
Fundamentals of Computing

Leonid A. Levin

These are the notes for the course CS-172 I taught in the Fall of 1986 at UC Berkeley. The goal was to introduce

the undergraduates to basic concepts of Theory of Computation and to provoke their interest in further study. The

model-dependent e�ects were systematically ignored. Concrete computational problems were considered only as

illustrations of general principles. The notes (prepared by the students and revised by me) are skeletal: they do have

(terse) proofs, but exercises, references, intuitive comments and examples are missing or inadequate. The better is

English in a paragraph the smaller was my contribution and the greater caution is needed.

The notes can be used by an instructor designing a course or by students who either know the material and want to

refresh the memory or are exceptionally bright and have access to an instructor for questions. Each subsection takes

about a week of the course. I distribute these notes to generate some discussion on the content of the introductory

theory course. I am most interested in your comments, both general and on particular account details. My home

address is: 460 Commonwealth Avenue, Newton, MA 02459-1333; tel.: (617) 332-9492; e-mail: Lnd (@bu.edu). I

keep updating these notes: take a fresh copy from http://www.cs.bu.edu/fac/lnd/toc/ (z.ps or z.dvi).

Acknowledgments. I am grateful to the University of California at Berkeley, its MacKey Professorship fund

and Manuel Blum who made possible for me to teach this course. The opportunity to attend lectures of M. Blum

and Richard Karp and many ideas of my colleagues at BU and MIT were very bene�cial for my lectures. I am also

grateful to the California Institute of Technology for a semester with light teaching load in a stimulating environment

enabling me to rewrite the students' notes. NSF grants #DCR-8304498, DCR-8607492, CCR-9015276 also supported

the work. And most of all I am grateful to the students who not only have originally written these notes, but also

inuenced the lectures a lot by providing very intelligent reactions and criticism.

Contents

1 Models of Computations; Polynomial Time & Church's Thesis. 2

1.1 Deterministic Computation. 2

1.2 Rigid Models. 3

1.3 Pointer Machines. 4

1.4 Simulation. 5

2 Universal Algorithm; Diagonal Results. 6

2.1 Universal Turing Machine. 6

2.2 Uncomputability; G�odel Theorem. 7

2.3 Intractability; Compression and Speed-up Theorems. 8

3 Games; Alternation; Exhaustive Search; Time v. Space. 9

3.1 How to Win. 9

3.2 Exponentially Hard Games. 10

3.3 Reductions; Non-Deterministic and Alternating TM; Time and Space. 11

3.4 Fast and Lean Computations. 12

4 Nondeterminism; Inverting Functions; Reductions. 13

4.1 Example of a Narrow Computation: Inverting a Function. 13

4.2 Complexity of NP Problems. 14

4.3 An NP-Complete Problem: Tiling. 15

5 Randomness in Computing. 16

5.1 A Monte-Carlo Primality Tester. 16

5.2 Randomized Algorithms and Random Inputs. 17

5.3 Randomness and Complexity. 18

5.4 Pseudo-randomness. 19

5.5 Cryptography. 20

Copyright c 1999 by Leonid A. Levin. Last revised: June 21, 1999.

1

1 Models of Computations; Polynomial Time & Church's Thesis.

1.1 Deterministic Computation.

Sections 1,2 study deterministic computations. Non-deterministic aspects of computations (inputs, interac-

tion, errors, randomization, etc.) are crucial and challenging in advanced theory and practice. De�ning them

as an extension of deterministic computations is simple. The latter, however, while simpler conceptually,

require elaborate models for de�nition. These models may be sophisticated if we need a precise measure-

ment of all required resources. However, if we only need to de�ne what is computable and get a very rough

magnitude of the needed resources, all reasonable models turn out equivalent, even to the simplest ones. We

will pay signi�cant attention to this surprising and important fact. The simplest models are most useful for

proving negative results and the strongest ones for positive results.

We start with terminology common to all models, gradually making it more speci�c to the models we

actually study. Computations consist of events and can be represented as graphs, where edges between events

reect various relations. Nodes and edges will have attributes called labels, states, values, colors, parameters,

etc. We require di�erent labels for any two edges with the same source. Edges of one type, called causal, run

from each event x to all events essential for the occurrence or attributes of x. They form a directed acyclic

graph (though cycles are sometimes added arti�cially to mark the input parts of the computation).

We will study only synchronous computations. Their nodes have a time parameter. It reects logical

steps, not necessarily a precise value of any physical clock. Causal edges only run between events with close

(typically, consecutive) values of time. One event among the causes of a node is called its parent. Pointer

edges connect the parent of each event to all its other possible causes. Pointers reect the connection

between simultaneous events that allows them to interact and have a joint e�ect. The subgraph of events at

a particular value of time (with pointers and attributes) is an instant memory con�guration of the model.

Each non-terminal con�guration has active nodes/edges around which it may change. The models with

only a single active area at any step of the computation are sequential. Others are called parallel.

Complexity.

The following measures of computing resources of a machine A on input x will be used throughout the course:

Time: The greatest depth DA(x) of causal chains is the number of computation steps. The volume VA(x)

is the combined number of active edges during all steps. Time TA(x) is used (depending on the context) as

either depth or volume, which coincide for sequential models.

Space: SA(x) or SA(x) of a synchronous computation is the greatest (over time) size of its con�gurations.

Sometimes excluded are nodes unchanged since the input.

Note that time complexity is robust only up to a constant factor: a machine can be modi�ed into a new

one with a larger alphabet of labels, representing several locations in one. It would produce identical results

in a fraction of time and space (provided that the time limits are suÆcient for the transformation of the

input into and output from the new alphabet).

Growth Rate Notations: f(x) = O(g(x))1 () g(x) =
(f(x)) () supx
f(x)
g(x) <1.

o; ! : f(x) = o(g(x)) () g(x) = !(f(x)) () limx!1
f(x)
g(x) = 0.

� : f(x) = �(g(x)) () (f(x) = O(g(x)) and g(x) = O(f(x))).

Here are a few examples of frequently appearing growth rates: negligible (logn)O(1); moderate n
�(1)

(called polynomial or P, like in P-time); infeasible 2n

(1)

; another infeasible: n! = (n=e)n
p
t+ 2�n; t 2 [1; 2].

The reason for ruling out exponential (and neglecting logarithmic) rates is that the known Universe is

too small to accommodate exponents. Being about 15 billions years old, it is at most 15 billion light years

� 1061 Plank Units wide. A system of � R
1:5 particles packed in R Plank Units radius collapses rapidly,

be it the Universe or a neutron star. So the number of particles is < 1091:5 � 2304 � 44
4 � 5!!.

1This is a customary but somewhat misleading notation. The clear notations would be like f(x) 2 O(g(x))

p g

1.2 Rigid Models.

Rigid computations have another node parameter: location or cell. Combined with time, it designates the

event uniquely. Locations have structure or proximity edges between them. They (or their short chains)

indicate all neighbors of a node to which pointers may be directed.

Cellular Automata (CA).

CA are a parallel rigid model. Its sequential restriction is the Turing Machine (TM). The con�guration of

CA is a (possibly multi-dimensional) grid with a �xed (independent of the grid size) number of states to

label the events. The states include, among other values, pointers to the grid neighbors. At each step of the

computation, the state of each cell can change as prescribed by a transition function of the previous states

of the cell and its pointed-to neighbors. The initial state of the cells is the input for the CA. All subsequent

states are determined by the transition function (also called program).

An example of a possible application of CA is a VLSI (very large scale integration) chip represented as

a grid of cells connected by wires (chains of cells) of di�erent lengths. The propagation of signals along the

wires is simulated by changing the state of the wire cells step by step. The clock interval can be set to the

time the signals propagate through the longest wire. This way delays implicitly a�ect the simulation.

An example: the Game of Life (GL).

Consider a plane grid of cells, each having a 1-bit state (dead/alive) and pointers to the 8 natural neighbors.

The cell remains dead or alive if the number i of its live neighbors is 2. It becomes (or stays) alive if i = 3.

In all other cases it dies (of overpopulation or solitude).

A simulation of a machine M1 byM2 is a correspondence between memory con�gurations of M1 and M2

which is preserved during the computation (may be with some time dilation). Such constructions show that

the computation of M1 on any input x can be performed by M2 as well. GL can simulate any CA (see a

sketch of an ingenious proof in the last section of [Berlekamp, Conway Guy 82]) in this formal sense:

We �x space and time periods a; b. Cells (i; j) of GL are mapped to cell (bi=ac; bj=ac) of CA M (com-

pressing a� a blocks). We represent cell states of M by states of a� a blocks of GL. This correspondence

is preserved after any number t steps of M and bt steps of GL regardless of the starting con�guration.

Turing Machines.

Consider an in�nite (say, to the right) chain or tape of cells with two adjacent neighbors each. Each state of

a cell has a pointer to one neighbor. The input to this CA is an array of rightward cells followed at the right

by leftward blanks. A cell changes state, if and only if it and its neighbor \face", i.e. point to each other.

The transition function prevents the cells from ever turning \back-to-back." We can use these 1-pointer CA

as a de�nition of the TM. The pair of active cells can be viewed as the TM's moving head (the cell which

just changed the pointer direction) and the tape symbol it works on.

Another type of CA represents a TM with several non-communicating heads which can emerge from and

disappear into the �rst cell (which, thus, controls the number of active cells). The computation halts when

all heads vanish. This model has convenient theoretical features. E.g. with linear (in T) number (jpj2T) of
state changes (volume) one can solve the Bounded Halting Problem H(p; x; T): �nd out whether the machine

with a program p stops on an input x within volume T of computation.

Problem: Find a method to transform any given multi-head TM A into another one B such that the value

of the output of B(x) (as a binary integer) and the volumes of computation of A(x) and of B(x) are all equal

within a constant factor (for all inputs x).

Hint: B may keep a �eld to simulate A and maintain (in other �elds) two binary counters h for the

number of heads of A and v for A's volume. The least signi�cant digits of h; v would be at the leftmost cell.

The most signi�cant digit of h would be added at each step to the same digit of v.

1.3 Pointer Machines.

The memory con�guration of a Pointer Machine (PM), called pointer graph, is a �nite directed labeled graph.

One node is marked as root and has directed paths to all other nodes. The nodes act as automata changing

the graph locally. Edges (pointers) are labeled with colors from a �nite alphabet �xed for all inputs. The

pointers coming out of a node must have di�erent colors (which bounds the outdegree).

Nodes see the con�guration of their out-neighborhood of constant (2 suÆces) depth. Some colors (as

well as their carrying edges and the nodes seeing them) are called active and are not used in input/output.

Active pointers must have inverses; their source nodes must have active loop-edges. An active node can

create/delete pointers to neighbors and create new nodes with pointers to and from it. It does that, based

on its neighborhood, according to the program which is the same for all nodes. Nodes with no pointers vanish.

