
Abstractions for Safe Concurrent Programming in
Networked Embedded Systems

William P. McCartney
Electrical and Computer Engineering

Cleveland State University
2121 Euclid Ave, Cleveland OH 44115 USA

w.p.mccartney@csuohio.edu

Nigamanth Sridhar
Electrical and Computer Engineering

Cleveland State University
2121 Euclid Ave, Cleveland OH 44115 USA

n.sridhar1@csuohio.edu

Abstract
Over the last several years, large-scale wireless mote net-

works have made possible the exploration of a new class of
highly-concurrent and highly-distributed applications. As
the horizon of what kinds of applications can be built on
these networked embedded systems keeps expanding, there
is a need to keep the activity of programming such systems
easy, efficient, and scalable. We make three major contri-
butions in this paper. First, we present a library for TinyOS
and nesC that enables true multi-threading on a mote. This
library includes support for all mote platforms in use cur-
rently (AVR, MSP). Second, we present a tool that can effec-
tively and accurately compute stack requirements for multi-
threaded programs. Such analysis ensures that the stacks al-
located to individual threads are correctly sized. Finally, we
present a collection of programming abstractions that simpli-
fies the construction of concurrent systems for the mote plat-
form. We also present experimental results obtained from
several example systems built using our concurrent program-
ming abstractions and the underlying thread library.

Categories and Subject Descriptors
C.3 [Special purpose and Application-based systems]:

Real-time and embedded systems; D.1.3 [Concurrent Pro-
gramming]: Parallel programming; D.3.3 [Language Con-
structs and Features]: Concurrent programming structures

General Terms
Design, Experimentation, Languages, Measurement, Per-

formance

Keywords
Wireless sensor networks, multi-threading, programming

methodology, static analysis

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
SenSys’06, November 1–3, 2006, Boulder, Colorado, USA.
Copyright 2006 ACM 1-59593-343-3/06/0011 ...$5.00

1 Introduction
In the early years of wireless sensor network (sensornets)

design, attention was almost exclusively focussed on pro-
gramming techniques and methodology that would result in
the most efficient software with best performance. Devel-
opers and researchers considered software engineering con-
cepts such as ease of programming to be of less importance
than performance, small code size, energy efficiency, etc.

In the recent past, however, with sensornet programming
architectures maturing well, the focus is shifting to attempts
at bringing some of those niceties —programming abstrac-
tions, modularity, readability, etc.— into the mainstream of
research [11,22,29,30]. The main contributions of this paper
are in this domain; we present a set of programming abstrac-
tions that enables developers to write concurrent (procedu-
ral) programs at the node level in sensornets.

Sensornet programming is typically done in an event-
based style. Programs are collections of event handlers that
react to events that the environment presents to a sensor
node. The act of programming is to then write (short) rou-
tines that respond to each of these events. Programs written
for TinyOS [12], for example, consist of events and tasks.
When there is no event to handle, and there are no tasks to
be executed, the mote can enter a low-power mode, thereby
conserving scarce energy resources.

This style of programming is great when the program is
largely “modeless”: there is no state shared among the dif-
ferent tasks and events. However, when there are state de-
pendencies between tasks and events, things get difficult. For
example, suppose that node has to send out a set of messages,
one to each of its neighbors. The way to do this in TinyOS is
to rip the operation into two pieces. The SendMsg.send()
command is a split-phase operation; calling it has the effect
of starting the send operation, which is completed when the
SendMsg.sendDone() event is signaled. The program has
to explicitly keep track of which messages have been sent
out, and which ones have not. Contrast this with the pro-
cedural code for doing the same operation: there is a single
loop where one message is sent out in each iteration.

In this paper, we present TinyThread, a library that en-
ables multi-threaded programming for TinyOS. TinyThread
enables procedural programming on sensor nodes. The li-
brary includes a suite of interfaces that provide several block-
ing I/O operations and synchronization primitives that make
concurrent programming both safe and easy. TinyThread

167

works on all mote platforms that are currently in use (rene,
mica family, telos family), and supports TinyOS 1.x as well
as the TinyOS 2.0 beta.

In order for multiple threads to run on a mote, it is neces-
sary for each thread to have its own stack in which to store
its local state. The common approach to allocating stacks
for threads in conventional operating systems is to set aside
blocks of memory for each thread. However, given that
memory on a mote is a scarce resource, it is important to
be precise when deciding on the sizes of individual thread
stacks. To solve this problem, we present stack-estimator, a
tool that provides tight, yet correct, estimates sizes of thread
stacks.

The main contributions of this paper are:

1. TinyThread: a multi-threading library for TinyOS.

2. stack-estimator: a cross-platform stack analysis tool
that helps developers to estimate stack depth.

3. A suite of interfaces for blocking I/O operations and
synchronization primitives.

The rest of this paper is organized as follows. We com-
pare our work with other similar research efforts in Sec-
tion 2. Section 3 shows the architecture of our implemen-
tation. Section 4 presents the programming abstractions that
are included with TinyThread, along with example programs
to illustrate the use of these abstractions. In Section 5, we
present results from our experiments that measure the impact
of using TinyThread in TinyOS programming. In Section 6,
we lay out some points about our observations worth noting.
After presenting some pointers to future research in this area
in Section 7, we conclude with a summary of our contribu-
tions in Section 8.

2 Related Work
2.1 Multi-threading and Procedural Code

Y-Threads [23] is a light-weight threading model which
separates the thread execution into two stacks. Each Y-
Thread has its own stack upon which blocking calls occur,
but all Y-Threads share a single stack where non-blocking
calls can occur. This can reduce the stack requirements for
all of the individual Y-Threads, if all threads only block at the
highest levels. Y-Threads may provide an interesting thread-
ing model for sensornets as it develops.

Contiki [8] offers a limited form of multi-threading using
protothreads. Protothreads [7] have the lowest memory re-
quirements of any threading model discussed in this context
that can support blocking I/O. While several protothreads
can run concurrently, they have a distinct disadvantage com-
pared to traditional threads; protothreads do not save the con-
text of execution. As a result of this, protothreads not only
need to use global variables, the global variables must be
volatile. This can cause some rather poor performance,
since the protothread must actually fetch the variable from
memory every time it is accessed. For instance, while it-
erating through a loop, the iteration counter must be stored
and retrieved from memory during every iteration. These
memory accesses can degrade performance, especially on
the load/store architectures found on most microcontrollers.

Fibers for TinyOS [29] technically do not require allo-
cating a second stack; there can only be one fiber in the pro-
gram, and it simply grows the system stack. This threading
model cleanly allows users to use blocking I/O calls with-
out the need for a second stack; the limitation is that there
can only one user fiber. Similar to protothreads, fibers use
setjmp/longjmp for their implementation, but instead of
jumping back to the main loop, a blocking fiber call actually
executes the scheduler (in some limited form) at the point of
execution. This allows users to use local variables and block
inside of functions. Many of the blocking I/O routines de-
scribed later in this paper (Section 4.1) could be ported to
support a fiber instead of a thread.

The MANTIS [3] OS is a fully multi-threaded operat-
ing system for embedded systems. In the MANTIS model,
everything is a thread. The model of system design and
programming is very close to that in conventional operat-
ing systems. The fact that everything is a thread, and the
fact that any thread can be preempted by another, places
some limitations on resource usage. The stack overhead for
each thread is considerable. Moreover, the system cannot of-
fer any support to the developer in detecting problems with
concurrency of the nature that TinyOS/nesC can. By con-
trast, TinyThread provides the flexibility of multiple threads,
while at the same time, by operating within the confines of
the concurrency rules in TinyOS, preserves the concurrency
model of TinyOS. Moreover, TinyThread does not prevent
the developer from using event handlers in addition to the
procedural multi-threaded; this is not feasible in MANTIS.

Maté [17] is a virtual machine environment for TinyOS.
Although in general, the design goals of Maté are quite dif-
ferent from those of TinyThread, there are some similari-
ties worth noting. Like TinyThread, Maté also provides a
way for treating split-phase operations as though they were
straight-line pseudo-blocking operations. However, since
Maté is a virtual machine, these operations are implemented
through byte-code operations, and hence incur the cost of
byte-code interpretation.
2.2 Stack Analysis

Basic stack analysis in embedded systems has been done
by simply measuring constant addition to the stack regis-
ter [4]. This approach tends to overestimate, unless several
constraints are put on the developer. On some platforms, this
constant-only approach simply is not possible. Stack ana-
lyzers try to determine the worst-case stack usage to avoid
overrunning the allocated space.

