class employee_country department
 employee_gender;
 var salary;
 ways 1 2;
 output out=summary
 mean=average;
run;

The WAYS statement can be used instead of or in addition to the TYPES statement.

Note: For more information about the WAYS statement, see the SAS documentation.

Summary

Using an Index for Efficient WHERE Processing
When processing a WHERE expression, SAS determines whether it is more efficient to
access observations sequentially, by examining all observations, or directly, by using an
index to access specific observations. Using an index to process a WHERE expression
might improve performance and is referred to as optimizing the WHERE expression. By
deciding whether to create an index, you play a role in determining which access method
SAS can use.

In order to decide whether to use an index, you must evaluate the benefits and costs of
using an index.

SAS performs a series of steps to determine whether to process a WHERE expression by
using an index or by reading all observations sequentially.

Identifying Available Indexes
First, SAS determines whether there are any existing indexes that might be used to
process the WHERE expression. Specifically, SAS checks the variable in each condition
in the WHERE expression to determine whether the variable is either a key variable in a

784 Chapter 23 • Querying Data Efficiently

simple index or the first key variable in a composite index. No matter how many indexes
are available, SAS can use only one index to process a WHERE expression. Therefore, if
multiple indexes are available, SAS must choose between them.

It is most common for SAS to use an index to process just one condition in a WHERE
expression. However, in a process called compound optimization, SAS can use a
composite index to optimize multiple conditions on multiple variables, which are joined
with a logical operator such as AND.

Identifying Conditions That Can Be Optimized
Second, SAS looks for operators and functions that can be optimized in the WHERE
conditions that contain key variables. There are also certain operators and functions that
cannot be optimized. For compound optimization, WHERE conditions must meet
slightly different criteria in order to be candidates for optimization.

Estimating the Number of Observations
Third, SAS estimates how many observations are qualified by the index. When multiple
indexes exist, SAS selects the one that seems to produce the fewest qualified
observations (the smallest subset). Whether SAS uses an index depends on the
percentage of observations that are qualified (the size of the subset relative to the size of
the data set). It is more efficient to use direct access for a small subset and sequential
access for a large subset. If SAS estimates that the number of qualified observations is
less than 3% of the data file, SAS automatically uses the index and does not compare
probable resource usage.

To help SAS estimate how many observations would be selected by a WHERE
expression, each index stores 21 statistics called cumulative percentiles, or centiles.
Centiles provide information about the distribution of values for the indexed variable.

Comparing Probable Resource Usage
Fourth, SAS decides whether it is more efficient to satisfy the WHERE expression by
using the index or by reading all observations sequentially. To make the decision, SAS
predicts how many I/O operations are required to satisfy the WHERE expression for
each access method, and then compares the two resource costs.

Several factors affect the number of I/O operations that are required for WHERE
processing, including the following:

• subset size relative to data set size

• number of pages in the data file

• order of the data

• cost to uncompress a compressed file for a sequential read

Data type and length are two other factors that affect index efficiency.

Deciding Whether to Create an Index
When you use a WHERE expression to select a subset, you can use specific guidelines
to decide whether it is efficient to create an index. Depending on factors such as the size
of the subset relative to the size of the data set, you might or might not choose to create
an index.

Summary 785

In most situations, it is best to let SAS determine whether to use an index for WHERE
processing. However, sometimes you might want to control whether SAS uses an
existing index. You can use either of the data set options IDXWHERE= or IDXNAME=,
but not both at the same time, to control index usage. You can specify MSGLEVEL=I to
tell SAS to display information about index usage in the SAS log.

Comparing Procedures That Produce Detail Reports
When you produce a detail report, you can choose between the PRINT procedure and the
SQL procedure. To perform a particular task, a single-purpose tool like PROC PRINT
generally uses fewer computer resources than a multi-purpose tool like PROC SQL.

For detail reports, a PROC PRINT step often, but not always, uses fewer resources than
a PROC SQL step:

• PROC PRINT is usually more efficient than PROC SQL for generating a simple
detail report, a subset detail report, and a sorted detail report.

• PROC PRINT and PROC SQL are likely to use similar resources for generating a
sorted subset detail report.

Comparing Tools for Summarizing Data
SAS provides a variety of tools for summarizing data, including the MEANS procedure
(or SUMMARY procedure), the TABULATE procedure, the REPORT procedure, the
SQL procedure, and the DATA step.

If you summarize data for one class variable, the tools in each of the following groups
are similar in resource usage:

• PROC MEANS (or PROC SUMMARY), PROC REPORT, and PROC TABULATE

• PROC SQL and the DATA step

However, the relative efficiency of the two groups of tools varies according to the shape
of the data.

You can use PROC MEANS in a variety of ways to produce summary statistics for
combinations of class variables. Each combination of class variables is called a type.

To summarize data for all combinations of all class variables, you can use a basic PROC
MEANS step (or PROC SUMMARY step). To produce summary statistics for specific
combinations of class variables, you can use PROC MEANS in the following ways :

• the TYPES statement in a PROC MEANS step

• the NWAY option in multiple PROC MEANS steps

• the WHERE= output data set option in a PROC MEANS step

These three techniques vary in efficiency; the TYPES statement in PROC MEANS is the
most efficient.

You can also use the WAYS statement in PROC MEANS to produce summary statistics
for specific combinations of class variables.

786 Chapter 23 • Querying Data Efficiently

Quiz
Select the best answer for each question. After completing the quiz, check your answers
using the answer key in the appendix.

1. Why can using an index reduce the number of I/O operations that are required for
accessing a small subset?

a. Using an index requires larger I/O memory buffers, which can hold more pages.

b. The index does not have to be loaded into a memory buffer.

c. The number of observations that SAS has to load into the program data vector
(PDV) is decreased.

d. The number of pages that SAS has to load into I/O buffers is decreased.

2. You want to select a subset of observations in the data set Company.Products, and
you have defined a simple index on the variable Rating. SAS cannot use the index to
process which of the following WHERE statements?

a. where rating is missing;

b. where rating=int(rating);

c. where rating between 3.5 and 7.5;

d. where rating=5.5;

3. In which of the following situations is sequential access likely to be more efficient
than direct access for WHERE processing?

a. The subset contains more than 75% of the observations in the data set.

b. The WHERE expression specifies both key variables in a single composite index.

c. The data is sorted on the key variable.

d. The data set is very large.

4. You want to summarize data and group it by one variable. Which of the following
tools could not be used?

a. The DATA step with BY-group processing.

b. The DATA step without BY-group processing.

c. PROC SQL with a GROUP BY clause.

d. PROC MEANS with a CLASS statement.

5. Which of the following techniques does not summarize data for specific
combinations of class variables?

a. the NWAY option in multiple PROC MEANS steps.

b. the TYPES statement in a PROC MEANS step.

c. the WHERE= output data set option in a PROC MEANS step.

d. a basic PROC MEANS step.

Quiz 787

788 Chapter 23 • Querying Data Efficiently

Chapter 24

Creating Functions with PROC
FCMP

Overview . 789
Introduction . 789

Using PROC FCMP . 789
Overview . 789
Writing a PROC FCMP Step . 790

About PROC FCMP . 790

PROC FCMP Statement . 791

FUNCTION Statement . 791

RETURN Statement . 791

Using the Newly Defined Function . 791

Using PROC FCMP to Create a Subroutine . 792

Quiz . 793

Overview

Introduction
The SAS Function Compiler (FCMP) procedure enables you to create, test, and store
user-defined functions, CALL routines, and subroutines for use in other SAS procedures
and the DATA step.

Using PROC FCMP

Overview
The FCMP procedure uses the SAS language compiler to create user-defined functions.
The compiler subsystem generates machine language code for the computer on which
SAS is running.

789

You can use the functions and subroutines that you create in PROC FCMP with the
DATA step, the WHERE statement, the Output Delivery System (ODS), and with the
following procedures:

PROC CALIS PROC OPTLSO
PROC GA PROC QUANTREG
PROC GENMOD PROC REPORT COMPUTE blocks
PROC GLIMMIX SAS Risk Dimensions procedures
PROC MCMC PROC SEVERITY
PROC MODEL PROC SIMILARITY
PROC NLIN PROC SQL (functions with array arguments are not

supported)
PROC NLMIXED PROC SURVEYPHREG
PROC NLP PROC VARMAX

Writing a PROC FCMP Step
The following syntax is for PROC FCMP:

General form for a basic PROC FCMP step to create and save a function.

PROC FCMP OUTLIB= libref.data-set.package;
Function function-name(argument-1<$>,...,argument-n<$><length>;
programming statements;
Return (expression);
ENDSUB;

QUIT;

Here is an explanation of the syntax:

PROC FCMP
creates, tests, and stores SAS functions for use by other SAS procedures and the DATA step.

ENDSUB
ends the function’s declaration.

FUNCTION
begins the definition of the function. The FUNCTION definition ends with the ENDSUB
statement.

programming statements
are a series of DATA step statements that describe the function’s actions.

OUTLIB
specifies the package where routines are stored.

RETURN
specifies the value that is returned by the function.

About PROC FCMP
PROC FCMP can create independent and reusable functions, CALL routines, and
subroutines using DATA step syntax that is stored in a data set. The following example

790 Chapter 24 • Creating Functions with PROC FCMP

shows how to create and save functions with PROC FCMP. This example creates a
function called ReverseName. The function rearranges the order of customer names
from last name, first name to first name, last name (for example, Lu, Patrick becomes
Patrick Lu).

proc fcmp outlib=orion.functions.dev;
 function ReverseName(name $) $40;
 return(catx('',scan(name,2,','),scan(name,1,',')));
 endsub;
quit;

PROC FCMP Statement
The PROC FCMP statement begins the FCMP step. The OUTLIB= option specifies the
three-level name of an output package where the compiled functions are stored. Function
and subroutine names must be unique within a package.

proc fcmp outlib=orion.functions.dev;

The OUTLIB= option is required.

FUNCTION Statement
The definition of a function begins with the FUNCTION statement and ends with an
ENDSUB statement.

The following code creates a function called ReverseName.

 function ReverseName(name $) $40;

RETURN Statement
The RETURN statement specifies the value that is returned by the function.

 return(catx('',scan(name,2,','),scan(name,1,',')));

Using the Newly Defined Function
You must specify the CMPLIB= system option in order to use the new function in a
DATA step or supported PROC step. The CMPLIB= system option specifies one or
more data sets that store user-defined functions. In this example, function ReverseName
is saved to orion.functions.

options cmplib=orion.functions;

The function ReverseName is called in the following code.

options cmplib=orion.functions;
data work.emplist;

Using the Newly Defined Function 791

 set orion.employeeaddresses;
 NewName=ReverseName(EmployeeName);
run;

Using PROC FCMP to Create a Subroutine
The SUBROUTINE statement names the block of code that is processed and specifies
the parameters. The OUTARGS statement specifies the parameters that the subroutine
updates. The ENDSUB statement ends the definition of the subroutine. In the following
example, the subroutine CALC_YEARS is defined to calculate years to maturity from
SAS date variables:

subroutine calc_years(maturity, current_date, years);
 outargs years;
 years=(maturity - current_date) / 365.25;
endsub;

The following code is an example of calling the CALC_YEARS subroutine:

data _null_;
 myCD='23jul2017'd;
 now=today();
 how_many_years=.;
 call calc_years(myCD,now,how_many_years);
 put how_many_years=;
run;

The following table lists the differences between functions and subroutines:

Descriptions Function Subroutine

Accepts arguments yes yes

Modifies arguments no yes

Returns a value yes no

Is an expression yes no

Is a statement no yes

Can be part of a statement yes no

Begins with CALL no yes

For more information about PROC FCMP, see “PROC FCMP” in the Base SAS
Procedures Guide.

792 Chapter 24 • Creating Functions with PROC FCMP

Quiz
Select the best answer for each question. After completing the quiz, check your answers
using the answer key in the appendix.

1. Which of the following characteristics do not apply to subroutines?

a. Parameters are passed by value.

b. The ENDSUB statement ends the definition of the subroutine.

c. can modify parameters

d. Do not return a value.

2. You can create one function and one CALL routine in a single FCMP procedure step.

a. True

b. False

3. The OUTLIB= option is a required option in the PROC FCMP function.

a. True

b. False

4. The OUTARGS statement is used with the FUNCTION and SUBROUTINE
statements.

a. True

b. False

Quiz 793

794 Chapter 24 • Creating Functions with PROC FCMP

Part 5

Quiz Answer Keys

Appendix 1
Quiz Answer Keys . 797

795

796

Appendix 1

Quiz Answer Keys

Chapter 1: Performing Queries Using PROC SQL . 798

Chapter 2: Performing Advanced Queries Using PROC SQL 799

Chapter 3: Combining Tables Horizontally Using PROC SQL 800

Chapter 4: Combining Tables Vertically Using PROC SQL 801

Chapter 5: Creating and Managing Tables Using PROC SQL 802

Chapter 6: Creating and Managing Indexes Using PROC SQL 803

Chapter 7: Creating and Managing Views Using PROC SQL 804

Chapter 8: Managing Processing Using PROC SQL . 806

Chapter 9: Introducing Macro Variables . 807

Chapter 10: Processing Macro Variables at Execution Time 808

Chapter 11: Creating and Using Macro Programs . 809

Chapter 12: Storing Macro Programs . 811

Chapter 13: Creating Indexes . 812

Chapter 14: Combining Data Vertically . 813

Chapter 15: Combining Data Horizontally . 814

Chapter 16: Using Lookup Tables to Match Data . 816

Chapter 17: Formatting Data . 817

Chapter 18: Modifying SAS Data Sets and Tracking Changes 818

Chapter 19: Introduction to Efficient SAS Programming 819

Chapter 20: Controlling Memory Usage . 819

Chapter 21: Controlling Data Storage Space . 820

Chapter 22: Using Best Practices . 820

Chapter 23: Querying Data Efficiently . 821

Chapter 24: Creating Functions with PROC FCMP . 822

797

Chapter 1: Performing Queries Using PROC SQL
1. Correct answer: a

The SELECT clause in the program is written incorrectly. Columns that are listed in
the clause must be separated by commas, not just blanks.

2. Correct answer: a

There are two statements, the PROC SQL statement and the SELECT statement. The
SELECT statement contains three clauses.

3. Correct answer: b

The SELECT clause lists the columns from both tables to be queried. You must use a
prefix with the Address column because it appears in both tables. The prefix
specifies the table from which you want the column to be read.

4. Correct answer: b

The ORDER BY clause specifies how the rows are to be sorted. You follow the
keywords ORDER BY by one or more column names or numbers, separated by
commas.

5. Correct answer: c

In the FROM clause, you list the names of the tables to be queried, separated by
commas.

6. Correct answer: b

To create a new column and assign a column alias to the column, you specify the
following in the SELECT clause, in the order shown here: an expression,
(optionally) the keyword AS, and a column alias. The case that you use when you
create the column name is the one that will be displayed in the output.

7. Correct answer: c

The GROUP BY clause is used in queries that include one or more summary
functions. If you specify a GROUP BY clause in a query that does not contain a
summary function, your clause is changed to an ORDER BY clause.

8. Correct answer: c

The CREATE TABLE statement enables you to store your results in a SAS table
instead of displaying the query results as a report.

9. Correct answer: d

If you are joining two tables that contain a same-named column, then you must use a
prefix to specify the table(s) from which you want the column to be read. Remember
that if you join tables that don't contain columns that have matching data values, you
can produce a huge amount of output. Be sure to specify a WHERE clause to select
only the rows that you want.

10. Correct answer: b

The table names that are specified in the FROM clause must be separated by
commas. Note that you can specify columns in the WHERE clause that are not
specified in the SELECT clause.

798 Appendix 1 • Quiz Answer Keys

Chapter 2: Performing Advanced Queries Using
PROC SQL

1. Correct answer: d

To remove duplicate values from PROC SQL output, you specify the DISTINCT
keyword before the column name in the SELECT clause.

2. Correct answer: d

To list rows that have no data (that is, missing data), you can use either of these other
conditional operators: IS MISSING or IS NULL. The NOT EXISTS operator is used
specifically with a subquery, and resolves to true if the subquery returns no values to
the outer query.

3. Correct answer: b

When a WHERE clause references a new column that was defined in the SELECT
clause, the WHERE clause must specify the keyword CALCULATED before the
column name.

4. Correct answer: c

To determine how PROC SQL calculates and displays output from summary
functions, consider the key factors. This PROC SQL query has a GROUP BY clause,
and it does not specify any columns that are outside of summary functions.
Therefore, PROC SQL calculates and displays the summary function for each group.
There are 7 unique values of FlightNumber, but the HAVING clause specifies only
the flights that have an average number of boarded passengers greater than 150.
Because 4 of the 7 flight numbers meet this condition, the output will contain 4 rows.

5. Correct answer: b

Your PROC SQL query needs to use data from both tables. The outer query reads the
name and number of books checked out from Library.Circulation. The multiple-
value noncorrelated subquery selects the names of volunteers from
Library.Volunteers and passes these names back to the outer query. The outer query
then selects data for only the volunteers whose names match names returned by the
subquery. The subquery is indented under the outer query's WHERE clause, is
enclosed in parentheses, and does not require a semicolon inside the closing
parenthesis.

6. Correct answer: c

A noncorrelated subquery is a nested query that executes independently of the outer
query. The outer query passes no values to the subquery.

7. Correct answer: a

The syntax in this PROC SQL query is valid, so the first statement is false. The
query contains a correlated subquery, so the second statement is true. The
VALIDATE keyword is used after the PROC SQL statement, so the third statement is
true. And the last statement correctly indicates that the VALIDATE keyword causes
the SAS log to display a special message if the query syntax is valid, or standard
error messages if the syntax is not valid.