Nodes with no path from the root are permanently invisible and e�ectively removed. The computation is

initiated by inserting an active loop-edge into the root. When no active pointers remain, the graph is the

output.

The subgraph of active pointers is kept connected and acyclic: A node cannot set or remove active

pointers to other nodes with active loops. Active loops must be removed if no incident active edges exist.

It is convenient to assume PM nodes to act in two stages: At pulling stage one, for each 2-pointer path

colored x; y, creates a new pointer with a special color xy. Then the node removes/recolors pointers and

creates new nodes based on what colors its pointers have and which of their sinks are identical.

Problem: Design a PM transforming the input graph into the same one with an extra pointer from each

node to the root. Hint: Nodes with no path to the root can never be activated. They should be copied with

pointers, copies connected to the root, then the original input removed.

Pointer Machines can be either Parallel, PPM [Barzdin' Kalnin's 74] or Sequential. The latter di�er by

the restriction that only nodes pointed to by the root can be active.

A Kolmogorov or Kolmogorov-Uspenskii Machine (KM) [Kolmogorov Uspenskii 58], is a special case of

Pointer Machine [Shonhage 80] with the restriction that all pointers have inverses. This implies the bounded

in/out-degree of the graph which we further assume to be constant.

Fixed Connection Machine (FCM) is a variant of the PKM with the restriction that pointers once created

cannot be removed, only re-colored. So when the memory limits are reached, the structure of the machine

cannot be altered and the computation can be continued only by changing the colors of the pointers.

PPM is the most powerful model we consider: it can simulate the others in the same space/time. E.g.,

cellular automata make a simple special case of a PPM which restricts the Pointer Graph to be a grid.

Example Problem. Design a machine of each model (TM, CA, KM, PPM) which determines if an input

string x is a double (i.e. has a form ww, w 2 fa; bg�). Analyze time and space. KM/PPM takes input x

in the form of colors of edges in a chain of nodes, with root linked to both ends. The PPM nodes also have

pointers to the root. Below are hints for TM,PM,CA. The space is O(jxj) in all three cases.

Turing and Pointer Machines. TM uses extra symbols A;B. First �nd the middle of ww by capital-

izing the letters at both ends one by one. Then compare letter by letter the two halves, lowering the case of

the compared letters. The complexity is: T (x) = O(jxj2). PM algorithm is similar to the TM's, except that

the root keeps and updates the pointers to the borders between the upper and lower case substrings. This

allows commuting between these substrings in constant time. So, the complexity is: T (x) = O(jxj).
Cellular Automata. The computation begins from the leftmost cell sending right two signals. Reaching

the end the �rst signal turns back. The second signal propagates three times slower than the �rst. They meet

in the middle of ww and disappear. While alive, the second signal copies the input �eld i of each cell into a

special �eld a. The a symbols will try to move right whenever the next cell's a �eld is blank. So the chain of

these symbols alternating with blanks will start moving right from the middle of ww. When they reach the

end they will push the blanks out and pack themselves back into a copy of the left half of ww shifted right.

When an a symbol does not have a blank at the right to move to, it compares itself with the i �eld of the

same cell. They should be identical, if the ww form is correct. Otherwise a signal is generated which halts

all activity and rejects x. If all comparisons are successful, the last symbol generates the accepting signal.

The complexity is: T (x) = O(jxj).

p g

1.4 Simulation.

We considered several types of machines (models of computation). We will see now that all these machines

can be simulated by the simplest of them: the Turing Machine. In other words, these powerful machines can

compute only those functions computable by a TM.

Church-Turing Thesis is a generalization of this conclusion: TMs can compute every function com-

putable in any thinkable physical model of computation. This is not a mathematical result because the

notion of model is not formally speci�ed. But the long history of investigations of ways to design real and

ideal computing devices makes it very convincing. Moreover, this Thesis has a stronger Polynomial Time

version which states that if any model computes a function in polynomial volume, TM can do the same.

Both forms of the Thesis play a signi�cant role in foundations of Computer Science.

PKM Simulation of PPM. For convenience, we assume each PPM node has an edge into root. Now,

for each node, we reconnect its incoming (in unlimited number) PPM edges, 2 per leaf, to a bidirectional

binary tree with new PKM colors l; r; u. The number of edges increases at most 4 times. The nodes simulate

PPM's pulling stage by extending their trees to double depth. To simulate the re-coloring stage, each node

gets a binary name formed by the l; r colors on its path through the root tree. Then it broadcasts its name

down its own tree. When each node thus receives identities and pointers of its PPM neighbors, it stores

them by creating a little auxiliary chain (acting as TM). Then it computes and implements the actions of

the original PPM and rebalances its tree. This simulation of a PPM step takes polylogarithmic time.

TM Simulation of PPM. To simulate the above PKM by a TM, we �rst represent its memory con-

�guration on the TM tape as the list of all pointers, sorted by the source names (described above) and

then by color. The PKM program is reected in the TM's transition table. Now the TM can simulate a

PKM's pulling stage as follows: It creates a copy of each pointer and sorts copies by their sinks. Now each

pointer, located at source, has its copy near its sink. So both components of 2-pointer paths are nearby:

the special double-colored pointers can be created and moved to their sources by sorting. The re-coloring

stage is straightforward, as all relevant pointers have the same source and are located together. When no

active edges remain in the root, the Turing machine stops and its tape represents the PKM output. If a

PPM computes a function f(x) in t(x) steps, using s(x) nodes, the simulating TM uses space S = O(s log s),

(O(log s) bits for each of O(s) pointers) and time T = O(S2)t, as TM sorting takes quadratic time.

FCM Simulation of PPM [Ofman 65]. FCM represents the pointer graph in the same way as the above

TM and uses a similar procedure. All steps are straightforward to do locally in parallel polylogarithmic time

except sorting pointers. We need to create a �xed connection sorting network which takes an arbitrary array

of integers as input and outputs it sorted. Sophisticated networks take logarithmic time. But we need only a

simpler polylogarithmic method, Merge-Sort with parallel Batcher-Merge: Arrays with two or more entries

are separated in two halves and each sorted recursively. The Batcher-Merge combines two sorted lists in

parallel logarithmic time.

Batcher Merge: Call array entries i-th partners when their addresses di�er only in i-th bit. Operations

on partners can be implemented on a Shu�e Exchange graph of 2k nodes. Each node has pointers to its

k-th partner and to and from its shift node obtained by moving its �rst address bit to the end.

A bitonic cycle is the combination of two sorted arrays (one may be shorter), connected by max-to-

max and min-to-min entries. We merge sorted arrays by appending the reversed second one to the �rst,

considering the last and �rst entries as neighbors, and sorting the resulting bitonic cycle.

The sorting of a 2k long bitonic cycle proceeds by comparing each entry with its k-th partner (i.e.

diametric opposite on the cycle) and switching if wrongly ordered. Each half becomes then a bitonic cycle

and any two entries from di�erent halves are in proper order. The process then repeats for each half

recursively (decrementing k through the graph's shift edges).

2 Universal Algorithm; Diagonal Results.

2.1 Universal Turing Machine.

The �rst computers were hardware-programmable. To change the function computed, one had to reconnect

the wires or even build a new computer. John von Neumann suggested using Turing's Universal Algorithm.

The function computed can be then speci�ed by just giving its description (program) as part of the input

rather than by changing the hardware. This was a radical idea, since in the classical mathematics universal

functions do not exist (as we will see).

Let R be the class of all TM-computable total (de�ned for all inputs) and partial (which may diverge)

functions. Surprisingly, there is a universal function u in R. It simulates any other f 2 R in time c2T and

space S + c, where S; T > jxj are space and time of computing f(x) and c is its program length. This u

expects the pre�x m of its input mx to list the commands of a Turing Machine M and its initial head state.

Then u(mx) operates in cycles. Each cycle simulates one step of M(x). Let after i steps of M(x), li be

the left (from the head) part of its tape; ri be the rest of the tape and si be the head's state. The tape

con�guration of u(mx) after i cycles is ti = limsiri. Then u looks up m to �nd the command corresponding

to the state si and the �rst character of ri and modi�es ti accordingly. When M(x) halts, u(mx) erases

msi from the tape and halts too. Universal Multi-head TM works similarly but can also determine in time

O(t(x)) whether it halts in t steps (given x; t(x) and an appropriate program). We now describe in detail a

simpler but slightly slower universal TM.
The transition table at the right de�nes a small (11 states +

6 symbols) TM U by Ikeno which can simulate any other TM M

over f0; 1g tape alphabet with the following stipulations (which

still allow M to simulate any other TMs): The direction of head

shift is a function of the new post-transition state (lower case -

left, upper case - right). And so is, for M only, the digit typed.

The tape is in�nite to the right only: the left states in the leftmost

cell remain there. For M only, the new state is the tape bit read

plus a function of the old state. In the U table the states and

tape digits are shown only when changed; except that the prime

is always shown. The halt and external input/output commands

are special states for M ; for U they are shown as =.

1' 0' *' 1 0 *

A f f e0

B C C e1

fC c b* a* C

c = C E' ' '

a b' C E' ' ' '

b a' D ' ' '

d ' ' D ' '

D e' d' {

E ' ' e' = { '

e B A = ' ' '

U 's tape consist of segments: each is a 0/1 string preceded with a *. Some symbols are primed. Each

�nite segment describes a transition performed by one state of M and never changes (except for primes).

The rightmost (in�nite) segment is always a copy of M 's tape, initially with U 's head at the same location

in the state C. Each transition is represented as STW , where W is the symbol to write, T the direction

L/R to turn, represented as 0/1, S the new state (when 0 is read). S is represented as 1k, if the next

state is k segments to the left, or 0k (if to the right). Initially, primed are the digits of S in the seg-

ment corresponding to the initial state of M and all digits to their left. An example of the con�guration:

�00000001000 �0 0000000001 � 011 � ::: � 00 head 00.

U �rst reads the digit of an M 's cell changing the state from C or f to a=b, puts a * there, moves left

to the primed state segment S, �nds from it the new state segment and moves there. With only 10 head

states, U can't �nd the new segment at once. So, it (alternating the states c=C or d=D) keeps priming

nearest unprimed * and 1s of S (or unpriming 0s). When S is exhausted the target segment, jSj stars away,
is reached. Then U reads (changing state from e to A=B) the rightmost symbol W of the new segment,

copies it at the * in the M area, goes back, reads the next symbol T , returns to the just overwritten (and

�rst unprimed) cell of M area and turns left or right. As CA, M and U have in each cell three standard

bits: present and previous pointer directions and a \content" bit to store M's symbol. In addition U needs

just 3 states of its own!

p g

2.2 Uncomputability; G�odel Theorem.

Universal and Complete Functions.