Stacktool [25] provides a method of analysis by actually
monitoring the values passed explicitly to the general pur-
pose registers and then out to special purpose registers, such
as the stack pointer. Stacktool performs this analysis on a
compiled binary file for the ATmel AVR platforms. It inter-
nally disassembles the machine code before it processes it.
Stack analyzers are traditionally tied to one platform or an-
other, although the techniques are usually more general. We
compare our stack-estimator with stacktool in Section 3.2.
HOIST [24] builds a majority of platform-specific points re-
quired for stack analysis. Hoist accomplishes this by using a
processor (or simulator) as a black box. It is currently limited
to 8-bit processors.

168

2.3 Programming Abstractions
In the recent past, there has been a considerable amount

of work on developing usable programming abstractions for
sensornet development. Hood [30] is an abstraction that al-
lows a node in a sensornet to easily access and interact with
other nodes in its neighborhood. The Hood abstraction al-
lows a node to easily share its local state with neighboring
nodes. What this means under the covers is that there are sev-
eral concurrent activities being performed: each node keeps
track of its state, sends out data periodically, and receives
data from other nodes and filters them for use. An implemen-
tation of Hood using the TinyThread abstractions could sim-
plify these activities and the concurrency introduced. Similar
to Hood, abstract regions [29] provides access to high-level
abstractions such as N-radio hop, k-best neighbor, etc.

The programming API that we present as part of
TinyThread is similar in spirit. The goal is reduce the num-
ber of low-level operations in a sensornet program. Our ab-
stractions have to do with synchronization among concurrent
threads in a program.

TinyRPC [20] is a remote procedure call interface for
TinyOS. Using TinyRPC, a component can bind to some
interface that is actually implemented in a remote node in
its neighborhood. TinyRPC supports both named bindings
and discovered bindings between nodes. Once the binding
has been set up, it is easy for nodes to communicate without
having to think about messages, node ids, etc. TinyThread
provides an exciting new use for TinyRPC. Since nodes can
issue remote calls, that means that two threads running on
two separate nodes can now use our barrier synchronization
abstract to communicate and synchronize directly.

3 TinyThread Architecture
In this section, we present the internals of TinyThread.

TinyThread is written in nesC for TinyOS. TinyThread runs
on all AVR (mica, mica2, micaz) and MSP430 (telos, tmote)
platforms, with preliminary support for ARM/PXA (imote)
platforms. TinyThread is implemented as a library on top of
an event driven OS (in this case TinyOS), allowing the inter-
mixing of event-driven programming and threaded program-
ming. Layered on top of TinyThread is a set of blocking I/O
routines and synchronization primitives.

3.1 Types of threading
The term thread refers to a context of execution in a

program. In a programming system that supports multi-
threading, several threads can be programmed to run con-
currently. On a uni-processor computer, however, only one
thread can actually execute at a given time. The remaining
threads are said to be ready. On modern operating systems,
each thread utilizes a stack to store the current context of the
processor while it is ready. The next time a ready thread is
allowed to execute, the context is taken from the stack, and
the thread proceeds from where it left off. The decision of
which thread is currently running is commonly made by a
thread scheduler, which allocates time slices to each thread.

A task in TinyOS is sometimes considered to be an ex-
tremely lightweight thread. This can be misleading; a task
has no resident context of execution. When a task termi-
nates, its context of execution is lost. TinyOS tasks always

execute to completion. They can only be preempted by in-
terrupts, called async events, and by callbacks, known as sig-
nals, which are explicitly called by said task. This simple
system of tasks running to completion and a system of call-
backs is central to event-based programming. Tasks provide
no way for one task to preempt another.
3.1.1 Stack-less Threading

It is possible to implement extremely light-weight thread-
like structures without the use of a thread stack [7]. This
stack-less operation is implemented using the functions
setjmp and longjmp. These routines are the base for user-
based threads, but as Engelschall [9] points out, this only
solves the easy half of the thread problem. The harder half
of the problem lies in storing the processor state. In an em-
bedded system without an MMU, this amounts to storing the
registers and swapping to another stack.

If the stack of the thread is not stored, there are several
constraints faced by the developer. First, any local variables
used in a thread can be corrupted or overwritten during a
blocking call. An easy solution to this problem is to sim-
ply use global or static variables. However, never using
local variables is a bad idea with respect to encapsulation
and modularity, and makes programs prone to errors. Such
a practice also has further complications: the code may exe-
cute correctly in a task, but fail in a stack-less thread.

The second major limitation is that a stack-less thread
cannot block inside of a routine; in order to block, longjmp
must be called inside of the top level of the thread. This
removes much of the ability of developers to layer abstrac-
tions on top of these primitives. However, the programmatic
difficulties added by utilizing these stack-less threads may
be offset by the ability to use blocking I/O. This may be an
acceptable tradeoff for certain applications, but it competes
against writing modular, maintainable applications.
3.1.2 Threads in TinyThread

Threads in TinyThread follow the traditional definition;
each thread has its own stack, thereby enabling it to store its
entire execution context when ready, and then to reload the
context when re-enabled. This is the definition of thread we
will use in the rest of this paper.

There are two main forms of multithreading: cooperative
and preemptive. Cooperative multi-threading is the simpler
of the two. Threads still operate with their own context, but
the only way for a thread to stop executing is by explicitly
yielding its execution via a call to yield() or implicitly via
a blocking I/O routine. This essentially means that cooper-
ative threads can run with implicit locking [7]. Protothreads
and TinyOS fibers are also examples of cooperative multi-
threading. Some cooperative multi-threading implementa-
tions only allow yielding to a specified (say, system) thread,
while others allow developers to simply yield to a scheduler.
In an embedded system, cooperative threads run with im-
plicit locking, which means that threads are not preempted
by other threads. Instead, a thread implicitly controls when
it can be swapped out. This implicit locking is a double-
edged sword. It allows developers a clear view of exactly
what variables need to be protected, but on the other hand,
it forces developers to be aware of the time any computation
might take, to avoid blocking the processor for too long.

169

Execution Model B
lo

ck
in

g
I/

O

Im
pl

ic
it

L
oc

ki
ng

L
oc

al
V

ar
ia

bl
es

M
ul

tip
le

T
hr

ea
ds

TinyOS Tasks � �
ProtoThreads � � �
TinyOS Fibers � � �
Cooperative Multithreading � � � �
Preemptive Multithreading � � �

Figure 1. An overview of capabilities of various kinds of
concurrency models

Usage from Main

Task1

Task2

Task3

Interrupt1

Interrupt2

Interrupt3

Stack usage from
Main

Maximum stack
usage from tasks

Sum of all stack usages from
interrupts

Figure 2. Naı̈ve calculation of stack usage: sum of the
interrupts’ stacks and the maximum task stack usage

Forcing developers to be fully aware of the length of time
a set of library routines takes is rather cumbersome. Take,
for instance, calculating triple DES on a block of data. It
is near impossible to guess at how long the calculation may
take without some previous benchmarks. Preemptive multi-
threading can solve this problem by forcibly preempting a
running thread after some finite period of time. However,
such arbitrary preemption can create concurrency problems,
since a thread may be preempted in the middle of a criti-
cal section. Preemptive multi-threading can also overcome
deadlock. For instance, if a task or cooperative thread goes
into an endless loop, the system is deadlocked. Preemptive
threads do not deadlock a system when they themselves go
into an endless loop. A breakdown of the different features
supported in these threading models is shown in Figure 1.

3.2 Stack Size
Given that each thread has to keep a separate stack to store

its context, how big should each stack be? In conventional
operating systems, this is not a problem: each thread is given
a stack of some standard (usually large) size. Such gener-
ous stack depth allocation does not make sense in the mote
context, given the severe constraints on available resources.

