```
"Singh spins tales of cryptic intrigue in every chapter."
-The
Wall Street Journal
```

"Brings together . . . the geniuses who have secured
communications,
saved lives, and influenced the fate of nations. A
pleasure to read."
-Chicago Tribune
"Singh pursues the fascinating story [of codes] through
the centuries,
always providing plenty of detailed examples of ciphers
for those who
appreciate the intricacies of the medium." -Los Angeles
Times
"Especially effective at putting the reader in the
codebreaker's shoes, facing
each new, apparently unbreakable code Singh does a fine
job."
-The New York Times Book Review
"Entertaining Singh has a flair for narrative." -San
Francisco Chronicle
Singh is an interesting mix of scientist and storyteller,
and this subject is
the perfect mix of true fact and tall tales." -1"be San
Diego Union-Tribune
"Where would we Information Age ignoramuses be without
smart guys
like Stephen Jay Gould, the late Carl Sagan, or Simon
Singh? They are
the troubadours of our time, making complicated subjects
understandable
and entertaining." -The Plain Dealer
In this entertaining survey, the evolution of cryptography
is driven by the
ongoing struggle between code-makers and codebreakers." -The New Yorker
"[Singh] is well-equipped to describe all the arcane mathematics in layman's
language." Forbes
"Wonderful stories Close reading is rewarded with the flash of logical
insight that the codebreakers must enjoy." -Hartford Advocate

```
"An illuminating and entertaining account .... From the
first page,
Singh shows his knack both for explaining complex areas of
science and
telling rip-roaring stories." -New York Law Journal
```

"My only regret is that this great book has come far too late. If only someone had given it to me when I was 10, my secret plans for world playground
domination might never have been foiled."
-James Flint, The Observer (London)
"Full of fascinating case histories covering the development and practical use of cryptography." -Mail on Sunday (London)
"Singh has created an authoritative and engrossing read which both
explains and humanizes the subject This intelligent, exciting book
takes its drive from a simple premise-that nothing is as exciting as a
secret." -Scotland on Sunday

The Code Book

Simon Singh received his Ph.D. in physics from Cambridge University. A former BBC producer, he directed an award-winning
documentary film on Fermat's Last Theorem that aired on PBS's Nova series and wrote the bestselling book, Fermat's Enigma. He lives in London, England.
Also by Simon Singh
ermat s Entgrna

LIL

The Code Book

The Code

The Science of Secrecy
from Ancient Egypt
to .Quantum Cryptograph3

Anchor Books

A Division of Random House, Inc.

New York

Book
' Si gh
lmon n

FIRST ANCHOR BOOKS EDITION, SEPTEMBER 2000

Copyright © 1999 by Simon Singh

All rights reserved under International and Pan-American Copyright Conventions. Published in the United States by Anchor Books, a division of Random House, Inc., New York, and simultaneously in Canada by Random House of Canada Limited, Toronto. Originally published in hardcover in the United States by Doubleday, a division of Random House, Inc.,

New York, and in the United Kingdom by the Fourth Estate, London, in 1999.

Anchor Books and colophon are registered trademarks of Random House, Inc.

The Library of Congress has cataloged the Doubleday edition as
follows:

Singh, Simon.

The code book : the evolution of secrecy from Mary Qeen of Scots to quantum cryptography / Simon Singh. -1st ed. p. cm.

Includes bibliographical references and index.

1. Cryptography-History. 2:Data encryption (Computer science)-History. I. Title.

Z103.\$56 1999

652'.8'09-dc21 99-35261

CIP

Anchor ISBN: 0-385-49532-3

Book design by Jeffery Design

Author photo © Nigh Spalding
wWw. anchorbooks.com

Printed in the United States of America
$\begin{array}{lllllllll}20 & 19 & 18 & 17 & 16 & 15 & 14 & 13 & 12\end{array}$

For my mother and father, Sawaran Kaur and Mehnga Singh

The urge to discover secrets is deeply ingrained in human nature; even the least curious mind is roused by the promise
of sharing knowledge withheld from others. Some are fortunate
enough to find a job which consists in the solution of mysteries, but most of us are driven to sublimate this urge by
the solving of artificial puzzles devised for our entertainment.
Detective stories or crossword puzzles cater for the majority;
the solution of secret codes may be the pursuit of a few.

John Chadwick
The Decipherment of Linear B

Contents

Introduction

1
The Cipher of Mary Qeen of Scots

2
Le Chiffre Ind4chiffrable

```
4
Cracking the Enigma
5
The Language Barrier
6
Alice and Bob Go Public
7
Pretty Good Privacy
8
A Qantum Leap into the Future
The Cipher Challenge
Appendices
Glossary
Acknowledgments
Further Reading
Index
Picture Credits
Introduction
```

For thousands of years, kings, queens and generals have relied on efficient communication in order to govern their countries and command their armies. At the same time, they have all been aware of the consequences of their messages falling into the wrong hands, revealing precious secrets to rival nations and betraying vital
information to opposing
forces. It was the threat of enemy interception that motivated the
development of codes and ciphers: techniques for
disguising a message so
that only the intended recipient can read it.

The desire for secrecy has meant that nations have operated code-making
departments, responsible for ensuring the security of communications
by inventing and implementing the best possible codes. At the
same time, enemy codebreakers have attempted to break these codes, and
steal secrets. Codebreakers are linguistic alchemists, a mystical tribe attempting
to conjure sensible words out of meaningless symbols. The history
of codes and ciphers is the story of the centuries-old battle between
codemakers and codebreakers, an intellectual arms race that has had a
dramatic impact on the course of history.

In writing The Code Book, I have had two main objectives. The first is to
chart the evolution of codes. Evolution is a wholly appropriate term,
because the development of codes can be viewed as an evolutionary struggle.
A code is constantly under attack from codebreakers. When the code-breakers
have developed a new weapon that reveals a code's
weakness,
then the code is no longer useful. It either becomes extinct or it evolves
into a new, stronger code. In turn, this new code thrives only until the
codebreakers identify its weakness, and so on. This is
analogous to the situation
facing, for example, a strain of infectious bacteria. The bacteria
live, thrive and survive until doctors discover an
antibiotic that exposes a
weakness in the bacteria and kills them. The bacteria are forced to evolve
xiv The Code Book
and outwit the antibiotic, and, if successful, they will thrive once again
and reestablish themselves. The bacteria are continually forced to evolve
in order to survive the onslaught of new antibiotics.

The ongoing battle between codemakers and codebreakers has inspired
a whole series of remarkable scientific breakthroughs. The codemakers
have continually striven to construct ever-stronger codes for defending
communications, while codebreakers have continually
invented
more powerful methods for attacking them. In their efforts to destroy
and preserve secrecy, both sides have drawn upon a diverse range of disciplines
and technologies, from mathematics to linguistics, from information
theory to quantum theory. In return, codemakers and codebreakers have enriched these subjects, and their work has accelerated
technological development, most notably in the case of the modern
computer.

History is punctuated with codes. They have decided the outcomes of
battles and led to the deaths of kings and queens. I have therefore been
able to call upon stories of political intrigue and tales of life and death to
illustrate the key turning points in the evolutionary
development of
codes. The history of codes is so inordinately rich that I have been forced
to leave out many fascinating stories, which in turn means that my
account is not definitive. If you would like to find out more about your
favorite tale or your favorite codebreaker then I would refer you to the list
of further reading, which should help those readers who would like to
study the subject in more detail.

Having discussed the evolution of codes and their impact on history,
the book's second objective is to demonstrate how the subject is more
relevant today than ever before. As information becomes an increasingly
valuable commodity, and as the communications revolution changes
society, so the process of encoding messages, known as encryption, will
play an increasing role in everyday life. Nowadays our phone calls bounce
off satellites and our e-mails pass through various
computers, and both
forms of communication can be intercepted with ease, so jeopardizing
our privacy. Similarly, as more and more business is conducted over the
Internet, safeguards must be put in place to protect companies and their
clients. Encryption is the only way to protect our privacy and guarantee
the success of the digital marketplace. The art of secret communication,

Introduction xv

otherwise known as cryptography, will provide the locks and keys of the Information Age.

However, the public's growing demand for cryptography conflicts with
the needs of law enforcement and national security. For decades, the
police and the intelligence services have used wire-taps to gather evidence
against terrorists and organized crime syndicates, but the recent development
of ultra-strong codes threatens to undermine the value of wiretaps.
As we enter the twenty-first century, civil libertarians are pressing for the
widespread use of cryptography in order to protect the privacy of the
individual. Arguing alongside them are businesses, who require strong
cryptography in order to guarantee the security of transactions within the
fast-growing world of Internet commerce. At the same time, the forces of
law and order are lobbying governments to restrict the use of
cryptography. The question is, which do we value more-our privacy or an
effective police force? Or is there a compromise?

Although cryptography is now having a major impact on civilian
activities, it should be noted that military cryptography remains an important
subject. It has been said that the First World War was the chemists' war, because mustard gas and chlorine were employed for the
first time, and that the Second World War was the physicists' war, because the atom bomb was detonated. Similarly, it has been argued that the
Third World War would be the mathematicians' war, because mathematicians
will have control over the next great weapon of war--information.
Mathematicians have been responsible for developing the codes
that are currently used to protect military information. Not surprisingly,
mathematicians are also at the forefront of the battle to break these codes.

While describing the evolution of codes and their impact on history, I
have allowed myself a minor detour. Chapter 5 describes the decipherment
of various ancient scripts, including Linear B and Egyptian hieroglyphics.
Technically, cryptography concerns communications that are deliberately designed to keep secrets from an enemy, whereas the writings
of ancient civilizations were not intended to be indecipherable: it is
merely that we have lost the ability to interpret them. However, the skills
required to uncover the meaning of archaeological texts are closely related
to the art of codebreaking. Ever since reading The Decipherment of Linear B, John Chadwick's description of how an ancient Mediterranean text
xvi The Code Book
was unraveled, I have been struck by the astounding intellectual
achievements of those men and women who have been able to decipher
the scripts of our ancestors, thereby allowing us to read about their
civilizations, religions and everyday lives.

Turning to the purists, I should apologize for the title of this book. The
Code Book is about more than just codes. The word "code" refers to a very
particular type of secret communication, one that has declined in use
over the centuries. In a code, a word or phrase is replaced with a word,
number or symbol. For example, secret agents have codenames, words
that are used instead of their real names in order to mask their identities.
Similarly, the phrase Attack at dawn could be replaced by
the codeword
Jupiter, and this word could be sent to a commander in the battlefield as
a way of baffling the enemy. If headquarters and the commander have
previously agreed on the code, then the meaning of Jupiter will be clear
to the intended recipient, but it will mean nothing to an enemy who
intercepts it. The alternative to a code is a cipher, a technique that acts at
a more fundamental level, by replacing letters rather than whole words.
For example, each letter in a phrase could be replaced by the next letter in
the alphabet, so that A is replaced by B, B by C, and so on. Attack at
dawn thus becomes Buubdl bu ebxo. Ciphers play an integral role in
cryptography, and so this book should really have been called The Code
and Cipher Book. I have, however, forsaken accuracy for snappiness.

As the need arises, I have defined the various technical terms used
within cryptography. Although I have generally adhered to these definitions,
there will be occasions when I use a term that is perhaps not
technically accurate, but which I feel is more familiar to the non-specialist.
For example, when describing a person attempting to break a
cipher, I have often used codebreaker rather than the more accurate dpherbreaker. I have .done this only when the meaning of the word is
obvious from the context. There is a glossary of terms at the end of the
book. More often than not, though, crypto-jargon is quite transparent: for
example, plaintext is the message before encryption, and ciphertext is the
message after encryption.

Before concluding this introduction, I must mention a problem that
faces any author who tackles the subject of cryptography: the science of secrecy is largely a secret science. Many of the heroes in this book never

Introduction xvii
gained recognition for their work during their lifetimes because their
contribution could not be publicly acknowledged while their invention
was still of diplomatic or military value. While
researching this book, I was able to talk to experts at Britain's Government Communications
Headquarters (GCHQ), who revealed details of extraordinary research
done in the 1970s which has only just been declassified. As a result of
this declassification, three of the world's greatest cryptographers can
now receive the credit they deserve. However, this recent revelation has
merely served to remind me that there is a great deal more going on, of
which neither I nor any other science writer is aware. Organizations
such as GCHQ^and America's National Security Agency continue to
conduct classified research into cryptography, which means that their
breakthroughs remain secret and the individuals who make them remain
anonymous.

Despite the problems of government secrecy and classified research, I
have spent the final chapter of this book speculating
about the future of
codes and ciphers. Ultimately, this chapter is an attempt to see if we can
predict who will win the evolutionary struggle between codemaker and
codebreaker. Will codemakers ever design a truly
unbreakable code and
succeed in their quest for absolute secrecy? Or will
codebreakers build a
machine that can decipher any message? Bearing in mind that some of
the greatest minds work in classified laboratories, and that they receive
the bulk of research funds, it is clear that some of the statements in my
final chapter may be inaccurate. For example, I state that quantum
computers-machines potentially capable of breaking all
today's ciphers-are
at a very primitive stage, but it is possible that somebody has already
built one. The only people who are in a. position to point out my errors
are also those who are not at liberty to reveal them.

1 The Cipher of Mary Queen of Scots

On the morning of Saturday, October 15, 1586, Queen Mary entered the crowded courtroom at Fotheringhay Castle. Years of imprisonment
and the onset of rheumatism had taken their toll, yet she remained
dignified, composed and indisputably regal. Assisted by her physician,
she made her way past the judges, officials and
spectators, and
approached the throne that stood halfway along the long, narrow chamber.
Mary had assumed that the throne was a gesture of respect toward
her, but she was mistaken. The throne symbolized the absent Queen
Elizabeth, Mary's enemy and prosecutor. Mary was gently guided away
from the throne and toward the opposite side of the room, to the defendant's
seat, a crimson velvet chair.

Mary Queen of Scots was on trial for treason. She had been accused of
plotting to assassinate Queen Elizabeth in order to take the English crown
for herself. Sir Francis Walsingham, Elizabeth's Principal Secretary, had
already arrested the other conspirators, extracted confessions, and executed them. Now he planned to prove that Mary was at the heart of
the plot, and was therefore equally culpable and equally deserving of death.

Walsingham knew that before he could have Mary executed, he would
have to convince Queen Elizabeth of her guilt. Although Elizabeth
despised Mary, she had several reasons for being reluctant
to see her put
to death. First, Mary was a Scottish queen, and many questioned whether
an English court had the authority to execute a foreign head of state.
Second, executing Mary might establish an awkward precedent-if the
state is allowed to kill one queen, then perhaps rebels might have fewer
reservations about killing another, namely Elizabeth. Third, Elizabeth
and Mary were cousins, and their blood tie made Elizabeth all the more squeamish about ordering her execution. In short, Elizabeth would

Figure 1 Mary Queen of Scots.

The Cipher of Mary Queen of Scots3
sanction Mary's execution only if Walsingham could prove beyond any
hint of doubt that she had been part of the assassination plot.

The conspirators were a group of young English Catholic noblemen
intent on removing Elizabeth, a Protestant, and replacing her with Mary,
a fellow Catholic. It was apparent to the court that Mary was a figurehead
for the conspirators, but it was not clear that she had actually given her
blessing to the conspiracy. In fact, Mary had authorized the plot. The
challenge for Walsingham was to demonstrate a palpable link between

Mary and the plotters.

On the morning of her trial, Mary sat alone in the dock, dressed in
sorrowful black velvet. In cases of treason, the accused was forbidden counsel
and was not permitted to call witnesses. Mary was not even allowed
secretaries to help her prepare her case. However, her plight was not hopeless
because she had been careful to ensure that all her correspondence with the
conspirators had been written in cipher. The cipher turned her words into a
meaningless series of symbols, and Mary believed that even if Walsingham
had captured the letters, then he could have no idea of the meaning of the
words within them. If their contents were a mystery, then the letters could not
be used as evidence against her. However, this all
depended on the
assumption that her cipher had not been broken.

Unfortunately for Mary, Walsingham was not merely
Principal
Secretary, he was also England's spymaster. He had intercepted Mary's
letters to the plotters, and he knew exactly who might be capable of
deciphering them. Thomas Phelippes was the nation's
foremost expert on
breaking codes, and for years he had been deciphering the messages of
those who plotted against Queen Elizabeth, thereby providing the
evidence needed to condemn them. If he could decipher the incriminating
letters between Mary and the conspirators, then her death would be
inevitable. On the other hand, if Mary's cipher was strong enough to
conceal her secrets, then there was a chance that she might survive. Not
for the first time, a life hung on the strength of a cipher.

The Evolution of Secret Writing

Some of the earliest accounts of secret writing date back to Herodotus,
"the father of history" according to the Roman philosopher and

The Code Book

The Cipher of Mary Queen of Scots
ounce of alum and a pint of vinegar, and then using it to write on the
shell. The solution penetrates the porous shell, and
leaves a message on
the surface of the hardened egg albumen, which can be read only when
the shell is removed. Steganography also includes the practice of writing
in invisible ink. As far back as the first century a.d.,

Pliny the Elder
explained how the "milk" of the thithymallus plant could be used as an
invisible ink. Although transparent after drying, gentle heating chars the
ink and turns it brown. Many organic fluids behave in a similar way,
because they are rich in carbon and therefore char easily. Indeed, it is not
unknown for modern spies who have run out of
standard-issue invisible
ink to improvise by using their own urine.

The longevity of Steganography illustrates that it certainly offers a
modicum of security, but it suffers from a fundamental
weakness. If the
messenger is searched and the message is discovered, then the contents of
the secret communication are revealed at once.
Interception of the message
immediately compromises all security. A thorough guard might routinely
search any person crossing a border, scraping any wax tablets, heating blank
sheets of paper, shelling boiled eggs, shaving people's heads, and so on, and
inevitably there will be occasions when the message is uncovered.

Hence, in parallel with the development of Steganography, there was
the evolution of cryptography, derived from the Greek word kryptos, meaning "hidden." The aim of cryptography is not to hide the existence
of a message, but rather to hide its meaning, a process known as encryption. To render a message unintelligible, it is scrambled according to
a particular protocol which is agreed beforehand between the sender and
the intended recipient. Thus the recipient can reverse the scrambling
protocol and make the message comprehensible. The
advantage of
cryptography is that if the enemy intercepts an encrypted message, then
the message is unreadable. Without knowing the scrambling protocol, the
enemy should find it difficult, if not impossible, to recreate the original
message from the encrypted text.

Although cryptography and Steganography are independent, it is
possible to both scramble and hide a message to maximize security. For
example, the microdot is a form of Steganography that became popular during the Second World War. German agents in Latin America would
photographically shrink a page of text down to a dot less than 1 millimeter
in diameter, and then hide this microdot on top of a full stop in an
apparently innocuous letter. The first microdot to be spotted by the FBI
was in 1941, following a tip-off that the Americans should look for a tiny
gleam from the surface of a letter, indicative of smooth film. Thereafter,
the Americans could read the contents of most intercepted microdots,
except when the German agents had taken the extra
precaution of
scrambling their message before reducing it. In such cases of cryptography
combined with Steganography, the Americans were sometimes able to
intercept and block communications, but they were
prevented from
gaining any new information about German spying activity. Of the two
branches of secret communication, cryptography is the more powerful
because of this ability to prevent information from falling into enemy hands.

In turn, cryptography itself can be divided into two branches, known as transposition and substitution. In transposition, the letters of the message are simply rearranged, effectively generating an anagram. For very short
messages, such as a single word, this method is relatively insecure because
there are only a limited number of ways of rearranging a handful of
letters. For example, three letters can be arranged in only six different
ways, e.g., cow, cwo, ocw, owe, wco, woe. However, as the number of
letters gradually increases, the number of possible arrangements rapidly
explodes, making it impossible to get back to the original message unless
the exact scrambling process is known. For example, consider this
short sentence. It contains just 35 letters, and yet there are more than
50, 000, 000, 000, 000,000,000,000,000,000,000 distinct arrangements of
them. If one person could check one arrangement per second, and if all
the people in the world worked night and day, it would still take more
than a thousand times the lifetime of the universe to check all the
arrangements.

A random transposition of letters seems to offer a very high level of
security, because it would be impractical for an enemy interceptor to
unscramble even a short sentence. But there is a drawback. Transposition
effectively generates an incredibly difficult anagram, and if the letters are
randomly jumbled, with neither rhyme nor reason, then unscrambling
the anagram is impossible for the intended recipient, as well as an enemy
interceptor. In order for transposition to be effective,

```
the rearrangement
of letters needs to follow a straightforward system, one
that has been
The Code Book
```

previously agreed by sender and receiver, but kept secret
from the enemy.
For example, schoolchildren sometimes send messages using
the "rail
fence" transposition, in which the message is written with
alternate letters
on separate upper and lower lines. The sequence of letters
on the lower
line is then tagged on at the end of the sequence on the
upper line to
create the final encrypted message. For example:

THY SECRET IS THY PRISONER; IF THOU LET IT GO, THOU ART A PRISONER TO IT

1

TYERTSHPIO EITO LTTOH URARS NROT
HSCEITYRS NRFH UEIGTOATPIO ETI

I

TYERTSHPIOEITOLTTOHURARSNROTHSCEITYRSNRFHUEIGTOATPIOETI

The receiver can recover the message by simply reversing the process.
There are various other forms of systematic transposition, including the
three-line rail fence cipher, in which the message is first written on three
separate lines instead of two. Alternatively, one could swap each pair of
letters, so that the first and second letters switch places, the third and
fourth letters switch places, and so on.

Another form of transposition is embodied in the first ever military
cryptographic device, the Spartan scytale, dating back to the fifth century
b.c. The scytale is a wooden staff around which a strip of leather or
parchment is wound, as shown in Figure 2. The sender writes the message along the length of the scytale, and then unwinds the strip, which now

Figure 2 When it is unwound from the sender's scytale (wooden staff), the leather strip
appears to carry a list of random letters; S, T, S, F, Only by rewinding the strip around another scytale of the correct diameter will the message reappear.

The Cipher of Mary Queen of Scots 9
appears to carry a list of meaningless letters. The message has been
scrambled. The messenger would take the leather strip, and, as a
steganographic twist, he would sometimes disguise it as a belt with the
letters hidden on the inside. To recover the message, the receiver simply
wraps the leather strip around a scytale of the same
diameter as the one used
by the sender. In 404 b.c. Lysander of Sparta was confronted by a messenger,
bloody and battered, one of only five to have survived the arduous
journey from Persia. The messenger handed his belt to Lysander, who
wound it around his scytale to learn that Pharnabazus of Persia was
planning to attack him. Thanks to the scytale, Lysander was prepared for the
attack and repulsed it.

The alternative to transposition is substitution. One of the earliest
descriptions of encryption by substitution appears in the Kama-Sutra, a
text written in the fourth century a.d. by the Brahmin scholar Vatsyayana, but based on manuscripts dating back to the fourth century b.c. The Kama-Sutra recommends that women should study 64 arts, such as
cooking, dressing, massage and the preparation of perfumes. The list also
includes some less obvious arts, namely conjuring, chess, bookbinding
and carpentry. Number 45 on the list is mkcchita-vikalpd, the art of secret
writing, advocated in order to help women conceal the details of their
liaisons. One of the recommended techniques is to pair letters of the alphabet at random, and then substitute each letter in the original
message with its partner. If we apply the principle to the Roman alphabet, we could pair letters as follows:

A D H
t t I
V X B

I

I

G

K

I

J
t
L

S

I
N

U
t

E

W
I
F

Y I
t t
P T

Then, instead of meet at midnight, the sender would write CUUZ VZ
CGXSGIBZ. This form of secret writing is called a
substitution cipher
because each letter in the plaintext is substituted for a different letter, thus
acting in a complementary way to the transposition cipher. In transposition
each letter retains its identity but changes its position,
whereas in
substitution each letter changes its identity but retains its position.

The first documented use of a substitution cipher for military purposes
appears in Julius Caesar's Gallic Wars. Caesar describes how he sent a

10 The Code Book
message to Cicero, who was besieged and on the verge of surrendering.
The substitution replaced Roman letters with Greek letters, rendering the
message unintelligible to the enemy. Caesar described the dramatic
delivery of the message:

The messenger was instructed, if he could not approach, to hurl a spear, with the letter fastened to the thong, inside the entrenchment of the camp.
Fearing danger, the Gaul discharged the spear, as he had been instructed.
By chance it stuck fast in the tower, and for two days was not sighted by
our troops; on the third day it was sighted by a soldier, taken down, and
delivered to Cicero. He read it through and then recited it at a parade of
the troops, bringing the greatest rejoicing to all.

Caesar used secret writing so frequently that Valerius Probus wrote an
entire treatise on his ciphers, which unfortunately has not survived.
However, thanks to Suetonius' Lives of the Caesars LVI, written in the
second century a.d., we do have a detailed description of one of the types
of substitution cipher used by Julius Caesar. He simply replaced each
letter in the message with the letter that is three places further down the
alphabet. Cryptographers often think in terms of the plain alphabet, the
alphabet used to write the original message, and the cipher alphabet, the
letters that are substituted in place of the plain
letters. When the plain
alphabet is placed above the cipher alphabet, as shown in Figure 3, it is
clear that the cipher alphabet has been shifted by three places, and hence
this form of substitution is often called the Caesar shift cipher, or simply
the Caesar cipher. A cipher is the name given to any form of cryp-

Plain
alphabet abcdefghi jklmnopqrstuvwxyz
Cipher alphabet DEFGHI JKLMNOPQRSTUVWXYZABC

Plaintextveni, vidi, vici

CiphertextYHQL, YLGL, YLFL

Figure 3 The Caesar cipher applied to a short message. The Caesar cipher is based on a cipher alphabet that is shifted a certain number of places (in this case three), relative to the plain alphabet. The convention in cryptography is to write the plain alphabet in lowercase letters, and the cipher alphabet in capitals. Similarly, the original message, the plaintext, is
written in lower case, and the encrypted message, the ciphertext, is written in capitals.
tographic substitution in which each letter is replaced by another letter or
symbol.

Although Suetonius mentions only a Caesar shift of three places, it is clear that by using any shift between 1 and 25 places it is possible to
generate 25 distinct ciphers. In fact, if we do not restrict ourselves to
shirting the alphabet and permit the cipher alphabet to be any rearrangement
of the plain alphabet, then we can generate an even greater number
of distinct ciphers. There are over
$400,000,000,000,000,000,000,000,000$
such rearrangements, and therefore the same number of distinct ciphers.

Each distinct cipher can be considered in terms of a general encrypting
method, known as the algorithm, and a key, which specifies the exact
details of a particular encryption. In this case, the algorithm involves
substituting each letter in the plain alphabet with a letter from a cipher
alphabet, and the cipher alphabet is allowed to consist of any
rearrangement of the plain alphabet. The key defines the exact cipher
alphabet to be used for a particular encryption. The relationship between
the algorithm and the key is illustrated in Figure 4.

An enemy studying an intercepted scrambled message may have a
strong suspicion of the algorithm, but would not know the exact key. For
example, they may well suspect that each letter in the plaintext has been

Figure 4 To encrypt a plaintext message, the sender passes it through an encryption
algorithm. The algorithm is a general system for encryption, and needs to be specified exactly by selecting a key. Applying the key and algorithm together to a plaintext generates the encrypted message, or ciphertext. The ciphertext may be intercepted by an enemy while it is being transmitted to the receiver, but the enemy should not be able to
decipher the message. However, the receiver, who knows both the key and the algorithm
used by the sender, is able to turn the ciphertext back into the plaintext message.
replaced by a different letter according to a particular cipher alphabet, but
they are unlikely to know which cipher alphabet has been used. If the
cipher alphabet, the key, is kept a closely guarded secret between the
sender and the receiver, then the enemy cannot decipher the intercepted
message. The significance of the key, as opposed to the algorithm, is an
enduring principle of cryptography. It was definitively stated in 1883 by
the Dutch linguist Auguste Kerckhoffs von Nieuwenhof in his book La
Cryptographic militaire: "Kerckhoffs' Principle: The security of a cryptosystem
must not depend on keeping secret the crypto-algorithm. The
security depends only on keeping secret the key."
In addition to keeping the key secret, a secure cipher system must also
have a wide range of potential keys. For example, if the sender uses the
Caesar shift cipher to encrypt a message, then encryption is relatively
weak because there are only 25 potential keys. From the enemy's point of
view, if they intercept the message and suspect that the algorithm being
used is the Caesar shift, then they merely have to check the 25
possibilities. However, if the sender uses the more general substitution
algorithm, which permits the cipher alphabet to be any rearrangement of
the plain alphabet, then there are
$400,000,000,000,000,000,000,000,000$
possible keys from which to choose. One such is shown in
Figure 5. From
the enemy's point of view, if the message is intercepted
and the
algorithm is known, there is still the horrendous task of checking all
possible keys. If an enemy agent were able to check one of the
$400,000,000,000,000,000,000,000,000$ possible keys every second, it
would take roughly a billion times the lifetime of the universe to check all
of them and decipher the message.

Plain alphabet abcdefghi j klmnopqrstuvwxyz
Cipher alphabet J LPAWIQBCTRZYDSKEG FXHUONVM

Plaintextet to, brute?

CiphertextWX XH, LGHXW?

Figure 5 An example of the general substitution algorithm, in which each letter in the plaintext is substituted with another letter according to a key. The key is defined by the cipher alphabet, which can be any rearrangement of the plain alphabet.

I

The Cipher of Mary Queen of Scots 13

The beauty of this type of cipher is that it is easy to implement, but
provides a high level of security. It is easy for the sender to define the key,
which consists merely of stating the order of the 26
letters in the rearranged
cipher alphabet, and yet it is effectively impossible for the enemy to check
all possible keys by the so-called brute-force attack. The simplicity of the key
is important, because the sender and receiver have to
share knowledge of
the key, and the simpler the key, the less the chance of a misunderstanding.

In fact, an even simpler key is possible if the sender is prepared to
accept a slight reduction in the number of potential keys. Instead of randomly rearranging the plain alphabet to achieve the cipher alphabet,
the sender chooses a keyword or keyphrase. For example, to use JULIUS
CAESAR as a keyphrase, begin by removing any spaces and repeated
letters (JULISCAER), and then use this as the beginning of the jumbled
cipher alphabet. The remainder of the cipher alphabet is merely the remaining letters of the alphabet, in their correct order, starting where the keyphrase ends. Hence, the cipher alphabet would read as follows.

Plain alphabet abcdefgh i j k Imnopqrstuvwxyz
Cipher alphabet J UL I SCAERTVWXYZBDF GHKMNOPQ

The advantage of building a cipher alphabet in this way is that it is easy to
memorize the keyword or keyphrase, and hence the cipher alphabet. This
is important, because if the sender has to keep the cipher alphabet on a
piece of paper, the enemy can capture the paper, discover the key, and read any communications that have been encrypted with it. However, if the key can be committed to memory it is less likely to
fall into enemy
hands. Clearly the number of cipher alphabets generated by keyphrases is
smaller than the number of cipher alphabets generated without restriction,
but the number is still immense, and it would be effectively
impossible for the enemy to unscramble a captured message by testing all
possible keyphrases.

This simplicity and strength meant that the substitution cipher
dominated the art of secret writing throughout the first millennium a.d.
Codemakers had evolved a system for guaranteeing secure communication,
so there was no need for further development-without necessity,
there was no need for further invention. The onus had fallen upon the

14

The Code Book
codebreakers, those who were attempting to crack the substitution ciphel r : Was there any way for an enemy interceptor to unravel an encryptely message? Many ancient scholars considered that the substitution ciphejtt
was unbreakable, thanks to the gigantic number of possible keys, and fop'
centuries this seemed to be true. However, codebreakers would eventualities
find a shortcut to the process of exhaustively searching all keys. Instead oils
taking billions of years to crack a cipher, the shortcut could reveal the
message in a matter of minutes. The breakthrough occurred in the East)
and required a brilliant combination of linguistics,
statistics and religious
devotion.li

The Arab Cryptanalysts

At the age of about forty, Muhammad began regularly visiting an isolated
cave on Mount Him just outside Mecca. This was a retreat, a place for
prayer, meditation and contemplation. It was during a period of deep
reflection, around a.d. 610, that he was visited by the archangel Gabriel,
who proclaimed that Muhammad was to be the messenger of God. This was
the first of a series of revelations which continued until Muhammad died
some twenty years later. The revelations were recorded by various scribes
during the Prophet's life, but only as fragments, and it was left to Abu Bakr,
the first caliph of Islam, to gather them together into a single text. The work
was continued by Umar, the second caliph, and his daughter Hafsa, and was
eventually completed by Uthman, the third caliph. Each revelation became one of the 114 chapters of the Koran.

The ruling caliph was responsible for carrying on the work of the
Prophet, upholding his teachings and spreading his word. Between the
appointment of Abu Bakr in 632 to the death of the fourth caliph, All, in
661, Islam spread until half of the known world was under Muslim rule.
Then in 750, after a century of consolidation, the start of the Abbasid
caliphate (or dynasty) heralded the golden age of Islamic civilization. The
arts and sciences flourished in equal measure. Islamic
craftsmen bequeathed
us magnificent paintings，ornate carvings，and the most elaborate textiles in history，while the legacy of Islamic scientists is
evident from the number of Arabic words that pepper the lexicon of
modern science such as algebra，alkaline and zenith．

The Cipher oj w＇j－－
a
larse part the result of a
ots 19
is a sub－ext
is P ，
hnique，
；ach of
＞ntents
：harac
alysis
only
very
here
1 to
ire，
ire
＇K
It．
へ＊へへへ＊\＃＊rz£へ
andpeacefalsoc＾．＾t＞and mstead＾fged
ieir predecessors－J＾uent＾＾＾
rung an organized ancominerce and＾
，ses to grow and gave $n s^{\wedge} g^{\wedge}$ cmzen．Al ${ }^{\circ} s$

IWS reduced c－nflj＾＾on．«＾to＾＾otncrypnon－effete
${ }^{\wedge} \mathrm{cm} \wedge \mathrm{n}$－ducved through he us，＾＾
rns＝ir－i＾：＾：tdi＾
？JS＾＾＾r＾＾＞－－
ualsTU as＾J＾＾toonj＊＾which was niWhlchmcludeseca apher aph＾＾

```
^e adnnmstrators usu&^, s d en ^ ^^^
ply a rearrangement^ ^d Oth r typ# ^
:y also used apher ^ betmlght be replaced^habetic
---^^S^^
^^S^^Ucome"ubm
3th.MHhesubsUtuUoncp. , the use of the mono-
,1S
general category^faffllliar ^th the^ ^^
Had the Arabs <^ they would not waa^ ^
lphabetlc «*«^^P»^-"::::;
destroylngaphers.
aenuon in any h^w£r£ also capable& message
^ts^c^^^sr=
P,Hou, tao**^ ^ *< 'W"tyit o-S --
-tUod8 of n rSo* .> -*' > *££* for b-*<. ^
<r*^^~ >"
^tr^r^--r^^^
^sris^itss*_*_*-"
Deluding mathematics,
^
1
I16 The Code Book1W Islam demands justice
1,, for cryptanaly^, because Wowledge!OI
ded an ideal cradle for oyping thls requi^ ^
$3?$3?g££=
Wisdom"), a 1W and ce^edgM<£malung 6om
At the same tune > afprocured the « ^ profes of
^^-r;^^::^^
s
Of cryv""'"' . , schools were <-- . f ^uham»^ - .
,ue
Ma,o, *'*9t tTM.^*"TM1 i",et<< to <t*|*»>
.toed-eotof.""^ ,08UOS .《<< '^;,co»»»,i»8thefaq<<;i(k
»the ^Jtd^.***^t^<»>l>"CMBS»*
duonoloB<<fthe' eachDelation.the'»><»<<" the
```

```
of >>** conned n ,^,f, < ^.(^, ^
hrfwolt^TM <'«*'thTa t h^' ** "t^"1
^^^sr-^
r^^^r=t*rp."-%
«"»*8' ○ " co-ten--'V^S no ' ^ 4* «»'>>>
^^^iTJSSr^-1--"'
level of words. They
rf CIVP,anal»<<> -^ «re es,,*h<^J^^ -«"
"<
,,-._, Geological scno _,evelations 01p<;tablishms . _
than others. me
```

. --" ~£2^~>Stf£Z2:>
zsg^zxtt'-''*:
^js^TTjr*^*
r^"~tiS2^*tt£»
st too<n ^'Tju.Mqibn^AW'*". «">was ^
...s.Ab<stfV».**hteot)he, of ,he ^linguis,ics
irf, too." » *e PdlclK, asuonomv, ".»*^ 1987 in
Of 290 books on m ^ «d, SCOv^^ >(
; $\mathrm{S}^{\wedge \wedge} \mathrm{r}:-$ «^»
'tt^zzzz^
; $s^{\wedge}, r r^{\wedge}-$ w
o^^is^'ss.^^.rrr:
^^riisr^S^-- tt^xz3Z*r:\&.**»
S^{\wedge}
' $/$, «».《\&. . >><»<<.<»msoftheEn6fchalpl.ab<<.

```
M^<<^V^1^^^rf^^-
^ S^ S^^-
.^ri--^^_"*"1""
J^W/V^uiV-j>y>JW&'《~>'v?') 1>>L "^i"1^
t^^;^U,OVL*M*Y V* ~-> }*>;W."
^^^^^^^^^^^fl^J^^}^'_^'
^u/te$> ^i^uii^sjJdM^^'^/^1
X^J^£.^^1**<l^«^i^;1'^£ー'^'^''*
<%^J&jU^A*3w ^li^^^A^, -'^, -'-' 1 - p^i^^^^^jlX&^M'^'
? <4^~. M^. M*.-*'^ -Wlf {>^^,<<lLWWV _>!--^Qr--^il ^J^1
^.UY^^ £^lj^lt£3jl£^>isZA^ljL*
*>^^^^<^ ^^^^^xi^Y%^^i^*JLV^"^
^V^PiU^^r^^}> ^, Y^M ^****
/^M^^}\mp@subsup{M}{}{\wedge^^}\mp@subsup{Y}{}{\wedge^^
j»lJ^>iK^?%%l)tf!<<^W\^^^<^'' -jULJ! "%%^^^^^i^^lJ)*^^^1^1^^
i^^^^^\^fyAtf^^^^^^
' ^~^) J^^\^^^^^^^k^1 W3H>~"J'
A^J^W`^ilj<<>U^^^^/U^
^>^ .^U^^^^^^^H;/'''^'^^-jjpyi^^..U^uJ^,^^l^*^^V.^NWjli-'>>-^4'^
^^^ij^^^^^^^^^^^^J^^3'l^.l^U
^biu, IxrVJUjuj.r'M1 ^>> . M^^^^i^.r^fWurt1 ^e/^M^^'^'
rc^^^1^*''^_^^'^, LJ. Y^t>^^A!!s'Ak
*S%*$*£f-'&^r$>}> te^y&*>>* $t*£~*
```


J?y^faUffi\&\&\& \$S*\&X'>*\&*x£Sto'

```
^.-VX. ~<^j( S*'(. -^ L*^._I/
Jl^^^kJ^_^
li _i»i.
```

-j5»
Vr/L-^.^,

Figure 6 The first page of al-Kindi's manuscript On Deciphering Cryptographic Messages, containing the oldest known description of cryptanalysis by frequency analysis.

```
^^^t^.te^'1^^1^'''''^1^^
' iWJ^l,^y>Dfc \^^^>^
```

pp

The Cipher of Mary Queen of Scots 19
the ciphertext is, for example, J then it would seem likely that this is a substitute for e. And if the second most common letter in the ciphertext is P, then this is probably a substitute for t, and so on. Al-Kindfs technique, known as frequency analysis, shows that it is unnecessary to check each of
the billions of potential keys. Instead, it is possible to reveal the contents
of a scrambled message simply by analyzing the frequency
of the characters
in the ciphertext.

However, it is not possible to apply al-Kindl's recipe for
cryptanalysis
unconditionally, because the standard list of frequencies in Table 1 is only
an average, and it will not correspond exactly to the frequencies of every
text. For example, a brief message discussing the effect of the atmosphere
on the movement of striped quadrupeds in Africa would not yield to
straightforward frequency analysis: "From Zanzibar to Zambia and Zaire,
ozone zones make zebras run zany zigzags." In general, short texts are
likely to deviate significantly from the standard frequencies, and if there
are less than a hundred letters, then decipherment will be very difficult.
On the other hand, longer texts are more likely to follow the standard frequencies, although this is not always the case. In 1969, the French author

Table 1 This table of relative frequencies is based on passages taken from newspapers
and novels, and the total sample was 100,362 alphabetic characters. The table was
compiled by H. Beker and F. Piper, and originally published in Cipher Systems: The Protection Of Communication.

Letter

Percentage
a
8.2
b
1.5

C
2.8
d
4.3
e
12.7
f
2.2
g
2.0
h
6.1
i
7.0

J
0.2
k
0.8

1
4.0
m
2.4

Letter
Percentage
n
6.7

0
7.5

P
1.9
q
0.1
r
6.0
s
6.3
t
9.1
u
2.8

V
1.0
w
2.4

X
0.2

Y
2.0

Georges Perec wrote La Disparition, a 200-page novel that did not use
words that contain the letter e. Doubly remarkable is the fact that the
English novelist and critic Gilbert Adair succeeded in translating La Disparition into English, while still following Perec's shunning of the letter e. Entitled A Void, Adair's translation is surprisingly readable (see Appendix
A). If the entire book were encrypted via a monoalphabetic substitution
cipher, then a naive attempt to decipher it might be
stymied by the complete
lack of the most frequently occurring letter in the English alphabet.
Having described the first tool of cryptanalysis, I shall continue by giving
an example of how frequency analysis is used to decipher a ciphertext.
I have avoided peppering the whole book with examples of cryptanalysis,
but with frequency analysis I make an exception. This is partly because
frequency analysis is not as difficult as it sounds, and partly because it is
the primary cryptanalytic tool. Furthermore, the example that follows
provides insight into the modus operandi of the cryptanalyst. Although
frequency analysis requires logical thinking, you will see that it also
demands guile, intuition, flexibility and guesswork.

PCQ VMJYPD LBYK LYSO KBXBJXWXV BXV ZCJPO EYPD KBXBJYUXJ LBJOO KCPK. CP LBO LBCMKXPV XPV IYJKL PYDBL, QBOP KBO BXV OPVOV LBO LXRO Cl SX'XJMI, KBO JCKO XPV EYKKOV LBO DJCMPV ZOICJO BYS, KXUYPD: "DJOXL EYPD, ICJ X LBCMKXPV XPV CPO PYDBLK Y BXNO ZOOP JOACMPLYPD LC UCM LBO IXZROK Cl FXKL XDOK XPV LBO RODOPVK Cl XPAYOPL EYPDK. SXU Y SXEO KC ZCRV XK LC AJXNO X IXNCMJ Cl UCMJ SXGOKLU?"

OFYRCDMO, LXROK IJCS LBO LBCMKXPV XPV CPO PYDBLK

Imagine that we have intercepted this scrambled message. The challenge
is to decipher it. We know that the text is in English, and that it has been
scrambled according to a monoalphabetic substitution
cipher, but we
have no idea of the key. Searching all possible keys is impractical, so we
must apply frequency analysis. What follows is a
step-by-step guide to
cryptanalyzing the ciphertext, but if you feel confident then you might
prefer to ignore this and attempt your own independent cryptanalysis.

The Cipher of Mary Queen of Scots 21

```
The immediate reaction of any cryptanalyst upon seeing
such a ciphertext
is to analyze the frequency of all the letters, which
results in Table 2.
Not surprisingly, the letters vary in their frequency. The
question is, can
vre identify what any of them represent, based on their
frequencies? The
ciphertext is relatively short, so we cannot slavishly
apply frequency
analysis. It would be naive to assume that the commonest
letter in the
```

ciphertext, 0 , represents the commonest letter in English, e, or that the eighth most frequent letter in the ciphertext, Y, represents the eighth most
frequent letter in English, h. An unquestioning application of frequency
analysis would lead to gibberish. For example, the first word PCQ would
be deciphered as aov.

However, we can begin by focusing attention on the only three letters
that appear more than thirty times in the ciphertext, namely $0, \mathrm{X}$ and P .
It is fairly safe to assume that the commonest letters in the ciphertext
probably represent the commonest letters in the English alphabet, but
not necessarily in the right order. In other words, we cannot be sure that
$0=e, X=t$, and $P=a$, but we can make the tentative assumption that:
$0=e$, tor $a, X=e, t$ or $a, P=e$, tor a.

Table 2 Frequency analysis of enciphered message.

Letter

Frequency

Letter

Frequency

Occurrences
Percentage
A
3
0.9

B
25
7.4

C
27
8.0

D
14
4.1

E
5
1.5

F
2
0.6

G
1
0.3

H
0
0.0

1
11
3.3

J
18
5.3

K
26
7.7

L
25
7.4

M
11
3.3

Occurrences
Percentage N
3
0.9

0
38
11.2

P
31
9.2

Q
2
0.6

R
6
1.8

S
7
2.1

T
0
0.0

U
6
1.8

V

18
5.3

W
1
0.3

X
34
10.1

Y
19
5.6

Z
5
1.5

22

The Code Book

In order to proceed with confidence, and pin down the identity of the
three most common letters, $0, X$ and P, we need a more subtle form of
frequency analysis. Instead of simply counting the
frequency of the three
letters, we can focus on how often they appear next to all the other letters.
For example, does the letter O appear before or after several other letters,
or does it tend to neighbor just a few special letters? Answering this
question will be a good indication of whether O represents a vowel or a
consonant. If O represents a vowel it should appear before and after most of the other letters, whereas if it represents a consonant, it will tend to
avoid many of the other letters. For example, the letter e can appear
before and after virtually every other letter, but the letter t is rarely seen
before or after b, d, g, j, k, m, q or v.

The table below takes the three most common letters in the ciphertext,
O, X and P, and lists how frequently each appears before or after every
letter. For example, 0 appears before A on 1 occasion, but never appears
immediately after it, giving a total of 1 in the first box. The letter 0
neighbors the majority of letters, and there are only 7 that it avoids
completely, represented by the 7 zeros in the O row. The letter X is equally
sociable, because it too neighbors most of the letters, and avoids only 8 of
them. However, the letter P is much less friendly. It tends to lurk around just a few letters, and avoids 15 of them. This evidence
suggests that O
and X represent vowels, while P represents a consonant.

ABCDEFGHIJKLMNOPQRSTUVWXYZ
O 19031110146012280410030112
X 07011110246303190240332001
P 105600000112208000000110990

Now we must ask ourselves which vowels are represented by O and X.
They are probably e and a, the two most popular vowels in the English
language, but does $O=e$ and $X=a$, or does $0=a$ and $X=$ e? An
interesting feature in the ciphertext is that the
combination OO appears
twice, whereas XX does not appear at all. Since the
letters ee appear far
more often than a a in plaintext English, it is likely
that $0=e$ and $X=a$.
At this point, we have confidently identified two of the letters in the

The Cipher of Mary Queen of Scots 23
fciphertext. Our conclusion that $X=a$ is supported by the fact that X
appears on its own in the ciphertext, and a is one of only two English
words that consist of a single letter. The only other
letter that appears on
its own in the ciphertext is Y, and it seems highly likely that this
represents the only other one-letter English word, which is i. Focusing on
words with only one letter is a standard cryptanalytic
trick, and I have
included it among a list of cryptanalytic tips in Appendix B. This
particular trick works only because this ciphertext still
has spaces between
the words. Often, a cryptographer will remove all the spaces to make it
harder for an enemy interceptor to unscramble the message.

Although we have spaces between words, the following trick would
also work where the ciphertext has been merged into a single string of
characters. The trick allows us to spot the letter h, once we have already
identified the letter e. In the English language, the letter h frequently goes
before the letter e (as in the, then, they, etc.), but rarely after e. The table
below shows how frequently the 0 , which we think
represents e, goes
before and after all the other letters in the ciphertext. The table suggests
that B represents h, because it appears before O on 9 occasions, but it
never goes after it. No other letter in the table has such an asymmetric
relationship with O.

ABCDEFCHI J KLMNOPQRSTUVWXYZ
after O 10010100104000250000020100
before 009021010042012230410010012

Each letter in the English language has its own unique personality, which
includes its frequency and its relation to other letters. It is this personality
that allows us to establish the true identity of a letter, even when it has
been disguised by monoalphabetic substitution.

We have now confidently established four letters, $O=e, X$ $=a, Y=i$
and $B=h$, and we can begin to replace some of the letters in the
ciphertext with their plaintext equivalents. I shall stick
to the convention
of keeping ciphertext letters in upper case, while putting plaintext letters
in lower case. This will help to distinguish between those letters we still
have to identify, and those that have already been established.

24 The Code Book

PCQ VMJiPD LhiK LiSe KhahJaWaV have ZCJPe EiPD KhahJiUaJ LhJee KCPK. CP The LhCMKaPV aPV MJKL PiDhL, QheP Khe have ePVeV The LaRe Cl Sa'aJMI, Khe JCKe aPV EiKKev The DJCMPV ZelCJe his, KaUiPD: "DJeaL EiPD, ICJ a LhCMKaPV aPV CPe PiDhLK i haNe ZeeP JeACMPLiPD LC UCM The laZReK Cl FaKL aDeK aPV The ReDePVK Cl aPAiePL EiPDK. SaU i SaEe KC ZCRV aK LC AJaNe a laNCMJ Cl UCMJ SaGeKLU?"
eFiRCDMe, LaReK IJCS The LhCMKaPV aPV CPe PiDhLK

This simple step helps us to identify several other letters, because we can
guess some of the words in the ciphertext. For example, the most
common three-letter words in English are the and and, and these are
relatively easy to spot-Lhe, which appears six times, and aPV, which
appears five times. Hence, L probably represents t, P probably represents
n, and V probably represents d. We can now replace these letters in the
ciphertext with their true values:
nCQ dMJinD thik tiSe KhahJaWad had ZCJne EinD
KhahJiUaJ thJee KCnK. Cn the thCMKand and liJKt niDht, Qhen Khe had ended the taRe Cl Sa'aJMI, Khe JCKe and EiKKed the DJCMnd ZelCJe his, KaUinD: "DJeat EinD, ICJ a thCMKand and Cne niDhtK i haNe Zeen JeACMntinD to UCM the laZReK Cl FaKt aDek and the ReDendK Cl anAient EinDK.
eFiRCDMe, taReK IJCS the thCMKand and Cne niDhtK

Once a few letters have been established, cryptanalysis progresses very
rapidly. For example, the word at the beginning of the second sentence is
Cn. Every word has a vowel in it, so C must be a vowel. There are only
two vowels that remain to be identified, u and o; u does not fit, so C must
represent 0 . We also have the word Khe, which implies that K represents
either t or s. But we already know that $L=t$, so it becomes clear that $K=s$.
Having identified these two letters, we insert them into the ciphertext, and
there appears the phrase thoMsand and one niDhts. A sensible guess for
this would be thousand and one nights, and it seems likely that the
final line is telling us that this is a passage from Tales from the Thousand and
One Nights. This implies that $M=u, I=f, J=r, D=g$, $R=I$, and $S=m$.

The Cipher of Mary Queen of Scots 25

We could continue trying to establish other letters by guessing other
words, but instead let us have a look at what we know about the plain
alphabet and cipher alphabet. These two alphabets form the key, and they
were used by the cryptographer in order to perform the substitution that
scrambled the message. Already, by identifying the true values of letters in
the ciphertext, we have effectively been working out the
details of the
cipher alphabet. A summary of our achievements, so far, is given in the
plain and cipher alphabets below.

Plain alphabet abcdefghi j klmnopqrstuvwxyz
Cipher alphabet X--VOIDBY--RSPC--JKLM

By examining the partial cipher alphabet, we can complete the
cryptanalysis. The sequence VOID BY in the cipher alphabet suggests that
the cryptographer has chosen a keyphrase as the basis for the key. Some
guesswork is enough to suggest the keyphrase might be A VOID BY

GEORGES PEREC, which is reduced to AVOIDBYGERSPC after removing
spaces and repetitions. Thereafter, the letters continue in alphabetical
order, omitting any that have already appeared in the keyphrase. In this
particular case, the cryptographer took the unusual step of not starting the
keyphrase at the beginning of the cipher alphabet, but rather starting it
three letters in. This is possibly because the keyphrase begins with the
letter A, and the cryptographer wanted to avoid encrypting a as A. At last,
having established the complete cipher alphabet, we can unscramble the
entire ciphertext, and the cryptanalysis is complete.

Plain alphabet abcdefghi j klmnopqrstuvwxyz Cipher alphabet XZAVOIDBYGERSPCFHJKLMNQTUW

Now during this time Shahrazad had borne King
Shahriyar three sons. On the thousand and first night, when she had ended the tale of Ma'aruf, she rose and
kissed the ground before him, saying: "Great King, for a thousand and one nights I have been recounting to you the fables of past ages and the legends of ancient kings. May I make so bold as to crave a favor of your majesty?"

Epilogue, Tales from the Thousand and One Nights

26 The Code Book

Renaissance in the West

Between a.d. 800 and 1200, Arab scholars enjoyed a vigorous period of
intellectual achievement. At the same time, Europe was firmly stuck in
the Dark Ages. While al-Kindi was describing the invention of
cryptanalysis, Europeans were still struggling with the basics of
cryptography. The only European institutions to encourage the study of
secret writing were the monasteries, where monks would study the Bible
in search of hidden meanings, a fascination that has persisted through to
modern times (see Appendix C).

Medieval monks were intrigued by the fact that the Old Testament
contained deliberate and obvious examples of cryptography. For example,
the Old Testament includes pieces of text encrypted with atbash, a
traditional form of Hebrew substitution cipher. Atbash involves taking
each letter, noting the number of places it is from the beginning of the
alphabet, and replacing it with a letter that is an equal
number of places
from the end of the alphabet. In English this would mean
that a, at the
beginning of the alphabet, is replaced by Z, at the end of the alphabet, b
is replaced by Y, and so on. The term atbash itself hints
at the substitution
it describes, because it consists of the first letter of the Hebrew alphabet, akph, followed by the last letter taw, and then there is the second letter, beth, followed by the second to last letter shin. An example of atbash appears in Jeremiah 25: 26 and 51: 41, where "Babel" is replaced by the word "Sheshach"; the first letter of Babel is beth, the second letter of the
Hebrew alphabet, and this is replaced by shin, the second-to-last letter; the
second letter of Babel is also beth, and so it too is replaced by shin; and the
last letter of Babel is lamed, the twelfth letter of the
Hebrew alphabet, and
this is replaced by kaph, the twelfth-to-last letter.

Atbash and other similar biblical ciphers were probably intended only
to add mystery, rather than to conceal meaning, but they were enough to
spark an interest in serious cryptography. European monks began to
rediscover old substitution ciphers, they invented new ones, and, in due
course, they helped to reintroduce cryptography into
Western
civilization. The first known European book to describe the use of
cryptography was written in the thirteenth century by the English
Franciscan monk and polymath Roger Bacon. Epistle on the Secret Works of

The Cipher of Mary Queen of Scots 27

Art and the Nullity of Magic included seven methods for keeping messages
secret, and cautioned: "A man is crazy who writes a secret
in any other way than one which will conceal it from the vulgar."

By the fourteenth century the use of cryptography had become
increasingly widespread, with alchemists and scientists using it to keep
their discoveries secret. Although better known for his literary
achievements, Geoffrey Chaucer was also an astronomer and a
cryptographer, and he is responsible for one of the most famous examples
of early European encryption. In his Treatise on the Astrolabe he provided
some additional notes entitled "The Equatorie of the Planetis," which
included several encrypted paragraphs. Chaucer's
encryption replaced
plaintext letters with symbols, for example b with 5. A ciphertext
consisting of strange symbols rather than letters may at first sight seem
more complicated, but it is essentially equivalent to the traditional letter-for-letter
substitution. The process of encryption and the level of security
are exactly the same.

By the fifteenth century, European cryptography was a burgeoning industry. The revival in the arts, sciences and scholarship during the
Renaissance nurtured the capacity for cryptography, while an explosion in
political machinations offered ample motivation for secret communication.
Italy, in particular, provided the ideal environment for cryptography.
As well as being at the heart of the Renaissance, it consisted of
independent city states, each trying to outmaneuver the others.
Diplomacy flourished, and each state would send
ambassadors to the
courts of the others. Each ambassador received messages from his
respective head of state, describing details of the
foreign policy he was to
implement. In response, each ambassador would send back any
information that he had gleaned. Clearly there was a great incentive to
encrypt communications in both directions, so each state established a
cipher office, and each ambassador had a cipher secretary.

At the same time that cryptography was becoming a routine diplomatic
tool, the science of cryptanalysis was beginning to emerge in the West.
Diplomats had only just familiarized themselves with the skills required
to establish secure communications, and already there were individuals
attempting to destroy this security. It is quite probable that cryptanalysis
was independently discovered in Europe, but there is also the possibility

28

The Code Book
that it was introduced from the Arab world. Islamic discoveries in science
and mathematics strongly influenced the rebirth of science in Europe,
and cryptanalysis might have been among the imported knowledge.

Arguably the first great European cryptanalyst was Giovanni Soro, appointed as Venetian cipher secretary in 1506. Soro's reputation was
known throughout Italy, and friendly states would send
intercepted
messages to Venice for cryptanalysis. Even the Vatican, probably the
second most active center of cryptanalysis, would send Soro seemingly
impenetrable messages that had fallen into its hands. In 1526, Pope
Clement VII sent him two encrypted messages, and both were returned
having been successfully cryptanalyzed. And when one of the Pope's own
encrypted messages was captured by the Florentines, the Pope sent a copy
to Soro in the hope that he would be reassured that it was unbreakable.
Soro claimed that he could not break the Pope's cipher, implying that the
Florentines would also be unable to decipher it. However, this may have
been a ploy to lull the Vatican cryptographers into a false sense of
security--Soro might have been reluctant to point out the weaknesses of
the Papal cipher, because this would only have encouraged the Vatican to
switch to a more secure cipher, one that Soro might not have been able to
break.

Elsewhere in Europe, other courts were also beginning to employ
skilled cryptanalysts, such as Philibert Babou, cryptanalyst to King
Francis I of France. Babou gained a reputation for being incredibly
persistent, working day and night and persevering for
weeks on end in
order to crack an intercepted message. Unfortunately for Babou, this gave
the king ample opportunity to carry on a long-term affair with his wife.
Toward the end of the sixteenth century the French
consolidated their
codebreaking prowess with the arrival of Fra^ois Viete,
who took
particular pleasure in cracking Spanish ciphers. Spain's cryptographers,
who appear to have been naive compared with their rivals elsewhere in
Europe, could not believe it when they discovered that their messages
were transparent to the French. King Philip II of Spain
went as far as
petitioning the Vatican, claiming that the only
explanation for Viete's
cryptanalysis was that he was an "archfiend in league with the devil."

Philip argued that Viete should be tried before a Cardinal's Court for his
demonic deeds; but the Pope, who was aware that his own cryptanalysts

The Cipher of Mary Queen of Scots 29
bad been reading Spanish ciphers for years, rejected the Spanish petition.
Mews of the petition soon reached cipher experts in
various countries, and
Spanish cryptographers became the laughingstock of Europe.

The Spanish embarrassment was symptomatic of the state of the battle
between cryptographers and cryptanalysts. This was a period of transition, with cryptographers still relying on the monoalphabetic substitution
cipher, while cryptanalysts were beginning to use
frequency analysis to
break it. Those yet to discover the power of frequency analysis continued
to trust monoalphabetic substitution, ignorant of the extent to which
cryptanalysts such as Soro, Babou and Viete were able to read their messages.

Meanwhile, countries that were alert to the weakness of the straightforward
monoalphabetic substitution cipher were anxious to develop a
better cipher, something that would protect their own nation's messages
from being unscrambled by enemy cryptanalysts. One of the simplest
improvements to the security of the monoalphabetic substitution cipher
was the introduction of nulls, symbols or letters that were not substitutes
for actual letters, merely blanks that represented nothing. For example,
one could substitute each plain letter with a number
between 1 and 99,
which would leave 73 numbers that represent nothing, and these could be
randomly sprinkled throughout the ciphertext with varying frequencies.
The nulls would pose no problem to the intended recipient, who would
know that they were to be ignored. However, the nulls would baffle an
enemy interceptor because they would confuse an attack by frequency
analysis. An equally simple development was that
cryptographers would
sometimes deliberately misspell words before encrypting the message.
Thys haz thi ifekkt off diztaughting thi ballans off
frikwenseas-- making it harder for the cryptanalyst to apply
frequency analysis.
However, the intended recipient, who knows the key, can unscramble the
message and then deal with the bad, but not unintelligible, spelling.

Another attempt to shore up the monoalphabetic substitution cipher
involved the introduction of codewords. The term code has a very broad
meaning in everyday language, and it is often used to
describe any
method for communicating in secret. However, as mentioned in the

Introduction, it actually has a very specific meaning, and applies only to a
certain form of substitution. So far we have concentrated on the idea of a
substitution cipher, whereby each letter is replaced by a different letter,

30

The Code Book
number or symbol. However, it is also possible to have substitution at a
much higher level, whereby each word is represented by another word or
symbol-this would be a code. For example,

- - j
assassinate = D
blackmail = P
capture= J
protect

Plain message
Encoded message
general =I
king $=0$
minister =ip
prince =9
= assassinate the king tonight
= DO-28

```
immediately = 08
today= 73
= 43
tonight= 28
tomorrow
```

Technically, a code is defined as substitution at the level of words or phrases, whereas a cipher is defined as substitution at the level of letters.
Hence the term encipher means to scramble a message using a cipher,
while encode means to scramble a message using a code. Similarly, the
term decipher applies to unscrambling an enciphered message, and decode to unscrambling an encoded message. The terms encrypt and decrypt are
more general, and cover scrambling and unscrambling with respect to
both codes and ciphers. Figure 7 presents a brief summary of these
definitions. In general, I shall keep to these
definitions, but when the
sense is clear, I might use a term such as "codebreaking"
to describe a
process that is really "cipher breaking"--the latter phrase might be technically accurate, but the former phrase is widely accepted.

SECRET

WRITING

CRYPTOGRAPHS
(scrambled)

SUBSTITUTIO

TRANSPOSITION

CODE
(replace words)

```
> CIPHER
(replace letters)
```

Figure 7 The science of secret writing and its main branches.

The Cipher of Mary Queen of Scots 31

At first sight, codes seem to offer more security than ciphers, because
words are much less vulnerable to frequency analysis than letters. To
decipher a monoalphabetic cipher you need only identify the true value of each of the 26 characters, whereas to decipher a code you need to
identify the true value of hundreds or even thousands of codewords.
However, if we examine codes in more detail, we see that they suffer from
two major practical failings when compared with ciphers.

First, once the
sender and receiver have agreed upon the 26 letters in the cipher alphabet
(the key), they can encipher any message, but to achieve the same level of
flexibility using a code they would need to go through the painstaking
task of defining a codeword for every one of the thousands of possible
plaintext words. The codebook would consist of hundreds of pages, and
would look something like a dictionary. In other words, compiling a
codebook is a major task, and carrying it around is a major inconvenience.

Second, the consequences of having a codebook captured by the
enemy are devastating. Immediately, all the encoded communications
would become transparent to the enemy. The senders and receivers would
have to go through the painstaking process of having to compile an
entirely new codebook, and then this hefty new tome would have to be
distributed to everyone in the communications network, which might
mean securely transporting it to every ambassador in every state. In
comparison, if the enemy succeeds in capturing a cipher key, then it is
relatively easy to compile a new cipher alphabet of 26
letters, which can
be memorized and easily distributed.

Even in the sixteenth century, cryptographers appreciated the inherent
weaknesses of codes, and instead relied largely on
ciphers, or sometimes nomenclators. A nomenclator is a system
of encryption that relies on a
cipher alphabet, which is used to encrypt the majority of
a message, and a
limited list of codewords. For example, a nomenclator book
might consist
of a front page containing the cipher alphabet, and then a second page
containing a list of codewords. Despite the addition of codewords, a
nomenclator is not much more secure than a straightforward cipher,
because the bulk of a message can be deciphered using frequency analysis,
and the remaining encoded words can be guessed from the context.

As well as coping with the introduction of the nomenclator, the best
cryptanalysts were also capable of dealing with badly spelled messages

32 The Code Book
and the presence of nulls. In short, they were able to break the majority of
encrypted messages. Their skills provided a steady flow of uncovered
secrets, which influenced the decisions of their masters and mistresses,
thereby affecting Europe's history at critical moments.

Nowhere is the impact of cryptanalysis more dramatically illustrated
than in the case of Mary Queen of Scots. The outcome of her trial
depended wholly on the battle between her codemakers and Queen
Elizabeth's codebreakers. Mary was one of the most significant figures of
the sixteenth century-Queen of Scotland, Queen of France, pretender to
the English throne-yet her fate would be decided by a slip of paper, the
message it bore, and whether or not that message could be deciphered.

On November 24, 1542, the English forces of Henry VIII demolished the
Scottish army at the Battle of Solway Moss. It appeared that Henry was
on the verge of conquering Scotland and stealing the crown of King
James V. After the battle, the distraught Scottish king suffered a complete
mental and physical breakdown, and withdrew to the palace at Falkland.
Even the birth of a daughter, Mary, just two weeks later could not revive
the ailing king. It was as if he had been waiting for news of an heir so that
he could die in peace, safe in the knowledge that he had done his duty.
Just a week after Mary's birth, King James V, still only thirty years old, died. The baby princess had become Mary Queen of Scots.

Mary was born prematurely, and initially there was considerable
concern that she would not survive. Rumors in England suggested that
the baby had died, but this was merely wishful thinking at the English
court, which was keen to hear any news that might destabilize Scotland.
In fact, Mary soon grew strong and healthy, and at the age of nine
months, on September 9, 1543, she was crowned in the chapel of Stirling
Castle, surrounded by three earls, bearing on her behalf the royal crown, scepter and sword.

The fact that Queen Mary was so young offered Scotland a respite from
English incursions. It would have been deemed unchivalrous had Henry
VIII attempted to invade the country of a recently dead
king, now under the
rule of an infant queen. Instead, the English king decided on a policy of

The Cipher of Mary Queen of Scots 33
; Mary in the hope of arranging a marriage between her and his son
d, thereby uniting the two nations under a Tudor sovereign. He began
; maneuvering by releasing the Scottish nobles captured at Solway Moss, ran the condition that they campaign in favor of a union with England.
j« However, after considering Henry's offer, the Scottish court rejected it je favor of a marriage to Francis, the dauphin of France. Scotland was
jiioosing to ally itself with a fellow Roman Catholic nation, a decision
jrhich pleased Mary's mother, Mary of Guise, whose own marriage with
James V had been intended to cement the relationship between Scotland
and France. Mary and Francis were still children, but the plan for the
foture was that they would eventually marry, and Francis would ascend
the throne of France with Mary as his queen, thereby uniting Scotland
and France. In the meantime, France would defend Scotland against any
English onslaught.

The promise of protection was reassuring, particularly as Henry VIII
had switched from diplomacy to intimidation in order to persuade the
Scots that his own son was a more worthy groom for Mary Queen of
Scots. His forces committed acts of piracy, destroyed crops, burned
villages and attacked towns and cities along the border. The "rough
wooing," as it is known, continued even after Henry's death in 1547.
Under the auspices of his son, King Edward VI (the would-be suitor), the
attacks culminated in the Battle of Pinkie Cleugh, in which the Scottish
army was routed. As a result of this slaughter it was decided that, for her
own safety, Mary should leave for France, beyond the reach of the
English threat, where she could prepare for her marriage to Francis. On
August 7, 1548, at the age of six, she set sail for the port of Roscoff.

Mary's first few years in the French court would be the most idyllic
time of her life. She was surrounded by luxury, protected from harm, and
she grew to love her future husband, the dauphin. At the age of sixteen
they married, and the following year Francis and Mary became King and
Queen of France. Everything seemed set for her triumphant return to
Scotland, until her husband, who had always suffered from poor health,
fell gravely ill. An ear infection that he had nursed since a child had
worsened, the inflammation spread toward his brain, and an abscess
began to develop. In 1560, within a year of being crowned, Francis was
dead and Mary was widowed.

34 The Code Book

From this point onward, Mary's life would be repeatedly struck by
tragedy. She returned to Scotland in 1561, where she discovered a
transformed nation. During her long absence Mary had confirmed her

Catholic faith, while her Scottish subjects had
increasingly moved toward
the Protestant church. Mary tolerated the wishes of the majority and at
first reigned with relative success, but in 1565 she married her cousin,
Henry Stewart, the Earl of Darnley, an act that led to a spiral of decline.

Darnley was a vicious and brutal man whose ruthless greed for power lost
Mary the loyalty of the Scottish nobles. The following year Mary
witnessed for herself the full horror of her husband's barbaric nature when
he murdered David Riccio, her secretary, in front of her. It became clear to
everyone that for the sake of Scotland it was necessary to get rid of
Darnley. Historians debate whether it was Mary or the Scottish nobles
who instigated the plot, but on the night of February 9, 1567, Darnley's
house was blown up and, as he attempted to escape, he was strangled. The
only good to come from the marriage was a son and heir, James.

Mary's next marriage, to James Hepburn, the Fourth Earl of Bothwell,
was hardly more successful. By the summer of 1567 the Protestant
Scottish nobles had become completely disillusioned with their Catholic
Queen, and they exiled Bothwell and imprisoned Mary, forcing her to
abdicate in favor of her fourteen-month-old son, James VI, while her half-brother,
the Earl of Moray, acted as regent. The next year, Mary escaped
from her prison, gathered an army of six thousand royalists, and made a
final attempt to regain her crown. Her soldiers confronted the regent's
army at the small village of Langside, near Glasgow, and

Mary witnessed
the battle from a nearby hilltop. Although her troops were greater in
number, they lacked discipline, and Mary watched as they were torn apart. When defeat was inevitable, she fled. Ideally she would
have headed east to the coast, and then on to France, but this would have
meant crossing territory loyal to her half-brother, and so instead she
headed south to England, where she hoped that her cousin Queen
Elizabeth I would provide refuge.

Mary had made a terrible misjudgment. Elizabeth offered Mary
nothing more than another prison. The official reason for her arrest was
in connection with the murder of Darnley, but the true reason was that
Mary posed a threat to Elizabeth, because English Catholics considered

The Cipher of Mary Queen of Scots 35
wy
fMary to be the true queen ${ }^{\circ} \mathrm{f}$ England. Through her grandmother, Margaret Tudor, the elder sister of Henry VIII, Mary did indeed have a
claim to the throne, but Henry's last surviving offspring, Elizabeth I,
would seem to have a prior claim. However, according to Catholics,
Elizabeth was illegitimate because she was the daughter of Anne Boleyn,
Henry's second wife after he had divorced Catherine of Aragon in
defiance of the Pope. English Catholics did not recognize Henry VIIPs
divorce, they did not acknowledge his ensuing marriage to Anne Boleyn,
and they certainly did not accept their daughter Elizabeth as Queen.
Catholics saw Elizabeth as a bastard usurper.

Mary was imprisoned in a series of castles and manors. Although
Elizabeth thought of her as one of the most dangerous figures in England,
many Englishmen admitted that they admired her gracious manner, her
obvious intelligence and her great beauty. William Cecil, Elizabeth's
Great Minister, commented on "her cunning and sugared entertainment
of all men," and Nicholas White, Cecil's emissary, made a similar
observation: "She hath withal an alluring grace, a pretty Scotch accent,
and a searching wit, clouded with mildness." But, as each year passed, her
appearance waned, her health deteriorated and she began to lose hope.
Her jailer, Sir Amyas Paulet, a Puritan, was immune to her charms, and
treated her with increasing harshness.

By 1586, after 18 years of imprisonment, she had lost all her privileges.
She was confined to Chartley Hall in Staffordshire, and was no longer
allowed to take the waters at Buxton, which had previously helped to
alleviate her frequent illnesses. On her last visit to Buxton she used a
diamond to inscribe a message on a windowpane: "Buxton, whose warm
waters have made thy name famous, perchance I shall visit thee no more-Farewell."
It appears that she suspected that she was about to lose what
little freedom she had. Mary's growing sorrow was compounded by the actions of her nineteen-year-old son, King James VI of Scotland. She had
always hoped that one day she would escape and return to Scotland to
share power with her son, whom she had not seen since he was one year
old. However, James felt no such affection for his mother. He had been
brought up by Mary's enemies, who had taught James that his mother
had murdered his father in order to marry her lover. James despised her,
and feared that if she returned then she might seize his crown. His hatred

36 The Code Book
toward Mary was demonstrated by the fact that he had no qualms in seeking
a marriage with Elizabeth I, the woman responsible for his mother's
imprisonment (and who was also thirty years his senior). Elizabeth
declined the offer.

Mary wrote to her son in an attempt to win him over, but her letters
never reached the Scottish border. By this stage, Mary was more isolated
then ever before: all her outgoing letters were
confiscated, and any incoming correspondence was kept by her jailer. Mary's morale was at its
lowest, and it seemed that all hope was lost. It was under these severe and
desperate circumstances that, on January 6, 1586, she received an astonishing
package of letters.

The letters were from Mary's supporters on the Continent, and they
had been smuggled into her prison by Gilbert Gifford, a Catholic who
had left England in 1577 and trained as a priest at the English College in
Rome. Upon returning to England in 1585, apparently keen
to serve
Mary, he immediately approached the French Embassy in London,
where a pile of correspondence had accumulated. The Embassy had
known that if they forwarded the letters by the formal route, Mary would
never see them. However Gifford claimed that he could smuggle the
letters into Chartley Hall, and sure enough he lived up to his word. This
delivery was the first of many, and Gifford began a career as a courier,
not only passing messages to Mary but also collecting her replies. He had
a rather cunning way of sneaking letters into Chartley Hall. He took the
messages to a local brewer, who wrapped them in a leather packet, which
was then hidden inside a hollow bung used to seal a barrel of beer. The
brewer would deliver the barrel to Chartley Hall, whereupon one of
Mary's servants would open the bung and take the contents to the

Queen of Scots. The process worked equally well for
getting messages
out of Chartley Hall.

Meanwhile, unknown to Mary, a plan to rescue her was being hatched in
the taverns of London. At the center of the plot was
Anthony Babington,
aged just twenty-four but already well known in the city as a handsome,
charming and witty bon viveur. What his many admiring contemporaries
failed to appreciate was that Babington deeply resented the establishment, which had persecuted him, his family and his faith. The state's anti-Catholic
policies had reached new heights of horror, with priests being
accused of treason, and anybody caught harboring them punished by the
rack, mutilation and disemboweling while still alive. The Catholic mass was
officially banned, and families who remained loyal to the Pope were forced
to pay crippling taxes. Babington's animosity was fueled by the death of
Lord Darcy, his great-grandfather, who was beheaded for his involvement
in the Pilgrimage of Grace, a Catholic uprising against Henry VIII.

The conspiracy began one evening in March 1586, when Babington
and six confidants gathered in The Plough, an inn outside Temple Bar. As
the historian Philip Caraman observed, "He drew to himself by the force
of his exceptional charm and personality many young
Catholic gentlemen
of his own standing, gallant, adventurous and daring in defense of
the Catholic faith in its day of stress; and ready for any arduous enterprise
whatsoever that might advance the common Catholic cause."
Over the
next few months an ambitious plan emerged to free Mary Queen of Scots,
assassinate Queen Elizabeth and incite a rebellion
supported by an
invasion from abroad.

The conspirators were agreed that the Babington Plot, as it became
known, could not proceed without the blessing of Mary, but there was no
apparent way to communicate with her. Then, on July 6, 1586, Gifford
arrived on Babington's doorstep. He delivered a letter from Mary,
explaining that she had heard about Babington via her supporters in Paris,
and looked forward to hearing from him. In reply, Babington compiled a
detailed letter in which he outlined his scheme, including a reference to
the excommunication of Elizabeth by Pope Pius V in 1570, which he
believed legitimized her assassination.

Myself with ten gentlemen and a hundred of our followers will undertake
the delivery of your royal person from the hands of your enemies. For the dispatch of the usurper, from the obedience of whom we are by the excommunication of her made free, there be six noble gentlemen, all my private
friends, who for the zeal they bear to the Catholic cause and your Majesty's
service will undertake that tragical execution.

As before, Gifford used his trick of putting the message in the bung of a beer barrel in order to sneak it past Mary's guards. This can be considered
a form of steganography, because the letter was being hidden. As an extra precaution, Babington enciphered his letter so that even if it was

The Code Book
intercepted by Mary's jailer, it would be indecipherable and the plot
would not be uncovered. He used a cipher which was not a simple
monoalphabetic substitution, but rather a nomenclator, as shown in
Figure 8. It consisted of 23 symbols that were to be substituted for the
letters of the alphabet (excluding j, v and w), along with 35 symbols
representing words or phrases. In addition, there were four nulls
(ff i--.-j. cH.) and a symbol s~ which signified that the next symbol
represents a double letter ("dowbleth").

Gifford was still a youth, even younger than Babington, and yet he
conducted his deliveries with confidence and guile. His aliases, such as
Mr. Colerdin, Pietro and Cornelys, enabled him to travel the country
without suspicion, and his contacts within the Catholic community
provided him with a series of safe houses between London and Chartley
Hall. However, each time Gifford traveled to or from Chartley Hall, he
would make a detour. Although Gifford was apparently
acting as an agent
for Mary, he was actually a double agent. Back in 1585, before his return
to England, Gifford had written to Sir Francis Walsingham, Principal
Secretary to Queen Elizabeth, offering his services. Gifford realized that
his Catholic background would act as a perfect mask for infiltrating plots
abcdefghiklmno, pqrstuxyz

0* A-'f-acSoo'S*"/^: mf A £ c 7 £ 9

Nulles ff.l--.--J.cL
and for with that if but where as of the from by
i. ? 4 ^^^7*^8^^
so not when there this in wich is what say me my wyrt
\# X -H- ft
£*££*) >5 C" 0-n d
send lire receave bearer I pray you Mte your name myne
/ t T 1 h H 31 3- SS

Figure 8 The nomenclator of Mary Queen of Scots, consisting of a cipher alphabet and codewords.

The Cipher of Mary Queen of Scots 39
'Wainst Queen Elizabeth. In the letter to Walsingham, he wrote, "I have
heard of the work you do and I want to serve you. I have no scruples and
no fear of danger. Whatever you order me to do I will
accomplish."

Walsingham was Elizabeth's most ruthless minister. He was a
Jvfachiavellian figure, a spymaster who was responsible for the security of
the monarch. He had inherited a small network of spies, which he rapidly
expanded into the Continent, where many of the plots against Elizabeth
were being hatched. After his death it was discovered that he had been
receiving regular reports from twelve locations in France,
nine in
Germany, four in Italy, four in Spain and three in the Low Countries, as
Well as having informants in Constantinople, Algiers and Tripoli.

Walsingham recruited Gifford as a spy, and in fact it was Walsingham
who ordered Gifford to approach the French Embassy and offer himself as
a courier. Each time Gifford collected a message to or from Mary, he would
first take it to Walsingham. The vigilant spymaster would then pass it to his
counterfeiters, who would break the seal on each letter, make a copy, and
then reseal the original letter with an identical stamp before handing it back
to Gifford. The apparently untouched letter could then be delivered to

Mary or her correspondents, who remained oblivious to what was going on.

When Gifford handed Walsingham a letter from Babington to Mary,
the first objective was to decipher it. Walsingham had originally
encountered codes and ciphers while reading a book written by the Italian
mathematician and cryptographer Girolamo Cardano (who, incidentally,
proposed a form of writing for the blind based on touch, a precursor of
Braille). Cardano's book aroused Walsingham's interest, but it was a
decipherment by the Flemish cryptanalyst Philip van Marnix that really
convinced him of the power of having a codebreaker at his disposal. In
1577, Philip of Spain was using ciphers to correspond with his half-brother
and fellow Catholic, Don John of Austria, who was in
control of much of
the Netherlands. Philip's letter described a plan to
invade England, but it
was intercepted by William of Orange, who passed it to Marnix, his cipher
secretary. Marnix deciphered the plan, and William passed the
information to Daniel Rogers, an English agent working on the Continent,
who in turn warned Walsingham of the invasion. The English reinforced
their defenses, which was enough to deter the invasion attempt.

Now fully aware of the value of cryptanalysis, Walsingham established

40

The Code Book
a cipher school in London and employed Thomas Phelippes as his cipher
secretary, a man "of low stature, slender every way, dark yellow haired on
the head, and clear yellow bearded, eaten in the face with smallpox, of
short sight, thirty years of age by appearance." Phelippes was a linguist
who could speak French, Italian, Spanish, Latin and German, and, more
importantly, he was one of Europe's finest cryptanalysts.

Upon receiving any message to or from Mary, Phelippes devoured it.
He was a master of frequency analysis, and it would be merely a matter of
time before he found a solution. He established the
frequency of each
character, and tentatively proposed values for those that appeared most
often. When a particular approach hinted at absurdity, he would
backtrack and try alternative substitutions. Gradually he would identify
the nulls, the cryptographic red herrings, and put them to one side.
Eventually all that remained were the handful of codewords, whose
meaning could be guessed from the context.
When Phelippes deciphered Babington's message to Mary, which
clearly proposed the assassination of Elizabeth, he immediately forwarded
the damning text to his master. At this point Walsingham could have
pounced on Babington, but he wanted more than the execution of a
handful of rebels. He bided his time in the hope that Mary would reply
and authorize the plot, thereby incriminating herself. Walsingham had
long wished for the death of Mary Queen of Scots, but he was aware of
Elizabeth's reluctance to execute her cousin. However, if he could prove
that Mary was endorsing an attempt on the life of
Elizabeth, then surely
his queen would permit the execution of her Catholic rival. Walsingham's
hopes were soon fulfilled.

On July 17, Mary replied to Babington, effectively signing her own
death warrant. She explicitly wrote about the "design," showing particular
concern that she should be released simultaneously with, or before,
Elizabeth's assassination, otherwise news might reach her jailer, who
might then murder her. Before reaching Babington, the letter made the
usual detour to Phelippes. Having cryptanalyzed the earlier message, he
deciphered this one with ease, read its contents, and marked it with a
"IT--the sign of the gallows.

Walsingham had all the evidence he needed to arrest Mary and
Babington, but still he was not satisfied. In order to destroy the

The Cipher of Mary Queen of Scots 41
conspiracy completely, he needed the names of all those involved. He
asked Phelippes to forge a postscript to Mary's letter, which would entice
Babington to name names. One of Phelippes's additional talents was as a
forger, and it was said that he had the ability "to write any man's hand, if
he had once seen it, as if the man himself had writ it." Figure 9 shows the postscript that was added at the end of Mary's letter to Babington. It can
be deciphered using Mary's nomenclator, as shown in Figure 8, to reveal
the following plaintext:

I would be glad to know the names and qualities of the six gentlemen
which are to accomplish the designment; for it may be that I shall be able,
upon knowledge of the parties, to give you some further
advice necessary
to be followed therein, as also from time to time
particularly how you proceed:
and as soon as you may, for the same purpose, who be already, and
how far everyone is privy hereunto.

The cipher of Mary Queen of Scots clearly demonstrates that a weak
encryption can be worse than no encryption at all. Both Mary and
Babington wrote explicitly about their intentions because they believed
that their communications were secure，whereas if they had been
communicating openly they would have referred to their plan in a more
discreet manner．Furthermore，their faith in their cipher made them
particularly vulnerable to accepting Phelippes＇s forgery． Sender and
receiver often have such confidence in the strength of their cipher that
$\left.P^{\wedge \wedge \wedge}, 1 \wedge 3 \mid-» / \wedge M I . 《 . \ll \cdot t^{*} » . » M^{\wedge} . * f * '\right) * * » / '$
．»＞＊＊j＊＊～－nf＊＊＇
＊＊＊＊＊＊＊＇££＊＊＊\＆＊y＊？＇f＊＊f＊＊＜＊＊»\＃» f～f＊＊\＄＊
ftjfyttf＊＊i»－f＋nL＊f＊／ff＊．《vfyca．j\＆f，aefsf－．i＊－＊，jt＊． f＊a i（，f3pf．i＊yr＇＊～pc»～＂－«t－tffjt～＇f ft－＇－taif／10 t＂f mi ＂ftnrr＾r－＂＂＂
2
$\sim^{\wedge \wedge} \cdot j>. * t-. \cdot-. .^{\wedge} a^{\wedge \wedge} / \wedge . * \cdot l j^{\wedge} A *$
iii｜»＾i ihii $j^{* *}</ /-{ }^{\prime}$（《V lVti（＊fe pounds iAC．＊fft＊g＊＂

L j\＆／

C $\mathrm{f} \sim 4 \mathrm{ff}$
TA＊－＞＊－»＞－＊－＞－Ji～4－0《．j．l／＇＊rt＇＊Ae（rtrff1＞＇j！L»．et＂＊＞y＾＊＇＂＂＊＊）

If；＾A《．i＊｜r＜《＜～＊《／»～》《＂＊＾ryA．；f＾»＞r＾～＇Wfc／pounds ．i＾fc＇Ci＂－＊＊

Figure 9 The forged postscript added by Thomas Phelippes to Mary＇s message．It can be
deciphered by referring to Mary＇s nomenclator（Figure 8）．

While the Dean of Peterborough led the prayers, Mary spoke aloud her
own prayers for the salvation of the English Catholic Church, for her son
and for Elizabeth. With her family motto, "In my end is my beginning,"
in her mind, she composed herself and approached the block. The
executioners requested her forgiveness, and she replied,
"I forgive you
with all my heart, for now I hope you shall make an end of all my
troubles." Richard Wingfield, in his Narration of the Last Days of the Queen
of Scots, describes her final moments:

Then she laide herself upon the blocke most quietlie, \& stretching out her
armes \& legges cryed out In manus tuas domine three or foure times, \& at
the laste while one of the executioners held her slightlie with one of his
handes, the other gave two strokes with an axe before he cutt of her head,
\& yet lefte a little gristle behinde at which time she made verie small noyse
\& stirred not any parte of herself from the place where she laye ... Her lipps
stirred up \& downe almost a quarter of an hower after her head was cutt of.
Then one of her executioners plucking of her garters espied her little dogge
which was crept under her clothes which could not be gotten forth but with
force \& afterwardes could not depart from her dead corpse, but came and
laye betweene her head \& shoulders a thing dilligently noted.

Figure 10 The execution of Mary Queen of Scots.

Kr centuries, the simple monoalphabetic substitution cipher had been
afficient to ensure secrecy. The subsequent development of frequency analysis, first in the Arab world and then in Europe, destroyed
its security. The tragic execution of Mary Queen of Scots was a dramatic
illustration of the weaknesses of monoalphabetic
substitution, and in the
battle between cryptographers and cryptanalysts it was clear that the
cryptanalysts had gained the upper hand. Anybody sending an encrypted
message had to accept that an expert enemy codebreaker might intercept
and decipher their most precious secrets.

The onus was clearly on the cryptographers to concoct a new, stronger
cipher, something that could outwit the cryptanalysts. Although this
cipher would not emerge until the end of the sixteenth century, its origins
can be traced back to the fifteenth-century florentine polymath Leon
Battista Alberti. Born in 1404, Alberti was one of the leading figures of
the Renaissance--a painter, composer, poet and philosopher, as well as the
author of the first scientific analysis of perspective, a treatise on the
housefly and a funeral oration for his dog. He is probably best known as
an architect, having designed Rome's first Trevi Fountain and having
written De re aedificatoria, the first printed book on architecture, which
acted as a catalyst for the transition from Gothic to Renaissance design.

Sometime in the 1460s, Alberti was wandering through the

gardens of

the Vatican when he bumped into his friend Leonardo Dato, the
pontifical secretary, who began chatting to him about some of the finer
points of cryptography. This casual conversation prompted Alberti to
write an essay on the subject, outlining what he believed to be a new form
of cipher. At the time, all substitution ciphers required a single cipher
alphabet for encrypting each message. However, Alberti proposed using

45

46 The Code Book
two or more cipher alphabets, switching between them during encipherment, thereby confusing potential cryptanalysts.