Notations: Let us choose a special mark and after its k-th occurrence, break any string x into Pre�xk(x)

and SuÆxk(x). Let f+(x) be f(Pre�xk(x) x) and f
�(x) be f(SuÆxk(x)). We say u k-simulates f i� for

some p =Pre�xk(q); q 6= p and all x, u(px) = f(x). The pre�x can be intuitively viewed as a program

which simulating function u applies to the suÆx (input). We also consider a symmetric variant of relation

\k-simulate" which makes some proofs easier. Namely, u k-intersects f i� u(px) = f(px) for some pre�xk p

and all x. E.g., length preserving functions can intersect but not simulate one another.

We call universal for a class F , any u which k-simulates all functions in F for a �xed k. When F contains

f
�
; f

+ for each f 2 F , universality is equivalent to [or implies, if only f+ 2 F] completeness: u k-intersects
all f 2 F . Indeed, u k-simulates f i� it k-intersects f�; u 2k-intersects f if it k-simulates f+.

A negation of a (partial or total) function f is the total predicate :f which yields 1 i� f(x) = 0 and yields

0 otherwise. Obviously, no closed under negation class of functions contains a complete one. So, there is no

universal function in the class of all (computable or not) predicates. This is the well known Cantor Theorem

that the set of all sets of strings (as well as the sets of all partial functions, reals etc.) is not countable.

G�odel Theorem.

There is no complete function among the total computable (recursive) ones, as this class is closed under

negation. So the universal in R function u (and u2 = (u mod 2)) has no total computable extensions.

Formal proof systems are computable functions A(P) which check if P is an acceptable proof and output

the proven statement. ` s means s = A(P) for some P . A is rich i� it allows computable translations

sx of statements \u2(x) = 0," provable whenever true, and refutable (` :sx), whenever u2(x) = 1. A is

consistent i� at most one of any such pair sx;:sx is provable, and complete i� at least one of them always

(even when u(x) diverges) is. A rich consistent and complete formal system cannot exist, since it would

provide an obvious total extension uA of u2 (by exhaustive search for P to prove or refute sx). This is the

famous G�odel's Theorem which was one of the shocking surprises of the science of our century. (Here A is

an extension of the formal Peano Arithmetic; we skip the details of its formalization and proof of richness.)2

Recursive Functions. Another byproduct is that the Halting (of u(x)) Problem would yield a total

extension of u and, thus, is not computable. This is the source of many other uncomputability results.

Another source is an elegant Fixed Point Theorem by S. Kleene: any total computable transformation A

of programs (pre�xes) maps some program into an equivalent one. Indeed, the complete/universal u(px)

intersects computable u(A(p)x). This implies (exercise), e.g., that the only computable invariant (i.e. the

same on programs computing the same functions) property of programs is constant (Rice-Uspenskii).

Computable (partial and total) functions are also called recursive (due to an alternative de�nition). Their

ranges (and, equivalently, domains) are called (recursively) enumerable or r.e. sets. An r.e. set with an r.e.

complement is called recursive (as is its yes/no characteristic function) or decidable. A function is recursive

i� its graph is r.e. An r.e. graph of a total function is recursive. Each in�nite r.e. set is the range of a 1-to-1

total recursive function (\enumerating" it, hence the name r.e.).

We can reduce membership problem of a set A to the one of a set B by �nding a recursive function f

s.t. x 2 A () f(x) 2 B. Then A is called m- (or many-to-1-) reducible to B. A more complex Turing

reduction is given by an algorithm which, starting from input x, interacts with B by generating strings s

and receiving answers to s 2?B questions. Eventually it stops and tells if x 2 A. R.e. sets (like Halting

Problem) to which all r.e. sets can be m-reduced are called r.e.-complete. One can show a set r.e.-complete

(and, thus, undecidable) by reducing the Halting Problem to it. So Ju.Matijasevich proved r.e.-completeness

of Diophantine Equations Problem: given a multivariate polynomial of degree 4 with integer coeÆcients, �nd

if it has integer roots. The above (and related) concepts and facts are broadly used in Theory of Algorithms

and should be learned from any standard text, e.g., [Rogers 67].

2A closer look at this proof reveals the second famous G�odel theorem: the consistency itself is an example of unprovable

:sx. Consistency C of A is expressible in A as divergence of the search for contradiction. u2 intersects 1� uA for some pre�x

a. C implies that uA extends u2, and, thus, u2(a); uA(a) both diverge. So, C) :sa. This proof can be formalized in A which

yields ` C) ` :sa. But ` :sa implies uA(a) = 1, so C, ` C are incompatible.

2.3 Intractability; Compression and Speed-up Theorems.

The t-restriction ut of u aborts and outputs 1 if u(x) does not halt within t(x) steps, i.e. ut computes

the t-Bounded Halting Problem (t-BHP). It remains complete for the class of functions computable within

o(t(x)) steps which is closed under negation. So, ut does not belong to the class, i.e. requires time
(t(x))

[Tseitin 55]. E.g. 2jxj-BHP requires exponential time. For similar reasons any function which agrees with

t-BHP on a dense (i.e. having strings with each pre�x) subset cannot be computed in o(t(x)) steps either.

On the other hand, we know that for some trivial input programs the BHT can be answered by a fast

algorithm. The following Rabin's Compression Theorem provides another predicate Pf (x) for which there

is only a �nite number of such trivial inputs. The theorem is stated for the volume of computation for

Multi-Head Turing Machine. It can be reformulated in terms of time of Pointer Machine and space (or, with

smaller accuracy, time) of regular Turing Machine.

De�nition: A function f(x) is constructible if some algorithm F computes it, in binary, within volume

O(f(x)), i.e. VF (x) = O(f(x)).

Here are two examples: 2jxj is constructible, as Vn = O(n logn)� 2n. 2jxj + h(x), where h(x) is 0 or 1,

depending on whether U(x) halts within 3jxj steps is not constructible.
Theorem: For any constructible function f , there exists a function Pf such that for all functions T , the

following two statements are equivalent:

1. There exists an algorithm A such that for all inputs x, A(x) computes Pf (x) in volume T (x).

2. t is constructible and f(x) = O(T (x)).

Let t-bounded Kolmogorov Complexity Kt(i=x) of i given x be the length of the shortest program p for

the Universal Multi-Head Turing Machine transforming x into i with < t volume of computation. Let Pf (x)

be the smallest i, with 2Kt(i=x) > log(f(x)=t) for all t. Pf can be computed in volume f by generating

all i of low complexity, sorting them and taking the �rst missing. It satis�es the Theorem, since computing

i = Pf (x) faster causes a violation of complexity bound de�ning it. Pf can be made a predicate: see [Rabin

59].

Speed-up Theorem.

This theorem will be formulated for exponential speed-up, but it remains true if log is replaced by any

computable unbounded monotone function [Blum 67].

Theorem: There exists a total computable predicate P such that for any algorithm computing P (x)

with running time T (x), there exists another algorithm computing P (x) with running time O(log T (x)).

This procedure may continue any constant number of steps. In other words, there is no even nearly

optimal algorithm for the predicate P .

So, the complexity of some predicates P cannot be characterized by a single constructible function f , as in

Compression Theorem. However, the Compression Theorem can be generalized by removing the requirement

that f is constructible (it still must be computable or enumerable from below). In this form it is general

enough so that every computable predicate (or function) P satis�es the statement of the theorem with an

appropriate computable function f . There is no contradiction with Blum's Speed-up Theorem, since the

complexity f cannot be reached (f is not constructible itself). See a review in [Seiferas, Meyer].

Rabin's predicate has an optimal algorithm. Blum's does not. In general, one can't tell whether a

predicate has an optimal algorithm or not (see the Rice-Uspenskii Theorem in Sec. 2.2).

p g

3 Games; Alternation; Exhaustive Search; Time v. Space.

3.1 How to Win.

In this section we consider a more interesting provably intractable problem: playing games with full infor-

mation, two players and zero sum. We will see that even for some simple games there cannot be a much

more eÆcient algorithm, than exhaustive search through all possible con�gurations.

The rules of an n-player game G are set by a family f of information functions and a transition rule

r. Each player i 2 I at each step participates in transforming a con�guration (game position) x 2 S into

the new con�guration r(x;m); m : I ! M by choosing a move mi = m(i) based only on his knowledge

fi(x) of x. The game proceeds until a terminal con�gurations t 2 T � S is reached. Then fi(t) is the loss

(or gain) of the i-th player. We consider games with two-players. We identify S and M with the set of

integers and take f(T) = T = I = f�1g. Our games will have zero sum
P

fi(t) = 0 and full information:

fi(x) = ix; r(x;m) = r
0(x;ma(x)), where a(x) points to the active player. We take a(x) = sign(x) and

r
0(x;m) 2 fm;�a(x)g. The predicate R(x; y) checks if r(x; y) = y i.e. whether the rule accepts the transition

from the con�guration x to y (a legal move) or terminates the game.

An example of such games is chess. Examples of games without full information are card games, where

only part fi(x) (player's own hand) of the position x is known. Each player may have a strategy S providing

a next position y = S(x) for each position x. Once players choose strategies, the game (its moves) is

completely determined. A strategy is winning (non-losing) if it guarantees victory (resp. survival) whatever

the opponent does, even if he knows S. A position is winning, labeled Wi, if the active player has an i-step

winning strategy, losing (Li) if his opponent does, and neutral (N) if both have non-losing strategies. The

latter can be excluded by adding a time counter decremented each step.

Solving a game, means determining the winning side for each position. The ability is close to the ability

to �nd a good move in a modi�ed game. Indeed, modify a game R into R0 by adding a preliminary stage

to it. At this stage the player A o�ers a starting position for R and her opponent B chooses which side to

play. Then A may either start playing R or o�er a new (lower in some order) starting position. Obviously,

B wins if he can determine the winning side of every position. If he cannot while A can, she wins.

Conversely, any game R can be modi�ed into a choosing game R0 in which the list of all legal moves is

easy to compute for any position. Solving such games is obviously suÆcient for choosing the right move. A

position of R0 consists of a position x of R and a segment y of another position extended with \?"s to the

board size. The active side replaces one ? with the next bit of y. When ?s are gone, he checks R(x; y) and

if the transition is legal, replaces x with y, empties y and switching the active side (i.e. the sign).

Games may be categorized by the diÆculty to compute R. We will consider only R with < 2jxj time
(mostly much faster). Our boards also never change size: R(x; y)) jxj = jyj.

Theorem. Each position of any full information game is winning, losing or neutral.

(This theorem [Neumann, Morgenstern 44] fails for games with partial information: either player may

lose if his strategy is known to the adversary. E.g.: 1. Blackjack (21); 2. Each player picks a bit; their

equality determines the winner.) The best move can be found by playing all strategies against each other.