8. Correct answer: c

Chapter 2: Performing Advanced Queries Using PROC SQL 799

In this PROC SQL query, the outer query uses the operator NOT EXISTS with a
correlated subquery. The outer query selects all rows from Charity.Donors whose
names do not appear in Charity.Current. In other words, this PROC SQL query
output lists all donors who did not make a contribution in the current year.

9. Correct answer: c

The third statement about data remerging is correct.

10. Correct answer: c

PROC SQL can execute this query, but the query will not produce the results that
you want. If you omit the GROUP BY clause in a query that contains a HAVING
clause, then the HAVING clause and any summary functions treat the entire table as
one group. Without a GROUP BY clause, the HAVING clause in this example
calculates the average circulation for the table as a whole (all books in the library),
not for each group (each category of books). The output contains either all the rows
in the table (if the average circulation for the entire table is less than 2500) or none of
the rows in the table (if the average circulation for the entire table is greater than
2500).

Chapter 3: Combining Tables Horizontally Using
PROC SQL

1. Correct answer: a

A Cartesian product is returned when join conditions are not specified in a PROC
SQL join. In a Cartesian product, each row from the first table is combined with
every row from the second table.

2. Correct answer: b

This PROC SQL query is an inner join. It combines the rows from the first table that
match rows from the second table, based on the matching criteria specified in the
WHERE clause. Columns are not overlaid, so all columns from the referenced tables
(including any columns with duplicate names) are displayed. Any unmatched rows
from either table are not displayed.

3. Correct answer: d

This PROC SQL query is a right outer join, which retrieves all rows that match
across tables, based on the join conditions in the ON clause, plus nonmatching rows
from the right (second) table.

4. Correct answer: d

There are two valid formats for writing a PROC SQL inner join. The PROC SQL
query shown at the top of this question uses the first inner join format, which does
not use a keyword to indicate the type of join. The alternate format is similar to an
outer join and uses the keyword INNER JOIN.

5. Correct answer: a

This PROC SQL query is a left outer join, which retrieves all rows that match across
tables (based on the join conditions in the ON clause), plus nonmatching rows from

800 Appendix 1 • Quiz Answer Keys

the left (first) table. No columns are overlaid, so all columns from both tables are
displayed.

6. Correct answer: c

Inner joins combine the rows from the first table that match rows from the second
table, based on one or more join conditions in the WHERE clause. The columns
being matched must have the same data type, but they are not required to have the
same name. For joins, the tables being joined can have different numbers of columns,
and the rows do not need to be sorted.

7. Correct answer: a

Unlike a table, an in-line view exists only during query execution. Because it is
temporary, an in-line view can be referenced only in the query in which it is defined.

8. Correct answer: c

In order to generate the same output as the DATA step and PRINT steps, the PROC
SQL full outer join must use the COALESCE function with the duplicate columns
specified as arguments.

9. Correct answer: c

A maximum of 256 tables can be combined in a single inner join. If the join involves
views (either in-line views or PROC SQL views), it is the number of tables that
underlie the views, not the number of views, that counts towards the limit of 256.

10. Correct answer: d

The use of summary functions does not require the use of table aliases. All of the
other statements about table aliases that are shown here are true.

Chapter 4: Combining Tables Vertically Using
PROC SQL

1. Correct answer: c

In set operations that use the operator EXCEPT, INTERSECT, or UNION, and no
keyword, columns are overlaid based on their position in the SELECT clause. It does
not matter whether the overlaid columns have the same name. When columns are
overlaid, the column name is taken from the first table that is specified in the
SELECT clause.

2. Correct answer: d

By default, when processing a set operation that contains the EXCEPT,
INTERSECT, and UNION set operators, PROC SQL makes an extra pass through
the data to eliminate duplicate rows. The keyword ALL is used to suppress that
additional pass through the tables, allowing duplicate rows to appear in the result set.
Because the OUTER UNION set operator displays all rows, the keyword ALL is
invalid and cannot be used with OUTER UNION.

3. Correct answer: d

The output contains all rows that are unique in the combined set of rows from both
tables, and the columns have been overlaid by position. This output is generated by a
set operation that uses the set operator UNION without keywords.

Chapter 4: Combining Tables Vertically Using PROC SQL 801

4. Correct answer: a

The PROC SQL set operation that uses the set operator OUTER UNION without a
keyword is the only code shown that does not overlay any columns in output.

5. Correct answer: a

The keyword CORRESPONDING (CORR) can be used alone or together with the
keyword ALL.

6. Correct answer: b

This PROC SQL output includes all rows from the table Pets that do not appear in
the table Dogs. No duplicates are displayed. A PROC SQL set operation that
contains the set operator EXCEPT without keywords produces these results.

7. Correct answer: b

The set operator EXCEPT returns all the rows in the first table that do not appear in
the second table. The keyword ALL suppresses the extra pass that PROC SQL
makes through the data to eliminate duplicate rows. The EXCEPT operator when
used alone will also produce the output specified in the question.

8. Correct answer: c

The set operator UNION returns all rows that are unique in the combined set of rows
from both tables.

9. Correct answer: c

The set operator INTERSECT returns all rows that are common to both tables.
Specifying the keyword ALL suppresses PROC SQL's additional pass through the
data to eliminate duplicate rows.

10. Correct answer: a

The DATA step returns all rows from the first table along with all rows from the
second table, maintaining the order specified in the BY statement. Same-named
columns are overlaid by default. The set operator OUTER UNION returns all rows
from both tables. The CORR keyword causes same-named columns to be overlaid.
The ORDER BY clause causes the result rows to be ordered by values of the
specified column (LName).

Chapter 5: Creating and Managing Tables Using
PROC SQL

1. Correct answer: b

The CREATE TABLE statement that includes a LIKE clause copies the column
names and attributes from an existing table into a new table. No rows of data are
inserted.

2. Correct answer: a

802 Appendix 1 • Quiz Answer Keys

The CREATE TABLE statement that includes the AS keyword and query clauses
creates a table and loads the results of the query into the new table. The WHERE
clause selects only the rows for the level-1 flight attendants.

3. Correct answer: c

UNDO POLICY=REQUIRED is the default setting for PROC SQL. This setting
undoes all inserts or updates if 1 or more rows violate the integrity constraint criteria,
and restores the table to its original state before the inserts or updates.

4. Correct answer: b

The NOT NULL integrity constraint specifies that data is required and cannot have a
null (missing) value.

5. Correct answer: d

The DELETE statement deletes rows that are specified in the WHERE clause from
the table. If no WHERE clause is specified, all rows are deleted. The DROP TABLE
statement drops (deletes) an entire table; the syntax shown in option c is not valid.

6. Correct answer: b

The UPDATE statement that includes a SET clause is used to modify rows in a table.
WHEN-THEN clauses in the CASE expression enable you to update a column value
based on specified criteria.

7. Correct answer: a

The INSERT statement is used to insert new rows into a new or existing table. There
is no LOAD statement in PROC SQL, VALUES is a clause, and the CREATE
TABLE statement is used to create a table.

8. Correct answer: d

The ALTER TABLE statement is used to modify attributes of existing columns
(include the MODIFY clause), add new column definitions (include the ADD
clause), or delete existing columns (include the DROP clause).

9. Correct answer: c

The DESCRIBE TABLE statement lists the column attributes for a specified table.

10. Correct answer: a

The CREATE TABLE statement can include column specifications to create an
empty table. The entire group of column specifications must be enclosed in a single
set of parentheses. You must list each column's name, data type, and (for character
columns) length. The length is specified as an integer in parentheses. Multiple
column specifications must be separated by commas.

Chapter 6: Creating and Managing Indexes Using
PROC SQL

1. Correct answer: d

The index that is specified is based on one column, so it is a simple index. In the
CREATE INDEX statement, you specify the index name after the keywords
CREATE INDEX. You do not include a keyword to specify that this is a simple

Chapter 6: Creating and Managing Indexes Using PROC SQL 803

index. The name of the key column is specified in parentheses after the table name.
The name of a simple index must be the same as the name of the key column.

2. Correct answer: b

To create a unique index, the UNIQUE keyword is added to the CREATE INDEX
statement, between the keywords CREATE and INDEX.

3. Correct answer: d

A composite index is based on two or more columns. In the CREATE INDEX
statement, you specify the index name after the keywords CREATE INDEX. You do
not include a keyword to specify that this is a composite index. The names of the key
columns are specified in parentheses after the table name. The name of a composite
index cannot be the same as the name of any columns in the table.

4. Correct answer: a

Specifying the option MSGLEVEL=I causes informational messages about index
usage to be written to the SAS log.

5. Correct answer: c

The DROP INDEX statement drops one or more specified indexes from a table. You
specify the name of each index to be dropped after the keywords DROP INDEX. The
table name is specified after the keyword FROM. The type of index and the names of
the indexed columns are not specified in the statement.

6. Correct answer: b

The DESCRIBE TABLE statement lists all indexes for one or more tables that you
specify, along with other information about the table(s).

7. Correct answer: a

The IDXWHERE=YES data set option tells SAS to use the best available index,
even if the index does not optimize performance.

8. Correct answer: c

Indexes can be created on either character or numeric columns.

9. Correct answer: d

Using an index will optimize specific classes of PROC SQL queries. A query in
which the key column is specified only in a SELECT clause is not one of these
queries.

10. Correct answer: c

The IDXNAME= data set option directs PROC SQL to use an index that you specify.
The specified index must exist and must be suitable by having at least its first or only
column match the condition in the WHERE expression.

Chapter 7: Creating and Managing Views Using
PROC SQL

1. Correct answer: a

A PROC SQL view accesses the most current underlying data and can be joined with
tables or other views. In addition, a PROC SQL view can

804 Appendix 1 • Quiz Answer Keys

• be used in SAS programs in place of an actual SAS data file

• be derived from one or more tables, PROC SQL views, or DATA step views.

2. Correct answer: d

PROC SQL views are useful because they

• often save space (a view is usually quite small compared with the data that it
accesses)

• prevent users from continually submitting queries to omit unwanted columns or
rows

• hide complex joins or queries from users.

In addition, PROC SQL views

• ensure that input data sets are always current, because data is derived from tables
at execution time

• can be used to shield sensitive or confidential columns from users while enabling
the same users to view other columns in the same table.

3. Correct answer: c

You use the CREATE VIEW statement to create a view. The keywords CREATE
VIEW are followed by the name of the view and the keyword AS.

4. Correct answer: b

The DESCRIBE VIEW statement displays the view definition in the SAS log.

5. Correct answer: a

A view can be used in a PROC SQL step just as you would use an actual SAS table.

6. Correct answer: d

The USING clause enables you to embed a LIBNAME statement in your view
definition. The USING clause must be the last clause in the CREATE VIEW
statement.

7. Correct answer: d

PROC SQL views can access data from a SAS data file, a DATA step view, a PROC
SQL view, or a relational database table.

8. Correct answer: d

When you are working with PROC SQL views, it is best to

• avoid using an ORDER BY clause in a view. If you specify an ORDER BY
clause, the data must be sorted each time the view is referenced.

• avoid creating views that are based on tables whose structure might change. A
view is no longer valid when it references a nonexistent column.

• specify a one-level name in the FROM clause if the view resides in the same
SAS data library as the contributing table(s). Using a one-level name in the
FROM clause prevents you from having to change the view if you assign a
different libref to the SAS data library that contains the view and its contributing
table or tables.

9. Correct answer: c

You can update a PROC SQL view provided that the view does not join or link to
another table, the view does not have a subquery, or you try to update a derived
column. You can update a view that contains a WHERE clause. The WHERE clause

Chapter 7: Creating and Managing Views Using PROC SQL 805

can be in the UPDATE clause or in the view. You cannot update a view that contains
any other clause such as an ORDER BY or a HAVING clause.

10. Correct answer: b

The DROP VIEW statement drops a view from the specified library.

Chapter 8: Managing Processing Using PROC
SQL

1. Correct answer: a

PROC SQL options are specified in the PROC SQL statement. After you specify an
option, it remains in effect until you change it or you re-invoke PROC SQL.

2. Correct answer: b

The INOBS= option restricts the number of rows that PROC SQL takes as input
from any single source. The INOBS= option is similar to the SAS system option
OBS= and is useful for debugging queries on large tables. The OUTOBS= option
restricts the number of rows that PROC SQL displays or writes to a table.

3. Correct answer: c

After you specify an option, it remains in effect until you change it or you re-invoke
PROC SQL. You can use the RESET statement to add, drop, or change PROC SQL
options without re-invoking the SQL procedure. In the correct answer, the RESET
statement adds the NUMBER option and the OUTOBS= option. The resulting output
lists the first 10 rows in the table Sasuser.Flightattendants where the value of
Jobcode equals FA2 and includes a column named Row.

4. Correct answer: d

The DOUBLE | NODOUBLE option specifies whether PROC SQL output is double-
spaced in listing output. The FLOW | NOFLOW | FLOW=n | FLOW=n m option
controls the appearance of wide character columns in listing output. Neither option
affects the appearance of HTML output.

5. Correct answer: d

The STIMER | NOSTIMER option in PROC SQL specifies whether PROC SQL
writes timing information for each statement to the SAS log, instead of as a
cumulative value for the entire procedure. NOSTIMER is the default. In order to use
the STIMER option in PROC SQL, the SAS system option STIMER (the default)
must also be in effect. If you use the system option alone, you will receive timing
information for the entire procedure, not on a statement-by-statement basis.

6. Correct answer: d

A Dictionary table is a special, read-only SAS data view that contains information
about SAS data libraries, SAS data sets, SAS macros, and external files that are in
use or available in the current SAS session. A Dictionary table also contains the
settings for SAS system options that are currently in effect.

7. Correct answer: d

Dictionary tables are created each time they are referenced in a SAS program,
updated automatically, and limited to read-only access. Accessing a Dictionary table

806 Appendix 1 • Quiz Answer Keys

causes SAS to determine the current state of the SAS session and return the
information that you want.

8. Correct answer: d

Dictionary tables can be accessed by running a PROC SQL query against the table,
using the Dictionary libref. Though SAS librefs are usually limited to eight
characters, Dictionary is an automatically assigned, reserved word. You can also
access a Dictionary table by referring to the PROC SQL view of the table that is
stored in the Sashelp library.

9. Correct answer: b

To see how a Dictionary table is defined, submit a DESCRIBE TABLE statement.
The DESCRIBE TABLE statement writes a CREATE TABLE statement to the SAS
log for the table specified in the DESCRIBE TABLE statement.

10. Correct answer: a

To display information about the files in a specific library, specify the column names
in a SELECT statement and the Dictionary table name in the FROM clause. The
library name in the WHERE clause must be specified in uppercase letters because
that is how it is stored in SAS and it must be enclosed in quotation marks.

Chapter 9: Introducing Macro Variables

1. Correct answer: b

Macro variables are always text strings that are independent of SAS data sets. The
value of a macro variable can be up to 65,534 characters long, and the name of a
macro variable can be up to 32 characters long. A macro variable can be defined or
referenced anywhere in a SAS program except within data lines. There are two types
of macro variables: automatic and user-defined.

2. Correct answer: c

To reference a macro variable, you precede the name with an ampersand. You do not
need to enclose the macro variable reference in quotation marks.

3. Correct answer: a

There are two ways to display the value of a macro variable in the SAS log: you can
turn on the SYMBOLGEN system option to list the values of all macro variables that
are used, or you can use the %PUT statement to write specific text, including macro
variable values, to the log.

4. Correct answer: d

You use the %LET statement to define a macro variable. You do not need to enclose
the value in quotation marks. If you do include quotation marks in the assigned value
for a macro variable, the quotation marks will be stored as part of the value.

5. Correct answer: d

Macro variables are stored as character strings. Quotation marks and most special
characters are stored exactly as they are assigned, but leading blanks are stripped
from assigned values. You can also include references to other macro variables
within %LET statements.

6. Correct answer: d

Chapter 9: Introducing Macro Variables 807

SYSDATE9 is an automatic macro variable that stores the date that your SAS session
began in ddmmmyyyy format. You can use the %SYSFUNC function along with any
DATA step function, so both the TODAY() function and the DATE() function will
result in the current date.

7. Correct answer: c

Macro character functions such as %UPCASE and %SUBSTR enable you to
perform character manipulations on your macro variable values.

8. Correct answer: b

The word scanner recognizes four types of tokens. Expressions are not a type of
token.

9. Correct answer: c

You can combine macro variable references with text to create new text strings. If
you precede a macro variable with text, the ampersand at the beginning of the macro
variable name signals the end of the text and the beginning of a macro variable
name. If you want text to follow the macro variable value, you must signal the end of
the macro variable name with a period.

10. Correct answer: c

You use the %QSYSFUNC function in this case, in order to mask the comma that
results from the worddate. format. You must mask this comma since the LEFT()
function expects only one argument.

Chapter 10: Processing Macro Variables at
Execution Time

1. Correct answer: c

Most macro functions are handled by the macro processor before any SAS language
statements in the DATA step are executed. For example, the %LET statement and
any macro variable references (&macvar) are passed to the macro processor before
the program is compiled. In order to create or update macro variables during DATA
step execution, you use the SYMPUT routine.

2. Correct answer: a

To create a macro variable and assign to it a value that is based on the value of a
DATA step variable, you use the SYMPUT routine. In the SYMPUT routine, to
assign a literal string as a macro variable name, you enclose the literal in quotation
marks. To assign a literal string as a value of the macro variable, you enclose the
literal in quotation marks.

