

JAVA	TOOLS

FOR	DEVELOPERS

2ND	EDITION

by	Cheng-Hung	Chou

To

My	Wife

	

7	years

2557	days

61,368	hours

3,682,080	minutes

2	Cute	Daughters

TABLE	OF	CONTENTS

Preface

Apache	Commons

Commons	Lang

StringUtils

ArrayUtils

ExceptionUtils

WordUtils

Commons	IO

IOUtils

FileUtils

FilenameUtils

Commons	CSV

CSVParser

Commons	Codec

DigestUtils

Commons	Net

FTPClient

Commons	Compress

Zip

Commons	CLI

Commons	FileUpload

iText

Creating		a	PDF	document

Basic	text	elements

Paragraph

Phrase

Chunk

Fonts

Creating	a	table

PdfPTable

PdfPCell

Encryption

Adding	watermarks

Creating	multiple	columns

Merging	documents

Filling	forms

Servlet

Apache	POI

Creating	an	Excel	document

Adding	formulas

Formula	evaluation

Plotting	a	chart

Creating	a	Word	document

JFreeChart

Creating	a	simple	chart

Creating	a	bar	chart

Creating	a	scatter	plot

Creating	a	combined	chart

Making	a	chart	clickable

Displaying	a	chart	in	a	web	page

EasyMock,	JUnit,	and	PowerMock

An	introduction	to	JUnit

Annotations

Assertions

Test	Runners

A	sample	JUnit	test	case

An	introduction	to	EasyMock

Verifying	behavior

Expectations

EasyMockSupport

Class	mocking

Partial	mocking

Using	EasyMock	with	JUnit

Using	Annotations

Using	expectations

PowerMock

Test	coverage	analysis

JMeter

Building	a	JMeter	test	plan

Starting	JMeter

Adding	test	elements

Running	a	test	plan

Saving	a	test	plan

Debugging	a	test	plan

Remote	testing

Test	elements

Samplers

Logic	controllers

Listeners

Configuration	elements

Assertions

Timers

Pre-processors

Post-processors

Testing	a	web	application

Testing	with	authentication

Using	regular	expressions

Using	HTTP	proxy	server

Testing	web	applications	using	GWT

Adding	Java	classes

JUnit	Request

Java	Request

JAVACC

Structure	of	a	grammar	file

Options

Class	declaration

Token	manager	declarations

Lexical	specifications

Production	rules

A	simple	calculator

EBNF	grammars

JavaCC	grammars

Generating	code

A	formula	calculator

A	text	processor

Apache	Solr

Getting	started

Basic	directory	structure

Solr	home	directory

Solr	core	directory

Creating	a	new	core

SolrCloud

Document	schema

Document	fields

Field	types

Field	analysis

Updating	data

XML	messages

add

commit

delete

CSV

Querying	data

Request	handler

Query	parameters

Fields

Boolean	operators

Grouping	searches

Wildcard	searches

Regular	expression	searches

Proximity	searches

Range	searches

Boosting	terms

Special	characters

Sorting

Hit	highlighting

Faceted	search

Field	faceting

Query	faceting

Range	faceting

Pivot	Faceting

Result	Grouping

Indexing	rich	documents

Accessing	Solr	programmatically

Updating	data

Querying	data

Query

Field	faceting

Result	grouping

Apache	James

Installing	James	Server

Configuring	James	Server

config.xml

environment.xml

james-fetchmail.xml

A	quick	test

Mailets	and	matchers

Creating	a	custom	matcher

GenericMatcher

GenericRecipientMatcher

Creating	a	custom	mailet

Reading	an	object	store	file

Jackson

POJO	model

JSON	Properties

Property	naming	and	inclusion

Property	exclusion

Ordering

Map

Enum

Formatting

Polymorphic	types

Filtering

Views

Filters

Custom	Serializers	and	Deserializers

Custom	Serializers

Custom	Deserializers

Configurations

Hibernate	Validator

Applying	Constraints

Field-level	constraints

Error	messages

Property-level	constraints

Validating	Parameters

Inheritance

Grouping	Constraints

Programmatic	constraints

Creating	a	Custom	Constraint

Creating	a	constraint	annotation

Creating	an	validator

	

Preface
	

When	working	on	a	project,	sometimes	you	face	the	following	questions	during	the	design
phase:	Should	we	include	this	task	in	this	phase?	It	seems	risky.	Should	we	adopt	this
technology	and	do	code	refactoring	on	existing	programs?	Should	we	use	this	framework
instead	of	writing	our	own?

Incorporating	right	development	tools	into	your	products	can	increase	productivity	of
developers	and	expand	functionality	on	products.	You	do	not	need	to	reinvent	everything
from	scratch.	You	are	not	an	expert	on	everything.	Leave	the	job	to	the	expert.	But,
searching	and	evaluating	right	tools	can	be	time	consuming.	Especially	those	not	well-
written	or	maintained	can	put	your	products	at	risk.	Finding	well-proven	3rd	party	tools	is
the	key	since	they	have	been	using	in	many	products	and	still	improving	regularly.	A	good
development	tool	even	can	be	part	of	coding	practice	for	developers.

To	learn	a	new	technology	or	tool,	the	most	difficult	part	is	to	find	where	to	start	with.
Sometimes,	it	is	not	even	well-documented.	Or,	you	do	not	want	to	spend	time	to	read	the
whole	book.	This	book	is	not	trying	to	teach	you	how	to	write	Java	programs.	It	assumes
you	already	have	basic	idea	about	Java	programming	language.	The	main	purpose	of	this
book	is	to	broaden	your	knowledge	as	a	professional	Java	developer	and	save	you	time	in
finding	and	learning	useful	development	tools.

Topics	in	this	book	cover	a	variety	of	development	tools	in	Java.	They	include	APIs,
testing	tools	and	servers.	In	the	second	edition,	it	includes	the	following	updates:

Adding	to	the	chapter	of	Apache	Commons:	Commons	CSV	and	Commons	Codec

Adding	PowerMock	to	the	chapter	of	EasyMock,	JUnit,	and	PowerMock

Rewriting	the	chapter	of	Apache	Solr	to	cover	Solr	5

Adding	two	new	chapters:	Jackson,	Hibernate	Validator

The	following	are	quick	summaries	of	topics	in	this	book:

Apache	Commons

The	purpose	of	Apache	Commons	is	to	focus	on	all	aspects	of	reusable	Java	components.
Component	interfaces	will	keep	as	stable	as	possible	and	try	to	be	independent	from	other
components.	There	are	over	40	active	components	in	the	Apache	Commons	so	far.	Some
implementations	in	the	Apache	Commons	even	are	included	in	the	core	Java	API.

iText

Usually,	PDF	documents	are	created	or	updated	manually	through	some	kind	of	end-user
applications	such	as	Adobe	Acrobat.	But,	that	is	only	suitable	for	static	documents.	If	you
need	to	generate	PDF	documents	dynamically	based	on	requests	or	to	generate
personalized	contents,	you	need	to	use	different	approaches.	iText	is	an	API	that	helps
developers	to	generate	or	update	PDF	documents	on	the	fly	programmatically	without
manual	process.

Apache	POI

Apache	POI	is	the	Java	API	for	Microsoft	Documents,	which	allows	you	to	read	and	write
MS	Office	documents	such	as	Excel,	Word	and	PowerPoint	using	Java.	Through	POI,	you
can	generate	MS	Office	documents	dynamically	based	on	requests	or	to	generate
personalized	reports	on	the	fly.	POI	supports	OLE2	files	such	as	XLS,	DOC	and	PPT	and
new	XML	based	standard	Office	OpenXML	files	such	as	XLSX,	DOCX	and	PPTX.

JFreeChart

JFreeChart	is	a	chart	library	that	helps	you	to	create	a	variety	of	chart	types	such	as	pie
charts,	bar	charts,	line	charts	or	scatter	plots	in	your	Swing	applications.	Many	output
types	such	as	images	(JPEG	or	PNG)	are	supported.	JFreeChart	is	not	just	limited	to
desktop	applications.	It	can	be	used	on	the	server	side	such	as	servlets	or	JSPs	too.

EasyMock,	JUnit,	and	PowerMock

Unit	tests	are	written	by	programmers	to	test	classes	or	methods	internally	in
programmer’s	perspective.	Each	test	should	be	independent	from	each	other	and	should	be
tested	without	any	dependencies.	How	do	we	do	unit	testing	in	isolation	without	any
dependencies?	Mock	objects	are	objects	that	mimic	the	real	objects	in	controlled	ways	for
different	scenarios.	They	can	help	to	decide	if	a	test	is	either	failed	or	passed.	EasyMock	is
a	framework	that	can	save	you	time	in	hand	wiring	mock	objects	and	can	create	mock
objects	at	runtime.	JUnit	is	a	unit	testing	framework.	JUnit	and	EasyMock	can	work
together	easily.	PowerMock	is	a	mock	framework	that	extends	other	mock	frameworks.
PowerMock	extends	EasyMock	with	features	such	as	mocking	on	private,	static,	or	final
methods.	Currently,	it	supports	EasyMock	and	Mockito.

Apache	JMeter

Apache	JMeter	is	a	Java-based	desktop	application,	which	can	be	used	for	load	testing	to
measure	the	performance	of	a	system	or	used	for	stress	testing	to	see	if	a	system	is	crashed
gracefully.	JMeter	provides	a	variety	of	test	elements.	They	are	quite	handy	and	can	save
you	time	in	writing	your	own	Java	programs	for	testing.	Using	JMeter	is	quite	intuitive
because	it	provides	a	nice	GUI	to	create	and	run	tests.	You	also	can	run	JMeter	tests	in
non-GUI	mode.	Tests	can	be	run	either	locally	or	remotely.

JavaCC

JavaCC	is	an	open	source	lexical	analyzer	generator	and	a	parser	generator	for	use	with
the	Java	applications,	which	takes	a	grammar	specification	(e.g.,	EBNF)	and	generates	the
Java	source	code	of	a	lexical	analyzer	and	a	parser.		A	lexical	analyzer	breaks	a	sequence
of	characters	into	tokens	and	identifies	the	type	of	each	token.	A	parser	takes	a	sequence
of	tokens	from	a	lexical	analyzer	and	then	analyzes	them	to	determine	the	structure	and
generates	output	depending	on	your	need.

Apache	Solr

Apache	Solr	is	an	open	source	search	platform	based	on	Apache	Lucene	running	as	a
standalone	server.	Solr	provides	features	like	full-text	indexing,	hit	highlighting,	faceted
search,	rich	documents	(e.g.,	PDF,	MS	Word)	indexing	and	database	integration.	Solr

provides	REST-like	APIs	which	can	be	called	over	HTTP	to	make	it	easy	to	use.	Solr
allows	customization	through	configuration	and	plugin	architecture.

Apache	James

Apache	James	Server	is	a	Java-based	mail	server,	which	supports	SMTP	and	POP3
protocols.	Also,	it	can	serve	as	an	NNTP	news	server.	Something	special	about	James
Server	is	that	it	provides	a	mailet	container.	Just	like	servlets	are	used	to	process	HTTP
requests	for	a	servlet	container.	Mailets	are	used	to	process	emails	for	a	mailet	container.
Through	configurations,	you	can	use	mailets	to	do	complex	email	processing	tasks.	That	is
what	makes	James	Server	flexible	and	powerful.	There	are	standard	mailets	provided	by
James	Sever.	Also,	you	can	build	your	own	mailets	by	using	the	Mailet	API.

Jackson

JSON	(JavaScript	Object	Notation)	is	based	on	the	object	notation	from	the	JavaScript
programming	language.	Just	like	XML,	JSON	is	a	format	that	is	used	for	data	storage	and
data	exchange.	But,	the	advantage	of	JSON	is	that	you	can	use	it	in	the	JavaScript
programs	easily	because	a	JSON	string	can	be	converted	to	a	JavaScript	object.	A
common	use	case	is	to	use	JSON	data	between	back	end	and	front	end	in	web-based
applications.	Modern	browsers	have	native	support	on	JSON.	In	Java,	you	can	use	Jackson
API	to	convert	Java	objects	to	and	from	JSON.	The	original	purpose	of	Jackson	API	was
for	data	binding	on	JSON	data.	Now,	it	also	contains	packages	that	can	support	formats
such	as	XML,	CSV.

Hibernate	Validator

Input	validations	can	happen	at	different	places	in	applications.	Custom	and	possible
duplicate	code	can	be	anywhere	in	the	applications.	Not	to	mention	they	are	usually	part
of	logic	in	the	applications.	Hibernate	Validator	is	a	reference	implementation	of	Bean
Validation.	Bean	Validation	(added	as	part	of	Java	EE	6)	is	a	framework	that	defines	a
metadata	model	and	API	for	JavaBeans	validation.	Constraints	on	JavaBeans	can	be
expressed	via	annotations	(the	default	metadata	model)	and	can	be	extended	through	XML
constraint	mappings.	Bean	Validation	1.1	allows	put	constraints	to	the	parameters	or	return
values	on	methods	or	constructors.

Apache	Commons

	

The	purpose	of	Apache	Commons	is	to	focus	on	all	aspects	of	reusable	Java	components.
Component	interfaces	will	keep	as	stable	as	possible	and	try	to	be	independent	from	other
components.	There	are	over	40	active	components	in	the	Apache	Commons	so	far.	The
following	are	some	of	components	grouped	by	categories:

Command	line	options:	CLI

Core	Java	API:	BeanUtils,	Collections,	IO,	Lang,	Math,	Primitives

Database:	DBCP,	DbUtils

Encoding/decoding:	Codec

Execution:	Daemon,	Exec,	Launcher

File	formats:	Compress,	Configuration,	CSV

Logging:	Logging

Network:	Email,	FileUpload,	Net,	VFS

XML:	Digester,	Jelly,	JXPath

Since	there	are	so	many	components	in	the	Apache	Commons,	only	some	of	the	popular
components	will	be	introduced	here.	You	can	check	the	home	page	of	Apache	Commons
http://commons.apache.org	to	see	a	complete	list	of	components.

http://commons.apache.org

COMMONS	LANG

The	Apache	Commons	Lang,	which	contains	Java	utility	classes,	is	just	like	a	standard
Java	API.	It	is	being	using	in	lots	of	projects.	The	Commons	Lang	provides	additions	to
the	java.lang	package	in	the	core	Java	API.	Some	implementations	in	the	Common	Lang
even	are	included	in	the	core	Java	API	now.	One	example	is	the	Enum	introduced	in	Java
5.

Starting	from	Lang	3.0	(Java	5	and	above	is	required),	the	package	name	is	different	from
previous	versions	(org.apache.commons.lang3	vs.	org.apache.commons.lang).	The	current
stable	version	is	3.4	at	the	time	of	writing.	You	can	download	it	from
http://commons.apache.org/proper/commons-lang.	The	JAR	file	you	need	to	include	in	the
classpath	is	commons-lang3-3.4.jar.

http://commons.apache.org/proper/commons-lang

StringUtils

Probably	you	have	been	using	the	following	code	snippet	or	something	similar	to	check	if
a	string	is	empty	or	not:

if(str	==	null	||	str.trim().length()	==	0)	{

…

}	else	{

…

}

It	is	just	a	few	lines	of	code.	But,	it	can	be	very	trivial	if	the	same	code	appears	again	and
again	in	the	application.	Of	course,	a	better	way	is	to	create	a	method	and	put	it	in	a	utility
class.	If	you	are	working	on	a	project	with	others	or	some	legacy	code,	you	need	to	find
out	if	someone	has	created	it	or	not	and	where	it	is.	StringUtils	is	a	utility	class	for	string
manipulations.	It	provides	utility	methods	to	check	if	a	string	contains	any	text	or	not.
They	are	quite	handy:

static	boolean	isEmpty(CharSequence	cs):	checks	if	a	CharSequence	is	empty	or	null.	It
does	not	trim	whitespace	characters	at	both	ends.

static	boolean	isBlank(CharSequence	cs):	checks	if	a	CharSequence	is	empty	or	null.	It
does	trim	whitespace	characters	at	both	ends.

Starting	from	3.0,	the	parameter	is	changed	from	String	to	CharSequence.	CharSequence
is	an	interface.	String,	StringBuffer	and	StringBuilder	implement	CharSequence.

Different	from	the	String	class,	StringUtils	handles	the	case	of	null.	For	a	String,	you	need
to	check	if	it	is	null	first	or	a	NullPointerException	might	be	thrown.	Starting	from	Java	6,
the	isEmpty()	method	is	added	to	the	String	class.

StringUtils	has	methods	that	are	not	available	in	the	String	class	but	only	in	the	Character
class.	For	example,

static	boolean	isAlpha(CharSequence	cs)

static	boolean	isAlphanumeric(CharSequence	cs)

static	boolean	isNumeric(CharSequence	cs)

String	has	very	limited	support	on	ignoring	case	differences.	StringUtils	allows	you	to
search	or	match	a	substring	in	case-insensitive	way:

static	int	indexOfIgnoreCase(CharSequence	str,	CharSequence	searchStr):	-1	is	returned	if
no	match	or	null	in	any	one	of	input	strings.	If	the	search	string	is	empty	(“”),	it	is	always
matched	and	0	is	returned.

static	int	indexOfIgnoreCase(CharSequence	str,	CharSequence	searchStr,	int	startPos)

static	int	lastIndexOfIgnoreCase(CharSequence	str,	CharSequence	searchStr)

static	int	lastIndexOfIgnoreCase(CharSequence	str,	CharSequence	searchStr,	int	startPos)

static	boolean	endsWithIgnoreCase(CharSequence	str,	CharSequence	suffix):	true	is
returned	if	both	inputs	are	null.	false	is	returned	if	one	of	them	is	null.	If	the	suffix	is
empty	(“”),	it	is	always	matched	and	true	is	returned

static	boolean	startsWithIgnoreCase(CharSequence	str,	CharSequence	prefix)

Both	String	and	StringUtils	have	split	methods.	In	StringUtils,	split	method	treats	adjacent
separators	as	one	separator.	For	example,

StringUtils.split(“a:b::c:d”,	‘:’)	->	[“a”,	“b”,	“c”,	“d”]

“a:b::c:d”.split(“:”)	->	[“a”,	“b”,	“”,	“c”,	“d”]

If	you	need	to	join	an	array	of	objects	into	a	String	with	separators	between	them,	you	can
use:

static	String	join(Object[]	array,	char	separator):	null	object	or	empty	strings	are	treated	as
empty	strings.

static	String	join(Object[]	array,	String	separator)

Both	String	and	StringUtils	have	trim	methods.	Both	trim	methods	only	remove
unprintable	control	codes	(ASCII	code	less	than	32,	e.g.,	line	feed)	and	spaces	(ASCII
code	32)	at	both	ends.	If	you	want	to	remove	all	whitespace	characters	(including	those
with	code	>	32)	at	both	ends,	you	can	use	StringUtils.strip(String	str).	If	you	want	to	have
control	on	what	should	be	removed	at	both	ends,	you	can	use	StringUtils.strip(String	str,
String	stripChars).

ArrayUtils

ArrayUtils	is	a	utility	class	that	provides	operations	on	arrays	including	arrays	of	primitive
data	types	and	arrays	of	objects.

To	add	all	elements	in	one	array	to	another	array	or	to	add	variable	number	of	elements	to
one	array,	you	can	use:

static	int[]	addAll(int[]	array1,	int…	array2):	When	one	of	arrays	is	null,	a	new	array	with
all	elements	of	the	non-null	array	is	retuned.	When	both	arrays	are	null,	null	is	returned.
This	method	is	overloaded	to	support	all	primitive	data	types.	You	can	replace	int	with
other	primitive	data	types.

static	<T>	T[]	addAll(T[]	array1,	T…	array2):	Since	array2	is	varargs,	it	can	be	either	an
array	or	a	sequence	of	arguments.	If	array1	is	null	and	array2	is	a	null	array	(e.g.,	String[]
array2	=	null),	null	is	returned.	If	array1	is	null	and	array2	is	a	null	object	(e.g.,	String
array2	=	null),	[null]	is	returned.

To	convert	an	array	containing	elements	of	certain	primitive	data	type	to	an	array	of
objects,	you	can	use:

static	Integer[]	toObject(int[]	array):	null	is	returned	if	the	input	is	null.	This	method	is
overloaded	to	support	all	primitive	data	types.

To	convert	an	array	of	objects	to	the	corresponding	primitive	data	type,	you	can	use:

static	int[]	toPrimitive(Integer[]	array):	null	is	returned	if	the	input	is	null.	If	the	array
contains	any	null	element,	a	NullPointerException	is	thrown.	This	method	is	overloaded	to
support	all	primitive	data	types.

The	following	example	demonstrates	how	to	use	methods	mentioned	above:

import	java.util.Arrays;

import	java.util.List;

	

import	org.apache.commons.lang3.ArrayUtils;

	

public	class	ArrayUtilsExample	{

public	static	void	main(String[]	args)	{

//	add	one	array	to	another	array

int[]	array1	=	new	int[]	{1,	2,	3};

int[]	array2	=	new	int[]	{4,	5,	6};

int[]	newArray	=	ArrayUtils.addAll(array1,	array2);

System.out.println(Arrays.toString(newArray));

//	add	elements	to	an	array

String[]	strArray1	=	{“a”,	“b”,	“c”};

String[]	newStrArray	=	ArrayUtils.<String>addAll(strArray1,	“d”,	“e”,	“f”);

System.out.println(Arrays.toString(newStrArray));							

//	convert	int[]	to	Integer[]

int[]	ids	=	new	int[]{1001,	1002,	1003};

Integer[]	intObjs	=	ArrayUtils.toObject(ids);

System.out.println(Arrays.toString(intObjs));

//	convert	Integer[]	to	int[]

List<Integer>	idList	=	Arrays.asList(1001,	1002,	1003);

ids	=	ArrayUtils.toPrimitive(idList.toArray(new	Integer[idList.size()]));			

System.out.println(Arrays.toString(ids));									

}

}

The	following	is	the	output:

[1,	2,	3,	4,	5,	6]

[a,	b,	c,	d,	e,	f]

[1001,	1002,	1003]

[1001,	1002,	1003]

ExceptionUtils

The	core	Java	API	does	not	provide	a	method	to	get	the	stack	trace	as	a	String.	If	you	need
to	log	such	information,	you	need	to	use	the	following	code	to	write	the	stack	trace	to	a
String:

Writer	stringWriter	=	new	StringWriter();

PrintWriter	printWriter	=	new	PrintWriter(stringWriter);

ex.printStackTrace(printWriter);

String	stackTrace	=	stringWriter.toString();		

	

Instead,	you	can	use	ExceptionUtils.getStackTrace(Throwable	throwable).	It	returns	a
String	of	stack	trace	generated	by	the	printStackTrace(PrintWriter	s)	method.

WordUtils

In	the	case	that	you	need	to	wrap	a	long	line	of	text,	you	can	use:

static	String	wrap(String	str,	int	wrapLength,	String	newLineStr,	boolean
wrapLongWords):	null	is	returned	if	str	is	null.	If	newLineStr	is	null,	the	default	line
separator	is	used.	Leading	spaces	are	stripped.	But,	trailing	spaces	are	not.

For	example,	in	an	HTML	page,	you	can	wrap	a	long	line	by	using	
	as	the	line
separator.	Instead	of	wrapping	it,	you	can	also	use	StringUtils.abbreviate(String	str,	int
maxWidth)	to	abbreviate	it	with	an	ellipsis	(…)	in	the	end:

import	org.apache.commons.lang3.StringUtils;

import	org.apache.commons.lang3.text.WordUtils;

	

public	class	WordUtilsExample	{

public	static	void	main(String[]	args)	{

//	wrap	a	single	line

String	str	=	“Starting	from	Lang	3.0	(Java	5	and	above	is	required),	”	+

“the	package	name	is	different	from	previous	versions.”;

String	wrappedStr	=	WordUtils.wrap(str,	40,	“
”,	true);

System.out.println(wrappedStr);				

//	abbreviate	a	string	using	an	ellipsis

System.out.println(StringUtils.abbreviate(str,	20));			

}

}

The	following	is	the	output:

Starting	from	Lang	3.0	(Java	5	and	above
is	required),	the	package	name
is
different	from	previous	versions.

Starting	from	Lan…

COMMONS	IO

The	Apache	Commons	IO	provides	utility	classes	for	common	tasks	such	as	reading	and
writing	through	input	and	output	steams,	and	file	and	filename	manipulations.	The	current
stable	version	is	2.4	(Java	6	and	above	is	required)	at	the	time	of	writing.	You	can
download	it	from	http://commons.apache.org/proper/commons-io.	The	JAR	file	you	need
to	include	in	the	classpath	is	commons-io-2.4.jar.

http://commons.apache.org/proper/commons-io

IOUtils

IOUtils	is	a	utility	class	that	provides	static	methods	for	IO	stream	operations	such	as	read,
write,	copy	and	close.

For	IO	stream	operations,	a	good	practice	is	to	close	opened	streams	at	the	finally	block.
To	close	a	stream,	you	need	to	use	another	try-catch	block	such	as:

try	{

…

}	catch(…)	{

…

}	finally	{

try	{

in.close();

}	catch	(Exception	ex)	{}

}

Or,	you	can	use	try-with-resources	statement	introduced	in	the	Java	7.

try	(

resource	1;

resources	2;

…	

)	{

…

}	catch(…)	{

…

}

Any	objects	that	implement	the	AutoCloseable	interface	can	be	used	in	the	try-with-
resources	statement.

Instead,	you	can	use	IOUtils.closeQuietly(in)	to	close	it	without	using	another	try-catch
block.	closeQuietly()	closes	a	stream	unconditionally	even	it	is	null	or	closed.	It	has
overloaded	methods	that	support	InputStream,	OutputStream,	Reader,	Writer,	Socket,
ServerSocket,	Selector	and	Closeable.

For	better	performance,	all	methods	in	this	class	that	read	a	stream	using	a	buffered	stream
(BufferedInputStream	or	BufferedReader)	internally.	There	is	no	reason	to	use	a	buffered
stream	again.

To	copy	the	content	from	one	stream	to	another	stream,	you	can	use	copy(InputStrean
input,	OutputStrean	output)	or	copy(Reader	reader,	Writer	writer).	You	also	can	copy	from
a	binary	stream	to	a	character	stream,	and	vice	versa.	For	a	large	input	stream	(over	2GB),
you	can	use	copyLarge	method.

If	you	need	to	get	the	content	of	a	stream	(InputStream	or	Reader)	as	a	String,	you	can	use
toString(InputStrean	input,	String	encoding)	or	toString(Reader	reader).	Other	than	a
stream,	you	also	allow	to	use	an	URI	or	URL	to	get	certain	resource	from	the	network.	For
example,	toString(URL	url,	String	encoding).

FileUtils

FileUtils	is	a	utility	class	that	provides	static	methods	for	file	(or	directory)	manipulations
in	platform	neutral	way.	FileUtils	provides	additions	to	the	File	class.

To	copy	a	whole	directory	(including	all	subdirectories)	to	a	new	location,	you	can	use:

static	void	copyDirectory(File	srcDir,	File	destDir,	FileFilter	filter,	boolean
preserveFileDate)

A	new	directory	is	created	if	it	does	not	exist.	Optionally,	you	can	specify	to	preserve	the
original	file	date.	Also,	you	can	use	a	file	filter	to	define	files	or	directories	should	be
copied.	If	it	is	null,	all	directories	and	files	are	copied.	To	copy	one	directory	as	a	child	of
another	directory,	you	can	use	copyDirectoryToDirectory(File	srcDir,	File	destDir).	A	new
directory	is	created	if	it	does	not	exist.	If	you	need	to	move	a	directory,	you	can	use
moveDirectory	or	moveDirectoryToDirectory.

The	Common	IO	supplies	many	common	filter	classes	by	implementing	IOFileFilter
interface.	To	filter	files	based	on	the	filename,	you	can	use	SuffixFilter,	PrefixFileFilter,
NameFileFilter,	or	RegexFileFilter.	To	filter	files	based	on	date,	you	can	use	AgeFileFilter.
To	combine	filters	together	for	conditional	operations,	you	can	use	AndFileFilter,
OrFileFilter,	or	NotFileFiler.	Also,	you	can	use	FileFilterUtils,	which	is	a	utility	class	that
provides	access	to	all	filter	implementations,	to	create	a	filter	without	knowing	the	class
name	of	filter.

The	following	example	demonstrates	how	to	copy	a	directory	by	using	a	filter.	All	CVS
and	empty	directories,	and	.cvsignore	are	not	copied:

import	java.io.File;

	

import	org.apache.commons.io.FileUtils;

import	org.apache.commons.io.filefilter.AndFileFilter;

import	org.apache.commons.io.filefilter.DirectoryFileFilter;

import	org.apache.commons.io.filefilter.EmptyFileFilter;

import	org.apache.commons.io.filefilter.FileFileFilter;

import	org.apache.commons.io.filefilter.FileFilterUtils;

import	org.apache.commons.io.filefilter.IOFileFilter;

import	org.apache.commons.io.filefilter.NameFileFilter;

import	org.apache.commons.io.filefilter.NotFileFilter;

	

public	class	FileFilterExample	{			

public	static	void	main(String[]	args)	{

try	{

File	src	=	new	File(“apps”);

File	dest	=	new	File(“dest”);

IOFileFilter	notCvsFilter1	=	new	NotFileFilter(

new	AndFileFilter(DirectoryFileFilter.INSTANCE,	new	NameFileFilter(“CVS”)));

IOFileFilter	notCvsFilter2	=	new	NotFileFilter(

new	AndFileFilter(FileFileFilter.FILE,	new	NameFileFilter(“.cvsignore”)));

//	ignore	CVS,	.cvsignore	and	empty	directory

IOFileFilter	filter	=	FileFilterUtils.and(notCvsFilter1,	notCvsFilter2,
EmptyFileFilter.NOT_EMPTY);																	

FileUtils.copyDirectory(src,	dest,	filter);

}	catch(Exception	ex)	{

System.out.println(ex);

}											

}

}

To	copy	a	file	to	a	new	location,	you	can	use:

static	void	copyFile(File	srcFile,	File	destFile,	boolean	preserveFileDate)

Optionally,	you	can	specify	to	preserve	the	original	file	date.	To	copy	a	file	to	a	directory,
you	can	use	copyFileToDirectory.	A	new	directory	is	created	if	it	does	not	exist.	If	you
need	to	move	a	file,	you	can	use	moveFile	or	moveFileToDirectory.

To	read	the	content	of	a	file	to	a	String,	you	can	use	readFileToString(File	file,	String
encoding).	To	write	a	String	to	a	file,	you	can	use	writeStringToFile(File	file,	String	data,
String	encoding,	boolean	append).	Optionally,	you	can	choose	to	overwrite	or	append	an
existing	file.	A	new	file	is	created	if	it	does	not	exist.

For	file	or	directory	deletions,	File.delete()	does	not	delete	a	directory	recursively	and	the
directory	needs	to	be	empty.	FileUtils.deleteDirectory(File	directory)	allows	to	delete	a
directory	recursively.	FileUtils.deleteQuietly(File	file)	can	delete	a	file	or	a	directory	and
all	of	its	subdirectories.	It	never	throws	an	exception	if	it	cannot	be	deleted.

If	you	need	to	traverse	a	directory	structure,	you	can	use:

static	Iterator<File>	iterateFiles(File	dir,	IOFileFilter	fileFilter,	IOFileFilter	dirFilter):	The
returned	iterator	only	includes	the	files.	If	dirFilter	is	null,	subdirectories	are	not	searched.

static	Iterator<File>	iterateFilesAndDirs(File	dir,	IOFileFilter	fileFilter,	IOFileFilter
dirFilter):	The	returned	iterator	includes	the	files	and	directories.

The	following	example	traverses	a	directory	to	search	for	classes	of	Apache	Commons

being	imported	in	the	Java	source	files.	The	result	is	stored	in	a	map	with	class	name	as
the	key	and	count	as	the	value:

import	java.io.File;

import	java.io.FileInputStream;

import	java.io.IOException;

import	java.util.Collection;

import	java.util.HashMap;

import	java.util.Map;

import	java.util.Iterator;

import	java.util.regex.Matcher;

import	java.util.regex.Pattern;

	

import	org.apache.commons.io.FileUtils;

import	org.apache.commons.io.IOUtils;

import	org.apache.commons.io.LineIterator;		

import	org.apache.commons.io.filefilter.SuffixFileFilter;

import	org.apache.commons.io.filefilter.TrueFileFilter;

import	org.apache.commons.lang3.StringUtils;

	

public	class	FileUtilsExample	{

private	static	Pattern	importPattern	=

Pattern.compile(“import	org\.apache\.commons\.(.*)\.(.*);”);

private	static	Pattern	classPattern	=

Pattern.compile(“(.*[\s]+|[\s]*)class[\s]+.*[\s]*”);

	

public	static	void	main(String[]	args)	{

try	{

FileUtilsExample	example	=	new	FileUtilsExample();											

File	dir	=	new	File(“C:/Projects”);

if(dir.isDirectory())	{

Map<String,	Integer>	map	=	new	HashMap<String,	Integer>();

Iterator<File>	it	=	FileUtils.iterateFiles(dir,

new	SuffixFileFilter(“.java”),	TrueFileFilter.INSTANCE);

while(it.hasNext())	{

File	file	=	it.next();

example.find(file,	map);

}

	

System.out.println(map);

}											

}	catch(Exception	ex)	{

System.out.println(ex);

}

}

	

public	void	find(File	file,	Map<String,	Integer>	map)	{

FileInputStream	in	=	null;

try	{

in	=	new	FileInputStream(file);

LineIterator	it	=	IOUtils.lineIterator(in,	“UTF-8”);

while(it.hasNext())	{

String	line	=	it.nextLine();

if(!StringUtils.isBlank(line))	{

Matcher	matcher	=	classPattern.matcher(line);

if(matcher.find())	{

break;

}

matcher	=	importPattern.matcher(line);

if(matcher.find())	{

String	className	=	matcher.group(2);

if(map.containsKey(className))	{

Integer	count	=	map.get(className);

map.put(className,	count	+	1);

}	else	{

map.put(className,	1);

}			

}

}

}

}	catch(IOException	ex)	{

System.out.println(ex);

}	finally	{

IOUtils.closeQuietly(in);

}

}

}

FilenameUtils

FilenameUtils	is	a	utility	class	that	provides	static	methods	for	filename	and	file	path
manipulations	in	platform	neutral	way.	FilenameUtils	breaks	a	filename	into	six
components.	You	can	access	them	from	the	following	methods:

static	String	getFullPath(String	filename)

static	String	getPath(String	filename)

static	String	getPrefix(String	filename)

static	String	getName(String	filename)

static	String	getBaseName(String	filename)

static	String	getExtension(String	filename)

Take,	C:\Commons\examples\commons-io\FilenameUtilsExample.java,	as	an	example,
you	can	get	the	following	output:

Full	path:	C:\Commons\examples\commons-io\

Path:	Commons\examples\commons-io\

Prefix:	C:\

Name:	FilenameUtilsExample.java

Base	name:	FilenameUtilsExample

Extension:	java

COMMONS	CSV

The	Apache	Commons	CSV	provides	API	to	read	(parse)	and	write	files	in	CSV	(comma
separated	value)	format.	The	current	stable	version	of	Commons	CSV	is	1.2	at	the	time	of
writing.	You	can	download	it	from	http://commons.apache.org/proper/commons-csv.		The
JAR	file	you	need	to	include	in	the	classpath	is	commons-csv-1.2.jar.

http://commons.apache.org/proper/commons-csv

CSVParser

To	parse	a	file	in	CSV	format,	you	can	use	CSVParser:

CSVParser(Reader	reader,	CSVFormat	format)

CSVFormat	specifies	the	format	of	a	CSV	file	to	be	parsed.	There	are	several	pre-defined
formats,	such	as	CSVFormat	.DEFAULT,	CSVFormat.RFC4180.	There	is	no	standard	for
CSV	format.	But,	a	popular	standard	(MIME	type,	text/csv)	is	defined	in	RFC4180,
https://tools.ietf.org/html/rfc4180.	CSVFormat	.DEFAULT	is	based	on
CSVFormat.RFC4180,	but	it	allows	empty	lines.	This	format	uses	the	following	settings
in	parsing:

Adjacent	fields	are	separated	by	a	comma

Fields	are	quoted	by	double-quote	characters

Empty	lines	are	skipped

You	can	extend	a	format	by	using	withXXX	methods.

For	a	file	that	has	a	header	row	(the	first	record),	you	can	use:

CSVFormat	csvFormat	=	CSVFormat.DEFAULT.withHeader();

Values	at	the	first	record	are	used	to	get	column	names	automatically.	Or,	you	can
manually	define	column	names	to	use	to	access	records,	such	as:

CSVFormat	csvFormat	=	CSVFormat.DEFAULT.withHeader(new	String[]{“id”,	“name”,
“comment});

And,	the	first	record	should	be	skipped	by	calling

withSkipHeaderRecord(true)

The	following	example	parses	a	file	using	CSVFormat	.DEFAULT:

import	java.io.File;

import	java.io.FileReader;

import	java.util.List;

	

import	org.apache.commons.csv.CSVFormat;

import	org.apache.commons.csv.CSVParser;

import	org.apache.commons.csv.CSVRecord;

import	org.apache.commons.io.IOUtils;		

	

public	class	CSVParserExample1	{

	

https://tools.ietf.org/html/rfc4180%20.%20CSVFormat%20.DEFAULT

private	static	final	String	COL1	=	“id”;

private	static	final	String	COL2	=	“name”;

private	static	final	String	COL3	=	“comment”;

	

public	static	void	main(String[]	args)	{

FileReader	reader	=	null;

CSVParser	parser	=	null;

try	{

File	csvFile	=	new	File(“example1.csv”);

reader	=	new	FileReader(csvFile);

int	startRow	=	0;

CSVFormat	csvFormat	=	CSVFormat.DEFAULT.withHeader();																											
													

parser	=	new	CSVParser(reader,	csvFormat);

List<CSVRecord>	csvRecords	=	parser.getRecords();

for(int	i	=	startRow;	i	<	csvRecords.size();	i++)	{

CSVRecord	record	=	csvRecords.get(i);

System.out.println(record.get(COL1)	+	“:	”	+	record.get(COL3));

}											

}	catch(Exception	ex)	{

System.out.println(ex);

}	finally	{

IOUtils.closeQuietly(reader);

IOUtils.closeQuietly(parser);													

}							

}

}

The	fowling	is	a	sample	CSV	file:

“id”,“name”,“comment”

“1”,“John”,“This	is	a	simple	one.”

	

“2”,“Joel”,“This	is	a	comment	with	,”

“3”,“Joel”,“This	is	a	comment	with	““quotes”””

“4”,“Eric”,“This	is	a	comment	with

multiple	lines.”

The	following	is	the	output:

1:	This	is	a	simple	one.

2:	This	is	a	comment	with	,

3:	This	is	a	comment	with	“quotes”

4:	This	is	a	comment	with

multiple	lines.

As	you	can	see	from	this	example,	fields	containing	commas,	double	quotes,	or	line	breaks
need	to	be	quoted.

To	parse	a	string,	you	can	use	the	following	factory	method:

CSVParser.parse(String	string,	CSVFormat	format)

COMMONS	CODEC

The	Apache	Commons	Codec	provides	common	encoders	and	decoders	such	as	Base64,
message	digest,	and	GNU	C	library	crypt()	compatible	hash	function.	The	current	stable
version	of	Commons	Codec	is	1.10	at	the	time	of	writing.	You	can	download	it	from
http://commons.apache.org/proper/commons-codec.		The	JAR	file	you	need	to	include	in
the	classpath	is	commons-codec-1.10.jar.

http://commons.apache.org/proper/commons-codec

DigestUtils

Messages	digests	are	created	from	one-way	cryptographic	hash	functions	that	take
arbitrary	length	of	input	(called	message)	and	produce	a	fixed	length	hash	value	(called
digest).	Because	hash	values	are	hard	to	invert	to	the	original	input	data	and	collision
resistance,	they	can	be	used	in	verifying	integrity	of	files	or	password	verification.	MD5
(128-bit	hash	value)	and	SHA-1	(160	bits)	are	considered	less	secure.	It’s	recommended	to
use	SHA-2.	SHA-256	(256	bits),	SHA-384	(384	bits),	and	SHA-512	(512	bits)	are	part	of
SHA-2	family.

In	the	following	example,	a	secure	key	that	contains	user	name,	password,	and	date
information	is	generated	using	SHA-256	algorithm:

import	java.util.Calendar;

import	org.apache.commons.codec.binary.Base64;

import	org.apache.commons.codec.digest.DigestUtils;

	

public	class	DigestUtilsExample	{

public	static	void	main(String[]	args)	{

Calendar	cal	=	Calendar.getInstance();

String	user	=	“john111”;

String	pwd	=	“secret”;

String	key	=	user	+	pwd	+	cal.get(Calendar.DAY_OF_MONTH)	+

(cal.get(Calendar.MONTH)	+	1)	+	cal.get(Calendar.YEAR);

byte[]	sha256	=	DigestUtils.sha256(key);

System.out.println(sha256.length);																											

String	sha256hex	=	DigestUtils.sha256Hex(key);

System.out.println(sha256hex);

String	base64	=	Base64.encodeBase64URLSafeString(sha256);

System.out.println(base64);

}

}

The	following	is	the	output:

32

be9c5a9ffa3c65b22b0b6d6064f2aaf71973e2a62e3d687f15f3eda37126f326

vpxan_o8ZbIrC21gZPKq9xlz4qYuPWh_FfPto3Em8yY

Because	SHA-256	produces	32-byte	hash	value,	the	array	size	is	32.	The	second	line	is
SHA-256	digest	in	hexadecimal	value.	Also,	you	can	use	Base64	class	to	encode	hash
values	using	URL-safe	Base64	algorithm,	as	shown	at	the	last	line.

To	store	sensitive	information	such	as	password,	hash	values	are	not	completely	safe.	The
same	type	of	hash	function	produces	the	same	hash	values	for	the	same	input	data.	They
can	be	cracked	by	using	pre-computed	hash	values	(lookup	tables)	of	possible	passwords.
To	further	protect	hash	values,	a	string,	called	a	salt,	is	added	to	the	data	to	be	hashed.	So,
even	the	same	password	using	the	same	hash	function,	a	different	hash	value	is	created	if
using	different	salt.	This	will	make	it	impossible	to	create	hash	values	for	every	possible
salt	with	a	long	salt.	Certainly,	using	the	same	salt	on	every	hash	is	not	a	good	idea.
Ideally,	a	random	salt	is	generated	every	time.	At	least,	a	salt	should	come	from	certain
unique	information	from	each	account.

COMMONS	NET

The	Apache	Commons	Net	provides	implementations	for	client	side	access	on	many
internet	protocols	such	as	FTP(S),	Telnet	and	SMTP(S)/POP3(S)/IMAP(S).	HTTPclient	is
not	included	here.	It	was	in	the	Commons	HttpClient	and	has	been	replaced	by	Apache
HttpComponents.	The	current	stable	version	of	Commons	Net	is	3.2	(Java	5	and	above	is
required)	at	the	time	of	writing.	You	can	download	it	from
http://commons.apache.org/proper/commons-net.	The	JAR	file	you	need	to	include	in	the
classpath	is	commons-net-3.2.jar.

http://commons.apache.org/proper/commons-net

FTPClient

FTPClient	extends	the	FTP	class.	The	FTP	class	provides	basic	functionality	for	an	FTP
client.	To	use	it,	you	need	to	have	better	understanding	of	the	FTP	protocol.	The
FTPClient	class	provides	higher	level	of	functionality.	It	is	easier	to	use.	To	use	the
FTPClient	class	to	create	an	FTP	client,	the	following	are	some	basic	steps:

Step	1

First,	you	need	to	create	an	instance	of	FTPClient	by	using	the	default	constructor.	Then,
you	can	use	the	connect(String	hostname)	or	connect(String	hostname,	int	port)	method	to
connect	to	the	FTP	server.	Immediately	after	connecting,	you	can	check	the	reply	code	by
using	the	getReplyCode()	method	and	use	the	FTPReply.isPositiveCompletion(int	reply)
method	to	verify	if	the	reply	code	is	a	positive	completion	response	or	not.	Similarly,	you
can	always	check	reply	code	right	after	the	command	you	have	sent	to	the	server.

Step	2

Use	the	login(String	username,	String	password)	method	to	login	the	FTP	server.	The
return	value	is	a	boolean,	false	is	returned	if	failed.

Step	3

Use	the	enterLocalPassiveMode()	method	to	set	the	current	data	connection	mode	to	local
passive	mode	if	necessary.	The	local	passive	mode	is	used	in	a	situation	where	the	client	is
behind	a	firewall	and	unable	to	accept	incoming	TCP	connections.	By	default,	it	is	local
active	mode.

Also,	you	can	use	the	setFileType(int	fileType)	method	to	set	the	file	type
(FTP.ASCII_FILE_TYPE	or	FTP.BINARY_FILE_TYPE)	for	the	file	to	be	transferred.	By
default,	the	file	type	is	ASCII.

Step	4

Now,	you	can	start	sending	commands	to	the	server.

Step	5

Once	you	are	done,	use	the	logout()	method	to	log	out	and	use	the	disconnect()	method	to
disconnect	from	the	server.

The	following	example	demonstrates	how	to	use	the	FTPclient	class	to	upload	a	file,	list
files	and	download	the	same	file	with	a	new	filename:

import	java.io.File;

import	java.io.FileInputStream;

import	java.io.FileOutputStream;

import	java.io.InputStream;

	

import	org.apache.commons.net.ftp.FTPClient;

import	org.apache.commons.net.ftp.FTPFile;

import	org.apache.commons.net.ftp.FTPReply;

	

public	class	FTPClientExample	{

	

public	static	void	main(String[]	args)	{

if(args.length	!=	3)	{

System.out.println(“usage:	FTPClientExample	host	username	password”);

System.exit(1);

}			

String	host	=	args[0];

String	username	=	args[1];

String	password	=	args[2];

FTPClientExample	example	=	new	FTPClientExample();

FTPClient	ftp	=	new	FTPClient();

try	{

ftp.connect(host);

if(!example.isOk(ftp))	{

System.exit(1);

}

ftp.login(username,	password);

if(example.isOk(ftp))	{

ftp.enterLocalPassiveMode();

//	upload	a	file

String	filename	=	“FTPClientExample.java”;

InputStream	input	=	new	FileInputStream(new	File(filename));

ftp.storeFile(filename,	input);

example.isOk(ftp);

//	list	files

FTPFile[]	files	=	ftp.listFiles();

if(example.isOk(ftp))	{

for(FTPFile	file	:	files)	{

System.out.println(file.getRawListing());

}

}

//	download	a	file

ftp.retrieveFile(filename,	new	FileOutputStream(new	File(filename	+	“.new”)));

example.isOk(ftp);																	

ftp.logout();

example.isOk(ftp);

}																		

}	catch(Exception	ex)	{

System.out.println(ex);

}	finally	{

if(ftp.isConnected())	{

try	{

ftp.disconnect();

}	catch(Exception	ex)	{}

}

}

}

	

public	boolean	isOk(FTPClient	ftp)	{

boolean	ok	=	true;

	

int	replyCode	=	ftp.getReplyCode();

if(!FTPReply.isPositiveCompletion(replyCode))

ok	=	false;

System.out.println(“ftp	reply=”	+	ftp.getReplyString());

	

return	ok;

}			

}

The	following	are	responses	from	the	FTP	server:

ftp	reply=220	ProFTPD	1.3.3c	Server	(ProFTPD)

	

ftp	reply=230	User	joelchou	logged	in

	

ftp	reply=226	Transfer	complete

	

ftp	reply=226	Transfer	complete

	

-rw-r—r—			1	joelchou	joelchou					2322	Apr	29	23:34	FTPClientExample.java

ftp	reply=226	Transfer	complete

	

ftp	reply=221	Goodbye.

COMMONS	COMPRESS

The	Apache	Commons	Compress	provides	API	for	many	archive	file	formats.	There	are
three	types	of	archive	file	formats:	archiving	only,	compression	only,	archiving	and
compression.	In	the	Commons	Compress,	archiving	is	through	archivers.	Archivers	deal
with	archives	containing	structured	contents.	The	base	classes	for	archivers	are
ArchiveInputStream	and	ArchiveOutputStream.	An	archive	contains	entries	which	are
represented	by	the	ArchiveEntry	interface.	The	file	formats	ar,	cpio,	dump,	tar	and	zip	are
supported	as	archivers.	Even	though	zip	is	treated	as	an	archiver	in	the	Commons
Compress,	it	can	be	compressed	too.	Compression	is	through	compressors.	Compressors
compress	a	single	entry.	The	base	classes	for	compressors	are	CompressInputStream	and
CompressOutputStream.	The	file	formats	bzip2,	Pack200,	XZ	and	gzip	are	supported	as
compressors.

The	current	stable	version	of	Commons	Compress	is	1.5	(Java	5	and	above	is	required)	at
the	time	of	writing.	You	can	download	it	from
http://commons.apache.org/proper/commons-compress.	The	JAR	file	you	need	to	include
in	the	classpath	is	commons-compress-1.5.jar.

http://commons.apache.org/proper/commons-compress

Zip

The	ZipArchiveOutputStream	class	is	to	fix	an	issue	that	has	been	around	for	a	while	on
java.util.zip.ZipOutputStream.	When	a	file	with	some	non-ASCII	characters	(e.g.,
Chinese)	in	the	filename	is	archived	as	zip	format,	the	unzipped	filename	is	not	the	same
as	the	original	one.	It	contains	some	weird	characters.	This	problem	is	not	fixed	until	Java
7.

The	following	example	demonstrates	how	to	use	ZipArchiveOutputStream	to	archive	files
in	zip	format:

import	java.io.File;

import	java.io.FileInputStream;

import	java.io.InputStream;

import	java.util.Collection;

	

import	org.apache.commons.compress.archivers.zip.ZipArchiveEntry;

import	org.apache.commons.compress.archivers.zip.ZipArchiveOutputStream;

import	org.apache.commons.io.FileUtils;

import	org.apache.commons.io.IOUtils;		

	

public	class	ZipExample	{

public	static	void	main(String[]	args)	{

ZipArchiveOutputStream	zipOut	=	null;

try	{

zipOut	=

new	ZipArchiveOutputStream(new	File(“zipExample.zip”));

Collection<File>	files	=	FileUtils.listFiles(new	File(“.”),

new	String[]{“java”,	“class”,	“txt”},	false);

for(File	file	:	files)	{

ZipArchiveEntry	entry	=	new	ZipArchiveEntry(file,	file.getName());

zipOut.putArchiveEntry(entry);

InputStream	entryIn	=	null;

try	{					

entryIn	=	new	FileInputStream(file);		

IOUtils.copy(entryIn,	zipOut);

zipOut.closeArchiveEntry();

System.out.println(“file:	”	+	entry.getName()	+	”	size:	”	+

entry.getSize()	+	”	compressed	size:	”	+	entry.getCompressedSize());																							

}	finally	{		

IOUtils.closeQuietly(entryIn);		

}													

}

zipOut.finish();

zipOut.close();

}	catch(Exception	ex)	{

System.out.println(ex);

}

}

}

The	following	example	demonstrates	how	to	use	the	ZipFile	class	to	unzip	the	zip	file
created	in	the	previous	example:

import	java.io.File;

import	java.io.FileOutputStream;

import	java.io.InputStream;

import	java.io.OutputStream;

import	java.util.Enumeration;

	

import	org.apache.commons.compress.archivers.zip.ZipArchiveEntry;

import	org.apache.commons.compress.archivers.zip.ZipFile;

import	org.apache.commons.io.IOUtils;		

	

public	class	ZipFileExample	{

public	static	void	main(String[]	args)	{

ZipFile	zipFile	=	null;

try	{

File	baseDir	=	new	File(“unzipped”);

if(!baseDir.exists())

if(!baseDir.mkdir())

System.exit(1);

zipFile	=

new	ZipFile(new	File(“zipExample.zip”));

Enumeration<ZipArchiveEntry>	entries	=	zipFile.getEntries();

while(entries.hasMoreElements())	{

ZipArchiveEntry	entry	=	entries.nextElement();

System.out.println(“filename:	”	+	entry.getName());

InputStream	entryIn	=	null;

OutputStream	output	=	null;

try	{		

entryIn	=	zipFile.getInputStream(entry);

output	=	new	FileOutputStream(new	File(baseDir,	entry.getName()));

IOUtils.copy(entryIn,	output);			

}	finally	{		

IOUtils.closeQuietly(entryIn);	

IOUtils.closeQuietly(output);

}													

}

}	catch(Exception	ex)	{

System.out.println(ex);

}	finally	{

try	{

zipFile.close();

}	catch(Exception	ex)	{}

}

}

}

COMMONS	CLI

The	Apache	Commons	CLI	provides	API	for	creating	command	line	options	and	parsing
command	line	options	passed	to	command	line	applications.	It	also	provides	means	to
generate	help	and	usage	information.

The	current	stable	version	of	Commons	CLI	is	1.2	at	the	time	of	writing.	You	can
download	it	from	http://commons.apache.org/proper/commons-cli.	The	JAR	file	you	need
to	include	in	the	classpath	is	commons-cli-1.2.jar.

To	use	the	Apache	Commons	CLI	to	add	command	line	options	to	an	application,
basically	it	involves	two	steps:

Step	1

The	first	step	is	to	create	command	line	options.	It	starts	with	an	Options	object	which
represents	a	collection	of	options	in	an	application.	An	option	is	represented	by	the	Option
class.	An	Option	is	created	by	the	following	constructor:

Option(String	opt,	String	description)

Option(String	opt,	boolean	hasArg,	String	description)

Option(String	opt,	String	longOpt,	boolean	hasArg,	String	description)

For	example,	to	create	a	Boolean	option,	which	is	an	option	without	any	argument
representing	either	true	or	false,	with	a	short	option	and	a	long	option	such	as	-h,	—help,
you	can	use:

Option	helpOption	=	new	Option(“h”,	“help”,	false,	“print	this	help”);

To	add	an	Option	to	the	Options,	you	can	use	the	addOption(Option	option)	method.

Other	than	using	the	Option	class,	you	can	use	the	OptionBuilder	class	to	create	options.
Since	the	OptionBuilder	class	allows	method	chaining,	you	can	use	it	to	create	more
complicated	options	in	descriptive	way.	For	example,	to	create	a	required	argument	option
such	as	-H,—host	<host>,	you	can	use:

Option	hostOption	=
OptionBuilder.hasArgs().withArgName(“host”).withLongOpt(“host”).withDescription(“hostname”).isRequired().create(“H”);

If	you	need	to	create	a	Java	property	option	such	as	-D<property>=<value>,	you	can	use:

Option	propertyOption	=
OptionBuilder.hasArgs(2).withValueSeparator().withArgName(“property=value”).withDescription(“a
property”).isRequired().create(“D”);

hasArgs(2)	means	there	are	two	arguments.	withValueSeparator()	means	there	are
separators	between	arguments	and	the	default	separator	is	=.

If	you	need	to	create	a	group	of	mutually	exclusive	options,	you	can	create	an
OptionGroup	and	use	the	addOption(Option	option)	method	to	add	options	into	an	option

http://commons.apache.org/proper/commons-cli

group.	To	add	an	OptionGroup	to	an	Options,	you	can	use	the
addOptionGroup(OptionGroup	group)	method.

Step	2

Once	options	are	created,	you	can	use	a	command	line	parser	to	parse	command	line
arguments.	For	example,	to	use	a	BasicParse	to	parse	command	line	arguments:

CommandLineParser	parser	=	new	BasicParser();

CommandLine	cmd	=	parser.parse(options,	args);

Once	the	command	line	arguments	are	parsed,	a	CommandLine	object	representing	a	list
of	arguments	parsed	against	options	is	returned.	For	a	Boolean	option,	you	can	use	the
hasOption(String	opt)	method	to	see	if	an	option	is	found	or	not.	For	an	argument	option,
you	can	use:

String	getOptionValue(String	opt)

String	getOptionValue(String	opt,	String	defaultValue)

For	a	Java	property	option,	you	can	use:

Properties	getOptionProperties(String	opt)

A	Properties,	which	is	a	map	of	name-value	pairs,	is	returned.

The	following	example	demonstrates	how	to	use	the	Commons	CLI	to	create	command
line	options	as	shown	below:

usage:	FTPClient	<options>

Possible	options:

-H,—host	<host>											hostname

-h,—help																		print	this	help

-P,—password	<password>			password

-U,—username	<username>			username

-v,—verbose															enable	verbose	output

	

In	this	example,	there	are	two	sets	of	options	and	one	parser	for	each	set	of	options.	That
is	because	one	set	of	options	precedes	the	other	set	of	options.	Here,	-h	option	precedes
the	other	options.	There	is	no	reason	to	parse	other	arguments	once	the	help	option	appears
in	the	arguments.	That	is	why	the	last	argument	is	set	as	true:

CommandLine	cmd	=	parser.parse(options,	args,	true);

It	means	it	will	stop	parsing	once	a	non-option	argument	is	encountered.	If	you	need	to	get
a	list	of	non-option	arguments,	you	can	use	getArgList()	or	getArgs()	with	a	List	or	a
String[]	returned	respectively.

import	org.apache.commons.cli.BasicParser;

import	org.apache.commons.cli.CommandLine;

import	org.apache.commons.cli.CommandLineParser;

import	org.apache.commons.cli.HelpFormatter;

import	org.apache.commons.cli.Option;

import	org.apache.commons.cli.OptionBuilder;

import	org.apache.commons.cli.Options;

import	org.apache.commons.cli.ParseException;

	

public	class	CLIExample	{

private	static	String	OPT_HELP	=	“h”;

private	static	String	OPT_VERBOSE	=	“v”;

private	static	String	OPT_HOST	=	“H”;

private	static	String	OPT_USERNAME	=	“U”;

private	static	String	OPT_PASSWORD	=	“P”;

	

private	boolean	verbose	=	false;

private	String	host;

private	String	username;

private	String	password;

	

public	static	void	main(String[]	args)	{

CLIExample	example	=	new	CLIExample();

//	create	command	line	options

Options	helpOptions	=	new	Options();

Options	options1	=	example.createOptions1(helpOptions);		

Options	options2	=	example.createOptions2(helpOptions);		

//	parse	command	line	arguments

if(args	==	null	||	args.length	==	0)	{

example.printHelp(helpOptions);

System.exit(0);

}	else	{

try	{					

if(!example.parseArguments1(options1,	helpOptions,	args))	{

example.parseArguments2(options2,	args);

System.out.println(“host:	”	+	example.host);

System.out.println(“username:	”	+	example.username);

System.out.println(“password:	”	+	example.password);

System.out.println(“verbose:	”	+	example.verbose);

}

}	catch(ParseException	parseEx)	{

System.out.println(parseEx);

System.exit(1);

}

}																																							

}

	

//	options	precede	others

public	Options	createOptions1(Options	helpOptions)	{

Options	options	=	new	Options();

Option	helpOption	=	new	Option(OPT_HELP,	“help”,	false,	“print	this	help”);

	

options.addOption(helpOption);

helpOptions.addOption(helpOption);												

	

return	options;															

}

	

public	Options	createOptions2(Options	helpOptions)	{

Options	options	=	new	Options();

Option	verboseOption	=	new	Option(OPT_VERBOSE,	“verbose”,	false,

“enable	verbose	output”);							

Option	hostOption	=	OptionBuilder.hasArgs().withArgName(“host”)

.withLongOpt(“host”).withDescription(“hostname”).isRequired().create(OPT_HOST);

Option	usernameOption	=	OptionBuilder.hasArgs().withArgName(“username”)

.withLongOpt(“username”).withDescription(“username”).isRequired().create(OPT_USERNAME);

Option	passwordOption	=	OptionBuilder.hasArgs().withArgName(“password”)

.withLongOpt(“password”).withDescription(“password”).isRequired().create(OPT_PASSWORD);													

options.addOption(verboseOption);		

options.addOption(hostOption);

options.addOption(usernameOption);

options.addOption(passwordOption);

helpOptions.addOption(verboseOption);		

helpOptions.addOption(hostOption);

helpOptions.addOption(usernameOption);

helpOptions.addOption(passwordOption);																										

	

return	options;															

}			

	

public	void	printHelp(Options	options)	{

HelpFormatter	formatter	=	new	HelpFormatter();

formatter.printHelp(“FTPClient	<options>”,	“Possible	options:”,

options,	null,	false);				

}

	

public	boolean	parseArguments1(Options	options,	Options	helpOptions,	String[]	args)

throws	ParseException	{

CommandLineParser	parser	=	new	BasicParser();

CommandLine	cmd	=	parser.parse(options,	args,	true);

boolean	hasOption	=	false;

if(cmd.getOptions().length	>	0)	{

//	if	there	is	any	option	here,	don’t	need	to	parse	the	2nd	set

hasOption	=	true;

if(cmd.hasOption(OPT_HELP))

printHelp(helpOptions);

}		

	

return	hasOption;												

}

	

public	void	parseArguments2(Options	options,	String[]	args)

throws	ParseException	{

CommandLineParser	parser	=	new	BasicParser();

CommandLine	cmd	=	parser.parse(options,	args);

verbose	=	cmd.hasOption(OPT_VERBOSE);

if(cmd.hasOption(OPT_HOST))

host	=	cmd.getOptionValue(OPT_HOST);

if(cmd.hasOption(OPT_USERNAME))																		

username	=	cmd.getOptionValue(OPT_USERNAME);

if(cmd.hasOption(OPT_PASSWORD))		

password	=	cmd.getOptionValue(OPT_PASSWORD);																

}			

}

COMMONS	FILEUPLOAD

The	Apache	Commons	FileUpload	provides	file	upload	capability	to	web	applications
using	servlets.	The	Commons	FileUpload	handles	HTTP	requests	from	the	form-based	file
upload	HTML	pages	(with	enctype=”multipart/form-data”	in	the	form).