Currently, TinyOS has no built-in tools to compute stack
size; there is no need, since developers never need to allo-
cate the stack size manually. In other systems such as MAN-
TIS [3], thread stack size is allocated by using an “educated
guess” on the part of the developer. Such guessing is unsafe,
since a wrong estimate of stack size could lead to problems
— a guess that is too low could lead the program to crash,
and a guess that is too high wastes memory resources (which
are scarce to begin with). There are tools which can cal-
culate the stack requirement for some microcontrollers, but
they require special knowledge of the operating system if any
threading model is used.

Usage from Main

Interrupt2 Interrupt3

Stack usage from
Main

Sum of all stack usages from
interrupts

Max. task
stack
(with

interrupts)

Task1

Task2

Task3

Maximum interrupt stack usage

Interrupt1

Signal1

Signal1

Maximum stack
usage from tasks

Figure 3. Context sensitive stack usage calculations:
adding all the interrupts’ stack usages to each other only
if and/or where interrupts are enabled

The TinyThread tool suite includes a tool (called stack-
estimator) that analyzes stack usage of TinyOS applications
for all platforms that TinyThread supports. In order to an-
alyze stack requirements, it is the worst-case scenario stack
that must be allocated. We use an approach similar to that
described by [27] in a different type of call graph. Static
stack analysis has been explained, and even demonstrated
for TinyOS by Regehr et al. [25].

Static stack analysis of TinyOS applications can be done
in a very simple way. The total stack depth required is simply
the sum of (i) the stack usage of the main() function, (ii) the
maximum stack usage by any task, and (iii) the sum of stack
usages for each interrupt handler:

sdtotal = sd(main)+ Maxn
i=1sd(taski)+

n

∑
j=1

sd(int j)

This simple, naı̈ve approach to stack estimation, shown in
Figure 2, although safe, may allocate more stack space than
can possibly be required, resulting in wastage of memory.

A better way to calculate stack depth is by using a context-
sensitive static analysis [25]. The essence of this strategy
is to exploit the fact that interrupts are disabled in different
parts of the application. In TinyOS, this extends far beyond
simply inside of events, but continues through the interrupt
handlers themselves. GCC supports two different kinds of
interrupt handlers: interrupts are interrupt handlers that have
interrupts enabled, and signals are interrupt handlers with in-
terrupts disabled. The latter provides an extreme amount of
stack savings, since hardware signals cannot preempt other
hardware signals or interrupts. For reference, in TinyOS
1.1.x, in MSP430-based platforms, all interrupt handlers are
signals, giving excellent stack savings. An overview of the
calculations made can be found in Figure 3, and can be sum-
marized as follows:

sdtotal = sd(main)+ Maxn
i=1sd(taski[int enabled]) +

Max(sd(interruptwc),Maxn
k=1sd(signalk))

In the equation above, taski[int enabled] refers to the por-
tion of taski in which interrupts may occur (they are not dis-
abled). Rather than just taking the sum of stack depths of
all the interrupts, we now take the worst-case sum of stack
usage for all interrupts, which is a lower number than the
plain sum, since inside of some interrupt handler(s), other
interrupts may be disabled.

170

 0

 50

 100

 150

 200

Blink
BlinkTask

CntToLeds

CntToLedsAndRfm

Oscilloscope

OscilloscopeRF

Sense

SenseTask

SenseToLeds

SenseToRfm

TOSBase

S
ta

ck
 s

iz
e

(b
yt

es
)

Stack sizes for some common applications running on six different platforms

mica
mica2
micaz

micaz(stacktool)
telos

telosb
eyesIFXv2

Figure 4. Stack size estimates for a few applications from the tinyos/apps directory in the TinyOS distribution. The
plot shows the result of our stack analysis tool (stack-estimator) run for the mica, mica2, micaz, telos, telosb, and the
eyesIFX2 platforms. It also shows the result of stacktool [25] run on the micaz platform.

The stack analysis routine provided TinyThread supports
several platforms, and can estimate the maximum possible
stack size required for any TinyOS application. Figure 4
shows the stack requirements for many of the applications
in the TinyOS apps directory. The chart also shows the re-
sults of using stacktool [25] on micaz. TinyThread follows
the approach laid out by stacktool, by simulating read/writes
to registers. Instead of disassembling the instructions inter-
nally, stack-estimator uses objdump to do the disassembly.
As shown in the figure, the two tools are nearly identical.

This stack analysis program generates a header (stack-
size.h) which contains a set of #defines which can be used
to allocate the stacks for each particular thread. This pro-
vides a statically allocated stack for the thread, without wast-
ing any extra resources.

Finding the necessary stack size for a given thread in a
program is a two step process. To start with, the stacks can
be declared to be of arbitrary length. Our stack analysis tool
operates on the binary image of the program. Once the pro-
gram has been compiled for a particular platform, we can run
stack-estimator to compute stack usage for the application.
Figure 5 shows the stacksize.h file generated for the Gossip
application (Listing 7). These constants can now be used in
the program to declare the stacks of the maximum length that
the threads would actually need.

3.3 TinyThread Scheduler
The core of TinyThread is a very simple FIFO thread

scheduler. The scheduler itself runs inside of a regular

#define threadInitIdle_STACKSIZE 88
#define __ctors_end-0x3a_STACKSIZE 56
#define SendAckTask_STACKSIZE 76
#define PacketRcvd_STACKSIZE 70
#define threadActive_STACKSIZE 88
#define thread_wrapper_STACKSIZE 58
#define startSend_STACKSIZE 72
#define signalRXFIFO_STACKSIZE 84
#define signalTXFIFO_STACKSIZE 76
#define thread_task_STACKSIZE 66
#define threadNInitIdle_STACKSIZE 88
#define taskInitDone_STACKSIZE 56
#define send_task_STACKSIZE 72

Figure 5. An excerpt of the stacksize.h file generated by
stack-estimator for Gossip. The file contains named con-
stants for the stack usage of every part of the program.

TinyOS task. The scheduler maintains a list of threads in
the program. Each thread can be in one of four states: ready,
sleeping, blocked, and locked. These states and the transi-
tions allowed among them are shown in Figure 6. However,
for the purpose of scheduling, we can group the latter three
states all into an inactive state. When the scheduler task is
posted, and is ready to execute, the thread scheduler walks
down its list of threads until it finds a thread in the ready
state. When a ready thread Tk is found, the TinyThread
scheduler swaps the TinyOS system stack with the Tk’s stack.
This way, the context of wherever Tk “left off” is regained.

The thread Tk now runs (a) until completion, or (b) until it
executes some blocking call. In either case, the thread stops
executing and is no longer in the ready state. The thread

171

I/O Ready Sleeping

Locked

Blocking I/O

Matching I/O
fires

Software timer
started

Software timer
fires

Attempt to
lock a mutex

Mutex lock
acquired

Figure 6. Thread states and transitions among them

Stack swap

Stack swap

Stack swap

Stack swap

Stack swap

call Socket.send()

call Leds.greenOn();
call Leds.redOff();
call Socket.receive();

call Leds.greenOff();
call Leds.redOn();
call mSleep(10);

Post schedulerTask

Scheduler task
is executed

sendDone()

Post schedulerTask

Scheduler task
is executed

receive()

Post schedulerTask

Scheduler task
is executed

System
Stack

Thread
Stack

Stack swap

Figure 7. Illustration of an application running in the
TinyThread scheduler. The white boxes show normal
TinyOS operation. When the thread scheduler is exe-
cuted, the first thing that happens is that the system stack
is swapped out and the thread stack takes over. The gray
boxes show code executing inside of a thread.

scheduler now swaps the stacks back to restore the TinyOS
system stack. Before it yields, however, the thread scheduler
needs to figure out if it must post itself again or not. This
is determined by whether there are any more ready threads.
If the scheduler finds some ready thread, it re-posts itself. If
there is no thread in the ready state, the scheduler does not
re-post itself. If this were not the case, and the scheduler
always re-posted itself, that would be a waste of processor
resources, and consequently, a waste of power.

Every time the scheduler task is executed, exactly one
thread in the thread pool runs. So if there were n ready
threads in the thread pool, the thread scheduler must be al-
lowed to execute (by the TinyOS task scheduler) n separate
times. Although TinyThread does support preemption of
threads by other threads, preemption is turned off by default.