There are 2n positions of length n, (2n)2
n

= 2n�2n strategies and 2n�2n+1 pairs of them. For a 5-bit game

that is 2320. The proof of this Theorem gives a much faster (but still exponential time!) strategy.

Proof: Make a graph of all jxj-bit positions and legal moves; set i = 0. Repeat: label Li all nodes

without moves (if none, exit); label Wi all nodes with a move to Li; remove all labeled nodes and add 1 to i.

For all positions, this procedure guarantees existence of the legal moves: Wi ! Li; N ! N (unlabeled);

Li !Wi�1. Any strategy choosing these moves is obviously optimal. The moves guaranteed not to exist are

N ! L; L! N ; L! L; Li !W�i; Wi ! L<i. Such labeling is called consistent and is unique.

Indices are bounded by the number 2jxj of game con�gurations, since the number of Ns shrinks each

step. There are < 22jxj moves. The time to determine the legal moves is < 23jxj. The algorithm tries each

legal move in each relabeling step. Thus, its total running time is 23jxj+1: extremely slow (2313 for a 13-byte

game) but still much faster than the previous (double exponential) algorithm.

Problem: the Match Game. Consider 3 boxes with 3 matches each: ! ! ! ! ! ! ! ! ! .

The players alternate turns taking any positive number of matches from any one box. One cannot take the

last match on the whole table. Use the above algorithm to list all winning and all losing positions.

3.2 Exponentially Hard Games.

A simple example of a full information game is Linear Chess, played on a �nite linear board. Each piece is

loyal to one of two sides: W (weak) or S (shy). It is assigned a gender M or F and a rank from a set of ranks

�; this set doesn't depend on the board size. All the W's are always on the left side and all the S's on the

right. All cells of the board are �lled. Changes occur only at the active border where W and S meet (and

�ght). The winner of a �ght is determined by the following Gender Rules:

1. If S and W are of the same sex, W (being weaker) loses.

2. If S and W are of di�erent sexes, S gets confused and loses.

The party of a winning piece A replaces the loser's piece B by its own piece C. The choice of C is

restricted by the table of rules listing all allowed triples (ABC). We will see that this game cannot be solved

(i.e. consistent labeling computed) in a subexponential time. We �rst prove that (see [Chandra, Kozen,

Stockmeyer 1981]) for an arti�cial game. Then we reduce this Halting Game to Linear Chess.

For Exp-Time Completeness of regular (but n� n) Chess, Go and Checkers see: [Fraenkel, Lichtenstein

1981], [Robson 1983, 1984].

Exptime Complete Halting Game.

We use a universal Turing Machine u (de�ned as 1-pointer cellular automata) which halts only by its head

rolling o� of the tape's left end. Bounded Halting Problem BHP(x) determines if u(x) stops (i.e. the leftmost

tape cell points left) in 2jxj steps. This requires
(2jxj) steps. We now convert u into the Halting Game.
The players are: L claiming u(x) halts in time (and should

have winning strategy i� this is true); His opponent S. The

board has four parts: the diagram, the input x to u, positive

integers p (position) and t (time in the execution of u(x)):

p t A t+ 1

x B�1 B0 B+1 t

p� 1 p p+ 1

The diagram shows the states A of cell p at time t+1 and Bs; s 2 f0;�1g of cells p+ s, at time t. A;B

include the pointer direction; B may be replaced by \?". Some board con�gurations are illegal: if (1) two

of Bs point away from each other, or (2) A di�ers from the result prescribed by the transition rules for Bs,

or (3) t = 1, while (Bs) 6= xp+s. (At t = 1, u(x) is just starting, so its tape has the input x at the left, the

head in the initial state at the end with blanks leading o� to the right.) Here are the Game Rules:

The game starts in the con�guration shown below. L moves �rst replacing the ?'s with symbols that

claim to reect the state of cells p+ s at step t of u(x). When S moves, he: chooses s, copies Bs into A and

�lls all B with ?'s; adds s to p and 1 to t.

Start:
p = 0 t = 2jxj

input x ? ? ?
L puts:

a t+ 1

b c d t
S puts:

d t

? ? ? t� 1

Note that L may lie (i.e �ll in \?" distorting the actual computation of u(x)), as long as he is consistent

with the above \local" rules. All S can do is to check the two consecutive board con�gurations. He cannot

refer to past moves or to actual computation of u(x) as an evidence of L's violation.

Strategy: If u(x) does indeed halt within 2jxj steps, then the initial con�guration is true to the computation
of u(x). Then L has an obvious (though hard to compute) winning strategy: he just tells the truth, what

actually happens during the computation. He will be always consistent; S will lose when t = 1 and cannot

decrease any more. If the initial con�guration is false then S can win exploiting that L must lie. If L lies

once, S can force L to lie all the way down to t = 1. How?

If the upper box a of a legal con�guration is false then the lower boxes b; c; d cannot all be true, since

the rules of u determine a uniquely from them. If S guesses correctly which of b, c, or d is false and brings

it to the top on his move, then L is forced to keep on lying. At time t = 1 all chips are down: the lying of

L is exposed since the con�guration doesn't match the actual input string x, i.e. is illegal. In other words,

L can't consistently fool S all the time: eventually he is caught.

Solving this game (i.e. telling winning con�gurations from losing) amounts to answering whether the

initial con�guration is correct, i.e. whether u(x) halts in 2jxj steps, which requires
(jxj) steps. This Halting
Game is arti�cial, still with a avor of BHP, although it does not mention the exponent in its de�nition. We

now reduce it to a nicer game (linear chess) to prove it exponential too.

p g

3.3 Reductions; Non-Deterministic and Alternating TM; Time and Space.

To reduce (see de�nition in sec. 2.2) Halting game to Linear Chess we introduce a few concepts.

A non-deterministic Turing Machine (NTM) is a TM that sometimes o�ers a (restricted) transition choice,

made by a driver. A deterministic (ordinary) TM M accepts a string x if M(x) = yes; a non-deterministic

TM M does if there exists a driver d s.t. Md(x) = yes.

NTM represent single player games, puzzles, e.g. Rubik's Cube with a simple transition rule. We can

compute the winning strategy in exponential time (exhausting all positions).

Home Work: Is there a P-time winning strategy for every such game? Nobody knows. Alternatively,

show it requires exponential time. Grade A for the course and, probably, a senior faculty position at the

university of your choice will be awarded for a solution.

The alternating TM (ATM) is a variation of the NTM driven by two alternating players l and r. A string

is accepted if there is l such that for any r :Ml;r(x) = yes. Our games could be viewed as ATM using a small

space but up to an exponential time and returning the result of the game. It prompts l and r alternatingly

to choose their moves (in several steps if the move is speci�ed by several bits) and computes the resulting

position, until a winner emerges. Accepted strings describe winning positions.

Linear Chess Simulation of TM-Game. We �rst simulate our Halting Game by L-Chess, a variant of

Linear Chess. It has the same board: Weak ||||| ||||| Shy and, like regular chess, 6 ranks. Unlike

Linear Chess, where only the vanquished piece is replaced, in L-chess the winning piece may also be replaced

by (\promoted to") a piece of the same side; the gender bit is set to the side bit of the previous step, and

an arbitrary table rather than the simple \Gender Rule" determines the winning piece.

The simulation is achieved simply by representing the Halting Game as an ATM computation simulated

by the universal TM (using \=" commands for players' input). The UTM is viewed as an array of 1-pointer

cellular automata: Weak cells as rightward, Shy leftward. The TM head is set to move upon termination to

the end of the tape, so that no loser pieces are left. To transform L-Chess to Linear Chess it is left (as an

exercise) to modify genders, extend ranks, and replace each transition by several, so that the winning piece

is determined by the Gender Rule and is not replaced. So, any fast algorithm to solve Linear Chess, could

be used to solve any game. Since Halting Game requires exponential time, so does the Linear Chess.

A Question Still Open: Space-Time Trade-o�.

Deterministic linear space computations are games where any position has at most one (and easily com-

putable) legal move. We know no general non-linear lower bound or subexponential upper bound for time

to determine their outcome. This is the space-time trade-o� problem. You met with such trade-o�s using

techniques like dynamic programming: saving time at the expense of space.
Recall that on a parallel machine: time is the number of steps until

the last processor halts; space is the amount of memory used; volume

is the combined number of steps of all processors. \Small" will refer

to values bounded by a polynomial of the input length; \large" to

exponential. Let us call computations narrow if either time or space

are polynomial, and compact if both (and, thus, volume too) are.

Sec. 3.4 reduces the computations with large time and small space

to (parallel) ones with large space and small time, and vice versa.

- space

?

time

large

time,

small

space

small time, large space

narrow computations

Can every narrow computation be converted into a compact one? This is equivalent to the

existence of a P-time algorithm for solving any fast game, i.e. a game with a P-time transition rule and a

counter decremented at each move, limiting the number of moves to a polynomial. The sec. 3.1 algorithm

can be implemented in parallel P-time for such games. Conversely, any narrowly computable predicate may

be expressed as one determining the winning side of a fast game (similar to the Halting Game). Thus, fast

games (i.e. compact alternating computations) correspond to narrow deterministic computations; general

games (i.e. narrow alternating computations) correspond to large deterministic ones.

A Related Question: Do all exponential volume algorithms (e.g., one solving Linear Chess) allow an

equivalent narrow computation? The two conjectures are mutually exclusive: otherwise we could solve the

exponential-time Bounded Halting Problem in polynomial volume.

3.4 Fast and Lean Computations.

Based on [Chandra, Stockmeyer 1976], we now reduce the computations with large time and small space to

parallel ones (PPM implemented by sorting networks) with large space and small time, and vice versa.

Parallelization. Suppose Professor has in his oÆce a program (for a Small Machine with linear space and

exponential time) solving the next exam problems. You break into his oÆce shortly before the test and get

the tape. Your time is very limited, insuÆcient to run the program - but wait! - also in the oÆce you �nd

the password that gains you access to a really Big Machine, one with essentially unlimited space resources

(exponential number of parallel processors, memory, etc.). How can you, the devious student, exploit in

small time this vast resource to solve the exam?

Generate simultaneously all possible con�gurations of the Small Machine with linear memory space, each

as a separate process. There will beM = n
O(n) of these con�gurations/processes, as there are nO(n) possible

graphs with n nodes and O(n) edges. Each con�guration/process x computes a pointer x! x
0, where x and

x
0 are successive con�gurations of Professor's Small Machine. Now, each process gets a copy of its successor's

successor pointer: x! x
0 ! x

00 leads to x! x
00. Next, the single step pointers are erased and the procedure

repeats for the 4-step pointers, 8-step pointers, etc.

If the Professor's Small Machine halts, then it cannot repeat a con�guration and must stabilize in time

< M . So, our pointer-compressing procedure will take at most logM = O(n logn) steps, which is only

P-time. Once it is complete, we need only take the input con�guration for the test, and it will have a pointer

to the answer con�guration. The volume (time � space) of computation is still vast. There is no way known

to reduce volume to a polynomial, but you see how we can trade space for time.