The	current	stable	version	of	Commons	FileUpload	is	1.3	at	the	time	of	writing.	You	can
download	it	from	http://commons.apache.org/proper/commons-fileuploadi.	The	JAR	files
you	need	to	include	in	the	classpath	are	commons-fileupload-1.3.jar	and	commons-io-
2.4.jar.

To	use	the	Apache	Commons	FileUpload	in	a	servlet	of	your	web	application,	it	involves
the	following	steps:

Step	1

First,	you	can	verify	if	this	request	contains	multipart	content	by	using:

boolean	ServletFileUpload.isMultipartContent(HttpServletRequest	request):	true	if	this
contains	multipart	content.

Step	2

Next,	you	create	a	DiskFileItemFactory.	This	is	a	factory	that	maintains	FileItem	objects.
The	FileItem	class	represents	a	file	or	form	field	received	from	a	request	with	multipart
content.	The	DiskFileItemFactory	keeps	FileItem	objects	either	in	the	memory	or	in	a
temporary	file	on	disk.	You	can	use	the	setSizeThreshold(int	threshold)	method	to	define	a
size	threshold	at	which	a	file	should	be	stored	on	disk.	The	default	value	is	10KB.

Also,	you	can	use	the	setRepository(File	repository)	method	to	define	the	location	where
temporary	files	should	be	stored.	For	example,	you	can	use	the	ServletContext	attribute
javax.servlet.context.tempdir	to	get	the	temporary	directory	of	the	web	application.	In
Apache	Tomcat	server,	the	temporary	directory	for	web	application	upload-example	is
something	like	\work\Catalina\localhost\upload-example	under	a	Tomcat	instance.

Step	3

To	handle	file	upload	requests,	you	need	to	create	a	file	upload	handler	by	using
ServletFileUpload(FileItemFactory	factory)	to	construct	an	instance	of	ServletFileUpload
with	the	DiskFileItemFactory	created	at	previous	step.	To	define	the	maximum	allowed
file	size,	you	can	use	the	setSizeMax(long	sizeMax)	method.

To	parse	a	request	with	multipart	content,	you	can	use:

List<FileItem>	parseRequest(HttpServletRequest	request):	a	list	of	FileItem	objects	are
returned	in	the	order	they	were	transmitted.

In	the	case	of	uploading	large	files,	you	can	use	setProgressListener(ProgressListener
listener)	to	have	a	progress	listener	registered	to	the	ServletFileUpload.	You	create	a
progress	listener	by	implementing	the	ProgressListener	interface.	It	has	only	one	method:

http://commons.apache.org/proper/commons-fileuploadi

public	void	update(long	pBytesRead,	long	pContentLength,	int	pItems):	pBytesRead
indicates	the	total	number	of	bytes	been	read	so	far.	pContentLength	is	the	total	number	of
bytes	to	be	uploaded.	pItems	indicates	the	current	item	being	read	(starting	from	1).	0
indicates	no	item	so	far.

Step	4

Now,	you	can	write	uploaded	files	to	a	destination	by	using	the	write(Filef	ile)	method
provided	by	the	FileItem	class.	It	simply	writes	a	FileItem	to	a	file	and	does	not	care	if	it	is
in	the	memory	or	a	temporary	location.	If	you	want	to	write	the	content	to	a	stream,	you
can	use	getInputStream()	to	get	an	InputStream.

Once	a	FileItem	is	written	to	a	destination,	you	can	choose	to	use	the	delete()	method	to
delete	it	earlier	to	save	resources.

In	the	following	example,	there	are	two	servlets:		FileUploadServlet	and
UploadProgressServlet.	The	FileUploadServlet	handle	requests	for	uploading	files.	A
progress	handler,	the	UploadProgressListener,	is	registered	and	set	as	an	attribute	of	the
user	session.	After	all	file	items	are	uploaded	and	transmitted	to	the	destination,	an	HTML
response	is	generated.	The	following	is	the	FileUploadServlet.java:

package	servlet;

	

import	java.io.File;

import	java.io.IOException;

import	java.io.PrintWriter;

import	java.util.Iterator;

import	java.util.List;

import	javax.servlet.ServletException;

import	javax.servlet.http.HttpServlet;

import	javax.servlet.http.HttpServletRequest;

import	javax.servlet.http.HttpServletResponse;

import	javax.servlet.http.HttpSession;

	

import	org.apache.commons.fileupload.FileItem;

import	org.apache.commons.fileupload.disk.DiskFileItemFactory;

import	org.apache.commons.fileupload.servlet.ServletFileUpload;

	

public	class	FileUploadServlet	extends	HttpServlet	{

//	size	threshold	to	be	written	directly	to	disk

private	static	final	int	SIZE_THRESHOLD	=	10*1024;	//	1024K

//	max	file	size

private	static	final	long	MAX_FILE_SIZE	=	50*1024*1024;	//	50M		

//	uploaded	directory

private	static	final	String	UPLOADED_DIR	=	“files”;

	

public	void	doGet(HttpServletRequest	request,	HttpServletResponse	response)

throws	IOException,	ServletException	{

	

response.setContentType(“text/html”);

PrintWriter	out	=	response.getWriter();

out.println(“<html>”);

out.println(“<head>”);

out.println(“<title>An	example	for	Apache	Commons	FileUpload</title>”);

out.println(“</head>”);

out.println(“<body>”);

	

if(ServletFileUpload.isMultipartContent(request))	{

try	{

//	create	a	factory	for	disk-based	file	items

DiskFileItemFactory	factory	=	new	DiskFileItemFactory();

File	repository	=
(File)getServletContext().getAttribute(“javax.servlet.context.tempdir”);

factory.setSizeThreshold(SIZE_THRESHOLD);

factory.setRepository(repository);	//	location	to	store	temporary	files

//	create	a	new	file	upload	handler

ServletFileUpload	upload	=	new	ServletFileUpload(factory);

//	progress	listener

HttpSession	session	=	request.getSession();

UploadProgressListener	pListener	=	new	UploadProgressListener();		

upload.setProgressListener(pListener);						

session.setAttribute(“Progress”,	pListener);

//	set	max	file	size

upload.setFileSizeMax(MAX_FILE_SIZE);

//	parse	the	request

List<FileItem>	items	=	upload.parseRequest(request);		

//	process	items

Iterator<FileItem>	it	=	items.iterator();

File	uploadedDir	=	new	File(getServletContext().getRealPath(UPLOADED_DIR));

while(it.hasNext())	{

FileItem	item	=	it.next();				

if(!item.isFormField())	{

//	process	uploaded	file

out.println(“<p>Filename:	”	+	item.getName()	+	“
”);

out.println(“File	Size:	”	+	item.getSize()	+	”	bytes</p>”);

try	{

item.write(new	File(uploadedDir,	item.getName()));

}	catch(Exception	ex)	{

out.println(ex);

}	finally	{

//	make	sure	the	temporary	file	is	deleted

item.delete();

}

}	else	{

//	process	regular	form	fields

}

}

}	catch(Exception	ex)	{

out.println(ex);

}

}	else	{

out.println(“This	request	does	not	contain	multipart	content.”);

}

	

out.println(“</body>”);

out.println(“</html>”);			

out.close();

}

	

public	void	doPost(HttpServletRequest	request,	HttpServletResponse	response)

throws	IOException,	ServletException	{

doGet(request,	response);

}

}

The	UploadProgressListener	provides	current	progress	of	uploading.	The	following	is	the
ProgressListener.java:

package	servlet;

	

import	org.apache.commons.fileupload.ProgressListener;

	

public	class	UploadProgressListener	implements	ProgressListener	{

private	long	bytesRead;

private	long	contentLength;

private	int	itemNo;		

	

public	void	update(long	pBytesRead,	long	pContentLength,	int	pItems)	{						

bytesRead	=	pBytesRead;

contentLength	=	pContentLength;

itemNo	=	pItems;

}

	

public	long	getBytesRead()	{

return	bytesRead;

}

	

public	long	getContentLength()	{

return	contentLength;

}

	

public	int	getItemNo()	{

return	itemNo;

}						

}

The	UploadProgressServlet	handles	requests	for	progress	checking	from	Ajax	by	using	the
information	provided	by	the	UploadProgressListener.	For	each	request,	an	XML	response
is	generated	and	returned.	The	following	is	a	sample	message:

<progress>

<message>Uploading	item	#1…	100	percent</message>

<completed>true</completed>

</progress>

The	following	is	the	UploadProgressServlet.java:

package	servlet;

	

import	java.io.IOException;

import	java.io.PrintWriter;

import	javax.servlet.ServletException;

import	javax.servlet.http.HttpServlet;

import	javax.servlet.http.HttpServletRequest;

import	javax.servlet.http.HttpServletResponse;

import	javax.servlet.http.HttpSession;

	

public	class	UploadProgressServlet	extends	HttpServlet	{

	

public	void	doGet(HttpServletRequest	request,	HttpServletResponse	response)

throws	IOException,	ServletException	{

	

HttpSession	session	=	request.getSession();						

UploadProgressListener	pListener	=

(UploadProgressListener)session.getAttribute(“Progress”);

if(pListener	!=	null)	{

long	bytesRead	=	pListener.getBytesRead();

long	contentLength	=	pListener.getContentLength();

int	itemNo	=	pListener.getItemNo();			

if(itemNo	>	0)	{

StringBuffer	buffer	=	new	StringBuffer();

buffer.append(“Uploading	item	#”	+	itemNo	+	“…	“);

if(contentLength	>	-1)

buffer.append(String.format(“%3d	percent”,	(bytesRead*100)/contentLength));

else

buffer.append(bytesRead	+	”	bytes”);

String	message	=	buffer.toString();

String	completed	=	“false”;

if(bytesRead	==	contentLength)	{

completed	=	“true”;

}

//	response

response.setContentType(“text/xml”);

response.setHeader(“Cache-Control”,	“no-cache”);

PrintWriter	out	=	response.getWriter();															

buffer	=	new	StringBuffer();

buffer.append(“<progress>”);

buffer.append(“<message>”).append(message).append(“</message>”);

buffer.append(“<completed>”).append(completed).append(“</completed>”);

buffer.append(“</progress>”);

out.println(buffer.toString());

out.close();

}											

}

}

	

public	void	doPost(HttpServletRequest	request,	HttpServletResponse	response)

throws	IOException,	ServletException	{

doGet(request,	response);

}

}

The	following	is	the	index.html	for	serving	the	main	page	of	this	example.	It	has	one
iframe	which	is	used	to	show	final	result	and	prevent	it	from	moving	to	a	new	page	when
the	form	is	submitted.	Once	the	form	is	submitted,	an	Ajax	request	is	sent	to	the
UploadProgressServlet	to	get	current	progress.	A	request	is	sent	to	the	server	every	one
second	until	it	is	completed:

<html>

<head>

<title>Upload	File</title>

</head>

<script	type=“text/javascript”>

function	createXmlHttpObject()	{

var	xmlHttp	=	null;

if(window.XMLHttpRequest)	{

//	non-IE

xmlHttp	=	new	XMLHttpRequest();

}	else	if(window.ActiveXObject)	{							

//	IE/Windows	ActiveX	version

xmlHttp	=	new	ActiveXObject(“Microsoft.XMLHTTP”);

}		

	

return	xmlHttp;

}

	

function	sendRequest()	{

document.resultFrame.document.body.innerHTML	=	””;

window.setTimeout(“checkProgress();”,	500);

}

	

function	checkProgress()	{

xmlHttp	=	createXmlHttpObject();

try	{

xmlHttp.onreadystatechange	=	showProgress;

xmlHttp.open(“GET”,	“UploadProgressServlet”,	true);

xmlHttp.send(null);

}	catch(ex)	{

alert(ex);

}

}

	

function	showProgress()	{

if(xmlHttp.readyState	==	4)	{					

if(xmlHttp.status	==	200)	{

var	xml	=	xmlHttp.responseXML;

if(xml	!=	null)	{

var	message	=	xml.getElementsByTagName(“message”)[0].childNodes[0].nodeValue;

var	completed	=	xml.getElementsByTagName(“completed”)
[0].childNodes[0].nodeValue;

document.getElementById(“progress”).innerHTML	=	message;

if(completed	==	“false”)

window.setTimeout(“checkProgress();”,	1000);

}																																

}

}

}

</script>

<body>

<form	method=“post”	action=“FileUploadServlet”	enctype=“multipart/form-data”

target=“resultFrame”	onsubmit=“sendRequest();”>

<input	type=“file”	name=“fileupload”>

<input	type=“submit”	value=“Upload”>

</form>

<p><div	id=“progress”></div></p>

<iframe	id=“resultFrame”	name=“resultFrame”	height=“100”	width=“600”

frameborder=“0”></iframe>

</body>

</html>

The	following	is	the	web.xml	for	deploying	this	example	to	a	servlet	container:

<?xml	version=“1.0”	encoding=“ISO-8859-1”?>

	

<!DOCTYPE	web-app

PUBLIC	“-//Sun	Microsystems,	Inc.//DTD	Web	Application	2.3//EN”

“http://java.sun.com/dtd/web-app_2_3.dtd”>

	

<web-app>

<display-name>FileUpload	Example</display-name>

<servlet>

<servlet-name>FileUploadServlet</servlet-name>

<servlet-class>servlet.FileUploadServlet</servlet-class>

<load-on-startup>1</load-on-startup>

</servlet>

<servlet>

<servlet-name>UploadProgressServlet</servlet-name>

<servlet-class>servlet.UploadProgressServlet</servlet-class>

<load-on-startup>1</load-on-startup>

</servlet>			

<servlet-mapping>

<servlet-name>FileUploadServlet</servlet-name>

<url-pattern>/FileUploadServlet</url-pattern>

</servlet-mapping>

<servlet-mapping>

<servlet-name>UploadProgressServlet</servlet-name>

<url-pattern>/UploadProgressServlet</url-pattern>

</servlet-mapping>				

</web-app>

	

iText
	

PDF	(Portable	Document	Format)	was	invented	by	Adobe	Systems.	It	is	an	open	standard
for	portable	electronic	documents.	Virtually,	you	can	open	PDF	documents	from	any
platforms	or	devices	through	a	free	Adobe	Reader.	Usually,	PDF	documents	are	created	or
updated	manually	through	some	kind	of	end-user	applications	such	as	Adobe	Acrobat.
But,	that	is	only	suitable	for	static	documents.	If	you	need	to	generate	PDF	documents
dynamically	based	on	requests	or	to	generate	personalized	contents,	you	need	to	use
different	approaches.	iText	is	an	API	that	helps	developers	to	generate	or	update	PDF
documents	on	the	fly	programmatically	without	manual	process.

You	can	download	iText	from	http://itextpdf.com.	The	latest	version	is	5.4.0	at	the	time	of
writing.

http://itextpdf.com

CREATING		A	PDF	DOCUMENT

Using	iText	to	create	a	PDF	document	involves	the	following	five	steps:

Step	1

First,	a	Document	object	needs	to	be	created.	The	default	page	size	is	A4.	Available	pre-
defined	page	sizes	are	in	the	PageSize	class.	For	example,	you	can	use	PageSize.LETTER
for	letter	size.	If	you	need	to	change	orientation	from	portrait	to	landscape,	you	can	use
PageSize.LETTER.rotate()	or	PageSize.LETTER_LANDSCAPE.	You	can	also	create	a
Rectangle	object	as	a	custom	page	size.	The	Rectangle	class	(not	the	Rectangle	class	in	the
core	Java	API)	also	supports	background	color,	border	width/color.	To	create	a	Document
with	page	size	or	margins	or	both	specified,	you	can	use	the	following	constructors:

Document(Rectangle	pageSize):	constructs	a	Document	with	specific	page	size	and
default	margins.	The	default	value	is	36	points	for	each	margin.	Since	there	are	72	points
per	inch,	that	is	equal	to	0.5	inch.

Document(Rectangle	pageSize,	float	marginLeft,	float	marginRight,	float	marginTop,	float
marginBottom)

Step	2

To	generate	the	output	of	a	document,	you	need	to	specify	a	writer	(PDFWriter)	that
listens	to	certain	document.	Every	element	added	to	the	document	will	be	written	to	an
output	stream.	Here,	the	document	will	be	written	to	a	file.	Usually,	it	is	one	PdfWriter	per
document.	But,	you	can	have	more	than	one	PdfWriter	listening	to	the	same	document	to
create	slightly	different	documents.	For	example,	a	writer	can	be	paused	for	writing	by
calling	pause()	method	and	resume	writing	by	calling	resume()	method.

Step	3

Before	any	content	can	be	added	to	the	body	of	the	document,	it	needs	to	be	opened.	Once
a	document	is	opened,	you	cannot	add	any	metadata	(document	description	and	custom
properties)	to	that	document.	You	can	add	some	metadata	for	this	document	with	the
following	methods	provided	by	the	Document	class:

boolean	addAuthor(String	author)

boolean	addKeywords(String	keywords)

boolean	addSubject(String	subject)

boolean	addTitle(String	title)

boolean	addHeader(String	name,	String	content):	adds	a	custom	property.

You	can	find	metadata	of	a	PDF	document	by	opening	it	from	the	Adobe	Reader.	Click
File	->	Properties	from	the	menu	bar	on	top.	You	can	find	metadata	under	the	Description
and	Custom	(for	custom	properties)	tabs.

Once	metadata	are	set,	you	can	call	open()	method	to	open	the	document	for	writing.

Step	4

Now,	you	can	start	adding	content	to	the	document	by	using	the	add(Element	element)
method.	You	can	add	any	text	elements	(type	of	Element)	to	the	document	by	using	this
method.	When	an	element	is	added	to	a	document,	its	content	is	written	to	the	writer
listening	to	this	document	too.	Once	it	is	added,	you	cannot	change	it.	For	example,	the
Paragraph	class	is	one	of	the	text	elements.

Step	5

The	last	step	is	to	close	the	document	for	writing	by	calling	the	close()	method	to	flush
and	close	the	output	stream.	Once	a	document	is	closed,	nothing	can	be	written	to	the
body	anymore.

To	build	and	run	programs	using	the	iText	API,	you	need	to	include	proper	iText	JAR	file
(e.g.,	itextpdf-5.4.0.jar	for	iText	5.4.0)	in	the	classpath.

The	following	example	creates	a	PDF	document,	simple.pdf,	which	only	contains	one
paragraph	in	the	document:

import	java.io.File;

import	java.io.FileOutputStream;

import	java.io.IOException;

	

import	com.itextpdf.text.Document;

import	com.itextpdf.text.DocumentException;

import	com.itextpdf.text.Paragraph;

import	com.itextpdf.text.pdf.PdfWriter;

	

public	class	SimpleExample	{

	

public	static	void	main(String	args[])	{

try	{

File	file	=	new	File(“simple.pdf”);

new	SimpleExample().generatePdf(file);

}	catch(Exception	ex)	{

System.out.println(ex);

}

}

	

public	void	generatePdf(File	file)	throws	DocumentException,	IOException	{

//	1.	Create	a	document	object	for	PDF

Document	doc	=	new	Document();

//	2.	create	a	PDF	writer	that	listens	to	this	document

PdfWriter.getInstance(doc,	new	FileOutputStream(file));

//	3.	open	this	document

doc.open();

//	4.	add	a	paragraph

Paragraph	par	=	new	Paragraph(“My	first	PDF	document.”);

doc.add(par);

//	5.	close	this	document

doc.close();

}

}

BASIC	TEXT	ELEMENTS

Previously,	we	create	a	PDF	document	that	only	contains	a	paragraph.	A	paragraph
contains	a	series	of	chunks/phrases.	A	chunk	is	the	smallest	significant	part	of	text	that	can
be	added	to	a	document.	A	chunk	contains	a	string	with	a	certain	font	or	an	image.	A
phrase	contains	a	series	of	chunks.	Chunk	is	represented	by	the	Chunk	class	and	phrase	is
represented	by	the	Phrase	class.	Both	Chunk	and	Phrase	classes	are	text	elements	too.	A
Paragraph	is	quite	similar	with	a	Phrase	except	a	Paragraph	has	additional	layout
parameters:	indentation	and	text	alignment.	Also,	every	Paragraph	starts	a	new	line	when
it	is	added	to	a	Document.	Paragraph	is	a	subclass	of	Phrase.

Paragraph

To	construct	a	Paragraph,	you	can	use	the	following	constructors:

Paragraph(float	leading)

Paragraph(Chunk	chunk)

Paragraph(Phrase	phrase)

Paragraph(String	string)

Paragraph(String	string,	Font	font)

Also,	you	can	use	the	add(Element	element)	or	add(int	index,	Element	element)	method	to
add	text	elements	(including	a	Paragraph).	Paragraph	provides	the	following	methods	to
change	layout	parameters:

void	setAlignment(int	alignment):	sets	alignments	of	this	paragraph	(e.g.,
Element.ALIGN_CENTER).

void	setFirstLineIndent(float	indentation):):	sets	indentation	on	the	first	line.

void	setIndentationLeft(float	indentation):):	sets	indentation	on	the	left	side.

void	setIndentationRight(float	indentation):	sets	indentation	on	the	right	side.

void	setLeading(float	leading):	sets	the	space	between	lines.	The	default	value	is	16
points.

void	setSpacingBefore(float	spacing):	sets	spacing	before	this	paragraph.

void	setSpacingAfter(float	spacing):	sets	spacing	after	this	paragraph.

Phrase

To	construct	a	Phrase,	you	can	use	the	following	constructors:

Phrase(Chunk	chunk)

Phrase(Phrase	phrase)

Phrase(String	string)

Phrase(String	string,	Font	font)

Similarly,	you	can	use	add	methods	to	add	a	Chunk	or	Phrase	to	this	Phrase.

Chunk

To	construct	a	Chunk,	you	can	use	the	following	constructors:

Chunk(Chunk	chunk)

Chuck(String	string)

Chuck(String	string,	Font	font)

Chunk(Image	image,	float	offsetX,	float	offsetY)

A	Chuck	can	contain	not	just	text.	It	can	contain	an	image	too.	An	Image	(not	the	Image
class	in	the	core	Java	API)	represents	a	graphic	element	(e.g.,	JPEG	or	PNG).	You	can	get
an	Image	through	Image.getInstance(URL	url)	or	Image.getInstance(String	filename).	You
can	scale	an	image	through	scalePercent(int	percent)	or	scaleToFit(int	width,	int	height).
To	rotate	an	image,	you	can	use	setRotationDegrees(float	degree).	The	following	are	some
useful	methods	provided	by	Chunk:

Chunk	setAnchor(String	url):	sets	a	link.	Once	it	is	clicked,	it	will	open	the	link	in	a
browser.

Chunk	setAnchor(URL	url)

Chunk	setBackground(BaseColor	color):	sets	background	color.

Chunk	setHorizontalScaling(float	scale):	sets	the	text	horizontal	scaling.	You	can	shrink
the	text	width	by	using	a	value	less	than	1	or	expand	it	by	using	a	value	greater	than	1.

Chunk	setTextRenderMode(int	mode,	float	strokeWidth,	BaseColor	strokeColor):	sets	the
text	rendering	mode.	Available	text	rendering	modes	are	defined	in	the	PdfContentByte
class.	For	example,	TEXT_RENDER_MODE_STROKE	is	to	outline	text.

Chunk	setTextRise(float	rise):	sets	the	text	displacement	relative	to	the	baseline.	Positive
number	has	the	effect	of	superscript	and	negative	number	has	the	effect	of	subscript.

These	methods	return	a	Chunk	object.	That	allows	method	chaining.	So,	you	can	define	a
Chunk	in	descriptive	way.	For	example,	you	can	use
chunk.setHorizontalScaling(1.5f).setBackground(BaseColor.LIGHT_GRAY).	The
following	is	a	sample	output	using	these	methods:

The	following	example	shows	how	to	create	a	PDF	document	using	the	Paragraph,	Phrase
and	Chuck	classes	and	it	also	demonstrates	how	font	styles	are	propagated	among	text
elements:

import	java.io.File;

import	java.io.FileOutputStream;

import	java.io.IOException;

	

import	com.itextpdf.text.Chunk;

import	com.itextpdf.text.Document;

import	com.itextpdf.text.DocumentException;

import	com.itextpdf.text.Font;

import	com.itextpdf.text.FontFactory;

import	com.itextpdf.text.Font.FontFamily;

import	com.itextpdf.text.Paragraph;

import	com.itextpdf.text.Phrase;

import	com.itextpdf.text.pdf.PdfWriter;

	

public	class	ParagraphExample	{

	

public	static	void	main(String	args[])	{

try	{

File	file	=	new	File(“paragraph.pdf”);

new	ParagraphExample().generatePdf(file);

}	catch(Exception	ex)	{

System.out.println(ex);

}

}

	

public	void	generatePdf(File	file)	throws	DocumentException,	IOException	{

//	1.	create	a	document	object	for	PDF

Document	doc	=	new	Document();

//	2.	create	a	PDF	writer	that	listens	to	this	document

PdfWriter.getInstance(doc,	new	FileOutputStream(file));

//	3.	open	this	document

doc.open();

//	4.	add	paragraphs

Paragraph	par1	=	new	Paragraph(“This	is	paragraph	1	with	TIMES_ROMAN
NORMAL.”,

new	Font(FontFamily.TIMES_ROMAN,	10));

par1.add(new	Chunk(“This	is	chunk	1	with	COURIER	BOLD.”,

new	Font(FontFamily.COURIER,	10,	Font.BOLD)));

par1.add(new	Chunk(“This	is	chunk	2	with	paragraph	default.”));

doc.add(par1);

//	propagation	on	font	styles

Paragraph	par2	=	new	Paragraph(“This	is	paragraph	2	with	TIMES_ROMAN
ITALIC.”,

new	Font(FontFamily.TIMES_ROMAN,	10,	Font.ITALIC));

par2.add(new	Chunk(“This	is	chunk	1	with	COURIER	BOLD.”,

new	Font(FontFamily.COURIER,	10,	Font.BOLD)));

par2.add(new	Chunk(“This	is	chunk	2	with	paragraph	default.”));																		

doc.add(par2);

//	no	propagation	on	font	styles

Paragraph	par3	=	new	Paragraph(“This	is	paragraph	3	with	TIMES_ROMAN
ITALIC.”,

FontFactory.getFont(FontFactory.TIMES_ROMAN,	10,	Font.ITALIC));

par3.add(new	Chunk(“This	is	chunk	1	with	COURIER	BOLD.”,

FontFactory.getFont(FontFactory.COURIER,	10,	Font.BOLD)));

par3.add(new	Chunk(“This	is	chunk	2	with	paragraph	default.”));

doc.add(par3);	

//	isolate	font	styles	by	using	phrases		

Paragraph	par4	=	new	Paragraph(“This	is	paragraph	4.”);

Phrase	phrase1	=	new	Phrase(“This	is	phrase	1	with	TIMES_ROMAN	ITALIC.”,

new	Font(FontFamily.TIMES_ROMAN,	10,	Font.ITALIC));

phrase1.add(new	Chunk(“This	is	chunk	1	with	COURIER	BOLD.”,

new	Font(FontFamily.COURIER,	10,	Font.BOLD)));

phrase1.add(new	Chunk(“This	is	chunk	2	with	default.”));

par4.add(phrase1);										

Phrase	phrase2	=	new	Phrase(“This	is	phrase	2	with	TIMES_ROMAN	UNDERLINE.”,

new	Font(FontFamily.TIMES_ROMAN,	10,	Font.UNDERLINE));

phrase2.add(new	Chunk(“This	is	chunk	1	with	COURIER	BOLD.”,

new	Font(FontFamily.COURIER,	10,	Font.BOLD)));

phrase2.add(new	Chunk(“This	is	chunk	2	with	default.”));

par4.add(phrase2);

par4.add(new	Chunk(“This	is	end	of	paragraph	4.”));	

doc.add(par4);																		

//	5.	close	this	document

doc.close();

}

}

The	following	is	the	output:

There	are	four	paragraphs	in	this	example.	The	font	style	is	not	specified	in	the	first
paragraph.	There	are	two	children	(two	chunks)	in	this	paragraph.	Since	the	default	font
style	for	the	parent	is	NORMAL,	nothing	is	propagated	to	child	elements.	Chunk	1	and
chunk	2	are	displayed	as	defined.

In	the	second	paragraph,	the	font	style	is	changed	to	ITALIC.	It	propagates	to	child
elements.	Since	the	font	style	of	chunk	1	is	defined	as	BOLD,	the	result	font	style	is
ITALIC	+	BOLD.

In	the	third	paragraph,	we	use	the	FontFactory	class	to	create	fonts.	FontFactory	uses
different	technique	to	construct	fonts.	Font	styles	are	not	propagated.

To	have	better	control	on	propagation	of	font	style,	you	can	use	Phrase	objects	as	the
middle	layer	between	a	Paragraph	(top	layer)	and	Chunk	objects	(bottom	layer).	You	do
not	specify	font	style	in	the	paragraph.	Font	style	is	defined	in	a	phrase	if	needed.	In	this
way,	it	only	affects	child	elements	under	it	and	will	not	affect	other	phrases	too.

FONTS

You	can	define	a	font	(including	font	family,	size,	style	and	color)	by	using	the	Font	class
(not	the	Font	class	in	the	core	Java	API).	To	construct	a	Font,	you	can	use	the	following
constructors:

Font(Font.FontFamily	family)

Font(Font.FontFamily	family,	float	size)

Font(Font.FontFamily	family,	float	size,	int	style)

Font(Font.FontFamily	family,	float	size,	int	style,	BaseColor	color)

Available	fonts	are	defined	in	the	Font.FontFamily	class:	COURIER,	HELVETICA,
SYMBOL,	TIMES_ROMAN,	ZAPFDINGBATS.	You	can	combine	multiple	styles
together	by	using	vertical	bars	|.	For	example,	to	combine	italic	and	strikethrough,	you	can
use	Font.ITALIC	|	Font.STRIKETHRU.	Those	fonts	mentioned	above	are	Type	1	fonts.	If
you	need	to	use	different	types	of	fonts,	you	can	use	the	BaseFont	class	to	create	base
fonts.	A	BaseFont	can	be	created	by	using:

BaseFont.createFont(String	name,	String	encoding,	boolean	embedded):	creates	a	new
base	font.	Name	is	the	name	of	the	font	or	the	location	of	a	font	file.	Encoding	is	the
encoding	to	be	used	in	this	font.	If	the	font	is	to	be	embedded	in	the	PDF	document,	you
can	set	embedded	as	true	(or	BaseFont.EMBEDDED).	If	fonts	are	embedded,	document
size	becomes	larger.

For	example,	to	create	a	base	font	HELVETICA	with	WINANSI	encoding,	you	can	use:
BaseFont.createFont(BaseFont.HELVETICA,	BaseFont.WINANSI,
BaseFont.NOT_EMBEDDED)

Encoding	WINANSI	is	the	same	as	CP1252	(a	character	encoding	for	Latin).	Each	font
only	supports	certain	encodings,	you	need	to	use	supported	encoding.	Or,	you	might	get
the	following	error	message	during	the	runtime:

com.itextpdf.text.DocumentException:	Font	‘c:/windows/fonts/mingliu.ttc’	with	‘Cp1252’
is	not	recognized.

	

The	following	are	constructors	that	can	be	used	to	create	a	Font	by	using	a	BaseFont:

Font(BaseFont	bf)

Font(BaseFont	bf,	float	size)

Font(BaseFont	bf,	float	size,	int	style)

Font(BaseFont	bf,	float	size,	int	style,	BaseColor	color)

If	you	need	to	use	a	True	Type	font	installed	in	your	computer,	you	can	point	to	the
location	of	a	font	file.	For	example,	to	use	Century	Gothic	font	in	MS	Windows,	you	can

use:

BaseFont.createFont(“c:/windows/fonts/gothic.ttf”,	BaseFont.WINANSI,	true)

If	you	want	to	use	CJK	(Chinese,	Japanese	and	Korean)	font	technology,	you	need	an
extra	JAR	file,	itext-asian.jar,	during	the	runtime.	You	can	download	it	from
http://sourceforge.net/projects/itext/files/extrajars.	For	example,	to	use	a	Traditional
Chinese	font,	you	can	use:

BaseFont.createFont(“MSungStd-Light”,	“UniCNS-UCS2-H”,
BaseFont.NOT_EMBEDDED)

For	Traditional	Chinese,	three	fonts	are	available:	MHei-Medium,	MSung-Light	and
MSungStd-Light	and	two	encodings	are	available:	UniCNS-UCS2-H	(horizontal	writing),
UniCNS-UCS2-V	(vertical	writing).	For	Simplified	Chinese,	STSong-Light	and
STSongStd-Light	are	available	with	encodings	UniGB-UCS2-H	and	UniGB-UCS2-V.

You	cannot	embed	those	fonts	in	the	PDF	document	using	iText	because	of	licensing
issue.	You	can	either	install	the	font	pack	on	your	own	or	install	it	on	demand	when	Adobe
Reader	realizes	it	is	missing.	An	alternative	to	using	CJK	font	technology	is	to	use	fonts	in
your	computer.	For	example,	to	use	KaiTi	font	in	MS	Windows,	you	can	use:

BaseFont.createFont(“c:/windows/fonts/simkai.ttf”,	BaseFont.IDENTITY_H,
BaseFont.EMBEDDED)

You	do	not	need	to	include	an	extra	JAR	file.	But,	you	need	to	make	sure	those	fonts	are
embedded	in	the	PDF	document.	The	following	example	shows	how	to	use	BaseFont:

import	java.io.File;

import	java.io.FileOutputStream;

import	java.io.IOException;

	

import	com.itextpdf.text.Chunk;

import	com.itextpdf.text.Document;

import	com.itextpdf.text.DocumentException;

import	com.itextpdf.text.Font;

import	com.itextpdf.text.Font.FontFamily;

import	com.itextpdf.text.PageSize;

import	com.itextpdf.text.Paragraph;

import	com.itextpdf.text.pdf.BaseFont;

import	com.itextpdf.text.pdf.PdfWriter;

	

public	class	FontsExample	{

http://sourceforge.net/projects/itext/files/extrajars

public	static	void	main(String	args[])	{

try	{

File	file	=	new	File(“fonts.pdf”);

new	FontsExample().generatePdf(file);

}	catch(Exception	ex)	{

System.out.println(ex);

}			

}

	

public	void	generatePdf(File	file)	throws	DocumentException,	IOException	{

Document	doc	=	new	Document(PageSize.LETTER);

PdfWriter.getInstance(doc,	new	FileOutputStream(file));

doc.open();

Paragraph	par	=	new	Paragraph();

BaseFont	bfGothic	=	BaseFont.createFont(“c:/windows/fonts/gothic.ttf”,

BaseFont.WINANSI,	BaseFont.EMBEDDED);

Font	font	=	new	Font(bfGothic,	12);

par.add(new	Chunk(“Century	Gothic”,	font));

BaseFont	bfKai	=	BaseFont.createFont(“c:/windows/fonts/simkai.ttf”,

BaseFont.IDENTITY_H,	BaseFont.EMBEDDED);

font	=	new	Font(bfKai,	12);

par.add(new	Chunk(“Kai	Ti 楷體 “,	font));

BaseFont	bfSung	=	BaseFont.createFont(“MSungStd-Light”,	“UniCNS-UCS2-H”,

BaseFont.NOT_EMBEDDED);	

font	=	new	Font(bfSung,	12);

par.add(new	Chunk(“Sung	Ti 宋體 “,	font));																									

doc.add(par);

doc.close();

}							

}

	

When	you	check	Document	Properties	of	this	PDF	document,	you	can	find	information	on
fonts	using	in	this	document	as	shown	below:

	

	

Note:	When	you	include	any	multi-byte	characters	in	your	Java	source,	you	need	to	save	it
using	UTF-8	encoding	and	compile	it	with	“-encoding	utf8”	option.

CREATING	A	TABLE

To	create	a	table	in	the	document,	you	can	use	the	PdfPTable	class.	A	table	is	constructed
by	cells.	Usually,	you	specify	number	of	columns	in	the	table.	Rows	are	added
automatically.	

PdfPTable

To	construct	a	PdfPTable,	you	can	use	the	following	constructors:

PdfPTable(float[]	columnWidths):	constructs	a	PdfPTable	specifying	relative	column
widths.

PdfPTable(int	numColumns):	constructs	a	PdfPTable	specifying	number	of	columns.

Table	cells	are	added	through	the	addCell	methods.	The	following	types	of	parameter	are
supported:	String,	Phrase,	Image,	PdfPCell,	PdfPTable	(a	nested	table).	The	following	are
useful	methods	that	you	can	use	in	a	table:

void	setWidthPercentage(float	width):	defines	table	width	in	percentage	that	the	table	will
occupy	in	the	page.	A	value	of	100	means	100%.

void	setHorizontalAlignment(int	alignment):	defines	horizontal	alignment	relative	to	the
page.	It	is	only	meaningful	when	the	width	percentage	is	less	than	100%.	For	example,
Element.ALIGN_CENTER.

PdfPCell

As	we	mentioned	before,	five	types	of	objects	can	be	added	as	table	cells.	It	is	not	required
to	use	a	PdfPCell.	If	you	need	to	have	custom	cell	properties,	you	can	use	a	PdfPCell.	To
construct	a	PdfPCell,	you	can	use	the	following	constructors:

PdfPCell(Image	image)

PdfPCell(Image	image,	boolean	fit)

PdfPCell(PdfPCell	cell)

PdfPCell(PdfPTable	table)

PdfPCell(Phrase	phrase)

The	following	are	useful	methods	that	you	can	use	in	a	cell:

void	setHorizontalAlignment():	sets	the	horizontal	alignment	of	the	cell.	For	example,
Element.ALIGN_CENTER.

void	setVerticalAlignment():	sets	the	vertical	alignment	of	the	cell.	For	example,
Element.ALIGN_MIDDLE.

void	setColspan(int	colspan):	sets	the	column	span	(number	of	columns	this	cell	can
occupy).

void	setRowspan(int	rowspan):	sets	the	row	span	(number	of	rows	this	cell	can	occupy).

void	setPadding(float	padding):	sets	the	space	between	content	and	cell	borders.

void	setRotation(int	rotation):	sets	the	rotation	of	the	cells	(in	counterclockwise	direction).
Rotation	must	be	a	multiple	of	90	and	can	be	negative.

Since	PdfPCell	is	a	subclass	of	the	Rectangle	class,	you	can	use	methods	supported	by
Rectangle	to	change	properties	such	as	background	color	or	borders.	Now,	we	use	the
following	example	to	demonstrate	how	to	create	a	table	in	a	document:

import	java.io.File;

import	java.io.FileOutputStream;

import	java.io.IOException;

	

import	com.itextpdf.text.Anchor;

import	com.itextpdf.text.Chunk;

import	com.itextpdf.text.Document;

import	com.itextpdf.text.DocumentException;

import	com.itextpdf.text.Element;

import	com.itextpdf.text.Font;

import	com.itextpdf.text.Font.FontFamily;

import	com.itextpdf.text.PageSize;

import	com.itextpdf.text.Paragraph;

import	com.itextpdf.text.Phrase;

import	com.itextpdf.text.pdf.PdfPCell;

import	com.itextpdf.text.pdf.PdfPTable;

import	com.itextpdf.text.pdf.PdfWriter;

	

public	class	TableExample	{

private	static	Font	boldFont	=

new	Font(FontFamily.TIMES_ROMAN,	12,	Font.BOLD);

public	static	void	main(String	args[])	{

try	{

File	file	=	new	File(“table.pdf”);

new	TableExample().generatePdf(file);

}	catch(Exception	ex)	{

System.out.println(ex);

}			

}

	

public	void	generatePdf(File	file)	throws	DocumentException,	IOException	{

//	reate	a	document	object	for	PDF

Document	doc	=	new	Document(PageSize.LETTER,	10,	10,	20,	10);

//	create	a	PDF	writer	that	listens	to	this	document

PdfWriter.getInstance(doc,	new	FileOutputStream(file));

//	set	file	properties

doc.addAuthor(“CC”);

doc.addSubject(“An	example	of	creating	a	table”);

//	open	this	document

doc.open();

//	title

Paragraph	titlePar	=	new	Paragraph();

titlePar.add(new	Chunk(“Purchase	Order\n\n”));

doc.add(titlePar);

//	table

float[]	widths	=	{0.5f,	0.2f,	0.1f,	0.1f,	0.1f};

PdfPTable	itemsTable	=	new	PdfPTable(widths);

itemsTable.setWidthPercentage(100);	//	100%	of	the	available	space

//	headers

itemsTable.addCell(new	Phrase(“Name”,	boldFont));

itemsTable.addCell(new	Phrase(“Company”,	boldFont));							

itemsTable.addCell(new	Phrase(“Price”,	boldFont));

itemsTable.addCell(new	Phrase(“Quantity”,	boldFont));

itemsTable.addCell(new	Phrase(“Subtotal”,	boldFont));			

//	items

itemsTable.addCell(“Acer	ICONIA	TAB	A700”);

Anchor	url	=	new	Anchor(“Acer”);

url.setReference(“http://www.acer.com”);

itemsTable.addCell(url);

PdfPCell	priceCell	=	new	PdfPCell(new	Phrase(String.format(“%8.2f”,	400.0)));

priceCell.setHorizontalAlignment(Element.ALIGN_RIGHT);

itemsTable.addCell(priceCell);

PdfPCell	quantityCell	=	new	PdfPCell(new	Phrase(“2”));

quantityCell.setHorizontalAlignment(Element.ALIGN_RIGHT);

itemsTable.addCell(quantityCell);

PdfPCell	subtotalCell	=	new	PdfPCell(new	Phrase(String.format(“%8.2f”,	800.0)));

subtotalCell.setHorizontalAlignment(Element.ALIGN_RIGHT);

itemsTable.addCell(subtotalCell);

itemsTable.addCell(“ASUS	TF700T”);

url	=	new	Anchor(“ASUS”);

url.setReference(“http://www.asus.com”);

itemsTable.addCell(url);							

priceCell	=	new	PdfPCell(new	Phrase(String.format(“%8.2f”,	429.0)));

priceCell.setHorizontalAlignment(Element.ALIGN_RIGHT);

itemsTable.addCell(priceCell);

quantityCell	=	new	PdfPCell(new	Phrase(“1”));

quantityCell.setHorizontalAlignment(Element.ALIGN_RIGHT);

itemsTable.addCell(quantityCell);

subtotalCell	=	new	PdfPCell(new	Phrase(String.format(“%8.2f”,	429.0)));

subtotalCell.setHorizontalAlignment(Element.ALIGN_RIGHT);

itemsTable.addCell(subtotalCell);							

	

PdfPCell	totalCell	=	new	PdfPCell(new	Phrase(String.format(“Total	%8.2f”,	1229.0)));

totalCell.setHorizontalAlignment(Element.ALIGN_RIGHT);

totalCell.setColspan(4);

itemsTable.addCell(totalCell);

doc.add(itemsTable);

//	close	this	document

doc.close();

}

}

The	following	is	the	output:

Cells	in	the	Company	column	contain	links	to	the	company	website.	Once	it	is	clicked,	it
will	open	the	link	in	a	browser.	The	Anchor	class	can	be	used	to	create	a	link.	Since
Anchor	is	a	subclass	of	Phrase,	you	can	add	it	to	a	cell	directly.

ENCRYPTION

Adobe	Acrobat	allows	users	to	add	security	permissions	to	PDF	documents	through
Advanced	->	Security.	You	can	use	either	a	password	or	a	certificate	to	restrict	users	from
accessing	certain	features.	You	can	find	security	properties	of	a	document	on	Security	tab
of	Document	Properties	(File	->	Properties).	To	encrypt	a	document	programmatically,
you	can	use	the	PdfEncryptor	class	or	use	setEncryption()	method	from	the	PdfWriter
class:

void	setEncryption(byte[]	userPassword,	byte[]	ownerPassword,	int	permissions.	int
encryptionType):	sets	the	password	encryption.	The	user	password	is	the	password	to
remove	security	if	it	is	set.	The	owner	password	is	the	password	to	open	the	document	if	it
is	set.	Both	passwords	can	be	null	or	empty.	You	can	combine	multiple	permissions
together	by	using	vertical	bars	|.

void	setEncryption(Certificate[]	certs,	int[]	permissions.	int	encryptionType):	sets	the
certificate	encryption.	An	array	of	public	certificates	is	provided	together	with	an	array	of
permissions	of	the	same	size	for	each	certificate.

To	encrypt	a	PDF	document,	you	need	to	read	it	first.	To	read	a	PDF	document,	you	can
use	a	PdfReader.	To	modify	a	PDF	document,	you	can	use	a	PdfStamper.	Next,	you	get	a
PdfWriter	from	this	PdfStamper	and	then	call	the	setEncryption()	method	to	encrypt	it.	For
an	encrypted	document,	to	remove	security,	you	need	to	do	that	through	Adobe	Acrobat
(Advanced	->	Security	->	Remove	Security).

To	run	the	following	example,	you	need	to	include	the	Bouncy	Castle	Crypto	provider
package	(http://www.bouncycastle.org/latest_releases.html)	in	the	classpath	(e.g.,	bcprov-
jdk15on-1.48.jar).	The	following	example	shows	how	to	do	password	encryption	to	an
existing	PDF	document:

import	java.io.BufferedOutputStream;

import	java.io.FileOutputStream;

	

import	com.itextpdf.text.pdf.PdfReader;

import	com.itextpdf.text.pdf.PdfStamper;

import	com.itextpdf.text.pdf.PdfWriter;

	

public	class	EncryptionExample	{

public	static	void	main(String[]	args)	{

try	{

PdfReader	reader	=	new	PdfReader(“paragraph.pdf”);

http://www.bouncycastle.org/latest_releases.html

BufferedOutputStream	outStream	=

new	BufferedOutputStream(new
FileOutputStream(“paragraph.tmp.pdf”));																							

PdfStamper	stamper	=	new	PdfStamper(reader,	outStream);

PdfWriter	writer	=	stamper.getWriter();

PdfSecurity	security	=	new	PdfSecurity();

security.encrypt(writer,	“mypassword”.getBytes());

stamper.close();

}	catch(Exception	ex)	{

System.out.println(ex);

}																		

}

}

	

import	java.io.IOException;

	

import	com.itextpdf.text.DocumentException;

import	com.itextpdf.text.pdf.PdfWriter;

/**

*	PdfSecurity	is	responsible	for	changing	the	security	settings	of	a	PDF	document.

*/

public	class	PdfSecurity	{

private	static	int	LIMITED_PERMISSIONS	=

PdfWriter.ALLOW_COPY;

private	static	int	ALL_PERMISSIONS	=

PdfWriter.ALLOW_PRINTING	|

PdfWriter.ALLOW_MODIFY_CONTENTS	|

PdfWriter.ALLOW_COPY	|

PdfWriter.ALLOW_MODIFY_ANNOTATIONS	|

PdfWriter.ALLOW_FILL_IN	|

PdfWriter.ALLOW_SCREENREADERS	|

PdfWriter.ALLOW_ASSEMBLY	|

PdfWriter.ALLOW_DEGRADED_PRINTING;

	

/**

*	Encrypts	a	PDF	document	to	disable	the	editing	capability.

*	Printing	is	still	allowed.

*/

public	void	encrypt(PdfWriter	writer,	byte[]	password)

throws	IOException,	DocumentException	{

sign(writer,	password,	null,	LIMITED_PERMISSIONS);

}					

	

/**

*	Decrypts	a	PDF	document	to	restore	the	editing	capability.

*/				

public	void	decrypt(PdfWriter	writer,	byte[]	password)

throws	IOException,	DocumentException	{				

sign(writer,	password,	null,	ALL_PERMISSIONS);

}		

	

/**

*	Signs	the	document	and	changes	security	settings.	

*

*	@param	writer	a	PDF	writer

*	@param	ownerPassword	owner	password	for	changing	security	settings

*	@param	userPassword	user	password	for	opening	the	document

*	@param	permissions	file	permissions

*	@throws	IOException

*	@throws	DocumentException

*/

private	void	sign(PdfWriter	writer,	byte[]	ownerPassword,	byte[]	userPassword,

int	permissions)	throws	IOException,	DocumentException	{

writer.setEncryption(userPassword,	ownerPassword,	permissions,
PdfWriter.STANDARD_ENCRYPTION_128);

}		

}

	

The	following	is	a	code	snippet	of	using	a	PdfEncryptor	to	encrypt	an	existing	document:

	

PdfReader	reader	=	new	PdfReader(file.toString());

BufferedOutputStream	outStream	=

new	BufferedOutputStream(new	FileOutputStream(“paragraph.tmp.pdf“));

PdfEncryptor.encrypt(reader,	outStream,

userPassword,	ownerPassword,	permissions,	true);

outStream.close();

	

You	also	can	encrypt	a	document	before	it	is	created.	It	is	a	similar	process.	But,	the
encryption	only	can	be	added	before	the	document	is	opened	as	shown	by	the	following
code	snippet:

Document	doc	=	new	Document();

File	file	=	new	File(“encrypted.pdf”);

PdfWriter	writer	=	PdfWriter.getInstance(doc,	new	FileOutputStream(file));

PdfSecurity	security	=	new	PdfSecurity();

security.encrypt(writer,	“mypassword”.getBytes());											

doc.open();

…

doc.close();

	

ADDING	WATERMARKS

A	PDF	document	has	a	layered	structure.	Text	elements	mentioned	previously	are	in	the
middle	two	layers.	One	is	for	text	and	the	other	is	for	graphics	(e.g.,	background	or
borders).	Text	layer	is	on	top	of	graphics	layer.	For	low-level	operations	such	as	absolute
positioning	of	text	and	graphics,	you	need	to	access	the	direct	content	(represented	by	the
PdfContentByte	class).	You	cannot	access	direct	contents	in	the	middle	two	layers.	Those
are	managed	by	iText	internally.	But,	you	can	access	layers	over	or	under	middle	layers.
The	PdfStamper	class	provides	methods	to	access	direct	content	at	certain	page	of	the
original	document.		The	getUnderContent()	method	is	for	the	bottom	layer	and	the
getOverContent()	method	is	for	the	top	layer.	Both	methods	return	a	PdfContentByte
object.	PdfContentByte	allows	you	to	draw	graphics,	position	text	and	image	or	change
the	way	graphical	objects	(including	text)	are	rendered.

The	following	example	uses	these	two	layers	to	demonstrate	how	to	add	watermarks	in	a
document:

import	java.io.BufferedOutputStream;

import	java.io.FileOutputStream;

	

import	com.itextpdf.text.Image;

import	com.itextpdf.text.Rectangle;

import	com.itextpdf.text.pdf.BaseFont;

import	com.itextpdf.text.pdf.PdfContentByte;

import	com.itextpdf.text.pdf.PdfReader;

import	com.itextpdf.text.pdf.PdfStamper;

	

public	class	WatermarkExample	{

public	static	void	main(String[]	args)	{

try	{

Image	logo	=	Image.getInstance(“logo.png”);

logo.scalePercent(50);	

BaseFont	bf	=	BaseFont.createFont(BaseFont.HELVETICA,

BaseFont.WINANSI,	BaseFont.EMBEDDED);								

PdfReader	reader	=	new	PdfReader(“table.pdf”);

BufferedOutputStream	outStream	=

new	BufferedOutputStream(new	FileOutputStream(“watermark.pdf”));																							

PdfStamper	stamper	=	new	PdfStamper(reader,	outStream);																				

for(int	i	=	1;	i	<=	reader.getNumberOfPages();	i++)	{

Rectangle	pageSize	=	reader.getPageSize(i);

//	add	image	at	the	bottom	layer

logo.setAbsolutePosition((pageSize.getWidth()-logo.getScaledWidth())/2,

pageSize.getHeight()-200);											

PdfContentByte	content	=	stamper.getUnderContent(i);

content.addImage(logo);

//	add	text	at	the	top	layer

content	=	stamper.getOverContent(i);

content.beginText();

content.setTextRenderingMode(PdfContentByte.TEXT_RENDER_MODE_FILL_STROKE);

content.setLineWidth(2.0f);

content.setRGBColorStroke(0xC0,	0xC0,	0xC0);

content.setRGBColorFill(0xFF,	0xFF,	0xFF);															

content.setFontAndSize(bf,	48);

content.showTextAligned(PdfContentByte.ALIGN_CENTER,“Just	a	Sample”,

pageSize.getWidth()/2,	pageSize.getHeight()-120,	0);

content.endText();																						

}																						

stamper.close();

}	catch(Exception	ex)	{

System.out.println(ex);

}												

}

}

The	following	is	the	output:

To	write	text	to	a	direct	content,	you	start	with	the	beginText()	method	and	end	with	the
endText()	method.	When	the	way	graphical	objects	rendered	are	changed,	it	means	graphic
state	in	the	content	is	changed.	If	you	do	not	maintain	graphic	state	carefully,	it	might
affect	following	graphical	objects	unexpectedly.	To	prevent	this	from	happening,	you	can
use	the	saveState()	method	to	save	the	graphic	state	before	making	any	changes	and	use
the	restoreState()	method	to	restore	it	after	changes.

Other	than	getting	a	PdfContentByte	through	a	PdfStamper,	you	also	can	get	a
PdfContentByte	from	the	getDirectContent()	method	for	top	layer	or	from	the
getDirectContentUnder()	method	for	bottom	layer	in	a	PdfWriter.

CREATING	MULTIPLE	COLUMNS

If	you	need	to	create	a	document	with	multiple	columns,	you	can	use	the	ColumnText
class.	It	involves	the	following	steps:

Step	1

First,	you	need	to	create	a	ColumnText	object	using	the	following	constructor:

ColumnText(PdfContentByte	content)

You	can	get	a	PdfContentByte	by	calling	the	getDirectContent()	method	from	a	PdfWriter.

Step	2

Now,	you	can	start	loading	text	to	a	ColumnText	by	using	the	addText(Phrase	phrase)	or
addText(Chunk	chunk)	method.

Step	3

Before	a	ColumnText	can	start	writing	text	to	the	document,	you	need	to	define	the
column	first.	The	easier	way	is	to	define	a	rectangular	column	by	using:

void	setSimpleColumn(float	llx,	float	lly,	float	urx,	float	ury,	float	leading,	int	alignment):
llx	and	lly	define	the	lower	left	corner.	urx	and	ury	define	the	upper	right	corner.

You	also	need	to	define	the	starting	position	at	a	column	by	using:

void	setYLine(float	yLine)

Other	than	using	the	setSimpleColumn	method	above	to	define	leading	and	alignment,	you
can	use	the	following	methods	provided	by	the	ColumnText	class:

void	setAlignment(int	alignment)

void	setLeading(float	leading)

Step	4

To	start	writing	text	from	a	ColumnText	to	the	column	you	just	defined,	call	the	go()
method.	A	status	of	either	NO_MORE_COLUMN	or	NO_MORE_TEXT	is	returned.	If
the	status	is	NO_MORE_COLUMN,	it	means	a	new	column	needs	to	be	defined.	So,	go
back	to	the	step	3	to	define	another	column.	It	depends	on	the	number	of	columns	at	a
page.	Once	all	columns	at	a	page	are	written	and	there	is	still	more	text.	A	new	page	needs
to	be	created.	You	continue	this	process	until	there	is	no	more	text.

In	the	following	example,	it	reads	a	text	file	and	writes	two	pages	as	one	page	by	creating
two	columns	per	page	in	the	document:

import	java.io.BufferedReader;

import	java.io.File;

import	java.io.FileOutputStream;

import	java.io.FileReader;

import	java.io.IOException;

	

import	com.itextpdf.text.Document;

import	com.itextpdf.text.DocumentException;

import	com.itextpdf.text.Element;

import	com.itextpdf.text.PageSize;

import	com.itextpdf.text.Phrase;

import	com.itextpdf.text.Rectangle;

import	com.itextpdf.text.pdf.ColumnText;

import	com.itextpdf.text.pdf.PdfContentByte;

import	com.itextpdf.text.pdf.PdfWriter;

	

public	class	ColumnTextExample	{

public	static	void	main(String[]	args)	{

try	{

File	pdfFile	=	new	File(“columntext.pdf”);

File	file	=	new	File(“ColumnTextExample.java”);

new	ColumnTextExample().generatePdf(pdfFile,	file);

}	catch(Exception	ex)	{

System.out.println(ex);

}			

}

	

public	void	generatePdf(File	pdfFile,	File	file)	throws	DocumentException,

IOException	{

//	landscape	mode

Rectangle	pageSize	=	PageSize.LETTER.rotate();

Document	doc	=	new	Document(pageSize);

PdfWriter	writer	=	PdfWriter.getInstance(doc,	new	FileOutputStream(pdfFile));

doc.open();

PdfContentByte	content	=	writer.getDirectContent();

ColumnText	columnText	=	new	ColumnText(content);

BufferedReader	reader	=

new	BufferedReader(new	FileReader(file));

String	line;	

while((line	=	reader.readLine())	!=	null)	{

columnText.addText(new	Phrase(line	+	“\n”));

}

reader.close();

//	the	first	column

boolean	isFirstColumn	=	true;

//	define	a	rectangular	column

setColumn(columnText,	isFirstColumn,	pageSize);

//	set	starting	position

columnText.setYLine(pageSize.getHeight());

int	status	=	ColumnText.START_COLUMN;

while(ColumnText.hasMoreText(status))	{

status	=	columnText.go();

isFirstColumn	=	!isFirstColumn;

//	write	to	the	next	column

setColumn(columnText,	isFirstColumn,	pageSize);

//	set	starting	position	for	the	next	column

columnText.setYLine(pageSize.getHeight());

if(isFirstColumn)	{

//	create	a	new	page	when	all	columns	are	written

doc.newPage();

}

}

doc.close();

}

	

private	void	setColumn(ColumnText	columnText,	boolean	isFirstColumn,

Rectangle	pageSize)	{

if(isFirstColumn)	{

columnText.setSimpleColumn(0,	0,	pageSize.getWidth()	/	2	-	3,

pageSize.getHeight(),	16,	Element.ALIGN_JUSTIFIED);

}	else	{

columnText.setSimpleColumn(pageSize.getWidth()	/	2	+	3,	0,

pageSize.getWidth(),	pageSize.getHeight(),	16,	Element.ALIGN_JUSTIFIED);							

}																			

}

}

The	following	is	the	output:

The	setSimpleColumn	method	allows	you	to	define	a	rectangular	column.	But,	the
ColumnText	class	allows	a	column	to	have	any	shape	by	using:

void	setColumns(float[]	leftLine,	float[]	rightLine):	leftLine	defines	the	left	bound	of	the
column	and	rightLine	defines	the	right	bound	of	the	column.	Each	array	contains	line
points	such	as	{x1,	y1,	x2,	y2,	…}	to	form	a	line	for	any	shape.	In	each	array,	at	least	two
line	points	(four	array	elements)	are	needed	to	form	a	straight	line.