Plain alphabet abcdefghi jklmnopqrstuvwxyz
Cipher alphabet 1 FZBVKIXAYMEPLSDHJORGNQCUTW
Cipher alphabet 2 GOXBFWTHQI LAPZJDESVYCRKUHN

For example, here we have two possible cipher alphabets, and we could
encrypt a message by alternating between them. To encrypt the message
hello, we would encrypt the first letter according to the first cipher
alphabet, so that h becomes A, but we would encrypt the second letter
according to the second cipher alphabet, so that e becomes F. To encrypt
the third letter we return to the first cipher alphabet, and to encrypt the
fourth letter we return to the second alphabet. This means
that the first I is
enciphered as P, but the second I is enciphered as A. The final letter, o, is
enciphered according to the first cipher alphabet and becomes D. The
complete ciphertext reads AFPAD. The crucial advantage of Alberti's
system is that the same letter in the plaintext does not necessarily appear as
the same letter in the ciphertext, so the repeated I in hello is enciphered
differently in each case. Similarly, the repeated A in the ciphertext
represents a different plaintext letter in each case, first h and then I.

Although he had hit upon the most significant breakthrough in
encryption for over a thousand years, Alberti failed to develop his
concept into a fully formed system of encryption. That task fell to a diverse
group of intellectuals, who built on his initial idea. First came
Johannes Trithemius, a German abbot born in 1462, then Giovanni
Porta, an Italian scientist born in 1535, and finally Blaise de Vigenere, a
French diplomat born in 1523. Vigenere became acquainted with the
writings of Alberti, Trithemius and Porta when, at the age of twenty-six,
he was sent to Rome on a two-year diplomatic mission. To start with, his
interest in cryptography was purely practical and was linked to his
diplomatic work. Then, at the age of thirty-nine, Vigenere decided that
he had accumulated enough money for him to be able to abandon his
career and concentrate on a life of study. It was only
then that he
examined in detail the ideas of Alberti, Trithemius and Porta, weaving
them into a coherent and powerful new cipher.

Figure 11 Blaise de Vigenere.

48

The Code Book

Although Alberti, Trithemius and Porta all made vital contributions,
the cipher is known as the Vigenere cipher in honor of the man who
developed it into its final form. The strength of the Vigenere cipher lies
in its using not one, but 26 distinct cipher alphabets to encrypt a message.

The first step in encipherment is to draw up a so-called Vigenere square,
as shown in Table 3, a plaintext alphabet followed by 26 cipher alphabets,
each shifted by one letter with respect to the previous alphabet. Hence,
row 1 represents a cipher alphabet with a Caesar shift of
1, which means
that it could be used to implement a Caesar shift cipher in which every
letter of the plaintext is replaced by the letter one place further on in the
alphabet. Similarly, row 2 represents a cipher alphabet with a Caesar shift

Table 3 A Vigenere square.

```
Plain
ab cd ef
ghijklmnopqrstuv
wXy z1
BC DE FG
H1
J K L M M O P Q R S T U V W
```

""2 C D E F G H 1 J K L M N O
P
Q
R
S
T
U
V
W
X
Y Z
A
B
3
D E F
G H 1 J K L M N O P Q R S T U V W X Y Z A B C 4
EFGH1JKLMNOPQ
R
ST U
V
WX YZ
A
B
C
D5
FGH
1J KL RUN OPQRS TO VW
XYZABCD
E6
GH1 JKLM NOPQRSTUV
W
X
Y
Z
A
B
C D
E f 7
H 1 J
K L M
N O
P

```
Q
R
S
T
U
V
W
X
Y
Z
A
B
C
D E
F
G
8
1JK L M N O P Q R S T U V
W
X
Y
Z
A
B
C
D
E F
G
H9
JKLMNO
PQRSTUVWXY
ZABCDEFG
H 110
K L M
N O P Q R S T U V W X Y Z A B C D E F G H 1 J 11
LMNOPQRSTUVWXYZABCDEFGH1J K12
MNOP QRSTUVWXYZABCDE FGH1JK L13
NOPQRSTU V WX Y Z A B C D E F C H 1
JKL M14
OPQRSTUVWXYZABCDEF
GHI JK
LM
N15
```

QRSTUVWXYZABCDEFGHI JKL
MNO P17
RSTUVWXYZABCDEFGHIJKLMNOPQ18
STUVWXYZABCDEFGHIJKLMN
OPQ R19
TUVWXYZABCDEFGHIJKLMNO
PQR S20
UVWXYZABCDEFGHIJKLMNOP
QRS T21
V W X
Y Z A
B C
D
E
F
G
HIJKLMNOPQRST U22
wXYZABCDEFGH 1 J KLMNOPQR
STU V23
XYZABCDEFGHIJKLMNOPQRS
TUVW24
YZABCDEFGH 1 J KLMNOPQRSTUVWX~25 zABCDEFGH 1
JKLMNOPQRSTUVWX Y26
A B C
D E F
G H
1
J
K
L
M
NOPQRSTUVWXY Z Le Cbiffre Indechiffmble 49
2, and so on. The top row of the square, in lower case, represents the intext letters. You could encipher each plaintext letter according to any iC of the 26 cipher alphabets. For example, if cipher alphabet number 2 'jjused, then the letter a is enciphered as C, but if cipher alphabet numJjer 12 is used, then a is enciphered as M.

```

If the sender were to use just one of the cipher alphabets to encipher
go entire message, this would effectively be a simple Caesar cipher, which
would be a very weak form of encryption, easily deciphered by an enemy
Interceptor. However, in the Vigenere cipher a different row of the
Vigenere square (a different cipher alphabet) is used to encrypt different
fetters of the message. In other words, the sender might encrypt the first
letter according to row 5, the second according to row 14, the third
according to row 21 , and so on.

To unscramble the message, the intended receiver needs to know which
row of the Vigenere square has been used to encipher each letter, so there
must be an agreed system of switching between rows. This is achieved by
using a keyword. To illustrate how a keyword is used with the Vigenere
square to encrypt a short message, let us encipher divert troops to east
ridge, using the keyword WHITE. First of all, the keyword is spelled out
above the message, and repeated over and over again so
that each letter in the message is associated with a letter from the keyword. The ciphertext is
then generated as follows. To encrypt the first letter, d, begin by identifying
the key letter above it, \(W\), which in turn defines a particular row in the
Vigenere square. The row beginning with \(W\), row 22 , is the cipher alphabet
that will be used to find the substitute letter for the plaintext \(d\). We look to
see where the column headed by d intersects the row beginning with \(W\), which turns out to be at the letter \(Z\). Consequently, the letter \(d\) in the plaintext
is represented by \(Z\) in the ciphertext.

Keyword WHITEWHITEWHITEWHITEWHI Plaintext divertt roopstoeast r idge Ciphertext ZPDXVPAZHSLZBH IWZBKMZNM

To encipher the second letter of the message, i, the process is repeated.
The key letter above i is \(H\), so it is encrypted via a different row in the
Vigenere square: the \(H\) row (row 7) which is a new cipher alphabet. To

50

The Code Book
encrypt \(i\), we look to see where the column headed by i intersects the row
beginning with \(H\), which turns out to be at the letter \(P\). Consequently, the
letter i in the plaintext is represented by \(P\) in the ciphertext. Each letter of
the keyword indicates a particular cipher alphabet within the Vigenere
square, and because the keyword contains five letters, the
sender encrypts
the message by cycling through five rows of the Vigenere square. The fifth
letter of the message is enciphered according to the fifth letter of the keyword,
E, but to encipher the sixth letter of the message we have to return

Table 4 A Vigenere square with the rows defined by the keyword WHITE
highlighted. Encryption is achieved by switching between the five highlighted
cipher alphabets, defined by \(W, H, I, T\) and \(E\).
```

Plain
ab cd efghijklmnopqrst
uV wX
y * 1B C D
E F G
H
1
J
K
L
M
N
O
P
Q
R
S
T
U
V W
X Y
Z
A
2CDE
FG H 1 J KLMNOPQRSTUV
WXYZ
A
B3
DEF
GH 1 J KLMNOPQRSTUVW
XYZAB C
4
EFGH1 JKLMNOPQRSTU VWX
YZABC D5
FGH1J KLMNOPQRSTUVWXY
ZABCD E6
GH1JK LMNOPQRSTUVWXYZ
ABCDE F7
H1JKt M
NOPQRSTU VWX Y Z ABCDEF G8
1JKL MNOPQRSTUVWXYZAB
CDEfG H9

```
```

JKLM NOPQRSTUVWXYZABC
DEFGH 110
KLMN O P
Q R
S
T
U
VWXYZABCDEFGH1 J11
LM N O P Q R S T U V W X Y Z A B C D E F G
H 1
J
K
1
2
MN O
P Q R
S
T
U
V
W
X
Y
Z
A
B
C
D E F G H 1 J
K
L 13
NO P
Q R S
T
U
V
W
X
Y
Z
A
B
C
D
E

```
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{F} \\
\hline \multicolumn{2}{|l|}{G} \\
\hline \multicolumn{2}{|l|}{H 1} \\
\hline \multicolumn{2}{|l|}{J K} \\
\hline \multicolumn{2}{|l|}{L} \\
\hline \multicolumn{2}{|l|}{M} \\
\hline \multicolumn{2}{|l|}{14} \\
\hline \multicolumn{2}{|l|}{OP Q} \\
\hline \multicolumn{2}{|l|}{R S T} \\
\hline \multicolumn{2}{|l|}{U} \\
\hline \multicolumn{2}{|l|}{V} \\
\hline \multicolumn{2}{|l|}{W} \\
\hline \multicolumn{2}{|l|}{X} \\
\hline \multicolumn{2}{|l|}{Y} \\
\hline \multicolumn{2}{|l|}{Z} \\
\hline \multicolumn{2}{|l|}{A} \\
\hline \multicolumn{2}{|l|}{B} \\
\hline \multicolumn{2}{|l|}{C} \\
\hline \multicolumn{2}{|l|}{D} \\
\hline \multicolumn{2}{|l|}{E} \\
\hline \multicolumn{2}{|l|}{F} \\
\hline \multicolumn{2}{|l|}{G} \\
\hline \multicolumn{2}{|l|}{H} \\
\hline \multicolumn{2}{|l|}{1 J} \\
\hline \multicolumn{2}{|l|}{K L} \\
\hline \multicolumn{2}{|l|}{M} \\
\hline \multicolumn{2}{|l|}{N} \\
\hline \multicolumn{2}{|l|}{15} \\
\hline \multicolumn{2}{|l|}{PQ R} \\
\hline \multicolumn{2}{|l|}{ST U} \\
\hline \multicolumn{2}{|l|}{V} \\
\hline \multicolumn{2}{|l|}{W} \\
\hline \multicolumn{2}{|l|}{X} \\
\hline \multicolumn{2}{|l|}{Y} \\
\hline \multicolumn{2}{|l|}{Z} \\
\hline \multicolumn{2}{|l|}{A} \\
\hline \multicolumn{2}{|l|}{B} \\
\hline \multicolumn{2}{|l|}{C} \\
\hline \multicolumn{2}{|l|}{D} \\
\hline \multicolumn{2}{|l|}{E} \\
\hline \multicolumn{2}{|l|}{F} \\
\hline \multicolumn{2}{|l|}{G} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{H
1}} \\
\hline & \\
\hline
\end{tabular}

J K
L M
N
0
16
QRS
TU VWXYZABCDE
FGHIJK
LMN
0
P
17
RSTUVW
XYZABCDEFGHIJKLMN0
PQ1 8
S T U
V W X
Y Z A B C D E F G H 1 J K L M N O P Q R 19
TUVWXYZABCDEFGHI JKLM
NOPQR S20
UVWXYZABCDEFGHIJKLMNOPQRS T21
VWXYZABCDEFGHIJKLMNOP
QRST U22
wx YZABCDEFGHIJKLMNOPQRSTU V23
XYZABCDEFGHIJKLMNOPQ
R
S
TUV W24
YZABCDEFGHIJKLMNOPQRS TUVwx25
ZABCDEFGHIJKLMNOPQRSTUVwX Y26
A B C
D E F
G
H
1
J
K
L
M
NOPQRSTUVWXY Z Le Chiffre Indechiffrable 51
the first letter of the keyword. A longer keyword, or perhaps a
phrase, would bring more rows into the encryption process and
ase the complexity of the cipher. Table 4 shows a Vigenere square,
lighting the five rows (i.e., the five cipher alphabets) defined by the

Ofeyword wHITE.
? , The Sreat advantage of the Vigenere cipher is that it is impregnable to "tfac frequency analysis described in Chapter 1. For example, a cryptanalyst
vjpplying frequency analysis to a piece of ciphertext would usually begin
-, fey identifying the most common letter in the ciphertext, which in this case is \(Z\), and then assume that this represents the most common letter in
English, e. In fact, the letter \(Z\) represents three different letters, \(d, r\) and \(s\), but not e. This is clearly a problem for the cryptanalyst. The fact that a
letter which appears several times in the ciphertext can represent a
different plaintext letter on each occasion generates tremendous ambiguity
for the cryptanalyst. Equally confusing is the fact that a letter which
appears several times in the plaintext can be represented by different
letters in the ciphertext. For example, the letter o is repeated in troops,
but it is substituted by two different letters--the oo is enciphered as HS.

As well as being invulnerable to frequency analysis, the Vigenere cipher
lias an enormous number of keys. The sender and receiver can agree on
any word in the dictionary, any combination of words, or even fabricate
words. A cryptanalyst would be unable to crack the message
by searching
all possible keys because the number of options is simply too great.
' Vigenere's work culminated in his Tmicte des Cbiffres ("A Treatise on
Secret Writing"), published in 1586. Ironically, this was the same year that
Thomas Phelippes was breaking the cipher of Mary Queen of Scots. If
only Mary's secretary had read this treatise, he would have known about
the Vigenere cipher, Mary's messages to Babington would have baffled
Phelippes, and her life might have been spared.

Because of its strength and its guarantee of security, it would seem
natural that the Vigenere cipher would be rapidly adopted by cipher
secretaries around Europe. Surely they would be relieved to have access,
once again, to a secure form of encryption? On the contrary, cipher
secretaries seem to have spurned the Vigenere cipher. This apparently
flawless system would remain largely neglected for the next two centuries.

52 The Code Book

From Shunning Vigenere to the Man in the Iron Mask

The traditional forms of substitution cipher, those that existed before the
Vigenere cipher, were called monoalphabetic substitution ciphers because
they used only one cipher alphabet per message. In contrast, the Vigenere
cipher belongs to a class known as polyalphabetic, because it employs
several cipher alphabets per message. The polyalphabetic nature of the

Vigenere cipher is what gives it its strength, but it also makes it much
more complicated to use. The additional effort required in order to implement
the Vigenere cipher discouraged many people from employing it.

For many seventeenth-century purposes, the monoalphabetic substitution
cipher was perfectly adequate. If you wanted to ensure that your
servant was unable to read your private correspondence, or if you wanted
to protect your diary from the prying eyes of your spouse, then the old-fashioned
type of cipher was ideal. Monoalphabetic substitution was quick, easy to use, and secure against people unschooled in cryptanalysis.
In fact, the simple monoalphabetic substitution cipher endured in various
forms for many centuries (see Appendix D). For more serious applications,
such as military and government communications, where security
was paramount, the straightforward monoalphabetic cipher was clearly
inadequate. Professional cryptographers in combat with professional
cryptanalysts needed something better, yet they were still reluctant to
adopt the polyalphabetic cipher because of its complexity. Military
communications, in particular, required speed and simplicity, and a
diplomatic office might be sending and receiving hundreds
of messages
each day, so time was of the essence. Consequently, cryptographers
searched for an intermediate cipher, one that was harder to crack than a
straightforward monoalphabetic cipher, but one that was simpler to
implement than a polyalphabetic cipher.

The various candidates included the remarkably effective homophonic
substitution cipher. Here, each letter is replaced with a variety of substitutes,
the number of potential substitutes being proportional to the frequency
of the letter. For example, the letter a accounts for roughly 8 per cent of
all letters in written English, and so we would assign eight symbols to
represent it. Each time a appears in the plaintext it would be replaced in
the ciphertext by one of the eight symbols chosen at random, so that by

Le Cbiffre Indechiffrable 53
end of the encipherment each symbol would constitute roughly 1 per
S'^ent of the enciphered text. By comparison, the letter b accounts for only
X pounds per cent of all letters, and so we would assign only two symbols to
tepresent it. Each time b appears in the plaintext either of the two
symbols could be chosen, and by the end of the
encipherment each
symbol would also constitute roughly 1 per cent of the enciphered text. ^jiis process of allotting varying numbers of symbols to act as substitutes
for each letter continues throughout the alphabet, until we get to \(z\), which is so rare that it has only one symbol to act as a substitute. In the example
given in Table 5, the substitutes in the cipher alphabet happen to be two-jUgit
numbers, and there are between one and twelve substitutes for each
letter in the plain alphabet, depending on each letter's relative abundance.
We can think of all the two-digit numbers that correspond to the
plaintext letter a as effectively representing the same sound in the
ciphertext, namely the sound of the letter a. Hence the origin of the term
homophonic substitution, homos meaning "same" and phonos meaning
"sound" in Greek. The point of offering several
substitution options for
popular letters is to balance out the frequencies of symbols in the

Table 5 An example of a homophonic substitution cipher. The top row
represents the plain alphabet, while the numbers below represent the cipher
alphabet, with several options for frequently occurring letters.
a b c
d e
f g h i
j \(k 1 \mathrm{~m} \mathrm{n} \circ \mathrm{p}\)
qrstuvwxyz
094813
0114
10062332
\(\begin{array}{lllllll}15 & 04 & 26 & 22 & 18 & 00 & 38\end{array}\)
\(\begin{array}{llllllllll}94 & 29 & 11 & 17 & 08 & 34 & 60 & 28 & 21 & 02\end{array}\)
128141
0316
\(\begin{array}{llll}31 & 25 & 39 & 70\end{array}\)
\(\begin{array}{lllll}37 & 27 & 58 & 05 & 95\end{array}\)
\(\begin{array}{llllll}35 & 19 & 20 & 61 & 89 & 52\end{array}\)
3362
4524
5073
\(\begin{array}{lll}51 & 59 & 07\end{array}\)
40363063
47
7944
5683
846654
427643
ciphertext. If we enciphered a message using the cipher alphabet in Table 5j then every number would constitute roughly 1 per cent of the entire text.
If no symbol appears more frequently than any other, then this would
appear to defy any potential attack via frequency
analysis. Perfect security?
Not quite.
The ciphertext still contains many subtle clues for the clever cryptanalyst.
As we saw in Chapter 1, each letter in the English language has its
own personality, defined according to its relationship with all the other
letters, and these traits can still be discerned even if the encryption is by
homophonic substitution. In English, the most extreme
example of a letter
with a distinct personality is the letter \(q\), which is only
followed by one
letter, namely u. If we were attempting to decipher a ciphertext, we might
begin by noting that \(q\) is a rare letter, and is therefore likely to be represented
by just one symbol, and we know that \(u\), which accounts for roughly 3 per cent of all letters, is probably represented by three symbols.
So, if we find a symbol in the ciphertext that is only ever followed by
three particular symbols, then it would be sensible to assume that the first
symbol represents \(q\) and the other three symbols represent u. Other letters
are harder to spot, but are also betrayed by their relationships to one
another. Although the homophonic cipher is breakable, it is much more
secure than a straightforward monoalphabetic cipher.

A homophonic cipher might seem similar to a polyalphabetic cipher
inasmuch as each plaintext letter can be enciphered in many ways, but
there is a crucial difference, and the homophonic cipher is in fact a type
of monoalphabetic cipher. In the table of homophones shown above, the
letter a can be represented by eight numbers.
Significantly, these eight
numbers represent only the letter a. In other words, a plaintext letter can
be represented by several symbols, but each symbol can only represent
one letter. In a polyalphabetic cipher, a plaintext letter will also be represented
by different symbols, but, even more confusingly, these symbols
will represent different letters during the course of an encipherment.

Perhaps the fundamental reason why the homophonic cipher is considered
monoalphabetic is that once the cipher alphabet has been
established,
it remains constant throughout the process of encryption. The fact
that the cipher alphabet contains several options for encrypting each letter
is irrelevant. However, a cryptographer who is using a polyalphabetic

Le Chiffre Indechiffrable 55
pher must continually switch between distinctly different cipher alpha-ilbets
during the process of encryption.
f~ By tweaking the basic monoalphabetic cipher in various ways, such as
Sodding homophones, it became possible to encrypt messages securely,
-without having to resort to the complexities of the polyalphabetic cipher.
/I One of the strongest examples of an enhanced monoalphabetic cipher
', | was the Great Cipher of Louis XIV. The Great Cipher was used to encrypt
<! the king's most secret messages, protecting details of his plans, plots and
"j political schemings. One of these messages mentioned one of the most
*enigmatic characters in French history, the Man in the Iron Mask, but the
' strength of the Great Cipher meant that the message and its remarkable
-contents would remain undeciphered and unread for two centuries.

The Great Cipher was invented by the father-and-son team of Antoine
and Bonaventure Rossignol. Antoine had first come to
prominence in
1626 when he was given a coded letter captured from a messenger leaving
the besieged city of Realmont. Before the end of the day he had deciphered
the letter, revealing that the Huguenot army which held the city
was on the verge of collapse. The French, who had previously been
unaware of the Huguenots' desperate plight, returned the letter accompanied
by a decipherment. The Huguenots, who now knew that their enemy would not back down, promptly surrendered. The decipherment
had resulted in a painless French victory.

The power of codebreaking became obvious, and the Rossignols were
appointed to senior positions in the court. After serving Louis XIII, they
then acted as cryptanalysts for Louis XIV, who was so impressed that he
moved their offices next to his own apartments so that Rossignol pert et
fils could play a central role in shaping French
diplomatic policy. One of
the greatest tributes to their abilities is that the word rossignol became
French slang for a device that picks locks, a reflection of their ability to
unlock ciphers.

The Rossignols' prowess at cracking ciphers gave them an insight into
how to create a stronger form of encryption, and they invented the so-called
Great Cipher. The Great Cipher was so secure that it defied the
efforts of all enemy cryptanalysts attempting to steal
French secrets.
Unfortunately, after the death of both father and son, the Great Cipher
fell into disuse and its exact details were rapidly lost, which meant that
enciphered papers in the French archives could no longer be read. The

Great Cipher was so strong that it even defied the efforts of subsequent
generations of codebreakers.

Historians knew that the papers encrypted by the Great Cipher would
offer a unique insight into the intrigues of
seventeenth-century France,
but even by the end of the nineteenth century they were still unable to
decipher them. Then, in 1890, Victor Gendron, a military historian
researching the campaigns of Louis XIV, unearthed a new series of letters
enciphered with the Great Cipher. Unable to make sense of them, he
passed them on to Commandant Etienne Bazeries, a
distinguished expert
in the French Army's Cryptographic Department. Bazeries viewed the
letters as the ultimate challenge, and he spent the next three years of his
life attempting to decipher them.

The encrypted pages contained thousands of numbers, but only 587
different ones. It was clear that the Great Cipher was more complicated
than a straightforward substitution cipher, because this would require just
26 different numbers, one for each letter. Initially, Bazeries thought that
the surplus of numbers represented homophones, and that several numbers
represented the same letter. Exploring this avenue took months of
painstaking effort, all to no avail. The Great Cipher was not a homophonic
cipher.

Next, he hit upon the idea that each number might represent a pair of
letters, or a digraph. There are only 26 individual
letters, but there are 676
possible pairs of letters, and this is roughly equal to
the variety of
numbers in the ciphertexts. Bazeries attempted a
decipherment by
looking for the most frequent numbers in the ciphertexts (22, 42, 124,
125 and 341), assuming that these probably stood for the commonest
French digraphs (es, en, ou, de, nt). In effect, he was applying
frequency analysis at the level of pairs of letters.
Unfortunately, again
after months of work, this theory also failed to yield any meaningful
decipherments.

Bazeries must have been on the point of abandoning his obsession,
when a new line of attack occurred to him. Perhaps the digraph idea was
not so far from the truth. He began to consider the possibility that each
number represented not a pair of letters, but rather a whole syllable. He
attempted to match each number to a syllable, the most frequently

Le Chiffre Indechiffrable 57
i occurring numbers presumably representing the commonest French
syllables. He tried various tentative permutations, but they all resulted in
gibberish--until he succeeded in identifying one particular word. A cluster
of numbers (124-22-125-46-345) appeared several times on each page,
and Bazeries postulated that they represented les-en-ne-mi-s, that is, "les ennemis." This proved to be a crucial breakthrough.

Bazeries was then able to continue by examining other parts of the
ciphertexts where these numbers appeared within different words. He
then inserted the syllabic values derived from "les ennemis," which
revealed parts of other words. As crossword addicts know, when a word is
partly completed it is often possible to guess the remainder of the word.
As Bazeries completed new words, he also identified further syllables,
which in turn led to other words, and so on. Frequently he would be
stumped, partly because the syllabic values were never obvious, partly
because some of the numbers represented single letters rather than syllables,
and partly because the Rossignols had laid traps within the cipher.
For example, one number represented neither a syllable nor a letter, but instead deviously deleted the previous number.

When the decipherment was eventually completed, Bazeries became
the first person for two hundred years to witness the secrets of Louis XIV.

The newly deciphered material fascinated historians, who focused on one
tantalizing letter in particular. It seemed to solve one of the great mysteries
of the seventeenth century: the true identity of the Man in the Iron Mask.

The Man in the Iron Mask has been the subject of much speculation
ever since he was first imprisoned at the French fortress of Pignerole in
Savoy. When he was transferred to the Bastille in 1698,
```

peasants tried to
catch a glimpse of him, and variously reported him as
being short or tall,
fair or dark, young or old. Some even claimed that he was
a she. With so
few facts, everyone from Voltaire to Benjamin Franklin
concocted their
own theory to explain the case of the Man in the Iron
Mask. The most
popular conspiracy theory relating to the Mask (as he is
sometimes called)
suggests that he was the twin of Louis XIV, condemned to
imprisonment
in order to avoid any controversy over who was the
rightful heir to the
throne. One version of this theory argues that there
existed descendants
of the Mask and an associated hidden royal bloodline. A
pamphlet
published in 1801 said that Napoleon himself was a
descendant of the

```
58
The Code Book

Mask, a rumor which, since it enhanced his position, the emperor did not
deny.

The myth of the Mask even inspired poetry, prose and drama. In 1848
Victor Hugo had begun writing a play entitled Twins, but when he found
that Alexandre Dumas had already plumped for the same plot, he abandoned
the two acts he had written. Ever since, it has been
Dumas's name
that we associate with the story of the Man in the Iron Mask. The success
of his novel reinforced the idea that the Mask was related to the king, and
this theory has persisted despite the evidence revealed in
one of Bazeries's
decipherments.

Bazeries had deciphered a letter written by Francois de Louvois, Louis

XIV's Minister of War, which began by recounting the crimes of Vivien de
Bulonde, the commander responsible for leading an attack on the town of
Cuneo, on the French-Italian border. Although he was ordered to stand his
ground, Bulonde became concerned about the arrival of enemy troops
from Austria and fled, leaving behind his munitions and abandoning many
of his wounded soldiers. According to the Minister of War, these actions
jeopardized the whole Piedmont campaign, and the letter made it clear that
the king viewed Bulonde's actions as an act of extreme cowardice:

His Majesty knows better than any other person the consequences of this
act, and he is also aware of how deeply our failure to take the place will
prejudice our cause, a failure which must be repaired during the winter.
His Majesty desires that you immediately arrest General Bulonde and
cause him to be conducted to the fortress of Pignerole, where he will be
locked in a cell under guard at night, and permitted to walk the battlements
during the day with a mask.

This was an explicit reference to a masked prisoner at Pignerole, and a sufficiently
serious crime, with dates that seem to fit the myth of the Man in
the Iron Mask. Does this solve the mystery? Not surprisingly, those favoring
more conspiratorial solutions have found flaws in Bulonde as a candidate.
For example, there is the argument that if Louis XIV was actually
attempting to secretly imprison his unacknowledged twin, then he would
have left a series of false trails. Perhaps the encrypted letter was meant to
be deciphered. Perhaps the nineteenth-century codebreaker Bazeries had
fallen into a seventeenth-century trap.

Le Chiffre Indechiffrable 59

The Black Chambers

Reinforcing the monoalphabetic cipher by applying it to syllables or
adding homophones might have been sufficient during the 1600s, but by
the 1700s cryptanalysis was becoming industrialized, with teams of government
cryptanalysts working together to crack many of the most complex
monoalphabetic ciphers. Each European power had its own
so-called
Black Chamber, a nerve center for deciphering messages and gathering
intelligence. The most celebrated, disciplined and efficient Black
Chamber was the Geheime Kabinets-Kanzlei in Vienna.

It operated according to a rigorous timetable, because it was vital that
its nefarious activities should not interrupt the smooth running of the
postal service. Letters which were supposed to be delivered to embassies
in Vienna were first routed via the Black Chamber, arriving at 7 a.m.
Secretaries melted seals, and a team of stenographers
worked in parallel to
make copies of the letters. If necessary, a language specialist would take responsibility for duplicating unusual scripts. Within three hours the letters
had been resealed in their envelopes and returned to the central post
office, so that they could be delivered to their intended destination. Mail
merely in transit through Austria would arrive at the Black Chamber at 10
A.M., and mail leaving Viennese embassies for destinations outside Austria
would arrive at 4 P.M. All these letters would also be copied before being
allowed to continue on their journey. Each day a hundred letters would
filter through the Viennese Black Chamber.

The copies were passed to the cryptanalysts, who sat in little kiosks,
ready to tease out the meanings of the messages. As well as supplying the
emperors of Austria with invaluable intelligence, the Viennese Black

Chamber sold the information it harvested to other powers in Europe. In
1774 an arrangement was made with Abbot Georgel, the secretary at the
French Embassy, which gave him access to a twice-weekly package of
information in exchange for 1,000 ducats. He then sent these letters, which contained the supposedly secret plans of various monarchs,
straight to Louis XV in Paris.

The Black Chambers were effectively making all forms of monoalphabetic
cipher insecure. Confronted with such professional
cryptanalytic opposition,
cryptographers were at last forced to adopt the more complex but more

The Code Book
secure Vigenere cipher. Gradually, cipher secretaries began to switch to using
polyalphabetic ciphers. In addition to more effective cryptanalysis, there was
another pressure that was encouraging the move toward securer forms of
encryption: the development of the telegraph, and the need to protect
telegrams from interception and decipherment.

Although the telegraph, together with the ensuing telecommunications
revolution, came in the nineteenth century, its origins can be traced all the
way back to 1753. An anonymous letter in a Scottish magazine described
how a message could be sent across large distances by connecting the
sender and receiver with 26 cables, one for each letter of the alphabet. The
sender could then spell out the message by sending pulses of electricity
along each wire. For example, to spell out hello, the sender would begin
by sending a signal down the \(h\) wire, then down the e wire, and so on. The
receiver would somehow sense the electrical current emerging from each
wire and read the message. However, this "expeditious method of conveying
intelligence," as the inventor called it, was never constructed, because
there were several technical obstacles that had to be overcome.

For example, engineers needed a sufficiently sensitive system for
detecting electrical signals. In England, Sir Charles Wheatstone and
William Fothergill Cooke built detectors from magnetized needles,
which would be deflected in the presence of an incoming electric current.
By 1839, the Wheatstone-Cooke system was being used to send
messages between railway stations in West Drayton and Paddington, a
distance of 29 km . The reputation of the telegraph and its remarkable
speed of communication soon spread, and nothing did more to popularize
its power than the birth of Queen Victoria's second son, Prince
Alfred, at Windsor on August 6, 1844. News of the birth was telegraphed
to London, and within the hour The Times was on the streets
announcing the news. It credited the technology that had enabled this
feat, mentioning that it was "indebted to the extraordinary power of the
Electro-Magnetic Telegraph." The following year, the telegraph gained
further fame when it helped capture John Tawell, who had murdered his
mistress in Slough, and who had attempted to escape by jumping on to
a London-bound train. The local police telegraphed TawelPs description
to London, and he was arrested as soon as he arrived at Paddington.

Meanwhile, in America, Samuel Morse had just built his first telegraph

Le Chiffre Indechiffiable 61
line, a system spanning the 60 km between Baltimore and Washington.
Morse used an electromagnet to enhance the signal, so that upon arriving
at the receiver's end it was strong enough to make a series of short and
long marks, dots and dashes, on a piece of paper. He also developed the
now familiar Morse code for translating each letter of the alphabet into a
series of dots and dashes, as given in Table 6. To
complete his system he
designed a sounder, so that the receiver would hear each letter as a series
of audible dots and dashes.

Back in Europe, Morse's approach gradually overtook the Wheatstone-Cooke
system in popularity, and in 1851 a European form of Morse code,
which included accented letters, was adopted throughout the Continent.
As each year passed, Morse code and the telegraph had an increasing
influence on the world, enabling the police to capture more criminals,
helping newspapers to bring the very latest news, providing valuable
information for businesses, and allowing distant companies to make
instantaneous deals.

However, guarding these often sensitive communications was a major
concern. The Morse code itself is not a form of
cryptography, because
there is no concealment of the message. The dots and dashes are merely
a convenient way to represent letters for the telegraphic medium; Morse
code is effectively nothing more than an alternative alphabet. The problem
of security arose primarily because anyone wanting to send a message
would have to deliver it to a Morse code operator, who would then have
to read it in order to transmit it. The telegraph operators had access to
every message, and hence there was a risk that one company might bribe
an operator in order to gain access to a rival's
communications. This
problem was outlined in an article on telegraphy published in 1853 in
England's Quarterly Review.

Means should also be taken to obviate one great objection, at present felt
with respect to sending private communications by telegraph-the violation
of all secrecy-for in any case half-a-dozen people must be cognizant of
every word addressed by one person to another. The clerks of the English
Telegraph Company are sworn to secrecy, but we often write things that it
would be intolerable to see strangers read before our
eyes. This is a grievous
fault in the telegraph, and it must be remedied by some means or other.

62

The Code Book

The solution was to encipher a message before handing it to the telegraph
operator. The operator would then turn the ciphertext into Morse code
before transmitting it. As well as preventing the operators from seeing
sensitive material, encryption also stymied the efforts of any spy who
might be tapping the telegraph wire. The polyalphabetic

Vigenere cipher
was clearly the best way to ensure secrecy for important business

Table 6 International Morse Code symbols.

Symbol Code
Symbol Code
A
W
B
X
C

Y
D
2 .
E
0
-F
]
C
2
H
3
1
4 -
j
5
K
6
L
7

M
8
N
9
0 full stop
p
comma
Q
question mark --
R
colon
S
semicolon _•_•_.
T
hyphen
U
slash
V
quotation mark ._.....
Le Chiffre Indecbiffrabk 63
communications. It was considered unbreakable, and became known as le
chiffre indechiffmbk. Cryptographers had, for the time being at least, a clear
lead over the cryptanalysts.

Mr. Babbage Versus the Vigenere Cipher

The most intriguing figure in nineteenth-century cryptanalysis is Charles
Babbage, the eccentric British genius best known for
developing the
blueprint for the modern computer. He was born in 1791, the son of
Benjamin Babbage, a wealthy London banker. When Charles married
without his father's permission, he no longer had access to the Babbage
fortune, but he still had enough money to be financially secure, and he
pursued the life of a roving scholar, applying his mind to whatever
problem tickled his fancy. His inventions include the speedometer and
the cowcatcher, a device that could be fixed to the front of steam
locomotives to clear cattle from railway tracks. In terms of scientific
breakthroughs, he was the first to realize that the width
of a tree ring
depended on that year's weather, and he deduced that it was possible to
determine past climates by studying ancient trees. He was also intrigued
by statistics, and as a diversion he drew up a set of mortality tables, a basic
tool for today's insurance industry.

Babbage did not restrict himself to tackling scientific and engineering
problems. The cost of sending a letter used to depend on the distance
the letter had to travel, but Babbage pointed out that the cost of the
labor required to calculate the price for each letter was more than the
cost of the postage. Instead, he proposed the system we still use today-- a single price for all letters, regardless of where in the country the
addressee lives. He was also interested in politics and social issues, and
toward the end of his life he began a campaign to get rid of the organ
grinders and street musicians who roamed London. He complained that
the music "not infrequently gives rise to a dance by little ragged urchins, and sometimes half-intoxicated men, who occasionally accompany the
noise with their own discordant voices. Another class who are great
supporters of street music consists of ladies of elastic virtue and
cosmopolitan tendencies, to whom it affords a decent excuse for
displaying their fascinations at their open windows." Unfortunately for

Babbage, the musicians fought back by gathering in large groups around
his house and playing as loud as possible.

The turning point in Babbage's scientific career came in 1821, when he
and the astronomer John Herschel were examining a set of mathematical
tables, the sort used as the basis for astronomical, engineering and
navigational calculations. The two men were disgusted by the number of
errors in the tables, which in turn would generate flaws in important
calculations. One set of tables, the Nautical Ephemeris for Finding Latitude
and Longitude at Sea, contained over a thousand errors. Indeed, many
shipwrecks and engineering disasters were blamed on faulty tables.

These mathematical tables were calculated by hand, and the mistakes
were simply the result of human error. This caused Babbage to exclaim, "I
wish to God these calculations had been executed by steam!" This marked
the beginning of an extraordinary endeavor to build a machine capable of
faultlessly calculating the tables to a high degree of accuracy. In 1823
Babbage designed "Difference Engine No. 1," a magnificent calculator
consisting of 25,000 precision parts, to be built with government funding.
Although Babbage was a brilliant innovator, he was not a great implementer.
After ten years of toil, he abandoned "Difference Engine No. 1," cooked up
an entirely new design, and set to work building "Difference Engine No. 2."

When Babbage abandoned his first machine, the government lost
confidence in him and decided to cut its losses by withdrawing from the
project--it had already spent 17,470 , pounds enough to build a pair of battleships.
It was probably this withdrawal of support that later prompted
Babbage to make the following complaint: "Propose to an Englishman
any principle, or any instrument, however admirable, and you will observe
that the whole effort of the English mind is directed to find a
difficulty, a defect, or an impossibility in it. If you speak to him of a machine for peeling a potato, he will pronounce it impossible: if you peel
a potato with it before his eyes, he will declare it useless, because it will
not slice a pineapple."

Lack of government funding meant that Babbage never completed
Difference Engine No. 2. The scientific tragedy was that Babbage's machine
would have been a stepping-stone to the Analytical Engine, which
would have been programmable. Rather than merely calculating a specific
set of tables, the Analytical Engine would have been able to solve a

Figure 12 Charles Babbage.

The Code Book
variety of mathematical problems depending on the instructions that
it was given. In fact, the Analytical Engine provided the template
for modern computers. The design included a "store"
(memory) and
a "mill" (processor), which would allow it to make decisions and
repeat instructions, which are equivalent to the "if . . . then . . ." and
"loop" commands in modern programming.

A century later, during the course of the Second World War, the first
electronic incarnations of Babbage's machine would have a profound
effect on cryptanalysis, but, in his own lifetime, Babbage made an equally
important contribution to codebreaking: he succeeded in breaking the
Vigenere cipher, and in so doing he made the greatest
breakthrough in
cryptanalysis since the Arab scholars of the ninth century broke the
monoalphabetic cipher by inventing frequency analysis.
Babbage's work
required no mechanical calculations or complex
computations. Instead,
he employed nothing more than sheer cunning.

Babbage had become interested in ciphers at a very young age. In later
life, he recalled how his childhood hobby occasionally got him into
trouble: "The bigger boys made ciphers, but if \(I\) got hold of a few words,
I usually found out the key. The consequence of this ingenuity was
occasionally painful: the owners of the detected ciphers sometimes
thrashed me, though the fault lay in their own stupidity." These beatings
did not discourage him, and he continued to be enchanted by
cryptanalysis. He wrote in his autobiography that
"deciphering is, in my
opinion, one of the most fascinating of arts."

He soon gained a reputation within London society as a
cryptanalyst
prepared to tackle any encrypted message, and strangers would approach
him with all sorts of problems. For example, Babbage helped a desperate
biographer attempting to decipher the shorthand notes of John
Flamsteed, England's first Astronomer Royal. He also came to the rescue
of a historian, solving a cipher of Henrietta Maria, wife of Charles I. In
1854, he collaborated with a barrister and used cryptanalysis to reveal
crucial evidence in a legal case. Over the years, he accumulated a thick file
of encrypted messages, which he planned to use as the basis for an
authoritative book on cryptanalysis, entitled The
Pbiksophy ofDecyphering. The book would contain two examples of every kind of cipher, one that
would be broken as a demonstration and one that would be left as an

Le Chiffre Indechiffrable 67
exercise for the reader. Unfortunately, as with many other of his grand
plans, the book was never completed.

While most cryptanalysts had given up all hope of ever breaking the
Vigenere cipher, Babbage was inspired to attempt a decipherment by an
exchange of letters with John Hall Brock Thwaites, a dentist from Bristol
with a rather innocent view of ciphers. In 1854, Thwaites claimed to have
invented a new cipher, which, in fact, was equivalent to the Vigenere
cipher. He wrote to the Journal of the Society of Arts with the intention of
patenting his idea, apparently unaware that he was several centuries too
late. Babbage wrote to the Society, pointing out that "the cypher ... is a
very old one, and to be found in most books." Thwaite was unapologetic
and challenged Babbage to break his cipher. Whether or not it was
breakable was irrelevant to whether or not it was new, but Babbage's
curiosity was sufficiently aroused for him to embark on a search for a
weakness in the Vigenere cipher.

Cracking a difficult cipher is akin to climbing a sheer cliff face. The
cryptanalyst is seeking any nook or cranny which could provide the
slightest purchase. In a monoalphabetic cipher the cryptanalyst will latch
on to the frequency of the letters, because the commonest letters, such as
e, \(t\) and a, will stand out no matter how they have been disguised. In the
polyalphabetic Vigenere cipher the frequencies are much more balanced,
because the keyword is used to switch between cipher alphabets. Hence,
at first sight, the rock face seems perfectly smooth.

Remember, the great strength of the Vigenere cipher is that the same letter will be enciphered in different ways. For example, if the keyword is
KING, then every letter in the plaintext can potentially be enciphered in
four different ways, because the keyword contains four letters. Each letter
of the keyword defines a different cipher alphabet in the Vigenere square,
as shown in Table 7. The e column of the square has been highlighted to
show how it is enciphered differently, depending on which letter of the
keyword is defining the encipherment:

If the \(K\) of KING is used to encipher e, then the resulting ciphertext letter isO.
If the I of KING is used to encipher e, then the resulting ciphertext letter isM.
If the \(N\) of KING is used to encipher \(e\), then the resulting ciphertext letter is R.
If the \(G\) of KING is used to encipher \(e\), then the resulting ciphertext letter is K.

68 The Code Book

Table 7 A Vigenere square used in combination with the keyword KING. The keyword defines four separate cipher alphabets, so that the letter e may be
encrypted as \(0, M, R\) or \(K\).

Plain
a bcdefgh i j k Imnop
qr s
t u
V w
Xy z1BCDEFGH 1 J KLMNOP
Q
R
S T
U V
WX
YZ
A
2C D
E
F
G
H

1
J
K
L M
N
```

O
P
Q
R
S T U V W X Y Z A B 3
DEFGHI JKLMNOPQRS
TU Vw XYZAB
C4
EFGHfJ KLMNOPQRST
UV WX
YZABC
D5
FGH 1 JKLMNOPQRSTU
VWXYZABCD
E6
G H
1
J
K
L M
N
O
P
Q
R
STUVWXYZABCDE F7
H1
J KLMNOPQRSTUVW
XYZABCDEF
G8
1JKLMNOPQRSTU VWX
Y
I A
B C
D E
F
G H 9
J K
L M
N
O
P
Q
R

```
```

S
T
U
V
W
X
YZ A B
C D
E F
G
H
1
10
KLMNOPQRSTU VWX Y Z
ABCDEFG
H1 i
11
LMNOPQRSTUVWXYZA
BCDEFGH1J K
1
2
MNOPQRSTUVWXYZAB
C
D E
F G
H 1
J
K
L
1 3
NOPQ R S T U VWX Y Z A B C
DEFGH1JKL
M14
OPQRSTUVWXYZABCD
EFGH1JKLM
N
1 5
P Q
R
S
T
U
V
W

```

C
D
E F
C H
1 J
K L
M
N
0
16
QR
S T U VWX Y Z A B C D E F
GH1 JKLMNO
P17
R S T
U V W X Y Z A B C D E F G H 1 J K L M N O P Q 18
STUVWXYZABCDE FGH
1 JKLMNOP
QR19
TU VWX YZABCDEFGHI
JKLMNOPQ
R S
20
UV
W
XYZABCDEFGHIJKLM
N 0
P Q
R
S
T
21
VWXYZABCDEFGHIJK
LMNOPQRST
U22
wXYZ'A BCDEFGH 1 JKL
MNOPQRSTU V23
X Y

O P
Q RSTUV W24
YZABCDEFGHIJKLMN
OPQRSTUVWX25
ZAB
CDEFGHIJKLMNOPQR
S T
U V
W
X
Y
26
A B
C
D
E
F
G
H

1
J
K
L
M
N
0

P
Q
R S
T U
V W

Z
Le Chiffre Indechiffrable 69
j Similarly-whole
words will be deciphered in different ways: the word the, for example, could be enciphered as DPR, BUK, CNO or ZRM, depending on its position relative to the keyword. Although this makes cryptanalysis
difficult, it is not impossible. The important point to note is that
if there are only four ways to encipher the word the, and the original message
contains several instances of the word the, then it is highly likely that
some of the four possible encipherments will be repeated in the ciphertext.
This is demonstrated in the following example, in which the line The

Sun and the Man in the Moon has been enciphered using the Vigenere
cipher and the keyword KING.

KeywordKINGKINGKINGKINGKINGKING

Plaintextthesunandtheman i nthemoon

Ciphertext DPRYEVNTNBUKWI AOXBUK WW B T

The word the is enciphered as DPR in the first instance, and then as BUK
on the second and third occasions. The reason for the
repetition of BUK
is that the second the is displaced by eight letters with respect to the third
the, and eight is a multiple of the length of the keyword, which is four
letters long. In other words, the second the was enciphered according to
its relationship to the keyword (the is directly below ING), and by the
time we reach the third the, the keyword has cycled around exactly twice, to repeat the relationship, and hence repeat the encipherment.

Babbage realized that this sort of repetition provided him with exactly
the foothold he needed in order to conquer the Vigenere cipher. He was
able to define a series of relatively simple steps which could be followed
by any cryptanalyst to crack the hitherto chiffre indechiffmbk. To
demonstrate his brilliant technique, let us imagine that we have
intercepted the ciphertext shown in Figure 13. We know that it was
enciphered using the Vigenere cipher, but we know nothing about the
original message, and the keyword is a mystery.

The first stage in Babbage's cryptanalysis is to look for sequences of
letters that appear more than once in the ciphertext. There are two ways
that such repetitions could arise. The most likely is that the same
sequence of letters in the plaintext has been enciphered using the same part of the key. Alternatively, there is a slight possibility that two different
sequences of letters in the plaintext have been enciphered using different

70 The Code Book
parts of the key, coincidentally leading to the identical sequence in the
ciphertext. If we restrict ourselves to long sequences, then we largely
discount the second possibility, and, in this case, we
shall consider
repeated sequences only if they are of four letters or more. Table 8 is a log
of such repetitions, along with the spacing between the repetition. For
example, the sequence \(E-F-I-Q\) appears in the first line of the ciphertext
and then in the fifth line, shifted forward by 95 letters.

As well as being used to encipher the plaintext into ciphertext, the keyword
is also used by the receiver to decipher the ciphertext back into
plaintext. Hence, if we could identify the keyword, deciphering the text
would be easy. At this stage we do not have enough information to work out the keyword, but Table 8 does provide some very good clues as to its
length. Having listed which sequences repeat themselves and the spacing
between these repetitions, the rest of the table is given over to identifying the factors of the spacing--the numbers that will divide into the spacing.
```

WU B E F
I X C G T
WO Z M P
YMH F E
WC X Y M
X Y MWM
Q Y C CM
E E X M R
U V P M V
P Q E HM
I Q V L Q
V V Q S Z
WWO I C
F P P A Y
P Y V A C
I D G X M
U Z K I Z

```

IQ LZ U R

M PIF K R

ULM B N Y

FNZP S D

DAVQ E E

SEM E F C
TWCW F B

ULUK S G

YQYC X T

OZCI WC

MZVP P X

ETRL Q Z

CGDWH Q

BIYB J U

DCFQ N Z

QQVE B M

BZLI U A

M V O F E
Z U PM V
V QQ QM
L P P S D
F I Q C A
F W Y E Y
S M Y F P
W F P T L
W F Q L M
I W F P Z
A W C S M

P B J A Z
MM V 0 W
TWR L Q
P I F P P
Q A L K E
MM V Z

H M Y MW T
0 I R QMM
V M V J L E
L P E V QM
Y T QOWC
Q E T R L I
L R X T Q Y
\(R\) Q A E R L
T E L S F J
S L M A E Z
Z M OR V G
V Q I Y X E
S G N T J P
K L L L MD
K S D V P T
Z M G C V K

Figure 13 The ciphertext, enciphered using the Vigenere cipher.

Le Chiffre Indechiffrable 71

For example, the sequence \(W-C-X-Y-M\) repeats itself after 20 letters, and
the numbers 1, 2, 4, 5, 10 and 20 are factors, because they divide perfectly
into 20 without leaving a remainder. These factors suggest six possibilities:
(1) The key is 1 letter long and is recycled 20
times between encryptions.
(2) The key is 2 letters long and is recycled 10 times
between encryptions.
(3) The key is 4 letters long and is recycled 5
times between encryptions.
(4) The key is 5 letters long and is recycled 4 times between encryptions.
(5) The key is 10 letters long and is recycled 2 times between encryptions.
(6) The key is 20 letters long and is recycled 1 time between encryptions.

The first possibility can be excluded, because a key that is only 1 letter
long gives rise to a monoalphabetic cipher--only one row of the Vigenere
square would be used for the entire encryption, and the cipher alphabet
would remain unchanged; it is unlikely that a
cryptographer would do
this. To indicate each of the other possibilities, a / is placed in the
appropriate column of Table 8. Each / indicates a potential key length.

To identify whether the key is 2, 4, 5, 10 or 20 letters long, we need to
look at the factors of all the other spacings. Because the keyword seems to
be 20 letters or smaller, Table 8 lists those factors that are 20 or smaller for
each of the other spacings. There is a clear propensity for a spacing
divisible by 5. In fact, every spacing is divisible by 5.
The first repeated
sequence, E-F-I-Q, can be explained by a keyword of length
5 recycled
nineteen times between the first and second encryptions.
The second
repeated sequence, \(P-S-D-L-P\), can be explained by a keyword of length 5
recycled just once between the first and second encryptions. The third
```

ciphertext.
Repeated
sequence
Repeat
spacing
Possible length of key (or factors)

```
23456
\(\begin{array}{lllllllll}7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15\end{array}\)
1617181920
EF-IQ
95
/
/
PS-D-LP
5/
WC-XYM
\(20 /\)
/ ///
ET-RL
120
/
1
/ / /
/ / / / /
72
The Code Book
repeated sequence, \(W-C-X-Y-M\), can be explained by a keyword of length 5 recycled four times between the first and second encryptions. The fourth
repeated sequence, \(\mathrm{E}-\mathrm{T}-\mathrm{R}-\mathrm{L}\), can be explained by a keyword of length 5
recycled twenty-four times between the first and second encryptions. In
short, everything is consistent with a five-letter keyword.

Assuming that the keyword is indeed 5 letters long, the
next step is to
work out the actual letters of the keyword. For the time being, let us call
the keyword \(L j-l^{\wedge}-L j-l^{\wedge}-l^{\wedge}\), such that \(L j\) represents the first letter of the
keyword, and so on. The process of encipherment would have begun with
enciphering the first letter of the plaintext according to the first letter of
the keyword, Lj. The letter \(L\) j defines one row of the Vigenere square, and
effectively provides a monoalphabetic substitution cipher alphabet for
the first letter of the plaintext. However, when it comes to encrypting the
second letter of the plaintext, the cryptographer would have used l£ to define a different row of the Vigenere square, effectively providing a
different monoalphabetic substitution cipher alphabet. The third letter of
plaintext would be encrypted according to Lj, the fourth according to 1.4,
and the fifth according to 1.5. Each letter of the keyword is providing a
different cipher alphabet for encryption. However, the sixth letter of the
plaintext would once again be encrypted according to Lj, the seventh
letter of the plaintext would once again be encrypted according to 1-2, and
the cycle repeats itself thereafter. In other words, the polyalphabetic
cipher consists of five monoalphabetic ciphers, each monoalphabetic cipher
is responsible for encrypting one-fifth of the entire message, and, most
importantly, we already know how to cryptanalyze
monoalphabetic ciphers.

We proceed as follows. We know that one of the rows of the Vigenere
square, defined by Lj, provided the cipher alphabet to
encrypt the 1st,
6th, llth, 16th, . . . letters of the message. Hence, if
we look at the 1st,
6th, llth, 16th,... letters of the ciphertext, we should be able to use old-fashioned
frequency analysis to work out the cipher alphabet in question.
Figure 14 shows the frequency distribution of the letters that appear in
the 1st, 6th, llth, 16th,. . . positions of the
ciphertext, which are \(\mathrm{W}, \mathrm{I}, \mathrm{R}\),
E,.... At this point, remember that each cipher alphabet in the Vigenere
square is simply a standard alphabet shifted by a value between 1 and 26.
Hence, the frequency distribution in Figure 14 should have similar
features to the frequency distribution of a standard alphabet, except that

Le Cbiffn Indechiffrable 73
it will have been shifted by some distance. By comparing the Li
distribution with the standard distribution, it should be possible to work
out the shift. Figure 15 shows the standard frequency distribution for a
piece of English plaintext.

The standard distribution has peaks, plateaus and valleys, and to match
it with the Lj cipher distribution we look for the most outstanding
combination of features. For example, the three spikes at R-S-T in the

10 --
8,6-r-4
n n 2 ~~ n
n n n " n nn UfABCDEFCHIjKL
MNOPQRSTUVWXYZ

Figure 14 Frequency distribution for letters in the
```

ciphertext encrypted using the Lj
cipher alphabet (number of occurrences).

```
10
```

8 6 --
p
r
rn ~ | 2 nn 1 n n n n n(InR n
(abode fgh i j klmnopqrstuvwxyz

```

Figure 15 Standard frequency distribution (number of occurrences based on a piece of
plaintext containing the same number of letters as in the ciphertext).

\section*{74 The Code Book}
standard distribution (Figure 15) and the long depression to its right that
stretches across six letters from \(U\) to \(Z\) together form a very distinctive pair
of features. The only similar features in the \(L j\)
distribution (Figure 14)
are the three spikes at \(V-W-X\), followed by the depression stretching six
letters from Y to D. This would suggest that all the
letters encrypted
according to \(L\) j have been shifted four places, or that \(L\) j defines a cipher
alphabet which begins E, F, G, H, . . . . In turn, this means that the first
letter of the keyword, Lj, is probably E. This hypothesis can be tested by
shifting the Lj distribution back four letters and
comparing it with the
standard distribution. Figure 16 shows both distributions for comparison.
The match between the major peaks is very strong, implying that it is safe
to assume that the keyword does indeed begin with E.
```

•"
; r
h
r 4 p 2 n "
n rl n n n n n nn n
n
E F
G H 1 J K L M N O
PQRSTUVWXYZABCD
10 -r-16 |,
,-,r-4
~i 2 n 1
n n nnnRun U A B
C D E F G H 1 J K
L
MNOPQRSTUVWXYZ

```

Figure 16 The L] distribution shifted back four letters (top), compared with the standard frequency distribution (bottom). All major peaks and troughs match.

Le Chiffre Indechiffrable 75

To summarize, searching for repetitions in the ciphertext has allowed
us to identify the length of the keyword, which turned out to be five
letters long. This allowed us to split the ciphertext into five parts, each
one enciphered according to a monoalphabetic substitution as defined by
one letter of the keyword. By analyzing the fraction of the ciphertext that
was enciphered according to the first letter of the keyword, we have been
able to show that this letter, Lj, is probably E. This process is repeated in
order to identify the second letter of the keyword. A frequency
distribution is established for the 2nd, 7th, 12th, 17th, . . . letters in the
ciphertext. Again, the resulting distribution, shown in Figure 17, is
compared with the standard distribution in order to deduce the shift.

This distribution is harder to analyze. There are no obvious candidates
for the three neighboring peaks that correspond to \(R-S-T\). However, the
depression that stretches from \(G\) to \(L\) is very distinct, and probably
corresponds to the depression we expect to see stretching from U to \(Z\) in
the standard distribution. If this were the case, we would expect the three
R-S-T peaks to appear at \(D, E\) and \(F\), but the peak at \(E\) is missing. For the
time being, we shall dismiss the missing peak as a statistical glitch, and go

15

12

6 -
n
n
n

3 ti
n

A B C D E F G

J KLMNOPQRSTUVWXYZ

Figure 17 Frequency distribution for letters in the ciphertext encrypted using the \(\backslash-2\) cipher alphabet (number of occurrences).

76 The Code Book
with our initial reaction, which is that the depression from \(G\) to \(L\) is a recognizably shifted feature. This would suggest that all the letters
encrypted according to \(l_{\text {_ }} 2\) have been shifted twelve places, or that \(l_{\text {_ }} 2\)
defines a cipher alphabet which begins \(M, N, O, P, \ldots\) and that the second
letter of the keyword, \(1-2\), is M. Once again, this hypothesis can be tested
by shifting the \(1-2\) distribution back twelve letters and comparing it with
the standard distribution. Figure 18 shows both
distributions, and the

15

12
n
n
```

6 '
i-4
|
\ n
n nH 1 On nOn n rinH n
abcdefghi jklmnopqrstuvwxyz
Figure 18 The l_2 distribution shifted back twelve letters (top), compared with the
standard frequency distribution (bottom). Most major peaks and troughs match.

```

Le Chiffre Indecbiffrable 77
match between the major peaks is very strong, implying that it is safe to
assume that the second letter of the keyword is indeed M.

I shall not continue the analysis; suffice to say that analyzing the 3rd,
8th, 13th, . . . letters implies that the third letter of
the keyword is I,
analyzing the 4th, 9th, 14th, . . . letters implies that the fourth letter is L,
and analyzing the 5th, 10th, 15th,.. . letters implies that the fifth letter is
Y. The keyword is EMILY. It is now possible to reverse the Vigenere cipher
and complete the cryptanalysis. The first letter of the ciphertext is \(W\), and
it was encrypted according to the first letter of the keyword, E. Working backward, we look at the Vigenere square, and find \(W\) in the row beginning with \(E\), and then we find which letter is at the top of that
column. The letter is s, which must make it the first letter of the plaintext. By repeating this process, we see that the plaintext begins
sittheedownandhavenoshamecheekbyjowl .... By inserting suitable word-breaks and punctuation, we eventually get:

Sit thee down, and have no shame, Cheek by jowl, and knee by knee: What care I for any name?
What for order or degree?

Let me screw thee up a peg:
Let me loose thy tongue with wine:
Callest thou that thing a leg?
Which is thinnest? thine or mine?

Thou shall not be saved by works:
Thou hast been a sinner too:
Ruined trunks on withered forks,
Empty scarecrows, I and you!

Fill the cup, and fill the can:
Have a rouse before the morn:
Every moment dies a man,
Every moment one is born.

These are verses from a poem by Alfred Tennyson entitled
"The Vision of
Sin." The keyword happens to be the first name of
Tennyson's wife, Emily
Sellwood. I chose to use a section from this particular
example for cryptanalysis because it inspired some curious correspondence
between Babbage and the great poet. Being a keen statistician
and compiler of mortality tables, Babbage was irritated by the lines
"Every moment dies a man, Every moment one is born," which are the
last lines of the plaintext above. Consequently, he
offered a correction to
Tennyson's "otherwise beautiful" poem:

It must be manifest that if this were tiue, the population of the world would be at a standstill... I would suggest that in the next edition of your
poem you have it read--"Every moment dies a man, Every
moment l'/i6 is
born." . . . The actual figure is so long I cannot get it onto a line, but I
believe the figure l'/i6 will be sufficiently accurate for poetry.

I am, Sir, yours, etc.,
Charles Babbage.

Babbage's successful cryptanalysis of the Vigenere cipher was probably
achieved in 1854, soon after his spat with Thwaites, but his discovery went
completely unrecognized because he never published it. The discovery
came to light only in the twentieth century, when scholars examined

Babbage's extensive notes. In the meantime, his technique was
independently discovered by Friedrich Wilhelm Kasiski, a retired officer in
the Prussian army. Ever since 1863, when he published his cryptanalytic
breakthrough in Die Geheimschriften und die
Decbiffrir-kunst ("Secret Writing
and the Art of Deciphering"), the technique has been known as the Kasiski
Test, and Babbage's contribution has been largely ignored.

And why did Babbage fail to publicize his cracking of such a vital
cipher? He certainly had a habit of not finishing projects and not
publishing his discoveries, which might suggest that this is just one more
example of his lackadaisical attitude. However, there is an alternative
explanation. His discovery occurred soon after the outbreak of the
Crimean War, and one theory is that it gave the British a clear advantage
over their Russian enemy. It is quite possible that British Intelligence
demanded that Babbage keep his work secret, thus providing them with a
nine-year head start over the rest of the world. If this was the case, then it
would fit in with the long-standing tradition of hushing up codebreaking
achievements in the interests of national security, a practice that has
continued into the twentieth century.

Le Chiffre Indechiffrable 79
front Agony Columns to Buried Treasure

Ifhanb to the breakthroughs by Charles Babbage and Friedrich Kasiski,
the Vigenere cipher was no longer secure. Cryptographers could no ; longer guarantee secrecy, now that cryptanalysts had fought back to
regain control in the communications war. Although
cryptographers
attempted to design new ciphers, nothing of great
significance emerged
during the latter half of the nineteenth century, and professional
cryptography was in disarray. However, this same period witnessed an
enormous growth of interest in ciphers among the general public.

The development of the telegraph, which had driven a commercial
interest in cryptography, was also responsible for generating public
interest in cryptography. The public became aware of the need to protect
personal messages of a highly sensitive nature, and if necessary they
would use encryption, even though this took more time to send, thus
adding to the cost of the telegram. Morse operators could send plain
English at speeds of up to 35 words per minute because they could
memorize entire phrases and transmit them in a single burst, whereas the
jumble of letters that make up a ciphertext was
considerably slower to
transmit, because the operator had to continually refer back to the
sender's written message to check the sequence of letters. The ciphers
used by the general public would not have withstood attack by a
professional cryptanalyst, but they were sufficient to guard against the
casual snooper.

As people became comfortable with encipherment, they began to
express their cryptographic skills in a variety of ways. For example, young
lovers in Victorian England were often forbidden from publicly
expressing their affection, and could not even communicate by letter in
case their parents intercepted and read the contents. This resulted in
lovers sending encrypted messages to each other via the personal columns
of newspapers. These "agony columns," as they became known, provoked the curiosity of cryptanalysts, who would scan the notes and try to
decipher their titillating contents. Charles Babbage is known to have
indulged in this activity, along with his friends Sir
Charles Wheatstone
and Baron Lyon Playfair, who together were responsible for developing
the deft Playfair cipher (described in Appendix E). On one occasion,

80

The Code Book

Wheatstone deciphered a note in The Times from an Oxford student, suggesting to his true love that they elope. A few days later, Wheatstone
inserted his own message, encrypted in the same cipher, advising the
couple against this rebellious and rash action. Shortly afterward there
appeared a third message, this time unencrypted and from the lady in
question: "Dear Charlie, Write no more. Our cipher is discovered."

In due course a wider variety of encrypted notes appeared in the newspapers.
Cryptographers began to insert blocks of ciphertext merely
to
challenge their colleagues. On other occasions, encrypted notes were used
to criticize public figures or organizations. The Times once unwittingly carried
the following encrypted notice: "The Times is the Jeffreys of the
press." The newspaper was being likened to the notorious seventeenth-century
Judge Jeffreys, implying that it was a ruthless, bullying publication
which acted as a mouthpiece for the government.

Another example of the public's familiarity with cryptography was the widespread use of pinprick encryption. The ancient Greek historian
Aeneas the Tactician suggested conveying a secret message by pricking tiny
holes under particular letters in an apparently innocuous page of text, just
as there are dots under some letters in this paragraph. Those letters would
spell out a secret message, easily read by the intended receiver. However,
if an intermediary stared at the page, they would probably be oblivious to
the barely perceptible pinpricks, and would probably be unaware of the
secret message. Two thousand years later, British letter writers used exactly
the same method, not to achieve secrecy but to avoid paying excessive
postage costs. Before the overhaul of the postage system in the mid-1800s,
sending a letter cost about a shilling for every hundred miles,
beyond the means of most people. However, newspapers could be posted
free of charge, and this provided a loophole for thrifty Victorians. Instead
of writing and sending letters, people began to use pinpricks to spell out
a message on the front page of a newspaper. They could
then send the
newspaper through the post without having to pay a penny.

The public's growing fascination with cryptographic techniques meant
that codes and ciphers soon found their way into nineteenth-century literature.
In Jules Verne's Journey to the Center of the Earth, the decipherment
of a parchment filled with runic characters prompts the first step on the
epic journey. The characters are part of a substitution cipher which gen-

Le Chiffre Indechiffrable 81
ates a Latin script, which in turn makes sense only when the letters are
f.jeversed: "Descend the crater of the volcano of Sneffels when the shadow
*'of Scartaris comes to caress it before the calends of July, audacious voyW ager, and you will reach the center of the Earth." In 1885, Verne also used v" a cipher as a pivotal element in his novel Mathias Sandorff. In Britain, one
. of the finest writers of cryptographic fiction was Sir Arthur Conan Doyle.
Not surprisingly, Sherlock Holmes was an expert in
cryptography and, as he explained to Dr. Watson, was "the author of a trifling monograph
upon the subject in which I analyze one hundred and sixty separate ' ciphers." The most famous of Holmes's decipherments is told in The , Adventure of the Dancing Men, which involves a cipher consisting of stickmen, each pose representing a distinct letter.

On the other side of the Atlantic, Edgar Allan Poe was also developing
.. an interest in cryptanalysis. Writing for
Philadelphia's Alexander Weekly
Messenger, he issued a challenge to readers, claiming that he could decipher
any monoalphabetic substitution cipher. Hundreds of readers sent
in their ciphertexts, and he successfully deciphered them all. Although
this required nothing more than frequency analysis, Poe's readers were
astonished by his achievements. One adoring fan proclaimed him "the
most profound and skillful cryptographer who ever lived."

In 1843, keen to exploit the interest he had generated, Poe wrote a short
story about ciphers, which is widely acknowledged by professional cryptographers
to be the finest piece of fictional literature on the subject. "The
Gold Bug" tells the story of William Legrand, who discovers an unusual
beetle, the gold bug, and collects it using a scrap of paper lying nearby. That
evening he sketches the gold bug upon the same piece of paper, and then
holds his drawing up to the light of the fire to check its accuracy. However,
ytmfotf\&MtK

Figure 19 A section of the ciphertext from The Adventure of the Dancing Men, a Sherlock Holmes adventure by Sir Arthur Conan Doyle.

\section*{82}

The Code Book
his sketch is obliterated by an invisible ink, which has been developed by
the heat of the flames. Legrand examines the characters that have emerged
and becomes convinced that he has in his hands the encrypted directions
for finding Captain Kidd's treasure. The remainder of the story is a classic
demonstration of frequency analysis, resulting in the decipherment of
Captain Kidd's clues and the discovery of his buried treasure.

Although "The Gold Bug" is pure fiction, there is a true nineteenth-century
story containing many of the same elements. The case of the

Beale ciphers involves Wild West escapades, a cowboy who amassed a
vast fortune, a buried treasure worth \(\$ 20\) million and a mysterious set of
encrypted papers describing its whereabouts. Much of what we know
about this story, including the encrypted papers, is contained in a
pamphlet published in 1885. Although only 23 pages long, the pamphlet
has baffled generations of cryptanalysts and captivated hundreds of
treasure hunters.

The story begins at the Washington Hotel in Lynchburg, Virginia, sixty-five
years before the publication of the pamphlet. According to the
pamphlet, the hotel and its owner, Robert Morriss, were held in high
regard: "His kind disposition, strict probity, excellent management, and
well ordered household, soon rendered him famous as a host, and his
reputation extended even to other States. His was the house par excellence
of the town, and no fashionable assemblages met at any other." In
January 1820 a stranger by the name of Thomas J. Beale rode into
Lynchburg and checked into the Washington Hotel. "In
person, he was
about six feet in height," recalled Morriss, "with jet black eyes and hair of
the same color, worn longer than was the style at the time. His form was
symmetrical, and gave evidence of unusual strength and activity; but his
distinguishing feature was a dark and swarthy complexion, as if much
exposure to the sun and weather had thoroughly tanned and discolored
him; this, however, did not detract from his appearance, and I thought
him the handsomest man I had ever seen." Although Beale spent the rest
of the winter with Morriss and was "extremely popular with every one,
particularly the ladies," he never spoke about his
background, his family
or the purpose of his visit. Then, at the end of March, he left as suddenly
as he had arrived.

THE
beale papers,

CONTAINING

AUTHENTIC STATEMENTS

REGARDING THE
treasure buried

1819 and 1821,

BUFORDS, IN BEDFORD COUNTY, VIRGINIA,
which has never been recovered.

PRICE FIFTY CENTS.

\section*{I/YNCHBCRO:}

VreczxiAH book *.*d job print, 1685.

Kgure 20 The title page of The Beale Papers, the pamphlet that contains all that we know about the mystery of the Beale treasure.

84

The Code Book

Two years later, in January 1822, Beale returned to the Washington Hotel,
"darker and swarthier than ever." Once again, he spent the rest of the winter
in Lynchburg and disappeared in the spring, but not before he entrusted
Morriss with a locked iron box, which he said contained "papers of value
and importance." Morriss placed the box in a safe, and thought nothing
more about it and its contents until he received a letter
from Beale, dated
May 9,1822, and sent from St. Louis. After a few
pleasantries and a paragraph
about an intended trip to the plains "to hunt the buffalo
and encounter the
savage grizzlies," Beale's letter revealed the
significance of the box:

It contains papers vitally affecting the fortunes of myself and many others
engaged in business with me, and in the event of my death, its loss might
be irreparable. You will, therefore, see the necessity of guarding it with vigilance
and care to prevent so great a catastrophe. Should none of us ever
return you will please preserve carefully the box for the period of ten years
from the date of this letter, and if \(I\), or no one with authority from me, during
that time demands its restoration, you will open it, which can be done
by removing the lock. You will find, in addition to the papers addressed to
you, other papers which will be unintelligible without the aid of a key to
assist you. Such a key I have left in the hand of a friend in this place, sealed
and addressed to yourself, and endorsed not to be delivered until June 1832.
By means of this you will understand fully all you will be required to do.

Morriss dutifully continued to guard the box, waiting for Beale to collect it, but the swarthy man of mystery never returned to Lynchburg.
He disappeared without explanation, never to be seen again. Ten years
later, Morriss could have followed the letter's
instructions and opened
the box, but he seems to have been reluctant to break the lock. Beale's
letter had mentioned that a note would be sent to Morriss in June 1832,
and this was supposed to explain how to decipher the contents of the
box. However, the note never arrived, and perhaps Morriss felt that there
was no point opening the box if he could not decipher what
was inside
it. Eventually, in 1845, Morriss's curiosity got the better of him and he
cracked open the lock. The box contained three sheets of enciphered
characters, and a note written by Beale in plain English.

The intriguing note revealed the truth about Beale, the box, and the ciphers. It explained that in April 1817, almost three years before his first
meeting with Morriss, Beale and 29 others had embarked on a journey

Le Chiffre Indechiffrable 85
across America. After traveling through the rich hunting grounds of the
Western plains, they arrived in Santa \(F e\), and spent the winter in the "little
Mexican town." In March they headed north and began tracking an
"immense herd of buffaloes," picking off as many as possible along the
way. Then, according to Beale, they struck lucky:

One day, while following them, the party encamped in a small ravine, some
250 or 300 miles north of Santa Fe, and, with their horses tethered, were
preparing their evening meal, when one of the men discovered in a cleft of
the rocks something that had the appearance of gold. Upon showing it to the
others it was pronounced to be gold, and much excitement was the natural
consequence.

The letter went on to explain that Beale and his men, with help from
the local tribe, mined the site for the next eighteen
months, by which
time they had accumulated a large quantity of gold, as well as some silver
which was found nearby. In due course they agreed that their newfound
wealth should be moved to a secure place, and decided to
take it back
home to Virginia, where they would hide it in a secret location. In 1820,
Beale traveled to Lynchburg with the gold and silver, found a suitable
location, and buried it. It was on this occasion that he first lodged at the
Washington Hotel and made the acquaintance of Morriss. When Beale
left at the end of the winter, he rejoined his men who had continued to
work the mine during his absence.

After another eighteen months Beale revisited Lynchburg with even more
to add to his stash. This time there was an additional reason for his trip:

Before leaving my companions on the plains it was suggested that, in case
of an accident to ourselves, the treasure so concealed would be lost to their
relatives, without some provision against such a
contingency. I was, therefore,
instructed to select some perfectly reliable person, if such could be
found, who should, in the event of this proving acceptable to the party, be
confided in to carry out their wishes in regard to their respective shares.

Beale believed that Morriss was a man of integrity, which is why he
trusted him with the box containing the three enciphered sheets, the so-called
Beale ciphers. Each enciphered sheet contained an array of
numbers (reprinted here as Figures 21, 22 and 23), and deciphering the numbers would reveal all the relevant details; the first sheet described the

\section*{86 The Code Book}
treasure's location, the second outlined the contents of the treasure, and
the third listed the relatives of the men who should receive a share of the
treasure. When Morriss read all of this, it was some 23 years after he had
last seen Thomas Beale. Working on the assumption that Beale and his
men were dead, Morriss felt obliged to find the gold and share it among
their relatives. However, without the promised key he was forced to
decipher the ciphers from scratch, a task that troubled his mind for the
next twenty years, and which ended in failure.

In 1862, at the age of eighty-four, Morriss knew that he was coming to
the end of his life, and that he had to share the secret of the Beale ciphers,
otherwise any hope of carrying out Beale's wishes would die with him.
Morriss confided in a friend, but unfortunately the identity of this person
remains a mystery. All we know about Morriss's friend is that it was he
who wrote the pamphlet in 1885, so hereafter I will refer to him simply as the author. The author explained the reasons for his anonymity within the
pamphlet:

I anticipate for these papers a large circulation, and, to avoid the multitude
of letters with which I should be assailed from all
sections of the Union,
propounding all sorts of questions, and requiring answers which, if
attended to, would absorb my entire time, and only change the character
of my work, I have decided upon withdrawing my name from the publication,
after assuring all interested that \(I\) have given all that \(I\) know of the
matter, and that I cannot add one word to the statements herein contained.

To protect his identity, the author asked James B. Ward, a respected member
of the local community and the county's road surveyor, to act as his
agent and publisher.

Everything we know about the strange tale of the Beale ciphers is
published in the pamphlet, and so it is thanks to the author that we have
the ciphers and Morriss's account of the story. In addition to this, the
author is also responsible for successfully deciphering the second Beale
cipher. Like the first and third ciphers, the second cipher consists of a
page of numbers, and the author assumed that each number represented a
letter. However, the range of numbers far exceeds the number of letters in
the alphabet, so the author realized that he was dealing with a cipher that
uses several numbers to represent the same letter. One cipher that fulfills

Le Chtffre Inde'chiffrable 87
?71, 194, 38, 1701, 89, 76, 11, 83, 1629, 48, 94, 63, 132, 16, 111, 95, 84, 341, 975,
tl4, \(4^{\circ}>64^{\prime} 27 ' 81-139^{\prime}\)
213' 63' 90-112。 8 15'
3-126'
2018' 40-74 758 485.
604, 230, 436, 664, 582, 150, 251, 284, 308, 231, 124,
211, 486, 225, 401, 370,
'11, 101, 305, 139, 189, 17, 33, 88, 208, 193, 145, 1, 94, 73, 416, 918, 263, 28, 500,
538, 356, 117, 136, 219, 27, 176, 130, 10, 460, 25, 485,
18, 436, 65, 84, 200, 283,
118, 320, 138,36,416,280, 15, 71,224,961,44,
\(16,401,39,88,61,304,12,21\),
24, 283, 134, 92, 63, 246, 486, 682, 7, 219, 184, 360, 780, 18, 64, 463, 474, 131,
\(160,79,73,440,95,18,64,581,34,69,128,367,460\), 17, 81, 12, 103, 820, 62,
116, 97, 103, 862, 70, 60, 1317, 471, 540, 208, 121, 890, 346, 36, 150, 59, 568,
614, 13, 120, 63, 219, 812, 2160, 1780, 99, 35, 18, 21, 136, 872, 15, 28, 170, 88, 4,
; 30, 44, 112, 18, 147, 436, 195, 320, 37, 122, 113, 6, \(140,8,120,305,42,58,461\),
\(44,106,301,13,408,680,93,86,116,530,82,568,9\), 102, 38, 416, 89, 71, 216,
728, 965, 818, 2, 38, 121, 195, 14, 326, 148, 234, 18, 55, 131, 234, 361, 824, 5,
81, 623, 48, 961, 19, 26, 33, 10, 1101, 365, 92, 88, 181, 275, 346, 201, 206, 86,
36, 219, 324, 829, 840, 64, 326, 19, 48, 122, 85, 216, 284, 919, 861, 326, 985,
233, 64, 68, 232, 431, 960, 50, 29, 81, 216, 321, 603, 14, 612, 81, 360, 36, 51, 62,
194, 78, 60, 200, 314, 676, 112, 4, 28, 18, 61, 136, 247, 819, 921, 1060, 464, 895, \(10,6,66,119,38,41,49,602,423,962,302,294,875\), 78, 14, 23, 111, 109, 62,
\(31,501,823,216,280,34,24,150,1000,162,286,19,21\),
17,340, 19,242,31,
86, 234, 140, 607, 115, 33, 191, 67, 104, 86, 52, 88, 16, 80, 121, 67, 95, 122, 216,
548, 96, 11, 201, 77, 364, 218, 65, 667, 890, 236, 154, 211, 10, 98, 34, 119, 56,

216, 119,71,218, 1164, 1496, 1817,51,39,210,36,3, 19,540,232,22, 141,617,
84, 290, 80, 46, 207, 411, 150, 29, 38, 46, 172, 85, 194, 39, 261, 543, 897, 624, 18,
212, 416, 127, 931, 19, 4, 63, 96, 12, 101, 418, 16, 140, 230, 460, 538, 19, 27, 88,
612, 1431, 90, 716, 275, 74, 83, 11, 426, 89, 72, 84, 1300, 1706, 814, 221, 132,
\(40,102,34,868,975,1101,84,16,79,23,16,81,122\), 324, 403, 912, 227, 936,
447, 55, 86, 34, 43, 212, 107, 96, 314, 264, 1065, 323, 428, 601, 203, 124, 95, 216,
814, 2906, 654, 820, 2, 301, 112, 176, 213, 71, 87, 96, 202, 35, 10, 2, 41, 17, 84, 221, 736, 820, 214, 11, 60, 760.

Figure 21 The first Beale cipher.

The Code Book

115, 73, 24, 807, 37, 52, 49, 17, 31, 62, 647, 22, 7, 15, 140, 47, 29, 107, 79, 84, 56,
239, 10, 26, 811, 5, 196, 308, 85, 52, 160, 136, 59, 211, \(36,9,46,316,554,122\), \(106,95,53,58,2,42,7,35,122,53,31,82,77,250\), 196, 56, 96, 118, 71, 140, 287, 28, 353, 37, 1005, 65, 147, 807, 24, 3, 8, 12, 47, 43, 59, 807, 45, 316, 101, 41,

78, 154, 1005, 122, 138, 191, 16, 77, 49, 102, 57, 72, 34, \(73,85,35,371,59,196,81,92,191,106,273,60,394\), 620, 270, 220, 106, 388, 287, 63, 3, 6, 191, 122, 43, 234, 400, 106, 290, 314, 47, 48, 81, 96, 26, 115, 92, 158, 191, 110, 77, 85, 197, 46,
10, 113, 140, 353, 48, 120, 106, 2, 607, 61, 420, 811, 29, 125, 14, 20, 37, 105, 28,
248, 16, 159,7,35, 19,301, 125, 110,486,287,98,
117,511,62,51,220,37, 113,
\(140,807,138,540,8,44,287,388,117,18,79,344,34\), 20, 59, 511, 548, 107,
603, 220, 7, 66, 154, 41, 20, 50, 6, 575, 122, 154, 248,

110, 61, 52, 33, 30, 5, 38, 8, \(14,84,57,540,217,115,71,29,84,63,43,131,29\), 138, 47, 73, 239, 540, 52, 53,

79,118,51,44,63, 196, 12,239, 112,3,49,79,353, \(105,56,371,557,211,515,125,360,133,143,101\), 15,284,540,252, 14,205, 140,344,26,811, 138, 115, \(48,73,34,205,316,607,63,220,7,52,150,44,52\), 16, 40, 37, 158, 807, 37, 121, \(12,95,10,15,35,12,131,62,115,102,807,49,53,135\), 138, 30, 31, 62, 67,41,
85, 63, 10, 106, 807, 138, 8, 113, 20, 32, 33, 37, 353, 287, 140, 47, 85, 50, 37, 49,
\(47,64,6,7,71,33,4,43,47,63,1,27,600,208,230\), 15, 191, 246, 85, 94, 511, 2,
\(270,20,39,7,33,44,22,40,7,10,3,811,106,44\), \(486,230,353,211,200,31\),
\(10,38,140,297,61,603,320,302,666,287,2,44,33\), 32, 511, 548, 10, 6, 250, 557, 246, 53, 37, 52, 83, 47, 320, \(38,33,807,7,44,30,31,250,10,15,35,106\), 160, 113, 31, 102, 406, 230, 540, 320, 29, 66, 33, 101, 807, 138, 301, 316, 353,
\(320,220,37,52,28,540,320,33,8,48,107,50,811\), 7, 2, 113, 73, 16, 125, 11,
110, 67, 102, 807, 33, 59, 81, 158, 38, 43, 581, 138, 19, 85, 400, 38, 43, 77, 14, 27,
8, 47, 138, 63, 140, 44, 35, 22, 177, 106, 250, 314, 217, \(2,10,7,1005,4,20,25\),
\(44,48,7,26,46,110,230,807,191,34,112,147,44,110,121\), 125,96,41,51,
50, 140, 56, 47, 152, 540, 63, 807, 28, 42, 250, 138, 582, 98, 643, 32, 107, 140,

112, 26, 85, 138, 540, 53, 20, 125, 371, 38, 36, 10, 52, 118, 136, 102, 420, 150,
112,71, 14,20,7,24, 18, 12,807,37,67,
\(110,62,33,21,95,220,511,102,811\),
\(30,83,84,305,620,15,2,108,220,106,353,105,106\), 60, 275, 72, 8, 50, 205,
185, 112, 125, 540, 65, 106, 807, 188, 96, 110, 16, 73,
33, 807, 150, 409, 400, 50,
154, 285, 96, 106, 316, 270, 205, 101, 811, 400, 8, 44,
37, 52, 40, 241, 34, 205,
38, 16, 46, 47, 85, 24, 44, 15, 64, 73, 138, 807, 85, 78,

110, 33, 420, 505, 53, 37,
\(38,22,31,10,110,106,101,140,15,38,3,5,44,7\), 98, 287, 135, 150, 96, 33, 84,
125, 807, 191, 96, 511, 118, 440, 370, 643, 466, 106, 41, 107, 603, 220, 275, 30,
150, 105, 49, 53, 287, 250, 208, 134, 7, 53, 12, 47, 85, 63, 138, 110, 21, 112, 140,
\(485,486,505,14,73,84,575,1005,150,200,16,42,5\),
4, 25, 42, 8, 16, 811,
125, 160, 32, 205, 603, 807, 81, 96, 405, 41, 600, 136, 14, 20, 28, 26, 353, 302,
\(246,8,131,160,140,84,440,42,16,811,40,67,101,102\), 194, 138,205,51,
63, 241, 540, 122, 8, 10, 63, 140, 47, 48, 140, 288.

Figure 22 The second Beale cipher.

Le Cbiffre Indechiffrabk 89
§ 317, 8, 92, 73, 112, 89, 67, 318, 28, 96, 107, 41, 631, 78, 146, 397, 118, 98, 114,
\(246,348,116,74,88,12,65,32,14,81,19,76,121\), 216, 85, 33, 66, 15, 108, 68,
\(77,43,24,122,96,117,36,211,301,15,44,11,46\), 89, 18, 136, 68, 317, 28, 90, 82, 304, 71, 43, 221, 198, 176, \(310,319,81,99,264,380,56,37,319,2,44,53\), \(28,44,75,98,102,37,85,107,117,64,88,136,48\), 154, 99, 175, 89, 315, 326,

78,96, 214, 218, 311, 43, 89, 51, 90, 75, 128, 96, 33, 28, 103, 84, 65, 26, 41, 246, 84, 270, 98, 116, 32, 59, 74, 66, 69, 240, 15, 8, 121, 20, 77, 89, 31,11, 106, 81, \(191,224,328,18,75,52,82,117,201,39,23,217,27\), 21, 84, 35, 54, 109, 128, \(49,77,88,1,81,217,64,55,83,116,251,269,311,96,54,32\), 120, 18, 132, 102,
219, 211, 84, 150, 219, 275, 312, 64, 10, 106, 87, 75, 47, 21, 29, 37, 81, 44, 18,
126, 115, 132, 160, 181, 203, 76, 81, 299, 314, 337, 351, 96, 11, 28, 97, 318, 238,

106, 24, 93, 3, 19, 17, 26, 60, 73, 88, 14, 126, 138, 234, 286, 297, 321, 365, 264,
19, 22, 84, 56, 107, 98, 123, 111, 214, 136, 7, 33, 45, 40, 13, 28, 46, 42, 107, 196,
\(227,344,198,203,247,116,19,8,212,230,31,6,328\), 65, 48, 52, 59, 41, 122,

33,117, 11, 18, 25, 71, 36, 45, 83, 76, 89, 92, 31, 65, 70, 83, 96, 27, 33, 44, 50, 61,
24, 112, 136, 149, 176, 180, 194, 143, 171,205,296,87, 12,44,51,89,98,34,41,
208, 173, 66, 9, 35, 16, 95, 8, 113, 175, 90, 56, 203, 19, 177, 183, 206, 157, 200,
218, 260, 291, 305, 618, 951, 320, 18, 124, 78, 65, 19, 32, 124, 48, 53, 57, 84, 96, 207, 244, 66, 82, 119, 71, 11, 86, 77, 213, 54, 82, 316, 245, 303, 86, 97, 106, 212,
18, 37, 15, 81, 89, 16, 7, 81, 39, 96, 14, 43, 216, 118, 29, 55, 109, 136, 172, 213,
64, 8, 227, 304, 611, 221, 364, 819, 375, 128, 296, 1, 18, 53, 76, 10, 15, 23, 19, 71,

84,120, 134, 66, 73, 89, 96, 230, 48, 77, 26, 101, 127, 936, 218, 439, 178, 171, 61,
\(226,313,215,102,18,167,262,114,218,66,59,48,27,19\), 13, 82, 48, 162, 119,

34,127, 139, 34, 128, 129, 74, 63, 120, 11, 54, 61, 73, 92, 180, 66, 75, 101, 124,
265, 89, 96, 126, 274, 896, 917, 434, 461, 235, 890, 312, 413, 328, 381, 96, 105,
217, 66, 118, 22, 77, 64, 42, 12, 7, 55, 24, 83, 67, 97, 109, 121, 135, 181, 203, 219,
\(228,256,21,34,77,319,374,382,675,684,717,864\), 203, 4, 18, 92, 16, 63, 82,
\(22,46,55,69,74,112,134,186,175\), \(119,213,416,312,343,264,119,186,218\),
343, 417, 845, 951, 124, 209, 49, 617, 856, 924, 936, 72, 19, 28, 11, 35, 42, 40, 66,

85,94, 112, 65, 82, 115, 119, 236, 244, 186, 172, 112, \(85,6,56,38,44,85,72\),

32, 47, 73, 96, 124, 217, 314, 319, 221, 644, 817, 821, 934, 922, 416, 975, 10, 22, \(18,46,137,181,101,39,86,103,116,138\), \(164,212,218,296,815,380,412\), \(460,495,675,820,952\).

Figure 23 The third Beale cipher.

92 The Code Book

When, in the course of human events, it becomes ' "necessary for one people to
dissolve the political bands which have connected them with another, and to
assume among the ^"powers of the earth, the separate and equal station to
which the laws of nature and of nature's God entitle them, a decent respect
to the opinions of mankind requires ^that they should declare the causes
which impel them to the separation.

We hold these truths to be self-evident, ^that all men are created equal,
that they are endowed by their Creator with certain
inalienable rights, that
among these ^are life, liberty and the pursuit of
happiness; That to \({ }^{\circ}\) secure
these rights, governments are instituted among men,
deriving their just
powers from the consent of the governed; That whenever ^any form of
government becomes destructive of these ends, it ^is the right of the people
to alter or to abolish it, and to institute a new government, laying its
foundation on such principles and organizing its powers in such form, as to
them shall seem most likely to effect \({ }^{\circ}\) ^their safety and happiness. Prudence,
indeed, will dictate that governments ^long established should not be changed
for light and transient ^^causes; and accordingly all experience hath shewn,
that mankind are more disposed to suffer, while evils are sufferable, than
to right themselves by abolishing the forms to which they are "accustomed.

But when a long train of abuses and usurpations, ^pursuing invariably the
same object evinces a design to reduce them Bunder absolute despotism, it is
their right, it is their "''duty, to throw off such government, and to provide
new ^ 'Guards for their future security. Such has been the patient sufferance
of these Colonies; and such is now the necessity ^which constrains them to
alter their former systems of government. ^ The history of the present King of
Great Britain is a history of repeated injuries and usurpations, all having
in '^direct object the establishment of an absolute tyranny over these ""States.
To prove this, let facts be submitted to a ^candid world.

Figure 24 The first three paragraphs of the Declaration of Independence, with every
tenth word numbered. This is the key for deciphering the second Beale cipher.
m

\section*{';*'}

Le Chiffre Indechiffrable 93

In consequence of the time lost in the above investigation, I have been
reduced from comparative affluence to absolute penury, entailing suffering
upon those it was my duty to protect, and this, too, in spite of their remonstrations.

My eyes were at last opened to their condition, and I resolved to
sever at once, and forever, all connection with the affair, and retrieve, if
possible, my errors. To do this, as the best means of placing temptation
beyond my reach, I determined to make public the whole matter, and shift
from my shoulders my responsibility to Mr. Morriss.

Thus the ciphers, along with everything else known by the author, were
published in 1885. Although a warehouse fire destroyed most of the
pamphlets, those that survived caused quite a stir in Lynchburg. Among
the most ardent treasure hunters attracted to the Beale ciphers were the
Hart brothers, George and Clayton. For years they pored over the two
remaining ciphers, mounting various forms of cryptanalytic attack,
occasionally fooling themselves into believing that they had a solution.
A false line of attack will sometimes generate a few tantalizing words
within a sea of gibberish, which then encourages the
cryptanalyst to
devise a series of caveats to excuse the gibberish. To an unbiased observer
the decipherment is clearly nothing more than wishful thinking, but to
the blinkered treasure hunter it makes complete sense. One of the Harts'
tentative decipherments encouraged them to use dynamite to excavate a
particular site; unfortunately, the resulting crater yielded no gold.
Although Clayton Hart gave up in 1912, George continued working on
the Beale ciphers until 1952. An even more persistent Beale fanatic has
been Hiram Herbert, Jr., who first became interested in

1923 and whose
obsession continued right through to the 1970s. He, too, had nothing to
show for his efforts.

Professional cryptanalysts have also embarked on the Beale treasure
trail. Herbert O. Yardley, who founded the U.S. Cipher Bureau (known as
the American Black Chamber) at the end of the First World War, was
intrigued by the Beale ciphers, as was Colonel William Friedman, the
dominant figure in American cryptanalysis during the first half of the
twentieth century. While he was in charge of the Signal
Intelligence
Service, he made the Beale ciphers part of the training program,
presumably because, as his wife once said, he believed the ciphers to be of
"diabolical ingenuity, specifically designed to lure the unwary reader." The

\section*{96}

The Code Book
and they may have discovered something about the ciphers that has
eluded everybody else. The lack of any announcement would be in
keeping with the NSA's hush-hush reputation--it has been proposed that
NSA does not stand for National Security Agency, but rather "Never Say
Anything" or "No Such Agency."

Finally, we cannot exclude the possibility that the Beale ciphers are an
elaborate hoax, and that Beale never existed. Sceptics have suggested that
the unknown author, inspired by Foe's "The Gold Bug," fabricated the
whole story and published the pamphlet as a way of profiting from the
greed of others. Supporters of the hoax theory have searched for
inconsistencies and flaws in the Beale story. For example, according to the
pamphlet, Beale's letter, which was locked in the iron box and supposedly
written in 1822, contains the word "stampede," but this word was not
seen in print until 1834. However, it is quite possible that the word was in
common use in the Wild West at a much earlier date, and Beale could
have learned of it on his travels.

One of the foremost nonbelievers is the cryptographer Louis Kruh, who claims to have found evidence that the pamphlet's author also wrote
Beale's letters, the one supposedly sent from St. Louis and the one
supposedly contained in the box. He performed a textual analysis on the
words attributed to the author and the words attributed to Beale to see if
there were any similarities. Kruh compared aspects such as the percentage
of sentences beginning with "The," "Of" and "And," the average number
of commas and semicolons per sentence, and the writing style--the use of
negatives, negative passives, infinitives, relative
clauses, and so on. In
addition to the author's words and Beale's letters, the analysis also took in
the writing of three other nineteenth-century Virginians.
Of the five sets
of writing, those authored by Beale and the pamphlet's author bore the
closest resemblance, suggesting that they may have been written by the
same person. In other words, this suggests that the author faked the letters
attributed to Beale and fabricated the whole story.

On the other hand, evidence for the integrity of the Beale ciphers is
provided from various sources. First, if the undeciphered ciphers were
hoaxes, we might expect the hoaxer to have chosen the numbers with
little or no attention. However, the numbers give rise to various intricate
patterns. One of the patterns can be found by using the Declaration of

Le Chiffre Indechiffrabk 97

Dependence as a key for the first cipher. This yields no discernible

Ivords, but it does give sequences such as
abfdefghiijklmmnohpp. I Although this is not a perfect
alphabetical list, it is certainly not random.
E 'lames Gillogly of the American Cryptogram Association is not convinced
that the Beale ciphers are authentic. However, he estimates that the
probability of such sequences appearing by chance is less than one in a
hundred million million, suggesting that there is a
cryptographic
principle underlying the first cipher. One theory is that the Declaration is
indeed the key, but the resulting text requires a second stage of
decipherment; in other words, the first Beale cipher was enciphered by a
two-stage process, so-called superencipherment. If this is so, then the
alphabetical sequence might have been put there as a sign of
encouragement, a hint that the first stage of decipherment has been
successfully completed.

Further evidence favoring the probity of the ciphers comes from
historical research, which can be used to verify the story of Thomas Beale.
Peter Viemeister, a local historian, has gathered much of the research in his
book The Beale Treasure--History of a Mystery. Viemeister began by asking if
there was any evidence that Thomas Beale actually existed. Using the
census of 1790 and other documents, Viemeister has identified several
Thomas Beales who were born in Virginia and whose backgrounds fit the
few known details. Viemeister has also attempted to corroborate the other
details in the pamphlet, such as Beale's trip to Santa Fe and his discovery
of gold. For example, there is a Cheyenne legend dating from around 1820
which tells of gold and silver being taken from the West and buried in Eastern Mountains. Also, the 1820 postmaster's list in St. Louis contains a
"Thomas Beall," which fits in with the pamphlet's claim that Beale passed
through the city in 1820 on his journey westward after leaving Lynchburg.
The pamphlet also says that Beale sent a letter from St. Louis in 1822.

So there does seem to be a basis for the tale of the Beale ciphers, and
consequently it continues to enthrall cryptanalysts and treasure hunters,
such as Joseph Jancik, Marilyn Parsons and their dog Muffin. In February
1983 they were charged with "violation of a sepulcher," after being caught
digging in the cemetery of Mountain View Church in the middle of the
night. Having discovered nothing other than a coffin, they spent the rest of
the weekend in the county jail and were eventually fined
amateur gravediggers can console themselves with the knowledge that they
were hardly any less successful than Mel Fisher, the professional treasure
hunter who salvaged \(\$ 40\) million worth of gold from the sunken Spanish
galleon Nuestra Senora de Atocba, which he discovered off Key West, Florida,
in 1985. In November 1989, Fisher received a tip-off from a Beale expert in

Florida, who believed that Beale's hoard was buried at Graham's Mill in

Bedford County, Virginia. Supported by a team of wealthy investors, Fisher
bought the site under the name of Mr . Voda, in order to avoid arousing any
suspicion. Despite a lengthy excavation, he discovered nothing.

Some treasure hunters have abandoned hope of cracking the two unde-ciphered
sheets, and have concentrated instead on gleaning clues from
the one cipher that has been deciphered. For example, as well as describing
the contents of the buried treasure, the solved cipher states that it is
deposited "about four miles from Buford's," which probably refers to the
community of Buford or, more specifically, to Buford's Tavern, located at
the center of Figure 25. The cipher also mentions that "the vault is
roughly lined with stone," so many treasure hunters have searched along
Goose Creek, a rich source of large stones. Each summer
the region
attracts hopefuls, some armed with metal detectors, others accompanied
by psychics or diviners. The nearby town of Bedford has a number of
businesses which gladly hire out equipment, including industrial diggers.
Local farmers tend to be less welcoming to the strangers, who often trespass
on their land, damage their fences and dig giant holes.

Having read the tale of the Beale ciphers, you might be encouraged to
take up the challenge yourself. The lure of an unbroken nineteenth-century
cipher, together with a treasure worth \(\$ 20\) million, might prove
irresistible. However, before you set off on the treasure trail, take heed of the advice given by the author of the pamphlet:

Before giving the papers to the public, I would say a word to those who may
take an interest in them, and give them a little advice, acquired by bitter experience.
It is, to devote only such time as can be spared from your legitimate
business to the task, and if you can spare no time, let the matter alone . . .
Again, never, as I have done, sacrifice your own and your family's interests
to what may prove an illusion; but, as I have already said, when your day's
work is done, and you are comfortably seated by your good fire, a short time
devoted to the subject can injure no one, and may bring its reward.

Figure 25 Part of a U.S. Geological Survey map of 1891. The circle has a radius of four sj miles, and is centered on Buford's Tavern, a location alluded to in the second cipher.

3 The Mechanization of Secrecy

At the end of the nineteenth century, cryptography was in disarray.
Ever since Babbage and Kasiski had destroyed the security of the
Vigenere cipher, cryptographers had been searching for a new cipher, something that would reestablish secret communication, thereby allowing
businessmen and the military to exploit the immediacy of the telegraph
without their communications being stolen and deciphered. Furthermore, at the turn of the century, the Italian physicist Guglielmo Marconi
invented an even more powerful form of telecommunication, which made
the need for secure encryption even more pressing.

In 1894, Marconi began experimenting with a curious property of
electrical circuits. Under certain conditions, if one
circuit carried an electric
current, this could induce a current in another isolated
circuit some
distance away. By enhancing the design of the two
circuits, increasing the
power and adding aerials, Marconi could soon transmit and receive
pulses of information across distances of up to 2.5 km . He had invented
radio. The telegraph had already been established for half a century, but
it required a wire to transport a message between sender and receiver.
Marconi's system had the great advantage of being
wireless-the signal
traveled, as if by magic, through the air.

In 1896, in search of financial backing for his idea, Marconi emigrated
to Britain, where he filed his first patent. Continuing his experiments, he
increased the range of his radio communications, first transmitting a
message 15 km across the Bristol Channel, and then 53 km across the
English Channel to France. At the same time he began to look for commercial
applications for his invention, pointing out to potential backers
the two main advantages of radio: it did not require the construction of
expensive telegraph lines, and it had the potential to send messages

101

102 The Code Book
between otherwise isolated locations. He pulled off a magnificent publicity
stunt in 1899, when he equipped two ships with radios so that journalists
covering the America's Cup, the world's most important yacht race,
could send reports back to New York for the following day's newspapers.

Interest increased still further when Marconi shattered the myth that
radio communication was limited by the horizon. Critics had argued that because radio waves could not bend and follow the curvature of the
Earth, radio communication would be limited to a hundred kilometers or
so. Marconi attempted to prove them wrong by sending a message from

Poldhu in Cornwall to St. John's in Newfoundland, a distance of
\(3,500 \mathrm{~km}\). In December 1901, for three hours each day, the Poldhu
transmitter sent the letter \(S\) (dot-dot-dot) over and over again, while
Marconi stood on the windy cliffs of Newfoundland trying to detect the
radio waves. Day after day, he wrestled to raise aloft a giant kite, which in
turn hoisted his antenna high into the air. A little after midday on
December 12, Marconi detected three faint dots, the first transatlantic
radio message. The explanation of Marconi's achievement remained a
mystery until 1924, when physicists discovered the
ionosphere, a layer of
the atmosphere whose lower boundary is about 60 km above the Earth.

The ionosphere acts as a mirror, allowing radio waves to bounce off it.
Radio waves also bounce off the Earth's surface, so radio messages could
effectively reach anywhere in the world after a series of reflections
between the ionosphere and the Earth.

Marconi's invention tantalized the military, who viewed it with a mixture
of desire and trepidation. The tactical advantages of radio are obvious:
it allows direct communication between any two points without the
need for a wire between the locations. Laying such a wire is often impractical,
sometimes impossible. Previously, a naval commander based in port
had no way of communicating with his ships, which might disappear for
months on end, but radio would enable him to coordinate a fleet wherever
the ships might be. Similarly, radio would allow generals to direct
their campaigns, keeping them in continual contact with battalions,
regardless of their movements. All this is made possible by the nature of
radio waves, which emanate in all directions, and reach receivers wherever
they may be. However, this all-pervasive property of radio is also its greatest
military weakness, because messages will inevitably reach the enemy as

The Mechanization of Secrecy 103

Well as the intended recipient. Consequently, reliable encryption became
a necessity. If the enemy were going to be able to
intercept every radio
message, then cryptographers had to find a way of
preventing them from
deciphering these messages.

The mixed blessings of radio--ease of communication and ease of
interception-were brought into sharp focus at the outbreak of the First
World War. All sides were keen to exploit the power of radio, but were
also unsure of how to guarantee security. Together, the advent of radio
and the Great War intensified the need for effective encryption. The hope
was that there would be a breakthrough, some new cipher that would
reestablish secrecy for military commanders. However, between 1914 and
1918 there was to be no great discovery, merely a
catalogue of cryptographic
failures. Codemakers conjured up several new ciphers, but
one by
one they were broken.

One of the most famous wartime ciphers was the German ADFGVX
cipher, introduced on March 5, 1918, just before the major German offensive
that began on March 21. Like any attack, the German thrust would
benefit from the element of surprise, and a committee of cryptographers
had selected the ADFGVX cipher from a variety of candidates, believing
that it offered the best security. In fact, they were confident that it was unbreakable. The cipher's strength lay in its convoluted nature, a mixture
of a substitution and transposition (see Appendix F).

By the beginning of June 1918, the German artillery was only 100 km
from Paris, and was preparing for one final push. The only hope for the
Allies was to break the ADFGVX cipher to find just where the Germans
were planning to punch through their defenses.
Fortunately, they had a
secret weapon, a cryptanalyst by the name of Georges Painvin. This dark,
slender Frenchman with a penetrating mind had recognized his talent for
cryptographic conundrums only after a chance meeting with
a member of
the Bureau du Chiffre soon after the outbreak of war.
Thereafter, his
priceless skill was devoted to pinpointing the weaknesses in German
ciphers. He grappled day and night with the ADFGVX cipher, in the
process losing 15 kg in weight.

Eventually, on the night of June 2, he cracked an ADFGVX message.
Painvin's breakthrough led to a spate of other decipherments, including a
message that contained the order "Rush munitions. Even by day if not

104 The Code Book
seen." The preamble to the message indicated that it was sent from somewhere
between Montdidier and Compiegne, some 80 km to the north of
Paris. The urgent need for munitions implied that this was to be the location
of the imminent German thrust. Aerial reconnaissance confirmed
that this was the case. Allied soldiers were sent to reinforce this stretch of
the front line, and a week later the German onslaught began. Having lost
the element of surprise, the German army was beaten back in a hellish
battle that lasted five days.

The breaking of the ADFGVX cipher typified cryptography during the
First World War. Although there was a flurry of new ciphers, they were all
variations or combinations of nineteenth-century ciphers that had already
been broken. While some of them initially offered security, it was never
long before cryptanalysts got the better of them. The biggest problem for
cryptanalysts was dealing with the sheer volume of traffic. Before the
advent of radio, intercepted messages were rare and precious items, and
cryptanalysts cherished each one. However, in the First World War, the
amount of radio traffic was enormous, and every single message could be
intercepted, generating a steady flow of ciphertexts to occupy the minds of
the cryptanalysts. It is estimated that the French intercepted a hundred million
words of German communications during the course of the Great War.

Of all the wartime cryptanalysts, the French were the most effective. When they entered the war, they already had the
strongest team of code-breakers
in Europe, a consequence of the humiliating French defeat in the
Franco-Prussian War. Napoleon III, keen to restore his declining popularity,
had invaded Prussia in 1870, but he had not anticipated the alliance
between Prussia in the north and the southern German states. Led by
Otto von Bismarck, the Prussians steamrollered the French army, annexing
the provinces of Alsace and Lorraine and bringing an end to French
domination of Europe. Thereafter, the continued threat of the newly
united Germany seems to have been the spur for French cryptanalysts to
master the skills necessary to provide France with
detailed intelligence
about the plans of its enemy.

It was in this climate that Auguste Kerckhoffs wrote his treatise La
Cryptographic militaire. Although Kerckhoffs was Dutch, he spent most of
his life in France, and his writings provided the French with an exceptional
guide to the principles of cryptanalysis. By the time the First World
* Figure 26 Lieutenant Georges Painvin.
i
fc

106 The Code Book

War had begun, three decades later, the French military had implemented
Kerckhoffs' ideas on an industrial scale. While lone geniuses like Painvin
sought to break new ciphers, teams of experts, each with specially developed
skills for tackling a particular cipher, concentrated on the day-to-day
decipherments. Time was of the essence, and conveyor-belt cryptanalysis
could provide intelligence quickly and efficiently.

Sun-Tzu, author of the Art of War, a text on military strategy dating from
the fourth century b.c., stated that: "Nothing should be as favorably
regarded as intelligence; nothing should be as generously rewarded as intelligence;
nothing should be as confidential as the work of intelligence." The
French were fervent believers in the words of Sun-Tzu, and in addition to
honing their cryptanalytic skills they also developed several ancillary
techniques for gathering radio intelligence, methods that did not involve
decipherment. For example, the French listening posts learned to recognize
a radio operator's fist. Once encrypted, a message is sent in Morse code, as
a series of dots and dashes, and each operator can be identified by his pauses,
the speed of transmission, and the relative lengths of dots and dashes. A fist
is the equivalent of a recognizable style of handwriting. As well as operating
listening posts, the French established six direction finding stations which
were able to detect where each message was coming from. Each station
moved its antenna until the incoming signal was strongest, which identified
a direction for the source of a message. By combining the directional information
from two or more stations it was possible to locate the exact source
of the enemy transmission. By combining fist information with direction
finding, it was possible to establish both the identity and the location of, say,
a particular battalion. French intelligence could then track its path over the
course of several days, and potentially deduce its
destination and objective.
This form of intelligence gathering, known as traffic analysis, was particularly
valuable after the introduction of a new cipher. Each new cipher would
make cryptanalysts temporarily impotent, but even if a message was indecipherable
it could still yield information via traffic analysis.

The vigilance of the French was in sharp contrast to the attitude of the
Germans, who entered the war with no military
cryptanalytic bureau. Not
until 1916 did they set up the Abhorchdienst, an
organization devoted to
intercepting Allied messages. Part of the reason for their tardiness in
establishing the Abhorchdienst was that the German army had advanced

The Mechanization of Secrecy 107

I jnto French territory in the early phase of the war. The French, as they
retreated, destroyed the landlines, forcing the advancing Germans to rely On radios for communication. While this gave the French a continuous
supply of German intercepts, the opposite was not true. As the French
were retreating back into their own territory, they still had access to their

\section*{-own}
landlines, and had no need to communicate by radio. With a lack of
French radio communication, the Germans could not make many interceptions,
and hence they did not bother to develop their
cryptanalytic
department until two years into the war.

The British and the Americans also made important contributions to
Allied cryptanalysis. The supremacy of the Allied codebreakers and their
influence on the Great War are best illustrated by the decipherment of a
German telegram that was intercepted by the British on January 17, 1917.
The story of this decipherment shows how cryptanalysis can affect the
course of war at the very highest level, and demonstrates the potentially
devastating repercussions of employing inadequate encryption. Within a
matter of weeks, the deciphered telegram would force
America to rethink
its policy of neutrality, thereby shifting the balance of the war.

Despite calls from politicians in Britain and America, President
Woodrow Wilson had spent the first two years of the war steadfastly refusing
to send American troops to support the Allies. Besides not wanting to
sacrifice his nation's youth on the bloody battlefields of Europe, he was
convinced that the war could be ended only by a negotiated settlement,
and he believed that he could best serve the world if he remained neutral
and acted as a mediator. In November 1916, Wilson saw hope for a
settlement when Germany appointed a new Foreign Minister, Arthur
Zimmermann, a jovial giant of a man who appeared to herald a new era of
enlightened German diplomacy. American newspapers ran headlines such
one article proclaimed him as "one of the most auspicious omens for the
future of German-American relations." However, unknown to the Americans,
Zimmermann had no intention of pursuing peace. Instead, he was
plotting to extend Germany's military aggression.

Back in 1915, a submerged German U-boat had been responsible for
sinking the ocean liner Lmitania, drowning 1,198
passengers, including
128 U.S. civilians. The loss of the Lmitania would have drawn America

108 The Code Book
into the war, were it not for Germany's reassurances that henceforth U-boats
would surface before attacking, a restriction that was intended to
avoid accidental attacks on civilian ships. However, on January 9, 1917,
Zimmermann attended a momentous meeting at the German castle of
Pless, where the Supreme High Command was trying to persuade the
Kaiser that it was time to renege on their promise, and embark on a course
of unrestricted submarine warfare. German commanders knew that their
U-boats were almost invulnerable if they launched their torpedoes while
remaining submerged, and they believed that this would prove to be the
decisive factor in determining the outcome of the war. Germany had been
constructing a fleet of two hundred U-boats, and the Supreme High
Command argued that unrestricted U-boat aggression would cut off

Britain's supply lines and starve it into submission within six months.

A swift victory was essential. Unrestricted submarine warfare and the
inevitable sinking of U.S. civilian ships would almost certainly provoke
America into declaring war on Germany. Bearing this in mind, Germany
needed to force an Allied surrender before America could mobilize its
troops and make an impact in the European arena. By the end of the
meeting at Pless, the Kaiser was convinced that a swift victory could be
achieved, and he signed an order to proceed with unrestricted U-boat warfare,
which would take effect on February 1.

In the three weeks that remained, Zimmermann devised an insurance
policy. If unrestricted U-boat warfare increased the likelihood of America
entering the war, then Zimmermann had a plan that would delay and
weaken American involvement in Europe, and which might even discourage
it completely. Zimmermann's idea was to propose an
alliance with
Mexico, and persuade the President of Mexico to invade America and reclaim territories such as Texas, New Mexico and Arizona. Germany
would support Mexico in its battle with their common enemy, aiding it
financially and militarily.

Furthermore, Zimmermann wanted the Mexican president to act as a
mediator and persuade Japan that it too should attack
America. This way,
Germany would pose a threat to America's East Coast, Japan would attack
from the west, while Mexico invaded from the south.

Zimmermann's
main motive was to pose America such problems at home that it could
not afford to send troops to Europe. Thus Germany could win the battle

Figure 27 Arthur Zimmermann.

110 The Code Book
at sea, win the war in Europe and then withdraw from the American campaign.
On January 16, Zimmermann encapsulated his proposal in a telegram to the German Ambassador in Washington, who would then
retransmit it to the German Ambassador in Mexico, who would finally
deliver it to the Mexican President. Figure 28 shows the encrypted telegraph;
the actual message is as follows:

We intend to begin unrestricted submarine warfare on the first of February.
We shall endeavor in spite of this to keep the United States neutral. In the event of this not succeeding, we make Mexico a proposal of alliance on the following basis: make war together, make peace together, generous financial
support, and an understanding on our part that Mexico is to reconquer the
lost territory in Texas, New Mexico and Arizona. The settlement in detail is
left to you.

You will inform the President [of Mexico] of the above most secretly, as
soon as the outbreak of war with the United States is
certain, and add the
suggestion that he should, on his own initiative, invite Japan to immediate
adherence and at the same time mediate between Japan and
ourselves.
```

