www.dbebooks.com - Free Books & magazines
Covers PHP versions

4,5,and 6!

P & MySQL
W’e,!’j Develgpmenf

REFERENCE

_IN-ONE DESK

it FOR

+ Setting Up Your Environment
* PHP Programming

* Using MySQL

* Security

* PHP Extensions

* PHP Web Applications

Janet Valade
Author of PHP & MySQL For Dummies, 3rd Edition

PHP & MySQL’
Web Development

ALL-IN-ONE DESK REFERENCE
FOR
DUMMIED

by Janet Valade with Tricia Ballad
and Bill Ballad

WILEY
Wiley Publishing, Inc.

PHP & MySQL’
Web Development

ALL-IN-ONE DESK REFERENCE

FOR

DUMMIES

PHP & MySQL’
Web Development

ALL-IN-ONE DESK REFERENCE
FOR
DUMMIED

by Janet Valade with Tricia Ballad
and Bill Ballad

WILEY
Wiley Publishing, Inc.

PHP & MySQL® Web Development All-in-One Desk Reference For Dummies®

Published by

Wiley Publishing, Inc.
111 River Street
Hoboken, NJ 07030-5774

www.wiley.com

Copyright © 2008 by Wiley Publishing, Inc., Indianapolis, Indiana
Published by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Legal Department, Wiley Publishing,
Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at
http://www.wiley.com/go/permissions.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the
Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, and related trade
dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United
States and other countries, and may not be used without written permission. MySQL is a registered trade-
mark of MySQL Limited AB Company. All other trademarks are the property of their respective owners.
Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REPRESENTATIONS
OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS WORK AND
SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A
PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS.
THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS
SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING,
OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPE-
TENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE
FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS
WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE
AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR
RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN
THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT
IS READ. FULFILLMENT OF EACH COUPON OFFER IS THE SOLE RESPONSIBILITY OF THE OFFEROR.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 800-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

For technical support, please visit www.wiley.com/techsupport.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Control Number: 2007943295
ISBN: 978-0-470-16777-9

Manufactured in the United States of America
109 87654321

WILEY

http://www.wiley.com/

About the Author

Janet Valade is the author of PHP &MySQL For Dummies, which is in its third
edition. She has also written PHP & MySQL Fveryday Apps For Dummies and
PHP & MySQL: Your visual blueprint for creating dynamic, database-driven Web
sites. In addition, Janet is the author of Spring into Linux and a co-author of
Mastering Visually Dreamweaver CS3 and Flash CS3 Professional.

Janet has 20 years of experience in the computing field. Most recently, she
worked as a Web designer and programmer in an engineering firm for four
years. Prior to that, Janet worked for 13 years in a university environment,
where she was a systems analyst. During her tenure, she supervised the
installation and operation of computing resources, designed and developed
a data archive, supported faculty and students in their computer usage,
wrote numerous technical papers, and developed and presented seminars
on a variety of technology topics.

Dedication

This book is dedicated to everyone who finds it useful.

Author’s Acknowledgments

First, [wish to express my appreciation to the entire open source community:.
Without those who give their time and talent, there would be no cool PHP
and MySQL for me to write about. Furthermore, [never would have learned
this software without the lists where people generously spend their time
answering foolish questions from beginners.

[want to thank my mother for passing on a writing gene, along with many
other things. And my children always for everything.

And, of course, [want to thank the professionals who make it all possible.
Without my agent and the people at Wiley Publishing, Inc., this book would
not exist. Because they all do their jobs so well, [can contribute my part to
this joint project.

Publisher’s Acknowledgments

We're proud of this book; please send us your comments through our online registration form

located at www.dummies.com/register/.

Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial, and
Media Development

Project Editor: Jean Nelson
Acquisitions Editor: Kyle Looper
Copy Editor: Virginia Sanders
Technical Editor: Ryan Lowe
Editorial Manager: Kevin Kirschner

Media Development Project Manager:
Laura Moss-Hollister OR Laura Atkinson

Media Development Assistant Producer:
Angela Denny, Josh Frank, Kate Jenkins,
OR Kit Malone

Editorial Assistant: Amanda Foxworth
Sr. Editorial Assistant: Cherie Case

Cartoons: Rich Tennant
(www . the5thwave . com)

Composition Services

Project Coordinator: Erin Smith

Layout and Graphics: Claudia Bell, Carl Byers,
Joyce Haughey, Melissa K. Jester,
Barbara Moore, Ronald Terry,
Christine Williams

Proofreaders: John Greenough, Caitie Kelly,
Christine Sabooni

Indexer: Silvoskey Indexing Services

Special Help: Susan Christopherson,
Kelly Ewing, and Laura K. Miller

Publishing and Editorial for Technology Dummies

Richard Swadley, Vice President and Executive Group Publisher

Andy Cummings, Vice President and Publisher

Mary Bednarek, Executive Acquisitions Director

Mary C. Corder, Editorial Director

Publishing for Consumer Dummies

Diane Graves Steele, Vice President and Publisher

Joyce Pepple, Acquisitions Director

Composition Services

Gerry Fahey, Vice President of Production Services

Debbie Stailey, Director of Composition Services

www.dummies.com

Contents at a Glance

JHEPOAUCTIONaeeeeeeeeeeeeeeeeeeeeeeennaaeeesnnnasseeennnaseeeennnnsnees]

Book I: Setting Up Your Environmentccceeueeeceneec ¥

Chapter 1: Setting Up Your Web Environment............cccecceevieniinienienennenienienieneeneens 9
Chapter 2: Installing PHP........c.cooiiiiiriiieeetet ettt 21
Chapter 3: Setting Up the MySQL Environmentccccoecveniinienennenneniienieneeneenne 47
Chapter 4: Installing @ Web SEIVerccoceviiviiiiiriiinieniertesteseeeeie et 73
Chapter 5: Setting Up Your Web Development Environment

with the XAMPP PaCKaZeccccoiriiiiieieieieereee ettt 87
Book I1: PHP Programniing...............cccceeeceeeeeaceeeeaaee 101
Chapter 1: PHP BaSiCS.....ccuivuiiiiiiieieiesieeteeitete ettt ettt sttt 103
Chapter 2: Building PHP SCIIPtScccocoviiiririeeeeeeeeeee et 151
Chapter 3: PHP and Your Operating System.........ccccccevevinirienienenienenenceceeeeenee 197
Chapter 4: Object-Oriented Programmingccccecoveviniriienienieneneneneeeeeeeeeenne 229
Book 111: Using MYSQOLeuuecceeeccreecaeicicececaeaeees 257
Chapter 1: Introducing MySQLccoooiiieiirieieieieeece et a e 259
Chapter 2: Administering MySQL........cccooierieiieiiieieeieeieetese e esee e eaeseesaeseeeseeens 269
Chapter 3: Designing and Building a Database...........cccccceeievienieenieecienieniesieseeiens 295
Chapter 4: Using the Databasecccovevieriieiiiiciieieciececeeeesee e 319
Chapter 5: Communicating with the Database from PHP Scriptsccccceeueenens 343
Book 1U: SECUTItY........ccceeeeieaeaeeeieeaieeeineeaseeesaeecseeesss 3D T
Chapter 1: General Security Considerations...........cccecuevcverienieneeniennieniiesieneeseesieens 359
Chapter 2: An Overview of Authentication and Encryption.........ccccecevvienienennnnns 373
Chapter 3: Creating a Secure Environmentccccoecvevverienieneenennieniesieneeseenieens 383
Chapter 4: Programming Securely in PHPcccooiviiniiniinieecceeeeneeieeens 397
Chapter 5: Programming Secure E-Commerce Applications...........c.cccceeveeeevevennnnn. 409
Book U: PHP Extensionsccccccaaaaaacceneeeeeeeeeeeeeene 421
Chapter 1: Introduction to EXteNSionscccccoeevviieiiiiciieeciice e 423
Chapter 2: Using PEAR........ccoooiieeeeeteeteete ettt st s 429
Chapter 3: Using the XML EXteNSIoncccceevirviiriieniieniienieieeieeieeie e seescesie e 441
Chapter 4: Manipulating Images with the GD Extension...........ccccceeeeereiiniiinienennnnnns 449

Chapter 5: Mail EXTENSIONS........cceccuieiiiriiiieieeieciecteeteeee ettt eve e erae e eaeeas 459

Book Vl: PHP Web Applications..............ccccceueeeecnneee 567

Chapter 1: Building and Processing Dynamic Forms..........cccccooeevervinninneniienennenns 469
Chapter 2: Making Information Available on Multiple Web Pagesc.......... 511
Chapter 3: Building a Login Application...........ccocevvieriiniinieniiienieeiesiesteseeieeiens 533
Chapter 4: Building an Online Catalog.........c.cceeverierieririeieeeeeieese st 555
Chapter 5: Building a Shopping Cart.........ccccecveviererineneeieeeteeese e 571

JRACK «eeeeeeaaaaaaaaaaaaeeaaaeeaaeaaaaaeeeeeeeeeeeesssnnnnnnnnnneeac@ 17

Table of Contents

JOEEOAUCEION «...eeeeeeeeeeaaaeeeeeeeeeennnnnsesseeeeessnnnnnsssseeeeesnnnnns]

ADOUt ThisS BOOK.......ccoiiiieieeiiceceetee ettt e 1
Conventions Used in This BOOKccccccoeciieiiiniinienieeciecieceeeeeeeeeiens 2
What You're Not to Read.........cocevieeieciieiiiiicicciececeeee e 3
Foolish ASSUMPLIONSoocviviiiiiiiiiceeeeeceeest ettt 4
How This Book Is Organized.............coccevviiriiriienienieiiiieenieeieeiesieseenieeniens 4
Book I: Setting Up Your Environmentc.ccocevienenninniennieneencenen. 4
Book II: PHP Programmingcccceeveevenieneenienieneeeeieeeeeeeseenen 5
BOOK III: USing MYSQL......cceouieieriieiiesiieieeieeteete et eve e eaeseneseeas 5
BOOK IV: SECUTILY ..ottt 5
BoOk V: PHP EXTENSIONSccveevieeieeieiieieieieceseeeeeete e 5
Book VI: PHP Web Applications...........ccceeeveeieeeenieeieerecieeieeeeeeeeneen 5
Companion Web Sitec.cceeieiieiiieiieecececeee et 5
Icons Used in This BOOK.....c..ccoctiriiriiiiniiiniietentctcieeeeteete et 6
Getting StArtedocveveieeieieeeee et 6

Book I: Setting Up Vour Environmentccccevueeeeeneec ¥

Chapter 1: Setting Up Your Web Environment 9
The Required TOOIS......cccouiriiiiiiiieeieeeeee ettt 10
Choosing a Host for Your Web Site........ccccccoevveeienienieneeecieceeeeeeeee, 10

A company WED Site........cccceevuiriiiniinieiieieciececeetere e 11
An educational institution.........c..cocoeveeieiiienininneeeee 12
A Web-hosting COmPanyccocceevierieneenennienieniestereeseese e 13
Using a hosted Web Sitecccoovviviriecieieeeeeeceeeee e 15
Choosing Your Development Environment...........ccococevveeienenienenenenennen. 16
Setting Up Your Local Computer for Developmentcccceeevenenennen. 17
Installing the Web SErver...........cccocvevieieeiieniieieseeeeeee e 17
Installing MySQL.....ccceeviiiirienienteeeneeieeie st et esee e beeaesaessee e 18
Installing PHPcoooiiiiiieeteeeete ettt 18
Getting help with your software..........cccccocevviniiniininniniinieieneee 19
Keeping Up with PHP and MySQL Changes..........cccccecevverievenieneneneeenen. 19

Chapter 2:InstallingPHPt 21
Checking the PHP Installationccocooceeieienienienininceeeeeeeeeeeee 22
ODbtaining PHPcoouiiiieiececeeeeeee ettt et 22

Downloading from the PHP Web siteccccocvevvieniiiiniiiniecieneene 22

Obtaining PHP for WINAOWS...........cceovvvviircienienieniceeieeeeiesieseene 23

xii PHP & MySOL Web Development All-in-One Desk Reference For Dummies

Obtaining PHP for LINUXcccceviiviiriiniinieniencccceeeeieeesee s 23
Obtaining PHP for the Mac OS.........ccccooviiriiniiniiniieeieeeeeeieseee 24
Obtaining all-in-one installation Kitsccccoeveeviieiienieiieecieeee 24
Verifying a downloaded file............ccceevveeieniiiniieiieieeiecieeeeeeeee 24
INStAllNG PHP.......ooitiiiiiieececeeetetet ettt 25
Installing on Unix and LINUX......c.cccocuervienienieniieniienienceeeneeeeeeeeene 26
Before installingcccceeveriiiniiiniinieicceceeeee e 26

INSLAIlING ..oouvieiiiiiiiee e 27

Installing 0n Mac OS Xccuooiieieiiecieseeeeie et ae e eae e 28
Before installingcceecueeciieiieieceeeeeeeee e 28

INSTAIING ..eovvieiieiiecieeeeeceete et es 29
Installation options for Unix/Linux/Mac.........cccceeevereereerieeniersuenneenne 31
Installing on WINAOWS........ccceeiiriinienienienieniecieseeeeeeie e 32
Configuring Your Web Server for PHPccocoviiiiininiinieeeee, 33
Configuring Apache on Linux and Mac.........ccceceeeeeriierieenieenreeiennene 33
Configuring your Web server on Windowsccccceverenenenneennnns 34
Configuring Apache on Windowscccccceeveevienieneeneeniennnen. 34
Configuring [IS........ccooovioiiiiiieieeeeeee e 35
Configuring PHPcccoooiiiiiiiieeetet et 36
TeStING PHP ..ottt 38
Activating MySQL SUPPOTT......cccieiieieiieeteeieeteete et veeaeereeane e 39
Activating MySQL support on Linux and the Mac OS 40
Activating MySQL support on Windowsc.ccceeeeveerveneeneenieennen. 40
Configuring PHP for MySQL supportcccecceeevevveneeneenvennnen. 40

Setting up the MySQL support files........ccceevuereierciinienennennnen. 40

Checking MySQL SUPPOTIt.....ccccvriirrierieniiniententereeie et eie e see e 42
TroubleShOOtING........ccccviiiiieiieeeeeee e 42
Unable to change PHP settings........cccccoveeveniiinniinieniiniiieneceeneee 43
Displays error message: Undefined function...........cccccceevevueevennnens 44
WINAOWS ..ottt s 44

LINUX OF MAC.....iiiiiiiiiiiiniiniireneeteeeeeee et 44

MySQL functions not activated (Windows)ccccceceeveeriernierviennnene 44
Displays a blank page or HTML output only..........ccccccveeeviecieennnen. 45
Chapter 3: Setting Up the MySQL Environment 47
Checking the MySQL Installationccocceeeeeienienenenenceeeeeeeeeeeeeenen 48
Obtaining MySQLccooiririeieteteerese ettt ettt st 49
Downloading from the MySQL Web siteccccoevveeveveneieneeeenenee. 50
Obtaining MySQL for Windows............ccceceereeerieeeecienieneneeeseeeenens 50
Obtaining MySQL for Linux and UniXcccceeeeevecverienesenesenreenens 50
Obtaining MySQL fOr MaCccceceeieierierieieeseeceeeeese s 51
Obtaining all-in-one installation Kitsccccoeveeviievieiiecieecieees 51
Verifying a downloaded file............cccoeeeeeieiieniieiieieeie e, 52
Installing MySQLu.......c.ooiiieieieieriecieeeeeeeeeet ettt a et e veese e ennas 52
Installing MySQL on WINdOWScceeverrerierineeieieieneseseeeeeeeennes 52
Running the MySQL Setup Wizard............ccoevevveevereneneneennen. 53

Running the MySQL Configuration Wizard.........c..ccccceeeuenenee. 55

Table of Contents XIII

Installing MySQL on Linux from an RPM file..........ccccccoevnininnnnne 57

Installing MySQL on Mac from a PKG file.........cccocevvveeircvecienenrnnnen. 57

Installing MySQL from source files...........ccccevevererincennenienenenenene 58

Configuring MYSQLc.ooiiiiieieieeereree ettt 60

Starting and Stopping the MySQL Server..........ccccccevvevieevienceeneeneeneeneeene. 61

Controlling the server on Windowscccoceevievievienciencienieneenennne 61

Windows NT/2000/XP/Vista........cccccueerernrenenneneieeneneeennenes 61

Manual ShutdOWIcocoevieiiiininircceececceee 62

WINAOWS 98/ME.........urieeeeeeeee et eanes 62

Controlling the MySQL server on Linux/Maccc.ceceveevienenenenen. 63

Testing MYSQL......cociiiieieeiecieceese ettt ettt s e se e sveeaeestesatesaessaesseenes 63

Troubleshooting MySQL........ccouiriiririiriinieeteetere et seesae e 64

Displays error message: Access deniedccooveeveervieriienienieenenne 64
Displays error message: Client does not support

authentication protocol..........cccceeeiiirciiieiiecce e 65

Displays error message: Can’t connect tococeceeveevierienenenenen. 65

MYSQL €FTOY LOG.....uiiiieiieiieieeeecieeieecieeteete st saeeveebeeaesaessneaes 66

Installing MySQL GUI Administration Programs...........cccccecvevvenvenuennnennee. 66

Installing phpMYAdIMINcociiiiiiiiiiiieieeeceee e 67

Obtaining phpMYAdMINcoociiiiiiiirriinieieteeeeee e 67

Installing phpMyAdMINcccooiiiieeiieeie e 67

Testing phpMYAdMIN........ccocviiieiieiiereeieeie e 69

Troubleshooting phpMyAdMINccccveviieiieeiienierieseeeee e 71

Chapter 4: InstallingaWeb Server 13

Testing YOUr WED SEIVETc.cooiiiieiiieiiieiecieeieetest et sreeteevesvesaeseeesaeenee 73

Installing and Configuring Apache.........cccocevvieviiiiniinnienieceeceeeeeeeeeen 74

Obtaining APACRE.......ccciiiiirieieeeeee e 74

Selecting a version of Apache.........cccoevivviiniiniininnennenienen, 74

Downloading from the Apache Web site.........ccccccevvvenennennen. 75

Obtaining Apache for Windowscccccoevevininninenencnennen. 75

Obtaining Apache for LiNUXccccceeeevienieniieneeieeieesieeieeene 76

Obtaining Apache for MacC........ccceveevievvienieniieneeeeeeieeeeeene 76

Obtaining all-in-one installation Kitsccccoocevvevvinnenceneen. 76

Verifying a downloaded file...........c.ccocerviiniiniiiniinniiniienenee, 77

Installing APACREccvieiiieieeeeeeeeee et 77

Installing Apache on Windows............ccccoveveninencenesenenennene 77

Installing Apache on a Mac........cccocceeeieeiinienieneeceeceeeeeenne 79

Installing Apache from source code on Linux and Mac......... 79

Starting and stopping Apacheccccocevviiiiiniiniiiiininieeeeee 81

Starting and stopping Apache on Windows.........ccccecuevvennee. 81

Starting Apache on Linux, Unix, and Mac...........c.cccceeeveevennne 81

Restarting Apache on Linux, Unix, and Maccccccceeeruenen. 82

Stopping Apache on Linux, Unix, and Mac...........cccceeeveevenenne 82

Getting information from Apache..........ccccccovviiniininninciniicieceeeee 83

Getting Apache information on Windows..........ccccccevvieriennn. 83

Getting Apache information on Linux, Unix, and Mac............ 83

XV PHP & MySOL Web Development All-in-One Desk Reference For Dummies

Configuring APache..........coovviiiiiiiiniencecceee e 84

Changing Settingsccoceevieviiieriiinieeieeeteeeeeee e 84

Changing the location of your Web space..........ccccoecveereennne 85

Changing the port nUMDbETccoceiinininiieeeeeeee 85

INStAllING IIS......oieiieeeeeeeee ettt es 86
Chapter 5: Setting Up Your Web Development Environment

with the XAMPP Packageccoiiiiiiiiiinnninnnt. 87

Obtaining XAMPP ..ottt 88

Installing XAMPPc.oooiiiieieieeteeeeeee ettt es 88

Using the XAMPP Control Panel...........ccccooivviinciiniiinieniinecieeieeeeseeneee 91

Testing Your Development Environmentcccccovvvevienernienniennieneennene. 92

Opening the XAMPP Web page........cccceviiviiniinieniiieeieeieeieeieeeene 93

Testing pPhPMYAdMIN........ccooiririiieeeeeeeeee e 94

TESHING PHP ...ttt 94

Configuring Your Development Environment............cccceevueevieriencieneenneenne. 95

Configuring PHP.........ccccooviiiiiiiieecceceee e 96

Configuring APache.........ccooeviiiiiiiiiniiceeceeeeeeee e 97

Configuring MySQLcoociiriiiiiiieeenecentetetee e 97

Uninstalling and Reinstalling XAMPPccccoeoiiiiiiienieiieeceeeeeeeee 97

TroubleShOOtINGcciiiieieeiececeeeeeee et e 98

Book I1: PHP Programmingcccccereeccvecereeacnaaes 101

Chapter 1:PHPBasicscooiiiiiiiiiiiiiiininnn 103
HOW PHP WOTKS ..ottt snns 103
Structure of @ PHP SCrPtccoooiiiiiiiieeceeeteeeeeeee e 105
PHP SYNEAX....cctiiiiiiiiieieeiecie ettt ettt sae e te et s aeeaesaaesanens 107

Using simple statementsccceecvevvienciinieniienieneeneeeee e 107
Using complex statementscccceeveeviervieniieniienieneeneeneeeeeienes 108
WIiting PHP Code......cuooiiiiiiiiiiiittteetetet et 109
Displaying Content in a Web Page..........cccccoviririnincienieeneeeeceeeeiene 110
Using PHP Variables.........cocooiiiiiiiiiiectcteeeeeeeeeee et 113
Naming a variable..........cccocveiiirienieieeiecieeieerese e 113
Creating and assigning values to variables...........c.cccoccevvvencvennnnen. 114
Using variable variablescccoccoviiniiniiiiniiniinieeccceceeeeen 115
Displaying variable valuesc.c.cccvveriiiniiniiiniinieiceceeieeeee 116
Using variables in echo statementscccccocvveeieennnnnenn. 116

Displaying variables with print_r statements....................... 117

Displaying variables with var_dump statements.................. 118

Using PHP CONSTANTScoviiriieiiiiiiieeieeiertcntese et te e see e es 118

Table of Contents xv

Understanding Data TYPeSs.......cccocieviiniineeneniiinienieetesteseeseese e 119
Working with integers and floating-point numbers 120
Performing arithmetic operations on numeric
AAta LYPES...eeceieiieiieteeie ettt et 120
Using arithmetic operatorsccceceevviiniiiiiienniciiece. 121
Formatting numbers as dollar amountscccceeveecueneene 122
Working with character stringsc.cccoccevvieniiinieniensiniinienieeee, 123
Assigning strings to variables..........ccocvveniiniiniiniiinieeen. 123
Using single and double quotes with strings......................... 124
JOININgG STrNGSooiiiiiieiceeeece e 125
Storing really 1ong strings.......cccccceeeveevienieneeneeneenieesieeieeiene 126
Working with the Boolean data type.......c.ccccoevvevvieniinieninnienciennens 127
Working with the NULL data typeccccoevievienienennieniienieneeneene 127
USING ATTAYS .ouvteevieiieieiiieieeieete et st ste st ettt et este st esstesstesatesasessaenseensens 128
Creating Arraysccccceeeeeereeciiecieeireeeeeeeseeseesseesseesseeseeseesesssesseesnes 128
VIEWING AITAYS ..eeveiiiiiieiieieciecteetese et esteetesveesaesseesseesseasseesesnsenns 129
Removing values from arraysc.cccecceecveeeenveeneesieesiessieesieseeseennns 130
SOTHING AITAYS .eevvvirvieeieriieieiieeieeite e st e st et e e e steesteesbesaesaesanesseesns 131
Getting values from arrays........cccceceeveereenieneenenneenienieeeeseeseennes 133
Walking through an arrayc..ccceveeveniiniiniiinicceeeeeeeee 134
Manually walking through an array........cccccoeceevervenvenvennens 134
Using foreach to walk through an arrayccceceeceveeenne. 135
Multidimensional arrays........c.cceceecveeiereeneenieeneeseesreesieesaeseeseeenes 137
Using Dates and Timescccoecverierienieeneeniecnieeieeieeteeeeseeseeseeseeesaeenees 138
Setting local tmMe.........cceeviiriiiriiniiinieteeeeeee e 139
Formatting @ dateccccocevviiriiniienienteteeeeeee e 139
Storing a timestamp in a variable...........cccccevvieveecieciieceeieeeeen 141
Understanding PHP Error Messages........cccccoeevvervieniienieenieeneeneenceseeeens 142
Types of PHP error messagescccvecveecveeieeieneeneenieesieesiesneseenns 142
Understanding Parse €rrorsccceecveeveereereeneeseeseessessuenns 142
Understanding fatal errorsc.cccoceevverienieneeneeneeneeieeiene 143
Understanding warnings.......c..cceceeveervieneeneeneenennessenieenieenns 143
Understanding NOtICES........ceevveviirieniinieriieeeeeeieeeeeeee 144
Understanding strict mesSsSagesccccoeveeververniersienseeneeneenne 144
Displaying €rror MESSAZESc.cccveevereerrerreereenreesieeseesaeesesssesseesses 145
Turning off €rror MESSAGESccovveereevvieiieereeieerenee e 145
Displaying selected messages..........coceevereevierrierniessienivenieenne 145
Suppressing a single error message...........cccceeveevierrerniennienns 146
LOZZING EITOT MESSAZESevuviruierieriieniieniieniteneeneeeeeetestessesaeesseenses 147
LOGZING EITOYSeovieieieiieiieieieiesteeie ettt st 147
Specifying the log fileccccooiiininnniie 147

Adding Comments to Your PHP Scriptccccoovveviiiiniieniiinieeieeeieeene 148

XV PHP & MySOL Web Development All-in-One Desk Reference For Dummies

Chapter 2: Building PHP Scriptsccooviieint. 151
Setting Up CONAItiONS........cccivuievieieieieieeieee ettt 152
ComPAring VAIUES.......c.cceeveeuieeieieieriecteeieeeeieetest et re e aesaesseerens 152
Checking variable contentcocceevervieniienieniieneeececeeeeeeeeen 154
Pattern matching with regular expressions.............cccceevrevecvervennnns 155
Using special characters in patterns...........ccocoeeevcvecververnennene. 155
Considering some example patterns...........ccocoeceveeeeceeneennene. 156

Using PHP functions for pattern matching...........ccccceeuenn. 158

Joining multiple comparisons...........ccocceeeviiriieinieeniieieeeeeeeee 159
Using Conditional Statementscccocvevvieriieniieniienieneeeeieeieereseeneens 161
Using if statements.........coccevvierieriienieneeecece e 161
Building if statementscocceeviriiriinienieneeeee 162

Negating if statementscccceeevieeiieviiececcececeseese e, 164

Nesting if statements..........ccceeeeeieiieviececcececeeeeeseee e 165

Using switch statementsccccccveeieviiieieeeeieceeseeee e 165
Repeating Actions with LOOPS.......ccceveiiiiriiiriieniicieteeceeieeeeeeseene 167
USING fOF LOOPSiiiiiiiiiiiieeieetertetet sttt 168
Building fOr 100PS ...cc.eovieiiiiiiiiienieteeceeeeeeeee e 168

Nesting for 100PS......cccooieriiriiiiiieeeeeeteeeeeeee 169

Designing advanced for I00PS........c.ccceevieevierienienieseeceeiens 169

UsIiNg While IOOPScveeiiiiieiieieciecteteeee et 171
Using do..Whil€ loOPS......cccceviiiiiiiiiiriicieceeteeeeee e 174
Avoiding infinit€ loOPSccveverierieriieieeeeeeeee e 175
Breaking out of @ 100P......cccocevieriiniiiiicce e, 177
USING FUNCHIONSccuviiiieiceeeeeee ettt e 178
Creating a funCtionoccoviririeiieniee e 179
Using variables in functions..........cccceceeevievieniienieneeneeseeseee e 180
Passing values to a functioncccceceveviriencienienieneceeeeeeeee 181
Passing the right type of values..........ccoccoevivviiniiniininninnnns 182

Passing values in the correct orderccocoevvivriiniinennenns 183

Passing the right number of values............ccccoecvvvevrnnnnnnnn. 184

Passing values by reference...........cccccceevveevieniinienieseeceeiens 185

Returning a value from a function...........cccceevevieeviencienienieneeieen. 186
Using built-in functions..........cccceeveevieeriniincieniecccceeeeeeeeee e 189
Organizing SCIIPLS ...ccviviiriiriiireeieeie ettt ettt ettt sbe e e saaens 189
Separate display code from logic codeccoceevirninniinennennenne 190
ReUSING COAE.......uiiiiiiiiieieeeeeee et 191
Organizing with functionsccccoccoveriniininneneee, 191
Organizing with include files..........cccccoeviiniiniienieciccececeeee, 192
INCluding filesccvevieriieiieiieeeeeeeee e 193

Using variables in include statements...........ccccceeveereenennenne 193

Storing include files.........ccocerviirviiniiniiiiececeeeeee 194

Setting up include directories...........ccoceveeveeeirieneeneecreeienns 195

Table of Contents xvii

Chapter 3: PHP and Your Operating System 197
ManAGINg FileSccviviieiiieiieiieieeteetes ettt et e e saeesae e en 198
Getting information about files...........cccccevievienieiiniiniieieeeeee, 198
Copying, renaming, and deleting files..........cccoocevvervirvinvienceennnnne. 200
Organizing filescocevirveriiiniinieeee e 201
Creating a dir€CtOTY ...ccveveieieieieieeeeeeeeee e 201

Building a list of all the files in a directory.........ccccooceruenene. 202

Using Operating System Commandscccceevuievieecieeiieneeneeneeseesieenens 204
USIiNgG DAaCKEICKScvivieiieeieieietc ettt 205
Using the system function.........c.cccecevvienienienieenensenieseeieseeeeen 207
Using the exec functioncccecevieviiniiniiniieceeeeeeeeen 207
Using the passthru function..........c.ccooceeviiiiniinniniiniiccceee, 208
Error messages from system commandscccceeeevverereenerneennens 208
Understanding S€CUrity iSSUEScccevveriievieenieecieeie e 209
USING FTP ittt ettt ettt et et saa e s e e aeeae s s 210
Logging in to the FTP Server.........cccoovvvvievieneevieciecieeieeieseeeee 211
Getting a directory listingccocevvieviinieniinieeeieceeeeeeee e 212
Downloading and uploading files with FTP............c.cccoconinnene 212
Other FTP funcCtions.......cccccveeueinenieinenienencceeneceeeeeeeeeseeeeee 214
Reading and Writing Files.........ccccoviiiiieiecieiceceeectes et 215
AcCCESSING fIlES .uviiiieiieiieeeeeeeeeeee s 216
Opening files in read MoOde..........coceevierieneiiiiiieeieesieeieeeene 216

Opening files in write modeccccoevvevieniniiniiiieierieneee 217

Opening files on another Web site..........ccccocevviriinnieninnncnns 217

CloSING @ fileccveeeieiieiieeeeeeee e 218

WIIting t0 @ fil€...cuiiiiciicieeeee e 218
Reading from a fil€..........ccceeviiriiriiieiecieeceeeece e 218
Reading files piece by piece.......cccocvviivienieiirnieiieieeieeiee 219

Reading a file into an array.......cccceceevvevieneeneeneeneeneeieniene 220

Reading a file into a String........cccoecevieniininiinniiieeieeieneee 221
Exchanging Data with Other Programsc.ccccoeceeeveeienieneeneeseeieee, 221
Exchanging data in flat filesc.ccccoevvevienieniecicececeeeeeeee, 221
Exchanging data in comma-delimited format............c.ccoecveruvennnee. 222
Understanding comma-delimited format...........ccccoeeverevennene 222

Creating a comma-delimited file..........c.cccoceevirninninneniennnns 223

Reading a comma-delimited file..........ccccoocervieniinniinnenneninne 223

Using other delimitersccceeeiiiecieeiiiceeeee e, 223
USING SQLITE...eeiieieeiecteee ettt sttt eeens 225
Chapter 4: Object-Oriented Programming 229
Introducing Object-Oriented Programming............cccceecvervienieneeneesnennnen. 229
ODbjects and ClaSSES......c.cccuieiirierieriereereere e re et e e seeees 230
PrOPEItIESooeiiiieieeeeecec e 231
MeEthOAS ...c.eeiieieieie et 231

INNEFItANCE ..o e e 232

XViii PHP & MySOL Web Development All-in-One Desk Reference For Dummies

Developing an Object-Oriented SCript.........ccoccevieverninieniiniienienieneeneen 232
ChoOSING ODJECES ...coviiiieiieieeieeeeeeete e 233
Selecting properties and methods for each object........................ 233
Creating and using an ObJeCtcccceveririnieriiieeeeeeee 234

Defining @ ClASS ...cccuiivuieriieiieiecieeiestee ettt steeteebeebeeneseeens 235
Writing a class statementcccoveeveeiiniiiniennieneeeeeee e 235
Setting PrOPEITIES.......ccvvirierieieieieerte et sae e ssesreseeas 235
Accessing properties using $thisccccceeeveveeinieicneeeeeeeene, 237
Adding Methodscoccvvieiiiiiieeeeeeee s 237
Understanding public and private properties and methods........ 240
Writing the CONStrUCLOYcccveviiiiiieiieececeeee e 242
Putting it all togethercocvviiiiiiiiieecee e 242

Using a Class in @ SCIPtcccueviirieriiieiieeciectestest et 246

Using Abstract Methods in Abstract Classes and Interfaces 248
Using an abstract Class........ccccoecvveeiieniieeiiecieeeeecee et 248
Using iNterfacescocvevierieriririeeeeeee e 249

Preventing Changes to a Class or Method.........ccccceeevveviirciincieccieccieneeen. 251

Handling Errors with EXceptionscccccocveevieiiiniiiniienienecrieeieeieeieeene 251

COPYING ODJECES ..cvieieiieiieierieeeeecetetete et sa e ste s e saessessessessensanns 253

Comparing ODJECEScecveriereriieieieieiee e eeeeee et e se e see e eeseessessessenns 254

Getting Information about Objects and Classesc.cccceeeveeveeeecreennenns 255

DeStroying ODJECESooueeiiiiriiriiiieeieetetee ettt sttt saen 255

Book I11: Using MySOLcccuucoueeceeicecccrceinineneees 257

Chapter 1: IntroducingMySQLccoiit... 259
HOW MYSQL WOTKSoouiiiiieieiecieeieeteee ettt sttt saens 259
Understanding Database Structure............ccocooveeieienieneninieneeeenenene 260
Communicating with MySQLc.ccccoeviiriiiriierieiereeeeeee e 260

Building SQL QUETIES.......ccceeriiiiieieeieeieeieeteetese et ve e 261
Sending SQL QUETIEScccevvierieriiniieniieieeieeie sttt esie e esee e 262
Using the mysql client...........cocceeviriiiniiniiniiniiiecceeeiee 263

Using administrative softwarec.cccocceeveenviniininninnennnnne 264

Protecting Your MySQL Databasesccccoeceveriririenienieneneneeeeeeneeens 267

Chapter 2: Administering MySQL 269
Understanding the Administrator Responsibilities..........cccccoceeveecennnnens 269
Default Access to YOur Datacccceeeieieiiinineniniiceieeccseeeeeeene 270
Controlling Access to YOUr Dataccceceeveeviieiieniiesienienieeieseeeeeieeiens 271

Account names and hostnamesccccoceeveeeeveencncnenceneeneennene. 272
PaSSWOIAS ...c..oouiiiiiiiiiiccieececeeee e 273

AccoUNt PriVIIEZESccooueeieieieieieeeee et 274

Table of Contents xix

Setting Up MySQL ACCOUNLSccevireeeieieieieseeeseeeeeeee e eeennens 275
Identifying what accounts currently exist..........ccccocerviervieninnennne. 277
Displaying account information with an SQL query 277

Displaying account information from phpMyAdmin............ 277

Adding aCCOUNLS.....uecciiiiieieeeeeeeeeeee e 278
Creating an account with an SQL queryccccevevvvervvenceenne 278

Creating and account with phpMyAdmin..........cccceevvevevenneenne 279

Adding and changing passwordsccceecervierieneeneenenniensienneenns 280
Changing passwords with an SQL query..........ccccoecereeeenenne. 280

Changing passwords with phpMyAdmin..........ccccceceverennee. 280

Changing Privileges........ccceeviiiiriieeieeiereeeese e 282
Changing privileges with an SQL query........ccccceveevueecvenceenne 282

Changing privileges with phpMyAdmin........cccccecevverenenncee. 283

Removing aCCOUNLEScocveriiiriirieeteeetcteeeeee et 284
Removing an account with an SQL querycccceeeveeveenenne 284

Removing an account with phpMyAdminccceeeeveeneene 284

Backing Up YoUur Database.........c.cceeueeueeieeeeiieienieeieeeeeeeeeee et sve e enesnns 285
Backing up a database with mysqldump.........c.cccceevueecuennene 286

Backing up a database with phpMyAdmin..........ccceccevevenene 288

Restoring YOUY Data.......ccoceevueriinieniinieieeiecieeie sttt 290
Restoring your database using the mysql client............................ 291
Restoring your database with phpMyAdmin...........cccccceevveevennenee. 292
Upgrading MYSQLcoouiiiieieeieetectestee ettt eveereee e e e e saeesaeesseeae s 293
Chapter 3: Designing and Building a Database 295
Designing a Database...........ccccovevveviiriiieieeieieieesieee et sve e nennens 295
Choosing the datacccecvevieviiieeieiceeeeeeee s 295
Organizing the data........cccevivviiniiiniiinccc e 296
Creating relationships between tablescccoevervinniiniencnnennne. 300
Storing different types of data........cccccevvevrieiieceeceeciieeeeeeee 301
Character dataocoeeeeeieieieeeeee e 301

Numerical data.......cococeeeririenieninineeeeeeeeeee 302

Date and time datacccceceevierienienineninieeeccceeee 302
Enumeration datacocceeveeiieniienieniienieeeeeeeeeeesee e 302

MySQL data type NAmMEScccceeveerierienieniieieeieesieesieeeeseene 303

Designing a sample database..........ccccccoeeiieiieeiiiecceerieeeeeeeee 304
Writing down your designc..cooeevervierniinnienieniereeeesieeeeeeeeeene 307
Building a Databaseccccvueeiiiiiiiicieeeeceee e 308
Creating a new database..........ccecveeieriereeniieneeeeeee e 309
Creating an empty database with an SQL query 309

Creating an empty database with phpMyAdmin.................. 310

Creating and deleting a database...........ccccceeevevieecieecieeieeieeeeeene, 310
Deleting a database with an SQL query.........cccoeceverereenne. 310

Deleting a database with phpMyAdmin...........cccccceevueecvenenne 310

XX PHP & MySOL Web Development All-in-One Desk Reference For Dummies

Adding tables to a database..........ccocevieviiriiininniinieneee 311
Adding tables to a database with SQL queries..................... 311
Adding tables to a database with phpMyAdmin 314
Removing a table.........ccceoiiiiieriiiieeeece e e 316
Removing a table with an SQL queryccccccoevvevvieneeceenienns 316
Removing a table with phpMyAdmin..........ccccoeevevvienceenennienn. 316
Changing the Database Structurecocoeevviriiiniiiniiiniinienceeeeees 316
Changing the database structure with SQL queries 316
Changing the database structure with phpMyAdmin.................... 317
Chapter 4: Using the Database 319
Adding Information to a Database.........cccccoocceveriiiniiinniinieniieceeeeeee, 320
Adding one row at @ timecccccveeieeieciieciicececeeeeee e 320
Adding a row of data in an SQL qUErycccceevvervienceenreenenns 321
Adding a row of data with phpMyAdmin........c.cccccevvveruennnne 322
Adding a bunch of data........ccceceviirieniiniiiiieeeeeeeeee 324
Adding data from a data file with an SQL query................... 325
Adding data from a data file with phpMyAdmin................... 326
Looking at the Data in a Databasecccccevievienieceecieecececeeee, 327
Browsing the data with SQL queries..........cccoccevvvevienieneesieeieee 327
Browsing the data with phpMyAdmin.........ccccoeceevviininnennenniennnnne 327
Retrieving Information from a Database.........ccccoeceevivieriiniiniencieneenen. 328
Retrieving specific informationccoccecevvinviniiniinnnnenieen, 329
Retrieving data in a specific orderccccocevecieecinecieecieeeeee. 331
Retrieving data from specific rOWSc.cceevvevvenieiieniecieeieee 331
Using a WHERE Clauseccccoevieiiieviieieciecieceeseeseeeeiens 332
Using the LIMIT KeyWord........cccocceeevievieniienienienieneeseeieeiens 334
Using the DISTINCT keywordcocccevevieeneniencneniecncnienene 334
Combining information from more than one table......................... 334
UNION....eiiiieirteeteteteteierte ettt sttt et st se e 335
JOIIM i 336
Updating Information in a Database...........cccocevvievieniecieceeciecieceeeeeeen 339
Updating information with SQL queries.........cccccoevvevivvievieeciennnne. 339
Updating information with phpMyAdminc.ccccceevivniivennennnnne. 339
Removing Information from a Database..........cccccoeveevervenvininniienieneenen. 340
Removing information with an SQL query........ccccccoevevvvevieevennnnnne. 340
Removing information with phpMyAdmin............cccceecererienieninnnnne 341
Chapter 5: Communicating with the Database
fromPHP Scripts ... 343
How MySQL and PHP Work Togetherccooeivienienienininceeeeieene 343
PHP Functions That Communicate with MySQL.........cccccocvvininininnanene 344
Communicating with MySQLc.ccccieviiriiiniierieeereeseeeee e 344
Connecting to the MySQL SErVerccccocvevveneecienciennienieneeneennenn 345
Sending an SQL qUETYcceovveriiriienienienieeieeie sttt 347

Sending multiple qUETIES.......ccccoecieriiriineiiirereeeeee e 348

Table of Contents xxi

Selecting a Databaseceevueeiiriiniiniirieeceee et 349
Handling MySQL EXTOrScocuiviiiiiiniiniiiceceeeeeeteete sttt 349
Using Other Helpful mysqli Functions............cccccoecivininiinieniniineeceee 351
Counting the number of rows returned by a query..........ccco.c...... 351
Determining the last auto entryccccocevvevveeveeceeciencieeeeeeeeee 352
Counting affected TOWS.......cc.ccvveeeeeieieieseeee et 353
Escaping characters.........cccoccovveriiinienienienicececece e 353
Converting mysqli Functions to mysql Functions.............cccccoccevnennennie. 354

Book 1U: SECUTILYcceeeeaeaaaaaeanaaacanaaneaannacaneaaneeaaes 37

Chapter 1: General Security Considerations 359
Understanding Security RoOIESccoceviiviiiiiniiniiinienienientesceseeeenn 359
Understanding Security Threatsccoceveriiniiniienienienienienceneeeeenn 361
Developing a Security POLCYcccoviririeiiiieeeeee e 363

Components of a strong security poliCyc.cceceeeeveevenenenicnenenne 364
A sample security POLiCYcccccvevirieieieieceeeee e 365
Section 1: ABC Web Development: Security Mission
STALEMENTcovevieeieeieieiee ettt neas 365
Section 2: Identification of Responsible Security
Personnel ... 365
Section 3: Ensuring Physical Security..........cccccovevveevieecvennnne 366
Section 4: Policy on Antivirus and Patch Management 366
Section 5: Backup and Disaster Recovery.........c.ccccoeveuennenee. 367
Section 6: Change Control Process.........cccccoeevviervienviencvenneenne 369

Chapter 2: An Overview of Authentication and Encryption 373

Understanding Authentication.........cocoveeveriiniiniiniienieeeccceeeenn 373
PaSSWOIAS ...couiiiiiiiiiiiieceeeeee ettt 374

LOSt 10St LOSt.c.uiiieiiiieieieeeeeeee e 374

Stolen or guessed PasSSWOIdS........cccceeeeeeeiinienieneneneneeenes 375

StOriNG PASSWOIASeevieiieieeieeieeieeieeeesieesieesieesveesaeeaeesne e 376

Image reCoOgNItioNccceecueeiiiriierieeierteeeee e 376
Accessibility ISSUEScccveviiiieriiieierieeeeeeee e 377
Implementing image recognitionc..cceceveeverviennencenneenne 377

Digital identities..........cceecuieeiieeieeeeeeee e 378
Digital Signaturesccooeeveeierienienieteeeeeee e 379

Digital certificates........cccoeieveeiieniiinieeieeeeceeeeeeee e 380

EXploring ENCryption.......cccceciieiiiiiiienieeciecieeeceereseesee e 380
Basic concepts and terminologycccceeeeveenierciensieniienieneeneennes 380

SALE .ttt 380
Encryption strengthcccccooeiiiiiiniiiee, 381

One-way enCrYPHIONcoceeiieriiririetietetete ettt 381
Public Key enCryption......c.ccceecieiienienieieieeseeeeie e 381

Hash funNCHIONScoovvieiiiiiieee e 382

XXii PHP & MySOL Web Development All-in-One Desk Reference For Dummies

Chapter 3: Creating a Secure Environment 383
Securing APACRE........cccoieiieiieiecteeeeeeee et 383
Securing PHP applications with SUEXecC.........cccccoevvevirrinvieeciennnnne. 383
MOASECUIILY ..ottt sttt et eae e 384
SECUNING IIS.....ooiiiiieeeeeeee ettt e st saesneas 385
Reducing the server’s footprint..........cccecveeeiieecieecieicieeieceeee, 385
Securing the Web rootcccooeviieiiieniineeeeeeeeese e 387
Setting Security Options in php.ini.......ccceeeiviiniinieiicceeeececeee, 395
Chapter 4: Programming SecurelyinPHP 397
Handling Errors Safelyccocieiieieniiiiieececececteseeeeeee e 397
Understanding the dangers..........cocceeevevviirienvieneeneeneeneeseeeeeee s 397
Testing for unexpected INPUL........cccceevevviiriiniieniieceeeeeee e 399
Handling the unexpectedcoceverviiriiiniiiniienietceceeeeee e 400
Checking all form data.........cceceeeverierererieieeieeeeee e 401
Sanitizing Variables..........cccecieiiieiiicciieiicieeeeeese et 401
Converting HTML special characters..........ccccoeceeeeeciieciiecieceenneennen. 401
Sanitizing e-mail addreSSEeSccceevuerviirciieieriereeceeeee e 402
Uploading Files without Compromising the Filesystem.......................... 403
Avoiding DoS attacks on the filesystemccccoeceevieniincnnennenne. 404
Validating files.......ccccoviiviiniiienieceetceeee et 404
Using FTP functions to ensure safe file uploadscc............. 405
Securing the SANADOXccceiveiiiiiieiieiececee e 406
Chapter 5: Programming Secure E-Commerce Applications 409
Securing Your Databaseccceccuieiieieecieniecieceeeeeee e 409
Securing the databaseccccceviivieniinieciicceeceee e 410
Choose a database USEr...........cccccveeeiiecieeeiieeee e 410

Be stingy with privileges........cccocvvvirviniiniiniiniinicnceeeies 411

Storing connection strings and passwords...........cccceevveevreereennnnne. 411
Store connection strings separatelyccccocevveverceeceeniennenn. 411

Encrypt all stored passwordscccceecveecverieseeneeneesieennens 412

Sending Encrypted Data with Secure Sockets Layer...........ccccceeveuennnen. 412
Obtaining a digital certificatecceccevvierienieneecinciierieeieeeeen 412
Creating a digital certificate.........ccccevvievviiniiniineniiiinieeieeeeeeen 414
Using Apache’s mod_SSL........cccoceieiieriinerieeeieteseeee e 415
Keeping SesSions SECUTE.........ccoccvieciieciieieeieceeseee e 415
USE COOKIES ..ottt ettt e are e e e e e e 415

Set sesSion tIMEOULSc.coocuiiiiiiciieceeeeeeeeeeeeee e e 416
Regenerate seSSion IDS........ccocveviercieriiniinieneeeceeeee e 417
Preventing Cross-Site SCripting.........ccccecevvienieniineinenienieniesieseeseeen 417
How an XSS attack WOrKScccoeviiiiiiiiieeeeeeeee e 417

Preventing XSS........oo i 418

Table of Contents xxiii

Keeping Up tO Datecocvvieriiniiiiietcteeceeeceeteste st 419
Keep your software up to dateccceveevirienveniinninienieneeeee, 419
If it happened to someone else, it can happen to you................... 420

Book U: PHP EXtensionsccceceeeeceeeccencccencccenceec§21

Chapter 1: Introduction to Extensions 423
How Extensions Fit into the PHP Architecture...........cccooceevinniinennennen. 423
Finding Out Which Extensions Are Loadedcccocoeeeeirvienieneneneneennnne 424

get_loaded_extensions()ccoceveriririeriereneneee e 424
extension_loaded()coeeevevieriiiiieeeeeeeeee s 425
PRD s naens 425
PhP —T€ EXENSION....cviiiiciieiicieceeeeeeeeee e e 425
Php —1i €XtENSION.....ccciiiiieciieceeeeeee e 426
Loading EXtENSIONScceeirieieieiereeeeeetetee ettt 426

Chapter2:Using PEAR 429

Introducing PEARccooiiiieeee ettt 429
The PEAR IIDTATYoociieiieieceeeeieeeetecte ettt 430
Code distribution and package maintenance..............cccecveevennennee. 431

Coding standards...........ceeeeviercienieniienieneereeseee e 432
PECL ettt s 432
PHP community SUPPOYtccceeviiriiniiniiieieeeeieeeeeieeeee 432

Downloading and Installing the PEAR Package Manager......................... 433
Installing via Web front endcccoocvevieiieneececiececeeeeeeeeee 433
FTP installation........ccccoiiieiriiieeeeeee e 435

Installing a PEAR Packagecocoviiviinieniieiieieciectectceeeseeseeie e 437
Installing a PEAR package from the command line........................ 437
Installing PEAR via CVS ..ottt 439

Using a PEAR Package in Your Own Code.........c.cccceeeveevenieneenieeeeieenen. 440

Chapter 3: Using the XML Extension M

Understanding the Document Object Model...........cccoecveeierienieneeneennen. 441
Reading the DOM.........ccoooieiiiiiciecetceeeee e 441
Writing to the DOMccoooiieiiiiiieeeecieee et 442

XML Validation Using Schemaccccccevviervienienieniieneeienienie e 443

Giving Your Documents Some Style with XSLTcccccovviininniinennennen. 445

Searching XML Documents with XPath.........cccccoviniiiniiniinnniicienen. 446

Chapter 4: Manipulating Images with the GD Extension 449
Configuring the GD EXtensionccocevieveiiiniieniienienteneenteseeseeeeeen 449

Finding out which image formats are supported...........cceceeuennene 450

0] ol 14 1 F PSSR 451

XXV PHP & MySOL Web Development All-in-One Desk Reference For Dummies

Image Manipulations..........ccoceeirieieierieresese ettt 451
RESIZING IMAZES ...oveeeieiieieieceeeeeee ettt 452
Color manipulationcececeevierierireneeeeeee e 452

Channelsco.oociiiiiiie e 453

Using the alpha channelcccoovevievieiinieeceeeeeeeee, 454

COlOr INAEXES ...ttt 454

Adding text 10 IMAZEScccveierrererieeieeeeeeese e 455

Using the ImageString() arguments...........ccooeercvevrcvecvereennenn. 456

Using the ImageTTFText() arguments...........cccceeverercernennene 456

Using the ImagePSText() argumentsccoceeeveeeeeeneennene. 456

Chapter 5: Mail Extensionscccoviiiiiinennnnn. 459

Sending E-Mail With PHPcccoooiiiiiieeeteeeeeeee e 459

BasicC €-Mailccueoiiuiieieiiie e 459
Configuring PHP to send e-mailccccoecevvvenienieenieniennnne, 460
UsINg Mail() .eovereieriiiiiieeieeie et 460

MIMNE LYPES ..ttt ettt st sttt e sb s s 462

Queuing messages to send later..........ccccoeveeieveeceeceecieeeeeeeeeeenn 463

Accessing IMAP and mBox MailbOXes........cccccceevvirieneenieecieeciieiecieeeeneen 465
Using the Mail_IMAP eXtensionc.ccceevveeeeevienenieneeeeeeeevenns 465
Using the Mail_Mbox eXtensionccccevueeveeneeneeneeneenieneeneennns 466

Book Vl: PHP Web Applicationsccceeeeeeeecnnne 567

Chapter 1: Building and Processing Dynamic Forms 469
Using Static HTML FOImMS........ccoocuirieniiiieiecieciectecteseeeeie e 469
Displaying an HTML form..........ccccooviivieneeciniiniinieeeeneeneeneeeieeens 470
Getting information from the form.........cccccocevviiniiniinninninnennn. 470
Organizing scripts that display formsccccoeceeviiiinninnennenniennen. 473
Script that contains the PHP logic..........cccocevverinenincininnee 473

Script that contains the display code........cccocoovevinininnnnnene 474
Displaying Dynamic HTML FOrms........c.cccecievieevieniienieneeneeieeieeieeeeeeens 477
Displaying values in text fieldsc.ccceveirviinvienciiniiniieceeieee 477
Building selection lists..........ccocvevvirvieniiniiniereeceeeeeeeeee e 480
Building lists of radio buttonsccccecevierviiniiniinineeerieeeee 487
Building lists of check bOXesccccecveeiieieccienieieeeeeeee e 488
Processing Information from the Formccccccocovvniiniinieiiecicecies 490
Checking for empty fields.......c.cccceeviercieriiinienieeeceeeeeeeee e 491
Checking the format of the information.........c.cccecevvervnninnennnnnen. 497
Giving users a choice with multiple submit buttons..................... 503
Creating a Form That Allows Customers to Upload a File...................... 505
Using a form to upload the fileccccooveeiveiiiciieieieeeeeeee, 505
Processing the uploaded file...........c.cccceevieiieiinienieieceeeeee 506

Putting it all tOgethercc.covvveviiiiieiieececeeeeee e 507

Table of Contents XXV

Chapter 2: Making Information Available on Multiple

WebPagescoviiiiiiiiiii it it 511
Navigating Web Sites with Multiple Pagescccocevvieiiiiinenenininieens 511
EChOING IINKSccviiiiiieticiceeteteceeteeeetetete et ennns 512
USING fOXMS ...oovviiiiitieticteetee ettt sa e ae e nnens 512
Relocating users with an HTTP headerccceeevviinviiniineennnnne. 513
Passing Information from One Page to the Nextcccccocvevvverenvnnnnnnns 515
Passing information in a form...........ccccoeerevinincienesereceeceeeens 516
Adding information to the URL..........ccccoconinininiinieceeeceee, 516
Adding a variable to the URLc.ccceevveeienienieiesecieeie 516
Adding multiple variables to the URL.........c.cccoeeirririeeennnns 516
Disadvantages of adding information to the URL................. 517
A login application that adds information to the URL......... 517
Making Information Available to All Pages in the Web Site..................... 522
Storing information in COOKIESccevierienieciiecieciecie e 522
Saving and retrieving information in cookies 523
Setting the expiration time on cookKiesccccevvevuercvennnne 523
A login application that stores information in cookies 524
Using PHP SESSIONSccceveiiiirieitieieieieeeee sttt ennns 526
Understanding how PHP sessions work........c.ccoceevieviencnnne 526
Opening and closing SESSIONS..........ccceeeevreeiieerieeireesieeieeeeane 527
Using PHP session variablesc..ccocceoviiiniiniinninicncncene 528
Using sessions without COOKI€S.........cceecverieviieviieniiesieeienienne 528

Alogin application that stores information
IN @ SESSION ..cuieiiiiiicieieece e 530
Chapter 3: Building a Login Application 533
Designing the Login Applicationccecevvevierieiincininieiereseseseeeens 534
Creating the User Databaseccceeveveevieeciieiiicieciececeeeee e 534
Designing the Customer databaseccocoveririeienieneneneeeeeee 535
Building the Customer database..........c.ccccceeveevieeciieciencieeieeeeeeene 536
Accessing the Customer database.........cccoccovvvevieveeviinciincieneeneenne, 536
Building the Login Web Pagecccooveievieieiiiieceeeeeeseesee e, 537
Designing the login Web page..........ccccevvvivinieciecieeeseseeeeeens 537
Writing the code for the login page......c.ccoccovvieviivinvinninnenieneee, 538
Displaying the login Web page..........ccccoceviiiiinninniniininiceeeee 544
Building the Login SCript........cccociviieieeeieeeeceseeeeeeeeeee et 545
Protecting Your Web Pages..........cccooivieieeeieieseeeceeteeeeee e 553
Chapter 4: Building an Online Catalog 555
Designing the Online Catalog..........ccceoeeveeeeieiesieniceceeeeeereesese e eeeenns 555
Creating the Catalog Databasecceeeeeevierieniieeseeeeieeeeseseee s 556
Designing the Catalog databaseccocceevvieiiecieceenereneeeeeens 556
Building the Catalog database............ccccceevieveeiieecieeciecieeieeeeeeene 558

Accessing the Furniture database...........ccccooeviviennineneneneneeenen. 558

xxevi o PHP & MySOL Web Development All-in-One Desk Reference For Dummies

Building the Catalog Web Pages..........ccocevieireeieienenereeeeeeeeee e 559
Designing the catalog Web pagesccccocveveeievieneneneneneeeeieens 559
Designing the index page........ccocceeeievieriereneneeeeeeeeeeeenn 560

Designing the products page..........ccceceevveeieriesieneeneeneeniens 561

Writing the code for the index page.........cccevevvievieneenieneeieeene, 562
Writing the code for the products pagecccoceecvevverveneeciennnnne 564
Displaying the catalog Web pages........ccccocevvienienieninnennerienienn 566
Building the Online Catalog Application Script......ccccccceeveriieriieniienennnen. 566
Chapter 5: Building a ShoppingCart 571
Designing the Shopping Cartccoceeveverineeieeieeeereeeeeeeee e 571
Making design deciSIONSceceeeieeieriineiieieieieeese e 572
Thinking about functionalityc.cccccovveriniiiininenereeeee 573
Creating the Shopping Cart Databasecccoccvevuievieecieeiencienieeeeeeens 574
Designing the shopping cart database..........ccccccoevvevienievienciennnnne. 574

The CustomerOrder table..........cccoeveinenennenennenecnenenene 575

The Orderltem table.........ccccviviininiinicneeceeeane 575

The Furniture table...........cccccviviininiinienccncneccneeeane 576

Building the shopping cart database.......c..ccccoecevieiinnenncnncnnenne. 577
Accessing the shopping cart database..........ccccceecvevieriineeiennne. 578
Adding data to the database..........cccceeeeeeeceevieneneeeeeeeeeee e 579
Building the Shopping Cart Web Pagesccocecvvvevievienineneeeeieiens 579
Designing the shopping cart Web pagescccccocevivnenncnniennnnne. 579

The product categories Web page........cccccceeveevciieeceencnenennenn. 580

The product information Web pageccccccevvevveveenreenenns 581

The shopping cart Web pagecccceceevieeierienieneeneeseeiens 582

The Shipping Form Web pageccccceeeveeieeeiecieieneseeene 582

The summary Web Pageccooevveveeerierienieeeceeeeeeeeeeeeens 583

The confirmation Page.........ccccecveeeieriereneeieeeeeeere e 584

Writing the code for the shopping cart Web pages 584

The product categories Web page........ccccceevevveneeneenreennenns 584

The product information Web pagecccccevverienveneenenns 586

The shopping cart Web pagecccccoceeviercierienieneeneeieeiens 588

The shipping form Web pagecccccevvevieieenceecieriereseeens 591

The summary Web pagecccoovvveieeerieriereeeceeeeeeeeeeens 596

Building the Shopping Cart SCripts.......ccccevueiieriereecieeeceee e 600
Product information............coceeeeieiieieniniieeeeseee e 601

The ShOPPING CArtc.cociieiiiiieeeeceee e 606

The Order ..ottt 609

JRAEK «..nneaaaaaaaaaaeaaaaaaeeeeeeeeeeeeeeesnnnnnnnnnnnnnnnnnnnnncaaeesO 1T

Introduction

men the World Wide Web was first developed, it was a static place. It
was mainly a really big library with information that visitors could
read. Documents were linked together so that the information was easy to
find, but the Web pages were basically static. Every visitor to a Web site saw
the same Web page.