So,	if	you	want	to	use	the	setColumns	method	in	this	example,	you	can	use	the	following
arrays	for	column	bounds:

float[][]	leftLines	=	new	float[][]{

{0,	0,	0,	pageSize.getHeight()},

{pageSize.getWidth()	/	2	+	3,	0,	pageSize.getWidth()	/	2	+	3,		pageSize.getHeight()}};

float[][]	rightLines	=	new	float[][]{

{pageSize.getWidth()	/	2	-	3,	0,	pageSize.getWidth()	/	2	-	3,	pageSize.getHeight()},

{pageSize.getWidth(),	0,	pageSize.getWidth(),		pageSize.getHeight()}};											

And,	replace	setSimpleColumn	with	setColumns:

if(isFirstColumn)	{

columnText.setColumns(leftLines[0],	rightLines[0]);

}	else	{

columnText.setColumns(leftLines[1],	rightLines[1]);						

}			

Since	leading	and	alignment	were	defined	in	the	setSimpleColumn	method,	you	can	define
them	through	a	ColumnText:

columnText.setLeading(16);

columnText.setAlignment(Element.ALIGN_JUSTIFIED);

MERGING	DOCUMENTS

Since	the	PdfStamper	class	allows	you	to	add	extra	content	to	an	existing	document,	it
provides	a	better	way	to	merge	documents.	You	start	with	the	original	document	by
constructing	a	PdfStamper	and	read	a	document	to	be	merged	as	extra	content.	By	using
the	insertPage()	method,	you	can	either	insert	a	blank	page	before	certain	page	or	append
to	the	end	of	a	document	if	the	page	number	is	bigger	than	the	total	number	of	pages.	Next
step	is	to	use	the	getImportPage()	method	to	import	a	page	from	the	other	document	and
then	add	this	page	to	direct	content	of	newly	created	blank	page.	The	following	example
demonstrates	how	to	merge	two	documents:

import	java.io.BufferedOutputStream;

import	java.io.FileOutputStream;

	

import	com.itextpdf.text.pdf.PdfContentByte;

import	com.itextpdf.text.pdf.PdfImportedPage;

import	com.itextpdf.text.pdf.PdfReader;

import	com.itextpdf.text.pdf.PdfStamper;

	

public	class	MergeExample	{

public	static	void	main(String[]	args)	{

try	{

PdfReader	origReader	=	new	PdfReader(“table.pdf”);

PdfReader	otherReader	=	new	PdfReader(“paragraph.pdf”);

BufferedOutputStream	outStream	=

new	BufferedOutputStream(new	FileOutputStream(“merge.pdf”));																							

PdfStamper	stamper	=	new	PdfStamper(origReader,	outStream);

int	pageNum	=	origReader.getNumberOfPages();																			

for(int	i	=	1;	i	<=	otherReader.getNumberOfPages();	i++)	{

stamper.insertPage(++pageNum,	otherReader.getPageSize(i));

PdfImportedPage	page	=	stamper.getImportedPage(otherReader,	i);

PdfContentByte	content	=	stamper.getUnderContent(pageNum);

content.addTemplate(page,	0,	0);

}																						

stamper.close();

}	catch(Exception	ex)	{

System.out.println(ex);

}												

}

}

If	you	need	to	insert	an	existing	PDF	document	during	the	process	of	creating	a	new	PDF
document,	you	can	use	the	getDirectContent()	method	from	existing	PdfWriter	to	get	a
PdfContentByte.	The	following	is	the	code	snippet:

PdfReader	reader	=	new	PdfReader(“appendix.pdf”);

PdfContentByte	content	=	writer.getDirectContent();

for(int	i	=	1;	i	<=	reader.getNumberOfPages();	i++)	{

doc.newPage();

PdfImportedPage	page	=	writer.getImportedPage(reader,	i)

content.addTemplate(page,	0,	0);

}

	

FILLING	FORMS

Interactive	PDF	forms	allow	users	to	fill	in	form	data	through	freely	available	Adobe
Reader.	There	are	two	types	of	PDF	forms:	AcroForm	(Acrobat	form)	and	XFA	form
(Adobe	XML	Forms	Architecture	form).	How	do	we	fill	in	form	data	programmatically?
The	tricky	part	is	to	get	field	names	correctly.	First,	we	can	fill	in	a	form	with	dummy	data
with	value	starting	from	1.	If	you	have	Adobe	Acrobat,	you	can	export	form	data	as	an
XML	file	(Forms	->	Manage	Form	Data	->Export	Data).	We	use	an	IRS	W-4	form	as	an
example.	It	is	an	XFA	form.	To	make	it	simple,	we	are	only	interested	in	some	fields	in	the
form:

The	following	is	part	of	data	XML	exported	from	Adobe	Acrobat:

Now,	we	run	the	following	Java	program	to	retrieve	form	fields	and	field	values:

import	java.io.BufferedOutputStream;

import	java.io.FileOutputStream;

import	java.util.Set;

	

import	com.itextpdf.text.pdf.AcroFields;

import	com.itextpdf.text.pdf.PdfReader;

import	com.itextpdf.text.pdf.PdfStamper;

import	com.itextpdf.text.pdf.XfaForm;

	

public	class	ReadFormExample	{

public	static	void	main(String[]	args)	{

try	{

PdfReader	reader	=	new	PdfReader(“fw4_tmp.pdf”);

AcroFields	form	=	reader.getAcroFields();

XfaForm	xfa	=	form.getXfa();	

System.out.println(xfa.isXfaPresent()	?	“XFA	form”	:	“AcroForm”);									

Set<String>	fields	=	form.getFields().keySet();

for(String	key	:	fields)	{

System.out.println(“field:”	+	key	+	”	value:”	+	form.getField(key));

}																															

reader.close();

}	catch(Exception	ex)	{

System.out.println(ex);

}												

}

}

The	following	fields	are	part	of	the	output:

field:topmostSubform[0].Page1[0].Line1[0].f1_09_0_[0]	value:1

field:topmostSubform[0].Page1[0].Line1[0].f1_10_0_[0]	value:2

field:topmostSubform[0].Page1[0].c1_01[0]	value:2

field:topmostSubform[0].Page1[0].f1_16_0_[0]	value:6

	

As	you	can	see,	field	names	are	not	exactly	the	same	as	those	in	the	data	XML.	By
comparing	with	the	W-4	form	filled	with	dummy	numbers,	you	can	get	field	name	for
corresponding	field	in	the	form.	The	following	example	shows	how	to	fill	in	data	at	some

fields:

import	java.io.BufferedOutputStream;

import	java.io.FileOutputStream;

	

import	com.itextpdf.text.pdf.AcroFields;

import	com.itextpdf.text.pdf.PdfReader;

import	com.itextpdf.text.pdf.PdfStamper;

	

public	class	FillFormExample	{

public	static	void	main(String[]	args)	{

try	{

PdfReader	reader	=	new	PdfReader(“fw4.pdf”);

BufferedOutputStream	outStream	=

new	BufferedOutputStream(new	FileOutputStream(“fw4_filled.pdf”));	

//	keep	the	original	version	and	append	mode																					

PdfStamper	stamper	=	new	PdfStamper(reader,	outStream,	‘\0’,	true);

AcroFields	form	=	stamper.getAcroFields();

//	first	name

form.setField(“topmostSubform[0].Page1[0].Line1[0].f1_09_0_[0]”,	“Cheng-Hung”);

//	last	name

form.setField(“topmostSubform[0].Page1[0].Line1[0].f1_10_0_[0]”,	“Chou”);

//	checkbox

form.setField(“topmostSubform[0].Page1[0].c1_01[0]”,	“2”);

//	allowance

form.setField(“topmostSubform[0].Page1[0].f1_16_0_[0]”,	“10”);																													

stamper.close();

}	catch(Exception	ex)	{

System.out.println(ex);

}												

}

}

In	this	example,	a	PdfStamper	is	constructed	as:

PdfStamper	stamper	=	new	PdfStamper(reader,	outStream,	‘\0’,	true);

The	third	argument	‘\0’	indicates	keeping	the	same	version	as	the	original	document.	The
fourth	argument	is	set	as	true	to	use	append	mode.	This	is	very	important.	If	not,	you	will
not	be	able	to	fill	this	form	in	Adobe	Reader	anymore.

SERVLET

If	you	need	to	provide	PDF	documents	through	a	server	(e.g.,	a	servlet	container),	you	can
create	a	servlet	that	takes	requests	from	users	and	generates	PDF	documents	on	the	fly.
Instead	of	writing	output	to	a	file,	it	writes	PDF	content	to	a	temporary	buffer	and	then
sends	back	to	the	user	after	the	PDF	document	is	generated.	In	the	response,	it	informs	the
browser	that	the	content	type	is	PDF	and	the	filename	is	xxx.	The	user	can	either	choose
to	save	it	as	a	file	or	open	it	through	a	PDF	reader	if	it	is	available.	The	following	is	the
code	snippet:

public	void	doPost(HttpServletRequest	request,	HttpServletResponse	response)

throws	IOException,	ServletException	{

response.setContentType(“application/pdf”);

response.setHeader(“Content-Disposition”,	“attachment;filename=file.pdf”);

Document	doc	=	new	Document(PageSize.LETTER);

//	create	a	PDF	writer	that	listens	to	this	document	and	writes	to	a	temporary	buffer

ByteArrayOutputStream	buffer	=	new	ByteArrayOutputStream();

PdfWriter.getInstance(doc,	buffer);

//	open	this	document

doc.open();

//	write	document	content

…

//	close	this	document

doc.close();

//	output	the	writer	as	bytes	to	the	response	output

DataOutput	output	=	new	DataOutputStream(response.getOutputStream());

byte[]	bytes	=	buffer.toByteArray();

response.setContentLength(bytes.length);

output.write(bytes);

output.flush();

output.close();

}

	

Apache	POI
	

Apache	POI	(Poor	Obfuscation	Implementations)	is	the	Java	API	for	Microsoft
Documents,	which	allows	you	to	read	and	write	MS	Office	documents	such	as	Excel,
Word	and	PowerPoint	using	Java.	Through	POI,	you	can	generate	MS	Office	documents
dynamically	based	on	requests	or	to	generate	personalized	reports	on	the	fly.	POI	supports
OLE2	files	such	as	XLS,	DOC	and	PPT	and	new	XML	based	standard	Office	OpenXML
(OOXML)	files	such	as	XLSX,	DOCX	and	PPTX.	Apache	POI	contains	the	following
major	components:

Excel:	HSSF	(Horrible	Spreadsheet	Format)	for	XLS	and	XSSF	(XML	Spreadsheet
Format)	for	XLSX

Word:	HWPF	(Horrible	Word	Processor	Format)	for	DOC	and	XWPF	(XML	Word
Processor	Format)	for	DOCX

PowerPoint:	HSLF	(Horrible	Slide	Layout	Format)	for	PPT	and	XSLF	(XML	Slide
Layout	Format)	for	PPTX

Other	than	document	formats	mentioned	above,	POI	also	supports	Visio,	Publisher	and
Outlook	document	formats.

You	can	download	Apache	POI	from	http://poi.apache.org.	The	latest	version	is	3.9	at	the
time	of	writing.

http://poi.apache.org

CREATING	AN	EXCEL	DOCUMENT

First,	we	begin	with	creating	an	Excel	document.	To	create	an	Excel	document	using	POI,
we	break	down	the	process	into	the	following	steps:

Step	1

First,	you	need	to	create	an	Excel	workbook.	A	workbook	is	an	Excel	file	that	contains
one	or	more	worksheets.	You	can	create	a	workbook	which	is	represented	by	the
Workbook	interface	using	either	the	HSSFWorkbook	(for	HSSF)	or	XSSFWorkbook	class
(for	XSSF).	For	creating	a	workbook,	you	can	use	the	default	constructor.	For	example,

Workbook	wb	=	new	HSSFWorkbook();

Note:	You	should	always	try	to	use	interface	as	the	return	type	instead	of	using	concrete
class	as	possible.	It	can	minimize	effort	to	switch	implementation	(HSSF	or	XSSF)	or	to
support	both.

Step	2

A	workbook	can	contain	more	than	one	sheet.	A	sheet	is	represented	by	the	Sheet
interface.	There	are	different	types	of	sheets	such	as	worksheets	and	chart	sheets.	Mainly,
you	will	be	working	on	the	worksheet	which	contains	a	grid	of	cells.	A	Sheet	object	is
created	by	a	Workbook	by	using	the	createSheet(String	name)	method.	For	example,	to
create	a	sheet	with	name	“my	worksheet”,	you	can	use:

Sheet	sheet	=	wb.createSheet(“my	worksheet”);

A	sheet	name	must	be	unique	in	the	workbook	and	contains	no	more	than	31	characters.
Also,	you	can	use	WorkbookUtil.createSafeSheetName(String	nameProposal)	to	create	a
valid	name	that	can	be	safely	used	in	the	createSheet()	method.

Step3

Once	a	sheet	is	created,	you	can	start	creating	rows	using	the	createRow(int	row)	method.
The	row	number	is	zero-based.	For	example,	to	create	a	row	at	the	second	row	of	a
worksheet,	you	can	use:

Row	row	=	sheet.createRow(1);

Step	4

Now,	you	can	add	cells	into	a	row	by	using	the	createCell(int	column)	method.	Cells	are
the	most	important	component	in	a	worksheet.	You	will	spend	most	of	the	time	to	define
them	while	creating	an	Excel	document.	The	column	number	is	zero-based.	For	example,
to	create	a	cell	at	the	second	cell	of	a	worksheet,	you	can	use:

Cell	cell	=	row.createCell(1);

Cells	are	where	data	are	stored.	There	are	different	types	of	cells.	A	cell	value	can	be	a
number,	string,	date,	hyperlink	or	formula.	You	can	set	a	cell	value	by	using	the	following

methods:

void	setCellValue(boolean	value)

void	setCellValue(Calendar	value)

void	setCellValue(Date	value)

void	setCellValue(double	value)

void	setCellValue(RichTextStringValue	value)

void	setCellValue(String	value)

void	setCellValue(Hyperlink	value)

For	a	cell	containing	a	formula,	you	can	use	the	following	method	to	define	a	formula:

void	setCellFormula(String	formula)

A	cell	style	(represented	by	the	CellStyle	interface)	defines	the	layout,	font	and	format	of	a
cell.	A	cell	style	is	created	through	a	workbook	by	using	the	createCellStyle()	method	and
then	using	the	setCellStyle(CellStyle	style)	method	provided	by	the	Cell	class	to	set	the
style	for	a	cell.

Step	5

The	final	step	is	to	write	this	workbook	to	an	OutputStream.	For	example,	to	write	to	a	file
you	can	use:

FileOutputStream	out	=	new	FileOutputStrean(“po.xls”);

wb.write(out);

out.close();

Or,	to	generate	an	Excel	document	in	a	servlet	and	download	it	as	a	file,	you	can	use	the
following	code	snippet:

response.setContentType(“application/excel;”);

response.setHeader(“Content-Disposition”,	“attachment;filename=po.xls”);

ByteArrayOutputStream	buffer	=	new	ByteArrayOutputStream();

wb.write(buffer);

DataOutput	output	=	new	DataOutputStream(response.getOutputStream());

byte[]	bytes	=buffer.toByteArray();

response.setContentLength(bytes.length);

output.write(bytes);

output.flush();

output.close();

	

The	following	is	an	example	showing	how	to	create	an	Excel	document.	To	compile	and
run	this	example,	you	need	to	include	poi-3.9-20121203.jar	in	the	classpath	for	POI	3.9.
For	XSSF,	you	need	poi-3.9-20121203.jar	and	poi-ooxml-3.9-20121203.jar	to	compile	it.
To	run	it,	in	addition	to	those	two	JARs,	you	also	need	poi-ooxml-schemas-3.9-
20121203.jar,	ooxml-lib	/xmlbeans-2.3.0.jar	and	ooxml-lib/dom4j-1.6.1.jar.

import	java.io.FileOutputStream;

	

import	org.apache.poi.hssf.usermodel.HSSFWorkbook;

//import	org.apache.poi.xssf.usermodel.XSSFWorkbook;

import	org.apache.poi.ss.usermodel.Cell;

import	org.apache.poi.ss.usermodel.CellStyle;

import	org.apache.poi.ss.usermodel.CreationHelper;

import	org.apache.poi.ss.usermodel.Font;	

import	org.apache.poi.ss.usermodel.Row;

import	org.apache.poi.ss.usermodel.Sheet;

import	org.apache.poi.ss.usermodel.Workbook;

	

public	class	SimpleExcel	{	

public	static	CellStyle	numberStyle;

public	static	void	main(String[]	args)	{

try	{

Workbook	wb	=	new	HSSFWorkbook();

//Workbook	wb	=	new	XSSFWorkbook();

Sheet	sheet	=	wb.createSheet(“purchase	order”);

CreationHelper	createHelper	=	wb.getCreationHelper();

numberStyle	=	wb.createCellStyle();

numberStyle.setAlignment(CellStyle.ALIGN_RIGHT);

numberStyle.setDataFormat(

createHelper.createDataFormat().getFormat(“##,###.00”));											

int	startRow	=	1;

short	startCol	=	1;

SimpleExcel	simple	=	new	SimpleExcel();

//	header	row

simple.createHeaderRow(wb,	sheet,	startRow,	startCol);																																	

//	data	rows

simple.createDataRow(wb,	sheet,	startCol,

“Acer	ICONIA	TAB	A700”,	399.95,	2);

simple.createDataRow(wb,	sheet,	startCol,

“ASUS	TF700T”,	425,	5);

//	output																		

FileOutputStream	out	=	new	FileOutputStream(“po.xls”);																																

//FileOutputStream	out	=	new	FileOutputStream(“po1.xlsx”);

wb.write(out);

out.close();

}	catch(Exception	ex)	{

System.out.println(ex);

}																													

}

	

public	void	createHeaderRow(Workbook	wb,	Sheet	sheet,	int	startRow,

short	startCol)	{

short	col	=	startCol;

Row	headerRow	=	sheet.createRow(startRow);

sheet.setColumnWidth(col++,	(short)5120);

sheet.setColumnWidth(col++,	(short)2560);												

sheet.setColumnWidth(col++,	(short)2560);

sheet.setColumnWidth(col++,	(short)2560);

Font	headerFont	=	wb.createFont();

headerFont.setBoldweight(Font.BOLDWEIGHT_BOLD);

headerFont.setFontHeightInPoints((short)12);

CellStyle	headerStyle	=	wb.createCellStyle();

headerStyle.setFont(headerFont);

col	=	startCol;

Cell	cell	=	headerRow.createCell(col++);

cell.setCellValue(“Product	Name”);

cell.setCellStyle(headerStyle);		

cell	=	headerRow.createCell(col++);

cell.setCellValue(“Price”);

cell.setCellStyle(headerStyle);		

cell	=	headerRow.createCell(col++);											

cell.setCellValue(“Quantity”);

cell.setCellStyle(headerStyle);													

cell	=	headerRow.createCell(col++);

cell.setCellValue(“Subtotal”);

cell.setCellStyle(headerStyle);																			

}

	

public	void	createDataRow(Workbook	wb,	Sheet	sheet,	short	startCol,

String	name,	double	price,	int	quantity)	{

int	rowNum	=	sheet.getLastRowNum()	+	1;

Row	dataRow	=	sheet.createRow(rowNum);

short	col	=	startCol;

dataRow.createCell(col++).setCellValue(name);

Cell	cell	=	dataRow.createCell(col++);

cell.setCellValue(price);	//	price

cell.setCellStyle(numberStyle);

cell	=	dataRow.createCell(col++);

cell.setCellValue(quantity);	//	quantity

cell.setCellStyle(numberStyle);

cell	=	dataRow.createCell(col++);	//	subtotal								

cell.setCellStyle(numberStyle);					

}

}

You	can	open	this	document	in	MS	Excel	and	the	following	is	the	screen	shot:

In	this	example,	the	first	row	is	the	header	row.	Column	widths	are	defined	here.	You
cannot	set	individual	cell	width.	But,	you	can	set	column	width	through	a	Sheet	using	the
following	methods:

void	setColumnWidth(int	column,	int	width):	sets	the	column	width	in	units	of	1/256th	of
a	character	width.	The	maximum	column	width	is	255	characters.

void	autoSizeColumn(int	column):	adjusts	the	column	width	to	fit	the	content.

Other	than	setting	column	width,	the	following	are	useful	methods	that	you	can	use	in	a
worksheet:

void	createFreezePane(int	colSplit,	int	rowSplit):	creates	a	freeze	pane	that	keeps	an	area
visible	when	you	scroll	in	the	worksheet.

void	setDisplayGridLines(boolean	show):	sets	it	as	false	if	not	to	display	grid	lines.

void	setDisplayRowColHeadings(boolean	show):	sets	it	as	false	if	not	to	display	row	and
column	headers.

PrintSetup	getPrintSetup():	gets	the	print	setup.	The	PrintSetup	allows	you	to	set	up	page
size	and	page	layout	of	a	worksheet.	For	example,	to	use	letter	page	size,	you	can	use
setPageSize(PrintSetup.LETTER_PAGESIZE).	To	set	page	orientation	as	landscape,	you
can	use	setLandscape(true).

There	are	two	cell	styles	in	this	example.	One	is	to	define	font	for	the	header.	The	other	is
for	the	numbers.	It	is	a	good	practice	to	reuse	cell	styles	in	the	code.	You	can	change	a	cell
style	by	using	methods	defined	in	the	CellStyle.	The	following	are	some	of	them:

void	setAlignment(short	align):	sets	horizontal	alignment	for	the	cell.	For	example,
CellStyle.ALIGN_CENTER.

void	setDataFormat(short	fmt):	sets	data	format	through	a	format	index.	For	built-in
formats,	you	can	find	them	in	the	BuiltinFormats	class.	You	can	create	a	custom	data
format	through	a	CreationHelper.

void	setFillBackgroundColor(short	bg):	sets	background	fill	color.	Indexed	colors	are
defined	in	the	IndexedColors	class.	For	example,	IndexedColors.AQUA.getIndex().

void	setFillForegroundColor(short	fg):	sets	fill	foreground	color.	Indexed	colors	are
defined	in	the	IndexedColors	class.

void	setFillPattern(short	fp):	sets	fill	pattern.	Available	patterns	are	defined	in	the
CellStyle.	For	example,	CellStyle.FINE_DOTS.

void	setFont(Font	font):	sets	a	Font	created	from	the	createFont()	method	in	Workbook.

void	setRotation(short	degree):	sets	the	degree	of	rotation	between	-90	and	90	degrees.

void	setVerticalAlignment(short	alignment):	sets	vertical	alignment	for	the	cell.	For
example,	CellStyle.VERTICAL_CENTER.

void	setWrapText(Boolean	wrapped):	sets	it	as	true	if	the	text	should	wrapped.

You	can	get	a	CreationHelper	from	a	Workbook.	The	advantage	of	using	the
getCreationHelper()	method	to	get	a	CreationHelper	is	that	you	do	not	need	to	worry
about	if	you	are	dealing	with	HSSF	or	XSSF.	CreationHelper	is	an	interface.	The
HSSFCreationHelper	and	XSSFCreationHelper	classes	implement	the	CreationHelper
interface.	The	following	are	some	methods	defined	in	the	CreationHelper:

DataFormat	createDataFormat():	creates	a	DataFormat	representing	a	built-in	or	user
defined	data	format.	For	user-defined	data	formats,	format	patterns	follow	those	defined	in
core	Java	API	such	as	the	DecimalFormat	or	SimpleDateFormat	class.	You	can	use	the
getFormat(String	format)	method	from	the	DataFormat	to	get	a	format	index.	If	such
format	does	not	exist,	a	new	format	index	is	created.

RichTextString	createRichTextString(String	text):	creates	a	RichTextString	representing	a
rich	text	Unicode	string.

ADDING	FORMULAS

In	the	previous	example,	a	table	was	created	and	the	Subtotal	column	was	left	empty.	To
calculate	subtoal	for	each	product,	you	can	define	a	formla	in	the	cell	of	Subtotal	column.
To	define	a	formula,	you	need	the	string	representation	of	cell	references.	You	can	get	that
kind	of	information	by	either	taking	a	look	at	the	Excel	document	in	previous	example	or
using	the	CellReference	class.	The	following	is	the	modified	version	of	createDataRow():

public	void	createDataRow(Workbook	wb,	Sheet	sheet,	short	startCol,

String	name,	double	price,	int	quantity)	{

int	rowNum	=	sheet.getLastRowNum()	+	1;

Row	dataRow	=	sheet.createRow(rowNum);

short	col	=	startCol;

dataRow.createCell(col++).setCellValue(name);

Cell	cell	=	dataRow.createCell(col++);

cell.setCellValue(price);	//	price

cell.setCellStyle(numberStyle);

CellReference	priceCellRef	=	new	CellReference(cell);

cell	=	dataRow.createCell(col++);

cell.setCellValue(quantity);	//	quantity

cell.setCellStyle(numberStyle);

CellReference	quantCellRef	=	new	CellReference(cell);

cell	=	dataRow.createCell(col++);	//	subtotal

cell.setCellFormula(priceCellRef.formatAsString()	+	“*”	+

quantCellRef.formatAsString());								

cell.setCellStyle(numberStyle);						

}

	

A	new	method	is	also	added	to	calculate	the	total	(a	summation	of	subtotoal	cells):

	

public	void	createTotalRow(Workbook	wb,	Sheet	sheet,	short	startCol)	{

int	firstDataRowNum	=	sheet.getFirstRowNum()	+	1;

Row	row	=	sheet.getRow(firstDataRowNum);

short	subtotalCol	=	(short)(row.getLastCellNum()	-	1);

int	rowNum	=	sheet.getLastRowNum();

//	use	absolute	cell	reference	with	sheet	name

CellReference	cellRef1	=	new	CellReference(sheet.getSheetName(),

firstDataRowNum,	subtotalCol,	true,	true);

CellReference	cellRef2	=	new	CellReference(null,

rowNum,	subtotalCol,	true,	true);

Name	name	=	wb.createName();

name.setNameName(“subtotal”);

name.setRefersToFormula(cellRef1.formatAsString()	+	“:”	+

cellRef2.formatAsString());

rowNum++;

Row	totalRow	=	sheet.createRow(rowNum);

Cell	cell	=	totalRow.createCell(subtotalCol);	//	total

cell.setCellFormula(“SUM(subtotal)”);								

cell.setCellStyle(numberStyle);																				

}

You	can	open	this	document	in	MS	Excel	and	the	following	is	the	screen	shot:

To	define	a	formula,	you	need	the	string	representation	of	cell	references	to	identify	the
location	of	cells.	Cell	references	can	be	either	relative	(such	as	A1)	or	absolute	(such	as
A1).	A	relative	cell	reference	is	changed	when	it	is	copied	and	pasted	to	other	cell.	To
retrieve	a	cell,	you	need	both	row	and	column	information.	You	can	construct	a
CellReference	either	using	string	representation	or	row	and	column	information	from	the
following	constructors:

CellReference(Cell	cell):	constructs	a	cell	reference	using	a	Cell.

CellReference(int	row,	short	col):	constructs	a	cell	reference	using	row	and	cell	numbers.

CellReference(String	cellRef):	constructs	a	cell	reference	using	a	string	representation
such	as	A1	or	sheet1!A1.

CellReference(String	sheetName,	int	row,	short	col,	boolean	absoluteRow,	boolean
absoluteCol):	constructs	a	cell	reference	using	row	and	cell	numbers	with	a	sheet	name.

Once	a	CellReference	is	created,	you	can	use	the	following	methods	to	get	cell	reference
either	in	string	representation	or	row	and	column	numbers:

int	getRow():	gets	row	number.

short	getCol():	gets	column	number.

String	getSheetName():	gets	sheet	name.	It	can	be	null	if	sheet	name	is	not	specified.

String	formatAsString():	gets	the	string	representation	of	a	cell	reference.

An	alternative	to	(absolute)	cell	references	is	named	ranges	for	a	range	of	cells.	Named
ranges	provide	meaningful	names	in	formulas.	A	formula	is	used	as	a	reference	to	a	name.
The	Cell	reference	in	the	formula	needs	to	include	sheet	name.	For	example,	to	create	a
named	range	“subtotal”,	you	can	use	the	following	code	snippet:

Name	name	=	wb.createName();

name.setNameName(“subtotal”);

name.setRefersToFormula(“’sheet	1’!E3:E4”);

FORMULA	EVALUATION

We	have	discussed	about	how	to	create	an	Excel	document	already.	It	starts	with	creating
an	empty	Workbook.	How	about	loading	an	existing	Excel	document?	It	is	a	similar
process.	But,	a	Workbook	is	created	by	loading	an	Excel	document	through	an
InputStream.	For	example,

Workbook	wb	=	new	XSSFWorkbook(new	FileInputStream(“chartdata.xlsx”));

To	access	a	worksheet	in	the	workbook,	you	can	use	either	getSheet(String	name)	or
getSheetAt(int	index).	The	following	example	shows	how	to	load	the	Excel	document
created	in	the	previous	example	and	also	shows	how	to	get	the	cell	value	of	a	cell:

import	java.io.FileInputStream;

	

import	org.apache.poi.xssf.usermodel.XSSFWorkbook;

import	org.apache.poi.ss.usermodel.Cell;

import	org.apache.poi.ss.usermodel.Row;

import	org.apache.poi.ss.usermodel.Sheet;

import	org.apache.poi.ss.usermodel.Workbook;

import	org.apache.poi.ss.util.CellReference;

	

public	class	FormulaEvalExcel	{	

public	static	void	main(String[]	args)	{

try	{

Workbook	wb	=	new	XSSFWorkbook(new	FileInputStream(“po1.xlsx”));

Sheet	sheet	=	wb.getSheetAt(0);

CellReference	cellRef	=	new	CellReference(“E5”);

Row	row	=	sheet.getRow(cellRef.getRow());

Cell	cell	=	row.getCell(cellRef.getCol());

FormulaEvalExcel1	formula	=	new	FormulaEvalExcel1();

formula.getCellValue(cell);

}	catch(Exception	ex)	{

System.out.println(ex);

}																													

}

	

public	void	getCellValue(Cell	cell)	{

int	cellType	=	cell.getCellType();

int	cellValueType	=	cellType;

if(cellType	==	Cell.CELL_TYPE_FORMULA)

cellValueType	=	cell.getCachedFormulaResultType();

switch(cellValueType)	{

case	Cell.CELL_TYPE_NUMERIC:

System.out.println(cell.getNumericCellValue());

break;

case	Cell.CELL_TYPE_STRING:

System.out.println(cell.getStringCellValue());

break;

case	Cell.CELL_TYPE_BOOLEAN:

System.out.println(cell.getBooleanCellValue());

break;

case	Cell.CELL_TYPE_ERROR:

System.out.println(“Error	code:	”	+	cell.getErrorCellValue());

break;

}			

}			

}

	

Before	you	can	get	cell	value	of	a	cell,	you	need	to	use	the	getCellType()	method	to	get	its
cell	type.	But,	this	is	not	going	to	work	if	you	want	to	get	the	cell	value	of	a	formula	cell.
For	a	formula	cell,	the	evaluated	cell	value	is	cached.	You	need	to	use	the
getCachedFormulaResultType()	method	to	get	type	of	the	cell	value.	This	method	only
can	be	used	in	formula	cells	since	only	formula	cells	have	cached	results.	In	this	example,
cell	reference	E5	is	a	formula	cell.

Now,	you	can	run	this	example.	You	will	be	surprised	that	the	result	is	0.0.	It	is	supposed
to	be	2924.90.	What	is	going	on?	It	looks	fine	in	MS	Excel.	That	is	because	Workbook
Calculation	is	set	as	Automatic	by	default	in	MS	Excel.	You	can	verify	that	by	clicking	on
the	Office	Button	at	upper-left	corner	->	Excel	Options	->	Formulas.	That	is	why	formulas
are	recalculated	automatically.	In	the	example	of	previous	section,	we	only	created	an
Excel	document	with	formulas	defined	and	did	not	evaluate	formulas	at	all.	Unless	it	is

opened	and	saved	in	MS	Excel	(with	calculated	results),	you	are	not	going	to	get	correct
values	from	formula	cells.	To	fix	that	in	the	code,	you	can	use	a	FormulaEvaluator	to
evaluate	formulas	in	the	code.	You	can	get	a	FormulaEvaluator	by	using	the
createFormulaEvaluator()	method	from	a	CreationHelper.	It	is	a	good	practice	to	have
only	one	FormulaEvaluator	per	workbook	to	take	advantage	of	caching	in
FormulaEvaluator.	You	can	use	the	following	methods	to	evaluate	formulas:

CellValue	evaluate(Cell	cell):	evaluates	a	given	cell	without	affecting	it.	A	CellValue	with
evaluated	value	is	returned.

int	evaluateFormulaCell(Cell	cell):	evaluates	a	given	cell	and	the	value	is	saved.	The	type
of	evaluated	value	is	returned.

Cell	evaluateInCell(Cell	cell):	evaluates	a	given	cell	and	puts	back	the	evaluated	value	to
replace	the	formula.

void	evaluateAll():	loops	through	all	cells	in	all	sheets	in	the	workbook	to	evaluate
formula	cells	and	the	results	are	saved.

So,	you	can	modify	the	example	in	the	previous	section	a	little	bit	by	adding	the
evaluateFormulaCell()	method	to	evaluate	formula	cells	and	get	values	saved.	Or,	modify
above	example	to	use	a	FormulaEvaluator	to	evaluate	the	formula	cell.

For	performance	reason,	FormulaEvaluator	keeps	previously	evaluated	intermediate
values	in	a	cache.	If	any	related	cells	are	changed	(value	or	formula)	between	evaluatexxx
methods,	you	will	not	get	the	updated	value	unless	either	the	notifyUpdateCell(Cell	cell)
or	clearAllCachedResultValues()	method	is	called.	The	following	code	snippet	shows	how
to	avoid	that	kind	of	problem:

//	total	cell

CellReference	cellRef	=	new	CellReference(“E5”);

Row	row	=	sheet.getRow(cellRef.getRow());

Cell	totalCell	=	row.getCell(cellRef.getCol());

//	after	this	point,	evaluated	intermediate	values	are	cached

CellValue	value	=	evaluator.evaluate(totalCell);

//	quantity	cell

cellRef	=	new	CellReference(“D3”);

row	=	sheet.getRow(cellRef.getRow());

Cell	quantCell	=	row.getCell(cellRef.getCol());												

quantCell.setCellValue(5);

//	need	to	notify	cache	that	this	cell	has	been	changed

evaluator.notifyUpdateCell(quantCell);

value	=	evaluator.evaluate(totalCell);

	

PLOTTING	A	CHART

Next,	we	will	talk	about	how	to	create	an	Excel	document	with	charts.	This	is	only
available	for	XSSF.	To	plot	a	chart	using	POI,	we	can	break	down	the	process	into	the
following	steps:

Step	1

First,	we	need	data	to	plot	a	chart.	You	can	either	load	data	from	an	existing	Excel
document	or	create	a	new	Excel	document	with	data	retrieved	from	some	data	source.

Step	2

Now,	we	define	where	to	draw	the	chart	in	the	worksheet	by	creating	a	drawing	patriarch.
A	drawing	patriarch	is	the	top	level	container	for	drawing.	It	can	be	created	by	the
createDrawingPatriarch()	method	in	a	Sheet.	A	Drawing	object	(representing	a	drawing
patriarch)	is	returned.	To	define	where	a	chart	is	located	and	how	big	it	is,	you	can	use	the
following	method	defined	in	the	Drawing	to	create	a	client	anchor:

ClientAnchor	createAnchor(int	dx1,	int	dy1,	int	dx2,	int	dy2,	int	col1,	int	row1,	int	col2,
int	row2):	creates	a	client	anchor	with	(dx1,	dy1)	or	(col1,	row1)	as	the	top-left
coordinates	and	(dx2,	dy2)	or	(col2,	row2)	as	the	bottom-right	coordinates.	dx1,	dy1,	dx2
and	dy2	use	EMU	(English	Metric	Unit).	914400	EMUs	is	equal	to	one	inch.	col1,	col2,
row1	and	row2	are	zero-based.

To	convert	between	points	and	EMUs,	you	can	use	the	utility	class,	Units.

Step	3

Once	the	client	anchor	is	defined,	a	chart	can	be	created	in	the	drawing	patriarch	by	using
the	createChart(ClientAnchor	anchor)	method	defined	in	the	Drawing.	A	Chart	is	returned.
Before	a	chart	can	be	plotted,	you	can	define	chart	properties	by	using	the	following
methods	defined	in	the	Chart:

ChartAxisFactory	getChartAxisFactory():	ChartAxisFactory	is	a	factory	for	chart	axes.
Usually	a	chart	has	two	axes.	A	chart	axis	is	represented	by	ValueAxis.	You	can	create	a
ValueAxis	by	using	the	createValueAxis(AxisPosition	pos)	method	from
ChartAxisFactory.	Available	locations	are	defined	in	AxisPosition.	They	are	BOTTOM,
LEFT,	RIGHT	and	TOP.

ChartDataFactory	getChartDataFactory():ChartDataFactory	is	a	factory	for	different	chart
types.	So	far,	only	scatter	chart	is	supported.	You	can	get	a	ScatterChartData	from	the
createScatterChartData()	method.

ChartLegend	getOrCreateLegend():	A	chart	legend	is	represented	by	ChartLegend.	You
can	specify	the	position	of	a	chart	legend	using	the	setPosition(LegendPosition	position)
method.	Available	locations	are	defined	in	LegendPosition	.	They	are	BOTTOM,	LEFT,
RIGHT,	TOP	and	TOP_RIGHT.

Step	4

A	scatter	chart	needs	two	sets	of	data.	One	is	for	X-axis	values	and	the	other	is	for	Y-axis
values.	Two	ChartDataSource	objects	which	represent	X-axis	values	and	Y-axis	values
respectively	are	added	to	a	ScatterChartData	using	the	addSerie(ChartDataSource<?>	xs,
ChartDataSource<?	extends	Number>	ys)	method.	

Step	5

Once	the	chart	data	and	axes	are	defined,	you	can	call	the	plot(ChartData	data,
ChartAxis…	axis)	method	defined	in	the	Chart	to	plot	the	chart.

The	following	example	shows	how	to	plot	a	scatter	chart	by	reading	data	from	an	Excel
document	with	two	columns	of	data:

import	java.io.FileInputStream;

import	java.io.FileOutputStream;

	

import	org.apache.poi.xssf.usermodel.XSSFWorkbook;

import	org.apache.poi.ss.usermodel.Chart;

import	org.apache.poi.ss.usermodel.ClientAnchor;

import	org.apache.poi.ss.usermodel.Drawing;	

import	org.apache.poi.ss.usermodel.Sheet;

import	org.apache.poi.ss.usermodel.Workbook;

import	org.apache.poi.ss.usermodel.charts.AxisCrosses;

import	org.apache.poi.ss.usermodel.charts.AxisPosition;

import	org.apache.poi.ss.usermodel.charts.ChartDataSource;

import	org.apache.poi.ss.usermodel.charts.ChartLegend;

import	org.apache.poi.ss.usermodel.charts.DataSources;

import	org.apache.poi.ss.usermodel.charts.LegendPosition;

import	org.apache.poi.ss.usermodel.charts.ScatterChartData;

import	org.apache.poi.ss.usermodel.charts.ValueAxis;

import	org.apache.poi.ss.util.CellRangeAddress;

	

public	class	ChartExcel	{	

public	static	void	main(String[]	args)	{

try	{

Workbook	wb	=	new	XSSFWorkbook(new	FileInputStream(“chartdata.xlsx”));

Sheet	sheet	=	wb.getSheetAt(0);

ChartExcel	chart	=	new	ChartExcel();

chart.plot(sheet);														

//	output																																

FileOutputStream	out	=	new	FileOutputStream(“chart.xlsx”);

wb.write(out);

out.close();

}	catch(Exception	ex)	{

System.out.println(ex);

}																													

}

	

public	void	plot(Sheet	sheet)	{

int	startDataRowNum	=	sheet.getFirstRowNum()	+	1;

int	endDataRowNum	=	sheet.getLastRowNum();

int	startColNum	=	sheet.getRow(startDataRowNum).getFirstCellNum();

//	define	the	drawing	location

Drawing	drawing	=	sheet.createDrawingPatriarch();

ClientAnchor	anchor	=	drawing.createAnchor(0,	0,	0,	0,	4,	4,	14,	14);

//	define	chart

Chart	chart	=	drawing.createChart(anchor);

ChartLegend	legend	=	chart.getOrCreateLegend();

legend.setPosition(LegendPosition.TOP_RIGHT);

ScatterChartData	data	=	chart.getChartDataFactory().createScatterChartData();

ValueAxis	bottomAxis	=
chart.getChartAxisFactory().createValueAxis(AxisPosition.BOTTOM);

ValueAxis	leftAxis	=
chart.getChartAxisFactory().createValueAxis(AxisPosition.LEFT);

leftAxis.setCrosses(AxisCrosses.AUTO_ZERO);

//	data	series	at	X-Axis

ChartDataSource<Number>	xs	=	DataSources.fromNumericCellRange(sheet,

new	CellRangeAddress(startDataRowNum,	endDataRowNum,	startColNum,
startColNum));

//	data	series	at	Y-axis

ChartDataSource<Number>	ys	=	DataSources.fromNumericCellRange(sheet,

new	CellRangeAddress(startDataRowNum,	endDataRowNum,	startColNum	+	1,
startColNum	+	1));

data.addSerie(xs,	ys);

//	plot	chart

chart.plot(data,	bottomAxis,	leftAxis);

}			

}

You	can	open	this	document	in	MS	Excel	and	the	following	is	the	screen	shot:

	

CREATING	A	WORD	DOCUMENT

Now,	we	will	learn	how	to	create	a	Word	document	by	using	XWPF	(.docx).	We	can	break
down	the	process	into	the	following	steps:

Step	1

First,	we	need	to	create	a	document	that	represents	a	Word	document:

XWPFDocument	doc	=	new	XWPFDocument();

Step	2

A	document	contains	many	paragraphs.	A	paragraph	is	represented	by	the
XWPFParagraph	class.	A	paragraph	can	be	created	by	using:

XWPFParagraph	par1	=	doc.createParagraph();

The	XWPFParagraph	class	defines	alignments,	indentations,	spacing	and	borders.

Step	3

A	paragraph	contains	many	runs.		A	run	is	represented	by	the	XWPFRun	class	which	can
be	created	by	using:

XWPFRun	run1	=	par1.createRun();

The	XWPFRun	class	defines	a	region	of	text	with	common	properties	such	as	font	size,
font	family,	font	styles	and	color.	A	run	can	contain	a	picture	by	using	the	following
method:

XWPFPicture	addPicture(InputStream	pictureData,	int	pictureType,	String	filename,	int
width,	int	height):	the	available	picture	types	are	defined	in	the	Document.	For	example,
Document.PICTURE	_TYPE_JPEG.	Both	width	are	height	are	in	EMUs.

Step	4

The	final	step	is	to	write	this	document	to	an	OutputStream.	For	example,	to	write	to	a	file
you	can	use:

FileOutputStream	out	=	new	FileOutputStrean(“po.docx”);

wb.write(out);

out.close();

The	following	is	an	example	showing	how	to	create	a	Word	document	(.docx).	To	compile
this	example,	you	need	to	include	poi-3.9-20121203.jar,	poi-ooxml-3.9-20121203.jar	and
poi-ooxml-schemas-3.9-20121203.jar	in	the	classpath.	To	run	it,	in	addition	to	those	three
JARs	mentioned	above,	you	also	need	ooxml-lib	/xmlbeans-2.3.0.jar	and	ooxml-
lib/dom4j-1.6.1.jar.

import	java.io.FileOutputStream;

	

import	org.apache.poi.xwpf.usermodel.Borders;

import	org.apache.poi.xwpf.usermodel.ParagraphAlignment;

import	org.apache.poi.xwpf.usermodel.UnderlinePatterns;

import	org.apache.poi.xwpf.usermodel.XWPFDocument;

import	org.apache.poi.xwpf.usermodel.XWPFParagraph;

import	org.apache.poi.xwpf.usermodel.XWPFRun;

import	org.apache.poi.xwpf.usermodel.XWPFTable;

import	org.apache.poi.xwpf.usermodel.XWPFTableCell;

import	org.apache.poi.xwpf.usermodel.XWPFTableRow;

	

public	class	WordExample	{

public	static	void	main(String[]	args)	{

try	{

WordExample	word	=	new	WordExample();

XWPFDocument	doc	=	new	XWPFDocument();

//	title

XWPFParagraph	par1	=	doc.createParagraph();

XWPFRun	run1	=	par1.createRun();

run1.setText(“Thanks	for	your	order,”);

run1.setBold(true);

run1.setFontSize(12);

run1.setFontFamily(“Times	New	Roman”);

run1.addBreak();

XWPFParagraph	par2	=	doc.createParagraph();

par2.setBorderBottom(Borders.BASIC_WIDE_INLINE);

XWPFRun	run2	=	par2.createRun();

run2.setText(“Order	Summary:”);

run2.setColor(“0000ff”);	//	RRGGBB															

//	table

XWPFTable	table	=	doc.createTable(3,	4);

table.setCellMargins(10,	50,	10,	50);

XWPFTableRow	row	=	table.getRow(0);

word.getHeaderRow(row);

double	total	=	0;

total	=	total	+	word.getDataRow(table.getRow(1),	“Acer	ICONIA	TAB	A700”,

399.95,	2);	

total	=	total	+	word.getDataRow(table.getRow(2),	“ASUS	TF700T”,

425,	5);

//	total

XWPFParagraph	totalPar	=	doc.createParagraph();

totalPar.setSpacingBefore(512);	//	2	characters

XWPFRun	totalRun	=	totalPar.createRun();

totalRun.setText(String.format(“Total:	%8.2f”,	total));

totalRun.setBold(true);

totalRun.setUnderline(UnderlinePatterns.SINGLE);

totalRun.setFontSize(12);																																		

//	output																		

FileOutputStream	out	=	new	FileOutputStream(“po.docx”);

doc.write(out);

out.close();											

}	catch(Exception	ex)	{

System.out.println(ex);

}							

}

	

public	void	getHeaderRow(XWPFTableRow	row)	{

XWPFTableCell	cell	=	row.getCell(0);

getCellText(cell,	“Product	Name”,	true,	12,	ParagraphAlignment.LEFT);

cell	=	row.getCell(1);

getCellText(cell,	“Price”,	true,	12,	ParagraphAlignment.LEFT);

cell	=	row.getCell(2);

getCellText(cell,	“Quantity”,	true,	12,	ParagraphAlignment.LEFT);

cell	=	row.getCell(3);

getCellText(cell,	“Subtotal”,	true,	12,	ParagraphAlignment.LEFT);			

}

	

public	double	getDataRow(XWPFTableRow	row,	String	name,	double	price,	int
quantity)	{

XWPFTableCell	cell	=	row.getCell(0);

getCellText(cell,	name,	false,	12,	ParagraphAlignment.LEFT);

cell	=	row.getCell(1);

getCellText(cell,	String.format(“%8.2f”,	price),	false,	12,
ParagraphAlignment.RIGHT);

cell	=	row.getCell(2);

getCellText(cell,	String.format(“%5d”,	quantity),	false,	12,
ParagraphAlignment.RIGHT);

cell	=	row.getCell(3);

double	subtotal	=	price	*	quantity;

getCellText(cell,	String.format(“%8.2f”,	subtotal),	false,	12,
ParagraphAlignment.RIGHT);

	

return	subtotal;			

}			

	

public	XWPFParagraph	getCellText(XWPFTableCell	cell,	String	text,

boolean	bold,	int	fontSize,	ParagraphAlignment	alignment)	{

XWPFParagraph	par	=	cell.addParagraph();

par.setAlignment(alignment);			

XWPFRun	run1	=	par.createRun();

run1.setText(text);

run1.setFontSize(fontSize);

run1.setBold(bold);

	

return	par;							

}	

}

	

The	following	is	the	output:

	

Other	than	creating	paragraphs,	you	can	use	XWPFDocument	to	create	tables.	For
example,

XWPFTable	table	=	doc.createTable(3,	4);

A	table	is	represented	by	the	XWPFTable	class.	Here,	it	creates	an	empty	table	with	3
rows	and	4	columns.	If	you	use	the	createTable()	method,	it	creates	an	empty	table	with
one	row	and	one	column.	Since	rows	have	been	created	already	(with	no	data),	All	you
need	to	do	is	to	retrieve	them	by	using	the	getRow(int	pos)	method.	An	XWPFTableRow
is	returned.	If	needed,	you	still	can	use	the	createRow()	method	to	add	additional	rows.	A
row	contains	cells.	A	cell	is	represented	by	the	XWPFTableCell	class.	You	can	retrieve	a
cell	by	using	the	getCell(int	pos)	method.	pos	is	zero-based.	Basically,	a	cell	is	constructed
by	paragraphs.	You	can	add	paragraphs	into	a	cell	by	using	the	addParagraph()	method.
An	XWPFParagraph	is	created	and	returned.	So,	you	can	set	up	properties	of	a	cell	just
like	the	way	you	define	paragraphs.

	

JFreeChart
	

JFreeChart	is	a	chart	library	that	helps	you	to	create	a	variety	of	chart	types	such	as	pie
charts,	bar	charts,	line	charts	or	scatter	plots	in	your	Swing	applications.	Many	output
types	such	as	images	(JPEG	or	PNG)	are	supported.	JFreeChart	is	not	just	limited	to
desktop	applications.	It	can	be	used	on	the	server	side	such	as	servlets	or	JSPs	too.

You	can	download	JFreeChart	from	http://www.jfree.org/jfreechart.	The	latest	version	is
1.0.14	at	the	time	of	writing.

http://www.jfree.org/jfreechart

CREATING	A	SIMPLE	CHART

We	start	with	a	simple	example	to	demonstrate	how	to	create	a	chart	by	using	JFreeChart
in	a	Swing	application.	The	following	are	basic	steps	to	create	a	chart:

Step	1

For	a	Swing	application,	it	contains	at	least	one	top-level	container	to	contain	other	Swing
components.	There	are	four	top-level	containers:	JFrame,	JDialog,	JWindow	and	JApplet.
Each	top-level	container	has	a	content	pane	which	is	used	to	contain	visible	child
components	of	the	top-level	container.	Usually,	the	top-level	container	is	a	JFrame.	If	you
are	creating	an	applet	application,	you	can	use	a	JApplet.

Step	2

You	need	to	provide	the	data	set	for	the	chart	to	be	created.	As	for	which	dataset	class	to
use,	it	depends	on	the	chart	type.	The	following	are	major	dataset	types	(based	on	the
Dataset	interface):

PieDataset:	This	is	an	interface	for	a	dataset	that	contains	a	list	of	key-value	pairs.	The	key
should	be	unique	and	cannot	be	null.	You	can	use	the	DefaultPieDataset	class	to	create	a
dataset	for	a	pie	chart	or	ring	chart.

CategoryDataset:	This	is	an	interface	for	a	dataset	that	contains	one	or	more	data	series.
Each	data	series	has	values	associated	with	categories.	You	can	use	the
DefaultCategoryDataset	class	to	create	a	dataset	for	an	area	chart,	bar	chart,	line	chart,
multiple-pie	chart	or	waterfall	chart.

XYDataset:	This	is	an	interface	for	a	dataset	that	contains	data	in	the	form	of	(x,	y).	You
can	use	the	DefaultXYDataset	class	create	a	dataset	for	a	polar	chart,	scatter	plot	or	time
series	chart.

Step	3

Now,	you	can	create	a	chart	by	using	the	dataset	from	previous	step.	You	can	use	the
JFreeChart	class	to	construct	a	chart.	But,	an	easier	way	to	create	a	chart	is	to	use	a	utility
class,	ChartFactory,	to	create	a	chart.	For	example,	to	create	a	pie	chart,	you	can	use:

JFreeChart	ChartFactory.createPieChart(String	title,	PieDataset	dataset,	boolean	legend,
boolean	tooltips,	boolean	urls)

The	JFreeChart	class	represents	a	JFreeChart	chart,	which	coordinates	objects	to	draw	a
chart	based	on	the	Java	2D	API.	Those	objects	include	a	Dataset	mentioned	above.	It	also
includes	a	Plot	which	is	responsible	for	drawing	by	using	data	from	a	Dataset.	The	Plot
class	is	the	parent	class	of	all	plots.	Based	on	those	Datasets	mentioned	above,	the	PiePlot
class	is	for	PieDataset,	the	CategoryPlot	class	is	for	CategoryDataset	and	the	XYPlot	class
is	for	XYDataset.	You	can	use	the	getPlot()	method	to	get	the	Plot	for	the	chart	from	a
JFreeChart	object.

A	JFreeChart	also	contains	a	list	of	Title	objects	(the	main	title	and	subtitles	including
legend).	The	Title	class	is	the	parent	class	of	all	titles.	You	are	allowed	to	define	title
properties	such	as	alignments	(vertically	or	horizontally)	or	location	(top,	bottom,	left	or
right).	You	can	use	the	TextTitle	or	CompositeTitle	class	to	render	text	(or	texts)	or	use	the
ImageTitle	class	to	render	an	image.	The	legend	is	represented	by	the	LegendTitle	class.
You	can	add	a	subtitle	by	using	the	addSubtitle(Title	title)	method.

Step	4

To	display	a	chart	in	a	Swing	application,	you	can	use	the	ChartPanel	class	to	create	a
panel	for	a	JFreechart	object.	The	ChartPanel	class	inherits	the	JPanel	class.	To	construct	a
ChartPanel,	you	can	use	the	following	methods:

ChartPanel(JFreeChart	chart)

ChartPanel(JFreeChart	chart,	boolean	properties,	boolean	save,	boolean	print,	boolean
zoom,	boolean	tooltips):	This	allows	you	to	control	which	menu	items	will	be	available	in
the	popup	menu.	All	menu	items	are	available	by	default.

Step	5

You	add	the	chart	panel	to	a	container	and	the	remaining	is	just	the	usual	way	you	are
writing	a	Swing	application.

The	following	is	an	example	that	demonstrates	how	to	create	a	pie	chart	by	using	Java
Swing.	To	compile	and	run	this	example,	you	need	to	include	jfreechart-1.0.14.jar	and
jcommon-1.0.17.jar	under	the	lib	directory	of	JFreeChart	to	the	classpath:

import	java.awt.Color;

import	java.awt.Container;

import	java.awt.event.WindowAdapter;

import	java.awt.event.WindowEvent;

import	java.text.NumberFormat;

import	javax.swing.JFrame;

	

import	org.jfree.chart.ChartFactory;

import	org.jfree.chart.ChartPanel;

import	org.jfree.chart.JFreeChart;

import	org.jfree.chart.labels.StandardPieSectionLabelGenerator;

import	org.jfree.chart.plot.PiePlot;

import	org.jfree.chart.title.LegendTitle;

import	org.jfree.data.general.DefaultPieDataset;

import	org.jfree.data.general.PieDataset;

import	org.jfree.ui.RectangleEdge;

	

public	class	PieChartExample	{

public	static	void	main(String[]	args)	{

PieChartExample	chart	=	new	PieChartExample();

	

JFrame	frame	=	new	JFrame();

frame.setTitle(“Pie	Chart”);

Container	content	=	frame.getContentPane();

PieDataset	dataset	=	chart.createDataset();

String	title	=	“A	Pie	Chart”;

ChartPanel	chartPanel	=	chart.createChartPanel(dataset,	title);

content.add(chartPanel);

	

frame.addWindowListener(new	WindowAdapter()	{

public	void	windowClosing(WindowEvent	we)	{

System.exit(0);

}

});

	

frame.pack();

frame.setVisible(true);

}

	

public	PieDataset	createDataset()	{

DefaultPieDataset	dataset	=	new	DefaultPieDataset();

dataset.setValue(“Section	1”,	29);

dataset.setValue(“Section	2”,	20);

dataset.setValue(“Section	3”,	40);

dataset.setValue(“Section	4”,	11);

	

return	dataset;			

}

	

public	ChartPanel	createChartPanel(PieDataset	dataset,	String	title)	{

JFreeChart	chart	=	ChartFactory.createPieChart(title,

dataset,	true,	true,	false);

chart.setBackgroundPaint(Color.LIGHT_GRAY);											

LegendTitle	legend	=	chart.getLegend();

legend.setPosition(RectangleEdge.RIGHT);

PiePlot	plot	=	(PiePlot)chart.getPlot();

plot.setBackgroundPaint(Color.WHITE);

plot.setOutlineVisible(false);

plot.setCircular(true);

plot.setLabelGenerator(new	StandardPieSectionLabelGenerator(

“{0}	=	{1}	({2})”,	NumberFormat.getNumberInstance(),

NumberFormat.getPercentInstance()));

plot.setNoDataMessage(“No	data	available”);

	

ChartPanel	chartPanel	=	new	ChartPanel(chart);

	

return	chartPanel;							

}

}

The	following	is	a	screenshot	of	this	example.	You	can	bring	up	the	popup	menu	by	right-
clicking	on	the	mouse.	But,	you	cannot	zoom	in	or	zoom	out	a	pie	chart:

By	default,	the	chart	legend	is	located	at	the	bottom.	You	can	use	the
setPosition(RectangleEdge	position)	method	provided	by	the	LegendTitle	class	to	change
its	position.	Available	values	are	RectangleEdge.BOTTOM,	RectangleEdge.LEFT,
RectangleEdge.RIGHT	and	RectangleEdge.TOP.

To	change	section	labels	in	a	pie	chart,	you	can	use	the
setLabelGenerator(PieSectionLabelGenerator	generator)	method	provided	by	the	PiePlot
class.	If	it	is	null,	there	are	no	section	labels.	Also,	you	can	use	a	standard	section	label
generator	by	providing	a	format	string.	For	example,

setLabelGenerator(new	StandardPieSectionLabelGenerator(“{0}	=	{1}	({2})”,
NumberFormat.getNumberInstance(),	NumberFormat.getPercentInstance()));

{0}	is	for	the	section	key,	{1}	is	for	the	section	value	and	{2}	is	for	the	percentage.

Or,	you	can	create	a	custom	label	generator	by	implementing	the
PieSectionLabelGenerator	interface.

Similarly,	if	you	want	to	control	the	format	of	a	tooltip,	you	can	use	the
setToolTipGenerator(PieToolTipGenerator	generator)	method.	If	it	is	null,	there	will	be	no
tooltip.	A	standard	tooltip	generator	is	provided	by	the	StandardPieToolTipGenerator
class.	StandardPieSectionLabelGenerator	and	StandardPieToolTipGenerator	inherit	the
same	parent	class.	So,	the	usage	is	the	same.

To	define	the	starting	angle	of	a	pie	chart,	you	can	use:

void	setStartAngle(double	angle):	sets	the	starting	angle	in	degrees.	The	default	value	is
90	degrees	(at	12	o’clock).		A	value	of	zero	is	at	3	o’clock.

To	define	the	drawing	direction,	you	can	use:

void	setDirection(Rotation	rotation):	sets	the	drawing	direction	(either
Rotation.CLOCKWISE	or	Rotation.ANTICLOCKWISE).	By	default,	it	is
Rotation.ANTICLOCKWISE.