Please call the President's attention to the fact that the
unrestricted
employment of our submarines now offers the prospect of
compelling England
to make peace within a few months. Acknowledge receipt.

```
Zimmermann

Zimmermann had to encrypt his telegram because Germany was aware
that the Allies were intercepting all its transatlantic communications, a
consequence of Britain's first offensive action of the war. Before dawn on
the first day of the First World War, the British ship Telconia approached the German coast under cover of darkness, dropped anchor, and hauled up
a clutch of undersea cables. These were Germany's transatlantic cables-its
communication links to the rest of the world. By the time the sun had
risen, they had been severed. This act of sabotage was aimed at destroying
Germany's most secure means of communication, thereby forcing German
messages to be sent via insecure radio links or via cables owned by
other countries. Zimmermann was forced to send his encrypted telegram
via Sweden and, as a back-up, via the more direct
American-owned cable.
Both routes touched England, which meant that the text of the Zimmermann
telegram, as it would become known, soon fell into British hands.

The intercepted telegram was immediately sent to Room 40, the Admi-

The Mechanization of Secrecy \\\}
ilty"s cipher bureau, named after the office in which it was initially
aused. Room 40 was a strange mixture of linguists, classical scholars and
zzle addicts, capable of the most ingenious feats of cryptanalysis. For
aple, the Reverend Montgomery, a gifted translator of German theopcal
works, had deciphered a secret message hidden in a postcard
dressed to Sir Henry Jones, 184 King's Road, Tighnabruaich, Scotland.
'ffi
now
! AM
,jg.,'/?
' pounds
r ' *
kt Mia
,-: <

V?
aj*
via Galvi-stor. '
*s

CEPMAN I,EG*TKH MEXICO «T*

I
s

152172280117138
14331 IftOSl 8S845

2£4f: 208554377
39689 1373S2 20667

1195682895
\(130421340185 \mathrm{C} 1115352841<17214849111310\)
18ZE2 215*0 102471151823677 1360S 3494 1493《 59C5 J151J
1C39J 10371030221290516139995
17504112 TO 16271 ! 1810103170228176944473
22200 194S2 2158987893556913918895812137
47254456 S9C5 17166 1S851 445817149144718706
12884692914991738218867 e?893 1421836477

C
i«i j* pMO
|E»34Jy
ficp
ts»
! 44
1"55?
173B8
S3SR2
18140
5£7!:
148142127 S!
5J76
E83t
<!?eoi

7 tie

209 pounds 222 fC
185, "
4176
934?
7381
179\&. 5 (? \(7^{\wedge}\)

8?e? 8
21《4
59C5 221 pounds 1-
, /y92

9559
98C<j2 11347
5 If, - !
18E£!
4707
13347
3340
8784
224 P4 i<-127 17142
13339

16102
\gg! 7VJ
9407
204 J» 2L-019
\(7 \mathrm{C} 3273576928 \quad 52262\) 1126'!'

15874 18SC2 18SOO 15857
\(134 »<\) 935C 922C 7603614219
111647867 7V62 150999110

975S6 3\&CS 3C7C
\(S B » M S H>f>\ll\),

Figure 28 The Zimmermann telegram, as forwarded by von Bernstorff, the German
Ambassador in Washington, to Eckhardt, the German Ambassador in Mexico City.

The Mechanization of Secrecy \\\}
r's cipher bureau, named after the office in which it was initially
ed. Room 40 was a strange mixture of linguists, classical scholars and
;le addicts, capable of the most ingenious feats of cryptanalysis. For
aple, the Reverend Montgomery, a gifted translator of German theo|jcal
works, had deciphered a secret message hidden in a
postcard
essed to Sir Henry Jones, 184 King's Road, Tighnabruaich, Scotland.
(54*
;*-...'
./ \*
ittfilOH;

W
. »
\\)
,LllfeAM

M»<<a
*1» Otlvestoft

MAM LEaATJOH \ri ~^- .\#*
.MEXICO CITY
```

13042 13401 SftCl 115 3528 41< 17214 8491 11310
18222 215*0 10247 11M8 2367? 13<<5 5494 1493< 59C5 11311
ICS98 10371 0302 21E90 5181 39685
17504 112P9 I827<! 18101 031? 0228 17694 4473
28800 19462 21589 67893 5569 139Jt 8958 J8131?
47254458 59C5 17166 J5851 4458 17149 14471 6706
12284 6929 14991 7382 15857 <78S3 14218 36477

```

1"SSS
\(e^{\wedge}\) co; 5 »?r
S4fs<!
16102
182T?
82801
17138
1-7SH8
7 <ie
asesB
182E2
H719
\(143 S 116081\)
23845
3 pounds fi? 80 pounds 90
\(21<04\)
4797
94'J? 224f ;
2085S 4377
18140 gg^C

69C5
13347
20420
39689
13732
066 pounds
S*. 1 1"
IBS, 7
pounds 2 pence3^£
13*C
2i019
13339
\(112 \ll 82295\)
14H14
4178
./V98
8784
7P3E
7367
892B S226£ 11267
21272 934f
6559
2S4P4
15874
18502
18500
15857
5576
7381 98C92
.J'lST
134<6
9360
92237602614219
283t
i7fia>
11?47
17142
\(11 £<4\)
7667
7762
150999110
87558 3S65
367C
' . BEPHSTOPf'f.

Figure 28 The Zimmermann telegram, as forwarded by von Bernstorff, the German

Ambassador in Washington, to Eckhardt, the German Ambassador in Mexico City.

\section*{112 The Code Book}

The postcard had been sent from Turkey, so Sir Henry had assumed that
it was from his son, a prisoner of the Turks. However, he was puzzled
because the postcard was blank, and the address was peculiar-the village of Tighnabruaich was so tiny that none of the houses had numbers and
there was no King's Road. Eventually, the Reverend Montgomery spotted the postcard's cryptic message. The address alluded to the Bible, First
Book of Kings, Chapter 18, Verse 4: "Obadiah took a hundred prophets, and hid them fifty in a cave, and fed them with bread and water." Sir
Henry's son was simply reassuring his family that he was being well
looked after by his captors.

When the encrypted Zimmermann telegram arrived in Room 40, it was
Montgomery who was made responsible for deciphering it, along with
Nigel de Grey, a publisher seconded from the firm of William Heinemann.

They saw immediately that they were dealing with a form of encryption used only for high-level diplomatic
communications, and
tackled the telegram with some urgency. The decipherment was far from
trivial, but they were able to draw upon previous analyses of other similarly
encrypted telegrams. Within a few hours the codebreaking duo had
been able to recover a few chunks of text, enough to see that they were
uncovering a message of the utmost importance. Montgomery and de
Grey persevered with their task, and by the end of the day they could discern
the outline of Zimmermann's terrible plans. They realized the dreadful
implications of unrestricted U-boat warfare, but at the same time they
could see that the German Foreign Minister was encouraging an attack on
America, which was likely to provoke President Wilson into abandoning
America's neutrality. The telegram contained the deadliest of threats, but
also the possibility of America joining the Allies.

Montgomery and de Grey took the partially deciphered telegram to
Admiral Sir William Hall, Director of Naval Intelligence, expecting him to
pass the information to the Americans, thereby drawing them into the
war. However, Admiral Hall merely placed the partial
decipherment in his
safe, encouraging his cryptanalysts to continue filling in the gaps. He was
reluctant to hand the Americans an incomplete
decipherment, in case
there was a vital caveat that had not yet been deciphered. He also had
another concern lurking in the back of his mind. If the British gave the
Americans the deciphered Zimmermann telegram, and the Americans

The Mechanization of Secrecy 113

I by publicly condemning Germany's proposed aggression, then the
as would conclude that their method of encryption had been bro-|

This would goad them into developing a new and stronger encryption
a, thus choking a vital channel of intelligence. In any case, Hall was
that the all-out U-boat onslaught would begin in just two weeks, (in itself might be enough to incite President Wilson into declaring
, on Germany. There was no point jeopardizing a valuable source of
ligence when the desired outcome might happen anyway.

February 1, as ordered by the Kaiser, Germany instigated unre:ted
naval warfare. On February 2, Woodrow Wilson held a cabinet
eting to decide the American response. On February 3, he spoke to
Ongress and announced that America would continue to remain neu-,
acting as a peacemaker, not a combatant. This was contrary to Allied
German expectations. American reluctance to join the Allies left
liral Hall with no choice but to exploit the Zimmermann telegram.

In the fortnight since Montgomery and de Grey had first contacted
ill, they had completed the decipherment. Furthermore, Hall had
bund a way of keeping Germany from suspecting that their security had
cen breached. He realized that von Bernstorff, the German Ambassador
i Washington, would have forwarded the message to von Eckhardt, the
Serman Ambassador in Mexico, having first made some minor changes.
fFor example, von Bernstorff would have removed the instructions aimed
pat himself, and would also have changed the address. Von Eckhardt would
then have delivered this revised version of the telegram, unencrypted, to
the Mexican President. If Hall could somehow obtain this
```

Mexican version
of the Zimmermann telegram, then it could be published in
the
H newspapers and the Germans would assume that it had been
stolen from
the Mexican Government, not intercepted and cracked by the
British on
its way to America. Hall contacted a British agent in
Mexico, known only
as Mr. H., who in turn infiltrated the Mexican Telegraph
Office. Mr. H.
was able to obtain exactly what he needed--the Mexican
version of the
Zimmermann telegram.
It was this version of the telegram that Hall handed to
Arthur Balfour,
the British Secretary of State for Foreign Affairs. On
February 23, Balfour
summoned the American Ambassador, Walter Page, and
presented him
with the Zimmermann telegram, later calling this "the most
dramatic
114 The Code Booksldent Wfcon saw for Mmself^

```
```

allmyWe''^^5^^ proof that Germany Was moment* all myas he
called it, P
the "eloquent ev.de,,^^^ Mt
-rsr-s.--^ :---; ;r
=S ^
S£2:=-=;-'"'^
»*pu»8"<<ri: -~"'^^!!!1
:sei i^^\------

```
?Luedt \({ }^{\circ}\) disttaisb press enm wmvcans.
```

^ A a story I*1"*n te\egiain'-sing the a, «crime
^^.5^;:"=*::.-"
'\&3igsss\&s£gsr~
^aedHis ^nd" ment to be m tac;and that xUsing\e
^SS^^"^S^
^B^?^^^^
^_*^^riir*.Js»
\^*^^^^^£^*^^\W*\&
B**'***^'*_**0"0*'
peopVeit^as*
116 The Code Book

```
war, when cryptographers were in a state of utter despair, scientists ;n America made an astounding breakthrough. They discovered that the
Vigenere cipher could be used as the basis for a new, more formidable
form of encryption. In fact, this new cipher could offer perfect security.

The fundamental weakness of the Vigenere cipher is its cyclical nature.
If the keyword is five letters long, then every fifth letter of the plaintext is
encrypted according to the same cipher alphabet. If the cryptanalyst can
identify the length of the keyword, the ciphertext can be treated as a series
of five monoalphabetic ciphers, and each one can be broken by frequency
analysis. However, consider what happens as the keyword gets longer.

Imagine a plaintext of 1,000 letters encrypted according to the Vigenere
cipher, and imagine that we are trying to cryptanalyze the resulting ciphertext.
If the keyword used to encipher the plaintext were only 5
letters long,
the final stage of cryptanalysis would require applying
frequency analysis
to 5 sets of 200 letters, which is easy. But if the keyword had been 20 letters
long, the final stage would be a frequency analysis of 20 sets of 50 letters,
which is considerably harder. And if the keyword had been 1,000 letters
long, you would be faced with frequency analysis of 1,000 sets of 1 letter
each, which is completely impossible. In other words, if the keyword (or
keyphrase) is as long as the message, then the cryptanalytic technique
developed by Babbage and Kasiski will not work.

Using a key as long as the message is all well and good, but this requires
the cryptographer to create a lengthy key. If the message is hundreds of
letters long, the key also needs to be hundreds of letters long. Rather than
inventing a long key from scratch, it might be tempting to base it on, say,
the lyrics of a song. Alternatively, the cryptographer could pick up a book
on birdwatching and base the key on a series of randomly chosen bird
names. However, such shortcut keys are fundamentally flawed.

In the following example, \(I\) have enciphered a piece of ciphertext using
the Vigenere cipher, using a keyphrase that is as long as the message.
All the cryptanalytic techniques that \(I\) have previously described will fail.
None the less, the message can be deciphered.

Key?????????????????????

The Mechanization of Secrecy \\-j
^ new system of cryptanalysis begins with the assumption that the
i\&phertext contains some common words, such as the. Next, we ran-omly
place the at various points in the plaintext, as shown below, and
duce what sort of keyletters would be required to turn the into the
propriate ciphertext. For example, if we pretend that the is the first
Ivord of the plaintext, then what would this imply for the first three letters
I'of the key? The first letter of the key would encrypt \(t\) into V. To work out
f'the first letter of the key, we take a Vigenere square, look down the column
headed by t until we reach \(V\), and find that the letter that begins that
row is C. This process is repeated with \(h\) and e, which would be encrypted
as \(H\) and \(R\) respectively, and eventually we have candidates for the first
three letters of the key, CAN. All of this comes from the assumption that the is the first word of the plaintext. We place the in a few other positions, and, once again, deduce the corresponding keyletters. (You can
check the relationship between each plaintext letter and ciphertext letter
by referring to the Vigenere square in Table 9.)

KeyCAN???BSJ?????YPT????

Plaintextthe???the?????the????

Ciphertext VHRMHEUZNFQDEZRWXF I DK
fragments of the
ciphertext, and generated three guesses as to the elements of certain parts
of the key. How can we tell whether any of the the's are in the right position?
We suspect that the key consists of sensible words, and we can use
this to our advantage. If a the is in a wrong position, it will probably
result in a random selection of keyletters. However, if it is in a correct
position, the keyletters should make some sense. For example, the first
the yields the keyletters CAN, which is encouraging because this is a
perfectly reasonable English syllable. It is possible that this the is in the
correct position. The second the yields BSJ, which is a
very peculiar
combination of consonants, suggesting that the second the is probably a
mistake. The third the yields YPT, an unusual syllable but one which is
worth further investigation. If YPT really were part of the key, it would be
within a larger word, the only possibilities being
APOCALYPTIC, CRYPT
and EGYPT, and derivatives of these words. How can we find out if one of
these words is part of the key? We can test each
hypothesis by inserting

\section*{118 The Code Book}
the three candidate words in the key, above the appropriate section of the
ciphertext, and working out the corresponding plaintext:

KeyCAN?????APOCALYPTIC??

Plaintext the? ? ? ? ?nqcbeothexg? ?

KeyCAN?????????CRYPT????

Plaintextt \(h\) e ????????? \(c\) i \(t h e\) ????

Ciphertext VHRMHEUZNFQDEZRWXF I DK

KeyCAN?????????EGYPT????

Plaintextthe?????????atthe????

Ciphertext VHRMHEUZNFQDEZRWXF I DK

If the candidate word is not part of the key, it will probably result in a random piece of plaintext, but if it is part of the key the resulting plaintext
should make some sense. With APOCALYPTIC as part of the key the resulting
plaintext is gibberish of the highest quality. With CRYPT, the resulting
plaintext is cithe, which is not an inconceivable piece of plaintext. However,
if EGYPT were part of the key it would generate atthe, a more promising
combination of letters, probably representing the words at the.

For the time being let us assume that the most likely possibility is that
EGYPT is part of the key. Perhaps the key is a list of countries. This would
suggest that CAN, the piece of the key that corresponds to
the first the, is
the start of CANADA. We can test this hypothesis by
working out more of
the plaintext, based on the assumption that CANADA, as
well as EGYPT, is
part of the key:

KeyCANADA??????ECYPT????

Plaintextthemee??????atthe????

Ciphertext VHRMHEUZNFQDEZRWXF I DK

Our assumption seems to be making sense. CANADA implies that the plaintext begins with themee which perhaps is the start of the meeting.
Now that we have deduced some more letters of the plaintext, ting, we
can deduce the corresponding part of the key, which turns out to be

The Mechanization of Secrecy 119

PAZ. Surely this is the beginning of BRAZIL. Using the combination of
\({ }^{\wedge} N A D A B R A Z I L E G Y P T\) as the bulk of the key, we get the following decierrhent:
the meeting is at the 1111.

S; In order to find the final word of the plaintext, the location of the meet, the best strategy would be to complete the key by testing one by one
: names of all possible countries, and deducing the resulting plaintext, he only sensible plaintext is derived if the final piece of the key is CUBA:

1 jceyCANADABRAZ I LEGYPTCUBA
' Plaintext themeet i ng i sat thedock 1 Ciphertext VHRMHEUZNFQDEZRWXF IDK
; Table 9 Vigenere square.
```

Plain
ab cd
efghijklmnopqrst
uV
w XY z1BC D E
F
G
H
1
J
K
L
M
N
O
P
Q R
S
T
U
V WX YZ
A
2__. pounds D E F
G
H
1
J
K
L
M
N
O
P
Q
R
S
T
U
V
W X
Y Z
A

```

\section*{B}
\(-3\)
DE FG
H1 J KLMNOPQ
R
S
T
U V
W
XYZ
AB C4
EF GH
1JKLMNOPQRSTUVWX
YZABC D5
FGH1
JK
L M N O P Q R S T U
V
W X Y Z A B C D
E
6
GH1 J
KL
M N
OP QRSTUVWXYZABCDE
F7
H1JKLM
N O P Q RSTUVWXYZA
BCDEF G8
1JKLMNOPQRSTUVWXYZAB
CDEFG H9
JKLMNOPQRSTUVWXYZABC
DEFGH 110
KLMNOP
Q R S T U'VWX Y Z A B CD
EFGH1 J11
LMNO
PQRSTUVWXYZAB C D EFGH1J K_ 1
2 MNOPQRSTUVWXYZABCDE F
GH1JK L_113
NOPQR S
T
U
V

ABCDE FGH1JKL M14
OPQRS
TO V
WX
YZABCDE FG
H1JKLM N15 PQRST
U V W X Y Z A B C D E F G H 1
JKLMN 016
QRSTUV WX Y Z A B C D E F G H 1 J
KLMNO P17
R S T U
V
W
X
Y Z A B C D E F G H 1 J K L M N O P Q 18
STUVW
XYZABCDEFGHI JKL
MNOPQR19
TUV WXY Z A B C D E F G H 1 J K L M
NOPQR S20
UVWX
Y
Z
A
B
C
D
E
F
G
H
1
J
K
L
M
N
0 P
Q R
S T 21
VWXYZABODE FGH 1 J KLMNO
```

PQRST U22
W X Y Z
A
B
C D E F G H 1 J K L M N O P Q R S T U V
23
X Y Z A
B
C
D
E
F
G
H
1
J
K
L
M
N O
P
Q
R S
T U
V
W24
YZABCDEFGHIJKLMNOPQR
S
TUVW X25
ZABCDEFGHIJKLMNOPQRSTUVWX Y26
A B CDEFGHIJKLMNOPQRST
U V
W X
Y
Z
120 The Code Book

```

So, a key that is as long as the message is not sufficient to guarantee
security. The insecurity in the example above arises because the key was
constructed from meaningful words. We began by randomly inserting the
throughout the plaintext, and working out the
corresponding keyletters.
We could tell when we had put a the in the correct place, because the
keyletters looked as if they might be part of meaningful words. Thereafter,
we used these snippets in the key to deduce whole words in the key. In
turn this gave us more snippets in the message, which we could expand
into whole words, and so on. This entire process of toing and froing
between the message and the key was only possible because the key had
an inherent structure and consisted of recognizable words. However, in
1918 cryptographers began experimenting with keys that were devoid of
structure. The result was an unbreakable cipher.

As the Great War drew to a close, Major Joseph Mauborgne, head of
cryptographic research for the U.S. Army, introduced the concept of a
random key--one that consisted not of a recognizable
series of words, but
rather a random series of letters. He advocated employing these random
keys as part of a Vigenere cipher to give an unprecedented level of security.
The first stage of Mauborgne's system was to compile a thick pad
consisting of hundreds of sheets of paper, each sheet bearing a unique key
in the form of lines of randomly sequenced letters. There would be two
copies of the pad, one for the sender and one for the receiver. To encrypt
a message, the sender would apply the Vigenere cipher using the first
sheet of the pad as the key. Figure 30 shows three sheets from such a pad
(in reality each sheet would contain hundreds of letters), followed by a
message encrypted using the random key on the first sheet. The receiver
can easily decipher the ciphertext by using the identical key and reversing
the Vigenere cipher. Once that message has been
successfully sent,
received and deciphered, both the sender and the receiver destroy the
sheet that acted as the key, so that it is never used again. When the next
message is encrypted, the next random key in the pad is employed, which
is also subsequently destroyed, and so on. Because each key is used once,
and only once, this system is known as a onetime pad cipher.

The onetime pad cipher overcomes all previous weaknesses. Imagine
that the message attack the valley at dawn has been enciphered as in Figure
30, sent via a radio transmitter and intercepted by the enemy. The

The Mechanization of Secrecy 121
phertext is handed to an enemy cryptanalyst, who then attempts to decider
it. The first hurdle is that, by definition, there is no repetition in a ran-i
key, so the method of Babbage and Kasiski cannot break the onetime
[ cipher. As an alternative, the enemy cryptanalyst might try placing the
ord the in various places, and deduce the corresponding piece of the key,
st as we did when we attempted to decipher the previous message. If the
ptanalyst tries putting the at the beginning of the message, which is
orrect, then the corresponding segment of key would be revealed as
\(i k / x b\), which is a random series of letters. If the
cryptanalyst tries placing
fihe so that it begins at the seventh letter of the message, which happens to
|be correct, then the corresponding segment of key would be revealed as
I'QKJ, which is also a random series of letters. In other words, the cryptana|tyst
cannot tell whether the trial word is, or is not, in the correct place.

In desperation, the cryptanalyst might consider an exhaustive search of 'all possible keys. The ciphertext consists of 21 letters, so the cryptanalyst
knows that the key consists of 21 letters. This means that there are
roughly \(500,000,000,000,000,000,000,000,000,000\) possible keys to test,
which is completely beyond what is humanly or mechanically feasible.
However, even if the cryptanalyst could test all these keys, there is an even greater obstacle to be overcome. By checking every possible key the

Sheet 1

Sheet 2

Sheet 3
```

P L MO E
O 1 WV H
J A B P R
Z Q K J Z
P 1 Q Z E I
M F E C F
L R T E A i
T S E B L

```

L G U X D
V C R C B
C Y R U P
D A CM R
Y N N R B
D U V N M
Z K W Y 1

KeyPLMOEZQKJZLRTEAVCRCBY

Plaintext attacktheval leyatdawn
Ciphertext PEFOGJ J RNULCE I YVVUCXL

Figure 30 Three sheets, each a potential key for a onetime pad cipher. The message is
enciphered using Sheet 1.

\section*{122 The Code Book}
cryptanalyst will certainly find the right message-but every wrong message will also be revealed. For example, the following key applied to the
same ciphertext generates a completely different message:

KeymAAKTGQKJNDRTIFDBHKTS

Plaintext defendthehi 1 latsunset
Ciphertext PEFOGJ JRNULCE IYVVUCXL

If all the different keys could be tested, every conceivable 21-letter message would be generated, and the cryptanalyst would be unable to distinguish
between the right one and all the others. This difficulty would not
have arisen had the key been a series of words or a phrase, because the incorrect messages would almost certainly have been
associated with a
meaningless key, whereas the correct message would be associated with a sensible key.

The security of the onetime pad cipher is wholly due to the randomness
of the key. The key injects randomness into the ciphertext, and if the
ciphertext is random then it has no patterns, no structure, nothing the
cryptanalyst can latch onto. In fact, it can be mathematically proved that
it is impossible for a cryptanalyst to crack a message encrypted with a onetime
pad cipher. In other words, the onetime pad cipher is not merely
believed to be unbreakable, just as the Vigenere cipher was in the nineteenth
century, it really is absolutely secure. The onetime pad
offers a guarantee
of secrecy: the Holy Grail of cryptography.

At last, cryptographers had found an unbreakable system of encryption.
However, the perfection of the onetime pad cipher did not end the
quest for secrecy: the truth of the matter is that it was hardly ever used.
Although it is perfect in theory, it is flawed in practice because the cipher
suffers from two fundamental difficulties. First, there is the practical problem
of making large quantities of random keys. In a single day an army
might exchange hundreds of messages, each containing thousands of
characters, so radio operators would require a daily
supply of keys equivalent
to millions of randomly arranged letters. Supplying so many random
sequences of letters is an immense task.

Some early cryptographers assumed that they could generate
huge
amounts of random keys by haphazardly tapping away at a typewriter. However,
whenever this was tried, the typist would tend to get into the habit of

1 WC .(*.., \(\quad\) "ו"
ling a character using the left hand, and then a character using the right
ad, and thereafter alternate between the two sides. This might be a quick
I* of generating a key, but the resulting sequence has structure, and is no
er random-if the typist hits the letter D, from the left side of the key-d,
then the next letter is predictable in as much as it is probably from
: right side of the keyboard. If a onetime pad key was to be truly random,
lletter from the left side of the keyboard should be followed by another
er from the left side of the keyboard on roughly half the occasions.
Cryptographers have come to realize that it requires a great deal of
tie, effort and money to create a random key. The best random keys are
eated by harnessing natural physical processes, such as radioactivity,
fhich is known to exhibit truly random behavior. The cryptographer
auld place a lump of radioactive material on a bench, and detect its
tiissions with a Geiger counter. Sometimes the emissions follow each
lother in rapid succession, sometimes there are long delays-the time
I" between emissions is unpredictable and random. The cryptographer
could then connect a display to the Geiger counter, which rapidly cycles
through the alphabet at a fixed rate, but which freezes
momentarily as
soon as an emission is detected. Whatever letter is on the display could
be used as the next letter of the random key. The display restarts and once
again cycles through the alphabet until it is stopped at random by the
next emission, the letter frozen on the display is added to the key, and so
on. This arrangement would be guaranteed to generate a truly random
key, but it is impractical for day-to-day cryptography.

Even if you could fabricate enough random keys, there is a second
problem, namely the difficulty of distributing them.
Imagine a battlefield
scenario in which hundreds of radio operators are part of
the same communications
network. To start with, every single person must have identical
copies of the onetime pad. Next, when new pads are issued, they must be
distributed to everybody simultaneously. Finally,
everybody must remain in
step, making sure that they are using the right sheet of the onetime pad at
the right time. Widespread use of the onetime pad would fill the battlefield
with couriers and bookkeepers. Furthermore, if the enemy captures just one
set of keys, then the whole communication system is
compromised.

It might be tempting to cut down on the manufacture and distribution
of keys by reusing onetime pads, but this is a cryptographic cardinal sin.

124 The Code Book

Reusing a onetime pad would allow an enemy cryptanalyst to decipher
messages with relative ease. The technique used to prize open two pieces
of ciphertext encrypted with the same onetime pad key is explained in
Appendix \(G\), but for the time being the important point is that there can
be no shortcuts in using the onetime pad cipher. The sender and receiver
must use a new key for every message.

A onetime pad is practicable only for people who need ultrasecure
communication, and who can afford to meet the enormous costs of manufacturing
and securely distributing the keys. For example, the hotline between
the presidents of Russia and America is secured via a onetime pad cipher.

The practical flaws of the theoretically perfect onetime pad meant that
Mauborgne's idea could never be used in the heat of battle. In the aftermath
of the First World War and all its cryptographic failures, the search
continued for a practical system that could be employed in the next conflict.
Fortunately for cryptographers, it would not be long before they
made a breakthrough, something that would reestablish secret communication
on the battlefield. In order to strengthen their ciphers, cryptographers
were forced to abandon their pencil-and-paper approach to secrecy,
and exploit the very latest technology to scramble messages.

The Development of Cipher Machines--from Cipher Disks to the Enigma

The earliest cryptographic machine is the cipher disk,
invented in the fifteenth
century by the Italian architect Leon Alberti, one of the fathers of
the polyalphabetic cipher. He took two copper disks, one slightly larger
than the other, and inscribed the alphabet around the edge of both. By
placing the smaller disk on top of the larger one and
fixing them with a
needle to act as an axis, he constructed something similar to the cipher
disk shown in Figure 31. The two disks can be
independently rotated so
that the two alphabets can have different relative positions, and can thus
be used to encrypt a message with a simple Caesar shift. For example, to
encrypt a message with a Caesar shift of one place, position the outer A
next to the inner B-the outer disk is the plain alphabet, and the inner
disk represents the cipher alphabet. Each letter in the plaintext message is

The Mechanization of Secrecy 125

Ijooked up on the outer disk, and the corresponding letter on the inner
; disk is written down as part of the ciphertext. To send a message with a
Caesar shift \({ }^{\circ} \mathrm{f}\) f~lve places, simply rotate the disks so that the outer A is
next to the inner \(F\), and then use the cipher disk in its new setting.

Even though the cipher disk is a very basic device, it does ease encipherment,
and it endured for five centuries. The version shown in Figure
31 was used in the American Civil War. Figure 32 shows a Code-o-Graph,
a cipher disk used by the eponymous hero of Captain

Midnight, one of the
early American radio dramas. Listeners could obtain their own Code-o-Graph
by writing to the program sponsors, Ovaltine, and
enclosing a
label from one of their containers. Occasionally the
program would end
with a secret message from Captain Midnight, which could
be deciphered
by loyal listeners using the Code-o-Graph.

The cipher disk can be thought of as a "scrambler," taking each
plaintext letter and transforming it into something else. The mode of operation described so far is straightforward, and the resulting cipher is

Figure 31 A U.S. Confederate cipher disk used in the American Civil War.

\section*{I ' \\ I I}

126 The Code Book
relatively trivial to break, but the cipher disk can be used in a more complicated
way. Its inventor, Alberti, suggested changing the setting of the
disk during the message, which in effect generates a polyalphabetic cipher
instead of a monoalphabetic cipher. For example, Alberti could have used
his disk to encipher the word goodbye, using the keyword LEON. He
would begin by setting his disk according to the first
letter of the keyword,
moving the outer A next to the inner L. Then he would encipher
the first letter of the message, \(g\), by finding it on the outer disk and noting
the corresponding letter on the inner disk, which is R. To encipher the
second letter of the message, he would reset his disk according to the second
letter of the keyword, moving the outer A next to the inner E. Then
he would encipher o by finding it on the outer disk and noting the corresponding
letter on the inner disk, which is \(S\). The encryption process
continues with the cipher disk being set according to the keyletter O, then
\(N\), then back to L, and so on. Alberti has effectively encrypted a message
```

;) -I--
j --dl

```
kJsliifisJk

Figure 32 Captain Midnight's Code-o-Graph, which enciphers each plaintext letter (outer disk) as a number (inner disk), rather than a letter.

The Mechanization of Secrecy 127

4
,'i
r

Busing the Vigenere cipher with his first name acting as the keyword. The
cipher disk speeds up encryption and reduces errors
compared with peril
forming the encryption via a Vigenere square.

The important feature of using the cipher disk in this way is the fact
that the disk is changing its mode of scrambling during encryption.
Although this extra level of complication makes the cipher harder to
break, it does not make it unbreakable, because we are simply dealing
with a mechanized version of the Vigenere cipher, and the Vigenere cipher
was broken by Babbage and Kasiski. However, five hundred years after
Alberti, a more complex reincarnation of his cipher disk would lead to a
new generation of ciphers, an order of magnitude more difficult to crack
than anything previously used.

In 1918, the German inventor Arthur Scherbius and his close friend
Richard Ritter founded the company of Scherbius \& Ritter, an innovative
engineering firm that dabbled in everything from turbines to heated pillows.
Scherbius was in charge of research and development, and was constantly
looking for new opportunities. One of his pet projects was to
replace the inadequate systems of cryptography used in the First World
War by swapping pencil-and-paper ciphers with a form of encryption that
exploited twentieth-century technology. Having studied electrical engineering
in Hanover and Munich, he developed a piece of
cryptographic
machinery that was essentially an electrical version of Alberti's cipher
disk. Called Enigma, Scherbius's invention would become the most fearsome system of encryption in history.

Scherbius's Enigma machine consisted of a number of ingenious components,
which he combined into a formidable and intricate cipher machine. However, if we break the machine down into its constituent
parts and rebuild it in stages, then its underlying principles will become
apparent. The basic form of Scherbius's invention consists
of three elements
connected by wires: a keyboard for inputting each
plaintext letter,
a scrambling unit that encrypts each plaintext letter into
a corresponding
ciphertext letter, and a display board consisting of
various lamps for
indicating the ciphertext letter. Figure 33 shows a stylized layout of the
machine, limited to a six-letter alphabet for simplicity. In order to
encrypt a plaintext letter, the operator presses the appropriate plaintext
letter on the keyboard, which sends an electric pulse through the central

128 The Code Book
scrambling unit and out the other side, where it illuminates the corresponding
ciphertext letter on the lampboard.

The scrambler, a thick rubber disk riddled with wires, is the most
important part of the machine. From the keyboard, the wires enter the
scrambler at six points, and then make a series of twists and turns within
the scrambler before emerging at six points on the other side. The internal
wirings of the scrambler determine how the plaintext
letters will be
encrypted. For example, in Figure 33 the wirings dictate that:
typing in a will illuminate the letter \(B\), which means that a is encrypted as B,
typing in b will illuminate the letter \(A\), which means that b is encrypted as A, typing in C will illuminate the letter \(D\), which means that C is encrypted as D,
typing in \(d\) will illuminate the letter \(F\), which means that d is encrypted as F ,
typing in e will illuminate the letter \(E\), which means that e is encrypted as E,
typing in f will illuminate the letter C , which means that f is encrypted as C.

The message cafe would be encrypted as DBCE. With this basic setup, the scrambler essentially defines a cipher alphabet, and the machine can be
used to implement a simple monoalphabetic substitution cipher.

However, Scherbius's idea was for the scrambler disk to automatically
rotate by one-sixth of a revolution each time a letter is encrypted (or one-twenty-sixth
of a revolution for a complete alphabet of 26 letters). Figure
\(34(a)\) shows the same arrangement as in Figure 33; once again, typing in
the letter b will illuminate the letter A . However, this time, immediately
after typing a letter and illuminating the lampboard, the scrambler
revolves by one-sixth of a revolution to the position shown in Figure
34(b). Typing in the letter b again will now illuminate a different letter,
namely C. Immediately afterward, the scrambler rotates once more, to the
position shown in Figure \(34(c)\). This time, typing in the letter b will
illuminate E. Typing the letter b six times in a row would

\section*{generate the}
ciphertext ACE B DC. In other words, the cipher alphabet changes after each
encryption, and the encryption of the letter b is constantly changing. With
this rotating setup, the scrambler essentially defines six cipher alphabets,
and the machine can be used to implement a polyalphabetic cipher.

The rotation of the scrambler is the most important feature of Scherbius's
design. However, as it stands the machine suffers from one obvious
weakness. Typing b six times will return the scrambler to its original

Scrambler

Lampboard
\[
\begin{aligned}
& ->B \\
& \wedge_{A} \\
& ->D \\
& d>F \\
& e>E \\
& f-* C
\end{aligned}
\]

Figure 33 A simplified version of the Enigma machine with an alphabet of just six letters. The most important element of the machine is the scrambler. By typing in \(b\) on the keyboard, a current passes into the scrambler, follows the path of the internal wiring, and then emerges so as illuminate the A lamp. In short, b is encrypted as
A. The box to the right indicates how each of the

Scrambler

\section*{Lampboard}

Figure 34 Every time a letter is typed into the keyboard and encrypted, the scrambler rotates by one place, thus changing how each letter is potentially encrypted. In (a) the scrambler encrypts b as \(A\), but in (b) the new scrambler orientation encrypts b as C. In (c), after rotating one more place, the scrambler encrypts b as E. After encrypting four more letters, and rotating four more places, the scrambler returns to its original orientation.
```

I, '
t.
130 The Code Book

```
position, and typing b again and again will repeat the pattern of encryption.
In general, cryptographers are keen to avoid repetition because it leads to
regularity and structure in the ciphertext, symptoms of a weak cipher. This
problem can be alleviated by introducing a second scrambler disk.

Figure 35 is a schematic of a cipher machine with two scramblers.
Because of the difficulty of drawing a three-dimensional scrambler with
three-dimensional internal wirings, Figure 35 shows only a two-dimensional
representation. Each time a letter is encrypted, the first scrambler
rotates by one space, or in terms of the two-dimensional diagram, each
wiring shirts down one place. In contrast, the second scrambler disk
remains stationary for most of the time. It moves only after the first
scrambler has made a complete revolution. The first scrambler is fitted
with a tooth, and it is only when this tooth reaches a certain point that it
knocks the second scrambler on one place.

In Figure \(35(a)\), the first scrambler is in a position where it is just about
to knock forward the second scrambler. Typing in and encrypting a letter
moves the mechanism to the configuration shown in Figure 35(b), in
which the first scrambler has moved on one place, and the second scrambler
has also been knocked on one place. Typing in and encrypting
another letter again moves the first scrambler on one place, Figure 35(c),
but this time the second scrambler has remained
stationary. The second
scrambler will not move again until the first scrambler completes one revolution,
which will take another five encryptions. This arrangement is
similar to a car odometer-the rotor representing single miles turns quite
quickly, and when it completes one revolution by reaching
```

"9," it knocks
the rotor tepresenting tens of miles forward one place.

```

The advantage of adding a second scrambler is that the pattern of
encryption is not repeated until the second scrambler is back where it
started, which requires six complete revolutions of the first scrambler, or
the encryption of 6 x 6 , or 36 letters in total. In other words, there are 36
distinct scrambler settings, which is equivalent to switching between 36
cipher alphabets. With a full alphabet of 26 letters, the cipher machine
would switch between 26 x 26 , or 676 cipher alphabets. So by combining
scramblers (sometimes called rotors), it is possible to build an encryption
machine which is continually switching between different cipher alphabets.
The operator types in a particular letter and, depending on the
(b)

Keyboard

2 scramblers

Lampboard

Figure 35 On adding a second scrambler, the pattern of encryption does not repeat until 36 letters have been enciphered, at which point both scramblers have returned to their original positions. To
simplify the diagram,
the scramblers are
represented in just two
dimensions; instead of
rotating one place, the
wirings move down one
place. If a wire appears to
leave the top or bottom of a scrambler, its path can be followed by continuing from the corresponding wire at the bottom or top of the same scrambler. In (a), b is encrypted as D. After encryption, the first scrambler rotates by one place, also nudging the second scrambler around one place-this happens only once during each complete revolution of the first wheel. This new setting is shown in (b), in which b is encrypted as \(F\). After encryption, the first scrambler rotates by one place, but this time the second scrambler remains fixed. This new setting is shown in (c), in which b is encrypted as B.

The Mechanization of Secrecy 133
ure means that it does not add to the number of cipher alphabets,
iowever, its benefits become clear when we see how the machine was
aally used to encrypt and decrypt a message.
An operator wishes to send a secret message. Before encryption begins,
ftbe operator must first rotate the scramblers to a particular starting position. There are 17,576 possible
arrangements, and therefore 17,576 possible
starting positions. The initial setting of the scramblers will determine
how the message is encrypted. We can think of the Enigma machine in
terms of a general cipher system, and the initial settings are what determine
the exact details of the encryption. In other words, the initial set

1
tings provide the key. The initial settings are usually dictated by a code-book,
which lists the key for each day, and which is available to
everybody within the communications network. Distributing the code-book
requires time and effort, but because only one key per day is
required, it could be arranged for a codebook containing 28 keys to be
sent out just once every four weeks. By comparison, if an army were to
use a onetime pad cipher, it would require a new key for every message,
and key distribution would be a much greater task. Once the scramblers
have been set according to the codebook's daily
requirement, the sender
can begin encrypting. He types in the first letter of the message, sees
which letter is illuminated on the lampboard, and notes it down as the
first letter of the ciphertext. Then, the first scrambler having automatically
stepped on by one place, the sender inputs the second letter of the
message, and so on. Once he has generated the complete ciphertext, he
hands it to a radio operator who transmits it to the intended receiver.
In order to decipher the message, the receiver needs to have another
Enigma machine and a copy of the codebook that contains the initial
scrambler settings for that day. He sets up the machine according to the
book, types in the ciphertext letter by letter, and the lampboard indicates
the plaintext. In other words, the sender typed in the plaintext to generate
the ciphertext, and now the receiver types in the ciphertext to generate
the plaintext-encipherment and decipherment are mirror processes.
The ease of decipherment is a consequence of the reflector. From Figure
36 we can see that if we type in \(b\) and follow the electrical path, we come back to D. Similarly, if we type in \(d\) and follow the path, then we come
back to B. The machine encrypts a plaintext letter into a ciphertext letter,

134 The Code Book
and, as long as the machine is in the same setting, it will decrypt the same ciphertext letter back into the same plaintext letter.

It is clear that the key, and the codebook that contains it, must never
be allowed to fall into enemy hands. It is quite possible that the enemy
might capture an Enigma machine, but without knowing the initial settings
used for encryption, they cannot easily decrypt an intercepted message.
Without the codebook, the enemy cryptanalyst must resort to
checking all the possible keys, which means trying all the 17,576 possible
initial scrambler settings. The desperate cryptanalyst would set up the captured
Enigma machine with a particular scrambler arrangement, input a
short piece of the ciphertext, and see if the output makes any sense. If
not, he would change to a different scrambler arrangement and try again.
If he can check one scrambler arrangement each minute and works night
and day, it would take almost two weeks to check all the settings. This is
a moderate level of security, but if the enemy set a dozen people on the
task, then all the settings could be checked within a day. Scherbius therefore
decided to improve the security of his invention by increasing the
number of initial settings and thus the number of possible keys.

He could have increased security by adding more scramblers (each new
scrambler increases the number of keys by a factor of 26), but this would
have increased the size of the Enigma machine. Instead, he added two
other features. First, he simply made the scramblers removable and interchangeable.
So, for example, the first scrambler disk could be moved to
the third position, and the third scrambler disk to the first position. The
arrangement of the scramblers affects the encryption, so the exact arrangement
is crucial to encipherment and decipherment. There are six different
ways to arrange the three scramblers, so this feature increases the number
of keys, or the number of possible initial settings, by a factor of six.

The second new feature was the insertion of a plugboard between the
keyboard and the first scrambler. The plugboard allows the sender to
insert cables which have the effect of swapping some of the letters before
they enter the scrambler. For example, a cable could be used to connect
the \(a\) and \(b\) sockets of the plugboard, so that when the cryptographer
wants to encrypt the letter \(b\), the electrical signal actually follows the path
through the scramblers that previously would have been the path for the
letter a, and vice versa. The Enigma operator had six cables, which meant

1

I
n

The Mechanization of Secrecy 135
ffhat six pairs of letters could be swapped, leaving fourteen letters
'unplugged and unswapped. The letters swapped by the plugboard are part
of the machine's setting, and so must be specified in the codebook. Figure
37 shows the layout of the machine with the plugboard in place. Because the diagram deals only with a six-letter alphabet, only one pair of letters,
a and b, have been swapped.

There is one more feature of Scherbius's design, known as the ring, which has not yet been mentioned. Although the ring does have some
effect on encryption, it is the least significant part of the whole Enigma
machine, and I have decided to ignore it for the purposes of this discussion.
(Readers who would like to know about the exact role of the ring
should refer to some of the books in the list of further reading, such as Seizing the Enigma by David Kahn. This list also includes two Web sites
containing excellent Enigma emulators, which allow you to
operate a virtual
Enigma machine.)

Now that we know all the main elements of Scherbius's Enigma
machine, we can work out the number of keys, by combining the number
of possible plugboard cablings with the number of possible scrambler

Lampboard Keyboard Plugboard

3 scramblers

Reflector

Figure 37 The plugboard sits between the keyboard and the first scrambler. By
inserting cables it is possible to swap pairs of letters, so that, in this case, b is
swapped with a. Now, b is encrypted by following the path previously associated with the encryption of a. In the real 26-letter Enigma, the user would have six
cables for swapping six pairs of letters.

\section*{136 The Code Book}
arrangements and orientations. The following list shows each variable of
the machine and the corresponding number of possibilities for each one:

Scrambler orientations. Each of the 3 scramblers can be set in one of 26 orientations. There are therefore 26 x 26 x 26 settings:17,576

Scrambler arrangements. The three scramblers (1, 2 and 3) can be positioned in any of the following six orders: \(123,132,213,231,312,321.6\)

Plugboard. The number of ways of connecting, thereby swapping, six pairs of letters out of 26 is enormous: 100,391,791,500

Total. The total number of keys is the multiple of these three numbers: \(17,576 \mathrm{x} 6 \mathrm{x} 100,391,791,500\)
\(=10,000,000,000,000,000\)

As long as sender and receiver have agreed on the plugboard cablings, the
order of the scramblers and their respective orientations, all of which
specify the key, they can encrypt and decrypt messages
easily. However,
an enemy interceptor who does not know the key would have to check
every single one of the \(10,000,000,000,000,000\) possible keys in order to
crack the ciphertext. To put this into context, a persistent cryptanalyst
who is capable of checking one setting every minute would need longer
than the age of the universe to check every setting. (In
fact, because I have
ignored the effect of the rings in these calculations, the number of possible
keys is even larger, and the time to break Enigma even longer.)

Since by far the largest contribution to the number of keys comes from
the plugboard, you might wonder why Scherbius bothered
with the scramblers.
On its own, the plugboard would provide a trivial cipher, because it
would do nothing more than act as a monoalphabetic
substitution cipher,
swapping around just 12 letters. The problem with the plugboard is that
the swaps do not change once encryption begins, so on its own it would
generate a ciphertext that could be broken by frequency analysis. The
scramblers contribute a smaller number of keys, but their setup is
continually changing, which means that the resulting ciphertext cannot be

Y
a
^

The Mechanization of Secrecy 137
iferoken by frequency analysis. By combining the scramblers with the plug
board, Scherbius protected his machine against frequency analysis, and at the same time gave it an enormous number of possible keys.

Scherbius took out his first patent in 1918. His cipher machine was contained in a compact box measuring only 34 x 28 x 15 cm , but it
weighed a hefty 12 kg . Figure 39 shows an Enigma machine with the outer
lid open, ready for use. It is possible to see the keyboard where the plaintext
letters are typed in, and, above it, the lampboard which displays the
resulting ciphertext letter. Below the keyboard is the plugboard; there are
more than six pairs of letters swapped by the plugboard, because this particular
Enigma machine is a slightly later modification of the original
model, which is the version that has been described so far. Figure 40
shows an Enigma with the cover plate removed to reveal more features, in particular the three scramblers.

Scherbius believed that Enigma was impregnable, and that its cryptographic
strength would create a great demand for it. He tried to market
the cipher machine to both the military and the business community,

Figure 38 Arthur Scherbius.

138 The Code Book
offering different versions to each. For example, he offered a basic version
of Enigma to businesses, and a luxury diplomatic version with a printer
rather than a lampboard to the Foreign Office. The price of an individual
unit was as much as \(\$ 30,000\) in today's prices.

Unfortunately, the high cost of the machine discouraged potential buyers.
Businesses said that they could not afford Enigma's
security, but
Scherbius believed that they could not afford to be without it. He argued
that a vital message intercepted by a business rival could cost a company
a fortune, but few businessmen took any notice of him. The German
military were equally unenthusiastic, because they were oblivious to the
damage caused by their insecure ciphers during the Great War. For
example, they had been led to believe that the Zimmermann telegram
had been stolen by American spies in Mexico, and so they blamed that
failure on Mexican security. They still did not realize that the telegram
had in fact been intercepted and deciphered by the British, and that the
Zimmermann debacle was actually a failure of German cryptography.

Scherbius was not alone in his growing frustration. Three other inventors
in three other countries had independently and almost simultaneously
hit upon the idea of a cipher machine based on rotating scramblers. In the
Netherlands in 1919, Alexander Koch took out patent No. 10,700, but he
failed to turn his rotor machine into a commercial success and eventually
sold the patent rights in 1927. In Sweden, Arvid Damm took out a similar
patent, but by the time he died in 1927 he had also failed to find a market.

In America, inventor Edward Hebern had complete faith in his invention,
the so-called Sphinx of the Wireless, but his failure was the greatest of all.

In the mid-1920s, Hebern began building a \(\$ 380,000\)
factory, but
unfortunately this was a period when the mood in America was changing
from paranoia to openness. The previous decade, in the aftermath of the
First World War, the U.S. Government had established the American
Black Chamber, a highly effective cipher bureau staffed by a team of
twenty cryptanalysts, led by the flamboyant and brilliant Herbert Yardley.

Later, Yardley wrote that "The Black Chamber, bolted, hidden, guarded, sees all, hears all. Though the blinds are drawn and the windows heavily
curtained, its far-seeking eyes penetrate the secret conference chambers at
Washington, Tokyo, London, Paris, Geneva, Rome. Its sensitive ears catch
the faintest whisperings in the foreign capitals of the world." The

Figure 39 An army Enigma machine ready for use.

Scrambler unit containing three
scramblers

Reflector

Keyboard

Entry wheel

Lamps (visible
after removal
of lampboard)

Plugboard

Figure 40 An Enigma machine with the inner lid opened, revealing the three scramblers.
```

flUnerican Black Chamber solved 45,000 cryptograms in a
decade, but by

```

Khe time Hebern built his factory, Herbert Hoover had been elected Presi
f
dent and was attempting to usher in a new era of trust in international
t-ggairs. He disbanded the Black Chamber, and his Secretary of State,

Henry Stimson, declared that "Gentlemen should not read each other's
§ fliail." If a nation believes that it is wrong to read the messages of others,
> then it also begins to believe that others will not read its own messages,
and it does not see the necessity for fancy cipher machines. Hebern sold
' only twelve machines at a total price of roughly \(\$ 1,200\), and in 1926 he
was brought to trial by dissatisfied shareholders and found guilty under

California's Corporate Securities Act.

Fortunately for Scherbius, however, the German military were eventually
shocked into appreciating the value of his Enigma machine, thanks
to two British documents. The first was Winston
Churchill's The World
Crisis, published in 1923, which included a dramatic account of how the
British had gained access to valuable German cryptographic material:

At the beginning of September 1914, the German light cruiser Magdeburg was wrecked in the Baltic. The body of a drowned German under-officer
was picked up by the Russians a few hours later, and clasped in his bosom
by arms rigid in death, were the cipher and signal books of the German
navy and the minutely squared maps of the North Sea and Heligoland
Bight. On September 6 the Russian Naval Attache came to see me. He had
received a message from Petrograd telling him what had happened, and
that the Russian Admiralty with the aid of the cipher and signal books had
been able to decode portions at least of the German naval messages. The
Russians felt that as the leading naval Power, the British Admiralty ought to
have these books and charts. If we would send a vessel to Alexandrov, the
Russian officers in charge of the books would bring them to England.

This material had helped the cryptanalysts in Room 40 to crack Germany's
encrypted messages on a regular basis. Finally, almost a decade later, the
Germans were made aware of this failure in their communications security.
Also in 1923, the British Royal Navy published their official history of the
First World War, which reiterated the fact that the interception and cryptanalysis
of German communications had provided the Allies with a clear
advantage. These proud achievements of British Intelligence were a stark
condemnation of those responsible for German security, who then had to
admit in their own report that, "the German fleet command, whose radio
messages were intercepted and deciphered by the English, played so to
speak with open cards against the British command."

The German military held an enquiry into how to avoid repeating the
cryptographic fiascos of the First World War, and concluded that the
Enigma machine offered the best solution. By 1925
Scherbius began
mass-producing Enigmas, which went into military service the following
year, and were subsequently used by the government and by state-run
organizations such as the railways. These Enigmas were distinct from the
few machines that Scherbius had previously sold to the business community,
because the scramblers had different internal wirings. Owners of a
commercial Enigma machine did not therefore have a complete knowledge
of the government and military versions.

Over the next two decades, the German military would buy over
30,000 Enigma machines. Scherbius's invention provided the German
military with the most secure system of cryptography in the world, and at
the outbreak of the Second World War their communications were protected
by an unparalleled level of encryption. At times, it seemed that the
Enigma machine would play a vital role in ensuring \(\mathrm{Na} / i\) victory, but
instead it was ultimately part of Hitler's downfall. Scherbius did not live
long enough to see the successes and failures of his cipher system. In

1929, while driving a team of horses, he lost control of his carriage and crashed into a wall, dying on May 13 from internal injuries.

Cracking the Enigma

In the years that followed the First World War, the British cryptanalysts
in Room 40 continued to monitor German communications. In 1926
they began to intercept messages which baffled them completely. Enigma
had arrived, and as the number of Enigma machines increased, Room 40's
ability to gather intelligence diminished rapidly. The Americans and the
French also tried to tackle the Enigma cipher, but their attempts were
equally dismal, and they soon gave up hope of breaking it. Germany now
had the most secure communications in the world.

The speed with which the Allied cryptanalysts abandoned hope of
breaking Enigma was in sharp contrast to their perseverance just a decade
earlier in the First World War. Confronted with the prospect of defeat, the
Allied cryptanalysts had worked night and day to penetrate German
ciphers. It would appear that fear was the main driving force, and that
adversity is one of the foundations of successful
codebreaking. Similarly,
it was fear and adversity that galvanized French
cryptanalysis at the end
of the nineteenth century, faced with the increasing might
of Germany.
However, in the wake of the First World War the Allies no longer feared
anybody. Germany had been crippled by defeat, the Allies were in a dominant
position, and as a result they seemed to lose their cryptanalytic zeal.
Allied cryptanalysts dwindled in number and deteriorated in quality.

One nation, however, could not afford to relax. After the First World
War, Poland reestablished itself as an independent state, but it was concerned
about threats to its newfound sovereignty. To the east lay Russia,
a nation ambitious to spread its communism, and to the west lay Germany,
desperate to regain territory ceded to Poland after the war. Sandwiched
between these two enemies, the Poles were desperate for intelligence
information, and they formed a new cipher bureau, the Biuro

143

144 The Code Book

Szyfrow. If necessity is the mother of invention, then perhaps adversity is
the mother of cryptanalysis. The success of the Biuro Szyfrow is exemplified
by their success during the Russo-Polish War of 1919-20.
In August
1920 alone, when the Soviet armies were at the gates of Warsaw, the
Biuro deciphered 400 enemy messages. Their monitoring of German
communications had been equally effective, until 1926, when they too
encountered the Enigma messages.

In charge of deciphering German messages was Captain Maksymilian
Ciezki, a committed patriot who had grown up in the town
of Szamotuty,
a center of Polish nationalism. Ciezki had access to a commercial version
of the Enigma machine, which revealed all the principles of Scherbius's
invention. Unfortunately, the commercial version was distinctly different
from the military one in terms of the wirings inside each scrambler. Without
knowing the wirings of the military machine, Ciezki had no chance of
deciphering messages being sent by the German army. He became so
despondent that at one point he even employed a clairvoyant in a frantic
attempt to conjure some sense from the enciphered
intercepts. Not surprisingly,
the clairvoyant failed to make the breakthrough the Biuro Szyfrow needed. Instead, it was left to a disaffected German, Hans-Thilo
Schmidt, to make the first step toward breaking the Enigma cipher.

Hans-Thilo Schmidt was born in 1888 in Berlin, the second son of a
distinguished professor and his aristocratic wife. Schmidt embarked on a
career in the German Army and fought in the First World War, but he was
not considered worthy enough to remain in the army after the drastic cuts
implemented as part of the Treaty of Versailles. He then tried to make his
name as a businessman, but his soap factory was forced to close because
of the postwar depression and hyperinflation, leaving him and his family
destitute.

The humiliation of Schmidt's failures was compounded by the success
of his elder brother, Rudolph, who had also fought in the war, and who
was retained in the army afterward. During the 1920 s

Rudolph rose
through the ranks and was eventually promoted to chief of staff of the

Signal Corps. He was responsible for ensuring secure communications,
and in fact it was Rudolph who officially sanctioned the army's use of the
Enigma cipher.

After his business collapsed, Hans-Thilo was forced to ask his brother

Cracking the Enigma 145

I for help, and Rudolph arranged a job for him in Berlin at the ChiffrierStelle, the office responsible for administrating Germany's encrypted
communications. This was Enigma's command center, a top-secret establishment
dealing with highly sensitive information. When Hans-Thilo moved to his new job, he left his family behind in
Bavaria, where the cost
of living was affordable. He was living alone in expensive Berlin, impoverished
and isolated, envious of his perfect brother and resentful toward
a nation which had rejected him. The result was
inevitable. By selling
secret Enigma information to foreign powers, Hans-Thilo
Schmidt could
earn money and gain revenge, damaging his country's
security and undermining
his brother's organization.

On November 8, 1931, Schmidt arrived at the Grand Hotel in Verviers,
Belgium, for a liaison with a French secret agent codenamed Rex. In
exchange for 10,000 marks (equivalent to \(\$ 30,000\) in
today's money),
Schmidt allowed Rex to photograph two documents:
"Gebrauchsanweisung
fur die Chiffriermaschine Enigma" and "Schliisselanleitung fur
die Chiffriermaschine Enigma." These documents were essentially

Figure 41 Hans-Thilo Schmidt.

\section*{146 The Code Book}
instructions for using the Enigma machine, and although there was no
explicit description of the wirings inside each scrambler, they contained
the information needed to deduce those wirings.

Thanks to Schmidt's treachery, it was now possible for the Allies to create
an accurate replica of the German military Enigma machine. However,
this was not enough to enable them to decipher messages encrypted by
Enigma. The strength of the cipher depends not on keeping the machine
secret, but on keeping the initial setting of the machine (the key) secret. If
a cryptanalyst wants to decipher an intercepted message, then, in addition
to having a replica of the Enigma machine, he still has to find which of
the millions of billions of possible keys was used to encipher it. A German
memorandum put it thus: "It is assumed in judging the security of
the cryptosystem that the enemy has at his disposition the machine."

The French Secret Service was clearly up to scratch, having found an
informant in Schmidt, and having obtained the documents that suggested
the wirings of the military Enigma machine. In comparison,

French crypt-analysts
were inadequate, and seemed unwilling and unable to exploit this
newly acquired information. In the wake of the First World War they suffered
from overconfidence and lack of motivation. The Bureau du Chiffre
did not even bother trying to build a replica of the military Enigma
machine, because they were convinced that achieving the next stage, finding
the key required to decipher a particular Enigma message, was impossible.

As it happened, ten years earlier the French had signed an agreement of
military cooperation with the Poles. The Poles had expressed an interest in
anything connected with Enigma, so in accordance with their decade-old
agreement the French simply handed the photographs of Schmidt's documents
to their allies, and left the hopeless task of cracking Enigma to the
Biuro Szyfrow. The Biuro realized that the documents were only a
starting point, but unlike the French they had the fear of invasion to spur
them on. The Poles convinced themselves that there must be a shortcut
to finding the key to an Enigma-encrypted message, and that if they
applied sufficient effort, ingenuity and wit, they could find that shortcut.

As well as revealing the internal wirings of the scramblers, Schmidt's
documents also explained in detail the layout of the codebooks used by the
Germans. Each month, Enigma operators received a new codebook which

Cracking, the Enigma 147

Ispecified which key should be used for each day. For example, on the first
i day of the month, the codebook might specify the following day key:
(1) Plugboard settings:A/LP/RT/DB/WK/FO/Y.
(2) Scrambler arrangement:2-3-1.
; (3) Scrambler orientations:QCW.

Together, the scrambler arrangement and orientations are known as the
scrambler settings. To implement this particular day key, the Enigma
operator would set up his Enigma machine as follows:
(1) Plugboard settings: Swap the letters A and L by connecting them via a lead on the plugboard, and similarly swap \(P\) and \(R\), then \(T\) and \(D\), then \(B\) and \(W\), then \(K\) and \(F\), and then \(O\) and \(Y\).
(2) Scrambler arrangement: Place the 2nd scrambler in the 1st slot of the machine, the 3rd scrambler in the 2 nd slot, and the 1st scrambler in
the 3rd slot.
(3) Scrambler orientations: Each scrambler has an alphabet engraved on its outer rim, which allows the operator to set it in a particular orientation. In this case, the operator would rotate the scrambler in
slot 1 so that \(Q\) is facing upward, rotate the scrambler in slot 2 so that
C is facing upward, and rotate the scrambler in slot 3 so that \(W\) is
facing upward.

One way of encrypting messages would be for the sender to
encrypt all
the day's traffic according to the day key. This would mean that for a
whole day at the start of each message all Enigma
operators would set
their machines according to the same day key. Then, each
time a message
needed to be sent, it would be first typed into the
machine; the enciphered
output would then be recorded, and handed to the radio operator
for transmission. At the other end, the receiving radio operator would
record the incoming message, hand it to the Enigma operator, who would
type it into his machine, which would already be set to the same day key.
The output would be the original message.

This process is reasonably secure, but it is weakened by the repeated use
of a single day key to encrypt the hundreds of messages that might be sent
each day. In general, it is true to say that if a single key is used to encipher

148 The Code Book
an enormous quantity of material, then it is easier for a cryptanalyst to
deduce it. A large amount of identically encrypted material provides a
cryptanalyst with a correspondingly larger chance of identifying the key.
For example, harking back to simpler ciphers, it is much easier to break a
monoalphabetic cipher with frequency analysis if there are several pages of
encrypted material, as opposed to just a couple of sentences.

As an extra precaution, the Germans therefore took the clever step of
using the day key settings to transmit a new message key for each message.
The message keys would have the same plugboard settings and scrambler
arrangement as the day key, but different scrambler
orientations. Because
the new scrambler orientation would not be in the codebook, the sender
had to transmit it securely to the receiver according to the following
process. First, the sender sets his machine according to the agreed day key,
which includes a scrambler orientation, say QCW. Next, he randomly
picks a new scrambler orientation for the message key, say PCH. He then
enciphers PGH according to the day key. The message key is typed into
the Enigma twice, just to provide a double-check for the receiver. For
example, the sender might encipher the message key PGH PGH as KIVBJE.
Note that the two PGH's are enciphered differently (the first as KIV, the
second as BJ E) because the Enigma scramblers are rotating after each letter,
and changing the overall mode of encryption. The sender then
changes his machine to the PGH setting and encrypts the main message
according to this message key. At the receiver's end, the machine is
initially set according to the day key, QCW. The first six letters of the
incoming message, KIVBJE, are typed in and reveal PGHPGH. The
receiver then knows to reset his scramblers to \(P G H\), the message key, and
can then decipher the main body of the message.

This is equivalent to the sender and receiver agreeing on a main cipher
key. Then, instead of using this single main cipher key to encrypt every
message, they use it merely to encrypt a new cipher key for each message,
and then encrypt the actual message according to the new cipher key.
Had the Germans not employed message keys, then
everything--perhaps
thousands of messages containing millions of
letters--would have been
sent using the same day key. However, if the day key is only used to transmit
the message keys, then it encrypts only a limited amount of text. If
there are 1,000 message keys sent in a day, then the day key encrypts only

Cracking the Enigma 149
i,000 letters. And because each message key is picked at random and is
to encipher only one message, then it encrypts a limited amount of
, perhaps just a few hundred characters.

At first sight the system seemed to be impregnable, but the Polish
fjpiyptanalysts were undaunted. They were prepared to
explore every
Bavenue in order to find a weakness in the Enigma machine and its use of
j;tlay and message keys. Foremost in the battle against Enigma was a new
breed of cryptanalyst. For centuries, it had been assumed that the best
cryptanalysts were experts in the structure of language, but the arrival of
Enigma prompted the Poles to alter their recruiting policy. Enigma was a
mechanical cipher, and the Biuro Szyfrow reasoned that a more scientific
mind might stand a better chance of breaking it. The Biuro organized a
course on cryptography and invited twenty mathematicians, each of them
sworn to an oath of secrecy. The mathematicians were all from the
university at Poznan. Although not the most respected academic institution
in Poland, it had the advantage of being located in the west of the
country, in territory that had been part of Germany until 1918. These
mathematicians were therefore fluent in German.

Three of the twenty demonstrated an aptitude for solving ciphers, and
were recruited into the Biuro. The most gifted of them was Marian
Rejewski, a timid, spectacled twenty-three-year-old who had previously
studied statistics in order to pursue a career in
insurance. Although a competent
student at the university, it was within the Biuro Szyfrow that he was
to find his true calling. He served his apprenticeship by breaking a series of
traditional ciphers before moving on to the more
forbidding challenge of
Enigma. Working entirely alone, he concentrated all of his energies on the
intricacies of Scherbius's machine. As a mathematician, he would try to
analyze every aspect of the machine's operation, probing the effect of the
scramblers and the plugboard cablings. However, as with all mathematics,
his work required inspiration as well as logic. As another wartime mathematical
cryptanalyst put it, the creative codebreaker must
"perforce commune
daily with dark spirits to accomplish his feats of mental jujitsu."

Rejewski's strategy for attacking Enigma focused on the fact that
repetition is the enemy of security: repetition leads to patterns, and crypt-analysts
thrive on patterns. The most obvious repetition in the

Enigma
encryption was the message key, which was enciphered twice at the

150 The Code Book
beginning of every message. If the operator chose the message key ULJ, then he would encrypt it twice so that ULJ ULJ might be enciphered as
PEFNWZ, which he would then send at the start before the actual
message. The Germans had demanded this repetition in order to avoid
mistakes caused by radio interference or operator error. But they did not
foresee that this would jeopardize the security of the machine.

Each day, Rejewski would find himself with a new batch of intercepted
messages. They all began with the six letters of the repeated three-letter
message key, all encrypted according to the same agreed day key. For
example, he might receive four messages that began with the following
encrypted message keys:

1st2nd 3rd4th5th6th

1st message L 0 KRGM

2nd message M V TXZE

3rd message J K TM PE

4th message D V YP ZX

In each case, the 1st and 4th letters are encryptions of the same letter,
namely the first letter of the message key. Also, the 2nd and 5th letters are
encryptions of the same letter, namely the second letter of the message
key, and the 3rd and 6th letters are encryptions of the same letter, namely
the third letter of the message key. For example, in the first message \(L\) and
\(R\) are encryptions of the same letter, the first letter of the message key. The
reason why this same letter is encrypted differently, first as \(L\) and then as
\(R\), is that between the two encryptions the first Enigma scrambler has
moved on three steps, changing the overall mode of scrambling.

The fact that \(L\) and \(R\) are encryptions of the same letter allowed Rejewski
to deduce some slight constraint on the initial setup of the machine.
The initial scrambler setting, which is unknown, encrypted the first letter of
the day key, which is also unknown, into \(L\), and then another scrambler setting, three steps on from the initial setting, which is still unknown,
encrypted the same letter of the day key, which is also still unknown, into R.

This constraint might seem vague, as it is full of unknowns, but at least
it demonstrates that the letters \(L\) and \(R\) are intimately related by the initial
setting of the Enigma machine, the day key. As each new message is intercepted,
it is possible to identify other relationships between the 1st and

Cracking the Enigma 151

4th letters of the repeated message key. All these relationships are reflections
```

of the initial setting of the Enigma machine. For example,
the
second message above tells us that M and X are related,
the third tells us
that J and M are related, and the fourth that D and P are
related. Rejewski
began to summarize these relationships by tabulating them.
For the four
messages we have so far, the table would reflect the
relationships between (L,R), (M,X), (J,M) and (D,P):
1st letter ABCDEFGHI JKLMNOPQRSTUVWXYZ
4th letterPM R X
If Rejewski had access to enough messages in a single day,
then he would
be able to complete the alphabet of relationships. The
following table
shows such a completed set of relationships:
1st letter ABCDEFGHI JKLMNOPQRSTUVWXYZ
4th letter FQHPLWOGBMVRXUYCZ I TNJ EASDK

```
"

Figure 42 Marian Rejewski.

152 The Code Book

Rejewski had no idea of the day key, and he had no idea which message
keys were being chosen, but he did know that they resulted in this table of relationships. Had the day key been different, then the table of relationships would have been completely different. The next question was
whether there existed any way of determining the day key by looking at the
table of relationships. Rejewski began to look for patterns within the table,
structures that might indicate the day key. Eventually, he began to study
one particular type of pattern, which featured chains of letters. For example,
in the table, A on the top row is linked to \(F\) on the bottom row, so next
he would look up \(F\) on the top row. It turns out that \(F\) is linked to W, and so he would look up \(W\) on the top row. And it turns out that W is linked to
A, which is where we started. The chain has been completed.

With the remaining letters in the alphabet, Rejewski would generate more chains. He listed all the chains, and noted the number of links in each one:
```