3. Correct answer: d

The SYMPUT routine enables you to assign a data set variable as the value of a
macro variable. You can also use the SYMPUT routine to create a series of related
macro variables. Because all macro variable values are character strings, SYMPUT
automatically converts any numeric value that you attempt to assign as a value for a
macro variable. In an SCL program, you must use SYMPUTN rather than SYMPUT
if you are attempting to assign a numeric value to a macro variable.

4. Correct answer: b

808 Appendix 1 • Quiz Answer Keys

You can use multiple ampersands to create an indirect reference when the value of
one macro variable is the name of another. If you enclose the DATA step variable
name in quotation marks in the SYMPUT routine, the new macro variable will have
the same name as the DATA step variable rather than having the DATA step
variable's value as a name. Use the SYMGET function to obtain the value of a macro
variable during the execution of a DATA step.

5. Correct answer: b

If more than four consecutive ampersands precede a name token, rescanning
continues from left to right until no more triggers can be resolved. The Forward Re-
scan rule describes how the macro processor resolves macro variable references that
start with multiple ampersands or with multiple percent signs.

6. Correct answer: d

A macro variable reference (&macvar) is resolved before any SAS language
statements are sent to the compiler. The SYMGET function enables you to obtain the
value of a macro variable during the execution of a DATA step or a PROC SQL step.
The SYMGET function can also be used to obtain the value of a macro variable
during the execution of an SCL program.

7. Correct answer: c

To create a macro variable during the execution of a PROC SQL step, use the INTO
clause of the SELECT statement. In the INTO clause, you precede the name of the
macro variable with a colon.

8. Correct answer: c

You can use multiple ampersands to delay the resolution of a macro variable
reference. You can also combine macro variable references in order to create new
tokens. In this example, the reference &&teach&crs resolves to &teach3 on the first
scan. On the next scan, &teach3 resolves to Forest, Mr. Peter.

9. Correct answer: d

You can use the SYMGET function in an assignment statement to obtain the current
value of a macro variable and to assign that value to a DATA step variable. The
SYMGET function enables you to obtain the value of a macro variable during
execution of a DATA step, a PROC SQL step, or an SCL program.

10. Correct answer: c

The SYMPUT routine can be used in either the DATA step or in an SCL program. In
the DATA step, the SYMPUT routine will perform automatic conversion on numeric
values that you attempt to assign as values for macro variables, using the BEST12.
format. In an SCL program, you should use the SYMPUTN routine if you want to
assign a numeric value as a value for a macro variable. In a PROC SQL step, you
need to use the INPUT function in order to convert macro variable values to numeric
before you compare them to other numeric values.

Chapter 11: Creating and Using Macro Programs

1. Correct answer: b

A macro definition must begin with a %MACRO statement and must end with a
%MEND statement. The macro definition can include macro language statements as

Chapter 11: Creating and Using Macro Programs 809

well as SAS language statements. When the macro is compiled, macro language
statements are checked for syntax errors. The compiled macro is stored in a
temporary SAS catalog by default.

2. Correct answer: c

To include positional parameters in a macro definition, you list the parameters in
parentheses and separate them with commas. When the macro is executed, macro
variables will be created in the local symbol table and will have the same names as
the parameters. You can then use these macro variables within the macro.

3. Correct answer: c

To call a macro that includes positional parameters, you precede the macro name
with a percent sign. You list the values for the macro variables that are defined by the
parameters in parentheses. List values in the same order in which the parameters are
listed, and separate them with commas. Remember that a macro call is not a SAS
language statement and does not require a semicolon.

4. Correct answer: d

In a mixed parameter list, positional parameters must be listed before any keyword
parameters. Both positional and keyword parameters create macro variables in the
local symbol table. To assign a null value to a keyword parameter, you list the
parameter without a value in the macro call.

5. Correct answer: c

When you submit a macro definition, the macro is compiled and is stored in a SAS
catalog. Then when you call the macro, the macro is executed. The macro is
available for execution anytime throughout the current SAS session.

6. Correct answer: d

You can use %IF-%THEN statements to conditionally process code. Within a %IF-
%THEN statement, you must use %DO and %END statements to enclose multiple
statements. %IF-%THEN statements are similar to IF THEN statements in the DATA
step, but they are part of the macro language.

7. Correct answer: d

By using %IF-%THEN statements, you can place whole steps, individual statements,
or parts of statements onto the input stack.

8. Correct answer: c

There are several ways to create macro variables in the local symbol table. Macro
variables that are created by parameters in a macro definition or by a %LOCAL
statement are always created in the local table. Macro variables that are created by a
%LET statement or by the SYMPUT routine inside a macro definition might be
created in the local table as well.

9. Correct answer: b

To define macros with %DO loops you use a %DO statement and a %END
statement. Be sure to precede all keywords in the statements with percent signs since
the %DO and %END statements are macro language statements. Also, be sure to end
these statements with semicolons.

10. Correct answer: d

When you submit a call to a compiled macro, the macro is executed. Specifically, the
macro processor executes compiled macro language statements first. When any SAS
language statements are encountered, the macro processor places these statements
onto the input stack and pauses while they are passed to the compiler and then

810 Appendix 1 • Quiz Answer Keys

executed. Then the macro processor continues to repeat these steps until the
%MEND statement is reached.

Chapter 12: Storing Macro Programs

1. Correct answer: d

The %INCLUDE statement can be used to insert the contents of an external file into
a SAS program. If a macro definition is stored in an external file, the %INCLUDE
statement causes the macro definition to be compiled when it is inserted into the SAS
program. The contents of the macro definition will be written to the SAS log only if
the SOURCE2 option is specified.

2. Correct answer: a

When a macro definition is stored as a catalog SOURCE entry, you must compile it
before you can call it from a SAS program. You compile a macro that is stored as a
catalog SOURCE entry by using the CATALOG access method. This creates a
session-compiled macro that will be deleted at the end of the SAS session. The
PROC CATALOG statement enables you to view a list of the contents of a SAS
catalog.

3. Correct answer: c

To call a macro that is stored in an autocall library, you must specify both the
MAUTOSOURCE system options and the SASAUTOS= system option. The
SASAUTOS= system option can be set to include multiple pathnames or filerefs.
Once these two system options are set, you can call the macro by preceding the
macro name with a percent sign.

4. Correct answer: d

The Stored Compiled Macro Facility enables you to store compiled macros
permanently so that you can reuse them in later SAS sessions without compiling
them again. Compiled macros must be stored in a catalog named Sasmacr, and both
the MSTORED system option and the SASMSTORE= system option must be
specified.

5. Correct answer: b

In order to create a permanently stored compiled macro, you must specify the
MSTORED system option. The SASMSTORE= system option must be specified to
point to the library in which you want your macros to be stored. You must also use
the STORE option in the %MACRO statement.

6. Correct answer: a

When you submit a macro definition, SAS creates a session-compiled macro and
stores it in the temporary SAS catalog Work.Sasmacr. This macro will be deleted at
the end of the SAS session.

7. Correct answer: d

If you store your macro definitions in external files, you can easily share these files
with others. Also, you can edit a macro definition that is stored in an external file
with any text editor, and you can reuse the macro in other SAS sessions.

8. Correct answer: b

Chapter 12: Storing Macro Programs 811

The PROC CATALOG step enables you to view a list of the contents of a SAS
catalog. This might be especially useful if you store your macro definitions as
SOURCE entries in permanent SAS catalogs. You might also use the PROC
CATALOG step to see a list of the session-compiled macros that are stored in
Work.Sasmacr.

9. Correct answer: c

In order to use the Stored Compiled Macro Facility, you need to specify the
MSTORED and SASMSTORE= system options. The Stored Compiled Macro
Facility saves the compiled macro in a permanent SAS catalog, but it does not save
the macro definition. You cannot move a compiled macro across operating systems.
Since you cannot re-create the macro definition from a compiled macro, it is a good
idea to save your source program permanently as well.

10. Correct answer: a

The autocall macro facility stores macro definitions — not compiled macros —
permanently. The first time an autocall macro is called during a SAS session, the
macro is compiled and a session-compiled macro is created in Work.Sasmacr. You
can have multiple autocall libraries that are concatenated, and you can use the
autocall facility in conjunction with the Stored Compiled Macro Facility.

Chapter 13: Creating Indexes

1. Correct answer: d

An index is a separate file from a data set that contains information about
observations within the data set. Specifically, an index contains value/identifier pairs
that indicate the location of observations within the data set and the value of one or
more key variables in that observation.

2. Correct answer: c

To create an index at the same time that you create a data set, you use the INDEX=
option in the DATA statement. You must assign a unique name to a composite index,
while a simple index is automatically assigned the name of the key variable as its
name. You can set the value of the MSGLEVEL= system option to I in order to see
messages about indexes in the SAS log.

3. Correct answer: a

For many maintenance tasks that you perform on a data set, SAS automatically
performs corresponding tasks to the index file. For example, if you delete a data set,
the index file is deleted as well. If you rename a data set with the CHANGE
statement in the DATASETS procedure, SAS automatically renames the index file. If
you copy a data set to a new location with the COPY statement in the DATASETS
procedure, SAS automatically reconstructs the index file in the new location.

4. Correct answer: d

You can use the DATASETS procedure or the SQL procedure to create or delete an
index from an existing data set. You can also rebuild the index with a DATA step and
use the INDEX= option to create an index on the rebuilt data set. However,
rebuilding a data set uses more system resources than adding an index to an existing
data set with either the DATASETS or the SQL procedure.

5. Correct answer: a

812 Appendix 1 • Quiz Answer Keys

You use the CREATE INDEX statement of the SQL procedure to create an index on
an existing data set. In the SQL procedure, you must name the index in the CREATE
INDEX statement; for a simple index, the index name must match the name of the
key variable.

6. Correct answer: b

You can use either the CONTENTS procedure or the CONTENTS statement in the
DATASETS procedure to generate a list of information about a data set, including a
list of existing indexes. All indexes for a data set are stored in a single file that is
separate from but has the same name as the data set.

7. Correct answer: b

An index can improve the efficiency with which SAS is able to access certain
observations in a data set. However, an index is not always useful. SAS will not use
an index to process subsetting IF statements, or other statements that SAS determines
might be more efficiently processed without an index.

Chapter 14: Combining Data Vertically

1. Correct answer: c

When a FILENAME statement is used to assign a fileref to multiple raw data files,
the list of files must be enclosed in a single set of parentheses. Each filename
specified must be enclosed in quotation marks.

2. Correct answer: d

The FILEVAR= option enables you to dynamically change the currently opened
input file to a new input file. The FILEVAR= variable must contain a character string
that is a physical filename. Like automatic variables, the FILEVAR= variable is not
written to the data set.

3. Correct answer: b

The DO statement creates the index variable x and assigns it the values of 8, 9, and
10. The assignment statement assigns the name of a raw data file to Readfile using
the current value of x and the PUT function, which concatenates the values of x with
the text strings c:\data\month and .dat. The COMPRESS function removes blank
spaces from the values of Readfile.

4. Correct answer: a

The TODAY function returns the current date from the system clock as a SAS date
value. The year number is then extracted from the current date using the YEAR
function. The value of the current year, 2003, is assigned to y3. The year values 2002
and 2001 are assigned to y2 and y1, respectively. The PUT function concatenates the
text string c:\data\Y with the year values and the text string .dat.

5. Correct answer: a

The END= option names a variable whose value is controlled by SAS. The value of
the variable is 1 when you read the last record in an input file. Otherwise it is 0. You
can test the value of the END= variable to determine if the DATA step should
continue processing. Like automatic variables, the END= variable is not written to
the SAS data set.

6. Correct answer: b

Chapter 14: Combining Data Vertically 813

PROC APPEND uses the BASE= and DATA= arguments. BASE=SAS-data-set
names the data set to which you want to add observations. DATA=SAS-data-set
names the SAS data set containing observations that you want to append to the end
of the BASE= data set.

7. Correct answer: d

If a DATA= data set contains variables that are longer than the corresponding
variables in the BASE= data set, the FORCE option must be used with PROC
APPEND. Using the FORCE option enables you to append the data sets. However,
some of the variable values may be truncated in the observations that are read in
from the DATA= data set.

8. Correct answer: c

You must use the FORCE option with PROC APPEND when the DATA= data set
contains a variable that does not have the same type as the corresponding variable in
the BASE= data set.

9. Correct answer: a

When the BASE= data set contains more variables than the DATA= data set, missing
values for the additional variables are assigned to the observations that are read in
from the DATA= data set.

10. Correct answer: b

The FORCE option does not need to be used if the BASE= data set contains
variables that are not in the DATA= data set. The FORCE option must be used if

• the DATA= data set contains variables that are not in the BASE= data set

• the variables in the DATA= data set are longer than the corresponding variables
in the BASE= data set

• the variables in the DATA= data set have a different type than the corresponding
variables in the BASE= data set.

Chapter 15: Combining Data Horizontally

1. Correct answer: c

Remember that common variables might not have the same names. Manager and
IDnum are the only two variables listed that match according to type and description.
You can use the RENAME= option to rename one of these variables so that they can
be used as BY variables in the MERGE statement of the DATA step.

2. Correct answer: b

In order to merge multiple data sets in a DATA step, the data sets must have a
common variable. However, if there are variables that are common to at least two of
the input data sets, and if each input data set contains at least one of these variables,
then you can use subsequent DATA steps to merge the data sets. You can also use a
PROC SQL step to merge data sets that do not have common variables.

3. Correct answer: d

814 Appendix 1 • Quiz Answer Keys

You can use PROC SQL to join data from data sets that do not have a single common
variable among them. If you create a new table with the result of an inner join in a
PROC SQL step, the resulting data set can be similar or identical to the result of a
DATA step match-merge.

4. Correct answer: a

In a DATA step match-merge, SAS reads observations from the input data sets
sequentially and match-merges them with observations from other input data sets.
Combined observations are created when SAS reads observations from all input data
sets into the PDV. These observations, as well as any observations that contain
missing or nonmatched values, are then written to the new data set. A PROC SQL
join creates a Cartesian product of matches and then eliminates nonmatching data.

5. Correct answer: c

You can use multiple SET statements in one DATA step to combine observations
from several data sets. The data sets do not need to have a common variable.

6. Correct answer: b

You can use the MEANS procedure to create a new data set that contains a summary
statistic. The NOPRINT option suppresses the default report. The OUTPUT
statement routes the results from the MEANS procedure to a new data set. The VAR
statement specifies one or more numeric variables from the input data set.

7. Correct answer: a

The _N_ variable records how many times the DATA step has iterated. In the
example, _N_ is used to ensure that the first SET statement executes only one time
so the one observation is read from Sasuser.Summary, but the end of file marker is
not read. Since the values in the PDV are not reinitialized after each DATA step
iteration, the value of CARGOSUM is retained throughout DATA step execution.
Therefore, if the value of Cargosum is $1000 in the first iteration, it will be $1000 in
each subsequent iteration as well.

8. Correct answer: d

Totalrev is the accumulator variable of the sum statement, which is automatically
initialized with a value of 0. If the expression in a sum statement produces a missing
value, SAS replaces the missing value with a value of 0. As the DATA step iterates,
the sum statement retains the accumulator variable so that it will accumulate a total.

9. Correct answer: d

You use the KEY= option in a SET statement to cause SAS to use an index to
combine data from multiple data sets. When the SET statement with the KEY=
option executes, the program data vector must already contain a value for the
indexed variable. You cannot use WHERE processing on a data set that has been
read with the KEY= option within the same DATA step.

10. Correct answer: b

When you use the KEY= option, SAS creates an automatic variable named _IORC_,
which stands for INPUT/OUTPUT Return Code. If the value of _IORC_ is zero, the
index search was successful. The _IORC_ variable is also created automatically
when you use a MODIFY statement in a DATA step.

Chapter 15: Combining Data Horizontally 815

Chapter 16: Using Lookup Tables to Match Data

1. Correct answer: a

An array is specified using the keyword ARRAY followed by the name of the array
and the dimensions of the array. In a two-dimensional array, the two dimensions can
be thought of as a table of rows and columns. The first dimension in the ARRAY
statement specifies the number of rows. The second dimension specifies the number
of columns.

2. Correct answer: b

To create temporary array elements, specify the keyword _TEMPORARY_ after the
array name and dimension. Remember that if you use an asterisk to count the array
elements, you must list the array elements. You cannot use the asterisk and the
TEMPORARY keyword together in an ARRAY statement.

3. Correct answer: d

To process all of the elements in an array, you can use either the DIM function with
the array name as the argument or specify the array dimension.

4. Correct answer: a

The ARRAY statement creates the two-dimensional array Score and specifies the
dimensions of the array: two rows and four columns. The value of Points for each
observation is determined by referencing the array based on the values of Week and
Finish in the Work.Contest data set. The row number for the array reference is
determined by the value of Week. The column number for the array reference is
determined by the value of Finish.

5. Correct answer: d

Lookup tables should be stored in a SAS data set when there are too many values to
initialize easily in an array, the values change frequently, or the same values are used
in many programs.

6. Correct answer: c

The IF-THEN statement specifies that the Targets array is loaded only once, during
the first iteration of the DATA step. During the first iteration of the DATA step, the
condition _N_=1 is true, so the outer DO loop executes three times; once for each
observation in Sasuser.Ctargets. After the third iteration of the DO loop, the pointer
drops down to the second SET statement and the values from the first observation in
Sasuser.Monthum are read into the program data vector. During the second iteration
of the DATA step, the condition _N_=1 is false. So, the DO loop doesn't execute
again.