To	set	custom	color	or	color	pattern	on	a	section,	you	can	use	the
setSectionPaint(Comparable	key,	Paint	paint)	method.	For	example,	the	following	code
snippet	sets	color	on	each	section:

int	value	=	0;

for(Object	key	:	dataset.getKeys())	{

plot.setSectionPaint((Comparable)key,	new	Color(value,	255,	value));

value	=	value	+	50;

}

	

You	can	create	a	pie	chart	with	3D	effect	by	using	ChartFactory.createPieChart3D.	The
chart	object	uses	a	PiePlot3D	as	the	plot.

JFreeChart	provides	a	rich	set	of	charts.	We	are	not	able	to	go	through	all	of	them.	A	trick
on	using	or	customizing	a	chart	is	that	you	need	to	know	those	classes	representing	the
three	basic	objects	in	a	chart:	plot,	axis	and	renderer.	If	you	are	using	ChartFactory	to
create	a	chart,	you	can	find	the	information	from	the	method	creating	the	chart.	For
JFreeChart	API	documentation,	you	can	check	http://www.jfree.org/jfreechart/api/javadoc.
For	JCommon	API	documentation,	you	can	check	http://www.jfree.org/jcommon/api.

http://www.jfree.org/jfreechart/api/javadoc
http://www.jfree.org/jcommon/api

CREATING	A	BAR	CHART

Next,	we	will	talk	about	using	the	second	type	of	dataset,	CategoryDataset.	One	of	the
chart	types	using	the	CategoryDataset	is	the	bar	chart.	To	create	a	bar	chart,	you	can	use:

JFreeChart	ChartFactory.createBarChart(String	title,	String	categoryAxisLabel,	String
valueAxisLabel,	CategoryDataset	dataset,	PlotOrientation	orientation,	boolean	legend,
boolean	tooltips,	boolean	urls)

You	use	either	PlotOrientation.VERTICAL	to	create	a	vertical	bar	chart	or
PlotOrientation.HORIZONTAL	to	create	a	horizontal	bar	chart.	For	a	vertical	bar	chart,
the	value	axis	is	on	the	y-direction	and	the	category	axis	is	on	the	x-direction.	The	value
axis	(or	range	axis),	which	is	represented	by	the	ValueAxis	(or	its	subclass	NumberAxis)
class,	is	an	axis	for	displaying	numerical	data.	Through	this	class,	you	can	define	axis
properties	such	as	ticks	or	value	range.	The	category	axis	(or	domain	axis),	which	is
represented	by	the	CategoryAxis	class,	is	an	axis	for	displaying	categories.	Through	this
class,	you	can	define	axis	properties	such	as	category	label	position.

A	bar	chart	can	contain	more	than	one	data	series.	You	can	use	the
DefaultCategoryDataset	class	to	create	a	dataset	for	the	pie	chart	by	using	the	following
method:

void	addValue(double	value,	Comparable	rowKey,	Comparable	columnKey):	rowKey	is
the	data	series	name.	columnKey	is	the	category	name.

To	add	markers	to	the	plot,	you	can	use	the	addRangeMarker(Marker	marker,	Layer	layer)
method.	You	can	use	either	Layer.FOREGROUND	or	Layer.BACKGROUND.	To	mark	a
range	of	values,	you	can	use	the	IntervalMarker	class.	To	mark	a	single	value,	you	can	use
the	ValueMarker	class.	If	you	need	to	mark	categories,	you	can	use	the
addDomainMarker(CategoryMarker	marker,	Layer	layer)	method.

In	the	following	example,	it	creates	a	vertical	bar	chart.	In	the	bar	chart,	there	are	three
data	series.	Each	data	series	has	four	categories:

import	java.awt.Color;

import	java.awt.Container;

import	java.awt.event.WindowAdapter;

import	java.awt.event.WindowEvent;

import	java.text.DecimalFormat;

import	javax.swing.JFrame;

	

import	org.jfree.chart.ChartFactory;

import	org.jfree.chart.ChartPanel;

import	org.jfree.chart.JFreeChart;

import	org.jfree.chart.axis.NumberAxis;

import	org.jfree.chart.axis.NumberTickUnit;

import	org.jfree.chart.plot.CategoryPlot;

import	org.jfree.chart.plot.IntervalMarker;

import	org.jfree.chart.plot.PlotOrientation;

import	org.jfree.data.category.DefaultCategoryDataset;

import	org.jfree.data.category.CategoryDataset;

import	org.jfree.ui.Layer;

import	org.jfree.ui.RectangleAnchor;

import	org.jfree.ui.TextAnchor;

	

public	class	BarChartExample	{

public	static	void	main(String[]	args)	{

BarChartExample	chart	=	new	BarChartExample();

	

JFrame	frame	=	new	JFrame();

frame.setTitle(“Bar	Chart”);

Container	content	=	frame.getContentPane();

CategoryDataset	dataset	=	chart.createDataset();

String	title	=	“A	Bar	Chart”;

ChartPanel	chartPanel	=	chart.createChartPanel(dataset,	title);

content.add(chartPanel);

	

frame.addWindowListener(new	WindowAdapter()	{

public	void	windowClosing(WindowEvent	we)	{

System.exit(0);

}

});

	

frame.pack();

frame.setVisible(true);

}

	

public	CategoryDataset	createDataset()	{

DefaultCategoryDataset	dataset	=	new	DefaultCategoryDataset();

double[][]	data	=	new	double[][]{

{80,	60,	70,	90},	{85,	70,	60,	80},	{90,	55,	80,	95}

};

String[]	series	=	new	String[]	{“Series	1”,	“Series	2”,	“Series	3”};

String[]	categories	=	new	String[]	{“Category	1”,	“Category	2”,

“Category	3”,	“Category	4”};

for(int	ser	=	0;	ser	<=	2;	ser++)	{

for(int	cat	=	0;	cat	<	4;	cat++)	{

dataset.addValue(data[ser][cat],	series[ser],	categories[cat]);

}

}

	

return	dataset;			

}

	

public	ChartPanel	createChartPanel(CategoryDataset	dataset,	String	title)	{

JFreeChart	chart	=	ChartFactory.createBarChart(title,

“Category”,	“Value”,	dataset,	PlotOrientation.VERTICAL,	true,	true,	false);

chart.setBackgroundPaint(Color.LIGHT_GRAY);	

CategoryPlot	plot	=	(CategoryPlot)chart.getPlot();

plot.setBackgroundPaint(Color.WHITE);

plot.setOutlineVisible(false);

//	grid	lines

plot.setDomainGridlinePaint(Color.BLACK);	//	for	the	category	axis

plot.setDomainGridlinesVisible(true);

plot.setRangeGridlinePaint(Color.BLACK);	//	for	the	value	axis

//	ticks	on	the	value	axis

NumberAxis	valueAxis	=	(NumberAxis)plot.getRangeAxis();

valueAxis.setMinorTickMarksVisible(true);

valueAxis.setTickUnit(new	NumberTickUnit(20,	new	DecimalFormat(“#,##0.00”),	4));

valueAxis.setUpperBound(100);

valueAxis.setLowerBound(0);

//	interval	markers

IntervalMarker	target	=	new	IntervalMarker(90,	100);

target.setLabel(“Excellent”);

target.setLabelAnchor(RectangleAnchor.BOTTOM_LEFT);

target.setLabelTextAnchor(TextAnchor.BASELINE_LEFT);

target.setPaint(new	Color(0,	255,	0,	50));

plot.addRangeMarker(target,	Layer.BACKGROUND);

target	=	new	IntervalMarker(80,	90);

target.setLabel(“Great”);

target.setLabelAnchor(RectangleAnchor.BOTTOM_LEFT);

target.setLabelTextAnchor(TextAnchor.BASELINE_LEFT);

target.setPaint(new	Color(0,	150,	0,	50));

plot.addRangeMarker(target,	Layer.BACKGROUND);									

	

plot.setNoDataMessage(“No	data	available”);

	

ChartPanel	chartPanel	=	new	ChartPanel(chart);

	

return	chartPanel;							

}

}

The	following	is	a	screenshot	of	this	example.	It	has	two	highlighted	intervals	created	by
the	IntervalMarker	class:

JFreechart	has	a	utility	class	related	to	datasets.	It	can	be	handy	for	creating	a
CategoryDataset	if	there	are	many	data	series.	For	example,	to	create	a	CategoryDataset,
you	can	use:

CategoryDataset	DatasetUtilities.createCategoryDataset(Comparable[]	rowKeys,
Comparable[]	columnKeys,	double[][]	data)

For	the	dataset	in	this	example,	you	can	use	DatasetUtilities.createCategoryDataset(series,
categories,	data).

To	use	custom	color	or	color	pattern	on	bars,	you	can	do	that	through	a	BarRenderer.	You
can	get	a	BarRenderer	from	the	getRenderer()	method	provided	by	the	CategoryPlot	class.
To	set	the	paint	for	a	series,	you	can	use	the	setSeriesPaint(int	series,	Paint	paint)	method
from	the	BarRenderer	class.	The	series	index	is	zero-based.

If	the	data	series	contains	date	(or	time)	data,	you	can	use	the	setRangeAxis(ValueAxis
axis)	method	from	the	CategoryPlot	class	to	pass	in	a	DateAxis.	The	DateAxis	is	a
subclass	of	ValueAxis,	which	is	used	to	display	dates.	The	actual	data	stored	in	the	dataset
are	still	numbers	(the	data	type	is	long).	But,	those	numbers	are	formatted	as	dates.	The
subclasses	(e.g.,	Day,	Hour)	of	the	RegularTimePeriod	class	provide	convenient	ways	to
calculate	certain	time	periods	or	are	used	to	represent	a	certain	date	or	time.

You	can	create	a	bar	chart	with	3D	effect	by	using	ChartFactory.createBarChart3D.	The
chart	object	uses	a	CategoryPlot	as	the	plot.	The	value	axis	is	represented	by	the
NumberAxis3D	class.	The	category	axis	is	represented	by	the	CategoryAxis3D	class.

CREATING	A	SCATTER	PLOT

In	the	following	example,	we	will	show	how	to	create	a	scatter	plot	using	the	third	type	of
dataset,	XYDataset.	A	scatter	plot	is	used	to	plot	numerical	data.	Both	axes	are
NumberAxis	and	the	default	render	is	an	XYLineAndShapeRenderer	(of	type
XYItemRenderer).	In	this	example,	the	x-direction	axis	is	for	date.	So,	it	is	replaced	by	a
DateAxis.	A	TimeSeries	is	used	to	contain	a	sequence	of	data	for	a	period	of	time.	The
TimeSeriesCollection	class	implements	XYDataset.	It	is	used	to	contain	a	collection	of
TimeSeries	objects.

The	renderer	for	a	scatter	plot	is	an	XYLineAndShapeRenderer	which	is	used	to	draw	data
points	and	connect	data	points	together.	You	can	use	it	to	customize	how	a	series	is
plotted.	Or,	you	can	replace	it	with	a	built-in	renderer	by	using	the
setRenderer(XYItemRenderer	renderer)	method.	There	are	many	renderers	that	implement
the	XYItemRenderer	interface.	For	example,	the	StandardXYItemRenderer	class	is	for
drawing	points	and/or	lines,	the	XYBarRenderer	class	is	for	drawing	bars	and	the
XYAreaRenderer	class	is	for	drawing	filled	areas.

Just	like	previous	example,	you	can	mark	the	plot	with	markers.	Here,	we	use	the
ValueMarker	class	to	mark	single	value.	There	are	four	ValueMarker	objects	on	the
domain	axis	and	one	ValueMarker	object	on	the	range	axis.	If	you	need	to	annotate	a
specific	data	point,	you	can	use	the	addAnnotation(XYAnnotation	annotation)	method.

import	java.awt.Color;

import	java.awt.Container;

import	java.awt.event.WindowAdapter;

import	java.awt.event.WindowEvent;

import	java.awt.geom.Ellipse2D;

import	java.text.DecimalFormat;

import	java.text.SimpleDateFormat;

import	javax.swing.JFrame;

	

import	org.jfree.chart.ChartFactory;

import	org.jfree.chart.ChartPanel;

import	org.jfree.chart.JFreeChart;

import	org.jfree.chart.axis.DateAxis;

import	org.jfree.chart.axis.NumberAxis;

import	org.jfree.chart.axis.NumberTickUnit;

import	org.jfree.chart.plot.Marker;

import	org.jfree.chart.plot.ValueMarker;

import	org.jfree.chart.plot.XYPlot;

import	org.jfree.chart.plot.PlotOrientation;

import	org.jfree.chart.renderer.xy.XYLineAndShapeRenderer;

import	org.jfree.data.time.Month;

import	org.jfree.data.time.TimeSeries;

import	org.jfree.data.time.TimeSeriesCollection;

import	org.jfree.data.xy.XYDataset;

import	org.jfree.ui.RectangleAnchor;

import	org.jfree.ui.TextAnchor;

	

public	class	ScatterPlotExample	{

public	static	void	main(String[]	args)	{

ScatterPlotExample	chart	=	new	ScatterPlotExample();

	

JFrame	frame	=	new	JFrame();

frame.setTitle(“Scatter	Plot”);

Container	content	=	frame.getContentPane();

XYDataset	dataset	=	chart.createDataset();

String	title	=	“A	Scatter	Plot”;

ChartPanel	chartPanel	=	chart.createChartPanel(dataset,	title);

content.add(chartPanel);

	

frame.addWindowListener(new	WindowAdapter()	{

public	void	windowClosing(WindowEvent	we)	{

System.exit(0);

}

});

	

frame.pack();

frame.setVisible(true);

}

	

public	XYDataset	createDataset()	{

TimeSeries	s1	=	new	TimeSeries(“Series	1”);

s1.add(new	Month(1,	2012),	70.1);							

s1.add(new	Month(2,	2012),	67.5);

s1.add(new	Month(3,	2012),	65.2);

s1.add(new	Month(4,	2012),	55.9);

s1.add(new	Month(5,	2012),	60.4);

s1.add(new	Month(6,	2012),	66.0);

s1.add(new	Month(7,	2012),	75.2);

s1.add(new	Month(8,	2012),	80.6);

s1.add(new	Month(9,	2012),	81.8);

s1.add(new	Month(10,	2012),	85.1);

s1.add(new	Month(11,	2012),	88.3);

s1.add(new	Month(12,	2012),	91.7);

	

TimeSeriesCollection	dataset	=	new	TimeSeriesCollection();

dataset.addSeries(s1);

	

return	dataset;			

}

	

public	ChartPanel	createChartPanel(XYDataset	dataset,	String	title)	{

JFreeChart	chart	=	ChartFactory.createScatterPlot(title,

“Date”,	“Value”,	dataset,	PlotOrientation.VERTICAL,	true,	true,	false);

XYPlot	plot	=	(XYPlot)chart.getPlot();

//	grid	lines

plot.setDomainGridlinePaint(Color.BLACK);	//	for	the	month	axis

plot.setDomainGridlinesVisible(true);

plot.setRangeGridlinePaint(Color.BLACK);	//	for	the	value	axis

//	ticks	on	the	value	axis

NumberAxis	valueAxis	=	(NumberAxis)plot.getRangeAxis();

valueAxis.setMinorTickMarksVisible(true);

valueAxis.setTickUnit(new	NumberTickUnit(20,	new	DecimalFormat(“#,##0.00”),	4));

valueAxis.setUpperBound(100);

valueAxis.setLowerBound(0);

//	replace	original	NumberAxis	by	DateAxis

DateAxis	dateAxis	=	new	DateAxis(“Month”);

dateAxis.setLabelFont(valueAxis.getLabelFont());

plot.setDomainAxis(dateAxis);

dateAxis.setDateFormatOverride(new	SimpleDateFormat(“MMM-yy”));

//	markers

for(int	i	=	0;	i	<=	3;	i++)	{

Month	month	=	new	Month(i*3+1,	2012);

Marker	marker	=	new	ValueMarker(month.getFirstMillisecond());

marker.setPaint(Color.GREEN);

marker.setLabel(“Quarter	”	+	(i+1));

marker.setLabelAnchor(RectangleAnchor.TOP_RIGHT);

marker.setLabelTextAnchor(TextAnchor.TOP_LEFT);

plot.addDomainMarker(marker);

}

Marker	marker	=	new	ValueMarker(80);

marker.setPaint(Color.BLUE);

marker.setLabel(“Baseline”);

marker.setLabelAnchor(RectangleAnchor.BOTTOM_RIGHT);

marker.setLabelTextAnchor(TextAnchor.TOP_RIGHT);

plot.addRangeMarker(marker);

//	renderer

XYLineAndShapeRenderer	renderer	=	(XYLineAndShapeRenderer)plot.getRenderer();

renderer.setSeriesPaint(0,	Color.MAGENTA);

renderer.setSeriesShape(0,	new	Ellipse2D.Double(-4,	-4,	8,	8));

renderer.setSeriesLinesVisible(0,	true);				

	

ChartPanel	chartPanel	=	new	ChartPanel(chart);

	

return	chartPanel;							

}

}

The	following	is	a	screenshot	of	this	example.	It	has	four	makers	on	the	domain	axis	and
one	maker	on	the	range	axis:

CREATING	A	COMBINED	CHART

So	far,	we	only	discuss	about	using	the	ChartFactory	class	to	create	a	chart.	Now,	we	will
discuss	how	to	use	the	JFreeChart	class	to	create	a	chart.	Also,	we	will	learn	how	to
combine	charts	together	with	a	common	range	or	domain	axis.	You	can	use	the	following
constructors	to	create	a	combined	plot:

CombinedDomainCategoryPlot(CategoryAxis	domainAxis)	:	A	combined	category	plot
where	the	domain	axis	is	shared.

CombinedDomainXYPlot(ValueAxis	valueAxis)	:	A	combined	XY	plot	where	the	domain
axis	is	shared.

CombinedRangeCategoryPlot(ValueAxis	valueAxis)	:	A	combined	category	plot	where
the	range	axis	is	shared.

CombinedRangeXYPlot(ValueAxis	valueAxis):	A	combined	XY	plot	where	the	range	axis
is	shared.

Once	the	combined	plot	is	constructed,	you	can	add	plots	into	it.	Take	a
CombinedDomainXYPlot	as	an	example,	you	can	use	the	add(XYPlot	plot)	or
add(XYPlot	plot,	int	weight)	method.	The	weight	determines	how	much	space	a	plot	is
occupied	relative	to	others.	The	default	value	is	1.	To	construct	an	XYPlot,	you	can	use:

XYPlot(XYDataset	dataset,	ValueAxis	domainAxis,	ValueAxis	rangeAxis,
XYItemRenderer	renderer):	If	this	plot	is	going	to	be	added	into	a
CombinedDomainXYPlot,	domainAxis	is	null.	If	it	is	going	to	be	added	into	a
CombinedRangeXYPlot,	rangeAxis	is	null.

To	construct	a	Categorylot,	you	can	use:

CategoryPlot(CategoryDataset	dataset,	CategoryAxis	domainAxis,	ValueAxis	rangeAxis,
CategoryItemRenderer	renderer):	If	this	plot	is	going	to	be	added	into	a
CombinedDomainCategoryPlot,	domainAxis	is	null.	If	it	is	going	to	be	added	into	a
CombinedRangeCategoryPlot,	rangeAxis	is	null.

To	construct	a	combined	chart,	you	can	use	the	following	constructors:

JFreeChart(String	title,	Font	font,	Plot	plot,	boolean	createLegend)

JFreeChart(String	title,	Plot	plot)

In	this	example,	we	are	using	data	from	the	previous	example	to	draw	a	chart	with	two
plots	with	the	same	data	and	shared	domain	axis.	One	is	a	scatter	plot	with	lines
connecting	data	points	together	and	the	other	is	using	filled	areas:

import	java.awt.Color;

import	java.awt.Container;

import	java.awt.event.WindowAdapter;

import	java.awt.event.WindowEvent;

import	java.text.DecimalFormat;

import	java.text.SimpleDateFormat;

import	javax.swing.JFrame;

	

import	org.jfree.chart.ChartFactory;

import	org.jfree.chart.ChartPanel;

import	org.jfree.chart.JFreeChart;

import	org.jfree.chart.axis.DateAxis;

import	org.jfree.chart.axis.NumberAxis;

import	org.jfree.chart.axis.NumberTickUnit;

import	org.jfree.chart.plot.CombinedDomainXYPlot;

import	org.jfree.chart.plot.XYPlot;

import	org.jfree.data.time.Month;

import	org.jfree.data.time.TimeSeries;

import	org.jfree.data.time.TimeSeriesCollection;

import	org.jfree.chart.renderer.xy.StandardXYItemRenderer;

import	org.jfree.chart.renderer.xy.XYAreaRenderer;

import	org.jfree.chart.renderer.xy.XYItemRenderer;

import	org.jfree.data.xy.XYDataset;

	

public	class	CombinedChartExample	{

public	static	void	main(String[]	args)	{

CombinedChartExample	chart	=	new	CombinedChartExample();

	

JFrame	frame	=	new	JFrame();

frame.setTitle(“Combined	Chart”);

Container	content	=	frame.getContentPane();

String	title	=	“A	Combined	Chart”;

ChartPanel	chartPanel	=	chart.createChartPanel(title);

content.add(chartPanel);

	

frame.addWindowListener(new	WindowAdapter()	{

public	void	windowClosing(WindowEvent	we)	{

System.exit(0);

}

});

	

frame.pack();

frame.setVisible(true);

}

	

public	XYDataset	createDataset(String	name)	{

TimeSeries	s1	=	new	TimeSeries(name);

s1.add(new	Month(1,	2012),	70.1);							

s1.add(new	Month(2,	2012),	67.5);

s1.add(new	Month(3,	2012),	65.2);

s1.add(new	Month(4,	2012),	55.9);

s1.add(new	Month(5,	2012),	60.4);

s1.add(new	Month(6,	2012),	66.0);

s1.add(new	Month(7,	2012),	75.2);

s1.add(new	Month(8,	2012),	80.6);

s1.add(new	Month(9,	2012),	81.8);

s1.add(new	Month(10,	2012),	85.1);

s1.add(new	Month(11,	2012),	88.3);

s1.add(new	Month(12,	2012),	91.7);

	

TimeSeriesCollection	dataset	=	new	TimeSeriesCollection();

dataset.addSeries(s1);

	

return	dataset;			

}

	

public	XYPlot	createXYPlot(XYDataset	dataset,	String	valueAxisLabel,

XYItemRenderer	renderer)	{

XYPlot	plot	=	new	XYPlot(dataset,	null,	new	NumberAxis(valueAxisLabel),

renderer);			

//	grid	lines

plot.setDomainGridlinePaint(Color.BLACK);	//	for	the	month	axis

plot.setDomainGridlinesVisible(true);

plot.setRangeGridlinePaint(Color.BLACK);	//	for	the	value	axis

//	ticks	on	the	value	axis

NumberAxis	valueAxis	=	(NumberAxis)plot.getRangeAxis();

valueAxis.setMinorTickMarksVisible(true);

valueAxis.setTickUnit(new	NumberTickUnit(20,	new	DecimalFormat(“#,##0.00”),	4));

valueAxis.setUpperBound(100);

valueAxis.setLowerBound(0);

	

return	plot;							

}

	

public	ChartPanel	createChartPanel(String	title)	{

//	create	a	combined	domain	plot	on	DateAxis

DateAxis	dateAxis	=	new	DateAxis(“Month”);

dateAxis.setDateFormatOverride(new	SimpleDateFormat(“MMM-yy”));

CombinedDomainXYPlot	combinedPlot	=	new	CombinedDomainXYPlot(dateAxis);

combinedPlot.setGap(15);

//	plot	1

XYDataset	dataset1	=	createDataset(“Series	1”);

XYPlot	plot1	=	createXYPlot(dataset1,	“Value	1”,

new	StandardXYItemRenderer(StandardXYItemRenderer.SHAPES_AND_LINES));

combinedPlot.add(plot1,	1);

//	plot	2

XYDataset	dataset2	=	createDataset(“Series	2”);

XYPlot	plot2	=	createXYPlot(dataset2,	“Value	2”,	new	XYAreaRenderer());

combinedPlot.add(plot2,	1);							

	

JFreeChart	chart	=	new	JFreeChart(title,	JFreeChart.DEFAULT_TITLE_FONT,

combinedPlot,	true);							

ChartPanel	chartPanel	=	new	ChartPanel(chart);

	

return	chartPanel;							

}

}

The	following	is	the	screenshot	of	this	example:

MAKING	A	CHART	CLICKABLE

To	make	a	chart	respond	to	a	mouse	event,	you	can	register	a	ChartMouseListener	to	the
ChartPanel	by	using	the	addChartMouseListener(ChartMouseListener	listener)	method.
When	the	chart	is	clicked,	the	ChartPanel	will	send	a	ChartMouseEvent	notification	to	the
registered	listener.

The	following	code	snippet	shows	how	to	make	a	pie	chart	clickable.	When	any	section	is
clicked,	it	pops	up	a	dialog	showing	the	section	name:

final	ChartPanel	chartPanel	=	new	ChartPanel(chart);

chartPanel.addChartMouseListener(new	ChartMouseListener()	{

public	void	chartMouseClicked(ChartMouseEvent	event)	{

PieSectionEntity	entity	=	(PieSectionEntity)event.getEntity();

JOptionPane.showMessageDialog(chartPanel,	entity.getSectionKey());															

}

	

public	void	chartMouseMoved(ChartMouseEvent	event)	{

}						

});

	

You	can	get	the	entity	information	related	to	this	mouse	event	by	using	the	getEntity()
method.	A	ChartEntity	is	returned.	The	ChartEntity	class	is	the	parent	class	of	chart	entity
classes.	The	actual	entity	class	depends	on	the	chart	type.	For	a	pie	chart,	it	is	the
PieSectionEntity	class.

Other	useful	mouse	behavior	you	can	enable	is	the	mouse	wheel	behavior.	To	enable	it,
you	can	use	the	setMouseWheelEnabled(boolean	flag)	method.	For	a	pie	chart,	you	can
rotate	the	chart	once	it	is	enabled.	For	a	chart	with	axes,	you	can	zoom	in	or	zoom	out	if
the	chart	is	zoomable.

DISPLAYING	A	CHART	IN	A	WEB	PAGE

It	is	not	required	to	have	GUI	to	use	JFreeChart.	You	can	generate	a	chart	and	write	it	out
directly	without	showing	it	on	the	screen.	JFreeChart	provides	a	utility	class,
ChartUtilities,	which	can	covert	charts	into	certain	image	formats	(JPEG	or	PNG).	To	save
a	chart	to	an	image	file,	you	can	use	the	following	static	methods:

saveChartAsJPEG(File	file,	float	quality,	JFreeChart	chart,	int	width,	int	height):	The
quality	is	in	the	range	0.0f	to	1.0f.

saveChartAsJPEG(File	file,	JFreeChart	chart,	int	width,	int	height)

saveChartAsPNG(File	file,	JFreeChart	chart,	int	width,	int	height)

You	also	can	choose	to	write	it	to	an	OutputStream:

writeChartAsJPEG(OutputStream	out,	float	quality,	JFreeChart	chart,	int	width,	int	height)

writeChartAsJPEG(OutputStream	out,	JFreeChart	chart,	int	width,	int	height)

writeChartAsPNG(OutputStream	out,	JFreeChart	chart,	int	width,	int	height)

To	use	JFreeChart	in	a	web	application,	you	can	use	those	methods	to	display	a	chart	on	a
web	page	by	writing	it	as	an	image.	The	following	is	the	code	snippet	of	a	servlet:

public	void	doPost(HttpServletRequest	request,	HttpServletResponse	response)

throws	IOException,	ServletException	{

…

response.setContentType(“image/png”);

OutputStream	out	=	response.getOutputStream();

ChartUtilities.writeChartAsPNG(out,	chart,	640,	480);

output.flush();

output.close();

}

	

The	ChartUtilities	class	also	can	generate	an	image	map	that	can	be	used	in	an	HTML
page.	An	image	map	contains	a	list	of	coordinates	related	to	an	image.	It	allows	you	to
make	a	chart	clickable	or	show	tooltips	from	the	web	page.	To	write	an	image	map	to	an
output	stream,	you	can	use:

writeImageMap(PrintWriter	writer,	String	name,	ChartRenderingInfo	info,	boolean
userOverLibForToolTips)

To	generate	an	image	map,	you	need	to	provide	a	ChartRenderingInfo.	A
ChartRenderingInfo	contains	information	about	dimensions	and	entities	of	a	chart.	You

can	collect	chart	information	by	passing	in	a	ChartRenderingInfo	to	some	saveXXX	or
writeXXX	method.

In	the	following	example,	an	HTML	page	is	created	with	an	image	map	of	a	pie	chart.	To
make	each	section	on	the	pie	chart	clickable,	you	need	to	enable	URL	generation	while
using	ChartFactory	to	create	the	pie	chart.	To	define	the	base	URL	for	each	section,	you
can	use	the	setURLGenerator(PieURLGenerator	generator)	method	to	assign	a
PieURLGenerator.	There	are	two	classes	that	implement	the	PieURLGenerator	interface:
the	StandardPieURLGenerator	and	CustomPieURLGenerator	classes.	The
StandardPieURLGenerator	class	is	the	default	URL	generator	for	the	PiePlot.	You	can	use
the	following	constructors	to	construct	a	StandardPieURLGenerator:

StandardPieURLGenerator(String	prefix)

StandardPieURLGenerator(String	prefix,	String	categoryParamName)

StandardPieURLGenerator(String	prefix,	String	categoryParamName,	String
indexParamName)

Parameter	prefix	is	for	the	base	URL.	Parameter	categoryParamName	is	to	define	the
query	parameter	for	the	category	name.	Parameter	indexParamName	is	to	define	the	query
parameter	for	the	pie	index.	For	example,	if	the	prefix	is	http://www.my.site/mychart.html,
the	URL	for	one	of	the	sections	looks	like	the	following:

http://www.my.site/mychart.html?category=Section+4&pieIndex=0

Also,	you	can	use	the	CustomPieURLGenerator	class	to	assign	a	map	containing	(key,
URL)	mapping	by	using	the	addURLs(Map	urlMap)	method.	For	a	MultiplePiePlot,	you
can	assign	multiple	maps.

import	java.io.BufferedOutputStream;

import	java.io.File;

import	java.io.FileOutputStream;

import	java.io.IOException;

import	java.io.OutputStream;

import	java.io.PrintWriter;

	

import	org.jfree.chart.ChartFactory;

import	org.jfree.chart.ChartRenderingInfo;

import	org.jfree.chart.ChartUtilities;

import	org.jfree.chart.JFreeChart;

import	org.jfree.chart.entity.StandardEntityCollection;

import	org.jfree.chart.labels.StandardPieSectionLabelGenerator;

import	org.jfree.chart.plot.PiePlot;

import	org.jfree.chart.urls.StandardPieURLGenerator;

import	org.jfree.data.general.DefaultPieDataset;

import	org.jfree.data.general.PieDataset;

	

public	class	ImageMapExample	{

public	static	void	main(String[]	args)	{

try	{

ImageMapExample	chart	=	new	ImageMapExample();

PieDataset	dataset	=	chart.createDataset();

String	title	=	“A	Pie	Chart”;

JFreeChart	jfchart	=	chart.createChart(dataset,	title);

ChartRenderingInfo	info	=	new	ChartRenderingInfo(new	StandardEntityCollection());

//	save	the	chart	as	an	image

File	imageFile	=	new	File(“piechart.png”);

ChartUtilities.saveChartAsPNG(imageFile,	jfchart,	640,	480,	info);

//	create	an	HTML	page	with	an	image	map

File	htmlFile	=	new	File(“piechart.html”);

OutputStream	out	=	new	BufferedOutputStream(new	FileOutputStream(htmlFile));

PrintWriter	writer	=	new	PrintWriter(out);

writer.println(“<HTML>”);

writer.println(“<HEAD><TITLE>A	Pie	Chart</TITLE></HEAD>”);

writer.println(“<BODY>”);

ChartUtilities.writeImageMap(writer,	“chart”,	info,	false);

writer.println(“<IMG	SRC=\“piechart.png\”	WIDTH=\“640\”	”	+

“HEIGHT=\“480\”	BORDER=\“0\”	USEMAP=\”#chart\”>”);

writer.println(“</BODY>”);

writer.println(“</HTML>”);

writer.close();											

}	catch(IOException	ex){

System.out.println(ex);

}

}

	

public	PieDataset	createDataset()	{

DefaultPieDataset	dataset	=	new	DefaultPieDataset();

dataset.setValue(“Section	1”,	29);

dataset.setValue(“Section	2”,	20);

dataset.setValue(“Section	3”,	40);

dataset.setValue(“Section	4”,	11);

	

return	dataset;			

}

	

public	JFreeChart	createChart(PieDataset	dataset,	String	title)	{

JFreeChart	chart	=	ChartFactory.createPieChart(title,

dataset,	true,	true,	true);	//	enable	URLs

PiePlot	plot	=	(PiePlot)chart.getPlot();

//	set	base	URL

plot.setURLGenerator(new
StandardPieURLGenerator(“http://www.my.site/mychart.html”));

	

return	chart;							

}

}

The	following	is	an	HTML	page	with	an	image	map	showing	on	a	browser:

Similarly,	the	CategoryPlot	class	allows	you	to	assign	a	CategoryURLGenerator	(the
Standard	CategoryURLGenerator	or	CustomCategoryURLGenerator	class)	and	the
XYPlot	class	allows	you	to	assign	a	XYURLGenerator	(the	Standard	XYURLGenerator
or	CustomXYURLGenerator	class).

	

EasyMock,	JUnit,	and	PowerMock
	

Unit	tests	are	written	by	programmers	to	test	classes	or	methods	internally	in
programmer’s	perspective.	Each	test	should	be	independent	from	each	other	and	should	be
tested	without	any	dependencies.	But,	objects	do	not	work	alone.	In	a	real	system,	objects
work	together.	And,	some	scenarios	are	difficult	to	create	or	reproduce.	It	may	involve
interaction	with	database	or	network.	To	set	up	the	whole	environment	can	be
complicated.	If	we	are	not	doing	integration	testing,	how	do	we	do	unit	testing	in	isolation
without	any	dependencies?	We	need	to	incorporate	stub	or	mock	objects	in	unit	testing	for
dependencies.	Both	types	of	objects	have	the	same	interface	as	the	real	objects.	Stub
objects	are	objects	that	simply	return	prearranged	responses.	Mock	objects	are	objects	that
mimic	the	real	objects	in	controlled	ways	for	different	scenarios.	They	can	help	to	decide
if	a	test	is	either	failed	or	passed.	It	can	be	a	tedious	job	no	matter	what	type	of	objects	you
are	going	to	create.

EasyMock	is	a	framework	that	can	save	you	time	in	hand	wiring	mock	objects	and	can
create	mock	objects	at	runtime.	JUnit	is	a	unit	testing	framework.	JUnit	and	EasyMock
can	work	together	easily.	PowerMock	is	a	mock	framework	that	extends	other	mock
frameworks.	PowerMock	extends	EasyMock	with	features	such	as	mocking	on	private,
static,	or	final	methods.	Currently,	it	supports	EasyMock	and	Mockito.

You	can	download	EasyMock	from	http://easymock.org.	The	latest	version	is	3.4	at	the
time	of	writing.

You	can	download	JUnit	from	http://junit.org.	The	latest	stable	version	is	4.12	at	the	time
of	writing.

You	can	download	PowerMock	for	EasyMock	and	JUnit	from
https://github.com/jayway/powermock.	The	latest	version	is	1.6.4	at	the	time	of	writing.

http://easymock.org
http://junit.org
https://github.com/jayway/powermock

AN	INTRODUCTION	TO	JUNIT

EasyMock	is	used	in	conjunction	with	JUnit.	Before	we	start	learning	how	to	use
EasyMock,	let’s	talk	about	how	to	use	JUnit	to	create	unit	tests	first.	A	JUnit	test	case	(or
test	class)	is	defined	through	a	Java	class.	A	test	case	contains	many	tests.	You	also	can
combine	test	cases	together	as	a	test	suite.

Annotations

Starting	from	JUnit	4	(JSE	5.0	and	above	is	required),	annotations	are	supported:

@BeforeClass:	indicates	that	a	method	is	executed	once	before	the	start	of	all	tests.	The
annotated	methods	need	to	be	public	static	void	and	no	parameters.	@BeforeClass	breaks
the	concept	that	tests	should	be	independent	from	each	other.	However,	you	can	use	this	to
initialize	expensive	resources	such	as	database	connections.	You	do	not	want	to	do	that	for
each	test.

@AfterClass:	indicates	that	a	method	is	executed	once	after	the	end	of	all	tests.	Usually,	it
is	used	to	release	resources	created	in	@BeforeClass.	The	annotated	methods	need	to	be
public	static	void	and	no	parameters.	They	are	guaranteed	to	run	even	if	any
@BeforeClass	method	throws	an	exception.

@Before:	indicates	that	a	method	is	executed	before	each	@Test	method.	The	annotated
methods	need	to	be	public	void	and	no	parameters.

@After:	indicates	that	a	method	is	executed	after	each	@Test	method.	The	annotated
methods	need	to	be	public	void	and	no	parameters.	They	are	guaranteed	to	run	even	if	any
@Before	or	@Test	method	throws	an	exception.

@Test:	indicates	that	a	method	is	a	test.	A	test	method	needs	to	be	declared	as	public	void
and	no	parameters.	There	are	two	optional	parameters	available	for	@Test:

The	first	one	is	timeout	parameter	which	is	to	specify	timeout	in	milliseconds.	If	the	time
is	exceeded,	a	TimeoutException	is	thrown.	For	example,	to	specify	the	timeout	as	5
seconds,	you	can	use	@Test(timeout=5000).

The	second	one	is	expected	parameter	which	is	to	specify	expected	exception	to	be
thrown.	If	the	exception	is	not	thrown	or	a	different	one	is	thrown,	the	test	is	failed.	For
example,	to	specify	that	IllegalArgumentException	is	expected	to	be	thrown,	you	can	use
@Test(expected=IllegalArgumentException.class).

@Ignore:	To	ignore	a	test,	you	can	either	remove	@Test	or	comment	it	out.	If	you	need	to
test	runners	to	report	number	of	ignored	tests,	you	can	add	@Ignore	in	front	of	or	after
@Test.	@Test	can	be	used	in	the	test	class	to	ignore	the	whole	test	case	too.	If	you	want	to
add	comment	on	the	ignored	test,	you	can	use	something	such	as	@Ignore(“a	string”).

@FixMethodOrder:	Tests	should	be	independent	from	each	other	and	should	not	assume
any	execution	order.	Test	execution	order	is	undefined	in	JUnit.	The	execution	order
depends	on	JVM.	Even	though	order	dependent	tests	are	not	encouraged.	But,	in	version
4.11,	you	can	use	@FixMethodOrder	to	change	test	execution	order	in	a	test	case.
Available	options	are:	MethodSorters.DEFAULT	(a	more	predictable	default	behavior),
MethodSorters.JVM	(pre-4.11	behavior),	MethodSorters.NAME_ASCENDING.

The	following	is	the	basic	structure	of	a	test	case:

public	class	MyTestCase	{

@BeforeClass

public	static	void	setUpClass()	{

…	

}

@AfterClass

public	static	void	tearDownClass()	{

…

}

@Before

public	void	setUp()	{

…

}

@After

public	void	tearDown()	{

…

}

@Test

public	void	testMethod1()	{

…

}

@Test

public	void	testMethod2()	{

…

}

}

The	following	is	execution	order	of	above	test	case:

	

setUpClass()

setUp()

testMethod1()

tearDown()

setUp()

testMethod2()

tearDown()

tearDownClass()

	

A	test	fixture	contains	a	common	set	of	objects	used	by	tests	in	a	test	case.	It	is	just	like
the	initialization	of	a	test.	You	use	a	test	fixture	as	a	baseline	in	a	test	case	to	ensure	tests
are	run	in	a	fixed	environment	so	that	test	results	are	repeatable.	You	can	use	fixture
annotations	in	a	test	case	without	duplicating	the	same	code	for	each	test.	There	are	four
fixture	annotations:	@BeforeClass,	@AfterClass,	@Before	and	@After.

Assertions

Assertions	are	used	to	check	that	the	results	of	tests	are	as	expected.	When	an	assertion
fails,	an	AssertionError	is	thrown.	Assertion	methods	are	defined	in	the	Assert	class	with
an	optional	message	for	the	AssertionError.	Since	assertion	methods	are	declared	as	static
void,	you	can	use	them	directly	such	as	Assert.assertFalse(…).	But,	you	can	use	static
import	(e.g.,	import	static	org.junit.Assert.*)	to	make	them	look	better	in	the	code	without
including	the	class	name.	The	following	are	some	of	assertion	methods:

fail([String	message]):	fails	a	test	unconditionally.

assertFalse([String	message,]boolean	condition):	asserts	that	a	condition	is	false.

assertTrue([String	message,]boolean	condition):	asserts	that	a	condition	is	true.

assertNotNull([String	message,]Object	object):	asserts	that	an	object	is	not	null.

assertNull([String	message,]Object	object):	asserts	that	an	object	is	null.

assertNotSame([String	message,]Object	expected,	Object	actual):	asserts	that	expected
and	actual	do	not	refer	to	the	same	object.

assertSame([String	message,]Object	expected,	Object	actual):	asserts	that	expected	and
actual	refer	to	the	same	object	(object	reference	equality).

assertEquals([String	message,]Object	expected,	Object	actual):	asserts	that	expected	and
actual	are	equal	(object	value	equality	through	implementing	equals	method).

assertEquals([String	message,]double	expected,	double	actual,	double	delta):	asserts	that
expected	and	actual	are	equal	within	a	positive	delta.

assertArrayEquals([String	message,]Object[]	expecteds,	Object[]	actuals):	asserts	that
expecteds	and	actuals	are	equal.

Test	Runners

You	can	run	JUnit	tests	through	test	runners.	To	run	tests	(or	test	suites)	from	a	Java
program,	you	can	use:

org.junit.runner.Result	org.junit.runner.JUnitCore.runClasses(java.lang.Class<?>…
classes)

To	run	tests	from	the	command	line,	you	can	use:

org.junit.runner.JUnitCore	{test	case	class	1}[test	case	class	2…]

The	default	test	runner	is	BlockJUnit4ClassRunner.	It	can	be	replaced	by	using	the
following	annotation:

@RunWith

For	example,	to	combine	test	cases	in	a	suite,	you	can	use	the	following	annotations	in	a
class	before	the	class	declaration:

@RunWith(Suite.class)

@Suite.SuiteClasses({TestCase1.class,	TestCase2.class,	…})

For	example,

import	org.junit.AfterClass;

import	org.junit.BeforeClass;

import	org.junit.runner.RunWith;

import	org.junit.runners.Suite;

	

@RunWith(Suite.class)

@Suite.SuiteClasses({MyTestCase.class,	PurchaseManagerTest.class})

public	class	MyTestSuite	{

	

@BeforeClass

public	static	void	setUpClass()	{

…

}

	

@AfterClass			

public	static	void	tearDownClass()	{

…

}

}

JUnit	will	use	the	class	specified	in	@RunWith	to	run	the	tests	instead	of	the	built-in
runner.	You	still	can	use	@BeforeClass	or	@AfterClass	in	a	test	suite.	@BeforeClass	will
run	before	@BeforeClass	in	all	test	cases	and	@AfterClass	will	run	after	@AfterClass	in
all	test	cases.	To	start	a	suite	runner,	you	do	that	through	JUnitCore	mentioned	before.

To	provide	unit	testing	on	objects	that	are	constructed	and	initialized	through	Spring
application	context,	you	can	use	SpringJUnit4ClassRunner.	For	example,	you	can	create	a
base	class	for	test	classes	with	the	following	basic	structure:

@RunWith(SpringJUnit4ClassRunner.class)

@ContextConfiguration(locations	=	{

…

}

)

public	abstract	class	MyTestBase	implements	ApplicationContextAware	{

	

private	ApplicationContext	applicationContext;

	

@Override

public	void	setApplicationContext(ApplicationContext	applicationContext)	throws
BeansException	{

this.applicationContext	=	applicationContext;

}

}

By	implementing	ApplicationContextAware,	a	reference	of	ApplicationContext	will	be
supplied	to	the	test	instance.

For	additional	information	on	JUnit,	you	can	check	JUnit	API	documentation	from
http://junit.org/javadoc/latest/index.html.

http://junit.org/javadoc/latest/index.html

A	SAMPLE	JUNIT	TEST	CASE

We	already	have	basic	understanding	on	JUnit.	Now,	let’s	use	a	simple	example	to	explain
how	to	create	a	test	case.	The	following	example	has	a	manager	class	which	is	responsible
for	getting	product	information	such	as	price	or	inventory	through	a	data	provider.	A	data
provider	is	represented	by	the	DataProvider	interface.	It	can	be	implemented	based	on	a
variety	of	data	sources.

public	interface	DataProvider	{

public	double	getPrice(String	productNo);

public	int	getInventory(String	productNo);

public	boolean	exists(String	productNo);

}

	

public	class	PurchaseManager	{

private	DataProvider	dataProvider;

public	PurchaseManager(DataProvider	dataProvider)	{

this.dataProvider	=	dataProvider;

}

	

public	double	getPrice(String	productNo)	throws	ProductNotFoundException	{

if(!existsProduct(productNo))

throw	new	ProductNotFoundException(“Cannot	find	product	#	”	+	productNo);						

return	dataProvider.getPrice(productNo);

}

	

public	int	getInventory(String	productNo)	throws	ProductNotFoundException	{

if(!existsProduct(productNo))

throw	new	ProductNotFoundException(“Cannot	find	product	#	”	+	productNo);				

return	dataProvider.getInventory(productNo);

}

	

public	double	getTotal(String	productNo,	int	quantity)

throws	ProductNotFoundException,	NotEnoughInventoryException	{													

if(quantity	<	1)

throw	new	IllegalArgumentException(“quantity	is	less	than	one.”);

if(!existsProduct(productNo))

throw	new	ProductNotFoundException(“Cannot	find	product	#	”	+
productNo);																			

	

int	inventory	=	dataProvider.getInventory(productNo);

if(inventory	<	quantity)

throw	new	NotEnoughInventoryException();

double	price	=	dataProvider.getPrice(productNo);

return	price*quantity;

}			

	

public	boolean	existsProduct(String	productNo)	{

if(productNo	==	null)

throw	new	IllegalArgumentException(“productNo	is	null.”);			

return	dataProvider.exists(productNo);		

}	

}

Since	this	is	for	unit	testing,	an	actual	data	provider	is	not	available.	So,	we	create	a
dummy	data	provider	which	uses	a	map	to	store	testing	data	as	follows:

	

import	java.util.HashMap;

import	java.util.Map;

	

public	class	DummyDataProvider	implements	DataProvider	{

private	Map<String,	Product>	data	=	new	HashMap<String,	Product>();

	

public	DummyDataProvider()	{

Product	product	=	new	Product(“A0001”,	150.0,	10);

data.put(product.getProductNo(),	product);

product	=	new	Product(“A0002”,	200.0,	5);

data.put(product.getProductNo(),	product);							

}

	

public	double	getPrice(String	productNo)	{

Product	product	=	data.get(productNo);

if(product	!=	null)

return	product.getPrice();

else

return	-1;			

}

	

public	int	getInventory(String	productNo)	{

Product	product	=	data.get(productNo);

if(product	!=	null)

return	product.getInventory();

else

return	-1;			

}			

	

public	boolean	exists(String	productNo)	{

return	data.containsKey(productNo);

}

}

	

class	Product	{

String	productNo;

double	price;

int	inventory;

	

Product(String	productNo,	double	price,	int	inventory)	{

this.productNo	=	productNo;

this.price	=	price;

this.inventory	=	inventory;

}

	

String	getProductNo()	{

return	productNo;

}

	

double	getPrice()	{

return	price;

}

	

int	getInventory()	{

return	inventory;

}

}

Once	the	external	data	source	is	all	set,	we	can	create	tests	for	the	PurchaseManager	class.
To	compile	this	example,	you	need	junit-4.12.jar	in	the	classpath.	To	run	it,	you	need	junit-
4.12.jar	and	hamcrest-core-1.3.jar.

import	static	org.junit.Assert.*;

	

import	org.junit.After;

import	org.junit.AfterClass;

import	org.junit.Before;

import	org.junit.BeforeClass;

import	org.junit.Test;

	

public	class	PurchaseManagerTest	{

private	static	DataProvider	provider;

private	PurchaseManager	purchaseMgr;

	

@BeforeClass

public	static	void	setUpClass()	{

provider	=	new	DummyDataProvider();

}

	

@AfterClass

public	static	void	tearDownClass()	{

provider	=	null;

}

	

@Before

public	void	setUp()	{

purchaseMgr	=	new	PurchaseManager(provider);

}

	

@After

public	void	tearDown()	{

purchaseMgr	=	null;								

}

	

@Test(expected=IllegalArgumentException.class)

public	void	nullProduct()	{

purchaseMgr.existsProduct(null);

}

	

@Test

public	void	nullProductException()	{

try	{

purchaseMgr.existsProduct(null);

fail();

}	catch(Exception	ex)	{

}

}			

	

@Test

public	void	existsProduct()	{

boolean	actual	=	purchaseMgr.existsProduct(“A0001”);

assertTrue(actual);

}						

	

@Test(expected=ProductNotFoundException.class)

public	void	notFound()	throws	ProductNotFoundException	{

purchaseMgr.getPrice(“B0001”);

}

	

@Test

public	void	getPrice()	throws	ProductNotFoundException	{

double	expected	=	150;

double	price	=	purchaseMgr.getPrice(“A0001”);

assertEquals(expected,	price,	0);																				

}	

	

@Test

public	void	getInventory()	throws	ProductNotFoundException	{

int	expected	=	10;

int	inventory	=	purchaseMgr.getInventory(“A0001”);

assertEquals(expected,	inventory);																				

}	

	

@Test

public	void	getTotal()	throws	ProductNotFoundException,

NotEnoughInventoryException	{

double	expected	=	150*8;

double	total	=	purchaseMgr.getTotal(“A0001”,	8);

assertEquals(expected,	total,	0);																				

}				

	

@Test(expected=NotEnoughInventoryException.class)

public	void	notEnoughInventory()	throws	ProductNotFoundException,

NotEnoughInventoryException	{

purchaseMgr.getTotal(“A0002”,	8);																				

}															

}

Now,	you	can	run

java	org.junit.runner.JUnitCore	PurchaseManagerTest

The	following	is	the	output:

	

JUnit	version	4.12

……..

Time:	0.016

	

OK	(8	tests)

	

If	there	were	any	failed	tests,	you	would	see	similar	error	message	such	as:

	

There	was	1	failure:

1)	getTotal(PurchaseManagerTest)

java.lang.AssertionError:	expected:<1200.0>	but	was:<1120.0>

at	org.junit.Assert.fail(Assert.java:88)

at	org.junit.Assert.failNotEquals(Assert.java:834)

at	org.junit.Assert.assertEquals(Assert.java:553)

at	org.junit.Assert.assertEquals(Assert.java:683)

at	PurchaseManagerTest.getTotal(PurchaseManagerTest.java:77)

at	sun.reflect.NativeMethodAccessorImpl.invoke0(Native	Method)

…

FAILURES!!!

Tests	run:	8,		Failures:	1

	

AN	INTRODUCTION	TO	EASYMOCK

We	just	created	our	first	JUnit	test	case	using	a	mock	object	(a	dummy	data	provider).	The
disadvantage	to	this	approach	is	that	you	have	additional	code	to	create	and	maintain.
Now,	we	want	to	get	rid	of	that	manual	hand	wiring	step	by	incorporating	EasyMock	and
JUnit.	To	create	and	use	a	mock	object	using	EasyMock,	it	involves	the	following	steps:

Step	1

You	need	to	create	a	mock	object	that	implements	the	given	interface	by	using
EasyMock.createMock(Class<T>	toMock).

Step	2

You	record	the	expected	behavior	of	a	mock	object.	It	is	called	record	state.	In	record
state,	it	records	expected	method	calls	(or	mock	methods).

Step	3

Switching	from	record	state	to	replay	state	by	calling	EasyMock.replay(Object…	mocks).
In	this	state,	it	checks	whether	the	expected	methods	are	called	or	not.

Note:	You	cannot	record	your	own	behavior	on	equals(),	toString(),	hashCode()	and
finalize().	EasyMock	provides	built-in	behavior	for	them.

Note:	If	you	want	to	reuse	a	mock	object,	you	can	use	the	reset(Object…	mocks)	method
to	reset	it	back	to	expectation	setting	mode.	It	can	be	handy	for	mock	objects	that	are
expensive	to	create.	You	can	create	them	in	@BeforeClass	method	and	reset	them	in
@Before	or	@After	method.

Verifying	behavior

By	default,	EasyMock	only	checks	that	expected	methods	with	right	argument	s	are	called.
If	you	need	to	verify	behavior,	you	can	use	EasyMock.verify(Object…	mocks)		in	the	end
of	a	test.	What	kind	of	checking	that	verify()	will	do	depends	on	how	the	mock	object	is
created:

On	a	mock	object	created	by	EasyMock.createMock(),	the	order	of	method	calls	is	not
checked.	But,	all	expected	methods	with	specified	arguments	should	be	called.	An
AssertionError	is	thrown	for	any	unexpected	calls.

On	a	mock	object	created	by	EasyMock.createStrictMock(),	the	order	of	method	calls	is
checked	.	And,	all	expected	methods	with	specified	arguments	should	be	called.	An
AssertionError	is	thrown	for	any	unexpected	calls.

On	a	mock	object	created	by	EasyMock.createNiceMock(),	the	order	of	method	calls	is
not	checked.	But,	all	expected	methods	with	specified	arguments	should	be	called.
Unexpected	method	calls	are	allowed.	Depending	on	data	type	of	returned	value,	0	(non-
boolean	primitive	data	types),	false	(boolean	type)	or	null	(Object	and	its	subtypes)	is
returned	for	unexpected	method	calls.

You	can	switch	order	checking	on	and	off	by	using	EasyMock.checkOrder(Object	mock,
boolean	flag).

Expectations

In	record	state,	you	can	record	more	than	just	expected	method	calls.	You	can	wrap
expected	method	calls	in	EasyMock.expect(T	value)	to	set	expectations	for	a	method	call
or	use	EasyMock.expectLastCall()	to	set	expectations	on	the	last	expected	method	call.
Both	method	calls	return	an	IExpectationSetters	object.	Expectation	settings	are	defined	in
the	IExpectationSetters	interface.

To	specify	call	counts,	you	can	use	the	following	expectations:

times(int	count)

times(int	min,	int	max)

atLeastOnce()

once()

anyTimes()

once()	is	the	default	one	for	expected	method	calls.	For	example,	to	allow	the	last
expected	method	to	be	called	three	times,	you	can	use
EasyMock.expectLastCall().times(3).

To	specify	returned	values	on	method	calls,	you	can	use	andReturn(T	value).	For	example,
to	expect	provider.exists(“A0001”)	to	return	true,	you	can	use
expect(provider.exists(“A0001”)).andReturn(true).	In	some	cases,	we	do	not	want
EasyMock	to	verify	the	behavior	on	a	method	call,	but	still	need	it	to	respond	to	make	a
test	function	properly.	Then,	you	can	use	stub	behavior	by	using	the	andStubReturn(T
value)	method.	Using	stub	behavior	can	be	handy	when	a	mock	object	has	many	methods
and	you	are	only	interested	in	some	of	them.

To	specify	exception	to	be	thrown,	you	can	use	andThrow(Throwable	throwable).
Unchecked	exceptions	can	be	thrown	from	any	methods.	Checked	exceptions	only	can	be
thrown	from	methods	that	throw	them.	For	example,
expect(provider.exists(“A0001”)).andThrow(new	ProductNotFoundException()).
Similarly,	you	can	use	stub	behavior	by	using	andStubThrow(Throwable	throwable).

Other	than	using	exact	match	(raw	value)	on	method	arguments,	you	can	use	argument
matchers	to	specify	expectations	for	arguments	on	method	calls.	The	following	are	some
of	the	argument	matchers	defined	in	the	EasyMock	class:

eq(X	value):	expects	a	certain	value.	This	is	available	for	all	primitive	types	and	objects.

same(T	value):	expects	the	same	object.

anyXXX():	matches	any	value.	This	is	available	for	all	primitive	types	and	objects.	For
example,	anyDouble(),	anyObject().

You	need	to	pay	special	attention	while	using	anyObject.	For	example,

Inst1.method1(EasyMock.anyObject(SomeClass.class));	

EasyMock.expectLastCall();

Above	code	snippet	expects	this	method	to	be	called	with	any	instance	of	SomeClass.

SomeClass	some	=	new	SomeClass();

Inst1.method1(some);

EasyMock.expectLastCall();

But,	above	code	snippet	expects	this	method	to	be	called	with	the	exact	instance	of
SomeClass.

isNull(Class<T>	clazz):	expects	null.

notNull(Class<T>	clazz):	expects	not	null.

isA(Class<T>	clazz):	expects	an	object	of	a	certain	type.

not(X	value):	expects	a	value	that	does	not	match.	This	is	available	for	all	primitive	types
and	objects.

and(X	first,	X	second):	expects	both	values	are	matched.	This	is	available	for	all	primitive
types	and	objects.

or(X	first,	X	second):	expects	one	of	them	is	matched.	This	is	available	for	all	primitive
types	and	objects.

lt	(less	than),	leq	(less	than	or	equal	to),	geq	(greater	than	or	equal	to),	gt	(greater	than):
They	are	available	for	numeric	primitive	types	and	Comparable	types.

String	operations:	startsWith(String	prefix),	contains(String	substring),	endsWith(String
suffix).

For	example,	if	you	want	to	replace	an	exact	match	by	any	string	in	the	argument,	you	can
use	expect(provider.exists((String)anyObject())).andReturn(true).	In	this	way,	any	string	in
the	argument	will	return	true.

Argument	matchers	can	combine	together	through	and(),	or(),	not().	You	can	define	your
own	argument	matchers	by	implementing	the	IArgumentMatcher	interface.

If	any	one	argument	in	a	method	is	using	argument	matchers,	all	arguments	in	that	method
need	to	use	argument	matchers.	If	a	method	has	matchers	mixed	with	raw	values,	you	can
use	eq()	argument	matcher	on	raw	values	to	prevent	an	error	from	happening.

EasyMockSupport

EasyMockSupport	is	a	helper	class	that	keeps	track	of	all	mock	objects	automatically.	If
there	is	more	than	one	mock	object	in	a	test	case,	it	can	extend	EasyMockSupport	class.
You	can	use	replayAll(),	verifyAll()	or	resetAll()	on	all	mock	objects	instead	of	using
replay(),	verify()	or	reset()	on	mock	objects	one	by	one.

When	extending	EasyMockSupport,	you	do	not	use	the	static	createMock()	method	from
the	EasyMock	class.	You	use	createMock()	inherited	from	the	EasyMockSupport.	It	is	the
same	for	createStrictMock()	and	createNiceMock().

Class	mocking

EasyMock	supports	both	interface	mocking	and	class	mocking.	To	perform	class	mocking,
you	need	to	include	Objenesis	(http://objenesis.org)	in	the	classpath.	Final	and	private
methods	cannot	be	mocked.	If	called,	their	normal	code	will	be	executed.	For	abstract
classes,	abstract	methods	are	mocked	automatically.

http://objenesis.org

Partial	mocking

To	create	a	partial	mock	for	an	interface	or	class,	you	can	use	createMockBuilder	method.
A	partial	mock	builder	of	type	IMockBuilder	is	returned.	For	example,

createMockBuilder(SomeClass.class)

.addMockedMethod(“method1”)

.addMockedMethod(“method2”)

.createMock();

This	creates	a	partial	mock	builder	that	mocks	two	methods:	method1	and	method2.	No
overload	methods	are	allowed.	For	overload	methods,	you	can	define	method	parameters
explicitly	by	using	addMockMethod(String	methodName,	Class<?>…	parameters).
Private,	static,	or	final	methods	cannot	be	mocked.

In	EasyMock	3.4,	a	new	version	of	createMockBuilder	method,	partialMockBuilder,	can
be	used	instead.