A-> F -> W -> A
B->Q-> Z -> K
$\mathrm{C}^{\wedge} \mathrm{H} \rightarrow \mathrm{G}->0$-J»M>X
-> S -

```
E
D
N-
'
L -» R
p»c
u-> j

3 links
9 links
7 links
7 links

So far, we have only considered the links between the 1st and 4th letters
of the six-letter repeated key. In fact, Rejewski would repeat this whole
exercise for the relationships between the 2 nd and 5 th letters, and the 3rd
and 6th letters, identifying the chains in each case and the number of
links in each chain.

Rejewski noticed that the chains changed each day. Sometimes there
were lots of short chains, sometimes just a few long Chains. And, of
course, the letters within the chains changed. The characteristics of the
chains were clearly a result of the day key setting--a complex consequence
of the plugboard settings, the scrambler arrangement and the
scrambler orientations. However, there remained the question of how
Rejewski could determine the day key from these chains. Which of

10,000,000,000,000,000 possible day keys was related to a particular pattern
of chains? The number of possibilities was simply too great.

It was at this point that Rejewski had a profound insight. Although the
plugboard and scrambler settings both affect the details of the chains,

Cracking the Enigma. 153
heir contributions can to some extent be disentangled. In particular,
fthere is one aspect of the chains which is wholly
dependent on the scram-Ijjler
settings, and which has nothing to do with the plugboard settings: \the numbers of links in the chains is purely a consequence of the scram!
bier settings. For instance, let us take the example above and pretend that
the day key required the letters \(S\) and \(G\) to be swapped as part of the plugboard
settings. If we change this element of the day key, by
removing the
cable that swaps \(S\) and \(G\), and use it to swap, say, \(T\) and \(K\) instead, then the
chains would change to the following:

A-> F-»W-» A
\(B+Q>Z^{\wedge} T>V+E>L>R C » H » S>0>Y>D->P » C \quad J » M>X » G>K-» N » U>J\)

3 links
9 links
7 links
7 links

Some of the letters in the chains have changed, but, crucially, the number
of links in each chain remains constant. Rejewski had identified a facet of
the chains that was solely a reflection of the scrambler settings.

The total number of scrambler settings is the number of scrambler
arrangements (6) multiplied by the number of scrambler orientations
\((17,576)\) which comes to 105,456 . So, instead of having to worry about
which of the \(10,000,000,000,000,000\) day keys was associated with a particular set of chains, Rejewski could busy himself with a drastically
simpler problem: which of the 105,456 scrambler settings was associated
with the numbers of links within a set of chains? This number is still large,
but it is roughly one hundred billion times smaller than the total number
of possible day keys. In short, the task has become one hundred billion
times easier, certainly within the realm of human endeavor.

Rejewski proceeded as follows. Thanks to Hans-Thilo Schmidt's espionage, he had access to replica Enigma machines. His team began the
laborious chore of checking each of 105,456 scrambler settings, and cataloguing
the chain lengths that were generated by each one. It took an
entire year to complete the catalogue, but once the Biuro had accumulated
the data, Rejewski could finally begin to unravel the Enigma cipher.

Each day, he would look at the encrypted message keys, the first six
letters of all the intercepted messages, and use the information to build
his table of relationships. This would allow him to trace the chains, and

154 The Code Book
establish the number of links in each chain. For example, analyzing the 1st
and 4th letters might result in four chains with 3, 9, 7 and 7 links.
Analyzing the 2 nd and 5th letters might also result in four chains, with 2,

3, 9 and 12 links. Analyzing the 3rd and 6th letters might result in five
chains with 5, 5, 5, 3 and 8 links. As yet, Rejewski still had no idea of the
day key, but he knew that it resulted in 3 sets of chains with the following
number of chains and links in each one:

4 chains from the 1 st and 4 th letters, with 3, 9, 7 and 7 links.

4chains from the 2 nd and 5th letters, with 2, 3, 9 and 12 links.

5chains from the 3rd and 6th letters, with 5, 5, 5, 3 and 8 links.

Rejewski could now go to his catalogue, which contained every scrambler
setting indexed according to the sort of chains it would generate. Having
found the catalogue entry that contained the right number of chains with
the appropriate number of links in each one, he immediately knew the
scrambler settings for that particular day key. The chains were effectively
fingerprints, the evidence that betrayed the initial
scrambler arrangement
and orientations. Rejewski was working just like a
detective who might
find a fingerprint at the scene of a crime, and then use a database to
match it to a suspect.

Although he had identified the scrambler part of the day key, Rejewski
still had to establish the plugboard settings. Although there are about a
hundred billion possibilities for the plugboard settings, this was a relatively
straightforward task. Rejewski would begin by setting the
scramblers
in his Enigma replica according to the newly established scrambler part of
the day kpy. He would then remove all cables from the plugboard, so that
the plugboard had no effect. Finally, he would take a piece of intercepted
ciphertext and type it in to the Enigma machine. This
would largely result
in gibberish, because the plugboard cablings were unknown and missing.
However, every so often vaguely recognizable phrases would appear, such
as alliveinbelrin-presumably, this should be "arrive in Berlin." If this
assumption is correct, then it would imply that the letters \(R\) and \(L\) should
be connected and swapped by a plugboard cable, while A, I, V, E, B and N
should not. By analyzing other phrases it would be possible to identify
the other five pairs of letters that had been swapped by the plugboard.
Having established the plugboard settings, and having already discovered

Cracking the Enigma 155

Hie scrambler settings, Rejewski had the complete day key, and could then
Idecipher any message sent that day.
Rejewski had vastly simplified the task of finding the day key by

I divorcing the problem of finding the scrambler settings from the problem
of finding the plugboard settings. On their own, both of these problems
fv y/ere solvable. Originally, we estimated that it would take more than the
lifetime of the universe to check every possible Enigma
key. However,
Rejewski had spent only a year compiling his catalogue of chain lengths,
and thereafter he could find the day key before the day was out. Once he
had the day key, he possessed the same information as the intended
receiver and so could decipher messages just as easily.

Following Rejewski's breakthrough, German communications became
transparent. Poland was not at war with Germany, but there was a threat
of invasion, and Polish relief at conquering Enigma was nevertheless
immense. If they could find out what the German generals had in mind
for them, there was a chance that they could defend themselves. The fate
of the Polish nation had depended on Rejewski, and he did not disappoint
his country. Rejewski's attack on Enigma is one of the truly great
accomplishments of cryptanalysis. I have had to sum up his work in just
a few pages, and so have omitted many of the technical details, and all of
the dead ends. Enigma is a complicated cipher machine, and breaking it
required immense intellectual force. My simplifications should not mislead
you into underestimating Rejewski's extraordinary achievement.

The Polish success in breaking the Enigma cipher can be attributed to
three factors: fear, mathematics and espionage. Without the fear of
invasion, the Poles would have been discouraged by the apparent invulnerability
of the Enigma cipher. Without mathematics, Rejewski would not have been able to analyze the chains. And without Schmidt, code-named
"Asche," and his documents, the wirings of the scramblers
would
not have been known, and cryptanalysis could not even have begun.
Rejewski did not hesitate to express the debt he owed
Schmidt: "Asche's
documents were welcomed like manna from heaven, and all doors were
immediately opened."

The Poles successfully used Rejewski's technique for several years.
When Hermann Goring visited Warsaw in 1934, he was totally unaware of
the fact that his communications were being intercepted and deciphered.

156 The Code Book

As he and other German dignitaries laid a wreath at the Tomb of the
Unknown Soldier next to the offices of the Biuro Szyfrow, Rejewski could
stare down at them from his window, content in the
knowledge that he
could read their most secret communications.

Even when the Germans made a minor alteration to the way they transmitted messages, Rejewski fought back. His old catalogue of chain lengths
was useless, but rather than rewriting the catalogue he devised a mechanized
version of his cataloguing system, which could
automatically search
for the correct scrambler settings. Rejewski's invention was an adaptation of
the Enigma machine, able to rapidly check each of the 17,576 settings until
it spotted a match. Because of the six possible scrambler arrangements, it
was necessary to have six of Rejewski's machines working
in parallel, each
one representing one of the possible arrangements.

Together, they formed a
unit that was about a meter high, capable of finding the day key in roughly
two hours. The units were called bombes, a name that might reflect the ticking
noise they made while checking scrambler settings.
Alternatively, it is
said that Rejewski got his inspiration for the machines while at a cafe eating
a bombe, an ice cream shaped into a hemisphere. The bombes effectively
mechanized the process of decipherment. It was a natural response to
Enigma, which was a mechanization of encipherment.

For most of the 1930s, Rejewski and his colleagues worked tirelessly
to uncover the Enigma keys. Month after month, the team would have to
deal with the stresses and strains of cryptanalysis, continually having to
fix mechanical failures in the bombes, continually having to deal with the
never-ending supply of encrypted intercepts. Their lives became dominated
by the pursuit of the day key, that vital piece of information that
would reveal the meaning of the encrypted messages. However, unknown
to the Polish codebreakers, much of their work was unnecessary. The chief
of the Biuro, Major Gwido Langer, already had the Enigma day keys, but
he kept them hidden, tucked away in his desk.

Langer, via the French, was still receiving information from Schmidt.
The German spy's nefarious activities did not end in 1931 with the delivery
of the two documents on the operation of Enigma, but continued for
another seven years. He met the French secret agent Rex on twenty occasions,
often in secluded alpine chalets where privacy was
guaranteed. At
every meeting, Schmidt handed over one or more codebooks, each one

Cracking the Enigma 157
containing a month's worth of day keys. These were the codebooks that
were distributed to all German Enigma operators, and they contained all
the information that was needed to encipher and decipher messages. In
total, he provided codebooks that contained 38 months' worth of day
keys. The keys would have saved Rejewski an enormous amount of time
and effort, shortcutting the necessity for bombes and sparing manpower
that could have been used in other sections of the Biuro. However, the
remarkably astute Langer decided not to tell Rejewski that the keys
existed. By depriving Rejewski of the keys, Langer believed he was preparing
him for the inevitable time when the keys would no longer be
available. He knew that if war broke out it would be impossible for
Schmidt to continue to attend covert meetings, and Rejewski would then
be forced to be self-sufficient. Langer thought that Rejewski should practice self-sufficiency in peacetime, as preparation for what lay ahead.

Rejewski's skills eventually reached their limit in
December 1938, when
German cryptographers increased Enigma's security. Enigma operators
were all given two new scramblers, so that the scrambler arrangement
might involve any three of the five available scramblers. Previously there
were only three scramblers (labeled 1, 2 and 3) to choose from, and only
six ways to arrange them, but now that there were two extra scramblers
(labeled 4 and 5) to choose from, the number of
arrangements rose to 60,
as shown in Table 10. Rejewski's first challenge was to work out the internal
wirings of the two new scramblers. More worryingly, he also had to
build ten times as many bombes, each representing a different scrambler
arrangement. The sheer cost of building such a battery of bombes was fifteen
times the Biuro's entire annual equipment budget. The following
month the situation worsened when the number of plugboard cables
increased from six to ten. Instead of twelve letters being swapped before
entering the scramblers, there were now twenty swapped letters. The number
of possible keys increased to 159,000,000,000,000,000,000.

In 1938 Polish interceptions and decipherments had been at their peak,
but by the beginning of 1939 the new scramblers and extra plugboard
cables stemmed the flow of intelligence. Rejewski, who had pushed forward
the boundaries of cryptanalysis in previous years, was confounded.
He had proved that Enigma was not an unbreakable cipher, but without
the resources required to check every scrambler setting he could not find

158 The Code Book
the day key, and decipherment was impossible. Under such desperate
circumstances Langer might have been tempted to hand over the keys
that had been obtained by Schmidt, but the keys were no longer being
delivered. Just before the introduction of the new scramblers, Schmidt
had broken off contact with agent Rex. For seven years he had supplied
keys which were superfluous because of Polish innovation.
Now, just
when the Poles needed the keys, they were no longer available.

The new invulnerability of Enigma was a devastating blow to Poland,
because Enigma was not merely a means of communication, it was at the
heart of Hitler's blitzkrieg strategy. The concept of blitzkrieg ("lightning war") involved rapid, intense, coordinated attack, which meant that large
tank divisions would have to communicate with one another and with
infantry and artillery. Furthermore, land forces would be backed up by air
support from dive-bombing Stukas, which would rely on
effective and
secure communication between the front-line troops and the airfields. The
ethos of blitzkrieg was "speed of attack through speed of communications."
If the Poles could not break Enigma, they had no hope of stopping the
German onslaught, which was clearly only a matter of months away.
Germany already occupied the Sudetenland, and on April 27, 1939, it
withdrew from its nonaggression treaty with Poland.
Hitler's anti-Polish rhetoric became increasingly vitriolic.
Langer was determined that if
Poland was invaded, then its cryptanalytic breakthroughs, which had so
far been kept secret from the Allies, should not be lost. If Poland could
not benefit from Rejewski's work, then at least the Allies should have the

Table 10 Possible arrangements with five scramblers.

Arrangements
with three scramblers

Extra arrangements available with two extra scramblers

123
132
213
231
312
321

124125134135142143145152153

154214215234235241243245251

253254314315324325341342345

351352354412413415421423425

431432435451452453512513514

521523524531532534541542543

Figure 43 General Heinz Guderian's command post vehicle. An Enigma machine can be seen in use in the bottom left.

160 The Code Book
chance to try and build on it. Perhaps Britain and France, with their extra
resources, could fully exploit the concept of the bombe.

On June 30, Major Langer telegraphed his French and British counterparts, inviting them to Warsaw to discuss some urgent matters concerning
Enigma. On July 24, senior French and British
cryptanalysts arrived at the
Biuro's headquarters, not knowing quite what to expect. Langer ushered
them into a room in which stood an object covered with a black cloth. He
pulled away the cloth, dramatically revealing one of Rejewski's bombes.
The audience were astonished as they heard how Rejewski had been
breaking Enigma for years. The Poles were a decade ahead of anybody else
in the world. The French were particularly astonished, because the Polish
work had been based on the results of French espionage. The French had
handed the information from Schmidt to the Poles because they believed
it to be of no value, but the Poles had proved them wrong.

As a final surprise, Langer offered the British and French two spare
Enigma replicas and blueprints for the bombes, which were to be shipped
in diplomatic bags to Paris. From there, on August 16, one of the Enigma
machines was forwarded to London. It was smuggled across the Channel
as part of the baggage of the playwright Sacha Guitry and his wife, the actress Yvonne Printemps, so as not to arouse the suspicion of German
spies who would be monitoring the ports. Two weeks later, on September
1, Hitler invaded Poland and the war began.

For thirteen years the British and the French had assumed that the Enigma
cipher was unbreakable, but now there was hope. The Polish revelations
had demonstrated that the Enigma cipher was flawed, which boosted the
morale of Allied cryptanalysts. Polish progress had ground to a halt on the
introduction of the new scramblers and extra plugboard cables, but the
fact remained that Enigma was no longer considered a perfect cipher.

The Polish breakthroughs also demonstrated to the Allies the value of
employing mathematicians as codebreakers. In Britain, Room 40 had
always been dominated by linguists and classicists, but now there was a
concerted effort to balance the staff with mathematicians and scientists.
They were recruited largely via the old-boy network, with those inside

Cracking the Enigma 161
ft Room 40 contacting their former Oxford and Cambridge colleges. There
I -was also an old-girl network which recruited women undergraduates from
B places such as Newnham College and Girton College, Cambridge.

The new recruits were not brought to Room 40 in London, but instead
went to Bletchley Park, Buckinghamshire, the home of the Government
Code and Cypher School (GC\&CS), a newly formed codebreaking organization
that was taking over from Room 40. Bletchley Park could house
a much larger staff, which was important because a deluge
of encrypted
intercepts was expected as soon as the war started. During the First World War, Germany had transmitted two million words a month, but it was
anticipated that the greater availability of radios in the Second World War could result in the transmission of two million words a day.

At the center of Bletchley Park was a large Victorian Tudor-Gothic
mansion built by the nineteenth-century financier Sir Herbert Leon. The mansion, with its library, dining hall and ornate ballroom, provided the

Figure 44 In August 1939, Britain's senior codebreakers visited Bletchley Park to assess its
suitability as the site for the new Government Code and Cypher School. To avoid arousing suspicion from locals, they claimed to be part of Captain Ridley's shooting party.

\section*{162 The Code Book}
central administration for the whole of the Bletchley operation. Commander
Alastair Denniston, the director of GC\&CS, had a ground-floor
office overlooking the gardens, a view that was soon spoiled by the
erection of numerous huts. These makeshift wooden
buildings housed
the various codebreaking activities. For example, Hut 6 specialized in
attacking the German Army's Enigma communications. Hut 6 passed its
decrypts to Hut 3, where intelligence operatives translated the messages,
and attempted to exploit the information. Hut 8 specialized in the naval
Enigma, and they passed their decrypts to Hut 4 for translation and intelligence
gathering. Initially, Bletchley Park had a staff of only two hundred,
but within five years the mansion and the huts would house seven
thousand men and women.

During the autumn of 1939, the scientists and mathematicians at
Bletchley learned the intricacies of the Enigma cipher and rapidly mastered
the Polish techniques. Bletchley had more staff and resources than
the Polish Biuro Szyfrow, and were thus able to cope with the larger selection
of scramblers and the fact that Enigma was now ten times harder to
break. Every twenty-four hours the British codebreakers went through the
same routine. At midnight, German Enigma operators would change to a
new day key, at which point whatever breakthroughs Bletchley had
achieved the previous day could no longer be used to
decipher messages.
The codebreakers now had to begin the task of trying to identify the new
day key. It could take several hours, but as soon as they had discovered
the Enigma settings for that day, the Bletchley staff could begin to decipher
the German messages that had already accumulated, revealing information
that was invaluable to the war effort.

Surprise is an invaluable weapon for a commander to have at his disposal.
But if Bletchley could break into Enigma, German plans would
become transparent and the British would be able to read the minds of
the German High Command. If the British could pick up news of an
imminent attack, they could send reinforcements or take evasive action. If
they could decipher German discussions of their own weaknesses, the
Allies would be able to focus their offensives. The Bletchley decipherments
were of the utmost importance. For example, when Germany invaded Denmark and Norway in April 1940, Bletchley provided a
detailed picture of German operations. Similarly, during the Battle of

1

Cracking the Enigma 163

Britain, the cryptanalysts were able to give advance warning of bombing raids, including times and locations. They could also give continual
updates on the state of the Luftwaffe, such as the number of planes that
had been lost and the speed with which they were being replaced.
Bletchley would send all this information to MI6 headquarters, who
would forward it to the War Office, the Air Ministry and the Admiralty.
In between influencing the course of the war, the cryptanalysts occasionally
found time to relax. According to Malcolm Muggeridge, who served in
the secret service and visited Bletchley, rounders, a version of Softball, was
a favorite pastime:

Every day after luncheon when the weather was propitious the cipher crackers
played rounders on the manor-house lawn, assuming the quasi-serious
manner dons affect when engaged in activities likely to be regarded as frivolous
or insignificant in comparison with their weightier
studies. Thus they
would dispute some point about the game with the same fervor as they
might the question of free will or determinism, or whether the world began
with a big bang or a process of continuing creation.

Figure 45 Bletchley's codebreakers relax with a game of rounders.

\section*{164 The Code Book}

Once they had mastered the Polish techniques, the Bletchley cryptanalysts
began to invent their own shortcuts for finding the Enigma keys. For
example, they cottoned on to the fact that the German
Enigma operators
would occasionally choose obvious message keys. For each message, the operator was supposed to select a different message key, three letters chosen
at random. However, in the heat of battle, rather than straining their
imaginations to pick a random key, the overworked
operators would
sometimes pick three consecutive letters from the Enigma keyboard (Figure
46), such as QWE or BNM. These predictable message keys became
known as allies. Another type of cilly was the repeated use of the same
message key, perhaps the initials of the operator's
girlfriend--indeed, one
such set of initials, C.I.L., may have been the origin of
the term. Before
cracking Enigma the hard way, it became routine for the
cryptanalysts to
try out the cillies, and their hunches would sometimes pay
off.

Gillies were not weaknesses of the Enigma machine, rather they were
weaknesses in the way the machine was being used. Human error at more
senior levels also compromised the security of the Enigma cipher. Those
responsible for compiling the codebooks had to decide which scramblers
would be used each day, and in which positions. They tried to ensure
that the scrambler settings were unpredictable by not allowing any scrambler
to remain in the same position for two days in a row. So, if we
label the scramblers 1,2,3,4 and 5, then on the first day it would be possible
to have the arrangement 134, and on the second day it would be
possible to have 215, but not 214 , because scrambler number 4 is not
allowed to remain in the same position for two days in a row. This might
seem a sensible strategy because the scramblers are constantly changing position, but enforcing such a rule actually makes life easier for the crypt-analyst.
Excluding certain arrangements to avoid a scrambler remaining
(Q) (w) (E) (R) (T) (z) (y) Q; (o)
(p) (y) (x) (q) (?) (b) cn) (m) (l)

Figure 46 Layout of the Enigma keyboard.

Cracking the Enigma 165
in the same position meant that the codebook compilers reduced by half
the number of possible scrambler arrangements. The Bletchley cryptanalysts
realized what was happening and made the most of it. Once they
identified the scrambler arrangement for one day, they could immediately
rule out half the scrambler arrangements for the next day. Hence, their
workload was reduced by half.

Similarly, there was a rule that the plugboard settings could not include
a swap between any letter and its neighbor, which meant that \(S\) could be
swapped with any letter except \(R\) and \(T\). The theory was that such obvious
swappings should be deliberately avoided, but once again the implementation
of a rule drastically reduced the number of possible keys.

This search for new cryptanalytic shortcuts was necessary because the

Enigma machine continued to evolve during the course of the war. The
cryptanalysts were continually forced to innovate, to redesign and refine
the bombes, and to devise wholly new strategies. Part of the reason for
their success was the bizarre combination of mathematicians, scientists,
linguists, classicists, chess grandmasters and crossword addicts within each
hut. An intractable problem would be passed around the hut until it
reached someone who had the right mental tools to solve it, or reached
someone who could at least partially solve it before
passing it on again.
Gordon Welchman, who was in charge of Hut 6, described his team as "a
pack of hounds trying to pick up the scent." There were
many great crypt-analysts
and many significant breakthroughs, and it would take several
large volumes to describe the individual contributions in detail. However,
if there is one figure who deserves to be singled out, it
is Alan Turing, who
identified Enigma's greatest weakness and ruthlessly
exploited it. Thanks
to Turing, it became possible to crack the Enigma cipher under even the
most difficult circumstances.

Alan Turing was conceived in the autumn of 1911 in
Chatrapur, a town
near Madras in southern India, where his father Julius Turing was a member
of the Indian civil service. Julius and his wife Ethel were determined
that their son should be born in Britain, and returned to London, where
Alan was born on June 23, 1912. His father returned to India soon
afterward and his mother followed just fifteen months later, leaving Alan
in the care of nannies and friends until he was old enough to attend
boarding school.

166 The Code Book

In 1926, at the age of fourteen, Turing became a pupil at Sherborne
School, in Dorset. The start of his first term coincided with the General
Strike, but Turing was determined to attend the first day, and he cycled
100 km unaccompanied from Southampton to Sherborne, a feat that was
reported in the local newspaper. By the end of his first year at the school
he had gained a reputation as a shy, awkward boy whose only skills were
in the area of science. The aim of Sherborne was to turn boys into well-rounded
men, fit to rule the Empire, but Turing did not share this
ambition
and had a generally unhappy schooling.

His only real friend at Sherborne was Christopher Morcom, who, like
Turing, had an interest in science. Together they discussed the latest scientific
news and conducted their own experiments. The relationship fired
Taring's intellectual curiosity, but, more importantly, it also had a profound
emotional effect on him. Andrew Hodges, Turing's
biographer,
wrote that "This was first love ... It had that sense of surrender, and a
heightened awareness, as of brilliant color bursting upon a black and white world." Their friendship lasted four years, but Morcom seems to
have been unaware of the depth of feeling Turing had for him. Then, during
their final year at Sherborne, Turing lost forever the chance to tell him
how he felt. On Thursday, February 13, 1930, Christopher Morcom suddenly
died of tuberculosis.

Turing was devastated by the loss of the only person he would ever
truly love. His way of coming to terms with Morcom's death was to focus
on his scientific studies in an attempt to fulfill his friend's potential. Morcom,
who appeared to be the more gifted of the two boys, had already
won a scholarship to Cambridge University. Turing believed it was his
duty also to win a place at Cambridge, and then to make the discoveries
his friend would otherwise have made. He asked
Christopher's mother for
a photograph, and when it arrived he wrote back to thank her: "He is on
my table now, encouraging me to work hard."

In 1931, Turing gained admission to King's College, Cambridge. He
arrived during a period of intense debate about the nature of mathematics
and logic, and was surrounded by some of the leading voices, such as
Bertrand Russell, Alfred North Whitehead and Ludwig Wittgenstein. At
the center of the argument was the issue of underidability, a controversial
notion developed by the logician Kurt Godel. It had always been assumed

Figure 47 Alan Turing.

168 The Code Book
that, in theory at least, all mathematical questions could be answered.
However, Godel demonstrated that there could exist a minority of questions
which were beyond the reach of logical proof, so-called undecidable
questions. Mathematicians were traumatized by the news that mathematics
was not the all-powerful discipline they had always believed it to be.
They attempted to salvage their subject by trying to find a way of identifying
the awkward undecidable questions, so that they could put them safely
to one side. It was this objective that eventually inspired Turing to write his
most influential mathematical paper, "On Computable Numbers," published
in 1937. In Breaking the Code, Hugh Whitemore's play about the life
of Turing, a character asks Turing the meaning of his
paper. He replies, "It's
about right and wrong. In general terms. It's a technical paper in mathematical
logic, but it's also about the difficulty of telling right
from wrong.
People think--most people think--that in mathematics we always know
what is right and what is wrong. Not so. Not any more."

In his attempt to identify undecidable questions, Turing's paper
described an imaginary machine that was designed to
perform a particular
mathematical operation, or algorithm. In other words, the machine
would be capable of running through a fixed, prescribed series of steps
which would, for example, multiply two numbers. Turing envisaged that
the numbers to be multiplied could be fed into the machine via a paper
tape, rather like the punched tape that is used to feed a tune into a
Pianola. The answer to the multiplication would be output via another
tape. Turing imagined a whole series of these so-called Turing machines, each specially designed to tackle a particular task, such as dividing, squaring
or factoring. Then Turing took a more radical step.

He imagined a machine whose internal workings could be altered so
that it could perform all the functions of all conceivable Turing machines.
The alterations would be made by inserting carefully selected tapes, which
transformed the single flexible machine into a dividing machine, a multiplying
machine, or any other type of machine. Turing called this hypothetical
device a universal Turing machine because it would be capable of
answering any question that could logically be answered. Unfortunately, it
turned out that it is not always logically possible to answer a question about
the undecidability of another question, and so even the universal Turing
machine was unable to identify every undecidable question. Cracking the Enigma 169
' Mathematicians who read Turing's paper were disappointed that
Godel's monster had not been subdued but, as a consolation prize, Turing
had given them the blueprint for the modern programmable computer.
Turing knew of Babbage's work, and the universal Turing machine can be
seen as a reincarnation of Difference Engine No. 2. In fact, Turing had
gone much further, and provided computing with a solid theoretical
basis, imbuing the computer with a hitherto unimaginable potential.
It was still the 1930s though, and the technology did not exist to turn the
universal Turing machine into a reality. However, Turing was not at all dismayed
that his theories were ahead of what was technically feasible. He
merely wanted recognition from within the mathematical community, who indeed applauded his paper as one of the most important breakthroughs
of the century. He was still only twenty-six.

This was a particularly happy and successful period for Turing. During
the 1930s he rose through the ranks to become a fellow of King's College,
home of the world's intellectual elite. He led the life of an archetypal
Cambridge don, mixing pure mathematics with more trivial activities. In
1938 he made a point of seeing the film Snow White and the Seven Dwarfs, containing the memorable scene in which the Wicked Witch dunks an
apple in poison. Afterward his colleagues heard Turing continually repeating
the macabre chant, "Dip the apple in the brew, Let the sleeping death
seep through."

Turing cherished his years at Cambridge. In addition to his academic
success, he found himself in a tolerant and supportive environment.
Homosexuality was largely accepted within the university, which meant
that he was free to engage in a series of relationships without having to
worry about who might find out, and what others might say. Although he
had no serious long-term relationships, he seemed to be content with his
life. Then, in 1939, Turing's academic career was brought to an abrupt
halt. The Government Code and Cypher School invited him to become a
cryptanalyst at Bletchley, and on September 4, 1939, the day after Neville
Chamberlain declared war on Germany, Turing moved from the opulence
of the Cambridge quadrangle to the Crown Inn at Shenley Brook End.

Each day he cycled 5 km from Shenley Brook End to Bletchley Park,
where he spent part of his time in the huts contributing to the routine
codebreaking effort, and part of his time in the Bletchley think tank,

170 The Code Book
formerly Sir Herbert Leon's apple, pear and plum store. The think tank
was where the cryptanalysts brainstormed their way through new problems,
or anticipated how to tackle problems that might arise in the future.
Turing focused on what would happen if the German military
changed
their system of exchanging message keys. Bletchley's early successes relied
on Rejewski's work, which exploited the fact that Enigma operators
encrypted each message key twice (for example, if the message key was
YCB, the operator would encipher YGBYGB). This repetition was supposed
to ensure that the receiver did not make a mistake, but it created a
chink in the security of Enigma. British cryptanalysts guessed it would not
be long before the Germans noticed that the repeated key was compromising
the Enigma cipher, at which point the Enigma operators would be
told to abandon the repetition, thus confounding
Bletchley's current
codebreaking techniques. It was Turing's job to find an alternative way to
attack Enigma, one that did not rely on a repeated message key.

As the weeks passed, Turing realized that Bletchley was accumulating a
vast library of decrypted messages, and he noticed that many of them
conformed to a rigid structure. By studying old decrypted messages, he
believed he could sometimes predict part of the contents of an undeciphered
message, based on when it was sent and its source. For example,
experience showed that the Germans sent a regular
enciphered weather
report shortly after 6 A.M. each day. So, an encrypted
message intercepted
at 6:05 A.M. would be almost certain to contain wetter, the German word
for "weather." The rigorous protocol used by any military organization
meant that such messages were highly regimented in style, so Turing
could even be confident about the location of wetter within the
encrypted message. For example, experience might tell him that the first
six letters of a particular ciphertext corresponded to the plaintext letters
wetter. When a piece of plaintext can be associated with a piece of
ciphertext, this combination is known as a crib.

Turing was sure that he could exploit the cribs to crack Enigma. If he
had a ciphertext and he knew that a specific section of it, say ETJWPX, represented wetter, then the challenge was to identify the settings of the
Enigma machine that would transform wetter into ETJWPX. The
straightforward, but impractical, way to do this would be for the cryptanalyst
to take an Enigma machine, type in wetter and see if the correct

Cracking the Enigma 171
ciphertext emerged. If not, then the cryptanalyst would change the settings
of the machine, by swapping plugboard cables, and swapping or reorienting scramblers, and then type in wetter again. If the correct
ciphertext did not emerge, the cryptanalyst would change the settings
again, and again, and again, until he found the right one. The only
problem with this trial and error approach was the fact that there were
159,000,000,000,000,000,000 possible settings to check, so finding the one
that transformed wetter into ETJWPX was a seemingly impossible task.

To simplify the problem, Turing attempted to follow Rejewski's strategy
of disentangling the settings. He wanted to divorce the problem of finding
the scrambler settings (finding which scrambler is in which slot, and
what their respective orientations are) from the problem of finding the
plugboard cablings. For example, if he could find something in the crib
that had nothing to do with the plugboard cablings, then he could
feasibly check each of the remaining 1,054,560 possible scrambler combinations
(60 arrangements x 17,576 orientations). Having found the correct
scrambler settings, he could then deduce the plugboard cablings.

Eventually, his mind settled on a particular type of crib which contained
internal loops, similar to the chains exploited by Rejewski. Rejewski's
chains linked letters within the repeated message key. However, Turing's
loops had nothing to do with the message key, as he was working on the
assumption that soon the Germans would stop sending repeated message
keys. Instead, Turing's loops connected plaintext and ciphertext letters
within a crib. For example, the crib shown in Figure 48 contains a loop.

Enigma setting
S
S+1 S+2
\(r^{\wedge} i\)
\(S+3 S+4 S+5\)
p «^^ \(^{\wedge}\).
Guessed plaintext
t
T
t er
1 *
1
Known ciphertext
ET J
W P X
\(1 \mid\)

Figure 48 One of Turing's cribs, showing a loop.

172 The Code Book

Remember, cribs are only guesses, but if we assume that this crib is correct, we can link the letters \(w-* E, ~ e-* T, ~ t->W\) as part of a loop. Although we
know none of the Enigma machine settings, we can label the first setting,
whatever it is, \(S\). In this first setting we know that w is encrypted as E. After
this encryption, the first scrambler clicks around one place to setting \(S+1\),
and the letter e is enciphered as T. The scrambler clicks forward another
place and encrypts a letter that is not part of the loop, so we ignore this
encryption. The scrambler clicks forward one more place and, once again,
we reach a letter that is part of the loop. In setting S+3, we know that the
letter \(t\) is enciphered as \(W\). In summary, we know that

In setting \(S\), Enigma encrypts \(W\) as \(E\).
In setting \(S+l\), Enigma encrypts e as \(T\).
In setting \(S+3\), Enigma encrypts \(t\) as \(W\).

So far the loop seems like nothing more than a curious pattern, but Turing
rigorously followed the implications of the relationships within the loop,
and saw that they provided him with the drastic shortcut he needed in
order to break Enigma. Instead of working with just one Enigma machine
to test every setting, Turing began to imagine three
separate machines, each
dealing with the encipherment of one element of the loop. The first
machine would try to encipher w into E, the second would try to encipher
e into \(T\), and the third \(t\) into \(W\). The three machines would all have identical
settings, except that the second would have its scrambler orientations
moved forward one place with respect to the first, a setting labeled S+l,
and the third would have its scrambler orientations moved forward three
places with respect to the first, a setting labeled S+3. Turing then pictured
a frenzied cryptanalyst, continually changing plugboard cables, swapping
scrambler arrangements and changing their orientations in order to
achieve the correct encryptions. Whatever cables were changed in the first
machine would also be changed in the other two. Whatever scrambler
arrangements were changed in the first machine would also be changed in
the other two. And, crucially, whatever scrambler orientation was set in the
first machine, the second would have the same orientation but stepped
forward one place, and the third would have the same orientation but
stepped forward three places.

Turing does not seem to have achieved much. The cryptanalyst still has

Cracking the Enigma 173
to check all 159,000,000,000,000,000,000 possible settings, and, to make matters worse, he now has to do it simultaneously on all three machines
instead of just one. However, the next stage of Turing's idea transforms
the challenge, and vastly simplifies it. He imagined connecting the three
machines by running electrical wires between the inputs and the outputs
of each machine, as shown in Figure 49. In effect, the loop in the crib is
paralleled by the loop of the electrical circuit. Turing pictured the
machines changing their plugboard and scrambler settings, as described
above, but only when all the settings are correct for all three machines
would the circuit be completed, allowing a current to flow through all
three machines. If Turing incorporated a lightbulb within the circuit, then
the current would illuminate it, signaling that the correct settings had
been found. At this point, the three machines still have to check up to
159,000,000,000,000,000,000 possible settings in order to illuminate the
bulb. However, everything done so far has merely been preparation for
Turing's final logical leap, which would make the task over a hundred million
million times easier in one fell swoop.

Turing had constructed his electrical circuit in such a way as to nullify
the effect of the plugboard, thereby allowing him to ignore the billions of
plugboard settings. Figure 49 shows that the first Enigma has the electric
current entering the scramblers and emerging at some
unknown letter,
which we shall call Lj. The current then flows through the plugboard,
which transforms L j into E. This letter E is connected via a wire to the letter
e in the second Enigma, and as the current flows through the second
plugboard it is transformed back to Lj. In other words, the two plugboards
cancel each other out. Similarly, the current emerging from the
scramblers in the second Enigma enters the plugboard at l£ before being transformed into \(T\). This letter \(T\) is connected via a wire to the letter t in
the third Enigma, and as the current flows through the third plugboard it
is transformed back to l_2-In
short, the plugboards cancel themselves out
throughout the whole circuit, so Turing could ignore them completely.

Turing needed only to connect the output of the first set of scramblers,
Lj, directly to the input of the second set of scramblers, also lj, and so on.
Unfortunately, he did not know the value of the letter lj, so he had to
connect all 26 outputs of the first set of scramblers to all 26 corresponding
inputs in the second set of scramblers, and so on. In effect, there were now

174 The Code Book

26 electrical loops, and each one would have a lightbulb to signal the completion
of an electrical circuit. The three sets of scramblers could then simply
check each of the 17,576 orientations, with the second set of scramblers
always one step ahead of the first set, and the third set of scramblers two
steps ahead of the second set. Eventually, when the
correct scrambler orientations
had been found, one of the circuits would be completed and the
bulb would be illuminated. If the scramblers changed orientation every
second, it would take just five hours to check all the orientations.

Only two problems remained. First, it could be that the three machines
are running with the wrong scrambler arrangement, because the Enigma
machine operates with any three of the five available scramblers, placed in
any order, giving sixty possible arrangements. Hence, if all 17,576 orientations
have been checked, and the lamp has not been illuminated, it is
then necessary to try another of the sixty scrambler arrangements, and to
keep on trying other arrangements until the circuit is completed. Alternatively,
the cryptanalyst could have sixty sets of three Enigmas running in
parallel.

The second problem involved finding the plugboard cablings, once the scrambler arrangement and orientations had been established. This is relatively
simple. Using an Enigma machine with the correct scrambler arrangement
and orientations, the cryptanalyst types in the ciphertext
and looks at
the emerging plaintext. If the result is tewwer rather than wetter, then it is
clear that plugboard cables should be inserted so as to swap w and t. Typing
in other bits of ciphertext would reveal other plugboard cablings.

The combination of crib, loops and electrically connected machines
resulted in a remaikable piece of cryptanalysis, and only Turing, with his
unique background in mathematical machines, could ever have come up
with it. His musings on the imaginary Turing machines were intended to
answer esoteric questions about mathematical
undecidability, but this
purely academic research had put him in the right frame of mind for
designing a practical machine capable of solving very real problems.

Bletchley was able to find 100,000 pounds to turn Turing's idea into working
devices, which were dubbed bombes because their mechanical approach bore
a passing resemblance to Rejewski's bombe. Each of Turing's bombes was to
consist of twelve sets of electrically linked Enigma
scramblers, and would
thus be able to cope with much longer loops of letters.
The complete unit

Plugboard

3 scramblers

Reflector

Setting S
t
"
L,
r -i

L2
i

Setting S + 1

Setting S + 3

Figure 49 The loop in the crib can be paralleled by an electrical loop. Three Enigma
machines are set up in identical ways, except that the second one has its first scrambler moved forward one place (setting \(S+1\) ), and the third has its scrambler moved forward
two further places (setting \(S+3\) ). The output of each Enigma is then connected to the input of the next one. The three sets of scramblers then click around in unison until the circuit is complete and the light illuminates. At this point the correct setting has been found. In the diagram above, the circuit is complete, corresponding to the correct setting.
would be about two meters tall, two meters long and a meter wide. Turing
finalized the design at the beginning of 1940, and the job of construction
was given to the British Tabulating Machinery factory at Letchworth.

While waiting for the bombes to be delivered, Turing continued his
day-to-day work at Bletchley. News of his breakthrough soon spread
among the other senior cryptanalysts, who recognized that he was a singularly
gifted codebreaker. According to Peter Hilton, a fellow Bletchley
codebreaker, "Alan Turing was obviously a genius, but he was an
approachable, friendly genius. He was always willing to take time and
trouble to explain his ideas; but he was no narrow specialist, so that his
versatile thought ranged over a vast area of the exact sciences."

However, everything at the Government Code and Cypher School was
top secret, so nobody outside of Bletchley Park was aware of Turing's
remarkable achievement. For example, his parents had absolutely no idea
that Alan was even a codebreaker, let alone Britain's foremost cryptanalyst.
He had once told his mother that he was involved in some form of
military research, but he did not elaborate. She was merely disappointed
that this had not resulted in a more respectable haircut for her scruffy son.
Although Bletchley was run by the military, they had conceded that they
would have to tolerate the scruffiness and eccentricities of these "professor
types." Turing rarely bothered to shave, his nails were stuffed with dirt,
and his clothes were a mass of creases. Whether the military would also
have tolerated his homosexuality remains unknown. Jack Good, a veteran
of Bletchley, commented: "Fortunately the authorities did not know that
Turing was a homosexual. Otherwise we might have lost the war."

The first prototype bombe, christened Victory, arrived at Bletchley on
March 14, 1940. The machine was put into operation immediately, but the
initial results were less than satisfactory. The machine turned out to be
much slower than expected, taking up to a week to find a particular key.
There was a concerted effort to increase the bombe's
efficiency, and a
modified design was submitted a few weeks later. It would take four more
months to build the upgraded bombe. In the meantime, the cryptanalysts
had to cope with the calamity they had anticipated. On May 1, 1940, the
Germans changed their key exchange protocol. They no longer repeated
the message key, and thereupon the number of successful Enigma decipherments
dropped dramatically. The information blackout lasted until

Cracking the Enigma 177

August 8, when the new bombe arrived. Christened Agnus Dei, or Agnes i\$br short, this machine was to fulfill all Turing's expectations.

Within eighteen months there were fifteen more bombes in operation, exploiting cribs, checking scrambler settings and
revealing keys, each one
ff clattering like a million knitting needles. If
everything was going well, a
bombe might find an Enigma key within an hour. Once the plugboard
cablings and the scrambler settings (the message key) had been established
for a particular message, it was easy to deduce the day key. All the
other messages sent that same day could then be deciphered.

Even though the bombes represented a vital breakthrough in cryptanalysis,
decipherment had not become a formality. There were many hurdles to overcome before the bombes could even begin to look for a
|s key. For example, to operate a bombe you first needed a crib. The senior \ codebreakers would give cribs to the bombe operators, but there was no
guarantee that the codebreakers had guessed the correct meaning of the
ciphertext. And even if they did have the right crib, it might be in the
wrong place--the cryptanalysts might have guessed that an encrypted message
contained a certain phrase, but associated that phrase with the wrong
piece of the ciphertext. However, there was a neat trick for checking
whether a crib was in the correct position.

In the following crib, the cryptanalyst is confident that the plaintext is
right, but he is not sure if he has matched it with the correct letters in the
ciphertext.

Guessed plaintextwetternul Isechs

One of the features of the Enigma machine was its inability to encipher a
letter as itself, which was a consequence of the reflector. The letter a could
never be enciphered as A, the letter b could never be enciphered as B, and
so on. The particular crib above must therefore be misaligned, because
the first \(e\) in wetter is matched with an \(E\) in the ciphertext. To find the
correct alignment, we simply slide the plaintext and the ciphertext relative
to each other until no letter is paired with itself. If we shift the plaintext
one place to the left, the match still fails because this time the first \(s\) in
sechs is matched with \(S\) in the ciphertext. However, if we shift the plaintext
one place to the right there are no illegal encipherments. This crib is

178 The Code Book
therefore likely to be in the right place, and could be used as the basis for
a bombe decipherment:

Guessed plaintextwetternullsechs

Known ciphertext I PRENLWKMJ J SXCPLEJWQ

The intelligence gathered at Bletchley was passed on to only the most
senior military figures and selected members of the war cabinet. Winston
Churchill was fully aware of the importance of the Bletchley decipherments,
and on September 6, 1941, he visited the codebreakers. On meeting
some of the cryptanalysts, he was surprised by the bizarre mixture of
people who were providing him with such valuable information; in addition
to the mathematicians and linguists, there was an authority on porcelain,
a curator from the Prague Museum, the British chess champion and
numerous bridge experts. Churchill muttered to Sir Stewart Menzies,

1

Figure 50 A bombe in action.
OMtt
```

*W
T
J
Cracking the Enigma 179
t-Jjead of the Secret Intelligence Service, "I told you to
leave no stone
? unturned, but I didn't expect you to take me so
literally." Despite the
comment, he had a great fondness for the motley crew,
calling them "the
geese who laid golden eggs and never cackled."

```

The visit was intended to boost the morale of the codebreakers by
showing them that their work was appreciated at the very highest level. It
also had the effect of giving Turing and his colleagues the confidence to
approach Churchill directly when a crisis loomed. To make the most of
the bombes, Turing needed more staff, but his requests had been blocked
by Commander Edward Travis, who had taken over as Director of
Bletchley, and who felt that he could not justify recruiting more people.
On October 21, 1941, the cryptanalysts took the
insubordinate step of
ignoring Travis and writing directly to Churchill.

Dear Prime Minister,

Some weeks ago you paid us the honor of a visit, and we believe that you
regard our work as important. You will have seen that, thanks largely to the
energy and foresight of Commander Travis, we have been well supplied
with the "bombes" for the breaking of the German Enigma codes. We
think, however, that you ought to know that this work is being held up,
and in some cases is not being done at all, principally because we cannot
get sufficient staff to deal with it. Our reason for
writing to you direct is
that for months we have done everything that we possibly can through the
normal channels, and that we despair of any early
improvement without
your intervention . . .

We are, Sir, Your obedient servants,
A.M. Turing
W.G. Welchman
C.H.O'D. Alexander
P.S. Milner-Barry

Churchill had no hesitation in responding. He immediately issued a
memorandum to his principal staff officer:

ACTION THIS DAY

Make sure they have all they want on extreme priority and report to me
that this has been done.

I A stage company
(《)
4 The cMrect route*
preferred bj the
E«<niiheads (two
yPOfdsSjS)
9 Owe of the ever-gree\&!i (6)
10 Scented (8)
12C«ars* with an apt finish (5)
13Much that could
be got fr\$f\& a
timber Hit-r ch;m I
(tivo words"*5»4)

ACROSS
115 We have nothing
Iartd are t« debt
i (3)
(6 Pretend (5)
I17 is ibis town
£ready for a flood?
; (6)
\(\backslash 22\) The Iff He fellow
|has s\&me beer." It
* makes me !o*>e
|colour, I **y (6)
| 24 Fashi«n of a
1famous French
jfaraily (5)
1 2? Tree (3)
lli Cite itifghi of
course use this
fcftol to c»re an
appl*-j C4^\}
31Once used for unofficial cur* r^rtey (5)
32Thosewell
brought u|> helji
these over stiles (two words--4,4\}
33A sport in a
harry (6)
14 Is file tvorksliap
that turns oi*t tfek |»arf of it motor a Nusb*hosh affair?
(8)

35 An iHMTOinaiifth
funetiyniftg (4)
DOWN '
1Official tasti-uttion
n<t \(t \ll\) for|^f\{
Ifee ^erviinfs (8>
2Said to fce ^
remedy f«J" a
burn (two were!*
-S3)
3KiacJofaKas (9)
5A dlsagreeafek*
eoMpjpsy (S)
60t't*Eof*» majf have
(o ihk money for
their debts unless of ccturse their creditors do it to Ibe debts (5)
7Boar Uwi should
fee able \(t *>\) suit
siti>'t»ie \{^)
8Ge»r<6)
11 Business with
the end in sight (6)
14 The right sort of
woman li* star! a
dame school (3)
```

18"The War"
(anag) \{ <)
19When tantmering
take care to hit this (two
words) --\$>4)
20Making sound
as a bell (S)
21Half a fortnigh) of aid (8)
23 Bin), dish of
eoin (3)
25 This sign of the
Zodia« has n»
connection with The Fishes (ft)
$2 \& A$ preservative of
twth (6)
29 Famous* sculptor
(5)
30Tbi« part of-the locomotive
t'ngine w<nld
sound familiar to
the golfer (5)

```

Figure 51 The Daily Telegraph crossword used as a test to recruit new codebreakers (the solution is in Appendix H).

Cracking the Enigma 181

Henceforth there were to be no more barriers to recruitment or materials.
By the end of 1942 there were 49 bombes, and a new bombe station was
opened at Gayhurst Manor, just north of Bletchley. As part of the recruitment
drive, the Government Code and Cypher School placed a letter in
the Daily Telegraph. They issued an anonymous challenge to its readers,
asking if anybody could solve the newspaper's crossword (Figure 51) in
under 12 minutes. It was felt that crossword experts might
also be good
codebreakers, complementing the scientific minds that were already at
Bletchley-but of course, none of this was mentioned in the newspaper.
The 25 readers who replied were invited to Fleet Street to take a crossword
test. Five of them completed the crossword within the allotted time, and
another had only one word missing when the 12 minutes had expired. A
few weeks later, all six were interviewed by military intelligence and
recruited as codebreakers at Bletchley Park.

\section*{Kidnapping Codebooks}

So far in this chapter, the Enigma traffic has been treated as one giant
communications system, but in fact there were several distinct networks.

The German Army in North Africa, for instance, had its own separate network,
and their Enigma operators had codebooks that were different from
those used in Europe. Hence, if Bletchley succeeded in identifying the
North African day key, it would be able to decipher all
the German messages
sent from North Africa that day, but the North African day key
would be of no use in cracking the messages being
transmitted in Europe.
Similarly, the Luftwaffe had its own communications
network, and so in
order to decipher all Luftwaffe traffic, Bletchley would have to unravel
the Luftwaffe day key.

Some networks were harder to break into than others. The Kriegs-marine
network was the hardest of all, because the German Navy
operated
a more sophisticated version of the Enigma machine. For example,
the Naval Enigma operators had a choice of eight
scramblers, not just
five, which meant that there were almost six times as many scrambler
arrangements, and therefore almost six times as many keys for Bletchley
to check. The other difference in the Naval Enigma
concerned the reflector,
which was responsible for sending the electrical signal back through

\section*{182 The Code Book}
the scramblers. In the standard Enigma the reflector was always fixed in
one particular orientation, but in the Naval Enigma the reflector could be
fixed in any one of 26 orientations. Hence the number of possible keys
was further increased by a factor of 26 .

Cryptanalysis of the Naval Enigma was made even harder by the Naval
operators, who were careful not to send stereotypical
messages, thus
depriving Bletchley of cribs. Furthermore, the
Kriegsmarine also instituted
a more secure system for selecting and transmitting
message keys.
Extra scramblers, a variable reflector, nonstereotypical messages and a
new system for exchanging message keys all contributed to making German
Naval communications impenetrable.

Bletchley's failure to crack the Naval Enigma meant that the Kriegsmarine
were steadily gaining the upper hand in the Battle of the Atlantic.
Admiral Karl Donitz had developed a highly effective
two-stage strategy
for naval warfare, which began with his U-boats spreading out and
scouring the Atlantic in search of Allied convoys. As soon as one of them
spotted a target, it would initiate the next stage of the strategy by calling
the other \(U\)-boats to the scene. The attack would commence only when a
large pack of \(U\)-boats had been assembled. For this strategy of coordinated
attack to succeed, it was essential that the Kriegsmarine had access
to secure communication. The Naval Enigma provided such communication,
and the U-boat attacks had a devastating impact on the Allied shipping
that was supplying Britain with much-needed food and armaments.

As long as U-boat communications remained secure, the Allies had no
idea of the locations of the U-boats, and could not plan safe routes for the
convoys. It seemed as if the Admiralty's only strategy for pinpointing the
location of \(U\)-boats was by looking at the sites of sunken British ships.
Between June 1940 and June 1941 the Allies lost an average of 50 ships each
month, and they were in danger of not being able to build new ships
quickly enough to replace them. Besides the intolerable destruction of
ships, there was also a terrible human cost--50,000 Allied seamen died during
the war. Unless these losses could be drastically reduced, Britain was in
danger of losing the Battle of the Atlantic, which would have meant losing
the war. Churchill would later write, "Amid the torrent of violent events
one anxiety reigned supreme. Battles might be won or lost, enterprises
might succeed or miscarry, territories might be gained or quitted, but dom-

Cracking the Enigma 183
inating all our power to carry on war, or even keep ourselves alive, lay our
mastery of the ocean routes and the free approach and entry to our ports."

The Polish experience and the case of Hans-Thilo Schmidt had taught
Bletchley Park that if intellectual endeavor fails to break a cipher, then it
is necessary to rely on espionage, infiltration and theft
in order to obtain
the enemy keys. Occasionally, Bletchley would make a breakthrough
against the Naval Enigma, thanks to a clever ploy by the RAF. British
planes would lay mines in a particular location, provoking German vessels
to send out warnings to other craft. These Enigma encrypted warnings
would inevitably contain a map reference, but crucially this map reference
would already be known by the British, so it could be used as a
crib. In other words, Bletchley knew that a particular piece of ciphertext
represented a particular set of coordinates. Sowing mines to obtain cribs,
known as "gardening," required the RAF to fly special missions, so this
could not be done on a regular basis. Bletchley had to find another way
of breaking the Naval Enigma.

An alternative strategy for cracking the Naval Enigma depended on
stealing keys. One of the most intrepid plans for stealing keys was concocted
by Ian Fleming, creator of James Bond and a member of

Naval
Intelligence during the war. He suggested crashing a captured German
bomber in the English Channel, close to a German ship. The German
sailors would then approach the plane to rescue their comrades, whereupon
the aircrew, British pilots pretending to be German, would board
the ship and capture its codebooks. These German codebooks contained
the information that was required for establishing the encryption key, and
because ships were often away from base for long periods, the codebooks
would be valid for at least a month. By capturing such codebooks, Bletchley
would be able to decipher the Naval Enigma for an entire month.

After approving Fleming's plan, known as Operation Ruthless, British
Intelligence began preparing a Heinkel bomber for the crash landing, and assembled an aircrew of German-speaking Englishmen. The plan was
scheduled for a date early in the month, so as to capture a fresh codebook.
Fleming went to Dover to oversee the operation, but unfortunately there was no German shipping in the area so the plan was postponed indefinitely.
Four days later, Frank Birch, who headed the Naval section at
Bletchley, recorded the reaction of Turing and his colleague Peter Twinn:

184 The Code Book
i

\footnotetext{
"Turing and Twinn came to me like undertakers cheated of a nice corpse
}
two days ago, all in a stew about the cancelation of Operation Ruthless."

In due course Operation Ruthless was canceled, but German Naval
codebooks were eventually captured during a spate of daring raids on
weather ships and U-boats. These so-called "pinches" gave Bletchley the
documents it needed to bring an end to the intelligence blackout. With
the Naval Enigma transparent, Bletchley could pinpoint the location of
U-boats, and the Battle of the Atlantic began to swing in favor of the
Allies. Convoys could be steered clear of U-boats, and British destroyers
could even begin to go on the offensive, seeking out and sinking U-boats.

It was vital that the German High Command never suspected that the
Allies had pinched Enigma codebooks. If the Germans found that their
security had been compromised, they would upgrade their Enigma
machines, and Bletchley would be back to square one. As with the
Zimmermann telegram episode, the British took various precautions to
avoid arousing suspicion, such as sinking a German vessel
after pinching
its codebooks. This would persuade Admiral Donitz that the cipher
material had found its way to the bottom of the sea, and not fallen into
British hands.

Once material had been secretly captured, further precautions had to
be taken before exploiting the resulting intelligence. For example, the
Enigma decipherments gave the locations of numerous U-boats, but it
would have been unwise to have attacked every single one of them,
because a sudden unexplained increase in British success would warn
Germany that its communications were being deciphered. Consequently,
the Allies would allow some U-boats to escape, and would attack others
only when a spotter plane had been sent out first, thus justifying the
approach of a destroyer some hours later. Alternatively, the Allies might
send fake messages describing sightings of U-boats, which likewise provided
sufficient explanation for the ensuing attack.

Despite this policy of minimizing telltale signs that Enigma had been
broken, British actions did sometimes raise concerns among Germany's
security experts. On one occasion, Bletchley deciphered an Enigma message
giving the exact location of a group of German tankers and supply
ships, nine in total. The Admiralty decided not to sink all of the ships in
case a clean sweep of targets aroused German suspicions. Instead, they

Cracking the Enigma 185
informed destroyers of the exact location of just seven of the ships, which
should have allowed the Gedania and the Gonzenheim to escape unharmed.
The seven targeted ships were indeed sunk, but Royal Navy destroyers accidentally
encountered the two ships that were supposed to be spared, and
also sank them. The destroyers did not know about Enigma
or the policy
of not arousing suspicion--they merely believed they were doing their
duty. Back in Berlin, Admiral Kurt Fricke instigated an investigation into
this and other similar attacks, exploring the possibility that the British had
broken Enigma. The report concluded that the numerous
losses were
either the result of natural misfortune, or caused by a British spy who had
infiltrated the Kriegsmarine. The breaking of Enigma was considered
impossible and inconceivable.

The Anonymous Cryptanalysts

As well as breaking the German Enigma cipher, Bletchley Park also succeeded
in deciphering Italian and Japanese messages. The intelligence that
emerged from these three sources was given the codename Ultra, and the
Ultra Intelligence files were responsible for giving the Allies a clear advantage
in all the major arenas of conflict. In North Africa, Ultra helped to
destroy German supply lines and informed the Allies of the status of General
Rommel's forces, enabling the Eighth Army to fight back against the
German advances. Ultra also warned of the German invasion of Greece,
which allowed British troops to retreat without heavy losses. In fact, Ultra
provided accurate reports on the enemy's situation
throughout the entire
Mediterranean. This information was particularly valuable when the Allies landed in Italy and Sicily in 1943.

In 1944, Ultra played a major role in the Allied invasion of Europe. For
example, in the months prior to D-Day, the Bletchley decipherments provided
a detailed picture of the German troop concentrations along the
French coast. Sir Harry Hinsley, official historian of British Intelligence
during the war, wrote:

As Ultra accumulated, it administered some unpleasant shocks. In particular,
it revealed in the second half of May-following earlier disturbing
indications that the Germans were concluding that the area between Le

Havre and Cherbourg was a likely, and perhaps even the main, invasion

186 The Code Book
area--that they were sending reinforcements to Normandy and the Cherbourg
peninsula. But this evidence arrived in time to enable the Allies to
modify the plans for the landings on and behind the Utah beach; and it is
a singular fact that before the expedition sailed the Allied estimate of the
number, identification, and location of the enemy's divisions in the west,
fifty-eight in all, was accurate in all but two items that were to be of operational
importance.

Throughout the war, the Bletchley codebreakers knew that their decipherments
were vital, and Churchill's visit to Bletchley had reinforced
this point. But the cryptanalysts were never given any operational details
or told how their decipherments were being used. For example, the
codebreakers were given no information about the date for

D-Day, and
they arranged a dance for the evening before the landings. This worried

Commander Travis, the Director of Bletchley and the only person on site
who was privy to the plans for D-Day. He could not tell
the Hut 6 Dance
Committee to cancel the event because this would have been
a clear hint
that a major offensive was in the offing, and as such a breach of security.
The dance was allowed to go ahead. As it happened, bad weather postponed
the landings for twenty-four hours, so the codebreakers had time
to recover from the frivolities. On the day of the landings, the French
resistance destroyed landlines, forcing the Germans to communicate
solely by radio, which in turn gave Bletchley the opportunity to intercept
and decipher even more messages. At the turning point of the war,
Bletchley was able to provide an even more detailed picture of German
military operations.

Stuart Milner-Barry, one of the Hut 6 cryptanalysts, wrote: "I do not
imagine that any war since classical times, if ever, has been fought in
which one side read consistently the main military and naval intelligence
of the other." An American report came to a similar conclusion: "Ultra
created in senior staffs and at the political summit a state of mind which
transformed the taking of decisions. To feel that you know your enemy is
a vastly comforting feeling. It grows imperceptibly over time if you regularly
and intimately observe his thoughts and ways and habits and
actions. Knowledge of this kind makes your own planning
less tentative
and more assured, less harrowing and more buoyant."

It has been argued, albeit controversially, that Bletchley Park's achieve

Cracking the Enigma 187
fjnents were the decisive factor in the Allied victory. What is certain is that
? the Bletchley codebreakers significantly shortened the war. This becomes
evident by rerunning the Battle of the Atlantic and speculating what
? might have happened without the benefit of Ultra intelligence. To begin
with, more ships and supplies would certainly have been lost to the dominant
U-boat fleet, which would have compromised the vital link to
America and forced the Allies to divert manpower and resources into the
building of new ships. Historians have estimated that this would have
delayed Allied plans by several months, which would have meant postponing
the D-Day invasion until at least the following year.
According to
Sir Harry Hinsley, "the war, instead of finishing in 1945, would have
ended in 1948 had the Government Code and Cypher School not been
able to read the Enigma cyphers and produce the Ultra intelligence."

During this period of delay, additional lives would have been lost in
Europe, and Hitler would have been able to make greater use of his V-weapons,
inflicting damage throughout southern England. The historian
David Kahn summarizes the impact of breaking Enigma: "It saved lives.

Not only Allied and Russian lives but, by shortening the war, German, Italian, and Japanese lives as well. Some people alive after World War II
might not have been but for these solutions. That is the debt that the world owes to the codebreakers; that is the crowning human value of their
triumphs."

After the war, Bletchley's accomplishments remained a closely guarded secret. Having successfully deciphered messages during the war, Britain
wanted to continue its intelligence operations, and was reluctant to
divulge its capabilities. In fact, Britain had captured thousands of Enigma
machines, and distributed them among its former colonies, who believed
that the cipher was as secure as it had seemed to the Germans. The British
did nothing to disabuse them of this belief, and routinely deciphered
their secret communications in the years that followed.

Meanwhile, the Government Code and Cypher School at Bletchley
Park was closed, and the thousands of men and women who had contributed
to the creation of Ultra were disbanded. The bombes were dismantled, and every scrap of paper that related to the wartime
decipherments was either locked away or burned. Britain's codebreaking
activities were officially transferred to the newly formed Government

188 The Code Book

Communications Headquarters (GCHQ) in London, which was moved
to Cheltenham in 1952. Although some of the cryptanalysts
moved to
GCHQi most of them returned to their civilian lives, sworn to secrecy,
unable to reveal their pivotal role in the Allied war
effort. While those
who had fought conventional battles could talk of their heroic achievements,
those who had fought intellectual battles of no less significance
had to endure the embarrassment of having to evade questions about
their wartime activities. Gordon Welchman recounted how one of the
young cryptanalysts working with him in Hut 6 had received a scathing
letter from his old headmaster, accusing him of being a disgrace to his
school for not being at the front. Derek Taunt, who also worked in Hut
6, summed up the true contribution of his colleagues: "Our happy band
may not have been with King Harry on St. Crispin's Day, but we had certainly
not been abed and have no reason to think ourselves
accurs't for
having been where we were."

After three decades of silence, the secrecy over Bletchley Park eventually
came to an end in the early 1970s. Captain RW.
Winterbotham, who
had been responsible for distributing the Ultra
intelligence, began to
badger the British Government, arguing that the
Commonwealth countries
had stopped using the Enigma cipher and that there was now nothing to be gained by concealing the fact that Britain had broken it.
The intelligence services reluctantly agreed, and permitted him to write a
book about the work done at Bletchley Park. Published in the summer of

1974, Winterbotham's book The Ultra Secret was the signal that Bletchley
personnel were at last free to discuss their wartime activities. Gordon
Welchman felt enormous relief: "After the war I still avoided discussions
of wartime events for fear that \(I\) might reveal information obtained from
Ultra rather than from some published account... I felt that this turn of
events released me from my wartime pledge of secrecy."

Those who had contributed so much to the war effort could now
receive the recognition they deserved. Possibly the most remarkable consequence
of Winterbotham's revelations was that Rejewski realized the
staggering consequences of his prewar breakthroughs against Enigma.
After the invasion of Poland, Rejewski had escaped to France, and when
France was overrun he fled to Britain. It would seem natural that he
should have become part of the British Enigma effort, but instead he was

Cracking the Enigma 189
; jelegated to tackling menial ciphers at a minor intelligence unit in Box-moor,
near Hemel Hempstead. It is not clear why such a brilliant mind
was excluded from Bletchley Park, but as a result he was completely
unaware of the activities of the Government Code and Cypher School.
Until the publication of Winterbotham's book, Rejewski had no idea that his ideas had provided the foundation for the routine decipherment of
Enigma throughout the war.

For some, the publication of Winterbotham's book came too late.
Many years after the death of Alastair Denniston,

Bletchley's first director,
his daughter received a letter from one of his colleagues:
"Your father
was a great man in whose debt all English-speaking people will remain for
a very long time, if not forever. That so few should know exactly what he
did is the sad part."

Alan Turing was another cryptanalyst who did not live long enough to
receive any public recognition. Instead of being acclaimed a hero, he was
persecuted for his homosexuality. In 1952, while reporting a burglary to
the police, he naively revealed that he was having a homosexual relationship.
The police felt they had no option but to arrest and charge him with
"Gross Indecency contrary to Section 11 of the Criminal Law Amendment
Act 1885." The newspapers reported the subsequent trial and conviction,
and Turing was publicly humiliated.

Turing's secret had been exposed, and his sexuality was now public
knowledge. The British Government withdrew his security clearance. He
was forbidden to work on research projects relating to the development of
the computer. He was forced to consult a psychiatrist and had to undergo
hormone treatment, which made him impotent and obese. Over the next
two years he became severely depressed, and on June 7, 1954, he went to
his bedroom, carrying with him a jar of cyanide solution and an apple.
Twenty years earlier he had chanted the rhyme of the Wicked Witch: "Dip
the apple in the brew, Let the sleeping death seep
through." Now he was
ready to obey her incantation. He dipped the apple in the
cyanide and
took several bites. At the age of just forty-two, one of the true geniuses of
cryptanalysis committed suicide.
\(I^{\wedge}\)
[5 The Language Barrier

While British codebreakers were breaking the German Enigma cipher
and altering the course of the war in Europe, American codebreakers
were having an equally important influence on events in the Pacific arena
by cracking the Japanese machine cipher known as Purple.
For example,
in June 1942 the Americans deciphered a message outlining a Japanese
plan to draw U.S. Naval forces to the Aleutian Islands by faking an
attack, which would allow the Japanese Navy to take their real objective,
Midway Island. Although American ships played along with the plan by
leaving Midway, they never strayed far away. When American cryptanalysts
intercepted and deciphered the Japanese order to attack Midway,
the ships were able to return swiftly and defend the island in one of the
most important battles of the entire Pacific war.
According to Admiral
Chester Nimitz, the American victory at Midway "was essentially a victory
of intelligence. In attempting surprise, the Japanese were themselves
surprised."

Almost a year later, American cryptanalysts identified a message that
showed the itinerary for a visit to the northern Solomon Islands by Admiral

Isoruko Yamamoto, Commander-in-Chief of the Japanese Fleet.
Nimitz decided to send fighter aircraft to intercept Yamamoto's plane and
shoot him down. Yamamoto, renowned for being compulsively punctual,
approached his destination at exactly 8:00 A.M., just as stated in the intercepted
schedule. There to meet him were eighteen American P-38 fighters.
They succeeded in killing one of the most influential figures of the Japanese
High Command.

Although Purple and Enigma, the Japanese and German ciphers, were
eventually broken, they did offer some security when they were initially
implemented and provided real challenges for American and British

191

192 The Code Book
cryptanalysts. In fact, had the cipher machines been used properly-with-out
repeated message keys, without cillies, without
restrictions on plugboard
settings and scrambler arrangements, and without
stereotypical messages
which resulted in cribs--it is quite possible that they might never
have been broken at all.

The true strength and potential of machine ciphers was demonstrated
by the Typex (or Type X ) cipher machine used by the British army and air
force, and the SIGABA (or M-143-C) cipher machine used by the American
military. Both these machines were more complex than the Enigma
machine and both were used properly, and therefore they remained
unbroken throughout the war. Allied cryptographers were confident that
complicated electromechanical machine ciphers could guarantee secure
communication. However, complicated machine ciphers are not the only
way of sending secure messages. Indeed, one of the most secure forms of
encryption used in the Second World War was also one of the simplest.

During the Pacific campaign, American commanders began to realize
that cipher machines, such as SIGABA, had a fundamental drawback.
Although electromechanical encryption offered relatively high levels of
security, it was painfully slow. Messages had to be typed into the machine
letter by letter, the output had to be noted down letter by letter, and then
the completed ciphertext had to be transmitted by the radio operator. The
radio operator who received the enciphered message then had to pass it
on to a cipher expert, who would carefully select the correct key, and type
the ciphertext into a cipher machine, to decipher it letter by letter. The
time and space required for this delicate operation is available at headquarters
or onboard a ship, but machine encryption was not ideally suited
to more hostile and intense environments, such as the islands of the

Pacific. One war correspondent described the difficulties of communication
during the heat of jungle battle: "When the fighting
became
confined to a small area, everything had to move on a
split-second
schedule. There was not time for enciphering and deciphering. At such
times, the King's English became a last resort--the profaner the better."
Unfortunately for the Americans, many Japanese soldiers had attended
American colleges and were fluent in English, including the profanities.
Valuable information about American strategy and tactics was falling into
the hands of the enemy.

The Language Barrier 193

One of the first to react to this problem was Philip Johnston, an engineer
based in Los Angeles, who was too old to fight but still wanted to contribute
to the war effort. At the beginning of 1942 he began to formulate
an encryption system inspired by his childhood experiences. The son of
a Protestant missionary, Johnston had grown up on the Navajo reservations
of Arizona, and as a result he had become fully immersed in Navajo
culture. He was one of the few people outside the tribe who could speak
their language fluently, which allowed him to act as an interpreter for
discussions between the Navajo and government agents. His work in this
capacity culminated in a visit to the White House, when, as a nine-year-old,
Johnston translated for two Navajos who were appealing to President
Theodore Roosevelt for fairer treatment for their community. Fully aware
of how impenetrable the language was for those outside the tribe,
Johnston was struck by the notion that Navajo, or any
other Native American
language, could act as a virtually unbreakable code. If each battalion
in the Pacific employed a pair of Native Americans as radio operators, secure communication could be guaranteed.

He took his idea to Lieutenant Colonel James E. Jones, the area signal
officer at Camp Elliott, just outside San Diego. Merely by throwing a few
Navajo phrases at the bewildered officer, Johnston was able to persuade
him that the idea was worthy of serious consideration. A fortnight later he
returned with two Navajos, ready to conduct a test
demonstration in front
of senior marine officers. The Navajos were isolated from each other, and
one was given six typical messages in English, which he translated into
Navajo and transmitted to his colleague via a radio. The Navajo receiver
translated the messages back into English, wrote them down, and handed
them over to the officers, who compared them with the originals. The
game of Navajo whispers proved to be flawless, and the marine officers
authorized a pilot project and ordered recruitment to begin immediately.

Before recruiting anybody, however, Lieutenant Colonel Jones and
Philip Johnston had to decide whether to conduct the pilot study with the
Navajo, or select another tribe. Johnston had used Navajo men for his
original demonstration because he had personal connections with the
tribe, but this did not necessarily make them the ideal choice. The most
important selection criterion was simply a question of
numbers: the
marines needed to find a tribe capable of supplying a
men who were fluent in English and literate. The lack of government
investment meant that the literacy rate was very low on most of the reservations, and attention was therefore focused on the four largest tribes: the
Navajo, the Sioux, the Chippewa and the Pima-Papago.

The Navajo was the largest tribe, but also the least literate, while the
Pima-Papago was the most literate but much fewer in
number. There was little
to choose between the four tribes, and ultimately the decision rested on
another critical factor. According to the official report on Johnston's idea:

The Navajo is the only tribe in the United States that has not been infested
with German students during the past twenty years. These Germans, studying
the various tribal dialects under the guise of art students, anthropologists,
etc., have undoubtedly attained a good working knowledge of all tribal
dialects except Navajo. For this reason the Navajo is the only tribe available
offering complete security for the type of work under consideration. It
should also be noted that the Navajo tribal dialect is completely unintelligible
to all other tribes and all other people, with the possible exception of as
many as 28 Americans who have made a study of the dialect. This dialect is equivalent to a secret code to the enemy, and admirably suited for rapid, secure communication.

At the time of America's entry into the Second World War, the Navajo
were living in harsh conditions and being treated as inferior people. Yet
their tribal council supported the war effort and declared their loyalty:
"There exists no purer concentration of Americanism than among the
First Americans." The Navajos were so eager to fight that some of them
lied about their age, or gorged themselves on bunches of bananas and
swallowed great quantities of water in order to reach the minimum weight
requirement of 55 kg . Similarly, there was no difficulty in finding suitable
candidates to serve as Navajo code talkers, as they were to become known.
Within four months of the bombing of Pearl Harbor, 29 Navajos, some
as young as fifteen, began an eight-week communications course with the
Marine Corps.

Before training could begin, the Marine Corps had to overcome a
problem that had plagued the only other code to have been based on a
Native American language. In Northern France during the First World
War, Captain E.W. Horner of Company D, 141st Infantry, ordered that
eight men from the Choctaw tribe be employed as radio operators. Obvi-

The Language Barrier 195

I ously none of the enemy understood their language, so the Choctaw
fundamentally flawed because the Choctaw language had no equivalent

1 for modern military jargon. A specific technical term in a message might
therefore have to be translated into a vague Choctaw expression, with the
§ risk that this could be misinterpreted by the receiver.

The same problem would have arisen with the Navajo language, but
the Marine Corps planned to construct a lexicon of Navajo terms to
replace otherwise untranslatable English words, thus removing any ambiguities.
The trainees helped to compile the lexicon, tending to choose
words describing the natural world to indicate specific military terms.
Thus, the names of birds were used for planes, and fish for ships (Table
11). Commanding officers became "war chiefs," platoons were "mud-clans,"
fortifications turned into "cave dwellings" and mortars were
known as "guns that squat."

Even though the complete lexicon contained 274 words, there was still
the problem of translating less predictable words and the names of people
and places. The solution was to devise an encoded phonetic alphabet
for spelling out difficult words. For example, the word
"Pacific" would be
spelled out as "pig, ant, cat, ice, fox, ice, cat," which would then be translated
into Navajo as bi-sodih, wol-la-chee, moasi, tkin, ma-e, tkin,
moasi. The complete Navajo alphabet is given in Table 12. Within eight
weeks, the trainee code talkers had learned the entire lexicon and alpha-

Table
11 Navajo codewords for planes and ships.
Fighter plane
Hummingbird
Da-hetih-hi
Observation plane
Owl
Ne-asjah
Torpedo plane
Swallow
Taschizzie
Bomber
Buzzard
Jay-sho
Dive-bomber
Chicken hawk
Gini
Bombs
Eggs
A-ye-shi
Amphibious vehicle
Frog
Chal
Battleship
Whale
Lo-tso
Destroyer
Shark
Ca-lo
Submarine
Iron fish
Besh-lo
196 The Code Book
bet, thus obviating the need for codebooks which might
fall into enemy
hands. For the Navajos, committing everything to memory was trivial
because traditionally their language had no written script, so they were
used to memorizing their folk stories and family histories. As William McCabe, one of the trainees, said, "In Navajo everything is in the memory-songs, prayers, everything. That's the way we were raised."

At the end of their training, the Navajos were put to the test. Senders
translated a series of messages from English into Navajo, transmitted them, and then receivers translated the messages back into English, using
the memorized lexicon and alphabet when necessary. The results were
word-perfect. To check the strength of the system, a
recording of the transmissions
was given to Navy Intelligence, the unit that had cracked Purple,
the toughest Japanese cipher. After three weeks of intense cryptanalysis,
the Naval codebreakers were still baffled by the messages. They called the
Navajo language a "weird succession of guttural, nasal, tongue-twisting
sounds... we couldn't even transcribe it, much less crack it." The Navajo
code was judged a success. Two Navajo soldiers, John Benally and Johnny
Manuelito, were asked to stay and train the next batch of recruits, while
the other 27 Navajo code talkers were assigned to four regiments and sent to the Pacific.

Table 12 The Navajo alphabet code.

\section*{A}

Ant
Wollachee
N
Nut
Neshchee
B
Bear

O
Owl
Ne-ahsjsh
C
Cat
Moasi
P
Pig
Bi-sodih
D
Deer
Be

Q
Quiver
Ca-yeilth
E
Elk
Dzeh
R
Rabbit
Gah
F
Fox
Mae
S
Sheep
Dibeh
C
Goat
Klizzie
T
Turkey
Than-zie
H
Horse
Lin
U
Ute
No-daih
1
Ice
Tkin

\section*{Victor}

A-kehdiglini
J
Jackass Tkelechogi
W
Weasel
Gloeih
K
Kid
Klizzieyazzi
X
Cross
Al-an-asdzoh
L
Lamb
Dibehyazzi
Y
Yucca
Tsahaszih
M
Mouse
Na-astso-si
Z
Zinc
Beshdogliz
The Language Earner 197

Japanese forces had attacked Pearl Harbor on December 7, 1941, and
not long after they dominated large parts of the western Pacific. Japanese
troops overran the American garrison on Guam on December 10, they
took Guadalcanal, one of the islands in the Solomon chain, on December
13, Hong Kong capitulated on December 25, and U.S. troops on the
Philippines surrendered on January 2,1942. The Japanese planned to consolidate
their control of the Pacific the following summer by
building an
airfield on Guadalcanal, creating a base for bombers which
would enable
them to destroy Allied supply lines, thus making any

Allied counterattack
almost impossible. Admiral Ernest King, Chief of American Naval
Operations, urged an attack on the island before the airfield was completed,
and on August 7, the 1st Marine Division spearheaded an invasion
of Guadalcanal. The initial landing parties included the first group of
code talkers to see action.
Although the Navajos were confident that their skills would be a blessing
to the marines, their first attempts generated only
confusion. Many of

Wi-i r
Ift*
Ift* * *
.*, .
"r, .... ,... Ji * t^f^.fif i ->, i.^, , ,
. mM ^*^*?へ^.^
- C***'

Spf^ Pf* *? ***> *» --if^i*- . *'-"]', , «Jf> '^gfWr
i A
|^/.l^ff. ^'^F--B.'^iw' " * ' "j? > ^jr^'r
"' Tfc-ViJp" i

1382-PUTOON U5,M£. SAN DIEGO \j£ \\~, 194.2 \&-t -te :^^m^^91

Figure 52 The first 29 Navajo code talkers pose for a traditional graduation photograph.

198 The Code Book
the regular signal operators were unaware of this new code, and they sent
panic messages all over the island, stating that the Japanese were broadcasting
on American frequencies. The colonel in charge immediately halted Navajo communications until he could convince himself that the
system was worth pursuing. One of the code talkers
recalled how the
Navajo code was eventually brought back into service:

The colonel had an idea. He said he would keep us on one condition: that \(I\)
could outrace his "white code"--a mechanical ticking cylinder thing. We both
sent messages, by white cylinder and by my voice. Both of us received
answers and the race was to see who could decode his answer first. I was
asked, "How long will it take you? Two hours?" "More like two minutes," I
answered. The other guy was still decoding when I got the roger on my return
message in about four and a half minutes. I said, "Colonel, when are you
going to give up on that cylinder thing?" He didn't say anything. He just lit
up his pipe and walked away.

The code talkers soon proved their worth on the battlefield. During
one episode on the island of Saipan, a battalion of marines took over
positions previously held by Japanese soldiers, who had retreated. Suddenly
a salvo exploded nearby. They were under friendly fire from fellow
Americans who were unaware of their advance. The marines radioed
back in English explaining their position, but the salvos continued
because the attacking American troops suspected that the messages were
from Japanese impersonators trying to fool them. It was only when a
Navajo message was sent that the attackers saw their mistake and halted
the assault. A Navajo message could never be faked, and could always be
trusted.

The reputation of the code talkers soon spread, and by the end of 1942
there was a request for 83 more men. The Navajo were to serve in all six
Marine Corps divisions, and were sometimes borrowed by other
American forces. Their war of words soon turned the Navajos into heroes.
Other soldiers would offer to carry their radios and rifles, and they were
even given personal bodyguards, partly to protect them from their own
comrades. On at least three occasions code talkers were mistaken for

Japanese soldiers and captured by fellow Americans. They were released
only when colleagues from their own battalion vouched for them.

The Language Barrier 199

The impenetrability of the Navajo code was all down to the fact that

Navajo belongs to the Na-Dene family of languages, which has no link
with any Asian or European language. For example, a Navajo verb is conjugated
not solely according to its subject, but also according to its
object. The verb ending depends on which category the object belongs
to: long (e.g., pipe, pencil), slender and flexible (e.g., snake, thong), granular
(e.g., sugar, salt), bundled (e.g., hay), viscous (e.g., mud, feces) and
many others. The verb will also incorporate adverbs, and will reflect
whether or not the speaker has experienced what he or she is talking
about, or whether it is hearsay. Consequently, a single verb can be equivalent
to a whole sentence, making it virtually impossible for
foreigners to
disentangle its meaning.

Despite its strengths, the Navajo code still suffered from two significant
flaws. First, words that were neither in the natural
Navajo vocabulary nor
in the list of 274 authorized codewords had to be spelled out using the
special alphabet. This was time-consuming, so it was decided to add
another 234 common terms to the lexicon. For example, nations were
given Navajo nicknames: "Rolled Hat" for Australia,
"Bounded by Water"
for Britain, "Braided Hair "for China, "Iron Hat" for
Germany, "Floating
Land" for the Philippines, and "Sheep Pain" for Spain.

The second problem concerned those words that would still have to be spelled out. If it became clear to the Japanese that words were being
spelled out, they would realize that they could use frequency analysis to
identify which Navajo words represented which letters. It would soon
become obvious that the most commonly used word was dzeh, which
means "elk" and which represents e, the most commonly used letter of
the English alphabet. Just spelling out the name of the island Guadalcanal
and repeating the word wol-la-chee (ant) four times would be a big clue
as to what word represented the letter a. The solution was to add more
words to act as extra substitutes (homophones) for the commonly used
letters. Two extra words were introduced as alternatives for each of the six
commonest letters (e, t, a, \(0, i, n\) ), and one extra word for the six next
commonest letters (s, h, r, d, 1, u). The letter a, for
example, could now
also be substituted by the words be-la-sana (apple) or tse-nihl (axe).
Thereafter, Guadalcanal could be spelled with only one repetition:
klizzie, shi-da, wol-la-chee, lha-cha-eh, be-la-sana, dibehyazzie,

\section*{202 The Code Book}
cryptanalysts is similar to that which is faced by archaeologists attempting
to decipher a long-forgotten language, perhaps written in an extinct
script. If anything, the archaeological challenge is much more severe. For
example, while the Japanese had a continuous stream of Navajo words
which they could attempt to identify, the information available to the
archaeologist can sometimes be just a small collection of clay tablets.
Furthermore, the archaeological codebreaker often has no idea of the context
or contents of an ancient text, clues which military codebreakers can
normally rely on to help them crack a cipher.
Deciphering ancient texts seems an almost hopeless pursuit, yet many
men and women have devoted themselves to this arduous enterprise.
Their obsession is driven by the desire to understand the writings of our
ancestors, allowing us to speak their words and catch a glimpse of their
thoughts and lives. Perhaps this appetite for cracking ancient scripts is
best summarized by Maurice Pope, the author of The Story of Decipherment: "Decipherments are by far the most glamorous achievements of scholarship.
There is a touch of magic about unknown writing, especially when it
comes from the remote past, and a corresponding glory is
bound to attach
itself to the person who first solves its mystery."
The decipherment of ancient scripts is not part of the ongoing evolutionary
battle between codemakers and codebreakers, because, although
there are codebreakers in the shape of archaeologists, there are no code-makers.
That is to say, in most cases of archaeological decipherment
there was no deliberate attempt by the original scribe to hide the meaning
of the text. The remainder of this chapter, which is a discussion of
archaeological decipherments, is therefore a slight detour from the
book's main theme. However, the principles of
archaeological decipherment
are essentially the same as those of conventional military cryptanalysis. Indeed, many military codebreakers have been attracted by
the challenge of unraveling an ancient script. This is probably
because archaeological decipherments make a refreshing change from
military codebreaking, offering a purely intellectual puzzle rather than a
military challenge. In other words, the motivation is curiosity rather than
animosity.
The most famous, and arguably the most romantic, of all decipherments
was the cracking of Egyptian hieroglyphics. For centuries, hieroglyphics
1
t:

The Language Barrier 203
ained a mystery, and archaeologists could do no more than speculate
: their meaning. However, thanks to a classic piece of
codebreaking, ^the hieroglyphs were eventually deciphered, and ever since archaeologists
|\%ave been able to read firsthand accounts of the history, culture and beliefs of the ancient Egyptians. The
decipherment of hieroglyphics has bridged the millennia between ourselves and the civilization of the pharaohs.

The earliest hieroglyphics date back to 3000 b.c., and this form of
ornate writing endured for the next three and a half thousand years.
Although the elaborate symbols of hieroglyphics were ideal for the walls
of majestic temples (the Greek word hieroglyphica means "sacred carvings"),
they were overly complicated for keeping track of mundane transactions.
Hence, evolving in parallel with hieroglyphics was hieratic, an everyday
script in which each hieroglyphic symbol was replaced by a stylized representation
which was quicker and easier to write. In about 600 b.c., hieratic
was replaced by an even simpler script known as demotic, the name being
derived from the Greek demotika meaning "popular," which reflects its secular
function. Hieroglyphics, hieratic and demotic are essentially the same
script--one could almost regard them as merely different fonts.

All three forms of writing are phonetic, which is to say that the characters
largely represent distinct sounds, just like the letters in the English
alphabet. For over three thousand years the ancient Egyptians used these
scripts in every aspect of their lives, just as we use writing today. Then,
toward the end of the fourth century a.d., within a generation, the Egyptian
scripts vanished. The last datable examples of ancient Egyptian writing
are to be found on the island of Philae. A hieroglyphic temple inscription
was carved in a.d. 394, and a piece of demotic graffiti has been dated to
a.d. 450. The spread of the Christian Church was responsible for the
extinction of the Egyptian scripts, outlawing their use in order to eradicate
any link with Egypt's pagan past. The ancient scripts were replaced with
Coptic, a script consisting of 24 letters from the Greek alphabet supplemented
by six demotic characters used for Egyptian sounds not expressed
in Greek. The dominance of Coptic was so complete that the ability to
read hieroglyphics, demotic and hieratic vanished. The ancient Egyptian
language continued to be spoken, and evolved into what became known
as the Coptic language, but in due course both the Coptic language and
script were displaced by the spread of Arabic in the eleventh century. The

204 The Code Book
final linguistic link to Egypt's ancient kingdoms had been broken, and the
knowledge needed to read the tales of the pharaohs was lost.

Interest in hieroglyphics was reawakened in the seventeenth century,
when Pope Sixtus V reorganized the city of Rome according to a new
network of avenues, erecting obelisks brought from Egypt at each intersection.
Scholars attempted to decipher the meanings of the hieroglyphs
on the obelisks, but were hindered by a false assumption: nobody was
prepared to accept that the hieroglyphs could possibly
represent phonetic
characters, or phonograms. The idea of phonetic spelling was thought to be
too advanced for such an ancient civilization. Instead, seventeenth-century
scholars were convinced that the hieroglyphs were
semagrams-- that
these intricate characters represented whole ideas, and were nothing more
than primitive picture writing. The belief that
hieroglyphics is merely picture
writing was even commonly held by foreigners who visited Egypt
while hieroglyphics was still a living script. Diodorus Siculus, a Greek historian
of the first century b.c., wrote:

Now it happens that the forms of the Egyptians' letters take the shape of all
kinds of living creatures and of the extremities of the human body and of
implements . . . For their writing does not express the intended idea by a
combination of syllables, one with another, but by the outward appearance
of what has been copied and by the metaphorical meaning impressed upon
the memory by practice. ... So the hawk symbolizes for them everything
which happens quickly because this creature is just about the fastest of
winged animals. And the idea is transferred, through the appropriate
metaphorical transfer, to all swift things and to those things to which speed
is appropriate.

In the light of such accounts, perhaps it is not so surprising that
seventeenth-century scholars attempted to decipher the hieroglyphs by
interpreting each one as a whole idea. For example, in

1652 the German
Jesuit priest Athanasius Kircher published a dictionary of allegorical interpretations
entitled (Edipus agyptiacus, and used it to produce a
series of
weird and wonderful translations. A handful of
hieroglyphs, which we now
know merely represent the name of the pharaoh Apries, were translated by
Kircher as: "the benefits of the divine Osiris are to be procured by means
of sacred ceremonies and of the chain of the Genii, in
order that the benefits
of the Nile may be obtained." Today Kircher's translations seem ludi-

The Language Barrier 205
crous, but their impact on other would-be decipherers was immense.
Kircher was more than just an Egyptologist: he wrote a book on cryptography, constructed a musical fountain, invented the magic lantern (a precursor
of cinema), and lowered himself into the crater of Vesuvius, earning
himself the title of "father of vulcanology." The Jesuit priest was widely
acknowledged to be the most respected scholar of his age, and consequently
his ideas were to influence generations of future Egyptologists.

A century and a half after Kircher, in the summer of 1798 , the antiquities
of ancient Egypt fell under renewed scrutiny when Napoleon Bonaparte dispatched a team of historians, scientists and draftsmen to follow
in the wake of his invading army. These academics, or
"Pekinese
dogs" as the soldiers called them, did a remarkable job of mapping, drawing,
transcribing, measuring and recording everything they witnessed. In
1799, the French scholars encountered the single most famous slab of
stone in the history of archaeology, found by a troop of French soldiers
stationed at Fort Julien in the town of Rosetta in the Nile Delta. The soldiers
had been given the task of demolishing an ancient wall to clear the
way for an extension to the fort. Built into the wall was a stone bearing a
remarkable set of inscriptions: the same piece of text had been inscribed
on the stone three times, in Greek, demotic and
hieroglyphics. The
Rosetta Stone, as it became known, appeared to be the equivalent of a
cryptanalytic crib, just like the cribs that helped the codebreakers at
Bletchley Park to break into Enigma. The Greek, which could easily be
read, was in effect a piece of plaintext which could be compared with the
demotic and hieroglyphic ciphertexts. The Rosetta Stone was potentially
a means of unraveling the meaning of the ancient Egyptian symbols.

The scholars immediately recognized the stone's significance, and sent
it to the National Institute in Cairo for detailed study. However, before
the institute could embark on any serious research, it became clear that
the French army was on the verge of being defeated by the advancing
British forces. The French moved the Rosetta Stone from Cairo to the relative safety of Alexandria, but ironically, when the French finally surrendered,
Article XVI of the Treaty of Capitulation handed all the antiquities
in Alexandria to the British, whereas those in Cairo were
allowed to
return to France. In 1802, the priceless slab of black basalt (measuring 118
cm in height, 77 cm in width and 30 cm in thickness, and weighing three

Figure 54 The Rosetta Stone, inscribed in 196 b.c. and rediscovered in 1799, contains
the same text written in three different scripts: hieroglyphics at the top, demotic in the middle and Greek at the bottom.

The Language Barrier 207
quarters of a ton) was sent to Portsmouth onboard HMS L'Egyptienne, and
later that year it took up residence at the British Museum, where it has
remained ever since.

The translation of the Greek soon revealed that the Rosetta Stone bore
a decree from the general council of Egyptian priests issued in 196 b.c. The
text records the benefits that the Pharaoh Ptolemy had bestowed upon the
people of Egypt, and details the honors that the priests had, in return,
piled upon the pharaoh. For example, they declared that "a
festival shall
be kept for King Ptolemy, the ever-living, the beloved of Ptah, the god
Epiphanes Eucharistos, yearly in the temples throughout the land from
the lst of Troth for five days, in which they shall wear garlands and perform
sacrifices and libations and the other usual honors." If the other two
inscriptions contained the identical decree, the
decipherment of the hieroglyphic
and demotic texts would seem to be straightforward.
However,
three significant hurdles remained. First, the Rosetta

Stone is seriously
damaged, as can be seen in Figure 54. The Greek text
consists of 54 lines,
of which the last 26 are damaged. The demotic consists of
32 lines, of
which the beginnings of the first 14 lines are damaged (note that demotic
and hieroglyphics are written from right to left). The hieroglyphic text is in
the worst condition, with half the lines missing completely, and the
remaining 14 lines (corresponding to the last 28 lines of the Greek text)
partly missing. The second barrier to decipherment is that the two Egyptian
scripts convey the ancient Egyptian language, which nobody had
spoken for at least eight centuries. While it was possible to find a set of
Egyptian symbols which corresponded to a set of Greek words, which
would enable archaeologists to work out the meaning of the Egyptian
symbols, it was impossible to establish the sound of the Egyptian words.
Unless archaeologists knew how the Egyptian words were spoken, they
could not deduce the phonetics of the symbols. Finally, the intellectual
legacy of Kircher still encouraged archaeologists to think of Egyptian writing
in terms of semagrams, rather than phonograms, and hence few people
even considered attempting a phonetic decipherment of hieroglyphics.

One of the first scholars to question the prejudice that hieroglyphics
was picture writing was the English prodigy and polymath Thomas Young.
Born in 1773 in Milverton, Somerset, Young was able to read fluently at
the age of two. By the age of fourteen he had studied Greek, Latin, French,
```