Over time, the Web has evolved. It’s now a dynamic environment where visi-
tors interact with Web pages. Visitors provide information via HTML forms
and see different information depending on their form input. This interac-
tion leads to transactions of many types — commerce, research, forums,
and so on.

Building dynamic Web sites requires a scripting language and a backend
database. The most popular software for this purpose is PHP for scripting
and MySQL to provide the backend database. Both are specifically designed
for Web sites and provide many features to help you develop dynamic Web
sites. This book provides the information you need to build a dynamic Web
site for any purpose.

About This Book

Think of this book as your friendly guide to building a dynamic Web site.
You need to know about the following:

4+ PHP: The language that you use to write the scripts that perform the
tasks required on your Web site. Scripts create the displays that the
user sees in the browser window, process the information that the
user types in a form, and store and/or retrieve information from the
database.

4+ MySQL: The database management system that you use to store data.
The scripts can store information in the database or retrieve infor-
mation from the database. You need to create and administer MySQL
databases.

4+ PHP and MySQL as a pair: In this book, you use PHP and MySQL
together, as a team. PHP can access MySQL by using simple built-in
functions. You need to know how to access MySQL databases from
PHP scripts.

2

<\¥

Conventions Used in This Book

4+ Building applications: Web sites frequently provide similar functionali-
ties. For instance, dynamic Web sites need to collect information in
HTML forms and process the information. You need to know how to use
PHP and MySQL to provide the specific functionality your Web site
needs.

4+ Security: You need to protect your Web site and the data your users pro-
vide from people with malicious intentions.

This book provides all the information you need to build dynamic Web sites
that are quite complex. The book is intended as a reference, not a tutorial.
Each minibook provides information on a different aspect of building
dynamic Web sites.

So you don’t have to type out the code in this book, we put many of the code
examples presented in this book on the Dummies.com Web site. Point your
browser to www.dummies.com/go/php&mysglaio to download the code
samples.

Conventions Used in This Book

This book includes many examples of PHP programming statements, MySQL
statements, and HTML. Such statements in this book are shown in a different
typeface that looks like the following line:

A PHP program statement

In addition, snippets or key terms of PHP, MySQL, and HTML are sometimes
shown in the text of a paragraph. When they are, the special text in the para-
graph is also shown in the example typeface, different than the paragraph
typeface. For instance, this text is an example of a PHP statement, show-
ing the exact text, within the paragraph text.

In examples, you'll sometimes see some words in italic. Italicized words are
general types that need to be replaced with the specific name appropriate
for your data. For instance, when you see an example like the following

SELECT fieldl,field2 FROM tablename

you know that fieldl, field2, and tablename need to be replaced with
real names because they are in italic. When you use this statement in your
program, you might use it in the following form:

SELECT name,age FROM Customer

SMBER
é‘s“

What You've Not to Read 3

In addition, you might see three dots (. . .) following a list in an example
line. You don’t need to type the three dots. The three dots just mean that
you can have as many items in the list as you want. For instance, when you
see the following line

SELECT fieldl,field2,... FROM tablename

you don’t need to include the three dots in the statement. The three dots
just mean that your list of fields can be longer than two. It means you can
go on with field3, field4, and so forth. For example, your statement
might be

SELECT name, age,height, shoesize FROM Customer

When the code examples get long and involved, and we want to point out
particular lines, we add a line number at the far-right margin.

When you see a line number in the code, remember that the number doesn’t
actually go in the code you type — it’s just a convention we use to point out
a line of code within a large code block.

For example, this line is the thirty-fifth line from a long code block, and it has
a line number callout in the right margin:

<?php —35
After the long code block, we then use a list to explain each of the code lines
to which we added line numbers in the right margin. For example, this bullet
follows the code block containing the previous code line:

—35 A PHP section begins on this line.
From time to time, you’ll also see some things in bold type. Pay attention to

these; they either indicate something we want you to see or something that
you need to type.

What You're Not to Read

Some information in this book is flagged as Technical Stuff with an icon off

to the left side. Sometimes you’ll see this technical stuff is in a gray sidebar:
Consider it information that you don’t need to read in order to create a

Web database application. This extra info might contain a further look under
the hood or perhaps describe a technique that requires more technical

4 Foolish Assumptions

knowledge to execute. You might be interested in the extra technical infor-
mation or techniques, but feel free to ignore them if you don’t find them
interesting or useful.

Foolish Assumptions

To write a focused book rather than an encyclopedia, we need to assume
some background for you, the reader. We’re assuming that you know HTML
and have created Web sites with HTML. Consequently, although we use HTML
in many examples, we don’t explain the HTML. If you don’t have an HTML
background, this book will be more difficult for you to use. We suggest that
you read an HTML book — such as HTML 4 For Dummies Quick Reference,
2nd Edition, by Deborah S. Ray and Eric J. Ray (Wiley Publishing) — and
build some practice Web pages before you start this book. In particular,
some background in HTML forms and tables is useful. However, if you're the
impatient type, we won't tell you it’s impossible to proceed without knowing
HTML. You might be able to glean enough HTML from this book to build
your particular Web site. If you choose to proceed without knowing HTML,
we suggest that you have an HTML book by your side to assist you when you
need to figure out some HTML that isn’t explained in this book.

If you're proceeding without any experience with Web pages, you might not
know some basics that are required. You must know how to create and save
plain text files with an editor such as Notepad or save the file as plain text
from your word processor (not in the word processor format). You also must
know where to put the text files containing the code (HTML or PHP) for your
Web pages so that the Web pages are available to all users with access to
your Web site, and you must know how to move the files to the appropriate
location.

You do not need to know how to design or create databases or how to pro-
gram. All the information that you need to know about databases and pro-
gramming is included in this book.

How This Book Is Organized

This book is divided into six minibooks, with several chapters in each mini-
book. The content ranges from an introduction to PHP and MySQL to instal-
lation to creating and using databases to writing PHP scripts.

Book I: Setting Up Your Environment

This minibook takes you through the process of setting up your develop-
ment environment. We discuss finding a Web host and setting up a local

How This Book Is Organized 5

development environment. We also describe how to install Apache, PHP,
MySQL, and administrative programs, such as phpMyAdmin, that assist with
the administration of MySQL databases.

Book 11: PHP Programming

This minibook provides the details of writing PHP scripts that enable your
Web pages to perform the tasks required by your Web application. The
chapters in this minibook describe PHP syntax, features, best practices, and
functions.

Book I11: Using MySOL

This minibook shows you how to build and administer MySQL databases.
Information on database structure and security is provided. We describe
how to store data in a database and how to retrieve information from a data-
base. We also explain how to access MySQL from PHP scripts.

Book 1U: Security

Security is extremely important when developing a dynamic Web site. You
need to protect your site, protect the people that access your site, and pro-
tect the information stored on your site. This minibook describes the secu-
rity issues and how to protect against security threats.

Book U: PHP Extensions

Many packages that provided added functionality are available for PHP. A
system for locating and installing the packages is included when PHP is
installed. This minibook describes many of the extensions available and
covers how to find and install extensions.

Book VI: PHP Web Applications

This minibook describes how to write PHP scripts that perform the tasks
needed on your Web site. You find out how to display and process forms, a
task performed frequently on dynamic Web sites. We provide and explain
example scripts for common applications, such a login pages, online cata-
logs, and shopping carts.

Companion Web site

We put most of the code examples presented in this book on the Dummies.com
Web site so you don’t have to type out long code blocks. Point your browser
to www.dummies.com/go/php&mysqglaio to download the code samples.

6 Icons Used in This Book

Icons Used in This Book

A\

If you see circular icons in the margins of the book, don’t be alarmed. We put
them there on purpose.

Tips provide extra information for a specific purpose. Tips can save you time
and effort, so they’re worth checking out.

You should always read warnings. Warnings emphasize actions that you
must take or must avoid to prevent dire consequences.

This icon flags information and techniques that are extra geeky. The informa-
tion here can be interesting and helpful, but you don’t need to understand it
to use the information in the book.

This icon is a sticky note of sorts, highlighting information that’s worth com-
mitting to memory.

Getting Started

This book is designed as a reference guide, so you can either read it through,
or more likely, pick and choose the topics that you need when you need
them. If you're a total newbie to dynamic Web sites, PHP, and MySQL, you
might want to start with Book I, which describes how to set up your develop-
ment environment. When your environment is ready to go, you’ll want to
read the minibooks on PHP and MySQL (Books II and III). And when you're
ready to produce an actual Web site, with practical applications, you’ll want
to read the practical examples in Book VI.

Book |

Setting Up Your
Environment

The 5th Wave By Rich Tennant
CRIGTIENNANT

“What T'm looking for are dynamic Web applications and
content, not Web innvendoes and intent.”

Contents at a Glance

Chapter 1: Setting Up Your Web Environment

Chapter 2: Installing PHP

Chapter 3: Setting Up the MySQL Environment

Chapter 4: Installing a Web Server

Chapter 5: Setting Up Your Web Development Environment
with the XAMPP Package

21
47
73

87

Chapter 1: Setting Up
Vour Web Environment

In This Chapter

v Choosing a Web-hosting company

v~ Setting up your development environment
1 Testing PHP and MySQL

’9 HP and MySQL are a popular pair for building dynamic Web applica-

tions. PHP is a scripting language designed specifically for use on the

Web, with features that make Web design and programming easier. MySQL is
a fast, easy-to-use RDBMS (Relational Database Management System) used
on many Web sites. MySQL and PHP as a pair have several advantages:

+
*

<+

They’re free. It’s hard to beat free for cost-effectiveness.

They’re Web oriented. Both were designed specifically for use on
Web sites. Both have a set of features focused on building dynamic Web
sites.

They’re easy to use. Both were designed to get a Web site up quickly.

They’re fast. Both were designed with speed as a major goal. Together
they provide one of the fastest ways to deliver dynamic Web pages to
users.

They communicate well with one another. PHP has built-in features for
communicating with MySQL. You don’t need to know the technical
details; just leave it to PHP.

A wide base of support is available for both. Both have large user
bases. Because they’re often used as a pair, they often have the same
user base. Many people are available to help, including people on e-mail
discussion lists who have experience using MySQL and PHP together.

They’re customizable. Both are open source, thus allowing program-
mers to modify the PHP and MySQL software to fit their own specific
environments.

Before you can build your Web application, you need to set up your devel-
opment environment. In this chapter, we describe the tools you need and
how to get access to them.

10

The Required Tools

The Required Tools

To put up your dynamic Web site, you need to have access to the following
three software tools:

4+ A Web server: The software that delivers your Web pages to the world

4+ PHP: The scripting language that you’ll use to write the programs that
provide the dynamic functionality for your Web site

4+ MySQL: The RDBMS that will store information for your Web database
application

Choosing a Host for Your Web Site

To create your dynamic Web pages, you need access to a Web site that pro-
vides your three software tools (see the preceding section). All Web sites
include a Web server, but not all Web sites provide MySQL and PHP.

A Web site is located on a computer. For your Web site to be available to the
general public, it must be located on a computer that is connected to the
Internet. The computer that provides the home for your Web site is called
the Web host.

You can set up a computer in your office or basement to be the host for your
Web site. You need to be pretty technically savvy to do this. The Internet
connection you use to access the World Wide Web is unlikely to provide suf-
ficient resources to allow users to access your computer. You probably need
a faster connection that provides domain name system (DNS) service. You
need a different type of Internet connection, probably at an increase in cost.
This book doesn’t provide the information you need to run your own Web
host. If you already have the technical know-how to set up a host machine,
you can probably install the Web software from information in this book.
However, if you don’t understand Internet connections and DNS sufficiently
to connect to the Internet, you need to research this information elsewhere,
such as a system administration book or a networking book for your operat-
ing system.

Most people don’t host their Web site on their own computer. Most people
upload their Web site to a Web host provided by someone else. Web hosting
is often provided by one of the following:

4+ A company: Perhaps you're creating a Web site for a company, either as
an employee or a contractor. The company — usually the company’s IT
(Information Technology) department — installs and administers the
Web site software.

Choosing a Host for Your Web Site 11

4 An educational institution: A school or university allows students, fac- Book |
ulty, staff, and perhaps other individuals or organizations to put Web Chapter 1
sites on the school’s computers. You only need to install the Web page
files, such as HTML files, graphic files, and other files needed by the Web =
pages, in the proper location. &2

4+ A Web-hosting company: You can park your Web site on a Web-hosting gé
company’s computer. The Web-hosting company installs and maintains § =
the Web site software and provides space on its computer, usually for a 55
fee, where you can upload the Web page files for your Web site. % s

In the next few sections, we describe these environments in more detail and
how to install your Web site in the environments. We also explain how you
gain access to PHP and MySQL.

A company Web site

When a Web site is run by a company, you don’t need to understand the
installation and administration of the Web site software at all. The company
is responsible for the operation of the Web site. In most cases, the Web site
already exists, and your job is to add to, modify, or redesign the existing Web
site. In a few cases, the company might be installing its first Web site, and
your job is to design the Web site. In either case, your responsibility is to
write and install the Web page files for the Web site. You aren’t responsible
for the operation of the Web site.

You access the Web site software through the company’s IT department. The
name of this department can vary in different companies, but its function is
the same: It keeps the company’s computers running and up to date.

If PHP or MySQL or both aren’t available on the company’s Web site, IT
needs to install them and make them available to you. PHP and MySQL have
many options, but IT might not understand the best options — and might
have options set in ways that aren’t well suited for your purposes. If you
need PHP or MySQL options changed, you need to request that IT make the
change; you won’t be able to make the change yourself. For instance, PHP
must be installed with MySQL support enabled, so if PHP isn’t communicat-
ing correctly with MySQL, IT might have to reinstall PHP with MySQL sup-
port enabled.

&,N\BEH You'll interact with the IT folks frequently as needs arise. For example, you
& might need options changed, you might need information to help you inter-
pret an error message, or you might need to report a problem with the Web
site software. So a good relationship with the IT folks will make your life
much easier. Bring them tasty cookies and doughnuts often.

12

Choosing a Host for Your Web Site

An educational institution

Educational institutions have two types of Web sites:

4+ Sites provided by the organization: These sites are about the educa-
tional institution. These sites are created by employees and are similar
to company Web sites, described in the preceding section.

Sites installed by individuals: These sites are for the individuals’ own

purposes, unrelated to purposes of the educational institution.
Educational institutions often provide free Web space for students or

faculty to create their own personal Web sites. Some educational institu-
tions provide space for outside organizations (often nonprofit or charita-
ble organizations) to create Web sites.

Domain names

Every Web site needs a unique address on the
Web. The unique address used by computers
to locate a Web site is the /P address, which is
a series of four numbers between 0 and 255,
separated by dots (for example, 172.17.
204.20r192.163.2.33).

Because IP addresses are made up of numbers
and dots, they're not easy to remember.
Fortunately, most IP addresses have an asso-
ciated name that's much easier to remember,
such as amazon.com, www.irs.gov, Or
mycompany . com. A name that’s an address
for a Web site is a domain name. A domain
can be one computer or many connected com-
puters. When a domain refers to several
computers, each computer in the domain can
have its own name. A name that includes an
individual computer name, such as thor.
mycompany . com, identifies a subdomain.

Each domain name must be unique in order to
serve as an address. Consequently, a system of
registering domain names ensures that no two
locations use the same domain name. Anyone
can register any domain name as long as the

name isn't already taken. You can register a
domain name on the Web. First, you test your
potential domain name to find out whether it's
available. If it's available, you register it in your
name or in a company name and pay the fee.
The name is then yours to use, and no one else
can use it. The standard fee for domain name
registration is $35 per year. You should never
pay more, but bargains are often available.

Many Web sites provide the ability to register a
domain name, including the Web sites of many
Web-hosting companies. A search at Google
(www .google.com) for register domain
name results in more than 85 million hits. Shop
around to be sure that you find the lowest price.
Also, many Web sites allow you to enter a
domain name and see whom it is registered to.
These Web sites do a domain name database
search using a tool called whois. A search at
Google for domain name whois results in more
than 17 million hits. A couple of places where
you can do a whois search are Allwhois.com
(www .allwhois .com)and BetterWhois.com
(www . betterwhois . com).

Choosing a Host for Your Web Site 73

When you’re creating an individual Web site hosted by an educational insti-
tution, the computer space and all the Web site software are available to
you. You just create the files for your Web pages and move them to a speci-
fied location.

Educational institutions usually provide written documents with instruc-
tions for creating a Web site, including where to put your files. They often
provide help desks that can assist with problems or technical support staff
that will help.

Your domain name when your Web site is hosted by an educational institu-
tion is usually the domain name of the institution. You can seldom regis-
ter a domain name of your own. See the sidebar, “Domain names,” for
more info.

A Web-hosting company

A Web-hosting company provides everything that you need to put up a Web
site, including the computer space and all the Web site software. You just
create the files for your Web pages and move them to a location specified by
the Web-hosting company.

About a gazillion companies offer Web-hosting services. Most charge a
monthly fee (often quite small), and some are even free. (Most, but not all, of
the free ones require you to display advertising.) Usually, the monthly fee
varies depending on the resources provided for your Web site. For instance,
a Web site with 100MB of disk space for your Web page files costs less than a
Web site with 200MB of disk space.

When looking for a Web-hosting company for your Web site, make sure that
it offers the following:

4+ PHP and MySQL: Not all companies provide these tools. You might have
to pay more for a site with access to PHP and MySQL; sometimes you
have to pay an additional fee for MySQL databases.

4+ A recent version of PHP: Sometimes the PHP versions offered aren’t the
most recent versions. As of this writing, PHP 6 is close to being released.
However, you might have trouble finding a Web-hosting company that
offers PHP 6, even after it is released. In fact, you might find that most
Web-hosting companies still offer PHP 4, although we hope that will
change soon. Take the time to find a Web-hosting company that offers at
least PHP 5, if not PHP 6 if it is available. Some Web-hosting companies
offer PHP 4 but have PHP 5 (or 6) available for customers who request it.

Book |

[x]
=
)
=
=3
@
-
-

JusawiuolIAUg qapn
ino), dp bumag

14

Choosing a Host for Your Web Site

Other considerations when choosing a Web-hosting company are

4+ Reliability: You need a Web-hosting company that you can depend on —

one that won’t go broke and disappear tomorrow and that isn’t running
on old computers that are held together by chewing gum and baling
wire. If the company has more downtime than uptime, save yourself a
headache and look elsewhere.

Speed: Web pages that download slowly are a problem because users
will get impatient and go elsewhere. Slow pages might be a result of a
Web-hosting company that started its business on a shoestring and has
a shortage of good equipment, or the company might be so successful
that its equipment is overwhelmed by new customers. Either way, Web-
hosting companies that deliver Web pages too slowly are unacceptable.

Technical support: Some Web-hosting companies have no one available
to answer questions or troubleshoot problems. Technical support is
often provided only through e-mail, which can be acceptable if the
response time is short. Sometimes you can test the quality of the com-
pany’s support by calling the tech support number, or you can test the
e-mail response time by sending an e-mail.

The domain name: Each Web site has a domain name that Web
browsers use to find the site on the Web. Each domain name is regis-
tered for a small yearly fee so that only one Web site can use it. Some
Web-hosting companies allow you to use a domain name that you have
registered independently of the Web-hosting company, some assist you
in registering and using a new domain name, and some require that you
use their domain name. For instance, suppose that your name is Lola
Designer and you want your Web site to be named LolaDesigner. Some
Web-hosting companies allow your domain name to be LolaDesigner.
com, but some require that your Web site be named LolaDesigner.
webhostingcompanyname.com, Or webhostingcompanyname.com/
~LolaDesigner, or something similar. In general, your Web site looks
more professional if you use your own domain name.

Backups: Backups are copies of your Web page files and your database that
are stored in case your files or database are lost or damaged. You want to
be sure that the company makes regular, frequent backup copies of your
application. You also want to know how long it would take for backups to
be put in place to restore your Web site to working order after a problem.

Features: Select features based on the purpose of your Web site. Usually
a hosting company bundles features together into plans — more fea-
tures equal a higher cost. Some features to consider are

* Disk space:. How many MB or GB of disk space will your Web site
require? Media files, such as graphics or music files, can be quite large.

¢ Data transfer: Some hosting companies charge you for sending Web
pages to users. If you expect to have a lot of traffic on your Web site,
this cost should be a consideration.

s

Choosing a Host for Your Web Site 15

e F-mail addresses: Many hosting companies provide a number of
e-mail addresses for your Web site. For instance, if your Web site is
LolaDesigner.com, you could allow users to send you e-mail at
me@LolaDesigner.com.

e Software: Hosting companies offer access to a variety of software for
Web development. PHP and MySQL are the software that we discuss
in this book. Some hosting companies might offer other databases,
and some might offer other development tools such as FrontPage
extensions, shopping cart software, and credit card validation.

e Statistics: Often you can get statistics regarding your Web traffic,
such as the number of users, time of access, access by Web page,
and so on.

With most Web-hosting companies, you have no control over your Web envi-
ronment. The Web-hosting company provides the environment that works
best for it — probably setting up the environment for ease of maintenance,
low cost, and minimal customer defections. Most of your environment is set
by the company, and you can’t change it. You can only beg the company to
change it. The company will be reluctant to change a working setup, fearing
that a change could cause problems for the company’s system or for other
customers.

Access to MySQL databases is controlled via a system of accounts and
passwords that must be maintained manually, thus causing extra work for
the hosting company. For this reason, many hosting companies either don’t
offer MySQL or charge extra for it. Also, PHP has myriad options that can
be set, unset, or given various values. The hosting company decides the
option settings based on its needs, which might or might not be ideal for
your purposes.

It’s pretty difficult to research Web-hosting companies from a standing start —
a search at Google.com for “Web hosting” results in almost 400 million hits.
The best way to research Web-hosting companies is to ask for recommenda-
tions from people who have experience with those companies. People who
have used a hosting company can warn you if the service is slow or the com-
puters are down often. After you gather a few names of Web-hosting compa-
nies from satisfied customers, you can narrow the list to find the one that’s
best suited to your purposes and the most cost effective.

Using a hosted Web site

When you use an environment with a hosted Web site, such as the three
environments discussed above, for the world to see the Web pages, the Web
page files must be in a specific location on the computer. The Web server
that delivers the Web pages to the world expects to find the Web page files in
a specific directory. The Web host staff or IT department should provide you
with access to the directory where the Web page files need to be installed.

Book |

[x]
=
)
=
=3
@
-
-

JusawiuolIAUg qapn
ino), dp bumag

16 Choosing Your Development Environment

To use the Web software tools and build your dynamic Web site, you need
the following information from the Web host:

4+ The location of Web pages: You need to know where to put the files for
the Web pages. The Web-host staff needs to provide you with the name
and location of the directory where the files should be installed. Also,
you need to know how to install the files — copy them, FTP (file transfer
protocol) them, or use other methods. You might need a user ID and
password to install the files.

4 The default filename: When users point their browsers at a URL, a file is
sent to them. The Web server is set up to send a file with a specific name
when the URL points to a directory. The file that is automatically sent is
the default file. Very often the default file is named index.htmor index.
html, but sometimes other names are used, such as default.htm. You
need to know what you should name your default file.

4+ A MySQL account: Access to MySQL databases is controlled through a
system of account names and passwords. The organization providing
the Web host sets up a MySQL account for you that has the appropriate
permissions and also gives you the MySQL account name and password.
(MySQL accounts are explained in detail in Book III.)

4+ The location of the MySQL databases: MySQL databases need not be
located on the same computer as the Web site. If the MySQL databases
are located on a computer other than that of the Web site, you need to
know the hostname (for example, thor . companyname . com) where the
databases can be found.

4 The PHP file extension: When PHP is installed, the Web server is
instructed to expect PHP statements in files with specific extensions.
Frequently, the extensions used are .php or .phtml, but other exten-
sions can be used. PHP statements in files that don’t have the correct
extension won’t be processed. Find out what extension to use for your
PHP programs.

Choosing Your Development Environment

When you know where your Web site is going to be located, you need to set
up your development environment. You don’t want to develop your Web site
in the location where visitors view it because you don’t want them to be able
to view your Web pages until they’re finished and perfect. Here are the two
common places to develop Web pages:

4 On the computer where your Web site is hosted: You can create your
Web page files on the same computer that provides your Web site to
the world. To do this, set up a subdirectory for development purposes.
When the files are complete and ready for public viewing, transfer the

Setting Up Your Local Computer for Development 17

files to the main Web site directory where the Web pages are viewed by Book |
the public.

[x]
=
)
=
=3
@
-
-

4+ On a local computer: You can set up a local computer for development.
You can install the Web site software on your local computer. You can
then create your Web page files on your computer and view them
through your local Web server. When the files are complete to your sat-
isfaction, you can transfer them to your public Web site on the computer
that hosts your Web site.

JusawiuolIAUg qapn
ino), dp bumag

Developing on your local computer is common. You can use your editors

and software that you’re familiar with. Some people use text editors and
some use integrated development environments (IDEs), such as Dreamweaver.
However, to develop on your local machine, you need to have a Web server,
PHP, and MySQL installed on it. The remaining chapters in this minibook pro-
vide detailed instructions for installing a Web server, PHP, and MySQL.

Setting Up Your Local Computer for Development

To use your local computer to develop your Web site, you must install a Web
server, PHP, and MySQL. PHP and MySQL are free to download and use.

Installing the Web server

After you set up the computer, you need to install a Web server. Your first
step is deciding which Web server to install. The answer is almost always
Apache. Apache offers the following advantages:

4+ It’s free. What else do we need to say?

4+ It runs on a variety of operating systems. Apache runs on Windows,
Linux, Mac OS, FreeBSD, and most varieties of Unix.

4+ It’s popular. Approximately 60 percent of Web sites on the Internet use
Apache, according to surveys at http: //news.netcraft.com/
archives/web_server_survey.html and www.securityspace.
com/s_survey/data/. This wouldn’t be true if it didn’t work well.
Also, this means that a large group of users can provide help.

4+ It's reliable. When Apache is up and running, it should run as long as
your computer runs. Emergency problems with Apache are rare.

4+ It’s customizable. The open source license allows programmers to
modify the Apache software, adding or modifying modules as needed to
fit their own environment.

4+ It’s secure. You can find free software that runs with Apache to make it
into an SSL (Secure Sockets Layer) server. Security is an essential issue if
you’re using the site for e-commerce.

18 Setting Up Your Local Computer for Development

Apache is automatically installed when you install most Linux distributions.
All recent Macs come with Apache installed. However, you might need to
install a newer version of Apache. Apache provides an installer for Windows
that installs and configures Apache for you.

As of this writing, Apache offers three versions: 1.3, 2.0, and 2.2. Information
on Apache versions and instructions for installing Apache are provided in
Chapter 4 of this minibook. The Apache Web site (http://httpd.apache.
org) provides information, software downloads, extensive documentation
that is improving all the time, and installation instructions for various oper-
ating systems.

Other Web servers are available. Microsoft offers /IS (Internet Information
Server), which is the second most popular Web server on the Internet with
approximately 27 percent of Web sites. Sun Microsystems offers a Web
server, which serves less than 3 percent of the Internet. Other Web servers
are available, but they have even smaller user bases.

Installing MySOL

You might or might not need to install MySQL. MySQL is often already
installed on Linux or Mac. Sometimes it is installed, but not activated.
However, the installed version might be an older version, in which case you
should install a newer version. Chapter 3 of this minibook provides instruc-
tions for checking whether MySQL is installed and determining which ver-
sion is installed.

You install and configure MySQL on Windows by using a Setup and a Configu-
ration Wizard. RPMs are available for installing MySQL on Linux. A PKG file

is available for installing MySQL on Mac OS X. Chapter 3 of this minibook
provides detailed instructions for installing MySQL on Windows, Linux, Unix,
and the Mac OS.

Software for managing your MySQL databases after MySQL is installed is
available. One popular program for administering MySQL is phpMyAdmin,
a utility program written in PHP. Installing and using phpMyAdmin are dis-
cussed in Chapter 3 of this minibook.

Installing PHP

You might or might not need to install PHP. Along with MySQL, PHP is often
already installed in Linux or the Mac OS. Sometimes it’s installed but not
activated. However, the installed version might be an older version, in which
case you should install a newer version. Chapter 2 of this minibook provides
instructions for checking whether PHP is installed and determining which
version is installed.

Keeping Up with PHP and MySQL Changes 19

PHP is available for Windows in a Zip file that just needs to be unzipped in Book I
the correct location. PHP is available for Linux in RPMs. You can obtain PHP Chapter 1
for Mac OS in a PKG file. After installing PHP, you need to configure your Web
server to process PHP code. Instructions for installing PHP and configuring =
your Web server are provided in Chapter 2 of this minibook. &2
58
; ; e
Getting help with your software = =
Apache, PHP, and MySQL are open source software. You don’t get a phone § g

number that you can call when you have problems, but this doesn’t mean
that you can’t get help. Open source software people help each other.

Apache, PHP, and MySQL are popular software with gazillions of users.
Many of these users are willing to help. The official Web sites support mail-
ing lists with hundreds of knowledgeable users, often including the people
who developed the software, who voluntarily answer questions. You can
often get an answer more quickly than if you waited in a queue for a techni-
cal support phone line.

You can join mailing lists at the following locations:

4 www.php.net/mailing-lists.php
4 http://lists.mysqgl.com
4 http://httpd.apache.org/lists.html
\P
) The mailing lists also have searchable archives of questions and answers.

It’s very unlikely that you're the first person to have your problem, so you're
likely to find the question already answered in the archives.

Join the mailing lists, which often are high in traffic. When you first get
acquainted with PHP and MySQL, the large number of mail messages on the
discussion lists brings valuable information into your e-mail box; you can
pick up a lot by reading those messages. Soon, you might be able to help
others based on your own experience.

Keeping Up with PHP and MySQL Changes

PHP and MySQL are open source software. If you’'ve used only software from
major software publishers — such as Microsoft, Corel, or Adobe — you’ll
find that open source software is an entirely different species. It’s developed
by a group of programmers who write the code in their spare time, for fun
and for free. There’s no corporate office.

20

A\

Keeping Up with PHP and MySOL Changes

Open source software changes frequently, rather than once every year or
two like commercial software does. It changes when the developers feel that
it’s ready. It also changes quickly in response to problems. When a serious
problem is found — such as a security hole — a new version that fixes the
problem can be released in days. You don’t receive glossy brochures or see
splashy magazine ads for a year before a new version is released. Thus, if
you don’t make the effort to stay informed, you might miss the release of a
new version or be unaware of a serious problem with your current version.

Visit the PHP and MySQL Web sites often. You need to know the information
that’s published there. Even if you don’t subscribe to any other mailing lists,
subscribe to the announcement mailing list, which delivers e-mail only occa-
sionally, with information you need to know. So, right now, before you forget,
hop over to the PHP and MySQL Web sites and sign up for a list or two at
www.php.net/mailing-lists.php and http://lists.mysqgl.com.

In addition, if you're developing on your local computer and uploading to
your Web site, you need to have the same versions of PHP and MySQL
installed locally that are installed on your Web host. You need to be sure that
the scripts you develop locally run the same way and produce the same
output when uploaded to your public Web site.

Chapter 2: Installing PHP

In This Chapter

1 Checking whether PHP needs to be installed

v~ Installing PHP on Windows, the Mac OS, or Linux
v Configuring PHP

v~ Testing PHP

1 Activating MySQL support

1+ Troubleshooting PHP and MySQL installations

ou might or might not need to install PHP. In many cases, PHP is

already installed. For instance, most recent Linux and Mac distribu-
tions automatically install PHP. PHP is not provided with the Windows oper-
ating system.

You can check to see whether PHP needs to be installed. If it isn’t currently
installed or if you have an older version that needs to be updated, you need
to install PHP.

Installing PHP includes the following steps, which are explained in detail in
this chapter:

1. Check to find out whether PHP needs to be installed.

2. Obtain the PHP software, usually by downloading it from a Web site.

3. Install PHP.

4. Configure your Web server for PHP.

5. Configure PHP.

0. Test PHP.

7. Activate MySQL support in PHP.

22 Checking the PHP Installation

Checking the PHP Installation

To see whether PHP is installed, search your hard drive for any PHP files:

4+ Linux/Unix/Mac: Type the following:
find / -name "php*"

4+ Windows: Use the Find feature (choose Start=Find) to search for php*.
In general, PHP isn’t installed on Windows computers.

If you don’t find any PHP files, PHP isn’t installed. Later in this chapter, we
describe how to obtain (see “Obtaining PHP”) and install (see “Installing
PHP”) PHP.

If you find PHP files on your computer, PHP might or might not be ready to
go. The files might reside on your hard drive, but PHP might not have been
installed. Or, PHP might be installed, but it might not be the most recent ver-
sion. You might want to install the most up-to-date version.

You can test whether PHP is ready to go using the testing procedure described
in the section “Testing PHP,” later in this chapter. The tests in that section
determine whether PHP is installed and tell you which version is installed.

Most Mac OS X versions since 10.3 come with PHP already installed, but
Apache might not be configured to handle PHP code. If PHP is installed on
your Mac but doesn’t seem to be working, try following the instructions in
the section “Configuring Your Web Server for PHP,” later in this chapter.
Editing the httpd. conf file might be all you need to do to get your PHP
up and running.

Obtaining PHP

At the time of this writing, two versions of PHP are available: PHP 4 and PHP
5. When PHP 6 is released, three versions of PHP might be available for a
period of time. If you're installing PHP for the first time and creating your
first Web site, you should download PHP 5, or PHP 6 if it is available at the
time you read this book. You should install an older version of PHP only if
you need to maintain or modify an existing Web site with existing code. Code
that’s written for one version of PHP might need to be modified to run on
another version of PHP. If you have a lot of code, you might want to update
the code over a period of time.

Downloading from the PHP Web site

PHP for all operating systems is available on the PHP Web site at www . php .
net. You can download source code to compile on your operating system.

Obtaining PHP 2 3

Compiling and installing source code isn’t difficult on Linux and the Mac OS,
but requires expert knowledge and software on Windows.

Binary files — compiled, ready-to-run files that just need to be copied to the
correct location — are available only for Windows. You can obtain binary
files for Linux and the Mac OS from other Web locations, but not from the
PHP Web site.

Obtaining PHP for Windows

You can easily install PHP from binary files that you can download from the
PHP Web site at www.php .net. You can download a Zip file that contains all
the necessary files or an installer that you can run to install all the PHP files.
The PHP documentation recommends that you install PHP from the Zip file
for better understanding of the installation and easier addition of extensions
later. The directions in this chapter provide instructions for installing PHP
from the Zip file.

Although Windows users can compile and install PHP from source code, also
available from the PHP Web site, it is difficult and should only be attempted
by advanced users. It requires advanced knowledge and special software.

To download the Windows Zip file, take these steps:

1. Go to www.php.net/downloads.php.

2. Download the Zip package for the most recent version of PHP.

Obtaining PHP for Linux

Most recent versions of Linux include PHP. If you need to install PHP or
upgrade to a more recent version, most Linux distributions provide software
on their Web site that you can download and install on your specific Linux
system. In addition, most Linux systems provide utilities specifically for
downloading and installing software. For instance, Fedora provides the yum
utility that downloads and installs software from the Fedora Web site. See
the documentation for your Linux distribution for information on how to
download and install software on your Linux distribution.

In some cases, you might need to install PHP manually. The software pro-
vided by the Web site might not be the most recent or might not be config-
ured to your needs. To install manually, you need to download the source
code from the PHP Web site at www.php . net.

You can easily compile and install PHP from the source code. This process
isn’t as technical and daunting as it sounds. Instructions for installing PHP
from source code on Linux are provided in this chapter.

Book |
Chapter 2

dHd Buijjeisu)

24

Obtaining PHP

Obtaining PHP for the Mac 0S

PHP comes already installed on most recent versions of Mac OS X. If you
need to install PHP because it’s not installed or an older version is installed,
the easiest way is to install from a binary file. The PHP Web site doesn’t pro-
vide a binary file, but binary files are provided for some versions of OS X at
www . entropy.ch/software/macosx/php. The information needed to
download and install the binary file is provided at this Web site. Check the
support and extensions provided in the binary file to ensure that you have
the features you need.

If the binary file doesn’t provide the features or extensions you need, you
can download the source files from the PHP Web site to compile and install
on your Mac. Instructions for installing PHP from the source code are pro-
vided in this chapter.

Obtaining all-in-one installation kits

You can obtain some kits that contain and install PHP, MySQL, and Apache
in one procedure. These kits can greatly simplify the installation process.
However, the software provided might not include the features and exten-
sions that you need.

XAMPP is a popular all-in-one installation kit that contains Apache, PHP, and
MySQL. It also installs phpMyAdmin, a utility for managing your MySQL data-
bases. XAMPP has stable versions available for Windows, including Vista,
and for several versions of Linux. In addition, versions of XAMPP are avail-
able for Mac and Solaris, but these versions are currently new and less well
tested and developed. XAMPP is available at www . apachefriends.org/
en/xampp . html. Instructions for installing your software using XAMPP are
provided in Chapter 5 in this minibook.

WAMP5 is a popular installation kit for Windows that provides recent ver-
sions of Apache 2.2, PHP 5, and MySQL 5. Like XAMPP, WAMPS5 also installs
the phpMyAdmin utility. The WAMP5 Web site states that it’s compatible
with Windows Vista. WAMP5 doesn’t run on Windows 98/Me. WAMP?5 is avail-
able at www . en.wampserver. com.

MAMP is an installation kit for Mac that installs Apache, PHP, and MySQL for
Mac OS X. This free package installs a local server environment on your Mac
PowerBook or iMac. MAMP was created primarily as a PHP development
environment for your local computer and should not be used as a produc-
tion server for the Internet. You can obtain MAMP at www .mamp . info.

Verifying a downloaded file

The PHP Web site provides methods to verify the software after you down-
load it, as a security precaution to make sure that the file hasn’t been altered

Installing PHP 25

by bad guys. You can verify using either the MD5 method or the PGP method. Book I
The MD5 method is simpler and is described in this section. Chapter 2

On the download Web page, a long string called a signature is displayed
below the file you downloaded. Here’s an example:

MD5: 6112£6a730c680a4048dbab40e4107b3

dHd Buijjeisu)

The downloaded PHP file needs to provide the same MD5 signature shown
on the download page. You use software on your computer to check the MD5
signature of the downloaded file. Your Linux or Mac system includes soft-
ware to check the MD5 signature. On Windows, you might need to download
and install MD5 software. You can find software that checks MD5 signatures
at www. fourmilab.ch/md5.

You can check the MD5 signature of the downloaded file at a command line
prompt, such as the command prompt window in Windows. You may need to
be in the directory where the downloaded file resides. To check the MD5 sig-
nature, type:

md5 filename

Use the name of the file that you downloaded, such as md5 php-5.2.1-
Win32.zip. In Windows, you might need to copy the downloaded file to the
directory where the MD5 software (such as md5 . exe) is installed, change to
this directory, and then type the preceding command.

A signature displays. The signature here should be the same signature dis-
played under the filename on the download page of the PHP Web site.

winMd5Sum is a simple, open source (free) Windows program with a
graphical interface that allows you to check MD5 signatures by clicking
buttons and dragging filenames, rather than by typing commands in a com-
mand prompt window. You can obtain it at www.nullriver.com/index/
products/winmd5sum.

You can verify the downloads for Apache and MySQL with a similar
procedure.

Installing PHP

Although PHP runs on many platforms, we describe installing it on Unix,
Linux, Mac, and Windows, which represent the majority of Web sites on the
Internet. PHP runs with several Web servers, but these instructions focus
mainly on Apache and Internet Information Servers (IIS) because together
they power almost 90 percent of the Web sites on the Internet. If you need

26

WMBER
@ﬁ
&

Installing PHP

instructions for other operating systems or Web servers, see the PHP Web
site, at www.php.net.

This chapter provides installation instructions for PHP 5 and 6. If you're
installing an earlier version, there are some small differences, so read the
install. txt file provided with the PHP distribution.

Installing on Unix and Linux

You can install PHP as an Apache module or as a standalone interpreter. If
you’re using PHP as a scripting language in Web pages to interact with a
database, install PHP as an Apache module. PHP is faster and more secure as
a module. We don’t discuss PHP as a standalone interpreter in this book.

We provide step-by-step instructions in the next few sections for compiling
and installing PHP on Linux and Unix. Read all the way through the steps
before you begin the installation procedure.

Before installing
Before beginning to install PHP, check the following:

4+ The Apache module mod_so is installed. It usually is. To display a list of
all the modules, type the following at the command line:

httpd -1

You might have to be in the directory where httpd is located before

the command will work. The output usually shows a long list of modules.
All you need to be concerned with for PHP is mod_so. If mod_so isn’t
loaded, Apache must be reinstalled using the enable-module=so
option.

4 The apxs utility is installed. The apxs utility is installed when Apache
is installed. You should be able to find a file called apxs. If Apache was
already installed on Linux or installed from a Linux distribution Web site,
apxs might not have been installed. Some Apache installations consist
of two installation packages: one for the basic Apache server and one for
Apache development tools. The development tools, which contain apxs,
might need to be installed.

4+ The Apache version is recent. See Chapter 1 of this minibook for a dis-
cussion of Apache versions. To check the version, type the following:

httpd -v

You might have to be in the directory where httpd is located before the
command will work.

Installing PHP 27

QNING/ As of this writing, the PHP Web site doesn’t recommend using Apache 2 Book |
Y with PHP on Linux or Unix. For use on production Web sites, it might be Chapter 2
better to use Apache 1.3 than Apache 2. Keep updated on the status of
PHP with Apache 2 by checking www.php .net/manual/en/install.

unix.apache?2.php. g

QD

. g

Installing -t

To install PHP on Unix or Linux with an Apache Web server, follow these e
steps:

1. Change to the directory where you downloaded the source code (for
instance, cd- /usr/src).

You see a file named php-, followed by the version name and tar.gz.
This file is a tarball that contains many files.

2. Unpack the tarball.
The command for PHP version 6.0.0 is
gunzip -c¢ php-6.0.0.tar.gz | tar -xf -

A new directory called php-6.0.0 is created with several
subdirectories.

3. Change to the new directory that was created when you unpacked the
tarball.

For example, type cd php-6.0.0.
4. Type the configure command.

The configure command consists of . /configure followed by the
configuration options you want to use. The minimum configure com-
mand is

./configure --with-apxs
If you're using Apache 2, use the option with-apxs?2.

You might want to use other configuration options with the configure
command. The available configuration options are discussed in the sec-
tion “Installation options for Unix/Linux/Mac,” later in this chapter.

For this book, you need to activate MySQL support, which is done with a
configuration option. Activating MySQL support is discussed in the
“Activating MySQL Support” section, later in this chapter.

When you type the configure command, you see many lines of output.
Wait until the configure command has finished. This might take a few
minutes. If the configure command fails, it provides an informative

28

MBER
@&
&

QWING/

Installing PHP

message. Usually, the problem is missing software. You see an error mes-
sage indicating that certain software can’t be found or perhaps that ver-
sion 5.6 of the software is required but version 4.2 is found. You need to
install or update the software that PHP needs.

If the apxs utility isn’t installed in the expected location, you see an
error message indicating that apxs couldn’t be found. If you get this
message, check the location where apxs is installed (find / -name
apxs) and include the path in the with-apxs option of the configure
command: --with-apxs=/usr/sbin/apxs or /usr/local/apache/
bin/apxs. If you're using Apache 2, the option is --with-apxs2=/
usr/sbin/apxs.

5. Type make.

You see many lines of output. Wait until it’s finished. This might take a
few minutes.

6. Type make install.

Installing on Mac 0S X

Beginning with PHP 4.3, you can install PHP on Mac OS X as easily as on Unix
and Linux. You install PHP by downloading source files, compiling the source
files, and installing the compiled programs.

Read all the way through the steps before you begin. You want to be sure
that you understand it all clearly and have everything prepared so you don’t
have to stop in the middle of the installation.

Before installing

If you want to use PHP with Apache for your Web site, Apache must be
installed. Most Mac OS X systems come with Apache already installed. For
more information on Apache, see Chapter 1 of this minibook.

Before beginning to install PHP, check the following:

4+ The Apache version is recent: See Chapter 1 of this minibook for a dis-
cussion of Apache versions. To check the version, type the following on
the command line:

httpd -v

You might have to be in the directory where httpd is located before the
command will work.

As of this writing, the PHP Web site doesn’t recommend using Apache 2
with PHP. For use on production Web sites, it might be better to use
Apache 1.3 than Apache 2. See Chapter 1 of this minibook for a

Installing PHP 29

discussion of Apache versions. Keep updated on the status of PHP with Book I
Apache 2 by checking the PHP Web site at www.php .net/manual/ Chapter 2
en/install.unix.apache?2.php.

4+ The Apache module mod_so is installed. It usually is. To display a list of
all the modules, type the following:

httpd -1

dHd Buijjeisu)

You might have to be in the directory where httpd is located before the
command will work. The output usually shows a long list of modules. All
you need to be concerned with for PHP is mod_so. If mod_so isn’t
loaded, you must reinstall Apache.

4+ The apxs utility is installed. apxs is normally installed when Apache is
installed. To determine whether it’s installed on your computer, look for
a file called apxs, which is usually in the /usr/sbin/apxs directory. If
you can find the file, apxs is installed; if not, it’s not.

4+ The files from the Developer’s Tools CD are installed. This CD is sup-
plemental to the main Mac OS X distribution. If you can’t find the CD,
you can download the tools from the Apple Developer Connection Web
site at developer.apple.com/tools/macosxtools.html.