USING	EASYMOCK	WITH	JUNIT

Now,	we	can	modify	previous	test	case	by	using	EasyMock	to	create	mock	object	for	the
data	provider.	In	this	example,	we	use	interface	mocking.	EasyMock	works	on	JSE	5.0
and	above.	Also,	you	need	to	add	easymock-3.4.jar	in	the	classpath	in	addition	to	JARs	for
JUnit.

import	static	org.easymock.EasyMock.*;

import	static	org.junit.Assert.*;

	

import	org.junit.After;

import	org.junit.Before;

import	org.junit.Test;

	

public	class	PurchaseManagerTest1	{

private	DataProvider	provider;

private	PurchaseManager	purchaseMgr;

	

@Before

public	void	setUp()	{

provider	=	createMock(DataProvider.class);

purchaseMgr	=	new	PurchaseManager(provider);

}

	

@After

public	void	tearDown()	{

provider	=	null;

purchaseMgr	=	null;

}

	

@Test(expected=IllegalArgumentException.class)

public	void	nullProduct()	{

purchaseMgr.existsProduct(null);

}

	

@Test

public	void	nullProductException()	{

try	{

purchaseMgr.existsProduct(null);

fail();

}	catch(Exception	ex)	{

}

}			

	

@Test

public	void	existsProduct()	{

String	productNo	=	“A0001”;

expect(provider.exists(productNo)).andReturn(true);

replay(provider);

boolean	actual	=	purchaseMgr.existsProduct(productNo);

assertTrue(actual);

}						

	

@Test(expected=ProductNotFoundException.class)

public	void	notFound()	throws	ProductNotFoundException	{

String	productNo	=	“B0001”;

expect(provider.exists(productNo)).andReturn(false);

replay(provider);			

purchaseMgr.getPrice(productNo);

}

	

@Test

public	void	getPrice()	throws	ProductNotFoundException	{

String	productNo	=	“A0001”;

double	expected	=	150;

expect(provider.exists(productNo)).andReturn(true);

expect(provider.getPrice(productNo)).andReturn(expected);

replay(provider);

double	price	=	purchaseMgr.getPrice(productNo);

assertEquals(price,	expected,	0);																				

}	

	

@Test

public	void	getInventory()	throws	ProductNotFoundException	{

String	productNo	=	“A0001”;

int	expected	=	10;

expect(provider.exists(productNo)).andReturn(true);

expect(provider.getInventory(productNo)).andReturn(expected);

replay(provider);							

int	inventory	=	purchaseMgr.getInventory(productNo);

assertEquals(inventory,	expected);																				

}	

	

@Test

public	void	getTotal()	throws	ProductNotFoundException,

NotEnoughInventoryException	{

String	productNo	=	“A0001”;

int	quantity	=	8;

double	price	=	150;

double	expected=	price*quantity;

expect(provider.exists(productNo)).andReturn(true);	

expect(provider.getInventory(productNo)).andReturn(10);

expect(provider.getPrice(productNo)).andReturn(price);

replay(provider);

double	total	=	purchaseMgr.getTotal(productNo,	quantity);

assertEquals(total,	expected,	0);																	

verify(provider);							

}			

	

@Test(expected=NotEnoughInventoryException.class)

public	void	notEnoughInventory()	throws	ProductNotFoundException,

NotEnoughInventoryException	{

String	productNo	=	“A0002”;

int	quantity	=	8;

expect(provider.exists(productNo)).andReturn(true);	

expect(provider.getInventory(productNo)).andReturn(5);

replay(provider);

double	total	=	purchaseMgr.getTotal(productNo,	quantity);

verify(provider);																																					

}																				

}

If	there	are	any	failed	tests,	you	will	see	output	such	as:

	

There	was	1	failure:

1)	notEnoughInventory(PurchaseManagerTest1)

java.lang.Exception:	Unexpected	exception,	expected<NotEnoughInventoryException>

but	was<java.lang.AssertionError>

…

Caused	by:	java.lang.AssertionError:

		Unexpected	method	call	DataProvider.exists(“A0002”):

DataProvider.getInventory(“A0002”):	expected:	1,	actual:	0

at	org.easymock.internal.MockInvocationHandler.invoke(MockInvocationHand

ler.java:44)

…

USING	ANNOTATIONS

You	also	can	use	annotations	to	create	mocks	and	inject	them	to	test	objects.	This	is	added
since	EasyMock	3.2.	@Mock	is	identical	to	createMock()	method.	To	specify	a	mock
type,	you	can	use	an	optional	element,	type,	in	@Mock	to	create	a	nice	or	strict	mock.
@TestSubject	is	used	to	inject	mocks	created	with	@Mock	to	its	fields.	Setters	are	not
needed	in	test	classes	for	mock	injections.	Because	the	test	runner	takes	care	of
initialization	now,	setUp()	method	is	not	needed.	Previous	example	can	be	modified	as:

@RunWith(EasyMockRunner.class)

public	class	PurchaseManagerTest2	{

@Mock

private	DataProvider	provider;

@TestSubject

private	PurchaseManager	purchaseMgr	=	new	PurchaseManager();

…

}

What	if	tests	are	using	other	test	runner,	then	you	can	use	a	JUnit	rule.	This	is	available
since	EasyMock	3.3.	For	example,

public	class	PurchaseManagerTest2	{

@Rule

public	EasyMockRule	mocks	=	new	EasyMockRule(this);

@Mock

private	DataProvider	provider;

@TestSubject

private	PurchaseManager	purchaseMgr	=	new	PurchaseManager();

….

}

USING	EXPECTATIONS

In	EasyMock,	expectations	play	an	important	role	in	verifying	behavior	during	testing.
Here,	we	will	spend	more	time	talking	about	using	expectations	in	EasyMock.	In	the
following	example,	The	MessageBuilder	class	is	used	to	build	messages.	A	message	is
constructed	by	three	parts:	a	greeting	on	top,	paragraph(s)	in	the	middle	and	a	sign	off	at
the	bottom.	There	are	different	styles	of	greeting	and	sign	off.

public	interface	MessageBuilder	{

public	void	setGreeting(int	style,	StringBuilder	message);

public	void	addParagraph(String	paragraph,	StringBuilder	message);

public	void	setSignOff(int	style,	StringBuilder	message);

}

	

public	class	MyMessage	{

private	MessageBuilder	builder;

public	MyMessage(MessageBuilder	builder)	{

this.builder	=	builder;

}

	

public	String	generate(int	style,	String[]	paragraphs)	{

if(paragraphs	==	null)

throw	new	IllegalArgumentException(“paragraphs	is	null.”);

	

StringBuilder	message	=	new	StringBuilder();

builder.setGreeting(style,	message);

for(String	paragraph	:	paragraphs)

builder.addParagraph(paragraph,	message);

builder.setSignOff(style,	message);

	

return	message.toString();

}

}

In	the	following	test	case,	there	is	only	one	test.	In	the	test,	we	assume	there	are	two	styles

(with	values	of	1	and	2)	available	in	the	MessageBuilder.

	

import	static	org.easymock.EasyMock.*;

	

import	org.junit.After;

import	org.junit.Before;

import	org.junit.Test;

	

public	class	MyMessageTest	{

private	MessageBuilder	builder;

private	MyMessage	message;

	

@Before

public	void	setUp()	{

builder	=	createMock(MessageBuilder.class);

message	=	new	MyMessage(builder);

}

	

@After

public	void	tearDown()	{

builder	=	null;

message	=	null;

}

	

@Test

public	void	generate()	{

String[]	paragraphs	=	new	String[]{“p1”,	“p2”};

builder.setGreeting(and(geq(1),	leq(2)),	isA(StringBuilder.class));

builder.addParagraph(isA(String.class),	isA(StringBuilder.class));

expectLastCall().times(paragraphs.length);

builder.setSignOff(and(geq(1),	leq(2)),	isA(StringBuilder.class));

replay(builder);

String	result	=	message.generate(1,	paragraphs);

verify(builder);

}

}

You	might	notice	that	the	above	test	case	is	missing	something.	It	does	test	the	behavior	of
generate()	method.	But,	it	does	not	verify	the	result.	Since	methods	in	the	MessageBuilder
class	are	void,	certainly	we	cannot	use	the	andReturn()	method.	What	do	we	do	if	a
method	that	returns	void?	The	answer	is	to	use	expectation	setter	andAnswer(IAnswer<?
extends	T>	answer)	which	allows	you	to	calculate	the	answer	for	expected	method	call	or
to	throw	an	exception.	This	allows	you	to	mimic	external	actions.	All	we	need	to	do	is	to
implement	the	IAnswer	interface.	IAnswer	has	only	one	method:

T	answer()	throws	Throwable

Inside	this	method,	you	can	use	EasyMock.getCurrentArguments()	to	get	an	array	of
arguments	in	the	expected	method	call.	For	void	method,	null	is	returned.	The	returned
value	(message	to	be	generated)	is	passing	among	methods	through	a	mutable	class,
StringBuilder.	The	following	is	the	revised	version	of	MyMessageTest:

import	static	org.easymock.EasyMock.*;

import	static	org.junit.Assert.*;

	

import	org.easymock.IAnswer;

import	org.junit.After;

import	org.junit.Before;

import	org.junit.Test;

	

public	class	MyMessageTest1	{

private	MessageBuilder	builder;

private	MyMessage	message;

	

@Before

public	void	setUp()	{

builder	=	createMock(MessageBuilder.class);

message	=	new	MyMessage(builder);

}

	

@After

public	void	tearDown()	{

builder	=	null;

message	=	null;

}

	

@Test

public	void	generate()	{

String[]	paragraphs	=	new	String[]{“p1”,	“p2”};

String	expected	=	“greeting1p1p2signoff1”;

builder.setGreeting(and(geq(1),	leq(2)),	isA(StringBuilder.class));

expectLastCall().andAnswer(new	GreetingAnswer<Object>());

builder.addParagraph(isA(String.class),	isA(StringBuilder.class));

expectLastCall().andAnswer(new	ParagraphAnswer<Object>
()).times(paragraphs.length);

builder.setSignOff(and(geq(1),	leq(2)),	isA(StringBuilder.class));

expectLastCall().andAnswer(new	SignOffAnswer<Object>());

replay(builder);

String	actual	=	message.generate(1,	paragraphs);

assertEquals(actual,	expected);							

verify(builder);

}

	

private	class	GreetingAnswer<T>	implements	IAnswer<T>	{

public	T	answer()	throws	Throwable	{

Integer	style	=	(Integer)getCurrentArguments()[0];

StringBuilder	str	=	(StringBuilder)getCurrentArguments()[1];

str.append(“greeting”	+	style);

	

return	null;

}

}

	

private	class	ParagraphAnswer<T>	implements	IAnswer<T>	{

public	T	answer()	throws	Throwable	{

String	para	=	(String)getCurrentArguments()[0];

StringBuilder	str	=	(StringBuilder)getCurrentArguments()[1];

str.append(para);

	

return	null;

}

}

	

private	class	SignOffAnswer<T>	implements	IAnswer<T>	{

public	T	answer()	throws	Throwable	{

Integer	style	=	(Integer)getCurrentArguments()[0];

StringBuilder	str	=	(StringBuilder)getCurrentArguments()[1];

str.append(“signoff”	+	style);

	

return	null;

}

}						

}

In	the	above	example,	we	use	the	andAnswer()	method	to	get	returned	values	from	void
methods.	Another	approach	is	to	use	argument	matcher	EasyMock.capture(Capture<T>
captured).	In	a	scenario	that	an	object	is	updated	in	a	method,	you	can	use
EasyMock.capture	to	capture	it	for	later	use	outside	the	method.	The	captured	object
(represented	by	a	Capture)	contains	updated	value.	You	can	use	the	getValue()	or
getValues()	method	in	a	Capture	to	get	captured	value	or	values.	The	following	is	the
revised	version	by	using	capture:

	

import	static	org.easymock.EasyMock.*;

import	static	org.junit.Assert.*;

	

import	org.easymock.Capture;

import	org.easymock.IAnswer;

import	org.junit.After;

import	org.junit.Before;

import	org.junit.Test;

	

public	class	MyMessageTest2

{

private	MessageBuilder	builder;

private	MyMessage	message;

	

@Before

public	void	setUp()	{

builder	=	createMock(MessageBuilder.class);

message	=	new	MyMessage(builder);

}

	

@After

public	void	tearDown()	{

builder	=	null;

message	=	null;

}

	

@Test

public	void	generate()	{

String[]	paragraphs	=	new	String[]{“p1”,	“p2”};

String	expected	=	“greeting1p1p2signoff1”;

Capture<StringBuilder>	capStr	=	new	Capture<StringBuilder>();

builder.setGreeting(and(geq(1),	leq(2)),	capture(capStr));

expectLastCall().andAnswer(new	GreetingAnswer<Object>(capStr));

builder.addParagraph(isA(String.class),	capture(capStr));

expectLastCall().andAnswer(new	ParagraphAnswer<Object>
(capStr)).times(paragraphs.length);

builder.setSignOff(and(geq(1),	leq(2)),	capture(capStr));

expectLastCall().andAnswer(new	SignOffAnswer<Object>(capStr));

replay(builder);

String	actual	=	message.generate(1,	paragraphs);

assertEquals(actual,	expected);							

verify(builder);

}

	

private	class	GreetingAnswer<T>	implements	IAnswer<T>	{

private	Capture	capture;

public	GreetingAnswer(Capture<StringBuilder>	capture)	{

this.capture	=	capture;

}

public	T	answer()	throws	Throwable	{

Integer	style	=	(Integer)getCurrentArguments()[0];

StringBuilder	str	=	(StringBuilder)capture.getValue();

str.append(“greeting”	+	style);

	

return	null;

}

}

	

private	class	ParagraphAnswer<T>	implements	IAnswer<T>	{

private	Capture	capture;

public	ParagraphAnswer(Capture<StringBuilder>	capture)	{

this.capture	=	capture;

}			

public	T	answer()	throws	Throwable	{

String	para	=	(String)getCurrentArguments()[0];

StringBuilder	str	=	(StringBuilder)capture.getValue();

str.append(para);

	

return	null;

}

}

	

private	class	SignOffAnswer<T>	implements	IAnswer<T>	{

private	Capture	capture;

public	SignOffAnswer(Capture<StringBuilder>	capture)	{

this.capture	=	capture;

}			

public	T	answer()	throws	Throwable	{

Integer	style	=	(Integer)getCurrentArguments()[0];

StringBuilder	str	=	(StringBuilder)capture.getValue();

str.append(“signoff”	+	style);

	

return	null;

}

}						

}

POWERMOCK

As	mentioned	in	the	beginning,	EasyMock	cannot	mock	private	methods.	PowerMock	is	a
mock	framework	that	extends	EasyMock	with	features	such	as	mocking	on	private
methods.	In	the	following	example,	a	class	representing	a	job	submitter	that	submits	a	job
to	either	queue	1	or	queue	2	driven	by	a	count	returned	from	the	getCount()	method.

Public	class	JobSubmitter	{

	

public	void	submit()	{

if(getCount()	<=	10000)	{

submitToQueue1();

}	else	{

submitToQueue2();

}

}

	

private	int	getCount()	{

//	assume	this	method	has	complex	operations

return	0;

}			

	

private	void	submitToQueue1()	{

System.out.println(“Submitting	to	queue	1…”);

}

	

private	void	submitToQueue2()	{

System.out.println(“Submitting	to	queue	2…”);			

}			

}

Because	PowerMock	extends	EasyMock,	basically	it’s	just	like	using	EasyMock.	As	you
can	see,	PowerMock	also	simplifies	partial	mocking.	You	cannot	use	an	expect()	method
because	a	private	method	cannot	be	accessed	outside	a	class.	Instead,	you	need	to	use	an
expectPrivate()	method.

import	static	org.powermock.api.easymock.PowerMock.*;

import	org.powermock.core.classloader.annotations.PrepareForTest;

import	org.powermock.modules.junit4.PowerMockRunner;

	

import	org.junit.Before;

import	org.junit.Test;

import	org.junit.runner.RunWith;

	

@RunWith(PowerMockRunner.class)

@PrepareForTest(JobSubmitter.class)

public	class	JobSubmitterTest1	{

	

private	JobSubmitter	submitterMock;

	

@Before

public	void	setUp()	{

submitterMock	=	createPartialMock(JobSubmitter.class,

“getCount”);							

}			

	

@Test

public	void	testToQueue1()	throws	Exception	{

expectPrivate(submitterMock,	“getCount”).andReturn(9000);

replay(submitterMock);

submitterMock.submit();

}

	

@Test

public	void	testToQueue2()	throws	Exception	{

expectPrivate(submitterMock,	“getCount”).andReturn(11000);

replay(submitterMock);

submitterMock.submit();

}			

}

To	mock	a	class	with	static	methods,	you	can	either	use

mockStatic(Class<?>	type)

to	mock	the	whole	class,	or	use	a	partial	mocking	method	such	as

mockStaticPartial(Class<?>	type,	String…	methodNames)

to	mock	some	methods.

Instead	of	using	@RunWith(PowerMockRunner.class),	you	can	bootstrap	PowerMock
with	a	JUnit	rule,	PowerMockRule.	This	is	included	in	powermock-module-junit4-rule.
For	example,

@PrepareForTest(JobSubmitter.class)

public	class	JobSubmitterTest1	{

	

@Rule

public	PowerMockRule	mocks	=	new	PowerMockRule();

…

}

TEST	COVERAGE	ANALYSIS

Cobertura	is	a	test	coverage	tool	for	Java	programs.	It	can	generate	report	to	help	you
discover	where	your	software	is	being	tested.	You	can	download	Cobertura	from
http://cobertura.sourceforge.net.	Cobertura	can	be	used	either	from	command	line	or	from
Apache	Ant	tasks.	The	following	are	steps	to	generate	Cobertura	coverage	report	through
command	line:

Step	1

Cobertura	adds	instrumentation	instructions	into	the	bytecode	directly.	First,	you	create
instrumented	version	of	classes	by	adding	instrumentation	instructions	into	your	classes
and	put	them	in	different	directory.	You	can	do	that	through	a	command	line	utility,
cobertura-instrument,	in	the	Cobertura	directory:

cobertura-instrument	[—datafile	datafile]	[—destination	directory]	classes	[…]

By	default,	the	coverage	data	file	cobertura	.ser	is	located	at	the	current	directory.	Classes
can	be	specified	individually	or	as	a	directory.	For	example,	to	instrument	classes	under
the	classes	directory	and	store	them	in	the	instrumented	directory,	you	can	run:

cobertura-instrument	—destination	instrumented	classes

A	coverage	data	file	storing	metadata	of	classes,	cobertura	.ser,	will	be	created.

Step	2

Before	you	can	run	your	tests,	you	need	to	make	a	few	changes.	You	need	to:

Add	Cobertura	JAR	(e.g.,	cobertura-2.1.1	.jar)	and	lib	directory	to	the	classpath.

In	the	classpath,	add	the	directory	containing	instrumented	classes	before	the	directory
containing	original	classes.

Specify	location	of	the	data	file	by	using	the	system	property
net.sourceforge.cobertura.datafile.	For	example,	-
Dnet.sourceforge.cobertura.datafile=cobertura.ser.

Step	3

Once	you	have	run	your	tests,	you	can	start	generating	report.	To	generate	Cobertura
coverage	report,	you	can	use	cobertura-report:

cobertura-report	[—format	(html|xml)]	[—datafile	datafile]	[—destination	directory]
source	code	directory	[…]

For	example,

cobertura-report	—format	html	—datafile	cobertura.ser	—destination	reports	..

The	following	is	the	coverage	report	for	the	PurchaseManager	class	and	associated	classes
based	on	the	PurchaseManagerTest1	test	case:

http://cobertura.sourceforge.net

You	can	further	dig	into	a	class	for	detailed	coverage	report:

JMeter
	

Apache	JMeter	is	a	Java-based	desktop	application,	which	can	be	used	for	load	testing	to
measure	the	performance	of	a	system	or	used	for	stress	testing	to	see	if	a	system	is	crashed
gracefully.	It	can	generate	reports	to	help	eliminate	bottlenecks	of	the	system	or	to	see
how	it	performs	under	heavy	loads.	Other	than	load	testing,	you	also	can	use	JMeter	in
functional	testing.	JMeter	provides	a	variety	of	test	elements.	They	are	quite	handy	and
can	save	you	time	in	writing	your	own	Java	programs	for	testing.	Using	JMeter	is	quite
intuitive	because	it	provides	a	nice	GUI	to	create	and	run	tests.	You	also	can	run	JMeter
tests	in	non-GUI	mode.	Tests	can	be	run	either	locally	or	remotely.	JMeter	is	designed
using	plugin	approach	to	provide	flexibility	in	adding	new	features	(test	elements)	as
custom	plugins.

You	can	download	JMeter	from	http://jmeter.apache.org.	The	latest	version	is	2.9	at	the
time	of	writing.

http://jmeter.apache.org

BUILDING	A	JMETER	TEST	PLAN

To	use	JMeter	for	testing,	you	can	either	load	an	existing	test	plan	or	create	a	new	one.
Basically,	a	test	plan	has	a	tree	structure,	which	contains	test	elements	describing	how	a
test	will	run.

Starting	JMeter

First,	we	need	to	start	JMeter	(JSE	6.0	or	above	is	required).	You	can	start	JMeter	from	the
command	line	by	running	jmeter.bat	(for	Windows)	or	jmeter.sh	(for	Unix/Linux)	in	the
bin	directory.

To	run	JMeter	in	non-GUI	mode,	you	can	use	the	following	command	line	options:

-n	non-GUI	mode

-t	the	test	plan	file	(with	extension	name	jmx)

-l	the	result	log	file	(with	extension	name	jtl)

-j	the	log	file

Adding	test	elements

There	are	two	panels	on	the	screen	of	JMeter	GUI.	The	left	panel	is	the	test	tree	for	a	test
plan	and	the	right	panel	is	the	configuration	panel	for	the	selected	element.	A	new	test	plan
starts	with	two	elements:	Test	Plan	and	WorkBench.	The	Test	Plan	is	the	root	of	a	test	tree.
The	WorkBench	is	a	temporary	place	for	storing	test	elements	not	in	use	or	non-test
elements.	The	WorkBench	is	not	saved	with	the	test	plan	automatically.	You	can	save	it
separately.

To	add	a	new	element	to	the	test	tree,	you	can	either	right-click	on	an	element	and	choose
Add	from	the	popup	menu	or	choose	Edit	->	Add	from	the	menu	bar	on	top:

Also,	you	can	remove	or	disable/enable	elements	from	the	same	menu.

In	this	example,	we	choose	to	add	a	Thread	Group	to	the	test	plan.	A	test	plan	contains	at
least	one	Thread	Group.	A	test	case	is	defined	in	a	Thread	Group.	The	Thread	Group
allows	you	to	define	the	number	of	threads	running	for	a	test	case,	the	number	of	times	it
is	going	to	run	and	optionally	a	start	and	stop	times	through	a	scheduler.

Next,	we	add	a	Java	Request	sampler	under	this	Thread	Group	by	choosing	Add	->
Sampler	->	Java	Request.	The	Java	Request	sampler	allows	you	to	put	you	own	Java
classes	(or	custom	samplers)	as	long	as	they	implement	the	JavaSamplerClient	interface	or
extend	the	AbstractJavaSamplerClient	class.	There	are	two	Java	sample	classes	available
in	the	JMeter.	We	are	using	the	JavaTest	class	for	demonstration	purpose.	The	JavaTest
does	not	access	network	and	is	useful	for	testing	the	performance	of	local	machine.

To	show	testing	results,	we	add	a	Graph	Results	listener.	The	Graph	Results	listener	plots
testing	results	for	all	samples.	It	is	good	for	showing	the	progress	of	testing	visually.	But,
it	does	consume	more	resources.	Usually,	this	is	used	in	testing	or	debugging	a	test	plan
with	small	load.

The	following	is	our	first	JMeter	test	plan:

Note:	When	you	specify	number	of	thread	groups/threads	running	in	a	test	plan,	you	need
to	be	careful	about	the	capability	of	the	machine	running	JMeter.	The	more	load	you	put
on	the	machine,	the	less	accurate	timing	information	you	might	get.	Using	non-GUI	mode
with	results	written	to	files	can	help.	You	even	can	consider	running	your	test	in	multiple
machines	(remote	testing)	for	a	test	with	heavy	load.

Running	a	test	plan

Once	you	are	done	on	defining	a	test	plan,	you	can	run	it.	To	run	a	test	plan,	you	can	do
that	through	the	Run	menu	or	the	toolbar.	When	a	test	plan	is	running,	you	can	check	the
current	status	from	the	upper-right	corner:

The	green	square	icon	indicates	a	test	plan	is	running.	The	yellow	triangle	icon	with	a
number	is	the	error/fatal	counter.	By	default,	JMeter	log	file	jmeter.log	is	located	under	the
bin	directory	(or	using	-j	option	to	specify	it).	To	see	logging	screen	from	the	GUI,	you
can	toggle	it	on	and	off	by	clicking	on	the	yellow	triangle	icon	or	choose	the	Options
menu	->	Log	Viewer.	5/5	indicates	that	total	number	of	threads	is	five	and	five	threads	are
running.

To	clear	results	in	the	whole	test	plan,	you	can	choose	Clear	All	from	the	Run	menu.	Or,
you	can	choose	Clear	to	clear	results	in	a	selected	element.

You	can	stop	or	shutdown	a	running	test	through	the	Run	menu	or	the	toolbar.	The
difference	between	stop	and	shutdown	is	that	threads	stop	immediately	for	stop	and
threads	stop	gracefully	at	the	end	of	current	work	for	shutdown.	For	the	non-GUI	mode,
you	can	use	shutdown.cmd	(or	shutdown.sh)	or	stoptest.cmd	(or	stoptest.sh).

Saving	a	test	plan

To	save	a	test	plan,	you	can	do	that	through	the	File	menu	or	the	toolbar.	A	test	plan	is
saved	with	extension	name	jmx.	You	can	save	partial	test	plan	by	using	Save	Selection	As
from	the	File	menu	or	the	popup	menu.	

Debugging	a	test	plan

Enabling	debug	logging	can	be	helpful	in	creating	a	test	plan.	Most	test	element	support
debug	logging.	To	enable	debug	logging	on	a	test	element,	select	a	test	element	and
choose	the	Help	menu	->	Enable	debug.	You	can	disable	it	by	choosing	Disable	debug.	To
view	debug	logging,	open	jmeter.log	under	the	bin	directory	or	enable	Log	Viewer	before
you	run	it.

Remote	testing

You	can	use	JMeter	to	do	remote	(or	distributed)	testing.	Using	remote	testing	can	save
you	trouble	in	copying	the	test	plan	to	each	machine	and	also	allow	you	to	simulate	larger
load	with	more	users.	In	remote	testing,	one	JMeter	client	is	used	as	the	master	to	control
other	JMeter	instances	(serving	as	slaves)	running	as	remote	servers.	Data	will	be
collected	by	the	client.	You	can	start	a	JMeter	server	by	running	jmeter-server.bat	(for
Windows)	or	jmeter-server	(for	Unix/Linux).	All	JMeter	instances	should	use	the	same
version	of	JMeter.	In	the	JMeter	client,	you	add	remote	servers	into	the	property
remote_hosts	in	the	jmeter.properties.	Then,	you	can	start	the	JMeter	client	and	load	the
test	plan.	To	start	remote	servers,	select	the	Run	menu	->	Remote	Start	or	Remote	Start
All.	If	you	are	using	a	non-GUI	client,	you	can	run:

jmeter	-n	-t	{test	script}	-R	server1,	server2,	…

TEST	ELEMENTS

A	JMeter	test	plan	is	constructed	by	test	elements	as	a	tree	structure	(there	are	few	non-test
elements	you	can	add	in	the	WorkBench).	JMeter	provides	a	rich	set	of	test	elements.
Those	are	what	make	JMeter	such	a	powerful	tool.	Most	of	test	elements	are	processed	in
the	order	they	appear	in	the	test	tree.	Basically,	you	use	samplers	to	test	against	a	server
and	use	logic	controllers	to	control	the	flow	of	a	test	run,	and	use	listeners	to	gather	or
view	testing	results	from	the	server.

The	following	are	test	elements	categorized	by	types:

Samplers

There	are	two	types	of	controllers.	Samplers	are	one	of	them.	Samplers	generate	requests
(or	samples)	and	perform	actual	testing	jobs	in	JMeter.	Mostly,	samplers	are	used	to	send
requests	to	a	server	and	wait	for	responses.

JMeter	has	samplers	that	support	the	following	protocols:	HTTP	(the	HTTP	Request
sampler),	FTP	(the	FTP	Request	sampler),	TCP	(the	TCP	sampler),	SMTP	(the	SMTP
sampler),	POP3	(the	Mail	Reader	sampler)	and	IMAP	(the	Mail	Reader	sampler).	You
even	can	execute	commands	on	the	local	machine	(the	OS	Process	sampler)	or	send	an
SQL	query	to	a	database	(the	JDBC	Request	sampler).	To	use	your	own	Java	classes,	you
can	use	the	Java	Request	sampler	or	JUnit	Request	sampler	(for	JUnit	test	classes).	To	use
a	scripting	language,	you	can	use	the	JSR223	sampler	(scripting	for	the	Java	platform)	or
BSF	sampler	(Apache	Bean	Scripting	Framework).

There	is	a	special	sampler	called	Test	Action	sampler.	It	does	not	send	any	request	to	the
server.	Instead,	it	can	pause	or	stop	a	target	thread	or	all	threads.	The	Test	Action	sampler
is	used	with	a	conditional	controller.	

Logic	controllers

Logic	controllers	are	controllers	too.	Logical	controllers	can	break	up	the	flow	of
execution	and	allow	you	to	control	the	order	that	samplers	are	processed.

For	looping,	you	can	use	the	Loop	Controller,	While	Controller	or	ForEach	Controller.	For
decision	making,	you	can	use	If	Controller.	For	executing	a	group	of	elements,	you	can
use	the	Simple	Controller	or	Random	Order	Controller.	The	difference	is	that	the	Simple
Controller	executes	elements	inside	it	in	order	and	the	Random	Order	Controller	executes
them	in	random	order.	To	execute	one	of	the	elements	per	iteration,	you	can	use	the
Interleave	Controller	(alternating	among	elements	for	each	iteration)	or	Random
Controller	(picking	one	in	random	for	each	iteration).		You	also	can	use	the	Once	Only
Controller	to	tell	JMeter	to	process	elements	inside	it	only	once	per	thread.

To	structure	your	tests	better,	you	can	break	them	into	fragments	(or	modules).	To	include
a	Test	Fragment	(created	through	the	Test	Fragment	element),	you	can	use	the	Include
Controller	to	include	it	through	an	external	jmx	file.	Or,	you	can	use	the	Module
Controller	to	include	test	fragments	located	in	any	Thread	Group	or	in	the	WorkBench.
You	can	include	any	fragment	under	a	logic	controller	even	it	is	disabled.

Both	samplers	and	logic	controllers	are	processed	in	the	order	they	are	defined	in	the	test
tree.

Listeners

Listeners	gather	information	from	tests.	They	provide	means	to	allow	you	to	view	results
from	GUI	mode	and	optionally	to	save	results	to	a	file	in	XML	or	CSV	format.	You	can
configure	items	to	be	saved	in	a	file	by	clicking	on	the	Configure	button	in	the	listener.

To	view	detailed	results,	you	can	use	the	Graph	Results,	View	Results	in	Table	or	View
Results	Tree	listener.	To	view	aggregate	data,	you	can	use	the	Aggregate	Report,
Aggregate	Graph	or	Summary	Report.	If	you	only	simply	want	to	save	results	to	a	file
without	viewing	it	from	GUI,	you	can	use	the	Simple	Data	Writer.	Similarly,	if	you	want
to	save	responses	to	a	file,	you	can	use	the	Save	Responses	to	a	file	listener.

Listeners	can	be	added	anywhere	in	the	test	tree.	But,	they	only	gather	data	from	elements
inside	the	same	tree	branch	(at	or	below	the	same	level).	To	avoid	confusion,	a	good
practice	is	to	put	listeners	at	the	end	of	the	tree	branch	they	are	used	for	gathering	data.

Configuration	elements

Configuration	elements	are	used	to	set	up	configurations	used	by	samplers.	Configuration
elements	are	only	accessible	by	elements	inside	the	same	tree	branch	(including
descendant	branches).	They	are	processed	at	the	start	of	the	tree	branch	in	which	they	are
defined	no	matter	where	they	are	located.	One	exception	is	the	User	Defined	Variables.	It
is	processed	at	the	start	of	a	test	run	no	matter	where	it	is	located.

For	the	HTTP	Request	sampler,	you	can	use	the	HTTP	Authorization	Manager,	HTTP
Cache	Manager,	HTTP	Cookie	Manager,	HTTP	Request	Defaults	or	HTTP	Header
Manager	to	work	with	it.	For	the	JDBC	Request	sampler,	you	can	use	the	JDBC
Connection	Configuration.	If	you	need	to	use	a	counter,	you	can	use	the	Counter
configuration	element.

To	define	user	defined	variables,	you	can	use	the	User	Defined	Variables	(or	define	them
in	the	Test	Plan).	User	defined	variables	can	be	referenced	as	${variable_name}.	Variables
are	local	to	each	thread.	To	share	values	between	threads	or	thread	groups,	you	can	use
JMeter	properties	since	they	are	global.	Properties	are	defined	in	the	jmeter.properties.	Or,
you	can	use	additional	files	to	define	properties:	user.properties	and	system.properties.
Properties	can	be	referenced	as	${__P(property_name)}	or
${__P(property_name,default_value)}.	Both	variables	and	properties	are	case-sensitive.
You	can	debug	variables	and	properties	by	using	the	Debug	Sampler.	You	can	see	the
values	from	the	Response	data	tab	in	the	View	Results	Tree.

Assertions

Assertions	work	with	samplers	to	check	the	responses	from	the	server.	The	scope	of	an
assertion	is	only	at	the	current	branch	in	which	it	is	defined.	It	cannot	be	accessed	by
descendant	branches	unless	it	is	specified.	Assertions	are	processed	after	every	sampler	in
the	same	scope.	If	you	want	an	assertion	only	applies	to	a	sampler,	you	can	make	it	as	a
child	of	the	sampler.

You	can	use	the	Response	Assertion	to	check	responses.	The	pattern	matching	is	Perl5
style	regular	expressions.	To	assert	that	each	response	was	received	within	certain	amount
of	time,	you	can	use	the	Duration	Assertion.	To	assert	the	size	of	each	response,	you	can
use	the	Size	Assertion.	To	view	assertion	results,	you	can	use	the	Assertion	Results
listener.

Timers

Timers	work	with	samplers	to	cause	a	delay	between	each	request.	Timers	are	processed
before	every	sampler	in	the	same	scope.

The	Constant	Timer	is	used	to	pause	the	same	amount	of	time	between	each	request.	If
you	need	a	random	amount	of	time,	you	can	use	the	Gaussian	Random	Timer,	Uniform
Random	Timer	or	Poisson	Random	Timer.

Pre-processors

Pre-processors	are	executed	before	samplers	at	the	same	level.	You	can	add	a	pre-
processor	as	the	child	of	a	sampler	to	make	it	pre-process	information	before	feeding	it
into	the	sampler.	Usually,	they	are	used	to	modify	settings	before	samplers	run.	Pre-
processors	are	executed	right	before	timers	and	after	configuration	elements.

To	process	HTML	responses,	you	can	use	the	HTML	Link	Parser	or	HTML	URL	Re-
writing	Modifier.

Post-processors

Post-processors	are	executed	right	after	samplers	at	the	same	level.	Usually,	they	are	used
to	process	responses.	Post-processors	are	executed	before	assertions	and	listeners.

To	extract	values	from	a	response	and	assign	the	result	to	a	variable	for	later	use,	you	can
use	the	Regular	Expression	Extractor.

TESTING	A	WEB	APPLICATION

Now,	we	will	learn	how	to	create	a	JMeter	test	plan	to	test	a	web	application.	To	make
HTTP	(or	HTTPS)	requests,	you	can	use	the	HTTP	Request	sampler.	The	HTTP	Request
sampler	is	not	a	browser.	But,	it	can	do	most	of	jobs	a	browser	can	do	except	something
like	rendering	pages	or	running	scripts.	Optionally,	it	even	allows	you	to	retrieve
embedded	resources	from	web	pages.	For	common	settings	(e.g.,	server	name	or	IP)
shared	among	the	HTTP	Request	samplers,	you	can	define	them	in	the	HTTP	Request
Defaults.	Other	samplers	will	inherit	values	defined	in	the	HTTP	Request	Defaults.	For
example,	you	can	use	“Server	Name	or	IP”	field	in	the	HTTP	Request	Defaults	to	specify
the	server	to	be	tested.	Then,	you	can	leave	that	field	blank	in	other	HTTP	Request
samplers.	The	scope	of	the	HTTP	Request	Defaults	is	within	the	current	branch	(and	its
descendants).	Normally,	a	web	application	needs	cookie	support.	We	can	use	the	HTTP
Cookie	Manager	just	in	case	cookie	support	might	be	needed	by	the	application.

In	the	following	example,	four	pages	will	be	visited	by	each	thread	in	random	order.	We
use	the	Random	Order	Controller	to	simulate	this	behavior.	The	JMeter	test	plan	is	shown
below:

After	finished	running	this	test	plan,	you	can	check	results	from	two	listeners	defined	in	it.
The	following	screenshot	is	from	the	View	Results	Tree:

On	the	results	tree,	it	contains	a	list	of	pages	being	visited.	For	a	failed	request,	the	color	is
red	if	there	is	any.	You	can	select	a	page	to	view	the	request	and	the	response.	If	the
response	data	is	in	HTML,	you	can	view	rendered	page	by	choosing	HTML	from	the
drop-down	menu	at	the	bottom	of	the	tree.	The	rendered	page	only	gives	you	some	idea
about	a	page.	It	is	not	going	to	be	good	comparing	with	a	browser.	JMeter	also	can	handle
different	types	of	documents	(e.g.,	PDF,	MS	Office).	You	can	view	text	in	the	document
by	choosing	Document.	Since	the	View	Results	Tree	records	requests	and	responses	from
all	visited	pages,	it	is	good	for	checking	the	behavior	of	a	web	application	or	to	debug	a
web	application.	Also,	you	can	use	it	to	test	your	JMeter	test	plan.	But,	it	is	not	a	good
idea	to	use	it	during	a	load	testing	since	it	is	going	to	consume	lots	of	resources.

Another	listener	in	this	test	plan	is	the	Summary	Report.	The	Summary	Report	gives	you	a
table	view	of	results.	It	gives	you	a	summary	report	arranged	by	pages	(as	table	rows).
Average,	Min	and	Max	are	elapsed	times	in	milliseconds.

In	the	previous	example,	there	are	four	pages	that	will	be	visited	(in	random	order)	during
the	test.	Now,	we	want	to	include	more	pages	in	the	test.	Adding	pages	manually	is	kind	of
painful.	We	can	use	the	HTML	Link	Parser	to	do	that	for	us.	The	HTML	Link	Parser	is	a
pre-processor	that	can	extract	links	from	previous	HTML	response.	Being	followed	by	an
HTTP	Request	sampler	and	included	in	a	loop	can	make	the	whole	thing	behave	like	a
web	crawler.	We	will	add	this	process	into	previous	example.	Each	thread	will	randomly
select	one	of	the	four	pages	in	previous	example	as	the	starting	page	and	crawl	through	the
web	site.	In	the	HTML	Request	sampler,	the	Path	field	uses	the	regular	expression	(?
i).*.html	to	match	any	HTML	page.	(?i)	indicates	that	it	is	case-insensitive.	For	detailed
information	about	using	regular	expressions	in	JMeter,	you	can	check
http://jmeter.apache.org/usermanual/regular_expressions.html.

To	continue	crawling	through	the	web	site,	we	add	the	HTTP	Request	sampler	inside	the

http://jmeter.apache.org/usermanual/regular_expressions.html

While	Controller	and	set	the	Condition	field	as	true.	To	limit	how	long	the	While
Controller	can	run,	the	While	Controller	is	added	as	a	child	of	the	Runtime	Controller.	You
can	define	desired	runtime	in	the	Runtime	field.

The	following	is	the	revised	version:

TESTING	WITH	AUTHENTICATION

Some	web	applications	require	user	authentication	to	access	certain	pages.	Form-based
authentication	is	a	popular	method	to	secure	resources	for	web	applications.	To	do	testing
on	web	sites	that	require	user	authentication,	you	need	to	add	additional	steps	to	sign	in
the	web	site	automatically	in	the	test	plan	before	it	can	do	anything.

First,	you	need	to	visit	a	page	to	get	cookies	from	the	web	site.	Usually,	it	is	a	session	ID
for	session	tracking.	The	next	step	is	to	go	through	security	checking	by	providing
username	and	password.	To	find	the	link	for	form	action	and	query	parameters	required	to
submit	to	the	server	for	authentication,	you	can	use	“View	source”	function	at	the	login
page	from	a	browser.	The	following	is	a	sample	HTTP	Request	sampler	for	authentication:

It	is	using	HTTP	POST	method.	The	form	action	is	j_security_check.	The	path	is
/aediserver/j_security_check.	The	context	root	for	the	web	application	aediserver	is
included.	The	form	field	for	username	is	j_username	and	the	form	field	for	password	is
j_password.	Both	username	and	password	are	defined	in	the	User	Defined	Variables.

Similarly,	you	can	find	form	action	to	sign	out	the	web	site	from	“View	source”.	This
depends	on	how	it	is	implemented.

The	following	is	a	simple	example	showing	how	to	add	authentication	in	a	test	plan.	It
includes	the	following	steps:	visiting	login	page	to	initialize	connection	to	the	server,	sign
in	and	then	sign	out.

In	this	example,	we	only	store	one	set	of	user	account	information	for	authentication.	If
you	want	to	simulate	the	scenario	that	different	users	sign	in	at	the	same	time,	you	can	use
the	User	Parameters	pre-processor	to	store	multiple	user	accounts.	For	example,	to	have
one	user	account	per	thread	for	four	threads	in	a	test,	you	can	define	four	sets	of
parameters	for	username	and	password:

If	the	number	of	threads	is	more	than	the	number	of	sets,	they	will	be	reused.

USING	REGULAR	EXPRESSIONS

What	if	you	need	to	stop	testing	in	case	of	connection	problem	such	as	connection	refused
by	the	server?	In	such	case,	there	is	no	reason	to	continue	testing.	The	following	is	a
fragment	that	replaces	Login	Page	node	in	the	previous	example:

We	add	the	Regular	Expression	Extractor	post-processor	to	parse	response	from	the	server
while	connecting	to	the	login	page.	If	there	is	any	connection	problem,	an	exception	will
be	thrown	in	the	response	code.	You	can	check	Sample	result	tab	in	the	View	Results	Tree
to	see	what	will	return	when	it	failed.	Inside	the	Regular	Expression	Extractor,	field	values
are	set	as	follows:

Reference	Name:	Exception

Regular	Expression:	.([a-zA-Z0-9]*Exception)

Template:	1

Match	No.:	1

Default	Value:	NO_EXCEPTION

We	use	a	regular	expression	to	search	for	any	text	related	to	exception	(e.g.,
HttpHostConnectException)	in	the	response.	Parentheses	(and)	indicates	a	group	in	the
regular	expression.	It	is	used	to	get	a	portion	of	matched	string.	In	this	case,	it	is	used	to
remove	a	dot	before	the	exception	class	name.	1	in	the	Template	field	indicates	group	1
and	1	in	the	Match	No.	field	indicates	the	first	match.	If	there	is	no	match,	default	value
“NO_EXCEPTION”	is	returned.	The	value	is	assign	to	a	variable	named	Exception.

In	the	If	Controller,	the	Condition	field	is	set	as

“${Exception}”	!=	“NO_EXCEPTION”

The	variable	needs	to	be	double-quoted.	In	the	Test	Action,	the	action	is	“Stop	Now”.

One	tricky	part	about	using	regular	expressions	against	responses	is	how	to	verify	the
results.	One	easy	way	to	validate	regular	expressions	is	through	the	View	Results	Tree.
You	can	find	a	Search	field	at	the	bottom	of	the	Response	data	tab.	Type	in	a	regular
expression	and	make	Regular	exp.	checkbox	checked.	Click	on	the	Find	button.	You	can
see	matched	string	is	highlighted	if	there	is	any.	Click	on	the	Find	next	button	for	next
matched	string.

USING	HTTP	PROXY	SERVER

In	the	case	that	there	are	too	many	form	fields.	To	put	them	in	manually	is	time
consuming.	Or,	you	are	not	able	to	see	form	field	names	from	view	source	in	a	browser.
You	can	use	the	Recording	Controller	to	record	test	samples.	You	are	doing	recording
through	the	HTTP	Proxy	Server.	All	recorded	samples	will	be	saved	under	the	Recording
Controller.	You	can	use	them	in	a	test	plan.	The	following	are	basic	steps	to	do	recording
using	the	HTTP	Proxy	Server:

Step	1

First,	you	add	a	Thread	Group.

Step	2

Next,	you	add	the	Recording	Controller.	The	Recording	Controller	is	a	logic	controller.
Optionally,	you	can	add	an	HTTP	Request	Defaults	under	the	Recording	Controller.		That
will	leave	those	fields	in	the	recorded	elements	blank	if	they	are	specified	in	the	HTTP
Request	Defaults.

Step	3

Now,	we	can	add	the	HTTP	Proxy	Server	under	the	WorkBench.	The	HTTP	Proxy	server
is	a	non-test	element.	You	specify	a	port	number	for	the	proxy	server	(e.g.,	8088).	If	you
do	not	want	URLs	embedded	in	the	page	being	recorded,	you	can	set	Grouping	as	“Store
1st	sampler	of	each	group	only”.	To	include	or	exclude	certain	resources,	you	can	use
“URL	Patterns	to	Include”	or	“URL	Patterns	to	Exclude”.	All	will	be	recorded	if	nothing
is	specified.	Usually,	you	can	exclude	image	files	or	simply	click	on	the	“Add	suggested
Excludes”	button	to	use	suggested	patterns.	You	can	add	the	View	Results	Tree	listener	if
you	want	to	see	the	responses.

Step	4

We	need	to	change	the	browser	you	will	be	using	to	set	up	proxy	server	information.	For
Internet	Explorer	9,	choose	the	Tools	menu	->	Internet	Options	->	Connections.	Click	on
LAN	settings	at	the	bottom	to	bring	up	a	dialog.	In	the	dialog,	make	the	checkbox	for
Proxy	server	checked	and	type	in	the	port	number	of	the	proxy	server.	Make	sure	local
addresses	are	not	bypassed.	Click	on	the	OK	button	to	update	it.	For	Firefox,	choose	the
Tools	menu	->	Options	->	Network	->	Settings	->	Manual	proxy	configurations.

One	way	to	verify	your	settings	is	to	connect	to	a	web	site.	You	should	not	be	able	to
connect	to	it	unless	the	proxy	server	is	started.

Step	5

You	switch	back	to	JMeter.	Click	on	the	Start	button	at	the	bottom	of	the	HTTP	Proxy
Server	to	start	it.

Step	6

Now,	you	can	open	the	link	to	the	server	from	the	browser	and	browse	around	as	usual.
Every	step	you	make	is	recorded.	Stop	the	proxy	server	when	you	are	done	recording.
Also,	remember	to	change	back	your	browser	settings.

The	following	is	a	test	plan	with	recorded	elements	by	using	Grouping	as	“Store	1st
sampler	of	each	group	only”	and	also	“Capture	HTTP	Headers”	checkbox	is	unchecked.
The	elements	below	the	HTTP	Request	Defaults	are	recorded	elements.

Before	you	can	run	it,	at	least	you	need	to	add	an	HTTP	Cookie	Manager	since	cookie
support	is	needed.	Of	course,	a	better	way	is	to	create	a	new	test	plan	and	copy	elements
from	the	recording	test	plan.	You	are	allowed	to	do	copy	and	paste	between	JMeter
instances.

The	following	is	an	HTTP	Request	that	contains	query	parameters	for	upating	a	form.	You
can	see	query	parameters	for	the	form	fields	from	the	Parameters	tab:

TESTING	WEB	APPLICATIONS	USING	GWT

A	challenge	to	test	web	applications	using	Ajax	technologies	is	that	there	is	no	need	to
request	new	HTML	pages	from	the	server.	The	interaction	between	the	client	(Ajax	code
running	in	the	browser)	and	the	server	is	through	a	remote	procedure	call	(RPC).
Certainly,	view	source	from	the	browser	is	not	going	to	help.	Using	the	Recording
Controller	certainly	is	very	helpful	for	web	applications	using	technologies	related	to
Ajax.	The	following	example	is	the	recording	of	a	web	application	using	GWT:

To	run	it,	you	need	to	add	an	HTTP	Cookie	Manager.	For	each	GWT	RPC	service	call,
which	is	AediServerService	in	this	case,	you	need	to	add	an	HTTP	Header	Manager	as	a
child	with	the	header:

Content-Type:	text/x-gwt-rpc;	charset=utf-8

Or,	you	can	make	“Capture	HTTP	Headers”	checkbox	in	the	HTTP	Proxy	Server	checked.
Then,	an	HTTP	Header	Manager	will	be	added	to	every	sampler	automatically.

Comparing	with	the	previous	example,	you	are	not	able	to	see	query	parameters	for	the
form	fields	from	the	Parameters	tab.	Instead,	you	can	see	the	GWT	RPC	request	(a
serialized	stream	in	plain	text)	from	the	Post	Body	tab.	The	following	is	the	GWT	RPC
HTTP	Request	from	one	of	the	service	calls:

As	shown	in	the	post	body,	the	GWT	RPC	request	is	a	sequence	of	fields	using	the	vertical
bar	as	the	delimiter.	For	detailed	information	about	the	GWT	RPC	wire	protocol,	you	can
check	https://docs.google.com/document/d/1eG0YocsYYbNAtivkLtcaiEE5IOF5u4LUol8-
LL0TIKU/edit?pli=1.	Here,	we	are	only	interested	in	some	of	the	fields.	The	third	field,

https://docs.google.com/document/d/1eG0YocsYYbNAtivkLtcaiEE5IOF5u4LUol8-LL0TIKU/edit?pli=1

which	is	9,	indicates	there	are	nine	strings	in	the	string	table	as	shown	below:

http://www.aedibio.com/aediserver/aediserver/

932F6D034B941DB8127F558BA05F53E2

com.aeditechnology.web.gwtclient.rpc.AediServerServiceGWT

updateProfile

com.aeditechnology.web.gwtclient.rpc.datamodel.AccountProfile/818247301

This	is	a	test.

1

Test

test1

	

The	third	field	is	the	interface	name	of	the	GWT	RPC	service.	The	fourth	field	is	the	name
of	the	method	to	be	called.	The	fifth	field	is	the	type	of	the	first	parameter	in	the	method.
The	remaining	fields	are	values	of	AccountProfile.	All	the	remaining	numeric	fields	are
used	to	reconstruct	the	method	call	and	parameters	based	on	fields	in	the	string	table.

ADDING	JAVA	CLASSES

JMeter	allows	you	to	add	Java	classes	in	the	test	plan	through	the	following	samplers:

JUnit	Request

The	JUnit	Request	sampler	allows	you	to	include	JUnit	test	classes	to	a	test	plan.	To
include	JUnit	test	classes,	there	are	two	options:

Option1

Pack	classes	to	a	JAR	file	and	place	it	in	the	lib/junit	directory

Option	2

Add	the	directory	of	JUnit	classes	to	the	user.classpath	property	in	the	user.properties
under	the	bin	directory

Now,	in	the	JUnit	Request	sampler,	you	should	be	able	to	see	those	test	classes	from	the
Classname	drop-down.	If	JUnit	test	classes	are	using	JUnit	4	annotations,	you	need	to
make	“Search	for	JUnit	4	annotations”	checked	in	order	to	see	them.	You	can	select	a	test
method	from	the	Test	Method	dropdown.	One	JUnit	Request	sampler	is	for	one	test
method.

In	the	following	example,	it	contains	test	methods	of	the	PurchaseManagerTest	from	the
previous	chapter.	You	need	to	include	methods	annotated	with	@BeforeClass	(the
setupClass	method)	and	@AfterClass	(the	tearDownClass	method)	in	the	test	plan.	They
will	not	be	called	automatically.

Java	Request

Comparing	with	the	JUnit	Request	sampler,	the	Java	Request	sampler	has	less	restriction
since	it	allows	you	to	add	any	Java	classes	only	if	they	implement	the	JavaSamplerClient
interface	or	extend	the	AbstractJavaSamplerClient	class.	Developers	are	encouraged	to
extend	the	AbstractJavaSamplerClient	class.	There	are	five	methods	in	the
AbstractJavaSamplerClient	class:

Logger	getLogger():	gets	a	Logger	which	can	be	used	to	log	messages.

Arguments	getDefaultParameters():	defines	a	list	of	parameters	provided	by	this	test	and
also	what	will	be	displayed	in	the	GUI.	Parameters	are	represented	by	the	Arguments
class.	Parameters	are	added	through	the	addArgument(Argument	arg)	or
addArgument(String	name,	String	value)	method.

void	setupTest(JavaSamplerContext	context):	does	initialization	for	this	test.	It	is	only
called	once	per	thread.

void	teardownTest(JavaSamplerContext	context):	does	cleanup	for	this	test.	It	is	only
called	once	per	thread.

SampleResult	runTest(JavaSamplerContext	context):	defines	actual	operations	in	a	test.
This	is	an	abstract	method	that	you	need	to	override.	This	method	is	called	per	iteration.

The	JavaSamplerContext	class	is	used	to	get	values	of	parameters.	You	can	get	the	value
of	a	parameter	through	the	getParameter(String	name)	or	getParameter(String	name,
String	defaultValue)	method	for	a	String.	For	an	integer,	you	can	use	the
getIntParameter(String	name)	or	getIntParameter(String	name,	int	defaultValue)	method.
For	a	long,	you	can	use	the	getLongParameter(String	name)	or	getLongParameter(String
name,	long	defaultValue)	method.

The	SampleResult	class	is	used	to	contain	returned	results.	To	calculate	elapsed	time,	you
can	use	the	sampleStart()	method	to	start	recording	and	the	sampleEnd()	method	to	end
recording.	To	set	this	test	as	successful,	you	can	use	the	setSuccessful(boolean	success)
method.

For	detailed	information,	you	can	check	the	JMeter	API	documentation	in	the	docs/api
directory.

To	compile	it,	you	need	to	include	ApacheJMeter_core.jar	and	ApacheJMeter_java.jar
under	the	lib/ext	directory	in	the	classpath.	To	deploy	it,	you	can	pack	it	in	a	JAR	file	and
put	it	under	the	lib/ext	directory.

JAVACC
	

JavaCC	(Java	Compiler	Compiler)	is	an	open	source	lexical	analyzer	generator	and	a
parser	generator	for	use	with	the	Java	applications,	which	takes	a	grammar	specification
(e.g.,	EBNF)	and	generates	the	Java	source	code	of	a	lexical	analyzer	and	a	parser.		A
lexical	analyzer	breaks	a	sequence	of	characters	into	tokens	and	identifies	the	type	of	each
token.	A	parser	takes	a	sequence	of	tokens	from	a	lexical	analyzer	and	then	analyzes	them
to	determine	the	structure	and	generates	output	depending	on	your	need.		For	an
interpreter,	it	is	executed	directly	(e.g.,	a	calculator	with	an	arithmetic	expression	as	the
output).	For	a	compiler,	the	output	can	be	compiled	code.	Other	than	that,	you	can	use
JavaCC	to	create	a	text	processor	which	extracts	text	based	on	certain	lexical	tokens	in	a
file.

You	can	download	JavaCC	from	http://javacc.java.net/.	The	latest	version	is	5.0	at	the	time
of	writing.

http://javacc.java.net/

STRUCTURE	OF	A	GRAMMAR	FILE

EBNF	(Extended	Backus-Naur	Form)	contains	a	family	of	notations	used	to	express	the
grammar	of	a	formal	language	(not	necessary	a	programming	language).	A	grammar	is
defined	by	(unordered)	production	rules	that	specify	how	symbols	can	be	combined
together.	For	example,	the	following	are	EBNF	production	rules	to	define	simple	numbers:

<dot>	::=	“.”

<digits>	::=	([“0”	–	“9”])+

<number>	::=	<digits>	|	<digits>	<dot>	<digits>	|	<digits>	<dot>	|	<dot>	<digits>

An	EBNF	rule	contains	two	parts	(separated	by	::=	symbol):	LHS	(left-hand	side)	is	the
rule	name	and	RHS	(right-hand	side)	is	the	definition	associated	with	the	rule	name.
Options	(separated	by	commas)	are	enclosed	within	brackets	[and].	At	most	one	of	them
is	chosen.	To	put	a	range	of	characters	in	options,	you	can	use	a	hyphen	-	between	two
characters.	Choices	are	separated	by	vertical	bars	|.	One	of	them	is	chosen.	They	can	be
parenthesized	by	(and)	and	suffixed	with	+	(one	or	more),	*	(zero	or	more)	or	?	(zero	or
one)	for	repetitions.

JavaCC	allows	us	to	define	grammars	similar	to	EBNF.	But,	it	separates	grammars	into
tokens	and	production	rules.	JavaCC	grammars	are	defined	in	a	grammar	file	with	jj	as
extension	name.	You	can	use	JavaCC	command	line	javacc.bat	(for	Windows)	or	javacc
(for	Unix/Linux)	to	generate	Java	files	and	then	compile	them	into	Java	classes	using	a
Java	compiler.

The	following	is	the	basic	structure	of	a	JavaCC	grammar	file:

/*	This	section	defines	a	set	of	options	for	the	grammars.	*/

options	{

…

}

/*	This	section	defines	the	parser	class	to	be	generated	and	contains	Java	code.	*/

PARSER_BEGIN(parser_class)

public	class	parser_class	{

…

}

PARSER_END(parser_class)

/*	This	section	defines	lexical	specifications.	Here,	you	specify	token	names	and	the
corresponding	regular	expressions.	The	lexical	analyzer	breaks	a	sequence	of	characters
into	tokens	and	classifies	tokens.	*/

/*	Contains	Java	code	to	be	included	in	the	generated	token	manager.	*/

TOKEN_MGR_DECLS:	{

//	Java	code

}

/*	Defines	characters	not	to	pass	on	to	the	parser.	*/

SKIP	[[IGNORE_CASE]]:	{

…

}

/*	Defines	tokens	in	the	grammars	*/

TOKEN	[[IGNORE_CASE]]:	{

…

}

/*	This	section	defines	production	rules	in	the	grammars.	Production	rules	can	contain
Java	code.	They	look	like	Java	methods.	This	is	where	you	define	actions	of	a	parser.	*/

…

Options

Options	section	allows	you	to	provide	options	that	control	the	behavior	of	generated	Java
code.	Options	can	be	specified	either	in	the	grammar	file	or	from	the	javacc	in	the
command	line.	Options	set	from	javacc	overrides	those	in	the	grammar	file.	Options
section	is	optional	and	option	names	are	not	case-sensitive.	For	example,

options	{

STATIC	=	false;

IGNORE_CASE	=	true;

}

When	STATIC	is	false,	methods	in	the	generated	parser	and	token	manager	are	not	static.
This	allows	multiple	instances	of	parser	to	be	present.	By	default,	STATIC	is	true.

When	IGNORE_CASE	is	true,	the	generated	token	manager	ignore	case	in	the	token	and
input	data.	By	default,	IGNORE_CASE	is	false.

You	can	set	DEBUG_TOKEN_MANAGER	as	true	if	you	need	to	obtain	debugging
information	of	the	token	manager.	For	additional	information	about	available	options,	you
can	find	them	from	javaccgrm.html	in	doc	directory.

Class	declaration

The	names	inside	the	PARSER_BEGIN	and	PARSER_END	should	be	the	same	and	this	is
the	name	of	generated	Java	class	name	for	the	parser.	Some	of	generated	Java	files	are
preceded	with	the	class	name	declared	here.