7. Correct answer: c

The TRANSPOSE procedure creates an output data set by restructuring the values in
an input SAS data set. When the data set is restructured, selected variables are
transposed into observations. The procedure creates several variable names by
default. _NAME_ is the default name of the variable that PROC TRANSPOSE
creates to identify the source of the values in each observation in the output data set.
The remaining transposed variables are named COL1...COLn by default.

816 Appendix 1 • Quiz Answer Keys

8. Correct answer: b

You can use several options with PROC TRANSPOSE to give the variables in the
output data set descriptive names. The NAME= option specifies a name for the
NAME variable. The PREFIX= option specifies a prefix to use in constructing
names for the other variables in the output data set.

9. Correct answer: b

A BY statement can be used with PROC TRANSPOSE. For each BY group, PROC
TRANSPOSE creates one observation for each variable that it transposes. The BY
variable itself is not transposed. The original data set must be sorted or indexed prior
to using a BY statement with PROC TRANSPOSE.

10. Correct answer: d

The observations in Work.Fishsize are grouped by Location and Date. For each BY
group, PROC TRANSPOSE creates four observations, one for each variable
(Length1, Weight1, Length2, and Weight2) that it is transposing.

Chapter 17: Formatting Data

1. Correct answer: d

By default, SAS searches for custom formats in the Work and Library libraries. The
FMTSEARCH= system option specifies other catalogs to search when a format is
referenced.

2. Correct answer: c

A non-inclusive range is used such that the age at the high end of the range is not
included. To create the picture format, three zeros are used to create a position for a
three-digit numeric value. Because zero is used as a digit selector rather than a
nonzero value, leading zeros are not included in the formatted value.

3. Correct answer: b

By default, FMTERR is in effect so SAS stops processing if it cannot find a format
that is referenced. When NOFMTERR is in effect, SAS substitutes the $w. or w.
format and continues processing.

4. Correct answer: b

A data set that is used to create a format with the CNTLIN= option must have the
variables FmtName, Start, and Label. If a range is specified, it must also include the
variable End.

5. Correct answer: a

The format created by this value statement has overlapping ranges, so the
MULTILABEL option must be used. A multilabel format can be used by any
procedure that supports the MLF option.

6. Correct answer: c

The CNTLOUT= option is used to create a SAS data set from a format.

7. Correct answer: b

Chapter 17: Formatting Data 817

SAS will search in the order specified on the FMTSEARCH= option. By default,
SAS searches in the Work and Library libraries first unless they are specified on the
option. Because Library is not specified here, it is searched after Work.

8. Correct answer: d

The FMTLIB keyword is used to document the formats in a catalog. You can use the
SELECT and EXCLUDE statements to process specific formats rather than the
entire catalog.

9. Correct answer: c

In the COPY statement, OUT= specifies the catalog to which you want to copy the
format catalog entry. In the SELECT statement, you specify the catalog entries by
their entire name. Remember that numeric formats are stored with the
extension .FORMAT and character formats are stored with the
extension .FORMATC.

10. Correct answer: c

The value 6.1 falls in the range 6<-9, which is labeled 'Good.' The non-inclusive
range does not include the value 6, but it does include values above 6.

Chapter 18: Modifying SAS Data Sets and
Tracking Changes

1. Correct answer: c

The PRIMARY KEY integrity constraint includes both the NOT NULL and
UNIQUE constraints.

2. Correct answer: d

To initiate an audit on an existing SAS data set with the DATASETS procedure, you
specify the data set in the AUDIT statement, and then you specify the INITIATE
statement. You specify the library with the LIB= option.

3. Correct answer: c

In the MODIFY statement, you specify the master data set followed by the
transaction data set. Then you specify the key variable in the BY statement.

4. Correct answer: c

The value of _IORC_ is a numeric return code that indicates the status of the most
recently executed I/O operation. Checking the value of this variable allows you to
detect abnormal I/O conditions and direct execution in particular ways.

5. Correct answer: d

In the MODIFY statement, you list the SAS data set that you want to modify. Then
you use the IC CREATE statement to create the integrity constraint. This integrity
constraint is a CHECK constraint with a WHERE clause to specify the condition that
the variable values must meet.

6. Correct answer: b

The MODIFY statement in a DATA step can be used only to modify the values in a
data set. It cannot be used to modify the descriptor portion of the data set.

818 Appendix 1 • Quiz Answer Keys

7. Correct answer: c

Audit trails are used to track changes that are made to a data set in place.

8. Correct answer: a

You use the DATASETS procedure and the MODIFY statement to specify a number
of generation data sets for a data set. The GENMAX= option is used to specify the
number of versions to save. The number you specify includes the base version.

9. Correct answer: b

When you use the KEY= option, you must specify the update that you want to make
to the data set.

10. Correct answer: a

The keyword ALL is used to indicate that you want to delete all generations of the
specified data set, including the base version. The keyword HIST deletes the
generation data sets, but saves the base version.

Chapter 19: Introduction to Efficient SAS
Programming

This chapter has no quiz.

Chapter 20: Controlling Memory Usage

1. Correct answer: b

You can use the BUFNO= system option or data set option to control how many
buffers are available for reading or writing a SAS data set. Using BUFNO= can
improve execution time by limiting the number of input/output operations that are
required for a particular SAS data set. However, the improvement in I/O comes at the
cost of increased memory consumption. The number of buffers is not a permanent
attribute of the data set and is valid only for the current step or SAS session.

2. Correct answer: d

A page is fixed in size when the data set is created, either to a default value or a
specified value. You can use the BUFSIZE= option to control the page size of an
output SAS data set. The new buffer size is permanent. After it is specified, it is used
whenever the data set is processed.

3. Correct answer: a

The total number of bytes occupied by a data set equals the page size multiplied by
the number of pages. You can use the CONTENTS procedure to report the page size
and the number of pages.

4. Correct answer: b

The SASFILE LOAD statement opens the file, allocates the buffers, and reads the
data into memory.

5. Correct answer: a

Chapter 20: Controlling Memory Usage 819

When a SAS data file is opened using the SASFILE statement, the data is held in
memory, and is available to subsequent DATA and PROC steps or applications, until
either a SASFILE CLOSE statement is executed or the SAS session ends. Though a
file that is opened with the SASFILE statement can be used for subsequent input or
update processing, it cannot be used for subsequent utility or output processing. If
the file in-memory increases in size during processing, the number of buffers also
increases.

Chapter 21: Controlling Data Storage Space

1. Correct answer: d

The descriptor portion of an uncompressed data file is always stored at the end of the
first data set page. New observations are always added to the end of the data set, and
deleted observation space is neither tracked nor reused.

2. Correct answer: b

The descriptor portion of a compressed data file is always stored at the end of the
first data set page. If you specify REUSE=YES, SAS tracks and reuses deleted
observation space within a compressed data file. Therefore, every observation in a
compressed data file can be a different size. Compressed data files do have a larger
overhead than uncompressed data files.

3. Correct answer: c

Use the LENGTH statement to assign a reduced length to a numeric variable. If you
do not use the LENGTH statement to define a reduced length for numeric variables,
their default length is 8 bytes. The FORMAT statement associates a format with a
variable, and the INFORMAT statement associates an informat with a variable.

4. Correct answer: a

SAS data views use significantly less disk space than SAS data files. However, SAS
data views might need more CPU resources than SAS data files. You can create a
SAS data view in either the temporary SAS library or in a permanent SAS library.

5. Correct answer: b

Use the COMPARE procedure to detect any differences in the values of two data
sets. The COMPARE statement is not valid syntax in either the CONTENTS
procedure or the DATASETS procedure. Printing both data sets might not reveal
differences in the precise values of the shortened variables, depending on the formats
that are used.

Chapter 22: Using Best Practices

1. Correct answer: b

As SAS processes a larger subset of the data, more CPU resources are required.
However, positioning of the subsetting IF statement in a DATA step can affect
performance and efficiency.

820 Appendix 1 • Quiz Answer Keys

2. Correct answer: c

The DATA step is the only technique that can be used to modify both data values and
variable attributes. The DATASETS procedure enables you to modify only variable
attributes.

3. Correct answer: d

For selecting observations, a WHERE statement is more efficient than a subsetting
IF statement because it examines what is in the input page buffer and selects
observations before they are loaded into the program data vector, which results in a
savings in CPU operations.

4. Correct answer: a

It is more advantageous to create a temporary SAS data set rather than a permanent
SAS data set when the external file on which the data set is based is frequently
updated between SAS sessions.

5. Correct answer: c

A one-step DATASETS procedure results in a savings of CPU usage and I/O
operations. PROC DATASETS supports RUN-group processing, which enables you
to process multiple SAS data sets from the same library with one invocation of the
procedure.

Chapter 23: Querying Data Efficiently

1. Correct answer: d

When using an index to select a subset, SAS loads only the pages that contain at least
one qualified observation into input buffers. When accessing observations
sequentially, SAS must load all pages into input buffers. Loading more pages
requires more I/O operations.

2. Correct answer: b

SAS does not use an index for a WHERE condition that contains a function other
than TRIM or SUBSTR.

3. Correct answer: a

The size of the subset relative to the size of the data set is an important factor in
determining which access method is most efficient. If a subset is large (more than
33% of the data set), it is likely to be more efficient to use sequential access than
direct access. Direct access is usually more efficient when you select a small subset
(less than 33% of the data set), especially if the data set is large (has a high page
count). However, if the data set is very small (less than three pages), using an index
is not efficient. The number of key variables specified in a WHERE expression does
not determine which access method is most efficient. If the two key variables that are
specified are the first two variables in the same index, the WHERE expression is a
candidate for compound optimization. Sorting the data also does not determine
which access method is most efficient. However, sorting the data before subsetting
improves the efficiency of WHERE processing regardless of the access method.

4. Correct answer: b

5. Correct answer: d

Chapter 23: Querying Data Efficiently 821

Chapter 24: Creating Functions with PROC FCMP
1. Correct answer: a

2. Correct answer: False

3. Correct answer: True

4. Correct answer: False

822 Appendix 1 • Quiz Answer Keys

Index

Special Characters
ATDATETIME audit trail variable 631
ATMESSAGE audit trail variable 631
ATOBSNO audit trail variable 631
ATOPCODE audit trail variable 631,

632
ATRETURNCODE audit trail variable

631
ATUSERID audit trail variable 631
_DSEMTR mnemonic 619
_DSENMR mnemonic 619
_DSENOM mnemonic 619
IORC automatic variable 524, 619
_SOK mnemonic 619
TEMPORARY keyword 538
TYPE variable 774, 776
; (semicolon) 375
? conditional operator 33, 34
. (period) 318
& (ampersand) 290
% (percent sign)

macro programs and 375
specifying directives 586
tokens and 304

%a directive 586
%A directive 586
%b directive 586
%B directive 586
%BQUOTE function 305
%CMPRES statement 430
%COPY statement 437
%d directive 586
%DATATYP statement 430
%DO-%END statement 397, 407, 410
%EVAL function 411
%GLOBAL statement 388
%H directive 586
%I directive 586
%IF-%THEN/%ELSE macro statement

396, 397, 400, 403, 406
%INCLUDE statement 423
%INDEX function 311
%j directive 586
%LEFT statement 430

%LENGTH function 309
%LET statement

macro parameter support 381
processing 331
user-defined macro variables and 294

%LOCAL statement 389
%LOWCASE statement 430
%m directive 586
%M directive 586
%MACRO statement

creating stored compiled macros 434
general form 373
macro parameter support 383, 384, 385
PARMBUFF option 386
SOURCE option 435, 437
STORE option 434

%MEND statement 373
%NRSTR function 305
%p directive 586
%PUT statement 300
%QLOWCASE statement 430
%QSCAN function 313
%QSUBSTR function 310
%QSYSFUNC function 315
%QUPCASE function 308
%S directive 586
%SCAN function 312
%STR function 303
%SUBSTR function 309
%SYSEVALF function 413
%SYSFUNC function 314
%SYSRC autocall macro 619
%TRIM statement 430
%U directive 586
%UPCASE function 306
%w directive 586
%y directive 586
%Y directive 586
=* conditional operator

description 33
general form 39
WHERE conditions and 755

823

A
access methods, selecting 750
accumulator variables 519
ADD clause, ALTER TABLE statement

(SQL) 209
ADD method 562
aliases

column 9, 40, 88
in-line views 107
table 89

ALL conditional operator 33, 68
ALL keyword

DELETE statement (DATASETS) 641
EXCEPT set operator and 135, 136
INTERSECT set operator and 140, 142
set operations and 131
UNION set operator and 146, 148

ALTER TABLE statement, SQL
procedure

ADD clause 209
DROP clause 211
functionality 72
general form 209
MODIFY clause 212

ALTER= data set option 630
ampersand (&) 290
ANY conditional operator

comparison operator and 66
description 33

APPEND procedure
BASE= data set option 477
DATA= data set option 477
FORCE option 479, 480, 482
general form 477

arguments, summary functions and 48,
50, 51

arithmetic expressions in macro programs
411, 413

ARRAY statement
combining data with 501
creating arrays 543
general form 538
loading array elements 544
lookup values and 501
stored array values and 542

arrays
combining data in 501
creating 543
defined 501
loading elements 544
multidimensional 538
reading values 546
stored values 542, 543, 544, 546

AS keyword, CREATE TABLE statement
(SQL) 177

ATTRIB statement 501

attributes 560, 724
AUDIT statement, DATASETS procedure

629, 634
audit trails

controlling 634
controlling data in 631, 632
initiating 629
overview 628
reading files 630
USER_VAR statement 633
variables 631, 632

autocall libraries
accessing macros 431
creating 429
default 430
defined 429

automatic macro variables
defined 290
functionality 291
global symbol table and 290, 387

AVG function 55

B
base table 497
BASE= data set option 477
BEFORE_IMAGE option, LOG statement

632
benchmark guidelines 656
best practices

conditional logic 710
DO groups 716
eliminating data passes 721, 723, 724
executing only necessary statements

708
reading/writing essential data 725, 727,

728, 730
subsetting variables 730, 731

BETWEEN-AND conditional operator
description 33
general form 34
identifying conditions to optimize 754

binary search 501
buffers

controlling number of 660, 661, 663
controlling page size 660, 661

BUFNO= data set option 663
BUFNO= system option 663
BUFSIZE= system option 661
BY statement, DATA step

handling duplicate values 613
MODIFY statement and 611, 619
TRANSPOSE procedure 553

BY variable
DATA step match-merge 502, 511
joining tables 100, 101, 102

824 Index

C
CALCULATED keyword 40
CALL MISSING routine 562
Cartesian product 83, 512
CASE expression

general form 202
INSERT statement (SQL) 206
SELECT statement (SQL) 206
UPDATE statement (SQL) 201, 203,

205
case operand

CASE expression, UPDATE statement
(SQL) 203, 205

defined 203
case sensitivity in macro comparisons

406
CATALOG access method, FILENAME

statement 427
CATALOG procedure

general form 426, 589
managing formats 589

catalogs, storing macro definitions 425,
426, 427

CENTILES option, CONTENTS
procedure 757

CHANGE statement, DATASETS
procedure 459, 640

character constants 45
character data types

column widths and 171
defined 170
flowing characters in columns 269

character strings
%INDEX function 311
%LENGTH function 309
%QSCAN function 313
%QSUBSTR function 310
%QUPCASE function 308
%SCAN function 312
%SUBSTR function 309
%UPCASE function 306
macro character functions 306

character variables, storing 677
CHART procedure 318
CHECK constraint type

functionality 187, 188, 620
in column specification 188

CLASS statement
TABULATE procedure 582

class variables
TYPE values 774, 776
combining 778
summary statistics and 771, 772

CNTLIN= option, FORMAT procedure
594, 595

CNTLOUT= option, FORMAT procedure
598

COALESCE function 102, 103
column alias

CALCULATED keyword and 40
defined 9
renaming columns with 88

column constraints 188
column modifiers 172
column widths 171
columns

adding to tables 209
altering in tables 209
as multiple arguments for summary

functions 51
combining 130
counting non-missing values 56
counting unique values 57
creating constraints 188
creating new 9
creating tables by defining 168
deleting from tables 211
eliminating duplicate 87
flowing characters within 269
key 226, 229
modifying in tables 212
ordering by multiple 12
outside summary functions 52
overlaying 130
processing calculated 40
renaming with column aliases 88
rows numbers in output 267
selecting 8
specifying formats and labels 43
specifying in multiple tables 14
specifying subsets in tables 175
summary functions and 50, 51
viewing all 28

comments in macro programs 380
COMPARE procedure 680
comparison operators

ALL conditional operator and 68
ANY conditional operator and 66
identifying conditions to optimize 754
subqueries and 65

compiling macro programs 373, 374
composite indexes

creating 232, 233
defined 228, 448, 449

COMPRESS function 472
COMPRESS= data set option 687
COMPRESS= system option 687
compressing data files

costs of 761
storage considerations 685, 686, 687,

689, 690, 692

Index 825

concatenating data
appending data sets 477, 479, 480, 482
creating delimiting list of values 359
defined 466
FILENAME statement 466
INFILE statement 469, 471, 472, 473,

474, 476
conditional operators 32
conditional processing

best practices 710
case sensitivity in macro programs 406
for macro programs 396, 397, 400, 403,

406
constants 45, 302
CONTAINS conditional operator

description 33
general form 34
identifying conditions to optimize 754

CONTENTS procedure
CENTILES option 757
displaying index specifications 235
maintaining indexes 455
reporting buffer information 661

CONTENTS statement
CATALOG procedure 426
DATASETS procedure 455, 626, 661,

757
conventional join 85
COPY procedure 458
COPY statement, DATASETS procedure

458
copying

data sets 458, 625
tables 178

CORR keyword
EXCEPT set operator and 135, 136
INTERSECT operator and 141, 142
OUTER UNION set operator and 153,