Installing
To install PHP on the Mac OS, follow these steps:

1. Change to the directory where you downloaded PHP (for example,
cd-/usr/src).

You see a file named php-, followed by the version name and tar.gz.
This file contains several files compressed into one. The file might have
been unpacked by the Stufflt Expander automatically so that you see the
directory php-6.0. 0. If so, skip to Step 3.

2. Unpack the tarball.
The command to unpack the tarball for PHP version 6.0.0 is
tar xvfz php-6.0.0.tar.gz

A new directory called php-6.0.0 is created with several
subdirectories.

3. Change to the new directory that was created when you unpacked the
tarball.

For example, you can use a command like the following:
cd php-6.0.0

30

“NG‘
Q \! !

Installing PHP

4.

6.

Type the configure command.

The configure command consists of . /configure followed by all the
necessary options. The minimum set of options follows:

e Location options: Because the Mac stores files in different locations
than the PHP default locations, you need to tell PHP where files are
located. Use the following options:

--prefix=/usr
--sysconfdir=/etc
--localstatedir=/var
--mandir=/usr/share/man

e zliboption: --with-zlib.

e Apache option: If you're installing PHP for use with Apache, use the
following option: --with-apxs or —--with-apxs2.

The most likely configuration command is

./configure --prefix=/usr --sysconfdir=/etc
--localstatedir=/var --mandir=/usr/share/man
--with-apxs —--with-zlib

You also need to use an option to include MySQL support. See the sec-
tion “Activing MySQL Support on Linux and Mac,” later in this chapter.

You can type the configure command on one line. If you use more than
one line, type \ at the end of each line.

You see many lines of output. Wait until the configure command has
finished. This might take a few minutes.

If the apxs utility isn’t installed in the expected location, you see an error
message, indicating that apxs couldn’t be found. If you get this error mes-
sage, check the location where apxs is installed (find / -name apxs)
and include the path in the with-apxs option of the configure com-
mand: --with-apxs=/usr/sbin/apxs

You might need to use many other options, such as options that change
the directories where PHP is installed. These configure options are
discussed in the “Installation options for Unix/Linux/Mac” section, later
in this chapter.

Type make.

You see many lines of output. Wait until it’s finished. This might take a
few minutes.

Type sudo make install.

Installing PHP 31

Installation options for Unix/Linux/Mac

The preceding sections give you steps to quickly install PHP on Unix, Linux,
or Mac with the options needed for the applications in this book. However,
you might want to install PHP differently. For instance, all the PHP programs
and files are installed in their default locations, but you might need to install
PHP in different locations. Or you might be planning applications using addi-
tional software. You can use additional command line options if you need to
configure PHP for your specific needs. Just add the options to the command
shown in Step 4 of the Unix and Mac installation instructions. In general, the
order of the options in the command line doesn’t matter. Table 2-1 shows
the most commonly used options for PHP. To see a list of all possible

options, type ./configure -help.

Table 2-1

PHP Configure Options

Option

Tells PHP To

prefix=PREFIX

Set the main PHP directory to PREFIX. The
default PREFIXis /usr/local.

exec-prefix=EPREFIX

Install architecture dependent files in EPRE-
FIX.The default EPREFIXis PREFIX.

bindir=DIR

Install user executables in DIR. The defaultis
EPREFIX/bin.

infodir=DIR

Install info documentation in DIR. The default
is PREFIX/info.

mandir=DIR

Install man files in DIR. The defaultis
PREFIX/man.

with-config-file-path=DIR

Look for the configuration file (php . ini)in
DIR. Without this option, PHP looks for the
configuration file in a default location, usually
/usr/local/lib.

disable-1libxml

Disable XML support that's included by default.

enable-ftp

Enable FTP support.

enable-magic-quotes

Enable automatic escaping of quotes with a
backslash.

with-apxs=FILE

Build a shared Apache module using the
apxs utility located at FTLE. Default FTLE
is apxs.

with-apxs2=FILE

Build a shared Apache 2 module using the
apxs utility located at FTLE. The default
FILEIiS apxs.

(continued)

Book |
Chapter 2

dHd Buijjeisu)

32 Installing PHP

Table 2-1 (continued)

Option

Tells PHP To

with-mysqgl=DIR

Enable support for MySQL 4.0 or earlier data-
bases. The default DIR where MySQL is
locatedis /usr/local.

with-mysgli=DIR

Enable support for MySQL 4.1 or later data-
bases. DIR needs to be the path to the file
named mysgl_config that was installed
with 4.1. Available only with PHP 5 or later.

with-openssl=DIR

Enable OpenSSL support for a secure server.
Requires OpenSSL version 0.9.5 or later.

with-oci8=DIR

Enable support for Oracle 7 or later. Default
DIRis contained in the environmental vari-
able, ORACLE_HOME.

with-oracle=DIR

Enable support for earlier versions of Oracle.
The default DIR s contained in the environ-
mental variable, ORACLE_HOME.

with-pgsqgl=DIR

Enable support for PostgreSQL databases. The
default DTR where PostgreSQL is located is
/usr/local/pgsqgl.

with-servlet=DIR

Include servlet support. DIR is the base install
directory for the JSDK. The Java extension
must be built as a shared .d11.

Installing on Windows

PHP runs on Windows 98/Me and Windows NT/2000/XP/Vista. You can use
Windows 98/Me for development on a local computer, but you can’t use

them to support a public Web site. Windows 95 is no longer supported as of
PHP 4.3.0. PHP doesn’t run on Windows 3.1.

To install PHP 5 or 6 on Windows, you unzip the file that contains all the nec-
essary files for PHP and store the files in the appropriate locations. The fol-
lowing steps show how to install PHP on Windows:

1. Extract the files from the . zip file into the directory where you want
PHP to be installed, such as c: \php.

The Zip file is named php, followed by the version number and
win32.zip, such as php6.0.0-Win32.zip-. If you double-click

the file, it should open in the software on your computer that extracts
files from Zip files, such as WinZip or PKZIP. Select the menu item for
extract and select the directory into which the files are to be extracted.
C:\php is a good choice for installation because many configuration

Configuring Your Web Server for PHP 33

files assume that’s where PHP is installed, so the default settings are
more likely to be correct. Do not install PHP in a directory with a space
in the path, such as in Program Files\PHP.

You now have a directory and several subdirectories that contain all the
files from the Zip file. You should be able to run PHP programs.
Occasionally, PHP needs files that it can’t find. When this happens, PHP
displays an error message when you run a PHP program, saying that it
can’t find a particular file with a .d11 extension. You can usually find
the DLL in the ext subdirectory and copy it into the main PHP directory.

2. Activate MySQL support.

Instructions are provided in the section “Activating MySQL Support on
Windows,” later in this chapter.

3. Configure your Web server.
The next section provides instructions for configuring your Web server.
4. Configure PHP.

Follow the directions in the “Configuring PHP” section, later in this
chapter.

Configuring Vour Web Server for PHP

Your Web server needs to be configured to recognize PHP scripts and
run them.

Configuring Apache on Linux and Mac

You must configure Apache to recognize and run PHP files. An Apache
configuration file, httpd. conf, is on your system, possibly in /etc or in
/usr/local/apache/conf. You must edit this file before PHP can run
properly.

Follow these steps to configure your system for PHP:

1. Open the httpd. conf file so you can make changes.
2. Configure Apache to load the PHP module.
Find the list of LoadModule statements. Look for the following line:
LoadModule php6_module libexec/libphp6.so

If this line isn’t there, add it. If a pound sign (#) is at the beginning of the
line, remove the pound sign.

Book |
Chapter 2

dHd Buijjeisu)

3 4 Configuring Your Web Server for PHP

For PHP 5, the line would be
LoadModule php5_module libexec/libphp5.so
3. Configure Apache to recognize PHP extensions.

You need to tell Apache which files might contain PHP code. Look for a
section describing AddType. You might see one or more AddType lines
for other software. Look for the AddType line for PHP, as follows:

AddType application/x-httpd-php .php

If you find a pound sign (#) at the beginning of the line, remove the
pound sign. If you don’t find this line, add it to the AddType statements.
This line tells Apache to look for PHP code in all files with a . php exten-
sion. You can specify any extension or series of extensions.

4. Start the Apache httpd server (if it isn’t running) or restart the
Apache httpd server (if it is running).

You can start or restart the server with a script that was installed on
your system during installation. This script might be apachectl or
httpd.apache, and might be located in /bin or /usr/local/
apache/bin. For example, you might be able to start the server by
typing apachectl start, restart it by using apachectl restart, or
stop it by using apachectl stop.Sometimes restarting isn’t sufficient;
you must stop the server first and then start it.

Configuring your Web server on Windows

You can’t have Apache and IIS (Internet Information Services) running at the
same time using the same port number. Either shut down one Web server or
tell them to listen on different ports.

Configuring Apache on Windows

You must edit an Apache configuration file, called httpd. conf, before PHP
can run properly. To configure Apache for PHP, follow these steps:

1. Open httpd.conf for editing.

To open the file, choose Start>Programs=>Apache HTTPD
Server>Configure Apache Server=>Edit Configuration.

If Edit Configuration isn’t on your Start menu, find the httpd. conf file
on your hard drive, usually in the directory where Apache is installed,
in a conf subdirectory (for example, c: \program files\Apache
group\Apache\conf). Open this file in a text editor, such as Notepad
or WordPad.

Configuring Your Web Server for PHP 35

2. Activate the PHP module. Book |

Chapter 2
Look for the module statement section in the file and locate the follow- L

ing line:
#LoadModule php6_module "c:/php/php6apache2.dll"

Remove the # from the beginning of the line to activate the module. If
you're installing PHP 5, you need the following line:

dHd Buijjeisu)

LoadModule php5_module "c:/php/phpSapache2.dl1l"

If you're using Apache 1.3, rather than Apache 2, the module name is
phpb6apache.dll or php5apache.dll.

3. Tell Apache which files are PHP programs.

Look for a section describing AddType. This section might contain one
or more AddType lines for other software. The AddType line for PHP is

AddType application/x-httpd-php .php

Look for this line. If you find it with a pound sign at the beginning of the
line, remove the pound sign. If you don’t find the line, add it to the list
of AddType statements. You can specify any extension or series of
extensions.

This line tells Apache that files with the . php extension are files of the
type application/x-httpd-php. Apache then knows to send files
with .php extensions to the PHP module.

4. Start Apache (f it isn’t running) or restart Apache (if it is running).

You can start it as a service in Windows NT/2000/XP/Vista by choosing
Start=>Programs=Apache HTTPD Server=>Control Apache Server and
then selecting Start or Restart. You can start it in Windows 98/Me by
choosing Start>Programs=>Apache Web Server->Management.

Sometimes restarting Apache isn’t sufficient; you must stop it first and
then start it. In addition, your computer is undoubtedly set up so that
Apache will start whenever the computer starts. Therefore, you can shut
down and then start your computer to restart Apache.

Configuring IIS

To configure IIS to work with PHP, follow these steps:

1. Enter the IIS Management Console.

You can enter it by choosing Start=>Programs=>Administrative Toolsw>
Internet Services Manager or Startw>Control Panel=>Administrative Tools=>
Internet Services Manager.

3 7 Configuring PHP

2. Right-click your Web site (such as Default Web Site).
3. Choose Properties.
4. Click the Home Directory tab.
5. Click the Configuration button.
6. Click the App Mappings tab.
7. Click Add.
8. In the Executable box, type the path to the PHP interpreter.
For example, type c:\php\php-cgi.exe.
9. In the Extension box, type .php.
This will be the extension associated with PHP scripts.
10. Select the Script Engine check box.
11. Click OK.

Repeat Steps 6-10 if you want any extensions in addition to .php to be
processed by PHP, such as .phtml.

Configuring PHP

PHP uses settings in a file named php. ini to control some of its behavior.
PHP looks for php . ini when it begins and uses the settings that it finds.

If PHP can’t find the file, it uses a set of default settings. The default location
for the php. ini file is one of the following unless you change it during
installation:

4 Windows: The system directory, depending on the Windows version:
on Windows 98/Me/XP, windows; on Windows NT/2000 (and sometimes
XP), winnt

4 Unix, Linux, and Mac: /usr/local/1lib

If the php . ini file isn’t installed during installation, you need to install it
now. A configuration file with default settings, called php.ini-dist, is
included in the PHP distribution. Copy this file into the appropriate location,
such as the default locations just mentioned, changing its name to php.ini.

P If you have a previous version of PHP installed (such as PHP 4.3), make a
backup copy of the php. ini file before you overwrite it with the php.ini
file for PHP 5 or 6. You can then see the settings you are currently using
and change the settings in the new php. ini file to match the current
settings.

Configuring PHP 3 7

To configure PHP, follow these steps:

1.
2.

o

7.
8.

Open the php. ini file for editing.
Change the settings you want to change.

Steps 3, 4, and 5 mention some specific settings that you should always
change if you're using the specified environment.

Only if you’'re using PHP 5 or earlier, turn off magic quotes.
Look for the following line:

magic_quotes-gpc On
Change On to Off.

Only if you’re using PHP 5 or 6 on Windows, activate mysqli or mysql
support.

See instructions in the section “Activating MySQL Support on Windows,”
later in this chapter.

Only if you’re using PHP on Windows with the IIS Web server, turn
off force redirect.

Find this line:
;cgi.force_redirect = 1

You need to remove the semicolon so that the setting is active, and also
change the 1 to 0. After the changes, the line looks as follows:

cgi.force_redirect = 0

. Only if you’re using PHP 5 or later, set your local time zone.

Find the line:
;date.timezone =

Remove the semicolon from the beginning of the line. Add the code for
your local time zone after the equal sign. For instance, the line might be

date.timezone = America/Los_Angeles

You can find a list of time zone codes at www.php .net/manual/en/
timezones.php.

Save the php. ini file.

Restart your Web server so that the new settings go into effect.

In general, the remaining default settings allow PHP to run okay, but you
might need to edit some of these settings for specific reasons. We discuss
settings in the php. ini file throughout the book when we discuss a topic
that might require you to change settings.

Book |
Chapter 2

dHd Buijjeisu)

38

Testing PHP

Testing PHP

NG/

NG/
Q\“\ !

To test whether PHP is installed and working, follow these steps:

1. Find the directory in which your PHP programs need to be saved.

This directory and the subdirectories under it are your Web space.
Apache calls this directory the document root. The default Web space
for Apache is htdocs in the directory where Apache is installed. For
IIS, it’s Inetpub\wwwroot. In Linux, it might be /var/www/html. The
Web space can be set to a different directory by configuring the Web
server. If you're using a Web hosting company, the staff will supply the
directory name.

. Create the following file somewhere in your Web space with the name

test .php.

<html>

<head>

<title>PHP Test</title>

</head>

<body>

<p>This is an HTML line</p>

<?php
echo "<p>This is a PHP line</p>";
phpinfo () ;

?>

</body></html>

The file must be saved in your Web space for the Web server to find it.

. Run the test.php file created in Step 2. That is, type the host name

of your Web server into the browser address window, followed by the
name of the file (for example, www.myfinecompany.com/test .php).

If your Web server, PHP, and the test .php file are on the same com-
puter that you're testing from, you can type localhost/test.php.

For the file to be processed by PHP, you need to access the file through
the Web server — not by choosing File=>Open from your Web browser
menu.

The output from the test.php program is shown in Figure 2-1. The
output shows two lines, followed by a table. The table is long and shows
all the information associated with PHP on your system. It shows PHP
information, pathnames and filenames, variable values, and the status
of various options. The table is produced by the phpinfo () line in the
test script. Anytime that you have a question about the settings for PHP,
you can use the phpinfo () statement to display this table and check

a setting.

Figure 2-1:
PHP
settings.

Activating MySOL Support 3 9

[& Text PHP . Wazilia Flistax S

File Edit View ©Go BEookmatks Tosls Help

& 2 B [bitgiacalhostPHPandMySOLIEHEAnst phy - @ 5o |Gl
This is an HThL fing
This is a PHF ns

[symtaam [\tetzm NT AANET-02030R00U 5 4 build 2600 R
Bl [|wiar 9 2007 15:06:34

Configurse d___eserigtivologa cenfiguns is —snable-snagshekbulld *—wih-gd-shued

Servar AP Apache § 0 Handlar

Wil Dinectony Supperl | enatiod
mmlmmm CWMNDOWTIRhD, i

PP AP aTaie

FHI Extension EET 3

Lol £ s e}]

Dhebiiagg Bl 5]

T el Sty

Tamd Mamary Managsr amakian

Wil Suppart [Basad on Coppmpht (C) T005, Inemadanal Budingss Mathings Comaration and -

4]

¥
Dona

If you see only a blank page or only the first line and not the second line
and the table of settings, see the section “Troubleshooting,” later in this
chapter.

Activating MySOL Support

The basic PHP software consists of a core set of functionality and optional

extensions that provide additional functionality. MySQL support is provided
by extensions. In PHP 4, MySQL support is provided by default, but beginning
with PHP 5.0, you must activate MySQL support before PHP can interact with
MySQL databases. (For more information about PHP extensions, see Book V.)

PHP provides two extensions for MySQL support: the mysql extension and
the mysqli (MySQL Improved) extension. Which extension you need to acti-
vate depends on which version of PHP and MySQL you're using. The mysql
extension, available with PHP 4, 5, and 6, provides functions for interacting
with MySQL version 4.0 and earlier. The mysqli extension, added in PHP 5,
provides functions for interacting with MySQL version 4.1 and later. You can
also use the mysql functions with the later versions of MySQL, but they can’t
access some of the new features added in the later versions of MySQL.

Book |
Chapter 2

dHd Buijjeisu)

40

Activating MySOL Support

Activating MySOL support on Linux and the Mac 0S

MySQL support is activated during PHP installation on Linux and Mac with
installation options. The installation options to activate MySQL must be
used during Step 4 of the installation to activate MySQL support. MySQL
support can’t be added later, after PHP is compiled and installed.

Use one of the following installation options:

--with-mysgli=DIR
--with-mysgl=DIR

DIR is the path to the appropriate MySQL directory. When using with-
mysqgli, use the path to the file named mysgl_config. When using with-
mysqgl, use the path to the directory where mysql is installed, such as:

--with-mysgl=/user/local/mysqgl

Activating MySOL support on Window's

You activate MySQL by configuring extension lines in the php . ini file, after
PHP is installed. In addition, you must place the files that the extension
needs in a location where PHP can find the files.

Configuring PHP for MySOL support
To configure PHP for MySQL support, perform the following steps:
1. Open the php. ini file for editing.
2. Find the list of extensions.
3. Find the line for the MySQL extension that you want to use, such as
;extension=php_mysqgli.dll
4. Remove the semicolon at the beginning of the line.

If a line doesn’t exist for the MySQL extension that you want to use, add
the line.

Setting up the MySOL support files

To provide MySQL support, PHP requires access to two files — php_mysqgli.
dll and 1ibmysgl.dl11. You need to place these files in a folder that’s in
your system path so that PHP can access them. The best way to make the
files available is to add the main PHP directory to your system path and then
copy the files into the main directory.

41

Activating MySOL Support

You can add the main PHP directory, such as c: \php, to your path, as
follows:
1. Go to the Control Panel.
For instance, choose Start=>Control Panel.
2. Click System.
3. Click the Advanced Tab.
4. Click Environment Variables.

The Environment Variables dialog box, shown in Figure 2-2, opens.

[Eimdranment Varlables]
Ly wirisbies for Jenst
Woariibly Wik
TErP e s ared S ling Manod |Local
i e h ared St Mt | ol
hew || Ex Delsis |
rpulam v iaddey r';ﬁ
Wbl Vi Ll
NUMEER_OF 7., |
05 Windoavs T
T — Fath CE TR LanbT e R N C
Figure 2 2 PRTHERT (OO EOXE 2 BT CMID, . VS, WEBE L 5.
& PROCESSOR_A, iy L4
Chelck your e | —rr- o,
environment
variables. [o T
5. Click Path in the System Variables pane.
You might need to scroll down to find the line for the Path variable.
6. Click the Edit button.
The Edit System Variable dialog box, shown in Figure 2-3, opens.
Figure 2-3; [EWitSystem Vailante]
The Edlt Wowriabis Fowmmi Path
Sys.tem Variabls v rogram FleshQuid Time O TSysben | Crishe
Variable :
dialog box. b e J[cot]

Book |
Chapter 2

dHd Buijjeisu)

42

Troubleshooting

7. Add a semicolon to the end of the existing system path, followed by
the path to the main PHP directory, such as ; c: \php.

8. Click OK.

9. Restart your computer.

When the main PHP directory is included in your system path, copy the
required files into the main directory. The extension files are located in the
ext subdirectory. Copy one of the following files, depending on which ver-
sion of MySQL you’re using:

ext\php_mysqgli.dll (for MySQL 4.1 or later)
ext\php_mysgl.dll (for MySQL 4.0 or earlier)

Copy the file into the main PHP directory, such as c¢: \php.

The second required file, named 1ibmysqgl .dl1, should already be located
in the main PHP directory. If it isn’t, you need to find it and copy it there. If
it’s not in your PHP directory, it’s usually installed with MySQL, so find it in
the directory where MySQL was installed, perhaps in a bin subdirectory,
such as c: \Program Files\MySQL\MySQL Server 5.0\bin.

You can copy the files into a directory that’s already in your system path,
such as c:\windows or c:\windows\system32, rather than change
your system path to include the main PHP directory and copy the files to
the main directory as described in this section. However, although this
method is simpler, with fewer steps, it can lead to problems when you
upgrade PHP in the future. The .d11 files for all versions have the same
name. If you keep the files in the main PHP directory for the current version,
rather than copying them into a common directory, you can just replace the
entire main directory with the new version. There’s no opportunity to mix
up the .d11 files for different versions.

Checking MySOL support

To check that MySQL is activated, run the test . php script as described in
the section “Testing PHP,” earlier in this chapter. The output should include
a section showing MySQL settings, as shown in Figure 2-4. If a MySQL section
doesn’t appear in the output, see the next section, “Troubleshooting.”

Troubleshooting

This section describes some common problems encountered with the instal-
lation of PHP.

Figure 2-4:
MySQL
settings.

Troubleshooting 43

[& I Ints - Waziil Flislen S x|
File Edit View ©Go BEookmatks Tosls Help
- @51 [itgifacalhost®HPandMySGLAT phy | @ o |Gl
libxml o
WhAML sippon actn
WML Version FLE
|mtma wrmanes
mysli ke
Chamk AP Ay v hom 507
Clierd AL haaddat wersion 20T
MRS SOCHET el Enck
g aiLibstal_host o vaue o vale
s ildelal_pori 3308 08
g LB ol i R alus o vaie
migs Ll ookl o vl e kg
sl mil_use T i wakos
mm__llu Linbreetnd Liedimijed
mrgs il eConnEct f i 8
-
£ |)
Dona

Unable to change PHP settings

If you change settings in your php. ini file but the changes don’t seem to
have the expected effect on PHP operations, one of two things is probably
the cause:

4 You didn’t restart the Web server. If that’s the case, just restart the Web
server so that the changes will go into effect.

4+ You might not be editing the php. ini file in the location where PHP
is reading it. You can check which php. ini file PHP is reading. You
might have more than one php. ini file or you might have it stored in
the wrong location. When you test PHP using the phpinfo () statement,
as shown in the “Testing PHP” section, PHP outputs many variable
values and settings. One of the settings close to the top is Configuration
File Path, which shows the path to the location where PHP is looking for
the configuration file. If the path ends in a filename, that’s the file PHP is
using for its configurations. If the path ends in a directory name, PHP is
looking in the directory for the configuration file but can’t find it, so PHP
is using its default configurations.

Book |
Chapter 2

dHd Buijjeisu)

44

Troubleshooting

Displays error message: Undefined function

You might see an error message stating that you called an undefined func-
tion. This message means that you're calling a function that PHP doesn’t rec-
ognize. You might have misspelled the function name, or you might be
calling a function in an extension that isn’t activated.

You might see an error message complaining of a mysql function, similar to
the following:

Fatal error: Call to undefined function mysgli_connect ()

This means that MySQL support isn’t activated for the mysqli functions.
Either you didn’t activate any MySQL support or you activated the mysql
extension, rather than the mysqli function.

Windows

If MySQL support isn’t activated, either the extension line in php. ini is not
activated or PHP cannot find the necessary files. Check the extension line in
php. ini to be sure the semicolon is removed from the beginning of the
mysqli extension line. If php . ini looks correct, you might have forgotten to
restart the Web server after making the change. You can also try stopping
the Web server completely and then starting it, rather than restarting it. And
finally, you might be editing the wrong php . ini file. Make sure the php. ini
file you're editing is in the location where PHP is looking for it, as shown in
the output from phpinfo ().

Check that the directory where php_mysqgl .d11 and 1ibmysgl.dll are
located is in your system path. You can check your path in the output from
phpinfo (). The Environment section toward the end of the output shows
the path. However, the path shown is not the path that’s currently in effect
unless you restarted the system after changing the path. When you change
the path, the new path is displayed, but it doesn’t actually become active
until you restart the system.

Linux or Mac

You did not activate a mysql extension when you installed PHP. When
installing PHP 5 or 6, you must use one of the MySQL options in Step 4 (the
configuration step) of the installation.

MySOL functions not activated (Windows)

When you look at the output from phpinfo (), you don’t see a section for
the mysql or mysqli extension. However, in your php . ini file, one or both of
the extensions are activated. Some possible causes are

Troubleshooting 45

4+ You didn’t restart your server after changing your settings in
php.ini.

4+ You're editing the wrong php. ini file. Check the phpinfo () output
for the location of the file that PHP is reading the settings from.

4+ The necessary .dl1 files are not in a directory that is specified in
your system path.

4+ The MySQL .d11 files that PHP is reading are for a different version
of PHP. Sometimes when you update PHP, you don’t replace the .d11
files with the new .d11 files. For instance, suppose you’re running PHP
5.0 and the php_mysqgli.dll file is located in c: \windows\system32.
You upgrade to PHP 6.0. You copy the .d11 file from \ext to the main
PHP directory and add c: \php to the end of your system path. However,
you forget to remove the old .d11 file from its current location. When
PHP starts, it encounters the old .d11 file first, because the system32
directory is first in the system path, and PHP tries to use the old file.
Because it can’t use the old file, PHP doesn’t activate the mysqli exten-
sion. This can be extremely confusing, speaking from painful experience.

Displays a blank page or HTML output only

When you look a Web page in your browser and a blank page displays or
only the HTML output displays, the Web server isn’t sending the PHP code
to PHP for processing.

You might not be viewing the Web page through the Web server. You can’t
open the Web page by selecting File=>Open Page in your browser menu. You
must type the URL to the page, such as localhost/test.php, in the
browser address window.

You might not have your Web server configured correctly for PHP. Check
the section “Configuring Your Web Server for PHP,” earlier in this chapter.
Double-check that the Apache directives are typed correctly and in the cor-
rect location. Be sure to restart the Web server after making any changes.

Book |
Chapter 2

dHd Buijjeisu)

46 Book I: Setting Up Your Environment

Chapter 3: Setting Up the
MySOL Environment

In This Chapter

v+ Checking whether MySQL needs to be installed
v~ Installing MySQL on Windows, Mac, or Linux
1 Testing MySQL

v~ Installing MySQL administration software

v Troubleshooting MySQL installation

v~ Installing MySQL GUI administration tools

v~ Installing phpMyAdmin

Fe MySQL environment includes both the MySQL database software
and support programs that you can use to administer your MySQL data-
bases. The MySQL software consists of the MySQL database server, several
utility programs that assist in the administration of MySQL databases, and
some supporting software that the MySQL server needs (but you don’t need
to know about). The heart of MySQL is the MySQL server, which manages
the databases. When you interact with a database, you send messages with
requests to the database server, which responds by following the instruc-
tions in the requests — store data, get data, and so forth.

To use the MySQL databases, you need to use software that can communi-
cate with the MySQL server. When you install MySQL, the mysql client pro-
gram is automatically installed. The program allows you to administer

your MySQL databases. However, the mysql client is a command line, text-
based program. You may prefer a program with a graphical user interface
(GUI) that allows you to drag things around and click buttons. If so, you can
install some additional GUI software that provides easy MySQL database
administration.

In this chapter, we discuss phpMyAdmin, a popular Web-based program for
administering MySQL databases. We also discuss two administrative pro-
grams developed and provided by the developers of MySQL, which can be
used as alternatives to phpMyAdmin. Which administrative programs, if any,
you use is a matter of personal choice. You might want to try them all out to
see which you like the best.

48

Checking the MySOL Installation

Checking the MySOL Installation

A\

You might or might not need to install MySQL. In many cases, MySQL is
already installed. For instance, most recent Linux and Mac distributions
automatically install MySQL. MySQL isn’t provided with the Windows
operating system.

Before installing MySQL, be sure that you actually need to install it. [t might
already be running on your computer, or it might be installed but not run-
ning. For instance, many Linux distributions automatically install MySQL.
Here’s how to check whether MySQL is currently running:

4 Linux/Unix/Mac: At the command line, type the following:
ps —ax

The output should be a list of programs. Some operating systems (usu-
ally flavors of Unix) have different options for the ps command. If the
preceding doesn’t produce a list of programs that are running, type man
ps to see which options you need to use.

In the list of programs that appears, look for one called mysgld. If you
find it, MySQL is running.

4+ Windows: If MySQL is running, it will be running as a service. To check
this, choose Start=>Control Panel=>Administrative Tools=>Services and
scroll down the alphabetical list of services. If MySQL is installed as a serv-
ice, it appears in the list. If it’s currently running, its status displays Started.

If you found MySQL in the service list, as described, but it isn’t started,
you can start it by highlighting MySQL in the service list and clicking
Start the Service in the left panel.

Even if MySQL isn’t currently running, it might be installed but just not
started. Here’s how to check to see whether MySQL is installed on your
computer:

4+ Linux/Unix/Mac: Type the following:
find / -name "mysqgl*"
If a directory named mysql is found, MySQL has been installed.

4+ Windows: If you didn’t find MySQL in the list of current services, look for
a MySQL directory or files. You can search by choosing Start=>Search.
The default installation directory is C: \Program Files\MySQL\MySQL
Server versionnumber for recent versions or C: \mysqgl for older
versions.

If you find MySQL on your computer but did not find it in the list of running
programs (Linux/Unix/Mac) or the list of current services (Windows), the fol-
lowing steps show you how to start it.

Obtaining MySOL 4 9

To start MySQL on Linux/Unix/Mac, follow these steps: Book I
Chapter 3
1. Change to the directory mysql/bin.

This is the directory that you should have found when you were check-

ing whether MySQL was installed. rg" ::D-' @
2. Type mysqld_safe &. g %g
When this command finishes, the prompt is displayed. E =25

3. Check that the MySQL server started by typing ps -ax.
In the list of programs that appears, look for one called mysqgld. If you
find it, MySQL is running.
To start MySQL on Windows, follow these steps:

1. Open a Command Prompt window.

In Windows XP, choose Start=>All Programsw>Accessoriess>Command
Prompt.

2. Change to the folder where MySQL is installed.

For example, type c¢d C:\Program Files\MySQL\MySQL Server 5.0.
Your cursor is now located in the MySQL folder.

3. Change to the bin subfolder by typing cd bin.
Your cursor is now located in the bin subfolder.
4. Start the MySQL Server by typing mysqld —install.

The MySQL server starts as a Windows service. You can check the instal-
lation by going to the service list, as described previously, and making
sure that MySQL now appears in the service list and its status is Started.

If MySQL isn’t installed on your computer, you need to download it and
install it from www .mysqgl . com. Instructions are provided in the remainder
of this chapter.

Obtaining MySQOL
MySQL open source software is available in two editions:

4+ Community Server: A freely downloadable, open source edition of
MySQL. Anyone who can meet the requirements of the GPL (GNU Public
License) can use the software for free. If you're using MySQL as a data-
base on a Web site (the subject of this book), you can use MySQL for
free, even if you're making money with your Web site.

4+ Enterprise Server: An enterprise-grade set of software and services
available for a monthly subscription fee.

50 o0btaining MysoL

MySQL is available with a commercial license for those who prefer it. If a
developer wants to use MySQL as part of a new software product and wants
to sell the new product, rather than release it for free under the GPL, the
developer needs to purchase a commercial license.

QIING/ As of this writing, MySQL offers versions 5.0, 5.1, and 5.2. Version 5.1 is a
Sy beta release, and version 5.2 is a new alpha, neither of which are stable.
Versions 5.1 and 5.2 should be used only for trying things out, not for pro-
duction. The current stable version is 5.0, which is the version most people
should install.

Downloading from the MySOL Web site

You can obtain MySQL from the official MySQL Web site at www.mysqgl . com.
MySQL is available in binary files — machine files that are already compiled
for specific operating systems. If a binary file is available for your operating
system, you should download the binary file. If no binary is available for
your operating system, you can download the source code and compile and
install MySQL.

To obtain MySQL, go to www.mysqgl . com and click the Download link. Find
the version you want, such as version 5.0, and the edition you want, such as
the Community Server. Many files are available for each version, organized
by operating system. Find the file for your operating system or, if necessary,
the source code file.

Obtaining MySOL for Window's

The Windows binary file is available with an installer, which will install, con-
figure, and start MySQL. On the MySQL Web site download page for the ver-
sion you want, find the Windows section.

In the Windows section, click the download link beside the file you want to
download. You can download Windows Essentials, a smaller file that is suffi-
cient for most needs, or Windows Complete, a larger Zip file with more
optional software, such as the embedded server and benchmark suite.

Obtaining MySOL for Linux and Unix

Many Linux computers come with MySQL already installed. Many Linux sys-
tems install (or give you the option to install) MySQL when Linux is installed.
Many Linux systems, such as Fedora, SuSE, and Ubuntu, include built-in utili-
ties that download and install MySQL for you, often the most recent version.
In many cases, installing MySQL provided by the Linux distribution is an
easier, more efficient choice than downloading and installing MySQL from

Obtaining MySOL 51

the MySQL Web site. If you need to install MySQL, such as if the MySQL on
your system is an older version, check the Web site for your Linux distribu-
tion to see whether it offers an easy way to install a current version of
MySQL.

In addition, the RPM file might already be on the CD that your Linux operat-
ing system came on. Installing the RPM file from a CD saves you the trouble
of downloading, but if the version of MySQL on your CD isn’t the most
recent, you might want to download an RPM file anyway.

If you can’t get the MySQL you need from your Linux distribution Web site,
you can obtain MySQL binaries from the MySQL Web site. The download
page provides RPM files for downloading and installation using the RPM
command. RPMs specifically for Red Hat Linux and SuSE and a general RPM
for other Linux flavors are available. Several files are provided for each Linux
distribution. You need to download, at the least, the server and the client
file. See the later section, “Installing MySQL on Linux from an RPM file,” for
instructions for installing MySQL from an RPM file.

In addition, a binary file for Ubuntu Linux is available. Binary files for
Solaris, FreeBSD, IBM AIX, and other Linux/Unix operating systems are also
provided.

If neither an RPM file nor a binary works for you, you can always install
MySQL from source files, as described in the later section, “Installing MySQL
from source files.”

Obtaining MySOL for Mac

Mac OS X 10.2 and later include MySQL. If you need to install a newer ver-
sion of MySQL on your machine, the MySQL Web site provides a PKG file
for installation on Mac OS X 10.3 or newer. See the later section, “Installing
MySQL on Mac from a PKG file” for instructions.

In a few unusual situations, you might not be able to install MySQL from a
PKG file, such as if you need more or fewer features than the PKG provides.
You can download the source code and compile and install MySQL on your
Mac if necessary. Instructions are available at the MySQL Web site.

Obtaining all-in-one installation kits

You can obtain some kits that install PHP, MySQL, and Apache in one proce-
dure. These kits can greatly simplify the installation process. However, the
software provided might not include the features and extensions that you
need.

Book |
Chapter 3

JuaWuolIAUg

T0SAIN ay

dn Bumag

52

Installing MySOL

XAMPP is a popular all-in-one installation kit that contains Apache, PHP, and
MySQL. It also installs phpMyAdmin, a utility for managing your MySQL data-
bases. The advantages of using phpMyAdmin are discussed in Book III,
Chapter 1.

XAMPP has stable versions available for Windows, including Windows Vista,
and for several versions of Linux. In addition, versions of XAMPP are available
for Mac and Solaris, but these versions are currently new and aren’t as well
tested and developed. XAMPP is available at www . apachefriends.org/
en/xampp . html. Instructions for installing XAMPP are provided in Chapter 5
in this minibook.

WAMP5 is a popular installation kit for Windows that provides recent ver-
sions of Apache 2.2, PHP 5, and MySQL 5. It also installs phpMyAdmin, a util-
ity for managing your MySQL databases. The WAMP5 Web site states that it’s
compatible with Vista. WAMP5 doesn’t run on Windows 98/Me. WAMP?5 is
available at www . en.wampserver.com.

MAMP is an installation kit for Mac that installs Apache, PHP, and MySQL for
Mac OS X. This free package installs a local server environment on your Mac
PowerBook or iMac. MAMP was created primarily as a PHP development
environment for your local computer and should not be used as a produc-
tion server for the Internet. You can obtain MAMP at www .mamp . info.

Verifying a downloaded file

The MySQL Web site provides methods to verify the software after you
download it, as a security precaution to make sure that the file hasn’t been
altered by bad guys. Basically, the same process is used to verify the file for
PHP, MySQL, and Apache. You can find instructions for verifying the file in
Chapter 2 of this minibook in the section about verifying a downloaded file.

Installing MySOL

Although MySQL runs on many platforms, we describe how to install it on
Linux, Unix, Windows, and Mac, which together account for the majority of
Web sites on the Internet. Be sure to read the instructions all the way
through before beginning the installation.

Installing MySOL on Windows
MySQL for Windows includes two wizards:

4+ Setup Wizard: The Setup Wizard installs MySQL. The directories are cre-
ated and the files are copied into the appropriate locations.

Figure 3-1:
The opening
screen of
the MySQL
Setup
Wizard.

Installing MySQL 53

4+ Configuration Wizard: The Configuration Wizard installs MySQL as a
service, creates the MySQL accounts and passwords required to access
the database, and configures other MySQL settings.

When you install MySQL for the first time, you need to run the Configuration
Wizard after you run the Setup Wizard. You can’t access the MySQL data-
bases until you run the Configuration Wizard.

Running the MySOL Setup Wizard
To set up MySQL on Windows, follow these steps:

1. Double-click the installer (.ms1i) file that you downloaded.

The file is named mysgl-essential-, followed by the version
number, followed by -win32.msi, such as mysgl-essential-
5.0.37-win32.msi.

The opening screen shown in Figure 3-1 is displayed. Note: If you're
installing from a Windows NT/2000/XP/Vista system, be sure that you're
logged into an account with administrative privileges.

In Vista, you might need to right-click the filename and choose Run as
Administrator.

Wizloormee bo the Setup Wizand for Mysol
Server 5.0

The Setup Wizard wil imstal MySOL Sarver 5.0 rasase 50037
o ol computer. To continue, chok Mext

Setp has detected 3 previous version of MySQL Server 5.0,
16 wll Ent remcned during thes instalation,

VRRNING: T program & profected by copyright b,

bt > [cacel

2. Click Next.

You see a screen for choosing the type of installation.

Book |
Chapter 3

judwiuoiIAug
T0SAIN ay

dn bumag

54 Installing MySQL

3. Select Typical and then click Next.

The Ready to Install Program screen opens. The current settings are
displayed.

4. Click Install.

The installation of MySQL begins. When the installation is complete, a
Sign-Up screen opens.

5. Click Skip Signup and then click Next.

The Wizard Completed screen appears, as shown in Figure 3-2.

0L Sarver 5.0 - Semip Wizand &

Wizard Complated

Setup hag frehed nstaling MySQL Server 5,0, Cick Frgsh b
et the wikarcl

= Configure b MySOL Server mow
Ikz2 this opbon 10 generste an opamized MySGL config
fie, setup @ Windows service running on a dedkcated
Pt and o et the pasnward for e rool sooount

Figure 3-2:
The Wizard [
Completed 1\\
screen of

theMysaL | NIy SEIL

Setup
Wizard. Finish

6. If you're installing this version of the server for the first time, select
the Configure the MySQL Server Now check box.

If you're upgrading the MySQL server, such as from MySQL 5.0.18 to
5.0.22, you might not need to configure the server. The wizard will give
it the same configuration as the existing version. However, if you're
upgrading to a new major version, such as from MySQL 5.0 to MySQL
5.1, you need to run the Configuration Wizard.

7. Click Finish.

If you selected the Configure the MySQL Server Now check box, the
Configuration Wizard starts immediately. Running the MySQL Configuration
Wizard is explained in the next section. If you didn’t select it, the Setup
Wizard stops running.

Figure 3-3:
The first
screenin
the MySQL
Configura-
tion Wizard.

Installing MySOL 55

Running the MySOL Configuration Wizard

After you install MySQL, you must configure it. You need to assign a pass-
word to the MySQL account, named root, which is installed automatically.
You need to start the server and set it up so that it automatically starts when
your computer boots.

MySQL provides a Configuration Wizard. The Configuration Wizard starts
immediately after installation if you selected the Configure the MySQL
Server Now check box in the final setup screen. You can also start the
Configuration Wizard at any time with a menu item in the MySQL Start Menu.

1. Choose Startc>All Programs->MySQL=>MySQL Server 5.0->MySQL
Server Instance Config Wizard.

The Configuration Wizard starts, as shown in Figure 3-3.

.H SOL Server Instance Condigquration 'WI!_MII %]

Weloonse to the FySOL Server Dinlanoe
Connliguaratioey Wicad 1.0.0

Thee Caligur abion Wizard vl slow you to cofligure &
MyS0L server nstance. To conkinue, chok est

[

2

MysoL®

LMk | [Comel

2. If you have more than one version of MySQL installed, a screen
appears, and you can click the version you want to configure. Then
click Next.

The MySQL Server Configuration Types screen opens.
3. Click Standard Configuration and then click Next.
The Windows Options screen opens.
4. Select the Install as a Windows Service option.

If you're using Windows 98/Me, installing as a Windows service isn’t
possible. Instead, select the Add Bin Directory to Windows PATH option
and skip to Step 7.

Book |
Chapter 3

JuaWuolIAUg

T0SAIN ay

dn bumag

56 Installing MySQL

Figure 3-4:
The Security
Options
screenin
the MySQL
Configura-
tion Wizard.

SMBER
é‘,@

5. In the Service Name text box, type mysql50.
6. Select the Launch the MySQL Server Automatically option.
7. Click Next.

The Security Options screen opens, as shown in Figure 3-4.

.HySIJL Sarver Iistaince Configuation Wizanl (%

PiFSOL Server Instance Conligurstion
Fxce L confapu stan For B darver Falarcn -

Flaage sk the seomiy sphans.
= Mndity Security Settings
-l Cuprent rook pagssiond: =T Enter the aurent password,
L1 Mew ook paspord: e

Confem| Rty the perideornd,

[Eresbis roct sccess from remobe madines
=] Comatm & Srwrmyreons Accoard |:¢

This opkion vl creste an sronaTTous scoount o B sereer, Plasse
ek bt Bhes g bead R Pt e

| sBeth | | Mk | | Cemel

8. Select the Modify Security Settings check box.

9. In the New Root Password text box, type a password. In the Confirm
text box, retype the same password.

If MySQL was configured previously, this screen asks for the current
password.

You're now setting the password for the root account for your MySQL
server. You must use the root account to access your MySQL database.
You need to remember the password you type here.

10. If you’re setting up a development environment that no one can
access but you, you can select the Create an Anonymous Account
check box.

An anonymous account is handy. However, if there is any access to your
MySQL server from the Internet, don’t create an anonymous account. It’s
a security risk.

11. Click Next.
The Ready to Execute screen opens.
12. Click Execute.

A message appears when the configuration is complete.

Installing MySOL 57

Installing MySOL on Linux from an RPM file

MySQL can be installed on Linux using RPM. Although RPM stands for Red
Hat Package Manager, RPM is available on most flavors of Linux, not just
Red Hat.

To install MySQL on Linux from an RPM file provided on the MySQL Web site,
follow these steps:

1. Change to the directory where you saved the downloaded files.
For instance, type cd /usr/src/mysql.

One file is named MySQIL-server-, followed by the version number, fol-
lowed by . 1386 .rpm. The second file has the same name with client,
instead of server in the name.

2. Install the RPM by entering this command:
rpm -1 listofpackages
For instance, the command might be

rpm -1 MySQL-server-5.0.35-0.1386.rpm MySQL-client-
5.0.35-0.1386.rpm

This command installs the MySQL packages. It sets the MySQL account
and group name that you need and creates the data directory at /var/
lib/mysqgl. It also starts the MySQL server and creates the appropriate
entries in /etc/rc.d so that MySQL starts automatically whenever
your computer starts.

You need to be using an account that has permissions to successfully
run the rpm command, such as a root account.

3. To test that MySQL is running okay, type this:
bin/mysgladmin --version

You should see the version number of your MySQL server.

Installing MySOL on Mac from a PKG file

You can install MySQL using a Mac OS X 10.2 (Jaguar) or later PKG binary
package downloaded from the MySQL Web site at www .mysqgl . com. If your
operating system is earlier than OS X 10.2, you can’t use this package; you
will need to download a tarball (a file that is a container for many files and
subdirectories) and install MySQL from source code, as described in the
next section.

1. Create a user and a group named mysqgl for MySQL to run under.

In most newer Mac versions of OS X, this user and group already exist.

Book |
Chapter 3

JuaWuolIAUg

T0SAIN ay

dn Bumag

58

Installing MySOL

2. Change to the directory where you downloaded MySQL — for
instance, /usr/local.

You see a package named mysql -, followed by the version number and
the OS number and dmg, such as mysgl- 5.0.37-0sx10.4-powerpc.
dmg. If the downloaded file doesn’t have the extension .dmg, change the
filename to give it the .dmg extension.

3. Mount the disk image by double-clicking its icon in the Finder.
4. Double-click the package icon to install the MySQL PKG.

The package installer runs and installs the package. It installs MySQL

in the directory /usr/local/mysql-, followed by the version number.
It also installs a symbolic link, /usr/local/mysqgl/, pointing to the
directory where MySQL is installed. It initializes the database by run-
ning the script mysqgl_install_db, which creates a MySQL account
called root.

5. If necessary, change the owner of the mysql directory.

The directory where MySQL is installed (for example, /usr/local/
mysqgl-5.0.37) should be owned by root. The data directory (such
as /usr/local/mysqgl-5.0.37/data) should be owned by the
account mysql. Both directories should belong to the group mysql.
If the user and group aren’t correct, change them with the following
commands:

sudo chown -R root /usr/local/mysqgl-5.0.37
sudo chown -R mysgl /usr/local/mysgl-5.0.37/data
sudo chown -R root /usr/local/mysgl-5.0.37/bin

6. Install the MySQL Startup Item.

To have your server start every time the computer starts, you need to
install the MySQL Startup Item, which is included in the installation disk
image in a separate installation package. To install the Startup Item,
double-click the MySQLStartupltem.pkg icon.

Installing MySQL from source files

Before you decide to install MySQL from source files, check for RPMs or
binary files for your operating system. MySQL RPMs and binary files are pre-
compiled, ready-to-install packages for installing MySQL and are convenient
and reliable.

You can install MySQL by compiling the source files and installing the com-
piled programs. This process sounds technical and daunting, but it’s not.
However, read all the way through the following steps before you begin the
installation procedure.

To install MySQL from source code, follow these steps:

Installing MySOL 59

1. Create a user and group ID for MySQL to run under by using the Book |
following commands: Chapter 3

groupadd mysqgl
useradd -g mysql mysqgl

m

S Sw
The syntax for the commands might differ slightly on different versions s 3 2
of Unix, or they might be called addgroup and adduser. § gg
Note: You must be using an account authorized to add users and groups. E =2

Note: Some recent Linux distributions and Macs have a mysql account
already created.

2. Change to the directory where you downloaded the source tarball —
for instance, cd-/usr/local.

You see a file named mysgl -, followed by the version number and
.tar.gz.—for instance, mysqgl-5.0.35. tar.gz. This file is a tarball.

3. Unpack the tarball by typing
gunzip -c¢ filename | tar -xvf -
For example:
gunzip -c¢ mysqgl-5.0.35.tar.gz | tar -xvf -

You see a new directory named mysqgl - version — for instance,
mysqgl-5.0.35— which contains many files and subdirectories. You
must be using an account that is allowed to create files in /usr/local.

4. Change to the new directory.
For instance, you might type cd mysql-5.0.35.
5. Type the following:
./configure --prefix=/usr/local/mysqgl

You see several lines of output. The output will tell you when config-
ure has finished. This might take some time.

6. Type make.

You see many lines of output. The output will tell you when make has fin-
ished. make might run for some time.

7. Type make install.

On a Mac, type sudo make install.

make install finishes quickly.

Note: You might need to run this command as root.
8. Type scripts/mysql_install_db.

This command runs a script that initializes your MySQL databases.

60

Configuring MySOL

9. Make sure that the ownership and group membership of your MySQL
directories are correct. Set the ownership with these commands:

chown -R root /usr/local/mysgl
chown -R mysql /usr/local/mysgl/data
chgrp -R mysqgl /usr/local/mysqgl

These commands make root the owner of all the MySQL directories
except data and make mysql the owner of data. All MySQL directories
belong to group mysql.

10. Start the MySQL server using the following commands:
On a Mac:

cd /usr/local/mysgl
sudo ./bin/mysgld_safe

If necessary, enter your password. Press Ctrl+Z, and then type:
bg
Finally, press Ctrl+D or type exit.

On Linux/Unix:

cd /usr/local/mysgl
bin/mysgld_safe --user=mysql &

11. Set up your computer so that MySQL starts automatically when your
machine starts by copying the file mysql . server from /usr/local/
mysql/support-files to the location where your system has its
startup files.

Configuring MySOL

MySQL reads a configuration file when it starts up. If you use the defaults or
an installer, you probably don’t need to add anything to the configuration
file. However, if you install MySQL in a nonstandard location or want the
databases to be stored somewhere other than the default, you might need

to edit the configuration file. The configuration file is named my . ini or

my .cnf. It’s located in your system directory (such as Windows or Winnt) if
you're using Windows and in /etc on Linux, Unix, and Mac. The file contains
several sections and commands. The following commands in the mysgld
section sometimes need to be changed:

[mysqgld]

The TCP/IP Port the MySQL Server will listen on
port=3306

#Path to installation directory. All paths are
usually resolved relative to this.

Starting and Stopping the MySQL Server o1

basedir="C:/Program Files/MySQL/MySQL Server 5.0/" Book |
Chapter 3

#Path to the database root

datadir="C:/Program Files/MySQL/MySQL Server 5.0/Data/"

M
The # at the beginning of the line makes the line into a comment. The basedir 23 g
line tells the MySQL server where MySQL is installed. The datadir line tells 'g' Eg
the server where the databases are located. You can change the port number 28
to tell the server to listen for database queries on a different port. =

Starting and Stopping the MySOL Server

If you installed MySQL on Windows with the wizards, on Linux with an RPM,
or on a Mac with a PKG file, the MySQL server was started during installa-
tion and set up so that it starts automatically whenever your computer
boots. However, you might sometimes need to stop or start the server. For
instance, if you upgrade MySQL, you must shut down the server before start-
ing the upgrade. Instructions for starting and stopping the MySQL server are
provided in this section.

If you installed MySQL from source code, you need to start the MySQL
server manually and set it up so that it starts automatically when your com-
puter boots. The instructions for starting the server and setting it up to start
at boot up are included in the “Installing MySQL from source files” section,
earlier in this chapter.

Controlling the server on Windows

If you're using Windows NT/2000/XP/Vista, MySQL runs as a service. (MySQL
is installed as a service when you configure it, as described in the section
“Running the MySQL Configuration Wizard,” earlier in this chapter.) You can
check whether MySQL is installed as a service, as described in the section,
“Checking the MySQL Installation,” earlier in this chapter. Starting and stop-
ping the service is described in the following sections. You can also start and
stop the server manually by using commands set up when MySQL is installed.

If you're using Windows 98/Me, you can start and stop the server from the
command line in a Command Prompt window. Starting and stopping the
server on Windows 98/Me is described in the following sections.

Windows NT/2000/XP/Vista
To stop or start the MySQL server, do the following:

1. Choose Start—>Control Panel~>Administrative Tools>Services.

A list of all current services appears.

62 Starting and Stopping the MySOL Server

2.

3.

Scroll down the alphabetical listing and click the MySQL service you
want to stop or start.

Stop or Start links appear to the left of the service name.

Click Stop or Start.

If you don’t find the MySQL server in the list, you can set it up as a service
using the configuration wizard, described earlier in this chapter in the
“Running the MySQL Configuration Wizard” section.

Manual shutdown

Sometimes you might have difficulty shutting down the server. You can shut
the server down manually as follows:

1.