Figure 7 shows the execution of an application with one
thread. Initially, the thread scheduler task is posted, and will

eventually get a chance to execute, controlled by the TinyOS
scheduler. At this point, the TinyThread scheduler sees that
there is one ready thread, and hence swaps stacks, and begins
to execute the thread. The first statement in the thread code
is a call to Socket.send(), which turns out to be a blocking
call (Section 4.1). The TinyThread scheduler now puts the
thread in the inactive (blocked) state, and sees if there are
any other ready threads in the thread pool. Since there is
only one thread in the pool, and that thread is not active, the
thread scheduler does not re-post itself. It simply yields to
the TinyOS task scheduler.

Eventually, the sendDone() event corresponding to the
send() command is signaled. At this point, the event han-
dler for this event posts the thread scheduler task. The pro-
cess described above repeats for the program’s lifetime.

The key thing to note here is that the TinyThread sched-
uler is extremely sensitive to power utilization. The sched-
uler task runs only when there is at least one ready thread.
The rest of the time, the thread scheduler is sleeping, allow-
ing the mote to sleep and conserve power as well.
3.4 Context Switching

A context switch stores all of the working registers (the
state of the processor) onto the currently executing stack,
switches the stack pointer to the new stack, and restores the
working registers from the new stack (shown in Listing 1).
Specifically, first the general purpose registers, and the sta-
tus registers are pushed onto the current stack. The stack
pointer is then swapped to a different stack pointer. The sta-
tus register is popped from the stack followed by the general
purpose registers in reverse order. These actions occur inside
of a function which stores the return address when invoked.
So the final step, the function’s return instruction, pops the
return address off of the new stack, allowing for seamless re-
suming of the previous context. The context switching rou-
tines were written for gcc using inline assembly.
3.5 Implementation Platform Support

At the time of writing this paper, there are two versions
of TinyThread: one for the current TinyOS 1.x distribution
(1.1.15), and another for the current TinyOS 2.0 beta. The
nice thing is that the two versions provide (almost) the same
API to developers1. Since the API is the same, applications
using TinyThread extensively are easily (almost trivially)
ported between TinyOS 1.x and TinyOS 2.0. The wiring
files for the two versions differ radically, as each version is
consistent with the style of the respective TinyOS version
(e.g., using generic objects over unique statements). Both
of these versions include support for all MSP430- and AVR-
based platforms.
3.6 Programming using TinyThread

Threads in TinyThread are created using the
create thread() command. This command takes as
parameters a pointer to the function that will run in the
thread, and a portion of memory to be used as the stack for
the thread. Listing 2 shows an example of one of the threads
in the Gossip application (from Section 4.2.2) being created.

1Some calls in the API are different, in order to conform with
the TinyOS 2.x conventions. For example, the order of parameters
to SendMsg.send() is different than in TinyOS 1.x.

172

Listing 1. Actions performed when switching stacks.
1 // subroutine call pushes the PC onto stack
2 yield() {
3 PUSH_GPR();
4 PUSH_STATUS();
5 SWAP_STACK_PTR();
6 POP_STATUS();
7 POP_GPR();
8 }
9 //return, which pops the PC off the stack

Listing 2. Declaring and creating a thread in TinyThread
1 // Declare stack for thread
2 uint16_t activeStack[threadActive_STACKSIZE];
3 ...
4 // Define the function that will run in the thread
5 void threadActive() { ... }
6 ...
7 // Create the thread (upon initialization)
8 call create_thread(threadActive , stack_top(activeStack ,
9 sizeof(activeStack)));

The stack passed to create thread() is used by the thread
to store its execution state when it is not running. The actual
implementation of the function that will run in the thread is
written in procedural style. Examples are presented in the
next section. The size of the stack (line 2) comes from the
constants file (stacksize.h) that stack-estimator generates.

4 Programming Abstractions
In order to make the TinyThread library useful to devel-

opers immediately, we have implemented a few program-
ming abstractions that can greatly help in writing safe con-
current programs. We present some of these abstractions
here. We have implemented several applications (about 20)
using TinyThread and the accompanying API. Some of these
applications are presented as examples throughout this sec-
tion and the rest of the paper.

4.1 Blocking I/O
One of the primary causes for stack ripping in purely

event-based programming is the inability to perform block-
ing I/O operations. When programming sequential enterprise
systems, it is natural to use a read x; statement, and sim-
ply block execution until x becomes available. However, in a
sensornets context, such blocking is dangerous; the program
may miss important events while the processor is blocked.

TinyThread provides blocking versions of many
commonly-used I/O operations to access the sensors and the
radio on the mote. Since these operations block, they can
only be used from inside of a thread; never directly in a task
or event handler. The BlockingADC interface provides the
readADC() function (Lines 1–3 in Listing 3). When called,
this function simply blocks the thread until the data from the
ADC becomes available. In the very next line of code, the
program can actually use the data collected from the sensor.
Example 1: Oscilloscope

The Oscilloscope application that is distributed as one of
the samples with TinyOS is a simple application that sam-
ples sensors on a mote, and sends this sampled data via the
UART to a PC. The PC can then visually render the data that

Listing 3. Blocking I/O using TinyThread.
1 interface BlockingADC {
2 command uint16_t readADC();
3 }
4

5 interface Socket {
6 command result_t send(uint16_t address, uint8_t length,
7 TOS_MsgPtr msg);
8 command result_t receive(TOS_MsgPtr m);
9 }

Listing 4. Implementation of the Oscilloscope applica-
tion using threads. The Socket Send() routine is wired
to a fully buffered fifo sending queue.

1 void oscope_thread() {
2 struct OscopeMsg *pack;
3 uint16_t reading;
4 uint8_t i;
5

6 while (TRUE) {
7 for(i=0;i<BUFFER_SIZE;i++) {
8 //Read sample
9 reading = call readADC();
10 if (reading > 0x0300) call Leds.redOn();
11 else call Leds.redOff();
12 pack = (struct OscopeMsg *)msg.data;
13 pack ->data[i] = reading;
14 call mSleep (125);
15 }
16 pack ->channel = 1;
17 pack ->sourceMoteID = TOS_LOCAL_ADDRESS;
18 r = call Socket.send(TOS_UART_ADDR,
19 sizeof(struct OscopeMsg), &msg);
20 call Leds.yellowToggle();
21 }
22 }

the mote senses. This program responds to three events: (i)
a Timer that fires every 125 ms, (ii) a notification from the
ADC interface that data is ready, and (iii) a notification from
the SendMsg interface that the message has been queued for
transmission. Every time the timer fires, the ADC.getData()
command is called to read a sample from the sensor. Then
when the data becomes available, a task is posted that ac-
tually sends the message over UART. The result is that the
functional code in the program is split over three separate
functions, making it hard to read.

Contrast this with our implementation written using
TinyThread’s blocking I/O operations, shown in Listing 4.
The logic of the program is now much easier to see, and there
is no need for manually ripping the function into pieces.

The Socket interface (Lines 5–9 in Listing 3) provides
blocking operations for sending and receiving messages. The
send() operation in Socket blocks until the message has
actually been sent (until the sendDone() event is raised).
This means that if a node needs to send a series of messages,
they can actually be sent out in a loop rather than ripped
apart in several functions. The receive() operation simply
blocks until there is a message waiting to be processed.

Example 2: Bounce
This is a very simple application intended to illustrate the

use of the blocking receive operation (Listing 5). The appli-

173

Listing 5. Implementation of the Bounce application us-
ing threads. This example illustrates the blocking receive
functionality in Socket.

1 void threadBounce() {
2 while (TRUE) {
3 call mSleep (100);
4 call Socket.send(!TOS_LOCAL_ADDRESS, 2, &mymsg);
5 call Leds.greenOn();
6 call Leds.redOff();
7 call Socket.receive(&mymsg); // Block until message
8 call Leds.redOn();
9 call Leds.greenOff();
10 }
11 }

Listing 6. Synchronization using TinyThread.
1 interface Mutex {
2 command void lock(mutex * m);
3 command void unlock(mutex * m);
4 }
5

6 interface Barrier {
7 command void block();
8 command void unBlock();
9 command void checkIn();
10 }

cation runs on two motes, and two motes continually bounce
a message back and forth. When a mote receives a message,
it turns on its red LED, and when it sends a message, it turns
on its green LED. The interesting piece in this example is on
line 7, where the program simply waits for the next message.
The thread blocks until a message actually arrives.