208 The Code Book Italian, Hebrew rv, u

```
b?p,c z^trr; s^r,ric'p"!'T*
centrate
more on research and \(\wedge \wedge\) Gfu\% he began to COn!
\(Y^{\circ}\) ung performed an extraordil§ \({ }^{\circ} r\) the \(S l c k\)
ofthem With the ob), c \(\mathrm{Z}^{\wedge \wedge \wedge}\)
estabHshed that color percep ^ s7 ^ ^ hum-^
works. \(£\)
^--^- \(X^{\wedge \wedge \wedge} S ?\)

Kgure 55 Thomas Young.

The Language Barrier 209
placing metal rings around a living eyeball, he showed that focusing did not require distortion of the whole eye, and postulated that the internal
lens did all the work. His interest in optics led him toward physics, and
another series of discoveries. He published "The Undulatory Theory of
Light," a classic paper on the nature of light; he created a new and better
explanation of tides; he formally defined the concept of energy and he
published groundbreaking papers on the subject of
elasticity. Young
seemed to be able to tackle problems in almost any
subject, but this was
not entirely to his advantage. His mind was so easily fascinated that he would leap from subject to subject, embarking on a new problem before
polishing off the last one.

When Young heard about the Rosetta Stone, it became an irresistible
challenge. In the summer of 1814 he set off on his annual holiday to the
coastal resort of Worthing, taking with him a copy of the
three inscriptions.
Young's breakthrough came when he focused on a set of hieroglyphs
surrounded by a loop, called a cartouche. His hunch was that these
hieroglyphs were ringed because they represented something of great significance,
possibly the name of the Pharaoh Ptolemy, because his Greek
name, Ptolemaios, was mentioned in the Greek text. If this were the case,
it would enable Young to discover the phonetics of the corresponding
hieroglyphs, because a pharaoh's name would be pronounced roughly the
same regardless of the language. The Ptolemy cartouche is repeated six
times on the Rosetta Stone, sometimes in a so-called standard version,
and sometimes in a longer, more elaborate version. Young assumed that

Table 13 Young's decipherment of ( \({ }^{\circ} f 1 \wedge \ \ P j, ~ t h e\) cartouche
of Ptolemaios (standard version) from the Rosetta Stone.
```

Hieroglyph
Young's sound value
Actual sound value
D
P
P
Q
t
t
A
optional
\circ
_£s>
lo or ole
1
, --

```
the longer version was the name of Ptolemy with the addition of titles, so
he concentrated on the symbols that appeared in the standard version, guessing sound values for each hieroglyph (Table 13).

Although he did not know it at the time, Young managed to correlate most of the hieroglyphs with their correct sound values. Fortunately, he had placed the first two hieroglyphs (O, e>), which appeared one above
the other, in their correct phonetic order. The scribe has positioned the
hieroglyphs in this way for aesthetic reasons, at the expense of phonetic
clarity. Scribes tended to write in such a way as to avoid gaps and maintain
visual harmony; sometimes they would even swap letters around in
direct contradiction to any sensible phonetic spelling, merely to increase
the beauty of an inscription. After this decipherment, Young discovered
a cartouche in an inscription copied from the temple of Karnak at Thebes
which he suspected was the name of a Ptolemaic queen, Berenika (or
Berenice). He repeated his strategy; the results are shown in Table 14.

Of the thirteen hieroglyphs in both cartouches, Young had identified
half of them perfectly, and he got another quarter partly right. He had
also correctly identified the feminine termination symbol, placed after
the names of queens and goddesses. Although he could not have known
the level of his success, the appearance of Hi] in both cartouches, representing
i on both occasions, should have told Young that he was on the
right track, and given him the confidence he needed to press ahead with
further decipherments. However, his work suddenly ground to a halt. It

Table 14 Young's decipherment of (?=» W BJ\&oJ , the cartouche
of Berenika from the temple of Karnak.
```

Hieroglyph
Young's sound value
Actual sound value
b
bir
b
<=>
e
r
MAAMVS

```
\(1 \backslash\)
E
n
i
optional
n
i
k
Jg^
he or ken
seems that he had too much reverence for Kircher's argument that hieroglyphs
were semagrams, and he was not prepared to shatter that paradigm.
He excused his own phonetic discoveries by noting that the Ptolemaic
dynasty was descended from Lagus, a general of Alexander the Great. In
other words, the Ptolemys were foreigners, and Young hypothesized that
their names would have to be spelled out phonetically because there
would not be a single natural semagram within the standard list of hieroglyphs.
He summarized his thoughts by comparing hieroglyphs with Chinese characters, which Europeans were only just beginning to understand:

It is extremely interesting to trace some of the steps by which alphabetic
writing seems to have arisen out of hieroglyphical; a process which may
indeed be in some measure illustrated by the manner in which the modern
Chinese express a foreign combination of sounds, the characters being rendered
simply "phonetic" by an appropriate mark, instead of retaining their
natural signification; and this mark, in some modern printed books, approaching very near to the ring surrounding the hieroglyphic names.

Young called his achievements "the amusement of a few
leisure hours."
He lost interest in hieroglyphics, and brought his work to a conclusion by summarizing it in an article for the 1819 Supplement to the Encyclopedia.
Britannica.

Meanwhile, in France a promising young linguist, Jean-Francois Champollion, was prepared to take Young's ideas to their natural conclusion.
Although he was still only in his late twenties, Champollion had been fascinated
by hieroglyphics for the best part of two decades. The obsession
began in 1800, when the French mathematician Jean-Baptiste Fourier, who had been one of Napoleon's original Pekinese dogs, introduced the
ten-year-old Champollion to his collection of Egyptian antiquities, many
of them decorated with bizarre inscriptions. Fourier explained that
nobody could interpret this cryptic writing, whereupon the boy promised
that one day he would solve the mystery. Just seven years later, at the age
of seventeen, he presented a paper entitled "Egypt under the Pharaohs."
It was so innovative that he was immediately elected to the Academy in
Grenoble. When he heard that he had become a teenage professor,
Champollion was so overwhelmed that he immediately fainted.
"I ill

Figure 56 Jean-Francois Champollion.

Champollion continued to astonish his peers, mastering Latin, Greek,
Hebrew, Ethiopia, Sanskrit, Zend, Pahlevi, Arabic, Syrian, Chaldean,
Persian and Chinese, all in order to arm himself for an assault on hieroglyphics.
His obsession is illustrated by an incident in 1808, when he
bumped into an old friend in the street. The friend casually mentioned
that Alexandre Lenoir, a well-known Egyptologist, had published a
complete decipherment of hieroglyphics. Champollion was so devastated
that he collapsed on the spot. (He appears to have had quite a talent for
fainting.) His whole reason for living seemed to depend on being the first
to read the script of the ancient Egyptians. Fortunately for Champollion,
Lenoir's decipherments were as fantastical as Kircher's seventeenth-century
attempts, and the challenge remained.

In 1822, Champollion applied Young's approach to other cartouches.
The British naturalist \(W\). J. Bankes had brought an obelisk with Greek and
hieroglyphic inscriptions to Dorset, and had recently published a lithograph
of these bilingual texts, which included cartouches of Ptolemy and
Cleopatra. Champollion obtained a copy, and managed to assign sound
values to individual hieroglyphs (Table 15). The letters p, t, o, I and e are
common to both names; in four cases they are represented by the same
hieroglyph in both Ptolemy and Cleopatra, and only in one case, t, is
there a discrepancy. Champollion assumed that the \(t\) sound
could be
represented by two hieroglyphs, just as the hard c sound in English can be

Table 15 Champollion's decipherment of ( \({ }^{\circ}\) tR \(=M P j\) and \(C " j l\) \(W^{\wedge \wedge}{ }^{\text {V }}\),
the cartouches of Ptolemaios and Cleopatra from the Bankes obelisk.
Hieroglyph
Sound Value
Hieroglyph Sound Value
a
P
^ C
Q t
-£s> |
f
0
1
s~
jfcs,
1
f
s --
m
1? \(P\) <
e
\&
ps
^^ t
1IT ^
214 The Code Book
represented by c or k, as in "cat" and "kid." Inspired by his success,
Champollion began to address cartouches without a bilingual translation,
substituting whenever possible the hieroglyph sound values that he had
derived from the Ptolemy and Cleopatra cartouches. His first mystery cartouche
(Table 16) contained one of the greatest names of ancient
times. It
was obvious to Champollion that the cartouche, which seemed to read
\(a-l-?-s-e-?-t-r-?\), represented the name
alksentrs-Alexandros in Greek, or
Alexander in English. It also became apparent to
Champollion that the
scribes were not fond of using vowels, and would often omit them; the
scribes assumed that readers would have no problem filling in the missing
vowels. With two new hieroglyphs under his belt, the young scholar studied
other inscriptions and deciphered a series of cartouches. However, all this
progress was merely extending Young's work. All these names, such as
Alexander and Cleopatra, were still foreign, supporting the theory that phonetics
was invoked only for words outside the traditional
Egyptian lexicon.
Then, on September 14, 1822, Champollion received reliefs from the
temple of Abu Simbel, containing cartouches that predated the period of
Graeco-Roman domination. The significance of these cartouches was that
they were old enough to contain traditional Egyptian names, yet they were
still spelled out--clear evidence against the theory that spelling was used

Table 16 Champollion's decipherment of \(\left.C^{\wedge} S P 1 \sim^{\circ}\right]\), the cartouche of Alksentrs (Alexander).

Hieroglyph

Sound Value
only for foreign names. Champollion concentrated on a cartouche containing
just four hieroglyphs: (J3(TiPPJ-The
first two symbols were
unknown, but the repeated pair at the end, fp, were known from the cartouche
of Alexander (alksentrs) to both represent the letter s. This meant
that the cartouche represented (?-?-s-s). At this point, Champollion
brought to bear his vast linguistic knowledge. Although Coptic, the direct
descendant of the ancient Egyptian language, had ceased to be a living language
in the eleventh century a.d., it still existed in a fossilized form in the
liturgy of the Christian Coptic Church. Champollion had learned Coptic
as a teenager, and was so fluent that he used it to record entries in his journal.
However, until this moment, he had never considered that Coptic
might also be the language of hieroglyphics.

Champollion wondered whether the first sign in the cartouche, ©,
might be a semagram representing the sun, i.e., a picture of the sun was
the symbol for the word "sun." Then, in an act of intuitive genius, he
assumed the sound value of the semagram to be that of the Coptic word
for sun, ra. This gave him the sequence (ra-?-s-s). Only one pharaonic
name seemed to fit. Allowing for the irritating omission of vowels, and
assuming that the missing letter was \(m\), then surely this had to be the
name of Rameses, one of the greatest pharaohs, and one of the most
ancient. The spell was broken. Even ancient traditional names were phonetically
spelled. Champollion dashed into his brother's office and proclaimed "Je tiens 1'affaire!" ("I've got it!"), but once again his intense
passion for hieroglyphics got the better of him. He promptly collapsed,
and was bedridden for the next five days.

Champollion had demonstrated that the scribes sometimes exploited
the rebus principle. In a rebus, still found in children's puzzles, long words
are broken into their phonetic components, which are then represented by
semagrams. For example, the word "belief" can be broken down into two
syllables, be-lief, which can then be rewritten as
bee-leaf. Instead of writing
the word alphabetically, it can be represented by the image of a bee followed
by the image of a leaf. In the example discovered by Champollion,
only the first syllable (ra) is represented by a rebus image, a picture of the
sun, while the remainder of the word is spelled more conventionally.

The significance of the sun semagram in the Rameses cartouche is
enormous, because it clearly restricts the possibilities for the language

216 The Code Book
spoken by the scribes. For example, the scribes could not have spoken
Greek, because this would have meant that the cartouche would be
pronounced "helios-meses." The cartouche makes sense only if the scribes
spoke a form of Coptic, because the cartouche would then be pronounced
"ra-meses."

Although this was just one more cartouche, its decipherment clearly
demonstrated the four fundamental principles of hieroglyphics. First, the
language of the script is at least related to Coptic, and, indeed, examination
of other hieroglyphics showed that it was Coptic pure and simple.
Second, semagrams are used to represent some words, e.g., the word "sun"
is represented by a simple picture of the sun. Third, some long words are
built wholly or partly using the rebus principle. Finally, for most of their
writing, the ancient scribes relied on using a relatively conventional
phonetic alphabet. This final point is the most important one, and
Champollion called phonetics the "soul" of hieroglyphics.

Using his deep knowledge of Coptic, Champollion began an unhindered
and prolific decipherment of hieroglyphics beyond the cartouches.
Within two years he identified phonetic values for the majority of
hieroglyphs, and discovered that some of them represented combinations
of two or even three consonants. This sometimes gave scribes the option
of spelling a word using several simple hieroglyphs or with just a few
multiconsonant hieroglyphs.

Champollion sent his initial results in a letter to Monsieur Dacier, the
permanent secretary of the French Academie des
Inscriptions. Then, in
1824, at the age of thirty-four, Champollion published all his achievements
in a book entitled Precis du systeme hieroglyphique. For the first time
in fourteen centuries it was possible to read the history of the pharaohs, as
written by their scribes. For linguists, here was an opportunity to study the evolution of a language and a script across a period of over three thousand years. Hieroglyphics could be understood and traced from the
third millennium b.c. through to the fourth century a.d. Furthermore, the evolution of hieroglyphics could be compared to the scripts of hieratic
and demotic, which could now also be deciphered.

For several years, politics and envy prevented Champollion's magnificent achievement from being universally accepted. Thomas
Young was a particularly bitter critic. On some occasions Young denied

The Language Barrier 217
that hieroglyphics could be largely phonetic; at other times he accepted
the argument, but complained that he himself had reached this conclusion
before Champollion, and that the Frenchman had merely filled in
the gaps. Much of Young's hostility resulted from Champollion's failure
to give him any credit, even though it is likely that
Young's initial breakthrough
provided the inspiration for the full decipherment.

In July 1828 Champollion embarked on his first expedition to Egypt,
which lasted eighteen months. It was a remarkable opportunity for him to
see at firsthand the inscriptions he had previously seen only in drawings
or lithographs. Thirty years earlier, Napoleon's expedition had guessed
wildly at the meaning of the hieroglyphs which adorned the temples, but
now Champollion could simply read them character by character and
reinterpret them correctly. His visit came just in time. Three years later,
having written up the notes, drawings and translations from his Egyptian
expedition, he suffered a severe stroke. The fainting spells he had suffered
throughout his life were perhaps symptomatic of a more serious illness,
exacerbated by his obsessive and intense study. He died on March 4,
1832, aged forty-one.

The Mystery of Linear B

In the two centuries since Champollion's breakthrough, Egyptologists
have continued to improve their understanding of the intricacies of hieroglyphics.
Their level of comprehension is now so high that scholars are
able to unravel encrypted hieroglyphics, which are among the world's
most ancient ciphertexts. Some of the inscriptions to be found on the
tombs of the pharaohs were encrypted using a variety of techniques,
including the substitution cipher. Sometimes fabricated symbols would be
used in place of the established hieroglyph, and on other occasions a phonetically
different but visually similar hieroglyph would be used instead of
the correct one. For example, the horned asp hieroglyph, which usually
represents f, might be used in place of the serpent, which represents z.
Usually these encrypted epitaphs were not intended to be unbreakable,
but rather they acted as cryptic puzzles to arouse the curiosity of passersby,
who would thus be tempted to linger at a tomb rather than moving on.
Having conquered hieroglyphics, archaeologists went on to decipher
```

' 11 I I I

```

\section*{218 The Code Book}
many other ancient scripts, including the cuneiform texts of Babylon, the
Kok-Turki runes of Turkey and the Brahmi alphabet of
India. However,
the good news for budding Champollions is that there are several outstanding
scripts waiting to be solved, such as the Etruscan and Indus
scripts (see Appendix I). The great difficulty in deciphering the remaining
scripts is that there are no cribs, nothing which allows the codebreaker to
prize open the meanings of these ancient texts. With Egyptian hieroglyphics
it was the cartouches that acted as cribs, giving Young and
Champollion their first taste of the underlying phonetic foundation.
Without cribs, the decipherment of an ancient script might seem to be
hopeless, yet there is one notable example of a script that was unraveled
without the aid of a crib. Linear B, a Cretan script dating back to the
Bronze Age, was deciphered without any helpful clues bequeathed by
ancient scribes. It was solved by a combination of logic and inspiration, a
potent example of pure cryptanalysis. Indeed, the
decipherment of Linear
\(B\) is generally regarded as the greatest of all
archaeological decipherments.
The story of Linear B begins with excavations by Sir Arthur Evans, one
of the most eminent archaeologists at the turn of the century. Evans was
interested in the period of Greek history described by Homer in his twin
epics, the Iliad and the Odyssey. Homer recounts the history of the Trojan
War, the Greek victory at Troy and the ensuing exploits of the conquering hero Odysseus, events which supposedly occurred in the twelfth century
b.c. Some nineteenth-century scholars had dismissed Homer's epics
as nothing more than legends, but in 1872 the German archaeologist
Heinrich Schliemann uncovered the site of Troy itself, close to the western
coast of Turkey, and suddenly Homer's myths became history.
Between 1872 and 1900, archaeologists uncovered further evidence to
suggest a rich period of pre-Hellenic history, predating the Greek classical
age of Pythagoras, Plato and Aristotle by some six hundred years. The pre-Hellenic
period lasted from 2800 to 1100 b.c., and it was during the last
four centuries of this period that the civilization reached its peak. On the Greek mainland it was centered around Mycenae, where archaeologists
uncovered a vast array of artifacts and treasures.
However, Sir Arthur
Evans had become perplexed by the failure of archaeologists to uncover
any form of writing. He could not accept that such a sophisticated society

\section*{I}

The Language Barrier 219
could have been completely illiterate, and became determined to prove
that the Mycenaean civilization had some form of writing.

After meeting various Athenian dealers in antiquities, Sir Arthur eventually
came across some engraved stones, which were apparently seals dating
from the pre-Hellenic era. The signs on the seals seemed to be emblematic
rather than genuine writing, similar to the symbolism used in heraldry. Yet
this discovery gave him the impetus to continue his quest. The seals were
said to originate from the island of Crete, and in particular Knossos, where
legend told of the palace of King Minos, the center of an empire that
dominated the Aegean. Sir Arthur set out for Crete and began excavating in

Figure 57 Ancient sites around the Aegean Sea. Having uncovered treasures at Mycenae on mainland Greece, Sir Arthur Evans went in search of inscribed tablets. The first Linear \(B\) tablets were discovered on the island of Crete, the center of the Minoan empire.

\section*{220 The Code Book}

March 1900. The results were as spectacular as they were rapid. He uncovered
the remains of a luxurious palace, riddled with an intricate network of
passageways and adorned with frescoes of young men leaping over ferocious
bulls. Evans speculated that the sport of bull jumping was somehow
linked to the legend of the Minotaur, the bull-headed monster that fed on
youths, and he suggested that the complexity of the palace
passages had
inspired the story of the Minotaur's labyrinth.

On March 31, Sir Arthur began unearthing the treasure that he had
desired most of all. Initially he discovered a single clay tablet with an
inscription, then a few days later a wooden chest full of them, and then
stockpiles of written material beyond all his
expectations. All these clay
tablets had originally been allowed to dry in the sun, rather than being
fired, so that they could be recycled simply by adding water. Over the
centuries, rain should have dissolved the tablets, and they should have
been lost forever. However, it appeared that the palace at Knossos had
been destroyed by fire, baking the tablets and helping to preserve them
for three thousand years. Their condition was so good that it was still possible
to discern the fingerprints of the scribes.

The tablets fell into three categories. The first set of tablets, dating from
2000 to 1650 b.c., consisted merely of drawings, probably semagrams,
apparently related to the symbols on the seals that Sir Arthur Evans had
bought from dealers in Athens. The second set of tablets, dating from
1750 to 1450 b.c., were inscribed with characters that consisted of simple
lines, and hence the script was dubbed Linear A. The third set of tablets,
dating from 1450 to 1375 b.c., bore a script which seemed to be a refinement
of Linear \(A\), and hence called Linear B. Because most of the tablets
were Linear \(B\), and because it was the most recent script, Sir Arthur and
other archaeologists believed that Linear B gave them
their best chance of
decipherment.

Many of the tablets seemed to contain inventories. With so many
columns of numerical characters it was relatively easy to work out the
counting system, but the phonetic characters were far more puzzling.
They looked like a meaningless collection of arbitrary doodles. The historian
David Kahn described some of the individual characters as "a Gothic
arch enclosing a vertical line, a ladder, a heart with a stem running
through it, a bent trident with a barb, a three-legged dinosaur looking

The Language Barrier 221
behind him, an \(A\) with an extra horizontal bar running through it, a backward
S, a tall beer glass, half full, with a bow tied on its rim; dozens look
like nothing at all." Only two useful facts could be established about Linear
B. First, the direction of the writing was clearly from left to right, as
any gap at the end of a line was generally on the right. Second, there were
90 distinct characters, which implied that the writing was almost certainly
syllabic. Purely alphabetic scripts tend to have between 20 and 40 characters
(Russian, for example, has 36 signs, and Arabic has 28).
At the other
extreme, scripts that rely on semagrams tend to have hundreds or even
thousands of signs (Chinese has over 5,000). Syllabic scripts occupy the
middle ground, with between 50 and 100 syllabic
characters. Beyond
these two facts, Linear \(B\) was an unfathomable mystery.

The fundamental problem was that nobody could be sure what language
Linear B was written in. Initially, there was speculation that Linear
B was a written form of Greek, because seven of the characters bore a
close resemblance to characters in the classical Cypriot
script, which was
known to be a form of Greek script used between 600 and 200 b.c. But
doubts began to appear. The most common final consonant in Greek is s,
and consequently the commonest final character in the Cypriot script is
f1, which represents the syllable se--because the characters are syllabic, a
lone consonant has to be represented by a consonant-vowel combination,
the vowel remaining silent. This same character also
appears in Linear
B, but it is rarely found at the end of a word, indicating that Linear B
could not be Greek. The general consensus was that Linear B, the older
script, represented an unknown and extinct language. When this language
died out, the writing remained and evolved over the centuries into the
Cypriot script, which was used to write Greek. Therefore, the two scripts
looked similar but expressed totally different languages.

Sir Arthur Evans was a great supporter of the theory that Linear B was
not a written form of Greek, and instead believed that it represented a
native Cretan language. He was convinced that there was
strong archaeological
evidence to back up his argument. For example, his
discoveries on
the island of Crete suggested that the empire of King Minos, known as
the Minoan empire, was far more advanced than the

Mycenaean civilization
on the mainland. The Minoan Empire was not a dominion of the Mycenaean empire, but rather a rival, possibly even the dominant
\(£ \& 6\)
;+<* *!* «S<*
', - j---US.
'V.
'lY^^^""^
i^^i^ss**^'^*

ヘ^_ "^
224 The Code Book
power. The myth of the Minotaur supported this position. The legend
described how King Minos would demand that the Athenians send him
groups of youths and maidens to be sacrificed to the Minotaur. In short,
Evans concluded that the Minoans were so successful that they would
have retained their native language, rather than adopting Greek, the language
of their rivals.

Although it became widely accepted that the Minoans spoke their own
non-Greek language (and Linear B represented this language), there were one or two heretics who argued that the Minoans spoke and wrote Greek.
Sir Arthur did not take such dissent lightly, and used his influence to
punish those who disagreed with him. When A.J.B. Wace, Professor of
Archaeology at the University of Cambridge, spoke in favor
of the theory
that Linear B represented Greek, Sir Arthur excluded him from all excavations,
and forced him to retire from the British School in Athens.

In 1939, the "Greek vs. non-Greek" controversy grew when Carl
Blegen of the University of Cincinnati discovered a new batch of Linear
B tablets at the palace of Nestor at Pylos. This was extraordinary because
Pylos is on the Greek mainland, and would have been part of the
Mycenaean Empire, not the Minoan. The minority of
archaeologists who believed that Linear B was Greek argued that this favored their hypothesis:
Linear B was found on the mainland where they spoke Greek, therefore
Linear B represents Greek; Linear B is also found on Crete, so the
Minoans also spoke Greek. The Evans camp ran the argument in reverse:
the Minoans of Crete spoke the Minoan language; Linear B is found on
Crete, therefore Linear \(B\) represents the Minoan language; Linear \(B\) is also
found on the mainland, so they also spoke Minoan on the mainland. Sir
Arthur was emphatic: "There is no place at Mycenae for Greek-speaking
dynasts ... the culture, like the language, was still Minoan to the core."

In fact, Blegen's discovery did not necessarily force a single language
upon the Mycenaeans and the Minoans. In the Middle Ages, many European
states, regardless of their native language, kept their records in Latin.
Perhaps the language of Linear \(B\) was likewise a lingua franca among the
accountants of the Aegean, allowing ease of commerce between nations
who did not speak a common language.

For four decades, all attempts to decipher Linear B ended in failure.
Then, in 1941, at the age of ninety, Sir Arthur died. He did not live to

The Language Barrier 225
witness the decipherment of Linear \(B\), or to read for himself the meanings of the texts he had discovered. Indeed, at this point, there seemed little prospect of ever deciphering Linear B.

Bridging Syllables

After the death of Sir Arthur Evans the Linear B archive of tablets and his
own archaeological notes were available only to a
restricted circle of
archaeologists, namely those who supported his theory that Linear B represented
a distinct Minoan language. However, in the mid-1940s, Alice
Kober, a classicist at Brooklyn College, managed to gain access to the
material, and began a meticulous and impartial analysis of the script. To

Figure 59 Alice Kober.

\section*{226 The Code Book}
those who knew her only in passing, Kober seemed quite ordinary--a
dowdy professor, neither charming nor charismatic, with a rather matter-of-fact
approach to life. However, her passion for her research was immeasurable.
"She worked with a subdued intensity," recalls Eva Brann, a former
student who went on to become an archaeologist at Yale University.
"She once told me that the only way to know when you have done something
truly great is when your spine tingles."

In order to crack Linear \(B\), Kober realized that she would have to abandon
all preconceptions. She focused on nothing else but the structure of
the overall script and the construction of individual words. In particular,
she noticed that certain words formed triplets, inasmuch as they seemed
to be the same word reappearing in three slightly varied forms. Within a
word triplet, the stems were identical but there were three possible endings.
She concluded that Linear \(B\) represented a highly inflective language,
meaning that word endings are changed in order to reflect gender, tense,
case and so on. English is slightly inflective because, for example, we say "I
decipher, you decipher, he deciphers"-in the third person the verb takes
an "s." However, older languages tend to be much more rigid and extreme
in their use of such endings. Kober published a paper in which she
described the inflective nature of two particular groups of words, as shown
in Table 17, each group retaining its respective stems, while taking on different
endings according to three different cases.

For ease of discussion, each Linear B symbol was assigned a two-digit
number, as shown in Table 18. Using these numbers, the words in Table

17 can be rewritten as in Table 19. Both groups of words could be nouns

Table 17 Two inflective words in Linear B.

Word AWord B
rtAI 9 ilk A §
\(\mathrm{T}^{\wedge}\) At yifc^
\(r \backslash T\) ? \(!M\)

Table 18 Linear \(B\) signs and the numbers assigned to then

01 h
30 Y
59 K
\(02+\)
31 Y
60 li
03 *
11

32 T
61 (15
\(04^{\wedge}=\)
33 ¥
62 M
05 T
\(34<\)
63 'Hf
06 T
\(35>\)
64 N
07 T
36 T
65 W
08 V

37 A
66 f
09 P
38 A
67 ^
10 ff
39 A
68 4>
11 ^
40 /^
69 ^
12 *
41 A
709
13 1*
42 If
71 -4
14 f
43 "^
72 »
151
44 0? C
73 U
16 T
45 *
74 6?
17 ?
46 X
75 a
18 ^
47 ft
76 »
19 X
mm
48 TV
77 ©
20 ^
491 pound
78 ©
21 T
50 /fV
79 '\&
22 T
51 M
changing their ending according to their case-case 1 could be nominative,
case 2 accusative, and case 3 dative, for example. It is
clear that the
first two signs in both groups of words (25-67-and 70-52-) are both
stems, as they are repeated regardless of the case.
However, the third sign
is somewhat more puzzling. If the third sign is part of the stem, then for
a given word it should remain constant, regardless of the case, but this
does not happen. In word A the third sign is 37 for cases
1 and 2, but 05
for case 3. In word \(B\) the third sign is 41 for cases 1 and
2, but 12 for case
3. Alternatively if the third sign is not part of the stem, perhaps it is part
of the ending, but this possibility is equally
problematic. For a given case
the ending should be the same regardless of the word, but for cases 1 and

2 the third sign is 37 in word \(A\), but 41 in word \(B\), and for case 3 the third
sign is 05 in word \(A\), but 12 in word \(B\).

The third signs defied expectations because they did not seem to be
part of the stem or the ending. Kober resolved the paradox by invoking
the theory that every sign represents a syllable, presumably a combination
of a consonant followed by a vowel. She proposed that the third syllable
could be a bridging syllable, representing part of the stem and part of the
ending. The consonant could contribute to the stem, and the vowel to the
ending. To illustrate her theory, she gave an example from the Akkadian
language, which also has bridging syllables and which is highly inflective. Sadanu is a case 1 Akkadian noun, which changes to sadani in the second case and sadu in the third case (Table 20). It is clear that the three words
consist of a stem, sad-, and an ending, -anu (case 1),
-ani (case 2), or -u
(case 3), with -da-, -da-or
-du as the bridging syllable. The bridging syllable is the same in cases 1 and 2 , but different in case 3. This is exactly the

Table 19 The two inflective Linear B words rewritten in numbers.

Word A
WordB
Case 1
25-67-37-57
70-52-41-57
Case 2

25-67-37-36
70-52-41-36
Case 3
25-67-05
70-52-12
The Language Barrier 229
pattern observed in the Linear B words--the third sign in each of Kober's
Linear B words must be a bridging syllable.

Merely identifying the inflective nature of Linear \(B\) and the existence
of bridging syllables meant that Kober had progressed further than anybody
else in deciphering the Minoan script, and yet this was just the
beginning. She was about to make an even greater
deduction. In the
Akkadian example, the bridging syllable changes from
-da-to
-du, but the
consonant is the same in both syllables. Similarly, the Linear B syllables
37 and 05 in word A must share the same consonant, as must syllables 41
and 12 in word B. For the first time since Evans had discovered Linear B,
facts were beginning to emerge about the phonetics of the characters.
Kober could also establish another set of relationships among the characters.
It is clear that Linear \(B\) words \(A\) and \(B\) in case 1 should have the same
ending. However, the bridging syllable changes from 37 to 41. This
implies that signs 37 and 41 represent syllables with different consonants
but identical vowels. This would explain why the signs are different, while
maintaining the same ending for both words. Similarly for the case 3
nouns, the syllables 05 and 12 will have a common vowel
but different
consonants.

Kober was not able to pinpoint exactly which vowel is common to 05
and 12, and to 37 and 41; similarly, she could not
identify exactly which
consonant is common to 37 and 05, and which to 41 and 12. However, regardless of their absolute phonetic values, she had established rigorous
relationships between certain characters. She summarized her results in
the form of a grid, as in Table 21. What this is saying is that Kober had no
idea which syllable was represented by sign 37 , but she knew that its

Table 20 Bridging syllables in the Akkadian noun sadanu.

Case 1
Case 2
Case 3
sadanu
sadani
sa-du

230 The Code Book
consonant was shared with sign 05 and its vowel with sign 41. Similarly, she had no idea which syllable was represented by sign 12 , but knew that
its consonant was shared with sign 41 and its vowel with sign 05. She
applied her method to other words, eventually constructing a grid of ten
signs, two vowels wide and five consonants deep. It is quite possible that
Kober would have taken the next crucial step in
decipherment, and could
even have cracked the entire script. However, she did not live long
enough to exploit the repercussions of her work. In 1950, at the age of
forty-three, she died of lung cancer.

A Frivolous Digression

Just a few months before she died, Alice Kober received a letter from
Michael Ventris, an English architect who had been fascinated by Linear B
ever since he was a child. Ventris was born on July 12, 1922, the son of an
English Army officer and his half-Polish wife. His mother was largely
responsible for encouraging an interest in archaeology, regularly escorting
him to the British Museum where he could marvel at the wonders of the
ancient world. Michael was a bright child, with an especially prodigious
talent for languages. When he began his schooling he went to Gstaad in
Switzerland, and became fluent in French and German. Then, at the age
of six, he taught himself Polish.

Like Jean-Francois Champollion, Ventris developed an early love of
ancient scripts. At the age of seven he studied a book on Egyptian hieroglyphics,
an impressive achievement for one so young, particularly as the
book was written in German. This interest in the writings of ancient civilizations
continued throughout his childhood. In 1936, at the age of fourteen,
it was further ignited when he attended a lecture given by Sir Arthur

Table 21 Kober's grid for relationships between Linear B characters.

Vowel 1
Vowel 2
Consonant I 37
05
Consonant II 41
12
The Language Barrier 231

Evans, the discoverer of Linear B. The young Ventris learned about the
Minoan civilization and the mystery of Linear \(B\), and promised himself
that he would decipher the script. That day an obsession was born that
remained with Ventris throughout his short but brilliant life.

At the age of just eighteen, he summarized his initial thoughts on Linear
B in an article that was subsequently published in the highly respected American Journal of Archaeology. When he submitted the article, he had been careful to withhold his age from the journal's editors for fear of not
being taken seriously. His article very much supported Sir Arthur's criticism
of the Greek hypothesis, stating that "The theory that Minoan could
be Greek is based of course upon a deliberate disregard for historical
plausibility." His own belief was that Linear B was
related to Etruscan, a
reasonable standpoint because there was evidence that the Etruscans had
come from the Aegean before settling in Italy. Although
his article made
no stab at decipherment, he confidently concluded: "It can be done."

Ventris became an architect rather than a professional archaeologist,
but remained passionate about Linear \(B\), devoting all of his spare time to
studying every aspect of the script. When he heard about Alice Kober's
work, he was keen to learn about her breakthrough, and he wrote to her
asking for more details. Although she died before she could reply, her
ideas lived on in her publications, and Ventris studied them meticulously.
He fully appreciated the power of Kober's grid, and attempted to find
new words with shared stems and bridging syllables. He extended her grid
to include these new signs, encompassing other vowels and consonants.

Then, after a year of intense study, he noticed something peculiar-something
that seemed to suggest an exception to the rule that all Linear B
signs are syllables.

It had been generally agreed that each Linear B sign represented a combination
of a consonant with a vowel (CV), and hence spelling would require a word to be broken up into CV components. For example, the
English word minute would be spelled as mi-nu-te, a series of three CV
syllables. However, many words do not divide conveniently into CV syllables.
For example, if we break the word "visible" into pairs of letters we
get vi-si-bl-e, which is problematic because it does not consist of a simple
series of CV syllables: there is a double-consonant syllable and a spare -e
at the end. Ventris assumed that the Minoans overcame this
problem by

234 The Code Book
that the syllabic signs 37,05 and 69 share the same consonant, VI, but
contain different vowels, 1, 2 and 4. Ventris had no idea of the exact
values of consonant VI or vowels 1, 2 and 4, and until this point he had
resisted the temptation of assigning sound values to any of the signs.
However, he felt that it was now time to follow some
hunches, guess a few
sound values and examine the consequences.

Ventris had noticed three words that appeared over and over again on
several of the Linear B tablets: 08-73-30-12, 70-52-12 and 69-53-12.

Based on nothing more than intuition, he conjectured that these words
might be the names of important towns. Ventris had already speculated
that sign 08 was a vowel, and therefore the name of the first town had to
begin with a vowel. The only significant name that fitted the bill was
Amnisos, an important harbor town. If he was right, then the second and
third signs, 73 and 30, would represent -mi-and
-ni-. These two syllables
both contain the same vowel, i, so numbers 73 and 30 ought to appear
in the same vowel column of the grid. They do. The final sign, 12 , would
represent -so-, leaving nothing to represent the final s. Ventris decided to
ignore the problem of the missing final s for the time being, and proceeded with the following working translation:

Town \(1=08-73-30-12=\) a-mi-ni-so \(=\) Amnisos

This was only a guess, but the repercussions on Ventris's grid were enormous.
For example, the sign 12 , which seems to represent -so-, is in the
second vowel column and the seventh consonant row. Hence, if his guess
was correct, then all the other syllabic signs in the second vowel column
would contain the vowel o, and all the other syllabic
signs in the seventh
consonant row would contain the consonant \(s\).

When Ventris examined the second town, he noticed that it also contained
sign 12 , -so-. The other two signs, 70 and 52 , were in the same
vowel column as -so-, which implied that these signs also contained the
vowel o. For the second town he could insert the -so-, the o where appropriate,
and leave gaps for the missing consonants, leading to the following:

Town \(2=70-52-12=\) ?o-?o-so = ?

Could this be Knossos? The signs could represent ko-no-so. Once again,
Ventris was happy to ignore the problem of the missing final s, at least for

The Language Barrier 235
the time being. He was pleased to note that sign 52, which supposedly
represented -no-, was in the same consonant row as sign
30, which supposedly
represented -ni-in
Amnisos. This was reassuring, because if they
contain the same consonant, \(n\), then they should indeed be in the same
consonant row. Using the syllabic information from Knossos and
Amnisos, he inserted the following letters into the third town:

Town \(3=69-53-12=\) ??-?i-SO

The only name that seemed to fit was Tulissos (tu-li-so), an important
town in central Crete. Once again the final s was missing, and once again
Ventris ignored the problem. He had now tentatively identified three
place names and the sound values of eight different signs:

Town \(1=08-73-30-12=a-m i-n i-s o=A m n i s o s\)
Town \(2=70-52-12=\) ko-no-so \(=\) Knossos
Town 3 = 69-53-12 = tu-li-so = Tulissos

The repercussions of identifying eight signs were enormous. Ventris
could infer consonant or vowel values to many of the other signs in the
grid, if they were in the same row or column. The result was that many
signs revealed part of their syllabic meaning, and a few could be fully identified.
For example, sign 05 is in the same column as 12 (so), 52 (no) and
70 (ko), and so must contain o as its vowel. By a similar process of reasoning,
sign 05 is in the same row as sign 69 (to), and so must contain \(t\) as
its consonant. In short, the sign 05 represents the syllable -to-. Turning to sign 31 , it is in the same column as sign 08 , the a column, and it is in the same row as sign 12 , the \(s\) row. Hence sign 31 represents
the syllable -sa-.

Deducing the syllabic values of these two signs, 05 and 31, was particularly
important because it allowed Ventris to read two complete words,
05-12 and 05-31, which often appeared at the bottom of inventories.
Ventris already knew that sign 12 represented the syllable -so-, because
this sign appeared in the word for Tulissos, and hence 05-12 could be read as to-so. And the other word, 05-31, could be read as to-sa. This
was an astonishing result. Because these words were found at the bottom
of inventories, experts had suspected that they meant
"total." Ventris now
read them as toso and tosa, uncannily similar to the archaic Greek tossos and tossa, masculine and feminine forms meaning "so much." Ever since
.^'4"^^'^
V.4i \&.'*> V * -
* \(>\) \& \(£\)
'-V-sf.
^e iw ^^

236 The Code Book
he was fourteen years old, from the moment he had heard Sir Arthur
Evans's talk, he had believed that the language of the Minoans could not
be Greek. Now, he was uncovering words which were clear evidence in
favor of Greek as the language of Linear B.

It was the ancient Cypriot script that provided some of the earliest evidence
against Linear \(B\) being Greek, because it suggested that Linear B
words rarely end in \(s\), whereas this is a very common ending for Greek
words. Ventris had discovered that Linear B words do, indeed, rarely end
in s, but perhaps this was simply because the s was omitted as part of
some writing convention. Amnisos, Knossos, Tulissos and tossos were all
spelled without a final s, indicating that the scribes simply did not bother
with the final s, allowing the reader to fill in the obvious omission.

Ventris soon deciphered a handful of other words, which also bore a
resemblance to Greek, but he was still not absolutely convinced that Linear
\(B\) was a Greek script. In theory, the few words that he had deciphered
could all be dismissed as imports into the Minoan
language. A foreigner
arriving at a British hotel might overhear such words as "rendezvous" or
"bon appetit," but would be wrong to assume that the British speak
French. Furthermore, Ventris came across words that made no sense to
him, providing some evidence in favor of a hitherto unknown language.
In Work Note 20 he did not ignore the Greek hypothesis, but he did label
it "a frivolous digression." He concluded: "If pursued, I suspect that this
line of decipherment would sooner or later come to an impasse, or dissipate
itself in absurdities."

Despite his misgivings, Ventris did pursue the Greek line of attack.
While Work Note 20 was still being distributed, he began to discover
more Greek words. He could identify poimen (shepherd),
kerameus (potter), khrusoworgos (goldsmith) and khalkeus (bronzesmith), and he even translated a couple of complete phrases. So far, none of the threatened absurdities
blocked his path. For the first time in three thousand years, the silent
script of Linear B was whispering once again, and the language it spoke was undoubtedly Greek.

During this period of rapid progress, Ventris was coincidentally asked to appear on \(B B C\) radio to discuss the mystery of the Minoan scripts. He
decided that this would be an ideal opportunity to go public with his discovery.
After a rather prosaic discussion of Minoan history and Linear B,

The Language Barrier 237
he made his revolutionary announcement: "During the last few weeks,
I have come to the conclusion that the Knossos and Pylos tablets must,
after all, be written in Greek-a difficult and archaic Greek, seeing that it
is five hundred years older than Homer and written in a rather abbreviated
form, but Greek nevertheless." One of the listeners was John

Chadwick, a Cambridge researcher who had been interested in the decipherment
of Linear B since the 1930s. During the war he had spent time
as a cryptanalyst in Alexandria, where he broke Italian ciphers, before
moving to Bletchley Park, where he attacked Japanese ciphers. After the
war he tried once again to decipher Linear B, this time employing the

Figure 61 John Chadwick.

238 The Code Book
techniques he had learned while working on military codes. Unfortunately,
he had little success.

When he heard the radio interview, he was completely taken aback by
Ventris's apparently preposterous claim. Chadwick, along with the majority
of scholars listening to the broadcast, dismissed the claim as the work of an
amateur-which indeed it was. However, as a lecturer in Greek, Chadwick
realized that he would be pelted with questions regarding Ventris's claim,
and to prepare for the barrage he decided to investigate Ventris's argument
in detail. He obtained copies of Ventris's Work Notes, and examined them,
fully expecting them to be full of holes. However, within
a few days the
skeptical scholar became one of the first supporters of Ventris's Greek
theory of Linear B. Chadwick soon came to admire the young architect:

His brain worked with astonishing rapidity, so that he could think out all
the implications of a suggestion almost before it was out of your mouth.
He had a keen appreciation of the realities of the situation; the
Mycenaeans were to him no vague abstractions, but living people whose
thoughts he could penetrate. He himself laid stress on the visual approach
to the problem; he made himself so familiar with the visual aspect of the
texts that large sections were imprinted on his mind simply as visual
patterns, long before the decipherment gave them meaning. But a merely
photographic memory was not enough, and it was here that his architectural
training came to his aid. The architect's eye sees in a building not a
mere facade, a jumble of ornamental and structural
features: it looks
beneath the appearance and distinguishes the significant parts of the pattern,
the structural elements and framework of the building. So too Ventris
was able to discern among the bewildering variety of the mysterious signs,
patterns and regularities which betrayed the underlying structure. It is this
quality, the power of seeing order in apparent confusion, that has marked
the work of all great men.

However, Ventris lacked one particular expertise, namely a thorough
knowledge of archaic Greek. Ventris's only formal
education in Greek was
as a boy at Stowe School, so he could not fully exploit his breakthrough.
For example, he was unable to explain some of the
deciphered words
because they were not part of his Greek vocabulary.
Chadwick's speciality
was Greek philology, the study of the historical evolution of the Greek
language, and he was therefore well equipped to show that these prob-

The Language Barrier 239
lematic words fitted in with theories of the most ancient forms of Greek.

Together, Chadwick and Ventris formed a perfect partnership.

The Greek of Homer is three thousand years old, but the Greek of Linear
B is five hundred years older still. In order to translate it, Chadwick needed
to extrapolate back from the established ancient Greek to the words of
Linear \(B\), taking into account the three ways in which language develops.
First, pronunciation evolves with time. For example, the Greek word for
"bath-pourers" changes from lewotrokhowoi in Linear B to loutrokhooi by the
time of Homer. Second, there are changes in grammar. For example, in
Linear \(B\) the genitive ending is -oio, but this is replaced in classical Greek by -ou. Finally, the lexicon can change dramatically. Some words are born,
some die, others change their meaning. In Linear B barmo means "wheel,"
but in later Greek the same word means "chariot." Chadwick pointed out
that this is similar to the use of "wheels" to mean a car in modern English.

With Ventris's deciphering skills and Chadwick's expertise in Greek,
the duo went on to convince the rest of the world that
Linear B is indeed
Greek. The rate of translation accelerated as each day passed. In Chadwick's
account of their work, The Decipherment of Linear B, he writes:

Cryptography is a science of deduction and controlled experiment; hypotheses
are formed, tested and often discarded. But the residue which passes the
test grows until finally there comes a point when the experimenter feels solid
ground beneath his feet: his hypotheses cohere, and
fragments of sense
emerge from their camouflage. The code "breaks." Perhaps this is best
defined as the point when the likely leads appear faster than they can be followed
up. It is like the initiation of a chain reaction in
atomic physics; once
the critical threshold is passed, the reaction propagates itself.

It was not long before they were able to demonstrate their mastery of the
script by writing short notes to each other in Linear B.

An informal test for the accuracy of a decipherment is the number
of gods in the text. In the past, those who were on the wrong track would,
not surprisingly, generate nonsensical words, which would be explained
away as being the names of hitherto unknown deities.
However,
Chadwick and Ventris claimed only four divine names, all of which were
well-established gods.

In 1953, confident of their analysis, they wrote up their work in a paper,

\section*{240 The Code Book}
modestly entitled "Evidence for Greek Dialect in the Mycenaean Archives,"
which was published in The Journal of Hellenic Studies.
Thereafter, archaeologists
around the world began to realize that they were
witnessing a
revolution. In a letter to Ventris, the German scholar
Ernst Sittig summarized
the mood of the academic community: "I repeat: your
demonstrations are
cryptographically the most interesting I have yet heard
of, and are really fascinating.
If you are right, the methods of the archaeology, ethnology, history
and philology of the last fifty years are reduced ad absurdum."

The Linear B tablets contradicted almost everything that had been
claimed by Sir Arthur Evans and his generation. First of all was the simple
fact that Linear \(B\) was Greek. Second, if the Minoans on Crete wrote
Greek and presumably spoke Greek, this would force archaeologists to
reconsider their views of Minoan hisLory. It now seemed that the dominant
force in the region was Mycenae, and Minoan Crete was a lesser state
whose people spoke the language of their more powerful neighbors.
However, there is evidence that, before 1450 B.C., Minoa was a truly
independent state with its own language. It was in around 1450 b.c. that
Linear B replaced Linear A, and although the two scripts look very
similar, nobody has yet deciphered Linear A. Linear A therefore probably
represents a distinctly different language from Linear B. It seems likely
that in roughly \(1450 \mathrm{~b} . \mathrm{c}\). the Mycenaeans conquered the Minoans,
imposed their own language, and transformed Linear A into Linear B so
that it functioned as a script for Greek.

As well as clarifying the broad historical picture, the decipherment of
Linear \(B\) also fills in some detail. For example, excavations at Pylos have
failed to uncover any precious objects in the lavish palace, which was ultimately
destroyed by fire. This has led to the suspicion that the palace was
deliberately torched by invaders, who first stripped it of valuables.
Although the Linear B tablets at Pylos do not specifically describe such an
attack, they do hint at preparations for an invasion. One tablet describes
the setting up of a special military unit to protect the coast, while another
describes the commandeering of bronze ornaments for converting into
spearheads. A third tablet, untidier than the other two, describes a particularly
elaborate temple ritual, possibly involving human
sacrifice. Most
Linear B tablets are neatly laid out, implying that scribes would begin
with a rough draft which would later be destroyed. The untidy tablet has

Table 23 Linear B signs with their numbers and sound values.

01
h
da
30
Y ni
59
K t
a
02
I
to 31
\(¥\)
sa
60
U ra
03
*
pa
32
11
06
1
na
ro2 11
\(\wedge \mathrm{po}\)
40
Awi
69
*
to 12
* so
41
M si
70
?
ko
13
T1 me
42
if wo
7
1
\(\ll\)
dwe
14
f-do
43
K
ai
72
^
pe
15
1 mo
he
73
I /
mi
16
T
pa2
45
Y
de
74
ft?
ze
17?
za
46
K
je
75
3
we
18
*
47
X
76
\#
ra2
19
X 48
"K1 nwa
77
©
ka
20
*
ZO
49
m 78
©
qe
21
    3;
25
i/TU
a2
54
R
wa
83
h
26
T
ru
55
M nu
84
s1 27
Tre
> 28
\(\backslash 12\) i
57
1ja
86
\& 29
r
pu2
58
E
su
87
^ 242 The Code
large gaps, half-empty lines and text that spills over to the other side.
One possible explanation is that the tablet recorded a bid to invoke
divine intervention in the face of an invasion, but before the tablet could
be redrafted the palace was overrun.

The bulk of Linear \(B\) tablets are inventories, and as such they describe everyday transactions. They indicate the existence of a bureaucracy to
rival any in history, with tablets recording details of manufactured goods
and agricultural produce. Chadwick likened the archive of tablets to the
Domesday Book, and Professor Denys Page described the level of detail
thus: "Sheep may be counted up to a glittering total of twenty-five thousand;
but there is still purpose to be served by recording the fact that one animal was contributed by Komawens . . . One would suppose that not a
seed could be sown, not a gram of bronze worked, not a cloth woven, not
a goat reared or a hog fattened, without the filling of a form in the Royal
Palace." These palace records might seem mundane, but they are inherently
romantic because they are so intimately associated with the Odyssey and Iliad. While scribes in Knossos and Pylos recorded their daily transactions,
the Trojan War was being fought. The language of Linear B is the
language of Odysseus.

On June 24, 1953, Ventris gave a public lecture outlining the decipherment
of Linear B. The following day it was reported in The Times, next to a comment on the recent conquest of Everest. This led to Ventris
and Chadwick's achievement being known as the "Everest of Greek
Archaeology." The following year, the men decided to write an authoritative
three-volume account of their work which would include a description
of the decipherment, a detailed analysis of three hundred tablets, a dictionary of 630 Mycenaean words and a list of sound values for nearly
all Linear B signs, as given in Table 23. Documents in Mycenaean Greek was
completed in the summer of 1955, and was ready for publication in the
autumn of 1956. However, a few weeks before printing, on September 6,
1956, Michael Ventris was killed. While driving home late at night on the
Great North Road near Hatfield, his car collided with a truck. John
Chadwick paid tribute to his colleague, a man who matched the genius of
Champollion, and who also died at a tragically young age:
"The work he
did lives, and his name will be remembered so long as the ancient Greek
language and civilization are studied."

6 Alice and Bob Go Public

During the Second World War, British codebreakers had the upper hand
over German codemakers, mainly because the men and women at

Bletchley Park, following the lead of the Poles, developed some of the
earliest codebreaking technology. In addition to Turing's bombes, which
were used to crack the Enigma cipher, the British also invented another
codebreaking device, Colossus, to combat an even stronger form of
encryption, namely the German Lorenz cipher. Of the two types of code-breaking
machine, it was Colossus that would determine the
development
of cryptography during the latter half of the twentieth century.

The Lorenz cipher was used to encrypt communications between
Hitler and his generals. The encryption was performed by the Lorenz
SZ40 machine, which operated in a similar way to the Enigma machine,
but the Lorenz was far more complicated, and it provided the Bletchley
codebreakers with an even greater challenge. However, two of Bletchley's
codebreakers, John Tiltman and Bill Tutte, discovered a weakness in the
way that the Lorenz cipher was used, a flaw that Bletchley could exploit
and thereby read Hitler's messages.

Breaking the Lorenz cipher required a mixture of searching, matching,
statistical analysis and careful judgment, all of which was beyond the technical
abilities of the bombes. The bombes were able to carry out a specific
task at high speed, but they were not flexible enough to
deal with the subtleties
of Lorenz. Lorenz-encrypted messages had to be broken by hand,
which took weeks of painstaking effort, by which time the messages were
largely out of date. Eventually, Max Newman, a Bletchley mathematician,
came up with a way to mechanize the cryptanalysis of the Lorenz cipher.
Drawing heavily on Alan Turing's concept of the universal machine,

243

244 The Code Book

Newman designed a machine that was capable of adapting itself to different problems, what we today would call a programmable computer.

Implementing Newman's design was deemed technically impossible, so Bletchley's senior officials shelved the project. Fortunately, Tommy Flowers, an engineer who had taken part in discussions about Newman's
design, decided to ignore Bletchley's skepticism, and went ahead with
building the machine. At the Post Office's research center at Dollis Hill,
North London, Flowers took Newman's blueprint and spent ten months turning it into the Colossus machine, which he delivered to Bletchley
Park on December 8, 1943. It consisted of 1,500 electronic valves, which
were considerably faster than the sluggish
electromechanical relay
switches used in the bombes. But more important than Colossus's speed
was the fact that it was programmable. It was this fact that made Colossus
the precursor to the modern digital computer.

Colossus, as with everything else at Bletchley Park, was destroyed after
the war, and those who worked on it were forbidden to talk about it.
When Tommy Flowers was ordered to dispose of the Colossus blueprints,
he obediently took them down to the boiler room and burned them. The
plans for the world's first computer were lost forever. This secrecy meant
that other scientists gained the credit for the invention of the computer.
In 1945, J. Presper Eckert and John W. Mauchly of the University of Pennsylvania
completed ENIAC (Electronic Numerical Integrator And Calculator),
consisting of 18,000 electronic valves, capable of
performing 5,000
calculations per second. For decades, ENIAC, not Colossus, was considered
the mother of all computers.

Having contributed to the birth of the modern computer, cryptanalysts
continued after the war to develop and employ computer technology in
order to break all sorts of ciphers. They could now exploit the speed and
flexibility of programmable computers to search through all possible keys
until the correct one was found. In due course, the
cryptographers began
to fight back, exploiting the power of computers to create increasingly
complex ciphers. In short, the computer played a crucial role in the
postwar battle between codemakers and codebreakers.

Using a computer to encipher a message is, to a large extent, very
similar to traditional forms of encryption. Indeed, there are only three
significant differences between computer encryption and the sort of
Alice a^iad Bob Go Public 245
mechanical encryptio \(n\) that was the basis for ciphaers like Enigma. The
first difference is that _a mechanical cipher machine iis limited by what can
be practically built, wlhereas a computer can mimic a hypothetical cipher
machine of immense complexity. For example, a co»mputer could be programmed
to mimic tlie action of a hundred scraimblers, some spinning
clockwise, some anticlockwise, some vanishing aFttter every tenth letter,
others rotating faster and faster as encryption
progresses. Such a mechanical
machine would b»e practically impossible to h> uild, but its "virtual"
computerized equival ent would deliver a highly se<z;ure cipher.
The second difference is simply a matter of \(s\) jjaeed. Electronics can
operate far more qui«ckly than mechanical scramb. lers: a computer programmed
to mimic thie Enigma cipher could encipLher a lengthy message
in an instant. Alternatively, a computer programm esd to perform a vastly
more complex form o-f encryption could still accomplish the task within a reasonable time.
The third, and perliaps most significant, differenmce is that a computer
scrambles numbers rather than letters of the alphabe tz. Computers deal only
in binary numbers-se quences of ones and zeros krLoown as binary digits, or bits for short. Before encryption, any message must ttherefore be converted
into binary digits. Thi_s conversion can be performeod according to various
protocols, such as the American Standard C code for

Information
Interchange, known familiarly by the acronym AS OCII, pronounced "ass-key."
ASCII assigns a 7-digit binary number to eacbi letter of the alphabet.
For the time being, it is sufficient to think of a
bina:_ry number as merely a
pattern of ones and zeros that uniquely identifies eac^h
letter (Table 24), just
as Morse code identifies each letter with a unique se iries of dots and dashes.
There are 128 (27) w^ys to arrange a combination, of 7 binary digits, so
ASCII can identify up» to 128 distinct characters. Thi ss allows plenty of room
to define all the lowercase letters (e.g., \(a=1100001\) "),
all necessary punctuation
(e.g., \(I=0100001\) ), as well as other symbols (e.g., \& = 0100110 ) .
Once the message has been converted into binary, e:
ncryption can begin.
Even though we are dealing with computers a:nd numbers, and not
machines and letters, the encryption still proceeds by the age-old principles
of substitution a nd transposition, in which elements of the message
are substituted for other elements, or their position 55
are switched, or both.
Every encipherment, no matter how complex, can be broken down into
246 The Code Book
combinations of these simple operations. The following two examples
demonstrate the essential simplicity of computer
encipherment by showing
how a computer might perform an elementary substitution cipher and
an elementary transposition cipher.

First, imagine that we wish to encrypt the message HELLO, employing
a simple computer version of a transposition cipher.
Before encryption can
begin, we must translate the message into ASCII according to Table 24:

Plaintext \(=\) HELLO = 10010001000101100110010011001001 111

One of the simplest forms of transposition cipher would be to swap the
first and second digits, the third and fourth digits, and so on. In this case the final digit would remain unchanged because there are an odd number
of digits. In order to see the operation more clearly, I have removed the
spaces between the ASCII blocks in the original plaintext to generate a
single string, and then lined it up against the resulting ciphertext for comparison:

Plaintext \(=10010001000101100110010011001001111\)
Ciphertext = 01100010001010011001100011000110111

An interesting aspect of transposition at the level of binary digits is that the
transposing can happen within the letter. Furthermore, bits of one letter can
swap places with bits of the neighboring letter. For example, by swapping

Table 24 ASCII binary numbers for the capital letters.

A 1000001
N
001110
B 1000010
0

001111
C 1000011 p 00
0
0
0
D 1000100
Q
00
0
01E 1000101
R
00
010F 1000110
s 00011
C 1000111
T
00100
H 1001000
U 1
00101
11001001
V
00110
J 1001010
W 1
00111
K 100101 1X 1
- 1000

L 1001100
Y 1
01001
M 1001101
Z 1
01010
Alice and Bob Go Public 247
the seventh and eighth numbers, the final 0 of \(H\) is swapped with the initial
I of E . The encrypted message is a single string of 35
binary digits, which
can be transmitted to the receiver, who then reverses the
transposition to
re-create the original string of binary digits. Finally,
the receiver reinterprets
the binary digits via ASCII to regenerate the message HELLO.

Next, imagine that we wish to encrypt the same message, HELLO, this
time employing a simple computer version of a substitution cipher. Once
again, we begin by converting the message into ASCII before encryption.
As usual, substitution relies on a key that has been agreed between sender
and receiver. In this case the key is the word DAVID translated into
ASCII, and it is used in the following way. Each element of the plaintext
is "added" to the corresponding element of the key. Adding binary digits
can be thought of in terms of two simple rules. If the elements in the
plaintext and the key are the same, the element in the plaintext is substituted
for 0 in the ciphertext. But, if the elements in the message and key
are different, the element in the plaintext is substituted for 1 in the
ciphertext:

MessageHELLO

Message in ASCII100100010001011 00110010011001001111

Key \(=\) DAVID100010010000011 01011010010011000100

Ciphertext00011000000100001101000001010001011

The resulting encrypted message is a single string of 35 binary digits
which can be transmitted to the receiver, who uses the same key to reverse
the substitution, thus recreating the original string of binary digits.

Finally, the receiver reinterprets the binary digits via ASCII to regenerate the message HELLO.

Computer encryption was restricted to those who had computers,
which in the early days meant the government and the military. However,
a series of scientific, technological and engineering breakthroughs made
computers, and computer encryption, far more widely available. In 1947,
AT\&T Bell Laboratories invented the transistor, a cheap alternative to the
electronic valve. Commercial computing became a reality in 1951 when
companies such as Ferranti began to make computers to order. In 1953

IBM launched its first computer, and four years later it introduced Fortran,
a programming language that allowed "ordinary" people to write

\section*{248 Tie Code Book}
computer programs. Then, in 1959, the invention of the integrated circuit
heralded a new era of computing.

During the 1960s, computers became more powerful, and at the same
time they became cheaper. Businesses were increasingly able to afford
computers, and could use them to encrypt important
communications
such as money transfers or delicate trade negotiations. However, as more
and more businesses bought computers, and as encryption between
businesses spread, cryptographers were confronted with new problems,
difficulties that had not existed when cryptography was the preserve of
governments and the military. One of the primary concerns was the issue
of standardization. A company might use a particular encryption system
to ensure secure internal communication, but it could not send a secret
message to an outside organization unless the receiver used the same system of encryption. Eventually, on May 15, 1973, America's National
Bureau of Standards planned to solve the problem, and formally requested
proposals for a standard encryption system that would allow business to
speak secretly unto business.

One of the more established cipher algorithms, and a candidate for the
standard, was an IBM product known as Lucifer. It had been developed
by Horst Feistel, a German emigre who had arrived in America in 1934.

He was on the verge of becoming a U.S. citizen when America entered
the war, which meant that he was placed under house arrest until 1944.
For some years after, he suppressed his interest in cryptography to avoid
arousing the suspicions of the American authorities. When he did eventually
begin research into ciphers, at the Air Force's Cambridge Research

Center, he soon found himself in trouble with the National Security
Agency (NSA), the organization with overall responsibility for maintaining
the security of military and governmental communications, and
which also attempts to intercept and decipher foreign communications.
The NSA employs more mathematicians, buys more computer hardware, and intercepts more messages than any other organization in the world. It
is the world leader when it comes to snooping.

The NSA did not object to Feistel's past, they merely wanted to have a
monopoly on cryptographic research, and it seems that they arranged for

Feistel's research project to be canceled. In the 1960s Feistel moved to the
Mitre Corporation, but the NSA continued to apply pressure and forced

Alice and Bob Go Public 249
him to abandon his work for a second time. Feistel eventually ended up at
IBM's Thomas J. Watson Laboratory near New York, where for several
years he was able to conduct his research without being harassed. It was
there, during the early 1970s, that he developed the Lucifer system.

Lucifer encrypts messages according to the following scrambling operation.

First, the message is translated into a long string of binary digits.
Second, the string is split into blocks of 64 digits, and encryption is performed
separately on each of the blocks. Third, focusing on just one
block, the 64 digits are shuffled, and then split into two half-blocks of 32 ,
labeled Left0 and Right0. The digits in RightO are then put through a
"mangier function," which changes the digits according to a complex substitution.
The mangled Right0 is then added to Left0 to create a new half-block
of 32 digits called Right1. The original Right0 is relabeled Left1. This
set of operations is called a "round." The whole process is repeated in a
second round, but starting with the new half-blocks, Left1
and Right1, and
ending with Left2 and Right2. This process is repeated until there have
been 16 rounds in total. The encryption process is a bit like kneading a
slab of dough. Imagine a long slab of dough with a message
written on it.
First, the long slab is divided into blocks that are 64 cm
in length. Then,
one half of one of the blocks is picked up, mangled,
folded over, added
to the other half and stretched to make a new block. Then the process is
repeated over and over again until the message has been thoroughly
mixed up. After 16 rounds of kneading the ciphertext is sent, and is then
deciphered at the other end by reversing the process.

The exact details of the mangier function can change, and are determined
by a key agreed by sender and receiver. In other words, the same
message can be encrypted in a myriad of different ways depending on
which key is chosen. The keys used in computer
cryptography are simply
numbers. Hence, the sender and receiver merely have to agree on a number
in order to decide the key. Thereafter, encryption
requires the sender to
input the key number and the message into Lucifer, which then outputs the
ciphertext. Decryption requires the receiver to input the same key number
and the ciphertext into Lucifer, which then outputs the original message.

Lucifer was generally held to be one of the strongest commercially
available encryption products, and consequently it was used by a variety
of organizations. It seemed inevitable that this encryption system would
be adopted as the American standard, but once again the NSA interfered
with Feistel's work. Lucifer was so strong that it offered the possibility of
an encryption standard that was probably beyond the
codebreaking capabilities
of the NSA; not surprisingly, the NSA did not want to see an
encryption standard that they could not break. Hence, it is rumored that
the NSA lobbied to weaken one aspect of Lucifer, the number of possible
keys, before allowing it to be adopted as the standard.

The number of possible keys is one of the crucial factors determining
the strength of any cipher. A cryptanalyst trying to decipher an encrypted
message could attempt to check all possible keys, and the greater the number
of possible keys, the longer it will take to find the right one. If there
are only 1,000,000 possible keys, a cryptanalyst could use a powerful computer
to find the correct one in a matter of minutes, and thereby decipher
an intercepted message. However, if the number of possible keys is large
enough, finding the correct key becomes impractical. If Lucifer were to
become the encryption standard, then the NSA wanted to ensure that it
operated with only a restricted number of keys.

The NSA argued in favor of limiting the number of keys to roughly
100,000,000,000,000,000 (technically referred to as 56
bits, because this
number consists of 56 digits when written in binary). It seems that the

NSA believed that such a key would provide security within the civilian
community, because no civilian organization had a computer powerful
enough to check every possible key within a reasonable amount of time.
However, the NSA itself, with access to the world's greatest computing
resource, would just about be able to break into messages. The 56-bit version
of Feistel's Lucifer cipher was officially adopted on November 23,
1976, and was called the Data Encryption Standard (DBS). A quarter of a
century later, DES remains America's official standard for encryption.

The adoption of DES solved the problem of standardization, encouraging
businesses to use cryptography for security. Furthermore, DES
was strong enough to guarantee security against attacks from commercial
rivals. It was effectively impossible for a company with a civilian computer
to break into a DES-encrypted message because the number of possible
keys was sufficiently large. Unfortunately, despite standardization
and despite the strength of DES, businesses still had to deal with one
more major issue, a problem known as key distribution.

\section*{Alice and Bob Go Public 251}

Imagine that a bank wants to send some confidential data to a client
via a telephone line, but is worried that there might be somebody tapping
the wire. The bank picks a key and uses DES to encrypt the data message.
In order to decrypt the message, the client needs not only to have a copy
of DES on its computer, but also to know which key was used to encrypt
the message. How does the bank inform the client of the key? It cannot
send the key via the telephone line, because it suspects that there is an
eavesdropper on the line. The only truly secure way to send the key is to
hand it over in person, which is clearly a time-consuming task. A less
secure but more practical solution is to send the key via a courier. In the
1970s, banks attempted to distribute keys by employing special dispatch
riders who had been vetted and who were among the
company's most
trusted employees. These dispatch riders would race across the world
with padlocked briefcases, personally distributing keys to everyone who
would receive messages from the bank over the next week. As business
networks grew in size, as more messages were sent, and as more keys had
to be delivered, the banks found that this distribution process became a
horrendous logistical nightmare, and the overhead costs became prohibitive.

The problem of key distribution has plagued cryptographers throughout
history. For example, during the Second World War the German High
Command had to distribute the monthly book of day keys to all its

Enigma operators, which was an enormous logistical problem. Also, U-boats,
which tended to spend extended periods away from base, had to
somehow obtain a regular supply of keys. In earlier times, users of the
Vigenere cipher had to find a way of getting the keyword from the sender
to the receiver. No matter how secure a cipher is in
theory, in practice it
can be undermined by the problem of key distribution.

To some extent, government and the military have been able to deal
with the problem of key distribution by throwing money and resources at
it. Their messages are so important that they will go to any lengths to
ensure secure key distribution. The U.S. Government keys are managed
and distributed by CO MS EC, short for Communications Security. In
the 1970s, CO MSEC was responsible for transporting tons of keys every
day. When ships carrying COM SEC material came into dock, crypto-custodians
would march onboard, collect stacks of cards, paper tapes,

252 The Code Book
floppy disks, or whatever other medium the keys might be stored on, and
then deliver them to the intended recipients.

Key distribution might seem a mundane issue, but it became the overriding
problem for postwar cryptographers. If two parties wanted to communicate securely, they had to rely on a third party to deliver the key, and
this became the weakest link in the chain of security. The dilemma for
businesses was straightforward-if governments with all
their money were
struggling to guarantee the secure distribution of keys, then how could
civilian companies ever hope to achieve reliable key
distribution without
bankrupting themselves?

Despite claims that the problem of key distribution was unsolvable, a
```

team of mavericks triumphed against the odds and came up
with a
brilliant solution in the mid-1970s. They devised an
encryption system
that appeared to defy all logic. Although computers
transformed the
implementation of ciphers, the greatest revolution in
twentieth-century
cryptography has been the development of techniques to
overcome the
problem of key distribution. Indeed, this breakthrough is
considered to
be the greatest cryptographic achievement since the
invention of the
monoalphabetic cipher, over two thousand years ago.

```

God Rewards Fools

Whitfield Diffie is one of the most ebullient cryptographers of his generation. The mere sight of him creates a striking and somewhat contradictory
image. His impeccable suit reflects the fact that for most of the 1990s
he has been employed by one of America's giant computer companies-currently
his official job title is Distinguished Engineer at Sun Microsystems.
However, his shoulder-length hair and long white beard betray
the fact that his heart is still stuck in the 1960s. He spends much of his
time in front of a computer workstation, but he looks as if he would be
equally comfortable in a Bombay ashram. Diffie is aware that his dress
and personality can have quite an impact on others, and comments that,
"People always think that \(I\) am taller than \(I\) really am, and I'm told it's the
Tigger effect-'No matter his weight in pounds, shillings and ounces, he
always seems bigger because of the bounces.'"

Diffie was born in 1944, and spent most of his early years in Queens,

Alice and Bob Go Public 253

New York. As a child he became fascinated by mathematics, reading
books ranging from The Chemical Rubber Company Handbook of Mathematical
Tables to G.H. Hardy's Course of Pure Mathematics. He went on to study
mathematics at the Massachusetts Institute of Technology, graduating in
1965. He then took a series of jobs related to computer security, and by
the early 1970s he had matured into one of the few truly independent
security experts, a freethinking cryptographer, not
employed by the government
or by any of the big corporations. In hindsight, he was the first
cypherpunk.

Diffie was particularly interested in the key distribution problem, and
he realized that whoever could find a solution would go down in history
as one of the all-time great cryptographers. Diffie was so captivated by the

Figure 62 Whitfield Diffie.

254 The Code Book
problem of key distribution that it became the most important entry
in his special notebook entitled "Problems for an Ambitious Theory of

Cryptography." Part of Diffie's motivation came from his vision of a
wired world. Back in the 1960 s, the U.S. Department of Defense began funding a cutting-edge research organization called the Advanced
Research Projects Agency (ARPA), and one of ARPA's front-line projects
was to find a way of connecting military computers across vast distances.
This would allow a computer that had been damaged to transfer its
responsibilities to another one in the network. The main aim was to make
the Pentagon's computer infrastructure more robust in the face of nuclear
attack, but the network would also allow scientists to send messages to
each other, and perform calculations by exploiting the spare capacity of
remote computers. The ARPANet was born in 1969, and by the end of
the year there were four connected sites. The ARPANet steadily grew in
size, and in 1982 it spawned the Internet. At the end of the 1980s, nonacademic
and nongovernmental users were given access to the Internet,
and thereafter the number of users exploded. Today, more than a hundred
million people use the Internet to exchange information and send electronic
mail messages, or emails.

While the ARPANet was still in its infancy, Diffie was farsighted
enough to forecast the advent of the information superhighway and the
digital revolution. Ordinary people would one day have their own computers,
and these computers would be interconnected via phone lines.
Diffie believed that if people then used their computers to exchange emails,
they deserved the right to encrypt their messages in order
to guarantee
their privacy. However, encryption required the secure exchange of
keys. If governments and large corporations were having trouble coping
with key distribution, then the public would find it impossible, and
would effectively be deprived of the right to privacy.

Diffie imagined two strangers meeting via the Internet, and wondered
how they could send each other an encrypted message. He also considered
the scenario of a person wanting to buy a commodity on the Internet. How could that person send an e-mail containing encrypted
credit card details so that only the Internet retailer could decipher them?
In both cases, it seemed that the two parties needed to share a key, but
how could they securely exchange keys? The number of casual contacts

Alice and Bob Go Public 255
and the amount of spontaneous e-mails among the public would be enormous,
and this would mean that key distribution would be impractical.
Diffie was fearful that the necessity of key distribution would prevent the
public from having access to digital privacy, and he became obsessed with
the idea of finding a solution to the problem.

In 1974, Diffie, still an itinerant cryptographer, paid a visit to IBM's
Thomas J. Watson Laboratory, where he had been invited to give a talk.
He spoke about various strategies for attacking the key distribution problem,
but all his ideas were very tentative, and his audience was skeptical
about the prospects for a solution. The only positive response to Diffie's
presentation was from Alan Konheim, one of IBM's senior cryptographic
experts, who mentioned that someone else had recently visited the laboratory
and given a lecture that addressed the issue of key distribution.

That speaker was Martin Hellman, a professor from Stanford University
in California. That evening Diffie got in his car and began the 5,000 km
journey to the West Coast to meet the only person who seemed to share
his obsession. The alliance of Diffie and Hellman would become one of
the most dynamic partnerships in cryptography.

Martin Hellman was born in 1945 in a Jewish neighborhood in the

Bronx, but at the age of four his family moved to a predominantly Irish
Catholic neighborhood. According to Hellman, this
permanently
changed his attitude to life: "The other kids went to church and they
learned that the Jews killed Christ, so I got called 'Christ killer.' I also got
beat up. To start with, I wanted to be like the other kids, I wanted a
Christmas tree and I wanted Christmas presents. But then I realized that

I couldn't be like all the other kids, and in self-defense I adopted an attitude
of'Who would want to be like everybody else?'" Hellman traces his
interest in ciphers to this enduring desire to be
different. His colleagues
had told him he was crazy to do research in cryptography, because he
would be competing with the NSA and their
multibillion-dollar budget.
How could he hope to discover something that they did not know
already? And if he did discover anything, the NSA would classify it.

Just as Hellman was beginning his research, he came across The Code-breakers
by the historian David Kahn. This book was the first detailed discussion
of the development of ciphers, and as such it was the perfect
primer for a budding cryptographer. The Codebreakers was Hellman's only

256 The Code Book
research companion, until September 1974, when he received an unexpected
phone call from Whitfield Diffie, who had just driven across the
Continent to meet him. Hellman had never heard of Diffie, but grudgingly
agreed to a half-hour appointment later that afternoon. By the end
of the meeting, Hellman realized that Diffie was the best-informed person
he had ever met. The feeling was mutual. Hellman recalls: "I'd
promised my wife I'd be home to watch the kids, so he came home with
me and we had dinner together. He left at around midnight. Our personalities
are very different--he is much more counterculture than \(I\) am-but
eventually the personality clash was very symbiotic. It was just such a
breath of fresh air for me. Working in a vacuum had been really hard."

Since Hellman did not have a great deal of funding, he could not
afford to employ his new soulmate as a researcher.
Instead, Diffie was
enrolled as a graduate student. Together, Hellman and Diffie began to
study the key distribution problem, desperately trying to find an alternative
to the tiresome task of physically transporting keys over vast distances.
In due course they were joined by Ralph Merkle. Merkle was an
intellectual refugee, having emigrated from another research group where
the professor had no sympathy for the impossible dream of solving the
key distribution problem. Says Hellman:

Ralph, like us, was willing to be a fool. And the way to get to the top of the
heap in terms of developing original research is to be a fool, because only
fools keep trying. You have idea number 1, you get
excited, and it flops. Then
you have idea number 2, you get excited, and it flops. Then you have idea
number 99, you get excited, and it flops. Only a fool would be excited by the
100th idea, but it might take 100 ideas before one really pays off. Unless
you're foolish enough to be continually excited, you won't have the motivation,
you won't have the energy to carry it through. God rewards fools.

The whole problem of key distribution is a classic catch-22 situation. If
two people want to exchange a secret message over the phone, the sender
must encrypt it. To encrypt the secret message the sender must use a key,
which is itself a secret, so then there is the problem of transmitting the
secret key to the receiver in order to transmit the secret message. In short,
before two people can exchange a secret (an encrypted message) they
must already share a secret (the key).

When thinking about the problem of key distribution, it is helpful to consider Alice, Bob and Eve, three fictional characters who have become
the industry standard for discussions about cryptography. In a typical situation,
Alice wants to send a message to Bob, or vice versa, and Eve is trying
to eavesdrop. If Alice is sending private messages to Bob, she will
encrypt each one before sending it, using a separate key each time. Alice is
continually faced with the problem of key distribution because she has to
convey the keys to Bob securely, otherwise he cannot decrypt the messages.
One way to solve the problem is for Alice and Bob to meet up once

J > J

Figure 63 Martin Hellman.

258 The Code Book
a week and exchange enough keys to cover the messages that might be sent during the next seven days. Exchanging keys in person is certainly
secure, but it is inconvenient and, if either Alice or Bob is taken ill, the
system breaks down. Alternatively, Alice and Bob could hire couriers, which would be less secure and more expensive, but at least they have delegated
some of the work. Either way, it seems that the distribution of keys
is unavoidable. For two thousand years this was considered to be an
axiom of cryptography-an indisputable truth. However, there is a
thought experiment that seems to defy the axiom.

Imagine that Alice and Bob live in a country where the postal system
is completely immoral, and postal employees will read any unprotected
correspondence. One day, Alice wants to send an intensely personal message
to Bob. She puts it inside an iron box, closes it and secures it with a
padlock and key. She puts the padlocked box in the post and keeps the
key. However, when the box reaches Bob, he is unable to open it because
he does not have the key. Alice might consider putting the key inside
another box, padlocking it and sending it to Bob, but without the key to
the second padlock he is unable to open the second box, so he cannot
obtain the key that opens the first box. The only way
around the problem
seems to be for Alice to make a copy of her key and give it to Bob in
advance when they meet for coffee. So far, I have just restated the same
old problem in a new scenario. Avoiding key distribution seems logically
impossible--surely, if Alice wants to lock something in a box so that only
Bob can open it, she must give him a copy of the key. Or, in terms of
cryptography, if Alice wants to encipher a message so that only Bob can
decipher it, she must give him a copy of the key. Key exchange is an
inevitable part of encipherment-or is it?

Now picture the following scenario. As before, Alice wants to send an
intensely personal message to Bob. Again, she puts her secret message in an
iron box, padlocks it and sends it to Bob. When the box arrives, Bob adds
his own padlock and sends the box back to Alice. When
Alice receives the
box, it is now secured by two padlocks. She removes her own padlock, leaving
just Bob's padlock to secure the box. Finally she sends the box back to
Bob. And here is the crucial difference: Bob can now open the box because
it is secured only with his own padlock, to which he alone has the key.

Alice and Bob Go Public 259

The implications of this little story are enormous. It demonstrates that
a secret message can be securely exchanged between two people without
necessarily exchanging a key. For the first time we have a suggestion that
key exchange might not be an inevitable part of
cryptography. We can
reinterpret the story in terms of encryption. Alice uses her own key to
encrypt a message to Bob, who encrypts it again with his own key and
returns it. When Alice receives the doubly encrypted message, she
removes her own encryption and returns it to Bob, who can then remove his own encryption and read the message.

It seems that the problem of key distribution might have been solved,
because the doubly encrypted scheme requires no exchange of keys. However,
there is a fundamental obstacle to implementing a system in which

Alice encrypts, Bob encrypts, Alice decrypts and Bob decrypts. The problem
is the order in which the encryptions and decryptions are performed.
In general, the order of encryption and decryption is crucial, and should
obey the maxim "last on, first off." In other words, the last stage of
encryption should be the first to be decrypted. In the above scenario, Bob
performed the last stage of encryption, so this should have been the first
to be decrypted, but it was Alice who removed her encryption first, before
Bob removed his. The importance of order is most easily grasped by
examining something we do every day. In the morning we put on our
socks, and then we put on our shoes, and in the evening we remove our
shoes before removing our socks--it is impossible to remove the socks
before the shoes. We must obey the maxim "last on, first off."

Some very elementary ciphers, such as the Caesar cipher, are so simple
that order does not matter. However, in the 1970s it seemed that any form
of strong encryption must always obey the "last on, first off" rule. If a message
is encrypted with Alice's key and then with Bob's key, then it must
be decrypted with Bob's key before it can be decrypted with Alice's key.
Order is crucial even with a monoalphabetic substitution cipher. Imagine
that Alice and Bob have their own keys, as shown on the
next page, and let
us take a look at what happens when the order is
incorrect. Alice uses her
key to encrypt a message to Bob, then Bob reencrypts the result using his
own key; Alice uses her key to perform a partial
```