2.

Open a Command Prompt (perhaps called DOS) window by choosing
Start=>Programsc>Accessoriess>Command Prompt.

Change to the bin directory in the directory where MySQL is installed.

For instance, you might type cd c:\Program Files\MySQL\MySQL
Server 5.0\bin.

. Type mysqladmin -u root -p shutdown.

In this command, the account is root. The -p means password, so you
will be prompted to type a password. If the account you specify doesn’t
require a password, leave out the -p.

Windows 98/Me

If you're using Windows 98/Me, setting up MySQL as a service isn’t possible.
However, you can start the server manually as follows:

1.

2.

Open a Command Prompt (perhaps called DOS) window by choosing
Start=>Programs=>Accessoriess>Command Prompt.

Change to the bin directory in the directory where MySQL is installed.

For instance, you might type cd c:\Program Files\MySQL\MySQL
Server 5.0\bin.

. Type mysqld.

If this command fails, type mysqld-nt. Which program name you type
depends on the MySQL version.

If the server starts, no message is displayed. You must leave this window
open while the server is running. If you close the window, the server will
shut down, although it sometimes doesn’t shut down immediately. An
error message is displayed if the server is unable to start.

Testing MySQL 63

Controlling the MySQL server on Linux/Mac Book|

Chapter 3
When MySQL is installed on Linux, Unix, or Mac, a script is installed that you P
can use to start and stop the server, with one of the following commands:

mysql.server start
mysqgl.server stop
mysqgl_server restart

JuaWuolIAUg
TOSAN 3w
dn Bumag

You can also stop the MySQL server with the mysgladmin utility that is
installed when MySQL is installed. Change to the bin subdirectory in the
directory where MySQL is installed and type

mysgladmin -u root -p shutdown

The -p causes mysgladmin to prompt you for a password. If the account
doesn’t require a password, don’t include -p.

Testing MySOL

You can test whether MySQL is running by entering the following commands
at the command line:
1. Change to the directory where MySQL is installed.
For instance, type cd c:\program files\mysql\mysql server 5.0.

Note: In Windows, open a command prompt window to provide a place
where you can type the command.

2. Change to the bin subdirectory (cd bin).
3. Type mysqladmin version.

Output providing information on the MySQL version displays on the
screen.

You can further test that MySQL is ready to go by connecting to the MySQL
server from the mysql client. When MySQL is installed, a simple, text-based
program called mysql is also installed. Because this program connects with
a server, it’s called a client. This program connects to the MySQL server and
exchanges messages with the server. The program is located in the bin sub-
directory in the directory where MySQL is installed.

To test that the MySQL server is running and accepting communication, per-
form the following steps:
1. Start the client.

In Unix and Linux, type the path/filename (for example, /usr/local/
mysqgl/bin/mysqgl).

64

Troubleshooting MySOL

In Windows, open a command prompt window and then type the
path\filename (for example, c:\ Program Files\MySQL\MySQL
Server 5.0\bin\mysqgl).

This command starts the client if you don’t need to use an account
name or a password. If you need to enter an account or a password or
both, use the following parameters:

e —u user: user is your MySQL account name.

e -—p: This parameter prompts you for the password for your MySQL
account.

For instance, if you're in the directory where the mysqgl client is located,
the command might look like this: mysgl -u root -p.

Press Enter after typing the command.
2. Enter your password when prompted for it.

The mysql client starts, and you see something similar to this:

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 459 to server version: 5.0.15
Type 'help;' or '\h' for help. Type '\c' to clear the buffer.
mysqgl>

If the MySQL server isn’t running correctly, an error message will display
instead of the welcome message.

3. Exit the client program by typing quit.

Troubleshooting MySOL

Some of the more common MySQL installation problems are described in
this section.

Displays error message: Access denied

When you attempt to access your MySQL server, an error message similar to
the following is displayed:

Access denied for user 'root'@'localhost' (using password:
YES)

The error message means that MySQL did not recognize the account name
and password. The message gives as much information as possible. In this
case, the message shows that access was attempted from localhost using
the account name root and using a password. If you accessed using a blank
password, the message would show using password: NO. Either MySQL
didn’t recognize the account name, the account name isn’t allowed to access
from this host, or the password is incorrect.

Troubleshooting MySOL 65

Sometimes the error message shows the account name as ODBC. This is a
default account name that MySQL uses. Usually this means that the MySQL
server didn’t receive any account name/password information at all . . . or
none that it could understand.

MySQL access is described in Book III; for more about account names and
passwords, see Book Ill, Chapter 2.

Displays error message: Client does

not support authentication protocol

MySQL passwords are stored in a table in the mysql database. When MySQL
was updated to version 4.1, the password encryption was changed, making
the passwords more secure. However, older MySQL clients don’t under-
stand the new password encryption, and they display an error similar to
the following:

Client does not support authentication protocol requested by
server; consider upgrading MySQL client

In particular, using the mysql client with MySQL 4.1 or later sometimes
results in this problem. The best solution is to upgrade to PHP 5 and use the
mysqli functions. If you can’t upgrade for some reason, you need to use a
function called OLD_PASSWORD with the SET PASSWORD command to set the
password for any accounts that are causing problems. You might use a com-
mand similar to the following:

SET PASSWORD FOR 'some_user'@'some_host' =
OLD_PASSWORD ('newpwd ') ;

Setting passwords is described in detail in Book IIl, Chapter 2.

Displays error message: Can’t connect to . . .

An error message 2003, as shown here, generally means that the MySQL
server isn’t running:

(2003): Can't connect to MySQL server on 'localhost'
To correct this problem, start the server as follows:

4 Windows: Choose Start=>Control Panel=>Administrative Tools=>Services.
Find the MySQL service and click Start.

4+ Linux/Mac: Type mysql.server start. You might need to be in the direc-
tory where the mysqgl . server script resides.

Book |
Chapter 3

JuaWuolIAUg

T0SAIN ay

dn Bumag

66 Installing MySOL GUI Administration Programs

MySOL error log

MySQL writes messages to a log file when it starts or stops. It also writes a
message when an error occurs. If MySQL stops running unexpectedly, you
should always look in the error log for clues.

The following are some messages you might find in the error log:

070415 17:17:01 InnoDB: Started; log sequence number 0 189675
070415 18:01:05 InnoDB: Starting shutdown

The error logs are stored in a subdirectory named data in the directory
where MySQL is installed. The error log has the . err file extension.

Installing MySOL GUI Administration Programs

MySQL provides two utility programs for managing MySQL databases: MySQL
Administrator and MySQL QueryBrowser. These programs aren’t required for
your MySQL work environment, but they provide features that help you manage
your databases. These programs run on Windows, Linux, and the Mac OS.

4+ MySQL Administrator provides the features you need to manage your
databases. You can add and remove MySQL accounts, add and manage
passwords, add and remove permissions, start and stop the MySQL
server, view MySQL logs, make and restore backups, and perform other
administrative tasks.

4+ MySQL Query Browser provides a graphical shell, designed to resemble
a browser interface, where you can execute SQL queries on your data-
bases. SQL gueries are the language you use to store and retrieve data.
You can build SQL queries by using buttons and drag-and-drop features.

Both of these programs are provided in a single file, along with additional
advanced programs, that you can download from the MySQL Web site and
then install.

Download the appropriate file for your operating system from the MySQL
Web site at www .mysql . com. The programs are available in an installer file
(mysgl-gui-tools-5.0-rlla-win32.msi) for Windows. An RPM file is
available for Linux, and a PKG file (mysgl-gui-tools-5.0-r11-0sx10.
4-universal .dmg) is available for the Mac OS.

Installing the GUI tools is similar to installing MySQL itself. In Windows,
double-click the downloaded file to start the installation wizard and follow
the instructions. On a Mac, double-click the . dmg file to start the installa-
tion. On Linux, type the RPM command to install the RPM. For more instruc-
tions, see the section earlier in this chapter that describes installing MySQL
on your operating system.

Installing phpMyAdmin 67

Book |

Installing phpMyAdmin s

In this book, we use the popular MySQL administration program, phpMyAdmin,
when we show how to perform the tasks required for MySQL database adminis-

tration. phpMyAdmin is a free, open source Web application written in PHP, and rg" Sv
. : : . sog
it provides a complete Web interface for managing MySQL databases. 3=
S<a
S o
You can download and install phpMyAdmin on your local machine to access f_=°, =25

MySQL databases on your machine or on other machines over a network.
Many Web hosting companies provide phpMyAdmin for you to use when
accessing your databases on their computers.

You must install MySQL and PHP before you can install phpMyAdmin. If you
installed XAMPP, you probably installed phpMyAdmin during the installation
procedure. If not, you can uninstall XAMPP and reinstall it with phpMyAdmin
included. Instructions for installing XAMPP are provided in Chapter 5 in this
minibook.

The following sections provide instructions for downloading, installing, and
testing phpMyAdmin by itself, after you’ve installed your Web server,
MySQL, and PHP.

Obtaining phpMyAdmin
You can obtain phpMyAdmin by downloading it from the phpMyAdmin Web
site. Follow these steps:

1. Go to www.phpmyadmin.net.

2. Locate the box in the upper-left corner with the heading Quick
Downloads.

3. Click the Zip link under the entry Latest Stable Version.

The phpmyadmin-version-all-languages-utf-8-only.zip
file downloads. (For example, the filename for version 2.10.3 would be
phpmyadmin-2.10.3-all-languages-utf-8-only.zip.)

Installing phpMyAdmin

To install phpMyAdmin, you unzip the file you downloaded, and you store
the files in the directory where your Web server looks for Web page files (the
document root). You then configure phpMyAdmin to communicate with your
MySQL installation. To install phpMyAdmin, follow these steps:

1. Change to the directory where you stored the downloaded
phpMyAdmin file.

2. Extract the files from the . zip file into the directory where your Web
server looks for the Web page files.

68 Installing phpMyAdmin

Figure 3-5:
The
phpMyAdmin
Setup

Web page.

If you double-click the Zip file, it should open in the software on your
computer that extracts files from Zip files, such as WinZip or PKZIP.
Select the menu item for the Extract command and select the directory
into which the files are to be extracted.

The default document root directory for Apache on Windows is htdocs
in the directory where Apache is installed; if you changed the default
Apache document root, extract phpMyAdmin files into the new docu-
ment root. The default directory for IIS is ITnetpubs\wwwroot. In Linux,
it might be /var/www/html.

After the files are extracted, you have a directory with the same name
as the Zip file, such as phpmyadmin-2.10.3-all-languages-utf-8-
only. The directory contains several subdirectories and files.

. Change the directory name to phpMyAdmin.

. Change to the new directory.

[) J0 - WASN

. Create a new folder and name it config.

S

. Start a browser and go to http://localhost/phpMyAdmin/
scripts/setup.php.

The phpMyAdmin setup Web page appears, as shown in Figure 3-5.

ﬂ. plapByAdmin 29005 satup . Mozilla Fliefox S x|
File Edin View Higtory Hookmarks Tools Help

48 - . ';" s httprilocalhosiipbpMyAdmin'scrpts/sniup php =| e | Hal=

o Disable= 8 Cookins= CEE= Foims= & imagee= 0 infoemation= Mreellanuoug= o Oulling= J § Aesizes Tools= {

phpMyAdmin 2.10.3 setup
@ Autodetected My30L extension to uss myvigk
Conbpae server

Enler aew srever comneclon parinelers

Server hostnerme @@
lealhosl

Serverport @@

IPnn on ‘which MySGL senor is listening. leave ernpty for defaci |

Server gocker (D@

Comectiontype @0 %p As
FHFP extenszon to uze 80D el [

Ol Compress cosmectien B

Dona

Installing phpMyAdmin 09

7. Scroll down to the Configuration section and click the Save button.

A configuration file named config.inc.php is now saved in the config
directory that you created in Step 5. The message File Saved appears
at the top of the Web page. However, this configuration file is still empty.

8. Click the Add button in the Server section.

The Add Server section of the Web page appears, as shown in
Figure 3-6.

9. Type a name in the Server Hostname field.
In most cases, you can type localhost.
10. Type root in the Account Name field.
11. Type the password for the root account in the Password field.
This is the password that you created for root when you installed MySQL.
12. Click the green Add button at the bottom of the Add Server section.
13. Scroll down to the Configuration section and click the Save button again.

The server that you just added is saved in the configuration file. The
File Saved message displays again.

14. Copy the config.inc.php file from the config directory into the
phpMyAdmin directory.

Testing phpMyAdmin

After you install phpMyAdmin, you want to test it to ensure that it installed
properly and is working correctly. To test phpMyAdmin, open a browser. Go
to the index.php file in your phpMyAdmin directory. For example, you
might type:

localhost/phpMyAdmin/index.php

The phpMyAdmin main Web page appears. It displays information about
your MySQL installation, such as its version. Figure 3-7 shows the
phpMyAdmin main Web page.

Notice that the left pane shows a field named Databases. The drop-down
list contains all the databases that currently exist.

The top of the left column in the main section of the Web page shows the
version of the MySQL server that is running. Below that, the page shows
which user is running phpMyAdmin (in this case, root).

phpMyAdmin allows you to administer your MySQL databases. Information
on using phpMyAdmin is provided in Book III.

Book |
Chapter 3

JuaWuolIAUg

T0SAIN ay

dn Bumag

70

Figure 3-6:
The
phpMyAdmin
Add Server
Web page.

Installing phpMyAdmin

LRl L . e
@«-»- 5373 e R
& Disable S Cookips= 1 CE5« 7 Foime= @ imagee= @ Infeemation= | Miscellaneous= ' Oulling= ; & Resize ¥ Tools= i,‘i

Clonfigre server n

Enter new sesver connection pareneters

FERT S TRET

Higtory Hookmal

rhs

/‘.‘ :-:-

Server horrame @D

Incalhost

Server port M@

Server ocket M@

Comecticntype @@

PHP estenson to use @00

O Conpress connection B

Autbeescamantype DD

User b cocig mats_ DD
racd

| Dinmanmsed Sam ssnfim assh_ T &
Dnna

Figure 3-7:
The
phpMyAdmin
Main Web
page.

Eile Edit View Higtory g-mmls

Tooks Help O
G- - @ [Mg iocahostishgenyadminindos php i) (G0 [6)
3 Disables § Cookivs= (3 £58- =) Foims= & images= @) Infoemation= S Micellanoous= 0 Outling= § 5 Rusizes J* Tools= i,‘i
-
FEOE localhost phpMyAdmin - 2.10.3
B Sarvar version ¥ MySGQL chert version. 5.0 22
. Datgbase 5 0. &T-community-rit-log b Liged PHE axtensions mysqll
8 Sarver localhostva TCPIP English "
Please soloct a dolabass v Liser roct@locahoss
& Thame f Shle:
[hysaL charset UTF8 Unicode Ll :
fLtre] Criginzzl I
([MyStd connaction collation v Fontsizer | 100%
LHE_uniends o e ® B phphyidren documentation
& Create new databaze @ B chphtyAdmin wika
[&b Official phphdyAdmin Homepage
Colation | + [ChangeLog] [Subwersion] [Lists]
O Show byS0OL runtime information
B Show MySOL system vanabiss
ol .
<]]

Duna

Troubleshooting phpMyAdmin 71

Troubleshooting phpMyAdmin

A\

Figure 3-8:
A
phpMyAdmin
Error
Message.

When you test phpMyAdmin, you might see an error message similar to the
one shown in Figure 3-8.

This error message states that phpMyAdmin access to the MySQL server is
denied to the user specified in the phpMyAdmin configuration file. In most
cases, the problem is an incorrect account name or password.

Notice that the error message in Figure 3-8 includes a small question mark
(?) after the heading. If you click the question mark, the appropriate MySQL
documentation page opens.

You can see what your current account name and password are by viewing
the config. inc.php file located in the phpMyAdmin directory.

ﬂ. Access danied . Mozilla Firefox =3k
File Edin View Higtory Hookmarks Tools Help
48 - . ";" i httpriocalhosifpbpeyadminindex. php =| B M=
o) Disable= 8 Cooking= CEE- Foims= & imaget= 0 Infoemation= Mecellanuous= o Culline= ;HL".I:I.I' Tools= |
Welcome to phpMyAdmin 2.10.3
phiphdAdmin tned to connect bo the MySGL sener, and the Serer rajected te
Connecuon. You shoud ¥ Ehd hoSE, usernamde and password In configanc php and
miakier sune that they comespond (o the informakon given by tha administrator of the
Wy S0L server
Error
B MySCOL said: @
F108% = kooess depisd fof sser ' roof'@) looelhos USIDG PASRSET
= Dipen neny phoddy A dmin wandow
Cinna

Book |
Chapter 3

JuawuoiIAug

T0SAN 3y
dn bumag

72 Troubleshooting php MyAdmin

Open the configuration file in a text editor. Scroll down to the section for
your server that looks similar to the following:

/* Servers configuration */

$i = 0;

/* Server localhost (config:root) [1] */
Si++;

Scfg['Servers'][$i]['host'] = 'localhost';
Scfg['Servers'] [$i]['extension'] = 'mysqgli’
Scfg['Servers'] [$i]['connect_type'] = 'tcp';
Scfgl['Servers'] [$i]['compress'] = false;
Scfg['Servers'][$i]['auth_type'] = 'config';
Scfg['Servers'][$i]l['user'] = 'root';
Scfg['Servers'] [$i]['password'] = 'secret';

/* End of servers configuration */

Check that the parameters are correct. The account name in this file is root,
and the password is secret. If any parameters are incorrect, edit the file to
correct them. Save the file and restart phpMyAdmin.

Chapter 4: Installing a Web Server

In This Chapter

1 Checking whether Apache needs to be installed

+ Obtaining and installing Apache on Windows, Mac, or Linux
v Configuring Apache

v~ Installing IIS

A Web server is software that delivers your Web pages to the world.
When a browser requests a Web page file, the Web server receives the
request and responds by sending the Web page to the requesting browser.
The browser then displays the Web page, based on the code in the Web
page file.

Two Web servers deliver Web pages for over 90 percent of Web sites on
the Web:

4+ Apache: An open source Web server that powers over 60 percent of the
Web sites on the World Wide Web.

4+ Internet Information Services (IIS): A Web server produced by
Microsoft that powers almost 30 percent of the Web sites.

To install a Web server, first test whether a Web server is already running
on your computer. If it isn’t, install either Apache or IIS. In most cases,
Apache is the better choice. It’s the choice for most Web sites because it’s
very reliable.

Testing Your Web Server

You can test whether a Web server is installed on your computer by viewing
a Web page in your browser. Open your browser and type localhost or your
computer domain name (such as, mycompany.com) in the browser address
window. If your Web server is installed, a Web page displays. For instance,
the Apache welcome screen displays the following text:

If you can see this, it means that the installation of the
Apache web server software on this system was successful. You
may now add content to this directory and replace this page.

74

\NG/
S

Installing and Configuring Apache

You can’t test your Web server by choosing File>Open or Open File in your
browser. This method of viewing a Web page file doesn’t go through the
Web server. You must type the URL into your browser’s address bar to test
the server.

If no Web server is running on your machine, an error message is displayed,
such as one of the following:

Unable to connect
The page cannot be displayed

Even if you have no Web server running, a Web server might be installed on
your computer but not started. If so, you need only start the Web server. For
instance, Apache is installed on all recent Mac computers, but it might need
to be started. See the instructions for obtaining and installing Apache later
in this chapter.

Installing and Configuring Apache

All recent versions of Mac OS X come with Apache already installed. Most
Linux distributions include Apache. However, you might want to install
Apache yourself to install a newer version or to install with different options.
Windows doesn’t come with Apache installed. You must install it yourself.

To check whether Apache is already installed, type a URL, such as localhost,
into a browser address window, as described in the section “Testing Your
Web Server,” earlier in this chapter. If Apache isn’t already installed, an error
message displays.

Obtaining Apache

Apache is an open source Web server that you can download for free.

Selecting a version of Apache

Apache is currently available in three versions: Apache 1.3, Apache 2.0, and
Apache 2.2, All three versions are supported and upgraded. The PHP soft-
ware runs with all three versions, but some other software related to PHP
might have problems with Apache 2.0 or 2.2. On Windows, Apache 2.0 and
2.2 aren’t supported on Windows 9x installations; they require Windows NT,
2000, XP, or Vista.

Apache 2.0 changed considerably from Apache 1.3; Apache 2.2 changed from
Apache 2.0. Some third-party modules might not work correctly on all three

Installing and Configuring Apache 75

versions. Third-party modules that run on 1.3 won’t work correctly with
Apache 2.0, and modules that work on Apache 2.0 might not work correctly
with Apache 2.2. Therefore, only modules that have been modified for
Apache 2.0 or 2.2 can run on Apache 2.0 or 2.2.

On the PHP Web site, the recommended setup at present is to use PHP 4.3.0
or later with the most recent version of Apache 2.0. Check the Web page for
the current status of PHP with Apache versions at

www .php.net/manual/en/install.windows.apache?2.php

At the time of this writing, the current releases are Apache 2.2.4, 2.0.59,
and 1.3.37.

Try to install the most current release of the Apache version you choose so
that your Apache server includes all the latest security and bug fixes. New
features are no longer being added to Apache 1.3, but bugs are still being fixed,
and security issues are being addressed. New versions of Apache 1.3 continue
to be released but on a less frequent basis than for Apache 2.0 or 2.2.

Downloading from the Apache Web site

Apache for all operating systems is available on the official Apache Web
site. You can download source code to compile on your operating system.
Compiling and installing source code isn’t difficult on Linux and Mac, but it
requires expert knowledge and software on Windows.

Binary files — compiled, ready-to-run files that just need to be copied to the
correct location — are available for Windows.

To obtain Apache from the Apache Web site, go to http://httpd.apache.
org. Scroll down to the section for the Apache version you want to down-
load and click Download. A download page with links to download the cur-
rent versions displays.

Obtaining Apache for Windows

The Windows binary file is available with an installer, which will install, con-
figure, and start Apache. On the Apache Web site download page, find the
section for the Apache version you want. Click the link for the Win32 Binary
(MSI Installer) to download the installer file.

Although Win32 source code is also available to download in a Zip file, com-
piling and installing Apache from source code is difficult and should be
attempted only by advanced users. It requires advanced knowledge and spe-
cial software.

Book |
Chapter 4

SEYVELETT
e Buijjesu|

76

Installing and Configuring Apache

Obtaining Apache for Linux

Most recent versions of Linux include Apache. If you need to install Apache
or upgrade to a more recent version, most Linux distributions provide soft-
ware on their Web site that you can download and install on your specific
Linux system. In addition, most Linux systems provide a utility specifically
for downloading and installing software. For instance, Fedora provides the
yum utility that downloads and installs software from the Fedora Web site.
See the documentation for your Linux distribution for information on how to
download and install software on your Linux distribution.

In a few cases, you might need to install Apache manually. The software pro-
vided by the Web site might not be the most recent or might not be config-
ured to your needs. To install manually, you need to download the source
code from the Apache Web site at http://httpd.apache.org.

You can easily compile and install Apache from the source code. This
process isn’t as technical and daunting as it sounds. Instructions for
installing Apache from source code are provided in the “Installing Apache
from source code on Linux or Mac” section, later in this chapter.

Obtaining Apache for Mac

Apache comes already installed on most recent versions of Mac OS X. If you
test Apache by typing localhost in your browser address window and it
doesn’t display a Web page, it’s probably installed but not started. To find
out how to start Apache, see the section “Installing Apache on Mac,” later in
this chapter.

If you need to install Apache because it’s not installed or an old version is
installed, download the source files from the Apache Web site to compile
and install on your Mac. Instructions for installing Apache from the source
code are provided in the “Installing Apache from source code on Linux and
Mac” section, later in this chapter.

Obtaining all-in-one installation kits

You can obtain some kits that contain and install PHP, MySQL, and Apache in
one procedure. These kits can greatly simplify the installation process.
However, the software provided might not include the features and exten-
sions that you need.

XAMPP is a popular all-in-one installation kit that contains Apache, PHP, and
MySQL. XAMPP has stable versions available for Windows and for several
versions of Linux. In addition, versions of XAMPP are available for Mac and
Solaris, but these versions are currently new and aren’t as well tested and

Installing and Configuring Apache 77

developed. XAMPP is available at www.apachefriends.org/en/xampp.
html. Instructions for installing your software using XAMPP are provided in
Chapter 5 in this minibook.

WAMP5 is a popular installation kit for Windows that provides recent ver-
sions of Apache 2.2, PHP 5, and MySQL 5. It also installs phpMyAdmin, a util-
ity for managing your MySQL databases. The WAMP5 Web site states that it
is compatible with Vista. WAMP5 doesn’t run on Windows 98/Me. WAMPS is
available at www . en.wampserver.com.

MAMP is an installation kit for Mac that installs Apache, PHP, and MySQL for
Mac OS X. This free package installs a local server environment on your Mac
PowerBook or iMac. MAMP was created primarily as a PHP development
environment for your local computer and should not be used as a produc-
tion server for the Internet. You can obtain MAMP at www.mamp . info.

Verifying a downloaded file

The Apache Web site provides methods to verify the software after you
download it, as a security precaution to make sure that the file hasn’t been
altered by bad guys. You can use the MD5 method or the PGP method for
verifying the file. This book provides instructions for the MD5 method.

Basically, the same process is used to verify the file for PHP, MySQL, and
Apache. You can find instructions for verifying the downloaded file in
Chapter 2 of this minibook. On the Apache Web site, click the MD5 link to
see the MD5 signature discussed in the instructions.

Installing Apache

The following subsections describe installing Apache on Windows, Mac,
and Linux.

Installing Apache on Windows

You can install Apache on almost any version of Windows, although
Windows NT, 2000, XP, and Vista are preferred.

You can’t install Apache with the following directions if IIS (Internet Information
Services) is already running on port 80. If IIS is running, you will find the IIS
console at Start=>Control Panel=>Administrative Tools=>Internet Services
Manager. If you don’t find this menu item, IIS isn’t installed. If IIS is already
running, you must shut it down before installing Apache or install Apache on
a different port.

Book |
Chapter 4

SEYVELETT
e Buijjesu|

78 Installing and Configuring Apache

To install Apache, follow these steps:

1. Double-click the file you downloaded.

The file is named apache_, followed by the version number and
win32-x86-no_ssl.msi. For instance, apache_2.0.59-win32-
x86-no_ssl.msi.

Note: In Vista, you might need to right-click the file and choose Run as
Administrator.

The Apache installation wizard begins, and a welcome screen appears.
2. Click Next.
The license agreement is displayed.

3. Select I Accept the Terms in the License Agreement and then
click Next.

If you don’t accept the terms, you can’t install the software. A screen of
information about Apache is displayed.

4. Click Next.
A screen is displayed asking for information.

5. Enter the requested information and then click Next.
The information requested is

e Domain Name: Type your domain name, such as MyFineCompany.com.
If you're installing Apache for testing and plan to access it only from
the machine where it’s installed, you can enter localhost.

e Server Name: Type the name of the server where you’re installing
Apache, such as www.MyFineCompany.com or sl.mycompany.com.
If you're installing Apache for testing and plan to access it only from
the machine where it’s installed, you can enter localhost.

e [E-Mail Address: Type the e-mail address where you want to receive
e-mail messages about the Web server, such as WebServer@
MyFineCompany.com.

® Run Mode: Select whether you want Apache to run as a service (start-
ing automatically when the computer boots up) or whether you want
to start Apache manually when you want to use it. In most cases, you
want to run Apache as a service.

The Installation Type screen is displayed.
6. Select an installation type and then click Next.

In most cases, you should select Complete. Only advanced users who
understand Apache well should select Custom. If you select Custom, the
screens will be somewhat different than the screens described below. A
screen showing where Apache will be installed is displayed.

Installing and Configuring Apache 79

7. Select the directory where you want Apache installed and then click
Next.

You see the default installation directory for Apache, usually C: \
Program Files\Apache Group. If this is okay, click Next. If you want
Apache installed in a different directory, click Change and select a differ-
ent directory, click OK, and click Next. The screen that appears says the
wizard is ready to install Apache.

8. Click Install.

If you need to, you can go back and change any of the information you
entered before proceeding with the installation. A screen displays the
progress. When the installation is complete, a screen appears, saying
that the wizard has successfully completed the installation.

9. Click Finish to exit the installation wizard.

Apache is installed on your computer based on your operating system. If
you install it on Windows NT/2000/XP/Vista, it is installed by default as a
service that automatically starts when your computer starts. If you install it
on Windows 95/98/Me, you need to start it manually or set it up so that it
starts automatically when your computer boots. See the section “Starting
and stopping Apache,” later in this chapter, for more information.

Installing Apache on a Mac

Apache is installed on all recent versions of Mac OS X, but it might not be
started. To start Apache, choose Apple Menuw>System Preferences=>Sharing.
On the File and Web panel, find the section for Web sharing. Click the Start
button to turn Web sharing On, which starts the Apache Web server.

If you need to install Apache yourself for some reason, you can install
Apache from source code, as described in the next section.

Installing Apache from source code on Linux and Mac
You can install Apache on Linux, Unix, and Mac from source code. You down-

load the source code and compile it. To install Apache from source code,
follow these steps:
1. Change to the directory where you downloaded the file.

The downloaded file is named apache-, followed by the version name
and tar.gz. This file is called a tarball because it contains many files
compressed by a program called tar.

2. Unpack the tarball by using a command similar to the following:
gnutar -xzf / httpd-2.0.59.tar.gz (Mac)
gunzip -c httpd-2.0.59.tar.gz | tar -xf - (Linux)

Book |
Chapter 4

SEYVELETT
e Buijjesu|

80

Installing and Configuring Apache

S

xR

After unpacking the tarball, you see a directory called httpd_2.0.59.
This directory contains several subdirectories and many files.

Use a cd command to change to the new directory created when you
unpacked the tarball (for example, cd httpd 2.0.59).

. Type the configure command.

The configure command consists of . /configure followed by all the
necessary options. To use Apache with PHP as a module, use the appro-
priate configure command as follows:

For Linux or Unix, use
./configure --enable-so
For Mac, use
./configure --enable-module=most --enable-shared=max

You can use other options if you want. One of the more important instal-
lation options you might want to use is prefix, which sets a different
location where you want Apache to be installed. By default, Apache is
installed at /usr/local/apache or usr/local/apache2. You can
change the installation location with the following line:

./configure --prefix=/software/apache
You can see a list of all available options by typing the following line:
./configure --help

This script might take a while to finish running. As it runs, it displays
output. When the script is finished, the system prompt is displayed.
If configure encounters a problem, it displays a descriptive error
message.

. Type make to build the Apache server.

The make command might take a few minutes to run. It displays messages
while it’s running, with occasional pauses for a process to finish running.

Type the following command to install Apache:
For Linux or Unix, type

make install
For Mac, type

sudo make install.

. Start the Apache Web server.

See the next section for details.

Type the URL for your Web site (for example, www.mysite.com or
localhost) into a browser to test Apache.

If all goes well, you see a Web page telling you that Apache is working.

Installing and Configuring Apache 81

Starting and stopping Apache

You might need to start Apache when you install it. Or, you might not. It
might already be started. However, whenever you change your Apache or
PHP configuration settings, you need to restart Apache before the new set-
tings go into effect.

Starting and stopping Apache on Windows

When you install Apache on Windows NT, 2000, XP, or Vista, it’s automati-
cally installed as a service and started. It’s ready to use. On Windows 95, 98,
and Me, you have to start Apache manually, using the menu.

When you install Apache, it creates menu items for stopping and starting it.
To find this menu, choose Start>Programs=>Apache HTTP Server~>Control
Apache Server. The menu has the following items:

4+ Start: Used to start Apache when it isn’t running. If you click this item
when Apache is running, you see an error message saying that Apache
has already been started.

4+ Stop: Used to stop Apache when it’s running. If you click this item when
Apache isn’t running, you see an error message saying that Apache isn’t
running.

4+ Restart: Used to restart Apache when it’s running. If you make changes
to Apache’s configuration, you need to restart Apache before the
changes become effective.

Starting Apache on Linux, Unix, and Mac

A script named apachectl is available to control the server. By default, the
script is stored in a subdirectory called bin in the directory where Apache is
installed. Some Linux distributions may put it in another directory.

The script requires a keyword. The most common keywords are start,
stop, and restart. The general syntax is as follows:

path/apachectl keyword

The apachectl script starts the Apache server, which then runs in the back-
ground, listening for HTTP requests. By default, the compiled Apache server
is named httpd and is stored in the same directory as the apachect1 script,
unless you changed the name or location during installation. The apachectl
script serves as an interface to the compiled server, called httpd.

You can run the httpd server directly, but it’s better to use apachectl as
an interface. The apachect1l script manages and checks data that httpd
commands require. Use the apachect] script to start Apache with the fol-
lowing command:

Book |
Chapter 4

SEYVELETT
e Buijjesu|

82

A\

Installing and Configuring Apache

/usr/local/apache/bin/apachectl start (Linux/Unix)
sudo /usr/local/apache/bin/apachectl start (Mac)

The apachect] script contains a line that runs ht tpd. By default, apachectl
looks for httpd in the default location — /usr/local/apache/bin or
/usr/local/apache?2/bin. If you installed Apache in a nonstandard loca-
tion, you might need to edit apachectl to use the correct path. Open
apachectl and then search for the following line:

HTTPD="'/usr/local/apache2/bin/httpd"

Change the path to the location where you installed ht tpd. For example, the
new line might be this:

HTTPD="'/usr/mystuff/bin/httpd"’

After you start Apache, you can check whether Apache is running by looking
at the processes on your computer. Type the following command to display
a list of the processes that are running:

ps -A

If Apache is running, the list of processes includes some httpd processes.

Restarting Apache on Linux, Unix, and Mac

Whenever you change the configuration file, the new directives take effect
the next time Apache starts. If Apache is shut down when you make the
changes, you can start Apache as described earlier in the “Starting Apache
on Linux, Unix, and Mac” section. However, if Apache is running, you can’t
use start to restart it. Using start results in an error message saying that
Apache is already running. You can use the following command to restart
Apache when it’s currently running:

/usr/local/apache2/bin/apachectl restart (Linux)
sudo /usr/local/apache2/bin/apachectl restart (Mac)

Although the restart command usually works, sometimes it doesn’t. If you
restart Apache and the new settings don’t seem to be in effect, try stopping
Apache and starting it again. Sometimes this solves the problem.

Stopping Apache on Linux, Unix, and Mac
To stop Apache, use the following command:

/usr/local/apache/bin/apachectl stop
sudo /usr/local/apache/bin/apachectl stop

Installing and Configuring Apache 83

You can check to see whether Apache is stopped by checking the processes
running on your computer by using the following command:

ps —-A

The output from ps shouldn’t include any ht tpd processes.

Getting information from Apache

Sometimes you want to know information about your Apache installation,
such as the installed version. You can get this information from Apache.

Getting Apache information on Windows

You can get information from Apache by opening a Command Prompt window
(Start=>Programs=>Accessories>Command Prompt), changing to the bin
directory in the directory where Apache is installed (such as, cd C:\Program
Files\Apache Group\Apache2\bin), and accessing Apache with options.
For example, to find out which version of Apache is installed, type the fol-
lowing in the command prompt window:

Apache -v

To find out what modules are compiled into Apache, type
Apache -1

You can also start and stop Apache directly, as follows:

Apache -k start
Apache -k stop

You can see all the options available by typing the following:

Apache -h

Getting Apache information on Linux, Unix, and Mac

You can use options with the ht tpd server to obtain information about
Apache. For instance, you can find out what version of Apache is installed by
changing to the directory where the httpd server resides and typing one of
the following:

httpd -v
./httpd -v

Book |
Chapter 4

SEYVELETT
e Buijjesu|

84

Installing and Configuring Apache

You can find out what modules are installed with Apache by typing
httpd -1
To see all the options that are available, type

httpd -h

Configuring Apache

When Apache starts, it reads information from a configuration file. If Apache
can’t read the configuration file, it can’t start. Unless you tell Apache to use a
different configuration file, it looks for the file conf /httpd. conf in the
directory where Apache is installed.

Changing settings

Apache behaves according to commands, called directives, in the configura-
tion file (which is a plain text file). You can change some of Apache’s behav-
ior by editing the configuration file and restarting Apache so that it reads the
new directives.

In most cases, the default settings in the configuration file allow Apache to
start and run on your system. However, you might need to change the set-
tings in some cases, such as the following:

4+ Installing PHP: If you install PHP, you need to configure Apache to rec-
ognize PHP programs. How to change the Apache configuration for PHP
is described in Chapter 2 of this minibook.

4+ Changing your Web space: Apache looks for Web page files in a specific
directory and its subdirectories, often called your Web space. You can
change the location of your Web space.

4+ Changing the port where Apache listens: By default, Apache listens
for file requests on port 80. You can configure Apache to listen on a dif-
ferent port.

To change any settings, edit the httpd. conf file. On Windows, you can
access this file through the menu at Start=>Programs=>Apache HTTPD
Server=>Configure Apache Server=Edit the Apache httpd.conf File. When
you click this menu item, the httpd. conf file opens in Notepad.

The httpd. conf file has comments (lines beginning with #) that describe
the directives, but make sure you understand their functions before chang-
ing any. All directives are documented on the Apache Web site.

Installing and Configuring Apache 85

When adding or changing filenames and paths, use forward slashes, even Book |
when the directory is on Windows. Apache can figure it out. Also, path Chapter 4
names don’t need to be in quotes unless they include special characters. A
colon (:) is a special character; the underscore (_) and hyphen (-) are not.
For instance, to indicate a Windows directory, you would use something like
the following:

"c:/temp/mydir"

SEYVELETT
e Buijjesu|

V?‘“\NG! The settings don’t go into effect until Apache is restarted. Sometimes using
S the restart command doesn’t work to change the settings. If the new set-
tings don’t seem to be in effect, try stopping the server with stop and then

starting it with start.

Changing the location of your Web space

By default, Apache looks for your Web page files in the subdirectory htdocs
in the directory where Apache is installed. You can change this with the
DocumentRoot directive. Look for the line that begins with DocumentRoot,
such as the following:

DocumentRoot "C:/Program Files/Apache Group/Apache/htdocs"

Change the filename and path to the location where you want to store your
Web page files. Don’t include a forward slash (/) on the end of the directory
path. For example, the following might be your new directive:

DocumentRoot /usr/mysrver/Apache?2/webpages

Changing the port number

By default, Apache listens on port 80. You might want to change this, for
instance, if you're setting up a second Apache server for testing. The port is
set by using the Listen directive as follows:

Listen 80

With Apache 2.0 and 2.2, the Listen directive is required. If no Listen
directive is included, Apache 2 won't start.

You can change the port number as follows:
<MBER Listen 8080

Always restart Apache after you change any directives.

86 Installing 1IS

Installing 1IS

Internet Information Services (IIS) is a server published by Microsoft. IIS is
included as part of the operating system for Windows 2000 Professional,
Windows XP Professional, Windows Vista, and Windows Server. The version
of IIS included with Windows 2000/XP isn’t as powerful as the version on
Windows Server. It allows only a limited number of people to connect to
your Web site at one time. Consequently, it isn’t useful as a production
server for a large, public site, though it can be useful as a development
server or for internal organizational use.

IIS is included with the operating system, but isn’t installed automatically.
You need to install it from the CDs, using the following steps:
1. Click Start.
2. Click Control Panel.
The Control Panel window opens.
3. Double-click Add or Remove Programs.
The Add or Remove Programs window opens.
4. Click Add/Remove Windows Components on the left side.
The Windows Components Wizard window opens.
5. Click Internet Information Services (IIS).
6. Click Next.
7. Complete the information requested by the installation wizard.

[IS is installed from a CD.
For Windows Vista, Steps 3-6 are slightly different:

1. Click Start.
2. Click Control Panel.
The Control Panel window opens.
3. Click Programs and Features.
4. Click Turn Windows features on or off in the right pane.
The Windows Features dialog box opens.
5. Select the Internet Information Services check box.
6. Click OK.
7. Complete the information requested by the installation wizard.

IIS is installed from a CD.

\NG/
S

Chapter 5: Setting Up Your
Web Development Environment

with the XAMPP Package

In This Chapter
+* Downloading and installing XAMPP

v Testing and configuring your development environment

v Troubleshooting your XAMPP installation

AMPP is a popular all-in-one kit that installs Apache, MySQL, and PHP
in one procedure. XAMPP also installs phpMyAdmin, a Web application
you can use to administer your MySQL databases.

XAMPP can greatly simplify the installation process. However, the software
provided might not include the features, versions, and extensions that you
need. For example, the current version of XAMPP installs Apache 2.2. If you
plan to use a PHP extension that doesn’t run on Apache 2.2, XAMPP won’t
work for you. (See Chapter 4 in this minibook for a discussion of Apache
versions.) The XAMPP installation installs all the software you need for the
applications discussed in this book.

According to the XAMPP Web site, XAMPP is intended as a development
environment on a local computer. As a development environment, XAMPP is
configured to be as open as possible. XAMPP isn’t intended for production
use — it isn’t secure as a production environment. Before using XAMPP to
make a Web site available to the public, you need to tighten the security.
Security is discussed in detail in Book IV.

XAMPP has stable versions available for Windows, including Windows Vista,
and for several versions of Linux. In addition, versions of XAMPP are avail-
able for Mac and Solaris, but these versions are currently new and aren’t as
well tested and developed as the Windows and Linux versions.

Because XAMPP installs Apache, MySQL, and PHP, it is appropriate to use
for installation only on a computer which doesn’t have any of the three
packages already installed. Because Apache is preinstalled on Linux and

88 0btaining xAMPP

Mac computers and often MySQL and/or PHP are as well, you're most likely
to use XAMPP for installation in a Windows environment. For that reason,
this chapter provides instructions only for Windows installations.

Obtaining XAMPP

You can download XAMPP for Windows from www . apachefriends.org/
en/xampp-windows.html. As of this writing, the current version of XAMPP
is 1.6.2. This version installs the following:

4+ MySQL 5.0.41

4 PHP5.2.2

4 PHP 4.4.7

4+ Apache 2.2.4

4+ phpMyAdmin 2.10.1
Notice that XAMPP installs two versions of PHP — PHP 4 and PHP 5. You can
only run one version at a time, not both. By default, XAMPP starts with PHP 5.
After installation, you can switch back and forth between PHP 5 and PHP 4.

A link is provided to switch PHP versions in the main XAMPP Web page (see
the section, “Opening the XAMPP Web page,” later in this chapter).

Scroll down the Web page until you come to the Download section. Under
the listing for XAMPP Windows [Basic Package], click the Installer link to
download the Installer version.

The downloaded file is named xampp-win32-, followed by the version
number, followed by -installer.exe, such as xampp-win32-1.6.2-
installer.exe. Save the downloaded file on your hard drive in an easy-to-
find place, such as the desktop.

Installing XAMPP

After you've downloaded XAMPP, follow these steps to install it:

1. Navigate to the location where you saved the downloaded XAMPP file.
The file is named something like xampp-win32-1.6.2-installer.exe.
2. Double-click the file.
The Setup Wizard starts.

3. Read and click through the next few screens until the Choose Install
Location screen appears, as shown in Figure 5-1.

Figure 5-1:
The Choose
Install
Location
screen of
the Setup
Wizard.

NG’
$

Figure 5-2:
The XAMPP
Options
screen of
the Setup
Wizard.

89

Installing XAMPP

[@]

Choore nstall Locabon
Cheziig W Foker in wlbich bg il o HEMPP |L6.2

E]

Setge vl iAol KARPE | 6.3 i e Didlonssing fodder . T il im0 i e oddier, 25,
Brcerts aied cabict arusther Feldber. Chek Macck B contins

Deilwuatus Foider

Ciheamon

Spene regqured: 23 B
Spacn avalabie: 29.0GH

o Bk pe > | | caen

It’s best to accept the default location (¢ : \xampp) unless you have a
really good reason to choose another location. You can click Browse to
select another install folder.

If you're installing on Vista, you cannot install in the Program Files folder
because of a protection problem. Also, PHP sometimes has a problem
running if it’s installed in a folder with a space in the path or filename,
such as Program Files.

4. When you’ve chosen the install folder, click Next.
The XAMPP Options screen appears, as shown in Figure 5-2.

5. Under SERVICE SECTION, select the Install Apache as Service and the
Install MySQL as Service check boxes.

This installs the tools as Windows services, which causes them to start
automatically when the computer starts.

[@]

HAMIT" Uptiony
Prestoll opdicrer or M 20000 Prol essbonal 5o

WAMPE DESETOR
[]Creske & XAMPE dashbon kon

WAMPE START HERU
[=]Ereate o Bpsache Frienc KAMPP Pekder in e slarl meres

SERYICE SECTION

[Fliratel Apache a5 servica
[#] dewt ol My, s i
[l bratll Flasills 5% srvics

B g B MAMPD | Wirnbomes FAD e
ksl

o Bk | | coms

Book |
Chapter 5

JUaWUOIIAUg
juawdojanag qap
ino), dn buimasg

90 Installing XAMPP

6. Click the Install button.

The installation process takes a few minutes to complete. As the installa-
tion proceeds, you see various files and components being installed on
your system, in the location you specified, as shown in Figure 5-3. A
status bar shows the installation progress.

(5] MAMPP 162 wind2 {Basic Packaie)

Intalking =
Plaixre vk whsle WAMPP §.8.2 b booweg e e IH

kgt Folder: oilxamppMemuryHal SCRATOR -
Szt Folder: oilxsmpp’MacuryH el STNOASLE
kgt Folder: oilcampp’ancnrmcus
Exctract; anefile honl
Dbzt Fobder: o Loamopsncmmousircoming
Dukpast folder: «:lcampp]apeche
Extract: apache_instalsevics. bat
Extract: spache_uninstslservice. bat
Extrat: makeceit . bat

H _2- Ot folder: o xamop) spacheibin
Flgure 5 3 Extract: Spsascheoniton. e

The XAMPP Extiact: sh g ™
Installation
screen.

When the installation is complete, the Installation Complete screen
appears.

7. Click Finish.

A small window opens, and additional messages are displayed. When this
part of the installation is finished, a screen displays a message letting you
know that the service installation is finished, as shown in Figure 5-4.

[@]

Inialtatecn Lomgdete =
St weas gl sy I =

&)

Soerica inslallation fissshad! Hinl Use alaa the XAMPP Cantral Panel 12 manage
EAMCEE

Figure 5-4: ok |
The XAMPP
Installation
Complete

screen. Feh|

Using the XAMPP Control Panel 91

8. Click OK.
The following question is displayed:
Start the XAMPP Control Panel now?
The screen displays a Yes and a No button.
9. Click Yes.
The XAMPP Control Panel appears.

Using the XAMPP Control Panel

Figure 5-5:
The XAMPP
Control
Panelicon.

XAMPP provides a Control Panel for efficient management of the software in
the XAMPP package. You can use the Control Panel to determine whether
Apache and MySQL are currently running and to start or stop them. Before
you can use your development environment, Apache and MySQL must be
running. This section tells you how to use the Control Panel to start and stop
Apache and MySQL.

The XAMPP Control Panel can run continuously, ready for you to use at all
times. When the Control Panel is running, you see an orange icon in the system
tray at the bottom right of your computer screen, as shown in Figure 5-5.

‘ (\Jlf;ﬁ 5:43 PM J

If the XAMPP icon is in your system tray, you can click it to open the Control
Panel. If you don’t have the icon in your system tray, you can open the
Control Panel by choosing Start=>All Programs=>Apache Friends=>XAMPP=>
XAMPP Control Panel. If you attempt to open the Control Panel when it’s
already running, an error message is displayed.

Figure 5-6 shows the open Control Panel with Apache and MySQL running. If
the installation went smoothly, your control panel will appear like this when
you open it after installation. Both Apache and MySQL are shown as running
and the Svc check boxes are checked. Your development environment is
ready to go.

Occasionally, XAMPP isn’t able to start either Apache or MySQL as a service
during installation. The Control Panel lists the software, showing that it was
installed, but the status does not display as running. Both Apache and

MySQL must be running before you can use your development environment.

Book |
Chapter 5

JUaWUOIIAUg
yuawdojanag qapn
1oy dn uipasg

92 Testing Your Development Environment

Figure 5-6:
The XAMPP
Control
Panel.

I it I HAMEF Sonirgl Panel | Borvce, | SEM-
LE: =

Sabus
[#] Sree Apscha Runhitg =k e,
Lstop T e
[#] Bwe MySal Runnisg | Sl | | Adee. | 3

e | ET T
[C] v FieZila | sy =
- A Help

Hereury | seart
- Exil

MANFF Eansaol Fanel Vession £.0 (5, Way, I007]
Windous ¥, 1 Build 3400 Flanfess ¥ fesvias Pask 1
Cuswent Dissatosy| o isaspp

Tnavall Diwsatosyl o1 \saspp

Bratiis Chack OR

To start Apache or MySQL when they are not running, select the Svc check
box and click the Start button. If XAMPP is successful in starting the soft-
ware, the status will display as running. If XAMPP is unsuccessful in starting
the software as a service, you may need to start the software without check-
ing the Svc check box. See the “Troubleshooting” section at the end of this
chapter for more information on starting Apache and MySQL when you have
a problem.

A Stop button is displayed for each software package that’s running. You can
stop the software, appropriately enough, by clicking the Stop button. You
sometimes need to stop the software, such as when you need to upgrade it.

You need to restart Apache whenever you make changes to your PHP config-
uration, as described throughout this book. To restart Apache, click the Stop
button and then, after Apache is stopped, click the Start button.

If you close the Control Panel by clicking Exit, the program ends, and you
don’t have a XAMPP Control Panel icon in your system tray. If you just close
the Control Panel window by clicking the X in the upper-right corner of the
window, the Control Panel icon remains available in your system tray.

Testing Your Development Environment

After you install the XAMPP package and start Apache and MySQL, your
environment should be ready to go. You can test your installation by per-
forming the following in any order:

4+ Opening the XAMPP Web page

4+ Opening phpMyAdmin

4 Running a test PHP script

Testing Your Development Environment 93

Opening the XAMPP Web page

To test the XAMPP installation, follow these steps:

1. Open a browser.
QNING/ 2. Type localhost in the browser’s address bar.

In some cases, if your local machine isn’t set up to recognize localhost,
you might need to type 127.0.0.1 instead.

An XAMPP Web page displays, providing a choice of languages. In some
cases, XAMPP has already set your language choice and doesn’t ask
again. In this case, you don’t need to do Step 3 because your browser is
already at the page shown in Figure 5-7.

3. Click your preferred language.
The XAMPP Welcome page displays, as shown in Figure 5-7.

If the Web page doesn’t display, Apache may not be running. Use your
Control Panel to manage Apache, as described in the previous section.

A\
Notice the PHP Switch link in the bottom section of the left panel. You
can use this link to change PHP versions between PHP 4 and PHP 5.
& o minliv 1 Maziin Flasl [
File Edit View Go BEookmaks Tosls Help {
Q’a = (g - g 5 *_-_-?' [E] httpocalhosidsaenpp! = @ Go |IGL
| Custeenize Limks || Freo Hobmad || RealPlayer | Wisdows Modia | Windows
XAMPP for Windows e o s s
Folrki ltaliann - Hgagk o Fepafial 77
Egrbyguds (Braad) 337
Welcome ta KAMPP for Windows Version 1.6.2 1
Congratulatisns:
¥ou have cucessefully installed XAMPP an this system)
Now youl can SEArT wsng Apachs and Co. Yiou should frst try s5tatues on tha s navigation to
make sure svarything works fing.
For Opon&SL support please use the tost corificate with Btos 270,001 or bttns: (facalhost
&nd most impartantly, a big thanks for help and suopart to Carsten, Kemests, KnS, Bopoy,
Pe-Durmmy and all other fisnds of XAMER)
Geod hudk, K3y Vogelgesang « K Oswald Seidier
Figure5-7: |
The XAMPP
Welcome
page. -
" B v a2 | AW smm

Book |
Chapter 5

JUaWUOIIAUg
yuawdojanag qapn
ino), dn buimasg

94 Testing Your Development Environment

4. Click the Status link in the panel on the left side of the page.

A list of software appears, showing which software is activated. MySQL
and PHP should be listed as activated. Apache isn’t listed because if
Apache isn’t running, you can’t see this page at all.

Testing phpMyAdmin

From the XAMPP Welcome page (see the preceding section), you can open
phpMyAdmin to test whether it’s installed. Click the phpMyAdmin link in
the Tools section toward the bottom of the left panel. If phpMyAdmin is
installed, it opens in your browser. Book IIl, Chapter 1 explains how to use
phpMyAdmin.

If the phpMyAdmin page doesn’t open, be sure Apache is started. You can
manage Apache as described in the “Using the XAMPP Control Panel” sec-
tion, earlier in this chapter.

Testing PHP

To test whether PHP is installed and working, follow these steps:

1. Locate the directory in which your PHP scripts need to be saved.

This directory and the subdirectories within it are your Web space. This
is the space where Apache looks for your scripts when you type local-
host. This directory is called htdocs and is located in the directory
where you installed XAMPP, such as ¢ : \xampp\htdocs.