You	can	have	any	Java	code	(just	like	creating	a	Java	class)	inside	as	long	as	it	contains	a
class	whose	name	is	the	same	as	the	generated	parser.	If	you	need	to	put	the	generated
files	in	a	package,	you	can	put	a	package	name	right	after	PARSER_BEGIN.	If	you	have
any	variables	(or	methods)	that	can	be	used	by	other	production	rules,	you	can	put	them
here	too.	Since	JavaCC	only	generates	Java	source	code	and	does	not	check	Java	syntax,
you	won’t	see	any	errors	if	there	is	any.	You	need	to	wait	until	they	are	compiled	into	class
files.

Token	manager	declarations

The	section	of	token	manager	declarations	contains	Java	code	to	be	included	in	the
generated	token	manager	and	any	declarations	here	are	accessible	by	any	lexical	actions	in
lexical	specifications.

Lexical	specifications

Lexical	specifications	(or	regular	expression	productions)	define	lexical	entities	(grammar
tokens)	processed	by	the	token	manager.	The	token	manager	is	generated	based	on
information	here.	A	lexical	specification	contains	a	list	of	regular	expression	specifications
separated	by	vertical	bars	|:

[lexical	state	list]	{SKIP|TOKEN|MORE}	[IGNORE_CASE]	:	{

regular_expression	[Java	block][:lexical_state]

|	regular_expression	[Java	block][:lexical_state]

…

}

A	lexical	state	list	contains	a	list	of	lexical	states	(comma	separated)	surrounded	by
angular	brackets		<	and	>	or	you	can	use	<*>	for	all	states.	It	is	optional.	The	default	state
is	DEFAULT.	When	a	regular	expression	is	matched,	a	Java	block	is	executed	(an	optional
lexical	action)	and	then	move	to	next	lexical	state	for	further	processing	if	it	is	specified.
The	token	manager	starts	initially	in	the	DEFAULT	state.	A	Java	block	is	a	block	of	Java
code	surrounded	by	braces	{	and	}.	A	lexical	state	is	a	Java	identifier.

[IGNORE_CASE]	is	optional.	It	has	the	same	effect	as	IGNORE_CASE	in	the	options
except	[IGNORE_CASE]	applies	locally.

SKIP	defines	tokens	that	can	be	ignored	by	the	token	manager.	For	example,	to	skip
certain	whitespaces,	you	can	use:

SKIP	:	{

”	“

|	“\r”

|	“\t”

}

	

TOKEN	defines	tokens	in	the	grammar.	Each	token	is	treated	as	an	instance	of	the	Token
class	matched	a	regular	expression	in	the	token	manager.	Each	token	is	surrounded	by
angular	brackets	<	and	>	and	separated	by	a	vertical	bar	|.	Token	definition	has	two	parts:
token	name	and	a	regular	expression	(with	optional	Java	code	and	lexical	state).	The
format	is	<[#]{token_name}:{regular	expression}>.

Token	name:	You	can	label	a	token	with	a	name.	A	token	name	follows	Java	conventions
on	Java	identifiers.	If	the	token	name	is	preceded	by	a	#	symbol,	it	is	treated	as	a	private
regular	expression	and	not	matched	as	a	token	by	the	token	manager.	But,	it	still	can	be
referred	to	from	other	regular	expressions.	It	is	a	convenient	way	to	reuse	the	same	regular
expression	in	other	places.

Regular	expression:	A	regular	expression	can	contain	a	string	literal	(following	Java
string	conventions)	or	a	list	of	complex	regular	expressions	separated	by	vertical	bars	|.	A
regular	expression	can	also	refer	to	other	labeled	tokens	(surrounded	token	name	by
angular	brackets	<	and	>).	A	complex	regular	expression	contains	a	sequence	of	items
from	the	following:	string	literal,	token,	options,	choices.	These	items	can	be
parenthesized	by	(and)	and	suffixed	with	+	(one	or	more),	*	(zero	or	more)	or	?	(zero	or
one)	for	repetitions.	Options	can	be	prefixed	by	a	tilde	~	to	exclude	certain	characters.

[IGNORE_CASE]	is	optional.	It	has	the	same	effect	as	IGNORE_CASE	in	the	options
except	[IGNORE_CASE]	applies	locally.	A	grammar	file	can	have	more	than	one	Token
section.

	

The	following	is	an	example	of	tokens	defined	in	a	calculator:

TOKEN:	{

<	PLUS:	“+”	>

|	<	MINUS:	“-”	>

|	<	MULTIPLY:	“*”	>

|	<	DIVIDE:	“/”	>

|	<	COMMA:	“,”	>

|	<	#DOT:	“.”	>

|	<	OPEN_PAR:	“(”	>

|	<	CLOSE_PAR:	“)”	>

|	<	#DIGITS:	([“0”-“9”])+	>

|	<	NUMBER:	(<DIGITS>	|	<DIGITS>	<DOT>	<DIGITS>	|	<DIGITS>	<DOT>	|
<DOT>	<DIGITS>)	>

|	<	EOL:	“\n”	>

}

TOKEN	[IGNORE_CASE]:	{

<	SUM:	“SUM”	<OPEN_PAR>	>

|	<	AVG:	“AVG”	<OPEN_PAR>	>

}

	

MORE	is	used	to	build	up	a	token	gradually.	Matched	characters	to	MORE	regular
expression	continue	to	store	in	a	buffer	until	a	match	to	a	TOKEN	or	SKIP	regular
expression.	For	a	match	to	TOKEN	regular	expression,	a	token	is	formed	with	the	content
in	the	buffer	combined	with	current	match	and	then	passed	to	the	parser.	For	a	SKIP,	the
whole	content	is	discarded.

	

Production	rules

Each	production	rule	(or	production)	has	two	parts.	One	is	the	Java	block	that	contains
declarations	and	Java	code.	This	part	declares	the	Java	method	to	be	generated	and
variables	can	be	used	in	the	production	rule.	A	checked	exception	ParseException	is
thrown	in	the	generated	code.	If	other	exceptions	need	to	be	thrown,	you	can	add	them
here.	The	other	is	the	expansion	part	for	EBNF	rule	expansion.	Each	expansion	part
contains	expansion	units.	Each	expansion	unit	can	contain	a	block	of	Java	code
surrounded	by	braces	{	and	}.	This	is	where	action	is	executed	during	the	parsing	process.
The	following	is	the	basic	structure	of	a	production	rule:

{void	or	data	type}	{rule	name()}	[throws	exception1,…]	:

{

}

{

//	expansion	part	that	contains	nested	expansion	units

}

The	following	example	shows	an	EBNF	production	rule	and	the	corresponding	production
rule	in	JavaCC	for	an	arithmetic	expression	with	addition	and	subtraction	operations:

EBNF	production	rule:

<expression>	::=	<term>	(<plus>	<term>	|	<minus>	<term>)*

JavaCC	production	rule:

Double	expression():

{

Double	a;

Double	b;

}

{

			a	=	term()

(

<PLUS>	b	=	term()			

{

if(a	==	null	&&	b	!=	null)

a	=	b;

else	if(a	!=	null	&&	b	!=	null)

a	=	new	Double(a.doubleValue()	+	b.doubleValue());

}

				|			<MINUS>	b	=	term()

{

if(a	==	null	&&	b	!=	null)

a	=	new	Double(b.doubleValue()*	(-1));

else	if(a	!=	null	&&	b	!=	null)

a	=	new	Double(a.doubleValue()	-	b.doubleValue());

}

)*

{

return	a;

}																		

}

	

The	corresponding	parts	in	the	EBNF	rule	are	highlighted	in	bold.	term()	is	a	production
rule.	The	following	is	a	snippet	of	generated	code	for	production	rule	expression():

final	public	Double	expression()	throws	ParseException	{

Double	a;

Double	b;

a	=	term();

label_3:

while	(true)	{

switch	((jj_ntk==-1)?jj_ntk():jj_ntk)	{

case	PLUS:

case	MINUS:

…

}

	

A	SIMPLE	CALCULATOR

Now,	we	will	use	JavaCC	to	create	a	simple	calculator	that	supports:

Binary	operator:	+	(addition),	-	(subtraction),	*	(multiplication),	/	(division)

Unary	operator:	-	(negative),	+	(positive)

Function:	sum	(summation),	avg	(average)

Grouping:	(and)

Function	names	are	case-insensitive	and	arguments	for	functions	are	comma	separated
expressions	(or	simple	values).	For	example,	sum(1,2,3),	sum(1+2,3,4)	or
sum(1,2,avg(1,2,3)).

EBNF	grammars

A	good	practice	is	to	start	with	EBNF	grammars	and	then	convert	them	to	JavaCC
grammars.	EBNF	grammars	are	shown	as	below:

<expression>	::=	<term>	(<plus>	<term>	|	<minus>	<term>)*

<term>	::=	<unary>	(<multiply>	<element>	|	<divide>	<element>)*

<element>	::=	<number>	|	<open	par>	<expression>	<close	par>	|	<function>

<unary>	::=		(<plus>	|	<minus>)	<element>

<function>	::=	(<sum>	|	<avg>)	<open	par>	(<expression>	[<comma>	<expression>]*)
<close	par>

<sum>	::	=	“SUM”

<avg>	::	=	“AVG”

<open	par>	::=	“(“

<close	par>	::=	“)”

<plus>	::=	“+”

<minus>	::=	“-“

<multiply>	::=	“*”

<divide>	::=	“/”

<number>	::=	<digits>	|	<digits>	<dot>	<digits>	|	<digits>	<dot>	|	<dot>	<digits>

<comma>	::=	“,”

<dot>	::=	“.”

<digits>	::=	([“0”	–	“9”])+

<EOL>	::=	“\n”

	

JavaCC	grammars

Once	the	grammars	are	defined,	you	can	convert	them	to	JavaCC	grammars.	The
following	is	the	content	of	grammar	file	(Calculator.jj):

options	{

STATIC	=	false;

}

	

PARSER_BEGIN(Calculator)

	

/**

*	This	is	a	lexical	analyzer	and	parser	for	a	calculator.

*/

public	class	Calculator	{		

public	static	void	main(String	args[])	throws	ParseException	{

Calculator	parser	=	new	Calculator(System.in);

while(true)	{

System.out.println(parser.parseOneLine());

}

}

}

PARSER_END(Calculator)

	

SKIP	:	{

”	“

|	“\r”

|	“\t”

}

	

TOKEN:	{

<	PLUS:	“+”	>

|	<	MINUS:	“-”	>

|	<	MULTIPLY:	“*”	>

|	<	DIVIDE:	“/”	>

|	<	COMMA:	“,”	>			

|	<	#DOT:	“.”	>

|	<	OPEN_PAR:	“(”	>

|	<	CLOSE_PAR:	“)”	>

|	<	#DIGITS:	([“0”-“9”])+	>

|	<	NUMBER:	(<DIGITS>	|	<DIGITS>	<DOT>	<DIGITS>	|	<DIGITS>	<DOT>	|
<DOT>	<DIGITS>)	>

|	<	EOL:	“\n”	>

}

	

TOKEN	[IGNORE_CASE]:	{

<	SUM:	“SUM”	<OPEN_PAR>	>

|	<	AVG:	“AVG”	<OPEN_PAR>	>			

}

	

Double	parseOneLine():

{

Double	a;

}

{

a	=	expression()	(<EOF>	|	<EOL>)

{

return	a;

}

}

	

Double	sum():

{

Double	result	=	null;

Double	param;

}

{

<SUM>	result	=	expression()

(

<COMMA>	param	=	expression()

{

if(result	==	null	&&	param	!=	null)

result	=	param;

else	if(result	!=	null	&&	param	!=	null)

result	=	new	Double(param.doubleValue()	+	result.doubleValue());

}

)*	<CLOSE_PAR>

{

return	result;

}

}

	

Double	avg():

{

int	i	=	1;

Double	result;

Double	param;

}

{

<AVG>	result	=	expression()

(

<COMMA>	param	=	expression()

{

if(result	==	null	&&	param	!=	null)

result	=	param;

else	if(result	!=	null	&&	param	!=	null)

{

result	=	new	Double(result.doubleValue()	+	param.doubleValue());

i++;

}

}

)*	<CLOSE_PAR>	

{

if(result	!=	null	&&	i	!=	0)

return	new	Double(result.doubleValue()/(double)i);

return	null;

}

}

	

Double	expression():

{

Double	a;

Double	b;

}

{

a	=	term()

(

<PLUS>	b	=	term()			

{

if(a	==	null	&&	b	!=	null)

a	=	b;

else	if(a	!=	null	&&	b	!=	null)

a	=	new	Double(a.doubleValue()	+	b.doubleValue());

}

|	<MINUS>	b	=	term()

{

if(a	==	null	&&	b	!=	null)

a	=	new	Double(b.doubleValue()*	(-1));

else	if(a	!=	null	&&	b	!=	null)

a	=	new	Double(a.doubleValue()	-	b.doubleValue());

}

)*

{

return	a;

}																		

}

	

Double	term():

{

Double	a;

Double	b;

}

{

a	=	element()

(

<MULTIPLY>	b	=	element()			

{

if(a	==	null	||	b	==	null)

a	=	null;		//	If	a	number	is	multiplied	by	NULL,	NULL	is	returned.

else

a	=	new	Double(a.doubleValue()	*	b.doubleValue());

}

|	<DIVIDE>	b	=	element()			

{

if(a	==	null	||	b	==	null)

a	=	null;		//	If	there	exists	any	NULL	value,	NULL	will	be	returned.

else	if(b.doubleValue()	==	0)

a	=	new	Double(Double.NaN);		//	divided-by-zero																												

else

a	=	new	Double(a.doubleValue()	/	b.doubleValue());

}

)*

{

return	a;

}

}

	

Double	unary():

{

Double	a;

}

{

<MINUS>	a	=	element()				

{

return	new	Double(-a.doubleValue());

}

|	<PLUS>	a	=	element()								

{

return	a;

}

}

	

Double	element():

{

Token	t;

Double	a;

}

{

t	=	<NUMBER>									

{

return	new	Double(t.toString());

}

|	a	=	sum()										

{

return	a;

}

|	a	=	avg()										

{

return	a;

}

|	<OPEN_PAR>	a	=	expression()	<CLOSE_PAR>			

{

return	a;

}

|	a	=	unary()							

{

return	a;

}			

}

Generating	code

Next,	we	can	use	javacc	(under	the	bin	directory	of	JavaCC	installation)	to	generate	Java
code	by	running:

javacc	Calculator.jj

The	following	Java	files	are	generated:

Calculator.java:	The	generated	parser.

CalculatorConstants.java:	A	list	of	constants	for	tokens.

CalculatorTokenManager.java:	The	generated	token	manager	(or	lexical	analyzer).

ParseException.java:	This	exception	is	thrown	for	any	parsing	errors.

SimpleCharStream.java:	This	class	contains	characters	to	be	processed	by	the	lexical
analyzer.

Token.java:	This	class	represents	a	token.

TokenMgrError.java:	This	error	is	thrown	for	any	lexical	errors.

The	first	three	files	are	grammar	specific.	The	last	four	files	are	standard	files	generated
by	JavaCC.

In	Calculator.java,	JavaCC	generates	the	following	constructors	automatically:

public	Calculator(java.io.InputStream	stream)

public	Calculator(java.io.InputStream	stream,	String	encoding)

public	Calculator(java.io.Reader	stream)

Inside	these	constructors,	the	lexical	analyzer	(the	CalculatorTokenManager	class)	gets
characters	(the	SimpleCharStream	class)	from	the	input	(InputStream	or	Reader)	and	then
the	parser	gets	tokens	from	the	lexical	analyzer.	The	parser	starts	by	calling	the
parseOneLine()	method	which	accepts	single	line	input.	In	this	example,	the	input	is	from
the	console.

A	FORMULA	CALCULATOR

Now,	we	want	to	improve	the	calculator	to	accept	a	formula	and	calculate	the	formula
based	on	variable	values.	For	example,	a	formula	calculates	grades:
“midterm*0.3+final*0.3+report*0.4”.

To	support	defining	variables	in	the	formula,	we	add	the	following	two	new	EBNF	rules:

	

<letter>	::=	[“a”-“z”,”A”-“Z”]

<variable>	::=	<letter>	([“a”-“z”,”A”-“Z”,”0”-“9”,	“_”])*

And,	add	<variable>	into	<element>

<element>	::=	<number>	|	<open	par>	<expression>	<close	par>	|	<function>	|
<variable>

	

Next	step	is	to	change	the	grammar	file.	To	put	generated	files	in	a	package,	we	add
OUTPUT_DIRECTORY	to	specify	an	output	directory	for	the	generated	files.	Also,	add	a
new	constructor	to	allow	two	parameters:	one	is	a	map	that	contains	name-value	pairs	for
variables	and	the	other	is	a	formula.	To	make	it	simple,	only	single	value	is	allowed	for
variables.

options	{

STATIC	=	false;

OUTPUT_DIRECTORY	=	“calculator”;

}

	

PARSER_BEGIN(Calculator)

	

package	calculator;

	

import	java.io.StringReader;

import	java.util.Map;

	

/**

*	This	is	a	lexical	analyzer	and	parser	for	a	formula	calculator.

*/

public	class	Calculator	{

private	Map<String,	Double>	variables;	

public	Calculator(Map<String,	Double>	variables,	String	formula)	throws
ParseException	{

this(new	StringReader(formula));

this.variables	=	variables;

}		

}

PARSER_END(Calculator)

	

Add	the	following	in	Token:

#LETTER:	[“a”-“z”,“A”-“Z”]	>

<	VARIABLE:	<LETTER>	([“a”-“z”,“A”-“Z”,“0”-“9”,	“_”])*	>

Now,	we	add	a	production	rule	to	handle	variables.	The	image	field	of	Token	is	a	string
value	that	the	token	represents.	We	can	use	it	to	get	the	variable	name.

Double	variable():

{

Token	t;

Double	result	=	null;

}

{

t	=	<VARIABLE>

{

String	key	=	t.image;

if(variables.containsKey(key))

result	=	variables.get(key);

else

throw	new	ParseException(“Cannot	find	value	for	”	+	key);

	

return	result;

}

}

	

The	Last	thing	we	need	to	do	is	to	add	variable	as	part	of	element	list	by	adding	it	into	the
production	rule	element():

a	=variable()

{

return	a;

}

	

The	following	example	shows	how	to	use	the	improved	calculator:

import	java.util.Map;

import	java.util.HashMap;

	

import	calculator.Calculator;

import	calculator.ParseException;

	

public	class	CalculateGrades	{

public	static	void	main(String	args[])	{

Map<String,	Double>	grades	=	new	HashMap<String,	Double>();

grades.put(“midterm”,	80.0);

grades.put(“final”,	90.0);

grades.put(“report”,	95.0);

String	formula	=	“midterm*0.3+final*0.3+report*0.4”;

try	{

Calculator	calc	=	new	Calculator(grades,	formula);

System.out.println(calc.parseOneLine());

}	catch(ParseException	ex)	{

System.out.println(ex);

}			

}

}

A	TEXT	PROCESSOR

Next,	we	are	going	to	use	an	example	to	demonstrate	how	to	use	MORE	and	lexical	states.
As	we	mentioned	before,	the	token	manager	starts	initially	in	the	“DEFAULT”	state.	If	a
lexical	state	is	specified,	the	token	manager	moves	to	that	state	for	further	processing.		At
this	example,	the	parser	takes	a	Java	source	file	as	an	input	(through	a	standard	input)	and
generates	an	output	after	stripping	comments	in	the	original	file.	This	example	covers
cases	of	multiple	line	(/*	*/	block)	and	single	line	(starting	with	//)	comments.	To	make	it
simple,	it	does	not	cover	cases	of	quoted	strings.	To	handle	quoted	strings,	you	need	to
define	a	token	for	quoted	string	that	covers	all	possible	character	escape	codes	(e.g.,	\t,	\,
\”…)	supported	by	Java:

options	{

STATIC	=	false;

}

	

PARSER_BEGIN(CommentsRemover)

	

/**

*	This	is	a	lexical	analyzer	and	parser	for	a	comments	remover.

*/

public	class	CommentsRemover	{	

private	static	StringBuilder	buffer	=	new	StringBuilder();

public	static	void	main(String	args[])	throws	ParseException	{

CommentsRemover	parser	=	new	CommentsRemover(System.in);

parser.parse();

System.out.println(buffer);

}

}

PARSER_END(CommentsRemover)

	

SKIP	:	{

“/*”	:	MultiLineComment

}

	

<MultiLineComment>	SKIP	:	{

“*/”	:	DEFAULT

}

	

SKIP	:	{

“//”	:	SingleLineComment

}

	

<SingleLineComment>	SKIP	:	{

“\n”	{	input_stream.backup(1);	}	:	DEFAULT

}

	

<MultiLineComment,SingleLineComment>	MORE	:	{

<~[]>

}

	

TOKEN	:	{

<OTHER:	~[]>				

}

	

void	parse():

{

Token	t;

}

{

(t	=	<OTHER>

{

buffer.append(t.image);

})*

<EOF>

}

input_stream	field	represents	an	instance	of	SimpleCharStream	in	the	token	manager.	By

calling	input_stream.backup(1),	it	backs	up	current	position	one	character	to	not	skip	line
feed	character.

Apache	Solr
	

Apache	Solr	is	an	open	source	search	platform	based	on	Apache	Lucene	running	as	a
standalone	server	(starting	from	Solr	5.0,	Solr	is	no	longer	distributed	as	a	WAR).	Lucene
(http://lucene.apache.org)	provides	Java-based	full-text	indexing	and	search	technology.
Solr	provides	features	like	full-text	indexing,	hit	highlighting,	faceted	search,	rich
documents	(e.g.,	PDF,	MS	Word)	indexing	and	database	integration.	Solr	provides	REST-
like	APIs	which	can	be	called	over	HTTP	to	make	it	easy	to	use.	Solr	allows
customization	through	configuration	and	plugin	architecture.	There	are	also	projects	that
provide	libraries	or	plugins	for	integrating	Solr	with	many	programming	languages	or
applications.	For	example,	SolrJ	is	a	Java	client	to	access	Solr	through	API	calls.

You	can	download	Apache	Solr	from	http://lucene.apache.org/solr.	The	latest	version	is
5.4	(Java	7	or	greater	is	needed)	at	the	time	of	writing.

http://lucene.apache.org
http://lucene.apache.org/solr

GETTING	STARTED

Solr	binary	distribution	includes	a	self-contained	Solr	web	application	using	an	installation
of	Jetty	(a	pure	Java	based	HTTP	server	and	servlet	container	as	part	of	Eclipse
Foundation).	You	can	start	a	standalone	Solr	server	using	a	script	under	the	bin	directory:

solr	start

This	will	launch	Jetty	with	Solr	web	application	on	port	8983	in	the	background.	To
access	Solr	Admin	UI	(Solr	administration	user	interface),	you	can	open	link
http://localhost:8983/solr	in	a	web	browser.

To	stop	a	Solr	server	bound	to	port	8983,	you	can	run

solr	-stop	-p	8983

http://localhost:8983/solr

Basic	directory	structure

Solr	binary	distribution	contains	an	instance	of	Jetty	with	Solr	web	application	(under	the
server	directory).	Solr	5.4	uses	Jetty	9.2	and	it	contains	the	following	directories:

contexts:	This	directory	contains	additional	configurations	for	web	applications	deployed
in	Jetty.	Here,	solr-jetty-context.xml	defines	application	context	and	the	location	of	Solr
web	application.

etc:	This	directory	contains	configuration	files	for	Jetty.

lib:	This	directory	contains	runtime	JAR	files	for	Jetty.

logs:	This	directory	contains	log	files	if	logging	is	configured.

solr-webapp:	Solr	web	application	is	deployed	under	webapp	of	this	directory.

solr:	the	default	Solr	home	directory

The	default	Solr	home	directory	is	“solr”.	To	use	configuration	other	than	the	default	one,
you	can	specify	that	at	the	solr.solr.home	system	property	while	starting	Solr	server.	For
example,	if	you	want	to	use	“mysolr”	as	the	home	directory,	you	can	start	Solr	with:

solr	start	-s	mysolr

To	learn	more	about	Jetty,	you	can	check	Jetty	Documentation	Wiki	from
http://www.eclipse.org/jetty/.

http://www.eclipse.org/jetty/

Solr	home	directory

A	typical	Solr	home	directory	contains	the	following	items:

solr.xml:	This	is	the	primary	configuration	file	for	all	cores.	In	Solr	4,	this	file	specifies	a
list	of	Solr	cores	it	should	load.	Starting	from	Solr	5,	<cores>	section	is	not	supported
anymore	and	automatic	core	discovery	replaces	manual	core	listing.	Each	<core>	section
is	now	replaced	by	core.properties	in	each	Solr	core	directory.	Automatic	core	discovery
will	try	to	find	core.properties	at	any	depth	in	subdirectories	of	the	Solr	home	directory.

configsets:	This	is	the	base	directory	for	configsets.	A	configset	is	identified	by	the	name
of	directory.	This	allows	cores	to	share	configuration	by	specifying	a	configset	while
creating	a	new	core.	A	path	can	be	configured	in	solr.xml	using	the	configSetBaseDir
element.

Individual	Solr	core	directories:	For	each	Solr	instance,	it	can	have	more	than	one	core.
Multiple	cores	allow	one	Solr	instance	with	separate	configurations	and	indexes,	but	still
have	the	convenience	of	managing	them	as	one	application.	That	is	one	of	the	strategies	to
manage	multiple	indexes	under	one	servlet	container.

A	library	directory	shared	across	all	cores:	This	is	optional.	A	path	can	be	configured	in
solr.xml	using	the	sharedLib	element.

Solr	core	directory

A	typical	Solr	core	directory	contains	the	following	items:

core.properties:	A	Solr	core	is	configured	through	a	Java	properties	file.	For	example,	to
specify	a	name,	you	can	use:

name=core1

This	file	can	be	empty.	In	which	case,	the	core	name	is	the	directory	this	file	is	located.

conf:	This	directory	is	mandatory	and	must	contain	solrconfig.xml
(http://wiki.apache.org/solr/SolrConfigXml)	and	schema.xml
(http://wiki.apache.org/solr/SchemaXml).

data:	This	is	the	default	location	for	indexes.	It	will	be	created	if	it	does	not	exist.	You	can
override	this	location	in	the	solrconfig.xml.

lib:	This	directory	is	optional.	Solr	will	load	any	JARs	in	this	directory	if	it	exists.	You	can
override	this	location	in	the	solrconfig.xml.

https://cwiki.apache.org/confluence/display/solr/Defining+core.properties

http://wiki.apache.org/solr/SolrConfigXml
http://wiki.apache.org/solr/SchemaXml
https://cwiki.apache.org/confluence/display/solr/Defining+core.properties

Creating	a	new	core

You	can	create	a	new	core	using	one	of	built-in	configsets	from	the	command	line.	For
example,	to	create	a	new	core,	basic_core,	with	minimal	configuration,	you	can	use:

solr	create_core	-c	basic_core	-d	basic_configs

Configset	basic_configs	provides	a	starting	point	to	create	a	new	core	in	Solr.

From	the	Admin	UI,	you	can	see	the	newly	created	core.	You	can	switch	to	it	from	the
Core	Selector	dropdown:

Other	than	using	the	command	line	to	create	a	new	core	by	copying	an	existing	configset,
you	also	can	create	the	whole	directory	structure	with	required	files	into	the	Solr	home
directory	directly.

Other	than	built-in	configsets,	Solr	binary	distribution	also	includes	a	few	examples	under
the	example	directory.	To	start	an	example	such	as	techproducts,	which	contains
comprehensive	examples	of	Solr	features,	you	can	start	a	Solr	instance	with	the	following
command:

solr	start	-e	techproducts

A	core,	techproducts,	with	sample	data	will	be	created.

SolrCloud

For	high	availability	and	fault	tolerance,	you	can	configure	a	cluster	of	Solr	servers	to
handle	distributed	search	and	indexing	through	SolrCloud.	To	handle	distributed	indexing,
an	index	(or	a	logical	index)	is	split	into	several	pieces	(or	shards).	To	handle	distributed
search,	each	shard	can	have	more	than	one	copy	(or	replica).	Each	replica	exists	as	one
core	in	a	Solr	server.	In	a	cluster,	a	collection	is	a	logical	index	that	contains	one	or	more
shards	spanning	multiple	machines.

DOCUMENT	SCHEMA

The	basic	unit	in	Solr	is	document.	Each	document	contains	fields.	The	type	of	a	field
defines	how	a	field	is	indexed	and	how	it	can	be	queried.	For	those	familiar	with	database,
a	document	is	like	a	table	row	and	a	field	is	like	a	table	column.	Adding	a	new	field	into
the	schema	won’t	affect	existing	data.	All	existing	documents	won’t	have	the	newly	added
field.	It’s	the	same	for	removing	a	field	from	the	schema.	It	won’t	affect	existing	data.	But,
updating	a	field	requires	reindexing	all	documents.	Or,	part	of	document	can	be	updated
through	atomic	updates.	This	is	a	feature	added	in	Solr	4.0	and	it	requires	all	fields	to	be
configured	as	stored=”true”	except	for	fields	which	are	destinations	of	<copyField>.

The	fundamental	concept	of	Solr	is	in	indexing	documents	and	running	queries	to	return
matched	documents.	It	Solr,	it’s	using	inverted	indexing.	An	inverted	index	stores	a	list	of
documents	that	each	term	appears	in	(term-to-document),	this	is	useful	for	doing	queries
by	terms.	In	some	cases,	such	as	sorting,	faceting,	and	grouping,	term-to-document	is	not
efficient.	docValues	can	be	enabled	for	a	field	by	adding	docValues=”true”.	This	will	use
forward	indexing	for	a	field	(document-to-term).

To	create	your	own	schema,	a	good	starting	point	is	from	a	built-in	configset.	The	basic
structure	of	a	document	schema	is	shown	below:

<schema>

<fields>

<field/>

…

<dynamicField/>

…

</fields>

<uniqueKey>field	name</uniqueKey>

<copyField/>

…

<types>

<fieldType/>	

…

</types>

</schema>

Document	fields

The	<fields>	element	is	where	fields	are	declared.	<fields>	contains	a	list	of	<field>	and
<dynamicField>	elements.	The	<field>	element	contains	many	attributes.	Name	and	type
are	required.	Name	should	consist	of	alphanumeric	characters	or	underscore	only,	and
should	not	start	with	a	digit.	Type	is	the	name	of	a	field	type	from	the	<fieldType>	element
in	the	<types>	element.	For	example,	id	field	is	defined	as:

<field	name=“id”	type=“string”	indexed=“true”	stored=“true”	required=“true”
multiValued=“false”	/>

type:	The	field	type	can	affect	case-sensitivity	in	searches.	The	string	type	(the	StrField
class)	is	not	analyzed	(no	pre-processing	in	input	data).	You	search	a	string	with	an	exact
match.	The	text_general	(the	TextField	class)	performs	tokenization	and	lowercasing.
Hence,	it	allows	partial	and	case-insensitive	matches.

indexed:	true	if	this	field	should	be	indexed	to	be	searchable,	sortable,	and	facetable.

stored:	true	if	the	original	value	of	this	field	should	be	returned	in	a	search.

required:	true	if	this	field	is	required.	An	error	will	be	thrown	if	the	value	does	not	exist.

multiValued:	true	if	this	field	can	contain	multiple	values	per	document.

By	default,	a	new	document	will	replace	existing	document	with	the	same	unique	key	(a
field	defined	as	a	uniqueKey	in	the	schema.xml).

<dynamicField>	allows	you	to	declare	dynamic	fields.	This	gives	you	flexibility	not	to
declare	every	field	to	be	indexed	explicitly.	Field	names	are	matched	by	patterns	with	a
wildcard	“*”	symbol	at	the	start	or	the	end.	For	example,

<dynamicField	name=”*_i”	type=“int”	indexed=“true”	stored=“true”/>

Once	a	field	is	indexed,	it	is	added	to	the	schema.	After	that,	it	is	just	like	a	regular	field.
This	means	you	cannot	add	field	values	with	conflicting	data	type.	Also,	in	the	queries,
you	need	to	provide	exact	field	names.	Dynamic	fields	provide	flexibility.	But,	new	fields
might	be	created	accidently	because	of	typos	in	the	field	names	of	documents.	Special
attention	is	needed	especially	in	the	production	environment.

<copyField>	copies	one	field	to	another	at	the	time	a	document	is	added	to	the	index.	This
is	a	convenient	way	to	index	the	same	data	differently	in	different	fields.	For	example,	one
field	for	searching	(tokenized,	case-folded	and	punctuation-stripped)	and	the	other	field
for	sorting	(un-tokenized,	case-folded).

You	also	can	add	multiple	fields	to	the	same	field.	For	example,

<copyField	source=“cat”	dest=“text”/>

<copyField	source=“name”	dest=“text”/>

Here,	the	text	field	needs	to	be	a	multivalued	field.

To	see	fields	defined	in	a	schema,	you	can	use	Schema	Browser	from	the	Admin	UI:

Field	types

Solr	field	types	are	subclasses	of	the	FieldType	class,	such	as	TextField,	StrField.	Field
type	definitions	in	the	schema	can	be	created	based	on	those	classes.	The	following	are
some	basic	type	definitions	in	a	Solr	sample	schema:

boolean

int	(or	tint)

float	(or	tfloat)

long	(or	tlong)

double	(or	tdouble)

date	(or	tdate)

string

text_general

The	following	are	two	field	definitions	for	a	numeric	type,	integer:

<fieldType	name=“int”	class=“solr.TrieIntField”	precisionStep=“0”
positionIncrementGap=“0”/>

<fieldType	name=“tint”	class=“solr.TrieIntField”	precisionStep=“8”
positionIncrementGap=“0”/>

Smaller	precisionStep	values	(in	bits)	will	generate	more	tokens	indexed	per	value	and	can
have	faster	range	queries.	But,	the	index	size	is	larger	too.	A	precisionStep	of	0	disables
indexing	at	different	precision	levels.	positionIncrementGap	can	be	used	to	put	additional
spaces	between	terms	in	multivalued	fields	to	prevent	false	phrase	matching.

A	field	of	TextField	type	usually	contains	an	analyzer.	An	analyzer	is	responsible	for
analyzing	contents	of	text	and	generates	tokens.	At	index	time,	the	outputs	are	used	to
build	indices.	At	query	time,	the	outputs	are	used	to	match	query	results.	An	analyzer
contains	a	sequence	of	tokenizers	and	filters.	Tokenizers	can	break	text	into	tokens	and
filters	can	be	used	to	filter	those	tokens.	The	same	operations	can	be	used	at	both	index
time	and	query	time.	Or,	they	can	contain	different	operations.	The	following	is	a	text
type,	text_general,	defined	in	the	sample	schema:

<fieldType	name=“text_general”	class=“solr.TextField”	positionIncrementGap=“100”>

<analyzer	type=“index”>

<tokenizer	class=“solr.StandardTokenizerFactory”/>

<filter	class=“solr.StopFilterFactory”	ignoreCase=“true”	words=“stopwords.txt”	/>

<!—	in	this	example,	we	will	only	use	synonyms	at	query	time

<filter	class=“solr.SynonymFilterFactory”	synonyms=“index_synonyms.txt”
ignoreCase=“true”	expand=“false”/>

—>

<filter	class=“solr.LowerCaseFilterFactory”/>

</analyzer>

<analyzer	type=“query”>

<tokenizer	class=“solr.StandardTokenizerFactory”/>

<filter	class=“solr.StopFilterFactory”	ignoreCase=“true”	words=“stopwords.txt”	/>

<filter	class=“solr.SynonymFilterFactory”	synonyms=“synonyms.txt”
ignoreCase=“true”	expand=“true”/>

<filter	class=“solr.LowerCaseFilterFactory”/>

</analyzer>

</fieldType>

I	f	you	need	to	define	a	field	with	non-tokenized	and	case-insensitive	content,	you	can
define	it	as:

<fieldType	name=“text_ci”	class=“solr.TextField”	sortMissingLast=“false”
omitNorms=“true”>

<analyzer>

<!—	KeywordTokenizer	does	not	do	any	tokenization.	The	entire	input	string	is
preserved	as	a	single	token.	—>

<tokenizer	class=“solr.KeywordTokenizerFactory”/>

<filter	class=“solr.LowerCaseFilterFactory”	/>

<!—	Removes	any	leading	or	trailing	whitespace	—>

<filter	class=“solr.TrimFilterFactory”	/>																																									

</analyzer>

</fieldType>

Field	analysis

To	see	how	a	field	value	is	analyzed	for	index	or	query,	you	can	use	Analysis	from	the
Admin	UI.

UPDATING	DATA

So	far,	the	server	does	not	contain	any	data.	To	add/update	data	into	a	Solr	index,	you	need
to	post	commands	to	the	server.	You	can	use	update	request	handler	registered	in	the
solrconfig.xml:

<requestHandler	name=”/update”	class=“solr.UpdateRequestHandler”/>

The	UpdateRequestHandler	supports	commands	specified	in	a	variety	of	formats:	XML,
CSV,	JSON,	or	JAVABIN.	To	post	commands,	you	can	use	the	following	methods:

post.jar:	This	is	a	simple	command	line	tool	(using	HTTP	POST	method)	in	the
“example/exampledoc”	directory.	It	allows	you	to	post	data	from	files	in	a	variety	of
formats	(including	rich	documents	such	as	PDF	or	MS	Office	files).	You	can	run	post.jar
with	-h	option	for	detailed	usage	and	examples.

cURL:	This	is	a	command	line	tool	for	transferring	data	with	URL	syntax.	It	supports	a
variety	of	operating	systems.	You	can	download	it	from	http://curl.haxx.se.

HTTP	GET	method:	There	is	no	limit	in	HTTP	specification	for	the	length	of	a	URL.
But,	many	clients	and	servers	have	such	limit	in	length.	Do	not	use	it	to	send	big	chunk	of
data.	It	is	only	good	for	short	requests.	A	GET	request	needs	to	be	URL-encoded.

http://curl.haxx.se

XML	messages

XML	is	a	popular	and	simple	way	to	store	structured	data	and	transport	data	between
locations.	Solr	allows	posting	XML	messages	for	updating	a	Solr	index.	It	is	possible	to
combine	multiple	commands	in	one	XML	message.	Since	an	XML	document	only	allows
one	root	element,	you	need	to	enclose	commands	in	an	<update>	element.	All	commands
in	an	XML	message	are	executed	in	order.	If	any	command	fails,	everything	below	it	will
not	be	executed.	For	more	information	on	XML	elements	and	attributes	for	XML
messages,	please	see	http://wiki.apache.org/solr/UpdateXmlMessages.

add

You	can	add/replace	documents	using	the	<add>	command.	By	default,	existing
documents	will	be	replaced	newly	added	documents	with	the	same	unique	key	defined	in
the	schema.	This	can	be	disabled	by	setting	an	optional	attribute	override	for	<add>	as
false.	Multiple	documents	can	be	specified	in	a	single	<add>	command.	Each	document
can	have	more	than	one	field.	A	multivalued	field	can	appear	multiple	times	in	a
document.	The	following	is	the	basic	structure

<add>

<doc>

<field	name=”field1”>value1</field>

<field	name=”field2”>value2</field>

…

</doc>

<doc>…</doc>

…

</add>

Next,	you	can	use	post.jar	to	add	documents	by	using	sample	files	in
“example/exampledoc”	directory.	Before	you	can	do	that,	you	need	to	create	a	core	with	a
schema	that	can	process	those	sample	documents	from	a	built-in	configset,
sample_techproducts_configs,	by	running	the	following	command:

solr	create_core	-c	sample_core	-d	sample_techproducts_configs

Now,	we	are	ready	to	post	the	first	document	to	this	core	by	running

java	-Dc=sample_core	-jar	post.jar	solr.xml

solr.xml	only	contains	one	document.	You	will	get	the	following	response:

SimplePostTool	version	5.0.0

Posting	files	to	[base]	url	http://localhost:8983/solr/sample_core/update	using	content-type

http://wiki.apache.org/solr/UpdateXmlMessages

application/xml…

POSTing	file	solr.xml	to	[base]

1	files	indexed.

COMMITting	Solr	index	changes	to	http://localhost:8983/solr/sample_core/update…

Time	spent:	0:00:00.458

You	have	just	indexed	your	first	document	to	Solr.	By	default,	the	host	name	is	localhost
and	the	port	number	is	8983.	You	can	use	-Dhost	to	specify	a	host	name	and	-Dport	to
specify	a	port	number.	Since	the	default	content	type	is	application/xml,	you	do	not	need
to	use	-Dtype	to	specify	content	type.

To	perform	the	same	operation	through	cURL,	you	can	run:

curl	http://localhost:8983/solr/sample_core/update	-H	“Content-Type:	text/xml”	—data-
binary	@solr.xml

You	will	get	the	following	response	in	XML	format:

<?xml	version=“1.0”	encoding=“UTF-8”?>

<response>

<lst	name=“responseHeader”><int	name=“status”>0</int><int	name=“QTime”>13</int>
</lst>

</response>

QTime	means	how	long	it	took	to	execute	your	query.	The	unit	is	milliseconds.

A	valid	content	header	is	required	to	use	HTTP	POST.	Using	-H	“Content-Type:	text/xml;
charset=utf-8”	if	that	is	for	UTF-8.	You	can	either	contain	XML	message	(enclosed	by
double	quotes)	or	a	file	(starting	the	data	file	with	a	“@”	symbol)	with	—data-binary
option.	If	you	need	an	explicit	commit	to	happen	immediately,	you	can	use	update?
commit=true.

Atomic	document	updates	allows	updating	individual	fields	without	sending	the	entire
document	to	Solr.	This	can	be	done	through	the	update	attribute	in	the	field	element.
Available	options	are	add,	set	and	inc.	If	you	need	to	set	the	value	of	a	field	to	null,	you
can	use	update=”set”	null=”true”	in	the	field	element.	For	example,	to	replace	the	price
field	of	a	document	with	a	new	value,	you	can	run:

curl	http://localhost:8983/solr/sample_core/update?commit=true	-H	“Content-Type:
text/xml”	—data-binary	“<add><doc><field	name=\“id\”>SOLR1000</field><field
name=\“price\”	update=\“set\”>200</field></doc></add>”

For	a	multivalued	field,	you	can	use	update=”add”	to	add	a	new	value	to	it.	To	increase
value	of	a	field,	you	can	use	update=”inc”.

To	update	documents	atomically,	make	sure	<updateLog>	is	configured	in	the
solrconifg.xml.	For	example:

<updateHandler	class=“solr.DirectUpdateHandler2”>

<updateLog>

<str	name=“dir”>${solr.ulog.dir:}</str>

</updateLog>

</updateHandler>

This	enables	the	transaction	log	for	recovery.

commit

Changes	to	an	index	are	not	visible	to	new	search	requests	until	a	commit	command	is
sent.	There	are	two	types	of	commit:	hard	commit	and	soft	commit.	A	hard	commit	syncs
changes	to	the	index	and	roll	over	the	log	(if	the	updateLog	is	enabled).	No	data	will	lose
in	case	of	system	failure.	This	can	prevent	the	log	from	growing	too	big	(for	uncommitted
updates).	A	soft	commit	only	makes	changes	visible	and	does	not	sync	changes	to	a
persistent	storage.	In	case	of	system	failure,	changes	that	occurred	after	the	last	hard
commit	could	be	lost.	Soft	commit	is	much	faster	than	hard	commit.	For	near	real	time
(NRT)	search,	you	need	to	use	soft	commit	more	and	hard	commit	less.	By	default,	hard
commit	is	performed	for	a	commit	operation.	You	can	set	optional	attribute	softCommit	as
true	to	perform	soft	commit.	For	example,

<commit	softCommit=”true”/>

You	can	send	a	commit	command	after	sending	the	last	document.	Or,	you	can	use	Solr	to
perform	a	hard	commit	(or	soft	commit)	automatically	under	certain	conditions.	You	can
combine	both	hard	commit	and	soft	commit	to	fine	tune	performance.	You	can	configure
them	under	the	updateHandler	element	in	the	solrconfig.xml.	For	example,

<updateHandler>

…

<autoCommit>	<!—	hard	commit	—>

<maxDocs>10000</maxDocs>	<!—	maximum	uncommitted	documents	before	auto
commit	—>

<maxTime>15000</maxTime>	<!—maximum	time	(ms)	after	adding	a	new	document
before	auto	commit	—>

<openSearcher>false</openSearcher>	<!—	If	false,	don’t	open	a	new	searcher	on	hard
commit.	This	means	newly	added	documents	are	not	visible.	—>

</autoCommit>

<autoSoftCommit>	<!—	soft	commit	—>

<maxTime>1000</maxTime>

</autoSoftCommit>

…

</updateHandler>

Another	commit	strategy	is	to	ask	Solr	to	commit	<add>	commands	within	a	certain	time
by	using	commitWithin.	For	example,	<add	commitWithin=”1000”>	is	to	ask	Solr	to
commit	this	<add>	within	1000ms.

The	following	example	is	to	send	a	<commit>	command	through	HTTP	GET.	You	can	use
a	browser	to	run	it	directly.	The	request	needs	to	be	URL-encoded:

http://localhost:8983/solr/sample_core/update?stream.body=%3Ccommit/%3E

delete

You	can	delete	documents	using	the	<delete>	command.	You	can	specify	the	value	of	a
unique	key	field	in	the	delete	XML	message	(delete	by	ID).	For	example,

<delete><id>SOLR1000</id></delete>

Or,	you	can	delete	documents	by	a	query	(delete	by	query).	For	example,

<delete><query>name:Solr</query></delete>

Delete	by	query	uses	the	Lucene	query	parser.	We	will	discuss	about	query	syntax	later.

Also,	you	can	have	multiple	delete	operations	(delete	by	ID,	delete	by	query)	in	the	same
<delete>	section.

If	you	want	to	clear	Solr	index,	you	can	use:

<delete><query>*:*</query></delete>

For	example,

java	-Dc=sample_core	-Ddata=args	-jar	post.jar	“<delete><query>*:*</query></delete>”

curl	http://localhost:8983/solr/sample_core/update?commit=true	-H	“Content-Type:
text/xml”	—data-binary	“<delete><query>*:*</query></delete>”

http://localhost:8983/solr/sample_core/update?stream.body=<delete><query>*:*</query>
</delete>&commit=true

CSV

Solr	accepts	data	in	CSV	(comma	separated	values)	format.	That	includes	files	exported
from	Excel	or	MySQL.	Furthermore,	parameters	such	as	separator	or	escape	are
configurable.	You	can	use	either	/update/csv	or	/update	to	post	CSV	data.	The	content	type
is	either	application/csv	or	text/csv.	The	following	is	a	sample	CSV	data:

id,cat,name

00001,”book,Java”,Effective	Java

00002,”book,C”,Programming	in	C

By	default,	the	first	line	is	the	header	of	CSV	data.	It	contains	a	list	of	comma	separated
field	names.	If	you	need	to	preserve	characters	such	as	separator	or	whitespace	in	the	field
value,	you	can	surround	it	by	encapsulator.	The	default	encapsulator	is	double	quote	“.	If
the	encapsulator	itself	needs	to	appear	in	the	encapsulated	value,	you	can	use	two
encapsulators	to	escape	it.	CSV	data	supports	multivalued	fields.	To	process	a	multivalued
field,	you	can	set	split	parameter	of	that	field	as	true.	Once	it	is	true,	the	field	value	is	split
into	multiple	values	by	another	CSV	parser.	For	example,	cat	field	in	above	sample	is	a
multivalued	field.	You	can	use	f.cat.split=true	in	the	request	URL	to	index	them	as
separate	values:

curl	“http://localhost:8983/solr/update?commit=true&f.cat.split

=true”	-H	“Content-Type:	text/csv”	—data-binary	@books.csv

By	default,	the	separator	of	multivalued	fields	is	the	same	as	the	field	separator.	You	can
change	that	by	using	f.<field	name>.separator=value	(e.g.,	f.cat.separator=|).

Note:	URL	is	surrounded	by	double	quotes	because	there	is	more	than	one	parameter	in
the	query	string.	The	separator	&	in	the	query	string	might	be	treated	as	part	of	a
command	in	the	command	line	mode	(e.g.,	a	command	separator	or	run	preceding
command	in	the	background).	Similar	problem	may	happen	in	-Dparams	option	of	post.jar
if	there	is	more	than	one	query	parameter.	You	can	surround	the	whole	option	by	double
quotes	if	it	happens.

QUERYING	DATA

Request	handler

To	provide	flexibility,	Solr	allows	pluggable	custom	code.	This	is	called	plugin.	There	are
a	variety	of	classes	in	Solr	can	be	treated	as	a	plugin.	For	example,	request	handlers	are
used	to	handle	query	requests.	A	request	handler	implements	the	SolrRequestHandler
interface.	The	SearchHandler	class	is	the	primary	request	handler	provided	by	Solr	to
handle	search	requests.

In	Solr,	a	request	is	dispatched	to	a	specific	request	handler	based	on	the	path	specified	in
the	request	URL.	All	request	handlers	are	defined	in	the	solrconfig.xml.	There	are
different	built-in	request	handlers	in	Solr.	For	example,	a	search	request	handler	is	defined
as:

<requestHandler	name=”/select”	class=“solr.SearchHandler”>

<lst	name=“defaults”>

<str	name=“echoParams”>explicit</str>	<!—indicates	what	kind	of	request	parameters
should	be	included	in	the	response.	“explicit”	means	only	the	parameters	specified	in	the
request	are	included.	—>

<int	name=“rows”>10</int>	<!—	max.	number	of	documents	returned	per	request	—>

<str	name=“df”>text</str>	<!—	default	search	field	—>

</lst>

</requestHandler>

Default	values	for	query	parameters	can	be	specified	inside	the	<requestHandler>	element
under	the	<lst>	element	with	name	“defaults”.	Other	than	“defaults”,	there	are	two
additional	sets	of	query	parameters:	appends	and	invariants.	“appends”	defines	additional
parameter	values	that	will	be	included.	“invariants”	defines	parameter	values	that	will	not
be	overridden.

Default	values	can	be	overridden	in	the	request	URL.	To	reach	a	handler,	you	can	use	the
request	URL	with	the	following	format:

http://{host:port}/{context	root}/{core}/{handler	name}

For	example,	to	reach	a	search	request	handler	mentioned	above	in	sample_core,	you	can
use:

http://localhost:8983/solr/sample_core/select

Multiple	instances	of	the	same	request	handler	can	be	registered	more	than	once	with
different	names	(and	different	parameters).

Query	parameters

Search	handlers	are	handlers	that	process	search	queries	and	return	a	list	of	results.	The
primary	search	handler	provided	by	Solr	is	the	SearchHandler	class.	There	are	multiple
instances	of	SearchHandler	registered	with	different	names	in	the	solrconfig.xml.	The
following	are	main	query	parameters	supported	by	the	SearchHandler:

q:	This	is	the	only	mandatory	query	parameter.	It	specifies	the	main	query	for	the	request.
Solr	supports	different	types	of	queries	and	syntaxes.	Hence,	a	query	parser	is	needed	to
convert	the	main	query	to	the	correct	Lucene	query.	The	standard	Solr	query	parser	syntax
is	a	superset	of	the	Lucene	query	parser.	That	is	the	default	query	parser.	For	available
query	parsers,	please	check	http://wiki.apache.org/solr/SolrQuerySyntax.

fl:	This	parameter	specifies	a	set	of	fields	(comma	or	space	separated)	to	be	returned.	The
string	“score”	can	be	used	to	indicate	the	score	of	each	document	should	be	returned.	The
string	“*”	can	be	used	to	indicate	all	fields	(the	default	value).

fq:	This	parameter	is	for	filter	queries.	fq	can	be	specified	multiple	times	in	the	query
string.	Filter	queries	can	be	used	to	filter	the	search	results	from	the	main	query	(using	q
parameter)	without	influencing	score.	Since	filter	queries	are	cached	independently	from
the	main	query,	it	can	increase	query	speed.	In	faceted	search	(will	be	introduced	later),
filter	queries	allows	users	to	drill	down	and	narrow	search	results.

start	and	rows:	These	two	parameters	are	used	to	paginate	results	from	a	query.	start
(default	value	is	0)	indicates	the	offset	in	the	complete	result	set.	rows	(default	value	is	10)
indicates	the	maximum	number	of	documents	to	return	per	request.

sort:	This	parameter	is	for	defining	sorting	on	one	or	more	fields	(comma	separated)	with
a	sort	direction	(asc	or	desc).	The	default	value	for	sorting	is	“score	desc”.	Score	is	a
pseudo	field	for	document	score.

defType:	This	parameter	specifies	the	query	parser	for	the	main	query.

debugQuery:	If	additional	debugging	information	needs	to	be	added	in	the	response,	you
can	include	this	parameter	(regardless	of	its	value)	in	the	query.

By	default,	Solr	is	using	the	standard	Lucene	query	parser.	To	use	q	parameter	in	the
query,	you	need	to	understand	query	syntax	first:

http://wiki.apache.org/solr/SolrQuerySyntax

Fields

You	can	search	any	field	with	the	value	you	are	looking	for	with	<field>:<term>.	<field>
is	case-sensitive.	If	the	field	name	is	missing,	the	default	search	field	will	be	used.	There
are	two	types	of	terms:	single	terms	and	phrases.	A	single	term	is	a	single	word.	For
example,	to	search	for	word	“Solr”	in	the	name	field,	you	can	use	name:Solr.	A	phrase	is	a
group	of	words	surrounded	by	double	quotes.	For	example,	to	search	for	phrase	“phone
features”	in	the	name	field,	you	can	use	features:”phone	book”.

Boolean	operators

If	multiple	terms	are	involved,	you	can	combine	them	through	Boolean	operators.	Lucene
supports	the	following	operators:

OR	(or	||):	matches	documents	where	either	term	exists.	This	is	the	default	operator	if
there	is	no	Boolean	operator	between	two	terms.

AND	(or	&&):	matches	documents	where	both	terms	exist.

+:	requires	the	term	after	the	+	symbol	exists	in	a	document.

NOT	(or	!):	excludes	documents	that	contain	the	term	after	NOT.

-:	excludes	documents	that	the	term	after	the	-	symbol	exists.

Boolean	operators	must	be	all	capitals.	For	example,	“name:Solr	or	name:One”	means
matching	documents	on	the	name	field	for	“Solr”,	or	on	the	default	search	field	for	“or”,
or	on	the	name	field	for	“One”.	That	is	different	from	“name:Solr	OR	name:One”.

Grouping	searches

You	can	use	parentheses	to	group	clauses	to	form	sub	queries.	For	example,	(name:Solr
OR	name:One)	AND	inStock=true.	Also,	you	can	use	parentheses	to	group	multiple
clauses	to	a	single	field.	For	example,	name:(+Solr	+One).

Wildcard	searches

You	are	allowed	to	use	single	character	wildcard	(?)	and	multiple	character	wildcard	(*)
within	single	terms	(not	within	phrases).	But,	you	cannot	use	*	or	?	as	the	first	character	of
a	search.	They	are	only	allowed	in	the	middle	or	the	end	of	a	search.

Regular	expression	searches

Regular	expression	is	supported	starting	from	4.0.	To	do	a	regular	expression	search,	use	a
pattern	surrounded	by	/.	Please	check	the	RegExp	class	in	Lucene	for	the	supported
syntax.	For	example,	to	search	documents	containing	iPod	or	iPad	in	the	name	field,	you
can	use	name:/iP[ao]d/	.

Proximity	searches

If	you	need	to	find	words	within	a	specific	distance	away,	you	can	do	proximity	searches.
An	exact	match	is	proximity	0.	To	do	a	proximity	search,	use	the	~	symbol	with	a	number
at	the	end	of	a	phrase.	For	example,	to	search	documents	that	“power”	and	“iPod”	are
within	2	words	away,	you	can	use	“power	iPod”~2.

Range	searches

To	match	documents	with	field	values	between	the	lower	and	upper	bounds,	you	can	use
range	searches.	Range	queries	can	be	inclusive	(use	[or])	or	exclusive	(use	{	or	})	of	the
upper	and	lower	bounds.	For	example,	price:	[100	TO	1000].	*	is	allowed	in	the	range
searches.	For	example,	price:[100	TO	*]	is	for	price	values	greater	than	or	equal	to	100.
To	find	all	document	with	a	value	for	a	field,	you	can	use	[*	TO	*].

Boosting	terms

You	can	make	a	term	more	significant	than	others	by	boosting	it.	To	boost	a	term,	you	use
^	after	the	term	with	a	number	(boost	factor).	The	higher	the	boost	factor,	the	more
relevant	the	term	will	be.	Therefore,	boosting	a	term	can	control	the	relevance	of
corresponding	document	(and	sorting	order).	By	default,	the	boost	factor	is	1	and	must	be
positive.

Special	characters

If	you	need	to	use	any	special	characters	that	are	part	of	the	query	syntax,	you	need	to
escape	them.	The	following	are	special	characters:

+	-	&&	||	!	()	{	}	[]	^	“	~	*	?	:	\	/

To	escape	these	special	characters,	you	use	the	\	before	the	character.

To	query	data,	you	can	use	HTTP	GET	method	on	the	/select	with	parameters	mentioned
above.	Assuming	you	already	posted	and	committed	all	XML	documents	in	the
exampledocs	directory.	Now,	you	can	run	the	following	query	to	search	on	the	name	field
for	“Solr”	and	request	name	and	price	fields	to	be	returned:

http://localhost:8983/solr/sample_core/select?q=name:Solr&fl=name,price

The	response	is:

<?xml	version=“1.0”	encoding=“UTF-8”?>

<response>

		<lst	name=“responseHeader”>

<int	name=“status”>0</int>

<int	name=“QTime”>52</int>

<lst	name=“params”>

<str	name=“fl”>name,price</str>

<str	name=“q”>name:Solr</str>

</lst>

		</lst>

		<result	name=“response”	start=“0”	numFound=“1”>

<doc>

<str	name=“name”>Solr,	the	Enterprise	Search	Server</str>

<float	name=“price”>0.0</float>

</doc>

		</result>

</response>

Bye	default,	all	fields	are	returned.	You	can	use	the	fl	parameter	to	specify	fields	to	be
returned.	By	default,	response	is	in	XML	format.	Available	format	types	are	defined	by	the
<queryResponseWriter>	element	in	the	solrconfig.xml.	You	can	include	the	wt	parameter
in	the	query	to	generate	different	format.	For	example,	you	can	change	response	format	to
CSV	by	using	wt=csv:

http://localhost:8983/solr/sample_core/select?q=name:Solr&fl=name,price&wt=csv

The	response	is:

name,price

“Solr,	the	Enterprise	Search	Server”,0.0

Other	than	using	command	line	to	query	data,	you	also	can	use	the	Query	tab	in	Solr
Admin	UI	to	query	data:

Sorting

By	default,	query	results	are	sorted	by	score	in	descending	order	(by	relevance).	If	you
need	to	sort	results	on	indexed	fields,	you	can	use	the	sort	parameter.	The	format	is:

sort=<field	name>	<direction>[,<field	name>	<direction>…]

Direction	is	either	asc	(ascending)	or	desc	(descending).	Sorting	is	only	allowed	on	fields
with	multiValued=”false”	and	indexed=”true”.	For	example,

http://localhost:8983/solr/sample_core/select?
q=name:CORSAIR+AND+inStock:true&sort=price+asc,popularity+desc

Query	string	needs	to	be	URL-encoded.	If	you	are	using	cURL,	you	can	use	—data-
urlencode	to	encode	query	string	for	you.	For	example,

curl	—data-urlencode	“q=name:CORSAIR	AND	inStock:true&sort=price	asc,popularity
desc”	http://localhost:8983/solr/sample_core/select

Hit	highlighting

Solr	provides	hit	highlighting	that	returns	highlighted	matches	and	snippets	in	field	values.
To	enable	highlighting,	you	need	to	set	the	hl	parameter	as	true	and	specify	a	list	of	fields
to	highlight	using	the	hl.fl	parameter.	Fields	are	comma	or	space	separated.	A	“*”	symbol
can	be	used.	For	example,	to	highlight	“GPU”	on	features	field	of	matched	documents,
you	can	use:

http://localhost:8983/solr/sample_core/select?q=GPU&wt=xml&hl=true&hl.fl=features

A	response	contains	two	sections.	The	first	section	contains	matched	documents	and	the
second	section	contains	highlighting	fields.	If	matched	documents	are	not	needed,	you	can
include	rows=0	in	the	query	to	improve	performance.	Highlighted	words	are	surrounded
with		elements.	For	example,

<result	name=“response”	numFound=“2”	start=“0”>

<doc>…</doc>

<doc>…</doc>

</result>

<lst	name=“highlighting”>

<lst	name=“EN7800GTX/2DHTV/256M”>

<arr	name=“features”>

<str>NVIDIA	GeForce	7800	GTX	GPU/VPU	clocked	at	486MHz</str>

</arr>

		</lst>

		<lst	name=“100-435805”>

<arr	name=“features”>

<str>ATI	RADEON	X1900	GPU/VPU	clocked	at	650MHz</str>

</arr>

		</lst>

</lst>

By	default,	the	size	of	the	snippets	is	100	characters.	You	can	use	the	hl.fragsize	parameter
to	change	it.	For	additional	highlighting	parameters,	please	see
http://wiki.apache.org/solr/HighlightingParameters.

http://wiki.apache.org/solr/HighlightingParameters

Faceted	search

Faceted	search	can	break	results	into	categories	and	generate	counts	for	each	category.
This	allows	users	to	drill	down	and	narrow	results	by	using	the	selected	value	to	construct
a	filter	query.	To	enable	faceting,	you	set	the	facet	parameter	as	true.