4.2 Synchronization
4.2.1 Mutex

The simplest synchronization primitive that TinyThread
provides is a way for threads to acquire mutually exclu-
sive access to some critical section. The Mutex interface
(Lines 1–4 in Listing 6) allows a thread to lock() a mu-
tex and enter its critical section. Once it is done executing
its critical section, the thread calls unlock() to relinquish
critical section access to another thread that wants to use it.
4.2.2 Barrier Synchronization

A barrier is a primitive for rendez vous synchronization
among a set of threads [10]. The Barrier interface (Lines 6–
10 in Listing 6) in the TinyThread library provides two kinds
of barrier synchronization. First, it supports pair-wise syn-
chronization between two threads. The thread that arrives at
the barrier first calls the block() command. This causes this
thread to stay blocked until it is woken up by the other thread.
When the second thread has also arrived at the barrier, it calls
unBlock(), causing both threads to be ready.
Example 3: Data diffusion in a network

Data diffusion protocols are used frequently in sensornets,
in a wide variety of ways [13,14,18]. Consider a simple Gos-
sip data diffusion protocol in a network. Some node initiates
the “gossip”, which is propagated through the network until
it reaches the edge of the network. When a node receives a
gossip message for the first time, it marks the neighbor who
sent it as its parent. When a node does not have any neigh-

Listing 7. Implementation of a Gossip diffusing computa-
tion through a network. The two threads in the program
synchronize using a pair of barriers.

1 void threadIdle() {
2 int i;
3 GossipMsg *rMessage;
4 call Socket.receive(&msg); // Wait for the first message
5 rMessage = (GossipMsg *) msg.data;
6 parent = rMessage ->source;
7 state = ACTIVE;
8 atomic call Leds.redOn();
9 call ActiveBarrier.unblock();
10 for (i=0; i<n_nbrs; i++)
11 if (neighbors[i] != parent)
12 sendGossipMessage(neighbors[i]);
13 call CompleteBarrier.block();
14 state = COMPLETE;
15 atomic { call Leds.redOff(); call Leds.greenOn(); }
16 sendGossipMessage(parent);
17 }
18

19 void threadActive() {
20 int i;
21 call ActiveBarrier.block();
22 for (i=0; i<n_nbrs; i++) call Socket.receive(&mymsg);
23 call CompleteBarrier.unblock();
24 }

bors other than its parent, it sends the message back to its
parent. When a node has heard from all of its (non-parent)
neighbors, it sends the message back to its own parent. In
this manner, the initiating node eventually receives acknowl-
edgment that the entire network has seen the message.

Listing 7 shows the multi-threaded implementation
of this protocol. The two threads—threadIdle and
threadActive—are started at the same time. But the sec-
ond thread blocks until the node enters the ACTIVE state
(the node has received its first gossip message, and is now
active in propagating the message). The former thread,
threadIdle is also blocked until the first message ar-
rives. Once the first message arrives, and the node tran-
sitions into the ACTIVE state, threadIdle has also arrived
at the barrier that threadActive is waiting at, and calls
ActiveBarrier.unBlock() to signal the rendez vous. At
this point, both threads are active.

threadIdle now sends out the gossip to all neighbors
(except the parent). After this, it blocks on another barrier
— CompleteBarrier, waiting until all neighbors have re-
sponded to the gossip message. The threadActive thread
waits until it has received acks from each one of its neigh-
bors, and when all acks have been received, it unblocks the
CompleteBarrier, and with it the other thread.

In addition to pair-wise barrier synchronization, the
Barrier interface also supports synchronization of a num-
ber of peer threads. In this case, when each thread arrives
at the barrier, it calls the Barrier.checkIn() command.
When the last thread to arrive at the barrier calls checkIn(),
all threads that are blocked at the barrier are woken up at the
same time. Using this primitive, all the threads may take a
step (say, a state reconfiguration) together. Moreover, if these
threads were running on different nodes, the barrier can be
used for synchronization at the network level.

174

4.2.3 Rendez Vous-based Message Passing
The TinyThread API can be extended to implement

richer synchronization actions. The current implementation
of Socket is one that is layered on top of AMStandard.
According to the semantics of AMStandard, when a node
sends a message using SendMsg.send(), the corresponding
SendMsg.sendDone() event tells the node that the message
has been successfully placed in the active message buffer.
The node does not know if the message actually arrived at its
destination; that is too much information.

However, consider a different implementation of Socket
that employs a acknowledgment scheme to confirm that a
message actually arrived at the destination. In such an im-
plementation, the send() operation completes only when the
sender has received the ack message from the destination. In
this case, the sender thread is blocked until the destination is
ready to receive the message.

Note: TinyThread is a “lightweight” extension to nesC.
The existence of the thread library and the programming
primitives presented here do not in any way preclude devel-
opers from using regular TinyOS/nesC programming con-
structs and idioms. For instance, inside of a thread, an event
can be signaled without incident. The only exceptions have
to do with preemption and are explained in 6.2.

5 Evaluation and Results
Experimental Setup: We ran our experiments in our lab on

Tmote Sky and micaZ motes. We also tested TinyThread on
mica2 and mica2dot motes, although all the measurements
presented here are from Tmote and micaZ motes. Appli-
cations that had Java interfaces ran on a Pentium IV (2.8
GHz) PC with 1 GB of RAM. The power measurements were
recorded using a Tektronix oscilloscope connected to a mote.

5.1 The Cost of Multi-Threading
What is the true cost of multi-threading? In doing our

research on building TinyThread, we developed an analysis
model that can be used to measure the true cost of multi-
threading for embedded systems. In systems with a sim-
ple processor architecture, such as in embedded systems, the
main building block for enabling multi-threading is a way of
changing the stack used for the thread that is executing.

This stack-swapping operation is also the primary con-
tributor to the cost of the multi-threading implementation.
There are two kinds of costs that one has to pay in order to
get multi-threading. The first is that multi-threading incurs
a degradation in performance. The performance overhead is
caused by the extra instructions that have to be executed in
order to swap the stacks. This is a finite number that can be
statically determined, and depends on the processor.

The second cost is memory — each thread has to be allo-
cated its own stack, which in turn has to be allocated in the
RAM. This RAM overhead is finite, and can be statically de-
termined [25]. The RAM overhead itself has two contribut-
ing factors. The first is the overhead caused by interrupt han-
dlers, and is dependent on which operating system is being
used. The second piece to the RAM overhead is size of the
program context, and this is dependent on the processor.

In addition to the overhead of the threads themselves,
there may be additional costs, such as overhead introduced

by any ancillary routines that the library may provide. This
cost entirely depends on what routines are provided. The
cost of our own blocking I/O routines is extremely small.

5.2 Context Switching Costs
As shown in Section 3.4, any time a context switch oc-

curs in TinyThread there is a definitive cost which occurs.
On the MSP430 processor [26], each stack-swapping oper-
ation amounts to 33 instructions (66 instructions including
the swap back to the system stack). In terms of actual execu-
tion time, this translates to 196 processor execution cycles.
On the AVR ATMega processors [2], the overhead is higher:
the stack-swapping takes 168 instructions for the swap to the
new thread and back (total of 332 cycles of actual execution
time). This cost is added to the time it takes for TinyOS to
schedule the task in which the TinyThread scheduler runs.
In addition to this finite overhead, when the TinyThread
scheduler begins to execute, it has to walk through its list of
threads to see which of those is ready. The context switching
costs affect response time the most. Every blocking call will
switch contexts into the system thread until the call unblocks.

5.3 Resource Usage
To test the resource usage, four applications were com-

piled and their resource consumptions analyzed. The three
metrics used are stack consumption, RAM usage and ROM
(program space) usage. The three most popular platforms
that TinyOS supports were used during these experiments.

TinyThread also provides a set of compile time options
which allows the user to enable/disable certain features. One
option available is the maximum number of threads in the
scheduler. Since threads can be created at run-time, a maxi-
mum number of threads must be enforced on the scheduler.
If no thread count is specified, it is assumed that the max-
imum is four. Even though most applications will not use
four threads, it is better to provide extra resources which de-
velopers can compile out later on as required.