You can change the location of your Web space in the Apache configura-
tion file. Changing Apache configuration is described in the section,
“Configuring Apache,” later in this chapter.

2. Create a text file in your Web space with the name test .php.
The file should contain the following content:

<html>
<head><title>PHP test</title></head>
<body>
<?php
phpinfo () ;
?>

</body></html>
3. Open a browser and type localhost/test.php into the address bar.

The output from this PHP script is a long list of settings and variables for
your PHP installation, as shown in Figure 5-8.

Figure 5-8:
Output from
the PHP
script.

Configuring Your Development Environment 95

File Edit View Ge Bookmarks Tosle Help
{# . g § 'ﬂ:‘ [E] hitpritocalhosites pha »| D 5o Gl
Customizg Links Fioo Hatmad | | RoslPlayes Windaws Madia Windows

| Setem [irancws T GRACE 5.1 basld 2500

| D] hat My 2 2007 18:47.48

Conhnn e Conninissind caenptinciogy condguie. s *- enable- snagshol bl *-wit gd=snamid®
Servel AF1 Aggthe 20 Handler

Vil Diractery Suppon | seasing
[Contgmanon Pl Iphp et | CININDOWE
1

| Loauleil Confipa atin File & wampplapackelbingn ini

|FUIF AP o041 TS
Fatention oo
Luinl E i Pl
Tislaig Fd s
Thiead Salety faied
Zoinl Kemy Manages =il
i Suppon ananioig k.

£ | >

fona

4. Scroll down the list to find a section of settings for MySQL.

The software sections are listed in alphabetical order, starting with
bcmath. The MySQL sections are located about half way down the list.
You find two blocks, one headed mysql and one headed mysqli. The
difference between mysql and mysqli is explained in Chapter 2 of this
minibook.

When your PHP script runs correctly and the output includes a block of
settings for MySQL support, your environment is ready for your develop-
ment work.

If the PHP script doesn’t run, be sure Apache is started. You can manage
Apache as described in the “Using the XAMPP Control Panel” section,
earlier in this chapter.

Configuring Your Development Environment

Apache, MySQL, and PHP can be configured. Their configuration settings are
stored in text files, which you can edit. When XAMPP installs the software,
it creates configuration files with default settings so that the software runs
with common settings. However, you might need to change the configuration

Book |
Chapter 5

JuawuoiiAug
yuawdojanag qapn

ino), dn buimasg

90

MBER
@&
&

Configuring Your Development Environment

for various reasons. Configuration settings are described throughout the
book when the particular feature being configured is discussed.

XAMPP installs all the software in the directory you designated during instal-
lation, such as ¢ : \xampp, which is the default directory. XAMPP configures
the software to look for the configuration files in this directory. If you need
to change any configuration settings, you must edit the configuration files in
this directory, not in the directories that are mentioned in help files or other
documentation for the individual software.

Configuring PHP

PHP uses settings in a file named php. ini to control some of its behavior.
PHP looks for php . ini when it begins and uses the settings that it finds.
If PHP can’t find the file, it uses a set of default settings.

XAMPP stores the php. ini file in the apache\bin directory in the main
XAMPP folder. For example, if XAMPP is located in the default directory, you
edit the file ¢ : \xampp\apache\bin\php.ini to change PHP configuration
settings.

To configure PHP, follow these steps:

1. Open the php. ini file for editing in a text editor.
2. Edit the settings you want to change.

Steps 3 and 4 mention some specific settings that you should always
change if you're using the specified environment.

3. Only if you’re using PHP 5 or earlier, turn off magic quotes.
Look for the following line:
magic_quotes-gpc On
Change On to Off.
4. Only if you’re using PHP 5 or later, set your local time zone.
Find the line:
;date.timezone =

Remove the semicolon from the beginning of the line. Add the code for
your local time zone after the equal sign. For instance, the line might be

date.timezone = America/Los_Angeles

You can find a list of time zone codes at www .php .net/manual/en/
timezones.php.

5. Save the php. ini file

6. Restart Apache so that the new settings go into effect.

Uninstalling and Reinstalling XAMPP 97

In general, the remaining default settings allow PHP to run okay, but you
might need to edit some of these settings for specific reasons. We discuss
settings in the php. ini file throughout this book when we discuss a topic
that might require you to change settings.

Configuring Apache

The Apache configuration settings are stored in a file named httpd. conf.
This file needs some directives in order for PHP to work. XAMPP adds these
directives when it installs the software so you don’t need to configure Apache
to make PHP work.

You can change some of Apache’s behavior with directives in the httpd.
conf file. For instance, you can change where Apache looks for Web page
files and what port number Apache listens on. Some of the directives you
can change are described in Chapter 4 of this minibook. All the Apache
directives are described in the Apache Web site at httpd.apache.org.

To change the configuration for Apache that was installed using XAMPP, you
need to find the httpd. conf file in the apache\conf folder in the main
folder where XAMPP was installed. For instance, if XAMPP is installed in the
default directory, the Apache configuration file is ¢ : \xampp\apache\
conf\httpd.conf.

Configuring MySQOL

MySQL creates a configuration file when it’s installed. Most people don’t
need to change the MySQL configuration. However, you might want to
change it in order to store your MySQL databases somewhere other than the
default location. In fact, the XAMPP installation configures MySQL to look for
the data directory in the XAMPP directory, which isn’t the default location
for MySQL, so XAMPP configures its data directory setting for you. If you
want to store your data in a different location, you can change the setting
yourself. Instructions for changing the configuration for MySQL are provided
in Chapter 3 of this minibook.

To change the configuration for MySQL that was installed using XAMPP, you
need to find the my . cnf file in the mysgl\bin folder in the main folder
where XAMPP was installed. For instance, if XAMPP is installed in the default
directory, the MySQL configuration file is ¢ : \xampp\mysgl\bin\my.cnf.

Uninstalling and Reinstalling XAMPP

If you feel you've made an error and want to install XAMPP again, you need
to uninstall it before reinstalling. To reinstall XAMPP, follow these steps:

Book |
Chapter 5

JUaWUOIIAUg
yuawdojanag qapn
1oy dn uipasg

98

\NG/
S

Troubleshooting

1. Stop both Apache and MySQL in the XAMPP Control Panel.
See the section, “Using the XAMPP Control Panel,” earlier in this chapter.

If you don’t stop Apache and MySQL before you uninstall XAMPP, you
might encounter difficulties when you reinstall XAMPP. This is especially
true if you started Apache and MySQL as services.

2. Start the uninstall by choosing Start=>All Programs=>Apache Friends>
XAMPP=>Uninstall.

The first screen of the uninstall procedure opens.
3. Move through the screens and answer the questions.

Click the Next button to move through the screens; answer the ques-
tions by selecting the appropriate options.

You can save any databases or Web pages you have created by clicking
the appropriate options.

A message is displayed when XAMPP is completely uninstalled.
4. Start the installation procedure again from the beginning.

See the earlier section, “Installing XAMPP,” for details.

Troubleshooting

Occasionally, when you look in the XAMPP Control Panel, you find Apache
and/or MySQL listed but not running, and the Svc check box isn’t selected.
This means that XAMPP was not able to start Apache or MySQL as a service
during installation.

It’s best to run MySQL and Apache as a service, but not necessary. You can
start them without checking the Svc check box and your development envi-
ronment will work okay. You just need to restart MySQL and Apache in the
Control Panel whenever you start your computer. When MySQL and Apache
are both running as a service, they start automatically when your computer
starts. In most cases, you can start them as a service in the Control Panel
using the methods described in this section.

First, try selecting the Svc check box and clicking the Start button. XAMPP
attempts to start the software as a service. If XAMPP is unsuccessful, you
will see a message displayed in the bottom box, stating that it isn’t started or
that it stopped. A second or third try might be successful.

Troubleshooting 99

When XAMPP is unsuccessful starting the software as a service over several
tries, click the Start button with the Svc check box deselected. The software
will start. Then, stop the software by clicking the Stop button. Then, start
the software again with the Svc check box selected. Usually, XAMPP is now
able to successfully start both packages as a service.

If you are unable to start MySQL and/or Apache as a service even after start-
ing them without selecting the Svc check box and then stopping them, you
can run them without running them as services. They will run okay and your
development environment will work — you’ll just have to remember to start
them again when you start up your computer.

Book |
Chapter 5

JUaWUOIIAUg
yuawdojanag qapn

1oy dn uipasg

100 Boot I- Setting Up Your Environment

Book Il

PHP Programming

The 5th Wave By Rich Tennant
[GRICHTENNANT

“We’re here to clean the code.”

Contents at a Glance
Chapter 1: PHP Basics

Chapter 2: Building PHP Scripts

Chapter 3: PHP and Your Operating System
Chapter 4: Object-Oriented Programming

103
151
197
229

Chapter 1: PHP Basics

In This Chapter

1 Adding PHP sections to HTML files
v~ Writing PHP statements

v Using PHP variables and constants
v~ Using Arrays

v+ Documenting your scripts

pHP is a scripting language designed specifically for use on the Web. It
has features to aid you in programming the tasks needed to develop
dynamic Web applications. PHP is in use on more than 20 million domains
(according to the Netcraft survey at www. php .net/usage.php). Its popu-
larity continues to grow, so it must be fulfilling its function pretty well.

The PHP language syntax is similar to the syntax of C, so if you have experi-
ence with C, you’ll be comfortable with PHP. PHP is actually simpler than C
because it doesn’t include some of the more difficult concepts of C — con-
cepts not required to program Web sites.

In this chapter, we describe the basics of writing PHP scripts — the rules
that apply to all PHP statements. Consider these rules similar to general
grammar and punctuation rules. In the remaining chapters in this minibook,
you find out about specific PHP statements and features and how to write
PHP scripts to perform specific tasks.

How PHP Works

The PHP software works with the Web server. The Web server is the soft-
ware that delivers Web pages to the world. When you type a URL into your
Web browser’s address bar, you're sending a message to the Web server at
that URL, asking it to send you an HTML file. The Web server responds by
sending the requested file. Your browser reads the HTML file and displays
the Web page. You also request a file from the Web server when you click a
link in a Web page. In addition, the Web server processes a file when you
click a Web page button that submits a form.

704 How PHP Works

How the Web server processes PHP files

When a browser is pointed to a regular HTML
file with an .html or .htm extension, the
Web server sends the file, as is, to the browser.
The browser processes the file and displays
the Web page described by the HTML tags in
the file. When a browser is pointed to a PHP file
(with a . php extension), the Web server looks
for PHP sections in the file and processes them
instead of just sending them as is to the
browser. The Web server processes the PHP
file as follows:

1. The Web server starts scanning the file in
HTML mode. It assumes the statements are
HTML and sends them to the browser with-
out any processing.

2. The Web server continues in HTML mode
until it encounters a PHP opening tag
(<?php).

3. When it encounters a PHP opening tag, the
Web server switches to PHP mode. This is
sometimes called escaping from HTML.
The Web server then assumes that all
statements are PHP statements and exe-
cutes the PHP statements. If there is
output, the server sends the output to the
browser.

4. The Web server continues in PHP mode
until it encounters a PHP closing tag (?>).

5. When the Web server encounters a PHP
closing tag, it returns to HTML mode. It
resumes scanning, and the cycle continues
from Step 1.

When PHP is installed, the Web server is configured to expect certain file
extensions to contain PHP language statements. Often the extension is . php
or .phtml, but any extension can be used. (In this book, we assume that
.php is the extension for PHP scripts.) When the Web server gets a request
for a file with the designated extension, it sends the HTML statements as is,
but PHP statements are processed by the PHP software before they’re sent

to the requester.

When PHP language statements are processed, only the output is sent by
the Web server to the Web browser. The PHP language statements aren’t
included in the output sent to the browser, so the PHP code is secure and
transparent to the user. For instance, in this simple PHP statement:

<?php echo "<p>Hello World</p>"; ?>

<?php is the PHP opening tag, and ?> is the closing tag. echo is a PHP
instruction that tells PHP to output the upcoming text. The PHP software
processes the PHP statement and outputs the following:

<p>Hello World</p>

A\

Structure of a PHP Script 105

which is a regular HTML statement. This HTML statement is delivered to the
user’s browser. The browser interprets the statement as HTML code and dis-
plays a Web page with one paragraph — Hello World. The PHP statement
isn’t delivered to the browser, so the user never sees any PHP statements.
PHP and the Web server must work closely together.

PHP isn’t integrated with all Web servers but does work with many of the
popular Web servers. PHP is developed as a project of the Apache Software
Foundation — thus, it works best with Apache. PHP also works with Micro-
soft IIS/PWS, iPlanet (formerly Netscape Enterprise Server), and others.

If you can select or influence the selection of the Web server used in your
organization, select Apache. By itself, Apache is a good choice. It’s free, open
source, stable, and popular. It currently powers more than 60 percent of all
Web sites, according to the Web server survey at www.netcraft.com. It
runs on Windows, Linux, Mac OS, and most flavors of Unix.

Structure of a PHP Script

A\

PHP is an embedded scripting language when used in Web pages. This means
that PHP code is embedded in HTML code. You use HTML tags to enclose
the PHP language that you embed in your HTML file — the same way that
you would use other HTML tags. You create and edit Web pages containing
PHP the same way that you create and edit regular HTML pages.

The PHP language statements are enclosed in PHP tags with the following
form:

<?php ?>

Sometimes you can use a shorter version of the PHP tags. You can try using
<? and ?> without the php. If short tags are enabled, you can save a little
typing. However, if you use short tags, your scripts won'’t run if they’re
moved to another Web host where PHP short tags are not activated.

PHP processes all statements between the two PHP tags. After the PHP sec-
tion is processed, it’s discarded. Or if the PHP statements produce output,
the PHP section is replaced by the output. The browser doesn’t see the PHP
section — the browser sees only its output, if there is any. For more on this
process, see the sidebar “How the Web server processes PHP files.”

As an example, start with an HTML script that displays Hello World! in
the browser window, shown in Listing 1-1. (It’s a tradition that the first script
you write in any language is the Hello World script. You might have written a
Hello World script when you first learned HTML.)

Book I
Chapter 1

soiseq dHd

106 stucture of a PHP Script

Listing 1-1: The Hello World HTML Script

<html>

<head><title>Hello World Script</title></head>
<body>

<p>Hello World!</p>

</body>

</html>

If you open this HTML script in your browser, you see a Web page that
displays

Hello World!

Listing 1-2 shows a PHP script that does the same thing — it displays Hello
World! in a browser window.

Listing 1-2: The Hello World PHP Script

<html>
<head><title>Hello World Script</title></head>
<body>
<?php
echo "<p>Hello World!</p>"
?>
</body>
</html>

When you run this script, by looking at it in your browser, it displays the
same Web page as the HTML script in Listing 1-1.

\‘\QN\BEH Don’t look at the file directly with your browser. That is, don’t choose Filew>
& Open File from your browser menu to navigate to the file and click it. You
must open the file by typing its URL in the browser’s address bar. If you see
the PHP code displayed in the browser window instead of the output that
you expect, you might not have started the file with its URL.

In this PHP script, the PHP section is

<?php
echo "<p>Hello World!</p>"
?>

The PHP tags enclose only one statement — an echo statement. The echo
statement is a PHP statement that you’ll use frequently. The output is simply
the text that’s included between the double quotes.

PHP Syntax 107

When the PHP section is processed, it’s replaced with the output. In this
case, the output is

<p>Hello World!</p>

If you replace the PHP section in Listing 1-2 with the preceding output, the
script now looks exactly like the HTML script in Listing 1-1. If you open
either script in your browser, you see the same Web page. If you look at the
source code that the browser sees (in the browser, choose Viewr>Source),
you see the same source code listing for both scripts.

You can have as many PHP sections in a script as you need, with as many
HTML sections as you need, including zero PHP or HTML sections. For
instance, the following script has two PHP sections and two HTML sections:

Book |
Chapter 1

<html>
<head><title>Hello World Script</title></head>
<body>
<?php
echo "<p>Hello World!"
?>
<p>This is HTML only.</p>
<?php
echo "<p>Hello World again!</p>"
?>
<p> This is a second HTML section.</p>
</body>
</html>

soiseq dHd

PHP Syntax

The PHP section that you add to your HTML file consists of a series of PHP
statements. Each PHP statement is an instruction to PHP to do something.
PHP statements can be simple or complex.

Using simple statements

Simple statements are an instruction to PHP to do one simple action. The
echo statement shown in Listing 1-2 is a simple PHP statement that instructs
PHP to output the text between the double quotes. PHP simple statements
follow these rules:

4+ PHP statements end with a semicolon or the PHP ending tag. PHP
doesn’t notice white space or the end of lines. It continues reading a
statement until it encounters a semicolon or the PHP closing tag, no
matter how many lines the statement spans.

4+ PHP statements may be written in either upper- or lowercase. In an
echo statement, Echo, echo, ECHO, and eCHo are all the same to PHP.

108 pHP syntax

The following example contains two echo statements that produce the same
output:

echo "<p>Hello World</p>";
echo "<p>Hello
World</p>";

PHP reads the second echo statement until it encounters the semicolon on
the second line, so that both statements produce the following output:

<p>Hello World</p>

The following is another valid PHP statement that produces the same
output:

<?php echo "<p>Hello World!</p>" ?>

The echo statement is on the same line as the PHP tags. PHP reads the state-
ment until it reaches the closing tag, which PHP sees as the end of the state-
ment. The next example also produces the same output:

<?php
echo "<p>Hello</p>"; echo "<p>World</p>";
?>

This example contains two PHP echo statements on one line, both ending in
a semicolon. If you wanted to, you could write the entire PHP section in one
long line, as long as you separated statements with semicolons. However, a
script written this way would be impossible for people to read.

Using complex statements

Sometimes groups of simple statements are combined into a block. A block is
enclosed by curly braces, { and }. A block of statements execute together. A
common use of a block is a conditional block, in which statements are exe-
cuted only when certain conditions are true. For instance, you might want
your script to do the following:

if (the sky is blue)
{
put leash on dragon;
take dragon for a walk in the park;

}

These statements are enclosed in curly braces to ensure that they execute
as a block. If the sky is blue, both put leash on dragon and take
dragon for a walk in the park are executed. If the sky is not blue,

Writing PHP Code 109

neither statement is executed (no leash; no walk), and you have an irritated
dragon on your hands.

PHP statements that use blocks, such as if statements (which we explain in
Chapter 2 in this minibook), are complex statements. PHP reads the entire
complex statement, not stopping at the first semicolon that it encounters.
PHP knows to expect one or more blocks and looks for the ending curly
brace of the last block in complex statements. Notice that a semicolon
appears before the ending brace. This semicolon is required, but no semi-
colon is required after the ending curly brace.

Book |

Wl’itinq PH’, COde Chapter 1

PHP code must be read by humans, as well as by the PHP software. PHP
scripts are written by humans and must be modified, updated, and main-
tained by humans. The script might need to be modified a year or two in the
future when the original programmer has moved on to retirement on a tropi-
cal beach. The person who must modify the script needs to be able to read
and understand the script, which he or she has never seen before. Conse-
quently, the PHP code must be written in a style that’s easy for humans to
comprehend quickly.

soiseq dHd

In general, each PHP simple statement is written on a single line ending with
a semicolon. An exception is echo statements that echo long text strings. It’s
not necessary to end the statement at the end of a line and start a new state-
ment on the next line. You can write the statement over several lines, as long
as you're careful to end the statement with the semicolon on the last line. It’s
also a good idea to indent the lines after the first line to show clearly that
the additional lines are part of the same statement, as follows:

echo "This is a really,
really, really, really
long statement";

When writing blocks of statements, coding style dictates that you should
indent the block statements to clearly show where the block begins and
ends. For instance, in the following example of a conditional statement, the
simple statements in the block are indented:

if (the sky is blue)
{
put leash on dragon;
take dragon for a walk in the park;

}

PHP doesn’t need the indenting, but it helps humans read the code.

110 Displaying Content in a Web Page

Two styles are used commonly for the placement of the opening curly brace,
as follows:

if (the sky is blue)
{
put leash on dragon;
take dragon for a walk in the park;

}
if (the sky is blue) {
put leash on dragon;

take dragon for a walk in the park;

}

We use the first style in this book because we consider it easier to read. How-
ever, many people use the second style because it saves lines in the script.

Displaying Content in a Web Page

You display content on your Web page with echo statements. An echo state-
ment produces output, which is sent to the user’s browser. The browser han-
dles the output as HTML.
The general format of an echo statement is
echo outputitem, outputitem, outputitem, ...
where the following rules apply:

4 An outputitemcan be a number, a string, or a variable (using variables

is discussed in the section “Using PHP Variables,” later in this chapter. A
string must be enclosed in quotes.

4 List as many outputitems as you need, separated by commas.

Table 1-1 shows some echo statements and their output.

Table 1-1 echo Statements

echo Statement Output

echo "Hello"; Hello

echo 123; 123

echo "Hello", "World!"; HelloWorld!

echo Hello World!; Not valid; results in an error message
echo "Hello World!"; Hello World!

echo 'Hello World!'; Hello World!

MBER

Displaying Content in a Web Page 111

echo statements output a line of text that’s sent to a browser. The browser
considers the text to be HTML and handles it that way. Therefore, you need
to make sure that your output is valid HTML code that describes the Web
page that you want the user to see.

When you want to display a Web page (or part of a Web page) by using PHP,
you need to consider three stages in producing the Web page:

4+ The PHP script: PHP echo statements that you write.

4+ The HTML source code: The source code for the Web page that you see
when you choose View=>Source in your browser. The source code is the
output from the echo statements.

4+ The Web page: The Web page that your users see. The Web page results
from the HTML source code.

The echo statements send exactly what you echo to the browser — no
more, no less. If you don’t echo any HTML tags, none are sent.

PHP allows some special characters that format output, but they aren’t
HTML tags. The PHP special characters affect only the output from the echo
statement — not the display on the Web page. For instance, if you want to
start a new line in the PHP output, you must include a special character (\n)
that tells PHP to start a new line. However, this special character just starts
a new line in the output; it does not send an HTML tag to start a new line on
the Web page. Table 1-2 shows examples of the three stages.

Table 1-2 Stages of Web Page Delivery

echo Statement HTML Source Code Web Page Display
echo "Hello World!"; Hello World! Hello World!
echo "Hello World!"; Hello World! Hello World!
echo "Here I am!"; Here I am! Here I am!
echo "Hello World!\n"; Hello World! Hello World!
echo "Here I am!"; Here I am Here I am!
echo "Hello World!"; Hello World!
 Hello World!
echo "
"; Here I am!" Here I am!
echo "Here I am!";

echo "Hello"; Hello World!
 Hello World!
echo " World! Here I am!" Here I am!

\n";

echo "Here I am!";

Book |
Chapter 1

soiseq dHd

112 Displaying Content in a Web Page

Table 1-2 summarizes the differences between the stages in creating a Web
page with PHP. To look at these differences more closely, consider the follow-
ing two echo statements:

echo "Line 1";
echo "Line 2";

If you put these lines in a script, you might expect the Web page to display

Line 1
Line 2

However, this is not the output that you would get. The Web page would dis-
play this:

Line 1Line 2

If you look at the source code for the Web page, you see exactly what is sent
to the browser, which is this:

Line 1Line 2

Notice that the line that is sent to the browser contains exactly the charac-
ters that you echoed — no more, no less. The character strings that you
echoed didn’t contain any spaces, so no spaces appear between the lines.
Also notice that the two lines are echoed on the same line. If you want a new
line to start, you have to send a signal indicating the start of a new line. To
signal that a new line starts here in PHP, echo the special character \n.
Change the echo statements to the following:

echo "line 1\n";
echo "line 2'";

Now you get what you want, right? Well, no. Now you see the following on
the Web page:

line 1 line 2
If you look at the source code, you see this:

line 1
line 2

So, the \n did its job: It started a new line in the output. However, HTML dis-
plays the output on the Web page as one line. If you want HTML to display
two lines, you must use a tag, such as the
 tag. So, change the PHP
end-of-line special character to an HTML tag, as follows:

Using PHP Variables] 73

echo "line 1l
";
echo "line 2";

Now you see what you want on the Web page:

line 1
line 2

If you look at the source code for this output, you see this:

line 1l
1line 2

P Use \n liberally. Otherwise, your HTML source code will have some really Book II
long lines. For instance, if you echo a long form, the whole thing might be Chapter 1
one long line in the source code, even though it looks fine in the Web page.

Use \n to break the HTML source code into reasonable lines. It’s much easier

to examine and troubleshoot the source code if it’s not a mile-long line. 2z
-l
w
D
=,
@

Using PHP Variables

Variables are containers used to hold information. A variable has a name,
and information is stored in the variable. For instance, you might name a
variable $age and store the number 12 in it. After information is stored in a
variable, it can be used later in the script. One of the most common uses for
variables is to hold the information that a user types into a form.

Naming a variable

When you’re naming a variable, keep the following rules in mind:
4 All variable names have a dollar sign ($) in front of them. This tells PHP
that it is a variable name.
4 Variable names can be any length.

Variable names can include letters, numbers, and underscores only.

<+

4+ Variable names must begin with a letter or an underscore. They cannot
begin with a number.

4+ Uppercase and lowercase letters are not the same. For example,
$firstname and $Firstname are not the same variable. If you store
information in $firstname, for example, you can’t access that informa-
tion by using the variable name $firstName.

] 74 Using PHP Variables

\\J

When you name variables, use names that make it clear what information is
in the variable. Using variable names like $varl, $var2, $A, or $B doesn’t
contribute to the clarity of the script. Although PHP doesn’t care what you
name the variable and won’t get mixed up, people trying to follow the script
will have a hard time keeping track of which variable holds what informa-
tion. Variable names like $firstName, Sage, and SorderTotal are much
more descriptive and helpful.

Creating and assigning values to variables

Variables can hold numbers or strings of characters. You store information
in variables with a single equal sign (=). For instance, the following four PHP
statements assign information to variables:

Sage = 12;

Sprice = 2.55;

Snumber = -2;

Sname = "Little Bo Peep";

Notice that the character string is enclosed in quotes, but the numbers are
not. We discuss more about using numbers and characters in the section
“Understanding Data Types,” later in this chapter.

Whenever you put information into a variable that didn’t exist before, you
create that variable. For instance, suppose you use the following PHP
statement:

Sfirstname = "George";

If this statement is the first time that you've mentioned the variable
$firstname, this statement creates the variable and sets it to "George". If
you have a previous statement setting $firstname to "Mary", this state-

ment changes the value of $firstname to "George".

You can also remove information from a variable. For example, the following
statement takes information out of the variable Sage:

Sage = "";
The variable $age exists but doesn’t contain a value. It doesn’t mean that
Sage is set to 0 (zero) because 0 is a value. It means that $age doesn’t store
any information. It contains a string of length 0.

You can go even further and uncreate the variable by using this statement:

unset (Sage) ;

After this statement is executed, the variable $age no longer exists.

Using PHP Variables 115

Using variable variables

PHP allows you to use dynamic variable names, called variable variables.
You can name a variable with the value stored in another variable. That is,
one variable contains the name of another variable. For example, suppose
you want to construct a variable named $city with the value Los Angeles.
You can use the following statement:

Sname_of_the_variable = "city";

This statement creates a variable that contains the name that you want to
give to a variable. Then, you use the following statement:

$$name_of_the_variable - "Los Angeles";

Note the extra dollar sign ($) character at the beginning of the variable
name. This indicates a variable variable. This statement creates a new vari-
able with the name that is the value in $name_of_the_variable, resulting
in the following:

Scity = "Los Angeles";

The value of $name_of_the_variable does not change.

The following example shows how this feature works. In its present form, the
script statements may not seem that useful; you may see better way to pro-
gram this task. The true value of variable variables becomes clear when they

are used with arrays and loops, as discussed in Chapter 2 of this minibook.

Suppose you want to name a series of variables with the names of cities that
have values that are the populations of the cities. You can use this code:

SReno = 360000;
SPasadena = 138000;

Scityname = "Reno";
echo "The size of Scityname is ${S$cityname}";
Scityname = "Pasadena";

echo "The size of Scityname is ${$cityname}";
The output from this code is:

The size of Reno is 360000
The size of Pasadena is 138000

Notice that you need to use curly braces around the variable name in the
echo statement so that PHP knows where the variable name is. If you use the
statement without the curly braces, the output is as follows:

The size of Reno is $Reno

Book |
Chapter 1

soiseq dHd

116 Using PHP Variables

Without the curly braces in $$cityname, PHP converts $cityname to its
value and puts the extra $ in front of it, as part of the preceding string.

Displaying variable values

You can display the value in a variable by using any of the following
statements:

4 echo
4 print_r

4 var_dump

Using variables in echo statements

You can display the value in a variable on a Web page with an echo state-
ment. For instance, if you use the following PHP statement in a PHP section:

echo Sage;

the output is 12. If you include the following line in an HTML file:
<p>Your age is <?php echo $age ?>.</p>

the output on the Web page is

Your age is 12.

Table 1-3 shows the use of variables in some echo statements and their

output. For the purposes of the table, assume that $stringl is set to Hello
and $string?2 is set to World!.

Table 1-3 echo Statements

echo Statement Output

echo S$stringl; Hello

echo S$stringl, $string2; HelloWorld!

echo "S$stringl S$string2"; Hello World!

echo "Hello ",$string2; Hello World!

echo "Hello"," ",$string2; Hello World!

echo 'S$stringl', "$string2"; SstringlWorld!

QNG
N Double quotes and single quotes have different effects on variables. When

you use single quotes, variable names are echoed as is. When you use
double quotes, variable names are replaced by the variable values.

Using PHP Variables 117

Sometimes you need to enclose variable names in curly braces ({ }) to
define the variable name. For instance, the following statements

Spet = "bird";
echo "The S$petcage has arrived.";

won’t output bird as the $pet variable. In other words, the output won’t be
The birdcage has arrived. Rather, PHP will look for the variable
$petcage and won’t be able to find it. You can echo the correct output by
using curly braces to separate the $pet variable:

Spet = "bird";
echo "The {S$petl}cage has arrived.";

The preceding statement gives you

The birdcage has arrived.

A variable keeps its information for the entire script, not just for a single PHP
section. If a variable is set to "yes" at the beginning of a file, it will still hold
"yes" at the end of the page. For instance, suppose your file has the follow-

ing statements:

<p>Hello World!</p>

<?php
Sage = 15;
Sname = "Harry";
?>
<p>Hello World again!</p>
<?php

echo S$name;
?>

The echo statement in the second PHP section will display Harry. The Web
page resulting from these statements is

Hello World!
Hello World again!

Harry

Displaying variables with print_r statements

PHP provides a function named print_r for looking at the value in a vari-
able. You can write the following statements to display a variable value:

Sweekday = "Monday";
print_r (Sweekday) ;

Book |
Chapter 1

soiseq dHd

118 Using PHP Constants

The output from print_r is:

Monday

Displaying variables with var_dump statements

PHP provides a function named var_dump that you can use to display a vari-
able value and its data type. (Data types are discussed in detail in the sec-
tion “Understanding Data Types,” later in this chapter.)

You can write the following statements to display a variable value:

Sweekday = "Monday";
var_dump (Sweekday) ;

The output of var_dump is:
string(6) "Monday"

The output shows that the value in $weekday is Monday. The output also
shows that the value is a string data type that is 6 characters long.

Using PHP Constants

PHP constants are similar to variables. Constants are given a name, and a
value is stored in them. However, constants are constant; that is, they can’t
be changed by the script. After you set the value for a constant, it stays the
same. If you used a constant for age and set it to 21, for example, it can’t be
changed.

Constants are used when a value is needed in several places in the script
and doesn’t change during the script. The value is set in a constant at the
start of the script. By using a constant throughout the script, instead of a
variable, you make sure that the value won’t get changed accidentally. By
giving it a name, you know what the information is instantly. And by setting a
constant once at the start of the script (instead of using the value through-
out the script), you can change the value of the constant in one place if
needed instead of hunting for the value in many places in the script to
change it.

For instance, you might set one constant that’s the company name and
another constant that’s the company address and use them wherever
needed. Then, if the company moves, you can just change the value in the
company address constant at the start of the script instead of having to find
and change every place in your script that echoed the company name.

Understanding Data Types 119

You set constants by using the define statement. The format is
define (" constantname", "constantvalue") ;

For instance, to set a constant with the company name, use the following
statement:

define ("COMPANY", "My Fine Company") ;
Use the constant in your script wherever you need your company name:

echo COMPANY;
Book |

When you echo a constant, you can’t enclose it in quotes. If you do, you Chapter 1

echo the constant name, instead of the value. You can echo it without any-
thing, as shown in the preceding example, or enclosed in parentheses.

You can use any name for a constant that you can use for a variable.
Constant names are not preceded by a dollar sign ($). By convention, con-
stants are given names that are all uppercase, so you can easily spot con-
stants, but PHP itself doesn’t care what you name a constant. You don’t have
to use uppercase, it’s just clearer. You can store either a string or a number
in it. The following statement is perfectly okay with PHP:

soiseq dHd

define ("AGE",29);

Understanding Data Types

Values stored in a variable or a constant are stored as a specific type of data.
PHP provides eight data types:
4 Integer: A whole number
Floating-point number: A numeric value with decimal digits
String: A series of characters
Boolean: A value that can be either true or false
Array: A group of values in one variable

Object: A structure created with a class

+ 4 e

Resource: A reference that identifies a connection
4 NULL: A value that represents no value
Integer, float, string, Boolean, and NULL data types are discussed in the fol-

lowing sections. Arrays are discussed in the section “Using Arrays,” later in
this chapter. Objects are discussed in Chapter 4 in this minibook.

120 Understanding Data Types

When writing PHP scripts, you don’t need to specify which data type you're
storing. PHP determines the data type automatically. The following two
statements store different data types:

Svarl
Svar?2

123;
|l123|l;

The value for $vari is stored as an integer. The value for $var?2 is stored as
a string because it’s enclosed in quotes.

PHP converts data types automatically when it needs to. For instance, if you
add two variables, one containing an integer and one containing a float, PHP
converts the integer to a float so that it can add the two.

Occasionally, you might want to store a value as a data type different than
the data type PHP automatically stores. You can set the data type for a vari-
able with a cast, as follows:

Svar3
Svard

|1222|l;
(int) S$var3;

This statement sets $var4 equal to the value in $var3, changing the value
from a string to an integer. You can also cast using (float) or (string).

You can find out which data type is stored in a variable with var_dump ().
For instance, you can display a variable as follows:

var_dump (Svard) ;
The output from this statement is the following:

int (222)

Working with integers and floating-point numbers
Integers are whole numbers, such as 1, 10, and 333. Floating-point numbers,
also called real numbers, are numbers that contain a decimal value, such as
3.1 or .667. PHP stores the value as an integer or a float automatically.

Performing arithmetic operations on numeric data types

PHP allows you to do arithmetic operations on numbers. You indicate arith-
metic operations with two numbers and an arithmetic operator. For instance,
one operator is the plus (+) sign, so you can indicate an arithmetic operation
like this:

1+ 2

Understanding Data Types 121

You can also perform arithmetic operations with variables that contain num-
bers, as follows:

$nl = 1;
Sn2 = 2;
$sum = $nl + $n2;

You can add numbers that aren’t the same data type, as follows:

snl = 1.5;
Sn2 = 2;
Ssum = $nl + $n2;

PHP converts $n2 to a float (2. 0) and adds the two values. $sumis then a
float.

Using arithmetic operators

PHP provides five arithmetic operators. Table 1-4 shows the arithmetic oper-
ators that you can use.

Table 1-4 Arithmetic Operators

Operator Description

+ Add two numbers.

- Subtract the second number from the first number.

* Multiply two numbers.

/ Divide the first number by the second number.

% Find the remainder when the first number is divided by the second

number. This is called modulus. For instance,in$a = 13 % 4, S$a
is setto 1.

You can do several arithmetic operations at once. For instance, the following
statement performs three operations:

Sresult =1 + 2 * 4 + 1;

The order in which the arithmetic is performed is important. You can get dif-
ferent results depending on which operation is performed first. PHP does
multiplication and division first, followed by addition and subtraction. If
other considerations are equal, PHP goes from left to right. Consequently,
the preceding statement sets $result to 10, in the following order:

Sresult =1 + 2 * 4 + 1 (first it does the multiplication)
Sresult = 1 + 8 + 1 (next it does the leftmost addition)
Sresult = 9 + 1 (next it does the remaining addition)
Sresult = 10

Book I
Chapter 1

saiseq dHd

122 Understanding Data Types

A\

You can change the order in which the arithmetic is performed by using
parentheses. The arithmetic inside the parentheses is performed first. For
instance, you can write the previous statement with parentheses like this:
Sresult = (1 + 2) * 4 + 1;

This statement sets $result to 13, in the following order:

Sresult = (1 + 2) * 4 + 1 (first it does the math in the parentheses)
Sresult = 3 * 4 + 1 (next it does the multiplication)

Sresult = 12 + 1 (next it does the addition)

Sresult = 13

On the better-safe-than-sorry principle, it’s best to use parentheses when-
ever more than one answer is possible.

Formatting numbers as dollar amounts

Often, the numbers that you work with are dollar amounts, such as product
prices. You want your customers to see prices in the proper format on Web
pages. In other words, dollar amounts should always have two decimal
places. However, PHP stores and displays numbers in the most efficient
format. If the number is 10.00, it’s displayed as 10. To put numbers into the
proper format for dollars, you can use sprintf. The following statement
formats a number into a dollar format:

Snewvariablename = sprintf ("%01.2f", Soldvariablename) ;
This statement reformats the number in $oldvariablename and stores it
in the new format in $newvariablename, which is a string data type. For
example, the following statements display money in the correct format:
Sprice = 25;

Sf_price = sprintf("%01.2f",Sprice);

echo "S$f_price";

You see the following on the Web page:

25.00

If you display the variable with var_dump ($f_price), the output is
string(5) "25.00"

If you want commas to separate thousands in your number, you can use

number_format. The following statement creates a dollar format with
commas:

Understanding Data Types 123

Sprice = 25000;
$f_price = number_format ($price,?2);
echo "S$Sf_price";

You see the following on the Web page:
25,000.00

The 2 in the number format statement sets the format to two decimal
places. You can use any number to get any number of decimal places.

Working with character strings

A character string is a series of characters. Characters are letters, numbers,
and punctuation. When a number is used as a character, it is just a stored
character, the same as a letter. It can’t be used in arithmetic. For instance, a
phone number is stored as a character string because it needs to be only
stored — not added or multiplied.

Assigning strings to variables

When you store a character string in a variable, you tell PHP where the
string begins and ends by using double quotes or single quotes. For
instance, the following two statements produce the same result:

"Hello World!";
'Hello World!"';

Sstring
Sstring

Suppose that you wanted to store a string as follows:

Sstring = 'It is Sally's house';
echo S$string;

These statements won’t work because when PHP sees the ' (single quote)
after sally, it thinks that this is the end of the string, displaying the
following:

It is Sally

You need to tell PHP to interpret the single quote (') as an apostrophe
instead of as the end of the string. You can do this by using a backslash (\)
in front of the single quote. The backslash tells PHP that the single quote
doesn’t have any special meaning; it’s just an apostrophe. This is called
escaping the character. Use the following statements to display the entire
string:

$Sstring = 'It is Sally\'s house';
echo S$string;

Book |
Chapter 1

soiseq dHd

12 4 Understanding Data Types

WMBER
@&
&

Similarly, when you enclose a string in double quotes, you must also use a
backslash in front of any double quotes in the string.

Using single and double quotes with strings

Single-quoted and double-quoted strings are handled differently. Single-
quoted strings are stored literally, with the exception of \ ', which is stored
as an apostrophe. In double-quoted strings, variables and some special char-
acters are evaluated before the string is stored. Here are the most important
differences in the use of double or single quotes in code:

4+ Handling variables: If you enclose a variable in double quotes, PHP uses
the value of the variable. However, if you enclose a variable in single
quotes, PHP uses the literal variable name. For example, if you use the
following statements:

Smonth = 12;
Sresultl = "Smonth";
Sresult2 = 'Smonth';
echo Sresultl;

echo "
";

echo Sresult2;

the output is

12
Smonth

Refer to Table 1-3, earlier in this chapter, for more examples.

4+ Starting a new line: The special characters \n tell PHP to start a new
line. When you use double quotes, PHP starts a new line at \n; with
single quotes, \n is a literal string. For instance, when using the follow-
ing statements:

"String in \ndouble quotes";
'String in \nsingle quotes';

$stringl =
Sstring2 =

the stringl output is

String in
double quotes

and the string2 output is
String in \nsingle quotes

4+ Inserting a tab: The special characters \t tell PHP to insert a tab. When
you use double quotes, PHP inserts a tab at \ t, but with single quotes,
\t is a literal string. For instance, when using the following statements:

"String in \tdouble quotes";
'String in \tsingle quotes';

$stringl
Sstring?2

Understanding Data Types 125

the stringl output is
String in double quotes
and the string2 output is

String in \tsingle quotes

The quotes that enclose the entire string determine the treatment of vari-
ables and special characters, even if other sets of quotes are inside the
string. For example, look at the following statements:

Snumber = 10;

Sstringl = "There are 'Snumber' people in line.";
Sstring2 = 'There are "S$number" people waiting.';
echo $stringl, "
\n";

echo $string2;

The output is as follows:

There are '10' people in line.
There are "Snumber" people waiting.

Joining strings
You can join strings, a process called concatenation, by using a dot (.). For
instance, you can join strings with the following statements:

Sstringl = 'Hello';

Sstring2 = 'World!';

S$stringall = $stringl.S$string2;
echo S$stringall;

The echo statement’s output is

HelloWorld!

Notice that no space appears between Hello and Wor1d. That’s because no
spaces are included in the two strings that are joined. You can add a space
between the words by using the following concatenation statement rather
than the earlier statement:

Sstringall = S$stringl." ".S$Sstring2;

You can use . = to add characters to an existing string. For example, you can
use the following statements in place of the preceding statements:

Sstringall = "Hello";
Sstringall .= " World!";
echo S$stringall;

Book |
Chapter 1

soiseq dHd

126 Understanding Data Types

The echo statement output is this:
Hello World!

You can also take strings apart. You can separate them at a given character
or look for a substring in a string. You use functions to perform these and
other operations on a string. We explain functions in Chapter 2 in this
minibook.

Storing really long strings

PHP provides a feature called a heredoc that is useful for assigning values
that consist of really long strings that span several lines. A heredoc enables
you to tell PHP where to start and end reading a string. A heredoc state-
ment has the following format:

Svarname = <<<ENDSTRING
text
ENDSTRING;

ENDSTRING is any string you want to use. You enclose the text you want
stored in the variable $varname by typing ENDSTRING at the beginning
and again at the end. When PHP processes the heredoc, it reads the first
ENDSTRING and knows to start reading text into Svarname. It continues
reading text into Svarname until it encounters the same ENDSTRING again.
At that point, it ends the string. The string created by a heredoc statement
evaluates variables and special characters in the same manner as a double-
quoted string.

The following statements create a string with the heredoc method:

Sdistance = 10;
Sherevariable = <<<ENDOFTEXT
The distance between

Los Angeles and Pasadena

Is s$distance miles.
ENDOFTEXT;

Echo Sherevariable;

The output of the echo statement is as follows:

The distance between Los Angeles and Pasadena is 10 miles.

But be careful. PHP is picky about its ENDSTRINGs. When it first appears, the
ENDSTRING (ENDOFTEXT in this example) must occur at the end of the first

line, with nothing following it, not even a space. And the ENDSTRING on the
last line must occur at the start of the line, with nothing before it, not even a

Understanding Data Types 127

space and nothing following it other than the semicolon. If these rules are
broken, PHP won’t recognize the ending string and will continue looking for
it throughout the rest of the script. It will eventually display a parse error
showing a line number that is the last line in the script.

Working with the Boolean data type

A Boolean data type takes on only the values of true or false. You can assign
a Boolean value to a variable as follows:

Svarl = true;

PHP sets the variable to a Boolean data type. Boolean values are used when
comparing values and expressions for conditional statements, such as i £
statements. Comparing values is discussed in detail in Chapter 2 in this
minibook.

The following values are evaluated as false by PHP:

4 The word false

The integer 0

The floating-point number 0.0
An empty string

A string with the value 0

An empty array

An empty object

The value NULL

R R R R AR

If a variable contains a value that is not evaluated as false, it is assigned the
value true.

Working with the NULL data type

The only value that is a NULL data type is NULL. You can assign the value to
a variable as follows:

Svarl = NULL;

A variable with a NULL value contains no value.

Book I
Chapter 1

soiseq dHd

128 Using Arrays

Using Arrays

Arrays are complex variables. An array stores a group of values under a
single variable name. An array is useful for storing related values. For
instance, you can store information about a flower (such as variety, color,
and cost) in a single array named $flowerinfo. Information in an array can
be handled, accessed, and modified easily. For instance, PHP has several
methods for sorting an array. The following sections give you the lowdown
on arrays.

Creating arrays

The simplest way to create an array is to assign a value to a variable with
square brackets ([1) at the end of its name. For instance, assuming that
you haven'’t referenced $cities at any earlier point in the script, the follow-
ing statement creates an array called $Scities:

Scities[1l] = "Phoenix";

At this point, the array named $cities has been created and has only one
value: Phoenix. Next, you use the following statements:

Scities[2] = "Tucson";
Scities[3] "Flagstaff";

Now the array $cities contains three values: Phoenix, Tucson, and
Flagstaff.

An array can be viewed as a list of key/value pairs. Each key/value pair is
called an element. To get a particular value, you specify the key in the brack-
ets. In the preceding array, the keys are numbers — 1, 2, and 3. However, you
can also use words for keys. For instance, the following statements create an
array of state capitals:

Scapitals['CA'] = "Sacramento";
Scapitals['TX'] = "Austin";
Scapitals['OR'] = "Salem";

You can use shortcuts rather than write separate assignment statements for
each number. One shortcut uses the following statements:

Scities[] = "Phoenix";
Scities[] = "Tucson";
Scities[] = "Flagstaff";

NG/
QV'

Using Arrays 129

When you create an array using this shortcut, the values are automatically
assigned keys that are serial numbers, starting with the number 0. For exam-
ple, the following statement

echo "$Scities[0]";

outputs Phoenix.

The first value in an array with a numbered index is 0 unless you deliber-
ately set it to a different number. One common mistake when working with
arrays is to think of the first number as 1 rather than 0.

An even better shortcut is to use the following statement:

Scities = array("Phoenix", "Tucson", "Flagstaff");

This statement creates the same array, with numbered keys, as the preced-
ing shortcut. You can use a similar statement to create arrays with words

as keys. For example, the following statement creates the array of state
capitals:

Scapitals = array("CA" => "Sacramento", "TX" => "Austin",
"OR" => "Salem");

Viewing arrays
You can echo an array value like this:
echo Scapitals['TX'];

If you include the array value in a longer echo statement enclosed by double
quotes, you might need to enclose the array value name in curly braces:

echo "The capital of Texas is {$capitals['TX']}
";

You can see the structure and values of any array by using a print_r or a
var_dump statement. To display the $capitals array, use one of the fol-
lowing statements:

print_r (Scapitals) ;

var_dump (Scapitals) ;

This print_r statement provides the following output:

Book |
Chapter 1

soiseq dHd

73 0 Using Arrays

Array

(
[CA] => Sacramento
[TX] => Austin
[OR] => Salem

)

The var_dump statement provides the following output:

array (3) {

["CA"]=>

string(10) "Sacramento"
["TX"]=>

string(6) "Austin"
["OR"]=>

string(5) "Salem"

}

The print_r output shows the key and the value for each element in the
array. The var_dump output shows the data type, as well as the keys and
values.

<® When you display the output from print_r or var_dump on a Web page, it
displays with HTML, which means that it displays in one long line. To see the
output on the Web in the useful format that we describe here, send HTML
tags that tell the browser to display the text as received, without changing it,
by using the following statements:

echo "<pre>";
print_r (Scapitals) ;
echo "</pre>";

Removing values from arrays

Sometimes you need to completely remove an element from an array. For
example, suppose you have the following array with five elements:

Scities[0] = Phoenix
Scities[1l] = Tucson
Scities[2] = Flagstaff
Scities[3] = Tempe
Scities[4] = Prescott

}

Now you decide that you no longer want to include Tempe, so you use the
following statement to try to remove Tempe from the array:

Scities[3] = "";

Using Arrays '3 1

Although this statement sets Scities[4] to an empty string, it doesn’t
remove the element from the array. You still have an array with five ele-
ments, but one of the five values is empty. To totally remove the element
from the array, you need to unset it with the following statement:

unset ($cities[3]);

Now your array has only four elements in it as follows:

Scities[0] = Phoenix
Scities[1l] = Tucson
Scities[2] = Flagstaff
Scities[4] = Prescott

Sorting arrays

One of the most useful features of arrays is that PHP can sort them for you.
PHP originally stores array elements in the order in which you create them.
If you display the entire array without changing the order, the elements will
be displayed in the order in which you created them. Often, you want to
change this order. For example, you might want to display the array in alpha-
betical order by value or by key.

PHP can sort arrays in a variety of ways. To sort an array that has numbers
as keys, use a sort statement as follows:

sort(Scities);

This statement sorts by the values and assigns new keys that are the appro-
priate numbers. The values are sorted with numbers first, uppercase letters
next, and lowercase letters last. For instance, consider the $Scities array
created in the preceding section:

Scities[0] = "Phoenix";
Scities[1l] = "Tucson";
Scities[2] = "Flagstaff";

After the following sort statement
sort (Scities) ;

the array becomes

Scities[0] = "Flagstaff";
Scities[1l] = "Phoenix";
Scities[2] = "Tucson';

Book |
Chapter 1

soiseq dHd

73 2 Using Arrays

\NG/
vg,\\

If you use sort () to sort an array with words as keys, the keys will be
changed to numbers, and the word keys will be thrown away.

To sort arrays that have words for keys, use the asort statement. This
statement sorts the capitals by value and keeps the original key for each
value. For instance, consider the state capitals array created in the preced-
ing section:

Scapitals['CA'] = "Sacramento";
Scapitals['TX'] = "Austin";
Scapitals['OR'] = "Salem";

After the following asort statement
asort (Scapitals) ;

the array becomes

Scapitals['TX'] = "Austin";
Scapitals['CA'] = "Sacramento";
Scapitals['OR'] = "Salem";

Notice that the keys stayed with the value when the elements were reordered.
Now the elements are in alphabetical order, and the correct state key is still
with the appropriate state capital. If the keys had been numbers, the num-
bers would now be in a different order. It’s unlikely that you want to use
asort on an array with numbers as a key.

Several other sort statements sort in other ways. Table 1-5 lists all the avail-
able sort statements.

Table 1-5 Ways You Can Sort Arrays

Sort Statement What It Does

sort (Sarrayname) Sorts by value; assigns new numbers as the keys

asort (Sarrayname) Sorts by value; keeps the same key

rsort (Sarrayname) Sorts by value in reverse order; assigns new numbers as
the keys

arsort (Sarrayname) Sorts by value in reverse order; keeps the same key

ksort ($arrayname) Sorts by key

krsort ($Sarrayname) Sorts by key in reverse order

usort (Sarrayname, Sorts by a function (see “Using Functions,” later in this

functionname) chapter)

Using Arrays ’33

Getting values from arrays

You can retrieve any individual value in an array by accessing it directly, as
follows:

SCAcapital = Scapitals['CA'];
echo $CAcapital ;

The output from these statements is
Sacramento

If you use an array element that doesn’t exist, a notice is displayed. (Read
about notices in the section “Understanding PHP Error Messages,” later in
this chapter.) For example, suppose that you use the following statement:

SCAcapital = Scapitals['CAx'];

If the array $capitals exists but no element has the key CAx, you see the
following notice:

Notice: Undefined index: CAx in d:\testarray.php on line 9

A notice doesn’t cause the script to stop. Statements after the notice con-
tinue to execute. But because no value has been put into $CAcapital, any
subsequent echo statements will echo a blank space. You can prevent the
notice from being displayed by using the @ symbol:

@S$CAcapital = S$Scapitals['CAx'];

You can get several values at once from an array using the 1ist statement
or all the values from an array by using the extract statement.