Field	faceting

The	facet.field	parameter	allows	you	to	specify	a	field	as	a	facet	to	generate	count	on	each
indexed	term	in	that	field.	It	can	be	used	multiple	times	for	multiple	facets.	Since	faceting
fields	are	served	as	human-readable	text	and	value	of	drill-down	filter	query,	they	should
be	defined	as	a	string	type	(of	type	StrField)	and	won’t	be	analyzed	(e.g.,	tokenized	or
lowercased).	For	example,	to	have	facets	on	2	fields	–	cat	and	inStock,	you	can	use:

http://localhost:8983/solr/sample_core/select?
q=*:*&rows=0&facet=true&facet.field=cat&facet.field=inStock

If	the	response	format	is	XML,	the	following	section	of	XML	is	appended	to	the	end	of
response	for	a	variety	of	facet	counts:

<lst	name=“facet_counts”>

		<lst	name=“facet_queries”/>

		<lst	name=“facet_fields”>

<lst	name=“cat”>

<int	name=“electronics”>12</int>

<int	name=“currency”>4</int>

…

</lst>

<lst	name=“inStock”>

<int	name=“true”>17</int>

<int	name=“false”>4</int>

</lst>

		</lst>

		…

</lst>

To	further	drill	down	all	items	in	stock,	you	can	add	a	filter	query	fq=inStock:true	as
follows:

http://localhost:8983/solr/sample_core/select?
q=*:*&rows=0&facet=true&facet.field=cat&fq=inStock:true

<lst	name=“facet_counts”>

<lst	name=“facet_queries”/>

<lst	name=“facet_fields”>

<lst	name=“cat”>

<int	name=“electronics”>8</int>

<int	name=“currency”>4</int>

</lst>

<lst>

….

</lst>

By	default,	sorting	is	based	on	count	(highest	count	first).	To	limit	the	maximum	number
of	terms	can	be	returned,	you	can	use	the	facet.limit	parameter.	Combining	with	the
facet.offset	parameter,	you	can	page	through	faceting	result.	Many	parameters	can	be
specified	on	a	per	field	basis	with	f.<field	name>.<param>=<value>,	such	as
f.cat.facet.limit=10.

Query	faceting

The	facet.query	parameter	allows	you	to	specify	a	query	using	default	query	syntax	as	a
facet	constraint	to	generate	a	count.	It	can	be	used	multiple	times	for	multiple	facets.	For
example,

http://localhost:8983/solr/sample_core/select?
q=cat:memory&rows=0&facet=true&facet.query=[0	TO	100}&facet.query=[100	TO	*]

The	response	for	facet	queries	is:

<lst	name=“facet_counts”>

		<lst	name=“facet_queries”>

<int	name=”[0	TO	100}”>0</int>

<int	name=”[100	TO	*]”>3</int>

		</lst>

		<lst	name=“facet_fields”/>

		<lst	name=“facet_dates”/>

		<lst	name=“facet_ranges”/>

</lst>

Range	faceting

Date	faceting	has	been	deprecated	as	of	Solr	3.1	in	favor	of	the	more	general	range
faceting.	You	can	use	range	faceting	on	any	fields	(date	or	numeric)	that	support	range
queries.

facet.range:	This	parameter	specifies	a	field	to	create	a	range	facet.	It	can	be	used	multiple
times	for	multiple	facets.

facet.range.start:	This	parameter	defines	lower	bound	of	the	range.	By	default,	the	lower
bound	is	inclusive.	If	there	are	multiple	fields,	this	parameter	can	be	used	on	a	per	field
basis	with	format	f.<field	name>.facet.range.start.

facet.range.end:	This	parameter	defines	upper	bound	of	the	range.	By	default,	the	upper
bound	is	exclusive.	This	parameter	can	be	used	on	a	per	field	basis.

facet.range.gap:	This	parameter	defines	the	distance	between	values.	This	parameter	can
be	used	on	a	per	field	basis.	Variable	width	gaps	are	allowed	by	using	a	list	of	comma
separated	values.

For	example,

http://localhost:8983/solr/sample_core/select/?q=price:[0	TO
*]&rows=0&facet=true&facet.range=price&facet.range.start=0&facet.range.end=500&facet.range.gap=100&facet.range.other=all

The	response	is:

<result	name=“response”	numFound=“16”	start=“0”/>

<lst	name=“facet_counts”>

….

<lst	name=“facet_ranges”>

<lst	name=“price”>

<lst	name=“counts”>

<int	name=“0.0”>7</int>

<int	name=“100.0”>2</int>

<int	name=“200.0”>1</int>

<int	name=“300.0”>3</int>

<int	name=“400.0”>1</int>

</lst>

<float	name=“gap”>100.0</float>

<int	name=“before”>0</int>

<int	name=“after”>2</int>

<int	name=“between”>14</int>

<float	name=“start”>0.0</float>

<float	name=“end”>500.0</float>

</lst>

</lst>

….

</lst>

numFound	indicates	there	are	16	matched	documents	in	the	query.	But,	there	are	only	14
documents	in	the	result	of	range	faceting.	That	is	because	there	are	2	documents	with	field
values	greater	than	the	upper	bound	of	the	last	range.	You	can	this	kind	of	information
from	facet.range.other=all.

Pivot	Faceting

Field	faceting	allows	you	to	do	faceting	on	one	level	only.	To	work	on	hierarchical
structure	of	data,	you	can	use	a	facet.pivot	parameter	to	specify	a	list	of	fields	to	pivot
through	and	generate	facet	counts	for	possible	permutations.	It	can	be	used	multiple	times
for	multiple	pivot	facets.	The	following	example	shows	a	two-level	pivot	faceting:

http://localhost:8983/solr/sample_core/select?
q=*:*&rows=0&facet=true&facet.pivot=cat,inStock

<lst	name=“facet_pivot”>

<arr	name=“cat,inStock”>

<lst>

<str	name=“field”>cat</str>

<str	name=“value”>electronics</str>

<int	name=“count”>12</int>

<arr	name=“pivot”>

<lst>

<str	name=“field”>inStock</str>

<bool	name=“value”>true</bool>

<int	name=“count”>8</int>

</lst>

<lst>

<str	name=“field”>inStock</str>

<bool	name=“value”>false</bool>

<int	name=“count”>4</int>

</lst>

</arr>

</lst>

<lst>

<str	name=“field”>cat</str>

<str	name=“value”>currency</str>

<int	name=“count”>4</int>

<arr	name=“pivot”>

<lst>

<str	name=“field”>inStock</str>

<bool	name=“value”>true</bool>

<int	name=“count”>4</int>

</lst>

</arr>

</lst>

…

For	additional	parameters	on	faceted	search,	please	see
http://wiki.apache.org/solr/SolrFacetingOverview.

http://wiki.apache.org/solr/SolrFacetingOverview

Result	Grouping

For	matched	documents,	they	can	be	grouped	based	on	a	common	field	(cannot	be	a
multivalued	field)	through	result	grouping.	To	enable	result	grouping,	you	need	to	set
group=true	and	specify	a	field	for	grouping	through	the	group.field	parameter.	The
following	example	shows	a	result	grouping	based	on	values	of	inStock	field:

http://localhost:8983/solr/sample_core/select?q=inStock:
[*%20TO%20*]&fl=name,inStock&group=true&group.field=inStock&group.ngroups=true

<lst	name=“grouped”>

<lst	name=“inStock”>

<int	name=“matches”>21</int>

<int	name=“ngroups”>2</int>

<arr	name=“groups”>

<lst>

<bool	name=“groupValue”>true</bool>

<result	name=“doclist”	numFound=“17”	start=“0”>

<doc>

<str	name=“name”>Test	with	some	GB18030	encoded	characters</str>

<bool	name=“inStock”>true</bool>

</doc>

</result>

</lst>

<lst>

<bool	name=“groupValue”>false</bool>

<result	name=“doclist”	numFound=“4”	start=“0”>

<doc>

<str	name=“name”>Belkin	Mobile	Power	Cord	for	iPod	w/	Dock</str>

<bool	name=“inStock”>false</bool>

</doc>

</result>

</lst>

</arr>

</lst>

</lst>

By	default,	group.limit	is	1.	That’s	why	there	is	only	one	document	returned	for	each
group.	To	group	results	by	query,	you	can	use	group.query.

To	do	grouped	faceting,	you	can	set	group.facet=true.	Grouped	facets	are	computed	based
on	facet.field.	If	there	is	more	than	one	group,	the	first	group	will	be	used.	For	example,	to
get	facet	counts	of	category	by	unique	manufacture	ID,	you	can	use:

http://localhost:8983/solr/sample_core/select?q=manu_id_s:
[*%20TO%20*]&fl=name,manu_id_s,cat&group=true&group.field=manu_id_s&facet=true&facet.field=cat&

<int	name=“electronics”>8</int>

<int	name=“currency”>4</int>

<int	name=“graphics	card”>2</int>

<int	name=“hard	drive”>2</int>

<int	name=“camera”>1</int>

For	additional	parameters	on	result	grouping,	please	see
http://wiki.apache.org/solr/FieldCollapsing.

http://wiki.apache.org/solr/FieldCollapsing

INDEXING	RICH	DOCUMENTS

To	index	rich	documents,	you	can	use	Solr	cell	update	request	handler	(the
ExtractingRequestHandler	class).	The	URL	is	/update/extract.	The
ExtractingRequestHandler	class	uses	Apache	Tika	to	extract	text	from	documents	and	then
index	them.	Apache	Tika	(http://tika.apache.org/)	is	a	content	analysis	toolkit	that	detects
and	extracts	metadata	and	structured	text	content	using	various	content	format	parsers
such	as	HTML,	XML,	MS	Office,	or	PDF.	The	ExtractingRequestHandler	class	is	inside
solr-cell-5.4.0.jar.	You	need	to	make	sure	that	the	following	two	lines	in	the	solrconfig.xml
are	configured	correctly:

<lib	dir=”${solr.install.dir:../../../..}/contrib/extraction/lib”	regex=”.*.jar”	/>

<lib	dir=”${solr.install.dir:../../../..}/dist/”	regex=“solr-cell-\d.*.jar”	/>

For	example,	to	send	Solr	a	file	using	post.jar:

java	-Durl=http://localhost:8983/solr/sample_core/update/extract	-
Dparams=literal.id=solr_sample	-Dtype=text/html	-jar	post.jar	sample.html

Or	to	use	cURL:

curl	“http://localhost:8983/solr/sample_core/update/extract?literal.id=
solr_sample&commit=true”	-H	“Content-type:text/html”	—data-binary	@sample.html

You	can	create	your	own	field	with	the	specified	value	using	the	literal.<field	name>
parameter.	Here,	literal.id	creates	an	id	field	to	store	a	unique	document	ID	since	the	id
field	is	defined	as	a	unique	field	in	the	schema.xml.	The	extract	text	(HTML	tags	are
removed)	is	added	to	the	content	field.	Based	on	the	schema	.xml,	this	field	is	defined	as
index=”false”	stored=”true”.	That’s	because	this	field	is	used	for	returning	and
highlighting	document	content.	This	field	is	copied	to	text	field	using	<copyField>.	The
text	field	is	defined	as	index=”true”	stored=”false”.	That’s	because	the	text	field	is	used
for	searching.	Using	stored=”false”	is	to	save	space.	The	following	is	the	document:

<doc>

<arr	name=“links”>

<str>rect</str>

<str>http://www.apache.org</str>

</arr>

<str	name=“id”>solr_sample</str>

<arr	name=“title”>

<str>Welcome	to	Solr</str>

</arr>

<arr	name=“content_type”>

http://tika.apache.org/

<str>text/html;	charset=windows-1252</str>

</arr>

<arr	name=“content”>

<str>Welcome	to	Solr…</str>

</arr>

<long	name=“_version_”>1524764848508895232</long>

</doc>

Now,	you	can	execute	the	following	query	to	search	on	the	default	search	field	(the	text
field)	and	highlight	on	the	content	field:

http://localhost:8983/solr/sample_core/select?
q=solr&hl=true&hl.fl=content&hl.fragsize=500

If	you	need	to	store	all	metadata	(e.g.,	stream_size,	stream_content_type)	either	produced
by	Tika	or	added	by	Solr,	you	can	use	the	uprefix=<prefix>	parameter.	For	example,
uprefix=attr_	causes	all	generated	fields	that	are	not	defined	in	the	schema	to	be	prefixed
with	attr_	(attr_	is	a	dynamic	field	defined	in	the	schema.xml).	The	metadata	varies	on
type	of	document.	You	can	set	the	extractOnly	parameter	as	true	to	see	actual	values
without	indexing	the	document.

For	password	protected	documents,	you	can	provide	password	through	the
resource.password	or	passwordsFile	parameter	if	filename	pattern	to	password	mappings
are	stored	in	a	file.

To	send	a	PDF	document,	for	example,	you	can	use:

java	-Durl=http://localhost:8983/solr/sample_core/update/extract	“-
Dparams=literal.id=solr_word&uprefix=attr_”	-Dtype=application/pdf	-jar	post.jar	solr-
word.pdf

You	can	find	that	PDF	has	different	metadata	as	shown	below:

<doc>

<arr	name=“attr_meta”>

<str>meta:save-date</str>

<str>2008-11-13T13:35:51Z</str>

….

</arr>

<str	name=“id”>solr_word</str>

<arr	name=“attr_meta_save_date”>

<str>2008-11-13T13:35:51Z</str>

</arr>

<arr	name=“attr_dc_subject”>

<str>solr,	word,	pdf</str>

</arr>

<str	name=“subject”>solr	word</str>

…

<arr	name=“content_type”>

<str>application/pdf</str>

</arr>

<arr	name=“content”>

<str>…</str>

</arr>

<long	name=“_version_”>1524766191217803264</long>

</doc>

ACCESSING	SOLR	PROGRAMMATICALLY

SolrJ	is	a	Java	client	to	access	Solr	through	API	calls.	There	are	several	JARs	used	by
SolrJ.	Under	the	Solr	installation	directory,	you	can	find	solr-solrj-5.4.0.jar	in	the	dist
directory	and	several	JARs	in	the	dist/solrj-lib	directory.	For	API	documentation	of	SolrJ,
you	can	find	it	under	docs/solr-solrj.

Updating	data

The	following	are	basic	steps	to	update	data	in	Solr	server	using	SolrJ	API:

Step	1

To	connect	to	a	Solr	server,	you	need	to	construct	a	SolrClient	object	by	using	the
HttpSolrClient	class.	The	base	URL	of	Solr	server	is	specified	in	the	constructor.	The	base
URL	contains	the	path	of	Solr	Core.	It	does	not	include	the	path	of	the	request	handler.
You	specify	that	later.	The	HttpSolrClient	class	allows	setting	connection	properties	such
as	max	retries	or	connection	timeout.	Since	the	HttpSolrClient	class	is	thread-safe,	you
only	need	to	create	one	(static)	stance	per	Solr	server	and	reuse	it	for	all	requests.

Step	2

Next	step	is	to	create	documents	for	posting.	You	can	use	the	SolrInputDocument	class	to
create	Solr	documents.	Document	fields	are	defined	using	the	addField(String	name,
Object	value)	method.	The	field	names	and	the	data	type	of	values	should	match	those
defined	in	the	schema.xml.

Step	3

To	create	an	update	request,	you	can	use	the	UpdateRequest	class.	Here,	you	can	specify
the	path	of	an	update	request	handler.	You	can	use	the
setAction(AbstractUpdateRequest.ACTION	action,	boolean	waitFlush,	boolean
waitSearcher)	method	to	set	parameters	for	the	given	action	(commit	or	optimize)	and	use
the	add(SolrInputDocument	doc)	method	to	add	documents	for	posting.	Finally,	you	use
the	process(SolrClient	client)	method	to	post	documents	to	a	Solr	server	and	get	an
UpdateResponse	object	as	the	return	value.	If	you	have	any	additional	request	parameters,
you	can	use	the	setParam(String	param,	String	value)	or	setParams(ModifiableSolrParams
params)	method.

In	the	following	example,	two	documents	are	created	and	commit	to	a	Solr	server:

import	java.util.ArrayList;

import	java.util.Collection;

import	java.io.IOException;

	

import	org.apache.solr.common.SolrInputDocument;

import	org.apache.solr.client.solrj.SolrClient;

import	org.apache.solr.client.solrj.SolrServerException;

import	org.apache.solr.client.solrj.impl.HttpSolrClient;

import	org.apache.solr.client.solrj.request.AbstractUpdateRequest;

import	org.apache.solr.client.solrj.request.UpdateRequest;

import	org.apache.solr.client.solrj.response.UpdateResponse;

	

public	class	SolrPostDocExample	{

	

public	static	void	main(String[]	args)	{

try	{

SolrPostDocExample	example	=	new	SolrPostDocExample();

String	coreUrl	=	“http://localhost:8983/solr/sample_core”;

HttpSolrClient	client	=	new	HttpSolrClient(coreUrl);

//	connection	timeout	defines	the	time	a	connection	is	established

client.setConnectionTimeout(20000);

//	socket	timeout	defines	the	time	waiting	for	a	response

client.setSoTimeout(10000);

example.postDocuments(client);

}	catch(Exception	ex)	{

System.out.println(ex);

}

}

	

public	void	postDocuments(SolrClient	client)

throws	IOException,	SolrServerException	{

	

//	construct	documents

SolrInputDocument	doc1	=	new	SolrInputDocument();

doc1.addField(“id”,	“1001”);

doc1.addField(“name”,	“Kindle	Fire”);

doc1.addField(“price”,	270);		

doc1.addField(“cat”,	“Electronics”);

doc1.addField(“cat”,	“Tablet”);

SolrInputDocument	doc2	=	new	SolrInputDocument();

doc2.addField(“id”,	“1002”);

doc2.addField(“name”,	“ASUS	VivoBook”);

doc2.addField(“price”,	485);		

doc2.addField(“cat”,	“Electronics”);

doc2.addField(“cat”,	“Laptop”);														

	

Collection<SolrInputDocument>	docs	=	new	ArrayList<SolrInputDocument>();

docs.add(doc1);

docs.add(doc2);

	

//	commit	and	receive	response

UpdateRequest	req	=	new	UpdateRequest(“/update”);

req.setAction(AbstractUpdateRequest.ACTION.COMMIT,	false,	false);

req.add(docs);

UpdateResponse	rsp	=	req.process(client);							

System.out.println(rsp);

}

}

The	following	is	the	response:

{responseHeader={status=0,QTime=505}}

For	a	multivalued	field,	you	can	use	the	addField()	method	with	the	same	name	to	add
additional	values.	Or,	you	can	use	a	Collection	as	the	value	in	the	addField()	method.	To
implement	atomic	updating,	you	can	use	a	map	and	use	one	of	the	options	as	the	key.	For
example,

SolrInputDocument	doc	=	new	SolrInputDocument();

Map<String,	String>atomicUpdate	=	new	HashMap<String,	String>();

atomicUpdate.put(“set”,	“200”);

doc.addField(“id”,	”	SOLR1000”);

doc.addField(“price”,	atomicUpdate);

To	delete	documents,	you	can	use	deleteById	or	deleteByQuery	methods.

If	you	need	to	upload	a	file,	you	can	use	the	ContentStreamUpdateRequest	class.	Both
ContentStreamUpdateRequest	and	UpdateRequest	are	subclasses	of	the
AbstractUpdateRequest	class.	A	file	is	added	using	the	addFile(File	file,	String
contentType)	method.	The	following	sample	method	is	used	to	post	a	PDF	file:

public	void	postFile(SolrClient	client)

throws	IOException,	SolrServerException	{

	

ContentStreamUpdateRequest	up

=	new	ContentStreamUpdateRequest(“/update/extract”);

up.addFile(new	File(“curl.pdf”),	“application/pdf”);

	

up.setParam(“literal.id”,	“curl”);

up.setParam(“uprefix”,	“attr_”);

up.setAction(AbstractUpdateRequest.ACTION.COMMIT,	false,	false);

	

UpdateResponse	rsp	=	up.process(client);

System.out.println(rsp);

}

Querying	data

To	query	data,	you	can	use	the	SolrQuery	class.	The	SolrQuery	class	has	methods	that
support	functionality	in	querying	data	introduced	previously	(including	hit	highlighting
and	faceted	searches).	The	following	sample	methods	are	to	query	documents	posted	in
the	sample_core.

Query

public	void	queryDocuments(SolrClient	client)

throws	IOException,	SolrServerException	{

	

SolrQuery	query	=	new	SolrQuery();

//	the	maximum	time	allowed	for	this	query

query.setTimeAllowed(8000);

query.setQuery(“cat:electronics”);

query.setFields(“name”,	“price”);

QueryResponse	rsp	=	client.query(query);

SolrDocumentList	docList	=	rsp.getResults();

System.out.println(“#	of	documents:	”	+	docList.getNumFound());

for(SolrDocument	doc	:	docList)	{

System.out.println(doc);

}

}

The	following	is	the	response:

#	of	documents:	12

SolrDocument{name=Samsung	SpinPoint	P120	SP2514N	-	hard	drive	-	250	GB	-	ATA-
133,	price=92.0}

SolrDocument{name=Maxtor	DiamondMax	11	-	hard	drive	-	500	GB	-	SATA-300,
price=350.0}

SolrDocument{name=Belkin	Mobile	Power	Cord	for	iPod	w/	Dock,	price=19.95}

SolrDocument{name=iPod	&	iPod	Mini	USB	2.0	Cable,	price=11.5}

SolrDocument{name=Apple	60	GB	iPod	with	Video	Playback	Black,	price=399.0}

SolrDocument{name=CORSAIR		XMS	2GB	(2	x	1GB)	184-Pin	DDR	SDRAM
Unbuffered	DDR	400	(PC	3200)	Dual	Channel	Kit	System	Memory	-	Retail,	price=185.0}

SolrDocument{name=CORSAIR	ValueSelect	1GB	184-Pin	DDR	SDRAM	Unbuffered
DDR	400	(PC	3200)	System	Memory	-	Retail,	price=74.99}

SolrDocument{name=A-DATA	V-Series	1GB	184-Pin	DDR	SDRAM	Unbuffered	DDR
400	(PC	3200)	System	Memory	-	OEM}

SolrDocument{name=Canon	PIXMA	MP500	All-In-One	Photo	Printer,	price=179.99}

SolrDocument{name=Canon	PowerShot	SD500,	price=329.95}

Field	faceting

public	void	fieldFacets(SolrClient	client)

throws	IOException,	SolrServerException	{

	

SolrQuery	query	=	new	SolrQuery();

query.setQuery(“*:*”);

query.setRows(0);

query.setFacet(true);

query.addFacetField(“cat”,	“inStock”);

QueryResponse	rsp	=	client.query(query);

SolrDocumentList	docList	=	rsp.getResults();

System.out.println(“#	of	documents:	”	+	docList.getNumFound());

List<FacetField>	facetFields	=	rsp.getFacetFields();

for(FacetField	facetField	:	facetFields)	{

System.out.println(facetField);

}

}			

The	following	is	the	response:

#	of	documents:	34

cat:[electronics	(12),	currency	(4),	memory	(3),	connector	(2),	graphics	card	(2),	hard
drive	(2),	search	(2),	software	(2),	camera	(1),	copier	(1),	electronics	and	computer1	(1),
electronics	and	stuff2	(1),	multifunction	printer	(1),	music	(1),	printer	(1),	scanner	(1)]

inStock:[true	(17),	false	(4)]

Result	grouping

public	void	groupedByField(SolrClient	client)

throws	IOException,	SolrServerException	{

	

SolrQuery	query	=	new	SolrQuery();

query.setQuery(“inStock:[*	TO	*]”);

query.addFacetField(“name”,	“inStock”);

query.add(“group”,	“true”);

query.add(“group.ngroups”,	“true”);

query.add(“group.field”,	“inStock”);

QueryResponse	rsp	=	client.query(query);

List<GroupCommand>	groupCommandList	=	rsp.getGroupResponse().getValues();

for(GroupCommand	groupCommand	:	groupCommandList)	{

System.out.println(“Grouped	by:	”	+	groupCommand.getName()	+	“,	#	of	groups:	”	+
groupCommand.getNGroups());

List<Group>	groups	=	groupCommand.getValues();

for(Group	group	:	groups)	{

SolrDocumentList	docList	=	group.getResult();

System.out.println(“Group:	”	+	group.getGroupValue()	+	“,	#	of	documents:	”	+
docList.getNumFound());

for(SolrDocument	doc	:	docList)	{

System.out.println(doc);

}															

}																							

}

}						

The	following	is	the	response:

Grouped	by:	inStock,	#	of	groups:	2

Group:	true,	#	of	documents:	17

SolrDocument{id=GB18030TEST,	name=Test	with	some	GB18030	encoded	characters,
features=[No	accents	here,	? 是一 ? 功能 ,	This	is	a	feature	(translated),	? 份文件是很有
光 ?,	This	document	is	very	shiny	(translated)],	price=0.0,	price_c=0.0,USD,
inStock=true,	_version_=1524195539913015296}

Group:	false,	#	of	documents:	4

SolrDocument{id=F8V7067-APL-KIT,	name=Belkin	Mobile	Power	Cord	for	iPod	w/
Dock,	manu=Belkin,	manu_id_s=belkin,	cat=[electronics,	connector],	features=[car	power
adapter,	white],	weight=4.0,	price=19.95,	price_c=19.95,USD,	popularity=1,
inStock=false,	store=45.18014,-93.87741,	manufacturedate_dt=Mon	Aug	01	12:30:25

EDT	2005,	_version_=1524195540386971648}

Apache	James
	

The	Apache	James	(Java	Apache	Mail	Enterprise	Server)	is	part	of	the	Apache	James
Project.	The	James	Server	is	a	Java-based	mail	server	(or	a	mail	transfer	agent,	MTA,
technically),	which	supports	SMTP	and	POP3	protocols.	Also,	it	can	serve	as	an	NNTP
news	server.	Something	special	about	James	Server	is	that	it	provides	a	mailet	container.
Just	like	servlets	are	used	to	process	HTTP	requests	for	a	servlet	container.	Mailets	are
used	to	process	emails	for	a	mailet	container.	Through	configurations,	you	can	use	mailets
to	do	complex	email	processing	tasks.	That	is	what	makes	James	Server	flexible	and
powerful.	There	are	standard	mailets	provided	by	James	Sever.	Also,	you	can	build	your
own	mailets	by	using	the	Mailet	API	which	is	part	of	the	Apache	James	Project.	This
allows	you	to	develop	and	deploy	custom	applications	to	James	Server	for	email
processing.

For	James	Server,	the	current	stable	version	is	2.3.2	at	the	time	of	writing	(there	is	3.0	beta
available,	but	still	not	stable).	You	can	download	it	from	http://james.apache.org/server.
For	the	Mailet	API,	the	current	stable	version	is	2.5.0	at	the	time	of	writing.	You	can
download	it	from	http://james.apache.org/mailet.	James	2.3.2	is	shipped	with	the	Mailet
API	2.3.

http://james.apache.org/server
http://james.apache.org/mailet

INSTALLING	JAMES	SERVER

The	binary	distribution	of	James	Sever	comes	with	the	Phoenix	server.	James	is	a	mail
server	running	as	a	Phoenix	server	application.	So,	you	start	the	Phoenix	server	to	start	the
James.	This	scenario	is	quite	similar	with	web	applications	that	are	shipped	with	Jetty	or
Tomcat	server.	But,	the	Phoenix	server	is	not	a	servlet	container.	Before	you	start	the
Phoenix	server,	you	can	find	james.sar	inside	the	apps	directory.	It	will	be	unpacked
automatically	once	Phoenix	is	started.	SAR	(Service	ARchive)	files	are	using	the	ZIP	file
format.	You	can	unpack	or	pack	a	SAR	file	using	the	same	method	you	are	using	on	ZIP
file	format.	The	following	is	the	directory	structure	of	a	SAR	file:

conf

META-INF

SAR-INF

lib

To	start	James,	you	can	use	run.bat	or	run.sh	under	the	bin	directory.	Once	it	is	started,	you
can	see	the	following	message:

Phoenix	4.2

	

James	Mail	Server	2.3.2

Remote	Manager	Service	started	plain:4555

POP3	Service	started	plain:110

SMTP	Service	started	plain:25

NNTP	Service	started	plain:119

FetchMail	Disabled

If	the	server	does	not	start,	you	can	check	phoenix.log	under	the	logs	directory.	It	contains
information	specific	to	Phoenix.	Do	not	mix	this	directory	with	the	logs	directory	for
James,	which	is	under	the	apps/james/logs	directory.

There	are	many	directories	under	James	installation.	The	following	is	the	directory
structure	you	should	know	about	after	james.sar	is	unpacked:

apps

james

conf

logs

SAR-INF

var

work

james-xxx

SAR-INF

lib

conf:	This	directory	contains	additional	configuration	files.

logs:	This	directory	contains	logs	files	specific	to	James.

SAR-INF:	This	is	the	main	directory	you	will	be	working	on	specially	the	following	two
configuration	files:

config.xml	:	This	is	the	configuration	file	for	James.

environment.xml:	This	configuration	file	configures	behavior	on	class	loading	and
logging.

var:	This	directory	is	the	home	directory	of	repositories	(used	to	store	mail	and	news
messages,	user	information).

As	you	can	see,	the	lib	directory	inside	james.sar	does	not	exist	in	the	james	directory	after
it	is	unpacked.	Instead,	it	is	under	the	work	directory.	The	work	directory	is	a	temporary
working	directory.	It	will	be	removed	by	the	server.	So,	even	after	james.sar	is	unpacked,
you	cannot	remove	this	file.	It	is	still	needed	to	start	James.	Those	unpacked	files	will	not
be	replaced	even	you	put	in	a	new	version	of	james.sar	unless	they	are	missing.	If	you
want	to	distribute	a	custom	mail	application	based	on	James,	it	is	better	to	add	files	on	top
of	deployed	James.

CONFIGURING	JAMES	SERVER

The	following	are	configuration	files	that	you	can	modify	to	customize	James	based	on
your	needs.	You	need	to	restart	James	for	the	changes	to	take	effect:

config.xml

The	most	important	configuration	file	for	James	is	config.xml	under	the	SAR-INF
directory.	Basically,	you	can	break	down	XML	elements	in	the	config.xml	into	the
following	categories:

Services

James	supports	POP3,	SMTP	and	NNTP	services.	By	default,	they	are	enabled.	You	can
configure	or	disable	them	from	the	following	XML	elements:

<pop3server>:	POP3	service

<smtpserver>:	SMTP	service

<nntpserver>	and	<nntp-repository>:	NNTP	news	service	and	NNTP	repositories

Also,	they	can	be	configured	to	support	TLS	(SSL)	connections.	In	that	case,	you	need	to
set	up	the	“ssl”	server	socket	factory	in	the	<sockets>	element.

Spool	manager

The	spool	manager	is	responsible	for	processing	emails	received	by	James.	The	spool
manager	is	a	mailet	container.	James	is	shipped	with	some	standard	mailets	(and
matchers).	You	define	package	names	that	contain	mailets	or	matchers	in	the	following
elements:

<mailetpackages>:	packages	for	mailets

<matcherpackages>:	packages	for	matchers

The	following	are	for	mailets	provided	by	James:

<mailetpackage>org.apache.james.transport.mailets</mailetpackage>

<mailetpackage>org.apache.james.transport.mailets.smime</mailetpackage>

The	following	are	matchers	provided	by	James:

<matcherpackage>org.apache.james.transport.matchers</matcherpackage>

<matcherpackage>org.apache.james.transport.matchers.smime</matcherpackage>

For	custom	mailets	and	matchers,	you	define	package	names	here	too.	The	spool	manager
(represented	by	the	<spoolmanager>	element)	has	many	processors	(represented	by	the
<processor>	element)	as	children.	Each	processor	has	a	unique	name.	But,	the	name
“ghost”	cannot	be	used	because	it	is	used	for	messages	that	are	no	longer	need	further
processing.	Each	processor	contains	zero	or	more	mailets	(represented	by	the	<mailet>
element).	The	order	of	mailets	does	matter.

There	are	processors	defined	in	the	config.xml	already.	But,	only	the	root	processor	and
error	processor	are	required.	But,	you	can	reuse	some	of	them.	James	routes	all	mails	on
the	spool	to	the	root	processor	first.	The	spool	is	a	temporary	location	for	incoming	mail
messages	waiting	to	be	processed.	The	spool	repository	is	defined	in	the

<spoolrepository>	element.	By	default,	it	is	located	at	var/mail/spool	under	the	root
directory	of	James	application.	If	there	is	any	error	during	mail	processing,	the	mail
causing	error	will	be	redirected	to	the	error	processor.	By	default,	the	error	processor	will
store	mails	under	var/mail/error.

The	spool	manager	is	multithreading.	The	total	number	of	threads	can	be	defined	by	the
<threads>	element.

Repositories

In	James,	repositories	are	used	to	store	mail	and	news	messages,	and	user	information.
There	are	three	types	of	repositories	based	on	storage	type	(defined	in	the	<mailstore>
element):

File	repository:	This	is	the	default	storage	type.	It	starts	with	“file”.	The	format	is:
file://<path_to_application_root>.	For	example,	to	store	data	in	var/mail/spool	under	the
root	directory	of	James,	you	use	file://var/mail/spool.

Database	repository:	This	is	a	more	efficient	way	to	store	data.	It	starts	with	“db”.	The
format	is:	db://<data	source>/<table>/<repository>.	The	Apache	Derby	database	is
shipped	with	James.	But,	all	major	database	systems	are	supported.	You	can	check
conf/sqlResources.xml	to	find	supported	database	systems.	The	data	sources	are	defined	in
the	<database-connections>	element.

DBFile	repository:	This	is	a	mix	of	file	and	database	repositories.	The	body	of	a	mail
message	is	stored	in	the	file	system	and	headers	are	stored	in	the	database.	It	starts	with
“dbfile”.	The	format	is	the	same	as	the	database	repository.	The	default	location	for	file
storage	is	var/dbmail.

General	settings

<James>:	defines	email	address	of	the	postmaster,	host	names/IP	addresses	for	this
instance	of	James,	and	the	location	for	user’s	inboxes.

<dnsserver>:	defines	a	list	of	DNS	servers	to	be	used	by	James.

You	can	define	connection	properties	in	the	following	elements:

<connections>:	defines	the	number	of	milliseconds	for	an	idle	client	to	timeout	and	the
maximum	number	of	connections.	

<thread-manager>:	defines	available	thread	pools.	A	thread	pool	with	the	name	“default”
is	required.

User	accounts

The	user	repositories	are	defined	in	the	<users-store>	element.	The	default	location	is
var/users.	To	manage	user	accounts,	you	can	do	that	through	the	remote	manager.	The
remote	manager	is	defined	in	the	<remotemanager>	element.	To	connect	to	the	remote
manager,	you	can	use	any	tool	that	can	support	Telnet	protocol	such	as	PuTTY.	The
default	port	number	is	4555.	Login	id	for	the	administrator	is	root	and	the	password	is	the
same.	To	add	a	user,	use	command:

adduser	<username>	<password>

To	remove	a	user,	use	command:

deluser	<username>

environment.xml

The	environment.xml	is	under	the	SAR-INF	directory.	Two	elements	are	defined	here.
One	is	classloading	and	the	other	is	for	logging.

By	default,	a	classloader	is	defined	here	already.	The	lib	and	classes	directories	under
SAR-INF	directory	are	for	custom	mail	application.	To	create	a	custom	mail	application
on	top	of	James,	you	override	existing	configurations	and	put	JAR	or	class	files	under	the
lib	or	classes	directory.	You	also	can	put	JDBC	driver	for	the	database	you	are	using	here.

For	logging,	there	are	many	log	files	in	James.	But,	most	of	them	will	be	empty.	You	can
change	logging	level	on	some	of	them	or	even	change	filename	pattern	to	reduce	number
of	log	files.

So,	which	one	do	you	check	if	there	were	any	errors?	Usually,	you	can	look	at	the
following	files	first:

mailet-*.log:	This	file	logs	activities	on	mailets.	Usually,	this	is	the	first	file	you	will
check.

smtpserver-*.log:	This	is	the	log	file	for	SMTP	service.	If	mail	messages	could	not	be
delivered	to	the	spool	manager,	you	can	look	at	this	file	to	see	if	there	were	any	errors.

spoolmanager-*.log:	This	is	the	log	file	for	the	spool	manager.	It	logs	information	about
initialization	of	matchers	and	mailets	in	the	spool	manager.	This	is	the	file	to	check	if
James	cannot	start	properly	after	you	made	any	changes	on	mailets	(or	matchers).

If	you	want	to	use	log4j	to	replace	existing	logging	framework,	just	follow	the	following
steps:

Copy	log4j	JAR	file	to	the	lib	directory	under	the	Phoenix	home	directory

Copy	log4j.dtd	to	the	SAR-INF	directory

Replace	<logs	version=“1.1”>…<logs>	with	the	following:

<logs	version=“log4j”	xmlns:log4j=“http://jakarta.apache.org/log4j/”	debug=“false”>

<appender	name=“CONSOLE_LOG”	class=“org.apache.log4j.ConsoleAppender”>

<param	name=“Threshold”	value=“ERROR”/>

<layout	class=“org.apache.log4j.PatternLayout”>

<param	name=“ConversionPattern”	value=”%d	%-5p	[%t]	%c{1}:%L	-	%m%n”/>

</layout>

</appender>

<appender	name=“FILE_LOG”	class=“org.apache.log4j.RollingFileAppender”>

<param	name=“File”	value=”${phoenix.home}/../../logs/james.log”/>

<param	name=“MaxBackupIndex”	value=“5”/>

<param	name=“MaxFileSize”	value=“10240KB”/>							

<layout	class=“org.apache.log4j.PatternLayout”>

<param	name=“ConversionPattern”	value=”%d	%-5p	[%t]	%c{1}:%L	-	%m%n”/>

</layout>

</appender>

<logger	name=“smtpserver”>

<level	value=“INFO”/>

</logger>

<logger	name=“spoolmanager”>

<level	value=“INFO”/>

</logger>

<logger	name=“James.Mailet”>

<level	value=“INFO”/>

</logger>

<!—	default	logging	level	—>										

<root>

<level	value=“WARN”/>

<appender-ref	ref=“FILE_LOG”/>

<appender-ref	ref=“CONSOLE_LOG”	/>

</root>

</logs>

Everything	will	be	logged	to	james.log	located	under	the	logs	directory	of	the	Phoenix
home.	The	default	logging	level	is	WARN	for	all	components.	Since	the	smtpserver,
spoolmanager	and	mailet	are	the	most	important	components,	the	logging	level	is	INFO.

james-fetchmail.xml

The	james-fetchmail.xml	is	under	the	conf	directory.	fetchmail	can	fetch	mails	from
external	mail	servers	(IMAP	or	POP3)	and	inject	them	to	the	spool	in	James	for
processing.	This	allows	you	to	use	the	mail	processing	capabilities	of	James	on	mails	from
other	mail	servers.

To	set	up	fetchmail,	first	you	need	to	enable	fetchmail	by	changing	the	enabled	attribute
from	false	to	true:

<fetchmail	enabled=”true”>

Each	fetch	task	is	defined	under	the	<fetch>	element.	You	can	have	as	many	fetch	tasks	as
possible	only	if	the	name	is	unique.	Basically,	fetch	task	is	defined	by	domain.

Accounts	to	be	fetched	are	defined	under	the	<accounts>	element.	Each	account	is	defined
under	the	<account>	element.	Many	accounts	are	allowed	and	they	will	run	concurrently.
For	example,	to	have	mails	fetched	from	two	accounts	on	the	same	domain:

<accounts>

<account	user=“account1@fakedomain.com”	password=“password1”
recipient=“tester1@localhost”	ignorercpt-header=“true”/>

<account	user=“account2@fakedomain.com”	password=“password2”
recipient=“tester2@localhost”	ignorercpt-header=“true”/>

</accounts>

Since	the	recipient	is	specified,	the	ignorercpt-header	attribute	is	set	as	true.

Now,	you	can	specify	the	server	to	fetch	mails	from:

<host>pop.mail.fakedomain.com</host>

And,	how	frequently	the	server	is	checked	(in	milliseconds):

<interval>600000</interval>

That	is	the	basic	settings	you	need	to	do	to	set	up	fetchmail.	But,	you	can	fine	tune	it	by
changing	other	settings.	The	james-fetchmail.xml	is	self-documented.	Also,	you	can	find
some	examples	under	the	samples	directory.

A	QUICK	TEST

Now,	we	will	create	a	simple	SMTP	client	to	test	the	installation	of	James.	This	SMTP
client	is	capable	of	sending	out	mail	messages	stored	in	files.	For	details	on	the	SMTP
spec,	you	can	check	http://tools.ietf.org/html/rfc821	and
http://www.ietf.org/rfc/rfc2821.txt.	Also,	for	details	on	the	format	of	mail	messages,	you
can	check	http://www.ietf.org/rfc/rfc822.txt	and	http://www.ietf.org/rfc/rfc2822.txt.

import	java.io.BufferedReader;

import	java.io.File;

import	java.io.FileReader;

import	java.io.InputStreamReader;

import	java.io.IOException;

import	java.io.PrintStream;

import	java.io.Reader;

import	java.net.Socket;

import	java.net.UnknownHostException;

	

public	class	SendMessage	{

private	static	int	SMTP_PORT	=	25;		

private	static	int	retry	=	5;

private	static	String	EOL	=	“\r\n”;

	

public	static	void	main(String[]	args)	{

if(args.length	<	4)	{

System.out.println(“usage:	SendMessage	<message	file>	<smtp	server>	<sender>
<recipient>”);

System.exit(1);

}

String	messageFile	=	args[0];

String	smtpServer	=	args[1];

String	sender	=	args[2];							

String	recipient	=	args[3];

try	{			

http://tools.ietf.org/html/rfc821
http://www.ietf.org/rfc/rfc2821.txt
http://www.ietf.org/rfc/rfc822.txt
http://www.ietf.org/rfc/rfc2822.txt

File	file	=	new	File(messageFile);

sendMessage(sender,	recipient,	file,	smtpServer);

System.out.println(“Message	sent:	”	+	file);

}	catch(Exception	ex)	{

System.out.println(ex);

}

}			

	

public	static	void	sendMessage(String	sender,	String	recipient,	File	messageFile,

String	smtpServer)

throws	IOException,	UnknownHostException	{

Socket	socket	=	null;	

BufferedReader	socketReader	=	null;

PrintStream	socketWriter	=	null;								

BufferedReader	reader	=	null;

try	{

socket	=	new	Socket(smtpServer,	SMTP_PORT);

socketReader	=	new	BufferedReader(new
InputStreamReader(socket.getInputStream()));

socketWriter	=	new	PrintStream(socket.getOutputStream());

int	num	=	0;

//	initiate	a	conversation	with	the	mail	server

while(true)	{

num++;

sendCommand(socketWriter,	“HELO	”	+	smtpServer);

String	response	=	getResponse(socketReader,	100);

if(response.startsWith(“250”))	//	completed

break;

else	if(num	==	retry)	{

throw	new	IOException(“Failed	in	HELO”);

}

}

//	read	mail	content

reader	=	new	BufferedReader(new	FileReader(messageFile));

String	line	=	null;

//	sender

sendCommand(socketWriter,	“MAIL	FROM:<”	+	sender	+	“>”);

verifyResponse(getResponse(socketReader,	50));

//	receiver

sendCommand(socketWriter,	“RCPT	TO:<”	+	recipient	+	“>”);

verifyResponse(getResponse(socketReader,	50));

//	beginning	of	mail	data

sendCommand(socketWriter,	“DATA”);

getResponse(socketReader,	50);

while((line	=	reader.readLine())	!=	null)	{			

sendCommand(socketWriter,	line);

}

//	end	of	mail	data

sendCommand(socketWriter,	“.”);

getResponse(socketReader,	50);

}	finally	{

try	{															

if(reader	!=	null)

reader.close();

if(socketReader	!=	null)	{

sendCommand(socketWriter,	“QUIT”);

socketReader.close();

}

if(socketWriter	!=	null)

socketWriter.close();

if(socket	!=	null)

socket.close();																

}	catch(IOException	ex)	{}											

}

}

	

public	static	void	sendCommand(PrintStream	socketWriter,	String	command)

throws	IOException	{

socketWriter.print(command);

socketWriter.print(EOL);

socketWriter.flush();

}

	

public	static	String	getResponse(BufferedReader	socketReader,	long	delay)	throws
IOException	{

try	{

Thread.sleep(delay);

}	catch(Exception	e)	{}

	

return	socketReader.readLine();

}

	

public	static	boolean	verifyResponse(String	response)	throws	IOException	{

if(response.startsWith(“250”))	//	requested	action	was	completed

return	true;

else

throw	new	IOException(response);

}

}

For	example,	to	send	a	message	to	user	tester1	in	James,	you	can	run:

Java	SendMessage	mail.txt	dell530	tester@dell530	tester1@dell530

The	following	is	the	content	of	mail.txt:

From:	tester@dell530

Subject:	Test

To:	tester1@dell530

	

This	is	a	test.

	

Assume	tester1	exists.	If	not,	the	message	will	be	in	var/mail/error.	Now,	you	can	check
var/mail/inboxes/tester1.	This	is	the	inbox	for	user	tester1.	There	are	two	files	associated
with	each	mail	message.	For	example,

4D61696C313336373839343537383232332D33.Repository.FileObjectStore

4D61696C313336373839343537383232332D33.Repository.FileStreamtStore

One	is	with	object	serialization	of	a	MailImpl	object	(file	extension	FileObjectStore)	and
the	other	is	plain	text	(file	extension	FileStreamStore).
4D61696C313336373839343537383232332D33,	which	is	part	of	a	mail	filename,	is	an
encoded	string	(with	hexadecimal	pairs).	The	decoded	string	is	Mail1367894578223-3
which	represents	a	mail	name	and	a	sting	key	for	storage.	This	is	also	the	name	logged	in
the	log	files.	You	can	find	it	in	the	Message-ID	header	below.

Now,	you	can	open	the	file	with	extension	FileStreamStore	to	check	the	mail	message
directly	without	using	a	mail	client	since	it	is	a	text	file.	The	following	is	the	content	of
received	message:

Return-Path:	<tester@dell530>

Message-ID:	<14425860.3.1367894578223.JavaMail.javamailuser@localhost>

MIME-Version:	1.0

Content-Type:	text/plain;	charset=us-ascii

Content-Transfer-Encoding:	7bit

Delivered-To:	tester1@dell530

Received:	from	192.168.1.12	([192.168.1.12])

by	Dell530	(JAMES	SMTP	Server	2.3.2)	with	SMTP	ID	956

for	<tester1@dell530>;

Mon,	6	May	2013	22:42:50	-0400	(EDT)

Date:	Mon,	6	May	2013	22:42:50	-0400	(EDT)

From:	tester@dell530

Subject:	Test

To:	tester1@dell530

	

This	is	a	test.

A	few	additional	headers	were	added	by	James.	If	you	want	to	use	James	to	relay
messages	without	using	SMTP	authorization	(as	an	open	relay),	you	need	to	add	IP
address	of	the	client	to	the	following	two	places:

<mailet	match=“RemoteAddrNotInNetwork>=…>	under	the	“transport”	processor

<authorizedAddresses>	under	the	<smtpserver>	element

Or,	you	will	get	the	following	error	message:

Rejected	message	-	xxx	not	authorized	to	relay	to	xxx

MAILETS	AND	MATCHERS

Processors	play	very	important	role	in	James.	A	processor	relies	on	mailets	to	process	mail
messages.	The	following	is	the	basic	structure	of	a	processor:

<processor	name=”processorName”>

<mailet	match=”MatcherClass=parameter”	class=”MailetClass”>

<parameter>mailet	parameter</parameter>

…

</mailet>

…

</processor>

For	each	mailet,	there	are	two	attributes.	A	class	representing	a	mailet	is	defined	in	the
class	attribute.	Usually,	a	mailet	needs	to	meet	a	certain	condition	to	be	executed.	The
match	attribute	allows	you	to	specify	a	matcher	that	defines	the	condition	a	mailet	will	be
executed.	The	parameter	for	the	matcher	is	optional	(separated	by	an	equal	sign).
Similarly,	a	mailet	can	have	parameters	too	(child	nodes	of	the	mailet	element).

In	the	following	example,	the	original	root	processor	is	replaced	by	a	very	simple	one	as
shown	below:

<processor	name=“root”>

<mailet	match=“SubjectStartsWith=Unsubscribe”	class=“ToProcessor”>

<processor>unsubscribe</processor>

</mailet>

<mailet	match=“All”	class=“Null”/>

</processor>	

<processor	name=“unsubscribe”>

<mailet	match=“All”	class=“ToRepository”>

<repositoryPath>file://var/mail/unsubscribe</repositoryPath>

</mailet>

</processor>									

Mail	processing	starts	from	the	root	processor.	To	redirect	mail	processing	from	one
processor	to	another	one,	you	can	use	the	ToProcessor	mailet.	In	this	example,	a	mail
message	with	the	subject	starting	with	“Unsubscribe”	will	be	redirected	to	the	unsubscribe
processor.	All	other	mail	messages	will	be	ghosted	(deleted	automatically).	The	Null
mailet	is	used	to	indicate	the	end	of	mail	processing	for	a	mail	message.	A	mail	message

needs	to	reach	a	destination	or	to	be	ghosted.	If	not,	you	will	get	a	warning	message	in	the
spoolmanager-*.log	to	inform	you	that	this	mail	message	is	deleted	automatically.

To	store	a	copy	of	the	mail	message	in	a	repository,	you	can	use	ToRepository.	You	do	not
need	to	create	the	unsubscribe	directory.	It	will	be	created	automatically	when	James	is
started.	By	default,	the	original	mail	message	is	deleted	automatically	after	it	is	copied.
You	can	set	the	optional	parameter	passThrough	as	true	to	continue	processing.

You	can	run	the	SMTP	client	to	send	the	same	mail	message	again.	It	will	not	reach	the
inbox	this	time	because	the	mailet	to	send	mails	to	the	transport	processor	is	not	there.	You
can	modify	the	subject	of	the	same	mail	to	“Unsubscribe”	and	send	it	again.	You	will	find
it	in	the	unsubscribe	directory.

James	is	shipped	with	some	mailets	and	matchers.	They	are	pretty	useful	and	can	save	you
time	in	coding.	For	a	complete	list	of	mailets,	you	can	check
http://james.apache.org/server/2/provided_mailets.html.	For	a	complete	list	of	matchers,
you	can	check	http://james.apache.org/server/2/provided_matchers.html.

http://james.apache.org/server/2/provided_mailets.html
http://james.apache.org/server/2/provided_matchers.html

CREATING	A	CUSTOM	MATCHER

One	of	special	features	in	James	is	the	Mailet	API.	It	allows	us	to	create	a	custom	mail
application	through	custom	matchers	and	mailets.	Even	though	James	provides	some
mailets	and	matchers,	we	still	need	to	create	custom	ones	sometimes.

First,	we	will	discuss	about	how	to	create	a	custom	matcher.	A	matcher	is	represented	by
the	Matcher	interface.	The	life	cycle	of	a	matcher	involves	the	following	three	methods:

void	init(MatcherConfig	config):	This	method	is	called	exactly	once	right	after	the
matcher	is	instantiated.		This	method	is	used	to	initialize	shared	resources.

Collection	match(Mail	mail):	All	calls	to	the	matcher	are	handled	by	this	method.	A	mail
message	is	represented	by	the	Mail	interface.	It	returns	a	Collection	of	recipients
(MailAddress	objects)	in	the	mail	message	that	meet	the	criteria.	If	nothing	is	matched,
null	is	returned.

void	destroy():	This	method	is	called	exactly	once	(after	all	threads	calling	this	matcher
have	exited)	when	a	matcher	is	taken	out	of	service.	This	method	is	used	to	release	shared
resources.

Since	a	mailet	container	is	multithreaded,	matchers	can	handle	calls	concurrently.	It	is
similar	with	servlets	running	in	a	servlet	container.	You	need	to	make	sure	the	shared
resources	are	thread-safe	in	the	match	method.

The	Mailet	API	provides	two	abstract	classes	(GenericMatcher	and
GenericRecipientMatcher)	that	implement	the	Matcher	and	MatcherConfig	interfaces.	It	is
easier	to	create	a	custom	matcher	by	extending	one	of	them.

To	get	the	optional	parameter	of	a	matcher,	you	can	use	the	getCondition()	method.	If	the
parameter	does	not	exist,	null	is	returned.

The	Mailet	API	provides	logging.	But,	you	can	not	specify	logging	level.	To	log	message
to	the	mailet	log	file,	you	can	use	log(String	message)	or	log(String	message,	Throwable
t).

GenericMatcher

In	the	following	example,	we	create	a	matcher	to	improve	the	existing	SubjectStartsWith
matcher.	This	matcher	tries	to	match	the	subject	using	a	regular	expression	and	ignoring
case-sensitivity.	For	example,	to	match	a	subject	starts	with	the	word	“Unsubscribe”,	you
can	use:

match=“HasSubjectRegex=^\bUnsubscribe\b”

The	HasSubjectRegex	class	extends	GenericMatcher.	The	GenericMatcher	class
implements	init	and	destroy	methods.	Also,	it	provides	a	convenience	method	init()	that
can	be	overridden	without	calling	super.init(config).

package	matcher;

	

import	java.util.Collection;

import	java.util.regex.Matcher;

import	java.util.regex.Pattern;

	

import	javax.mail.MessagingException;

	

import	org.apache.mailet.GenericMatcher;

import	org.apache.mailet.Mail;

	

public	class	HasSubjectRegex	extends	GenericMatcher	{

private	static	Pattern	pattern;

@Override

public	void	init()	throws	MessagingException	{

String	condition	=	getCondition();

if(condition	==	null	||	condition.trim().length()	==	0)	{

throw	new	MessagingException(“Condition	is	missing”);

}

	

pattern	=	Pattern.compile(condition,	Pattern.CASE_INSENSITIVE);									

}

	

@Override

public	Collection	match(Mail	mail)	throws	MessagingException	{

String	subject	=	mail.getMessage().getSubject();

if(subject	!=	null)	{

subject	=	subject.trim();

Matcher	matcher	=	pattern.matcher(subject);

if(matcher.find())

return	mail.getRecipients();

}

	

return	null;

}

}

To	compile	it,	you	need	the	following	JAR	files:	mailet-2.3.jar	and	mailet-api-2.3.jar	from
the	Mailet	API,	mail-1.4.1.jar	from	the	JavaMail	API.	You	can	find	them	from	the	work
directory.

To	deploy	this	matcher,	it	involves	the	following	two	steps:

Add	HasSubjectRegex.class	to	SAR-INF/classes/matcher

Add	<matcherpackage>matcher</matcherpackage>	to	<matcherpackages>

Now,	you	can	restart	James.	If	James	could	not	start,	you	can	check	logs/phoenix.log	first
to	see	if	there	were	any	errors	while	loading	it.	Next	file	you	can	check	is	the
spoolmanager-*.log.

GenericRecipientMatcher

The	GenericRecipientMatcher	class	extends	GenericMatcher.	It	overrides	the	match
method	to	go	through	each	recipient	and	call	the	following	abstract	method:

abstract	boolean	matchRecipient(MailAddress	recipient)

When	a	recipient	is	matched,	this	recipient	is	added	to	a	Collection	of	recipients	to	be
returned.	So,	instead	of	overriding	match	method,	the	subclass	of
GenericRecipientMatcher	needs	to	override	the	matchRecipient	method.

Here,	the	MailAddress	class	represents	an	email	address	specified	in	the	MAIL	FROM
and	RCPT	TO	commands	in	a	SMTP	session.	The	recipients	in	the	Cc	or	Bcc	header	are
not	included.	That	is	because	the	Mailet	API	is	built	on	top	of	JavaMail	API.	A	Mail
object	wraps	a	MimeMessage	(from	the	JavaMail	API)	with	SMTP	routing	information
such	as	sender	and	recipients,	the	current	state	(which	processor	it	is	running	at)	and	the
mail	session	attributes.	The	MimeMessage	is	the	actual	mail	message.	So,	if	you	need	to
process	message	headers	or	message	content,	you	need	to	get	the	MIME	(Multipurpose
Internet	Mail	Extensions)	message	of	a	Mail.	To	get	the	MIME	message	of	a	Mail,	you
can	use	the	getMessage()	method	and	a	MimeMessage	is	returned.	The	following	is	a
sample	MIME	multipart	message.	A	boundary	is	placed	between	parts	and	each	part
contains	its	own	content	headers:

From:	tester@dell530

Subject:	A	MIME	Message

To:	tester1@dell530

MIME-version:	1.0

Content-Type:	multipart/mixed;	boundary=“__boundary__”

	

—__boundary__

Content-Type:	text/plain

	

The	original	message	was	received	at	Sat,	4	May	2013	15:12:31	-0400

from	tester1@dell530

<someone@dell530>…	Deferred:	Connection	timed	out

with	fakedomain.com.

Message	could	not	be	delivered	for	5	days

	

—__boundary__

Content-Type:	message/delivery-status

	

Original-Recipient:	someone@dell530

Action:	failed

Status:	4.0.0

	

—__boundary__

Content-Type:	message/rfc822

	

original	text

—__boundary__

To	access	the	Mailet	API	documentation,	you	can	check
http://james.apache.org/server/2/apidocs/index.html.	To	access	the	JavaMail	API
documentation,	you	can	check	http://javamail.java.net/nonav/docs/api.

http://james.apache.org/server/2/apidocs/index.html
http://javamail.java.net/nonav/docs/api

CREATING	A	CUSTOM	MAILET

Creating	a	custom	mailet	is	similar	with	creating	a	custom	matcher.	A	mailet	is
represented	by	the	Mailet	interface.	The	life	cycle	of	a	mailet	also	involves	three	methods.
Both	the	init	and	destroy	methods	are	the	same.	But,	the	match	method	is	replaced	by	the
service(Mail	mail)	method.	An	abstract	class,	GenericMailet,	which	implements	the
Mailet	and	MailetConfig	interfaces,	can	make	it	easier	to	create	a	custom	mailet.	All	you
need	to	do	is	to	override	the	service	method.	Also,	it	provides	a	convenience	method	init()
that	can	be	overridden	without	calling	super.init(config).