decryption, and finally Bob
attempts to use his key to perform the full decryption.

```
260 The Code Book

Alice's key
abcdefgh i j k Imnopq rstuvwxyz HFSUGTAKVDEOYJ BPNXWCQR IMZL

Bob's key

\section*{abcdefgh i j k Imnopq rstuvwxyz CPMGATNOJ EFWIQBURYHXSDZKLV}

Messagemeetmeatnoon

Encrypted with Alice's keyYGGCYGHEJBBJ

Encrypted with Bob's keyLNNMINOMEPPE

Decrypted with Alice's keyZQQXZQLXKPPK

Decrypted with Bob's keywnntwnytxbbx

The result is nonsense. However, you can check for yourself that if the
decryption order were reversed, and Bob decrypted before Alice, thus
obeying the "last on, first off" rule, then the result would have been the
original message. But if order is so important, why did the padlock system
seem to work in the anecdote about locked boxes? The answer is that
order is not important for padlocks. I can apply twenty padlocks to a box
and undo them in any order, and at the end the box will open. Unfortunately,
encryption systems are far more sensitive than padlocks
when it
comes to order.

Although the doubly padlocked box approach would not work for real-world
cryptography, it inspired Diffie and Hellman to search for a practical
method of circumventing the key distribution problem. They spent month
after month attempting to find a solution. Although every idea ended in
failure, they behaved like perfect fools and persevered. Their research concentrated
on the examination of various mathematical functions. A function
is any mathematical operation that turns one number into another
number. For example, "doubling" is a type of function, because it turns the
number 3 into 6, or the number 9 into 18. Furthermore, we can think of all
forms of computer encryption as functions because they turn one number
(the plaintext) into another number (the ciphertext).

Most mathematical functions are classified as two-way functions
because they are easy to do, and easy to undo. For example, "doubling"

Alice and Bob Co Public 261
is a two-way function because it is easy to double a number to generate a
new number, and just as easy to undo the function and get from the doubled
number back to the original number. For example, if we know that
the result of doubling is 26 , then it is trivial to reverse the function and
deduce that the original number was 13. The easiest way to understand
the concept of a two-way function is in terms of an
everyday activity. The
act of turning on a light switch is a function, because it turns an ordinary
lightbulb into an illuminated lightbulb. This function is two-way because
if a switch is turned on, it is easy enough to turn it off and return the light-bulb
to its original state.

However, Diffie and Hellman were not interested in two-way functions.
They focused their attention on one-way functions. As the name
suggests, a one-way function is easy to do but very
difficult to undo. In
other words, two-way functions are reversible, but one-way functions are
not reversible. Once again, the best way to illustrate a one-way function
is in terms of an everyday activity. Mixing yellow and blue paint to make
green paint is a one-way function because it is easy to mix the paint, but
impossible to unmix it. Another one-way function is the cracking of an
egg, because it is easy to crack an egg but impossible then to return the
egg to its original condition. For this reason, one-way functions are sometimes
called Humpty Dumpty functions.

Modular arithmetic, sometimes called dock arithmetic in schools, is an
area of mathematics that is rich in one-way functions. In modular arithmetic,
mathematicians consider a finite group of numbers arranged in a
loop, rather like the numbers on a clock. For example, Figure 64 shows a
clock for modular 7 (or mod 7), which has only the 7
numbers from 0 to
6. To work out \(2+3\), we start at 2 and move around 3 places to reach 5,
which is the same answer as in normal arithmetic. To work
out 2 -I-6
we
start at 2 and move around 6 places, but this time we go around the loop
and arrive at 1 , which is not the result we would get in normal arithmetic.
These results can be expressed as:
\(2+3=5(\bmod 7)\) and \(2+6=1(\bmod 7)\)

Modular arithmetic is relatively simple, and in fact we do it every day
when we talk about time. If it is 9 o'clock now, and we have a meeting
8 hours from now, we would say that the meeting is at 5 o'clock, not

\section*{262 The Code Book}

17 o'clock. We have mentally calculated \(9+8\) in (mod 12). Imagine a clock face, look at 9, and then move around 8 spaces, and we end up at 5:
\(9+8=5(\bmod 12)\)

Rather than visualizing clocks, mathematicians often take the shortcut of performing modular calculations according to the following recipe. First, perform the calculation in normal arithmetic. Second, if we want to know
the answer in (mod \(x\) ), we divide the normal answer by \(x\) and note the
remainder. This remainder is the answer in (mod x). To find the answer to
11x9 (mod 13), we do the following:
\(11 \times 9=99\)

99-13
= 7, remainder 8
\(11 \times 9=8(\bmod 13)\)

Functions performed in the modular arithmetic environment tend to
behave erratically, which in turn sometimes makes them one-way functions.
This becomes evident when a simple function in normal arithmetic
is compared with the same simple function in modular arithmetic. In the
former environment the function will be two-way and easy to reverse; in
the latter environment it will be one-way and hard to reverse. As an example,
let us take the function \(3 X\). This means take a number \(x\), then
multiply 3 by itself* times in order to get the new number. For example,
if \(x=2\), and we perform the function, then:
\(3^{\wedge}=32=3 \times 3=9\).

In other words, the function turns 2 into 9. In normal arithmetic, as the
value of \(x\) increases so does the result of the function. Hence, if we were
given the result of the function it would be relatively easy to work back-

Figure
64 Modular arithmetic is
performed on a finite set of numbers, which can be thought of as numbers
on a clock face. In this case, we can
work out \(6+5\) in modular 7 by
starting at 6 and moving around five spaces, which brings us to 4.
ward and deduce the original number. For example, if the result is 81, we
can deduce that \(x\) is 4 , because \(34=81\). If we made a mistake and guessed
that x is 5 , we could work out that \(35=243\), which tells us that our choice
of \(x\) is too big. We would then reduce our choice of \(x\) to 4, and we would
have the right answer. In short, even when we guess wrongly we can home
in on the correct value of \(x\), and thereby reverse the function.

However, in modular arithmetic this same function does not behave so
sensibly. Imagine that we are told that \(3 X\) in (mod 7) is 1, and we are asked
to find the value of \(x\). No value springs to mind, because we are generally
unfamiliar with modular arithmetic. We could take a guess that \(x=5\), and
we could work out the result of 35 (mod 7). The answer turns out to be 5,
which is too big, because we are looking for an answer of just 1. We might
be tempted to reduce the value of \(x\) and try again. But we would be heading in the wrong direction, because the actual answer is \(\mathrm{x}=6\).

In normal arithmetic we can test numbers and can sense whether we
are getting warmer or colder. The environment of modular arithmetic
gives no helpful clues, and reversing functions is much harder. Often, the only way to reverse a function in modular arithmetic is to compile a table
by calculating the function for many values of \(x\) until the right answer is
found. Table 25 shows the result of calculating several values of the function
in both normal arithmetic and modular arithmetic. It clearly demonstrates
the erratic behavior of the function when calculated in modular
arithmetic. Although drawing up such a table is only a little tedious when
we are dealing with relatively small numbers, it would be excruciatingly
painful to build a table to deal with a function such as 453* (mod 21,997).
This is a classic example of a one-way function, because I could pick a
value for \(x\) and calculate the result of the function, but if I gave you a

Table 25 Values of the function \(V^{*}\) calculated in normal arithmetic (row 2) and modular arithmetic (row 3). The function increases continuously in normal arithmetic, but is highly erratic in modular arithmetic.
x123456
\(3 * 3 \quad 92781243729\)

3*(mod7) 326451

\section*{264 The Code Book}
result, say 5,787, you would have enormous difficulty in reversing the
function and deducing my choice of \(x\). It took me just
seconds to do my
calculation and generate 5,787, but it would take you hours to draw up the
table and work out my choice of \(x\).

After two years of focusing on modular arithmetic and one-way functions,
Hellman's foolishness began to pay off. In the spring of

1976 he hit
upon a strategy for solving the key exchange problem. In half an hour of
frantic scribbling, he proved that Alice and Bob could agree on a key
without meeting, thereby disposing of an axiom that had lasted for centuries.
Hellman's idea relied on a one-way function of the form Yx (mod P). Initially, Alice and Bob agree on values for \(Y\) and P. Almost any values
are fine, but there are some restrictions, such as \(Y\) being smaller than \(P\). These values are not secret, so Alice can telephone Bob and suggest
that, say, \(Y=7\) and \(P=11\). Even if the telephone line is insecure and
nefarious Eve hears this conversation, it does not matter, as we shall see
later. Alice and Bob have now agreed on the one-way function lx (mod
11). At this point they can begin the process of trying to establish a secret
key without meeting. Because they work in parallel, I explain their actions
in the two columns of Table 26.

Having followed the stages in Table 26 , you will see that, without meeting,
Alice and Bob have agreed on the same key, which they can use to
encipher a message. For example, they could use their
number, 9, as the
key for a DES encryption. (DES actually uses much larger numbers as the
key, and the exchange process described in Table 26 would be
performed with much larger numbers, resulting in a suitably large DES
key.) By using Hellman's scheme, Alice and Bob have been able to agree
on a key, yet they did not have to meet up and whisper the key to each
other. The extraordinary achievement is that the secret key was agreed via an exchange of information on a normal telephone line. But
if Eve tapped
this line, then surely she also knows the key?

Let us examine Hellman's scheme from Eve's point of view. If she is
tapping the line, she knows only the following facts: that the function is lx (mod 11), that Alice sends \(a=2\) and that Bob sends \(p=4\). In order to
find the key, she must either do what Bob does, which is turn a into the key by knowing \(B\), or do what Alice does, which is turn (3 into the key by
knowing A. However, Eve does not know the value of \(A\) or \(B\) because

Alice and Bob Go Public 265

Table 26 The general one-way function is Yx (mod P). Alice and Bob have chosen values
for Kand \(P\), and hence have agreed on the one-way function 7X (mod 11).

Alice

Bob

Stage 1 Alice chooses a number, say 3,
and keeps it secret.
We label her number A.

Stage!Alice puts 3 into the one-way
function and works out the
```

result of 1A (mod 11):
7J(mod 11) = 343 (mod 11) = 2

```
Stage 3Alice calls the result of this
calculation \(a\), and she sends
her result, 2, to Bob.
Bob chooses a number, say 6,
and keeps it secret.
We will label his number \(B\).
Bob puts 6 into the one-way
function and works out the
result of 7B (mod 11):
\(7 \ll(\bmod 11)=117,649(\bmod 11)=4\)
Bob calls the result of this
calculation \(p\), and he sends
his result, 4, to Alice.

The swapOrdinarily this would be a crucial moment, because

Alice and Bob are exchanging information, and therefore this is
an opportunity for Eve to eavesdrop and find out the details of the
information. However, it turns out that Eve can listen in without it
affecting the ultimate security of the system. Alice and Bob could use
the same telephone line that they used to agree the values for \(Y\)
and \(P\), and Eve could intercept the two numbers that are being
exchanged, 2 and 4. However, these numbers are not the key,
which is why it does not matter if Eve knows them.

Stage 4 Alice takes Bob's result, and works out the result of \(p-4\) (mod 11):
\(43(\bmod 11)=64(\bmod 11)=9\)

Bob takes Alice's result, and works
out the result of \(a B\) (mod 11):
\(2<(\bmod 11)=64(\bmod 11)=9\)

The key

Miraculously, Alice and Bob have ended up
with the same number, 9.

This is the key!

266 The Code Book

Alice and Bob have not exchanged these numbers, and have kept them
secret. Eve is stymied. She has only one hope: in theory,
she could work
out A from a, because a was a consequence of putting A into a function,
and Eve knows the function. Or she could work out B from p, because 3
was a consequence of putting \(B\) into a function, and once again Eve
knows the function. Unfortunately for Eve, the function is one-way, so
whereas it was easy for Alice to turn A into a and for Bob to turn B into
P, it is very difficult for Eve to reverse the process, especially if the numbers
are very large.

Bob and Alice exchanged just enough information to allow them to
establish a key, but this information was insufficient for Eve to work out
the key. As an analogy for Hellman's scheme, imagine a cipher that somehow
uses color as the key. First, let us assume that everybody, including
Alice, Bob and Eve, has a three-liter pot containing one liter of yellow
paint. If Alice and Bob want to agree on a secret key, each of them adds
one liter of their own secret color to their own pot.
Alice might add a peculiar
shade of purple, while Bob might add crimson. Each sends their own
mixed pot to the other. Finally, Alice takes Bob's mixture and adds one liter
of her own secret color, and Bob takes Alice's mixture and adds one liter
of his own secret color. Both pots should now be the same color, because
they both contain one liter of yellow, one liter of purple and one liter of
crimson. It is the exact color of the doubly contaminated pots that is used
as the key. Alice has no idea what color was added by Bob, and Bob has no
idea what color was added by Alice, but they have both
achieved the same
end. Meanwhile, Eve is furious. Even if she intercepts the intermediate pots
she cannot work out the color of the final pots, which is the agreed key.
She might see the color of the mixed pot containing yellow and Alice's
secret color on its way to Bob, and she might see the color of the mixed
pot containing yellow and Bob's secret color on its way to Alice, but in
order to work out the key she really needs to know Alice and Bob's original
secret colors. However, Eve cannot work out Alice and Bob's secret colors
by looking at the mixed pots. Even if she takes a sample from one of
the mixed paints, she cannot unmix the paint to find out the secret color,
because mixing paint is a one-way function.

Hellman's breakthrough came while he was working at home late one
night, so by the time he had finished his calculations it was too late to call

Alice and Bob Go Public 267

Diffie and Merkle. He had to wait until the following morning to reveal
his discovery to the only two other people in the world who had believed
that a solution to the key distribution problem was even possible. "The
jnuse whispered to me," says Hellman, "but we all laid the foundations
together." Diffie immediately recognized the power of Hellman's breakthrough:
"Marty explained his system of key exchange in all its unnerving
simplicity. Listening to him, I realized that the notion had been at the edge of my mind for some time, but had never really broken
through."

The Diffie-Hellman-Merkle key exchange scheme, as it is known,
enables Alice and Bob to establish a secret via public discussion. It is one
of the most counterintuitive discoveries in the history of science, and it
forced the cryptographic establishment to rewrite the rules of encryption.
Diffie, Hellman and Merkle publicly demonstrated their discovery at the
National Computer Conference in June 1976, and astonished the audience
of cryptoexperts. The following year they filed for a patent. Henceforth,
Alice and Bob no longer had to meet in order to exchange a key. Instead,
Alice could just call Bob on the phone, exchange a couple of numbers
with him, mutually establish a secret key and then proceed to encrypt.

Although Diffie-Hellman-Merkle key exchange was a gigantic leap forward,
the system was not perfect because it was inherently inconvenient.

Imagine that Alice lives in Hawaii, and that she wants to send an email
to Bob in Istanbul. Bob is probably asleep, but the joy of e-mail is that
Alice can send a message at any time, and it will be
waiting on Bob's computer
when he wakes up. However, if Alice wants to encrypt her message, then she needs to agree a key with Bob, and in
order to perform
the key exchange it is preferable for Alice and Bob to be on-line at the
same time--establishing a key requires a mutual exchange of information.
In effect, Alice has to wait until Bob wakes up.
Alternatively, Alice could
transmit her part of the key exchange, and wait 12 hours for Bob's reply,
at which point the key is established and Alice can, if she is not asleep
herself, encrypt and transmit the message. Either way, Hellman's key
exchange system hinders the spontaneity of email.

Hellman had shattered one of the tenets of cryptography and proved
that Bob and Alice did not have to meet to agree a secret key. Next, somebody
merely had to come up with a more efficient scheme for overcoming
the problem of key distribution.

268 The Code Book

The Birth of Public Key Cryptography

Mary Fisher has never forgotten the first time that Whitfield Diffie asked
her out on a date: "He knew \(I\) was a space buff, so he suggested we go and
see a launch. Whit explained that he was leaving that evening to see Sky-lab
take off, and so we drove all night, and we got there at about 3 a.m.
The bird was on the path, as they used to say in those days. Whit had
press credentials, but I didn't. So when they asked for my identification
and asked who I was, Whit said 'My wife.' That was 16
November 1973."
They did eventually marry, and during the early years Mary supported her
husband during his cryptographic meditations. Diffie was still being
employed as a graduate student, which meant that he received only a
meager salary. Mary, an archaeologist by training, took a job with British
Petroleum in order to make ends meet.

While Martin Hellman had been developing his method of key exchange, Whitfield Diffie had been working on a completely different
approach to solving the problem of key distribution. He often went
through long periods of barren contemplation, and on one occasion in
1975 he became so frustrated that he told Mary that he was just a failed
scientist who would never amount to anything. He even told her that she
ought to find someone else. Mary told him that she had absolute faith in
him, and just two weeks later Diffie came up with his truly brilliant idea.

He can still recall how the idea flashed into his mind, and then almost
vanished: "I walked downstairs to get a Coke, and almost forgot about the
idea. I remembered that I'd been thinking about something interesting,
but couldn't quite recall what it was. Then it came back in a real adrenaline
rush of excitement. I was actually aware for the first time in my work
on cryptography of having discovered something really valuable. Everything
that I had discovered in the subject up to this point seemed to me
to be mere technicalities." It was midafternoon, and he had to wait a couple
of hours before Mary returned. "Whit was waiting at the door," she
recalls. "He said he had something to tell me and he had a funny look on
his face. I walked in and he said, 'Sit down, please, I want to talk to you.
I believe that I have made a great discovery--I know I am the first person
to have done this.' The world stood still for me at that moment. I felt like
I was living in a Hollywood film."

Diffie had concocted a new type of cipher, one that incorporated a
so-called asymmetric key. So far, all the encryption
techniques described in
this book have been symmetric, which means that the unscrambling process
is simply the opposite of scrambling. For example, the Enigma machine
uses a certain key setting to encipher a message, and the receiver uses an
identical machine in the same key setting to decipher it. Similarly, DES
encipherment uses a key to perform 16 rounds of
scrambling, and then
DES decipherment uses the same key to perform the 16 rounds in reverse.
Both sender and receiver effectively have equivalent knowledge, and they both use the same key to encrypt and decrypt-their relationship is
symmetric. On the other hand, in an asymmetric key system, as the name
suggests, the encryption key and the decryption key are not identical. In an
asymmetric cipher, if Alice knows the encryption key she can encrypt a
message, but she cannot decrypt a message. In order to decrypt, Alice must
have access to the decryption key. This distinction between the encryption
and decryption keys is what makes an asymmetric cipher special.

At this point it is worth stressing that although Diffie had conceived of
the general concept of an asymmetric cipher, he did not actually have a
specific example of one. However, the mere concept of an asymmetric
cipher was revolutionary. If cryptographers could find a genuine working
asymmetric cipher, a system that fulfilled Diffie's requirements, then the
implications for Alice and Bob would be enormous. Alice could create
her own pair of keys: an encryption key and a decryption key. If we
assume that the asymmetric cipher is a form of computer encryption,
then Alice's encryption key is a number, and her
decryption key is a different
number. Alice keeps the decryption key secret, so it is commonly
referred to as Alice's private key. However, she publishes the encryption
key so that everybody has access to it, which is why it is commonly
referred to as Alice's public key. If Bob wants to send Alice a message, he
simply looks up her public key, which would be listed in something akin
to a telephone directory. Bob then uses Alice's public key to encrypt the
message. He sends the encrypted message to Alice, and when it arrives
Alice can decrypt it using her private decryption key. Similarly, if Charlie,
Dawn or Edward want to send Alice an encrypted message, they too can
look up Alice's public encryption key, and in each case only Alice has
access to the private decryption key required to decrypt the messages.

270 The Code Book

The great advantage of this system is that there is no toing and froing,
as there is with Diffie-Hellman-Merkle key exchange. Bob does not have to wait to get information from Alice before he can encrypt and send a message to her, he merely has to look up her public encryption key.

Furthermore, the asymmetric cipher still overcomes the problem of key
distribution. Alice does not have to transport the public encryption key
securely to Bob: in complete contrast, she can now publicize her public
encryption key as widely as possible. She wants the whole world to know
her public encryption key so that anybody can use it to send her
encrypted messages. At the same time, even if the whole world knows
Alice's public key, none of them, including Eve, can decrypt any messages
encrypted with it, because knowledge of the public key will not help
in decryption. In fact, once Bob has encrypted a message using Alice's
public key, even he cannot decrypt it. Only Alice, who possesses the
private key, can decrypt the message.

This is the exact opposite of a traditional symmetric cipher, in which
Alice has to go to great lengths to transport the encryption key securely to Bob. In a symmetric cipher the encryption key is the same as the
decryption key, so Alice and Bob must take enormous precautions to
ensure that the key does not fall into Eve's hands. This is the root of the key distribution problem.

Returning to padlock analogies, asymmetric cryptography can be
thought of in the following way. Anybody can close a padlock simply by
clicking it shut, but only the person who has the key can open it. Locking
(encryption) is easy, something everybody can do, but unlocking (decryption)
can be dene only by the owner of the key. The trivial knowledge of
knowing how to click the padlock shut does not tell you how to unlock it.
Taking the analogy further, imagine that Alice designs a padlock and key.
She guards the key, but she manufactures thousands of replica padlocks
and distributes them to post offices all over the world. If Bob wants to
send a message, he puts it in a box, goes to the local post office, asks for
an "Alice padlock" and padlocks the box. Now he is unable to unlock the
box, but when Alice receives it she can open it with her unique key. The
padlock and the process of clicking it shut is equivalent to the public encryption key, because everyone has access to the padlocks, and every

Alice and Bob Go Public 271
one can use a padlock to seal a message in a box. The padlock's key is
equivalent to the private decryption key, because only Alice has it, only
she can open the padlock, and only she can gain access to the message in
the box.

The system seems simple when it is explained in terms of padlocks, but
it is far from trivial to find a mathematical function that does the same
job, something that can be incorporated into a workable cryptographic system. To turn asymmetric ciphers from a great idea into a practical
invention, somebody had to discover an appropriate mathematical function.

Diffie envisaged a special type of one-way function, one that could
be reversed under exceptional circumstances. In Diffie's asymmetric system,

Bob encrypts the message using the public key, but he is unable to
decrypt it--this is essentially a one-way function. However, Alice is able to
decrypt the message because she has the private key, a special piece of
information that allows her to reverse the function. Once again, padlocks
are a good analogy-shutting the padlock is a one-way function, because in
general it is hard to open the padlock unless you have something special (the
key), in which case the function is easily reversed.

Diffie published an outline of his idea in the summer of 1975, whereupon
other scientists joined the search for an appropriate one-way
function, one that fulfilled the criteria required for an asymmetric cipher.
Initially there was great optimism, but by the end of the year nobody had
been able to find a suitable candidate. As the months passed, it seemed
increasingly likely that special one-way functions did not exist. It seemed
that Diffie's idea worked in theory but not in practice. Nevertheless, by
the end of 1976 the team of Diffie, Hellman and Merkle had revolutionized
the world of cryptography. They had persuaded the rest of the world
that there was a solution to the key distribution problem, and had created
Diffie-Hellman-Merkle key exchange--a workable but
imperfect system.
They had also proposed the concept of an asymmetric cipher--a perfect
but as yet unworkable system. They continued their research at Stanford
University, attempting to find a special one-way function that would
make asymmetric ciphers a reality. However, they failed to make the discovery.

The race to find an asymmetric cipher was won by another trio of
researchers, based \(5,000 \mathrm{~km}\) away on the East Coast of America.

272 The Code Book

I
Prime Suspects
"I walked into Ron Rivest's office," recalls Leonard Adleman, "and Ron
had this paper in his hands. He started saying, These Stanford guys have
this really blah, blah, blah.' And I remember thinking,
'That's nice, Ron,
but I have something else \(I\) want to talk about.' I was entirely unaware of
the history of cryptography and I was distinctly uninterested in what he was saying." The paper that had made Ron Rivest so excited was by Diffie and Hellman, and it described the concept of asymmetric ciphers. Eventually
Rivest persuaded Adleman that there might be some interesting
mathematics in the problem, and together they resolved to try to find a
one-way function that fitted the requirements of an asymmetric cipher. They
were joined in the hunt by Adi Shamir. All three men were researchers on the
eighth floor of the MIT Laboratory for Computer Science.

Rivest, Shamir and Adleman formed a perfect team. Rivest is a computer
scientist with a tremendous ability to absorb new ideas and apply
them in unlikely places. He always kept up with the latest scientific
papers, which inspired him to come up with a whole series of weird and
wonderful candidates for the one-way function at the heart of an asymmetric
cipher. However, each candidate was flawed in some way. Shamir,
another computer scientist, has a lightning intellect and an ability to see
through the debris and focus on the core of a problem. He too regularly
generated ideas for formulating an asymmetric cipher, but his ideas were
also inevitably flawed. Adleman, a mathematician with enormous stamina, rigor and patience, was largely responsible for spotting the flaws in
the ideas of Rivest and Shamir, ensuring that they did not waste time following
false leads. Rivest and Shamir spent a year coming up with new
ideas, and Adleman spent a year shooting them down. The threesome
began to lose hope, but they were unaware that this process of continual
failure was a necessary part of their research, gently steering them away
from sterile mathematical territory and toward more fertile ground. In
due course, their efforts were rewarded.

In April 1977, Rivest, Shamir and Adleman spent Passover at the house
of a student, and had consumed significant amounts of Manischewitz
wine before returning to their respective homes some time around midnight.
Rivest, unable to sleep, lay on his couch reading a mathematics

Alice and Bob Co Public 273
textbook. He began mulling over the question that had been puzzling
him for weeks-is it possible to build an asymmetric cipher? Is it possible
to find a one-way function that can be reversed only if the receiver has
some special information? Suddenly, the mists began to clear and he had
a revelation. He spent the rest of that night formalizing his idea, effectively
writing a complete scientific paper before daybreak.
Rivest had
made a breakthrough, but it had grown out of a yearlong collaboration
with Shamir and Adleman, and it would not have been possible without
them. Rivest finished off the paper by listing the authors alphabetically;
Adleman, Rivest, Shamir.

The next morning, Rivest handed the paper to Adleman, who went
through his usual process of trying to tear it apart, but this time he could
find no faults. His only criticism was with the list of authors. "I told Ron
to take my name off the paper," recalls Adleman. "I told him that it
was his invention, not mine. But Ron refused and we got into a discussion
about it. We agreed that \(I\) would go home and contemplate it for one
night, and consider what \(I\) wanted to do. I went back the next day and
suggested to Ron that \(I\) be the third author. I recall
thinking that this
paper would be the least interesting paper that I will ever be on."
Adleman could not have been more wrong. The system, dubbed RSA

Figure 65 Ronald Rivest, Adi Shamir and Leonard Adlem;
(Rivest, Shamir, Adleman) as opposed to ARS, went on to become the
most influential cipher in modern cryptography.

Before exploring Rivest's idea, here is a quick reminder of what scientists
were looking for in order to build an asymmetric cipher:
(1) Alice must create a public key, which she would then publish so that Bob (and everybody else) can use it to encrypt messages to her.
Because the public key is a one-way function, it must be virtually
impossible for anybody to reverse it and decrypt Alice's messages.
(2) However, Alice needs to decrypt the messages being sent to her. She must therefore have a private key, some special piece of information,
which allows her to reverse the effect of the public key. Therefore, Alice (and Alice alone) has the power to decrypt any messages sent to her.

At the heart of Rivest's asymmetric cipher is a one-way function based on
the sort of modular functions described earlier in the chapter. Rivest's
one-way function can be used to encrypt a message--the message, which
is effectively a number, is put into the function, and the result is the
ciphertext, another number. I shall not describe Rivest's one-way function
in detail (for which see Appendix J), but I shall explain one particular
aspect of it, known simply as \(N\), because it is \(N\) that makes this one-way
function reversible under certain circumstances, and therefore ideal for use as an asymmetric cipher.

N is important because it is a flexible component of the one-way function,
which means that each person can choose a different value of \(N\), and
personali/e the one-way function. In order to choose her personal value of \(N\), Alice picks two prime numbers,/; and \(q\), and multiplies them together. A
prime number is one that has no divisors except itself and 1. For example,

7 is a prime number because no numbers except 1 and 7 will divide into it
without leaving a remainder. Likewise, 13 is a prime
number because no
numbers except 1 and 13 will divide into it without leaving a remainder.
However, 8 is not a prime number, because it can be divided by 2 and 4.

So, Alice could choose her prime numbers to be \(\mathrm{p}=17,159\) and q -- 10,247. Multiplying these two numbers together gives \(\mathrm{N}=17,159 \mathrm{x}\)
10,247 = 175,828,273. Alice's choice of TV effectively becomes her public

Alice and Bob Go Public 275
encryption key, and she could print it on her business card, post it on the
Internet, or publish it in a public key directory along with everybody
else's value of \(N\). If Bob wants to encrypt a message to Alice, he looks up
Alice's value of \(N(175,828,273)\) and then inserts it into the general form
of the one-way function, which would also be public
knowledge. Bob
now has a one-way function tailored with Alice's public key, so it could
be called Alice's one-way function. To encrypt a message to Alice, he
takes Alice's one-way function, inserts the message, notes down the result
and sends it to Alice.

At this point the encrypted message is secure because nobody can decipher
it. The message has been encrypted with a one-way
function, so
reversing the one-way function and decrypting the message is, by definition,
very difficult. However, the question remains-how can Alice
decrypt the message? In order to read messages sent to her, Alice must
have a way of reversing the one-way function. She needs to have access
to some special piece of information that allows her to decrypt the message.
Fortunately for Alice, Rivest designed the one-way function so that
it is reversible to someone who knows the values off and q, the two prime
numbers that are multiplied together to give N. Although Alice has told
the world that her value for \(T V\) is \(175,828,273\), she has not revealed her values
for \(p\) and \(q\), so only she has the special information required to
decrypt her own messages.

We can think of \(N\) as the public key, the information that is available
to everybody, the information required to encrypt messages to Alice.
Whereas, \(p\) and \(q\) are the private key, available only to Alice, the information
required to decrypt these messages.

The exact details of how \(p\) and \(q\) can be used to reverse the one-way
function are outlined in Appendix J. However, there is one question that
must be addressed immediately. If everybody knows \(N\), the public key,
then surely people can deduce \(p\) and \(q\), the private key, and read Alice's
messages? After all, TV was created from/' and q. In fact, it turns out that if
TV is large enough, it is virtually impossible to deduce/1 and \(q\) from \(N\), and
this is perhaps the most beautiful and elegant aspect of the RSA asymmetric
cipher.

Alice created \(N\) by choosing \(p\) and \(q\), and then multiplying them
together. The fundamental point is that this is in itself a one-way function.

\section*{276 The Code Book}

To demonstrate the one-way nature of multiplying primes, we can take
two prime numbers, such as 9,419 and 1,933, and multiply them together.
With a calculator it takes just a few seconds to get the answer, 18,206,927.
However, if instead we were given 18,206,927 and asked to find the prime
factors (the two numbers that were multiplied to give 18,206,927) it
would take us much longer. If you doubt the difficulty of finding prime
factors, then consider the following. It took me just ten seconds to generate
the number 1,709,023, but it will take you and a calculator the best part
of an afternoon to work out the prime factors.

This system of asymmetric cryptography, known as RSA, is said to be a
form of public key cryptography. To find out how secure RSA is, we can examine
it from Eve's point of view, and try to break a message from Alice to
Bob. To encrypt a message to Bob, Alice must look up Bob's public key. To
create his public key, Bob picked his own prime numbers, \(p B\) and \(q B\), and
multiplied them together to get \(N B\). He has kept \(p E\) and \(q B\) secret, because
these make up his private decryption key, but he has published NB, which
is equal to \(408,508,091\). So Alice inserts Bob's public key NB into the general
one-way encryption function, and then encrypts her message to him.

When the encrypted message arrives, Bob can reverse the function and
decrypt it using his values for \(p B\) and \(q B\), which make up his private key.
Meanwhile, Eve has intercepted the message en route. Her only hope of
decrypting the message is to reverse the one-way function, and this is possible
only if she knows \(p B\) and \(q B\). Bob has kept/>B and \(q B\)
secret, but Eve, like
everybody else, knows NB is 408,508,091. Eve then attempts to deduce the
values forpB and qB by working out which numbers would need to be multiplied
together to get 408,508,091, a process known as factoring.

Factoring is very time-consuming, but exactly how long would it take
Eve to find the factors of \(408,508,091\) ? There are various recipes for trying
to factor NB. Although some recipes are faster than others, they all essentially
involve checking each prime number to see if it divides into NB without a remainder. For example, 3 is a prime number, but it is not a factor
of \(408,508,091\) because 3 will not perfectly divide into 408,508,091.
So Eve moves on to the next prime number, 5. Similarly, 5 is not a factor,
so Eve moves on to the next prime number, and so on. Eventually, Eve
arrives at 18,313, the 2,000 th prime number, which is indeed a factor of 408,508,091. Having found one factor, it is easy to find the other one,
which turns out to be 22,307 . If Eve had a calculator and was able to check
four primes a minute, then it would have taken her 500 minutes, or more
than 8 hours, to fmd/>B and \(q B\). In other words, Eve would be able to work
out Bob's private key in less than a day, and could
therefore decipher the
intercepted message in less than a day.

This is not a very high level of security, but Bob could have chosen
much larger prime numbers and increased the security of his private key.
For example, he could have chosen primes that are as big as 10^5 (this
means 1 followed by 65 zeros, or one hundred thousand, million, million,
million, million, million, million, million, million, million, million).
This would have resulted in a value for N that would have been
roughly 1065 x 1065, which is 10130. A computer could multiply the two
primes and generate N in just a second, but if Eve wanted to reverse the
process and work out \(p\) and \(q\), it would take inordinately longer. Exactly
how long depends on the speed of Eve's computer. Security expert Sim-son
Garfmkel estimated that a 100 MHz Intel Pentium computer with 8
MB of RAM would take roughly 50 years to factor a number as big as
10130. Cryptographers tend to have a paranoid streak and consider worst-case
scenarios, such as a worldwide conspiracy to crack their ciphers. So,
Garfinkel considered what would happen if a hundred million personal
computers (the number sold in 1995) ganged up together.

The result is
that a number as big as 10130 could be factored in about 15 seconds.
Consequently, it is now generally accepted that for genuine security it is
necessary to use even larger primes. For important banking transactions, \(N\) tends to be at least 10308, which is ten million billion billion billion
billion billion billion billion billion billion billion billion billion billion
billion billion billion billion billion billion times bigger than 10130. The
combined efforts of a hundred million personal computers would take
more than one thousand years to crack such a cipher. With sufficiently
large values off and \(q\), RSA is impregnable.

The only caveat for the security of RSA public key cryptography is that
at some time in the future somebody might find a quick way to factor \(N\). It is conceivable that a decade from now, or even tomorrow, somebody
will discover a method for rapid factoring, and thereafter RSA will
become useless. However, for over two thousand years mathematicians
have tried and failed to find a shortcut, and at the moment factoring

278 The Code Book
remains an enormously time-consuming calculation. Most mathematicians
believe that factoring is an inherently difficult task, and that there is
some mathematical law that forbids any shortcut. If we assume they are
right, then RSA seems secure for the foreseeable future.

The great advantage of RSA public key cryptography is that it does
away with all the problems associated with traditional
ciphers and key
exchange. Alice no longer has to worry about securely transporting the
key to Bob, or that Eve might intercept the key. In fact, Alice does not
care who sees the public key--the more the merrier, because the public
key helps only with encryption, not decryption. The only thing that
needs to remain secret is the private key used for decryption, and Alice can keep this with her at all times.

RSA was first announced in August 1977, when Martin Gardner wrote an article entitled "A New fund of Cipher that Would Take Millions of
Years to Break" for his "Mathematical Games" column in Scientific American. After explaining how public key cryptography works, Gardner issued
a challenge to his readers. He printed a ciphertext and also provided the
public key that had been used to encrypt it:
\(\mathrm{N}=\)
\(114,381,625,757,888,867,669,235,779,976,146,612,010,218,296\),
\(721,242,362,562,561,842,935,706,935,245,733,897,830,597,123,563\), \(958,705,058,989,075,147,599,290,026,879,543,541\).

The challenge was to factor \(N\) into \(p\) and \(q\), and then use these numbers to
decrypt the message. The prize was \(\$ 100\). Gardner did not have space to
explain the nitty-gritty of RSA, and instead he asked readers to write to MIT's Laboratory for Computer Science, who in turn would send back a
technical memorandum that had just been prepared. Rivest, Shamir and
Adleman were astonished by the three thousand requests they received.
However, they did not respond immediately, because they
were concerned
that public distribution of their idea might jeopardize their
chances of getting a patent. When the patent issues were eventually
resolved, the trio held a celebratory party at which
professors and students
consumed pizzas and beer while stuffing envelopes with technical memoranda
for the readers of Scientific American.

As for Gardner's challenge, it would take 17 years before the cipher

Alice and Bob Go Public 279
would be broken. On April 26, 1994, a team of six hundred volunteers announced the factors of N :
q =
\(3,490,529,510,847,650,949,147,849,619,903,898,133,417,764\), \(638,493,387,843,990,820,577\)
\(\mathrm{p}=\)
\(32,769,132,993,266,709,549,961,988,190,834,461,413,177\), 642,967,992,942,539,798,288,533.

Using these values as the private key, they were able to decipher the message.
The message was a series of numbers, but when converted into letters
it read "the magic words are squeamish ossifrage." The factoring problem
had been split among the volunteers, who came from countries as far
apart as Australia, Britain, America and Venezuela. The volunteers used
spare time on their workstations, mainframes and supercomputers, each
of them tackling a fraction of the problem. In effect, a network of computers
around the world were uniting and working simultaneously in
order to meet Gardner's challenge. Even bearing in mind the mammoth
parallel effort, some readers may still be surprised that RSA was broken in
such a short time, but it should be noted that Gardner's challenge used a
relatively small value of \(A /--i t\) was only of the order of 10129. Today, users
of RSA would pick a much larger value to secure important information.
It is now routine to encrypt a message with a sufficiently large value of N so that all the computers on the planet would need longer than the age of the universe to break the cipher.

The Alternative History of Public Key Cryptography

Over the past twenty years, Diffie, Hellman and Merkle have become
world-famous as the cryptographers who invented the concept of public
key cryptography, while Rivest, Shamir and Adleman have been credited
with developing RSA, the most beautiful implementation of public key
cryptography. However, a recent announcement means that the history
books are having to be rewritten. According to the British Government,
public key cryptography was originally invented at the Government

280 The Code Book

Communications Headquarters (GCHQ) in Cheltenham, the top-secret
establishment that was formed from the remnants of Bletchley Park after
the Second World War. This is a story of remarkable ingenuity, anonymous
heroes and a government cover-up that endured for decades.

The story starts in the late 1960s, when the British military began to
worry about the problem of key distribution. Looking ahead to the 1970s,
senior military officials imagined a scenario in which miniaturization of
radios and a reduction in cost meant that every soldier could be in
continual radio contact with his officer. The advantages of widespread
communication would be enormous, but communications would have
to be encrypted, and the problem of distributing keys would be insurmountable.
This was an era when the only form of cryptography was symmetric, so an individual key would have to be securely transported to
every member of the communications network. Any expansion in
communications would eventually be choked by the burden of key
distribution. At the beginning of 1969, the military asked James Ellis, one
of Britain's foremost government cryptographers, to look into ways of
coping with the key distribution problem.

Ellis was a curious and slightly eccentric character. He proudly boasted
of traveling halfway around the world before he was even born--he was
conceived in Britain, but was born in Australia. Then, while still a baby,
he returned to London and grew up in the East End of the 1920s. At
school his primary interest was science, and he went on to study physics
at Imperial College before joining the Post Office

Research Station at Dol-lis
Hill, where Tommy Flowers had built Colossus, the first codebreaking
computer. The cryptographic division at Dollis Hill was eventually
absorbed into GCHQj and so on April 1, 1965, Ellis moved to
Cheltenham to join the newly formed
Communications-Electronics
Security Group (CESG), a special section of GCHQjievoted to ensuring
the security of British communications. Because he was involved in issues
of national security, Ellis was sworn to secrecy throughout his career.
Although his wife and family knew that he worked at GCHQj they were
unaware of his discoveries and had no idea that he was one of the nation's
most distinguished codemakers.

Despite his skills as a codemaker, Ellis was never put in charge of any of

Alice and Bob Go Public 281
the important GCHQ_research groups. He was brilliant, but he was also
unpredictable, introverted and not a natural team worker. His colleague
Richard Walton recalled:

He was a rather quirky worker, and he didn't really fit into the day-to-day business of GCHQ. But in terms of coming up with new ideas he was quite
exceptional. You had to sort through some rubbish
sometimes, but he was
very innovative and always willing to challenge the
orthodoxy. We would
be in real trouble if everybody in GCHQ^was like him, but we can tolerate
a higher proportion of such people than most organizations. We put up
with a number of people like him.

Figure 66 James Ellis.

\section*{282 The Code Book}

One of Ellis's greatest qualities was his breadth of knowledge. He read any
scientific journal he could get his hands on, and never threw anything
away. For security reasons, GCHQ^employees must clear their desks each
evening and place everything in locked cabinets, which meant that Ellis's
cabinets were stuffed full with the most obscure publications imaginable.
He gained a reputation as a cryptoguru, and if other researchers found
themselves with impossible problems, they would knock on his door in
the hope that his vast knowledge and originality would provide a solution.
It was probably because of this reputation that he was asked to
examine the key distribution problem.

The cost of key distribution was already enormous, and would become
the limiting factor to any expansion in encryption. Even a reduction of 10
per cent in the cost of key distribution would significantly cut the military's
security budget. However, instead of merely nibbling away at the problem,
Ellis immediately looked for a radical and complete solution. "He would
always approach a problem by asking, 'Is this really what we want to do?'" says Walton. "James being James, one of the first things he did was to challenge
the requirement that it was necessary to share secret data, by which I
mean the key. There was no theorem that said you had to have a shared
secret. This was something that was challengeable."

Ellis began his attack on the problem by searching through his treasure
trove of scientific papers. Many years later, he recorded the moment when he
discovered that key distribution was not an inevitable part of cryptography:

The event which changed this view was the discovery of a wartime Bell
Telephone report by an unknown author describing an ingenious idea for
secure telephone speech. It proposed that the recipient should mask the
sender's speech by adding noise to the line. He could subtract the noise
afterward since he had added it and therefore knew what it was. The obvious
practical disadvantages of this system prevented it being actually used, but it has some interesting characteristics. The difference between this and
conventional encryption is that in this case the recipient takes part in the
encryption process ... So the idea was born.

Noise is the technical term for any signal that impinges on a communication.
Normally it is generated by natural phenomena, and its most
irritating feature is that it is entirely random, which means that removing

Alice and Bob Go Public 283
noise from a message is very difficult. If a radio system is well designed,
then the level of noise is low and the message is clearly audible, but if the
noise level is high and it swamps the message, there is no way to recover
the message. Ellis was suggesting that the receiver, Alice, deliberately
create noise, which she could measure before adding it to the communication
channel that connects her with Bob. Bob could then send a message
to Alice, and if Eve tapped the communications channel she would
be unable to read the message because it would be swamped in noise. Eve
would be unable to disentangle the noise from the message. The only
person who can remove the noise and read the message is Alice, because
she is in the unique position of knowing the exact nature of the noise,
having put it there in the first place. Ellis realized that security had been
achieved without exchanging any key. The key was the noise, and only
Alice needed to know the details of the noise.

In a memorandum, Ellis detailed his thought processes:
"The next question
was the obvious one. Can this be done with ordinary encipherment?
Can we produce a secure encrypted message, readable by the authorized
recipient without any prior secret exchange of the key?
This question actually
occurred to me in bed one night, and the proof of the theoretical possibility
took only a few minutes. We had an existence theorem. The unthinkable was
actually possible." (An existence theorem shows that a particular concept is
possible, but is not concerned with the details of the concept.) In other
words, until this moment, searching for a solution to the key distribution
problem was like looking for a needle in a haystack, with the possibility that
the needle might not even be there. However, thanks to the existence theorem,
Ellis now knew that the needle was in there somewhere.

Ellis's ideas were very similar to those of Diffie, Hellman and Merkle,
except that he was several years ahead of them. However, nobody knew of
Ellis's work because he was an employee of the British Government and
therefore sworn to secrecy. By the end of 1969, Ellis appears to have reached
the same impasse that the Stanford trio would reach in 1975. He had proved
to himself that public key cryptography (or nonsecret encryption, as he called it) was possible, and he had developed the concept of separate
public keys and private keys. He also knew that he needed to find a special
one-way function, one that could be reversed if the receiver had access to a piece of special information. Unfortunately, Ellis was not a mathematician.

284 The Code Book

He experimented with a few mathematical functions, but he soon realized
that he would be unable to progress any further on his own.

At this point, Ellis revealed his breakthrough to his bosses. Their reactions
are still classified material, but in an interview Richard Walton was
prepared to paraphrase for me the various memoranda that were
exchanged. Sitting with his briefcase on his lap, the lid
shielding the
papers from my view, he flicked through the documents:

I can't show you the papers that \(I\) have in here because they still have
naughty words like top secret stamped all over them. Essentially, James's
idea goes to the top man, who farms it out, in the way
that top men do, so
that the experts can have a look at it. They state that what James is saying is
perfectly true. In other words, they can't write this man off as a crank. At
the same time they can't think of a way of implementing his idea in practice.
And so they're impressed by James's ingenuity, but uncertain as to how to
take advantage of it.

For the next three years, GCHQ^s brightest minds struggled to find a oneway
function that satisfied Ellis's requirements, but nothing emerged.
Then, in September 1973, a new mathematician joined the team. Clifford
Cocks had recently graduated from Cambridge University, where he had
specialized in number theory, one of the purest forms of mathematics.
When he joined GCHC^he knew very little about encryption and the
shadowy world of military and diplomatic communication, so he was
assigned a mentor, Nick Patterson, who guided him through his first few weeks at GCHQ.

After about six weeks, Patterson told Cocks about "a really whacky
idea." He outlined Ellis's theory for public key cryptography, and explained that nobody had yet been able to find a mathematical function
that fitted the bill. Patterson was telling Cocks because this was the most
titillating cryptographic idea around, not because he expected him to try
to solve it. However, as Cocks explains, later that day he set to work:
"There was nothing particular happening, and so I thought I would think
about the idea. Because \(I\) had been working in number theory, it was natural
to think about one-way functions, something you could do but not
undo. Prime numbers and factoring was a natural candidate, and that
became my starting point." Cocks was beginning to
formulate what would

Alice and Bob Go Public 285
later be known as the RSA asymmetric cipher. Rivest, Shamir and Adleman
discovered their formula for public key cryptography in 1977, but four
years earlier the young Cambridge graduate was going through exactly the
same thought processes. Cocks recalls: "From start to finish, it took me no
more than half an hour. I was quite pleased with myself. I thought, 'Ooh,
that's nice. I've been given a problem, and I've solved it.'"

Cocks did not fully appreciate the significance of his discovery. He was
unaware of the fact that GCHQ^s brightest minds had been struggling
with the problem for three years, and had no idea that he had made one
of the most important cryptographic breakthroughs of the century.
Cocks's naivety may have been part of the reason for his success, allowing
him to attack the problem with confidence, rather than
timidly prodding
at it. Cocks told his mentor about his discovery, and it was Patterson who
then reported it to the management. Cocks was quite diffident and very
much still a rookie, whereas Patterson fully appreciated the context of the

Figure 67 Clifford Cocks.

\section*{286 The Code Book}
problem and was more capable of addressing the technical questions that
would inevitably arise. Soon complete strangers started approaching Cocks,
the wonderkid, and began to congratulate him. One of the strangers was
James Ellis, keen to meet the man who had turned his dream into a reality.
Because Cocks still did not understand the enormity of his achievement,
the details of this meeting did not make a great impact on him, and so now,
over two decades later, he has no memory of Ellis's reaction.

When Cocks did eventually realize what he had done, it
struck him
that his discovery might have disappointed G.H. Hardy, one of the great
English mathematicians of the early part of the century.
In his The
Mathematician's Apology, written in 1940, Hardy had proudly stated: "Real
mathematics has no effects on war. No one has yet
discovered any warlike
purpose to be served by the theory of numbers." Real
mathematics
means pure mathematics, such as the number theory that was at the heart
of Cocks's work. Cocks proved that Hardy was wrong. The intricacies of
number theory could now be used to help generals plan their battles in
complete secrecy. Because his work had implications for military communications,

Cocks, like Ellis, was forbidden from telling anybody outside

GCHQ_ about what he had done. Working at a top-secret government
establishment meant that he could tell neither his parents nor his
former colleagues at Cambridge University. The only person he could tell
was his wife, Gill, since she was also employed at GCHCX

Although Cocks's idea was one of GCHQ^s most potent secrets, it suffered
from the problem of being ahead of its time. Cocks had discovered
a mathematical function that permitted public key cryptography, but
there was still the difficulty of implementing the system. Encryption via
public key cryptography requires much more computer power than
encryption via a symmetric cipher like DES. In the early 1970s, computers
were still relatively primitive and unable to perform the process of
public key encryption within a reasonable amount of time. Hence,

GCHQ^were not in a position to exploit public key
cryptography. Cocks
and Ellis had proved that the apparently impossible was possible, but
nobody could find a way of making the possible practical.

At the beginning of the following year, 1974, Cocks explained his work
on public key cryptography to Malcolm Williamson, who had recently
joined GCHQ^as a cryptographer. The men happened to be old friends.

They had both attended Manchester Grammar School, whose school
motto is Sapere aude, "Dare to be wise." While at school in 1968, the two
boys had represented Britain at the Mathematical Olympiad in the Soviet

Union. After attending Cambridge University together, they went their
separate ways for a couple of years, but now they were reunited at
GCHQ. They had been exchanging mathematical ideas since the age of
eleven, but Cocks's revelation of public key cryptography was the most
shocking idea that Williamson had ever heard. "Cliff explained his idea
to me," recalls Williamson, "and I really didn't believe it. I was very suspicious,
because this is a very peculiar thing to be able to do."

Williamson went away, and began trying to prove that Cocks had made
a mistake and that public key cryptography did not really exist. He
probed the mathematics, searching for an underlying flaw. Public key
cryptography seemed too good to be true, and Williamson was so
determined to find a mistake that he took the problem home. GCHQ^
\(-\quad, f\)
\(>f\)
```

>if *; **_* m * 9~*

```

Figure 68 Malcolm Williamson.
employees are not supposed to take work home, because everything the do is classified, and the home environment is potentially vulnerable t espionage. However, the problem was stuck in Williamson's brain, so he could not avoid thinking about it. Defying orders, he carried his work
back to his house. He spent five hours trying to find a flaw. "Essentially J
failed," says Williamson. "Instead I came up with another solution to the problem of key distribution." Williamson was discovering DiffieHellmanMerkle
key exchange, at roughly the same time that Martin Hellman discovered it. Williamson's initial reaction reflected his cynical
disposition: "This looks great, I thought to myself. I wonder if I can find
a flaw in this one. I guess \(I\) was in a negative mood that day."

By 1975, James Ellis, Clifford Cocks and Malcolm Williamson had discovered
all the fundamental aspects of public key cryptography, yet they
all had to remain silent. The three Britons had to sit back and watch as
their discoveries were rediscovered by Diffie, Hellman, Merkle, Rivest,
Shamir and Adleman over the next three years. Curiously, GCHQ^dis-covered
RSA before Diffie-Hellman-Merkle key exchange, whereas in the outside world, Diffie-Hellman-Merkle key exchange came first. The
scientific press reported the breakthroughs at Stanford and MIT, and the researchers who had been allowed to publish their work in the scientific

Figure 69 Malcolm Williamson (second from left) and
ournals became famous within the community of cryptographers. A
Muick look on the Internet with a search engine turns up 15 Web pages
fmentioning Clifford Cocks, compared to 1,382 pages that mention
fWhitfield Diffie. Cocks's attitude is admirably
restrained: "You don't get
involved in this business for public recognition." Williamson is equally dispassionate:
"My reaction was 'Okay, that's just the way it is.'
Basically, I just
got on with the rest of my life."
; Williamson's only qualm is that GCHQ^ failed to patent public key
cryptography. When Cocks and Williamson first made their breakthroughs,
there was agreement among GCHQ_management that patenting was impossible for two reasons. First, patenting would mean having to
reveal the details of their work, which would have been incompatible with
GCHCXs aims. Second, in the early 1970s it was far from clear that mathematical
algorithms could be patented. When Diffie and Hellman tried to
file for a patent in 1976, however, it was evident that they could be
patented. At this point, Williamson was keen to go public and block Diffie
and Hellman's application, but he was overruled by his senior managers,
who were not farsighted enough to see the digital
revolution and the
potential of public key cryptography. By the early 1980s Williamson's
bosses were beginning to regret their decision, as developments in computers and the embryonic Internet made it clear that RSA and DiffieHellmanMerkle
key exchange would both be enormously successful commercial products. In 1996, RSA Data Security, Inc., the company
responsible for RSA products, was sold for \(\$ 200\) million.

Although the work at GCHQ_was still classified, there was one other organization that was aware of the breakthroughs that had been achieved
in Britain. By the early 1980s America's National Security Agency knew
about the work of Ellis, Cocks and Williamson, and it is probably via the
NSA that Whitfield Diffie heard a rumor about the British discoveries. In
September 1982, Diffie decided to see if there was any truth in the rumor, and he traveled with his wife to Cheltenham in order to talk to James Ellis
face-to-face. They met at a local pub, and very quickly Mary was struck by Ellis's remarkable character:

We sat around talking, and I suddenly became aware that this was the most wonderful person you could possibly imagine. The breadth of his

290 The Code Book
mathematical knowledge is not something I could confidently discuss, but
he was a true gentleman, immensely modest, a person with great generosity of spirit and gentility. When I say gentility, I don't mean old-fashioned and
musty. This man was a chevalier. He was a good man, a truly good man. He was a gentle spirit.

Diffie and Ellis discussed various topics, from archaeology to how rats in
the barrel improve the taste of cider, but whenever the conversation
drifted toward cryptography, Ellis gently changed the subject. At the end
of Diffie's visit, as he was ready to drive away, he could no longer resist
directly asking Ellis the question that was really on his mind: "Tell me
about how you invented public key cryptography?" There was a long pause. Ellis eventually whispered: "Well, I don't know how much I should
say. Let me just say that you people did much more with it than we did."

Although GCHQ^were the first to discover public key cryptography,
this should not diminish the achievements of the academics who rediscovered
it. It was the academics who were the first to realize the potential
of public key encryption, and it was they who drove its implementation.
Furthermore, it is quite possible that GCHQjwould never have revealed
their work, thus blocking a form of encryption that would enable the
digital revolution to reach its full potential. Finally, the discovery by the
academics was wholly independent of GCHOJs discovery, and on an
intellectual par with it. The academic environment is
completely isolated
from the top-secret domain of classified research, and
academics do not
have access to the tools and secret knowledge that may be hidden in the
classified world. On the other hand, government
researchers always have
access to the academic literature. One might think of this flow of information
in terms of a one-way function--information flows freely in one
direction, but it is forbidden to send information in the opposite direction.

When Diffie told Hellman about Ellis, Cocks and Williamson, his attitude was that the discoveries of the academics should be a footnote in the
history of classified research, and that the discoveries at GCHQ^should
be a footnote in the history of academic research. However, at that stage
nobody except GCHQj NSA, Diffie and Hellman knew about the classified research, and so it could not even be considered as a footnote.

By the mid-1980s, the mood at GCHQ^was changing, and the man

Alice and Bob Go Public 291
agement considered publicly announcing the work of Ellis, Cocks and
Williamson. The mathematics of public key cryptography was already
well established in the public domain, and there seemed to be no reason
to remain secretive. In fact, there would be distinct benefits if the British
revealed their groundbreaking work on public key
cryptography. As
Richard Walton recalls:

We flirted with the idea of coming clean in 1984. We began to see advantages
for GCHQJjeing more publicly acknowledged. It was a time when the government
security market was expanding beyond the traditional
military and
diplomatic customer, and we needed to capture the confidence of those who
did not traditionally deal with us. We were in the middle of Thatcherism, and
we were trying to counter a sort of "government is bad, private is good" ethos.
So, we had the intention of publishing a paper, but that idea was scuppered
by that blighter Peter Wright, who wrote Spy/catcher. We were just warming up
senior management to approve this release, when there was all this hoo-ha
about Spy catcher. Then the order of the day was "heads down, hats on."

Peter Wright was a retired British intelligence officer, and the publication
of Spycatcher, his memoirs, was a source of great embarrassment to the
British government. It would be another 13 years before GCHQ^ eventually
went public--28 years after Ellis's initial breakthrough. In 1997 Clifford Cocks completed some important unclassified work on RSA,
which would have been of interest to the wider community, and which
would not be a security risk if it were to be published. As a result, he was
asked to present a paper at the Institute of Mathematics and its Applications
Conference to be held in Cirencester. The room would be full of
cryptography experts. A handful of them would know that Cocks, who
would be talking about just one aspect of RSA, was actually its unsung
inventor. There was a risk that somebody might ask an
embarrassing question, such as "Did you invent RSA?" If such a question arose, what was
Cocks supposed to do? According to GCHQ^policy he would have to
deny his role in the development of RSA, thus forcing him to lie about
an issue that was totally innocuous. The situation was clearly ridiculous,
and GCHQ_decided that it was time to change its policy. Cocks was given
permission to begin his talk by presenting a brief history of GCHQ^s contribution
to public key cryptography.

\section*{I}

292 The Code Book

On December 18, 1997, Cocks delivered his talk. After almost three
decades of secrecy, Ellis, Cocks and Williamson received the acknowledgment
they deserved. Sadly, James Ellis had died just one month earlier
on November 25, 1997, at the age of seventy-three. Ellis joined the list of
British cipher experts whose contributions would never be recognized
during their lifetimes. Charles Babbage's breaking of the Vigenere cipher
was never revealed during his lifetime, because his work was invaluable to
British forces in the Crimea. Instead, credit for the work went to Friedrich
Kasiski. Similarly, Alan Turing's contribution to the war effort was unparalleled,
and yet government secrecy demanded that his work on
Enigma
could not be revealed.

In 1987, Ellis wrote a classified document that recorded his contribution
to public key cryptography, which included his thoughts on the
secrecy that so often surrounds cryptographic work:

Cryptography is a most unusual science. Most professional scientists aim to
be the first to publish their work, because it is through dissemination that
the work realizes its value. In contrast, the fullest value of cryptography is
realized by minimizing the information available to potential adversaries.
Thus professional cryptographers normally work in closed communities to
provide sufficient professional interaction to ensure quality while maintaining
secrecy from outsiders. Revelation of these secrets is normally only
sanctioned in the interests of historical accuracy after it has been demonstrated
that no further benefit can be obtained from continued secrecy.

17 Pretty Good Privacy

Just as Whit Diffie predicted in the early 1970s, we are now entering the
Information Age, a postindustrial era in which information is the most
valuable commodity. The exchange of digital information has become an
integral part of our society. Already, tens of millions of e-mails are sent
each day, and electronic mail will soon become more popular than conventional
mail. The Internet, still in its infancy, has provided the infrastructure
for the digital marketplace, and e-commerce is thriving. Money
is flowing through cyberspace, and it is estimated that every day half
the world's Gross Domestic Product travels through the Society for
Worldwide Interbank Financial Telecommunications network. In the
future, democracies that favor referenda will begin to have on-line voting,
and governments will use the Internet to help administer their countries, offering facilities such as on-line tax declarations.

However, the success of the Information Age depends on the ability to
protect information as it flows around the world, and this relies on the
power of cryptography. Encryption can be seen as providing the locks and
keys of the Information Age. For two thousand years encryption has been
of importance only to governments and the military, but today it also has
a role to play in facilitating business, and tomorrow ordinary people will
rely on cryptography in order to protect their privacy. Fortunately, just as
the Information Age is taking off, we have access to extraordinarily strong
encryption. The development of public key cryptography, particularly the
RSA cipher, has given today's cryptographers a clear advantage in their
continual power struggle against cryptanalysts. If the value of \(N\) is large
enough, then finding \(p\) and \(q\) takes Eve an unreasonable amount of time, and RSA encryption is therefore effectively unbreakable. Most important
of all, public key cryptography is not weakened by any key distribution

Figure 70 Phil Zimmermann.

Pretty Good Privacy 295
problems. In short, RSA guarantees almost unbreakable locks for our
most precious pieces of information.

However, as with every technology, there is a dark side to encryption.
As well as protecting the communications of law-abiding citizens, encryption
also protects the communications of criminals and terrorists.
Currently, the police use wiretapping as a way of gathering evidence in
serious cases, such as organized crime and terrorism, but this would be
impossible if criminals used unbreakable ciphers. As we enter the twenty-first
century, the fundamental dilemma for cryptography is to find a way
of allowing the public and business to use encryption in order to exploit
the benefits of the Information Age without allowing criminals to abuse
encryption and evade arrest. There is currently an active and vigorous
debate about the best way forward, and much of the
discussion has been
inspired by the story of Phil Zimmermann, a man whose attempts to
encourage the widespread use of strong encryption have panicked
America's security experts, threatened the effectiveness of the billion-dollar
National Security Agency, and made him the subject of an FBI inquiry
and a grand jury investigation.

Phil Zimmermann spent the mid-1970s at Florida Atlantic University,
where he studied physics and then computer science. On graduation he
seemed set for a steady career in the rapidly growing computer industry,
but the political events of the early 1980s transformed his life, and he
became less interested in the technology of silicon chips and more
worried about the threat of nuclear war. He was alarmed by the Soviet
invasion of Afghanistan, the election of Ronald Reagan, the instability
caused by an aging Brezhnev and the increasingly tense nature of the
Cold War. He even considered taking himself and his family to New
Zealand, believing that this would be one of the few places on Earth that
would be habitable after a nuclear conflict. But just as he had obtained
passports and the necessary immigration papers, he and his wife attended
a meeting held by the Nuclear Weapons Freeze Campaign. Rather than
flee, the Zimmermanns decided to stay and fight the battle at home,
becoming front-line antinuclear activists-they educated political candidates
on issues of military policy, and were arrested at the Nevada nuclear
testing grounds, alongside Carl Sagan and four hundred other protesters.
A few years later, in 1988, Mikhail Gorbachev became head of state of

296 The Code Book
the Soviet Union, heralding perestroika, glasnost and a reduction in tension
between East and West. Zimmermann's fears began to
subside, but
he did not lose his passion for political activism, he merely channeled it
in a different direction. He began to focus his attentions on the digital
revolution and the necessity for encryption:

Cryptography used to be an obscure science, of little relevance to everyday
life. Historically, it always had a special role in military and diplomatic
communications. But in the Information Age, cryptography is about
political power, and in particular, about the power relationship between a
government and its people. It is about the right to privacy, freedom of
speech, freedom of political association, freedom of the press, freedom
from unreasonable search and seizure, freedom to be left alone.

These views might seem paranoid, but according to Zimmermann there is
a fundamental difference between traditional and digital communication
which has important implications for security:

In the past, if the government wanted to violate the privacy of ordinary citizens,
it had to expend a certain amount of effort to intercept and steam
open and read paper mail, or listen to and possibly
transcribe spoken telephone
conversations. This is analogous to catching fish with a hook and a
line, one fish at a time. Fortunately for freedom and democracy, this kind of
labor-intensive monitoring is not practical on a large scale. Today, electronic
mail is gradually replacing conventional paper mail, and is soon to be the
norm for everyone, not the novelty it is today. Unlike paper mail, email
messages are just too easy to intercept and scan for interesting keywords.
This can be done easily, routinely, automatically, and undetectably on a
grand scale. This is analogous to driftnet fishing-making a quantitative and
qualitative Orwellian difference to the health of democracy.

The difference between ordinary and digital mail can be illustrated by imagining that Alice wants to send out invitations to her birthday party, and that Eve, who has not been invited, wants to know the time and place
of the party. If Alice uses the traditional method of posting letters, then
it is very difficult for Eve to intercept one of the invitations. To start with,
Eve does not know where Alice's invitations entered the postal system,
because Alice could use any postbox in the city. Her only hope for
intercepting one of the invitations is to somehow identify the address of

Pretty Good Privacy 297
one of Alice's friends, and infiltrate the local sorting office. She then has
to check each and every letter manually. If she does manage to find a
letter from Alice, she will have to steam it open in order to get the information
she wants, and then return it to its original condition to avoid any
suspicion of tampering.

In comparison, Eve's task is made considerably easier if Alice sends her invitations by e-mail. As the messages leave Alice's
computer, they will go
to a local server, a main entry point for the Internet; if Eve is clever
enough, she can hack into that local server without leaving her home. The invitations will carry Alice's e-mail address, and it would be a trivial matter
to set up an electronic sieve that looks for e-mails containing Alice's
address. Once an invitation has been found, there is no envelope to open,
and so no problem in reading it. Furthermore, the
invitation can be sent
on its way without it showing any sign of having been intercepted. Alice
would be oblivious to what was going on. However, there is a way to prevent
Eve from reading Alice's e-mails, namely encryption.

More than a hundred million e-mails are sent around the world each
day, and they are all vulnerable to interception. Digital technology has
aided communication, but it has also given rise to the possibility of those
communications being monitored. According to Zimmermann, cryptographers
have a duty to encourage the use of encryption and thereby protect the privacy of the individual:

A future government could inherit a technology infrastructure that's optimized
for surveillance, where they can watch the movements of their political
opposition, every financial transaction, every communication, every
bit of e-mail, every phone call. Everything could be filtered and scanned
and automatically recognized by voice recognition technology and transcribed.
It's time for cryptography to step out of the shadows of spies and
the military, and step into the sunshine and be embraced
by the rest of us.

In theory, when RSA was invented in 1977 it offered an antidote to the

Big Brother scenario because individuals were able to create their own
public and private keys, and thereafter send and receive perfectly secure
messages. However, in practice there was a major problem because the
actual process of RSA encryption required a substantial amount of computing
power in comparison with symmetric forms of encryption, such as

298 The Code Book

DBS. Consequently, in the 1980s it was only government, the military
and large businesses that owned computers powerful enough to run RSA.
Not surprisingly, RSA Data Security, Inc., the company set up to commercialize
RSA, developed their encryption products with only these markets in mind.

In contrast, Zimmermann believed that everybody deserved the right
to the privacy that was offered by RSA encryption, and he directed his
political zeal toward developing an RSA encryption product for the
masses. He intended to draw upon his background in
computer science
to design a product with economy and efficiency in mind, thus not overloading
the capacity of an ordinary personal computer. He also
wanted
his version of RSA to have a particularly friendly interface, so that the
user did not have to be an expert in cryptography to operate it. He called
his project Pretty Good Privacy, or PGP for short. The name was inspired
by Ralph's Pretty Good Groceries, a sponsor of Garrison Keillor's Prairie
Home Companion, one of Zimmermann's favorite radio shows.

During the late 1980s, working from his home in Boulder, Colorado,
Zimmermann gradually pieced together his scrambling software package.
His main goal was to speed up RSA encryption. Ordinarily, if Alice wants
to use RSA to encrypt a message to Bob, she looks up his public key and
then applies RSA's one-way function to the message. Conversely, Bob
decrypts the ciphertext by using his private key to reverse RSA's one-way
function. Both processes require considerable mathematical manipulation,
so encryption and decryption can, if the message is long, take several
minutes on a personal computer. If Alice is sending a hundred messages
a day, she cannot afford to spend several minutes encrypting each one. To
speed up encryption and decryption, Zimmermann employed a neat trick
that used asymmetric RSA encryption in tandem with
old-fashioned symmetric
encryption. Traditional symmetric encryption can be just
as secure
as asymmetric encryption, and it is much quicker to
perform, but symmetric
encryption suffers from the problem of having to
distribute the
key, which has to be securely transported from the sender to the receiver.
This is where RSA comes to the rescue, because RSA can be used to
encrypt the symmetric key.

Zimmermann pictured the following scenario. If Alice wants to send
an encrypted message to Bob, she begins by encrypting it with a symmet-
1

Pretty Good Privacy 299
ric cipher. Zimmermann suggested using a cipher known as IDEA, which
is similar to DES. To encrypt with IDEA, Alice needs to choose a key, but
for Bob to decrypt the message Alice somehow has to get the key to Bob.
Alice overcomes this problem by looking up Bob's RSA public key, and
then uses it to encrypt the IDEA key. So, Alice ends up sending two
things to Bob: the message encrypted with the symmetric IDEA cipher
and the IDEA key encrypted with the asymmetric RSA cipher. At the
other end, Bob uses his RSA private key to decrypt the IDEA key, and
then uses the IDEA key to decrypt the message. This might seem convoluted,
but the advantage is that the message, which might contain a large
amount of information, is being encrypted with a quick symmetric
cipher, and only the symmetric IDEA key, which consists of a relatively
small amount of information, is being encrypted with a slow asymmetric
cipher. Zimmermann planned to have this combination of RSA and
IDEA within the PGP product, but the user-friendly
interface would
mean that the user would not have to get involved in the nuts and bolts
of what was going on.

Having largely solved the speed problem, Zimmermann also
incorporated
a series of handy features into PGP. For example, before using the
RSA component of PGP, Alice needs to generate her own private key and
public key. Key generation is not trivial, because it requires finding a pair
of giant primes. However, Alice only has to wiggle her mouse in an erratic
manner, and the PGP program will go ahead and create her private key
and public key--the mouse movements introduce a random factor which
PGP utilizes to ensure that every user has their own distinct pair of
primes, and therefore their own unique private key and public key. Thereafter Alice merely has to publicize her public key.

Another helpful aspect of \(P G P\) is its facility for digitally signing an email.
Ordinarily e-mail does not carry a signature, which means that it is
impossible to verify the true author of an electronic message. For example,
if Alice uses e-mail to send a love letter to Bob, she normally encrypts
it with his public key, and when he receives it he decrypts it with his
private key. Bob is initially flattered, but how can he be sure that the love
letter is really from Alice? Perhaps the malevolent Eve wrote the email
and typed Alice's name at the bottom. Without the reassurance of a handwritten
ink signature, there is no obvious way to verify the authorship.

300 The Code Book

Alternatively, imagine that a bank receives an e-mail from a client, which
instructs that all the client's funds should be
transferred to a private
numbered bank account in the Cayman Islands. Once again, without a
handwritten signature, how does the bank know that the e-mail is really
from the client? The e-mail could have been written by a criminal
attempting to divert the money to his own Cayman Islands bank account.
In order to develop trust on the Internet, it is essential that there is some
form of reliable digital signature.

The PGP digital signature is based on a principle that was first
developed by Whitfield Diffie and Martin Hellman. When they proposed
the idea of separate public keys and private keys, they realized that, in
addition to solving the key distribution problem, their invention would
also provide a natural mechanism for generating e-mail signatures. In
Chapter 6 we saw that the public key is for encrypting and the private key
for decrypting. In fact the process can be swapped around, so that the
private key is used for encrypting and the public key is used for decrypting.
This mode of encryption is usually ignored because it offers no
security. If Alice uses her private key to encrypt a message to Bob, then
everybody can decrypt it because everybody has Alice's public key.
However, this mode of operation does verify authorship, because if Bob
can decrypt a message using Alice's public key, then it must have been
encrypted using her private key--only Alice has access to her private key,
so the message must have been sent by Alice.

In effect, if Alice wants to send a love letter to Bob,
she has two
options. Either she encrypts the message with Bob's public key to
guarantee privacy, or she encrypts it with her own private key to guarantee
authorship. However, if she combines both options she can guarantee
privacy and authorship. There are quicker ways to achieve this, but here is
one way in which Alice might send her love letter. She
starts by encrypting
the message using her private key, then she encrypts the resulting
ciphertext using Bob's public key. We can picture the message surrounded
by a fragile inner shell, which represents encryption by Alice's private key,
and a strong outer shell, which represents encryption by Bob's public key.
The resulting ciphertext can only be deciphered by Bob, because only he
has access to the private key necessary to crack the strong outer shell.
Having deciphered the outer shell, Bob can then easily decipher the inner

Pretty Good Privacy 301

I'shell using Alice's public key-the inner shell is not meant to protect the
s message, but it does prove that the message came from Alice, and not an
: impostor.

By this stage, sending a PGP encrypted message is becoming quite
I complicated. The IDEA cipher is being used to encrypt the message, RSA
is being used to encrypt the IDEA key, and another stage of encryption
has to be incorporated if a digital signature is required. However, Zimmermann
developed his product in such a way that it would do
everything
automatically, so that Alice and Bob would not have to worry about
the mathematics. To send a message to Bob, Alice would simply write her
e-mail and select the PGP option from a menu on her
computer screen.
Next she would type in Bob's name, then PGP would find Bob's public
key and automatically perform all the encryption. At the same time PGP
would do the necessary jiggery-pokery required to
digitally sign the message.
Upon receiving the encrypted message, Bob would select the PGP
option, and PGP would decrypt the message and verify the author. Nothing
in PGP was original-Diffie and Hellman had already thought of digital
signatures and other cryptographers had used a combination of symmetric
and asymmetric ciphers to speed up encryption--but
Zimmermann
was the first to put everything together in one
easy-to-use encryption
product, which was efficient enough to run on a moderately sized personal
computer.

By the summer of 1991, Zimmermann was well on the way to turning
PGP into a polished product. Only two problems remained, neither of
them technical. A long-term problem had been the fact that RSA, which
is at the heart of PGP, is a patented product, and patent law required
Zimmermann to obtain a license from RSA Data Security, Inc. before he
launched PGP. However, Zimmermann decided to put this problem to
one side. PGP was intended not as a product for
businesses, but rather as
something for the individual. He felt that he would not be
competing
directly with RSA Data Security, Inc., and hoped that the company would
give him a free license in due course.

A more serious and immediate problem was the U.S. Senate's 1991
omnibus anticrime bill, which contained the following clause: "It is the
sense of Congress that providers of electronic
communications services
and manufacturers of electronic communications service equipment shall

302 The Code Book
ensure that communications systems permit the government to obtain
the plain text contents of voice, data, and other
communications when
appropriately authorized by law." The Senate was concerned that developments
in digital technology, such as cellular telephones, might prevent
law enforcers from performing effective wiretaps. However, as well as forcing
companies to guarantee the possibility of wiretapping, the bill also
seemed to threaten all forms of secure encryption.

A concerted effort by RSA Data Security, Inc., the communications
industry, and civil liberty groups forced the clause to be dropped, but the
jj iilconsensus was that this was only a temporary reprieve. Zimmermann was
fearful that sooner or later the government would again try to bring in legislation
that would effectively outlaw encryption such as PGP. He had
always intended to sell PGP, but now he reconsidered his options. Rather
than waiting and risk PGP being banned by the government, he decided
that it was more important for it to be available to everybody before it was
too late. In June 1991 he took the drastic step of asking a friend to post
PGP on a Usenet bulletin board. PGP is just a piece of software, and so
from the bulletin board it could be downloaded by anyone for free. PGP
was now loose on the Internet.

Initially, PGP caused a buzz only among aficionados of cryptography.
Later it was downloaded by a wider range of Internet enthusiasts. Next,
computer magazines ran brief reports and then full-page articles on the
PGP phenomenon. Gradually PGP began to permeate the most remote
corners of the digital community. For example, human rights groups
around the world started to use PGP to encrypt their documents, in order
to prevent the information from falling into the hands of the regimes that
were being accused of human-rights abuses. Zimmermann began to
receive e-mails praising him for his creation. "There are resistance groups
in Burma," says Zimmermann, "who are using it in jungle training camps.
They've said that it's helped morale there, because before PGP was introduced
captured documents would lead to the arrest, torture and execution
of entire families." In 1991, on the day that Boris
Yeltsin was shelling
Moscow's Parliament building, Zimmerman received this
e-mail via
someone in Latvia: "Phil, I wish you to know: let it never be, but if dictatorship
takes over Russia, your PGP is widespread from Baltic to Far

East now and will help democratic people if necessary. Thanks."

Pretty Good Privacy 303

While Zimmermann was gaining fans around the world, back home in
America he had been the target of criticism. RSA Data Security, Inc.
decided not to give Zimmermann a free license, and was enraged that its
patent was being infringed. Although Zimmermann released PGP as
freeware (free software), it contained the RSA system of public key
cryptography, and consequently RSA Data Security, Inc. labeled PGP as
"banditware." Zimmermann had given something away which belonged
to somebody else. The patent wrangle would continue for several years,
during which time Zimmermann encountered an even greater problem.

In February 1993, two government investigators paid Zimmermann a
visit. After their initial enquiries about patent infringement, they began to
ask questions about the more serious accusation of illegally exporting a
weapon. Because the U.S. Government included encryption software within its definition of munitions, along with missiles, mortars and
machine guns, PGP could not be exported without a license from the
State Department. In other words, Zimmermann was accused of being an
arms dealer because he had exported PGP via the Internet. Over the next
three years Zimmermann became the subject of a grand jury investigation
and found himself pursued by the FBI.

Encryption for the Masses.. . Or Not?

The investigation into Phil Zimmermann and PGP ignited a debate about
the positive and negative effects of encryption in the Information Age.
The spread of PGP galvanized cryptographers, politicians, civil libertarians
and law enforcers into thinking about the implications of widespread
encryption. There were those, like Zimmermann, who believed that the
widespread use of secure encryption would be a boon to
society, providing
individuals with privacy for their digital communications. Ranged
against them were those who believed that encryption was a threat to society,
because criminals and terrorists would be able to
communicate in
secret, safe from police wiretaps.

The debate continued throughout the 1990s, and is
currently as contentious
as ever. The fundamental question is whether or not
governments
should legislate against cryptography. Cryptographic
freedom
would allow everyone, including criminals, to be confident that their

304 The Code Book
e-mails are secure. On the other hand, restricting the use of cryptography
would allow the police to spy on criminals, but it would also allow the
police and everybody else to spy on the average citizen. Ultimately, we,
through the governments we elect, will decide the future
role of cryptography.
This section is devoted to outlining the two sides of the debate. Much of the discussion will refer to policies and policy-makers in
America, partly because it is the home of PGP, around which much of the
debate has centered, and partly because whatever policy is adopted in
America will ultimately have an effect on policies around the globe.

The case against the widespread use of encryption, as argued by law
enforcers, centers on the desire to maintain the status quo. For decades,
police around the world have conducted legal wiretaps in order to catch
criminals. For example, in America in 1918, wiretaps were used to counteract
the presence of wartime spies, and in the 1920s they proved especially
effective in convicting bootleggers. The view that
wiretapping was a
necessary tool of law enforcement became firmly
established in the late
1960s, when the FBI realized that organized crime was becoming a growing
threat to the nation. Law enforcers were having great difficulty in convicting
suspects because the mob made threats against anyone who might
consider testifying against them, and there was also the code of omerta, or
silence. The police felt that their only hope was to gather evidence via
wiretaps, and the Supreme Court was sympathetic to this argument. In
1967 it ruled that the police could employ wiretaps as long as they had first obtained a court authorization.

Twenty years later, the FBI still maintains that "court ordered wiretapping is the single most effective investigative technique used
by law
enforcement to combat illegal drugs, terrorism, violent crime, espionage,
and organized crime." However, police wiretaps would be useless if criminals
had access to encryption. A phone call made over a digital line is
nothing more than a stream of numbers, and can be encrypted according
to the same techniques used to encrypt e-mails. PGPfone, for example, is
one of several products capable of encrypting voice communications
made over the Internet.

Law enforcers argue that effective wiretapping is necessary in order to
maintain law and order, and that encryption should be restricted so that
they can continue with their interceptions. The police have already

Pretty Good Privacy 305
, encountered criminals using strong encryption to protect themselves. A

German legal expert said that "hot businesses such as the arms and drug
trades are no longer done by phone, but are being settled in encrypted
form on the worldwide data networks." A White House official indicated a
similarly worrying trend in America, claiming that
"organized crime members
are some of the most advanced users of computer systems
and of
strong encryption." For instance, the Cali cartel arranges its drug deals via
encrypted communications. Law enforcers fear that the Internet coupled
with cryptography will help criminals to communicate and coordinate
their efforts, and they are particularly concerned about
the so-called Four
Horsemen of the Infocalypse--drug dealers, organized crime, terrorists and
pedophiles--the groups who will benefit most from encryption.

In addition to encrypting communications, criminals and terrorists are
also encrypting their plans and records, hindering the recovery of evidence.
The Aum Shinrikyo sect, responsible for the gas attacks on the
Tokyo subway in 1995, were found to have encrypted some of their documents
using RSA. Ramsey Yousef, one of the terrorists involved in the
World Trade Center bombing, kept plans for future terrorist acts
encrypted on his laptop. Besides international terrorist organizations,
more run-of-the-mill criminals also benefit from
encryption. An illegal
gambling syndicate in America, for example, encrypted its accounts for
four years. Commissioned in 1997 by the National Strategy Information
Center's U.S. Working Group on Organized Crime, a study by Dorothy
Denning and William Baugh estimated that there were five hundred
criminal cases worldwide involving encryption, and predicted that this
number would roughly double each year.

In addition to domestic policing, there are also issues of national
security. America's National Security Agency is
responsible for gathering
intelligence on the nation's enemies by deciphering their communications.
The NSA operates a worldwide network of listening
stations, in
cooperation with Britain, Australia, Canada and New Zealand, who all
gather and share information. The network includes sites such as the
Menwith Hill Signals Intelligence Base in Yorkshire, the world's largest
spy station. Part of Menwith Hill's work involves the Echelon system,
which is capable of scanning e-mails, faxes, telexes and telephone calls,
searching for particular words. Echelon operates according to a dictionary

306 Tie Code Book
of suspicious words, such as "Hezbollah," "assassin" and "Clinton," and
the system is smart enough to recognize these words in real time. Echelon
can earmark questionable messages for further examination, enabling it to
monitor messages from particular political groups or terrorist organizations.
However, Echelon would effectively be useless if all messages were
strongly encrypted. Each of the nations participating in Echelon would
lose valuable intelligence on political plotting and terrorist attacks.

On the other side of the debate are the civil
libertarians, including
groups such as the Center for Democracy and Technology and the
Electronic Frontier Foundation. The proencryption case is based on the
belief that privacy is a fundamental human right, as recognized by Article
12 of the Universal Declaration of Human Rights: "No one shall be subjected
to arbitrary interference with his privacy, family, home or correspondence,
nor to attacks upon his honor and reputation. Everyone has the right to the protection of the law against such interference or attacks."

Civil libertarians argue that the widespread use of encryption is essential
for guaranteeing the right to privacy. Otherwise, they
fear, the advent
of digital technology, which makes monitoring so much
easier, will herald a new era of wiretapping and the abuses that inevitably follow. In the past,
governments have frequently used their power in order to
conduct wiretaps
on innocent citizens. Presidents Lyndon Johnson and
Richard Nixon
were guilty of unjustified wiretaps, and President John F. Kennedy conducted
dubious wiretaps in the first month of his presidency. In the
run-up to a bill concerning Dominican sugar imports, Kennedy asked for
wiretaps to be placed on several congressmen. His justification was that
he believed that they were being bribed, a seemingly valid national
security concern. However, no evidence of bribery was ever
found, and
the wiretaps merely provided Kennedy with valuable
political information,
which helped the administration to win the bill.

One of the best-known cases of continuous unjustified wiretapping
concerns Martin Luther King Jr., whose telephone conversations were
monitored for several years. For example, in 1963 the FBI obtained information
on King via a wiretap and fed it to Senator James Eastland in
order to help him in debates on a civil rights bill. More generally, the FBI
gathered details about King's personal life, which were used to discredit
him. Recordings of King telling bawdy stories were sent to his wife and
played i:_n Front of President Johnson. Then, following King's award of the
Nobel HVize, embarrassing details about King's life were passed to any
organizsation that was considering conferring an honor upon him.

Othe::r governments are equally guilty of abusing wiretaps. The
Commiussion Nationale de Controle des Interceptions de Securite estimates
tHhat there are roughly 100,000 illegal wiretaps conducted in France
each yeaar. Possibly the greatest infringement of everybody's privacy is the internatiional Echelon program. Echelon does not have to justify its interceptions.s,
and it does not focus on particular individuals. Instead, it
indiscriminately harvests information, using receivers that detect the tele-commu
inications that bounce off satellites. If Alice sends a harmless
transatl: antic message to Bob, then it will certainly be intercepted by
Echeloim, and if the message happens to contain a few words that appear
in the Echelon dictionary, then it would be earmarked for further
examinsation, alongside messages from extreme political groups and terrorist
gjangs. Whereas law enforcers argue that encryption should be
banned i because it would make Echelon ineffective, the civil libertarians
argue tHiat encryption is necessary exactly because it would make Echelon
ineffective.

Whe :n law enforcers argue that strong encryption will reduce criminal
convict zions, civil libertarians reply that the issue of
privacy is more
importaant. In any case, civil libertarians insist that encryption would not
be an eznormous barrier to law enforcement because wiretaps are not a
crucial element in most cases. For example, in America in 1994 there were
roughly^ a thousand court-sanctioned wiretaps, compared with a quarter
of a mi illion federal cases.

Not surprisingly, among the advocates of cryptographic freedom are
some oof the inventors of public key cryptography. Whitfield Diffie states
that inodividuals have enjoyed complete privacy for most of history:

In tine 1790s, when the Bill of Rights was ratified, any two people could
have a private conversation--with a certainty no one in the world enjoys toda^y--by walking a few meters down the road and looking to see no one
was . hiding in the bushes. There were no recording devices, parabolic
micr»-ophones, or laser interferometers bouncing off their eyeglasses. You
will : note that civilization survived. Many of us regard that period as a goldeen age in American political culture.

308 The Code Book

Ron Rivest, one of the inventors of RSA, thinks that restricting cryptography would be foolhardy:

It is poor policy to clamp down indiscriminately on a technology just
because some criminals might be able to use it to their advantage. For
example, any U.S. citizen can freely buy a pair of gloves, even though a
burglar might use them to ransack a house without leaving fingerprints.
Cryptography is a data-protection technology, just as gloves are a hand-protection
technology. Cryptography protects data from hackers, corporate
spies, and con artists, whereas gloves protect hands from cuts, scrapes,
heat, cold, and infection. The former can frustrate FBI wiretapping, and
the latter can thwart FBI fingerprint analysis.
Cryptography and gloves are
both dirt-cheap and widely available. In fact, you can
download good
cryptographic software from the Internet for less than the price of a good
pair of gloves.

Possibly the greatest allies of the civil libertarian cause are the big corporations.
Internet commerce is still in its infancy, but sales are growing
rapidly, with retailers of books, music CDs and computer software leading
the way, and with supermarkets, travel companies and other businesses following
in their wake. In 1998 a million Britons used the Internet
to buy
products worth \(\$ 600\) million, a figure that was set to quadruple in 1999. In
just a few years from now Internet commerce could dominate the marketplace,
but only if businesses can address the issues of security and trust. A
business must be able to guarantee the privacy and security of financial
transactions, and the only way to do this is to employ strong encryption.

At the moment, a purchase on the Internet can be secured by public
key cryptography. Alice visits a company's Web site and selects an item.
She then fills in an order form which asks her for her name, address and
credit card details. Alice then uses the company's public key to encrypt
the order form. The encrypted order form is transmitted to the company,
who are the only people able to decrypt it, because only they have the private
key necessary for decryption. All of this is done automatically by
Alice's Web browser (e.g., Netscape or Explorer) in conjunction with the
company's computer.

As usual, the security of the encryption depends on the size of the key.

In America there are no restrictions on key size, but U.S. software compa-

Pretty Good Privacy 309
f Oies are still not allowed to export Web products that offer strong encryp-]
(jon. Hence, browsers exported to the rest of the world can handle only
short keys, and thus offer only moderate security. In
fact, if Alice is in
London buying a book from a company in Chicago, her Internet transaction
is a billion billion billion times less secure than a transaction by Bob
in New York buying a book from the same company. Bob's transaction is
absolutely secure because his browser supports encryption with a larger key,
whereas Alice's transaction could be deciphered by a determined
criminal. Fortunately, the cost of the equipment required to decipher

Alice's credit card details is vastly greater than the typical credit card limit,
so such an attack is not cost-effective. However, as the amount of money
flowing around the Internet increases, it will eventually become profitable
for criminals to decipher credit card details. In short,
if Internet commerce
is to thrive, consumers around the world must have proper security, and businesses will not tolerate crippled encryption.

Businesses also desire strong encryption for another reason. Corporations store vast amounts of information on computer databases,
including product descriptions, customer details and business accounts.
Naturally, corporations want to protect this information from hackers
who might infiltrate the computer and steal the information. This protection
can be achieved by encrypting stored information, so that it is only
accessible to employees who have the decryption key.

To summarize the situation, it is clear that the debate is between two
camps: civil libertarians and businesses are in favor of strong encryption,
while law enforcers are in favor of severe restrictions. In general, popular
opinion appears to be swinging behind the proencryption alliance, who
have been helped by a sympathetic media and a couple of Hollywood
films. In early 1998, Mercury Rising told the story of a new, supposedly
unbreakable NSA cipher which is inadvertently deciphered by a nine-year-old
autistic savant. Alec Baldwin, an NSA agent, sets out to assassinate
the boy, who is perceived as a threat to national security. Luckily, the
boy has Bruce Willis to protect him. Also in 1998,

Hollywood released Enemy of the State, which dealt with an NSA plot to murder a politician
who supports a bill in favor of strong encryption. The politician is killed,
but a lawyer played by Will Smith and an NSA rebel played by Gene
Hackman eventually bring the NSA assassins to justice. Both films depict

1

\section*{310 The Code Book}
the NSA as more sinister than the CIA, and in many ways the NSA has
taken over the role of establishment menace.

While the proencryption lobby argues for cryptographic freedom, and
the antiencryption lobby for cryptographic restrictions, there is a third
option that might offer a compromise. Over the last
decade, cryptographers
and policy-makers have been investigating the pros and cons of
a scheme known as key escrow. The term "escrow" usually relates to an
arrangement in which someone gives a sum of money to a third party,
who can then deliver the money to a second party under certain circumstances.
For example, a tenant might lodge a deposit with a solicitor, who
can then deliver it to a landlord in the event of damage to the property. In
terms of cryptography, escrow means that Alice would give
a copy of her
private key to an escrow agent, an independent, reliable middleman, who
is empowered to deliver the private key to the police if ever there was sufficient
evidence to suggest that Alice was involved in crime.

The most famous trial of cryptographic key escrow was the American
Escrowed Encryption Standard, adopted in 1994. The aim was to encourage
the adoption of two encryption systems, called clipper and capstone, to
be used for telephone communication and computer
communication,
respectively. To use clipper encryption, Alice would buy a phone with a
preinstalled chip which would hold her secret private key information. At
the very moment she bought the clipper phone, a copy of the private key
in the chip would be split into two halves, and each half would be sent to
two separate Federal authorities for storage. The U.S.
Government argued
that Alice would have access to secure encryption, and her privacy would
only be broken if law enforcers could persuade both Federal authorities
that there was a case for obtaining her escrowed private key.

The U.S. Government employed clipper and capstone for its own
communications, and made it obligatory for companies involved in
government business to adopt the American Escrowed
Encryption Standard.
Other businesses and individuals were free to use other forms of
encryption, but the government hoped that clipper and capstone would
gradually become the nation's favorite form of encryption. However, the
policy did not work. The idea of key escrow won few supporters outside
government. Civil libertarians did not like the idea of Federal authorities
having possession of everybody's keys--they made an analogy to real keys,

I; JOJ asked how people would feel if the government had the keys to all
our houses. Cryptographic experts pointed out that just one crooked
employee could undermine the whole system by selling escrowed keys to
the highest bidder. And businesses were worried about confidentiality.
' For example, a European business in America might fear that its messages
: were being intercepted by American trade officials in an attempt to obtain
secrets that might give American rivals a competitive edge.

Despite the failure of clipper and capstone, many governments remain
convinced that key escrow can be made to work, as long as the keys are
sufficiently well protected from criminals and as long as there are safeguards
to reassure the public that the system is not open to
government
abuse. Louis J. Freeh, Director of the FBI, said in 1996:
"The law enforcement
community fully supports a balanced encryption policy . .
- Key
escrow is not just the only solution; it is, in fact, a very good solution
because it effectively balances fundamental societal
concerns involving
privacy, information security, electronic commerce, public
safety, and
national security." Although the U.S. Government has backtracked on its
escrow proposals, many suspect that it will attempt to reintroduce an
alternative form of key escrow at some time in the future. Having witnessed
the failure of optional escrow, governments might even consider
compulsory escrow. Meanwhile, the proencryption lobby continues to
argue against key escrow. Kenneth Neil Cukier, a
technology journalist,
has written that: "The people involved in the crypto debate are all intelligent,
honorable and proescrow, but they never possess more than two
of these qualities at once."

There are various other options that governments could choose to
implement, in order to try to balance the concerns of civil libertarians,
business and law enforcement. It is far from clear which will be the preferred
option, because at present cryptographic policy is in a state of flux.
A steady stream of events around the world is constantly influencing the
debate on encryption. In November 1998, the Queen's Speech announced forthcoming British legislation relating to the digital marketplace.
In December 1998, 33 nations signed the Wassenaar Arrangement
limiting arms exports, which also covers powerful encryption technologies.
In January 1999, France repealed its anticryptography laws, which
had previously been the most restrictive in Western Europe, probably as a

\section*{312 The Code Book}

\footnotetext{
result of pressure from the business community. In March 1999, the
British Government released a consultation document on a
}
proposed
Electronic Commerce Bill.

By the time you read this there will have been several more twists and
turns in the debate on cryptographic policy. However, one aspect of
future encryption policy seems certain, namely the necessity for certification
authorities. If Alice wants to send a secure e-mail to a new friend, Zak,
she needs Zak's public key. She might ask Zak to send his public key to
her in the mail. Unfortunately, there is then the risk that Eve will intercept
Zak's letter to Alice, destroy it and forge a new letter, which actually
includes her own public key instead of Zak's. Alice may then send a sensitive
e-mail to Zak, but she will unknowingly have encrypted it with
Eve's public key. If Eve can intercept this e-mail, she can then easily decipher
it and read it. In other words, one of the problems with public key
cryptography is being sure that you have the genuine public key of the
person with whom you wish to communicate. Certification authorities
are organizations that will verify that a public key does indeed correspond
to a particular person. A certification authority might request a face-to-face
meeting with Zak as a way of ensuring that they have correctly catalogued
his public key. If Alice trusts the certification authority, she can
obtain from it Zak's public key, and be confident that the key is valid.

I have explained how Alice could securely buy products from the Internet
by using a company's public key to encrypt the order form. In fact,
she would do this only if the public key had been validated by a certification
authority. In 1998, the market leader in certification was Verisign,
which has grown into a \(\$ 30\) million company in just four years. As well
as ensuring reliable encryption by certifying public keys, certification
authorities can also guarantee the validity of digital signatures. In 1998,
Baltimore Technologies in Ireland provided the certification for the digital
signatures of President Bill Clinton and Prime Minister Bertie Ahern.
This allowed the two leaders to digitally sign a communique in Dublin.

Certification authorities pose no risk to security. They would merely
have asked Zak to reveal his public key so that they can validate it for
others who wish to send him encrypted messages. However, there are
other companies, known as trusted third parties (TTPs), that provide a more

Pretty Good Privacy 313
controversial service known as key recovery. Imagine a legal firm that protects
all its vital documents by encrypting them with its own public key,
so that only it can decrypt them with its own private key. Such a system is
an effective measure against hackers and anybody else who might attempt
to steal information. However, -what happens if the employee who stores
the private key forgets it, absconds with it or is knocked over by a bus?
Governments are encouraging the formation of TTPs to keep copies of all
keys. A company that loses its private key would then be
able to recover it
by approaching its TTP.

Trusted third parties are controversial because they would have access
to people's private keys, and hence they would have the power to read
their clients' messages. They must be trustworthy, otherwise the system is
easily abused. Some argue that TTPs are effectively a reincarnation of key
escrow, and that law enforcers would be tempted to bully TTPs into giving
up a client's keys during a police investigation. Others maintain that

TTPs are a necessary part of a sensible public key infrastructure.

Nobody can predict what role TTPs will play in the future, and nobody
can foresee with certainty the shape of cryptographic policy ten years
from now. However, I suspect that in the near future the proencryption
lobby will initially win the argument, mainly because no country will
want to have encryption laws that prohibit e-commerce. However, if this
policy does turn out to be a mistake, then it will always be possible to
reverse the laws. If there were to be a series of terrorist atrocities, and law
enforcers could show that wiretaps would have prevented them, then governments
would rapidly gain sympathy for a policy of key escrow. All
users of strong encryption would be forced to deposit their keys with a
key escrow agent, and thereafter anybody who sent an encrypted message
with a nonescrowed key would be breaking the law. If the penalty for
nonescrowed encryption were sufficiently severe, law enforcers could
regain control. Later, if governments were to abuse the trust associated
with a system of key escrow, the public would call for a return to cryptographic
freedom, and the pendulum would swing back. In short, there is
no reason why we cannot change our policy to suit the political, economic
and social climate. The deciding factor will be whom the public
fears the most--criminals or the government.

314 The Code Book

The Rehabilitation of Zimmermann

In 1993, Phil Zimmermann became the subject of a grand jury investigation.
According to the FBI, he had exported a munition because he was
supplying hostile nations and terrorists with the tools they needed to
evade the authority of the U.S. Government. As the investigation dragged
on, more and more cryptographers and civil libertarians rushed to support
Zimmermann, establishing an international fund to finance his legal
defense. At the same time, the kudos of being the subject of an FBI
inquiry boosted the reputation of PGP, and Zimmermann's creation
spread via the Internet even more quickly-after all, this was the encryption
software that was so secure that it frightened the Feds.
Pretty Good Privacy had initially been released in haste, and as a result
the product was not as polished as it could have been.
Soon there was a
clamor to develop a revised version of PGP, but clearly Zimmermann was
not in a position to continue working on the product. Instead, software
engineers in Europe began to rebuild PGP. In general, European attitudes
toward encryption were, and still are, more liberal, and there would be no
restrictions on exporting a European version of PGP around the world.

Furthermore, the RSA patent wrangle was not an issue in Europe, because
RSA patents did not apply outside America.

After three years the grand jury investigation had still not brought Zimmermann
to trial. The case was complicated by the nature of PGP and the
way it had been distributed. If Zimmermann had loaded PGP onto a computer
and then shipped it to a hostile regime, the case against him would
have been straightforward because clearly he would have been guilty of
exporting a complete working encryption system. Similarly, if he had
exported a disk containing the PGP program, then the
physical object
could have been interpreted as a cryptographic device, and once again the
case against Zimmermann would have been fairly solid. On the other
hand, if he had printed the computer program and exported it as a book,
the case against him would no longer be clear cut, because he would then
be considered to have exported knowledge rather than a
cryptographic
device. However, printed matter can easily be scanned electronically and
the information can be fed directly into a computer, which means that a
book is as dangerous as a disk. What actually occurred was that Zimmer
mann gave a copy of PGP to "a friend," who simply installed it on an
American computer, which happened to be connected to the Internet.
After that, a hostile regime may or may not have downloaded it. Was

Zimmermann really guilty of exporting PGP? Even today, the legal issues
surrounding the Internet are subject to debate and
interpretation. Back in
the early 1990s, the situation was vague in the extreme.

In 1996, after three years of investigation, the U.S.
Attorney General's
Office dropped its case against Zimmermann. The FBI realized that it was
too late--PGP had escaped onto the Internet, and prosecuting Zimmermann
would achieve nothing. There was the additional problem that
Zimmermann was being supported by major institutions, such as the
Massachusetts Institute of Technology Press, which had published PGP in
a 600-page book. The book was being distributed around the world, so
prosecuting Zimmermann would have meant prosecuting the MIT Press.

The FBI was also reluctant to pursue a prosecution because there was a
significant chance that Zimmermann would not be convicted. An FBI
trial might achieve nothing more than an embarrassing constitutional
debate about the right to privacy, thereby stirring up yet more public sympathy in favor of widespread encryption.

Zimmermann's other major problem also disappeared.
Eventually he
achieved a settlement with RSA and obtained a license which solved the
patent issue. At last, PGP was a legitimate product and Zimmermann was
a free man. The investigation had turned him into a cryptographic crusader, and every marketing manager in the world must have envied the
notoriety and free publicity that the case gave to PGP. At the end of 1997,
Zimmermann sold PGP to Network Associates and he became one of
their senior fellows. Although PGP is now sold to businesses, it is still
freely available to individuals who do not intend to use it for any commercial
purpose. In other words, individuals who merely wish to exercise
their right to privacy can still download PGP from the Internet without
paying for it.

If you would like to obtain a copy of PGP, there are many sites on the

Internet that offer it, and you should find them fairly easily. Probably the
most reliable source is at http://www.pgpi.com/, the International
PGP Home Page, from where you can download the American and international
versions of PGP. At this point, I would like to absolve myself of

316 The Code Book
any responsibility--if you do choose to install PGP, it is up to you check
that your computer is capable of running it, that the software is not
infected with a virus, and so on. Also, you should check that you are in a
country that permits the use of strong encryption.
Finally, you should
ensure that you are downloading the appropriate version of PGP: individuals
living outsid c .America should not download the American version of
PGP, because this would violate American export laws. The international
version of \(P G P\) does not suffer from export restrictions.
I still remember the Sunday afternoon when I first downloaded a copy
of PGP from the Internet. Ever since, I have been able to guarantee my
e-mails against h>eing intercepted and read, because I can now encrypt
sensitive material to Alice, Bob and anybody else who possesses PGP
software. My laptop and its PGP software provide me with a level of
security that is beyond the combined efforts of all the world's code-breaking
establishments.
r
'8 A Quantum Leap into the Future

For two thousand years, codemakers have fought to preserve secrets
while codebreakers have tried their best to reveal them. It has always
been a neck-and-neck race, with codebreakers battling back when code-makers
seemed to be in command, and codemakers inventing new and stronger forms of encryption when previous methods had been compromised.
The invention of public key cryptography and the political debate
that surrounds the use of strong cryptography bring us up to the present
day, and it is clear that the cryptographers are winning the information
war. According to Phil Zimmermann, we live in a golden age of cryptography:
"It is now possible to make ciphers in modern cryptography that are
really, really out of reach of all known forms of cryptanalysis. And I think
it's going to stay that way." Zimmermann's view is
supported by William
Crowell, Deputy Director of the NSA: "If all the personal computers in
the world--approximately 260 million computers--were to be put to work
on a single PGP encrypted message, it would take on
average an estimated
12 million times the age of the universe to break a single message."

Previous experience, however, tells us that every so-called unbreakable
cipher has, sooner or later, succumbed to cryptanalysis. The Vigenere
cipher was called "le chiffre indechiffrable," but Babbage broke it; Enigma was considered invulnerable, until the Poles revealed its weaknesses. So,
are cryptanalysts on the verge of another breakthrough, or is Zimmermann
right? Predicting future developments in any technology is always
a precarious task, but with ciphers it is particularly risky. Not only do we
have to guess which discoveries lie in the future, but we also have to guess
which discoveries lie in the present. The tale of James Ellis and GCHQ^
warns us that there may already be remarkable breakthroughs hidden
behind the veil of government secrecy.

\section*{318 The Code Book}

This final chapter examines a few of the futuristic ideas that may
enhance or destroy privacy in the twenty-first century. The next section
looks at the future of cryptanalysis, and one idea in particular that might
enable cryptanalysts to break all today's ciphers. In contrast, the final section
of the book looks at the most exciting cryptographic prospect, a system
that has the potential to guarantee absolute privacy.

The Future of Cryptanalysis

Despite the enormous strength of RSA and other modern ciphers, crypt-analysts
are still able to play a valuable role in intelligence gathering.
Their success is demonstrated by the fact that cryptanalysts are in greater
demand than ever before--the NSA is still the world's largest employer of mathematicians.

Only a small fraction of the information flowing around the world is
securely encrypted, and the remainder is poorly encrypted, or not
encrypted at all. This is because the number of Internet users is rapidly
increasing, and yet few of these people take adequate precautions in terms
of privacy. In turn, this means that national security organizations, law
enforcers and anybody else with a curious mind can get their hands on
more information than they can cope with.

Even if users employ the RSA cipher properly, there is still plenty that
codebreakers can do to glean information from intercepted messages.
Codebreakers continue to use old-fashioned techniques like traffic analysis;
if codebreakers cannot fathom the contents of a message, at least they
might be able to find out who is sending it, and to whom it is being sent,
which in itself can be telling. A more recent development is the so-called tempest attack, which aims to detect the electromagnetic signals emitted by
the electronics in a computer's display unit. If Eve parks a van outside
Alice's house, she can use sensitive tempest equipment to identify each
individual keystroke that Alice makes on her computer.
This would allow
Eve to intercept the message as it is typed into the computer, before it is
encrypted. To defend against tempest attacks, companies are already supplying
shielding material that can be used to line the walls of a room to
prevent the escape of electromagnetic signals. In America, it is necessary
to obtain a government license before buying such shielding material,

A Quantum Leap into the Future 319

I which suggests that organizations such as the FBI regularly rely on tempest surveillance.

Other attacks include the use of viruses and Trojan horses. Eve might
design a virus that infects PGP software and sits quietly inside Alice's
computer. When Alice uses her private key to decrypt a message, the virus
would wake up and make a note of it. The next time that Alice connects
to the Internet, the virus would surreptitiously send the private key to
Eve, thereby allowing her to decipher all subsequent messages sent to
Alice. The Trojan horse, another software trick, involves

Eve designing a
program that appears to act like a genuine encryption product, but which
actually betrays the user. For example, Alice might believe that she is
downloading an authentic copy of PGP, whereas in reality she is downloading
a Trojan horse version. This modified version looks just like the
genuine PGP program, but contains instructions to send plaintext copies
of all Alice's correspondence to Eve. As Phil Zimmermann puts it:
"Anyone could modify the source code and produce a lobotomized zombie
imitation of PGP that looks real but does the bidding of its diabolical
master. This Trojan horse version of PGP could then be widely circulated,
claiming to be from me. How insidious! You should make every effort to
get your copy of PGP from a reliable source, whatever that means."

A variation on the Trojan horse is a brand-new piece of encryption software
that seems secure, but which actually contains a backdoor, something
that allows its designers to decrypt everybody's messages. In 1998, a
report by Wayne Madsen revealed that the Swiss cryptographic company
Crypto AG had built backdoors into some of its products, and had
provided the U.S. Government with details of how to exploit these backdoors.
As a result, America was able to read the communications of
several countries. In 1991 the assassins who killed
Shahpour Bakhtiar, the
exiled former Iranian prime minister, were caught thanks to the interception
and backdoor decipherment of Iranian messages encrypted using

Crypto AG equipment.

Although traffic analysis, tempest attacks, viruses and Trojan horses are
all useful techniques for gathering information, cryptanalysts realize that
their real goal is to find a way of cracking the RSA cipher, the cornerstone
of modern encryption. The RSA cipher is used to protect the most important
military, diplomatic, commercial and criminal
communications

1

320 The Code Book
-exactly the messages that intelligence gathering organizations want to
decipher. If they are to challenge strong RSA encryption, cryptanalysts will
need to make a major theoretical or technological
breakthrough.

A theoretical breakthrough would be a fundamentally new way of finding
Alice's private key. Alice's private key consists off and \(q\), and these are
found by factoring the public key, N. The standard
approach is to check
each prime number one at a time to see if it divides into N , but we know
that this takes an unreasonable amount of time.
Cryptanalysts have tried to
find a shortcut to factoring, a method that drastically reduces the number
of steps required to find \(p\) and \(q\), but so far all attempts to develop a fast-factoring
recipe have ended in failure. Mathematicians have been studying
factoring for centuries, and modern factoring techniques are not significantly
better than ancient techniques. Indeed, it could be that
the laws of
mathematics forbid the existence of a significant shortcut for factoring.

Without much hope of a theoretical breakthrough, cryptanalysts have
been forced to look for a technological innovation. If there is no obvious
way to reduce the number of steps required for factoring, then cryptanalysts
need a technology that will perform these steps more quickly. Silicon
chips will continue to get faster as the years pass, doubling in speed
roughly every eighteen months, but this is not enough to make a real
impact on the speed of factoring-cryptanalysts require a technology that
is billions of times faster than current computers.
Consequently, cryptanalysts
are looking toward a radically new form of computer, the quantum
computer. If scientists could build a quantum computer, it would be able
to perform calculations with such enormous speed that it would make a
modern supercomputer look iike a broken abacus.

The remainder of this section discusses the concept of a quantum computer,
and therefore it introduces some of the principles of quantum
physics, sometimes called quantum mechanics. Before going any further,
please heed a warning originally given by Niels Bohr, one of the fathers
of quantum mechanics: "Anyone who can contemplate quantum mechanics without getting dizzy hasn't understood it." In other words,
prepare to meet some rather bizarre ideas.
```