156
set operations and 131
UNION set operator and 147, 148

correlated subqueries
defined 62
EXISTS conditional operator 70
indexes and 229
NOT EXISTS conditional operator 70
subsetting data 69

COUNT function 55
CREATE INDEX statement, SQL

procedure
creating composite indexes 232, 233
creating multiple indexes 232
creating simple indexes 232, 233
displaying index specifications 233
functionality 226
general form 231, 454

CREATE statement, SQL procedure 72
CREATE TABLE statement, SQL

procedure
AS keyword 177
copying tables 178
creating constraints 188
creating constraints outside column

specifications 191
creating empty tables 168
creating like other tables 174
creating output tables 19
creating tables from query results 177
displaying table structure 173
FORMAT= option 172
FROM clause 178
general form for creating output tables

19
general form with column specifications

169
general form with constrain

specification 191
general form with constraint

specification 189
general form with LIKE clause 174
general form with query clauses 177
INFORMAT= option 172
LABEL= option 172
LIKE clause 174
MESSAGE= option 189, 191
MSGTYPE= option 189, 191
SELECT clause 178
specifying column modifiers 172
specifying column widths 172
specifying data types 170
specifying empty tables like other tables

174
specifying subsets of columns 175

CREATE VIEW statement, SQL
procedure

FROM clause 253
general form 249
USING clause 253

D
data files

accessing observations directly 689
COMPRESS= data set option 687
COMPRESS= system option 687
compressed structure 686
compression process 685, 692
number of pages 760
POINTOBS= data set option 689
reasons for compressing 686
REUSE= data set option 690
REUSE= system option 690

826 Index

uncompressed structure 685
data sets

accessing observations directly 689
appending 477, 479, 480, 482
audit trail overview 628
audit trails, controlling 634
audit trails, controlling data in 631, 632
audit trails, initiating 629
audit trails, reading files 630
controlling update process 618, 619
copying 458, 625
creating formats from 594, 595, 598
creating from formats 598
duplicate values in 613, 616
generation 636, 637, 638, 639
hash objects and 564
integrity constraint overview 620, 621,

624, 625
integrity constraints, documenting 626
integrity constraints, placing in 622,

624, 625
integrity constraints, removing 627
listing variables 596
lookup values outside 500, 501
missing values in 614
modifying 609, 610, 611
modifying observations located by

indexes 614
renaming 459
storing data 735
storing raw data file names 485
transaction 525, 526, 611
transposed 553, 554, 555, 556, 557

DATA step
ATTRIB statement 501
best practices 721
BY statement 611, 613, 619
comparing joins and 100, 101, 102
COMPRESS= data set option 687
conserving storage space 696, 697, 698,

699, 700, 701
creating indexes in 449
creating macro variables in 329
creating multiple macro variables in

343
DESCRIBE statement 698
DROP statement 730, 731
FORMAT procedure 501
hash objects and 560
IF-THEN/ELSE statement 397
INDEX= option 449
KEEP statement 597, 730, 731
LENGTH statement 677, 678
match-merges 100, 101, 102, 502, 503,

507, 511, 512, 514
MERGE statement 502, 503

obtaining macro variable values 352
OUTPUT statement 618
PUT function 315, 339
REMOVE statement 618
RENAME statement 597
REPLACE statement 618
RETAIN statement 597
REUSE= data set option 690
SET statement 689
subsetting IF statement 708
sum statement 519
SYMGET function 352
SYMPUT routine and 332, 333, 334,

336, 343
SYMPUTX routine and 341
table lookups and 506
tools for summarizing data 768
UNIQUE option 450
UPDATE statement 526
VIEW= option 698
WHERE statement 725, 727, 747, 749,

750, 752
data types

appending variables with different 482
character 170, 171, 269
creating tables by defining columns 170
numeric 170, 171

DATA_IMAGE option, LOG statement
632

DATA= data set option 477
DATALINES statement 290, 375
DATASETS procedure

AUDIT statement 629, 634
best practices 724, 737, 738
CHANGE statement 459, 640
CONTENTS statement 455, 626, 661,

757
COPY statement 458
creating tables with integrity constraints

187
DELETE statement 640, 641
displaying index specifications 235
general form 591
IC CREATE statement 622
IC DELETE statement 627
INDEX CREATE statement 452
INDEX DELETE statement 452
INITIATE statement 629
LIBRARY= option 456
managing indexes 452
MODIFY statement 452, 637
permanently assigning formats 591
RENAME statement 460

DATATYPE= option, PICTURE statement
(FORMAT) 585

DATE function 474

Index 827

debugging
FEEDBACK option, SQL procedure 29
macro programs 378, 379, 380

DECLARE statement 565
DEFAULT= option, LENGTH statement

(DATA) 678
DEFINEDATA method 561, 565
DEFINEDONE method 561
DEFINEKEY method 561, 565
DELETE statement, DATASETS

procedure 640, 641
DELETE statement, SQL procedure

audit trails 628
functionality 72
general form 207
updating views 255

deleting
columns from tables 211
indexes 239
rows in tables 207
tables 216
views 257

delimiters
in macro programs 375
in macro variable names 318

dense match 499
DESCRIBE statement

DATA step 698
SQL procedure 72

DESCRIBE TABLE CONSTRAINTS
statement, SQL procedure 197

DESCRIBE TABLE statement, SQL
procedure

displaying Dictionary table definitions
276

displaying index specifications 233
displaying indexes 226
displaying table structure 173
general form 173, 233

DESCRIBE VIEW statement, SQL
procedure 251

detail reports 765
Dictionary tables

functionality 264, 275
querying 276

digit selectors 584
direct access 749
directives, specifying pictures 584, 585
DISTINCT keyword 31
DO loops 544, 716
DO UNTIL loops 520
dot notation method 561
DOUBLE option, SQL procedure 268
DROP clause, ALTER TABLE statement

(SQL) 211

DROP INDEX statement, SQL procedure
239, 454

DROP statement
DATA step 730, 731
SQL procedure 72

DROP statement, SQL procedure 731
DROP TABLE statement, SQL procedure

216
DROP VIEW statement, SQL procedure

257
DROP= data set option

general form 175
subsetting variables 730, 731

duplicate columns, eliminating 87
duplicate rows

eliminating from output 31
processing unique vs. 130

duplicate values in data sets 613, 616

E
efficiency

assessing needs 652, 653, 654
benchmark guidelines 656
comparing resource usage 759, 760,

761
computer resources 652
detail reports 765
estimating observations 756
identifying available indexes 750, 752
identifying conditions to optimize 754,

755
indexes and WHERE processing 747,

749
tools for summarizing data 767, 768,

774
tracking resources 655
trade-offs in 654

empty tables 168, 174
END= option, INFILE statement 473
error handling

for row insertions 194
monitoring I/O error conditions 619
stopping SQL procedure 279

ERROR_IMAGE option, LOG statement
632

ERRORSTOP option, SQL procedure
279

evaluating performance 271
EXCEPT set operator

ALL keyword and 135, 136
CORR keyword and 135, 136
functionality 129, 132

EXCLUDE statement, FORMAT
procedure 588, 599

EXEC option, SQL procedure 279

828 Index

EXISTS conditional operator
correlated queries and 70
description 33

external files
selecting observations from 728
storing macro definitions in 423
storing raw data filenames in 485

F
FEEDBACK option, SQL procedure 29
FILENAME statement 427, 466
FILEVAR= option, INFILE statement

469
FIND method 562, 566, 567
FIRSTOBS= option, WHERE statement

(PRINT) 727
FLOW option, SQL procedure 269
FMTERR system option 593
FMTLIB keyword, FORMAT procedure

588
FMTSEARCH= system option 592
FOOTNOTE statement, SQL procedure

44
FORCE option, APPEND procedure 479,

480, 482
FOREIGN KEY constraint type

constraint specification 191
functionality 187, 188, 620
in column specification 188

FORMAT procedure
binary search 501
CNTLIN= option 594, 595
CNTLOUT= option 598
EXCLUDE statement 588, 599
FMTLIB keyword 588
general form 588
LIB= option 592
PICTURE statement 583, 586
SELECT statement 588, 599
VALUE statement 501, 502, 580, 581,

582
FORMAT statement, TABULATE

procedure 582
FORMAT= option

CREATE TABLE statement (SQL) 172
SELECT statement, SQL procedure 43
TABULATE procedure 582

formats
associating with variables 501
creating data sets from 598
creating from data sets 594, 595, 598
creating with PICTURE statement 583,

586
creating with VALUE statement 580,

581

FMTERR system option 593
FMTSEARCH= system option 592
managing 588, 589
multilabel 582
NOFMTERR system option 593
permanently assigning 591, 592, 593
specifying for columns 43
substituting to avoid errors 593
with overlapping ranges 581

Forward Re-Scan rule 347
FREQ procedure 711, 768
FROM clause

CREATE TABLES (SQL) 178
CREATE VIEW statement (SQL) 253
INSERT statement (SQL) 185
SELECT statement (SQL) 10, 15, 83,

105
FSEDIT procedure 689
FSLIST procedure 467
full outer join 93, 97
FULLSTIMER system option 655
functions

%QSYSFUNC function 315
%SYSFUNC function 314
macro variable support 314

G
GCHART procedure 318, 711
general integrity constraints 188, 621
generation data sets

creating 637
defined 636
initiating 637
processing 638, 639

GENMAX= option, MODIFY statement
(DATASETS) 637

GENNUM= data set option 638, 639, 641
global symbol table

%GLOBAL statement 388
defined 290
macro variables and 290, 387

GPLOT procedure 318, 711
GROUP BY clause, SELECT statement

(SQL)
selecting groups 58
summarizing groups of data 17, 48, 49
summary functions and 51, 54

groups, selecting 58

H
hash objects

CALL MISSING routine 562
creating from data sets 564
DATA step component objects 560

Index 829

declaring 560
defined 558
defining keys and data 561
loading key/data values 562
multiple data variables 565
processing 563
retrieving matching data 562
retrieving multiple data values 566
return codes with FIND method 567
SET statement and 565
structure 559

HAVING clause, SELECT statement
(SQL) 20, 58

HIST keyword 641

I
I/O processing

comparing resource usage 759, 760,
761

measuring 660
IC CREATE statement, DATASETS

procedure 622
IC DELETE statement, DATASETS

procedure 627
IDXNAME= data set option

controlling index usage 763
functionality 237
general form 238

IDXWHERE= data set option
controlling index usage 763
functionality 237
general form 237

IF-THEN/ELSE statement
%IF-%THEN comparison 397
best practices 710, 716
lookup values outside data sets 500,

501
IN conditional operator

description 33
general form 35
identifying conditions to optimize 754

in-line views
assigning aliases 107
functionality 105
multiple tables and 106

INDEX CREATE statement, DATASETS
procedure 452

INDEX DELETE statement, DATASETS
procedure 452

INDEX= option, DATA step 449
indexes

accessing rows in tables 227
benefits 229, 230, 749
combining data with 521, 522, 524
composite 228, 232, 233, 448, 449

controlling usage 763
copying data sets 458
costs of using 230, 749
creating 231
creating in DATA step 449
creating multiple 232
creation guidelines 231, 761
defined 226, 448
displaying specifications 233
documenting 455
dropping 239
identifying available 750, 752
maintaining 455
managing usage 235, 237
managing with DATASETS procedure

452
managing with SQL procedure 454
modifying observations located by 614
querying 229, 747, 748, 749, 750
reasons for not using 452
renaming data sets 459
renaming variables 460
simple 227, 232, 448, 449
subsetting data 230
types of 227, 449
unique 228, 233

INFILE statement
assigning names of files to be read 471
COMPRESS function 472
date functions 474
END= option 473
FILEVAR= option 469
general form 469
INTNX function 476

INFORMAT= option, CREATE TABLE
statement (SQL) 172

INITIATE statement, DATASETS
procedure 629

inner joins
combining data horizontally 507, 511,

512, 514
defined 14, 85
general form with outer join 100

INOBS= option, SQL procedure 265
input data sources 498
INPUT function 315, 547
INPUTC function 315
INPUTN function 315
INSERT statement, SQL procedure

audit trails 628
CASE expression 206
controlling UNDO processing 194
FROM clause 185
functionality 72
general form 181, 182, 185
handling errors in row insertions 194

830 Index

inserting rows from query results 185
inserting rows of data in tables 180,

181, 182
SELECT clause 185
SET clause 180, 181
updating views 255
VALUES clause 180, 182, 194

integrity constraints
creating outside of column

specifications 191
creating tables with 187
displaying for tables 197
documenting 626
enforcing 624
functionality 620, 621
general 188, 621
general form with specifications 191
in column specifications 188
placing in data sets 622, 624, 625
referential 188, 621
removing 627

INTERSECT set operator
ALL keyword and 140, 142
CORR keyword and 141, 142
functionality 129, 139

INTNX function 476
INTO clause, SELECT statement (SQL)

354, 356, 359
IS MISSING conditional operator 33, 36,

754
IS NULL conditional operator 33, 36,

754

J
joining data sets

combining summary/detail data 516,
517, 519

DATA step match-merge 502, 503
defined 496
indexes and 521, 522, 524
lookup values and 500, 501
multiple SET statements 514, 515
relationships between input data sources

498
SQL procedure support 506, 507, 511,

512, 514
terminology 497
transactional data sets 525, 526
transposed data sets 553, 554, 555, 556,

557
joining tables

advantages 104
COALESCE function 102, 103
comparing with DATA step match-

merges 100, 101, 102

defined 14, 82
EXCEPT set operator 132
for rows with matching values 88
in-line views and 105, 106
indexes and 229
inner joins 14, 85
inner joins with outer-join general form

100
INTERSECT set operator 139
outer joins 93
OUTER UNION set operator 151, 156
processes defined 86
set operations 127
UNION set operator 144
with views 109

K
KEEP statement, DATA step 597, 730,

731
KEEP= data set option

general form 175
subsetting variables 730, 731

key columns 226, 229
key values

defined 497, 538
return codes with FIND method 567

key variables 497
KEY= option

MODIFY statement (DATA) 536, 614,
617, 619

SET statement (DATA) 522
keyword parameters 384, 385
keywords, modifying set operations 131

L
LABEL= option

CREATE TABLE statement (SQL) 172
SELECT statement, SQL procedure 43

labels, column 43
LEFT function 316
left outer join 93, 95
LENGTH statement, DATA step 677, 678
LIB= option, FORMAT procedure 592
LIBNAME statement 253
LIBRARY= option, DATASETS

procedure 456
librefs, views and 253
LIKE clause, CREATE TABLE statement

(SQL) 174
LIKE conditional operator

description 33
general form 37
identifying conditions to optimize 754
specifying patterns 38

Index 831

literal tokens 297
local symbol table 388, 389, 392
LOG statement

BEFORE_IMAGE option 632
controlling data in audit trails 632
DATA_IMAGE option 632
ERROR_IMAGE option 632

logical expressions in macro programs
411, 413

lookup tables
defined 497, 538
hash objects as 558
multidimensional arrays and 538
multiple 503
stored array values 542, 543, 544, 546
TRANSPOSE function 548, 551
transposed data sets 553, 554, 555, 556,

557
LOOPS= option, SQL procedure 279

M
macro character functions

%INDEX function 311
%LENGTH function 309
%QSCAN function 313
%QSUBSTR function 310
%QUPCASE function 308
%SCAN function 312
%SUBSTR function 309
%UPCASE function 306
manipulating character strings 306

macro definitions 423
macro facility 289, 298
macro language 298
macro processor

functionality 330
macro facility and 298
macro variables rules 390
referencing macro variables 290

macro programs
%DO-%END statement 397
%EVAL function 411
%GLOBAL statement 388
%IF-%THEN/%ELSE macro statement

396, 397, 400, 403, 406
%LOCAL statement 389
%SYSEVALF function 413
arithmetic/logical expressions 411, 413
automatic evaluation 413
calling 375
case sensitivity and 406
comments in 380
compiling 373, 374
conditionally processing statements

396, 397, 400, 403, 406

debugging 378, 379, 380
defined 373
developing 378, 379, 380
executing 376
functionality 372
iterative processing for 407, 410
monitoring execution 378, 379, 380
nested 392, 393
parameters and 381, 383, 384, 385, 386
Stored Compiled Macro Facility 433,

434, 435, 436, 437
storing definitions in catalog SOURCE

entries 425, 426, 427
storing in autocall libraries 426, 429,

430, 431
storing macro in external files 423
storing session-compiled macros 422
symbol tables 387, 388, 389, 390, 392,

393, 395
macro quoting functions

%BQUOTE function 305
%NRSTR function 305
%STR function 303
masking special characters 302

macro triggers 298
macro variables

%PUT statement 300
automatic 290, 291, 387
combining references with text 316
creating delimited list of values 359
creating during DATA step 329
creating during PROC SQL execution

354
creating multiple during DATA step

343
creating with INTO clause 356
DATALINES statement and 290
delimiters in names 318
displaying values in SAS log 299, 300
Forward Re-Scan rule 347
functionality 288, 289
in symbol tables 387, 388, 389, 390,

392, 393, 395
macro facility and 289
macro parameters and 381, 383, 384,

385, 386
macro processor rules 390
obtaining values during DATA step 352
processing 296
PUT function 315, 339
referencing 290, 316
referencing indirectly 346
SAS function support 314
SCL program support 362, 363
SYMBOLGEN system option 299
SYMGET function 352