The 1ist statement gets values from an array and puts them into variables.
The following statements include a 1ist statement:

SflowerInfo = array ("Rose", "red", 12.00);
list($firstvalue, $secondvalue) = S$SflowerInfo;
echo S$firstvalue, "
";

echo S$secondvalue, "
";

The first line creates the $flowerInfo array. The third line sets up two vari-
ables named $firstvalue and $secondvalue and copies the first two
values in $flowerInfo into the two new variables, as if you had used the
two statements

Sfirstvalue=$flowerInfo[0];
$secondvalue=$flowerInfo[l];

Book |
Chapter 1

soiseq dHd

73 4 Using Arrays

The third value in $flowerInfo isn’t copied into a variable because the
list statement includes only two variables. The output from the echo
statements is

Rose
red

You can retrieve all the values from an array with words as keys by using
extract. Each value is copied into a variable named for the key. For
instance, suppose the $flowerinfo array is created as follows:

sflowerInfo = array ("variety"=>"Rose", "color"=>"red",
"cost"=>12.00) ;

The following statements get all the information from $flowerInfo and
echo it:

extract ($SflowerInfo) ;
echo "variety is S$variety; color is S$color; cost is Scost";

The output for these statements is

variety is Rose; color is red; cost is 12.00;

Walking through an array

You will often want to do something to every value in an array. You might
want to echo each value, store each value in the database, or add 6 to each
value in the array. In technical talk, walking through each and every value in
an array, in order, is iteration. It’s also sometimes called tfraversing. Here are
two ways to walk through an array:

4+ Manually: Move a pointer from one array value to another.

4+ Using foreach: Automatically walk through the array, from beginning to
end, one value at a time.

Manually walking through an array

You can walk through an array manually by using a pointer. To do this, think
of your array as a list. Imagine a pointer pointing to a value in the list. The
pointer stays on a value until you move it. After you move it, it stays there
until you move it again. You can move the pointer with the following
instructions:

4 current (Sarrayname): Refers to the value currently under the
pointer; doesn’t move the pointer

4+ next ($arrayname): Moves the pointer to the value after the current
value

Using Arrays ’35

4+ previous ($Sarrayname): Moves the pointer to the value before the
current pointer location

4+ end ($arrayname): Moves the pointer to the last value in the array

4 reset (Sarrayname): Moves the pointer to the first value in the array

The following statements manually walk through an array containing state
capitals:

Svalue = current (Scapitals);
echo "S$value
";

Svalue = next (Scapitals);
echo "S$value
";

Svalue = next (Scapitals);
echo "S$value
";

Unless you’ve moved the pointer previously, it’s located at the first element
when you start walking through the array. If you think that the array pointer
might have been moved earlier in the script or if your output from the array
seems to start somewhere in the middle, use the reset statement before
you start walking, as follows:

reset (Scapitals);

When using this method to walk through an array, you need an assignment
statement and an echo statement for every value in the array — for each of
the 50 states. The output is a list of all the state capitals.

This method gives you flexibility. You can move through the array in any
manner — not just one value at a time. You can move backwards, go directly
to the end, skip every other value by using two next statements in a row, or
whatever method is useful. However, if you want to go through the array
from beginning to end, one value at a time, PHP provides foreach, which
does exactly what you need much more efficiently. foreach is described in
the next section.

Using foreach to walk through an array

foreach walks through the array one value at a time. The current key and
value of the array can be used in the block of statements each time the block
executes. The general format is

foreach($Sarrayname as S$Skeyname => S$Svaluename)

{

block of statements;

}

Book |
Chapter 1

soiseq dHd

73 7 Using Arrays

Fill in the following information:

4 arrayname: The name of the array that you're walking through.

4+ keyname: The name of the variable where you want to store the key.
keyname is optional. If you leave out $keyname =>, only the value is
put into a variable that can be used in the block of statements.

4 valuename: The name of the variable where you want to store the
value.

For instance, the following foreach statement walks through the sample
array of state capitals and echoes a list:

Scapitals = array("CA" => "Sacramento", "TX" => "Austin",
"OR" => "Salem");

ksort (Scapitals) ;

foreach(Scapitals as S$Sstate => S$Scity)

{
echo "Scity, $state
";
}

The preceding statements give the following Web page output:
Sacramento, CA
Salem, OR

Austin, TX

You can use the following line in place of the foreach line in the previous
statements:

foreach(S$capitals as Scity)

When using this foreach statement, only the city is available for output.
You would then use the following echo statement:

echo "Scity
";

The output with these changes is

Sacramento

Salem

Austin

When foreach starts walking through an array, it moves the pointer to the

beginning of the array. You don’t need to reset an array before walking
through it with foreach.

WING/
&

Using Arrays '3 7

Multidimensional arrays

In the earlier sections of this chapter, we describe arrays that are a single list
of key/value pairs. However, on some occasions, you might want to store
values with more than one key. For instance, suppose you want to store
cities by state and county, as follows:

Scities['AZ']['Maricopa'] = Phoenix;
Scities['AZ']['Cochise'] = Tombstone;
Scities['AZ']['Yuma'] = Yuma;
Scities['OR'] ['Multnomah'] = Portland;
Scities['OR']['Tillamook'] = Tillamook;
Scities['OR']['Wallowa'] = Joseph;

This kind of array is a multidimensional array because it’s like an array of
arrays with the following structure:

Scities key value
key value

AZ Maricopa Phoenix
Cochise Tombstone
Yuma Yuma

OR Multnomah Portland
Tillamook Tillamook
Wallowa Joseph

$cities is a two-dimensional array.

PHP can also understand multidimensional arrays that are four, five, six, or
more levels deep. However, people tend to get headaches when they try to
comprehend an array that’s more than three levels deep. The possibility of
confusion increases when the number of dimensions increases. Try to keep
your multidimensional arrays manageable.

You can get values from a multidimensional array by using the same proce-
dures that you use with a one-dimensional array. For instance, you can
access a value directly with this statement:

Scity = Scities['AZ']['Yuma'];

You can also echo the value:

echo Scities['OR']['Wallowa'l];

However, if you combine the value within double quotes, you need to use
curly braces to enclose the variable name. The $ that begins the variable

name must follow the { immediately, without a space, as follows:

echo "A city in Multnomah County, Oregon, is {$cities['OR']['Multnomah']}";

Book |
Chapter 1

soiseq dHd

73 8 Using Dates and Times

The output is
A city in Multnomah County, Oregon, is Portland

You can walk through a multidimensional array by using foreach state-
ments (described in the preceding section). You need a foreach statement
for each array. One foreach statement is inside the other foreach state-
ment. Putting statements inside other statements is called nesting.

Because a two-dimensional array, such as Scities, contains two arrays, it
takes two foreach statements to walk through it. The following statements
get the values from the multidimensional array and output them in an HTML
table:

foreach(S$cities as S$state)
{

foreach($state as S$Scounty => Scity)
{
echo "Scity, S$Scounty county
";
}
}

The first foreach statement walks through the $cities multidimensional
array and stores an array with the key/value pair of county/city in the vari-
able $state. The second foreach statement walks through the array
stored in $state. These statements give you the following output:

Phoenix, Maricopa county
Tombstone, Cochise county
Yuma, Yuma county

Portland, Multnomah county
Tillamook, Tillamook county
Joseph, Wallowa county

Using Dates and Times

Dates and times can be important elements in a Web database application.
PHP has the ability to recognize dates and times and handle them differently
than plain character strings. Dates and times are stored by the computer in a
format called a timestamp. However, this isn’t a format in which you would
want to see the date. PHP converts dates from your notation into a time-
stamp that the computer understands and from a timestamp into a format
familiar to people. PHP handles dates and times with built-in functions.

Using Dates and Times '3 9

The timestamp format is a Unix Timestamp, which is an integer that is the
number of seconds from January 1, 1970, 00:00:00 GMT (Greenwich Mean
Time) to the time represented by the timestamp. This format makes it easy
to calculate the time between two dates — just subtract one timestamp from
the other.

Setting local time

With the release of PHP 5.1, PHP added a setting for a default local time zone
tophp.ini.If you don'’t set a default time zone, PHP will guess, which some-
times results in GMT. In addition, PHP displays a message advising you to set
your local time zone.

To set a default time zone, follow these steps:

1. Open php. ini in a text editor.
2. Scroll down to the section headed [Date].
3. Find the setting date.timezone =.
4. If the line begins with a semicolon (;), remove the semicolon.
5. Add a time zone code after the equal sign.
You can see a list of time zone codes in Appendix H of the PHP online manual

at www . php.net/manual/en/timezones.php. For example, you can set
your default time zone to Pacific time with the setting:

date.timezone = America/Los_Angeles

If you don’t have access to the php . ini file, you can set a default time zone
in each script that applies to that script only, as follows:

date_default_timezone_set ("timezonecode") ;

You can see which time zone is currently your default time zone by using
this statement:

Sdef = date_default_timezone_get ()
echo S$def;

Formatting a date

The function that you will use most often is date, which converts a date or
time from the timestamp format into a format that you specify. The general
format is

Smydate = date("format",$timestamp) ;

Book I
Chapter 1

soiseq dHd

’40 Using Dates and Times

$timestamp is a variable with a timestamp stored in it. You previously
stored the timestamp in the variable, using a PHP function as we describe
later in this section. If $ timestamp isn’t included, the current time is
obtained from the operating system and used. Thus, you can get today’s
date with the following:

Stoday = date("Y/m/d");

If today is August 10, 2006, this statements returns
2006/08/10

The format is a string that specifies the date format that you want stored

in the variable. For instance, the format "y-m-d" returns 06-08-10, and
"M.d.Y" returns Aug.10.2006. Table 1-6 lists some of the symbols that you
can use in the format string. (For a complete list of symbols, see the docu-
mentation at www . php.net/manual/en/function.date.php.) The parts
of the date can be separated by a hyphen (-), a dot (.), a forward slash (/),

or a space.

Table 1-6 Date Format Symbols

Symbol Meaning Example

F Month in text, not abbreviated January

M Month in text, abbreviated Jan

m Month in numbers with leading zeros 02,12

n Month in numbers without leading zeros 1,12

d Day of the month; two digits with leading zeros 01,14

J Day of the month without leading zeros 3,30

1 Day of the week in text, not abbreviated Friday

D Day of the week in text, abbreviated Fri

w Day of the week in numbers From 0 (Sunday) to
6 (Saturday)

Y Year in four digits 2002

v Year in two digits 02

g Hour between 0 and 12 without leading zeros 2,10

G Hour between 0 and 24 without leading zeros 2,15

h Hour between 0 and 12 with leading zeros 01,10

H Hour between 0 and 24 with leading zeros 00, 23

i Minutes 00, 59

S Seconds 00, 59

a am or pm in lowercase am, pm

A AM or PM in uppercase AM, PM

Using Dates and Times ’4 1

Storing a timestamp in a variable

You can assign a timestamp with the current date and time to a variable with
the following statements:

Stoday = time();

Another way to store a current timestamp is with the statement

Stoday = strtotime("today") ;

You can store specific timestamps by using strtotime with various key-

words and abbreviations that are similar to English. For instance, you can Book Il
create a timestamp for January 15, 2006, as follows: Chapter 1
SimportantDate = strtotime("January 15 2006");

strtotime recognizes the following words and abbreviations:

4 Month names: Twelve month names and abbreviations

soiseq dHd

4+ Days of the week: Seven days and some abbreviations

4 Time units: year, month, fortnight, week, day, hour, minute,
second, am, pm

4 Some useful English words: ago, now, last, next, this, tomorrow,
yvesterday

4 Plus and minus: + or -

<+

All numbers
4+ Time zones: For example, gmt (Greenwich Mean Time), pdt (Pacific
Daylight Time), and akst (Alaska Standard Time)

You can combine the words and abbreviations in a wide variety of ways. The
following statements are all valid:

SimportantDate = strtotime("tomorrow"); #24 hours from now
SimportantDate = strtotime("now + 24 hours");
SimportantDate = strtotime("last saturday");
SimportantDate = strtotime("8pm + 3 days");

SimportantDate = strtotime ("2 weeks ago"); # current time
SimportantDate = strtotime("next year gmt");
SimportantDate = strtotime("this 4am"); # 4 AM today

If you wanted to know how long ago $importantDate was, you could sub-
tract it from $today. For instance:

StimeSpan = Stoday - S$importantDate;

74 2 Understanding PHP Error Messages

This gives you the number of seconds between the important date and
today. Or use the statement

StimeSpan =(($today - S$SimportantDate)/60)/60

to find out the number of hours since the important date.

Understanding PHP Error Messages

A\

PHP tries to be helpful when problems arise. It provides different types of
error messages and warnings with as much information as possible.

Types of PHP error messages

PHP can display five types of messages. Each type of message displays the
name of the file where the error was encountered and the line number where
PHP encountered the problem. Different error types provide additional infor-
mation in the error message. The types of messages are

4+ Parse error: A parse error is a syntax error that PHP finds when it scans
the script before executing it.

4+ Fatal error: PHP has encountered a serious error that stops the execu-
tion of the script.

4 Warning: PHP sees a problem, but the problem isn’t serious enough to
prevent the script from running.

4+ Notice: PHP sees a condition that might be an error or might be per-
fectly okay.

4 Strict: Strict messages, added in PHP 5, warn about coding standards.
You get strict messages when you use language that is poor coding prac-
tice or has been replaced by better code.

We recommend writing your PHP scripts with an editor that uses line num-
bers. If your editor doesn’t let you specify which line you want to go to, you
have to count the lines manually from the top of the file every time that you
receive an error message. You can find information about many editors,
including descriptions and reviews, at www.php-editors.com.

Understanding parse errors

Before starting to run a script, PHP scans the script for syntax errors. When
it encounters an error, it displays a parse error message. A parse error is a
fatal error, preventing the script from even starting to run. A parse error
looks similar to the following:

Parse error: parse error, error, in c:\test.php on line 6

WING/
&

Understanding PHP Error Messages ’43

Often, you receive this error message because you’ve forgotten a semicolon,
a parenthesis, or a curly brace. The error displayed provides as much infor-
mation as possible. For instance, the following might be displayed:

Parse error: parse error, unexpected T _ECHO, expecting ',' or
';', in c:\test.php on line 6

This error means that PHP found an echo statement where it was expecting
a comma or a semicolon, which probably means you forgot the semicolon at
the end of the previous line.

T_ECHO is a token. Tokens represent various parts of the PHP language.
Some, like T_ECHO or T_TIF, are fairly clear. Others are more obscure. See the
appendix of tokens in the PHP online manual (www . php .net/manual/en/
tokens.php) for a list of parser tokens with their meanings.

Understanding fatal errors

A fatal error message is displayed when PHP encounters a serious error
during the execution of the script that prevents the script from continuing to
execute. The script stops running and displays a message that contains as
much information as possible to help you identify the problem.

One problem that produces a fatal error message is calling a function that
doesn’t exist. (Functions are explained in Chapter 2 in this minibook.) If you
misspell a function name in your PHP script, you see a fatal error message
similar to the following:

Fatal error: Call to undefined function xxx() in C:\Program
Files\Apache Group\Apache2\htdocs\PHPandMySQL\info.php on
line 10

In this case, PHP can’t find a function named xxx that you call on line 10.

We use the term fatal errors to differentiate this type of errors from other
errors. However, PHP just calls them (confusingly) errors. You won't find the
term fatal error in the manual. Also, the keyword needed to display these
types of errors is E_ERROR. (We cover this later in the chapter in the
“Displaying selected messages” section.)

Understanding warnings

A warning message displays when the script encounters a problem but the
problem isn’t serious enough to prevent the script from running. Warning
messages don’t mean that the script can’t run; the script does continue to
run. Rather, warning messages tell you that PHP believes that something is
probably wrong. You should identify the source of the warning and then
decide whether it needs to be fixed. It usually does.

Book I
Chapter 1

soiseq dHd

74 4 Understanding PHP Error Messages

\\3

If you attempt to connect to a MySQL database with an invalid username or
password, you see the following warning message:

Warning: mysqgl_connect () [function.mysgl-connect]: Access
denied for user 'root'@'localhost' (using password: YES)
in C:\Program Files\Apache Group\Apache2\htdocs\test.php
on line 9

The attempt to connect to the database failed, but the script doesn’t stop
running. It continues to execute additional PHP statements in the script.
However, because the later statement probably depends on the database
connection being established, the later statements won’t execute correctly.
This statement needs to be corrected. Most statements that produce warn-
ing messages need to be fixed.

Understanding notices

A notice is displayed when PHP sees a condition that might be an error or
might be perfectly okay. Notices, like warnings, don’t cause the script to stop
running. Notices are much less likely than warnings to indicate serious prob-
lems. Notices just tell you that you're doing something unusual and to take a
second look at what you’re doing to be sure that you really want to do it.

One common reason why you might receive a notice is that you're echoing
variables that don’t exist. Here’s an example of what you might see in that
instance:

Notice:Undefined variable: age in testing.php on line 9

Understanding strict messages

Strict messages warn about coding standards. They point out language that’s
poor coding practice or has been replaced by better code. The strict error
type was added in PHP 5. Strict messages don’t stop the execution of the
script. However, changing your code so that you don’t see any strict mes-
sages makes the script more reliable for the future. Some of the language
highlighted by strict messages might be removed entirely in the future.

Some of the strict messages refer to PHP language features that have been
deprecated. Deprecated functions are old functions that have been replaced
by newer functions. The deprecated functions are still supported, but will be
removed in the future. PHP might add a separate error type E_DEPRECATED
to identify these types of errors so that both E_STRICT and E_DEPRECATED
messages will identify different types of problems.

NG/
QV'

Understanding PHP Error Messages ’45

Displaying error messages

You can handle error messages in any of the following ways:

4+ Display some or all error messages on your Web pages.
4+ Don’t display any error messages.

4+ Suppress a single error message.

You can tell PHP whether to display error messages or which error messages
to display with settings in the php. ini file or with PHP statements in your
scripts. Settings in php . ini set error handling for all your scripts. Statements
in a script set error handling for that script only.

Turning off error messages

Error messages are displayed on your Web pages by default. Displaying error
messages on your Web pages is a security risk. You can have error messages
turned on when you’re developing your Web site, so you can fix the errors,
but when your Web pages are finished and ready for the public to view, you
can shut off the error messages.

You can turn off all error messages for all scripts in your Web site in the
php. ini file. Find the following setting:

display_errors = On

Change On to Off.

You can turn off errors in an individual script with the following statements:
ini_set("display_errors", "off");

Changing the setting doesn’t change the error in any way; it changes only
whether the error message is displayed. A fatal error still stops the script; it
just doesn’t display a message on the Web page.

One way to handle error messages is to turn them off in php.ini and turn
them on in each individual script during development. Then, when the Web

site is ready for public viewing, you can remove the ini_set statements
that turn on the error messages.

Displaying selected messages
You can specify which type of error messages you want to display with the
following setting in php . ini:

error_reporting =

Book I
Chapter 1

soiseq dHd

74 0 Understanding PHP Error Messages

You use one of several codes to tell PHP which messages to display. Some
possible settings are

error_reporting E_ALL | E_STRICT
error_reporting 0
error_reporting = E_ALL & ~ E_NOTICE

The first setting displays E_ALL, which is all errors, warnings, and notices
except stricts; and E_STRICT, which displays strict messages. The second
setting displays no error messages. The third setting displays all error mes-
sages except stricts and notices, because the & ~ means “and not.”

Other codes that you can use are E_WARNING, which means all warnings,
and E_ERROR, which means all fatal runtime errors.

You can also set the type of message to display for an individual script. You
can add a statement to a script that sets the error reporting level for that
script only. Add the following statement at the beginning of the script:

error_reporting (errorSetting) ;
For example, to see all errors except stricts, use the following:

error_reporting (E_ALL) ;

Suppressing a single error message

You can stop the display of a single error message in a PHP statement. In
general, this isn’t a good idea. You want to see your error messages and fix
the problems. However, occasionally, suppressing a single notice is the sim-
plest method to prevent an unsightly message from displaying on the Web
page.

You can stop the display of an error message by placing an at sign (@) where
you expect the error message to be generated. For example, the @ in the fol-
lowing statement suppresses an error message:

echo @Snewsl;

If the variable $news1 hasn’t been set previously, this statement would pro-
duce the following notice:

Notice: Undefined variable: newsl in C:\Program Files\Apache
Group\Apache2\htdocs\PHPandMySQL\info.php on line 10

However, the @ in front of the variable name keeps the notice from being
displayed. This feature should be used rarely, but it can be useful in a few
situations.

Understanding PHP Error Messages ’4 7

Logging error messages

You can store error messages in a log file. This produces a permanent record
of the errors, whether or not they displayed on the Web page. Logging mes-
sages requires two settings:

4+ log_errors: Set this to on or off to send errors to a log file.

4 error_log: Specify the filename where errors are to be logged.

Logging errors
You can tell PHP to log errors with a setting in php . ini. Find the following
setting:

log_errors = Off

Change the setting to On. After you save the changed php. ini file and restart
your Web server, PHP logs errors to a text file. You can tell PHP where to
send the errors with the error_1og setting described in the next section. If
you don’t specify a file with the error_1og settings, the error messages are
written to the Apache error log, located in the logs subdirectory in the direc-
tory where Apache is installed. The error log has the . err file extension.

You can log errors for an individual script by including the following state-
ment at the beginning of the script:

ini_set("log_errors","On");

This statement sets error logging for this script only.

Specifying the log file

You specify the file where PHP logs error messages with a setting in
php. ini. Find the setting:

;error_log = filename

Remove the semicolon from the beginning of the line. Replace filename
with the path/filename of the file where you want PHP to log error messages,
such as:

error_log = "c:\php\logs\errs.log"
The file you specify doesn’t need to exist. If it doesn’t exist, PHP will create it.
After you save the edited php.ini file and restart your Web server, error

messages are logged in the specified file. Each error message is logged on a
separate line, with the date and time at the beginning of the line.

Book I
Chapter 1

soiseq dHd

’48 Adding Comments to Your PHP Script

You can specify a log file for an individual script by including the following
statement at the beginning of the script:

ini_set("error_log"," c:\php\logs\errs.log ");

This statement sets the log file for this script only.

Adding Comments to Your PHP Script

Comments are notes embedded in the script itself. Adding comments in your
scripts that describe their purpose and what they do is essential. It’s impor-
tant for the lottery factor — that is, if you win the lottery and run off to a life
of luxury on the French Riviera, someone else will have to finish the applica-
tion. The new person needs to know what your script is supposed to do and
how it does its job. Actually, comments benefit you as well. You might need
to revise the script next year when the details are long buried in your mind
under more recent projects.

Use comments liberally. PHP ignores comments; comments are for humans.
You can embed comments in your script anywhere as long as you tell PHP
that they are comments. The format for comments is

/* comment text
more comment text */

Your comments can be as long or as short as you need. When PHP sees code
that indicates the start of a comment (/*), it ignores everything until it sees
the code that indicates the end of a comment (* /).

One possible format for comments at the start of each script is as follows:

~

name : catalog.php

description: Script that displays descriptions of
products. The descriptions are stored
in a database. The product descriptions
are selected from the database based on
the category the user entered into a form.

written by: Lola Designer

created: 2/1/06

modified: 3/15/06

SNk k% ok ok ok ok ok

*

Adding Comments to Your PHP Script '49

You should use comments throughout the script to describe what the script
does. Comments are particularly important when the script statements are
complicated. Use comments such as the following frequently:

/* Get the information from the database */
/* Check whether the customer is over 18 years old */
/* Add shipping charges to the order total */

PHP also has a short comment format. You can specify that a single line is a
comment by using the pound sign (#) or two forward slashes (/ /) in the fol-
lowing manner:

This is comment line 1
// This is comment line 2

All text from the # or // to the end of the line is a comment. You can also
use # or // in the middle of a line to signal the beginning of a comment. PHP
will ignore everything from the # or // to the end of the line. This is useful
for commenting a particular statement, as in the following example:

Saverage = SorderTotal/$nltems; // compute average price

Sometimes you want to emphasize a comment. The following format makes a
comment very noticeable:

HEHAHAR AR HA R AR H AR AR AR AR AR H RS HA B HH
Double-Check This Section
HEHAHAR A HARFSHAHARHA R R A H RS HA RS

PHP comments aren’t included in the HTML code that is sent to the user’s
browser. The user does not see these comments.

Use comments as often as necessary in the script to make it clear. However,
using too many comments is a mistake. Don’t comment every line or every-
thing you do in the script. If your script is too full of comments, the impor-
tant comments can get lost in the maze. Use comments to label sections and
to explain unusual or complicated code — not obvious code.

Book |
Chapter 1

soiseq dHd

150 Book 11: PHP Programming

Chapter 2: Building PHP Scripts

In This Chapter

v Setting up conditions in your code

1+~ Using conditional statements

v Building and using loops for repeated statements
v Using functions

+ Keeping your code clean and organized

p HP scripts are a series of instructions in a file named with an extension
that tells the Web server to look for PHP sections in the file. (The
extension is usually .php or .phtml, but it can be anything that the Web
server is configured to expect.) PHP begins at the top of the file and exe-
cutes each instruction, in order, as it comes to it.

Instructions, called statements, can be simple or complex. Chapter 1 in this
minibook discusses simple statements, such as the echo statement. For
example, the Hello World script in Chapter 1 in this minibook is a simple
script containing only simple statements. However, the scripts that make up
a Web database application aren’t that simple. They are dynamic and inter-
act with both the user and the database. Consequently, the scripts require
more complex statements.

Complex statements execute one or more blocks of statements. A block of
statements consists of a group of simple statements enclosed by curly
braces, { and }. PHP reads the entire complex statement, not stopping at
the first semicolon that it encounters. PHP knows to expect one or more
blocks and looks for the ending curly brace of the last block in complex
statements.

The following complex statements are described in this chapter:

4+ Conditional statements: Statements that execute only when certain
conditions are met. The PHP conditional statements are i f and switch
statements.

4+ Loops: Statements that repeatedly execute a block of statements. Three
types of loops are for, while, and do. .while loops.

4+ Functions: Statements that can be reused many times. Many tasks are
performed in more than one part of the application. PHP allows you to
reuse statement blocks by creating a function.

152 Setting Up Conditions

Conditional statements and loops execute a block of statements based on a
condition. That is, if a condition is true, the block of statements executes.
Thus, to use conditional statements and loops, you need to set up conditions.

In this chapter, you find out how to use complex statements and how to
organize them into a PHP script.

Setting Up Conditions

Conditions are expressions that PHP tests or evaluates to see whether they
are true or false. Conditions are used in complex statements to determine
whether a block of simple statements should be executed. To set up condi-
tions, you compare values. Here are some questions you can ask to compare
values for conditions:

4 Are two values equal? Is Sally’s last name the same as Bobby’s last
name? Or, is Nick 15 years old? (Does Nick’s age equal 15?)

4 Is one value larger or smaller than another? Is Nick younger than
Bobby? Or, did Sally’s house cost more than a million dollars?

4+ Does a string match a pattern? Does Bobby’s name begin with an S§?
Does the ZIP code have five numeric characters?

You can also set up conditions in which you ask two or more questions. For
example, you may ask: Is Nick older than Bobby and is Nick younger than
Sally? Or you may ask: Is today Sunday and is today sunny? Or you may ask:
Is today Sunday or is today Monday?

Comparing values

You can compare numbers or strings to see whether they are equal, whether
one is larger than the other, or whether they are not equal. You compare
values with comparison operators. PHP evaluates the comparison and
returns true or false. For example, the following is a simple comparison:

Sresult = $Sa == Sb;

The comparison operator == checks whether two values are equal. If $a and
$b are equal, Sresult is assigned the Boolean value true. If $a and $b are
not equal, Sresult is assigned false. Thus, Sa == $bis a simple condi-
tion that is either true or false.

PHP offers several comparison operators that you can use to compare
values. Table 2-1 shows these comparison operators.

Setting Up Conditions ’53

Table 2-1 Comparison Operators
Operator What It Means

== Are the two values equal in value?

=== Are the two values equal in both value and data type?

> Is the first value larger than the second value?

>= Is the first value larger than or equal to the second value?

< Is the first value smaller than the second value?

<= Is the first value smaller than or equal to the second value?

1=, <> Are the two values not equal to each other in value?

Book |

l== Are the two values not equal to each other in either value or data type? Chapter 2

You can compare both numbers and strings. Strings are compared alphabeti-
cally, with all uppercase characters coming before any lowercase characters.
For example, SS comes before Sa. Punctuation characters also have an
order, and one character can be found to be larger than another character.
However, comparing a comma to a period doesn’t have much practical
value.

sydiiag
dHd Buipjing

Strings are compared based on their ASCII code. In the ASCII character set,
each character is assigned an ASCII code that corresponds to a number
between 0 and 127. When strings are compared, they are compared based on
this code. For example, the number that represents the comma is 44. The
period corresponds to 46. Therefore, if a period and a comma are compared,
the period is evaluated as larger.

The following are some valid comparisons that PHP can test to determine
whether they're true:

4+ Sa == sb

4 Sage !'= 21

4 SageNick < SageBobby

4 Shouse_price >= 1000000

‘?qx\\NG-’ The comparison operator that asks whether two values are equal consists of

two equal signs (==). One of the most common mistakes is to use a single
equal sign for a comparison. A single equal sign puts the value into the vari-
able. Thus, a statement like if (Sweather = "raining") would set

Sweather to raining rather than check whether it already equaled raining,
and would always be true.

15 4 Setting Up Conditions

If you write a negative (by using !), the negative condition is true. Look at
the following comparison:

Sage != 21

The condition being tested is that $age does not equal 21. Therefore, if
Sage equals 20, the comparison is true.

Checking variable content

Sometimes you just need to know whether a variable exists or what type of
data is in the variable. Here are some common ways to test variables:

isset ($Svarname) # True if variable is set, even if
nothing is stored in it.
empty ($varname) # True if value is 0 or is a string with

no characters in it or is not set.

You can also test what type of data is in the variable. For example, to see
whether the value is an integer, you can use the following:

is_int ($number)

The comparison is true if the value in $number is an integer. Some other
tests provided by PHP are as follows:
4 is_array($Svar2): Checks to see whether $var2 is an array

4 is_float (Snumber): Checks to see whether $number is a floating
point number

4 is_null ($varl): Checks to see whether $varl is equal to 0

4 is_numeric ($string): Checks to see whether $string is a numeric
string

4 is_string($string): Checks to see whether Sstring is a string
You can test for a negative, as well, by using an exclamation point (!) in front
of the expression. For example, the following statement returns true if the
variable doesn’t exist at all:

lisset (Svarname)

Setting Up Conditions 155

Pattern matching with reqular expressions

Sometimes you need to compare character strings to see whether they fit
certain characteristics, rather than to see whether they match exact values.
For example, you might want to identify strings that begin with S or strings
that have numbers in them. For this type of comparison, you compare the
string to a pattern. These patterns are called regular expressions.

You've probably used some form of pattern matching in the past. When you
use an asterisk (*) as a wild card when searching for files (dir ex*.doc,
for example), you're pattern matching. For example, ex* . txt is a pattern.
Any string that begins with ex and ends with . txt, with any characters in
between the ex and the . txt, matches the pattern. The strings exam. txt,
ex33.txt, and ex3x4 . txt all match the pattern. Using regular expressions
is just a more powerful variation of using wild cards.

One common use for pattern matching is to check the input from a Web page
form. If the information input doesn’t match a specific pattern, it might not
be something you want to store in your database. For example, if the user
types a ZIP code into your form, you know the format needs to be five num-
bers or a ZIP + 4. So, you can check the input to see whether it fits the pat-
tern. If it doesn’t, you know it’s not a valid ZIP code, and you can ask the
user to type in the correct information.

Regular expressions are used for pattern matching in many situations. Many
Linux commands, such as grep, vi, or sed, use regular expressions. Many
applications, such as text editors and word processors, allow searches using
regular expressions.

PHP provides support for Perl-compatible regular expressions. The following
sections describe some basic Perl-compatible regular expressions, but much
more complex and powerful pattern matching is possible. See www . php .
net/manual/en/reference.pcre.pattern. syntax.php for further
explanation of Perl-compatible regular expressions.

Using special characters in patterns

Patterns consist of literal characters and special characters. Literal charac-
ters are normal characters, with no special meaning. An e is an e, for exam-
ple, with no meaning other than that it’s one of 26 letters in the alphabet.
Special characters, on the other hand, have special meaning in the pattern,
such as the asterisk (*) when used as a wild card. Table 2-2 shows the spe-
cial characters that you can use in patterns.

Book

Chapter 2

sydiiag
dHd Buipjing

156 Setting Up Conditions

Table 2-2 Special Characters Used in Patterns

Character ~ Meaning Example Match Not a Match

~ Beginning of line. ~c cat my cat

$ End of line. c$ tic stick
Any single character. Any string that a,l

contains at least
two characters

? The preceding character mea?n mean, men moan
is optional.

() Groups literal characters m(ea)n mean men, mn
into a string that must be
matched exactly.

[] Encloses a setof optional m[ealn men, man mean, mn
literal characters.

- Represents all the m[a-c]n man, mbn, mcn mdn, mun,
characters between two maan
characters.

+ One or more of the door door111, door131 door, doorb5
preceding items. [1-31+

* Zero or more of the door door, door311 door4,
preceding items. [1-31* doord45

{, 1} The starting and ending af{2,5} aa, aaaaa a, Xx3
numbers of a range of
repetitions.

\ The following character m*n m*n men, mean
is literal.

(| |) Asetofalternative (Tom| Tom, Tommy Thomas, To
strings. Tommy)

Considering some example patterns

Literal and special characters are combined to make patterns, sometimes
long, complicated patterns. A string is compared with the pattern, and if it
matches, the comparison is true. Some example patterns follow, with a
breakdown of the pattern and some sample matching and non-matching

strings.

Example 1

~[A-Za-z] .*

Setting Up Conditions 157

This pattern defines strings that begin with a letter and have two parts:

4+ ~[A-Za-z] The first part of the pattern dictates that the beginning of
the string must be a letter (either upper- or lowercase).

4+ .* The second part of the pattern tells PHP the string of characters can
be one or more characters long.

The expression ~ [A-Za-z] . * matches the following strings: play it
again, Samand I.

The expression ~ [A-Za-z] . * does not match the following strings: 123
and ?.

Example 2
Dear (Kim|Rikki)

This pattern defines two alternate strings and has two parts:

4+ Dear The first part of the pattern is just literal characters.

4 (Kim|Rikki) The second part defines either Kim or Rikki as match-
ing strings.

The expression Dear (Kim|Rikki) matches the following strings: Dear
Kim and My Dear Rikki.

The expression Dear (Kim|Rikki) does not match the following strings:
Dear Bobby and Kim

Example 3
~[0-91{5}(\-[0-91{41})>$

This pattern defines any ZIP code and has several parts:

4+ ~[0-9]1{5} The first part of the pattern describes any string of five
numbers.

<+

\ - The slash indicates that the hyphen is a literal.

4 [0-9]{4} This part of the pattern tells PHP that the next characters
should be a string of numbers consisting of four characters.

4+ ()2 These characters group the last two parts of the pattern and make
them optional.

4+ $ The dollar sign dictates that this string should end (no characters are
allowed after the pattern).

Book

Chapter 2

sydiiag
dHd Buipjing

158 Setting Up Conditions

The expression ~[0-9]1{5} (\-[0-9]1{4}) ?$ matches the following strings:
90001 and 90002-4323.

The expression ~[0-91{5} (\-[0-9]1{4}) ?$ does not match the following
strings: 9001 and 12-4321.

Example 4

~L.+@.+\.coms

This pattern defines any string with @ embedded that ends in . com. In other
words, it defines a common format for an e-mail address. This expression
has several parts:

4+ ~.+ The first part of the pattern describes any string of one or more
characters that precedes the @.

4+ @ This is a literal @ (at sign). @ is not a special character and does not
need to be preceded by \.

+

.+ This is any string of one or more characters.

\ . The slash indicates that PHP should look for a literal dot.

+

4+ coms This defines the literal string com at the end of the string, and the
$ marks the end of the string.

The expression ~.+@. +\ .com$ matches the following strings: youe@
yourcompany . com and johndoe@somedomain. com.

The expression ~.+@. +\ .com$ does not match the following strings:
you@yourcompany .net, you@. com, and @you. com.

Using PHP functions for pattern matching

You can compare whether a pattern matches a string with the preg_match
function. The general format is as follows:

preg_match("pattern", value) ;

The pattern must be enclosed in a pair of delimiters — characters that
enclose the pattern. Often, the forward slash (/) is used as a delimiter.
However, you can use any nonalphanumeric character, except the backslash
(\). For example, to check the name that a user typed in a form, match the
pattern with the name (stored in the variable $name) , as follows:

preg _match("/A[A-Za-z' -]+$/", Sname)

Setting Up Conditions 159

The pattern in this statement does the following:

<+
<+

<+

Encloses the pattern in forward slashes (/).

Uses ~ and $ to signify the beginning and end of the string, respectively.
That means that all the characters in the string must match the pattern.

Encloses all the literal characters that are allowed in the string in []. No
other characters are allowed. The allowed characters are upper- and
lowercase letters, an apostrophe ('), a blank space, and a hyphen (-).

You can specify a range of characters by using a hyphen within the [].
When you do that, as in A-Z, the hyphen doesn’t represent a literal char-
acter. Because you also want a hyphen included as a literal character
that is allowed in your string, you need to add a hyphen that isn’t
between any two other characters. In this case, the hyphen is included
at the end of the list of literal characters.

Follows the list of literal characters in the [] with a +. The plus sign
means that the string can contain any number of the characters inside
the [1, but must contain at least one character.

If the pattern itself contains forward slashes, the delimiter can’t be a forward
slash. You must use another character for the delimiter, such as:

preg match("#"[A-Za-z' -/]+S$#", Sname)

Joining multiple comparisons

Often you need to ask more than one question to determine your condition.
For example, suppose your company offers catalogs for different products in
different languages. You need to know which type of product catalog the cus-

tomer wants to see and which language he or she needs to see it in. This
requires you to join comparisons, which have the following the general
format:

comparisonl and|or|xor comparison2 and|or|xor comparison3
and|or|xor ...

Comparisons are connected by one of the following three words:

4 and: Both comparisons are true.
4 or: One of the comparisons or both of the comparisons are true.

4+ xor: One of the comparisons is true but not both of the comparisons.

Table 2-3 shows some examples of multiple comparisons.

Book I
Chapter 2

sydiiag
dHd Buipjing

160 Setting Up Conditions

Table 2-3 Multiple Comparisons

Condition IsTruelf. ..

SageBobby == 21 or SageBobby == 22 Bobbhy is 21 or 22 years of age.

SageSally > 29 and $state =="OR" Sally is older than 29 and lives
in Oregon.

SageSally > 29 or S$state == "OR" Sally is older than 29 orlives in
Oregon or both.

Scity == "Reno" xor $state == "OR" The city is Reno orthe state is
Oregon, but not both.

Sname != "Sam" and S$age < 13 The name is anything except
Sam and age is under 13 years
of age.

You can string together as many comparisons as necessary. The compar-
isons using and are tested first, the comparisons using xor are tested next,
and the comparisons using or are tested last. For example, the following
condition includes three comparisons:

SresCity == "Reno" or SresState == "NV" and $name == "Sally"

If the customer’s name is Sally and she lives in NV, this statement is true. The
statement is also true if she lives in Reno, regardless of what her name is.
This condition is not true if she lives in NV but her name is not Sally. You get
these results because the script checks the condition in the following order:

1. The and is compared.

The script checks $resState to see whether it equals NV and checks
$name to see whether it equals Sally. If both match, the condition is
true, and the script doesn’t need to check or. If only one or neither of
the variables equal the designated value, the testing continues.

2. The or is compared.
The script checks $resCity to see whether it equals Reno. If it does,
the condition is true. If it doesn’t, the condition is false.

You can change the order in which comparisons are made by using paren-
theses. The connecting word inside the parentheses is evaluated first.

For example, you can rewrite the previous statement with parentheses as
follows:

(SresCity == "Reno or SresState == "NV") and $name == "Sally"

Using Conditional Statements 161

The parentheses change the order in which the conditions are checked. Now
the or is checked first because it’s inside the parentheses. This condition
statement is true if the customer’s name is Sally and she lives in either

Reno or NV. You get these results because the script checks the condition

as follows:

1. The or is compared.

The script checks to see whether SresCity equals Reno or $resState
equals Nv. If it doesn’t, the entire condition is false, and testing stops. If
it does, this part of the condition is true. However, the comparison on
the other side of the and must also be true, so the testing continues.
2. The and is compared. c::;:;:lz
The script checks $name to see whether it equals Sally. If it does, the
condition is true. If it doesn’t, the condition is false.

w
\J . . =
) Use parentheses liberally, even when you believe you know the order of the Y=
comparisons. Unnecessary parentheses can’t hurt, but comparisons that -§'¢§

have unexpected results can. s

=

If you're familiar with other languages, such as C, you might have used | |
(for or) and && (for and) in place of the words. The | | and && work in PHP
as well. The statement $Sa < $b && $Sc > sbis just as valid as the state-

ment $a < $b and $c > $b. The || is checked before or, and the && is
checked before and.

Using Conditional Statements

A conditional statement executes a block of statements only when certain
conditions are true. Here are two useful types of conditional statements:

4+ An if statement: Sets up a condition and tests it. If the condition is true,
a block of statements is executed.

4+ A switch statement: Sets up a list of alternative conditions. It tests for
the true condition and executes the appropriate block of statements.

Using if statements

An if statement tests conditions, executing a block of statements when a
condition is true.

162 Using Conditional Statements

Building if statements
The general format of an i f conditional statement is as follows:

if (condition)
{

block of statements
}
elseif (condition)
{

block of statements
}
else

{

block of statements

}
The if statement consists of three parts:

4+ if: This part is required. Only one if is allowed. It tests a condition:

¢ If the condition is true: The block of statements is executed. After
the statements are executed, the script moves to the next instruction
following the conditional statement; if the conditional statement con-
tains any elseif or else sections, the script skips over them.

¢ If the condition is not true: The block of statements is not executed.
The script skips to the next instruction, which can be an elseif, an
else, or the next instruction after the i f conditional statement.

4 elseif: This part is optional. You can use more than one elseif if you
want. An elseif also tests a condition:

¢ If the condition is true: The block of statements is executed. After
executing the block of statements, the script goes to the next instruc-
tion following the conditional statement; if the i f statement contains
any additional elseif sections or an else section, the script skips
over them.

¢ If the condition is not true: The block of statements is not executed.
The script skips to next instruction, which can be an elseif, an
else, or the next instruction after the i f conditional statement.

4 else: This part is also optional. Only one else is allowed. This part
doesn’t test a condition, but rather it executes the block of statements.
The script enters the else section only when the i f section and all the
elseif sections are not true.

Here’s an example. Pretend you'’re a teacher. The following if statement,
when given a test score, sends your student a grade and a snappy little text

Using Conditional Statements ’63

message. It uses all three parts of the if statement (if, elseif, and else),
as follows:

if ($score > 92)
{
Sgrade = "A";
Smessage = "Excellent!";
}
elseif ($score <= 92 and S$score > 83)
{
Sgrade = "B";
Smessage = "Good!";
}
elseif ($score <= 83 and S$score > 74)
{
Sgrade = "C";
Smessage = "Okay";
}
elseif (Sscore <= 74 and Sscore > 62)

{

Sgrade = "D";
Smessage = "Uh oh!";
}
else
{
Sgrade = "F";
Smessage = "Doom is upon you!";

}
echo S$message."\n";
echo "Your grade is S$grade\n";

The if conditional statement proceeds as follows:

1. The value in $score is compared to 92.

If Sscore is greater than 92, $grade is set to A, $Smessage is set to
Excellent!, and the script skips to the echo statement. If $score is
92 or less, $Sgrade and $Smessage are not set, and the script skips to the
elseif section.

2. The value in $score is compared to 92 and to 83.

If Sscoreis 92 or less and greater than 83, $Sgrade and $Smessage are
set, and the script skips to the echo statement. If $score is 83 or less,
Sgrade and $Smessage are not set, and the script skips to the second
elseif section.

3. The value in $score is compared to 83 and to 74.

If Sscore is 83 or less and greater than 74, $grade and $Smessage are
set, and the script skips to the echo statement. If $score is 74 or less,

Book |
Chapter 2

sydiiag
dHd Buipjing

764 Using Conditional Statements

A\

Sgrade and Smessage are not set, and the script skips to the next
elseif section.

4. The value in $score is compared to 74 and to 62.

If Sscoreis 74 or less and greater than 62, Sgrade and Smessage are
set, and the script skips to the echo statement. If $score is 62 or less,
$Sgrade and Smessage are not set, and the script skips to the else
section.

5. sgradeis set to F, and $message is set to Doom is upon you!

The script continues to the echo statement.

When the block to be executed by any section of the i f conditional state-
ment contains only one statement, the curly braces are not needed. For
example, say the preceding example had only one statement in the blocks,
as follows:

if ($grade > 92)
{

Sgrade = "A";
}

You could write it as follows:

if ($Sgrade > 92)
Sgrade = "A";

This shortcut can save some typing. However, when you're using several if
statements, you should include the curly braces because leaving them out
can lead to confusion.

Negating if statements

You can write an if statement so that the statement block is executed when
the condition is false by putting an exclamation point (!) at the beginning
of the condition. For example, you can use the following if statement:

if (preg_match("/"Sl[a-z]*/",S$string))
{

Slist[]=$Sstring."\n";
}

This if statement creates an array of strings that begin with S. More specifi-
cally, if Sstring matches a pattern that specifies one uppercase S at the

beginning, followed by a number of lowercase letters, the condition is true and
the statement block is executed. However, if you were to place an exclamation

Using Conditional Statements 165

point at the beginning of the condition, things would change considerably.
For example, say you use the following statements instead:

if (!preg _match("/~S[a-z]*/",$string)
{

Slist[]=$string."\n";
}

In this case, the array $1ist contains all the strings except those that begin
with s. In this case, because a ! appears at the beginning of the condition,
the condition is “$string does not match a pattern that begins with s.” So,
when $string does not begin with S, the condition is true.

Nesting if statements

You can have an if conditional statement inside another if conditional
statement. Putting one statement inside another is called nesting. For exam-
ple, suppose you need to contact all your customers who live in Idaho. You
plan to send e-mail to those who have e-mail addresses and send letters to
those who don’t have e-mail addresses. You can identify the groups of cus-
tomers by using the following nested i f statements:

if (ScustState == "ID")
{
if ($SEmailadd = "")
{

ScontactMethod = "letter";
}
else
{
ScontactMethod = "email";
}
}
else
{
ScontactMethod = "none needed";

}

These statements first check to see whether the customer lives in Idaho. If
the customer does live in Idaho, the script tests for an e-mail address. If the
e-mail address is blank, the contact method is set to 1etter. If the e-mail
address is not blank, the contact method is email. If the customer doesn’t
live in Idaho, the else section sets the contact method to indicate that the
customer won’t be contacted at all.

Using switch statements

For most situations, the i f conditional statement works best. However, some-
times you have a list of conditions and want to execute different statements

Book

Chapter 2

sydiiag
dHd Buipjing

166

Using Conditional Statements

for each condition. For example, suppose your script computes sales tax.
How do you handle the different state sales tax rates? The switch statement
was designed for such situations.

The switch statement tests the value of one variable and executes the
block of statements for the matching value of the variable. The general
format is as follows:

switch (Svariablename)
{
case value :
block of statements;
break;
case value :
block of statements;
break;
default:
block of statements;
break;

}

The switch statement tests the value of Svariablename. The script then
skips to the case section for that value and executes statements until it
reaches a break statement or the end of the switch statement. If there is
no case section for the value of $variablename, the script executes the
default section. You can use as many case sections as you need. The
default section is optional. If you use a default section, it’s customary to
put the default section at the end, but as far as PHP is concerned, it can go
anywhere.

The following statements set the sales tax rate for different states:

switch ($custState)
{
case "OR"
Ssalestaxrate
break;
case "CA"
$Ssalestaxrate = 1.0;
break;
default:
Ssalestaxrate = .5;
break;

1l
o

}

$salestax = SorderTotalCost * S$salestaxrate;

\\3

Repeating Actions with Loops 16 7

In this case, the tax rate for Oregon is 0, the tax rate for California is 100
percent, and the tax rate for all the other states is 50 percent. The switch
statement looks at the value of ScustState and skips to the section that
matches the value. For example, if ScustState is TX, the script executes
the default section and sets $salestaxrate to . 5. After the switch
statement, the script computes $salestax at .5 times the cost of the order.

The break statements are essential to end the case section. If a case sec-
tion does not include a break statement, the script does not stop executing
statements at the end of the case section. The script continues executing
statements past the end of the case section, on to the next case section,
and continues until it reaches a break statement or the end of the switch
statement. This is a problem for every case section except the last one
because it will execute sections following the appropriate section.

In some rare instances, you may want two case sections to execute when
the switch variables match the value of the first case section, so you can
leave out the break statement in the first case section. This is not a
common situation, but it can occasionally solve a problem.

The last case section in a switch statement doesn’t actually require a
break statement. You can leave it out. However, it’s a good idea to include it
for clarity and consistency.

Repeating Actions with Loops

Loops are used frequently in scripts to set up a block of statements that
repeat. The loop can repeat a specified number of times. For example, a loop
that echoes all the state capitals in the United States needs to repeat 50
times. Or the loop can repeat until a certain condition is met. For example, a
loop that echoes the names of all the files in a directory needs to repeat until
it runs out of files, regardless of how many files there are. Here are three
types of loops:

4+ A for loop: Sets up a counter; repeats a block of statements until the
counter reaches a specified number

4+ A while loop: Sets up a condition; checks the condition, and if it’s true,
repeats a block of statements until the condition becomes false

4+ A do..while loop: Sets up a condition; executes a block of statements;
checks the condition, and if it’s true, repeats the block of statements
until the condition becomes false

We describe each of these loops in detail in the following few sections.

Book

Chapter 2

sydiiag
dHd Buipjing

’68 Repeating Actions with Loops

Using for loops

The most basic for loops are based on a counter. You set the beginning
value for the counter, set the ending value, and set how the counter is incre-
mented each time the statement block is executed.

Building for loops

The general format of a basic for loop is as follows:

for (startingvalue; endingcondition; increment)

{
block of statements;

}
Within the for statement, you need to fill in the following values:

4 startingvalue: The startingvalueis a statement that sets up a
variable to be your counter and sets it to your starting value. For exam-
ple, the statement $i=1; sets $i as the counter variable and sets it
equal to 1. Frequently, the counter variable is started at 0 or 1. The start-
ing value can be a number, a combination of numbers (such as 2 + 2),
or a variable.

4 endingcondition: The endingcondition is a statement that sets
your ending value. As long as this statement is true, the block of state-
ments keeps repeating. When this statement is not true, the loop ends.
For example, the statement $i<10; sets the ending value for the loop to
10. When $1i is equal to 10, the statement is no longer true (because $i
is no longer less than 10), and the loop stops repeating. The statement
can include variables, such as $i<$size;.

4+ increment: A statement that increments your counter. For example, the
statement $i++; adds 1 to your counter at the end of each block of
statements. You can use other increment statements, such as $i=+1; or
Si--;.

A basic for loop sets up a variable, like $i, that is used as a counter. This
variable has a value that changes during each loop. The variable $i can be
used in the block of statements that is repeating. For example, the following
simple loop displays Hello World! three times:

for ($i=1;$1<=3;$i++)
{

echo "$i. Hello World'!
";
}

Repeating Actions with Loops '69

The following is the output from these statements:

1. Hello World!
2. Hello World!
3. Hello World!

Nesting for loops

You can nest for loops inside for loops. Suppose you want to print the mul-
tiplication tables from 1 to 9. You can use the following statements:

for($i=1;%$i<=9;3%i++)
{
echo "\nMultiply by $i \n";
for($3=1;$3<=9;$j++)
{
Sresult = $i * $3;
echo "$1 x $j = Sresult\n";

}
The output is as follows:

Multiply by 1

1 x1-=1
1 x2 =2
1 x 8 =28
1 x9 =9

Multiply by 2

2x 1 =2
2 x 2 =4
2 x 8 =16
2 x 9 = 18

Multiply by 3
3x1 =23

And so on.

Designing advanced for loops

The structure of a for loop is quite flexible and allows you to build loops for
almost any purpose. While the basic for loop discussed so far in this sec-
tion has one statement in its starting, conditional, and increment sections,
the general format allows more than one statement in each section. The gen-
eral format is:

Book

Chapter 2

sydiiag
dHd Buipjing

170 Repeating Actions with Loops

for (beginning statements; conditional statements;
ending statements)
{

block of statements;

}
The statements within a for loop have the following roles:

4+ The beginning statements execute once at the start of the loop. They
can be statements that set any needed starting values or other state-
ments that you want to execute before your loop starts running.

4+ The conditional statements are tested for each iteration of your loop.

4+ The ending statements execute once at the end of the loop. They can be
statements that increment your values or any other statements that you
want to execute at the end of your loop.

Each statement section is separated by a semicolon (;). Each section can
contain as many statements as needed, separated by commas. Any section
can be empty.

The following loop has statements in all three sections:

St = 0;
for ($i=0,$3=1;$t<=4;S$i++,$j++)
{
St = si + $3;
echo "St
";
}

$1=0 and $j=1 are the beginning statements, $t<=4 is the conditional state-
ment, and $i++ and $j++ are the ending statements.

The output of these statements is as follows:

1
3
5

The loop is executed in the following order:

1. The beginning section containing two statements is executed.
Siissetto 0,and $jissetto 1.
2. The conditional section containing one statement is evaluated.