Another compile time option is thread-safe I/O. This
makes it safe for multiple threads to access the same I/O
primitive simultaneously. For many I/O primitives, they are
always thread safe, but Socket.send for instance is not. The
effect of turning this off is not catastrophic, as it is on a
socket in other operating systems. It simply causes threads to
contend, using extra battery when multiple threads are trying
to send messages at the same time. Thread safety is enabled
by default, but can be disabled at compile time.

We ran tests on four applications Blink, Bounce, Filter,
and SimpleComm. All four of these applications use only
one thread. We took extra care to make sure that the actions
performed in the threaded version of the application directly
matched those in the event-driven version. This is to rule out
“savings” in cost caused by programmer intelligence, and
only measure the actual technique described.

Table 1 summarizes the resource analysis of the
TinyThread version compared to the event-driven version.
This table uses only the ROM usage and the total RAM us-
age. The total RAM usage is derived from the stack usage of
the application and RAM usage of the application:

TotalRAMUsage = StackUsage + DataSpaceUsage

175

Threaded Version Event Driven Version Difference
Platform Application RAM ROM RAM ROM RAM ROM
telosb Blink 164 3226 94 2610 70(42%) 616(19%)
telosb Bounce 587 12746 461 11834 126(21%) 912(7%)
telosb Filter 2741 12850 2507 11840 234(8%) 1010(7%)
telosb SimpleComm 641 12578 389 11632 252(39%) 946(7%)
mica2 Blink 193 2534 89 1610 104(53%) 924(36%)
mica2 Bounce 830 12402 569 10860 261(31%) 1542(12%)
mica2 Filter 3067 12668 2626 11088 441(14%) 1580(12%)
mica2 SimpleComm 911 12156 511 10656 400(43%) 1500(12%)
micaz Blink 193 2564 89 1640 104(53%) 924(36%)
micaz Bounce 834 11756 515 10038 319(38%) 1718(14%)
micaz Filter 3100 11994 2571 10258 529(17%) 1736(14%)
micaz SimpleComm 949 11548 454 9844 495(52%) 1704(14%)

Table 1. Overall Resource Consumption: Threaded Versus Event Driven.

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

C
ur

re
nt

 d
ra

w
 (

A
)

Time (s)

Power Utilization of Blink (unthreaded) on Tmote Sky

Tmote Sky (unthreaded)

(a) Power draw of a Tmote Sky running
Blink (unthreaded).

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

C
ur

re
nt

 d
ra

w
 (

A
)

Time (s)

Power Utilization of Blink (threaded) on Tmote Sky

Tmote Sky (threaded)

(b) Power draw of a Tmote Sky running
Blink (threaded).

Figure 8. Comparison of power utilization of Blink running on a Tmote Sky mote. The figure on the left shows the
current draw of the mote running the application without TinyThread, and the plot on the right is with TinyThread.

Data space is generally allocated at the lowest available
memory location, while the stack generally grows from the
highest memory address down. A stack overflow occurs
when the top of data memory is about the lowest used stack
position. For TinyThread the individual thread stacks are
allocated in the data space already.

5.4 Power Utilization
Using TinyThread to develop applications appears to

fundamentally change the way applications execute on the
mote. The presence of blocking operations for using sensors
and the radio seems to suggest that there may some ineffi-
ciency in the amount of power utilized by the mote. This is
not the case. The TinyThread scheduler is extremely sensi-
tive to power utilization, and in almost all cases, the power
draw of a program written using TinyThread is exactly the
same as the corresponding program written using regular
TinyOS tasks and events.

We ran power utilization tests on several applications.
The first one is the most simple application of all: Blink.
Figure 8 is a comparison of the current draw in a Tmote Sky
mote running two versions of Blink. As Figures 8(a) and 8(b)
show, there is no change in the amount of current drawn in
the mote as a result of using TinyThread.

These results are consistent with our description of the
TinyThread scheduler (Section 3.3). Recall that the entire
TinyThread scheduler itself is a regular TinyOS task. It gets
posted at startup time, and after that, it only gets posted when
there is at least one ready thread waiting to execute. If all the
threads in the program are inactive, the TinyThread sched-

uler never gets posted, and therefore does not cause any extra
power drain. This is the key insight behind why the power
utilization of a program is the same, regardless of whether
TinyThread is used or not.

The second set of experiments related to power utiliza-
tion we ran were to test the effect of using the radio. We
wrote a simple application (called PersistentSend) that sent
out a message on the radio every 30 milliseconds. The re-
maining time, the mote had its radio on in receive mode.
Figures 9(a) and 9(b) shows the power utilization of this ap-
plication running on a Tmote Sky. The radio’s power is at its
default level. At this level, the radio on this mote, the Chip-
con CC2420 is supposed to consume 19.4 mA of current in
the receive mode, and 17.4 mA of current while transmit-
ting [6, 21]. This is consistent with our results. In the plot
in Figure 9(a), we measure the power consumption of the
unthreaded version of PersistentSend. In the left end of the
PersistentSend plot, the mote has the radio turned on in re-
ceive mode. About 400µs into the reading, the mote switches
the radio from receive mode to transmit mode, and then be-
gins to transmit. The transmission lasts for about 800µs, after
which the radio is switched back to the receive mode. The
plot matches well with the values listed in the radio’s data
sheet. Figure 9(b), which is the threaded implementation of
PersistentSend, displays a power profile that is identical to
that of the regular TinyOS implementation.

Figures 9(c) and 9(d) show the power profiles of the same
PersistentSend application running on a micaz mote. The
power profiles in this case are similar, although not identi-

176

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

C
ur

re
nt

 d
ra

w
 (

A
)

Time (microseconds)

PersistentSend (unthreaded)

(a) Power draw of a Tmote Sky running
PersistentSend (unthreaded).

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

C
ur

re
nt

 d
ra

w
 (

A
)

Time (microseconds)

PersistentSend (threaded)

(b) Power draw of a Tmote Sky running
PersistentSend (threaded).

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

C
ur

re
nt

 d
ra

w
 (

A
)

Time (microseconds)

PersistentSend (unthreaded)

(c) Power draw of a micaZ running Per-
sistentSend (unthreaded).

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

C
ur

re
nt

 d
ra

w
 (

A
)

Time (microseconds)

PersistentSend (threaded)

(d) Power draw of a micaZ running Per-
sistentSend (threaded).

Figure 9. Comparison of power draw on a Tmote Sky running the unthreaded and threaded versions of the Persis-
tentSend application. This application keeps sending out a message on the radio every 30 milliseconds.

cal. The extra power consumed is the processor performing
the stack swap operations, and getting ready to execute the
TinyThread scheduler. Just before the radio is switched to
the Tx mode, the figure for the threaded application shows
roughly an additional 50 µs duration where the current draw
is at 30 mA. The same duration of increased power usage is
seen at the other end (once the radio is done sending, and is
being switched back to the Rx mode).

5.5 Response Time
Our second set of experiments measured how respon-

sive programs were when implemented using TinyThread.
These experiments study the effect of the overhead caused
by the TinyThread scheduler. Analytically, this overhead
is the number of instructions that the processor has to exe-
cute in order to perform the stack swapping. Every time the
TinyThread scheduler is selected to execute, the stack swap
is performed. Again, when the scheduler is done, and yields
its spot on the processor, it has to swap the thread stack out,
and replace the system stack in its original state.

The first experiment we ran was a simple application
(SimpleUART) on a mote that listened for messages com-
ing from a PC over UART. When a message does arrive, it
simply sends the same message back to the PC over UART.
On the PC, a simple Java application sent 100 messages and
averaged out the total round-trip time for each message. The
time measurements on the PC were made using the actual
processor clock via the Java Native Interface.

Figure 10(a) and 10(b) show the response times measured
over a range of message sizes (3 bytes – 27 bytes). We show
the median response time, along with the deviation over the
100 samples. The response times for the threaded version are

similar to those of the unthreaded version, but it is possible
to see the overhead caused by the thread library.