832 Index

SYMGETN function 363
SYMPUT routine 332, 333, 334, 336,

343
SYMPUTN routine 363
SYMPUTX routine 341
tokenization 297
triggers for 298
user-defined 290, 293, 387

many-to-many match 499, 509
masking special characters

%BQUOTE function 305
%NRSTR function 305
%STR function 303
macro function support 302

MAUTOLOCDISPLAY system option
432

MAUTOSOURCE system option 431
MCOMPILENOTE= system option 374
MEANS procedure

general form 517
multilabel formats 582
NOPRINT option 517
NWAY option 778
OUTPUT statement 517, 780
tools for summarizing data 768, 771,

772
TYPES statement 776
WAYS statement 784
WHERE= data set option 780

memory
controlling number of buffers 660, 661,

663
controlling page size 660, 661

MEMRPT system option 655
MERGE statement, DATA step 502, 503
message characters 584
MESSAGE= option, CREATE TABLE

statement (SQL) 189, 191
metadata 264
methods 560
missing values in data sets 614
MLF option, TABULATE procedure 582
MLOGIC system option 379
MLOGICNEST system option 395
MODIFY clause, ALTER TABLE

statement (SQL) 212
MODIFY statement, DATA step

audit trails and 628
BY statement 611, 613, 619
functionality 608, 609
general form 610
KEY= option 536, 614, 617, 619
POINT= option 689
UNIQUE option 617
UPDATEMODE= option 614

MODIFY statement, DATASETS
procedure 452, 637

MONTH function 474
MPRINT system option 378
MPRINTNEST system option 393
MSGLEVEL= system option 236, 450,

764
MSGTYPE= option, CREATE TABLE

statement (SQL) 189, 191
MSTORED system option 433, 436
multidimensional arrays 538
multilabel formats 582
MULTILABEL option, VALUE statement

(FORMAT) 582
multiple columns 12, 51
multiple indexes 232
multiple tables

querying 13
specifying columns in 14
specifying names 15
views and 106, 109

N
name tokens 298
NAME= option, TRANSPOSE procedure

551
nested macros 392, 393
NMISS function 55
NODOUBLE option, SQL procedure 268
NOERRORSTOP option, SQL procedure

279
NOEXEC option, SQL procedure 71, 279
NOFLOW option, SQL procedure 269
NOFMTERR system option 593
NOFULLSTIMER system option 656
NOMEMRPT system option 656
noncorrelated subqueries

defined 62
multiple-value 64
single-value 63
subsetting data 63

nonmatching data 499, 510
NONUMBER option, SQL procedure

267
NOPRINT option

MEANS procedure 517
SELECT statement (SQL) 354

NOPROMPT option, SQL procedure
267, 279

NOSTATS system option 656
NOSTIMER option, SQL procedure 271
NOSTIMER system option 656
NOT EXISTS conditional operator 70
NOT NULL constraint type

constraint specification 191

Index 833

functionality 187, 188, 620
in column specification 188

NOTSORTED option
TRANSPOSE procedure 554

NUMBER option, SQL procedure 267
number tokens 298
numeric data types 170, 171
numeric variables, storing 677, 678, 679,

680
NWAY option, MEANS procedure 778

O
OBS= option, WHERE statement

(PRINT) 727
OBSBUF= data set option 699
one-to-many match 498, 509
one-to-one match 498, 508
OPTIONS statement, SQL procedure

BUFNO= option 663
BUFSIZE= option 661
COMPRESS= option 687
FMTERR option 593
FMTSEARCH= option 592
FULLSTIMER option 655
MAUTOLOCDISPLAY option 432
MAUTOSOURCE option 431
MCOMPILENOTE= option 374
MEMRPT option 655
MLOGIC option 379
MLOGIC system option 379
MLOGICNEST option 395
MLOGICNEST system option 395
MPRINT option 378
MPRINT system option 378
MPRINTNEST option 393
MPRINTNEST system option 393
MSGLEVEL= option 236, 450
MSGLEVEL= system option 450
MSTORED option 433, 436
NOFMTERR option 593
NOFULLSTIMER option 656
NOMEMRPT option 656
NOSTATS option 656
NOSTIMER option 656
REUSE= option 690
SASAUTOS option 432
SASAUTOS= option 431
SASMSTORE option 436
SASMSTORE= option 433
STATS option 655
STIMER option 271, 655
SYMBOLGEN option 299

ORDER BY clause, SELECT statement
(SQL)

ordering by multiple columns 12

ordering rows 11, 16
outer joins

functionality 93
general form 94
inner joins and 100

OUTER UNION set operator
CORR keyword and 153, 156
functionality 129, 151, 152

OUTOBS= option, SQL procedure
general form 29
restricting row processing 265
summary functions and 54

output
adding character constants 45
controlling 267
detail reports 765
double-spacing 268
eliminating duplicate rows from 31
enhancing for queries 42
flowing characters in columns 269
including row numbers 267
SYMPUT routine support 336

OUTPUT statement
DATA step 618
MEANS procedure 517, 780

output tables, creating 19

P
parameters

in macro programs 381, 383, 384, 385,
386

keyword 384, 385
PARMBUFF option 386
positional 383, 385

PARMBUFF option, %MACRO
statement 386

patterns 37, 38
percent sign (%)

macro programs and 375
specifying directives 586
tokens and 304

performance
testing and evaluating 271

period (.) 318
PICTURE statement, FORMAT procedure

DATATYPE= option 585
general form 583
specifying directives 586
specifying pictures 584

PLOT procedure 318
POINT= option

MODIFY statement (DATA) 689
SET statement (DATA) 689

POINTOBS= data set option 689
positional parameters 383, 385

834 Index

PREFIX= option, TRANSPOSE
procedure 551

PRIMARY KEY constraint type
constraint specification 191
functionality 187, 188, 620
in column specification 188

PRINT procedure
detail reports 765
UNIFORM option 700
WHERE statement 727

PROC FCMP 789
process management

best practices 737, 738
conditional processing for macro

programs 396, 397, 400, 403, 406
controlling execution 265
controlling output 267
controlling updates 618, 619
creating macro variables in DATA step

329
creating macro variables in PROC SQL

354, 356, 359
creating multiple macro variables in

DATA step 343
Dictionary tables 264, 275
error handling 279
for macro programs 378, 379, 380
Forward Re-Scan rule 347
hash objects 563
iterative processing for macro programs

407, 410
macro variables 296, 390
macro variables in SCL programs 362,

363
obtaining macro variable values in

DATA step 352
PUT function 315, 339
referencing macro variables indirectly

346
resetting options 273
restricting number of loops 279
specifying SQL options 264
SYMGET function 352
SYMGETN function 363
SYMPUT routine 332, 333, 334, 336,

343
SYMPUTN routine 363
SYMPUTX routine 341
testing and evaluating performance 271
working with views 361

PROMPT option, SQL procedure 267,
279

PUT function 315, 339, 501
PUTC function 315
PUTN function 315

Q
queries

comparing resource usage 759, 760,
761

creating output tables 19
creating tables from 177
detail reports 765
Dictionary tables and 276
displaying all columns 28
eliminating duplicate rows from output

31
enhancing output 42
estimating observations 756
identifying available indexes 750, 752
identifying conditions to optimize 754,

755
in-line views 105
indexes and 229, 747, 748, 749, 750
inserting rows from 185
joining multiple tables and views 109
limiting number of rows displayed 29
ordering rows 11, 16
querying multiple tables 13
selecting columns 8
specifying subsetting criteria 11
specifying tables 10
subqueries for subsetting data 61
subsetting data using correlated

subqueries 69
subsetting data using noncorrelated

subqueries 63
subsetting rows using calculated values

40
subsetting rows with conditional

operators 32
summarizing groups of data 17, 48
tools for summarizing data 767, 768,

774
validating general form 71
viewing all columns 28
viewing SELECT statement general

form 27
views in 248
writing SQL procedure steps 6

quotation marks
literal tokens 297
macro quoting functions and 302
macro triggers and 299
referencing macro variables 290

R
raw data filenames, storing 485
referential integrity constraints 188, 621
REMOVE statement, DATA step 618
RENAME statement

Index 835

DATA step 597
DATASETS procedure 460

RENAME= data set option 552
REPLACE statement, DATA step 618
REPORT procedure 768
RESET statement, SQL procedure 72,

273
resource management

assessing needs 652, 653, 654
benchmark guidelines 656
comparing probable usage 759, 760,

761
comparing summarization tools 768,

772
computer resources 652
efficiency trade-offs 654
system options for 655

RETAIN statement, DATA step 597
return codes (FIND method) 567
REUSE= data set option 690
REUSE= system option 690
right outer join 93, 96
rows

accessing in tables 227
counting all 55
counting number of 55
deleting in tables 207
duplicate 31, 130
eliminating duplicates from output 31
estimating number of 756
handling insertion errors 193
inserting in tables 180, 181, 182
joining tables with matching values 88
limiting number displayed 29
ordering 11, 16
ordering by multiple columns 12
processing unique vs. duplicate 130
restricting processing 265
row numbers in output 267
updating based on CASE expression

203, 205, 206
updating values 198
updating with different expressions 201
updating with same expression 199

RUN statement 737, 738
RUN-group processing 737, 738

S
SAS log

%PUT statement 300
displaying macro variable values 299,

300
MCOMPILENOTE= option 374
SYMBOLGEN system option 299

SASAUTOS= system option 431

SASMSTORE system option 436
SASMSTORE= system option 433
SCL programs

macro variables in 362, 363
SYMGETN function 363
SYMPUTN routine 363

security, table views 254
SELECT clause

CREATE TABLE statement (SQL) 178
INSERT statement (SQL) 185
SELECT statement (SQL) 8, 14, 28,

29, 31, 48, 49
SELECT statement, FORMAT procedure

best practices 710
managing formats 588, 599

SELECT statement, SQL procedure
best practices 710
CASE expression 206
creating new columns 9
DISTINCT keyword 31
FEEDBACK option 29
FROM clause 10, 15, 83, 105
functionality 7, 26
general form 27
general form for inner join 85, 100
general form for outer join 94
general form for set operations 127
GROUP BY clause 17, 48, 49, 51, 54,

58
HAVING clause 20, 58
INTO clause 354, 356, 359
LABEL= option 43
NOPRINT option 354
ORDER BY clause 11, 12, 16
ordering by multiple columns 12
ordering rows 11
querying multiple tables 13
SELECT clause 8, 14, 28, 29, 31, 48,

49
selecting columns 8
specifying columns in multiple tables

14
specifying multiple table names 15
specifying subset criteria 11
specifying tables 10
summarizing groups of data 48, 49
VALIDATE keyword 72
viewing all columns 28
WHERE clause 11, 15, 32, 40

SELECT/WHEN statement 716
semicolon (;) in macro programs 375
sequential access 748
session-compiled macros 422
SET clause

INSERT statement (SQL) 180, 181
UPDATE statement (SQL) 199

836 Index

set operations
combining and overlaying columns 130
defined 127
EXCEPT set operator 129, 132, 135,

136
INTERSECT set operator 129, 139,

140, 141, 142
modifying results via keywords 131
OUTER UNION set operator 129, 151,

156
processing multiple operations 128
processing single operations 128
processing unique vs. duplicate rows

130
UNION set operator 129, 144, 146,

147, 148
SET statement, DATA step

hash objects and 565
KEY= option 522
multiple 514, 515
POINT= option 689

simple indexes
creating 232
defined 227, 448, 449

SORT procedure
WHERE statement 723

sorting
ordering by multiple columns 12
ordering rows 11

sounds-like conditional operator
description 33
general form 39
WHERE conditions and 755

SOURCE entries, storing 425, 426, 427
SOURCE option, %MACRO statement

435, 437
sparse match 499
special characters, masking

%BQUOTE function 305
%NRSTR function 305
%STR function 303
macro function support 302

special tokens 298
spelling variations 39
SQL procedure

accessing metadata 264
combining data horizontally 507, 511,

512, 514
creating macro variables 354, 356, 359
detail reports 765
DOUBLE option 268
ERRORSTOP option 279
EXEC option 279
FEEDBACK option 29
FLOW option 269
functionality 4

general form 6, 102
INOBS= option 265
INSERT statement 180
joining data 506
LOOPS= option 279
managing indexes 454
NODOUBLE option 268
NOERRORSTOP option 279
NOEXEC option 71, 279
NOFLOW option 269
NONUMBER option 267
NOPROMPT option 267, 279
NOSTIMER option 271
NUMBER option 267
OUTOBS= option 29, 265
PROMPT option 267, 279
specifying options 265
STIMER option 271
tools for summarizing data 768
UNDO_POLICY option 194
unique features 5
writing steps 6

SQLOOPS macro variable 279
STATS system option 655
STIMER option, SQL procedure 271
STIMER system option 271, 655
storage

array values 542, 543, 544, 546
best practices 735
compressing data files 685, 686, 687,

689, 690, 692
conserving with DATA step views 696,

697, 698, 699, 700, 701
in autocall libraries 426, 429, 430, 431
macro definitions in catalog SOURCE

entries 425, 426, 427
macro definitions in external files 423
permanent locations for formats 592
raw data filenames in data sets 485
raw data filenames in external files 485
reducing for character variables 677
reducing for numeric variables 677,

678, 679, 680
session-compiled macros 422
Stored Compiled Macro Facility 433,

434, 435, 436, 437
STORE option, %MACRO statement 434
Stored Compiled Macro Facility 433,

434, 435, 436, 437
SUBMIT block 362
subqueries

comparison operator in 65
correlated 62, 229
noncorrelated 62
subsetting data 61

subsetting columns in tables 175

Index 837

subsetting data
correlated subqueries and 69
indexes and 230
noncorrelated subqueries and 63
subqueries and 61

subsetting IF statement 708, 725, 727
subsetting rows

functionality 15
specifying criteria 11
using calculated values 40
using conditional operators 32

subsetting variables 730, 731
SUBSTR function 547, 754, 755
sum statement 519
summarizing data

comparing tools 767, 768, 772, 774
GROUP BY clause, SELECT statement

(SQL) 17, 48, 49
SELECT clause and 49

summary functions
functionality 18, 48
GROUP BY clause and 51, 54
number of arguments 48
on groups of data 49
SELECT clause and 49
with columns outside function 52
with multiple arguments 51
with single arguments 50

SUMMARY procedure
multilabel formats 582
tools for summarizing data 768

summary statistics
class variables and 771, 772
combining data and 516, 517, 519
MEANS procedure 517, 771
sum statement 519

symbol tables
%GLOBAL statement 388
%LOCAL statement 389
defined 290
global 290, 387
local 388, 389, 392

SYMBOLGEN system option 299
SYMGET function 352, 362
SYMGETN function 363
SYMPUT routine

creating multiple macro variables 343
DATA step expressions and 336
DATA step variables and 334
general form 332, 344
SCL program support 362

SYMPUTN routine 363
SYMPUTX routine 341
SYSDATE automatic macro variable 292
SYSDATE9 automatic macro variable

292, 310, 314

SYSDAY automatic macro variable 292
SYSERR automatic macro variable 292
SYSJOBID automatic macro variable 292
SYSLAST automatic macro variable 292,

312
SYSPARM automatic macro variable 292
SYSSCP automatic macro variable 292
system options, tracking resources 655
SYSTENV automatic macro variable 292
SYSTIME automatic macro variable 292,

314
SYSVER automatic macro variable 292

T
table aliases, specifying 89
TABLE statement, TABULATE procedure

582
tables

base 497
copying 178
creating from query results 177
creating like others 174
creating output tables 19
creating with integrity constraints 187,

188
displaying integrity constraints 197
displaying structure 173
dropping 216
empty 168, 174
generating Cartesian products 83
joining with SQL procedure 506
methods of creating 168
querying multiple 13
specifying 10
specifying data types 170
specifying multiple table names 15
symbol 290
updating values 198
views and 106, 109, 248, 254
virtual 249

TABULATE procedure
CLASS statement 582
FORMAT statement 582
FORMAT= option 582
MLF option 582
multilabel formats 582
TABLE statement 582
tools for summarizing data 768

testing performance 271
text, macro variable references and 316
TITLE statement, SQL procedure 44
titles, specifying 44
tokens

literal 297
macro triggers and 298

838 Index

macro variables and 297
name 298
number 298
percent sign and 304
special 298

transaction data sets 525, 526, 611
TRANSPOSE procedure

adding variable names 551
BY statement 553
general form 548
NAME= option 551
NOTSORTED option 554
PREFIX= option 551
RENAME= data set option 552
VAR statement 549

transposed data sets 553, 554, 555, 556,
557

TRIM function 754
TYPE= data set option 630
TYPES statement, MEANS procedure

776

U
UNDO_POLICY option, SQL procedure

194
UNIFORM option, PRINT procedure 700
UNION set operator

ALL keyword and 146, 148
CORR keyword and 147, 148
functionality 129, 144

UNIQUE constraint type
constraint specification 191
functionality 187, 188, 620
in column specification 188

unique indexes 228, 233
UNIQUE option

DATA step 450
MODIFY statement (DATA) 617

UNIVARIATE procedure 711, 768
update process

controlling 618, 619
for views 255

UPDATE statement, DATA step 526
UPDATE statement, SQL procedure

audit trails and 628
CASE expression 201, 203
controlling UNDO processing 194
functionality 72
general form 199
SET clause 199
updating table row values 198
updating views 255
WHERE clause 199, 201, 255