Computing in Tight Space: a Pebble Game.

Consider now a large array M of interacting automata running in parallel for a P-time.

We want to compute in polynomial space its output, however long

it takes. Assume M to be a �xed connection network (which, we

know, can simulate any PPM). The directed, acyclic graph at the

right serves as a space-time diagram of the operation of M : rows

represent time steps. Each node stores an (event), i.e. the state of a

particular automaton at a particular time. Each event is a function

of its parents i.e. the events of the previous step in the automaton

and its (O(1), say, 3) neighbors. Here at; bt; ct and dt represent the

states at time t of b and its neighbors which determine bt+1.

- space

?

time

(input) .
...

...

. . . at bt . . . ct . . . dt . . .

. bt+1
...

...

. (output)

We will compute M 's output (in the central automaton O) assuming the computation time n (i.e. the

depth of the graph) is small. Each node can be described by a triplet (i; t; s), where i is the position of the

automaton; s its state; t the time. The length of this triplet is small: jsj = O(1); jtj = O(log(n)). How long

i's may we need? An automaton can only be relevant if it has time to propagate its information to O, i.e.

is � n links away from it. There are only 3n of those. So: jij = O(log(3n)) = O(n).

We therefore can store each event in a small space. But it doesn't help if we need to store a large number

of events. To know how many events we need to store we consider the Pebble Game with the following rules:

The goal is to pebble (put a pebble in) a marked node O of a digraph; one can only pebble a node if all its

parents are pebbled; there are k pebbles, they can be removed and reused.

Note that input nodes have no parents and can always be pebbled. You can win with k = O(dn) (d:

degree of the graph; n: its depth). The proof is by induction. Suppose you can pebble any node at level t � 0

with 1+ (d� 1)t pebbles. Then you can pebble any node at level t+1 with (d� 1)t+ d = 1+ (d� 1)(t+1)

pebbles. You just pebble each of the node's parents, leave a pebble there and reuse the rest of the pebbles

for the next parent. Finally you put a pebble in the node itself. However, the time needed to pebble this

graph may be large (you may have to traverse all descending paths).

Pebbling a node corresponds to computing an event in our diagram. Each event can be computed once

its parents' are. k is actually the number of events we may have to store simultaneously. Since we can pebble

the graph with 3n pebbles we can solve the problem in space 3n � j(i; t; s)j. We transformed large space,

small time into small space, large time. But the volume (space�time) is still large.

p g

4 Nondeterminism; Inverting Functions; Reductions.

4.1 Example of a Narrow Computation: Inverting a Function.

Consider a P-time function F . For convenience, assume jF (x)j = jxj, (often it is enough if jxj and jF (x)j are
bounded by polynomials of each other). Inverting F means given y, �nd x 2 F�1(y), i.e. such that F (x) = y.

There may be multiple solutions if F is many-to-one; we need to �nd only one. How?

We may try all possible x for F (x) = y. Assume F runs in linear time on a Pointer Machine. What is

the cost of inverting F ? The space used is jxj + jyj+spaceF (x) = O(jxj). But time is O(jxj2jxj): absolutely
infeasible. No method is currently proven much better in the worst case. And neither can we prove some

inverting problems to require super-linear time. This is the sad present state of Computer Science!

An Example: Factoring. Let F (x1; x2) = x1x2 be the the product of integers x1; x2 jx1j = jx2j. jF (x)j
is almost jxj. For simplicity, assume x1; x2 are primes. A fast algorithm in sec. 5.1 determines if an integer

is prime. If not, no factor is given, only its existence. To invert F means to factor F (x). How many primes

we might have to check? The density of n-bit prime numbers is approximately 1=(n ln 2). So, factoring by

exhaustive search takes exponential time! In fact, even the best known algorithms for this ancient problem

run in time about 2
p
jyj, despite centuries of e�orts by most brilliant people. The task is now commonly

believed infeasible and the security of many famous cryptographic schemes depends on this unproven faith.

One-Way Functions: x
F�! y are those easy to compute (x 7! y) and hard to invert (y 7! x) for most x.

Even their existence is sort of a religious belief in Computer Theory. It is unproven, though many functions

seem to be one-way. Some functions, however, are proven to be one-way, IFF one-way functions EXIST.

Many theories and applications are based on this hypothetical existence.

Search and NP Problems.

Let us compare the inverting problems with another type: the search problems. They are, given x, to �nd w

satisfying a given predicate P (x;w) computable in time jxjO(1). Any inverting problem is a search problem

and any search problem can be restated as an inverting problem. E.g., �nding a Hamiltonian cycle C in a

graph G, can be stated as inverting a f(G;C), which outputs G; 0 : : : 0 if C is in fact a Hamiltonian cycle

of G. Otherwise, f(G;C) = 0 : : : 0. There are two parts to a search problem, (a) decision problem: does w

(called witness) exists, and (b) a constructive problem: actually �nd w.

A time bound for solving one of these types of problems gives a similar bound for the other.

Suppose a P-time A(x) �nds w satisfying P (x;w) (if w exists). If A does not produce w within the time

limit then it does not exist. So we can use the \witness" algorithm to solve the decision problem.

On the other hand, an algorithm deciding if the witness exists can be used to �nd it. Assume, given

x and a predicate P , A quickly determines if there is w satisfying P (x;w). Consider a predicate P 0(y; w)
stating that y= x; z&P (x; zw). \Decision" answers for P 0 could then be used to �nd w for P (x;w). First,

take z = 1 and check the existence of w s.t. P 0(y; w) for y = x; 1. If it exists then a solution w for P (x;w)

begins with a 1. If not, w could only start with 0. Then do the same extending the found z with 1 and so

on. You will �nd w in jwj iterations. Unfortunately, for many problems such A is not known to exist.

The language of a problem is the set of all acceptable inputs. For the inverting problem it is the range

of f . For the search problem it is the set of all x s.t. P (x;w) holds for some w. An NP language is the

set of all inputs acceptable by a P-time non-deterministic Turing Machine (sec. 3.4). All three classes of

languages { search, inverse and NP { coincide. What NP machine accepts x if the search problem with input

x and predicate P is solvable? This is just the machine which prompts the driver for digits of w and checks

P (x;w). Conversely, which P corresponds to a non-deterministic TM M? P (x;w) just checks if M accepts

x, when the driver chooses the states reecting the digits of w.

Interestingly, polynomial space bounded deterministic and non-deterministic TMs have equivalent power.

It is easy to modify TM to have a unique accepting con�guration. Any acceptable string will be accepted in

time s2s, where s is the space bound. Then we need to check A(x;w; s; k): whether the TM can be driven

from the con�guration x to w in time < 2k and space s. For this we need for every z, to check A(x; z; s; k�1)
and A(z; w; s; k�1), which takes space tk � tk�1 + jzj. So, tk = O(sk) = O(s2) [Savitch 1970].

Search problems are games with P-time transition rules and one move duration. A great hierarchy of

problems results from allowing more moves and/or other complexity bounds for transition rules.

4.2 Complexity of NP Problems.

We determined that inversion, search, and NP types of problems are equivalent. Nobody knows whether all

such problems are solvable in P-time (i.e. belong to P). This question (called P=?NP) is probably the most

famous one in Theoretical Computer Science. All such problems are solvable in exponential time but it is

unknown whether any better algorithm generally exists. For many problems the task of �nding an eÆcient

algorithm may seem hopeless, while similar or slightly relaxed problems can be solved. Examples:

1. Linear Programming: Given an integer n �m matrix A, �nd a rational vector x with Ax > 0. Note

that if A contains k-bit coeÆcients and x exists then an x with O(nk) bit numbers also exists.

Solution: The Dantzig's Simplex algorithm �nds x quickly for most A. Some A, however, take expo-

nential time. After long frustrating e�orts, a worst case P-time Ellipsoid Algorithm was �nally found

in [Yudin Nemirovsky 1976].

2. Primality test: Determine whether a given integer p has a factor?

Solution: A bad (exponential time) way is to try all 2jpj possible integer factors of p. More sophisticated

algorithms, however, run fast (see section 5.1).

3. Graph Isomorphism: Problem: Given two graphs G1 and G2, is G1 isomorphic to G2? i.e. Can the

vertices of G1 be re-numbered so that it becomes equal G2?

Solution: Checking all n! enumerations of vertices is not practical (for n = 100, this exceeds the number

of particles in the known Universe). [Luks 1980] found an O(nd) steps algorithm where d is the degree.

This is a P-time for d = O(1).

Many other problems have been battled for decades or centuries and no P-time solution has been found.

Even modi�cations of the previous three examples have no known answers:

1. Linear Programming: All known solutions produce rational x. No reasonable algorithm is known to

�nd integer x.

2. Factoring: Given an integer, �nd a factor. Can be done in about exponential time n
p
n. Seems very

hard: Centuries of quest for fast algorithm were unsuccessful.

3. Sub-graph isomorphism: In a more general case where one graph may be isomorphic to a part of

another graph, no P-time solution has been found.

We learned the proofs that Linear Chess and some other games have exponential complexity. None of

the above or any other search/inversion/NP problem, however, have been proven to require super-P-time.

When, therefore, do we stop looking for an eÆcient solution?

NP-Completeness theory is an attempt to answer this question. See results by S.Cook, R.Karp, L.Levin,

and others surveyed in [Garey, Johnson] [Trakhtenbrot]. A P-time function f reduces one NP-predicate p1(x)

to p2(x) i� p1(x) = p2(f(x)), for all x. p2 is NP-complete if all NP problems can be reduced to it. Thus, each

NP-complete problem is as least as worst case hard as all other NP problems. This may be a good reason

to give up on fast algorithms for it. Any P-time algorithm for one NP-complete problem would yield one

for all other NP (or inversion, or search) problems. No such solution has been discovered yet and this is left

as a homework (10 years deadline). What do we do when faced with an NP-complete problem? Sometimes

one can restate the problem, �nd a similar one which is easier but still gives the information we really want,

or allow more powerful means. Both of these we will do in Sec. 5.1 for factoring. Now we proceed with an

example of NP-completeness.

p g

4.3 An NP-Complete Problem: Tiling.

Example: NP-complete Tiling Problem. Invert the function which, given a

tiled square, outputs its �rst row and the list of tiles used. A tile is one of the 264

possible squares containing a Latin letter at each corner. Two tiles may be placed

next to each other if the letters on the mutual side are the same. E.g.:

a x

m r

x c

r z

m r

n s

r z

s z

We now reduce any NP/search problem P to Tiling. Recall: A search problem is, given x, to �nd w

which satis�es a P-time computable property P (x;w). Existence of w is an NP problem since w can be

\guessed" non-deterministically and veri�ed in P-time.