To	get	the	optional	parameters	of	a	mailet,	you	can	use	the	following	methods:

String	getInitParameter(String	name)

String	getInitParameter(String	name,	String	defaultValue)

Iterator	getInitParameterNames()

When	a	Mail	is	being	processing,	how	do	you	persist	certain	data	in	the	whole	process
across	mailets?	It	can	be	achieved	through	the	mail	session	attributes.	For	a	Mail,	you	can
use	the	following	methods	to	manipulate	session	attributes.	The	attribute	needs	to	be
Serializable:

boolean	hasAttributes()

Serializable	getAttribute(String	name)

Iterator	getAttributeNames()

Serializable	setAttribute(String	name,	Serializable	object)

void	removeAllAttributes()

Serializable	removeAttribute(String	name)

As	we	mentioned	previously,	a	Mail	object	also	contains	state	information.	Before	a	mailet
finishes	processing	a	mail,	you	can	choose	to	change	its	current	state.	The	following	are
related	methods:

String	getState()

void	setState(String	state)

If	you	do	nothing,	then	it	will	pass	through	and	move	on	to	next	mailet.	If	the	state	is
Mail.GHOST,	it	will	be	discarded.

In	the	following	example,	we	create	a	custom	mailet	which	counts	number	of	lines	in	the
message	body	of	a	mail.	When	the	number	of	lines	is	beyond	a	threshold	specified	in	the
mailet	parameter,	the	mail	is	discarded.	Otherwise,	the	mail	is	moved	to	a	file	repository.
Here,	a	mail	session	attribute	MESSAGE_SIZE	is	set	in	the	mailet	MessageSorter.	And,	a
matcher	HasMailAttributeWithValue	provided	by	James	is	used	to	verify	attribute	value	in
the	next	mailet.	The	following	is	the	modified	root	processor	in	the	config.xml:

<processor	name=“root”>

<mailet	match=“All”	class=“MessageSorter”>

<threshold>25</threshold>

</mailet>

<mailet	match=“HasMailAttributeWithValue=MESSAGE_SIZE,small”
class=“ToProcessor”>

<processor>small</processor>

</mailet>								

<mailet	match=“All”	class=“Null”/>

</processor>	

<processor	name=“small”>

<mailet	match=“All”	class=“ToRepository”>

<repositoryPath>file://var/mail/small</repositoryPath>

</mailet>

</processor>

	

For	MessageSorter	to	handle	a	MIME	message,	it	needs	to	check	if	the	content	is	a
multipart	message	or	not.	But,	we	need	to	further	check	if	it	is	a	nested	multipart	message
or	not.	Once	it	reaches	the	bottom	of	the	hierarchy,	we	can	get	the	input	stream	of	the
message	body	to	get	the	content.	We	are	only	interested	in	the	first	component	since	it
contains	a	plain	text	message	body:

package	mailet;

	

import	java.io.BufferedReader;

import	java.io.IOException;

import	java.io.InputStream;

import	java.io.InputStreamReader;

	

import	javax.mail.BodyPart;

import	javax.mail.MessagingException;

import	javax.mail.Multipart;

import	javax.mail.internet.MimeMessage;

	

import	org.apache.mailet.GenericMailet;

import	org.apache.mailet.Mail;

	

public	class	MessageSorter	extends	GenericMailet	{

	

private	static	int	threshold;

	

@Override			

public	void	init()	throws	MessagingException	{

String	thresholdParam	=	getInitParameter(“threshold”);

if(thresholdParam	==	null	||	thresholdParam.trim().length()	==	0)	{

throw	new	MessagingException(“The	threshold	parameter	is	required.”);

}

	

try	{

threshold	=	Integer.parseInt(thresholdParam);

}	catch(NumberFormatException	ex)	{

throw	new	MessagingException(ex.getMessage());			

}

}

	

@Override

public	void	service(Mail	mail)	throws	MessagingException		{

MimeMessage	message	=	mail.getMessage();

Object	content	=	null;

try	{

content	=	message.getContent();

}	catch(IOException	ioex)	{

throw	new	MessagingException(ioex.getMessage());			

}

	

BufferedReader	reader	=	null;

try	{

InputStream	in	=	null;

if(content	instanceof	Multipart)	{

//	a	multipart	message

Multipart	multiPart	=	(Multipart)content;

int	count	=	multiPart.getCount();											

if(count	>=	1)	{

//	check	the	1st	component	of	the	multipart

BodyPart	body	=	(BodyPart)multiPart.getBodyPart(0);

Object	nestedContent	=	body.getContent();

if(nestedContent	!=	null	&&	nestedContent	instanceof	Multipart)	{

//	for	a	nested	multipart,	body.getInputStream()

//	returns	all	parts	(including	headers)	without	decoding																							

multiPart	=	(Multipart)nestedContent;

count	=	multiPart.getCount();											

if(count	>=	1)	{

//	check	the	1st	component	of	the	multipart

body	=	(BodyPart)multiPart.getBodyPart(0);

//	get	decoded	content	(no	headers)

in	=	body.getInputStream();																							

}

}	else	{

in	=	body.getInputStream();

}

}

}	else	{

//	not	a	multipart	message

in	=	message.getInputStream();

}			

	

//	message	body	only	(no	headers)							

reader	=	new	BufferedReader(new	InputStreamReader(in));

String	line;

int	lineCount	=	0;

mail.setAttribute(“MESSAGE_SIZE”,	“small”);

while((line	=	reader.readLine())	!=	null)	{

lineCount++;

if(lineCount	>	threshold)	{

mail.setAttribute(“MESSAGE_SIZE”,	“large”);			

break;

}		

}

}	catch(IOException	ioex)	{

throw	new	MessagingException(ioex.getMessage());

}	finally	{

try	{

reader.close();

}	catch(Exception	ex)	{}									

}

}

	

@Override

public	String	getMailetInfo()	{

return	“Message	Sorter”;

}

}

READING	AN	OBJECT	STORE	FILE

There	are	two	files	associated	with	each	mail	in	James.	A	FileStreamStore	file	only
contains	the	mail	message.	If	you	need	to	retrieve	data	from	the	original	Mail	object,	you
still	need	to	access	the	FileObjectStore	file.	If	you	need	to	access	a	FileObjectStore	file,	it
is	a	little	bit	tricky	since	it	is	a	binary	file.	A	FileObjectStore	file	contains	a	serialized
MailImpl	object.	It	needs	to	be	de-serialized.	You	can	use	the	ObjectInputStream	class	to
de-serialize	a	serialized	object.	Other	than	that,	you	also	need	mailet-api-2.3.jar,	james-
2.3.2.jar	and	avalon-framework-api-4.3.jar	to	compile	the	code.	You	can	find	the	first	two
files	from	the	work	directory	and	the	last	one	from	the	lib	directory.	To	run	the	code,	you
need	an	additional	file,	mail-1.4.1.jar,	from	the	work	directory.	You	will	not	be	able	to
retrieve	the	MimeMessage	object	itself	since	it	is	not	included	in	the	serialized	MailImpl
object.	The	following	is	the	code	to	de-serialize	a	FileObjectStore	file:

import	java.io.BufferedInputStream;

import	java.io.FileInputStream;

import	java.io.ObjectInputStream;

	

import	org.apache.mailet.Mail;

import	org.apache.james.core.MailImpl;

	

public	class	FileObjectStoreReader	{

public	static	void	main(String[]	args)	{

if(args.length	<	1)	{

System.out.println(“usage:	FileObjectStoreReader	<file>”);

System.exit(1);

}

String	filename	=	args[0];			

try	{

//	read	a	file	object	store

ObjectInputStream	objectIn	=	new	ObjectInputStream(new	BufferedInputStream

(new	FileInputStream(filename)));

//	print	out	what’s	inside	the	object

Mail	mail	=	(MailImpl)objectIn.readObject();

System.out.println(“Mail	name:	”	+	mail.getName());

System.out.println(“State:	”	+	mail.getState());

System.out.println(“Sender:	”	+	mail.getSender());

System.out.println(“Recipients:	”	+	mail.getRecipients());

objectIn.close();

}	catch(Exception	ex)	{

System.out.println(ex);

}

}

}

	

Jackson
	

JSON	(JavaScript	Object	Notation)	is	based	on	the	object	notation	from	the	JavaScript
programming	language.	Just	like	XML,	JSON	is	a	format	that	is	used	for	data	storage	and
data	exchange.	But,	the	advantage	of	JSON	is	that	you	can	use	it	in	the	JavaScript
programs	easily	because	a	JSON	string	can	be	converted	to	a	JavaScript	object.	A
common	use	case	is	to	use	JSON	data	between	back	end	and	front	end	in	web-based
applications.	Modern	browsers	have	native	support	on	JSON.	For	example,	you	can	use
JSON.parse	to	convert	a	JSON	string	to	a	JavaScript	object	and	JSON.stringify	to	convert
a	JavaScript	object	to	a	JSON	string.	In	Java,	you	can	use	Jackson	API	to	convert	Java
objects	to	and	from	JSON.	The	original	purpose	of	Jackson	API	was	for	data	binding	on
JSON	data.	Now,	it	also	contains	packages	that	can	support	formats	such	as	XML,	CSV.
But,	this	chapter	is	only	focused	on	JSON.

For	Jackson	data	binding,	the	current	stable	version	is	2.6.3	at	the	time	of	writing.	You	can
download	it	from	https://github.com/FasterXML/jackson-databind.	Jackson	data-binding
package	depends	on	Jackson	Core	(https://github.com/FasterXML/jackson-core)	and
Jackson	Annotations	(https://github.com/FasterXML/jackson-annotations).

https://github.com/FasterXML/jackson-databind
https://github.com/FasterXML/jackson-core
https://github.com/FasterXML/jackson-annotations

POJO	MODEL

In	JSON,	an	object	is	enclosed	by	curly	braces	{	and	}.	And,	it	can	contain	the	following
data	structures:

.	A	collection	of	name-value	pairs.	A	filed	name	is	enclosed	by	double	quotes	and	is
separated	with	its	value	by	a	colon.	Each	name-value	pair	is	separated	by	a	comma.

.	An	ordered	list	of	values	starts	with	a	left	bracket	[and	ends	with	a	right	bracket].
Values	are	separated	by	comma.

A	value	can	be	a	string,	a	number,	a	Boolean,	an	object,	or	an	array.	A	string	value	is
quoted	by	double	quotes.	A	null	value	is	represented	by	null	(without	double	quotes).	A
Boolean	value	is	either	true	or	false.

Jackson	data	binding	can	convert	Java	beans	(POJOs)	to	and	from	JSON.	The	default	rules
for	property	auto-detection	are:

.	All	public	fields

.	All	public	getters	(for	serialization)

.	All	setters	(for	deserialization)

The	ObjectMapper	class,	a	mapper	(or	data	binder),	provides	functionality	for	conversion
between	Java	objects	and	JSON.	Converting	POJOs	to	JSON	is	called	serialization.	For
example,	you	can	use

String	writeValueAsString(Object	value)

to	serialize	any	Java	object	to	a	String.	To	write	the	output	to	an	output	stream,	you	can
use

void	writeValue(OutputStream	out,	Object	value)

Converting	JSON	to	POJOs	is	called	deserialization.	For	example,	you	can	deserialize	a
JSON	String	to	a	Java	object	by	using

<T>	T	readValue(String	content,	Class<T>	valueType)

There	are	overloaded	methods	of	readValue	that	provide	a	variety	of	input	sources,	such	as
InputStream,	File,	URL,	etc.

The	following	example	demonstrates	how	to	use	an	object	mapper	to	do	serialization	and
deserialization:

import	com.fasterxml.jackson.databind.ObjectMapper;

	

public	class	JsonExample	{

private	int	number;

private	String	text;

private	int[]	numbers;

	

public	static	void	main(String[]	args)	throws	Exception	{

	

ObjectMapper	mapper	=	new	ObjectMapper();

	

JsonExample	example1	=	new	JsonExample();

example1.setNumber(100);

example1.setText(“my	text”);

example1.setNumbers(new	int[]{1,	2,	3});

	

System.out.println(mapper.writeValueAsString(example1));

	

String	json		=	“{\“number\”:100,\“text\”:\“my	text\”,\“numbers\”:[1,2,3]}”;

JsonExample	example2	=	mapper.readValue(json,	JsonExample.class);

}

	

public	int	getNumber()	{

return	number;

}

	

public	void	setNumber(int	number)	{

this.number	=	number;

}

	

public	String	getText()	{

return	text;

}

	

public	void	setText(String	text)	{

this.text	=	text;

}

	

public	int[]	getNumbers()	{

return	numbers;

}

	

void	setNumbers(int[]	numbers)	{

this.numbers	=	numbers;

}		

}

The	following	is	the	output:

{“number”:100,“text”:“my	text”,“numbers”:[1,2,3]}

You	can	use	a	List	to	replace	the	array	in	the	code	and	get	the	same	result.

Based	on	the	auto-detection	rules,	you	need	to	be	careful	when	naming	methods.	For
example,	adding	the	following	public	getter:

public	String	getText1()	{

return	text	+	”	1”;

}		

You	will	get

{“number”:100,“text”:“my	text”,“numbers”:[1,2,3],“text1”:“my	text	1”}

An	additional	property	is	added	to	the	output.

JSON	PROPERTIES

Property	naming	and	inclusion

By	default,	a	Java	field	name	is	used	as	a	JSON	property	name	without	any	modifications.
To	indicate	a	JSON	property	name	for	a	(non-static)	Java	field,	you	can	use
@JsonProperty.	Other	than	that,	you	also	can	use	@JsonProperty	to	make	a	(non-static)
method	as	a	getter	or	setter	depending	on	the	method	signature.	This	allows	you	to
override	the	auto-detection	rules.	In	the	following	example,	@JsonProperty	is	used	to
change	a	JSON	property	name,	define	a	getter	and	a	setter:

public	class	Simple1	{

	

@JsonProperty(“text”)		//	rename

private	String	s1;

private	String	s2;

	

//	a	default	constructor	is	needed			

public	Simple1()	{

}

	

public	Simple1(String	s1,	String	s2)	{

this.s1	=	s1;

this.s2	=	s2;

}

	

public	String	getS1()	{

return	s1;

}			

	

public	void	setS1(String	s1)	{

this.s1	=	s1;

}

	

public	String	getS2()	{

return	s2;

}			

	

public	void	setS2(String	s2)	{

this.s1	=	s2;

}		

	

@JsonProperty		//	define	a	getter

private	String	getExtraProperty()	{

return	s1	+	“_extra”;

}

	

@JsonProperty		//	define	a	setter

private	void	setExtraProperty(String	extra)	{

this.s1	=	extra;

}				

}

The	following	object

Simple1	s1	=	new	Simple1(“string	1”,	“string	2”);

is	serialized	to

{“s2”:“string	2”,“extraProperty”:“string	1_extra”,“text”:“string	1”}

You	might	notice	a	default	constructor	is	defined.	A	default	constructor	is	needed	in
deserializing	JSON	data	to	construct	an	object.	If	a	default	constructor	is	not	defined,	you
will	get	the	following	error	message:

Exception	in	thread	“main”	com.fasterxml.jackson.databind.JsonMappingException:	No
suitable	constructor	found	for	type	[simple	type,	class	Simple1]:	can	not	instantiate	from
JSON	object	(missing	default	constructor	or	creator,	or	perhaps	need	to	add/enable	type
information?)

Property	exclusion

In	JSON	serialization,	you	can	use	annotation	@JsonIgnore	to	exclude	Java	fields.	An
annotated	field	or	method	(getter)	will	be	excluded	from	serialization.	For	example,

@JsonIgnore

private	String	s1;

Or,

@JsonIgnore

public	String	getS1()

You	also	can	use	@JsonIgnore	in	JSON	deserialization.	An	annotated	field	or	method
(setter)	will	be	excluded	from	deserialization.	Its	value	will	not	be	changed	after	being
deserialized.	For	example,

@JsonIgnore

private	String	s1;

Or,

@JsonIgnore

Public	void	setS1(String	s1)

Using	@JsonIgnore	to	annotate	a	field	can	affect	both	serialization	and	deserialization.

In	deserializing	JSON	data	to	a	Java	object,	you	can	choose	to	exclude	properties	that	are
not	defined	in	the	Java	class.	For	example,	serializing	the	following	data	into	an	instance
of	class	Simple1:

{“s2”:“string	2”,“extraProperty”:“extra”,“text”:“string	1”,“extra”:“extra	value”}

You	will	get	the	following	error:

Exception	in	thread	“main”
com.fasterxml.jackson.databind.exc.UnrecognizedPropertyException:	Unrecognized	field
“extra”	(class	Simple1),	not	marked	as	ignorable	(3	known	properties:
“extraProperty”,text”,	“s2”])

To	exclude	JSON	properties	in	JSON	deserialization,	you	can	use	annotation
@JsonIgnoreProperties,	such	as:

@JsonIgnoreProperties({“extra”})

public	class	Simple1	{

…

}

Also,	you	can	this	annotation	in	JSON	serialization.

To	exclude	all	unknown	JSON	properties,	you	can	use:

@JsonIgnoreProperties(ignoreUnknown=true)

public	class	Simple1	{

…

}

Ordering

To	override	implicit	orderings,	you	can	use	@JsonPropertyOrder	to	define	ordering	when
serializing	properties.	For	example,

@JsonPropertyOrder({“t1”,	“n1”})

Or,	to	apply	alphabetic	order,	you	can	use:

@JsonPropertyOrder(alphabetic=true)

	

For	details	on	available	Jackson	annotations,	please	check
http://fasterxml.github.io/jackson-annotations/javadoc/2.6/.

http://fasterxml.github.io/jackson-annotations/javadoc/2.6/

MAP

So	far,	the	POJOs	contain	properties	that	are	predefined	and	cannot	be	changed	at	runtime.
To	define	a	POJO	with	properties	that	can	be	changed	at	runtime	dynamically.	You	can
use	a	Java	Map.	Jackson	can	serialize	a	Java	Map	too.	For	example,

	

public	Map<String,	String>	getStringMap()	{

return	stringMap;

}

might	be	serialized	as:

{“stringMap”:{“str1”:“string	1”,“str2”:“string	2”}}

One	issue	here	is	that	an	additional	level,	stringMap,	is	introduced.	This	does	not	work
properly	to	use	a	Map	to	define	dynamic	properties	of	a	POJO.	To	remove	an	additional
level,	you	can	use:

@JsonAnyGetter

Such	as,

@JsonAnyGetter

public	Map<String,	String>	getStringMap()	{

return	stringMap;

}

The	JSON	string	might	look	like:

{“str1”:“string	1”,“str2”:“string	2”}

For	deserialization,	you	can	use

@JsonAnySetter

Such	as,

@JsonAnySetter

	

public	void	setStringMap(Map<String,	String>	stringMap)	{

this.stringMap	=	stringMap;

}

This	annotation	also	can	be	used	to	handle	any	unknown	properties.

ENUM

Previously,	we	have	discussed	JSON	serialization	and	deserialization	for	POJO	models.
What	about	enum	types?

public	enum	OperatorEnum	{

	

EQUAL(“eq”),	GREATER(“gt”),	LESS(“lt”);

private	String	id;

OperatorEnum(String	id)	{

this.id	=	id;

}

public	String	getId()	{

return	this.id;

}

}

public	class	ExpressionTerm	{

private	OperatorEnum	operator;

private	String	value;

public	ExpressionTerm()	{

}

public	ExpressionTerm(OperatorEnum	operator,	String	value)	{

this.operator	=	operator;

this.value	=	value;

}													

public	OperatorEnum	getOperator()	{

return	operator;

}													

public	void	setOperator(OperatorEnum	operator)	{

this.operator	=	operator;

}													

public	String	getValue()	{

return	value;

}													

public	void	setValue(String	value)	{

this.value	=	value;

}																																									

}

The	following	instance	of	ExpressionTerm:

ExpressionTerm	term	=	new	ExpressionTerm(OperatorEnum.EQUAL,	“2”);

is	serialized	to

{“operator”:“EQUAL”,“value”:“2”}

For	enum	types,	What	if	you	do	not	want	to	use	enum	name.	You	can	use	@JsonValue
annotation	to	annotate	a	method	whose	returned	value	is	used	as	the	single	value	in	JSON
serialization.	Only	one	method	in	a	class	can	be	annotated	with	this	annotation.	For
example,	to	use	id	as	the	serialized	value,	you	can	use:

@JsonValue

public	String	getId()	{

return	this.id;

}

And,	the	serialized	data	becomes:

{“operator”:“eq”,“value”:“2”}

To	deserialize	JSON	that	uses	@JsonValue,	a	matching	annotation	for	deserialization	is
@JsonCreator.	This	annotation	can	be	used	in	constructors	and	factory	methods	to
instantiate	new	instances	of	annotated	class.

	

import	java.util.HashMap;

import	java.util.Map;

	

import	com.fasterxml.jackson.annotation.JsonCreator;

import	com.fasterxml.jackson.annotation.JsonValue;

	

public	enum	OperatorEnum	{

	

EQUAL(“eq”),	GREATER(“gt”),	LESS(“lt”);

private	static	Map<String,	OperatorEnum>	lookup	=	new	HashMap<String,
OperatorEnum>();

static	{

for(OperatorEnum	operator	:	OperatorEnum.values())	{

lookup.put(operator.getId(),	operator);

}

}

	

private	String	id;

OperatorEnum(String	id)	{

this.id	=	id;

}

@JsonValue

public	String	getId()	{

return	this.id;

}

	

@JsonCreator

public	static	OperatorEnum	getValueById(String	id)	{

return	lookup.get(id);

}

}

Another	approach	is	to	define	a	constructor	as	a	creator,	such	as:

@JsonCreator

OperatorEnum(String	id)	{

this.id	=	id;

}

FORMATTING

To	change	how	a	property	is	serialized,	you	can	use	@JsonFormat.	For	example,	date/time
values	are	written	as	numeric	timestamps.	To	format	a	Date	as	a	string,	you	can	use	the
pattern	element	to	define	a	SimpleDateFormat	pattern	and	a	timezone	property	to	define	a
TimeZone	format:

@JsonFormat(pattern=“yyyy-MM-dd”,timezone=“GMT-05:00”)

public	Date	getDate()	{

return	date;

}

This	feature	behaves	symmetrically	and	it	will	affect	deserialization.

Through	the	shape	element,	a	value	can	be	serialized	using	an	alternative	JSON	data	type.
For	example,	POJOs	are	serialized	as	JSON	objects	(JsonFormat.Shape.OBJECT)	by
default,	such	as:

{“col1”:“1”,“col2”:“2”,“col3”:“3”}

By	using

@JsonFormat(shape=JsonFormat.Shape.ARRAY)

The	output	becomes:

[“1”,“2”,“3”]

POLYMORPHIC	TYPES

For	polymorphic	types,	type	information	should	be	preserved	during	serialization	and	to
be	used	in	deserialization.	@JsonTypeInfo	can	be	used	to	link	an	interface	(or	an	abstract
class)	to	its	implementations	(concrete	classes).	For	example,

@JsonTypeInfo(use	=	JsonTypeInfo.Id.NAME,	include	=	JsonTypeInfo.As.PROPERTY,
property	=	“type”)

The	use	element	specifies	what	kind	of	type	metadata	to	be	used	in
serialization/deserialization.	JsonTypeInfo.Id	is	an	enum	that	defines	different	identifiers,
such	as,	JsonTypeInfo.Id.NAME	is	for	logical	name.

The	include	element	specifies	a	mechanism	to	include	type	metadata.	JsonTypeInfo.As	is
an	enum	that	defines	different	inclusion	mechanisms,	such	as,
JsonTypeInfo.As.PROPERTY	indicates	a	property	is	added	automatically	to	JSON	content
in	serialization.	The	property	element	is	used	to	define	a	property	name	for
JsonTypeInfo.As.PROPERTY	inclusion	mechanism.

To	associate	subtypes	to	corresponding	types,	@JsonSubTypes	is	used	to	register	names	of
subtypes	to	allow	deserializer	to	find	subtypes.	For	example,

@JsonSubTypes({	

@Type(value	=	Cat.class,	name	=	“Cat”),	

@Type(value	=	Dog.class,	name	=	“Dog”)	})

The	value	element	specifies	the	class	of	a	subtype.	The	name	element	specifies	a	name
used	as	an	identifier	for	the	class.

In	the	following	example,	Animal	has	two	subtypes,	Cat	and	Dog:

import	com.fasterxml.jackson.annotation.JsonSubTypes;	

import	com.fasterxml.jackson.annotation.JsonSubTypes.Type;	

import	com.fasterxml.jackson.annotation.JsonTypeInfo;	

	

@JsonTypeInfo(use	=	JsonTypeInfo.Id.NAME,	include	=	JsonTypeInfo.As.PROPERTY,
property	=	“type”)

@JsonSubTypes({	

@Type(value	=	Cat.class,	name	=	“Cat”),	

@Type(value	=	Dog.class,	name	=	“Dog”)	})		

public	interface	Animal	{

String	getName();

}

public	class	Cat	implements	Animal	{

	

private	String	name;

	

@Override

public	String	getName()	{

return	name;

}			

	

public	void	setName(String	name)	{

this.name	=	name;

}

}

public	class	Dog	implements	Animal	{

	

private	String	name;

	

@Override

public	String	getName()	{

return	name;

}			

	

public	void	setName(String	name)	{

this.name	=	name;

}

}

A	serialized	JSON	content	might	look	like:

{“type”:“Dog”,“name”:“dog	1”}

{“type”:“Cat”,“name”:“cat	1”}

In	deserialization,	you	might	get	the	following	error	when	a	subtype	is	not	registered:

Exception	in	thread	“main”	com.fasterxml.jackson.databind.JsonMappingException:
Could	not	resolve	type	id	‘Cat’	into	a	subtype	of	[simple	type,	class	Animal]:	known	type

ids	=	[Animal,	Dog]

As	an	alternative	to	using	@SubTypes	to	register	subtypes	in	a	parent	class,	you	can	use
the	following	method	to	register	classes	as	subtypes:

registerSubtypes(Class<?>…	classes)

For	example,	you	can	remove	@SubTypes	from	Animal	class	from	previous	example	and
add	the	following	to	register	its	subtypes:

ObjectMapper	mapper	=	new	ObjectMapper();

mapper.registerSubtypes(Dog.class,	Cat.class);

By	default,	an	unqualified	class	name	is	used.	So,	an	output	might	look	like:

{“type”:“Dog”,“name”:“dog	1”}

{“type”:“Cat”,“name”:“cat	1”}

You	can	use	@JsonTypeName	to	define	logical	names	in	subtypes.	For	example,

@JsonTypeName(“dog”)

public	class	Dog	implements	Animal

@JsonTypeName(“cat”)

public	class	Cat	implements	Animal

This	will	change	the	output	to:

{“type”:“dog”,“name”:“dog	1”}

{“type”:“cat”,“name”:“cat	1”}

To	register	subtypes	with	specified	logical	names,	you	can	use	the	following	method:

registerSubtypes(NamedType…	types)

For	example,

mapper.registerSubtypes(

new	NamedType(Dog.class,	“doggy”),

new	NamedType(Cat.class,	“kitty”)

);

And,	this	will	change	the	output	to:

{“type”:“doggy”,“name”:“dog	1”}

{“type”:“kitty”,“name”:“cat	1”}

FILTERING

Views

Previously,	we	have	introduced	how	to	hide	fields	(or	methods)	through	@JsonIgnore
annotation.	But,	@JsonIgnore	defines	properties	to	be	ignored	statistically.	To	have	the
ability	to	define	a	set	of	properties	to	be	ignored	dynamically,	you	can	use

@JsonView

First,	you	need	to	define	views.	Views	are	defined	as	classes.	Classes	can	represent	view
hierarchies	through	inheritance.	The	child	views	inherit	properties	from	the	parent	views.
For	example,

public	class	ProfileJsonViews	{

static	class	PublicView	{	}

static	class	ContactView	extends	PublicView	{	}

}

ProfileJsonViews	defines	two	views:	Public	View	and	ContactView.	ContactView	inherits
PublicView.	So,	ContacView	includes	properties	from	PublicView	too.	Next,	we	can	apply
view	definitions	on	properties,	as	follows:

import	com.fasterxml.jackson.annotation.JsonView;

	

public	class	Profile1	{

	

@JsonView(ProfileJsonViews.PublicView.class)

private	String	name;

@JsonView(ProfileJsonViews.PublicView.class)

private	String	company;

@JsonView(ProfileJsonViews.ContactView.class)

private	String	phone;

@JsonView(ProfileJsonViews.ContactView.class)

private	String	email;

	

public	String	getName()	{

return	name;

}			

	

public	void	setName(String	name)	{

this.name	=	name;

}

	

public	String	getCompany()	{

return	company;

}			

	

public	void	setCompany(String	company)	{

this.company	=	company;

}			

	

public	String	getPhone()	{

return	phone;

}			

	

public	void	setPhone(String	phone)	{

this.phone	=	phone;

}			

	

public	String	getEmail()	{

return	email;

}			

	

public	void	setEmail(String	email)	{

this.email	=	email;

}						

}

Views	are	annotated	statistically	in	POJOs.	But,	view	can	be	chosen	per	call	during
serialization	through	writerWithView()	method.	This	is	a	factory	method	that	creates	an
ObjectWriter	using	specified	JSON	view.

import	com.fasterxml.jackson.databind.ObjectMapper;

import	com.fasterxml.jackson.databind.MapperFeature;

	

public	class	JsonViewExample1	{

public	static	void	main(String[]	args)	throws	Exception	{

	

ObjectMapper	mapper	=	new	ObjectMapper();

//	all	properties	without	explicit	view	definition	are	excluded	in	serialization

mapper.configure(MapperFeature.DEFAULT_VIEW_INCLUSION,	false);

	

Profile1	profile1	=	new	Profile1();

profile1.setName(“my	name”);

profile1.setCompany(“my	company”);

profile1.setPhone(“my	phone”);

profile1.setEmail(“my	email”);

	

String	json	=	mapper.writeValueAsString(profile1);

System.out.println(json);							

	

json	=
mapper.writerWithView(ProfileJsonViews.PublicView.class).writeValueAsString(profile1);

System.out.println(json);

	

json	=
mapper.writerWithView(ProfileJsonViews.ContactView.class).writeValueAsString(profile1);

System.out.println(json);							

}

}

The	following	is	the	output:

{“name”:“my	name”,“company”:“my	company”,“phone”:“my	phone”,“email”:“my
email”}

{“name”:“my	name”,“company”:“my	company”}

{“name”:“my	name”,“company”:“my	company”,“phone”:“my	phone”,“email”:“my

email”}

Filters

To	do	dynamic	filtering	completely,	you	can	use

@JsonFilter

In	the	previous	example,	the	class	is	annotated	with	@JsonFilter,	such	as:

import	com.fasterxml.jackson.annotation.JsonFilter;

	

@JsonFilter(“profileFilter”)

public	class	Profile2	{

…

}

Now,	you	can	use	SimpleBeanPropertyFilter	to	determine	to	filter	out	certain	properties
dynamically	by	using	a	filterOutAllExcept	or	serializeAllExcept	method.	Filters	can	be
chosen	per	call	during	serialization	through	the	writer	method.	This	is	a	factory	method
that	creates	an	ObjectWriter	using	specified	FilterProvider.	The	following	is	an	example:

import	com.fasterxml.jackson.databind.ObjectMapper;

import	com.fasterxml.jackson.databind.ser.FilterProvider;

import	com.fasterxml.jackson.databind.ser.impl.SimpleBeanPropertyFilter;

import	com.fasterxml.jackson.databind.ser.impl.SimpleFilterProvider;

	

public	class	FilterExample1	{

public	static	void	main(String[]	args)	throws	Exception	{

	

ObjectMapper	mapper	=	new	ObjectMapper();

	

Profile2	profile1	=	new	Profile2();

profile1.setName(“my	name”);

profile1.setCompany(“my	company”);

profile1.setPhone(“my	phone”);

profile1.setEmail(“my	email”);

	

SimpleBeanPropertyFilter	filter1	=
SimpleBeanPropertyFilter.filterOutAllExcept(“name”,	“company”);					

FilterProvider	filters1	=	new	SimpleFilterProvider().addFilter(“profileFilter”,	filter1);

String	json	=	mapper.writer(filters1).writeValueAsString(profile1);

System.out.println(json);						

	

SimpleBeanPropertyFilter	filter2	=
SimpleBeanPropertyFilter.serializeAllExcept(“name”,	“company”);					

FilterProvider	filters2	=	new	SimpleFilterProvider().addFilter(“profileFilter”,	filter2);

json	=	mapper.writer(filters2).writeValueAsString(profile1);

System.out.println(json);							

}

}

The	following	is	the	output:

{“name”:“my	name”,“company”:“my	company”}

{“phone”:“my	phone”,“email”:“my	email”}

CUSTOM	SERIALIZERS	AND	DESERIALIZERS

ObjectMapper	uses	JsonParser	and	JsonGenerator	for	actual	reading/writing	of	JSON
content.	Both	classes	are	in	the	Jackson	Core.	Usually,	you	do	not	use	them	directly	unless
you	need	to	customize	serialization/deserialization.

Custom	Serializers

A	custom	serializer	usually	extends	StdSerializer,	a	subclass	of	JsonSerializer.	This	is	a
base	class	used	by	all	standard	serializers.	The	following	method	is	called	to	serialize	a
value	entity:

void	serialize(T	value,	JsonGenerator	jgen,	SerializationProvider	provider)	throws
IOException

You	can	apply	custom	serializers	to	fields,	methods,	or	value	classes	by	using	the
following	annotation:

@JsonSerialize

Previously,	we	use	@JsonValue	to	serialize	an	enum	type,	OperatorEnum.	In	the	following
example,	a	custom	serializer	is	created	to	do	serialization:

import	java.io.IOException;

	

import	com.fasterxml.jackson.core.JsonGenerator;

import	com.fasterxml.jackson.databind.SerializerProvider;

import	com.fasterxml.jackson.databind.ser.std.StdSerializer;

	

public	class	OperatorSerializer	extends	StdSerializer<OperatorEnum>	{

	

public	OperatorSerializer()	{

super(OperatorEnum.class);

}

	

@Override

public	void	serialize(OperatorEnum	value,	JsonGenerator	jgen,	SerializerProvider
provider)

throws	IOException	{

//	null	is	handled	by	a	default	NullSerializer

jgen.writeString(value.getId());

}

}

Now,	we	can	apply	this	serializer	on	operator	field:

@JsonSerialize(using	=	OperatorSerializer.class)

private	OperatorEnum	operator;

Custom	Deserializers

Similarly,	a	custom	deserializer	usually	extends	StdDeserializer,	a	subclass	of
JsonDeserializer.	The	following	method	is	called	to	parse	JSON	content	and	a	JsonNode	is
returned	(a	JSON	tree	model).	Now,	you	can	extract	information	from	it.	And,	construct
an	instance	of	value	entity	(deserialized	value)	in	the	end.

T	deserialize(JsonParser	jp,	DeserializationContext	ctxt)	throws	IOException,
JsonProcessingException

You	can	apply	custom	deserializers	to	fields,	methods,	or	value	classes	by	using	the
following	annotation:

@JsonDeserialize

In	the	following	example,	a	custom	deserializer	is	created	to	do	deserialization	on
OperatorEnum	to	replace	@JsonCreator:

import	java.io.IOException;

	

import	com.fasterxml.jackson.core.JsonParser;

import	com.fasterxml.jackson.core.JsonProcessingException;

import	com.fasterxml.jackson.databind.DeserializationContext;

import	com.fasterxml.jackson.databind.deser.std.StdDeserializer;

	

public	class	OperatorDeserializer	extends	StdDeserializer<OperatorEnum>	{

	

public	OperatorDeserializer()	{

super(OperatorEnum.class);

}

	

@Override

public	OperatorEnum	deserialize(JsonParser	jp,	DeserializationContext	ctxt)

throws	IOException,	JsonProcessingException	{

//	current	token

String	value	=	jp.getText();	

	

return	OperatorEnum.getValueById(value);					

}							

}

Now,	we	can	apply	this	deserializer	on	operator	field:

@JsonDeserialize(using	=	OperatorDeserializer.class)

private	OperatorEnum	operator;

CONFIGURATIONS

Instances	of	ObjectMapper	are	thread-safe.	You	should	try	to	reuse	the	same	instance	of
ObjectMapper	if	possible.	Before	an	instance	of	ObjectMapper	can	be	used	for	any
serialization	or	deserialization	calls,	a	mapper	can	be	configured	by	the	following
methods:

ObjectMapper	configure(MapperFeature	f,	boolean	state)

ObjectMapper	configure(SerializationFeature	f,	boolean	state)

ObjectMapper	configure(DeserializationFeature	f,	booleans	state)

MapperFeature,	SerializationFeature,	and	DeserializationFeature	are	enumerations	that
define	on/off	features	for	ObjectMapper.

For	example,

ObjectMapper	mapper	=	new	ObjectMapper();

//	exclude	null	values

mapper.setSerializationInclusion(JsonInclude.Include.NON_NULL);

//	serialize	enum	values	from	toString()

mapper.configure(SerializationFeature.WRITE_ENUMS_USING_TO_STRING,	true);

//	ignore	unknown	properties

mapper.configure(DeserializationFeature.FAIL_ON_UNKNOWN_PROPERTIES,	false);

//	date	format

TimeZone	tz	=	TimeZone.getTimeZone(“UTC”);

DateFormat	df	=	new	SimpleDateFormat(“yyyy-MM-dd’T’HH:mm:ss.SSS’Z’”);

df.setTimeZone(tz);																											

mapper.setDateFormat(df);

Hibernate	Validator
	

Input	validations	can	happen	at	different	places	in	applications.	Custom	and	possible
duplicate	code	can	be	anywhere	in	the	applications.	Not	to	mention	they	are	usually	part
of	logic	in	the	applications.	Hibernate	Validator	is	a	reference	implementation	of	Bean
Validation	(http://beanvalidation.org/).	Bean	Validation	(added	as	part	of	Java	EE	6)	is	a
framework	that	defines	a	metadata	model	and	API	for	JavaBeans	validation.	Constraints
on	JavaBeans	can	be	expressed	via	annotations	(the	default	metadata	model)	and	can	be
extended	through	XML	constraint	mappings.	Bean	Validation	1.1	allows	put	constraints	to
the	parameters	or	return	values	on	methods	or	constructors.

For	Hibernate	Validator,	the	current	stable	version	is	5.2.2,	at	the	time	of	writing.	You	can
download	it	from	http://hibernate.org/validator/.

http://beanvalidation.org/
http://hibernate.org/validator/

APPLYING	CONSTRAINTS

Field-level	constraints

Let’s	start	with	a	simple	example	to	show	how	to	apply	constraints	to	fields	defined	in	a
class.	Applying	constraints	on	instance	fields	directly	is	called	field-level	constraints.
Constraints	on	static	fields	are	not	supported.	More	than	one	constraint	can	apply	on	the
same	field	and	constraints	are	combined	by	a	logical	AND.

Hibernate	Validator	extends	Bean	Validation.	The	built-in	constraints	include	those
defined	in	Bean	Validation	API	(under	package	javax.validation.constraints)	and	those
added	to	Hibernate	Validator	API	(under	package	org.hibernate.validator.constraints).	In
the	following	example,	name	should	not	be	blank	(using	@NotBlank	constraint)	and	price
should	not	be	less	than	0	(using	@Min	constraint):

import	javax.validation.constraints.Min;

import	org.hibernate.validator.constraints.NotBlank;

	

public	class	Book	{

@NotBlank

private	String	name;

@Min(value=0)

private	double	price;

	

public	Book()	{

}

	

public	Book(String	name,	double	price)	{

this.name	=	name;

this.price	=	price;			

}			

	

public	String	getName()	{

return	name;

}

	

public	void	setName(String	name)	{

this.name	=	name;

}

	

public	double	getPrice()	{

return	price;

}

	

public	void	setPrice(double	price)	{

this.price	=	price;

}						

}

Next,	we	can	do	a	validation	on	those	constraints	via	an	instance	of	Validator	created	from
a	ValidatorFactory.	Both	ValidatorFactory	and	Validator	are	thread-safe.	The	validate(T
object,	Class<?>…	groups)	method	in	the	Validator	is	to	do	validation	on	all	constraints	of
an	object.	A	set	of	ConstraintViolation	objects	is	returned.	If	a	validation	succeeds,	an
empty	set	is	returned.	In	the	following	example,	an	instance	of	Book	that	violates	all
constraints	defined	in	the	Book	class:

import	java.util.Set;

import	javax.validation.ConstraintViolation;

import	javax.validation.Validation;

import	javax.validation.Validator;

import	javax.validation.ValidatorFactory;

	

public	class	BookExample1	{

public	static	void	main(String[]	args)	{

	

ValidatorFactory	factory	=	Validation.buildDefaultValidatorFactory();

Validator	validator	=	factory.getValidator();

	

Book	book1	=	new	Book(null,	-1);

Set<ConstraintViolation<Book>>	violations	=	validator.validate(book1);	

for(ConstraintViolation<Book>	violation	:	violations)	{

System.out.println(violation.getPropertyPath()	+	“:	”	+	violation.getMessage());

}												

}

}

The	following	is	the	output:

price:	must	be	greater	than	or	equal	to	0

name:	may	not	be	empty

Error	messages

Each	constraint	annotation	has	a	default	error	message.	It	can	be	replaced	by	an	optional
message	element.	For	example,

@NotBlank(message=“Cannot	be	blank”)

An	error	message	can	contain	additional	information	through	message	parameters	or
message	expressions.	A	message	parameter	is	enclosed	in	{}.	This	allows	referencing	to
elements	in	the	annotation.	A	message	expression	is	enclosed	in	${}.	This	allows	using
expressions	defined	in	Unified	Expression	Language	(EL),	an	expression	language	based
on	JSP	EL.	For	example,

@Min(value=0,	message=“Invalid	value	‘${validatedValue}’.	It	must	be	greater	than	or
equal	to	{value}.”)

An	error	message	can	be	provided	from	a	resource	bundle	too.	All	you	need	to	do	is	to
create	a	file,	ValidationMessages.properties,	and	add	it	to	the	classpath.	For	example,
{constraints.price.error}	is	a	message	parameter	that	is	used	as	a	key	in	the	resource
bundle:

@Min(value=0,	message=”{constraints.price.error}”)

And,	add	an	entry	in	the	ValidationMessages.properties:

constraints.price.error=Invalid	value	‘${validatedValue}’.	It	must	be	greater	than	or	equal
to	{value}.

Property-level	constraints

To	do	a	validation	on	a	property,	you	can	use	the	validateProperty(T	object,	String
propertyName,	Class<?>…	groups)	method.	For	example,

validator.validateProperty(book1,	“price”);

Similarly,	you	can	apply	property-level	constraints	by	annotating	getter	methods	on
classes	that	follows	JavaBeans	standard.	But,	do	not	mix	field-level	constraints	with
property-level	constraints	within	a	class.	This	might	cause	a	field	to	be	validated	more
than	once.

VALIDATING	PARAMETERS

Validations	can	be	performed	to	methods	or	constructors	by	applying	constraints	to
parameters	and	return	values.	In	the	following	example,	constraints	are	added	to	the	add
method	to	make	sure	a	Book	object	is	not	null	and	quantity	is	at	lest	one:

import	javax.validation.Valid;

import	javax.validation.constraints.Min;

import	javax.validation.constraints.NotNull;

	

public	class	BookManager	{

	

public	void	add(@NotNull	Book	book,	@Min(value=1)	int	quantity)	{

…

}			

}

To	do	a	validation	on	parameters,	you	need	to	get	an	instance	of	ExecutableValidator.	For
methods,	you	can	use

validateParameters(T	object,	Method	method,	Object[]	parameterValues,	Class<?>…
groups)

For	example,

import	java.lang.reflect.Method;

import	java.util.Set;

import	javax.validation.ConstraintViolation;

import	javax.validation.Validation;

import	javax.validation.ValidatorFactory;

import	javax.validation.executable.ExecutableValidator;

	

public	class	BookExample1	{

public	static	void	main(String[]	args)	throws	Exception	{

	

ValidatorFactory	factory	=	Validation.buildDefaultValidatorFactory();

ExecutableValidator	executableValidator	=	factory.getValidator().forExecutables();

	

BookManager	manager	=	new	BookManager();

Method	method	=	BookManager.class.getMethod(“add”,	Book.class,	int.class);

Book	book	=	new	Book(“Java”,	25);

Object[]	params	=	{book,	0};

Set<ConstraintViolation<BookManager>>	violations	=
executableValidator.validateParameters(

																		manager,	method,	params);			

for(ConstraintViolation<BookManager>	violation	:	violations)	{

System.out.println(violation.getPropertyPath()	+	“:	”	+	violation.getMessage());

}												

}

}

The	validation	performed	in	this	example	is	not	cascaded.	That	means	when	a	Book	object
violates	any	constraints,	it	is	not	going	to	fail	on	validation	because	no	validation	is
performed	on	a	Book.	A	cascaded	validation	is	to	validate	contained	objects	on	those
annotated	with	@Valid.	For	example,

public	void	add(@NotNull	@Valid	Book	book,	@Min(value=1)	int	quantity)

To	validate	return	values	on	methods,	you	can	use

validateReturnValue(T	object,	Method	method,	Object	returnValue,	Class<?>…	groups)

For	constructors,	you	can	use

validateConstructor(Constructor<?	extends	T>	constructor,	Object[]	parameterValues,
Class<?>…	groups)

for	parameters,	and

validateConstructorReturnValue(Constructor<?	extends	T>	constructor,	T	createdObject,
Class<?>…	groups)

for	created	object.

INHERITANCE

Constraints	are	inherited	through	inheritance.	For	example,	an	Item	interface	is	declared
as:

public	interface	Item	{

	

@NotBlank

public	String	getName();	

@Min(value=0)	

public	double	getPrice();			

}

Now,	the	Book	class	implements	the	Item	interface:

public	class	Book	implements	Item	{

	

private	String	name;

private	double	price;

	

public	Book(String	name,	double	price)	{

this.name	=	name;

this.price	=	price;			

}			

	

@Override

public	String	getName()	{

return	name;

}

	

public	void	setName(String	name)	{

this.name	=	name;

}

	

@Override

public	double	getPrice()	{

return	price;

}

	

public	void	setPrice(double	price)	{

this.price	=	price;

}						

}

Run	the	following	code,	same	validation	still	applies:

Item	book1	=	new	Book(null,	-1);

Set<ConstraintViolation<Item>>	violations	=	validator.validate(book1);	

For	fields,	any	additional	constraints	in	overriding	methods	will	be	validated	on	top	of
those	defined	in	the	super	classes.	For	example,	modify	the	Book	class	by	adding	a
property-level	constraint,	such	as:

@Min(value=5)

public	double	getPrice()	{

return	price;

}

Now,	you	will	get	the	following	output	with	an	additional	validation:

price:	must	be	greater	than	or	equal	to	5

name:	may	not	be	empty

price:	must	be	greater	than	or	equal	to	0

Note:	Constraints	are	evaluated	in	no	particular	order.	You	might	see	the	output	in
different	order.

Parameter	constraints	can	be	inherited	too.	For	example,	a	Manager	interface	is	declared
as:

public	interface	Manager	{

	

public	void	add(@NotNull	Item	item,	@Min(value=1)	int	quantity);

}

Now,	the	BookManager	class	implements	the	Manager	interface,	such	as:

public	class	BookManager	implements	Manager	{

	

@Override

public	void	add(Item	item,	int	quantity)	{

…

}			

}

What	if	BookManager	overrides	the	add()	method	with	different	constraints,	such	as:

public	class	BookManager	implements	Manager	{

	

@Override

public	void	add(@NotNull	@Valid	Item	item,	@Min(value=1)	int	quantity)	{			

…

}			

}

You	will	get	the	following	error	message	during	runtime	because	this	is	not	allowed:

Exception	in	thread	“main”	javax.validation.ConstraintDeclarationException:	HV000151:
A	method	overriding	another	method	must	not	alter	the	parameter	constraint
configuration,	but	method	public	void	BookManager.add(Item,int)	changes	the
configuration	of	public	abstract	void	Manager.add(Item,int)…

GROUPING	CONSTRAINTS

As	you	can	see,	all	the	validation	methods	introduced	earlier	take	a	varargs	parameter,
Class<?>…	groups,	as	the	last	parameter.	When	an	optional	groups	element	is	not
specified	in	a	constraint,	the	default	group,	javax.validation.groups.Default,	is	used.	In
some	cases,	only	a	subset	of	constraints	needs	to	be	validated.	This	can	be	done	through
groups.	Each	group	has	to	be	an	interface	(a	marker	interface).

Let’s	use	a	process	of	shopping	cart	as	an	example.	Part	of	process	is	to	ask	a	shopper	to
sign	in	as	a	member	or	to	remain	as	a	guest.	For	a	member,	only	username	and	password
are	needed.	For	a	guest,	only	address	and	email	are	needed.	So,	validation	can	be	done	by
breaking	constraints	into	two	groups:	member	and	guest:

public	class	UserInfo	{

	

@NotBlank(groups=MemberGroup.class)

private	String	username;

@NotBlank(groups=MemberGroup.class)

private	byte[]	password;

@NotBlank(groups=GuestGroup.class)

private	String	address;

@NotBlank(groups=GuestGroup.class)

private	String	email;

…

}

Groups	are	defined	as	follows:

public	interface	MemberGroup	{

}

public	interface	GuestGroup	{

}

The	following	example	is	to	run	validations	on	the	same	instance	of	UserInfo	in	three
scenarios:	using	default	group,	using	guest	group,	and	using	member	group:

public	class	GroupingExample1	{

	

private	static	Validator	validator;

	

public	static	void	main(String[]	args)	{

	

ValidatorFactory	factory	=	Validation.buildDefaultValidatorFactory();

validator	=	factory.getValidator();

	

UserInfo	user1	=	new	UserInfo(null,	null);

validate(user1);

validate(user1,	GuestGroup.class);		

validate(user1,	MemberGroup.class);											

}

	

private	static	<T>	void	validate(T	obj,	Class<?>…	groups)	{

	

Set<ConstraintViolation<T>>	violations	=	validator.validate(obj,	groups);

if(!violations.isEmpty())	{

System.out.println(“Violations:”);	

for(ConstraintViolation<T>	violation	:	violations)	{

System.out.println(violation.getPropertyPath()	+	“:	”	+	violation.getMessage());

}

}	else	{

System.out.println(“No	violations”);	

}						

}

}

The	following	is	the	output:

No	violations

Violations:

email:	may	not	be	empty

address:	may	not	be	empty

Violations:

username:	may	not	be	empty

password:	may	not	be	empty

PROGRAMMATIC	CONSTRAINTS

Hibernate	Validator	also	provides	API	for	configuring	constraints	programmatically.	This
provides	flexibility	on	changing	constraints	dynamically	at	runtime	instead	of	annotating
constraints	at	Java	classes.

To	configure	constraints	programmatically,	you	need	to	create	a	new	ConstraintMapping,
a	top	level	class	for	constraint	configuration,	for	constraint	mapping.	Then,	constraints	can
be	configured	on	classes.

The	following	example	replaces	the	example	of	field-level	constraints	without	using
constraint	annotations:

import	java.lang.annotation.ElementType;

import	java.util.Set;

import	javax.validation.ConstraintViolation;

import	javax.validation.Validation;

import	javax.validation.Validator;

	

import	org.hibernate.validator.HibernateValidator;

import	org.hibernate.validator.HibernateValidatorConfiguration;

import	org.hibernate.validator.cfg.ConstraintMapping;

import	org.hibernate.validator.cfg.defs.MinDef;

import	org.hibernate.validator.cfg.defs.NotBlankDef;

	

public	class	BookExample1	{

public	static	void	main(String[]	args)	{

	

HibernateValidatorConfiguration	configuration	=	Validation

.byProvider(HibernateValidator.class)

.configure();

ConstraintMapping	constraintMapping	=	configuration.createConstraintMapping();

constraintMapping.type(Book.class)

.property(“name”,	ElementType.FIELD)

.constraint(new	NotBlankDef())

.property(“price”,	ElementType.FIELD)

.constraint(new	MinDef().value(0));

Validator	validator	=	configuration.addMapping(constraintMapping)

.buildValidatorFactory()

.getValidator();							

	

Book	book1	=	new	Book(null,	-1);

Set<ConstraintViolation<Book>>	violations	=	validator.validate(book1);	

for(ConstraintViolation<Book>	violation	:	violations)	{

System.out.println(violation.getPropertyPath()	+	“:	”	+	violation.getMessage());

}												

}

}

CREATING	A	CUSTOM	CONSTRAINT

To	create	a	custom	constraint	using	an	annotation,	an	annotation	type	needs	to	be	declared
first.	An	annotation	type	is	declared	with	the	@Interface	keyword.	Several	predefined	Java
annotation	types	can	be	included	in	other	annotation	types,	such	as:

@Target	restricts	what	kind	of	Java	elements	the	annotation	can	be	applied	to,	such	as
fields,	methods,	or	parameters.	For	example,	ElementType.FIELD	indicates	the	annotation
can	be	applied	to	a	field	or	property.

@Retention	specifies	how	the	annotation	is	retained,	such	as	source	level,	compile	time,
or	runtime.	For	example,	RetentionPolicy.RUNTIME	indicates	the	annotation	can	be	used
at	runtime.

@Documented	indicates	the	annotation	is	included	in	the	Java	doc.	By	default,	this	is	not
true.

@Inherited	indicates	the	annotation	type	can	be	inherited	from	the	super	class.	By	default,
this	is	not	true.

All	elements	of	an	annotation	are	declared	similar	to	a	method.	Optional	default	values
can	be	provided	through	the	default	keyword.

The	following	example	is	to	add	a	new	constraint	annotation	that	can	validate	the	code
field	in	the	Book	class:

public	class	Book	{

@NotBlank

private	String	name;

@Min(value=0)

private	double	price;

@NotBlank

@CodeConstraint(prefixList={“A-“,	“B-“})

private	String	code;

…

}

Creating	a	constraint	annotation

To	make	an	annotation	type	as	a	constraint	annotation,	you	need	to	use	@Constraint.	Also,
any	constraint	annotation	needs	to	provide	three	required	elements:	message,	groups,	and
payload.	@CodeConstraint	has	an	additional	element,	prefixList.

import	java.lang.annotation.Documented;

import	java.lang.annotation.ElementType;

import	java.lang.annotation.Retention;

import	java.lang.annotation.RetentionPolicy;

import	java.lang.annotation.Target;

	

import	javax.validation.Constraint;

import	javax.validation.Payload;

	

@Target(ElementType.FIELD)

@Retention(RetentionPolicy.RUNTIME)

@Documented

@Constraint(validatedBy=CodeConstraintValidator.class)

public	@interface	CodeConstraint	{

String	message()	default	“Invalid	code”;

	

Class<?>[]	groups()	default	{};

	

Class<?	extends	Payload>[]	payload()	default	{};

	

String[]	prefixList();

}

The	purpose	of	message	element	is	to	provide	an	error	message	when	a	validation	fails.
Here,	a	default	message	is	provided.	An	error	message	can	be	provided	from	a	resource
bundle	too.	All	you	need	to	do	is	to	create	a	file,	ValidationMessages.properties,	and	add	it
to	the	classpath.	For	example,

String	message()	default	“{constraints.code.error}”;

And,	add	an	entry	in	the	ValidationMessages.properties:

constraints.code.error=Invalid	code

Creating	an	validator

A	constraint	validator	needs	to	implement	the	following	interface:

ConstraintValidator<A	extends	Annotation,	T>

The	first	parameter	is	the	constraint	annotation.	The	second	parameter	is	the	data	type	of
object	to	be	validated.	ConstraintValidator	defines	two	methods:

void	initialize(A	annotation):	This	method	is	called	to	initialize	the	validator	before	the
isValid	method	is	called.

boolean	isValid(T	value,	ConstraintValidatorContext	context):	This	contains	the	actual
logic	of	validation.	This	method	can	be	accessed	concurrently.	You	need	to	make	sure	it	is
thread-safe.

import	javax.validation.ConstraintValidator;

import	javax.validation.ConstraintValidatorContext;

	

public	class	CodeConstraintValidator	implements

ConstraintValidator<CodeConstraint,	String>	{

	

private	String[]	prefixList;

@Override

public	void	initialize(CodeConstraint	annotation)	{

														this.prefixList	=	annotation.prefixList();																															

}													

	

@Override

public	boolean	isValid(String	object,	ConstraintValidatorContext	context)	{

														if(object	==	null)	{

																												return	false;

}

													

boolean	flag	=	false;

														for(String	prefix	:	prefixList)	{

if(object.startsWith(prefix))	{

flag	=	true;

break;

}

}

	

return	flag;							

}

}

	

	
	

	Preface
	Apache Commons
	Commons Lang
	StringUtils
	ArrayUtils
	ExceptionUtils
	WordUtils

	Commons IO
	IOUtils
	FileUtils
	FilenameUtils

	Commons CSV
	CSVParser

	Commons Codec
	DigestUtils

	Commons Net
	FTPClient

	Commons Compress
	Zip

	Commons CLI
	Commons FileUpload

	iText
	Creating a PDF document
	Basic text elements
	Paragraph
	Phrase
	Chunk

	Fonts
	Creating a table
	PdfPTable
	PdfPCell

	Encryption
	Adding watermarks
	Creating multiple columns
	Merging documents
	Filling forms
	Servlet

	Apache POI
	Creating an Excel document
	Adding formulas
	Formula evaluation
	Plotting a chart
	Creating a Word document

	JFreeChart
	Creating a simple chart
	Creating a bar chart
	Creating a scatter plot
	Creating a combined chart
	Making a chart clickable
	Displaying a chart in a web page

	EasyMock, JUnit, and PowerMock
	An introduction to JUnit
	Annotations
	Assertions
	Test Runners

	A sample JUnit test case
	An introduction to EasyMock
	Verifying behavior
	Expectations
	EasyMockSupport
	Class mocking
	Partial mocking

	Using EasyMock with JUnit
	Using Annotations
	Using expectations
	PowerMock
	Test coverage analysis

	JMeter
	Building a JMeter test plan
	Starting JMeter
	Adding test elements
	Running a test plan
	Saving a test plan
	Debugging a test plan
	Remote testing

	Test elements
	Samplers
	Logic controllers
	Listeners
	Configuration elements
	Assertions
	Timers
	Pre-processors
	Post-processors

	Testing a web application
	Testing with authentication
	Using regular expressions
	Using HTTP proxy server
	Testing web applications using GWT
	Adding Java classes
	JUnit Request
	Java Request

	JavaCC
	Structure of a grammar file
	Options
	Class declaration
	Token manager declarations
	Lexical specifications
	Production rules

	A simple calculator
	EBNF grammars
	JavaCC grammars
	Generating code

	A formula calculator
	A text processor

	Apache Solr
	Getting started
	Basic directory structure
	Solr home directory
	Solr core directory
	Creating a new core
	SolrCloud

	Document schema
	Document fields
	Field types
	Field analysis

	Updating data
	XML messages
	CSV

	Querying data
	Request handler
	Query parameters
	Fields
	Boolean operators
	Grouping searches
	Wildcard searches
	Regular expression searches
	Proximity searches
	Range searches
	Boosting terms
	Special characters
	Sorting
	Hit highlighting
	Faceted search
	Result Grouping

	Indexing rich documents
	Accessing Solr programmatically
	Updating data
	Querying data

	Apache James
	Installing James Server
	Configuring James Server
	config.xml
	environment.xml
	james-fetchmail.xml

	A quick test
	Mailets and matchers
	Creating a custom matcher
	GenericMatcher
	GenericRecipientMatcher

	Creating a custom mailet
	Reading an object store file

	Jackson
	POJO model
	JSON Properties
	Property naming and inclusion
	Property exclusion
	Ordering

	Map
	Enum
	Formatting
	Polymorphic types
	Filtering
	Views
	Filters

	Custom Serializers and Deserializers
	Custom Serializers
	Custom Deserializers

	Configurations

	Hibernate Validator
	Applying Constraints
	Field-level constraints
	Error messages
	Property-level constraints

	Validating Parameters
	Inheritance
	Grouping Constraints
	Programmatic constraints
	Creating a Custom Constraint
	Creating a constraint annotation
	Creating an validator