UPDATEMODE= option, MODIFY
statement (DATA) 614

user variables 633
user-defined macro variables

%LET statement and 294
defined 290
global symbol table and 387

USER_VAR statement 633
USING clause, CREATE VIEW statement

(SQL) 253

V
VALIDATE keyword 72
VALUE statement, FORMAT procedure

combining data 502
creating formats 501, 580
creating formats with overlapping

ranges 581
MULTILABEL option 581, 582

value/identifier pairs 448
VALUES clause, INSERT statement

(SQL)
functionality 180, 182
handling errors for row insertions 194

VAR statement, TRANSPOSE function
549

variables
accumulator 519
adding descriptive names 551
appending with different lengths 480
appending with different types 482
associating formats with 501
audit trail 631, 632
best practices 724
character 677
class 771, 772, 774, 776, 778
hash objects and 565
key 497
listing in data sets 596
numeric 677, 678, 679, 680
renaming 460
subsetting 730, 731
summary statistics and 771, 772
user 633
WHERE conditions and 755

VIEW= option, DATA step 698
views

benefits 249
conserving storage space 696, 697, 698,

699, 700, 701
creating 249
deleting 257
displaying definitions 251
dropping 257
enhancing table security 254
functionality 250, 361
in queries 248

Index 839

in-line 105, 106, 107
librefs and 253
managing 252
tables and 106, 109, 248, 254
updating 255

VIEWTABLE window 628
virtual tables 249

W
WAYS statement, MEANS procedure 784
WHERE clause

SELECT statement (SQL) 11, 15, 32,
40

UPDATE statement (SQL) 199, 201,
255

WHERE condition
compound optimization and 755
controlling index usage 763
not optimized 755
optimizing 754
printing centile information 757

WHERE statement
DATA step 725, 727, 747, 749, 750,

752
PRINT procedure 727
SORT procedure 723

WHERE= data set option 780
word scanner

macro triggers and 298
tokenization and 297

840 Index

	Contents
	About This Book
	Audience
	Requirements and Details
	Purpose and Content
	Prerequisites
	How to Create Practice Data
	SAS Windowing Environment
	SAS Studio and SAS University Edition
	SAS Enterprise Guide
	Exams
	Additional Resources

	Syntax Conventions

	SQL Processing with SAS
	Performing Queries Using PROC SQL
	Overview
	Introduction

	PROC SQL Basics
	Overview
	How PROC SQL Is Unique

	Writing a PROC SQL Step
	Overview
	The SELECT Statement

	Selecting Columns
	Overview
	Creating New Columns

	Specifying the Table
	Specifying Subsetting Criteria
	Ordering Rows
	Overview
	Ordering by Multiple Columns

	Querying Multiple Tables
	Overview
	Specifying Columns That Appear in Multiple Tables
	Specifying Multiple Table Names
	Specifying a Join Condition
	Ordering Rows

	Summarizing Groups of Data
	Example
	Summary Functions

	Creating Output Tables
	Overview
	Example

	Additional Features
	Summary
	Text Summary
	Sample Programs
	Points to Remember

	Quiz

	Performing Advanced Queries Using PROC SQL
	Overview
	Introduction

	Viewing SELECT Statement Syntax
	Displaying All Columns
	Using SELECT *
	Using the FEEDBACK Option

	Limiting the Number of Rows Displayed
	Overview
	Example

	Eliminating Duplicate Rows from Output
	Example

	Subsetting Rows By Using Conditional Operators
	Overview
	Using Operators in PROC SQL
	Using the BETWEEN-AND Operator to Select within a Range of
Values
	Using the CONTAINS or Question Mark (?) Operator to Select
a String
	Example
	Using the IN Operator to Select Values from a List
	Using the IS MISSING or IS NULL Operator to Select Missing
Values
	Example
	Using the LIKE Operator to Select a Pattern
	Specifying a Pattern
	Example
	Using the Sounds-Like (=*) Operator to Select a Spelling Variation

	Subsetting Rows By Using Calculated Values
	Understanding How PROC SQL Processes Calculated Columns
	Using the Keyword CALCULATED

	Enhancing Query Output
	Overview
	Specifying Column Formats and Labels
	Specifying Titles and Footnotes
	Adding a Character Constant to Output

	Summarizing and Grouping Data
	Overview
	Number of Arguments and Summary Function Processing
	Groups and Summary Function Processing
	SELECT Clause Columns and Summary Function Processing
	Using a Summary Function with a Single Argument (Column)
	Using a Summary Function with Multiple Arguments (Columns)
	Using a Summary Function without a GROUP BY Clause
	Using a Summary Function with Columns outside of the Function
	Using a Summary Function with a GROUP BY Clause
	Counting Values By Using the COUNT Summary Function
	Counting All Rows
	Counting All Non-Missing Values in a Column
	Counting All Unique Values in a Column
	Selecting Groups By Using the HAVING Clause
	Understanding Data Remerging
	Example

	Subsetting Data By Using Subqueries
	Introducing Subqueries
	Types of Subqueries

	Subsetting Data By Using Noncorrelated Subqueries
	Using Single-Value Noncorrelated Subqueries
	Using Multiple-Value Noncorrelated Subqueries
	Example
	Using Comparisons with Subqueries
	Using the ANY Operator
	Example
	Using the ALL Operator
	Example

	Subsetting Data By Using Correlated Subqueries
	Overview
	Example
	Using the EXISTS and NOT EXISTS Conditional Operators
	Example: Correlated Subquery with NOT EXISTS

	Validating Query Syntax
	Overview
	Using the NOEXEC Option
	Using the VALIDATE Keyword

	Additional Features
	Summary
	Text Summary
	Sample Programs
	Points to Remember

	Quiz

	Combining Tables Horizontally Using PROC SQL
	Overview
	Introduction

	Understanding Joins
	Generating a Cartesian Product
	Using Inner Joins
	Introducing Inner Join Syntax
	Example
	Understanding How Joins Are Processed
	Eliminating Duplicate Columns
	Renaming a Column By Using a Column Alias
	Joining Tables That Have Rows with Matching Values
	Specifying a Table Alias
	Example: Complex PROC SQL Inner Join
	Example: PROC SQL Inner Join with Summary Functions

	Using Outer Joins
	Introducing Types of Outer Joins
	Using a Left Outer Join
	Using a Right Outer Join
	Using a Full Outer Join
	Example: Outer Join

	Creating an Inner Join with Outer Join-Style Syntax
	Comparing SQL Joins and DATA Step Match-Merges
	Overview
	When All of the Values Match
	When Only Some of the Values Match
	When Only Some of the Values Match: Using the COALESCE Function
	Understanding the Advantages of PROC SQL Joins

	Using In-Line Views
	Introducing In-Line Views
	Referencing an In-Line View with Other Views or Tables
	Referencing Multiple Tables in an In-Line View
	Assigning an Alias to an In-Line View
	Example: Query That Contains an In-Line View

	Joining Multiple Tables and Views
	Example: Complex Query That Combines Four Tables
	Example: Technique 1 (PROC SQL Subqueries, Joins, and In-Line
Views)
	Example: Technique 2 (PROC SQL Multi-way Join with Reflexive
Join)
	Example: Technique 3 (Traditional SAS Programming)

	Summary
	Text Summary
	Sample Programs
	Points to Remember

	Quiz

	Combining Tables Vertically Using PROC SQL
	Overview
	Introduction

	Understanding Set Operations
	Overview
	Example
	Processing a Single Set Operation
	Using Multiple Set Operators
	Example
	Processing Multiple Set Operations
	Introducing Set Operators
	Processing Unique versus Duplicate Rows
	Combining and Overlaying Columns
	Modifying Results By Using Keywords

	Using the EXCEPT Set Operator
	Overview
	Using the EXCEPT Operator Alone
	Using the Keyword ALL with the EXCEPT Operator
	Using the Keyword CORR with the EXCEPT Operator
	Using the Keywords ALL and CORR with the EXCEPT Operator
	Example: EXCEPT Operator
	Example: EXCEPT Operator in an In-Line View

	Using the INTERSECT Set Operator
	Overview
	Using the INTERSECT Operator Alone
	Using the Keyword ALL with the INTERSECT Operator
	Using the Keyword CORR with the INTERSECT Operator
	Using the Keywords ALL and CORR with the INTERSECT Operator
	Example: INTERSECT Operator

	Using the UNION Set Operator
	Overview
	Using the UNION Operator Alone
	Using the Keyword ALL with the UNION Operator
	Using the Keyword CORR with the UNION Operator
	Using the Keywords ALL and CORR with the UNION Operator
	Example: UNION Operator
	Example: UNION Operator and Summary Functions

	Using the OUTER UNION Set Operator
	Overview
	Using the OUTER UNION Operator Alone
	Using the Keyword CORR with the OUTER UNION Operator
	Example: OUTER UNION Operator

	Comparing Outer Unions and Other SAS Techniques
	Program 1: PROC SQL OUTER UNION Set Operation with CORR
	Program 2: DATA Step, SET Statement, and PROC PRINT Step

	Summary
	Text Summary
	Sample Program
	Points to Remember

	Quiz

	Creating and Managing Tables Using PROC SQL
	Overview
	Introduction

	Understanding Methods of Creating Tables
	Creating an Empty Table By Defining Columns
	Overview
	Example
	Specifying Data Types
	Specifying Column Widths
	Specifying Column Modifiers
	Example

	Displaying the Structure of a Table
	Overview
	Example

	Creating an Empty Table That Is like Another Table
	Overview
	Example
	Specifying a Subset of Columns from a Table
	Example

	Creating a Table from a Query Result
	Overview
	Example
	Copying a Table
	Example

	Inserting Rows of Data into a Table
	Overview
	Inserting Rows By Using the SET Clause
	Example
	Inserting Rows By Using the VALUES Clause
	Example
	Inserting Rows from a Query Result
	Example

	Creating a Table That Has Integrity Constraints
	Overview
	General Integrity Constraints
	Referential Integrity Constraints
	Creating a Constraint in a Column Specification
	Example
	Creating a Constraint By Using a Constraint Specification
	Example

	Handling Errors in Row Insertions
	Overview
	Example
	Using the UNDO_POLICY= Option to Control UNDO Processing
	Example

	Displaying Integrity Constraints for a Table
	Overview
	Example

	Updating Values in Existing Table Rows
	Overview
	Updating Rows By Using the Same Expression
	Example
	Updating Rows By Using Different Expressions
	Example
	How PROC SQL Updates Rows Based on a CASE Expression
	How the Case Operand Works
	Updating Rows By Using the CASE Expression without a Case Operand
	Example
	Updating Rows By Using the CASE Expression with a Case Operand
	Example
	Using the CASE Expression in the SELECT Statement
	Example

	Deleting Rows in a Table
	Overview
	Example

	Altering Columns in a Table
	Overview
	Adding Columns to a Table
	Example
	Dropping Columns from a Table
	Example
	Modifying Columns in a Table
	Example
	Adding, Dropping, and Modifying Columns in a Single Statement
	Example

	Dropping Tables
	Overview
	Example

	Summary
	Text Summary
	Sample Programs
	Points to Remember

	Quiz

	Creating and Managing Indexes Using PROC SQL
	Overview
	Introduction

	Understanding Indexes
	Accessing Rows in a Table
	Simple and Composite Indexes
	Unique Indexes
	Example

	Deciding Whether to Create an Index
	Overview
	PROC SQL Queries That Can Be Optimized by an Index
	Benefits of Using an Index
	Example: Using an Index to Access a Small Subset of Data
	Understanding the Costs of Using an Index
	Guidelines for Creating Indexes

	Creating an Index
	Overview
	Creating Multiple Indexes
	Example: Creating a Simple Index
	Example: Creating a Composite, Unique Index

	Displaying Index Specifications
	Overview
	Example
	Alternatives to the DESCRIBE TABLE Statement

	Managing Index Usage
	Overview
	Understanding How SAS Decides Whether to Use an Index
	Determining Whether SAS Is Using an Index
	Example: Query That Uses an Index
	Example: Query That Does Not Use an Index
	Controlling Index Usage
	Using IDXWHERE= to Direct SAS to Use or Not to Use an Index
	Example
	Using IDXNAME= to Direct SAS to Use a Specified Index
	Example

	Dropping Indexes
	Overview
	Example: Dropping a Composite Index

	Summary
	Text Summary
	Sample Programs
	Points to Remember

	Quiz

	Creating and Managing Views Using PROC SQL
	Overview
	Introduction

	Creating and Using PROC SQL Views
	PROC SQL Views
	Creating PROC SQL Views
	Example
	Using PROC SQL Views

	Displaying the Definition for a PROC SQL View
	Overview
	Example

	Managing PROC SQL Views
	Guidelines for Using PROC SQL Views
	Omitting the Libref
	Using an Embedded LIBNAME Statement
	Example
	Creating a View to Enhance Table Security
	Example

	Updating PROC SQL Views
	Overview
	Example

	Dropping PROC SQL Views
	Overview
	Example

	Summary
	Text Summary
	Sample Programs
	Points to Remember

	Quiz

	Managing Processing Using PROC SQL
	Overview
	Introduction

	Specifying SQL Options
	Controlling Execution
	Restricting Row Processing
	Example

	Controlling Output
	Including a Column of Row Numbers
	Example
	Double-Spacing Output
	Example
	Flowing Characters within a Column
	Example

	Testing and Evaluating Performance
	Writing Timing Information for Each Statement
	Example

	Resetting Options
	Overview
	Example

	Using Dictionary Tables
	Overview
	Exploring and Using Dictionary Tables
	Example
	Example

	Additional Features
	Restricting the Number of Loops
	Stopping Execution in PROC SQL after an Error

	Summary
	Text Summary
	Sample Programs
	Points to Remember

	Quiz

	SAS Macro Language
	Introducing Macro Variables
	Overview
	Introduction

	Basic Concepts
	Overview
	Macro Variables
	Referencing Macro Variables
	Example: Referencing a Macro Variable
	Example: Referencing a Macro Variable in a Title

	Using Automatic Macro Variables
	Overview
	Example

	Using User-Defined Macro Variables
	The %LET Statement
	Example
	%LET Statement Examples

	Processing Macro Variables
	SAS Processing
	Tokenization
	Examples
	Macro Triggers

	Displaying Macro Variable Values in the SAS Log
	The SYMBOLGEN Option
	Example
	The %PUT Statement
	Example

	Using Macro Functions to Mask Special Characters
	Macro Quoting Functions
	Example
	The %STR Function
	Example
	The %NRSTR Function
	Example
	The %BQUOTE Function
	Example

	Using Macro Functions to Manipulate Character Strings
	Macro Character Functions
	The %UPCASE Function
	Example
	The %QUPCASE Function
	Example
	The %SUBSTR Function
	Example
	The %QSUBSTR Function
	Example
	The %INDEX Function
	Example
	The %SCAN Function
	Example
	The %QSCAN Function
	Example

	Using SAS Functions with Macro Variables
	The %SYSFUNC Function
	Example
	Quoting with %QSYSFUNC
	Example

	Combining Macro Variable References with Text
	Overview
	Delimiters in Macro Variable Names

	Summary
	Text Summary
	Sample Programs
	Points to Remember

	Quiz

	Processing Macro Variables at Execution Time
	Overview
	Introduction

	Creating a Macro Variable during DATA Step Execution
	Overview
	Example
	The SYMPUT Routine
	Using SYMPUT with a Literal
	Example
	Using SYMPUT with a DATA Step Variable
	Example
	Using CALL SYMPUT with DATA Step Expressions
	Example
	PUT Function
	Example
	The SYMPUTX Routine
	Example

	Creating Multiple Macro Variables during DATA Step Execution
	Creating Multiple Macro Variables with CALL SYMPUT
	Example

	Referencing Macro Variables Indirectly
	Introduction
	The Forward Re-Scan Rule
	Example
	Example
	Example

	Obtaining Macro Variable Values during DATA Step Execution
	The SYMGET Function
	Example

	Creating Macro Variables during PROC SQL Step Execution
	The INTO Clause and the NOPRINT Option
	Example
	Creating Variables with the INTO Clause
	Example
	Example
	Creating a Delimited List of Values
	Example

	Working with PROC SQL Views
	Using Macro Variables in SCL Programs
	Overview
	The SYMPUTN Routine
	Example
	The SYMGETN Function
	Example

	Summary
	Text Summary
	Sample Programs
	Points to Remember

	Quiz

	Creating and Using Macro Programs
	Overview
	Introduction

	Basic Concepts
	Defining a Macro
	Example
	Compiling a Macro
	The MCOMPILENOTE= Option
	Example
	Calling a Macro
	Example
	Macro Execution
	Example

	Developing and Debugging Macros
	Monitoring Execution with System Options
	The MPRINT Option
	Example
	The MLOGIC Option
	Example
	Comments in Macro Programs
	Example

	Using Macro Parameters
	Example
	Macros That Include Positional Parameters
	Example
	Macros That Include Keyword Parameters
	Example
	Macros That Include Mixed Parameter Lists
	Example
	Macros That Include the PARMBUFF Option
	Example

	Understanding Symbol Tables
	The Global Symbol Table
	The %GLOBAL Statement
	Example
	The Local Symbol Table
	The %LOCAL Statement
	Example
	Rules for Creating and Updating Variables
	Multiple Local Symbol Tables
	Example
	The MPRINTNEST Option
	Example
	The MLOGICNEST Option
	Example

	Processing Statements Conditionally
	Conditional Execution
	%IF-%THEN Compared to IF-THEN
	Example
	Example
	Macro Execution with Conditional Processing
	Example
	Example
	Conditional Processing of Parts of Statements
	Example
	Case Sensitivity in Macro Comparisons
	Example

	Processing Statements Iteratively
	Overview
	Example
	Example
	Generating Complete Steps
	Example

	Using Arithmetic and Logical Expressions
	The %EVAL Function
	Examples
	Example
	Automatic Evaluation

	Summary
	Text Summary
	Sample Programs
	Points to Remember

	Quiz

	Storing Macro Programs
	Overview
	Introduction

	Understanding Session-Compiled Macros
	Storing Macro Definitions in External Files
	Overview
	Example