Padding Argument. First, we need to reduce it to some \standard" NP problem. An obvious candidate

is the problem [Is there? w : U(v; w)], where U is the universal Turing Machine, simulating P (x;w) for

v = px. A diÆculty is that U does not run in P-time. We must restrict U to u which stops within some

P-time limit. How to make this �xed degree limit suÆcient for simulating any polynomial (even of higher

degree) time P ? Let the TM u(v; w) for v = 00 : : :01px simulate about jvj2 steps of U(px; w) (and, thus, of
P (x;w)). If the padding of 0's in v is suÆciently long, u will have enough time to simulate P , even though

u runs in quadratic time, while P 's time limit may be, say, cube (of a shorter \un-padded" string). So

the NP problem P (x;w) is reduced to u(v; w) by mapping instances x into f(x) = 0 : : : 01px = v, with jvj
determined by the time limit for P . Notice that program p for P (x;w) is �xed.

So, if some NP problem cannot be solved in P-time then neither can be the u-problem. Equivalently, if

the problem [is there? w : u(v; w)] IS solvable in P-time then so is any search problem. We do not know

which of these alternatives is true. It remains to reduce the search problem u to Tiling.

The Reduction. We compute u(v; w) (where v = 00 : : : 01px) by a TM represented as an array of 1-

pointer cellular automata that runs for jvj2 steps and stops if w does NOT solve the predicate P . Otherwise

it enters an in�nite loop. An instance x has a solution i� u(v; w) runs forever for some w and v = 0 : : : 01px.
Here is the space-time diagram of computation of u(v; w). We set n

to u's time (and space) jvj2. Each row in this table represents the

con�guration of u in a di�erent moment of time. The solution w

is �lled in at the second step below a special symbol "?". Suppose

somebody �lls in a wrong table that doesn't reect the actual com-

putation. We claim that any wrong table has four adjacent squares

that couldn't possibly appear in the computation of u on any input.

- space: n = jvj2

?

time

v ?. . . ? #. . .# (init.con�g.)

v w T1
...

...
...

Tn

Proof. As the input v and the guessed solution w are the same in both the right and the wrong tables,

the �rst 2 lines agree. The actual computation starts on the third line. Obviously, in the �rst mismatching

line a transition of some cell from the previous line is wrong. This is visible from the state in both lines of

this cell and the cell it points to, resulting in an impossible combination of four adjacent squares.
For a given x, the existence of w satisfying P (x;w) is equivalent to the existence of

a table with the prescribed �rst row, no halting state, and permissible patterns of each

four adjacent squares. Conversion of our table to the Tiling Problem:

The squares in the table are separated by \|" ; the tiles by \..."; Break every square in

the table into 4 parts, each part represents a corner of 4 separate tiles. If the 4 adjacent

squares in the table are permissible, then the square is also tiled permissibly.

u v

v x

So, any P-time algorithm extending a given �rst line to the whole table of matching tiles from a given

set would solve all NP problems by converting them to Tiling as shown.

5 Randomness in Computing.

5.1 A Monte-Carlo Primality Tester.

The factoring problem seems very hard. But to test a number for having factors turns out to be much easier

than to �nd them. It also helps if we supply the computer with a coin-ipping device. We now consider a

Monte Carlo algorithm, i.e. one that with high probability rejects any composite number, but never a prime.

See: [Rabin 1980], [Miller 1976], [Solovay, Strassen 1977].

Residue Arithmetic. pjx means p is a divisor of x. y = (x mod p) denotes the residue of x when

divided by p, i.e. y 2 [0; p� 1], pj(x� y). x � y (mod p) means pj(x� y). Residues can be added,

multiplied and subtracted with the result put back in the range [0; p�1] (by adding an appropriate multiple

of p). E.g., �x means p�x for residues mod p. We use �x to mean either x or �x. If r and p have no

common divisors > 1 (are mutually prime), division (x=r mod p) is possible, since x ! (r � x mod p) is

one-to-one on [0; p�1]. Operations +;�; �; = obey all usual arithmetical laws. gcd(x; y) is the greatest (and

divisible by any other) common divisor of x and y. It can be found by Euclid's Algorithm: gcd(x; 0) = x;

gcd(x; y) = gcd(y; (x mod y)), for y > 0. By induction, g = gcd(x; y) = A � x � B � y, where integers

A = (g=x mod y) and B = (g=y mod x) are produced as a byproduct of Euclid's Algorithm.

We will need to compute (xq mod p) in polynomial time. We cannot multiply x q times, since it takes

q > 2jqj steps. Instead we compute all numbers xi = (x2i�1 mod p) = (x2
i

mod p); i < jqj. Then we represent

q in binary, i.e. as a sum of powers of 2 and multiply mod p the needed xi's.

Fermat Test. The Little Fermat Theorem for every x 2 [1; p�1] and prime p says: x(p�1) � 1 (mod p).

Indeed, the sequence (xi mod p) is a permutation of i = 1; : : : ; p � 1. So, 1 � (
Q

i<p(xi))=(p � 1)! �
x
p�1(modp).

This test rejects typical composite p. Other composite p can be actually factored by the following test:

Square Root Test.

Lemma: For each y and prime p, the equation (x2 mod p) = y has at most one pair of solutions �x.
Proof: Let x; x0 be two solutions: y � x

2 � x
02 (mod p). Then x

2 � x
02 = (x � x

0) � (x + x
0) � 0

(mod p). We have a product of two integers which is congruent to 0, i.e. divisible by p. Therefore p must

divide at least one of the factors. (Otherwise p is composite, and gcd(p; x+ x
0) actually gives us its factor).

So, either x� x
0 � 0 (mod p) or x+ x

0 � 0 (mod p) i.e. x � �x0 (mod p). End of proof.

In particular x2 � 1 (mod p) implies x � �1. Note that this does NOT hold if p is composite, since its

factors can be spread between (x� x
0) and (x+ x

0). Then y could have more than one � pair of roots.

Rabin-Miller Test. Let us combine these tests into T (x; p) which uses given x to prove p is composite.

Let p�1 = q � 2k, with odd q. T sets x0 = (xq mod p), xi = (x2i�1 mod p) = (xq�2
i

mod p), i � k. If x0 = 1,

or one of xi is �1, T gives up. If xk 6= 1, Fermat Test rejects p. Otherwise there is z = xi 6= �1, such that

(z2 mod p) = xi+1 = 1. Then the Square Root Test factors p.

First, for each odd composite p, we show that T succeeds with some x, mutually prime with p. If

p = a
j
; j > 1, then x = (1+p=a) is good for T : (1+p=a)p�1 = 1+(p=a)(p�1)+(p=a)2� (p�1)(p�2)=2+ : : :�

1� p=a 6= 1 (mod p), since (p=a)2 � 0 (mod p). So the Fermat Test works. Otherwise p = a � b,
gcd(a; b) = 1. Take the greatest i � k such that xi 6= 1, for some x mutually prime with p. Such i exists,

since (�1)q � �1 for odd q. If i < k then (xi)
2 � 1 (mod p). Take x0 = 1+ b� (1=b mod a)� (x�1). Check:

x
0 � 1 � x

0
i (mod b), while x0i � xi (mod a). Thus, either xi or x

0
i is not �1.

Now, T (y; p) succeeds on step i with most y: function y 7! x � y is 1-1 and T cannot fail with both y and

x � y. This test can be repeated for many randomly chosen x. Each time T fails, we are twice more sure

that p is prime. The probability that T fails 300 times on a composite p is < 2�300
< 1=N , where N is the

number of particles in the known Universe.

p g

5.2 Randomized Algorithms and Random Inputs.

Las-Vegas algorithms, unlike Monte-Carlo, never give wrong answers. Unlucky coin-ips just make them

run longer than expected. Quick-Sort is a simple example. It is about as fast as deterministic sorters, but

is popular due to its simplicity. It sorts an array a[1::n] of > 2 numbers by choosing in it a random pivot,

splitting the remaining array in two by comparing with the pivot, and calling itself recursively on each half.

For easy reference, replace the array entries with their positions 1; :::; n in the sorted output (no e�ect on

the algorithm). Denote t(i) the (random) time i is chosen as a pivot. Then i will ever be compared with j i�

either t(i) or t(j) is the smallest among t(i); :::; t(j). This has 2 out of jj � ij+ 1 chances. So, the expected

number of comparisons is
P

i;j>i 2=j1 + j � ij = 3� n+ (n+ 1)
Pn

k=3 2=k = 2n lnn�O(n): Note, that the

expectation of the sum of variables is the sum of their expectations (not true, say, for product).

There is also a Las-Vegas primality tester, but it goes far beyond the scope of these notes.

The above Monte-Carlo and Las-Vegas algorithms require choosing strings at random with uniform

distribution. We mentally picture that as ipping a coin. (Computers use pseudo-random generators rather

than coins in hope, rarely supported by proofs, that their outputs have all the statistical properties of truly

random coin ips needed for the analysis of the algorithm.)

Random Inputs to Deterministic Algorithms are analyzed similarly to algorithms which ip coins them-

selves and the two should not be confused. Consider an example: Someone is interested in knowing whether

or not certain graphs contain Hamiltonian Cycles. He o�ers graphs and pays $100 if we show either that

the graph has or that it has not Hamiltonian Cycles. Hamiltonian Cycle problem is NP-Complete, so it

should be very hard for some, but not necessarily for most graphs. In fact, if our patron chooses the graphs

uniformly, a fast algorithm can earn us the $100 most of the time! Let all graphs have n nodes and, say,

k(n) < n lnn=4 edges and be equally likely. Then we can use the following (deterministic) algorithm: output

\No Hamiltonian Cycles" and collect the $100, if the graph has an isolated node. Otherwise, pass on that

graph and the money. Now, how often do we get our $100. The probability that a given node A of the

graph is isolated is (1 � 2=n)k > (1 � O(1=n))=
p
n. Thus, the probability that none of n nodes is isolated

(and we lose our $100) is O((1 � 1=
p
n)n) = O(e�

p
n) and vanishes fast. Similar calculations can be made

whenever r = lim 2k(n)=(n lnn) < 1. If r > 1, other fast algorithms can actually �nd a Hamiltonian Cycle.

See: [Johnson 1984], [Karp 1976], [Gurevich 1985]. See also [Venkatesan, Levin] for a proof that another

problem is NP-complete even on average. How do this HC algorithm and the above primality test di�er?

� The primality algorithm works for all instances. It tosses the coin itself and can repeat it for a more

reliable answer. The HC algorithm only works for most instances (with isolated nodes).

� In the HC algorithm, we must trust the opponent to follow the presumed random procedure. If he

cheats and produces connected graphs often, our analysis breaks down.

Symmetry Breaking. Randomness comes into Computer Science in many other ways besides those we

considered. Here is a simple example: avoiding conicts for shared resources.