Is st less than or equal to 4? Yes, so the statement is true. The loop con-
tinues to execute.

3

N

10.

11.

Repeating Actions with Loops 171

The statements in the statement block are executed.

$t becomes equal to $1i plus $3, whichis 0 + 1, which equals 1. Then
$t is echoed to give the output 1.

. The ending section containing two statements ($i++ and $j++) is

executed.

Both $i and $3j are incremented by 1, so $i now equals 1, and $3j now
equals 2.

. The conditional section is evaluated.

Is st less than or equal to 4? Because $t is equal to 1 at this point, the
statement is true. The loop continues to execute.

. The statements in the statement block are executed.

$t becomes equal to $i plus $3j, whichis 1 + 2, which equals 3. Then
$t is echoed to give the output 3.

The ending section containing two statements ($i++ and $j++) is
executed.

Both $1i and $j are incremented by 1, so $i now equals 2, and $3j now
equals 3.

. The conditional section is evaluated.

Is st less than or equal to 4? Because $t now equals 3, the statement is
true. The loop continues to execute.

. The statements in the statement block are executed.

$t becomes equal to $i plus $3j, whichis 2 + 3, which equals 5. Then
$t is echoed to give the output 5.

The ending section containing two statements ($i++ and $j++) is
executed.

Both $1i and $j are incremented by 1, so $i now equals 2, and $3j now
equals 3.

The conditional section is evaluated.

Is $t less than or equal to 4? Because $t now equals 5, the statement is
not true. The loop doesn’t continue to execute. The loop ends, and the
script continues to the next statement after the end of the loop.

Using while loops
A while loop continues repeating as long as certain conditions are true. The
loop works as follows:

Book

Chapter 2

sydiiag
dHd Buipjing

1 72 Repeating Actions with Loops

1. You set up a condition.

2. The condition is tested at the top of each loop.

3. If the condition is true, the loop repeats. If the condition is not true, the
loop stops.

The following is the general format of a while loop:

while (condition)
{
block of statements

}

The following statements set up a while loop that looks through an array
for an apple:

Sfruit = array ("orange", "apple", "grape");
Stestvar = "no";
Sk = 0;
while ($testvar != "yes")
{

if ($Sfruit[sk] == "apple")

{

Stestvar = "yes";

echo "apple\n";
}
else
{
echo "S$fruit[$k] is not an apple\n";
}
$k++;
}

These statements generate the following output:

orange is not an apple
apple

The script executes the statements as follows:

1. The variables are set before starting the loop.

$fruit is an array with three values, $testvar is a test variable set to
"no", and $k is a counter variable set to 0.

2. The loop starts by testing whether $testvar != "yes" is true.
p y g

Because Stestvar was set to "no", the statement is true, so the loop
continues.

MBER
é“’
&

Repeating Actions with Loops 1 73

3. The condition in the if statement is tested.

Is $fruit[$k] == "apple" true? At this point, $k is 0, so the script
checks $fruit[0].Because $fruit[0] is "orange", the statement is
not true. The statements in the if block aren’t executed, so the script
skips to the else statement.

The statement in the else block is executed.

The else block outputs the line "orange is not an apple". Thisis
the first line of the output.

. $k is incremented by one.

Now $k becomes equal to 1.

. The bottom of the loop is reached.

Flow returns to the top of the while loop.

. The condition $testvar != "yes" is tested again.

Is Stestvar != "yes" true? Because Stestvar hasn’t been changed
and is still set to "no", it is true, so the loop continues.

. The condition in the if statement is tested again.

Is $fruit[$k] == "apple" true? At this point, $k is 1, so the script
checks $fruit[1].Because Sfruit[1] is "apple", the statement is
true. So the loop enters the i f block.

. The statements in the if block are executed.

10.

11.

12.

These statements set Stestvar to "yes" and output "apple". This is
the second line of the output.

$k is incremented again.

Now $k equals 2.

The bottom of the loop is reached again.

Once again, the flow returns to the top of the while loop.
The condition Stestvar !'= "yes" is tested one last time.

Is Stestvar != "yes" true? Because Stestvar has been changed
and is now set to "yes", it is not true. The loop stops.

It’s possible to write a while loop that is infinite — that is, a loop that loops
forever. You can easily, without intending to, write a loop in which the condi-

tion is always true. If the condition never becomes false, the loop never
ends. For a discussion of infinite loops, see the section “Avoiding infinite
loops,” later in this chapter.

Book I
Chapter 2

sydiiag
dHd Buipjing

1 74 Repeating Actions with Loops

Using do..while loops

A do. .whileloop is very similar to a while loop. Like a while loop, a
do. .while loop continues repeating as long as certain conditions are true.
Unlike while loops, however, those conditions are tested at the bottom of
each loop. If the condition is true, the loop repeats. When the condition is
not true, the loop stops.

The general format for a do. .while loop is as follows:

do

{
block of statements
} while (condition);

The following statements set up a loop that looks for an apple. This script
does the same thing as the script in the preceding section that uses awhile

loop:
Sfruit = array ("orange", "apple", "grape");
Stestvar = "no";
$k = 0;
do
{

if (Sfruit[Sk] == "apple")

{

Stestvar = "yes";

echo "apple\n";
}

else
{
echo "$fruit[$k] is not an apple\n";
}
Sk++;
} while (Stestvar != "yes");

The output of these statements in a browser is as follows:

orange is not an apple
apple

This is the same output shown for the while loop example. The difference
between a while loop and a do. .while loop is where the condition is
checked. In a while loop, the condition is checked at the top of the loop.
Therefore, the loop will never execute if the condition is never true. In the
do. .while loop, the condition is checked at the bottom of the loop. There-
fore, the loop always executes at least once, even if the condition is never
true.

Repeating Actions with Loops 175

For example, in the preceding loop that checks for an apple, suppose the
original condition is set to yes, instead of no, by using this statement:

Stestvar = "yes";

The condition tests false from the beginning. It is never true. In awhile
loop, there is no output. The statement block never runs. However, in a
do. .while loop, the statement block runs once before the condition is
tested. Thus, the while loop produces no output, but the do. .while loop
produces the following output:

orange is not an apple

The do. .while loop produces one line of output before the condition is
tested. It doesn’t produce the second line of output because the condition
tests false.

Avoiding infinite loops

You can easily set up loops so that they never stop. These are called infinite
loops. They repeat forever. However, seldom does anyone create an infinite
loop intentionally. It’s usually a mistake in the programming. For example, a
slight change to the script that sets up a while loop can make it into an infi-
nite loop.

Here is the script shown in the section “Using while loops,” earlier in this
chapter, with a slight change:

sfruit = array ("orange", "apple", "grape");
Stestvar = "no";
while (Stestvar != "yes")
{

$k = 0;

if ($Sfruit[Sk] == "apple")

{

Stestvar = "yes";

echo "apple\n";
}

else
{
echo "$fruit[$k] is not an apple\n";
}
$k++;
}

The small change is moving the statement $k = 0; from outside the loop to
inside the loop. This small change makes it into an endless loop. This
changed script has the following output:

Book

Chapter 2

sydiiag
dHd Buipjing

1 76 Repeating Actions with Loops

3

orange is not an apple
orange 1s not an apple
orange 1s not an apple
orange is not an apple

This will repeat forever. Every time the loop runs, it resets $k to 0. Then it
gets $fruit[0] and echoes it. At the end of the loop, $k is incremented to
1. However, when the loop starts again, $k is set back to 0. Consequently,
only the first value in the array, orange, is ever read. The loop never gets to
the apple, and $testvar is never set to "yes". The loop is endless.

Don’t be embarrassed if you write an infinite loop. We guarantee that the
best programming guru in the world has written many infinite loops. It’s not
a big deal. If you're testing a script and get output repeating endlessly,
there’s no need to panic. Do one of the following:

4+ If you’re using PHP on a Web page: Wait. It will stop by itself in a short
time. The default time is 30 seconds, but the timeout period might have
been changed by the PHP administrator. You can also click the Stop
button on your browser to stop the display in your browser.

4+ If you’re using PHP CLI: Press Ctrl + C. This stops the script from run-
ning. Sometimes the output will continue to display a little longer, but it
will stop very shortly.

Then figure out why the loop is repeating endlessly and fix it.

A common mistake that can result in an infinite loop is using a single equal
sign (=) when you mean to use double equal signs (==). The single equal
sign stores a value in a variable; the double equal signs test whether two
values are equal. The following condition using a single equal sign is always
true:

while (S$Stestvar = "yes")

The condition simply sets $testvar equal to "yes". This isn’t a question
that can be false. What you probably meant to write is this:

while (Stestvar == "yes")

This is a question asking whether $Stestvar is equal to "yes", which can
be answered either true or false.

Another common mistake is to leave out the statement that increments the
counter. For example, in the script earlier in this section, if you leave out the
statement $k++;, $k is always 0, and the result is an infinite loop.

Repeating Actions with Loops 177

Breaking out of a loop

Sometimes you want your script to break out of a loop. PHP provides two
statements for this purpose:

4+ break: Breaks completely out of a loop and continue with the script
statements after the loop.

4 continue: Skips to the end of the loop where the condition is tested. If
the condition tests positive, the script continues from the top of the
loop.

The break and continue statements are usually used in conditional state-
ments. In particular, break is used most often in switch statements, dis-
cussed earlier in this chapter.

The following statements show the difference between continue and
break. This first chunk of code shows an example of the break statement:

Scounter = 0;
while (Scounter < 5)
{
Scounter++;
If ($Scounter ==)
{
echo "break\n";
break;
}
echo "Last line in loop: counter=$counter\n";
}

echo "First line after loop\n\n";
The output of this statement is the following:

Last line in loop: counter=1
Last line in loop: counter=2
break

First line after loop

Notice that the first loop ends at the break statement. It stops looping and
jumps immediately to the statement after the loop. That’s not true of the
continue statement.

The following code gives you an example of the continue statement:

Scounter = 0;
while (Scounter < 5)

{

Book

Chapter 2

sydiiag
dHd Buipjing

1 78 Using Functions

Scounter++;

If (Scounter == 3)

{
echo "continue\n";
continue;

}

echo "Last line in loop: counter=$counter\n";

}

echo "First line after loop\n";
The output of this statement is the following:

Last line in loop: counter=1
Last line in loop: counter=2
continue

Last line in loop: counter=4
Last line in loop: counter=5
First line after loop

Unlike the break statement loop, this loop does not end at the continue
statement. It just stops the third repeat of the loop and jumps back up to the
top of the loop. It then finishes the loop, with the fourth and fifth repeats,
before it goes to the statement after the loop.

One use for break statements is insurance against infinite loops. The follow-
ing statements inside a loop can stop it at a reasonable point:

Stestd4infinity++;
if (Stestdinfinity > 100)
{

break;

}

If you're sure that your loop should never repeat more than 100 times, use
these statements to stop the loop if it becomes endless. Use whatever
number seems reasonable for the loop you're building.

Using Functions

Applications often perform the same task at different points in the script or
in different scripts. Functions are designed to allow you to reuse the same
code in different locations. A function is a group of PHP statements that per-
form a specific task. You can use the function wherever you need to perform
the task.

For example, suppose you display your company logo frequently throughout
your Web site with the following statements:

Using Functions 1 79

echo "<p><img src='Images/logo.jpg' width='50' height='50"
hspace='10"' align='left' /></p>";

echo "<p style='font-size: x-large'>My Fine Company</p>";

echo "<p style='font-style: italic'>quality products</p>";

Rather than typing this code in every place in your scripts where you want
to display your logo, you can create a function that contains the statements
and name it display_logo. Then, you can just use the function whenever
you want to display your logo. Using the function looks like this:

display_logo() ;

You can see that using this one line saves a lot of typing and is easier to read
and understand than typing the echo statements everywhere the logo is
needed.

Creating a function

You can create a function by putting the code into a function block. The gen-
eral format is as follows:

function functionname ()
{
block of statements;
return;

}

For example, you can create the function display_logo () that we discuss
in the preceding section with the following statements:

function display_logo ()
{
echo "<p><img src='Images/logo.jpg' width='50"' height='50"
hspace='10' align='left' /></p>";
echo "<p style='font-size: x-large'>My Fine Company</p>";
echo "<p style='font-style: italic'>quality products</p>";
return;

}

You can then call the function anywhere you want to display the logo, as
follows:

display_logo();

The return statement at the end of the preceding function stops the func-
tion and returns control to the main script. A return statement isn’t needed
at the end of the function, because the function stops at the end anyway and
returns control to the calling script. However, the return statement makes

Book

Chapter 2

sydiiag
dHd Buipjing

180 Using Functions

the function easier to understand. The return statement is discussed in
more detail in the section “Returning a value from a function,” later in this
chapter.

You can create a function with a function-definition statement anywhere in
the script, but the usual practice is to put all the functions together at the
beginning or the end of the script. Functions that you plan to use in more
than one script can be defined in a separate file that you include in any
scripts that need to use the functions. Including files in scripts is discussed
in the section, “Organizing Scripts,” later in this chapter.

Using variables in functions

You can create and use a variable inside your function. Such a variable is
called local to the function. However, the variable isn’t available outside of
the function; it’s not available to the main script. If you want to use the vari-
able outside the function, you have to make the variable global, rather than
local, by using a global statement. For instance, the variable $name is cre-
ated in the following function:

function format_name ()

{

$first_name = "John";
$last_name = "Smith";
Sname = $last_name, ".$first_name;

}
format_name () ;
echo "S$name";

These statements don’t produce any output. In the echo statement, $name
doesn’t contain any value. The variable $name was created inside the func-
tion, so it doesn’t exist outside the function.

You can create a variable inside a function that does exist outside the func-
tion by using the global statement. The following statements contain the
same function with a global statement added:

function format_name ()

{
global S$name;

$first_name = "John";
$last_name = "Smith";
Sname = $last_name, ".$first_name;

}
format_name () ;
echo "Sname";

\NG/
s

Using Functions 181

The script now echoes this:
Smith, John

You must make the variable global before you can use it. If the global state-
ment follows the $name assignment statement, the script doesn’t produce
any output. That is, in the preceding function, if the global statement fol-
lowed the $name = statement, the function wouldn’t work correctly.

Similarly, if a variable is created outside the function, you can’t use it inside
the function unless it’s global. In the following statements, the only global
statement is inside the function:

Sfirst_name = "John";

Slast_name = "Smith";

function format_name ()

{
global $first_name, S$last_name;
Sname = $last_name.", ".Sfirst_name;
echo "S$name";

}

format_name () ;

Because the code didn’t include a global statement outside the function,
$last_name and $first_name inside the function are different variables
than $last_name and $first_name created in the script outside the func-
tion. The variables $1ast_name and $first_name inside the function are
created when you name them and have no values. Therefore, $name echoes
only a comma, as follows:

’

You need the global statement for the function to work correctly.

Passing values to a function

You pass values to a function by putting the values between the parentheses
when you call the function, as follows:

functionname (value, value, ...);

Of course, the variables can’t just show up. The function must be expecting
them. The function statement includes variables names for the values it’s
expecting, as follows:

function functionname ($varnamel, $varname2, ...)
{

statements

return;

Book

Chapter 2

sydiiag
dHd Buipjing

182 Using Functions

For example, the following function computes the sales tax:

function compute_salestax ($amount, ScustState)
{
switch (S$ScustState)
{
case "OR"
Ssalestaxrate = 0;
break;
case "CA"
Ssalestaxrate
break;
default:
Ssalestaxrate = .5;
break;

1l
[N
o

}
Ssalestax = Samount * S$salestaxrate;
echo "$salestax
";

}

The first line shows that the function expects two values — $amount and
$custsState. When you call the function, you pass it two values, as follows:

Samount = 2000.00;
ScustState = "CA";
compute_salestax (Samount, ScustState) ;

In this case, the amount passed in is 2000.00 and the state is CA. The output
is 2000, because the salestaxrate for CAis 1.0.

Passing the right type of values

You can pass values directly, including computed values, or you can pass
variables containing values. The following calls are valid:

compute_salestax (2000, "CA") ;
compute_salestax (2*1000,"");
compute_salestax (2000, "C"."A");

You can pass values of any data type. See Chapter 1 in this minibook for a
discussion of data types. Generally, you want to test the values that are
passed to check whether the values are the expected data type. For exam-
ple, the following function expects an array:

function add_numbers ($numbers)
{

if (is_array (Snumbers))

{

for($i=0;$1 <sizeof (Snumbers) ; Si++)

Using Functions ’83

{
@Ssum = $sum + Snumbers[$i];
}
echo S$sum;
}
else
{
echo "value passed is not an array";
return;

}
You can use the following statements to call the add_numbers function:

Sarrayofnumbers = array(100,200);
add_numbers ($Sarrayofnumbers) ;

The function displays 300, which is the sum of 100 plus 200. If the value
passed isn’t an array, as follows:

add_numbers (100) ;
The function displays the message:

value passed is not an array

Passing values in the correct order

The function receives the values in the order they are passed. That is, sup-
pose you have the following function:

function functionx($x,Sy,$z)
{
do stuff

}

You call the function as follows:

functionx ($Svarl, $var2, $var3l) ;

functionx sets $x=$varl, $Sy=$var2, and $z=Svar3.

If the values you pass aren’t in the expected order, the function uses the
wrong value when performing the task. For instance, perhaps your definition
for a function to compute sales tax looks like the following:

function compute_salestax(SorderCost, ScustState)

{

compute tax

}

Book

Chapter 2

sydiiag
dHd Buipjing

18 4 Using Functions

$orderCost is the cost of the order, and $custState is the state the cus-
tomer resides in. But suppose you use the following call:

compute_salestax (ScustState, SorderCost) ;

The function uses the value of the $custState variable as the cost of the
order, which it sets to 0, because it is a string. It sets the ScustState vari-
able to the number in $orderCost, which wouldn’t match any of its cate-
gories. The output would be 0.

Passing the right number of values

A function is designed to expect a certain number of values to be passed to
it. If you don’t send enough values, the function sets the missing one(s) to
NULL. If you have your warning message level turned on, a warning message
is displayed. (See the section about understanding error messages in
Chapter 1 in this minibook for a description of error levels.) For example,
suppose you have the following function that formats a name:

function format_name ($first_name, $last_name)
{

Sname = "$last_name, ".S$first_name;

echo S$name;

3

The function expects two values to be passed to it. Suppose you call it with
the following statement:

format_name ("John") ;
You see a message similar to the following:

Warning: Missing argument 2 for format_name() in testing.php
on line 9

However, warnings don’t stop the script; it continues to run. So, the script
outputs the following:

, John
If you send too many values, the function ignores the extra values. In most
cases, you don’t want to pass the wrong number of values, although this can

be useful in a few rare instances.

You can set default values to be used when a value isn’t passed. The defaults
are set when you write the function, as follows:

Using Functions 185

function add_2_ numbers (Snuml=1, Snum2=1)
{

Stotal = $Snuml + $Snum2;

echo "total = Stotal";
}

If one or both of the values aren’t passed to the function, the function uses
the assigned defaults, but if a value is passed, it is used instead of the
default. For instance, you might use one of the following calls:

add_2_numbers (2,2) ;
add_2_numbers (2) ;

add_2_ numbers () ;

The results are, in consecutive order:

Stotal = 4
Stotal = 3
Stotal = 2

Passing values by reference

When you pass values into variables in the function definition as shown so
far, you're passing by value. Passing by value is the most common way to
pass values to a function, as follows:

function add_1 ($numl)
{
Snuml = Snuml + 1;

}

When passing by value, copies are made of snuml and are passed to the
function. While $num1 is changed inside the function, by adding 1 to it, the
variable $numl outside of the function is not changed. So, if you call the
function with the following statements:

Snuml = 3;
add_1 ($numl) ;
echo S$numl;
The output is:

3

$numl still contains the same value as it did before you called the function.
You can change this by making the variable global inside the function or by

Book

Chapter 2

sydiiag
dHd Buipjing

18 7 Using Functions

returning $numl from the function after it’s changed and calling the function
as follows:

$Snuml = add_1 (Snuml) ;

The new value of $numl is returned from the function and stored in $numl
outside the function.

In some cases, you want to change the values of variables directly, changing
their values outside the function. Passing by reference is used for this task.
To pass a variable by reference, add & before the variable name as follows:

function add_1 (&Snuml)
{
$numl = S$numl + 1;

}

When you call this function, a pointer to the location of the variable is
passed, rather than a copy of the variable. That is, the function call passes a
pointer to the container called $num where the value 3 is stored. When you
change the variable with statements inside the function, the value at the
original location is changed. So, if you call the function with the following
statements:

Snuml = 3;
add_1 ($Snuml) ;
echo $numl;

The output is

4

Because you’re passing a pointer to a variable, the following doesn’t make
sense:

add_1(&7) ;

Passing by reference is used mainly when passing really large values, such as
an object or a large array. It’s more efficient to pass a pointer than to pass a
copy of really large values.

Returning a value from a function

If you want a function to send a value back to the main script, use the
return statement. The main script can put the value in a variable or use it
in any manner it would use any value.

Using Functions 187

To return a value from the function, put the return statement in the func-

tion. The general format is

return value;

For instance, the function that adds two numbers might look like this:
function add_2_numbers ($numl, Snum?2)
{

Stotal = Snuml + $num2;

return S$total;

}

The total of the two numbers is returned. You call the function as follows:
Ssum = add_2_numbers(5,6) ;

$sum then equals the value in $total that was returned from the
function — 11. In fact, we could use a shortcut and send the total back

to the main script with one statement:

return $numl + S$Snum2;

The main script can use the value in any of the usual ways. The following
statements use the function call in valid ways:

Stotal_height = add_2_numbers (Sheightl, Sheight2) ;
StotalSize = S$current_size + add_2_numbers ($sizel, $size2);

if (add_2_numbers ($costSocks, ScostShoes) > 200.00)
Secho "No sale";

A return statement can return only one value. However, the value returned

can be an array, so you can actually return many values from a function.

You can use a return statement in a conditional statement to end a func-
tion, as follows:

function find_value($Sarray, Svalue)
{ for($i=1;%i<sizeof (Sarray) ;Si++)
{ if (Sarray[$i] = Svalue)
{ echo "S$i. Sarrayl[$Sil
";
return;

}

Book |
Chapter 2

sydiiag
dHd Buipjing

188 Using Functions

The function checks an array to see whether it contains a value. For
instance, you can call the function with the following statements:

Snames = array("Joe","Sam", "Juan") ;
find value ($names, "Sam") ;

The function searches through the values in the array searching for Sam. If it
finds sam, it stops searching. The output shows the array item where Sam is
found, as follows:

1. Sam

Often functions are designed to return Boolean values (true or false), as in
the following function:

function is_over_100 ($number)
{
if (Snumber > 100)
{
return true;

}
else

{

return false;
}
}

Numbers equal to or less than 100 return false; numbers over 100 return
true. Another common function design returns a value if the function suc-
ceeds but returns false if the function does not succeed. For instance, you
can design the find_value function as follows:

function find_value ($array, Svalue)
{
for($i=1;Si<sizeof (Sarray) ;Si++)
{
if (Sarray[$i] == S$value)
{

return 1$;
}
}

return false;

}

If the function finds the value in the array, it returns the number of the array
element where it found $value. However, if it doesn’t find the value any-
where in the array, it returns false.

Organizing Scripts 18 9

Using built-in functions

PHP’s many built-in functions are one reason why PHP is so powerful and
useful. The functions included with PHP are normal functions. They’re no dif-
ferent than functions you create yourself. It’s just that PHP has already done
all the work for you.

You can PHP’s built-in functions the same way you call functions you create

yourself. You use the function name and pass any values the function needs.

We discuss specific PHP functions throughout the book. For instance, earlier

in this chapter, we discuss several functions that you can use to check

whether a variable exists or whether it’s empty. Here are a couple of those

functions: Book Il
Chapter 2

isset (Svarname)

empty (Svarname)

w
=
The PHP online documentation describes all the built-in functions at www . g =
php.net/manual/en/funcref.php. In addition, the PHP documentation -§'¢3
provides a search function that’s very useful when you remember the name s
=

of the function but can’t remember the exact syntax. Type the function name
in the Search For text box at the top of the Web page and choose Function
List from the drop-down list.

Organizing Scripts

A script is a series of PHP statements, and each statement performs an
action. PHP starts at the beginning of the script and executes each statement
in turn. Some statements are complex statements that execute simple state-
ments conditionally or repeatedly.

An application often consists of more than one PHP script. In general, one
script performs one major task. For instance, an application might include a
script to display a form and a script that stores the data in a database.
However, this is a guideline, rather than a rule. Some scripts both display a
form and process the form data.

Each script should be organized into sections for each specific task. Start
each section with a comment describing what the section does. (We cover
writing comments in Book II, Chapter 1.) Separate sections from each other
with blank lines. For instance, a login script might have sections as follows:

#display the login form
statements that display the login form

#check for valid user name and password
statements that check for valid user name and password

’90 Organizing Scripts

#display first page of Web site or error message
statements that display the site if user had valid login
or error message 1f login invalid

The goal is to make the script as clear and understandable as possible.
Scripts need to be maintained and updated over a period of time, often not
by the person who created them. The more clear and understandable they
are, the easier to maintain and update they are.

Separate display code from logic code

One principle of good practice for writing an application is to separate the
PHP programming logic from the HTML that displays the Web page. To do
this, the HTML that displays the page is put in a separate file. This file can
then be used in the script wherever the Web page needs to be displayed. You
can store the HTML code that displays a form in a separate file and then use
that code whenever the form needs to be displayed. Not only does it make
your PHP script easier to read, but it also makes changing the form simpler.
You can make the changes just in the file that contains the HTML code
rather than having to find everywhere the application displays the form and
make the changes at every location.

For example, suppose your customer adds an item to a shopping cart. On
the shopping cart Web page, you include two buttons — one that says
Continue Shopping and one that says Log Out. When the user clicks either
button, the following PHP script is executed:

<?php
if (Sbutton == "Continue Shopping")
{

include("catalog.inc") ;
}
else
include("logout.inc") ;
?>

If the user clicks Continue Shopping, a file containing HTML code that dis-
plays the catalog is used. If the users clicks the Log Out button, a file that
contains the HTML code for the log-out message is used. We discuss the
details of using include files later in this chapter in the “Organizing with
include files” section.

You can see how much easier the script is to read with only the include
statement in the script, rather than with all the HTML code needed to dis-
play the page cluttering up the script.

A\

Organizing Scripts 191

Reusing code

Another practice that makes scripts easy to maintain is reusing code. It’s
common to find yourself typing the same ten lines of PHP statements in sev-
eral places in the script. You can store that block of code and reuse it wher-
ever it’s needed.

Storing reusable code separately makes the script easier to read and under-
stand. In addition, when the code needs changing, you just change it in one
place, rather than changing it a dozen different places in the script.

You can reuse code by storing the code in a function and calling the function
wherever you need to perform the task. Creating and using functions is dis-
cussed earlier in this chapter, in the “Using Functions” section.

Another way you can reuse code is to store the code in a separate file and
incorporate the file into the script where it is needed. You can bring an exter-
nal file into a script with an include statement, discussed later in this chap-
ter in the “Organizing with include files” section.

Organizing with functions

Make frequent use of functions to organize your scripts. Functions are useful
when your script needs to perform the same task at repeated locations in a
script, in different scripts in the application, and even in different applica-
tions. After you write a function that does the task and you know it works,
you can use it anywhere that you need it.

Look for opportunities to use functions. Your script is much easier to read
and understand with a line like this:

getCustomerName () ;

than with 20 lines of statements that actually get the customer name. In
fact, after you’ve been writing PHP scripts for a while, you'll have a stash of
functions that you’ve written for various scripts. Very often the script that
you’re writing can use a function that you wrote for another application two
jobs ago. For instance, we often have a need for a list of the states. Rather
than include a list of all 50 states in the United States every time we need

it, we have a function called getStateNames () that returns an array

that holds the 50 state names in alphabetical order and a function called
getStateCodes () that returns an array with all 50 two-letter state
abbreviation codes in the same order.

Always use descriptive function names. The function calls in your script
should tell you exactly what the functions do. Long names are okay. You
don’t want to see a line in your script that reads

functionl () ;

Book

Chapter 2

sydiiag
dHd Buipjing

’92 Organizing Scripts

Even a line like the following is less informative than it could be:
getDatal() ;
You want to see a line like this:

getAllCustomerNames () ;

Organizing with include files

include statements bring the content of a file into your script. Thus, you
can put statements into an external file — a file separate from your script
file — and insert the file wherever you want in the script with the include
statement. include statements are useful for storing statements that are
repeated. Here are some ways to use include files to organize your scripts:

4 Put all or most of your HTML into include files. For instance, if your
script sends a form to the browser, put the HTML for the form into an
external file. When you need to send the form, use an include state-
ment. Putting the HTML into an include file is a good idea if the form is
shown several times. It’s even a good idea if the form is shown only once
because it makes your script much easier to read.

4 Put your functions in include files. You don’t need the statements
for functions in the script; you can put them in an include file. If you
have a lot of functions, organize related functions into several include
files, such as data_functions.inc and form_functions.inc. Use
include statements at the top of your scripts, reading in only the func-
tions that are used in the script.

4+ Store statements that all the files on your Web site have in common.
Most Web sites have many Web pages with many elements in common.
For instance, all Web pages start with <html>, <head>, and <body>
tags. If you store the common statements in an include file, you can
include them in every Web page, ensuring that all your pages look alike.
For instance, you might have the following statements in an include
file:

<html>
<head><title><?php echo $title ?></title></head>
<body topmargin="0">
<p style="text-align: center">

<hr color="red" />

If you include this file at the top of every script on your Web site, you
save a lot of typing, and you know that all your pages match. In addition,
if you want to change anything about the look of all your pages, you
have to change it only in one place — in the include file.

WING/
&

Organizing Scripts ’93

Including files

You use an include statement to bring the content of an external text file
into your script. The format for an include statement is:

include (" filename") ;

The file can have any name. We like to use the extensions .inc, so that we
know the file is an include file as soon as we see the name. It helps with the
organization and clarity of your Web site.

PHP provides four types of include statements:

4 include includes and evaluates the specified file. It displays a warning
if it can’t find the specified file.

4+ require performs the same was as the include statement, except that it
produces, in addition to a warning, a fatal error when it can’t find the
specified file, stopping the script at that point.

4 include_once performs the same as the include statement, except it
includes the file only once. If the file has already been included, it won’t
be included again. In some scripts, a file might be included more than
once, causing function redefinitions, variable reassignments, and other
possible problems.

4 require_once performs the same as the require statement, except it
includes the file only once. If the file has already been included, it won’t
be included again. This statement prevents problems that might occur
when a file is included more than once.

The external file is included in your script at the location of the include
statement. The content of the file is read in as HTML code, not PHP.
Therefore, if you want to use PHP statements in your include file, you must
include PHP tags in the include file.

Forgetting the PHP tags in the include file is a common mistake. It’s also a
security problem because without the PHP tags, the code in the include file
is displayed to the user as HTML. You don’t want your database password
displayed on your Web page. include file security is discussed later in this
chapter in the section “Storing include files.”

Using variables in include statements
You can use a variable name for the filename as follows:

include("$filename") ;

Book I
Chapter 2

sydiiag
dHd Buipjing

794 Organizing Scripts

For example, you might want to display different messages on different days.
You might store these messages in files that are named for the day on which
the message should appear. For instance, you can have a file named

Sun. inc with the following content:

<p>Go ahead. Sleep in. No work today.</p>

and similar files for all days of the week. The following statements can be
used to display the correct message for the current day:

Stoday = date("D");
include("Stoday".".inc");

After the first statement, $today contains the day of the week, in abbrevia-
tion form. The date statement is discussed in Chapter 1 in this minibook.
The second statement includes the correct file, using the day stored in
Stoday. If $Stoday contains Sun, the statement includes a file called
Sun.inc.

Storing include files

Where you store include files can be a security issue for Web sites. Files
stored on Web sites can be downloaded by any user, unless protected. Theo-
retically, a user can connect to your Web site by using the following URL:

http://yourdomain.com/secretpasswords. inc

If the Web server is configured to process PHP sections only in files with
the .php extension and secretpasswords. inc contains the following
statements:

<?php
Smysecretaccount="account48756";
Smypassword="secret";

?>

the Web server would obligingly display the contents of secretpasswords.
inc to the user. You can protect against this in one of the following ways:

4+ Name include files with .php extensions. This needs to be done care-
fully because it allows some PHP code to be run independently, without
any context. For instance, suppose you have code in your include file
that deleted a record in the database (highly unlikely). Running the code
outside of a script might have negative consequences. Also, we find it
convenient to name files with a . inc extension, so we can see at a
glance that it’s a fragment, not a script intended to run by itself.

Organizing Scripts ’95

4+ Configure the Web server to scan for PHP sections in files with the
.inc extension, as well as the .php extension. This allows you to rec-
ognize include files by their name, but it still has the problem of possible
unintended consequences of running the file independently, as dis-
cussed above.

4+ Store the file in a location that isn’t accessible to outside users. This is
the preferred solution, but it may not be possible in some environments,
such as when using a Web hosting company.

The best place to store include files is a directory where outside users

cannot access them. For instance, for your Web site, set up an include

directory that is outside your Web space. That is, a directory in a location Book Il
that outside users can’t access using their browsers. For instance, the Chapter 2
default Web space for Apache, unless it has been changed in the configura-

tion file (usually httpd. conf), is htdocs in the directory where Apache is

installed. If you store your include files in a directory that isn’t in your Web E’
space, such as d: \include, you protect the files from outside users. = =
=5
==
To include a file from a hidden directory (such as a directory outside your s
Web space), you can use the full pathname to the file, as follows: L

include("d:/hidden/secretpasswords.inc") ;

However, PHP allows you to set an include directory. You can include files
from the include directory using only the filename.

Setting up include directories

PHP looks for include files in the current directory, where your Web page
file is stored, and in one or more directories specified by a setting in your
php. ini file. You can include files from the include directory without
specifying the path to the file.

You can see the current include directory location by using the phpinfo ()
statement. In the output, in the PHP core section, you can find a setting for
include_path that shows where your current include directory is
located. For example, in PHP 5, the default location might be c: \php5\pear.

You can change the setting for your include directory in the php. ini file.
Find the setting for include_path and change it to the path to your pre-
ferred directory, as follows:

include_path=".;c:\php\include"; # for Windows
include_path=".:/user/local/include"; # for Unix/Linux

796 Organizing Scripts

Both of the statements specify two directories where PHP looks for include
files. The first directory is dot (meaning the current directory), followed by
the second directory path. You can specify as many include directories as
you want and PHP will search them, in the order in which they are listed, to
find the include file. The directory paths are separated by a semicolon for
Windows or a colon for Unix/Linux.

If you can’t set the path yourself in php.ini, you can set the path in each
individual script by using the following statement:

ini_set("include_path", "d:\hidden") ;

The statement sets the include_path to the specified directory only while
the script is running. It doesn’t set the directory for your entire Web site.

To access a file from an include directory, just use the filename, as follows.
You don’t need to use the full pathname.

include ("secretpasswords.inc") ;

If your include file isn’t in an include directory, you may need to use the
entire pathname in the include statement. If the file is in the same direc-
tory as the script, the filename alone is sufficient. However, if the file is
located in another directory, such as a subdirectory of the directory the
script is in or in a hidden directory outside the Web space, you need to use
the full pathname to the file, as follows:

include ("d:\hidden\secretpasswords.inc") ;

Chapter 3: PHP and Your
Operating System

In This Chapter

v Manipulating files

v~ Using operating system commands on files

v~ Transferring files from one machine to another
+ Reading and writing files

v Swapping data with other programs

v~ Using SQLite to store data in text files

Fis book describes using PHP and MySQL together to develop dynamic
Web applications. PHP displays Web pages and interacts with MySQL to
retrieve and store data for the application. For most Web applications, PHP
needs to interact only with MySQL. However, a few situations require a Web
application that’s more complex. The Web application might need to inter-
act with the operating system or with other software on your system.

A photo gallery is one Web application that might need to interact with your
operating system. Your photo gallery might allow users to upload graphic
files into your application. For such an application, you might need to
manage the files that the users upload. You might need to rename them,
move them, or delete them. You might need to know when the photos were
uploaded or when they were last accessed. PHP provides all the features
you need to manage your file system.

PHP also allows you to run any program that’s on your computer, regardless
of whether it’s a PHP program. With PHP code, you can transfer files between
computers by using FTP. You can store information in files other than data-
bases. This chapter gives you the information you need to use PHP to do
pretty much anything you can think of on your computer. This chapter also
provides information on the security risks inherent in executing operating
system commands.

198 Managing Files

Managing Files

A\

The information you save on your hard drive is organized into files. Rather
than storing files in one big file drawer, making them difficult to find, files are
stored in many drawers, called directories or folders. The system of files and
directories is called a file system. A file system is organized in a hierarchical
structure, with a top level that is a single directory called root, such as c:\
on Windows or / on Linux. The root directory contains other directories,
and each directory can contain other directories, and so on. The file system’s
structure can go down many levels.

A directory is a type of file that you use to organize other files. A directory
contains a list of files and the information needed for the operating system
to find those files. A directory can contain both files and other directories.

Files can be checked, copied, deleted, and renamed, among other things.
Functions for performing these file-management tasks are described in the
following sections. You also find out about functions that allow you to
manage directories and discover what’s inside them.

In this chapter, we cover the most useful functions for managing files, but
more functions are available. When you need to perform an action on a file
or directory, first check the online PHP documentation at www.php .net/
manual/en to see whether an existing function does what you need to do.
Using a function is preferable, if an appropriate function exists. If such a
function does not exist, you can use your operating system commands or a
program in another language, as described in the “Using Operating System
Commands” section, later in this chapter.

Getting information about files

Often you want to know information about a file. PHP has functions that
allow you to find out file information from within a script.

You can find out whether a file exists with the file_exists statement, as
follows:

Sresult = file_exists("stuff.txt");

After this statement, $Sresult contains either true or false. The function
is often used in a conditional statement, such as the following:

if(!file _exists("stuff.txt"))
{
echo "File not found!\n";

}

Managing Files

199

When you know the file exists, you can find out information about it.

Table 3-1 shows many of the functions that PHP provides for checking files.
(Some of the information in Table 3-1 is relevant only for Linux/Unix/Mac,
and some is returned on Windows as well.)

Table 3-1

Functions That Get Information About a File

Function

What It Does

Output

is_file("stuff.txt")

Tests whether the file is a
regular file, rather than a
directory or other special type
of file

trueor false

is_dir("stuff.txt")

Tests whether the file is a
directory

trueor false

is_executable("do.txt")

Tests whether the file is
executable

trueor false

is_writable("stuff.txt")

Tests whether you can write
to the file

trueor false

is_readable("stuff.txt")

Tests whether you can read
the file

trueor false

fileatime("stuff.txt")

Returns the time when the file
was last accessed

Unix timestamp
(like
1057196122)
or false

filectime ("stuff.txt")

Returns the time when the file
was created

Unix timestamp or
false

filemtime ("stuff.txt")

Returns the time when the file
was last modified

Unix timestamp or
false

filegroup ("stuff.txt")

Returns the group ID of the file

Integer thatis a
group ID or
false

fileowner ("stuff.txt")

Returns the user ID of the
owner of the file

Integer thatis a
userIDor false

filesize("stuff.txt")

Returns the file size in bytes

Integeror false

filetype("stuff.txt")

Returns the file type

File type (such as
file,dir

1link, char),or
falseiferroror
can't identify type

basename ("/tl/do.txt") Returns the filename from do.txt
the path
dirname ("/tl/do.txt") Returns the directory name /tl

from the path

Book |
Chapter 3

wa)sig Hunesadg
INoj pue dHd

200 Managing Files

A function that returns useful information about a path/filename is
pathinfo (). You can use the following statement:

Spinfo = pathinfo("/topdir/nextdir/stuff.txt");

After the statement, Spinfo is an array that contains the following three

elements:
Spinfo[dirname] = /topdir/nextdir
Spinfo[basename] = stuff.txt
Spinfo[extension] = txt
Vg‘“\NG" When you’re testing a file with one of the is_something functions from

Table 3-1, any typing error, such as a misspelling of the filename, gives a
false result. For example, is_dir ("tyme") returns false if "tyme" is a
file, not a directory. But, it also returns false if "tyme" does not exist
because you meant to type "type".

< Unix timestamps are returned by some of the functions given in Table 3-1.
You can convert these timestamps to dates with the date function, as
described in Chapter 1 in this minibook.

Copying, renaming, and deleting files

You can copy an existing file into a new file. After copying, you have two
copies of the file with two different names. Copying a file is often useful for
backing up important files. To copy a file, use the copy statement, as
follows:

copy("fileold.txt","filenew.txt") ;

This statement copies fileold. txt, an existing file, into filenew.txt.Ilfa
file with the name filenew. txt already exists, it’s overwritten. If you don’t
want to overwrite an existing file, you can prevent it by using the following
statements:

If(!'file_exists("filenew.txt"))

{
copy("fileold.txt","filenew.txt");

echo "File already exists!\n";

“NG‘
Q \\ H

Managing Files 201

You can copy a file into a different directory by using a pathname as the des-
tination, as follows:

copy ("fileold.txt", "newdir/filenew.txt") ;
You can rename a file by using the rename statement, as follows:
rename ("oldname. txt", "newname. txt") ;

If you attempt to rename a file with the name of a file that already exists, a
warning is displayed, as follows, and the file is not renamed:

Warning: rename (fileold.txt,filenew.txt): File exists in
c:test.php on line 17

To remove an unwanted file, use the unlink statement, as follows:
unlink("badfile.txt");
After this statement, the file is deleted.

If the file doesn’t exist to start with, unlink doesn’t complain. It acts the
same as if it had deleted the file. PHP doesn’t let you know if the file doesn’t
exist. So, watch out for typos.

Organizing files

Files are organized into directories, also called folders. This section
describes how to create and remove directories and how to get a list of
the files in a directory.

Creating a directory
To create a directory, use the mkdir function, as follows:

mkdir ("testdir") ;

This statement creates a new directory named testdir in the same direc-
tory where the script is located. That is, if the script is /test/test.php,
the new directory is /test/testdir. If a directory already exists with the
same name, a warning is displayed, as follows, and the new directory is not
created:

Warning: mkdir(): File exists in d:/test/test.php on line 5

Book |
Chapter 3

wa)sig Hunesadg
INoj pue dHd

202 Managing Files

You can check first to see whether the directory already exists by using the
following statements:

If(!'is_dir("mynewdir"))
{

mkdir ("mynewdir") ;
}

else

{

echo "Directory already exists!";
}
After the directory is created, you can organize its contents by copying files
into and out of the directory. Copying files is described in the section
“Copying, renaming, and deleting files,” earlier in this chapter.

To create a directory in another directory, use the entire pathname, as
follows:

mkdir ("/topdir/nextdir/mynewdir") ;
You can use a relative path to create a new directory, as follows:
mkdir("../mynewdir") ;

With this statement, if your script is /topdir/test/makedir.php, the
new directory is /topdir/mynewdir.

To change to a different directory, use the following statement:

chdir("../anotherdir") ;

Building a list of all the files in a directory

Getting a list of the files in a directory is often useful. For example, you might
want to provide a list of files for users to download or want to display
images from files in a specific directory.

PHP provides functions for opening and reading directories. To open a direc-
tory, use the opendir statement, as follows:

$dh = opendir ("/topdir/testdir");

If you attempt to open a directory that doesn’t exist, a warning is displayed,
as follows:

Warning: opendir (testdir): failed to open dir: Invalid
argument in testl3.php on line 5

gMBER

Managing Files 2 03

In the previous statement, the variable $dh is a directory handle, a pointer to
the open directory that you can use later to read from the directory. To read
a filename from the directory, use the readdir function, as follows:

Sfilename = readdir (s$dh);

After this statement, $filename contains the name of a file. Only the file-
name is stored in $filename, not the entire path to the file. To read all the
filenames in a directory, you can use a while loop, as follows:

while($filename = readdir($dh))
{

echo $filename."\n";

}

The readdir function doesn’t provide any control over the order in which
filenames are read, so you don’t always get the filenames in the order you
expect.

Suppose you want to create an image gallery that displays all the images in a

specified directory in a Web page. You can use the opendir and readdir
functions to do this. Listing 3-1 shows a script that creates an image gallery.

Listing 3-1: A Script That Creates an Image Gallery

<?php
/* Script name: displayGallery
* Description: Displays all the image files that are

* stored in a specified directory.
*/
echo "<html><head><title>Image Gallery</title></head>
<body>";
Ssdir = "../testl/testdir/"; —8
$dh = opendir ($dir) ; —9
while($filename = readdir ($dh)) —10
{
Sfilepath = $dir.$filename; —12
if(is_file(Sfilepath) and ereg("\.jpgs$", Sfilename)) —13
{
Sgallery[] = Sfilepath;
}
}
sort (Sgallery) ; —16
foreach(Sgallery as S$image) —17

{
echo "<hr />";
echo "
";
}
?>

</body></html>

Book |
Chapter 3

wa)sig Hunesadg
INoA pue dHd

2 04 Using Operating System Commands

NG/
$

Notice the line numbers at the end of some of the lines in Listing 3-1. The fol-
lowing discussion of the script and how it works refers to the line numbers
in the script listing:

—8 This line stores the name of the directory in $dir for use later in
the program. Notice that the / is included at the end of the directory
name. Don’t use \, even with Windows.

—9 This line opens the directory.

—10 This line starts a while loop that reads in each filename in the
directory.

—12 This line creates the variable $filepath, which is the complete
path to the file.

If the / isn’t included at the end of the directory name on Line 8,
$filepath will not be a valid path.

—13 This line checks to see whether the file is a graphics file by looking
for the . jpg extension. If the file has a . jpg extension, the com-
plete file path is added to an array called $gallery.

—16 This line sorts the array so the images are displayed in alphabetical
order.

—17 This line starts the foreach loop that displays the images in the
Web page.

Using Operating System Commands

When you need to interact with your operating system, it’s always best to
use the PHP functions that are provided for this purpose. Using PHP func-
tions is more secure than executing an operating system command directly.
However, occasionally PHP doesn’t provide a function to perform the task
you need. In such cases, you can use PHP features that allow you to execute
an operating system command.

In this section, we assume that you know the format and use of the system
commands for your operating system. Describing operating system com-
mands is outside the scope of this book. If you need to run an operating
system command from your PHP script, this section shows you how.

PHP allows you to use system commands or run programs in other lan-
guages by using any of the following methods:

Using Operating System Commands 205

4+ backticks: PHP executes the system command that is between two back-
ticks (*) and displays the result.

4+ system function: This function executes a system command, displays
the output, and returns the last line of the output.

4+ exec function: This function executes a system command, stores the
output in an array, and returns the last line of the output.

4+ passthru function: This function executes a system command and dis-
plays the output.

You can execute any command that you can type into the system prompt.
The command is executed exactly as is. You can execute simple commands:
ls or dir, rename or mv, rm or del. If your operating system allows you to
pipe or redirect output, you can pipe or redirect in the system command
you’re executing in PHP. If your operating system allows you to enter two
commands on one line, you can put two commands into the single command
you're executing from PHP. The following sample commands are valid to exe-
cute from PHP, depending on the operating system:

dir

rm badfile.txt

dir | sort

cd c:\php ; dir (Not valid in Windows)
"cd c:\php && dir" (Windows)

dir > dirfile

sort < unsortedfile.txt

On some occasions, you want to run a system command that takes a long
time to finish. You can run the system command in the background (if your
operating system supports such things) while PHP continues with the script.
If you do this, you need to redirect the output to a file, rather than return it
to the script, so that PHP can continue before the system command finishes.

The following sections describe the preceding methods in greater detail.

Using backticks

A simple way to execute a system command is to put the command between
two backticks ("), as follows:

Sresult = “dir c:\php";
The variable Sresult contains the statement’s output — in this case, a list

of the files in the c: \php directory. If you echo sresult, the following
output is displayed:

Book |
Chapter 3

wa)sig Hunesadg

INOA pue dHd

206 Using Operating System Commands

Volume in drive C has no label.
Volume Serial Number is 58B2-DBD6

Directory of c:\php
10/10/2007 05:43 PM <DIR>

10/10/2007 05:43 PM <DIR> ..
10/10/2007 04:53 PM <DIR> dev

10/10/2007 04:53 PM <DIR> ext
10/10/2007 04:53 PM <DIR> extras
08/30/2007 07:11 AM 417,792 fdftk.dll
08/30/2007 07:11 AM 90,112 fribidi.dll
08/30/2007 07:11 AM 346,624 gds32.d11
08/30/2007 07:11 AM 90 go-pear.bat
08/30/2007 07:11 AM 96,317 install.txt
08/30/2007 07:11 AM 1,097,728 libeay32.dll
08/30/2007 07:11 AM 166,912 libmcrypt.dll
08/30/2007 07:11 AM 165,643 libmhash.dll
08/30/2007 07:11 AM 2,035,712 libmysgl.dll
08/30/2007 07:11 AM 385,024 libswish-e.dll
08/30/2007 07:11 AM 3,286 license.txt
08/30/2007 07:11 AM 57,344 msgl.dll
08/30/2007 07:11 AM 168,858 news.txt
08/30/2007 07:11 AM 278,800 ntwdblib.dll
10/10/2007 04:53 PM <DIR> PEAR
08/30/2007 07:11 AM 41,017 php-cgi.exe
08/30/2007 07:11 AM 32,825 php-win.exe
08/30/2007 07:11 AM 32,821 php.exe
08/30/2007 07:11 AM 2,523 php.gif
08/30/2007 07:11 AM 46,311 php.ini-dist
08/30/2007 07:11 AM 49,953 php.ini-recommended
08/30/2007 07:11 AM 36,924 phpbapache.dll
08/30/2007 07:11 AM 36,925 phpbapache2.dll
08/30/2007 07:11 AM 36,927 phpbapache2_2.d11
08/30/2007 07:11 AM 36,932 phpbapache2_filter.dll
08/30/2007 07:11 AM 57,410 php5apache_hooks.dll
08/30/2007 07:11 AM 669,318 phpSembed.lib
08/30/2007 07:11 AM 28,731 phpbisapi.dll
08/30/2007 07:11 AM 28,731 phpbnsapi.dll
08/30/2007 07:11 AM 4,796,472 php5ts.dll
08/30/2007 07:11 AM 86,076 php_mysgli.dll
08/30/2007 07:11 AM 135 pws-php5cgi.reg
08/30/2007 07:11 AM 139 pws-phpb5isapi.reg
08/30/2007 07:11 AM 1,830 snapshot.txt
08/30/2007 07:11 AM 200,704 ssleay32.dll

35 File(s) 11,569,880 bytes

6 Dir(s) 180,664,549,376 bytes free
éﬂ“mm
&L The backtick operator is disabled when safe_mode is enabled. safe_mode
is set to Of £ by default when PHP is installed. safe_mode is not set to On
unless the PHP administrator deliberately turns it on.

Using Operating System Commands 207

Using the system function

The system function executes a system command, displays the output, and
returns the last line of the output from the system command. To execute a
system command, use the following statement:

Sresult = system("dir c:\php");

When this statement executes, the directory listing is displayed, and
$result contains the last line that was output from the command. If you
echo $result, you see something like the following:

11 Dir(s) 566,263,808 bytes free

The contents of $result with the system function is the last line of the
output from the dir command.

Using the exec function

The exec function executes a system command but doesn’t display the
output. Instead, the output can be stored in an array, with each line of the
output becoming an element in the array. The last line of the output is
returned.

Perhaps you just want to know how many files and free bytes are in a direc-
tory. With the following statement, you execute a command without saving
the output in an array:

Sresult = exec("dir c:\php");

The command executes, but the output isn’t displayed. The variable
$result contains the last line of the output. If you echo $result, the
display looks something like this:

11 Dir(s) 566,263,808 bytes free

The output is the last line of the output of the dir command. If you want to
store the entire output from the dir command in an array, use the following
command:

Sresult = exec("dir c:\php", $dirout) ;

After this statement, the array $dirout contains the directory listing, with
one line per item. You can display the directory listing as follows:

foreach($dirout as $line)
{
echo "$line\n";

}

Book |
Chapter 3

wa)sig Hunesadg

INOA pue dHd

208 Using Operating System Commands

The loop displays the following:

Volume in drive C has no label.
Volume Serial Number is 394E-15Eb

Directory of c:\php
10/10/2007 05:43 PM <DIR>

10/10/2007 05:43 PM <DIR> ..
10/10/2007 04:53 PM <DIR> dev

10/10/2007 04:53 PM <DIR> ext
10/10/2007 04:53 PM <DIR> extras
08/30/2007 07:11 AM 417,792 fdftk.dll

You can also use the following statements to get specific elements from the
output array:

echo S$dirout[3];
echo $dirout[7];

The output is as follows:

Directory of C:\PHP
10/10/2007 04:53 PM <DIR> dev

Using the passthru function

The passthru function executes a system command and displays the
output exactly as it is returned. To execute a system command, use the fol-
lowing statement:

passthru("dir c:\php");

The statement displays the directory listing but doesn’t return anything.
Therefore, you don’t use a variable to store the returned data.