In order to explain the principles of quantum computing,
it helps to
return to the end of the eighteenth century and the work

```
of Thomas
Young, the English polymath who made the first breakthrough in deci-

A Quantum Leap into the Future 321
phering Egyptian hieroglyphics. A fellow of Emmanuel College, Cambridge,
Young would often spend his afternoons relaxing near the college
duck pond. On one particular day, so the story goes, he noticed two ducks
happily swimming alongside each other. He observed that the two ducks
left two trails of ripples behind them, which interacted and formed a
peculiar pattern of rough and calm patches. The two sets
of ripples fanned
out behind the two ducks, and when a peak from one duck met a trough
from the other duck, the result was a tiny patch of calm water--the peak
and the trough canceled each other out. Alternatively, if two peaks arrived
at the same spot simultaneously, then the result was an even higher peak,
and if two troughs arrived at the same spot
simultaneously, the result was
an even deeper trough. He was particularly fascinated, because the ducks
reminded him of an experiment concerning the nature of light which he
conducted in 1799.

In Young's earlier experiment he had shone light at a partition in which
there were two narrow vertical slits, as shown in Figure 71(a). On a screen
some distance beyond the slits, Young expected to see two
bright stripes,
projections of the slits. Instead he observed that the light fanned out from
the two slits and formed a pattern of several light and
dark stripes on the
screen. The striped pattern of light on the screen had puzzled him, but now
he believed he could explain it wholly in terms of what he had seen on the
duck pond.

Young began by assuming that light was a form of wave. If the light
emanating from the two slits behaved like waves, then it was just like the
ripples behind the two ducks. Furthermore, the light and dark stripes on
the screen were caused by the same interactions that caused the water
waves to form high peaks, deep troughs and patches of calm. Young could
imagine points on the screen where a trough met a peak, resulting in cancelation
and a dark stripe, and points on the screen where two peaks (or
two troughs) met, resulting in reinforcement and a bright stripe, as shown
in Figure \(71(\mathrm{~b})\). The ducks had provided Young with a deeper insight into
the true nature of light, and he eventually published "The Undulatory
Theory of Light," an all-time classic among physics papers.

Nowadays, we know that light does indeed behave like a wave, but we
know that it can also behave like a particle. Whether we perceive light as
a wave or as a particle depends on the circumstances, and this ambiguity

Figure 71 Young's slits experiment viewed from above.
Diagram (a) shows light fanning
out from the two slits in the partition, interacting and creating a striped pattern on the screen. Diagram (b) shows how individual waves interact. If a trough meets a peak at the
screen, the result is a dark stripe. If two troughs (or two peaks) meet at the screen, the result is a bright stripe.

1

A Quantum Leap into the Future 323
of light is known as wave-particle duality. We do not need to discuss this
duality any further, except to say that modern physics thinks of a beam
of light as consisting of countless individual particles, known as photons, which exhibit wave-like properties. Looked at this way, we can interpret
Young's experiment in terms of photons flooding the slits, and then interacting
on the other side of the partition.

So far, there is nothing particularly strange about Young's experiment.
However, modern technology allows physicists to repeat
Young's experiment
using a filament that is so dim that it emits single
photons of light.
Photons are produced individually at a rate of, say, one per minute, and
each photon travels alone toward the partition. Sometimes a photon will
pass through one of the two slits, and strike the screen. Although our eyes
are not sensitive enough to see the individual photons, they can be
observed with the help of a special detector, and over a period of hours
we could build up an overall picture of where the photons are striking the
screen. With only one photon at a time passing through the slits, we
would not expect to see the striped pattern observed by
Young, because
that phenomenon seems to depend on two photons
simultaneously traveling
through different slits and interacting with each other on the other
side. Instead we might expect to see just two light
stripes, simply projections
of the slits in the partition. However, for some
extraordinary reason,
even with single photons the result on the screen is still a pattern of light
and dark stripes, just as if photons had been interacting.

This weird result defies common sense. There is no way to explain the
phenomenon in terms of the classical laws of physics, by which we mean
the traditional laws that were developed to explain how everyday objects
behave. Classical physics can explain the orbits of planets or the trajectory
of a cannonball, but cannot fully describe the world of the truly tiny, such
as the trajectory of a photon. In order to explain such photon phenomena,
physicists resort to quantum theory, an explanation of how objects
behave at the microscopic level. However, even quantum theorists cannot
agree on how to interpret this experiment. They tend to split into two
opposing camps, each with their own interpretation.

The first camp posits an idea known as superposition. The superpositionists
begin by stating that we know only two things for certain about
the photon--it leaves the filament and it strikes the screen. Everything else

\section*{324 The Code Book}
is a complete mystery, including whether the photon passed through the
left slit or the right slit. Because the exact path of the photon is unknown,
superpositionists take the peculiar view that the photon somehow passes
through both slits simultaneously, which would then allow it to interfere
with itself and create the striped pattern observed on the screen. But how
can one photon pass through both slits?

Superpositionists argue along the following lines. If we do not know
what a particle is doing, then it is allowed to do everything possible simultaneously.
In the case of the photon, we do not know whether it passed
through the left slit or the right slit, so we assume that it passed through
both slits simultaneously. Each possibility is called a state, and because the
photon fulfills both possibilities it is said to be in a superposition of states. We know that one photon left the filament and we know that one photon
hit the screen on the other side of the partition, but in between it somehow
split into two "ghost photons" that passed through both slits. Superposition
might sound silly, but at least it explains the striped pattern that
results from Young's experiment performed with individual photons. In
comparison, the old-fashioned classical view is that the photon must have
passed through one of the two slits, and we simply do not know which
one--this seems much more sensible than the quantum view, but unfortunately
it cannot explain the observed result.

Erwin Schrodinger, who won the Nobel Prize for Physics in 1933,
invented a parable known as "Schrodinger's cat," which is often used to
help explain the concept of superposition. Imagine a cat
in a box. There are
two possible states for the cat, namely dead or alive. Initially, we know that
the cat is definitely in one particular state, because we can see that it is alive.
At this point, the cat is not in a superposition of
states. Next, we place a
vial of cyanide in the box along with the cat and close the lid. We now enter
a period of ignorance, because we cannot see or measure the state of the cat.
Is it still alive, or has it trodden on the vial of cyanide and died? Traditionally
we would say that the cat is either dead or alive, we just do not know
which. However, quantum theory says that the cat is in a superposition of
two states-it is both dead and alive, it satisfies all
possibilities. Superposition
occurs only when we lose sight of an object, and it is a way of describing
an object during a period of ambiguity. When we eventually open the
box, we can see whether the cat is alive or dead. The act of looking at the cat

1

A Quantum Leap into the Future 325
iforces it to be in one particular state, and at that very moment the superposition
disappears.

For readers who feel uncomfortable with superposition, there is the second quantum camp, who favor a different interpretation of Young's
experiment. Unfortunately, this alternative view is
equally bizarre. The many-worlds interpretation claims that upon leaving the filament the photon
has two choices--either it passes through the left slit or the right slit--at
which point the universe divides into two universes, and in one universe
the photon goes through the left slit, and in the other universe the photon
goes through the right slit. These two universes somehow interfere
with each other, which accounts for the striped pattern. Followers of the
many-worlds interpretation believe that whenever an object
has the potential
to enter one of several possible states, the universe
splits into many
universes, so that each potential is fulfilled in a
different universe. This
proliferation of universes is referred to as the multiverse.

Whether we adopt superposition or the many-worlds interpretation,
quantum theory is a perplexing philosophy. Nevertheless, it has shown
itself to be the most successful and practical scientific theory ever conceived.
Besides its unique capacity to explain the result of Young's experiment, quantum theory successfully explains many other phenomena. Only quantum theory allows physicists to calculate the consequences of
nuclear reactions in power stations; only quantum theory can explain the
wonders of DNA; only quantum theory explains how the sun shines;
only quantum theory can be used to design the laser that reads the CDs
in your stereo. Thus, like it or not, we live in a quantum world.

Of all the consequences of quantum theory, the most technologically
important is potentially the quantum computer. As well as destroying the
security of all modern ciphers, the quantum computer would herald a
new era of computing power. One of the pioneers of quantum
computing
is David Deutsch, a British physicist who began working on the concept
in 1984, when he attended a conference on the theory of computation.
While listening to a lecture at the conference, Deutsch spotted something
that had previously been overlooked. The tacit assumption was that all
computers essentially operated according to the laws of classical physics,
but Deutsch was convinced that computers ought to obey the laws of
quantum physics instead, because quantum laws are more fundamental.

\section*{326 The Code Book}

Ordinary computers operate at a relatively macroscopic level, and at
that level quantum laws and classical laws are almost indistinguishable.
It did not therefore matter that scientists had generally thought of ordinary
computers in terms of classical physics. However, at the microscopic
level the two sets of laws diverge, and at this level only the laws
of quantum physics hold true. At the microscopic level, quantum laws
reveal their true weirdness, and a computer constructed to exploit these
laws would behave in a drastically new way. After the conference,
Deutsch returned home and began to recast the theory of computers in
the light of quantum physics. In a paper published in 1985 he described
his vision of a quantum computer operating according to the laws of
quantum physics. In particular, he explained how his
quantum computer
differed from an ordinary computer.

Imagine that you have two versions of a question. To answer both
questions using an ordinary computer, you would have to input the first

Figure 72 David Deutsch.

A Quantum Leap into the Future 327
version and wait for the answer, then input the second version and wait
for the answer. In other words, an ordinary computer can address only
one question at a time, and if there are several questions
it has to address
them sequentially. However, with a quantum computer, the two questions
could be combined as a superposition of two states and inputted
simultaneously--the machine itself would then enter a superposition of
two states, one for each question. Or, according to the many-worlds interpretation,
the machine would enter two different universes, and answer
each version of the question in a different universe. Regardless of the
interpretation, the quantum computer can address two questions at the
same time by exploiting the laws of quantum physics.

To get some idea of the power of a quantum computer, we can compare
its performance with that of a traditional computer by seeing what
happens when each is used to tackle a particular problem. For example,
the two types of computer could tackle the problem of finding a number
whose square and cube together use all the digits from 0
to 9 once and
only once. If we test the number 19, we find that \(192=\) 361 and \(193=\)
6,859. The number 19 does not fit the requirement because its square
and cube include only the digits: 1, 3, 5, 6, 6, 8, 9, i.e., the digits \(0,2,4\),

7 are missing and the digit 6 is repeated.

To solve this problem with a traditional computer, the operator would
have to adopt the following approach. The operator inputs the number 1
and then allows the computer to test it. Once the computer has done the
necessary calculations, it declares whether or not the number fulfills the
criterion. The number 1 does not fulfill the criterion, so the operator
inputs the number 2 and allows the computer to carry out another test,
and so on, until the appropriate number is eventually found. It turns out
that the answer is 69, because \(692=4,761\) and \(693=\) 328,509, and these
numbers do indeed include each of the ten digits once and only once. In
fact, 69 is the only number that satisfies this
requirement. It is clear that
this process is time-consuming, because a traditional
computer can test
only one number at a time. If the computer takes one second to test each
number, then it would have taken 69 seconds to find the answer. In contrast,
a quantum computer would find the answer in just 1 second.

The operator begins by representing the numbers in a special way so as
to exploit the power of the quantum computer. One way to represent the
numbers is in terms of spinning particles-many fundamental particles
possess an inherent spin, and they can either spin eastward or westward,
rather like a basketball spinning on the end of a finger. When a particle is
spinning eastward it represents 1 , and when it is spinning westward it represents
O. Hence, a sequence of spinning particles represents a sequence
of 1 's and O's, or a binary number. For example, seven particles, spinning
east, east, west, east, west, west, west respectively, together represent the
binary number 1101000, which is equivalent to the decimal number 104.
Depending on their spins, a combination of seven particles can represent
any number between 0 and 127.

With a traditional computer, the operator would then input one particular sequence of spins, such as west, west, west, west, west, west, east, which represents 0000001 , which is simply the decimal number 1. The
operator would then wait for the computer to test the
number to see
whether it fits the criterion mentioned earlier. Next the operator would
input 0000010, which would be a sequence of spinning particles representing
2 , and so on. As before, the numbers would have to be entered
one at a time, which we know to be time-consuming.
However, if we are
dealing with a quantum computer, the operator has an alternative way of
inputting numbers which is much faster. Because each particle is fundamental,
it obeys the laws of quantum physics. Hence, when a particle is
not being observed it can enter a superposition of states, which means
that it is spinning in both directions at the same time, and so is representing
both 0 and 1 at the same time. Alternatively, we can think of the
particle entering two different universes: in one universe it spins
eastward and represents 1, while in the other it spins westward and
represents 0 .

The superposition is achieved as follows. Imagine that we can observe
one of the particles, and it is spinning westward. To
change its spin, we
would fire a sufficiently powerful pulse of energy, enough to kick the
particle into spinning eastward. If we were to fire a
weaker pulse, then
sometimes we would be lucky and the particle would change its spin, and
sometimes we would be unlucky and the particle would keep its westward
spin. So far the particle has been in clear view all
along, and we have been
able to follow its progress. However, if the particle is spinning westward
and put in a box out of our view, and we fire a weak pulse of energy at it,
\(\wedge\)

A Quantum Leap into the Future 329
then we have no idea whether its spin has been changed. The particle
enters a superposition of eastward and westward spins, just as the cat
entered a superposition of being dead and alive. By taking seven westward-spinning
particles, placing them in a box, and firing seven weak pulses of energy at them, then all seven particles enter a
superposition.

With all seven particles in a superposition, they effectively represent all
possible combinations of eastward and westward spins. The seven
particles simultaneously represent 128 different states, or 128 different
numbers. The operator inputs the seven particles, while they are still in a
superposition of states, into the quantum computer, which then performs
its calculations as if it were testing all 128 numbers simultaneously. After 1
second the computer outputs the number, 69, which fulfills the requested
criterion. The operator gets 128 computations for the price of one.

A quantum computer defies common sense. Ignoring the details for a moment, a quantum computer can be thought of in two different ways,
depending on which quantum interpretation you prefer. Some physicists
view the quantum computer as a single entity that performs the same calculation
simultaneously on 128 numbers. Others view it as 128
entities,
each in a separate universe, each performing just one calculation. Quantum
computing is Twilight Zone technology.

When traditional computers operate on 1 's and O's, the 1 's and O's are
called bits, which is short for binary digits. Because a quantum computer
deals with 1 's and O's that are in a quantum superposition, they are called
quantum bits, or qubits (pronounced "cubits"). The advantage of qubits
becomes even clearer when we consider more particles. With 250
spinning particles, or 250 qubits, it is possible to
represent roughly 1075 combinations, which is greater than
the number of atoms in the universe.
If it were possible to achieve the appropriate
superposition with 250
particles, then a quantum computer could perform 1075
simultaneous computations, completing them all in just one second.

The exploitation of quantum effects could give rise to quantum computers
of unimaginable power. Unfortunately, when Deutsch created his
vision of a quantum computer in the mid-1980s, nobody could quite
envisage how to create a solid, practical machine. For example, scientists
could not actually build anything that could calculate with spinning
particles in a superposition of states. One of the greatest hurdles was

330 The Code Book
maintaining a superposition of states throughout the calculation. A superposition
exists only while it is not being observed, but an observation in
the most general sense includes any interaction with anything external to
the superposition. A single stray atom interacting with
one of the spinning
particles would cause the superposition to collapse into a single state
and cause the quantum calculation to fail.

Another problem was that scientists could not work out how to program
a quantum computer, and were therefore not sure what sort of computations
it might be capable of doing. However, in 1994 Peter Shor of AT\&T
Bell Laboratories in New Jersey did succeed in defining a useful program
for a quantum computer. The remarkable news for
cryptanalysts was that
Shot's program defined a series of steps that could be used by a quantum
computer to factor a giant number--just what was required to crack the
RSA cipher. When Martin Gardner set his RSA challenge in Scientific
American, it took six hundred computers several months to factor a 129digit
number. In comparison, Shor's program could factor a number a
million times bigger in one-millionth of the time.
Unfortunately, Shor
could not demonstrate his factorization program, because there was still
no such thing as a quantum computer.

Then, in 1996, Low Grover, also at Bell Labs, discovered another powerful
program. Graver's program is a way of searching a list at incredibly high
speed, which might not sound particularly interesting until you realize that
this is exactly what is required to crack a DES cipher. To crack a DES cipher
it is necessary to search a list of all possible keys in order to find the correct
one. If a conventional computer can check a million keys a second, it would
take over a thousand years to crack a DES cipher, whereas a quantum computer
using Graver's program could find the key in less than four minutes.

It is purely coincidental that the first two quantum computer programs
to be invented have been exactly what cryptanalysts would have
put at the top of their wish lists. Although Shor's and Graver's programs
generated tremendous optimism among codebreakers, there was also
immense frustration, because there was still no such thing as a working
quantum computer that could run these programs. Not surprisingly, the
potential of the ultimate weapon in decryption technology has whetted
the appetite of organizations such as America's Defense Advanced

Research Projects Agency (DARPA) and the Los Alamos National Labo-

A Quantum Leap into the Future 331
ratory, who are desperately trying to build devices that can handle qubits,
in the same way that silicon chips handle bits. Although a
number of
recent breakthroughs have boosted morale among
researchers, it is fair to
say that the technology remains remarkably primitive. In 1998, Serge
Haroche at the University of Paris VI put the hype surrounding the
breakthroughs into perspective when he dispelled claims that a real quantum
computer is only a few years away. He said this was like painstakingly
assembling the first layer of a house of cards, then boasting that the next
15,000 layers were a mere formality.

Only time will tell if and when the problems of building a quantum
computer can be overcome. In the meantime, we can merely speculate as
to what impact it would have on the world of cryptography. Ever since
the 1970s, codemakers have had a clear lead in the race against code-breakers,
thanks to ciphers such as DBS and RSA. These sorts of ciphers
are a precious resource, because we have come to trust them to encrypt
our e-mails and guard our privacy. Similarly, as we enter the twenty-first
century more and more commerce will be conducted on the Internet, and the electronic marketplace will rely on strong ciphers to protect and verify financial transactions. As information becomes the world's most valuable
commodity, the economic, political and military fate of nations will
depend on the strength of ciphers.

Consequently, the development of a fully operational quantum computer
would imperil our personal privacy, destroy electronic commerce
and demolish the concept of national security. A quantum computer
would jeopardize the stability of the world. Whichever country gets there
first will have the ability to monitor the communications of its citizens,
read the minds of its commercial rivals and eavesdrop on the plans of its
enemies. Although it is still in its infancy, quantum computing presents a
potential threat to the individual, to international business and to global
security.

Quantum Cryptography

While cryptanalysts anticipate the arrival of quantum computers, cryptographers are working on their own technological miracle--an
encryption system that would reestablish privacy, even when confronted

332 The Code Book
with the might of a quantum computer. This new form of
encryption is
fundamentally different from any that we have previously encountered in
that it offers the hope of perfect privacy. In other words, this system
would be flawless and would guarantee absolute security for eternity.
Furthermore, it is based on quantum theory, the same theory that is the
foundation for quantum computers. So while quantum theory is the
inspiration for a computer that could crack all current ciphers, it is also at
the heart of a new unbreakable cipher called quantum cryptography.

The story of quantum cryptography dates back to a curious idea developed
in the late 1960s by Stephen Wiesner, then a graduate student at

Columbia University. Sadly, it was Wiesner's misfortune to invent an idea
so ahead of its time that nobody took it seriously. He still recalls the reaction
of his seniors: "I didn't get any support from my thesis adviser--he
showed no interest in it at all. I showed it to several other people, and
they all pulled a strange face, and went straight back to what they were
already doing." Wiesner was proposing the bizarre concept of quantum
money, which had the great advantage of being impossible to counterfeit.

Wiesner's quantum money relied heavily on the physics of photons.
When a photon travels through space it vibrates, as shown in Figure 73(a).
All four photons are traveling in the same direction, but the angle of
vibration is different in each case. The angle of
vibration is known as the
polarization of the photon, and a lightbulb generates
photons of all
polarizations, which means that some photons will vibrate up and down,
some from side to side, and others at all angles in
between. To simplify
matters, we shall assume that photons have only four
possible polarizations,
which we label i, *-*, \ and S.

By placing a filter known as a Polaroid in the path of the photons, it is
possible to ensure that the emerging beam of light
consists of photons
that vibrate in one particular direction; in other words, the photons all
have the same polarization. To some extent, we can think of the Polaroid
filter as a grating, and photons as matchsticks randomly scattered onto the
grating. The matchsticks will slip through the grating only if they are at
the correct angle. Any photon that is already polarized in the same direction
as the Polaroid filter will automatically pass through it unchanged,
and photons that are polarized perpendicular to the filter will be blocked.

A Quantum Leap into the Future 333

Unfortunately, the matchstick analogy breaks down when we think
about diagonally polarized photons approaching a vertical Polaroid filter.
Although matchsticks oriented diagonally would be blocked by a vertical
grating, this is not necessarily the case with diagonally polarized photons
approaching a vertical Polaroid filter. In fact,
diagonally polarized photons
are in a quantum quandary when confronted by a vertical
Polaroid
filter. What happens is that, half of them at random will
be blocked, and
half will pass through, and those that do pass through will be reoriented
with a vertical polarization. Figure \(73(b)\) shows eight photons approaching a
vertical Polaroid filter, and Figure 73(c) shows that only four of them successfully
pass through it. All the vertically polarized photons have passed
through, all the horizontally polarized photons have been blocked, and
half of the diagonally polarized photons have passed through.

Figure 73 (a) Although photons of light vibrate in all directions, we assume for
simplicity that there are just four distinct directions, as shown in this diagram, (b) The lamp has emitted eight photons, which are vibrating in various directions. Each photon is said to have a polarization. The photons are heading toward a vertical Polaroid filter,
(c) On the other side of the filter, only half the photons have survived. The vertically polarized photons have passed through, and the horizontally polarized photons have
not. Half the diagonally polarized photons have passed through, and are thereafter vertically polarized.

\section*{334 The Code Book}

It is this ability to block certain photons that explains how Polaroid sunglasses work. In fact, you can demonstrate the effect of Polaroid filters
by experimenting with a pair of Polaroid sunglasses. First remove one
lens, and close that eye so that you are looking with just the other eye
through the remaining lens. Not surprisingly, the world looks quite dark
because the lens blocks many of the photons that would otherwise have
reached your eye. At this point, all the photons reaching your eye have
the same polarization. Next, hold the other lens in front of the lens you
are looking through, and rotate it slowly. At one point in the rotation, the
loose lens will have no effect on the amount of light reaching your eye
because its orientation is the same as the fixed lens--all the photons that
get through the loose lens also pass through the fixed lens. If you now
rotate the loose lens through \(90^{\circ}\), it will turn completely black. In this
configuration, the polarization of the loose lens is
perpendicular to the
polarization of the fixed lens, so that any photons that get through the
loose lens are blocked by the fixed lens. If you now rotate the loose lens
by \(45^{\circ}\), then you reach an intermediate stage in which the lenses are partially
misaligned, and half of the photons that pass through the loose lens
manage to get through the fixed lens.

Wiesner planned to use the polarization of photons as a way of
creating dollar bills that can never be forged. His idea was that dollar bills
should each contain 20 light traps, tiny devices that are capable of capturing
and retaining a photon. He suggested that banks could use four
Polaroid filters oriented in four different ways (\$, <-» ,N, **) to fill the 20
light traps with a sequence of 20 polarized photons, using a different
sequence for each dollar bill. For example, Figure 74 shows a bill with the
polarization sequence ( \(\backslash t S S<->\$ \${ }^{\prime} l \backslash<->'++S<\wedge \backslash * *<->* * \$\)
t). Although the polarizations are explicitly shown in Figure 74, in reality
they would be hidden from view. Each note also carries a traditional
serial number, which is B2801695E for the dollar bill
shown. The issuing
bank can identify each dollar bill according to its polarization sequence
and its printed serial number, and would keep a master list of serial numbers
and the corresponding polarization sequences.

A counterfeiter is now faced with a problem-he cannot merely forge a
dollar bill which carries an arbitrary serial number and a random polarization
sequence in the light traps, because this pairing will not appear on the

\section*{\(\wedge\)}

A Quantum Leap into the Future 335
bank's master list, and the bank will spot that the dollar bill is a fake. To create an effective forgery, the counterfeiter must use a genuine bill as a sample, somehow measure its 20 polarizations, and then make a duplicate
dollar bill, copying across the serial number and loading the light traps in
the appropriate way. However, measuring photon polarizations is a notoriously
tricky task, and if the counterfeiter cannot accurately measure them
in the genuine sample bill, then he cannot hope to make a duplicate.

To understand the difficulty of measuring the polarization of photons,
we need to consider how we would go about trying to perform such a
measurement. The only way to learn anything about the polarization of
a photon is by using a Polaroid filter. To measure the polarization of the
photon in a particular light trap, the counterfeiter selects a Polaroid filter
and orients it in a particular way, say vertically, I. If
the photon emerging
from the light trap happens to be vertically polarized, it will pass through
the vertical Polaroid filter and the counterfeiter will correctly assume that
```

\
\ /
/ --

```
\(1 \backslash \backslash\)
\(\backslash\)
1
-- -- / -- \}
/
--/ 1
i

B2801695E
\$1

Figure 74 Stephen Wiesner's quantum money. Each note is unique because of its serial
number, which can be seen easily, and the 20 light traps, whose contents are a mystery.
The light traps contain photons of various polarizations. The bank knows the sequence
of polarizations corresponding to each serial number, but a counterfeiter does not.

\section*{336 The Code Book}
it is a vertically polarized photon. If the emerging photon is horizontally
polarized, it will not pass through the vertical Polaroid filter, and the
counterfeiter will correctly assume that it is a horizontally polarized photon.
However, if the emerging photon happens to be diagonally polarized
(\ or i/1), it might or might not pass through the filter, and in either case
the counterfeiter will fail to identify its true nature. A N photon might
pass through the vertical Polaroid filter, in which case the counterfeiter
will wrongly assume that it is a vertically polarized photon, or the same
photon might not pass through the filter, in which case he will wrongly
assume that it is a horizontally polarized photon.
Alternatively, if the
counterfeiter chooses to measure the photon in another light trap by orientating
the filter diagonally, say \(\backslash\), then this would correctly identify the
nature of a diagonally polarized photon, but it would fail to accurately
. identify a vertically or horizontally polarized photon.

The counterfeiter's problem is that he must use the correct orientation
of Polaroid filter to identify a photon's polarization, but he does not know
which orientation to use because he does not know the polarization of the
photon. This catch-22 is an inherent part of the physics of photons. Imagine
that the counterfeiter chooses a Vfilter to measure the
photon emerging
from the second light trap, and the photon does not pass through the
filter. The counterfeiter can be sure that the photon was not \ polarized,
because that type of photon would have passed through. However, the
counterfeiter cannot tell whether the photon was //-polarized, which
would certainly not have passed through the filter, or whether it was I-or «-»-polarized, either of which stood a fifty-fifty chance of being blocked.

This difficulty in measuring photons is one aspect of the uncertainty
principle, developed in the 1920s by the German physicist Werner
Heisenberg. He translated his highly technical proposition into a simple
statement: "We cannot know, as a matter of principle, the present in all its
details." This does not mean that we cannot know everything because we
do not have enough measuring equipment, or because our equipment is
poorly designed. Instead, Heisenberg was stating that it is logically impossible
to measure every aspect of a particular object with perfect accuracy.
In this particular case, we cannot measure every aspect of the photons
within the light traps with perfect accuracy. The uncertainty principle is another weird consequence of quantum theory.

A Quantum Leap into the FutM~ re 337

Wiesner's quantum money relied on the fact that counterfeiting is a two-stage
process: first the counterfeiter needs to measure the original rmote with
great accuracy, and then he has to replicate it. By incorporating pb»otons in
the design of the dollar bill, Wiesner was making the bill impo-ssible to
measure accurately, and hence creating a barrier to counterfeiting.

A naive counterfeiter might think that if he cannot measure line polarizations
of the photons in the light traps, then neither can the hoank. He
might try manufacturing dollar bills by filling the light traps witrm an arbitrary
sequence of polarizations. However, the bank is able to veri fy which
bills are genuine. The bank looks at the serial number, then coMisults its
confidential master list to see which photons should be in which light traps.
Because the bank knows which polarizations to expect in each ILght trap,
it can correctly orient the Polaroid filter for each light trap and pe rform an
accurate measurement. If the bill is counterfeit, the counterfeit er's arbitrary
polarizations will lead to incorrect measurements and the bill will
stand out as a forgery. For example, if the bank uses a I-filter to measure
what should be a I-polarized photon, but finds that the filter bUocks the
photon, then it knows that a counterfeiter has filled the trap with the
wrong photon. If, however, the bill turns out to be genuine, then the bank
refills the light traps with the appropriate photons and puts it back into
circulation.

In short, the counterfeiter cannot measure the polarizations in a genuine
bill because he does not know which type of photon is in each light trap,
and cannot therefore know how to orient the Polaroid filter in order to
measure it correctly. On the other hand, the bank is able
to czheck the
polarizations in a genuine bill, because it originally chose the polarizations,
and so knows how to orient the Polaroid filter for each ome.
Quantum money is a brilliant idea. It is also wholly impractical!. To start
with, engineers have not yet developed the technology for trapping photons
in a particular polarized state for a sufficiently long periocL of time.
Even if the technology did exist, it would be too expensive to implement it.
It might cost in the region of \(\$ 1\) million to protect each dollar bill. Despite
its impracticality, quantum money applied quantum theory in ami intriguing
and imaginative way, so despite the lack of encouragement from his
thesis adviser, Wiesner submitted a paper to a scientific journal. It was
rejected. He submitted it to three other journals, and it was rejected three

338 The Code Book
more times. Wiesner claims that they simply did not
understand the
physics.

It seemed that only one person shared Wiesner's excitement for the
concept of quantum money. This was an old friend by the
name of
Charles Bennett, who several years earlier had been an undergraduate
with him at Brandeis University. Bennett's curiosity about every aspect of
science is one of the most remarkable things about his personality. He
says he knew at the age of three that he wanted to be a scientist, and his
childhood enthusiasm for the subject was not lost on his mother. One
day she returned home to find a pan containing a weird stew bubbling on
the cooker. Fortunately she was not tempted to taste it, as it turned out to
be the remains of a turtle that the young Bennett was boiling in alkali in
order to strip the flesh from the bones, thereby obtaining a perfect specimen
of a turtle skeleton. During his teenage years, Bennett's curiosity

1

Figure 75 Charles Bennett.

A Quantum Leap into the Future 339
moved from biology to biochemistry, and by the time he got to Brandeis
he had decided to major in chemistry. At graduate school he concentrated
on physical chemistry, then went on to do research in physics, mathematics, logic and, finally, computer science.

Aware of Bennett's broad range of interests, Wiesner hoped that he
would appreciate quantum money, and handed him a copy of his rejected
manuscript. Bennett was immediately fascinated by the concept, and considered
it one of most beautiful ideas he had ever seen. Over the next
decade he would occasionally reread the manuscript,
wondering if there
was a way to turn something so ingenious into something
that was also
useful. Even when he became a research fellow at IBM's

Thomas J. Watson
Laboratories in the early 1980s, Bennett still could not stop thinking
about Wiesner's idea. The journals might not want to publish it, but Bennett
was obsessed by it.

One day, Bennett explained the concept of quantum money to Gilles
Brassard, a computer scientist at the University of Montreal. Bennett and
Brassard, who had collaborated on various research projects, discussed the
intricacies of Wiesner's paper over and over again. Gradually they began
to see that Wiesner's idea might have an application in cryptography. For
Eve to decipher an encrypted message between Alice and Bob, she must
first intercept it, which means that she must somehow accurately perceive
the contents of the transmission. Wiesner's quantum money was secure
because it was impossible to accurately perceive the polarizations of the
photons trapped in the dollar bill. Bennett and Brassard wondered what
would happen if an encrypted message was represented and transmitted
by a series of polarized photons. In theory, it seemed that Eve would be
unable to accurately read the encrypted message, and if she could not
read the encrypted message, then she could not decipher it.

Bennett and Brassard began to concoct a system based on the following
principle. Imagine that Alice wants to send Bob an encrypted message,
which consists of a series of 1 's and O's. She represents the 1 's and
O's by sending photons with certain polarizations. Alice has two possible
schemes for associating photon polarizations with 1 or 0 . In the first
scheme, called the rectilinear or \(-(--s c h e m e\), she sends \(t\) to represent 1, and
<-* to represent 0 . In the other scheme, called the diagonal or \(x\)-scheme,
she sends \(J\) to represent 1 , and \(\backslash\) to represent 0 . To send a binary

340 The Code Book
message, she switches between these two schemes in an unpredictable
way. Hence, the binary message 1101101001 could be transmitted as
follows:

Message1101101001

Scheme \(+x+x x x++x x\)

Transmission \(I\) j/1 «-» </" // \ t <-» \ i/1

Alice transmits the first 1 using the +-scheme, and the second 1 using the
x-scheme. Hence, 1 is being transmitted in both cases, but it is represented by differently polarized photons each time.

If Eve wants to intercept this message, she needs to identify the polarization of each photon, just as the counterfeiter needs to identify the
polarization of each photon in the dollar bill's light traps. To measure the polarization of each photon Eve must decide how to orient her Polaroid
filter as each one approaches. She cannot know for sure which scheme
Alice will be using for each photon, so her choice of Polaroid filter will
be haphazard and wrong half the time. Hence, she cannot have complete
knowledge of the transmission.

An easier way to think of Eve's dilemma is to pretend that she has two
types of Polaroid detector at her disposal. The +-detector is capable of
measuring horizontally and vertically polarized photons with perfect
accuracy, but is not capable of measuring diagonally polarized photons
with certainty, and merely misinterprets them as
vertically or horizontally
polarized photons. On the other hand, the \(x\)-detector can measure diagonally
polarized photons with perfect accuracy, but cannot measure horizontally
and vertically polarized photons with certainty,
misinterpreting
them as diagonally polarized photons. For example, if she uses the x -detector
to measure the first photon, which is \(t\), she will
misinterpret it as
//" or \(\backslash\). If she misinterprets it as /, then she does not have a problem,
because this also represents 1 , but if she misinterprets it as \then she is
in trouble, because this represents 0 . To make matters worse for Eve, she only gets one chance to measure the photon accurately. A photon is indivisible, and so she cannot split it into two photons and measure it using
both schemes.

This system seems to have some pleasant features. Eve cannot be sure
of accurately intercepting the encrypted message, so she has no hope of

A Quantum Leap into the Future 341
deciphering it. However, the system suffers from a severe and apparently
insurmountable problem--Bob is in the same position as Eve, inasmuch as he has no way of knowing which polarization scheme Alice is using for
each photon, so he too will misinterpret the message. The obvious solution
to the problem is for Alice and Bob to agree on which polarization
scheme they will use for each photon. For the example above, Alice and
Bob would share a list, or key, that reads + x + xxx + -t-xx. However,
we are now back to the same old problem of key
distribution-somehow
Alice has to get the list of polarization schemes securely to Bob.

Of course, Alice could encrypt the list of schemes by employing a public
key cipher such as RSA, and then transmit it to Bob. However, imagine
that we are now in an era when RSA has been broken, perhaps following
the development of powerful quantum computers. Bennett and Brassard's
system has to be self-sufficient and not rely on RSA. For months, Bennett
and Brassard tried to think of a way around the key distribution problem.
Then, in 1984, the two found themselves standing on the platform at
Croton-Harmon station, near IBM's Thomas J. Watson
Laboratories. They
were waiting for the train that would take Brassard back to Montreal, and
passed the time by chatting about the trials and
tribulations of Alice, Bob
and Eve. Had the train arrived a few minutes early, they would have
waved each other goodbye, having made no progress on the problem of
key distribution. Instead, in a eureka! moment, they created quantum
cryptography, the most secure form of cryptography ever devised.
Their recipe for quantum cryptography requires three preparatory
stages. Although these stages do not involve sending an encrypted message,
they do allow the secure exchange of a key which can later be used
to encrypt a message.

Stage 1. Alice begins by transmitting a random sequence of 1 's and O's
(bits), using a random choice of rectilinear (horizontal and vertical) and
diagonal polarization schemes. Figure 76 shows such a sequence of photons on their way to Bob.

Stage 2. Bob has to measure the polarization of these photons. Since he
has no idea what polarization scheme Alice has used for each one, he
randomly swaps between his -I--detector and his
x-detector. Sometimes
Bob picks the correct detector, and sometimes he picks the wrong one.

342 The Code Book

If Bob uses the wrong detector he may well misinterpret Alice's photon.
Table 27 covers all the possibilities. For example, in the top line, Alice
uses the rectilinear scheme to send 1, and thus transmits \$; then Bob
uses the correct detector, so he detects \$, and correctly notes down 1 as
the first bit of the sequence. In the next line, Alice does the same thing,
but Bob uses the incorrect detector, so he might detect
i/1 or N, which
means that he might correctly note down 1 or incorrectly note down 0.

Stage 3. At this point, Alice has sent a series of 1 's and O's and Bob has
detected some of them correctly and some of them incorrectly. To clarify
the situation, Alice then telephones Bob on an ordinary insecure line, and tells Bob which polarization scheme she used for each
photon-but not how she polarized each photon. So she might say that
the first photon was sent using the rectilinear scheme, but she will not
sender
ALICE
```

diagonal
polarization filters

```
```

rectilinear
polarization filters

```
\%

ALICE'S bit sequence 1
BOB's detection scheme m BOB's measurements 1
Retained bit sequence 1

Figure 76 Alice transmits a series of 1 's and O's to Bob.

Each 1 and each 0 is
represented by a polarized photon, according to either the rectilinear
(horizontal/vertical) or diagonal polarization scheme. Bob measures each photon using
either his rectilinear or his diagonal detector. He chooses the correct detector for the leftmost photon and correctly interprets it as 1. However, he chooses the incorrect detector
for the next photon. He happens to interpret it correctly as 0, but this bit is nevertheless
later discarded because Bob cannot be sure that he has measured it correctly.

A Quantum Leap into the Future 343
say whether she sent \(I\) or <-». Bob then tells Alice on which occasions
he guessed the correct polarization scheme. On these occasions he definitely measured the correct polarization and correctly noted down 1
or 0. Finally, Alice and Bob ignore all the photons for which Bob used
the wrong scheme, and concentrate only on those for which he guessed
the right scheme. In effect, they have generated a new shorter sequence
of bits, consisting only of Bob's correct measurements.
This whole stage
is illustrated in the table at the bottom of Figure 76.

These three stages have allowed Alice and Bob to establish a common
series of digits, such as the sequence 11001001 agreed in Figure 76. The
crucial property of this sequence is that it is random, because it is derived
exchange between Alice and Bob.
i Alice's Alice's AliceBob's Correct BobBob's Is Bob's bit

I scheme bitsends ; detector detector?
detectsbitcorrect?

Yes

Yes

C
○

M>
/
```

Yes
; X
No
S
1
No
\
0
Yes
\
1
Yes
: +
No
<>
0
No
X
Yes
S
1
Yes
I
1
No
; +
No
<>
0
Yes
X
Yes
\
0
Yes
344 The Code Book

```
from Alice's initial sequence, which was itself random. Furthermore, the
occasions when Bob uses the correct detector are also
random. The agreed
sequence does not therefore constitute a message, but it
could act as a
random key. At last, the actual process of secure encryption can begin.

This agreed random sequence can be used as the key for a onetime pad
cipher. Chapter 3 described how a random series of letters
or numbers,
the onetime pad, can give rise to an unbreakable
cipher-not just
practically unbreakable, but absolutely unbreakable.
Previously, the only
problem with the onetime pad cipher was the difficulty of securely distributing
the random series, but Bennett and Brassard's arrangement overcomes this problem. Alice and Bob have agreed on a onetime pad,
and the laws of quantum physics actually forbid Eve from successfully
intercepting it. It is now time to put ourselves in Eve's position, and then
we will see why she is unable to intercept the key.

As Alice transmits the polarized photons, Eve attempts to measure them,
but she does not know whether to use the +-detector or the x-detector. On
half the occasions she will choose the wrong detector. This is exactly the
same position that Bob is in, because he too picks the wrong detector half
the time. However, after the transmission Alice tells Bob which scheme he
should have used for each photon and they agree to use only the photons
which were measured when Bob used the right detector.
However, this
does not help Eve, because for half these photons she will
have measured
them using the incorrect detector, and so will have misinterpreted some
of the photons that make up the final key.

Another way to think about quantum cryptography is in terms of a
pack of cards rather than polarized photons. Every playing card has a
value and a suit, such as the jack of hearts or the six of clubs, and usually
we can look at a card and see both the value and the suit at the same time.
However, imagine that it is only possible to measure either the value or
the suit, but not both. Alice picks a card from the pack, and must decide
whether to measure the value or the suit. Suppose that she chooses to
measure the suit, which is "spades," which she notes. The card happens to
be the four of spades, but Alice knows only that it is a spade. Then she
transmits the card down a phone line to Bob. While this is happening,
Eve tries to measure the card, but unfortunately she chooses to measure
its value, which is "four." When the card reaches Bob he decides to

A Quantum Leap into the Future 345
measure its suit, which is still "spades," and he notes this down.
Afterward, Alice calls Bob and asks him if he measured the suit, which he
did, so Alice and Bob now know that they share some common knowledge-they
both have "spades" written on their notepads. However, Eve has "four" written on her notepad, which is of no use at all.

Next, Alice picks another card from the pack, say the king of diamonds,
but, again, she can measure only one property. This time she
chooses to measure its value, which is "king," and transmits the card
down a phone line to Bob. Eve tries to measure the card, and she also
chooses to measure its value, "king." When the card
reaches Bob, he
decides to measure its suit, which is "diamonds."
Afterward, Alice calls
Bob and asks him if he measured the card's value, and he has to admit
that he guessed wrong and measured its suit. Alice and Bob are not bothered
because they can ignore this particular card completely, and try again
with another card chosen at random from the pack. On this last occasion
Eve guessed right, and measured the same as Alice, "king," but the card
was discarded because Bob did not measure it correctly. So Bob does not
have to worry about his mistakes, because Alice and he can agree to
ignore them, but Eve is stuck with her mistakes. By sending several cards,
Alice and Bob can agree on a sequence of suits and values which can then
be used as the basis for some kind of key.

Quantum cryptography allows Alice and Bob to agree on a key, and
Eve cannot intercept this key without making errors. Furthermore, quantum
cryptography has an additional benefit: it provides a way for Alice
and Bob to find out if Eve is eavesdropping. Eve's presence on the line
becomes apparent because every time that she measures a photon, she
risks altering it, and these alterations become obvious to Alice and Bob.

Imagine that Alice sends \\, and Eve measures it with the wrong detector,
the +-detector. In effect, the -t-detector forces the incoming ** photon
to emerge as either a \(I\) or a <-» photon, because this is the only way the photon can get through Eve's detector. If Bob measures the
transformed
photon with his \(x\)-detector, then he might detect \(\backslash\), which is what Alice
sent, or he might detect /, which would be a
mismeasurement. This is a
problem for Alice and Bob, because Alice sent a diagonally polarized
photon and Bob used the correct detector, yet he might have measured it
incorrectly. In short, when Eve chooses the wrong detector, she will

346 The Code Book
"twist" some of the photons, and this will make Bob prone to errors, even
when he is using the correct detector. These errors can be found if Alice
and Bob perform a brief error-checking procedure.

The error checking is done after the three preliminary stages, by which
time Alice and Bob should have identical sequences of 1 's and O's. Imagine
that they have established a sequence that is 1,075 binary digits in length.
One way for Alice and Bob to check that their respective sequences match
would be for Alice to call Bob and read out her complete sequence to him.
Unfortunately, if Eve is eavesdropping she would then be able to intercept
the entire key. Checking the complete sequence is clearly unwise, and it is
also unnecessary. Instead, Alice merely has to pick 75 of the digits at random and check just these. If Bob agrees with the 75 digits, it is highly
unlikely that Eve was eavesdropping during the original photon transmission.
In fact, the chances of Eve being on the line and not affecting Bob's
measurement of these 75 digits are less than one in a
billion. Because these
75 digits have been openly discussed by Alice and Bob, they must be
discarded, and their onetime pad is thus reduced from 1,075 to 1,000
binary digits. On the other hand, if Alice and Bob find a discrepancy
among the 75 digits, then they will know that Eve has been eavesdropping,
and they would have to abandon the entire onetime pad, switch to a new
line and start all over again.

To summarize, quantum cryptography is a system that ensures the
security of a message by making it hard for Eve to read accurately a
communication between Alice and Bob. Furthermore, if Eve tries to
eavesdrop then Alice and Bob will be able to detect her presence. Quantum
cryptography therefore allows Alice and Bob to exchange and agree
upon a onetime pad in complete privacy, and thereafter they can use this
as a key to encrypt a message. The procedure has five basic steps:
(1) Alice sends Bob a series of photons, and Bob measures them.
(2) Alice tells Bob on which occasions he measured them in the correct way. (Although Alice is telling Bob when he made the correct mea surement, she is not telling him what the correct result should have been, so this conversation can be tapped without any risk to security.)
(3) Alice and Bob discard the measurements that Bob made incorrectly,

A Quantum Leap into the Future 347
and concentrate on those measurements he made correctly in order to
create an identical pair of onetime pads.
(4) Alice and Bob check the integrity of their onetime pads by testing a few of the digits,
(5) If the verification procedure is satisfactory, they can use the onetime pad to encrypt a message; if the verification reveals errors, they know that the photons were being tapped by Eve, and they need to start all
over again.

Fourteen years after Wiesner's paper on quantum money had been
rejected by the science journals, it had inspired an absolutely secure system
of communication. Now living in Israel, Wiesner is relieved that, at
last, his work is being recognized: "Looking back, I wonder if I couldn't
have made more of it. People have accused me of being a quitter, for not
having tried harder to get my idea published-I guess they're right in a
way--but I was a young graduate student, and I didn't have that much
confidence. In any case, nobody seemed interested in quantum money."

Cryptographers greeted Bennett and Brassard's quantum cryptography
with enthusiasm. However, many experimentalists argued that the system
worked well in theory, but would fail in practice. They believed that the
difficulty of dealing with individual photons would make the system
impossible to implement. Despite the criticism, Bennett and Brassard
were convinced that quantum cryptography could be made to work. In
fact, they had so much faith in their system that they did not bother
building the apparatus. As Bennett once put it, "there is no point going to
the North Pole if you know it's there."

However, the mounting skepticism eventually goaded Bennett into
proving that the system could really work. In 1988 he began accumulating
the components he would need for a quantum cryptographic system, and
took on a research student, John Smolin, to help assemble the apparatus.
After a year of effort they were ready to attempt to send the first message
ever to be protected by quantum cryptography. Late one evening they
retreated into their light-tight laboratory, a pitch-black environment safe
from stray photons that might interfere with the experiment. Having
eaten a hearty dinner, they were well prepared for a long night of tinkering

348 The Code Book
```

with the apparatus. They set about the task of trying to
send polarized
photons across the room, and then measuring them using a
+detector
and a x-detector. A computer called Alice ultimately
controlled the transmission
of photons, and a computer called Bob decided which
detector
should be used to measure each photon.

```

After hours of tweaking, at around 3 A.M., Bennett witnessed the first
quantum cryptographic exchange. Alice and Bob managed to send and
receive photons, they discussed the polarization schemes that Alice had
used, they discarded photons measured by Bob using the wrong detector
and they agreed on a onetime pad consisting of the remaining photons.
"There was never any doubt that it would work," recalls Bennett, "only
that our fingers might be too clumsy to build it."
Bennett's experiment
had demonstrated that two computers, Alice and Bob, could communicate
in absolute secrecy. This was a historic experiment, despite the fact
that the two computers were separated by a distance of just 30 cm .

Ever since Bennett's experiment, the challenge has been to build a
quantum cryptographic system that operates over useful distances. This is
not a trivial task, because photons do not travel well. If Alice transmits a photon with a particular polarization through air, the air molecules will
interact with it, causing a change in its polarization, which cannot be tolerated.
A more efficient medium for transmitting photons is via an optic
fiber, and researchers have recently succeeded in using this technique to
build quantum cryptographic systems that operate over significant distances.
In 1995, researchers at the University of Geneva succeeded in
implementing quantum cryptography in an optic fiber that stretched 23
km from Geneva to the town of Nyon.

More recently, a group of scientists at Los Alamos National Laboratory
in New Mexico has once again begun to experiment with
quantum cryptography
in air. Their ultimate aim is to create a quantum cryptographic
system that can operate via satellites. If this could be achieved, it would
enable absolutely secure global communication. So far the Los Alamos
group has succeeded in transmitting a quantum key through air over a
distance of 1 km .

Security experts are now wondering how long it will be before quantum
cryptography becomes a practical technology. At the moment there
is no advantage in having quantum cryptography, because the RSA cipher

A Quantum Leap into the Future 349
already gives us access to effectively unbreakable encryption. However, if
quantum computers were to become a reality, then RSA and all other
modern ciphers would be useless, and quantum cryptography would
become a necessity. So the race is on. The really
important question is
whether quantum cryptography will arrive in time to save us from the
threat of quantum computers, or whether there will be a privacy gap, a
period between the development of quantum computers and the advent
of quantum cryptography. So far, quantum cryptography is the more
advanced technology. The Swiss experiment with optic fibers demonstrates
that it would be feasible to build a system that permits secure
communication between financial institutions within a single city.
Indeed, it is currently possible to build a quantum
cryptography link
between the White House and the Pentagon. Perhaps there already is one.

Quantum cryptography would mark the end of the battle between
codemakers and codebreakers, and the codemakers emerge victorious.
Quantum cryptography is an unbreakable system of encryption. This may seem a rather exaggerated assertion, particularly in the light of previous
similar claims. At different times over the last two
thousand years, cryptographers
have believed that the monoalphabetic cipher, the polyalphabetic
cipher and machine ciphers such as Enigma were all unbreakable. In
each of these cases the cryptographers were eventually proved wrong,
because their claims were based merely on the fact that the complexity of
the ciphers outstripped the ingenuity and technology of cryptanalysts at
one point in history. With hindsight, we can see that the cryptanalysts
would inevitably figure out a way of breaking each cipher, or developing
technology that would break it for them.

However, the claim that quantum cryptography is secure is qualitatively
different from all previous claims. Quantum cryptography is not just effectively
unbreakable, it is absolutely unbreakable. Quantum theory, the
most successful theory in the history of physics, means that it is impossible
for Eve to intercept accurately the onetime pad key established
between Alice and Bob. Eve cannot even attempt to intercept the onetime pad key without Alice and Bob being warned of her eavesdropping.

Indeed, if a message protected by quantum cryptography were ever to be
deciphered, it would mean that quantum theory is flawed, which would
have devastating implications for physicists; they would be forced to

350 The Code Book
reconsider their understanding of how the universe operates at the most
fundamental level.

If quantum cryptography systems can be engineered to operate over
long distances, the evolution of ciphers will stop. The quest for privacy
will have come to an end. The technology will be available to guarantee
secure communications for governments, the military, businesses and the
public. The only question remaining would be whether or not governments
would allow us to use the technology. How would
governments
regulate quantum cryptography, so as to enrich the Information Age,
without protecting criminals?

1

The Cipher Challenge

The Cipher Challenge is a set of ten encrypted messages, which I placed at the end
of The Code Book when it was first published in 1999. In addition to the intellectual
reward of cracking all ten messages, there was a prize of \(\$ 15,000\) for the first person
to solve the Challenge. The Challenge was eventually solved on October 7, 2000,
after one year and one month of arduous effort by codebreakers, amateur and professional, around the world.

The Cipher Challenge remains as part of this book. There is no longer a prize associated with its solution, but \(I\) would encourage readers to decipher some of the messages. The ten stages were intended to grow in difficulty, although many code-breakers have felt that stage 3 is harder than stage 4. The ciphers used in the stages
differ and progress through the ages, so the early ciphers are ancient and easy to break, whereas the latter stages employ modern ciphers and require a great deal more effort.
In short, stages 1 to 4 are for the amateur, stages 5 to 8 are for the real enthusiast, and 9 and 10 are for those who are dedicated codebreakers.

If you want to know more about the Cipher Challenge, you can visit my own Web
site (www.simonsingh.com), which offers a variety of information, including a link to
a report written by the Cipher Challenge winners, Fredrik Almgren, Gunnar
Andersson, Torbjorn Granlund, Lars Ivansson and Staffan Ulfberg. The report makes excellent reading, but please be aware that it, and other material on the Web site, does
include spoilers that you might not want to see just yet.

The main aim of the Cipher Challenge was to excite people, to get them interested
in cryptography and codebreaking. The fact that thousands
of people took up the
challenge is tremendously satisfying. Officially the
Cipher Challenge is now over, but
I hope that it will continue to generate some interest among new readers who want
to test their codebreaking skills.
```

Good luck,
Simon Singh

```
is

The Cipher Challenge 353 Stage 1: Simple Monoalphabetic Substitution Cipher

BT JPX RMLX PCUV AMLX ICVJP IBTWXVR CI M LMT' R PMTN, MTN YVCJX CDXV MWMBTRJ JPX AMTNGXRJBAH UQCT JPX QGMRJXV CI JPX YMGG CI JPX HBTW'R QMGMAX; MTN JPX HBTW RMY JPX QMVJ CI JPX
PMTN JPMJ YVCJX. JPXT JPX HBTW'R ACUTJXTMTAX YMR APMTWXN, MTN PER JPCUWPJR JVCUFGXN PEL, RC JPMJ JPX SCBTJR CI PER GCBTR YXVX GCCRXN, MTN PER HTXXR RLCJX CTX MWMBTRJ MTCJPXV. JPX HBTW AVBXN MGCUN JC FVBTW BT JPX MRJVCGCWXVR, JPX APMGNXMTR, MTN JPX RCCJPRMEXVR. MTN JPX HBTW RQMHX, MTN RMBN JC JPX YBRX LXT CI FMFEGCT, YPCRCXDXV RPMGG VXMN JPBR YVBJBTW, MTN RPCY LX JPX BTJXVQVXJMJBCT JPXVXCI, RPMGG FX AGCJPXN YBJP RAMVGXJ, MTN PMDX M APMBT CI WCGN MFCDJ PER TXAH, MTN RPMGG FX JPX JPBVN VUGXV BT JPX HBTWNCL. JPXT AMLX BT MGG JPX HBTW'R YBRX LXT; FUJ JPXE ACUGN TCJ VXMN JPX YVBJBTW, TCV LMHX HTCYT JC JPX HBTW JPX BTJXVQVXJMJBCT JPXVXCI. JPXT YMR HBTW FXGRPMOOMV WVXMJGE JVCUFGXN, MTN PER ACUTJXTMTAX YMR APMTWXN BT PEL, MTN PER GCVNR YXVX MRJCTBRPXN. TCY JPX KUXXT, FE VXMRCT CI JPX YCVNR CI JPX HBTW MTN PER GCVNR, AMLX BTJC JPX FMTKUXJ PCURX; MTN JPX KUXXT RQMHX MTN RMBN, C HBTW, GBDX ICVXDXV; GXJ TCJ JPE JPCUWPJR JVCUFGX JPXX, TCV GXJ JPE ACUTJXTMTAX FX APMTWXN; JPXVX BR M LMT BT JPE HBTWNCL, BT YPCL BR JPX RQBVBJ CI JPX PCGE WCNR; MTN BT JPX NMER CI JPE IMJPXV GBWPJ MTN UTNXVRJMTNBTW MTN YBRNCL, GBHX JPX YBRNCL CI JPX WCNR, YMR ICUTN BT PEL; YPCL JPX HBTW TXFUAPMNTXOOMV JPE IMJPXV, JPX HBTW, B RME, JPE IMJPXV, LMNX LMRJXV CI JPX LMWBABMTR, MRJVCGCWXVR, APMGNXMTR, MTN RCCJPRMEXVR; ICVMRLUAP MR MT XZAXGGXTJ RQBVBJ, MTN HTCYGXNWX, MTN UTNXVRJMTNBTW, BTJXVQVXJBTW CI NVXMLR, MTN RPCYBTW CI PMVN RXTJXTAXR, MTN NBRRCGDBTW CI NCUFJR, YXVX ICUTN BT JPX RMLX NMTBXG, YPCL JPX HBTW TMLXN FXGJXRPMOOMV; TCY GXJ NMTBXG FX AMGGXN, MTN PX YBGG RPCY JPX BTJXVQVXJMJBCT. JPX

\title{
354 The Code Book
}

Stage 2: Caesar Shift Cipher

MHILY LZA ZBHL XBPZXBL MVYABUHL HWWPBZ JSHBKPBZ JHLJBZ
KPJABT HYJHUBT LZA ULBAYVU

Stage 3: Monoalphabetic Cipher with Homophones

IXDVMUFXLFEEFXSOQXYQVXSQT0IXWF*FMXYQVFJ*FXEFQUQXJFPTUFX MX*ISSFLQTUQXMXRPQEUMXUMTUIXYFSSFI*MXKF JF*FMXLQXTIEUVFX EQTEFXSOQXLQ*XVFWMTQTUQXTITXKIJ*FMUQXTQJMVX*QEYQVFQTHMX LFVQUVIXM*XEI*XLQ*XWITLIXEQTHGXJQTUQXSITEFLQVGUQX*GXKIE UVGXEQWQTHGXDGUFXTITXDIEUQXGXKFKQVXS IWQXAVPUFXWGXYQVXEQ JPFVXKFVUPUQXQXSGTIESQTHGX*FXWFQFXSIWYGJTFXDQSFIXEFXGJP UFXSITXRPQEUGXIVGHFITXYFSSFI*CXC*XSCWWFTIXSOQXCXYQTCXYI ESFCX*FXCKVQFXVFUQTPUFXQXKI*UCXTIEUVCXYIYYCXTQ*XWCUUFTI XLQFXVQWFXDCSQWWIXC*FXC*XDI**QXKI*IXEQWYVQXCSRPFEUCTLIX LC*X*CUIXWCTSFTIXUPUUQX*QXEUQ**QXJFCXLQX*C*UVIXYI*IXKQL QCX*CXTIUUQXQX*XTIEUVIXUCTUIXACEEIXSOQXTITXEPVJQCXDPIVX LQ*XWCVFTXEPI*IXSFTRPQXKI*UQXVCSSQEIXQXUCTUIXSCEEIX*IX* PWQXQVZXLFXEIUUIXLZX*ZX*PTZXYIFXSOQXTUVZUFXQVZKZWXTQX*Z *UIXYZEEIRPZTLIXTZYYZVKQXPTZXWITUZJTZXAVPTZXYQVX*ZXLFEO ZTHZXQXYZVKQWFXZ*UZXUZTUIXRPZTUIXKQLPUZXTITXZKQZXZ*SPTZ XTIFXSFXZ**QJVNWWIXQXUIEUIXUIVTIXFTXYFNTUIXSOQXLQX*NXTI KNXUQVVNXPTXUPVAIXTNSRPQXQXYQVSIEEQXLQ*X*QJTIXF*XYVFWIX SNTUIXUVQXKI*UQXF*XDQXJFVBVXSITXUPUUQX*BSRPQXBX*BXRPBVU BX*QKBVX*BXYIYYBXFTXEPEIXQX*BXYVIVBXFVQXFTXJFPXSIWB*UVP FXYFBSRPQFTDFTXSOQX*XWBVXDPXEIYVBXTIFXVFSOFPEIXX*BXYBVI *BXFTXSILFSQXQXQRPBUIV

\footnotetext{
The Cipher Challenge 355
}

Stage 4: Vigenere Cipher

KQ 0

GW R

EE K

HT D

WZ G

MT F

DJ Q
MEM

PJ R

NY D

WU C

EK Q

FN T

MU S

GF B

JG Y

OL R

EE Y

WEFVJ

LFNFG

OYSSI

WXIZA

RWUUN

FSHNU

CUSWV

TMHRS

GPMUR

OEOYJ
CESWK
HCEUC
QCUAF
WOVMA
TWOJF
YIDGM

1VRWV
GUOTD

PUJ
HUD

WCT

YGF

EJU

0 CZ

BPN

PXF

SKH

LWU

VID

PFC

VFJ

TNY

TWG

VRD

UHE

GGQ

UUN

WUU

UAX

FNS

UQE

GMR

LG0

SSK

FRS

NHA

GMU

MPV

NXK

BUH

NTE

GMP

IWU

EUJ

UKG
MBS

YOT

XCS

APY

UWE

YLS

FFS

EIU

MEB

CG0

SUD

LNE

TC0

JKN

LSW

URW

YOT

LME

VLP

APX

EYN

MEK

YTR KILL
TNU

EVG

FEL

CRU

GAV

IWC

CWF
BED

GJL

GMU

VGG

KJIN

SNCM

PLWP

CTSS

QHUI

GKME

EFVJ

0 CZG

OYCW

XYVL

WGNM

EMNY

WODC

YTNM

CLDH

AGOE

TJCD

BRUJ

MWUXF

UEKQC

NTCGO

PNTUJ

DUXFP

EDCTV

JTWWM

MDOEO

XIZAY

WNO JN

AAFFV

MAMVL

CULWR

GYTQM

WTVBU

EKJOF

BNKGM

YS

QMK JB

TESWR

JBGFQ

NYTGG

GUYTS

RECFB

FMWPN

YEEKC

G0SAA

SIOFR

NSIUD

FMAOY

IFTWG

KBBNL

VGFBI

EKNYN
```

Stage 5

```
\(10918261188 \quad 214 \quad 74 \quad 77 \quad 1531771091957637188\)
\(\begin{array}{llllllllllll}166 & 188 & 73109 & 158 & 15 & 208 & 42 & 5 & 217 & 78 & 209 & 147 \\ 981\end{array}\)
\(8016910922961693129214 \quad 215 \quad 9 \quad 198771128 \quad 30\)
\(\begin{array}{lllllll}117 & 124 & 8696 & 73 & 177 & 50 & 161\end{array}\)
356 The Code Book Stage 6

OCOYFOLBVNP IASAKOPVYGESKOVMUFGUWMLNOOEDRNCFORSOCVMTUUTY ERP FOLBVNP IASAKOPVIVKYEOCNKOCCARICVVLTSOCOYTRFDVCVOOUEG KPVOOYVKTHZSCVMBTWTRHPNKLRCUEGMSLNVLZSCANSCKOPORMZCKIZU SLCCVFDLVORTHZSCLEGUXMIFOLBIMVIVKIUAYVUUFVWVCCBOVOVPFRH CACSFGEOLCKMOCGEUMOHUEBRLXRHEMHP BMP LTVOEDRNCFORSGISTHOG ILCVAIOAMVZIRRLNIIWUSGEWSRHCAUGIMFORSKVZMGCLBCGDRNKCVCP YUXLOKFYFOLBVCCKDOKUUHAVOCOCLCIUSYCRGUFHBEVKROICSVPFTUQ UMKIGPECEMGCGP GGMOQUSYEFVGF HRALAUQOLEVKROEOKMUQIRXCCBCV MAODCLANOYNKBMVSMVCNVROEDRNCGESKYSYSLUUXNKGEGMZGRSONLCV AGEBGLBIMORDPROCKINANKVCNFOLBCEUMNKP TVKTCGEFHOKPDULXSUE OPCLANOYNKVKBUOYODORSNXLCKMGLVCVGRMNOPOYOFOCVKOCVKVWOFC LANYEFVUAVNRPNCWMIPORDGLOSH IMOCNMLCCVGRMNOPOYHXAIFOOUEP GCHK

The Cipher Challenge 357

Stage 7

M CC MM

R TC CR

U OC UC

U PM PM

T UC UC

E UM RC

C UU EE

T UC ME

E CU MR

M RC CP

R UC MU

T RC UU

C CC UM

P PT MC

P UU CM

P UE EP

R PP TT

R MM CP

M PC CC

M CM CU

E UP MC

C MP CC
U PC CM

U UE CM

E CC UC

C CC EU
\(R\) UU PM

R UM TP

0 MT PR

U MM UP

P ER EM

E TE TO

P OT EE

P MT ER

CTRUOUUUREPUCCTCTPCCCCUUP CMMP UPECCMUUPCMPEPPUPURUPPMEUPUCE CCMEMTUPETPCMRCMCCUCCMPECRTMR RCPMMCRUMCUUEURPPCMOUUEUCCMUM UTMUUUPMUUCTCUPMMCCRPPPPMMMME CCPUUEUPMUMMCCPECUCUPCTCUEPMP UUUTPMMUCCTCCPPPCTPUCUCCCUREU PCCEMUUUPRMMTMUCMMMCCCCCCMEPU ERUUUUMURCCPMUURUUPMUPRPPUUUU CPEURMMMPUTCRUUEOUUUMCMUURUPU CRUMMCUPUUMUCREUUUPCCURRC PRMC URCTPPMUUCCUUUUMUUEPCRMEPMPUU MUUMCUCMCCCRTCCMEEUP TMUUMMMCC PTEOUUUMUUCRMCCCMCPRCRCEPMCMC CCOMTPRCMCPCPMCPCERRECCRRECRU MUMTCUCEUUTPCEUMRCUUURRUCRUUC CPCPCUCUMUMPECEERPMRMMURUMEPM RUCRCPEERPUUUUREPCCMMEPPPRCCU MMEEUUPPERUECPUEMUCCUUCPUEPUC UCMMMCUPCCMMUUUCUOPUCUPMPUECC EPRCTRMCCUUTECECCRMUCURUCMUCR UORUCTUCCMCUCMUMMTRUMCMMCPUUM PCUUEPCTECTUUTCEEMTUCTEPPRDUM UMRUEPCUMPPOURUCCUPUCUCUE PCMM

ECPPCCCCOCRCRCRTUCPPTPUOCUORU CPPMRRCEUUURURCCMTPPURPPCTRRT TMUUETRPROEMP TP TEPRERP TRUUUMT PPRUUPEOUTP TROMUUERMMEPUTTOTO MPP TMREURRUPMTRPPREMUPRTRMMEO UUOUMEMOMECPEUUUUCRUTTTRTUPTT UUREEPETRMP TRUU00TRUUOOTTTOTT UPOMTUUOUTOEETP TEMUUTURCUOP TR MCOUUEPRMPTTTUP PRETTROEMUETPO TEUUUPUPUUEMMOTOUMORRCMUUUETU

\author{
358 The Code Book
}

OTTEMTTCTMETEREUMU
PEERTCPTOUUTRERETU
POMTT PTPTOUMEOTTRP
EECTM PPMUECTRPUCTE PPUPRMTPCRURPREMER EUTPTEPPEUUTPOTPPM REERO PORRMUUTMPRTT PPMPMTPRRMEPREUMMP RCOPEEEOOUEMOMPTUE TEUMRTTPUTCEROETMU PROUTUUPREUTTRTPMT EPTMUUEEPPTPMUP TEP PTRTURPMTOOUEEOTOU REOTCMCPRPROOEERUU ERURPORPTPCTPERERM POUTMOTCTMP TPOEUUT EPEEPRUCPEMMP TMUUT ECETORTMTMETTUEMUU MTP OUCECMTREMCP CMC CPTMMUCREUUCTRREUC PMCTT PCREURMUTUPMP UPUUUUURCUMEPOTUUU ERUCUMEMMRMUP CMUUC CUUPO PCUUUUCUTTCPC MMMP UUUEPMP PECRCMP EMPMUCRTUTUCRCCUPU ECP PPRRMCMMECCRMMR MRP ECUUOCPPMMECCMM CCP CTRCUUEUCCMTEMC CCP P TUMP CMP CMCEUCC

MEUCP PMUMPMMREMCUM PCEPPRUUCCUCTPUETE MUMUMRCUUCRMRCPTEM MPCPMMUEMPPCUTPMCM PMEMUUURCOCPCUEPMR CECPPUCPMRMEPCUURU

EETUMETPUTPUETTM TRETRTRUTCMTCUUT EPUTTTRTTOUMUUTp UUETPTOTPMTMCPUE TUB EROROTOMMRCUU EPEMTREEUTUUTOTP MEE ETERUTMTOOCPE RTREEPUTTPECTURU CERMMMPPEPMUEMUR UROTUTTRMUETETTR UPE EMETEPTOETUUT RMUTTPMUMMECRETE RUURTUEUTPOMTPPU EERUMUUUCPPCPUET UTTREUPRTMECUREP OTPTOREUETURMETR TEOERMURUURUTPTT CTOPEMUUEPUMCMUC TPMMPPCMUUUUCMCC UREC PMRCECUCEUCC PMMCUTMCMCCEUUCT CTE PCCPMCCTPCPUM UCRUUUUCPCUPCECM MCUUCCEPUUPCMPUC REC RRUMCUECPUPUC UCUMMPUUUUECUUCC CCECTURMCECCCPMM
RRCMUCMRCPCUCMUC RCPECCUUCUUCPETP CPCUCTCCCMTUMPTU MMERUCUCCMPUUEUC RCMMMURUUPURPUEE ECMMUCUCUUPPETTT UUP UCCPMPRCMCRPU CPTMMMMCCECUMCUU CUC PRTUERMCCRPMU
```