In order to study the effect of the second source of over-
head, we designed an experiment in which there would al-
ways be two threads active at any time. This experiment
computes a simple reconfigurable digital filter that of the
kind normally seen in signal processing applications. Con-
sider a light sensor that is sitting out in the open measuring
the amount of UV radiation in sunlight. During the course
of a day, there is a lot of noise that this sensor may see, e.g.,
people may walk across, causing shadows. Rather than this
sensor sending all the data points, including all the noise, it
would be nice if the sensor could restrict the number of data
points it sends to the collecting base station. However, the
choice of which data points are safe to throw away is not
trivial; this is where the digital filter helps.

A long-running calculation of this sort, however, does not
fit in the traditional sensornet development model. The rec-
ommended way to perform such an operation in TinyOS is
to break the calculation up into small tasks by ripping the
stack manually. Using TinyThread however, the filter can
be coded up very simply as a simple loop that performs some
small subset of the calculation in each time slice. This thread
therefore is always ready, and never terminates. To study re-
sponse time in the presence of multiple ready threads, we
superpose the SimpleUART application on top of this fil-
ter calculation, and measure the response time of the UART
messages just like in the previous experiment.

The results from this experiment are shown in Fig-
ures 10(c) and 10(d). In this case, the degradation in response
time in the threaded version of the program is more percep-

177

 15

 20

 25

 30

 5 10 15 20 25

T
im

e
(m

s)

Packet length

Response time

(a) Response time of a Tmote Sky run-
ning SimpleUART (unthreaded).

 15

 20

 25

 30

 5 10 15 20 25

T
im

e
(m

s)

Packet length

Response time

(b) Response time of a Tmote Sky run-
ning SimpleUART (threaded).

 15

 20

 25

 30

 5 10 15 20 25

T
im

e
(m

s)

Packet length

Response time

(c) Response time of a Tmote Sky run-
ning Filter, while receiving and re-
sponding to messages from PC (un-
threaded).

 15

 20

 25

 30

 5 10 15 20 25

T
im

e
(m

s)

Packet length

Response time

(d) Response time of a Tmote Sky
running Filter, while receiving and
responding to messages from PC
(threaded).

Figure 10. Comparison of round-trip message times from a PC to a mote and back.

tible. Notice how the response time jumps to the 30ms level
when the packet size is 15 bytes in the threaded version, as
opposed to 19 bytes in the event-driven version.

There is another source of reduced response as well. Sup-
pose that there were two ready threads in a program. When
the TinyThread scheduler is posted and executes, only one
of the two threads gets a chance to execute. The other thread
has to wait until TinyOS allows the TinyThread scheduler
for the next time. This next chance may come after several
other tasks and events in the program. By contrast, if the
two threads were tasks, they would get a chance to execute
in every “round” of the TinyOS task scheduler.

6 Discussion
6.1 Why Bother With Events Any More?

The question of whether to use events or threads to write
highly-concurrent programs has been asked by several peo-
ple before outside the sensornet space [1, 15, 27, 28]. Lauer
and Needham have argued that the approaches are duals of
each other [16]. We take a shot at it as well.

Now that we have a nice way to write energy-efficient
multi-threaded programs for sensornets using TinyThread,
can we totally get rid of event-based programming? Can we
not follow the approach that MANTIS advocates, and write
all of our programs in a strictly multi-threaded manner?

We do not subscribe to this view, for several reasons. As
we pointed out in the introduction, event-based program-
ming is well-suited when all the different parts of a program
are functionally separate, and there is no state to be trans-
ferred among them. More concretely, as long as ripping a
function into two parts does not transfer variables that orig-

Listing 8. Using a task and an event to send a number
of messages. Notice how the program has to manually
manage which message needs to be sent out next.

1 void sendAllMessages() {
2 lastMsgSent = 0;
3 post sendMessage(neighbors[lastMsgSent], msg);
4 }
5

6 task void sendMessage(uint16_t dest , TOS_MsgPtr msg)
7 { call SendMsg.send(dest , sizeof(Message), &msg); }
8

9 event result_t SendMsg.sendDone(TOS_MsgPtr sent ,
10 result_t success) {
11 if (success) { // Message sent successfully; send next
12 lastMsgSent++;
13 if (lastMsgSent < numNeighbors) // More neighbors
14 post sendMessage(neighbors[lastMsgSent], msg);
15 }
16 else // Message not sent successfully, resend
17 post sendMessage(neighbors[lastMsgSent], msg);
18 }

inally belong on the stack to the global data section, the rip-
ping does not cause any actual problems. The primary case
where ripping a function into different tasks and event is a
problem is when there is a data flow dependency. For exam-
ple, Listing 8 shows the nesC code to send out a series of
messages one to each neighbor in a graph.

Notice how the program has to “remember” what it did
last every time the SendMsg.sendDone() event is raised.
This is an example of manual stack management. In addi-
tion to being cumbersome, it is also detrimental understand-
ing the control flow logic. Using blocking I/O support in

178

Listing 9. Implementing a simple message forwarder.
This is best implemented using an event, since there are
no state dependencies.

1 event TOS_MsgPtr ReceiveMsg.receive(TOS_MsgPtr data) {
2 Message *message = (Message *) data ->data;
3 call SendMsg.send(parent, sizeof(Message), &msg);
4 return data;
5 }

TinyThread, the same effect can be achieved by:

1 for (i = 0; i < numNeighbors; i++)
2 call Socket.send(neighbors[i], sizeof(Message), &msg);

When there are no data flow dependencies, however,
events do offer an attractive way to achieve concurrent ex-
ecution without having to deal with synchronization issues.
Our approach with TinyThread is to approach what Adya
et al. call a “sweet spot” in the design space of concurrent
programs [1]. In this spirit, we allow events and threads to
coexist. In our view, the correct way to use TinyThread is
as a high-level programming abstraction. If some action in a
program justifies an event, then it should be implemented as
an event. For example, if a node is acting as a “dumb” mes-
sage forwarder — it simply sends every message it receives
to a known parent node, that action is better implemented
in an event than in a thread (Listing 9).

This coexistence of events and threads has been an impor-
tant design goal for TinyThread. This goal motivated us to
extend an event-based language to add multi-threading rather
than develop a new, purely multi-threaded language.

6.2 Preemptive vs. Cooperative Threading
There is a fundamental difference between threads in

TinyThread and threads in say, modern operating systems
such as Windows or Linux. The difference lies how threads
are scheduled. In the latter case, scheduling is based on time
slices. The scheduler simply allocates a time slice to a thread
during which the thread executes. When the time slice is
over, the executing thread is forced out of the processor im-
mediately; it is preempted. These threading models use pre-
emptive scheduling. In the case of TinyThread, however, the
scheduling is done in a cooperative manner (akin to POSIX
threads [5]). Each thread either runs to completion, or to
some point in its execution where it has to block (typically
an I/O operation, or a synchronization lock).

The distinction between preemptive and cooperative
threads is similar to the distinction between native threads
and green threads in Java [19]. Green threads are scheduled
in a cooperative manner. When a high-priority green thread
is executing, it will not be pre-empted. The only way another
thread can get scheduled is if the executing thread yields or
makes a blocking call, similar to the way our threads work.
Native threads, on the other hand support true preemption.

This design decision of going with cooperative schedul-
ing was a conscious one. When we set out to extend the
nesC language with a thread library, our purpose was to solve
problems, not add new ones. Preemptive multi-threading
brings along with it a host of concurrency issues that need
to be dealt with. nesC has a very clean solution to concur-

rent data access — if the compiler suspects that a data race
could occur, a warning is given to the developer at compile-
time. With preemptive multi-threading, such static analysis
of data races is no longer possible. The compiler cannot pre-
dict when during its execution a thread T1 may get preempted
by another thread T2. Consequently, if T1 and T2 share state,
nesC cannot deterministically detect any possible data races.

In order to stay within the confines of the nesC data race
detection model, TinyThread uses cooperative scheduling
by default. However, the library also support true preemptive
multi-threading. If a particular application really needed pre-
emption, then TinyThread will support it, but without nesC’s
nice support for detecting possible data races.