The output is displayed in raw form; it isn’t processed. Therefore, this func-
tion can be used when binary output is expected.

Error messages from system commands

The methods for executing system commands do not display or return an
informational error message when the system command fails. You know the
system command didn’t work because you didn’t get the outcome you
expected. But because the functions don’t return error messages, you don’t
know what went wrong.

MBER
6&
&

Using Operating System Commands 209

You can return or display the operating system error message by adding a
few extra characters to the system command you’re executing. On most
operating systems, if you add the characters 2>&1 after the system com-
mand, the error message is sent to wherever the output is directed. For
example, you can use the following statement:

Sresult = system("di c:\php");

The system function displays the directory when the system command exe-
cutes. However, notice that dir is mistyped. It is di rather than dir. No
system command called di exists, so the system command can’t execute,
and nothing is displayed. Suppose you used the following statement instead:

Sresult = system("di c:\php 2>&1");

In this case, the error message is displayed. On Windows XP, the error mes-
sage displayed is as follows:

'di' is not recognized as an internal or external command,
operable program or batch file.

Be sure you don’t include any spaces in 2>&1. The format requires the char-
acters together, without any spaces.

Understanding security issues

When you execute a system command, you allow a user to perform an action
on your computer. If the system command is dir c:\php, that’s okay. How-
ever, if the system command is rm /bin/* or del c:*.*, youwon't be
happy with the results. You need to be careful when using the functions that
execute system commands outside your script.

As long as you execute only commands that you write yourself, such as dir
or 1s, you're okay. But when you start executing commands that include
data sent by users, you need to be extremely careful. For example, suppose
you have an application in which users type a name into a form and your
application then creates a directory with the name sent by the user. The
user types Smith into the form field named directoryName. Your script
that processes the form has a command, as follows:

SdirectoryName = $_POST['directoryName'];
exec ("mkdir S$directoryName") ;

Because $directoryName = Smith, mkdir Smith is the system com-
mand that is executed. The directory is created, and everybody is happy.

Book |
Chapter 3

wa)sig Hunesadg

INOA pue dHd

210 using Fre

However, suppose the user types Smith; rm * into the form. In this case,
$directoryName =Smith;rm *.The system command that executes is
now mkdir Smith;rm *.On many operating systems, such as Unix/Linux,
the semicolon character separates two commands so that two commands
can be entered on one line. Oops! The commands are executed as follows:

mkdir Smith
rm *

Now you have a problem. The directory Smith is created, and all the files in
the current directory are removed.

If you use a variable in a system command, you must use it carefully. You
must know where it came from. If it comes from outside the script, you need
to check the value in the variable before using it. In the preceding example,
you could add code so the script checks the variable to be sure it contains
only letters and numbers before using it in the mkdir command. (Chapter 2

in this minibook describes how to use an if statement to perform such
checks.)

Using FTP

Transferring files from one computer to another happens a gazillion times a
day on the Internet. When colleagues on opposite sides of the country need
to share files, it’s not a problem. A quick transfer takes only seconds, and all
parties have the files they need.

FTP (File Transfer Protocol) is a common way to transfer files from one com-
puter to another. FTP allows you to get a directory listing from another com-
puter or to download or upload a single file or several files at once.

FTP is client/server software. To use FTP to transfer files between your com-
puter and a remote computer, you connect to an FTP server on the remote
computer and send it requests.

To use FTP in your scripts, FTP support needs to be enabled when PHP is
installed. If you installed PHP for Windows, you don’t need to do anything
extra to enable FTP support. If you're compiling PHP on Unix, Linux, or Mac
and you want to enable FTP support, you can use the FTP support installa-
tion option, as follows:

--enable-ftp

Using FTP 211

Logging in to the FTP server

To connect to the FTP server on the computer you want to exchange files
with, use the ftp_connect function, as follows:

Sconnect = ftp_connect ("janet.valade.com") ;
Or, you can connect by using an IP address, as follows:
Sconnect = ftp_connect("172.17.204.2");

After you connect, you must log in to the FTP server. You need a user ID

and a password to log in. You might have your own personal ID and pass-
word, or you might be using a general ID and password that anyone can use.
Some public sites on the Internet let anyone log in by using the user ID of
anonymous and the user’s e-mail address as the password. It’s best for secu-
rity to put the user ID and password into a separate file and to include the
file when needed.

The ftp_login function allows you to log in to an FTP server after you've
made the connection. This statement assumes you have your account ID and
password stored in variables, as follows:

Slogin_result = ftp_login(Sconnect, Suserid, Spasswd) ;

If you try to log in without establishing a connection to the FTP server first,
you see the following warning:

Warning: ftp_ login() expects parameter 1 to be resource,
boolean given in d:\testl\testl3.php on line 9

The warning doesn’t stop the program. The login fails, but the script contin-
ues, which probably isn’t what you want. Because the rest of your script
probably depends on your successful FTP connection, you might want to
stop the script if the functions fail. The following statements stop the script
if the function fails:

Sconnect = ftp_connect ("janet.valade.com")
or die("Can't connect to server");
$login_result = ftp_login(Sconnect, Suserid, Spasswd)

or die("Can't login to server");

After you log in to the FTP server, you can send it requests to accomplish
tasks, such as getting a directory listing or uploading and downloading files,
as described in the following sections.

Book |
Chapter 3

wa)sig Hunesadg

INOA pue dHd

212 using Frp

Getting a directory listing

One common task is to get a directory listing. The ftp_nlist statement
gets a directory listing from the remote computer and stores it in an array,
as follows:

sfilesArr = ftp_nlist(Sconnect, "data");

The second parameter in the parentheses is the name of the directory. If you
don’t know the name of the directory, you can request the FTP server to
send you the name of the current directory, as follows:

Sdirectory_name = ftp_pwd(Sconnect) ;
SfilesArr = ftp_nlist(Sconnect, $directory_name) ;

The directory listing that FTP sends after the ftp_nlist statement runs is
stored in an array, one filename in each element of the array. You can then
display the directory listing from the array, as follows:

foreach($SfilesArr as S$Svalue)
{
echo "S$value\n";

}

Downloading and uploading files with FTP

You can download a file from the remote computer with the ftp_get func-
tion. The following statement downloads a file from the remote computer
after you're logged in to the FTP server:

ftp_get (Sconnect, "newfile.txt", "data.txt",FTP_ASCII) ;

The first filename, newfile. txt, is the name the file will have on your com-
puter after it’s downloaded. The second filename, data . txt, is the existing
name of the file that you want to download.

The FTP_ASCII term in the statement tells FTP what kind of file is being
downloaded. The choices for file mode are FTP_ASCII or FTP_BINARY.
Binary files are machine language files. You can determine which file mode
you need by examining the contents of the file. If the contents are characters
that you can read and understand, the file is ASCIL If the contents appear to
be garbage, the file is binary. Graphic files, for example, are binary.

You can upload a file with a similar function called ftp_put. The following
statement uploads a file:

ftp_put (Sconnect, "newfile.txt", "data.txt",FTP_ASCII);

Using FTP 2 73

The first filename, newfile. txt, is the name the file will have on the
remote computer after it’s uploaded. The second filename, data. txt, is the
existing name of the file that you want to upload.

When you’re finished transferring files over your FTP connection, you can
close the connection with the following statement:

ftp_close(Sconnect) ;
The script in Listing 3-2 downloads all the files in a directory that have a

. txt extension. The files are downloaded from the remote computer over
an FTP connection.

Listing 3-2: A Script to Download Files via FTP

<?php
/* Script name: downloadFiles
* Description: Downloads all the files with a .txt

* extension in a directory via FTP.
*/
include ("ftpstuff.inc");
$dir_name = "data/";
Sconnect = ftp_connect ($servername)

or die("Can't connect to FTP server");
$login_result = ftp_login(S$Sconnect, SuserID, $Spasswd)
or die("Can't log in");
SfilesArr = ftp_nlist(Sconnect, $dir_name) ;
foreach($filesArr as S$value)
{
if (preg_match ("#\.txtS$#", Svalue))
{
if(!file_exists(Svalue))
{
ftp_get (Sconnect, $Svalue, $dir_name.S$Svalue, FTP_ASCII);
}
else
{
echo "File $value already exists!\n";
}
}
}

ftp_close(Sconnect) ;
?>

The script gets a directory listing from the remote computer and stores it

in $filesArr. The foreach statement loops through the filenames in
$filesArr and checks to see whether each file has a . txt extension. When
afile has a . txt extension, the script tests to see whether a file with the

Book |
Chapter 3

wa)sig Hunesadg
INoj pue dHd

214 using Frr

same name already exists on the local computer. If a file with that name
doesn’t already exist, the file is downloaded; if such a file does exist, a mes-
sage is printed, and the file isn’t downloaded.

The script in Listing 3-2 includes a file named ftpstuff.inc. This file con-
tains the information needed to FTP onto the server. The ftpstuff. inc file
contains code similar to the following:

<?php
Sservername = "yourserver";
SuserID = "youruserid";
Spasswd = "yourpassword";
?>

Other FTP functions

Additional FTP functions perform other actions, such as change to another
directory on the remote computer or create a new directory on the remote
computer. Table 3-2 contains most of the FTP functions that are available.

Table 3-2

FTP Functions

Function

What It Does

ftp_cdup ($connect)

Changes to the directory directly above the
current directory.

ftp_chdir ($connect,
"directoryname")

Changes directories on the remote computer.

ftp_close($connect)

Closes an FTP connection.

ftp_connect ("servername")

Opens a connection to the computer.
servername can be a domain name or
an IP address.

ftp_delete($Sconnect,
"path/filename")

Deletes a file on the remote computer.

ftp_exec ($connect,
" command")

Executes a system command on the remote
computer.

ftp_fget ($Sconnect, $th,
"data.txt",FTP_ASCII)

Downloads the file contents from the remote
computer into an open file. $ £h is the file
handle of the open file.

ftp_fput (Sconnect, "new.
txt",Sth,FTP_ASCII)

Uploads an open file to the remote computer.
S this the file handle of the open file.

ftp_get (Sconnect, "d. txt",
"sr.txt",FTP_ASCII)

Downloads a file from the remote computer.
sr. txt isthe name of the file to be down-
loaded, and d. txt is the name of the down-
loaded file.

ftp_login($connect,
SuserID, Spassword)

Logs in to the FTP server.

215

Reading and Writing Files

Function

What It Does

ftp_mdtm ($Sconnect,
"filename.txt")

Gets the time when the file was last modified.

ftp_mkdir (Sconnect,
"directoryname")

Creates a new directory on the remote
computer.

ftp_nlist (Sconnect,
"directoryname")

Gets a list of the files in a remote directory. Files
are returned in an array.

ftp_put (Sconnect, "d.txt",
"sr.txt",FTP_ASCII)

Uploads a file to the remote computer.

sr. txt is the name of the file to be uploaded,
and d. txt is the filename on the remote
computer.

ftp_pwd ($Sconnect)

Gets the name of the current directory on the
remote computer.

ftp_rename (Sconnect,
"oldname" , "newname")

Renames a file on the remote computer.

ftp_rmdir ($connect,
"directoryname")

Deletes a directory on the remote computer.

ftp_size($connect,
"filename.txt")

Returns the size of the file on the remote
computer.

ftp_systype (Sconnect)

Returns the system type of the remote file
server (for example, Unix).

Reading and Writing Files

This book is about using PHP and MySQL together. In most applications, you
store the data needed by the application in a MySQL database. However,
occasionally you need to read or write information in a text file that isn’t a
database. This section describes how to read and write data in a text file,

also called a flat file.

You use PHP statements to read from or write to a flat file.

Using a flat file requires three steps:

1. Open the file.

2. Write data into the file or retrieve data from the file.

3. Close the file.

These steps are discussed in detail in the following sections.

Book I
Chapter 3

wa)sig Hunesadg

INOA pue dHd

216 Reading and Writing Files

Accessing files

The first step, before you can write information into or read information
from a file, is to open the file. The following is the general format for the
statement that opens a file:

sfh = fopen("filename", "mode")

The variable, $fh, referred to as a file handle, is used in the statements that
write data to or read data from the open file so that PHP knows which file to
write into or read from. $ fh contains the information that identifies the loca-
tion of the open file.

You use a mode when you open the file to let PHP know what you intend to
do with the file. Table 3-3 shows the modes you can use.

Table 3-3 Modes for Opening a File

Mode ~ What It Does What Happens When the File Doesn’t Exist

r Read-only. A warning message is displayed.

r+ Reading and writing. A warning message is displayed.

w Write only. PHP attempts to create it. (If the file exists,
PHP overwrites it.)

w+ Reading and writing. PHP attempts to create it. (If the file exists,
PHP overwrites it.)

a Append data at the end of the file. PHP attempts to create it.

a+ Reading and appending. PHP attempts to create it.

The filename can be a simple filename (filename. txt), a path to the
file (c: /data/filename.txt), or a URL (http://yoursite.com/
filename.txt).

Opening files in read mode

You can open the file filel. txt to read the information in the file with the
following statement:

Sfth = fopen("filel.txt","r");

Based on this statement, PHP looks for filel. txt in the current directory,
which is the directory where your PHP script is located. If the file can’t be
found, a warning message, similar to the following, might or might not be
displayed, depending on the error level set, as described in Chapter 1 of this
minibook:

\NG/
&

\\3

Reading and Writing Files 217

Warning: fopen(filel.txt): failed to open stream: No such
file or directory in d:\test2.php on line 15

Remember, a warning condition doesn’t stop the script. The script continues
to run, but the file doesn’t open, so any later statements that read or write to
the file aren’t executed.

You probably want the script to stop if the file can’t be opened. You need to
do this yourself with a die statement, as follows:

Sfh = fopen("filel.txt","r")
or die("Can't open file");

The die statement stops the script and displays the specified message.

Opening files in write mode
You can open a file in a specified directory to store information by using the
following type of statement:

Sfh = fopen("c:/testdir/filel.txt","w");

If the file doesn’t exist, it is created in the indicated directory. However, if
the directory doesn’t exist, the directory isn’t created, and a warning is dis-
played. (You must create the directory before you try to write a file into the
directory.)

You can check whether a directory exists before you try to write a file into it
by using the following statements:

If(is_dir("c:/tester"))

{
$fh = fopen("c:/testdir/filel.txt","w");

}
With these statements, the fopen statement is executed only if the path/
filename exists and is a directory.

Opening files on another Web site
You can also open a file on another Web site by using a statement such as
the following:

$fh = fopen("http://janet.valade.com/index.html", "r");

You can use a URL only with a read mode, not with a write mode.

Book |
Chapter 3

wa)sig Hunesadg

INOA pue dHd

218 Reading and Writing Files

QWING/

Closing a file
To close a file after you have finished reading or writing it, use the following
statement:

fclose ($fth);

In this statement, $fth is the file handle variable you created when you
opened the file.

Writing to a file
After you open the file, you can write into it by using the fwrite statement,
which has the following general format:

fwrite ($fh, datatosave) ;

In this statement, $fh is the file handle that you created when you opened
the file containing the pointer to the open file, and datatosave is the infor-
mation to be stored in the file. The information can be a string or a variable.
For example, you can use the following statements:

Stoday = date("Y-m-d");

Sfh = fopen("file2.txt","a");
fwrite($fh, "Stoday\n") ;
fclose($fth);

These statements store the current date in a file called file2. txt. Notice
that the file is opened in append mode. If the file doesn’t exist, it is created,
and the date is written as the first line. If the file exists, the data is added to
the end of the file. In this way, you create a log file that stores a list of the
dates on which the script is run. The fwrite statement stores exactly what
you send. After the fwrite statement executes twice, file2. txt contains:

2007-10-22
2007-10-22

The dates appear on separate lines because the new line character (\n) is
written to the file.

Be sure to open the file with the a mode if you want to add information to a

file. If you use a write mode, the file is overwritten each time it’s opened.

Reading from a file

You can read from a file by using the fgets statement, which has the follow-
ing general format:

$line = fgets($fh)

Reading and Writing Files 219

In this statement, $fh holds the pointer to the open file. This statement
reads a string until it encounters the end of the line or the end of the file,
whichever comes first, and stores the string in $1ine. To read an entire file,
you keep reading lines until you get to the end of the file. PHP recognizes the
end of the file and provides a function feof to tell you when you reach the
end of the file. The following statements read and display all the lines in

the file:

while(!feof ($fh))

{
$line = fgets(S$fh);
echo "$line";

}

In the first line, feof ($fh) returns true when the end of the file is reached.
The exclamation point negates the condition being tested, so that the while
statement continues to run as long as the end of the file isn’t reached. When
the end of the file is reached, while stops.

If you use these statements to read the log file created in the preceding sec-
tion, you get the following output:

2007-10-22
2007-10-22

As you can see, the new line character is included when the line is read. In
some cases, you don’t want the end of line included. If so, you need to
remove it by using the following statements:

while(!feof ($fh))

{
Sline = rtrim(fgets($fth));
echo "$line";

}

The rtrim function removes any trailing blank spaces and the new line
character. The output from these statements is as follows:

2007-10-222007-10-22

Reading files piece by piece

Sometimes you want to read strings of a certain size from a file. You can tell
fgets to read a certain number of characters by using the following format:
$line = fgets($fh,n)

This statement tells PHP to read a string that is n-1 characters long until it
reaches the end of the line or the end of the file.

Book |
Chapter 3

wa)sig Hunesadg

INOA pue dHd

220 Reading and Writing Files

For example, you can use the following statements:

while(!feof ($fh))

{
Schar4 = fgets($fth,5);
echo "$char4\n";

}

These statements read each four-character string until the end of the file.
The output is as follows:

2007
-10-
22

2007
~10-
22

Notice that there’s a new line at the end of each line of the file.

Reading a file into an array
It’s often handy to have the entire file in an array. You can do that with the
following statements:

Sfth = fopen("file2.txt","r");
while(!feof ($fh))

{
Scontent[] = fgets($fh);

}
fclose($fh);

The result is the array $content with each line of the file as an element of
the array. The array keys are numbers.

PHP provides a shortcut function for opening a file and reading the entire
contents into an array, one line in each element of the array. The following
statement produces the same results as the preceding five lines:

Scontent = file("file2.txt");

The statement opens file2. txt, puts each line into an element of the array
$content, and then closes the file.

VQ‘“\NG! The f£ile function can slow down your script if the file you're opening is
S really large. How large depends on the amount of available computer
memory. If your script seems slow, try reading the file with fgets rather

than file and see whether that speeds up the script.

Exchanging Data with Other Programs 221

You can direct the f£ile function to automatically open files in your
include directory (described in Chapter 2 of this minibook) by using the
following statement:

Scontent = file("file2.txt",1);

The 1 tells PHP to look for file2. txt in the include directory rather than
in the current directory.

Reading a file into a string

Sometimes putting the entire contents of a file into one long string can be
useful. For example, you might want to send the file contents in an e-mail
message. PHP provides a function for reading a file into a string, as follows:

Book |
Chapter 3

Scontent = file_get_contents("file2.txt",1);

The file_get_contents function works the same as the £ile function,
except that it puts the entire contents of the file into a string rather than an
array. After this statement, you can echo $content as follows:

wa)sig Hunesadg
INoj pue dHd

echo S$content;
The output is the following:

2007-10-22
2007-10-22

The output appears on separate lines because the end of line characters are
read and stored as part of the string. Thus, when you echo the string, you

also echo the end-of-line characters, which start a new line.
v““\NG!
S The file_get_contents function was introduced in version 4.3.0. It isn’t
available in older versions of PHP.

Exchanging Data with Other Programs

You might sometimes need to provide information to other programs or read
information into PHP from other programs. Flat files are particularly useful
for such a task.

Exchanging data in flat files
Almost all software has the ability to read information from flat files or write
information into flat files. For example, by default, your word processor

222 Exchanging Data with Other Programs

saves your documents in its own format, which only the word processor can
understand. However, you can choose to save the document in text format
instead. The text document is a flat file containing text that can be read by
other software. Your word processor can also read text files, even ones that
were written by other software.

When your PHP script saves information into a text file, the information can
be read by any software that has the ability to read text files. For example,
any text file can be read by most word processing software. However, some
software requires a specific format in the text file. For example, an address
book software application might read data from a flat file but require the
information to be in specified locations — for example, the first 20 charac-
ters in a line are read as the name, and the second 20 characters are read as
the street address, and so on. You need to know what format the software
requires in a flat file. Then write the flat file in the correct format in your PHP
script by using fwrite statements, as discussed in the section “Writing to a
file,” earlier in this chapter.

Exchanging data in comma-delimited format

A CSV (comma-separated values) file — also called a comma-delimited
file — is a common format used to transfer information between software
programs.

Understanding comma-delimited format

A CSV file is used to transfer information that can be structured as a table,
organized as rows and columns. For example, spreadsheet programs organ-
ize data as rows and columns and can read and write CSV files. A CSV file is
also often used to transfer data between different database software, such as
between MySQL and MS Access. Many other software programs can read
and write data in CSV files.

A CSV file is organized with each row of the table on a separate line in the
file, and the columns in the row are separated by commas. For example, an
address book can be organized as a CSV file as follows:

John Smith, 1234 Oak St.,Big City,OR, 99999
Mary Jones, 5678 Pine St.,Bigger City,ME,11111
Luis Rojas, 1234 Elm St.,Biggest City,TX, 88888

Excel can read this file into a table with five columns. The comma signals the
end of one column and the start of the next. Outlook can also read this file
into its address book. And many other programs can read this file.

Exchanging Data with Other Programs 223

Creating a comma-delimited file
The following PHP statements create the CSV file:

Saddress[] = "John Smith,1234 Oak St.,Big City,OR,99999";
Saddress|[] "Mary Jones, 5678 Pine St.,Bigger City,ME,11111";
Saddress|[] "Luis Rojas, 1234 Elm St.,Biggest City,TX,88888";
Sfh = fopen("addressbook.txt","a");

for ($1=0;%$1i<3;S$1i++)

{

fwrite ($fh, Saddress([$i]."\n");
}
fclose ($fth);

Reading a comma-delimited file

PHP can read the CSV file by using either the file or the fgets function, as
described in the section “Reading a file into an array,” earlier in this chapter.
However, PHP provides a function called fgetcsv that’s designed specifi-
cally to read CSV files. When you use this function to read a line in a CSV file,
the line is stored in an array, with each column entry in an element of the
array. For example, you can use the function to read the first line of the
address book CSV file, as shown here:

Saddress = fgetcsv($fth,1000);
In this statement, $fh is the file handle, and 1000 is the number of charac-

ters to read. To read an entire line, use a number of characters that is longer
than the longest line. The result of this statement is an array as follows:

Saddress[0] = John Smith
Saddress([1l] = 1234 Oak St.
Saddress([2] = Big City
Saddress([3] = OR
Saddress([4] = 99999

Using other delimiters

The CSV file works well for transferring data in many cases. However, if a
comma is part of the data, commas can’t be used to separate the columns.
For example, suppose one of data lines is this:

Smith Company, Inc.,1234 Fir St.,Big City,OR, 99999

The comma in the company name would divide the data into two columns —
Smith Company in the first and Inc. in the second — making six columns
instead of five. When the data contains commas, you can use a different
character to separate the columns. For example, tabs are commonly used to

Book |
Chapter 3

wa)sig Hunesadg

INOA pue dHd

22 4 Exchanging Data with Other Programs

separate columns. This file is called a TSV (tab-separated values) file or a
tab-delimited file. You can write a tab-delimited file by storing "\t " in the
output file rather than a comma.

You can read a file containing tabs by specifying the column separator in the
statement, as follows:

Saddress = fgetcsv($fth,1000, "\t");
You can use any character to separate columns.

The script in Listing 3-3 contains a function that converts any CSV file into a
tab-delimited file.

Listing 3-3: A Script That Converts a CSV File into a Tab-Delimited File

<?php
/* Script name: Convert
* Description: Reads in a CSV file and outputs a
* tab-delimited file. The CSV file must have a
* _CSV extension.

*/
Smyfile = "testing"; —7
function convert ($filename) —8
{
if(@Sfh_in = fopen("{$filename}.csv","r")) —10
{
Sfh_out = fopen("{$filename}.tsv","a"); —12
while(!feof ($fh_in)) —13
{
Sline = fgetcsv($fh_in,1024); —15
if($line[0] == "") —16
{
fwrite($fh_out, "\n");
}
else { —20
fwrite($fh_out,implode($Sline, "\t")."\n"); —21
}
}
fclose($fh_in);
fclose ($Sfh_out) ;
}
else { —27

echo "File doesn't exist\n";
return false;
}
echo "Conversion completed!\n";
return true; —32
}
convert (Smyfile) ; —34
?>

Using SOLite 225

The following points refer to the line numbers in the Listing 3-3:

—7

—8

—10

—12

—13
—15

—16

—20

—21

—27

—32
—34

Using SOLite

This line defines the filename as testing.

This line defines a function named convert () with one parame-
ter, sfilename.

This line opens a file that has the filename that was passed to the
function with a . csv extension. The file is opened in read mode. If
the file is opened successfully, the conversion statements in the
if block are executed. If the file isn’t found, the e1se block begin-
ning on Line 27 is executed.

This line opens a file that has the filename that was passed to the
function with a . tsv extension. The file is opened in append
mode. The file is in the current directory in this script. If the file is
in another directory where you think there is any possibility the
file might not open in write mode, use an if statement here to
test where the file opened and perform some action if it did not.

This line starts a while loop that continues to the end of the file.

This statement reads one line from the input file into the array
$1line. Each column entry is stored in an element of the array.

This statement tests whether the line from the input file has any
text on it. If the line doesn’t have any text, a new line character is
stored in the output file. Thus, any empty lines in the input file
are stored in the output file.

If the line from the input file isn’t empty, it’s converted to a tab-
delimited format and written into the output file.

This statement converts the line and writes it to the output file in
one statement. The implode function converts the array $1ine
into a string, with the elements separated by a tab.

This else block executes when the input file can’t be found. An
error message is echoed, and the function returns false.

The function has completed successfully, so it returns true.

This line calls the function, passing a filename to the function in
the variable $myfile.

Beginning with PHP 5.0, PHP includes the SQLite software by default. SQLite
is designed to store data in a flat file using SQL queries. (SQL is explained in
Book III, Chapter 1.)

Book I
Chapter 3

wa)sig Hunesadg

INOA pue dHd

226 Using SOLite

SQLite is a quick, easy way to store data in a flat file. However, it’s less
secure than a database and can’t handle data that is very complex. In most
cases, you should store your data in MySQL, but you occasionally might
want to store your data in a flat file. For example, you might want to write
the data in a format that can be read by another program, such as Excel.

Storing and retrieving data with SQLite is very similar to the methods
described in Book III for using MySQL with PHP. You use SQL to communica-
tion with the data file and use PHP functions to send the SQL and retrieve
the data. You interact with the data by using the same steps that you use
with a database, as follows:

1. Connect to the data file.

2. Send an SQL query.

3. If you retrieved data from the data file, process the data.

4. Close the connection to the data file.
To connect to the data file, use the following PHP function:
Sdb = sglite_open("testdb");

This statement opens the data file testdb. If the file doesn’t exist, it
creates it.

To send an SQL query, use the sqlite_qguery function, as follows:

$sgl = "SELECT * FROM Product";
Sresult = sglite_query ($Sdb, $sql);

The retrieved data is stored in a temporary table in rows and columns. You
can use PHP functions to retrieve one row from the temporary data table
and store it in an array, with the field names as the array keys. The state-
ment is as follows:

Srow = sglite_fetch_array(Sresult) ;

After this statement, $row is an array containing all the fields in the tempo-
rary table, such as the following:

Srow['firstName'] = John
Srow['lastName'] = Smith

Using SOLite 227

To process all the data in the temporary table, you can use a loop to get one
row at a time, processing each row until the end of the table is reached, as
follows:

while($Srow=sglite_fetch_asoc (Sresult))

{

foreach(Srow as $value)

{

echo "S$Svalue
";
}
}

When you finish storing and/or retrieving data, you can close the data file
with the following statement:

sglite_close(S$db) ;

Error handling for SQLite is similar to MySQL error handling, as explained in
Book IIl, Chapter 5. For instance, the die statement discussed in the error
handling section in Book IIl, Chapter 5 is useful with SQLite. Also, as dis-
cussed in that chapter, when the query fails, an SQLite error message is gen-
erated, but not displayed unless you use a function developed specifically to
display it. Thus, the following statements handle errors in addition to send-
ing the SQL query:

$Ssgl = "SELECT * FROM Product";
Sresult = sglite_query($sqgl)
or die("Query failed: ".sglite_error());

Srow = sglite_fetch_array(Sresult) ;

Most of the information in Book Ill about MySQL applies to the use of SQLite
as well. What makes SQLite different is that the data is stored in a flat file,
rather than stored by MySQL in files that are unique to MySQL.

Book |
Chapter 3

wa)sig Hunesadg

INOA pue dHd

228 Book II: PHP Programming

Chapter 4: Object-Oriented
Programming

In This Chapter

v Understanding object-oriented programming
v+~ Planning an object-oriented script

v Defining and writing classes

v Dealing with errors by using exceptions

v Copying, comparing, and destroying objects

0 bject-oriented programming is an approach to programming that uses
objects and classes. Object-oriented programming is in widespread use
today, with many universities teaching object-oriented programming in
beginning programming classes. Currently, Java and C++ are the most preva-
lent languages used for object-oriented programming.

Object-oriented programming, with a limited feature set, is possible in PHP
4. With PHP 5, the object-oriented capabilities of PHP were greatly improved,
with both more speed and added features. The information and sample
scripts in this chapter are written for PHP 5. Features that aren’t available in
PHP 4 are noted.

Introducing Object-Oriented Programming

Object-oriented programming, sometimes shortened to just OOP, isn’t just a
matter of using different syntax. It’s a different way of analyzing program-
ming problems. The application is designed by modeling the programming
problem. For example, a programmer designing an application to support a
company’s sales department might look at the programming project in
terms of the relationships between customers and sales and credit lines —
in other words, in terms of the design of the sales department itself.

In object-oriented programming, the elements of a script are objects. The
objects represent the elements of the problem your script is meant to solve.
For example, if the script is related to a used-car lot, the objects are proba-
bly cars and customers. Or if the script is related to outer space, the objects
would probably be stars and planets.

2 3 0 Introducing Object-Oriented Programming

Object-oriented programming developed new concepts and new terminology
to represent those concepts. Understanding the terminology is the road to
understanding object-oriented programming.

Objects and classes

The basic elements of object-oriented programs are objects. It’s easiest to
understand objects as physical objects. For example, a car is an object. A car
has properties (also called attributes), such as color, model, engine, and tires.
A car has things it can do, too, such as move forward, move backward, park,
roll over, and play dead (well, ours does anyway).

In general, objects are nouns. A person is an object. So are animals, houses,
offices, garbage cans, coats, clouds, planets, and buttons. However, objects
are not just physical objects. Often objects, like nouns, are more conceptual.
For example, a bank account isn’t something you can hold in your hand, but
it can be considered an object. So can a computer account or a mortgage. A
file is often an object. So is a database. E-mail messages, addresses, songs,
TV shows, meetings, and dates can all be objects. Objects in Web applica-
tions might be catalogs, catalog items, shopping carts, customers, orders, or
customer lists.

A class is the PHP code that serves as the template, or the pattern, that is
used to create an object. The class defines the properties, the attributes, of
the object. It also defines the things the object can do — its responsibilities.
For example, you write a class that defines a car as four wheels and an
engine, and the class lists the things a car can do, such as move forward and
park. Then, given that class, you can write a statement similar to the follow-
ing that creates a car object:

SmyCar = new Car () ;

$myCar is the object created from the definition in the class Car. Your new
car has four wheels and an engine and can move forward and park, as
defined in the class Car. When you use your car object $myCar, you might
find that it’s missing a few important things, such as a door, or a steering
wheel, or a reverse gear. That’s because you left an important item out of the
class Car when you wrote it.

From a more technical point of view, an object is a complex, user-defined
data type. The process of creating an object from a class is called instantia-
tion. An object is an instance of a class. For instance, $SmyCar is an instance
of the class Car.

As the person who writes a class, you know how things work inside the class.
However, the person who uses an object created from the class doesn’t need

Introducing Object-Oriented Programming 231

to know how an object accomplishes its responsibilities. We have no clue
how a telephone object works, but we can use it to make a phone call. The
person who built the telephone knows what’s happening inside it. When
there’s new technology, the phone builder can open a phone and improve it.
As long as he doesn’t change the interface — the keypad and buttons — it
doesn’t affect the use of the phone at all.

Properties

Objects have properties, also sometimes called attributes. A car may be red,
green, or covered in polka dots — a color property. Properties — such as
color, size, or model for a car — are stored inside the object. Properties are
set up in the class as variables. For example, the color attribute is stored in
the object in a variable, given a descriptive name such as $color. Thus, the
car object SmyCar might contain $color = red.

The variables that store properties can have default values, can be given
values when the object is created, or values can be added or modified later.
For example, a $SmyCar is created red, but when it’s painted later, $color is
changed to chartreuse.

Methods

The things objects can do are sometimes referred to as responsibilities. For
example, a Car object can move forward, stop, back up, and park. Each
thing an object can do — each responsibility — is programmed into the
class and called a method.

In PHP, methods use the same syntax as functions. Although the code looks

like the code for a function, the distinction is that methods are inside a class.

It can’t be called independently of an object. PHP won’t allow it. This type of
function can perform its task only when called with an object.

When creating methods, give them names that are descriptive of what they
do. For instance, a customerOrder class might have methods such as
displayOrder, getTotalCost, computeSalesTax, and cancelOrder.
Methods, like other PHP entities, can be named with any valid name, but
they’re often named with camel caps, by convention, as shown here.

The methods are the interface between the object and the rest of the world.
The object needs methods for all its responsibilities. Objects should interact
with the outside world only through their methods. For example, suppose

your object is a catalogItem that is for sale. One of its properties is $price.

You don’t want $price to be easily changed by a simple statement, such as

Sprice = 10;

Book I
Chapter 4

Buiwweiboig
pajualig-)oalqQ

2 32 Developing an Object-Oriented Script

Instead, you want a method, called changePrice, that is the only way the
price can be edited. The method includes checks to be sure that only legiti-
mate users can use it to change the price.

A good object should contain all it needs to perform its responsibilities, but
not a lot of extraneous data. It shouldn’t perform actions that are another
object’s responsibility. The car object should travel and should have every-
thing it needs to perform its responsibilities, such as gas, oil, tires, engine,
and so on. The car object shouldn’t cook and doesn’t need to have salt or
frying pans. Nor should the cook object carry the kids to soccer practice.

Inheritance

Objects should contain only the properties and methods they need. No
more. No less. One way to accomplish that is to share properties and meth-
ods between classes by using inheritance. For example, suppose you have
two rose objects: one with white roses and one with red roses. You could
write two classes: a redRose class and a whiteRose class. However, a lot of
the information is the same for both objects. Both are bushes, both are
thorny, and both bloom in June. Inheritance enables you to eliminate the
duplication.

You can write one class called Rose. You can store the common information
in this class, such as $plant = bush, $stem = thorns, and $blooms =
June. Then you can write subclasses for the two rose types. The Rose class
is called the master class or the parent class. redRose and whiteRose are
the subclasses, which are referred to as child classes (or the kids, as a favorite
professor fondly referred to them).

Child classes inherit all the properties and methods from the parent class.
But they can also have their own individual properties, such as Scolor =
white for the whiteRose class and $color = red for the redRose class.

A child class can contain a method with the same name as a method in a
parent class. In that case, the method in the child class takes precedence for
a child object. You can specify the method in the parent class for a child
object if you want, but if you don’t, the child class method is used.

“&N\BEB
& Some languages allow a child class to inherit from more than one parent
class, called multiple inheritance. PHP doesn’t allow multiple inheritance.

A class can inherit from only one parent class.

Developing an Object-Oriented Script

Object-oriented scripts require a lot of planning. You need to plan your
objects and their properties and what they can do. Your objects need to

Developing an Object-Oriented Script 233

cover all their responsibilities without encroaching on the responsibilities of
other objects. For complicated projects, you might have to do some model
building and testing before you can feel reasonably confident that your proj-
ect plan includes all the objects it needs.

Developing object-oriented scripts includes the following procedures, which
the next sections cover in more detail:

1. Choose the objects.
2. Choose the properties and methods for each object

3. Create the object and put it to work.

Choosing objects

Your first task is to develop the list of objects needed for your programming
project. If you're working alone and your project is small, the objects might
be obvious. However, if you’re working on a large, complex project, selecting
the list of objects can be more difficult. For example, if your project is devel-
oping the software that manages all the tasks in a bank, your list of possible
objects is large: account, teller, money, checkbook, wastebasket, guard,
vault, alarm system, customer, loan, interest, and so on. But, do you need all
those objects? What is your script going to do with the wastebasket in the
front lobby? Or the guard? Well, perhaps your script needs to schedule shifts
for the guards.

When you’re planning object-oriented programs, the best strategy for identi-
fying your objects is to list all the objects you can think of — that is, all the
nouns that might have anything at all to do with your project. Sometimes
programmers can take all the nouns out of the project proposal documenta-
tion to develop a pretty comprehensive list of possible objects.

After you create a long list of possible objects, your next task is to cross off
as many as possible. You should eliminate any duplicates, objects that have
overlapping responsibilities, and objects that are unrelated to your project.
For example, if your project relates to building a car, your car project proba-
bly needs to have objects for every part in the car. On the other hand, if your
project involves traffic control in a parking garage, you probably need only a
car object that you can move around; the car’s parts don’t matter for this
project.

Selecting properties and methods for each object
When you have a comprehensive list of objects, you can begin to develop
the list of properties for each object. Ask yourself what you need to know
about each object. For example, for a car repair project, you probably need

Book I
Chapter 4

Buiwweiboig
pajualig-)oalqQ

2 3 4 Developing an Object-Oriented Script

to know things like when the car was last serviced, its repair history, any
accidents, details about the parts, and so on. For a project involving parking
garage traffic, you probably need to know only the car’s size. How much
room does the car take up in the parking garage?

You need to define the responsibilities of each object, and each object needs
to be independent. It needs methods for actions that handle all of its respon-
sibilities. For example, if one of your objects is a bank account, you need to
know what a bank account needs to do. Well, first, it needs to be created, so
you can define an openNewAccount method. It needs to accept deposits
and disburse withdrawals. It needs to keep track of the balance. It needs to
report the balance when asked. It might need to add interest to the account
periodically. Such activities come to mind quickly.

However, a little more thought, or perhaps testing, can reveal activities that
you overlooked. For example, the account stores information about its owner,
such as name and address. Did you remember to include a method to update
that information when the customer moves? It might seem trivial compared
to moving the money around, but it won’t seem trivial if you can’t do it.

Creating and using an object

After you decide on the design of an object, you can create and then use the
object. The steps for creating and using an object are as follows:

1. Write the class statement.

The class statement is a PHP statement that is the blueprint for the
object. The class statement has a statement block that contains PHP
code for all the properties and methods that the object has.

2. Include the class in the script where you want to use the object.

You can write the class statement in the script itself. However, it’s
more common to save the class statement in a separate file and use an
include statement to include the class at the beginning of the script
that needs to use the object.

hd

Create an object in the script.

You use a PHP statement to create an object based on the class. This is
called instantiation.

4. Use the new object.
After you create a new object, you can use it to perform actions. You can
use any method that is inside the class statement block.

The rest of this chapter provides the details needed to complete these steps.

Defining a Class 2 35

Defining a Class

After you've determined the objects, properties, and methods your project
requires, you're ready to define classes. The class is the template (pattern)
for the object.

Writing a class statement

You write the class statement to define the properties and methods for the
class. The class statement has the following general format:

class className Book Il
{ Chapter 4

Add statements that define the properties
Add all the methods
}

You can use any valid PHP identifier for the class name, except the name
stdClass. PHP uses the name stdClass internally, so you can’t use this
name.

Buiwweiboig
pajualig-)oalqQ

All the property settings and method definitions are enclosed in the opening
and closing curly braces. If you want a class to be a subclass that inherits
properties and methods, use a statement similar to the following:

class whiteRose extends Rose

{
Add the property statements
Add the methods

}

The object created from this class has access to all the properties and meth-
ods of both the whiteRose child class and the Rose class. The Rose class,
however, doesn’t have access to properties or methods in the child class,
whiteRose. Imagine, the child owns everything the parent owns, but the
parent owns nothing of the child’s. What an idea.

The next few sections show you how to set properties and define methods
within the class statement. For a more comprehensive example of a com-
plete class statement, see the section, “Putting it all together,” later in this
chapter.

Setting properties

When you're defining a class, you declare all the properties at the top of the
class, as follows:

2 3 7 Defining a Class

MBER
@&
&

class Car

{
private S$color;
private S$tires;
private S$gas;

Method statements

}

PHP doesn’t require you to declare variables. In the other PHP scripts dis-
cussed in this book, variables aren’t declared; they’re just used. You can do
the same thing in a class. However, it’'s much better to declare the properties
in a class. By including declarations, classes are much easier to understand.
It’s poor programming practice to leave this out.

Each property declaration begins with a keyword that specifies how the
property can be accessed. The three keywords are

4+ public: The property can be accessed from outside the class, either by
the script or from another class.

4+ private: No access is granted from outside the class, either by the
script or from another class.

4+ protected: No access is granted from outside the class except from a
class that’s a child of the class with the protected property or method.

The keyword public should rarely be used. Classes should be written so
that methods are used to access properties. By declaring a property to be
private, you make sure that the property can’t be accessed directly from the
script.

If you want to set default values for the properties, you can, but the values
allowed are restricted. You can declare a simple value, but not a computed
one, as detailed in the following examples:

4+ The following variable declarations are allowed as default values:

private $color = "black";
private $Sgas = 10;
private S$tires = 4;

4+ The following variable declarations are not allowed as default values:

private S$Scolor = "blue"." black";
private $gas = 10 - 3;
private Stires = 2 * 2;

Defining a Class 2 3 7

An array is allowed in the variable declaration, as long as the values are
simple, as follows:

private $doors = array("front", "back");

To set or change a variable’s value when you create an object, use the con-
structor (described in the “Writing the constructor” section, later in this
chapter) or a method you write for this purpose.

Accessing properties using $this

Inside a class, $this is a special variable that refers to the properties of the
same class. $this can’t be used outside of a class. It’s designed to be used
in statements inside a class to access variables inside the same class.

The format for using $this is the following:
Sthis->varname

For example, in a CustomerOrder class that has a property stotalCost,
you would access $totalCost in the following way:

Sthis->totalCost

Using sthis refers to StotalCost inside the class. You can use sthis as
shown in any of the following statements:

Sthis->totalCost = 200.25;
if ($this->totalCost > 1000)
Sproduct [$this->size] = S$price

As you can see, you use $this->varname in all the same ways you would
use Svarname.

Notice that a dollar sign ($) appears before this but not before gas. Don’t
use a dollar sign before totalCost — as in $this->$totalCost —
because it changes your statement’s meaning. You might or might not get an
error message, but it isn’t referring to the variable StotalCost inside the
current class.

Adding methods

Methods define what an object can do and are written in the class

in the same format you’d use to write a function. For example, your
CustomerOrder might need a method that adds an item onto the total cost
of the order. You can have a variable called total that contains the current
total cost. You can write a method that adds the price of an item to the total
cost. You could add such a method to your class, as follows:

Book

Chapter 4

Buiwweiboig
pajualig-)oalqQ

2 3 8 Defining a Class

class CustomerOrder
{
private Stotal = 0;
function addItem($Samount)
{
Sthis->total = $this->total + Samount;
echo "$Samount was added; current total is S$this->total";
}
}

This looks just like any other function, but it’s a method because it’s inside
a class. You can find details about writing functions in Chapter 2 in this
minibook.

Like functions, methods accept values passed to them. The values passed
need to be the correct data type to be used in the function. (See Chapter 1 in
this minibook for a discussion of data types.) For instance, in the preceding
example, Samount needs to be a number. Your method should include a
check to make sure that the value is a number. For instance, you might write
the method, as follows:

class CustomerOrder
{
private Stotal = 0.0;
function addItem($Samount)
{
if (is_numeric ($amount)
{
Sthis->total = $this->total + Samount;
echo "$amount added; current total is S$this->total";

}

else
(
echo "value passed is not a number.";
}
}
}

If the value passed is an integer, a float, or a string that is a number, the
amount is added. If not, the error message is displayed. The sum in $total
is a float because it is assigned a number with a decimal point in it. When the
amount passed in is added to $sum, it is automatically converted to a float
by PHP.

When you write methods, PHP allows you to specify that the value passed
must be an array or a particular object. Specifying what to expect is called
type hinting. If the value passed is not the specified type, an error message is
displayed. You don’t need to add statements in the method to check for
array or object data types. For example, you can specify that an array is
passed to a function, as follows:

sMBER
>

Defining a Class 2 39

Class AddingMachine
{ private S$total = 0;
addNumbers (array S$Snumbers)
{ for ($i=0;$i<=sizeof ($numbers) ; $i++)
{ Sthis->total = $this->total + $numbers([$i];

}
}

If you attempt to pass a value to this method that is not an array, an error
message similar to the following is displayed.

Catchable fatal error: Argument 1 passed to AddingMachine::
addNumbers () must be an array, integer given, ...

This error states that an integer was passed, instead of the required array.
The error is fatal, so the script stops at this point. You can also specify that
the value passed must be a specific object, as follows:

class ShoppingCart
{

private $items = array();
private $n_items = 0;

function addItem(Item Sitem)

{

Sthis->items|[] Sitem;
Sthis->n_items = $this->n_items + 1;

}

The ShoppingCart class stores the items in the shopping cart as an array
of Ttem objects. The method addItem is defined to expect an object that
was created from the class Ttem. If a value is passed to the addItem method
that is not an Item object, an error message is displayed, and the script
stops.

Methods can be declared public, private, or protected, just as properties
can. Public is the default access method if no keyword is specified.

PHP provides some special methods with names that begin with _ _ (two
underscores). PHP handles these methods differently internally. This chap-
ter discusses three of these methods: construct, destruct, and clone. Don’t
begin the names of any of your own methods with two underscores unless
you're taking advantage of a PHP special method.

Book

Chapter 4

Buiwweiboig
pajualig-)oalqQ

2 40 Defining a Class

Understanding public and private
properties and methods

Properties and methods can be public or private. Public means that meth-
ods or properties inside the class can be accessed by the script that is using
the class or from another class. For example, the following class has a public
property and a public method as shown:

class Car
{
public $gas = 0;
function addGas ($Samount)
{
Sthis->gas = $this->gas + Samount;
echo "Samount gallons added to gas tank";
}
}

The public property in this class can be accessed by a statement in the
script outside the class, as follows:

Smycar = new Car;
Sgas_amount = Smycar->gas;

After these statements are run, $gas_amount contains the value stored in
$car inside the object. The property can also be modified from outside the
class, as follows:

Smycar->gas = 20;

Allowing script statements outside the class to directly access the proper-
ties of an object is poor programming practice. All interaction between the
object and the script or other classes should take place using methods. The
example class has a method to add gas to the car. All gas should be added to
the car by using the addGas method, which is also public, using statements
similar to the following:

Snew_car = new Car;
Snew_car->addGas (5) ;

You can prevent access to properties by making them private, as follows:
private S$gas = 0;

With the property specified as private, a statement in the script that
attempts to access the property directly, as follows:

SmyCar->gas = 20;

Defining a Class 2 4 1

gets the following error message:

Fatal error: Cannot access private property car::S$gas in
c:\testclass.php on line 17

Now, the only way gas can be added to the car is by using the addGas
method. Because the addGas method is part of the class statement, it can
access the private property.

In the same way, you can make methods private or protected. In this case,
you want the outside world to use the addGas method. However, you might
want to be sure that people buy the gas that is added. You don’t want any
stolen gas in the car. You can write the following class:

class Car
{
private S$gas = 0;
private function addGas ($Samount)
{
Sthis->gas = S$Sthis->gas + Samount;
echo "Samount gallons added to gas tank";

}
function buyGas ($amount)
{
Sthis->addGas (Samount) ;
}
}

With this class, the only way gas can be added to the car from the outside is
with the buyGas method. The buyGas method uses the addGas method to
add gas to the car, but the addGas method can’t be used outside the class
because it’s private. If a statement outside the class attempts to use addGas,
as follows, a fatal error is displayed, as it was for the private property:

Snew_car = new Car;
Snew_car->addGas (5) ;

However, a statement outside the class can now add gas to the car by using
the buyGas method, as follows:

Snew_car = new Car;
Snew_car->buyGas (5) ;

You see the following output:

5 gallons added to gas tank

Book |
Chapter 4

Buiwweiboig
pajualig-)oalqQ

2 42 Defining a Class

A\

It’s good programming practice to hide as much of your class as possible.
Make all properties private. You should make methods public only if they
absolutely need to be public.

Writing the constructor

The constructor is a special method, added with PHP 5, that is executed when
an object is created using the class as a pattern. A constructor isn’t required,
and you don’t need to use a constructor if you don’t want to set any prop-
erty values or perform any actions when the object is created. Only one con-
structor is allowed.

The constructor has a special name so that PHP knows to execute the
method when an object is created. Constructors are named __ construct
(two underscores). A constructor method looks similar to the following:

function _ _construct ()
{
Sthis->total = 0; # starts with a 0 total

}

This constructor defines the new CustomerOrder. When the order is cre-
ated, the total cost is 0.

Prior to PHP 5, constructors had the same name as the class. You might run
across classes written in this older style. PHP 5 and later scripts look first for
a method called __construct () to use as the constructor. If it doesn’t find
one, it looks for a method that has the same name as the class and uses that
method for the constructor. Thus, older classes still run under PHP 5 and 6.

Putting it all together

Your class can have as few or as many properties and methods as it needs.
The methods can be very simple or very complicated, but the goal of object-
oriented programming is to make the methods as simple as is reasonable.
Rather than cram everything into one method, it’s better to write several
smaller methods and have one method call another as needed.

The following is a simple class:

class MessageHandler
{
private Smessage;
function __construct (Smessage)
{
Sthis->message = Smessage;
}

function displayMessage ()

\\3

Defining a Class 2 43

{

echo $this->message."\n";
}
}

The class has one property — $message — that stores a message. The mes-
sage is stored in the constructor.

The class has one method — displayMessage. Echoing the stored mes-
sage is the only thing the messageHandler object can do.

Suppose you want to add a method that changes the message to lowercase
and then automatically displays the message. The best way to write that
expanded class is as follows:

class MessageHandler
{
private Smessage;
function __construct (Smessage)
{
Sthis->message = Smessage;

}

function displayMessage ()

{

echo $this->message."\n";

}

function lowerCaseMessage ()
{
Sthis->message = strtolower ($Sthis->message) ;
Sthis->displayMessage () ;
}
}

Note the lowerCaseMessage () method. Because the class already has a
method to display the message, this new lowerCaseMessage () method
uses the existing displayMessage () method rather than repeating the
echo statement.

Any time you write a method and find yourself writing code that you've
already written in a different method in the same class, you need to redesign
the methods. In general, you shouldn’t have any duplicate code in the same
class.

The example in Listing 4-1 is a complicated class that can be used to create
an HTML form. To simplify the example, the form contains only text input
fields.

Book

Chapter 4

Buiwweiboig
pajualig-)oalqQ

2 44 Defining a Class

Listing 4-1: A Script That Contains a Class for a Form Object

<?php
/* Class name: Form
* Description: A class that creates a simple HTML form
* containing only text input fields. The
* class has 3 methods.
*/
class Form
{
private $fields = array(); # contains field names and
labels
private SactionValue; # name of script to process form
private S$submit = "Submit Form"; # value on submit button
private $Nfields = 0; # number of fields added to the form

/* Constructor: User passes in the name of the script where
* form data is to be sent ($SactionValue) and the value to
* display on the submit button.

*/
function __construct ($SactionValue, Ssubmit)
{
Sthis->actionValue = S$SactionValue;
Sthis->submit = S$Ssubmit;
}
/* Display form function. Displays the form.
*/
function displayForm/()
{
echo "\n<form action='{Sthis->actionValue}'
method="'POST'>\n";
for($j=1;$j<=sizeof ($this->fields) ;$j++)
{
echo "<p style='clear: left; margin: 0; padding: 0;
padding-top: 5px'>\n";
echo "<label style='float: left; width: 20%'>
{$this->fields[$j-1]['label']}: </label>\n";
echo "<input style='width: 200px' type='text'
name="'{Sthis->fields[$j-1]1['name']}'></p>\n";
}
echo "<input type='submit' value='{$this->submit}"
style='margin-left: 25%; margin-top: 10px'>\n";
echo "</form>";
}

/* Function that adds a field to the form. The user needs to
* send the name of the field and a lab