Several philosophers dine at a circular table. Before each of them is a plate, and left of each plate is either

a knife or a fork arranged so that each diner has a knife on his right and a fork on his left or vice versa. The

problem is that neighboring diners must share the utensils: neighbors cannot eat at the same time. How can

the philosophers complete the dinner given that all of them must act in the same way without any central

organizer? Trying to grab the knives and forks at once may turn them into �ghting philosophers. Instead

they could each ip a coin, and sit still if it comes up heads, otherwise try to grab the utensils. If two diners

try to grab the same utensil, neither succeeds. If they repeat this procedure enough times, most likely each

philosopher will eventually get both a knife and fork without interference.

We have no time to actually analyze this and many other scenaria, where randomness is crucial. Instead

we will take a look into the concept of Randomness itself.

5.3 Randomness and Complexity.

The obvious de�nition of a random sequence is one that has the same properties as a sequence of coin ips.

But this de�nition leaves the question, what are these properties? Kolmogorov resolved these problems with

a new de�nition of random sequences: those with no description shorter than their full length. See survey

and history in [Kolmogorov, Uspensky 1987], [Li, Vitanyi 1993].

Kolmogorov Complexity KA(x=y) of the string x given y is the length of the shortest possible program

p which lets algorithm A transform y into x: minf(jpj) : A(p; y) = xg. There exists a Universal Algorithm

U such that, KU (x) < KA(x) + O(1), for every algorithm A. This constant O(1) is bounded by the length

of the program U needs to simulate A. We abbreviate KU (x=y) as K(x=y) or K(x), for empty y.

An example: For A : x 7! x, KA(x) = jxj, so K(x) < KA(x) +O(1) < jxj+ O(1).

Can we computeK(x)? One could try all programs p; jpj < jxj+O(1) and �nd the shortest one generating
x. This does not work because some programs diverge, and the halting problem is unsolvable. In fact, no

algorithm can compute K or even any its lower bounds except O(1).

Consider an old paradox expressed in the following phrase: \The smallest integer which cannot be

uniquely and clearly de�ned by an English phrase of less than two hundred characters." There are < 128200

English phrases of < 200 characters. So there must be integers that cannot be expressed by such phrases.

Then there is the smallest such integer, but isn't it described by the above phrase?

A similar argument proves that K is not computable. Suppose an algorithm L(x) 6= O(1) computes a

lower bound for K(x). We can use it to compute f(n) that �nds x with n < L(x) < K(x), but K(x) <

Kf (x) + O(1) and Kf (f(n)) � jnj, so n < K(f(n)) < jnj + O(1) = logO(n) � n: a contradiction. So, K

and its non-constant lower bounds are not computable.

A nice application of Kolmogorov Complexity measures the Mutual Information:

I(x : y) = K(x) +K(y)�K(x; y). It has many uses which we cannot consider here.

De�ciency of Randomness.

There are ways to estimate complexity that are correct in some important cases, but not always. One such

case is when a string x is generated at random. Let us de�ne d(x) = jxj �K(x=jxj); (d(x) > �O(1)).
What is the probability of d(x) > i, for jxj = n? There are 2n strings x of length n. If d(x) > i, then

K(x=jxj) < n� i. There are < 2n�i programs of such length, generating < 2n�i strings. So, the probability
of such strings is < 2n�i=2n = 2�i (regardless of n)! So even for n = 1; 000; 000, the probability of d(x) > 300

is absolutely negligible (provided x was indeed generated by fair coin ips). We call d(x) the de�ciency of

randomness of a string x with respect to the uniform probability distributions on all strings of that length.

If d(x) is small then x satis�es all other reasonable properties of random strings. Indeed, consider a

property \x 62 P" with enumerable S = :P of negligible probability. Let Sn be the number of strings of

length n, violating P and log(Sn) = sn. What can be said about the complexity of all strings in S? S is

enumerable and sparse (has only Sn strings). To generate x, using the algorithm enumerating S, one needs

only the position i of x in the enumeration of S. We know that i � Sn � 2n and, thus, jij � sn � n.

Then the de�ciency of randomness d(x) > n� sn is large. Every x which violates P will, thus, also violate

the \small de�ciency of randomness" requirement. In particular, the small de�ciency of randomness implies

unpredictability of random strings: A compact algorithm with frequent prediction would assure large d(x).

Sadly, the randomness can not be detected: we saw, K and its lower bounds are not computable.

Recti�cation of Distributions. We rarely have a source of randomness with precisely known distribution.

But there are very eÆcient ways to convert \imperfect" random sources into perfect ones. Assume, we have

a \junk-random" sequence with weird unknown distribution. We only know that its long enough (m bits)

segments have min-entropy > k + i, i.e. probability < 1=2k+i, given all previous bits. (Without such m we

would not know a segment needed to extract even one not fully predictable bit.) We can fold X into an

n�m matrix. No relation is required between n;m; i; k, but useful are small m; i; k and huge n = o(2k=i).

We also need a small m� i matrix Z, independent of X and really uniformly random (or random Toeplitz,

i.e. with restriction Za+1;b+1 = Za;b). Then the n � i product XZ has uniform distribution with accuracy

O(
p
ni=2k). This follows from [Goldreich, Levin], which uses earlier ideas of U. and V. Vazirani.

p g

5.4 Pseudo-randomness.

The above de�nition of randomness is very robust, if not practical. True random generators are rarely used

in computing. The problem is not that making a true random generator is impossible: we just saw eÆcient

ways to perfect the distributions of biased random sources. The reason lies in many extra bene�ts provided

by pseudorandom generators. E.g., when experimenting with, debugging, or using a program one often

needs to repeat the exact same sequence. With a truly random generator, one actually has to record all its

outcomes: long and costly. The alternative is to generate pseudo-random strings from a short seed. Such

methods were justi�ed in [Blum Micali], [Yao]:

First, take any one-way permutation Fn(x) (see sec. 5.5) with a hard-core bit (see below) Bp(x) which is

easy to compute from x; p, but infeasible to guess from p; n; Fn(x) with any noticeable correlation.

Then take a random seed x0; p; n 2 f0; 1gk and Repeat: (Si Bp(xi); xi+1 Fn(xi); i i+ 1).

We will see how distinguishing outputs S of this generator from strings of coin ips would imply a fast

inverting of F (believed impossible).

But if P=NP (a famous open problem), no one-way F , and no pseudorandom generators could exist.

By Kolmogorov's standards, pseudo-random strings are not random: let G be the generator; s be the

seed, G(s) = S, and jSj � k = jsj. Then K(S) � O(1) + k � jSj, so this violates Kolmogorov's de�nition.
We can distinguish between truly and pseudo- random strings by simply trying all short seeds. However this

takes time exponential in the seed length. Realistically, a pseudo-random string will be as good as a truly

random one if they can't be distinguished in feasible time. Such generators we call perfect.

Theorem: [Yao] Let G(s) = S 2 f0; 1gn run in time tG. Let a probabilistic algorithm A in expected

(over internal coin ips) time tA accept G(s) and truly random strings with di�erent by d probabilities.

Then, for random i, one can use A to guess Si from Si+1; Si+2; : : : in time tA + tG with correlation d=O(n).

Proof: Let pi be the probability that A accepts S = G(s) modi�ed by replacing its �rst i digits with

truly random bits. Then p0 is the probability of accepting G(s) and must di�er by d from the probability

pn of accepting random string. Then pi�1 � pi = d=n, for randomly chosen i. Let P0(x) and P1(x) be the

probabilities of acceptance of r0x and r1x for random r of length i�1. Then (P1(x)+P0(x))=2 averages to pi
for x = Si+1; Si+2; : : :, while PSi(x) = P0(x)+(P1(x)�P0(x))Si averages to pi�1 and (P1(x)�P0(x))(Si�1=2)
to pi�1 � pi = d=n. So, P1(x)� P0(x) has the stated correlation with Si. Q.E.D.

If the above generator was not perfect, one could guess Si from the sequence Si+1; Si+2; : : : with a

polynomial (in 1=jsj) correlation. But, Si+1; Si+2 : : : can be produced from p; n; xi+1. So, one could guess

Bp(xi) from p; n; F (xi) with correlation d=n, which cannot be done for hard-core B.

Hard Core. The key to constructing a pseudorandom generator is �nding a hard core for a one-way F .

The following B is hard-core for any one-way F , e.g., for Rabin's OWF in sec. 5.5. [Knuth 1997, v.2, 3d ed.,

Chap.3.5.F Pseudorandom numbers, pp.36, 170-179] has more details and references.

Let Bp(x) = (x � p) = (
P

i xipi mod 2). [Goldreich Levin] converts any method g of guessing Bp(x) from

p; n; F (x) with correlation " into an algorithm of �nding x, i.e. inverting F (slower "2 times than g).

Proof. Take k = jxj = jyj, j = log(2k="2), vi = 0i10k�i. Let Bp(x) = (x � p) and b(x; p) = (�1)Bp(x).

Assume, for y = Fn(x), g(y; p; w) 2 f�1g guesses Bp(x) with correlation
P

p 2
�jpj

b(x; p)gp > ", where gp
abbreviates g(y; p; w), since w; y are �xed throughout the proof.

Averaging (�1)(x�p)gp over > 2k="2 random pairwise independent p deviates from its average by < "

(and so is > 0) with probability > 1� 1=2k. The same for (�1)(x�[p+vi])gp+vi = (�1)(x�p)gp+vi(�1)xi .
Take a random matrix P 2 f0; 1gk�j . Then the vectors Pr, r 2 f0; 1gj n f0jg are pairwise independent.

So, for a fraction � 1 � 1=2k of P , sign
P

r(�1)xPrgPr+vi = (�1)xi . We could thus �nd xi for all i with

probability > 1=2 if we knew z = xP . But z is short: we can try all 2j possible values!

So the inverter, for a random P and all i; r, computes Gi(r) = gPr+vi . It uses Fast Fourier on Gi to

compute hi(z) =
P

r b(z; r)Gi(r). The sign of hi(z) is the i-th bit for the z-th member of output list. Q.E.D.

5.5 Cryptography.

Rabin's One-way Function. Pick random prime numbers p; q; jpj = jqj with 2 last bits = 1, i.e. with odd

(p� 1)(q � 1)=4. Then n = p � q is called a Blum number. Its length should make factoring infeasible.

Let Q(n) be the set of quadratic residues, i.e. numbers of the form (x2 mod n).

Lemma. If n = pq is a Blum number then F : x 7! (x2 mod n) is a permutation of Q(n).

Proof: Let x = F (z) 2 Q(n) and y = F (x). Let t = (p� 1)(q � 1)=4. It is odd, so u = u(n) = (t+ 1)=2

is an integer. Since 2t is a multiple of both p � 1 and q � 1, according to the Little Fermat Theorem

x
t � 1 � z

2t � 1 divides both p and q (and, thus n). Then y
u � x

2u = xx
t � x (modn). Q.E.D.