6.3 TinyThread and nesC Data Race Detection
TinyThread allows the nesC data race detection to oper-

ate properly given a few caveats. The first major source of
problem is the blocking calls. nesC does not have any un-
derstanding of blocking calls. This can create problems if
users use these blocking calls in routines other than threads.
TinyThread does provide some facilities for run-time avoid-
ance of some of these faults, but there is no detection at
compile time. The second caveat can occur when a devel-
oper makes a blocking call inside of an atomic statement.
These problems can easily be overcome if blocking calls
were added to the language specification and is an oppor-
tunity for future research.

7 Future Research
There are several different approaches which can signifi-

cantly improve RAM consumption in threaded systems. One
approach is to allow interrupts to execute on their own stack.
This is implemented in the latest Linux kernel (commonly
known as the 4K stack configuration option), and in several
other embedded operating systems.

As shown in Section 5, the overhead due to interrupts is
required to be allocated for each thread. This forces threads
to use significantly more memory than their event-driven
counterparts. A separate interrupt stack can help in a more
efficient implementation. Since an interrupt handler does not
damage the current context, it does not actually need to swap
the full context. The only register which must be swapped
back and forth is the stack pointer. In an embedded system,
this must be done with much care if interrupts can possibly
nest, since there must be state denoting the stack in use.

Another possible direction for future work along similar
lines is to implement a compiler which automatically gener-
ates event-driven code from cooperative threads. This prob-
lem of unspinning loops appears trivial, but when consid-
ering implementing this for several concurrent threads with
several synchronization primitives and blocking I/O, it is
far more complicated. This type of research in comparison
with TinyThread could possibly reveal more insight into the
strengths and weaknesses of both approaches.

TinyThread has the potential to push future work farther
open than can be speculated. Algorithms thought to be out
of practical reach on sensornets can now be easily imple-
mented. New algorithms are only part of the possible future
work enabled by TinyThread; applications of sensornets can

179

be pushed to new bounds. By easing the barrier of entry for
new developers, more ideas and research could be spurred.

8 Conclusion
In this paper, we have presented TinyThread, a library-

based approach to multi-threaded programming on sensor-
nets. TinyThread is a clean library extension to nesC. Using
this library does not require any changes to the nesC com-
piler or to the regular TinyOS toolchain. The library is writ-
ten entirely in nesC.

In addition, we have presented stack-estimator, a static
analysis tool that can compute exact stack requirements
for MSP430- and AVR-based processors. The tool, in the
TinyThread context, provides a way for developers to allo-
cate individual context stacks for threads in a multi-threaded
application, without having to worry about over- or under-
estimating stack requirements.

Multi-threaded programming on the mote allows devel-
opers to write programs using a procedural style: the style
of programming that is taught to every CS student. Since
TinyThread is fully integrated with the rest of nesC, it could
also potentially act as a nice way for programmers conver-
sant with say, Java, to “ease in” to nesC programming.

Based on our experimental evaluation, we report that the
primary design metric for sensornets — power utilization
— is virtually unaffected by TinyThread. The TinyThread
scheduler is intelligent enough to schedule threads only
when active. The rest of the time, the scheduler is sleeping,
allowing the mote to conserve power.

9 References
[1] A.Adya et al. Cooperative task management without manual

stack management. In USENIX Annual Technical Conference,
General Track, pages 289–302, 2002.

[2] Atmel Corporation. Atmega128(l) data sheet. www.atmel.-
com/dyn/resources/prod documents/doc2467.pdf.

[3] S. Bhatti et al. MANTIS OS: An embedded multithreaded
operating system for wireless micro sensor platforms. Mobile
Networks and Applications, 10(4):563–579, aug 2005.

[4] D. Brylow, N. Damgaard, and J. Palsberg. Static checking of
interrupt-driven software. In ICSE01, 2001.

[5] D. R. Butenhof. Programming with POSIX threads. Addison-
Wesley, Boston, MA, USA, 1997.

[6] Chipcon, Texas Instruments. Cc2420 data sheet.
www.chipcon.com/files/CC2420 Data Sheet 1 3.pdf.

[7] A. Dunkels, O. Schmidt, and T. Voigt. Using Protothreads
for Sensor Node Programming. In REALWSN’05, Stockholm,
Sweden, June 2005.

[8] Dunkels A. et al. Contiki - a lightweight and flexible operating
system for tiny networked sensors. In LCN ’04, pages 455–
462, Washington, DC, USA, 2004. IEEE Computer Society.

[9] R. S. Engelschall. Portable multithreading: The signal stack
trick for user-space thread creation. In 2000 USENIX Annual
Technical Conference, 2000.

[10] A. K. et al. Parallel programming in split-c. In Supercomput-
ing ’93, pages 262–273, New York, NY, USA, 1993.

[11] R. Gummadi, O. Gnawali, and R. Govindan. Macro-
programming wireless sensor networks using kairos. In
DCOSS ’05, June 2005.

[12] Hill J. et al. System architecture directions for networked
sensors. In ASPLOS-IX, pages 93–104, New York, NY, USA,
2000. ACM Press.

[13] J. W. Hui and D. Culler. The dynamic behavior of a data
dissemination protocol for network programming at scale. In
SenSys ’04, pages 81–94. ACM Press, 2004.

[14] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann,
and F. Silva. Directed diffusion for wireless sensor network-
ing. IEEE/ACM Trans. Netw., 11(1):2–16, 2003.

[15] O. Kasten and K. Römer. Beyond event handlers: Program-
ming wireless sensors with attributed state machines. In IPSN
’05, pages 45–52, Los Angeles, USA, Apr. 2005.

[16] H. C. Lauer and R. M. Needham. On the duality of operat-
ing system structures. SIGOPS Oper. Syst. Rev., 13(2):3–19,
1979.

[17] P. Levis and D. Culler. Maté: a tiny virtual machine for sensor
networks. In ASPLOS-X, pages 85–95, New York, NY, USA,
2002. ACM Press.

[18] P. Levis, N. Patel, D. Culler, and S. Shenker. Trickle: A self-
regulating algorithm for code propagation and maintenance in
wireless sensor networks. In NSDI ’04, 2004.

[19] T. Lindholm and F. Yellin. Java Virtual Machine Specifica-
tion. Addison-Wesley, Boston, MA, USA, 1999.

[20] T. D. May, S. H. Dunning, G. A. Dowding, and J. O. Hall-
strom. An rpc design for wireless sensor networks. J. Perva-
sive Computing and Communication, March 2006.

[21] Moteiv Corporation. Tmote Sky data sheet.
moteiv.com/products/docs/tmote-sky-datasheet.pdf.

[22] R. Newton and M. Welsh. Region streams: functional macro-
programming for sensor networks. In DMSN ’04, pages 78–
87, New York, NY, USA, 2004. ACM Press.

[23] C. Nitta, R. Pandey, and Y. Ramin. Y-Threads: Support-
ing concurrency in wireless sensor networks. In LNCS 4026
(DCOSS ’06), pages 169–184, jun 2006.

[24] J. Regehr and A. Reid. Hoist: a system for automatically
deriving static analyzers for embedded systems. In ASPLOS-
XI, pages 133–143, New York, NY, USA, 2004. ACM Press.

[25] J. Regehr, A. Reid, and K. Webb. Eliminating stack overflow
by abstract interpretation. Trans. on Embedded Computing
Sys., 4(4):751–778, 2005.

[26] Texas Instruments. MSP430x1xx family user’s guide (rev. f).
www-s.ti.com/sc/psheets/slau049f/slau049f.pdf.

[27] J. R. von Behren, J. Condit, and E. A. Brewer. Why events
are a bad idea (for high-concurrency servers). In M. B. Jones,
editor, HotOS, pages 19–24. USENIX, 2003.

[28] J. R. von Behren et al. Capriccio: scalable threads for internet
services. In SOSP ’03, pages 268–281, New York, NY, USA,
2003. ACM Press.

[29] M. Welsh and G. Mainland. Programming sensor networks
using abstract regions. In NSDI, pages 29–42. USENIX, 2004.

[30] K. Whitehouse, C. Sharp, E. Brewer, and D. Culler. Hood:
a neighborhood abstraction for sensor networks. In MobiSys
’04, pages 99–110, New York, NY, USA, 2004. ACM Press.

180

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