	Storing Macro Definitions in Catalog SOURCE Entries
	Overview
	Example
	The CATALOG Procedure
	Example
	The CATALOG Access Method
	Example
	Example

	Using the Autocall Facility
	Overview
	Creating an Autocall Library
	Example
	Default Autocall Library
	Example
	Accessing Autocall Macros
	Example

	Using Stored Compiled Macros
	The Stored Compiled Macro Facility
	Creating a Stored Compiled Macro
	Using the SOURCE Option
	Example
	Accessing Stored Compiled Macros
	Example
	Accessing Stored Macro Code
	Example

	Summary
	Text Summary
	Sample Programs
	Points to Remember

	Quiz

	Advanced SAS Programming Techniques
	Creating Indexes
	Overview
	Introduction

	Using Indexes
	Overview
	Types of Indexes

	Creating Indexes in the DATA Step
	Overview
	Examples
	Example
	Determining Whether SAS Used an Index
	Example

	Managing Indexes with PROC DATASETS
	Overview
	Example

	Managing Indexes with PROC SQL
	Overview
	Example

	Documenting and Maintaining Indexes
	Overview
	Example
	Example
	Copying Data Sets
	Examples
	Renaming Data Sets
	Example
	Renaming Variables
	Example

	Summary
	Text Summary
	Sample Programs
	Points to Remember

	Quiz

	Combining Data Vertically
	Overview
	Introduction

	Using a FILENAME Statement
	Overview
	Example

	Using
the FILEVAR= Option
	Overview
	Example
	Assigning the Names of the Files to Read
	Example
	Using the COMPRESS Function
	Example
	Using the END= Option
	Example
	Using Date Functions
	Example
	Using the INTNX Function
	Example

	Appending SAS Data Sets
	Overview
	Example
	Using the FORCE Option
	Example
	Appending Variables with Different Lengths
	Example
	Appending Variables with Different Types
	Example

	Additional Features
	Storing Raw Data Filenames in a SAS Data Set
	Storing Raw Data Filenames in an External File

	Summary
	Text Summary
	Sample Programs
	Points to Remember

	Quiz

	Combining Data Horizontally
	Overview
	Introduction

	Reviewing Terminology
	Overview
	Relationships between Input Data Sources

	Working with Lookup Values Outside of SAS Data Sets
	Overview
	The IF-THEN/ELSE Statement
	Example: Using the IF-THEN/ELSE Statement to Combine Data
	SAS Arrays
	Example: Using the ARRAY Statement to Combine Data
	User-Defined SAS Formats
	Example: Using the FORMAT Procedure to Combine Data

	Combining Data with the DATA Step Match-Merge
	The DATA Step Match-Merge
	Working with Multiple Lookup Tables
	Example

	Using PROC SQL to Join Data
	The SQL Procedure
	Example: Working with Multiple Lookup Tables

	Comparing DATA Step Match-Merges and PROC SQL Joins
	Overview
	Examples
	DATA Step Match-Merge
	Execution of a DATA Step Match-Merge
	PROC SQL Join
	Execution of a PROC SQL Join
	Example: Combining Data from a Many-to-Many Match
	Using Multiple SET Statements
	Example: Using Multiple SET Statements with a Many-to-Many
Match

	Combining Summary Data and Detail Data
	Overview
	The MEANS Procedure
	Example
	Example
	The Sum Statement
	Example

	Using an Index to Combine Data
	Overview
	The KEY= Option
	Example
	Example
	The _IORC_ Variable
	Example

	Using a Transaction Data Set
	Overview
	Using the UPDATE Statement
	Example

	Summary
	Text Summary
	Sample Programs
	Points to Remember

	Quiz

	Using Lookup Tables to Match Data
	Overview
	Introduction

	Using Multidimensional Arrays
	Review of the Multidimensional Array Statement
	Example

	Populating an Array from a SAS Data Set
	Overview
	Example
	Creating an Array
	Loading the Array Elements
	Reading the Actual Values

	Using PROC TRANSPOSE
	Overview
	Example
	Adding Descriptive Variable Names

	Merging the Transposed Data Set
	Structuring the Data for a Merge
	Using a BY Statement with PROC TRANSPOSE
	Sorting the Work.Ctarget2 Data Set
	Reorganizing the Sasuser.Monthsum Data Set
	Sorting the Work.Mnthsum2 Data Set
	Completing the Merge

	Using Hash Objects as Lookup Tables
	Overview
	The Structure of a Hash Object
	Example
	DATA Step Component Objects
	Declaring the Hash Object
	Defining Keys and Data
	Using the Call Missing Routine
	Loading Key and Data Values
	Retrieving Matching Data
	Hash Object Processing
	Creating a Hash Object from a SAS Data Set
	Using a Non-Executing SET Statement
	Working with Multiple Data Variables
	Retrieving Multiple Data Values
	Using Return Codes with the FIND Method
	Example

	Summary
	Text Summary
	Sample Programs
	Points to Remember

	Quiz

	Formatting Data
	Overview
	Introduction

	Creating Custom Formats Using the VALUE Statement
	Review of Creating Non-Overlapping Formats
	Creating a Format with Overlapping Ranges
	Example

	Creating Custom Formats Using the PICTURE Statement
	Overview
	Ways to Specify Pictures
	Example
	Guidelines for Specifying Directives
	Example

	Managing Custom Formats
	Using FMTLIB with PROC FORMAT to Document Formats
	Example
	Using PROC CATALOG to Manage Formats
	Example

	Using Custom Formats
	Overview
	Example
	Using a Permanent Storage Location for Formats
	Example
	Avoiding Format Errors
	Example

	Creating Formats from SAS Data Sets
	Overview
	Example
	Rules for Control Data Sets
	Example
	Apply the Format

	Creating SAS Data Sets from Custom Formats
	Overview
	Example

	Summary
	Text Summary
	Sample Programs
	Points to Remember

	Quiz

	Modifying SAS Data Sets and Tracking Changes
	Overview
	Introduction

	Using the MODIFY Statement
	Modifying All Observations in a SAS Data Set
	Overview
	Example

	Modifying Observations Using a Transaction Data Set
	Overview
	Example
	Handling Duplicate Values
	Handling Missing Values

	Modifying Observations Located by an Index
	Overview
	Example
	Handling Duplicate Values

	Controlling the Update Process
	Overview
	Example
	Monitoring I/O Error Conditions
	Using _IORC_ with %SYSRC
	Example

	Understanding Integrity Constraints
	Overview
	General Integrity Constraints
	Referential Integrity Constraints

	Placing Integrity Constraints on a Data Set
	Overview
	Example
	How Constraints Are Enforced
	Example
	Copying a Data Set and Preserving Integrity Constraints

	Documenting Integrity Constraints
	Overview
	Example

	Removing Integrity Constraints
	Overview
	Example

	Understanding Audit Trails
	Initiating and Reading Audit Trails
	Overview
	Example
	Reading Audit Trail Files
	Examples

	Controlling Data in the Audit Trail
	Overview
	Data Set Variables
	Audit Trail Variables
	Values of the _ATOPCODE_ Variable
	Using the LOG Statement to Control the Data in the Audit Trail
	Example
	User Variables
	Example

	Controlling the Audit Trail
	Overview
	Example

	Understanding Generation Data Sets
	Initiating Generation Data Sets
	Overview
	Example
	Creating Generation Data Sets

	Processing Generation Data Sets
	Overview
	Examples
	How Generation Numbers Change
	Examples

	Summary
	Text Summary
	Sample Programs
	Points to Remember

	Quiz

	Optimizing SAS Programs
	Introduction to Efficient SAS Programming
	Overview
	Introduction

	Overview of Computing Resources
	Assessing Efficiency Needs at Your Site
	Assessing Your Technical Environment
	Assessing Your Programs
	Assessing Your Data

	Understanding Efficiency Trade-offs
	Using SAS System Options to Track Resources
	Using Benchmarks to Compare Techniques
	Guidelines for Benchmarking

	Summary
	Overview of Computing Resources
	Understanding Efficiency Trade-offs
	Using SAS System Options to Track Resources
	Using Benchmarks to Compare Techniques

	Controlling Memory Usage
	Overview
	Introduction

	Controlling Page Size and the Number of Buffers
	Measuring I/O
	Page Size
	Reporting Page Size
	Using the BUFSIZE= Option
	Using the BUFNO= Option
	Comparative Example: Using the BUFSIZE= Option and the BUFNO=
Option

	Using the SASFILE Statement
	Overview
	Guidelines for Using the SASFILE Statement
	Comparative Example: Using the SASFILE Statement

	Additional Features
	Using the IBUFSIZE= System Option

	Summary
	Controlling Page Size and the Number of Buffers
	Using the SASFILE Statement
	Additional Features

	Quiz

	Controlling Data Storage Space
	Overview
	Introduction

	Reducing Data Storage Space for Character Variables
	Reducing the Length of Character Data with the LENGTH Statement

	Reducing Data Storage Space for Numeric Variables
	How SAS Stores Numeric Variables
	Assigning Lengths to Numeric Variables
	Example
	Maintaining Precision in Reduced-Length Numeric Variables
	Using PROC COMPARE
	Example
	Comparative Example: Creating a SAS Data Set That Contains
Reduced-Length Numeric Variables

	Compressing Data Files
	Overview
	Review of Uncompressed Data File Structure
	Compressed Data File Structure
	Deciding Whether to Compress a Data File
	The COMPRESS= System Option and the COMPRESS= Data Set Option
	Example
	Accessing Observations Directly in a Compressed Data Set
	The POINTOBS= Data Set Option
	Example
	The REUSE= System Option and the REUSE= Data Set Option
	Example
	How SAS Compresses Data
	Comparative Example: Creating and Reading Compressed Data Files
	General Recommendations

	Using SAS DATA Step Views to Conserve Data Storage Space
	Overview
	DATA Step Views
	Example
	The DESCRIBE Statement
	Creating and Referencing a SAS DATA Step View
	Referencing a Data View Multiple Times in One Program
	Example
	Making Multiple Passes through Data in a Data View
	Creating Data Views on Unstable Data
	Comparative Example: Creating and Reading a SAS Data View
	General Recommendations

	Summary
	Reducing Data Storage Space for Character Variables
	Reducing Data Storage Space for Numeric Variables
	Compressing Data Files
	Using SAS DATA Step Views to Conserve Data Storage Space

	Quiz

	Using Best Practices
	Overview
	Introduction

	Executing Only Necessary Statements
	Overview
	Positioning of the Subsetting IF Statement
	Comparative Example: Creating a Subset of Data
	Using Conditional Logic Efficiently
	Comparative Example: Creating Variables Conditionally Using
DO Groups
	Comparative Example: Creating Variables Conditionally When
Calling Functions
	Using DO Groups Efficiently
	Comparative Example: Creating Data in DO Groups

	Eliminating Unnecessary Passes through the Data
	Comparative Example: Creating Multiple Subsets of a SAS Data
Set
	Using the SORT Procedure with a WHERE Statement to Create Sorted
Subsets
	Comparative Example: Creating a Sorted Subset of a SAS Data
Set
	Using the DATASETS Procedure to Modify Variable Attributes
	Comparative Example: Changing the Variable Attributes of a
SAS Data Set

	Reading and Writing Only Essential Data
	Overview
	Selecting Observations Using Subsetting IF versus WHERE Statement
	Comparative Example: Creating a Subset of a SAS Data Set
	Other Differences between the IF and WHERE Statements
	Using the WHERE Statement with the OBS= and FIRSTOBS= Options
	Selecting Observations When Reading Data from External Files
	Comparative Example: Creating a Subset of Data by Reading Data
from an External File
	Subsetting Variables with the KEEP and DROP Statements and
Options
	Comparative Example: Creating a Report That Contains Average
and Median Statistics
	Comparative Example: Creating a SAS Data Set That Contains
Only Certain Variables

	Storing Data in SAS Data Sets
	Overview
	Comparative
Example: Reading a SAS Data Set Versus an External File

	Avoiding Unnecessary Procedure Invocation
	Overview
	Executing the DATASETS Procedure
	RUN-Group Processing
	Using Different Types of RUN Groups with PROC DATASETS
	Comparative Example: Modifying the Descriptor Portion of SAS
Data Sets
	General Recommendations

	Summary
	Executing Only Necessary Statements
	Eliminating Unnecessary Passes through the Data
	Reading and Writing Only Essential Data
	Storing SAS Data in SAS Data Sets
	Avoiding Unnecessary Procedure Invocation

	Quiz

	Querying Data Efficiently
	Overview
	Introduction

	Using an Index for Efficient WHERE Processing
	Overview
	Accessing Data Sequentially
	Example
	Accessing Data Directly
	Example
	Benefits and Costs of Using an Index
	How SAS Selects an Access Method

	Identifying Available Indexes
	Overview
	Example: Identifying One Available Index
	Example: Identifying Multiple Available Indexes
	Compound Optimization
	Example: Composite Index That Can Be Used to Optimize Multiple
Conditions
	Example: Composite Index That Can Be Used to Optimize One Condition
	Example: Composite Index That Cannot Be Used for Optimizing

	Identifying Conditions That Can Be Optimized
	Requirements for Optimizing a Single WHERE Condition
	WHERE Conditions That Cannot Be Optimized
	Requirements for Compound Optimization
	Example: Compound Optimization

	Estimating the Number of Observations
	Overview
	Printing Centile Information
	Example

	Comparing Probable Resource Usage
	Overview
	How SAS Compares Resource Usage
	Factors That Affect I/O
	Subset Size Relative to Data Set Size
	Number of Pages in the Data File
	Order of the Data
	Cost to Uncompress a Compressed File for a Sequential Read
	Other Factors That Affect Resource Usage

	Deciding Whether to Create an Index
	Guidelines for Deciding Whether to Create an Index
	Example: Selecting Subsets of Various Sizes from Data Sets
of Various Sizes
	Query 1: Small Subset from a Large Data Set
	Query 2: Large Subset from a Large Data Set
	Query 3: Small Subset from a Small Data Set
	Using the IDXWHERE= and IDXNAME= Data Set Options
	Specifying MSGLEVEL=I to Determine Whether SAS Used an Index
	Example: Using IDXWHERE=NO to Prevent Index Usage

	Comparing Procedures That Produce Detail Reports
	Overview
	Example: Using PROC PRINT and PROC SQL to Create Detail Reports
	Report 1: Simple Detail Report
	Report 2: Subset Detail Report
	Report 3: Sorted Detail Report
	Report 4: Sorted Subset Detail Report

	Comparing Tools for Summarizing Data
	Overview
	Comparing Resource Usage across Summarization Tools
	Comparative Example: Displaying Summary Statistics for One
Class Variable
	Using PROC MEANS to Display Summary Statistics for Combinations
of Class Variables
	Comparing Resource Usage across Three Techniques for Using
PROC MEANS
	Using a Basic PROC MEANS Step to Combine All Class Variables
	Example: Displaying Summary Statistics for All Combinations
of the Class Variables
	Understanding Types
	Using the TYPES Statement in PROC MEANS to Combine Class Variables
	Example: Using the TYPES Statement in PROC MEANS
	Using the NWAY Option in PROC MEANS to Combine Class Variables
	Example: Using the NWAY Option in Multiple PROC MEANS Steps
	Using
the WHERE= Output Data Set Option in PROC MEANS to Select Desired
Types
	Example: Using the WHERE= Output Data Set Option in PROC MEANS
	Comparative Example: Displaying Summary Statistics for Combinations
of Class Variables
	Additional Features

	Summary
	Using an Index for Efficient WHERE Processing
	Identifying Available Indexes
	Identifying Conditions That Can Be Optimized
	Estimating the Number of Observations
	Comparing Probable Resource Usage
	Deciding Whether to Create an Index
	Comparing Procedures That Produce Detail Reports
	Comparing Tools for Summarizing Data

	Quiz

	Creating Functions with PROC FCMP
	Overview
	Introduction

	Using PROC FCMP
	Overview
	Writing a PROC FCMP Step

	About PROC FCMP
	PROC FCMP Statement
	FUNCTION Statement
	RETURN Statement
	Using the Newly Defined Function
	Using PROC FCMP to Create a Subroutine
	Quiz

	Quiz Answer Keys
	Quiz Answer Keys
	Chapter 1: Performing Queries Using PROC SQL
	Chapter 2: Performing Advanced Queries Using PROC SQL
	Chapter 3: Combining Tables Horizontally Using PROC SQL
	Chapter 4: Combining Tables Vertically Using PROC SQL
	Chapter 5: Creating and Managing Tables Using PROC SQL
	Chapter 6: Creating and Managing Indexes Using PROC SQL
	Chapter 7: Creating and Managing Views Using PROC SQL
	Chapter 8: Managing Processing Using PROC SQL
	Chapter 9: Introducing Macro Variables
	Chapter 10: Processing Macro Variables at Execution Time
	Chapter 11: Creating and Using Macro Programs
	Chapter 12: Storing Macro Programs
	Chapter 13: Creating Indexes
	Chapter 14: Combining Data Vertically
	Chapter 15: Combining Data Horizontally
	Chapter 16: Using Lookup Tables to Match Data
	Chapter 17: Formatting Data
	Chapter 18: Modifying SAS Data Sets and Tracking Changes
	Chapter 19: Introduction to Efficient SAS Programming
	Chapter 20: Controlling Memory Usage
	Chapter 21: Controlling Data Storage Space
	Chapter 22: Using Best Practices
	Chapter 23: Querying Data Efficiently
	Chapter 24: Creating Functions with PROC FCMP

	Index