Lemma. Inverting F on random x is equivalent to factoring n.

Proof. Let F (A(y)) = y for a fraction " of y 2 Q(n). Then F (A(y)) = y = F (x), while A(y) 6= �x for a

fraction "=2 of x. The Square Root Test would factor n given any such x;A(F (x)) which could be found in

about 2=" random trials. Conversely, knowing a secret (factors of n) makes inverting F easy; such one-way

permutations, called \trap-door," have many applications, such as cryptography (see below).

Picking a prime number is easy since primes have density 1=O(jpj). Indeed, one can see that
�
2n
n

�
is

divisible by every prime p 2 [n; 2n] but by no prime power pi > 2n. So, (log
�
2n
n

�
)= logn = 2n= logn � o(1)

is an upper bound on the number of primes in [n; 2n] and a lower bound on that in [1; 2n].

Note that fast VLSI circuits exist to multiply large numbers and check primality.

Public Key Encryption. A perfect way to encrypt a messagem is to add it mod 2 bit by bit to a random

string S of the same length k. The resulting encryption m�S has the same uniform probability distribution,

no matter what m is. So it is useless for the adversary who wants to learn something about m, without

knowing S. A disadvantage is that the communicating parties must share a secret S as large as all messages

to be exchanged combined. Public Key Cryptosystems use two keys. One key is needed to encrypt the

messages and may be completely disclosed to the public. The decryption key must still be kept secret, but

need not be sent to the encrypting party. The same keys may be used repeatedly for many messages.

Such cryptosystem can be obtained [Blum, Goldwasser 1982] by replacing the above random S by pseu-

dorandom Si = (si � x); si+1 = (s2i mod n). Here a Blum number n = pq is chosen by the Decryptor and

is public, but p; q are kept secret. The Encryptor chooses x; s0 at random and sends x; sk;m�S. Assuming
factoring is intractable for the adversary, S should be indistinguishable from random strings (even when sk

is known). Then this scheme is as secure as if S were random. The Decryptor knows p; q and can compute

u; t (see above) and v = (uk�1 mod t). So, he can �nd s1 = (svk mod n), and then S and m.

Another use of the intractability of factoring is digital signatures [Rivest, Shamir, Adleman 1978], [Rabin,

1979]. Strings x can be released as authorizations of y = (x2 mod n). Anyone can verify x, but nobody can

forge it since only the legitimate user knows factors of n and can take square roots.

Go On!

You noticed that most of our burning questions are still open. Take them on! Start with reading recent

results (FOCS/STOC is a good source). See where you can improve them. Start writing, �rst notes just for

your friends, then the real papers. Here is a little writing advice:

A well written paper has clear components: skeleton, muscles, etc. The skeleton is an acyclic digraph of

basic de�nitions and statements, with cross-references. The meat consists of proofs (muscles) each separately

veri�able by competent graduate students having to read no other parts but statements and de�nitions cited.

Intuitive comments, examples and other comfort items are fat and skin: a lack or excess will not make the

paper pretty. Proper scholarly references constitute clothing, no paper should ever appear in public without!

The trains of thought which led to the discovery are blood and guts: keep them hidden. Other vital parts,

like open problems, I skip out of modesty.

Writing Contributions. Section 1 was prepared by Elena Temin, Yong Gao and Imre Kifor (BU), others by

Berkeley students: 2.3 by Mark Sullivan, 3.0 by Eric Herrmann, 3.1 by Elena Eliashberg, 3.2 by Wayne Fenton and

Peter Van Roy, 3.3 by Carl Ludewig, 3.4 by Sean Flynn, 3.4 by Francois Dumas, 4.1 by Je� Makaiwi, 4.1.1 by Brian

Jones and Carl Ludewig, 4.2 by David Leech and Peter Van Roy, 4.3 by Johnny and Siu-Ling Chan, 5.2 by Deborah

Kordon, 5.3 by Carl Ludewig, 5.4 by Sean Flynn, Francois Dumas, Eric Herrmann, 5.5 by Brian Jones.

p g

References

[1] On-line bibliographies. http://theory.lcs.mit.edu/~dmjones/hbp.

[2] T.H. Cormen, C.E. Leiserson, R.L. Rivest. Introduction to Algorithms. 1990, McGraw-Hill.

[3] Donald E. Knuth. The Art of Computer Programming. Vol. 1-3. Addison-Wesley, 3d ed., 1997. Additions

to v.2 can be found in http://www-cs-faculty.stanford.edu/~knuth/err2-2e.ps.gz .

[4] William Feller. An Introduction to Probability Theory and Its Applications. John Wiley & Sons, 1968.

[5] S. Lang. Algebra. 3rd ed. 1993, Addison-Wesley.

[6] H. Rogers, Jr. Theory of Recursive Functions and E�ective Computability. McGraw-Hill Book Co., 1967.

[] References for section 1:

[7] Ja.M. Barzdin', Ja.Ja. Kalnin's. A Universal Automaton with Variable Structure. Automatic Control

and Computing Sciences. 8(2):6-12, 1974.

[8] E.R. Berlekamp, J.H. Conway, R.K. Guy. Winning Ways. Section 25. Academic Press, 1982.

[9] A.N. Kolmogorov, V.A. Uspenskii. On the De�nition of an Algorithm. Uspekhi Mat. Nauk 13:3-28, 1958;

AMS Transl. 2nd ser. 29:217-245, 1963.

[10] A. Sch�onhage. Storage Modi�cation Machines. SIAM J. on Computing 9(3):490-508, 1980.

[11] Yu. Ofman. A Universal Automaton. Transactions of the Moscow Math. Society, pp.200-215, 1965.

[] Section 2:

[12] M. Blum. A machine-independent theory of the complexity of recursive functions. J. ACM 14, 1967.

[13] M. Davis, ed. The Undecidable. Hewlett, N.Y. Raven Press, 1965.

(The reprints of the original papers of K.G�odel, A.Turing, A.Church, E.Post and others).

[14] Shinichi Ikeno. A 6-symbol 10-state Universal Turing Machine. Proc. Inst. of Elec. Comm. Tokyo, 1958.

[15] Joel I. Seiferas, Albert R. Meyer. Characterization of Realizable Space Complexities.

Annals of Pure and Applied Logic 73:171-190, 1995.

[16] M.O. Rabin. Speed of computation of functions and classi�cation of recursive sets. Third Convention

of Sci.Soc. Israel, 1959, 1-2. Abst.: Bull. of the Research Council of Israel, 8F:69-70, 1959.

[17] G.S. Tseitin. Talk: seminar on math. logic, Moscow university, 11/14, 11/21, 1956. Also pp. 44-45 in:

S.A. Yanovskaya, Math. Logic and Foundations of Math., Math. in the USSR for 40 Years, 1:13-120,

1959, Moscow, Fizmatgiz, (in Russian).

[] Section 3:

[18] J. v.Neumann, O. Morgenstern. Theory of Games and Economic Behavior. Princeton Univ. Press, 1944.

[19] A.K.Chandra and L.J.Stockmeyer, Alternation. FOCS-1976.

[20] Ashok K. Chandra, Dexter C. Kozen, Larry J. Stockmeyer. Alternation. J. ACM, 28(1):114-133, 1981.

[21] J.M. Robson. N by N checkers is EXPTIME-complete. SIAM J. Comput 13(2), 1984.

[22] J.M. Robson. The complexity of Go. Proc. 1983 IFIP World Computer Congress, p. 413-417.

[23] A.S. Fraenkel and D. Lichtenstein. Computing a perfect strategy for n�n chess requires time exponential
in n. J. Combin. Theory (Ser. A) 31:199-214. ICALP-1981.

[] Section 4:

[24] W.J. Savitch. Relationships between nondeterministic and deterministic tape complexities. J. Comput.

Syst. Sci. 4:177-190, 1970.

[25] D.B. Yudin and A.S. Nemirovsky. Informational Complexity and E�ective Methods for Solving Convex

Extremum Problems. Economica i Mat. Metody 12(2):128-142; transl. MatEcon 13:3-25, 1976.

[26] E.M. Luks: Isomorphism of Graphs of Bounded Valence Can Be Tested in Polynomial Time. FOCS-1980.

[27] M.R.Garey, D.S.Johnson. Computers and Intractability. W.H.Freeman & Co. 1979.

[28] B.A.Trakhtenbrot. A survey of Russian approaches to Perebor (brute-force search) algorithms. Annals

of the History of Computing, 6(4):384-400, 1984.

[] Section 5:

[29] M.O.Rabin. Probabilistic Algorithms for Testing Primality. J. Number Theory, 12: 128-138, 1980.

[30] G.L.Miller. Riemann's Hypothesis and tests for Primality. J. Comp. Sys. Sci. 13(3):300-317, 1976.

[31] R. Solovay, V. Strassen. A fast Monte-Carlo test for primality. SIComp 6:84-85, 1977.

[32] R. Karp. Combinatorics, Complexity and Randomness. (Turing Award Lecture) Communication of the

ACM, 29(2):98-109, 1986.

[33] David S. Johnson. The NP-Completeness Column. J. of Algorithms 5, (1984) 284-299.

[34] R. Karp. The probabilistic analysis of some combinatorial search algorithms.Algorithms and Complexity.

(J.F.Traub, ed.) Academic Press, NY 1976, pp. 1-19.

[35] Y. Gurevich, Average Case Complexity, Internat. Symp. on Information Theory, IEEE, Proc. 1985.

[36] A.N.Kolmogorov, V.A.Uspenskii. Algorithms and Randomness. Theoria Veroyatnostey i ee Primeneniya

= Theory of Probability and its Applications, 3(32):389-412, 1987.

[37] M. Li, P.M.B. Vit�anyi. Introduction to Kolmogorov Complexity and its Applications. Springer Verlag,

New York, 1993.

[38] M. Blum, S. Micali. How to generate Cryptographically Strong Sequences. SIAM J. Comp., 13, 1984.

[39] A. C. Yao. Theory and Applications of Trapdoor Functions. FOCS-1982.

[40] O.Goldreich, L.Levin. A Hard-Core Predicate for all One-Way Functions. STOC-1989, pp. 25-32.

[41] R.Rivest, A.Shamir, L.Adleman. A Method for Obtaining Digital Signature and Public-Key Cryptosys-

tems. Comm. ACM, 21:120-126, 1978.

[42] M. Blum, S. Goldwasser. An EÆcient Probabilistic Encryption Scheme Hiding All Partial Information.

Crypto-1982.

[43] M. Rabin. Digitalized Signatures as Intractable as Factorization. MIT/LCS/TR-212, 1979.

[44] R.Venkatesan, L.Levin. Random Instances of a Graph Coloring Problem are Hard. STOC-1988.