The Cipher Challenge 359

```
- u

R

U
U
P
M
E

U
P
C
ECPTRUTUMCEC EPCUTCUCPE P

C
K c
U
U
E
T
P
P

C
P
U
UMCMMROUCCPU CPPEPMECRP
C
M
m C
UM
P

U
C
U
u
UE

MMCUTMCUMCUE UCMUCCTPUR
E
U
9. p
p
C
0

P

\section*{M}

P
M
UU
MMMUUETPUUUU U
P
P
P
PMUECE
R
UI R
p
U

R
T
P
M

P
p
P
M

E
MCTUPCMECP PC

CEMURMPTU U
^
* R

C
u

E

\section*{P}

CUEcP
U
TCURUCPRUMT COCCMPUCMEP E
```

:i
-; m
p
R
U
P
P
EC
C
PCUUCCCEUMRUU EUUEUCPCPMP U
C
u
M
P
U
CUMp
P
R
E
UUUPEUPEUU C
T
POTUPETUO
E
C
0
T
T
E
M
O
TE
U
T
EUMUPMUTPOU PE
T
ERPUTPRU U
u
p

```

UPUUREEPE RTPEECEPORT

RPPUU
R
M
T
T0
M
T
M
U
MM
U
U
TUOEPEUUOTC PE
PTMRERURP E
T
P

P

T
T
P
C
0
R
P
T
T

T

M
UTR
U
PPTE RRE
URPRTRET
T

R
CPR
C
U

U
UUOCUMUUU UM
0

TT
PE

M
ETTE
R
PCTOETUURM EPEEORCPETM PPRU

T
TRUU
E
T
MOTMUUMTERUT OTCRPMURMU
M R
M
P
M
0
0
M0
UO
TPOREMEMUPTOR TRRPOOUTPP
P E
P
M
T
PE
0
C
T
R
R
M
E

RTPEMMPE EETRUURURPP
U
P
U
R
TROU
M
T
MRCUOTETRCRPE ECPTEEUUEM
T TP
U
R
0

P
E
U
0

E
UU
MP
EMUUTTERE UME
RTTETTT
M E
U
T
M
R
T
0
R
MECUCUEUEPRUMTU UER
M

U
TREUU
P EEM
E
E
RCU
U
U

\section*{R}

MRTRMUUMMEP PTPRTEMTEMP EUETPO
0
0
UUMOTOUTOOPEPRU URTTT
M

URTUT E
TP
C
0
TEM
T
U
OETRMTETEMMTU MOEEOOUMOP
T PRU
T

M

RM
T
R
T
PTUU
EPUUPURRO EUE
R
U
UOUPR
T
M
E
TPEPPO
T
R
MCMRUTTPUUEUR TTEETETUUEU EE
TU

R
R
MEE

URCTPEMUURE PRUEORURUUP TUMPEM
T

T

P
T
UEMUPMORTOOOU TPPM
U
UPUPE
R ERUU
0

U
E
E
T
U

P
ETETPTTTEMRU URTTTUTTMU
P R
P
RRURUUT
M
T
URTCUEEOMRRT ETT
MUTPPRPE P
T
R

E
E
OOTTETRETRUTPRUTMU UUTMUUCTUU
P O
ERUEEMMUEETTPETMUMETTE TTPMREMRTP
T ETOORTPPO
E
TTOMTPTETEUTP U
C
U

UCUOET
U C
P

E

C
UC
M
U
P
M
U
CUTTUCTUUMUC URPU
CPMCUU
M UC
C

E
P
C
M
MUCP TP
U

M
UPUCMECM PUMPPMUEMP
P E360 The Code Book

I
p
i

U
T
EOMEPEPUPUURMTPEMRPMM PT
P
0

PR
C
R

PUCUPTUMUUPCPEMPT
U
U

M

C
C

C

U
1
P
C
C
U
T

UUURCEMPEUCMRPPEPCCMMM
U
M
P
E

C

\section*{R}

PUMPCCPTUCMCOPCURUECMTE
CM

M
C

C

R

P
P
-
E
P
U
UCUTMUUUCCTMCMECPCUUUPU
C

U
UU
T
C
U
C
It
C
P
T
U
U
C
CMMPPREMCUURUUMUEUUPPU

C
R

P

\section*{C}

CUORCERRCUCPMPUUM
T
U

U
R
CM P
E

M

U

U
U
UCTUMTTTCUMPUMCMRTUUUC P
P
ME
P
U
C
1
; T
0
U
P
C

MMCECUMCPECUPMTEPRUURU
R

M

P
U
P

CC
CMP CUCMRMPMPEEP TPEMCU
R

C

\section*{P}

C
P
U
R
ill
/' u
TE
U
UEUUUP TCUCCCEMMTUTREREMP
R
R
MD
C C 1
R
C
U
MUEPUPUEUEPMUTRUCCMUUCM
M
U
UP
M
E
C MM

\section*{E}

M
UUU
CMRPCMCUUCCETPCPRRMUR
R
CT

ECM
C
-I
fll M
UUUUUUE
C
U

U

C
UUTEPMUURCCCUURCUC
E

C
P
PIi'
1
,
CMURCUUCRUCMCRCCCUCUMEMUU
C
P
P
P

P

R
C
R
1 '
R
U

C
M
CPP
CRMPUEPUMP OMUMMCUUUP
C
C

C

E

C
T

M
R
P
UP
M
POCCTPCMUUMCMCCTUC EC

U

U
M
CCMC UE
R

T
TRCM
MUMTCPERUUMMTRUEUMCMCCMCU
U P

M

U
CCTPUMCUTPUMCUUUUCPPUCET
UPER
T
R
U UIt
1 U
U

M
MCUMEEMCTCCPURRUURCPCUP
CC
U
P
MP
M
M
i 0
RU

UCC
C
EPRPUMMUTCMCMCCCUCPP cME
P

C

R
EIM
U
UR
CTPEMCMCCPRUCCUUUCCUUPCuUPUTR U
11;
' E
E
UUUE
U
C
R

\section*{P}

MRUUUOCPOCRPCMECRcPC
E
CU U1ECpP
UMPPEPCPRMPEUCPTUEMTUTTE0
P
RU
E PEPM
T
P
UPT
TRRERPUEMMOPMUPRUUUME
M

P
p
P U11
T0
UROPROPPMETPRMTUURPTPUUT
○
UUM
T
E
P CIII
|! 0
EMCUUTPUUPTOTUUTTUUURTPTR
T
T

M

0
CTR U
ip.
[' T
R0
TTROPTUMPPMURTEUMTPEUMC
MP
R
E
PM
R
E
E
E
E

U

T
TTEUUTMTPURUEUUMTUP P
UTT
RE
M
T

P

T
sp
! •'
\R
RUTURTRUUTOTEROTMUUUTMU PT PUURTER U11
MM
T
M
TT

UPRPPPEMEP CMUMTRREMUC
E
U
PP
T
T T
m
T
T
P
RUUURTEEPUPUTMMTUPMRUO P
E
U
E
E

T

MM P1EMT
PECRETMEOUTMEEPREUMEMRT
O
T
EMTOT
P
TECEPTUTREEEMPP TPEECPPTMUUT
M

U
MPRM E••''i
RE
U
UPTOEOPUEPTRTTEPMOUMPEU
T

M
T
T
M

U
U

U
! .'; / •
'
' T

TERMTRRUURUUEURTEEMUTTE
P
0
U

U
EM
E
E
ii'l
!, : •
The Cipher Challenge 361

P CR U R

E UU R E

M UO OR

T TE 0 T

M UU P 0

P TP U C

EDU T P

ETE M U

OER 0 U

TOE M T

CPR P R

MUO P T

MMC O R

UPT P P

MMU O R

EUP R U

PUU R E

CPR U P

CMC C M

RUM R P

UPP C E

MUU U R

MEP M M

MPC U C

UPC U M

RUR C C

CUC M C

RUR R E

URC U U

UCU C U

PUP C U

CPC C U

CPP P C

UUC C C

PUM M P

CCC T P

M E TM E

R T EOT

T O UMC

U T EPT

P M OUO

M TUUO

P TMEU

0 TCOU

E MCPT

T PPCR

M TREU

U UETP

T UMT0

E TRUT

R MPCM

P MCEC

U CECU

P UOMP

U UPCC

R UCUC

M PPPU

C MEPC

P PMUU

P PMRC

U PUMP

M EUUR

U UCUM

0 CUCR

C PURC

P CMPC

U UUCM

U UCUR

M UCCU

U UMCP

T RMMP

P MTPU

TOR

UTR

OTU

RCT

OTE
MUM

MUR

EMT

ERC

EPO

UER

PMM

ETM

TP 0

MOR

TMC
ecu

UUU

TUR
EMU

UMP

PUC

CCE

MPC

CRC

UUM
ma a
cup

TPE

UCT

PUE

CCP

UUU

CCC
PPM

PMP

EU U O
ROTO

EC E U

UU P P

CU 0 E

TT T O

UU U U

TM T U

PP T M

TE P P

MU C T

RM T U

UP M U

TM E C

CC U T

CU U R

EC U U

CM U U

UE U U

CC U U

PC C P
\(\mathrm{CC} \mathrm{C} U\)

MP R E

PE M P

CE P C

UR P E

UE M C

UC M P

UU M M

PM M U

MC U P

UR C U

UM M P

UU C U

RU U U

PM R M

TRTP R

TETT E

UREU U

ERUT O

TUCM T

RTUP E

RETU T

EUUP T

UUMT 0

ERPO P

OPTT U

PRMU P

TTPU T

URCP U

CCOM C

PPMU U

URCP P

CPMU C

UCUM T

UETU M

RRCE C

PRRU U

UUTC \(P\)

PPMR U

UCCP M

MRUC C

TMCC M

CEUC C

UUUC C

PUCU M

CCRP P

TURE C

UCRC U

PCUP U

CUUR E

URPU P

T T E
0 T U
M T T
U U E
T P T
T E T
\(R \quad U R\)
U P U
MCE
POT
U T P
R M O
T E R
O P M
UUP
E U U
M C C
R C P
U C C
C P C
C R M
PMC
cue

UCC

TRP

MMU

UCT

EUU

MMT

UMC

RUU

RUU

ECC

TCM

TUC

UUU

U MM TP

E UUET

E RUOT

0 RMUE

T UURT

R OMTR

R TTPP

P TROT

M UTPT

E UUUU

M CTRM

U PRTE

M UUPC

T PMCM

R CPPP

U UCET

C UPRM

M MTCM

M MUCT

U RPUR

C PPRC

E MCUT

M CCUC

U UPRC

C PCUU

C RMCT

C MUCM

E PUMP

U CRCR

U TPPM

M CCUC

C MTCC

T PCPM

M CUMM

P ECRP

U UEPU

MMR P

U ET P

TMT E

M PRE

TMM O

E TT U

TTP 0

UEE R

TTO U

RPU U

ETE M

UDU R

ETM T

PEP C

UCU U

UUR C

UCM U

MUO M

CRR U

CUU M

CRP P

MUC C

MRT P

ERT U

CRP P

MRP R

PMU T

TCC E

MRP 0

EUU U

UPC \(P\)

CMU C

EEC M

MUM M

URU R

CMP R

362 The Code Book

P P C
P C U
U M C
PPM
P P T

T M T
T M O
PUR
R M T
TOM
T P C
E E R
OOP
O O 0
UUP
U U E
E E M
R T T
TOM
M M U
M C C
C T U
RUT
U T P
T R R
R M R
E E P
E O P
0 R P
RET

CROUU

UTPPP

UTCUE

CMCCC

TTMUO

UPMRE

TMPME

MUUEM

PCPPP

EPTEM

UUUMT

MUTTM

RUPRP

UETEU

UOOTT

TUUET

TMEUU

RTTME

RETTT

UURRE

TERUR

PPRTP

UMOTT

RMMP R

OTURU

UEURR

ORPUR

UTMTU

CPPMM

PMTPP

ECT

CMM
ecu

PUP

TTE

UPM

TRP

MMP
REP

UEP

TUR

MPE

PUU

UMU

TPM

URP

POE

PPT

REU

TM0

OEE

PMT

EET

PUE

TRU

TTO

PRU

RPT

UMT

MM

UPCUP

UPCCR

PCUCC

PMRUT

RPRET

UEUUU

EROPE

UCPUM

EERMR

RTUR0

EOPMT

POETM

UEEET

TURUT

EUERT

UMTMM

TTPPP

RTP OU

COTOT

UMMP C

PRRRR

MUMCT

MTRMR

TMEUT

UCMRC

URUPT

MEMOT

PRRTM

TOUMT
ecu

U C E
PUR
E R M
T R M
UUP
MEM
U T M
EMU
O T O
RET
E T E
T T T
\(R \quad U \quad U\)
M O U
ERR

RUT
T R T
RPR
PET
T P T
T T P
TOM
T M P
M T O
U E C
T R 0
ORE
E U U

UCP

RTU

PMM

OTU

TEM

TET

MPR

PEU

TP 0

MUP

TME

RUU

PEU
TOP

MTP

UUE

EEC
TOP

URP

PTP

UUM

RRE

TRR

PRT

CRU

TEO

PRU

TCT

RTR

C P C
C T E
TUT
M U U
T E U
CPU
P T R
U O P
U E M
PER
E U U
0 O R
R E R
0 T U
P P E
TOT
O U M
E C R
TUT

R M T
T P E
OUT
R T 0
FTP
T P 0
T M T
E T T
M T M
T R M

M U E
CMC
P P 0
E M R
U T T
C E E
U P T
P U 0
P P E
0 T T
○ P M
MEM
\(R P\) U
P M U
0 M T
P T T
E U U
T P U
E U U
U P U
EMC
PER
P T T
T T U
T T P
P R T
U E T
U E T
EMU

CM U

UU E

CUR

CU U

RP T

CT E

UO E
MP T
ERR

PT T

ER M

MT R

ET R

RU U

TU U

TR P

TT R

TT C

EP M

ET E

UO U

UT M

ER U

UM \(R\)

PU M
ROM

TM R

UT M
\(T \mathrm{U} U\)
C R P
C P C
T P U
T C U
R M M
U M P
0 T R
M T R
M P P
PET
U U R
\(\mathrm{U} \mathrm{U} \quad \mathrm{E}\)
ERU
U 0 E
T M P
T T T
BMP
EOT
TEE
U R E
PUR
0 O M
T E T
E 0 R
\(M R E\)
T 0 U
T T E
TUT

The Cipher Challenge 363

Stages

Umkeh
r- Walze Walze
Walze
Stecker
Tasta
walze3
2
1
brett Y | A
i B I A ;
E 1 A
A \ A
1 r~~~"~

1 \}

R \(\mid\) B
i D I B
K i B
J B
\} I
B
U C
(F I C]
M \(\mid\) C
D C
1 C
H D
i H \(\mid\) D
F j D
K I D
j ]
D
Q E
I J I E '
L 1 E
1T¥
E
S F
L F
G F
I F
L G
C G
D G

R G
G
D H
P H
Q H
U H
i
HP
, I
; R I I :
V I I
X j
I
;
I
X
J
\(T \mid J j\)
Z J
B | J
JN K
<-1
X K
j < - N
i K
'" "
L j K
<--
<-KG L
0 M
: V : L
, Z M
T L
O M
H ' L
W M
,

7
L M K N
-> N N ->
W N
-» T N
```

>
-> N
M O
Y 0
Y 0
M O
O
ZE
E P
H
P
C P
iPf~
E Q
I Q
X Q
Q 1 Q
:i
Q
B | R
W R
U R
G R
|
R
F I S
G | S |
S I S
Z S
; S
Z | T
A T
P T
N T
T
ZL'0!
W I V
!%••• %•,
K U
M V
j^U_j

```
```

I V
P U
Y V
; U V
V i W
U W
B W
F W
:
W
i
J i X
S X
R X
V X
5 ;
XA 1 Y

```

\section*{ZEE}
```

i Q 1 Y i $\backslash 0 \mid \mathrm{Z}$ I
C $\left\lvert\, \begin{array}{ll}\mathrm{Y} & 1\end{array}\right.$
$J: ~ Z ~ I ~$
10 Y
~rpz~:
Y Z
364 The Code Book
KJQP
KYE Z
WPUY
MEYS
GXXZ
YYCU
XBCR

```

HHQJ

RMDA

YIAG

HZOT

XRZB

WCAI

VTEM

ONFH

ECSM

AXLB

WQBT

EDHZ

LIJR

DFOX

ZXLD

UXQL

ROMD

S R X
T P Z
0 G D
A Z F
X C P
ADR
J D 0
R X Q
T Y 0
T F J

R S R
PRO

WQMAS

HVNOT

DMO JX

XNNAS

HZBOU

LBOZK

PSQTN

ZNFKH

PEWE \(J\)

WJQZM

ZNQLD

XHMFS

EUP

KZH

GGB

SZG

YVR

YXQ

LIH

UII

GEC

GBS

HXH

HJ

FOC

RCC

HWW

WRB

RVF

PWU

IQH

NZP

AHP

NER

LGH

Z0QZ

FQLV

UXNJ

DDMA

DKHX

UAFM

NMJZ

MPAF

YFVM

MIPC

YDNZ

VGZ

RPC

EZA
PGM

MQO

IZT

UHS

LHY

CIX

KP 0

KVB

GWW

CWL

XFU

RWT

GYL

CEA

MVA

ONM

AQD

VLT

FDM

Schlussel
| 0716150413020110

Schriftzeichen
begin 644 DEBUGGER.BIN
(\&>'_EU-_/\$~
end

The Cipher Challenge 365

Stage 9
begin 600 text.d

MM5P7) _8F_, H[JOF1C//L/W+) \%QSK*Q37CJ-N ' W[_; CQSTW ' UYOS2 , \LQVGO
M@1\&HY"1MHYI \>2P'F:6Y*E\%X4A\&\$2 '=L28\$\$. .9 [ " -ZIGA_VP
(GIPK [CW3~L
M55+60DA\&=FS61 (L96YG>
'59*10^) /C?\$1/C\&9PN35HP; .>V8_/P(.:+R(
M61] 'NG-'UF: , \#57MMQSKN [N7M>1NE; 2 ( IRUA495Q16! ;Q<* ( " [C*"A"@\%A+=S
M8AR45+G\$-\#8A?29V \(\qquad\)

(B/N7-<YNU; / , JF8C
M6LD [90MVJ2'I*.G@>9U\%!E(33! S~K\#
N7JH_Y5RYE\&=J@S!>"<C3Y=PD\%-RP
M9\&+ + ^"JLPOK\%T) -5KI>IUA"W;7; \& (D-2/U'\$3\C7 ?]B* 3*C/Y!\%U
\(>\& \mathrm{~V} 6\)
```

M%W85NJ:JPO(>\#C1)CFEL\&~H3YKR2 . 59XJVD? ? \MX+ [S?3X_F^ /
*1NGHB\&
MI$L2-C'E/@OD*&5;6+P+G1S
D49AO=#9\C!4D$/F;C(H\#MX:\%G[K[OR+2RG

```
M@@SCSVG!A5\%FEV!=\$YD"V.2T06@>C\&) 3H<:Y9BOR=V\#S_>\:S8GZ.*A"\$!T
MZOE=/4QWLLB<[ :K8T TZ@C9_, ( \#D:/G4)P2> , S?\%9:
Q]MVO; ?F9; F1VP'@
M=!XCI_M>2?F=' ;20):\%Y61[.!
-W8\%7M3BJUX/\&!E@A7C
MF \_U//JGV"KKHE259927962\%P-9J! *J@
DPJF]M2/>DXHA?JT""2C7; _-9B;
MBM ' CFTYUR\#DOA7 . J4ZW8 \(=+3\) ( 90>\#4A+^ \(\mathrm{I}=4 I V \_6 A!\)
(PNGZ:T\$0) 659KNGS = >
MN"?LQ3\$6F*I43Q(3_U:64V/L9\$<E\%">*\#A9P>@(66\#XDS!)'*\JZE., =G29
MOJLH!9.Y\#+=?]!"C?2/?H50!A]<KWAH\%J
" \(\&>+E X K ; 116)\) N6JY\$\%UB'BN3'F
MMS[XKP\#JY( :3@V) ;U2,5PG 6\$!46; .B/K'E7\$4'MKN1]*
YX~R"Q?Q+; " "/
MPL ( (>]UF90L7 [<] 9^EO*:NMBI (Q+B'>IHF+, JO\&"GOF.5L8@"_) <Y\$<ZRU=
M']\&L9!WD1Y<V [D : / : 4J(+\#X(NIKKDFO@\#:50_3G\%7]AG5H.?
, \% ; D) \(=7\) 'HKE
M. (_E=(* (W5H03RA5WP8<!ZM.K2T. : \&JP KV ; I 7W\$ K3 )
/A7D\&P8SV03?\$U1
M2J10K3T>2)OVRAIY;C<DZW+' \$VXI_ \$JZ^)39, ' . 7MK,
0*QOP 906QRQOF ( *
M\&8J90! Z">N; S\%MD\%\%A.SD?'" \({ }^{\text {(K] }}\) "R_@XE6V\#
>\&P. \$L\#\$, \%N"C[H:A_EPH\$V

=1FB;NBV_YS I WON
M?-T\%5B;2J~TORBWA~ Z\$B'\$K8LC; 'A+>@87(6!8Q\%FRS = ^; Y* 0
\$FC">;I!NI*
@\#\%OSNY_0_EK1>; 84QMTO/(KQQ2LL+R\#\#K:I=NK7.OT
end

\section*{366 The Code Book}

Shorter message:

100523097322295135341299066921154548190458209
2647218119

115429919001294872662020155809809329239096710
6434191354

276852757248495788598062733369293563609485523

Longer message:
begin 600 text.d
M.4\#)>-S I:R! ! 4)NA+\\%T\%V/ (AW! 7HHDPS\$ ; T [ \E I RWA? , J8 : X\#D [ I :XF,A>K
MXT9\$Q) 37\IOMG6KL-\$6?A! \#FZ2Y)N+4\%*."2K!SP7Z2'807LZ]QP \T=QG*
MAMJA; Q@3H[8~U/L<ILL\%TAOJ9M*F@8F?H:76\%<33JOESAP=@3: ( 8NBGFMO
M, MP3B"CP\%/D8DICZ\$VO (7IS (DTJRZ\&\#Y-7I \\#VIO
" >J@+0! CT. +6B9K\$ J\%
4:EAB9\%1\#; ( P+I>1 I \#< + 2+; (7.W<
end

Appendices

Appendix A

The Opening Paragraph of \(A\) Void by Georges Perec, translated by Gilbert Adair

Today, by radio, and also on giant hoardings, a rabbi, an admiral notorious
for his links to masonry, a trio of cardinals, a trio, too, of insignificant
politicians (bought and paid for by a rich and corrupt Anglo-Canadian banking corporation), inform us all of how our country now risks dying of
starvation. A rumor, that's my initial thought as I switch off my radio, a
rumor or possibly a hoax. Propaganda, I murmur
anxiously-as though, just
by saying so, I might allay my doubts-typical politicians' propaganda. But
public opinion gradually absorbs it as a fact. Individuals
start strutting
around with stout clubs. "Food, glorious food!" is a
common cry (occasionally
sung to Bart's music), with ordinary hardworking folk
harassing
officials, both local and national, and cursing
capitalists and captains of
industry. Cops shrink from going out on night shift. In Macon a mob
storms a municipal building. In Rocadamour ruffians rob a hangar full of
foodstuffs, pillaging tons of tuna fish, milk and cocoa, as also a vast quantity
of corn-all of it, alas, totally unfit for human
consumption. Without
fuss or ado, and naturally without any sort of trial, an
indignant crowd
hangs 26 solicitors on a hastily built scaffold in front of Nancy's law courts
(this Nancy is a town, not a woman) and ransacks a local journal, a disgusting
right-wing rag that is siding against it. Up and down this land of
ours looting has brought docks, shops and farms to a virtual standstill.

First published in France as La Disparition by Editions Denoel in 1969, and in
Great Britain by Harvill in 1994. Copyright © by Editions Denoel 1969; in the
English translation © Harvill 1994. Reproduced by permission of the Harvill Press.

Appendix B

Some Elementary Tips for Frequency Analysis
(1) Begin by counting up the frequencies of all the letters in the ciphertext. About five of the letters should have a frequency of less than 1 per cent, and these probably represent \(j, k, q, x\) and \(z\). One of the letters should have a
frequency greater than 10 per cent, and it probably represents e. If the
ciphertext does not obey this distribution of frequencies, then consider the
possibility that the original message was not written in English. You can
identify the language by analyzing the distribution of frequencies in the
ciphertext. For example, typically in Italian there are three letters with a
frequency greater than 10 per cent, and nine letters have frequencies less
than 1 per cent. In German, the letter e has the extraordinarily high fre quency of 19 per cent, so any ciphertext containing one letter with such a
high frequency is quite possibly German. Once you have identified the lan guage you should use the appropriate table of frequencies for that language
for your frequency analysis. It is often possible to unscramble ciphertexts in
an unfamiliar language, as long as you have the appropriate frequency table.
(2) If the correlation is sympathetic with English, but the plaintext does not reveal itself immediately, which is often the case, then focus on pairs of repeated letters. In English the most common repeated
letters are ss, ee, tt,
ff, II, mm and oo. If the ciphertext contains any repeated characters, you can assume that they represent one of these.
(3) If the ciphertext contains spaces between words, then try to identify words containing just one, two or three letters. The only one-letter words in English are \(a\) and \(I\). The commonest two-letter words are of, to, in, it, is, be, as, at, so, we, he, by, or, on, do, if, me, my, up, an, go, no, us, am. The most
common three-letter words are the and and.

371

372 The Code Book
(4) If possible, tailor the table of frequencies to the message you are trying to decipher. For example, military messages tend to omit pronouns and articles, and the loss of words such as \(I\), he, \(a\) and the will reduce the frequency of
some of the commonest letters. If you know you are tackling a military
message, you should use a frequency table generated from other military messages.
(5) One of the most useful skills for a cryptanalyst is the ability to identify words, or even entire phrases, based on experience or sheer guesswork. Al-Khalll,
an early Arabian cryptanalyst, demonstrated this talent when he
cracked a Greek ciphertext. He guessed that the ciphertext began with the
greeting "In the name of God." Having established that these letters corre sponded to a specific section of ciphertext, he could use them as a crowbar
to prize open the rest of the ciphertext. This is known as a crib.
(6) On some occasions the commonest letter in the ciphertext might be E , the next commonest could be T , and so on. In other words, the frequency of letters in the ciphertext already matches those in the frequency table. The E in the ciphertext appears to be a genuine e, and the same seems to be true for
all the other letters, yet the ciphertext looks like gibberish. In this case you
are faced not with a substitution cipher, but with a transposition cipher. All
the letters do represent themselves, but they are in the wrong positions.

Ctyptanalysis by Helen Fouche Gaines (Dover) is a good introductory text. As
well as giving tips, it also contains tables of letter frequencies in different
languages, and provides lists of the most common words in English.

Appendix C

The So-called Bible Code

In 1997 The Bible Code by Michael Drosnin caused headlines around the world.
Drosnin claimed that the Bible contains hidden messages which could be discovered by searching for equidistant letter sequences (EDLSs). An EDLS is found
by taking any text, picking a particular starting letter, then jumping forward a set
number of letters at a time. So, for example, with this paragraph we could start
with the "M" in Michael and jump, say, five spaces at a
time. If we noted every
fifth letter, we would generate the EDLS mesahirt ....

Although this particular EDLS does not contain any sensible words, Drosnin described the discovery of an astonishing number of Biblical EDLSs that not only form sensible words, but result in complete sentences. According to
Drosnin, these sentences are biblical predictions. For example, he claims to have
found references to the assassinations of John F. Kennedy, Robert Kennedy and
Anwar Sadat. In one EDLS the name of Newton is mentioned next to gravity,
and in another Edison is linked with the lightbulb.
Although Drosnin's book is
based on a paper published by Doron Witzum, Eliyahu Rips and Yoav
Rosenberg, it is far more ambitious in its claims, and has attracted a great deal of criticism. The main cause of concern is that the text being studied is enormous:
in a large enough text, it is hardly surprising that by varying both the starting
place and the size of the jump, sensible phrases can be made to appear.

Brendan McKay at the Australian National University tried to demonstrate
the weakness of Drosnin's approach by searching for EDLSs in Moby Dick, and
discovered thirteen statements pertaining to
assassinations of famous people,
including Trotsky, Gandhi and Robert Kennedy. Furthermore, Hebrew texts are
bound to be particularly rich in EDLSs, because they are largely devoid of vowels.
This means that interpreters can insert vowels as they see fit, which makes it
easier to extract predictions.

The monoalphabetic substitution cipher persisted through the centuries in various
forms. For example, the pigpen cipher was used by
Freemasons in the 1700s
to keep their records private, and is still used today by schoolchildren. The cipher
does not substitute one letter for another, rather it
substitutes each letter for a
symbol according to the following pattern.

A
B
C
D
E
F
G
H
1
M \(<\)

0

To encrypt a particular letter, find its position in one of the four grids, then
sketch that portion of the grid to represent that letter. Hence:
\(\mathrm{b}=\mathrm{U}\)
z =^\}

If you know the key, then the pigpen cipher is easy to decipher. If not, then it is easily broken by:
crnn<nDL_< jdjl_<vfv

375

Appendix E

The Playfair Cipher

The Playfair cipher was popularized by Lyon Playfair, first Baron Playfair of St.
Andrews, but it was invented by Sir Charles Wheatstone, one of the pioneers of
the electric telegraph. The two men lived close to each other, either side of
Hammersmith Bridge, and they often met to discuss their ideas on cryptography.
The cipher replaces each pair of letters in the plaintext with another pair of
letters. In order to encrypt and transmit a message, the sender and receiver must
first agree on a keyword. For example, we can use
Wheatstone's own name,
CHARLES, as a keyword. Next, before encryption, the
letters of the alphabet are
written in a 5 x 5 square, beginning with the keyword, and
combining the letters
\(I\) and \(J\) into a single element:

CHARL
ESBDF

CI / JKMN

OPQTU

VWXYZ

Next, the message is broken up into pairs of letters, or digraphs. The two letters
in any digraph should be different, achieved in the following example by inserting an extra x between the double \(m\) in hammersmith, and an extra \(x\) is added at the end to make a digraph from the single final letter:
meet me at hammersmith bridge tonight
mithbridgetonightx

Plaintext

Plaintext in digraphs me-et-meathamx-mers

Encryption can now begin. All the digraphs fall into one of three categories-both
letters are in the same row, or the same column, or neither. If both letters
are in the same row, then they are replaced by the letter to the immediate right of each one; thus mi becomes NK. If one of the letters is at the end of the row, it is
replaced by the letter at the beginning; thus ni becomes GK. If both letters are in
the same column, they are replaced by the letter
```

immediately beneath each one;

```

377

378 The Code Book
thus ge becomes OG. If one of the letters is at the bottom of the column, then
it is replaced by the leltter at the top; thus we becomes CG.

If the letters of the digraph are neither in the same row nor the same column,
the encipherer follows a different rule. To encipher the first letter, look along its
row until you reach the column containing the second letter; the letter at this
intersection then replaces the first letter. To encipher the second letter, look along
its row until you reach the column containing the first letter; the letter at this
intersection replaces thie second letter. Hence, me becomes G D, and et becomes
DO. The complete encryption is:

Plaintext
in digraphs me et rne at ha mx me rs mi th br id ge to ni gh tx

Ciphertext \(C D\) DO GD RQ AR KY CD HD NK PR DA MS OG UP CK 1C QY

The recipient, who also« knows the keyword, can easily decipher the ciphertext by
simply reversing the proocess: for example, enciphered letters in the same row are
deciphered by replacing them by the letters to their left.

As well as being a scientist, Playfair was also a notable public figure (Deputy
Speaker of the House oof Commons, postmaster general, and a commissioner on
public health who help ed to develop the modern basis of sanitation) and he was
determined to promotes Wheatstone's idea among the most senior politicians.
He first mentioned it at a dinner in 1854 in front of Prince Albert and the future
Prime Minister, Lord Palmerston, and later he introduced "Wheatstone to the
Under Secretary of thie Foreign Office. Unfortunately, the Under Secretary
complained that the system was too complicated for use in battle conditions,
whereupon Wheatstone stated that he could teach the method to boys from the nearest elementary school in 15 minutes. "That is very possible," replied the
Under Secretary, "but you could never teach it to attaches."

Playfair persisted, an<d eventually the British War Office secretly adopted the technique, probably using it first in the Boer War. Although it proved effective for
a while, the Playfair ciplher was far from impregnable. It can be attacked by looking
for the most frequen tly occurring digraphs in the ciphertext, and assuming that
they represent the commonest digraphs in English: th, he, an, in, er, re, es.

Appendix \(F\)

The ADFGVX Cipher

The ADFGVX cipher features both substitution and transposition. Encryption
begins by drawing up a 6 x 6 grid, and filling the 36 squares with a random
arrangement of the 26 letters and the 10 digits. Each row and column of the grid
is identified by one of the six letters A, D, F, G, V or \(X\). The arrangement of the elements in the grid acts as part of the key, so the receiver needs to know the details of the grid in order to decipher messages.

A 0 F G V X A

8
1

7
j

X

9
D
P
t
k
u
s
e
F

3
4
b
6

C
w

0
V

1
a

5
g
r
f
X
n h z m 2
q
The first stage of encryption is to take each letter of the message, locate its position
in the grid and substitute it with the letters that label its row and column.
For example, 8 would be substituted by AA, and \(p\) would be replaced by AD.
Here is a short message encrypted according to this system:

Messageattack at 10 pm

Plaintextattackatlopm

Stage 1 Ciphertext DV DD DD DV FG FD DV DD AV XG AD GX

So far this is a simple monoalphabetic substitution cipher, and frequency analysis
would be enough to crack it. However, the second stage of the ADFGVX is a
transposition, which makes cryptanalysis much harder. The transposition
depends on a keyword, which in this case happens to be the word MARK, and
which must be shared with the receiver. Transposition is carried out according to

379

380 The Code Book
the following recipe. First, the letters of the keyword are written in the top row of
a fresh grid. Next, the stage 1 ciphertext is written underneath it in a series of rows, as shown below. The columns of the grid are then rearranged so that the
letters of the keyword are in alphabetical order. The final ciphertext is achieved
by going down each column and then writing out the letters in this new order.

M

D

ARK

V D D

D V
F D

D D

F C

D V D D

A V X G

AD G X

Rearrange columns so
that the letters of the
keyword are in
alphabetical order

A

V

K M I R

ODD

D V D D

G

V
V

OFF
ODD
G A X

D X : A G

Final Ciphertext VDGVVDDVDDGXDDFDAADDFDXG

The final ciphertext would then be transmitted in Morse code, and the receiver
would reverse the encryption process in order to retrieve the original text. The
entire ciphertext is made up of just six letters (i.e. A, D, F, G, V, X), because these
are the labels of the rows and columns of the initial 6x6 grid. People often
wonder why these letters were chosen as labels, as opposed to, say, A, B, C, D, E
and F. The answer is that \(A, D, F, G, V\) and \(X\) are highly dissimilar from one
another when translated into Morse dots and dashes, so this choice of letters
minimizes the risk of errors during transmission.

Appendix G

The Weaknesses of Recycling a Onetime Pad

For the reasons explained in Chapter 3, ciphertexts encrypted according to a onetime pad cipher are unbreakable. However, this relies on each onetime pad being used once and only once. If we were to intercept two distinct ciphertexts which
have been encrypted with the same onetime pad, we could decipher them in the following way.

We would probably be correct in assuming that the first ciphertext contains
the word the somewhere, and so cryptanalysis begins by assuming that the entire message consists of a series of the's. Next, we work out the onetime pad that would be required to turn a whole series of the's into the first ciphertext. This
becomes our first guess at the onetime pad. How do we know which parts of this onetime pad are correct?

We can apply our first guess at the onetime pad to the second ciphertext, and
see if the resulting plaintext makes any sense. If we are lucky, we will be able to
discern a few fragments of words in the second plaintext, indicating that the corresponding parts of the onetime pad are correct. This in turn shows us which
parts of the first message should be the.

By expanding the fragments we have found in the second plaintext, we can
work out more of the onetime pad, and then deduce new fragments in the first
plaintext. By expanding these fragments in the first plaintext, we can work out
more about the onetime pad, and then deduce new fragments in the second
plaintext. We can continue this process until we have deciphered both plaintexts.

This process is very similar to the decipherment of a message enciphered with
a Vigenere cipher using a key that consists of a series of words, such as the example
in Chapter 3, in which the key was CANADABRAZILEGYPTCUBA.

381

Appendix H

The Daily Telegraph Crossword Solution

ACROSS
1.Troupe
4. ShortCut
9.Privet
10.Aromatic
12. Trend
13. Great deal
15. Owe
16.Feign
17. Newark
22. Impale
24. Guise
27. Ash
28. Centre bit
31. Token
32.Lame dogs
33. Racing
34. Silencer
35.Alight

DOWN
1.Tipstaff
2.Olive oil
3.Pseudonym
5. Horde
6. Remit
7. Cutter
8.Tackle 11. Agenda
14. Ada
18. Wreath
19. Right nail
20. Tinkling
21. Sennight 23. Pie
25.Scales
26.Enamel
29. Rodin
30. Bogie

383

Appendix I

Exercises for the Interested Reader

Some of the greatest decipherments in history have been achieved by amateurs.
For example, Georg Grotefend, who made the first
breakthrough in interpreting
cuneiform, was a schoolteacher. For those readers who feel
the urge to follow in
his footsteps, there are several scripts that remain a mystery. Linear A, a Minoan
script, has defied all attempts at decipherment, partly due to a paucity of material.
Etruscan does not suffer from this problem, with over 10,000 inscriptions available
for study, but it has also baffled the world's greatest scholars. Iberian, another
pre-Roman script, is equally unfathomable.

The most intriguing ancient European script appears on the unique Phaistos
Disk, discovered in southern Crete in 1908. It is a circular tablet dating from
around 1700 b.c. bearing writing in the form of two spirals, one on each side. The
signs are not handmade impressions, but were made using a variety of stamps,
making this the world's oldest example of typewriting. Remarkably, no other similar
document has ever been found, so decipherment relies on very limited information-there
are 242 characters divided into 61 groups. However, a typewritten
document implies mass production, so the hope is that archaeologists will eventually
discover a hoard of similar disks, and shed light on this intractable script.

One of the great challenges outside Europe is the decipherment of the Bronze
Age script of the Indus civilization, which can be found on thousands of seals
dating from the third millennium b.c. Each seal depicts an animal accompanied
by a short inscription, but the meaning of these
inscriptions has so far evaded all
the experts. In one exceptional example the script has
been found on a large
wooden board with giant letters 37 cm in height. This
could be the world's oldest
billboard. It implies that literacy was not restricted to the elite, and raises the question as to what was being advertised. The most likely answer is that it was
part of a promotional campaign for the king, and if the identity of the king can be established, then the billboard could provide a way into the rest of the script.

385

Appendix\}

The Mathematics of RSA

What follows is a straightforward mathematical description of the mechanics of RSA encryption and decryption.
(1)Alice picks two giant prime numbers, \(p\) and \(q\). The primes should be enormous, but for simplicity we assume that Alice chooses \(p=17, q=\backslash \backslash\). She must keep these numbers secret.
(2) Alice multiplies them together to get another number, N . In this case \(\mathrm{N}=187\). She now picks another number e, and in this case she chooses \(e=7\).
(e and (p -1)
\(x\) ( \(q-1\) )
should be relatively prime, but this is a technicality.)
(3) Alice can now publish \(e\) and \(N\) in something akin to a
telephone directory. Since these two numbers are necessary for encryption, they must be available to anybody who might want to encrypt a message to Alice. Together these numbers are called the public key. (As well as being part of Alice's public
key, e could also be part of everybody else's public key. However, everybody must have a different value of N , which depends on their choice off and q.)
(4) To encrypt a message, the message must first be converted into a number, M. For example, a word is changed into ASCII binary digits, and the binary digits can be considered as a decimal number. M is then encrypted to give
the ciphertext, C, according to the formula
\(\mathrm{C}=\mathrm{Me}(\operatorname{modN})\)
(5) Imagine that Bob wants to send Alice a simple kiss: just the letter X . In
ASCII this is represented by 1011000, which is equivalent to 88 in decimal.

So, AT \(=88\).

387

388 The Code Book
(6) To encrypt this message, Bob begins by looking up Alice's public key, and discovers that \(\mathrm{N}=187\) and \(\mathrm{e}=7\). This provides him with the encryption formula required to encrypt messages to Alice. With \(\mathrm{M}=88\), the formula gives
(7) Working this out directly on a calculator is not straightforward, because the
display cannot cope with such large numbers. However, there is a neat trick
for calculating exponentials in modular arithmetic. We know that, since \(7=\) \(4+2+1\),
\(887(\bmod 187)=[884(\bmod 187) \times 882(\bmod 187) \times 881(\bmod\) 187)] (mod 187)
\(8^{\prime}=88=88(\operatorname{mocj}!87)\)
\(882=7,744=77(\bmod 187)\)
\(884=59,969,536=132(\bmod 187)\)
\(887=881 \times 882 \times 884=88 \times 77 \times 132=894,432=11(\bmod\) 187)

Bob now sends the ciphertext, \(C=11\), to Alice.
(8) We know that exponentials in modular arithmetic are one-way functions, so it is very difficult to work backward from C \(=11\) and recover the original message, M. Hence, Eve cannot decipher the message.
(9) However, Alice can decipher the message because she has some special information: she knows the values off and \(q\). She calculates a special num her, d, the decryption key, otherwise known as her private key. The number \(d\) is calculated according to the following formula
\(t \mathrm{xd}=1(\bmod (\mathrm{p}-\backslash) \mathrm{x}(\mathrm{q}-\backslash)) 7 \mathrm{x}</=1(\bmod 16 \mathrm{x} 10)\)
\(7 x^{\wedge}=1(\bmod 160)\)
\(\wedge=23\)
(Deducing the value of \(d\) is not straightforward, but a
```

technique known as
Euclid's algorithm allows Alice to find d quickly and
easily.)

```

Appendix] 389
(10) To decrypt the message, Alice simply uses the following formula, \(M=C d(m o A 187) ~ M=I I 23(m o d ~ 187)\)
\(M=[I I 1(\bmod 187) \times 11 ?(\bmod 187) x\) If (mod 187) \(x\) II16 \((\bmod 187)](\bmod 187) \mathrm{M}=11 \mathrm{x} 121 \times 55 \mathrm{x} 154(\bmod 187) \mathrm{M}=88=\) X'm ASCII.

Rivest, Shamir and Adleman had created a special one-way function, one that
could be reversed only by somebody with access to privileged information,
namely the values off and q. Each function can be personalized by choosing \(p\) and \(q\), which multiply together to give N. The function allows everybody to
encrypt messages to a particular person by using that person's choice of \(N\), but
only the intended recipient can decrypt the message because the recipient is the
only person who knows \(p\) and \(q\), and hence the only person who knows the
decryption key, d.

Glossary

ASCII American Standard Code for Information Interchange, a standard for
turning alphabetic and other characters into numbers.
asymmetric key cryptography A form of cryptography in which the key
required for encrypting is not the same as the key
required for decrypting.
Describes public key cryptography systems, such as RSA.

Caesar-shift substitution cipher Originally a cipher in which each letter in the
message is replaced with the letter three places further on in the alphabet.
More generally, it is a cipher in which each letter in the message is replaced
with the letter \(x\) places further on in the alphabet, where \(x\) is a number
between 1 and 25.
cipher Any general system for hiding the meaning of a message by replacing
each letter in the original message with another letter. The system should have some built-in flexibility, known as the key.
cipher alphabet The rearrangement of the ordinary (or plain) alphabet, which
then determines how each letter in the original message is enciphered. The
cipher alphabet can also consist of numbers or any other characters, but in
all cases it dictates the replacements for letters in the original message.
ciphertext The message (or plaintext) after encipherment.
code A system for hiding the meaning of a message by replacing each word or
phrase in the original message with another character or set of characters.
The list of replacements is contained in a codebook. (An alternative definition
of a code is any form of encryption which has no built-in flexibility, i.e.,
there is only one key, namely the codebook.)
codebook A list of replacements for words or phrases in the original message.
cryptanalysis The science of deducing the plaintext from a ciphertext, without
knowledge of the key.
cryptography The science of encrypting a message, or the science of concealing
the meaning of a message. Sometimes the term is used more generally to
mean the science of anything connected with ciphers, and is an alternative
to the term cryptology.

391

392 The Code Book
cryptology The science of secret writing in all its forms, covering both cryptography
and cryptanalysis.
decipher To turn an enciphered message back into the original message. Formally,
the term refers only to the intended receiver who knows the key
required to obtain the plaintext, but informally it also refers to the process of
cryptanalysis, in which the decipherment is performed by an enemy interceptor.
decode To turn an encoded message back into the original message.
decrypt To decipher or to decode.

DBS Data Encryption Standard, developed by IBM and adopted in 1976.

Diffie-Hellman-Merkle key exchange A process by which a sender and receiver can establish a secret key via public discussion. Once the key has been agreed, the sender can use a cipher such as DES to encrypt a message.
digital signature A method for proving the authorship of an electronic document.
Often this is generated by the author encrypting the document with
his or her private key.
encipher To turn the original message into the enciphered message.
encode To turn the original message into the encoded message.
encrypt To encipher or encode.
encryption algorithm Any general encryption process which can be specified
exactly by choosing a key.
homophonic substitution cipher A cipher in which there are several potential substitutions for each plaintext letter. Crucially, if there are, say, six potential
substitutions for the plaintext letter \(a\), then these six characters can only
represent the letter a. This is a type of monoalphabetic substitution cipher.
key The element that turns the general encryption algorithm into a specific
method for encryption. In general, the enemy may be aware of the encryption
algorithm being used by the sender and receiver, but the enemy must
not be allowed to know the key.
key distribution The process of ensuring that both sender and receiver have
access to the key required to encrypt and decrypt a message, while making
sure that the key does not fall into enemy hands. Key distribution was a
major problem in terms of logistics and security before the invention of public
key cryptography.
key escrow A scheme in which users lodge copies of their secret keys with a
trusted third party, the escrow agent, who will pass on keys to law enforcers
only under certain circumstances, for example if a court order is issued.

Glossary 393
key length Computer encryption involves keys which are numbers. The key
length refers to the number of digits or bits in the key, and thus indicates the
biggest number that can be used as a key, thereby defining the number of
possible keys. The longer the key length (or the greater the number of possible
keys), the longer it will take a cryptanalyst to test all the keys.
monoalphabetic substitution cipher A substitution cipher in which the cipher
alphabet is fixed throughout encryption.

National Security Agency (NSA) A branch of the U.S. Department of Defense, responsible for ensuring the security of American communications and for
breaking into the communications of other countries.
onetime pad The only known form of encryption that is unbreakable. It relies
on a random key that is the same length as the message.
Each key can be
used once and only once.
plaintext The original message before encryption.
polyalphabetic substitution cipher A substitution cipher in which the cipher
alphabet changes during the encryption, for example the Vigenere cipher.
The change is defined by a key.

Pretty Good Privacy (PGP) A computer encryption algorithm developed by
Phil Zimmermann, based on RSA.
private key The key used by the receiver to decrypt messages in a system of
public key cryptography. The private key must be kept secret.
public key The key used by the sender to encrypt messages in a system of public
key cryptography. The public key is available to the public.
public key cryptography A system of cryptography which overcomes the problems of key distribution. Public key cryptography requires an asymmetric
cipher, so that each user can create a public encryption key and a private
decryption key.
quantum computer An immensely powerful computer that exploits quantum
theory, in particular the theory that an object can be in many states at once
(superposition), or the theory that an object can be in many universes at
once. If scientists could build a quantum computer on any reasonable scale,
it would jeopardize the security of all current ciphers except the onetime pad
cipher.
quantum cryptography An unbreakable form of cryptography that exploits
quantum theory, in particular the uncertainty
principle-which states that it
is impossible to measure all aspects of an object with
absolute certainty.
Quantum cryptography guarantees the secure exchange of a random series
of bits, which is then used as the basis for a onetime pad
cipher.

394 The Code Book

RSA The first system that fitted the requirements of public key cryptography, invented by Ron Rivest, Adi Shamir and Leonard Adleman in 1977.
steganography The science of hiding the existence of a message, as opposed to
cryptography, which is the science of hiding the meaning of a message.
substitution cipher A system of encryption in which each letter of a message is
replaced with another character, but retains its position within the message.
symmetric key cryptography A form of cryptography in which the key required
for encrypting is the same as the key required for decrypting. The term
describes all traditional forms of encryption, i.e. those in use before the 1970s.
transposition cipher A system of encryption in which each letter of a message
changes its position within the message, but retains its identity.

Vigenere cipher A polyalphabetic cipher which was developed around 1500.
The Vigenere square contains 26 separate cipher alphabets, each one a
Caesar-shifted alphabet, and a keyword defines which
cipher alphabet
should be used to encrypt each letter of a message.

Acknowledgments

While writing this book I have had the privilege of
meeting some of the world's
greatest living codemakers and codebreakers, ranging from those who worked at
Bletchley Park to those who are developing the ciphers that will enrich the
Information Age. I would like to thank Whitfield Diffie and Martin Hellman,
who took the time to describe their work to me while \(I\) was in sunny California. Similarly,
Clifford Cocks, Malcolm Williamson and Richard Walton were enormously
helpful during my visit to cloudy Cheltenham. In
particular, I am grateful to the
Information Security Group at Royal Holloway College, London, who allowed
me to attend the M.Sc. course on information security. Professor Fred Piper,
Simon Blackburn, Jonathan Tuliani, and Fauzan Mirza all taught me valuable
lessons about codes and ciphers.

While I was in Virginia, I was fortunate to be given a guided tour of the Beale
treasure trail by Peter Viemeister, an expert on the mystery. Furthermore, the Bedford
County Museum and Stephen Cowart of the Beale Cypher and Treasure

Association helped me to research the subject. I am also grateful to David
Deutsch and Michele Mosca of the Oxford Centre for Quantum Computation,
Charles Bennett and his research group at IBM's Thomas J. Watson Laboratories,
Stephen Wiesner, Leonard Adleman, Ronald Rivest, Paul
Rothemund, Jim
Gillogly, Paul Leyland and Neil Barrett.

Derek Taunt, Alan Stripp and Donald Davies kindly explained to me how
Bletchley Park broke Enigma, and I was also helped by the Bletchley Park Trust, whose members regularly give enlightening lectures on a variety of topics. Dr.
Mohammed Mrayati and Dr. Ibrahim Kadi have been involved
in revealing some
of the early breakthroughs in Arab cryptanalysis, and were kind enough to send
me relevant documents. The periodical Cryptologia also carried articles about

Arabian cryptanalysis, as well as many other cryptographic subjects, and I would
like to thank Brian Winkel for sending me back issues of the magazines.

I would encourage readers to visit the National
Cryptologic Museum near
Washington, D.C. and the Cabinet War Rooms in London, and
I hope that you
will be as fascinated as \(I\) was during my visits. Thank you to the curators and

395

396 The Code Book
librarians of these museums for helping me with my research. When I was pressed for time, James Howard, Bindu Mathur, Pretty Sagoo, Anna Singh and Nick
Shearing all helped me to uncover important and interesting articles, books and documents, and I am grateful to them for their efforts. Thanks also go to Antony
Buonomo at www.vertigo.co.uk who helped me to establish my Web site.

As well as interviewing experts, I have also depended on numerous books and
articles. The list of further reading contains some of my sources, but it is neither
a complete bibliography nor a definitive reference list. Instead, it merely includes material that may be of interest to the general reader. Of all the books I have
come across during my research, I would like to single out
one in particular: The
Codebreakers by David Kahn. This book documents almost every cryptographic
episode in history, and as such it is an invaluable resource.

Various libraries, institutions and individuals have provided me with photographs.
All the sources are listed in the picture credits, but particular thanks go to
Sally McClain, for sending me photographs of the Navajo code talkers; Professor
Eva Brann, for discovering the only known photo of Alice Kober; Joan Chad-wick, for sending me a photo of John Chadwick; and Brenda Ellis, for allowing
me to borrow photos of James Ellis. Thanks also go to Hugh Whitemore, who
gave me permission to use a quote from his play Breaking the Code, based on
Andrew Hodges' book Alan Turing-The Enigma.

On a personal note, \(I\) would like to thank friends and family who put up with
me over the two years while \(I\) was writing this book. Neil Boynton, Dawn Dzedzy, Sonya Holbraad, Tim Johnson, Richard Singh and Andrew Thompson all helped
me to keep sane while \(I\) was struggling with convoluted cryptographic concepts.
In particular, Bernadette Alves supplied me with a rich mixture of moral support
and perceptive criticism. Traveling back in time, thanks also go to all the people
and institutions that have shaped my career, including Wellington School,
Imperial College and the High Energy Physics Group at Cambridge University;
Dana Purvis, at the BBC, who gave me my first break in television; and Roger
Highfield, at the Daily Telegraph, who encouraged me to write my first article.

Finally, I have had the enormous good fortune to work with
some of the best
people in publishing. Patrick Walsh is an agent with a love of science, a concern
for his authors and a boundless enthusiasm. He has put me in touch with the
kindest and most capable publishers, most notably Fourth Estate, whose staff
endure my constant stream of queries with great spirit. Last, but certainly not
least, my editors, Christopher Potter, Leo Hollis and Peternelle van Arsdale, have
helped me to steer a clear path through a subject that twists and turns its way
across three thousand years. For that I am tremendously grateful.

Further Reading

The following is a list of books aimed at the general reader. I have avoided giving more detailed technical references, but several of the texts listed contain a
detailed bibliography. For example, if you would like to know more about the
decipherment of Linear B (Chapter 5), then I would recommend The Decipherment
of Linear B by John Chadwick. However, if this book is not detailed enough, then
please refer to the references it contains.

There is a great deal of interesting material on the Internet relating to codes
and ciphers. In addition to the books, I have therefore listed a few of the Web
sites that are worth visiting.

General

Kahn, David, The Codebreakers (New York: Scribner, 1996).

A 1,200-page history of ciphers. The definitive story of cryptography up
until the 1950s.

Newton, David E., Encyclopedia ofCryptology (Santa Barbara, CA: ABC-Clio, 1997).

A useful reference, with clear, concise explanations of most aspects of ancient and modern cryptology.

Smith, Lawrence Dwight, Cryptography (New York: Dover, 1943).

An excellent elementary introduction to cryptography, with more than 150
problems. Dover publishes many books on the subject of codes and
ciphers.

Beutelspacher, Albrecht, Cryptology (Washington, D.C.: Mathematical
Association of America, 1994).

An excellent overview of the subject, from the Caesar cipher to public key
cryptography, concentrating on the mathematics rather than the history. It
is also the cryptography book with the best subtitle: An Introduction to the
Art and Science of Enciphering, Encrypting, Concealing, Hiding, and Safeguarding, Described Without any Arcane Skullduggery but not Without Cunning Waggery for
the Delectation and Instruction of the General Public.

397

398 The Code Book

Gaines, Helen Fouche, Cryptanalysis (New York: Dover, 1956).

A study of ciphers and their solution. An excellent introduction to
cryptanalysis, with many useful frequency tables in the appendix.
Al-Kadi, Ibraham A., "The origins of cryptology: The Arab contributions,"

Cryptologia, vol. 16, no. 2 (April 1992), pp. 97-126.

A discussion of recently discovered Arab manuscripts, and the work of
al-Kindi.
Fraser, Lady Antonia, Mary Queen of Scots (London: Random House, 1989).

A highly readable account of the life of Mary Queen of Scots.
Smith, Alan Gordon, The Babington Plot (London: Macmillan, 1936).

Written in two parts, this book examines the plot from the points of view
of both Babington and Walsingham.
Steuart, A. Francis (ed.), Trial of Mary Queen of Scots (London: William Hodge,
1951).

Part of the Notable British Trials series.

\section*{Chapter 2}

Standage, Tom, The Victorian Internet (London: Weidenfeld \& Nicolson, 1998).

The remarkable story of the development of the electric telegraph.

Franksen, Ole Immanuel, MrBabbage's Secret (London: Prentice-Hall, 1985).

Contains a discussion of Babbage's work on breaking the Vigenere cipher.
Franksen, Ole Immanuel, "Babbage and cryptography. Or, the mystery of

Admiral Beaufort's cipher," Mathematics and Computer Simulation, vol. 35,

1993, pp. 327-67.

A detailed paper on Babbage's cryptological work, and his relationship with

Rear Admiral SL' Francis Beaufort.
Rosenheim, Shawn, The Cryptographic Imagination (Baltimore, MD: Johns

Hopkins University Press, 1997).

An academic assessment of the cryptographic writings of Edgar Allan Poe
and their influence on literature and cryptography. Poe, Edgar Allan, The Complete Tales and Poems of Edgar Allan Poe (London:

Penguin, 1982).

Includes "The Gold Bug."
Viemeister, Peter, The Beale Treasure: History of a Mystery (Bedford, VA:

Hamilton's, 1997).

An in-depth account of the Beale ciphers written by a respected local
historian. It includes the entire text of the Beale pamphlet, and is most
easily obtained directly from the publishers; Hamilton's,
P.O. Box 932,

Bedford, VA, 24523, USA.

Further Reading 399

Chapter 3

Tuchman, Barbara W., The Zimmermann Telegram (New York: Ballantine, 1994).

A highly readable account of the most influential decipherment in the First

World War.
Yardley, Herbert O., The American Black Chamber (Laguna Hills, CA: Aegean

Park Press, 1931).

A racy history of cryptography, which was a controversial best-seller when it
was first published.

Chapter 4

Hinsley, F.H., British Intelligence in the Second World War: Its Influence on Strategy
and Operations (London: HMSO, 1975).

The authoritative record of intelligence in the Second World War, including
the role of Ultra intelligence.
Hodges, Andrew, Alan Turing: The Enigma (London: Vintage, 1992).

The life and work of Alan Turing. One of the best scientific biographies
ever written.
Kahn, David, Seizing the Enigma (London: Arrow, 1996).

Kahn's history of the Battle of the Atlantic and the importance of
cryptography. In particular, he dramatically describes the "pinches" from

U-boats which helped the codebreakers at Bletchley Park. Hinsley, F.H., and Stripp, Alan (eds), The Codebreakers: The Inside Story of Bletchley

Park (Oxford: Oxford University Press, 1992).

A collection of illuminating essays by the men and women who were part
of one of the greatest cryptanalytic achievements in history.
Smith, Michael, Station X(London: Channel 4 Books, 1999).

The book based on the British Channel 4 TV series of the same name,
containing anecdotes from those who worked at Bletchley Park, otherwise
known as Station X.
Harris, Robert, Enigma (London: Arrow, 1996).

A novel revolving around the codebreakers at Bletchley Park.

Chapter 5

Paul, Doris A., The Navajo Code Talkers (Pittsburgh, PA: Dorrance, 1973).

A book devoted to ensuring that the contribution of the Navajo code
talkers is not forgotten.

McClain, S., The Navajo Weapon (Boulder, CO: Books Beyond Borders, 1994).

A gripping account that covers the entire story, written by a woman who
has spent much time talking to the men who developed and used the

Navajo code.

400 Tie Code Book

Pope, Maurice, The Story of Decipherment (London: Thames \& Hudson, 1975).

A description of various decipherments, from Hittite hieroglyphs to the

Ugaritic alphabet, aimed at the layperson.
Davies, W.V., Reading the Past: Egyptian Hieroglyphs (London: British Museum

Press, 1997).

Part of an excellent series of introductory texts published by the British

Museum. Other authors in the series have written books on cuneiform,

Etruscan, Greek inscriptions, Linear B, Maya glyphs, and runes.

Chadwick,John, The Decipherment of Linear B (Cambridge: Cambridge University

Press, 1987).

A brilliant description of the decipherment.

Data Encryption Standard, FIPS Pub. 46-1 (Washington, D.C.: National Bureau
of Standards, 1987).

The official DES document.
Diffie, Whitfield, and Hellman, Martin, "New directions in cryptography," IEEE

Transactions on Information Theory, vol. IT-22 (November 1976), pp. 644-54.

The classic paper that revealed Diffie and Hellman's discovery of key
exchange, opening the door to public key cryptography. Gardner, Martin, "A new kind of cipher that would take millions of years to
break," Scientific American, vol. 237 (August 1977), pp. 120-24.

The article which introduced RSA to the world.
Hellman, M.E., "The mathematics of public key
cryptography," Scientific

American, vol. 241 (August 1979), pp. 130-39.

An excellent overview of the various forms of public key cryptography.
Schneier, Bruce, Applied Cryptography (New York: John Wiley \& Sons, 1996)

An excellent survey of modern cryptography. A definitive, comprehensive,
and authoritative introduction to the subject.

\section*{Chapter 7}

Zimmermann, Philip R., The Official PGP User's Guide (Cambridge, MA: MIT

Press, 1996).

A friendly overview of PGP, written by the man who developed it.
Garfinkel, Simson, PGP: Pretty Good Privacy (Sebastopol, CA: O'Reilly \&

Associates, 1995).

An excellent introduction to PGP and the issues surrounding modern
cryptography.

Further Reading 401

Bamford, James, The Puzzle Palace (London: Penguin, 1983).

Inside the National Security Agency, America's most secret intelligence
organization.
Koops, Bert-Jaap, The Crypto Controversy (Boston, MA:
Kluwer, 1998).

An excellent survey of the impact of cryptography on privacy, civil liberty,
law enforcement and commerce.
Diffie, Whitfield, and Landau, Susan, Privacy on the Line (Cambridge, MA: MIT

Press, 1998).

The politics of wiretapping and encryption.

Chapter 8

Deutsch, David, The Fabric of Reality (London: Allen Lane, 1997).

Deutsch devotes one chapter to quantum computers, in his
attempt to
combine quantum physics with the theories of knowledge, computation
and evolution.

Bennett, C. H., Brassard, C., and Ekert, A., "Quantum
Cryptography," Scientific
American, vol. 269 (October 1992), pp. 26-33.
A clear explanation of the evolution of quantum cryptography.

Deutsch, D., and Ekert, A., "Quantum computation," Physics World, vol. 11, no.

3 (March 1998), pp. 33-56.

One of four articles in a special issue of Physics World. The other three
articles discuss quantum information and quantum
cryptography, and are
written by leading figures in the subject. The articles are aimed at physics
graduates and give an excellent overview of the current state of research.

Internet Sites

The Mystery of the Beale Treasure
http://www.roanokeva.com/stories/beale.html

A collection of sites relating to the Beale ciphers. The Beale Cypher and

Treasure Association is currently in transition, but it hopes to be active
soon.
Bletchley Park
http://www.cranfield.ac.uk/ccc/bpark/

The official Web site, which includes opening times and directions.

The Alan Turing Homepage
http://www.turing.org.uk/turing/

402 The Code Book

Enigma emulators
http://www.attlabs.att.co.uk/andyc/enigma/enigma_j.html
http://www.izzy.net/~ian/enigma/applet/index.html

Two excellent emulators that show how the Enigma machine works. The
former allows you to alter the machine settings, but it is not possible to
track the electrical path through the scramblers. The latter has only one
setting, but has a second window that shows the scramblers moving and the
subsequent effect on the electrical path.
Phil Zimmermann and PGP
http://www.nai.com/products/security/phil/phil.asp Electronic Frontier Foundation
http://www.eff.org/

An organization devoted to protecting rights and promoting freedom on
the Internet.
Centre for Quantum Computation
http://www.qubit.org/
Information Security Group, Royal Holloway College
http://isg.rhbnc.ac.uk/
National Cryptologic Museum
http://www.nsa.gov:8080/museum/
American Cryptogram Association (ACA)
http://www.und.nodak.edu/org/crypto/crypto/

An association which specializes in setting and solving cipher puzzles. Ctyptologia
http://www.dean.usma.edu/math/resource/pubs/cryptolo/index.htm

A quarterly journal devoted to all aspects of cryptology. Cryptography Frequently Asked Questions
http://www.cis.ohiostate.edu/hypertext/faq/usenet/
cryptography-faq/top.html
RSA Laboratories' Frequently Asked Questions About Today's Cryptography
http://www.rsa.com/rsalabs/faq/html/questions.html
Yahoo! Security and Encryption Page
http://www.yahoo, co.uk/Computers_and_Internet/

Security_and_Encryption/
Crypto Links
http://www.ftech.net/~monark/crypto/web.htm

Index

Page folios that refer to pictures and figures appear in italics

Abhorchdienst 106-7 Adah al-Kuttarj 15
Adair, Gilbert 20, 369
ADFGVX cipher 103-4, 379-80
Adkman, Leonard 272, 273, 279, 285, 288,
```

(ARPA) 254 Adventure of the Dancing Men, The (Conan

```
```

Doyle) 81

```
Alberti, Leon 45-6, 48, 124, 126-7
Alice, Bob and Eve 257-60, 264-7,
269-71, 274-8, 283, 293, 296-301,
\(308-10,312,316,318-20,339-49\),
387-8
al-Kindi, AbuYusuf Ya'qub ibn Is-haq ibn
as-Sabbah ibn 'omran ibn Ismail
\(17-20,26\)
Alexander Weekly Messenger 81
American Civil War 125
American Cryptogram Association 97
American Escrowed Encryption Standard
310-11
American Journal of Archaeology 231
American National Bureau of Standards 248
American Standard Code for Information
Interchange (ASCII) 245, 246, 247, 387
Arisue, Lieutenant General 201 ARPANet 254
4rtqfWar(Sun-Tzu) 106
ASCII see American Standard Code for
Information Interchange
asymmetric key cipher 269-71, 274-9
atbash 26
AT\&T Bell Laboratories 247, 330
Aum Shinrikyo sect 305

Babbage, Charles 63-4, 65, 66-7, 69-79,

94, 101, 116, 121, 127, 169,292
Babington, Anthony 36-43, 51
Babou, Philibert 28, 29
Bacon, Roger 26-7
Bait al-Hikmah 16
Bakhtiar, Shahpour 319
Bakr, Abu 14
Balfour, Arthur 113
Baltimore Technologies 312
Bankes.W.J. 213
Baugh, William 305
Bazeries, Etienne 56-8
Beale ciphers 82-6, 87-9, 90-1, 93, 92-9,

99

Beale Cypher and Treasure Association 94 Beak Papers, The 83, 86
Beale, Thomas J. 82, 84-6, 97 Beak Treasure-History of a Mystery, The
(Viemeister) 97
Beker, H. 19
Benally.John 196
Bennett, Charles 338, 339-48 Bible Code, The (Drosnin) 373
biblical ciphers 26, 373
Birch, Frank 183

Biuro Szyfrow 143-4, 146, 149, 156, 162
Black Chambers 59-63 see also U. S.

Cipher Bureau
Blegen, Carl 224

Boer War 378
Bohr, Niels 320
bombe

British 174-7,;?*, 179,243

Polish 156-7, 160, 174
Brassard, Gilles 339-48 Breaking the Code (Wiitemore) 168
British Royal Navy 141
Bureau du Chiffre 103, 146

Caesar, Julius 9-10

Caesar cipher 10, 11-13, 48-9, 124-5, 259

Cambridge Research Center 248

Camden, William 42

Captain Midnight 125

Caraman, Philip 37

Cardano, Girolamo 39
cartouche 209, 210, 213, 214, 215, 216, 218

Center for Democracy and Technology 306

Chadwick, John 237, 238-42

Champollion, Jean-Francois 211, 212,

213-8, 230
Chaucer, Geoffrey27

Churchill, Winston 141, 178-9, 181-3,

186

Ciezki, Captain Maksymilian 144
cipher alphabet 10,11, 12-13 cipher, definition of 10-11,
30 cipher disk 124-7 Cipher Systems: The Protection Of

Communication (Beker \& Piper) 19 ciphertext 11 Clement VII, Pope 28
Cocks, Clifford 284, 285, 286-7 288,

289-92
code, definition of 29, 30, 31
codebook 31

Codebreakers, The (Kahn) 255-6
Code-o-Graph 125-6
Colossus 243-4, 280
Commission Nationale de Controle des

Interceptions de Securite 307
Communications-Electronics Security

Group (CESG) 280
computer encryption
birth of 244
differences to mechanical encryption 245
key distribution problem 250-9, 260,
\(261-4,265,266-3\)
use of binary digits 245-7
COMSEC 251-2
Conner, General Howard 200
Coptic language 203, 215-16
crib
definition of 170
examples 171,219,
relation to bombe 177-8

Rosetta Stone as 205

Turing exploits to crack Enigma 170-4,

Crimean War 78, 292
Crowell, William 317
cryptanalysis 15-26 Cryptanalysis (Gaines) 372
Crypto AG 319
cryptographic freedom 303-16
cryptographic policy 311-12
cryptography
definition 6-7, 30
general public's enthusiasm for 79-99
Cukier, Kenneth Neil 311

Daily Telegraph 180-1, 383

Damm, Arvid 138

Data Encryption Standard (DES) 250-1,

264,286,330-1
Dato, Leonardo 45
de Bulonde, Vivien 58 Decipherment of Linear B, The
(Chadwick) 239
Declaration of Independence 90-2
Defense Advanced Research Projects

Agency (DARPA) 330-1
de Grey, Nigel 112-13
De Louvois, Francois 58
Demaratus 4-5
Denning, Dorothy 305
Denniston, Alastair 162, 189
Deutsch, David 325, 326, 327-30 Die Geheimschriften und die Dechijfrirkunst
(Kasiski) 78
Diffie-Hellman-Merkle key exchange
scheme 256-64, 265, 266-7, 270, 288,

289
Diffie, Whitfield 252-3, 272, 279, 283,

289,293,300-1,307-8
conceives asymmetric cipher 268-71
forecasts digital revolution 254
meets James Ellis 289-90

Index 405
on the right to cryptographic freedom

307-8
tackles key distribution problems 256,

261
digital communication
advances in 293
advantages of 293, 295, 297-316
dangers of 295, 303-16
differences to traditional
communication 296-7
laws 301-16
digital encryption 296-350
digraph 56 Documents in Mycenaean Greek (Chadwick \&

Ventris) 242

Donitz, Admiral Karl 182, 184
Doyle, Sir Arthur Conan 81
Drosnin, Michael 373

Eastland, Senator James 306
Echelon system 305-7
Eckert, J. Presper 244
"Egypt under the Pharaohs"
(Champollion) 211

Electronic Commerce Bill (British) 312
Electronic Frontier Foundation 306

Ellis, James 280, 281, 282-86, 288-91, 317
on his contribution to public key
cryptography 292

Elizabeth I, Queen 1, 3, 34-40, 43-4 email
security problems 254-67, 293, 296-7
signatures 299-316
encryption algorithm 11, 12, 13
encryption key //, 12-13, 270-1
encryption machines 124-92
encryption software 272-9, 290-320
backdoors 319 Enemy of the State 309
ENIAC 244
Enigma cipher
betrayed 145-7

Biuro Szyfrow attempts to crack 143-9
allies 164-5
day key 147-58, 162-5, 170-1, 177, 182-3,251

German army increase difficulty of 176-7

German Navy increase difficulty of 181-5
Rejewski attacks 149-58, 160
Turing attacks 165, 170-7
Enigma machine 159
allies create replica of 146
birth of 127
design 127-8, 129, 130, 131-2, 133-5,

German military sanctions use of 141-3
German Navy improve 181-5
influence on Lorenz machine 243-5
keyboard layout 139, 140, 164 marketing of 137-9
plugboard 134-5, 136, 137, 165, 171,

173-4
ring 135
scramblers 128, 129, 130, 131, 132-7,

158, 171-6, 177,
Epistle on the Secret Works of Art and the

Nullity of Magic (Bacon) 26-7
equidistant letter sequences (EDLSs) 373
Evans, Sir Arthur 218-221, 224-5, 230-1
Evidence for Greek Dialect in the Mycenean
Archives (Chadwick \& Ventris) 240
factoring 276-9, 320, 387-9

FBI 7, 295, 303-4, 306, 308, 311, 314-15,

319

Feistel, Horst 248-50
Ferranti 247
First World War 93, 103-4, 106-8, 110-16,

120-4, 127, 138, 141-6, 161, 194-5
Fisher, Mary
on James Ellis 289-90
on Whitfield Diffie 268
Fisher, Mel 98
Flamsteed.John 66
Fleming, Ian 183
Flowers, Tommy 244, 280
Fourier, Jean-Baptiste 211
Francis I, King of France 28

Franco-Prussian War 104
Freeh, Louis J. 311
frequency analysis 17-18, 19, 20, 21, 22-5,
29, 31, 40-1, 43, 51, 73-6, 137, 371-2
Fricke, Admiral Kurt 185
Friedman Archive, The 94
Friedman, Colonel William 92-4

406 The Code Book

Gaines, Helen Fouche 372 Gallic Wars Oulius Caesar) 9-10
Gardner, Martin 278-9, 330
Garfinkel, Simson 277
Geheime Kabinets-Kanzlei 59
George C. Marshall Research Center 94
Georgel, Abbot 59
Gifford, Gilbert 36-9
Gillogly, James 97
Godel, Kurt 166, 168-9
"Gold Bug, The" (Foe) 81-2, 96
Good, Jack 176

Government Code and Cypher School
(GC\&CS) , ?6,?, 237, 251
attacks Enigma cipher 170-89
birth of 161-3
closed 187-8
early reliance on Rejewski techniques
164-5, 170-1

Hut 3162

Hut 4162

Hut 6 162, 165, 186, 188
organization 161-4
```

recruitment drive 180-1
secrecy within 186-9
Ultra Intelligence 185-9
use of bombes 176-9
Government Communications
Headquarters (GCHQ) 187-8, 280-2,
284-92,317
Great Cipher of Louis XIV 55-7
Grotefend, Georg 385
Grover, Low 330
Guadalcanal 199
airfield 197
Guitry, Sacha 160
Hall, Admiral Sir William 112-13, 115
Hammer, Carl 94
Hardy, G. H. 286
Haroche, Serge 331
Hart, Clayton 92
Hart, George 92
Hebern, Edward 138-9
Hellman, Martin 255, 257, 272, 279, 283,
288, 289, 290, 300-01
discovers Diffie-Hellman-Merkle key
exchange scheme 258-71
on Ralph Merkle 256
Heisenberg, Werner 336
Herbert, Jr, Hiram 92
Herodotus 3-5
Herschel, John 64

```
hieroglyphics 202-17

Hilton, Peter 176

Hinsley, Sir Harry 185-6, 187

Histories (Herodotus) 4

Hodges, Andrew 166

Holmes, Sherlock 81

Homer 218, 239
homophonic substitution cipher 52, 53,
54-5, 59

Hoover, Herbert 141
Horner, Captain E.W. 194

IBM 247-9, 255, 341
IDEA cipher 299, 301
Information Age 293, 295, 296-320
Institute of Mathematics and its

Applications Conference (1997)
Internet 293, 297-307
birth of 254
commerce 289, 308-313
viruses 318-19

Jancik, Joseph 97

Johnson, Lyndon 306-7

Johnston, Philip 193

Jones, Colonel James E. 193

Jones, Sir Henry 111-12

Journal of the Society of Arts 67

Journey to the Center of the Earth (Verne) 80-1

Kahn, David 135, 187, 220-1, 255-6

Kama-Sutra (Vatsyayana) 9

Kasiski, Friedrich Wilhelm 78-9, 94, 101,

116, 121, 127,292
Kasiski Test 78
Kennedy, John F. 306
Kerckhoffs' Principle 12
key distribution 250-350
key encryption 256-9, 260, 261-350
key escrow 310-13
capstone 310
clipper 310

King, Admiral Ernest 197
King Jr. Martin Luther 306-7
Kircher, Athanasius 204-5, 211, 213

Index 407

Kober, Alice 225, 226-33
Koch, Alexander 138
Konheim, Alan 255
Kriegsmarine network 182-5
Kruh, Louis 96

La Cryptographic militaire (von

Nieuwenhof) 104 La Disparition (Perec) 20, 369 Lander, Major Gwido 156-8, 160

Lenoir, Alexandre 213
Leon, Sir Herbert 161
Linear A 220, 240, 385
Linear B 217-21, 222-3, 224-5, 226-30,

231-2, 233, 234-40, 241, 242, 385 Lives of the Caesars LVI (Suetonius) 10-11
Lorenz cipher 243

Los Alamos National Laboratory 330-1
Louis XIV 55-8
Louis XV 59
Lucifer 249-50 Lusitainia 107-8
Lysander of Sparta 9

Madsen, Wayne 319
Mary Queen of Scots 1, 2, 32-40, 42-3
execution 44 nomenclator 38, 41, 51
Man in the Iron Mask, the 55-8
Manuelito, Johnny 196 Manuscript on Deciphering
Cryptographic

Messages, A (al-Kindi) 17, 18 Marconi, Guglielmo 101-2
Massachusetts Institute of Technology
Press 315

Mathematician's Apology, The (Hardy) 286 Mathias
SandorfffVerne) 81
Mauborgne, Major Joseph 120, 124
Mauchly, John W. 244
McCabe, William 196
McKay, Brendan 373

Menwith Hill Signals Intelligence Base 305
Menzies, Sir Stewart 178-9 Mercury Rising 309

Merkle, Ralph 256, 267, 270-2, 279, 283
Midway, Battle of 191-2
Milner-Barry, Stuart 186
MIT Laboratory for Computer Science
```

mlecchita-vikalpa 9
modular arithmetic 261, 262-3 monoalphabetic substitution
algorithm 12 monoalphabetic substitution cipher 15, 20,
29-31, 45, 52, 54, 59, 126, 136, 259
Montgomery, Reverend 111-12
Morcom, Christopher 166
Morriss, Robert 82, 84-6
Morse Code 61, 62, 79, 380
Morse, Samuel 60-1
Muggeridge, Malcolm 163
Muhammad 14, 16
Napoleon III 104
Narration of the Last Days of the Queen of
Scots (Wingfield) 44
National Computer Conference (1976) 267
National Strategy Information Center
(U.S.) 305 Nautical Ephemerisfor Finding Latitude and
Longitude at Sea 64
Navajo code 193-4, 195, 196, 197,
198-201,202
Navajo Code Talkers, The (Paul) 201
"New Kind of Cipher that Would Take
Millions of Years to Break, A" 278
Newman, Max 243-4
Nimitz, Chester 191
Nixon, Richard 306
Nobel Prize for Physics (1933) 324
nomenclator 31, 38 National Security Agency (NSA) 95-6,
248, 250, 255, 289, 290, 295, 305,
309-10,317-19

```

\title{
Nuclear Weapons Freeze Campaign 295 Nuestra Senora de
} Atocha 98
nulls 29, 31
(Edipus xgyptiacus 204
"On Computable Numbers" (Turing) 168
onetime pad cipher 120, 121, 122-24, 381
one-way functions 260-4, 265, 266-79
Operation Ruthless 183-5

Page, Professor Denys 242
Painvin, Georges 103, 104, 105, 106
Parsons, Marilyn 97
Patterson, Nick 284-5
Paul, Doris 201

408 The Code Book

Pearl Harbor 194, 197
Perec, Georges 20, 367
PGP (Pretty Good Privacy) 293, 299-305,

314-17 PGPfone 304

Phelippes, Thomas 40, 41, 43, 51
Philip II, King of Spain 28 Philosophy of Decyphering, The (Babbage)

66-7
photons 321-4, 333, 334-7, 338-41, 342,

343, 344-9
phonograms 204
Pigpen Cipher 375
Piper, F. 19

Playfair, Baron Lyon 79-80, 377-8
Playfair cipher 79-80, 377-8
Poe, Edgar Allan 81,96
polarization 332-41, 342, 343-8
Polaroid filters 333-8, 340
Polaroid sunglasses 334
polyalphabectic substitution cipher 52,

54-5, 60, 62, 126
Pope, Maurice 202
Porta, Giovanni 5-6, 46, 48
Post Office Research Station (Dollis Hill,

London) 244, 280 Precis du Systeme Hieroglyphique
(Champollion) 216
prime numbers 274-9, 320, 387-9
Printemps, Yvonne 160
Ptolemy, Pharaoh 207, 209-10, 213-14
public key cryptography 269-93, 295-350
Purple cipher 191, 196

Quarterly Review 61
quantum computer 320-1, 325-32
quantum cryptography \(332-41,342,343\),

344-50
quantum money \(332,333,334,335\),

336-40
quantum theory 349-50
at microscopic level 326
qualities of 320
many-worlds 325
role of photon phenomena in 321, 322,

323-5, 333, 334-7
superposition 323-5
Queen's Speech (1998) 311
radio 101-4
random key 122-24
rebus principle 215-6

Rejewski, Marian 149-50, 151, 152-8, 160,

170-1, 174, 188-9
Rivest, Ron 272, 273, 274-9, 285, 288, 389
on restricting digital cryptography 308
Room 40 110-11, 115, 141, 143, 160-1
Rosetta Stone, The 205, 206, 207, 209
Rossignol, Antoine 55, 57
Rossignol, Bonaventure 55, 57
RSA cipher 273, 285, 288, 291, 305
advantages of 274-9, 293, 295, 297-8
attacks upon 318-20, 330
description 274
flaws 277-9, 297-8
mathematics of 274-9, 387-9
RSA Data Security, Inc. 289, 301-2

Sagan, Carl 295

Scherbius, Arthur 127-8, 132, 135-6, 137,

141-2,149

Schliemann, Heinrich 218
Schmidt, Hans-Thilo 144, 145, 146, 153,

155, 156, 158, 183
Schmidt, Rudolph 144-5
Schrodinger, Erwin 324-5 Scientific American 278-9
scrambler 125
Scudamore, John 42
scytale 8, 9
Second World War 6-7, 66, 142, 161-3,

176-201,243-4,251,280 Seizing the Enigma 135
Sellwood, Emily 77
semagrams 204, 215-6
Shamir, Adi 272, 273, 278-9, 285, 288, 389
Shor, Peter 330
Siculus, Diodorus 204
SIGABA 192

Signal Intelligence Service 92-4
Sittig, Ernst 240
Sixtus V, Pope 204
Smolin, John 347
Society for Worldwide Interbank Financial

Telecommunications (SWIFT) 293
Soro, Giovanni 28, 29
Sphinx of the Wireless 138

Index 409

Spy catcher 291 steganography 5-6, 30
microdot 6-7
Stimson, Henry 141 Story of Decipherment, The (M. Pope)
202
substitution cryptography 9-11, 12, 13-14,

30

Suetonius 10-11
Sun Microsystems 252
Sun-Tzu 106

Tales from the Thousand and One Nights 16,

24-5

Taunt, Derek 188 Telconia 110
telegraph, the 60-2
tempest attack 318-19
Tennyson, Alfred 77-8
"The Vision of Sin" (Tennyson) 77-8

Thomas J, Watson Laboratory 249, 255, 341
Thwaites, John Hall Brock 67, 78
Tiltman. John 243 Times, The 60, 242
unwittingly carries encrypted messages 80
traffic analysis 318-19 Traictedes Chiffres (Vigenere) 51
transistor 247
transposition cryptography 7-9, 30 Travis, Commander
Edward 179 Treatise on the Astrolabe (Chaucer) 27
Trithemius, Johannes 46, 48
Troy, Battle of 218
trusted third parties (TTPs) 312-13
Tuchman, Barbara 115
Turing, Alan 165-6, 167, 168-77, 179,

183-4, 189,201,243-4,292
Turing Machine 168-75
Tutte, Bill 243
Twinn, Peter 183-4
Typex 192

Ultra Secret, The (Winterbotham) 188-9
U.S. Cipher Bureau 92, 141
U.S. Government
adopts clipper and capstone 310-11
U.S. Senate
anticrime bill (1991) 301-2
uncertainty principle, described 336
"Undulatory Theory of Light, The"
(Young) 209, 321, 322, 323

Universal Declaration of Human Rights
(Article 12) 306
van Marnix, Philip 39

Ventris, Michael 230-1, 232, 233, 234-42,

Verisign 312
Verne, Jules 80-1
Viemeister, Peter 97
Viete, Francois 28, 29
Vigenere, Blaise de 46, 47 Vigenere cipher 48-9, 51-2,
62-3, 67, 69,

70, 71-9, 94, 115-24, 127, 292, 317,

381
Vigenere square 48, 49, 50, 51, 68, 117,

119, 127

Void, A (Perec) 20, 369 von Nieuwenhof, Auguste Kerckhoffs 12,

104, 106

Wace,A.J. B. 224

Walsingham, Sir Francis 1, 3, 38-40, 42-3

Walton, Richard 284
on \(\mathrm{GCHQ}^{\wedge}\) decision to reveal its work
on public key cryptography 291
on James Ellis 281,282
Ward, James B. 86
Wassenaar Arrangement (1998) 311
Welchman, Gordon 165, 188
Wheatstone-Cooke system 60-1
Wheatstone, Sir Charles 60, 79-80, 377-8
Whitemore, Hugh 168
Wiesner, Stephen 332-9, 347
Williamson, Malcolm 286, 287, 288, 289,

290,291,292

Wilson, Woodrow 107, 112-15

Wingfield, Richard 44
Winterbotham, F.W 188-9
wiretaps 295, 302, 304-10 World Crisis, 7»e (Churchill)
141
Wright, Peter 291

Xerxes 4-5

Yamamoto, Isoruko 191
Yardley, Herbert O. 92, 138

410 The Code Book

Young, Thomas 207, 208, 209-11, 213-14,

216-18, 320-5
Yousef, Ramsay 305
Zimmermann, Arthur 107-8, 109, 110-15,

184
Zimmermann, Phil 294
battle with RSA Data Security Inc. 301-3
creates PGP 298-301
investigated by FBI 295, 303, 314-15
on digital encryption 296-7
on golden age of cryptography 317
on Trojan horse versions of PGP 319
receives e-mail from resistance groups

302
sells PGP 315
subject of grand jury investigation

314-15
Zimmermann telegram 110, 111, 112-13,

114, 115
Zimmermann Telegram, The 115

Picture credits

Line illustrations by Miles Smith-Morris.

Hieroglyphs reproduced by land permission of Bntish Museum Press

Lmear B characters reproduced by kmd permission of Cambridge University Press.

Figure 1 Scottish National Portrait Gallery, Edinburgh-FiTrP f, Th .,- a
a, v ,

Mohammed Mrayati, King Saud UmveTsity, Wyal \(\mathrm{F}^{\wedge} e\) Vpt, \({ }^{\text {m }}\) R H ○ '^
pounds pounds ££rcs ^ *r Jr* jr -S
sl^«-- »ifir \(r-H: F: 3 r>{ }^{T M}=5^{\wedge}={ }^{\wedge} C=\), pounds rt
and
32 Lu.s Kruh Collection, New pounds Hgure 38: S^Khn C^ f1101"' '^ 31
^^^;^«-cc^r'r"rF
si; \(\pm=\) ^^^;^^t~~r

Rgures 52 and 53 National Arch.ve, WashLgton DC ^ 54 nd^s'b'v 'h M ^


Secunty, Inc.; Figure 66 Private collection of Brenda Ell.s-Figure 67 Pn

SSSCS=WSSS;

411
http://www.esnips.com/web/eb00ks```

