

www.syngress.com

Syngress is committed to publishing high-quality books for IT Professionals and
delivering those books in media and formats that fit the demands of our cus-
tomers. We are also committed to extending the utility of the book you purchase
via additional materials available from our Web site.

SOLUTIONS WEB SITE

To register your book, visit www.syngress.com/solutions. Once registered, you can
access our solutions@syngress.com Web pages. There you may find an assortment
of value-added features such as free e-books related to the topic of this book, URLs
of related Web sites, FAQs from the book, corrections, and any updates from the
author(s).

ULTIMATE CDs

Our Ultimate CD product line offers our readers budget-conscious compilations of
some of our best-selling backlist titles in Adobe PDF form. These CDs are the perfect
way to extend your reference library on key topics pertaining to your area of exper-
tise, including Cisco Engineering, Microsoft Windows System Administration,
CyberCrime Investigation, Open Source Security, and Firewall Configuration, to
name a few.

DOWNLOADABLE E-BOOKS

For readers who can’t wait for hard copy, we offer most of our titles in download-
able Adobe PDF form. These e-books are often available weeks before hard copies,
and are priced affordably.

SYNGRESS OUTLET

Our outlet store at syngress.com features overstocked, out-of-print, or slightly hurt
books at significant savings.

SITE LICENSING

Syngress has a well-established program for site licensing our e-books onto servers
in corporations, educational institutions, and large organizations. Contact us at
sales@syngress.com for more information.

CUSTOM PUBLISHING

Many organizations welcome the ability to combine parts of multiple Syngress
books, as well as their own content, into a single volume for their own internal use.
Contact us at sales@syngress.com for more information.

Visit us at

377_Eth2e_FM.qxd 11/14/06 1:23 PM Page i

377_Eth2e_FM.qxd 11/14/06 1:23 PM Page ii

Angela Orebaugh
Gilbert Ramirez
Josh Burke
Larry Pesce
Joshua Wright
Greg Morris

Wireshark &

Ethereal
Network Protocol
Analyzer Toolkit

Open Source

Security Tools

& Scripts

Open Source

Security Tools

& Scripts

Jay Beale's Open Source Security Series

377_Eth2e_FM.qxd 11/14/06 1:23 PM Page iii

Syngress Publishing, Inc., the author(s), and any person or firm involved in the writing, editing, or production
(collectively “Makers”) of this book (“the Work”) do not guarantee or warrant the results to be obtained from
the Work.

There is no guarantee of any kind, expressed or implied, regarding the Work or its contents.The Work is sold AS
IS and WITHOUT WARRANTY.You may have other legal rights, which vary from state to state.

In no event will Makers be liable to you for damages, including any loss of profits, lost savings, or other inci-
dental or consequential damages arising out from the Work or its contents. Because some states do not allow the
exclusion or limitation of liability for consequential or incidental damages, the above limitation may not apply to
you.

You should always use reasonable care, including backup and other appropriate precautions, when working with
computers, networks, data, and files.

Syngress Media®, Syngress®,“Career Advancement Through Skill Enhancement®,”“Ask the Author
UPDATE®,” and “Hack Proofing®,” are registered trademarks of Syngress Publishing, Inc.“Syngress:The
Definition of a Serious Security Library”™,“Mission Critical™,” and “The Only Way to Stop a Hacker is to
Think Like One™” are trademarks of Syngress Publishing, Inc. Brands and product names mentioned in this
book are trademarks or service marks of their respective companies.

KEY SERIAL NUMBER
001 HJIRTCV764
002 PO9873D5FG
003 829KM8NJH2
004 HPPPLEEEWY
005 CVPLQ6WQ23
006 VBP965T5T5
007 HJJJ863WD3E
008 2987GVTWMK
009 629MP5SDJT
010 IMWQ295T6T

PUBLISHED BY
Syngress Publishing, Inc.
800 Hingham Street
Rockland, MA 02370

Wireshark & Ethereal Network Protocol Analyzer Toolkit
Copyright © 2007 by Syngress Publishing, Inc.All rights reserved.Except as permitted under the Copyright Act
of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in
a database or retrieval system, without the prior written permission of the publisher, with the exception that the
program listings may be entered, stored, and executed in a computer system, but they may not be reproduced for
publication.

1 2 3 4 5 6 7 8 9 0
ISBN-10: 1-59749-073-3
ISBN-13: 978-1-59749-073-3

Publisher:Andrew Williams Page Layout and Art:Techne Group
Acquisitions Editor: Erin Heffernan Copy Editor: Judy Eby
Technical Editor:Angela Orebaugh, Gilbert Ramirez Indexer: Richard Carlson
Cover Designer: Michael Kavish

Distributed by O’Reilly Media, Inc. in the United States and Canada.
For information on rights, translations, and bulk sales, contact Matt Pedersen, Director of Sales and Rights, at
Syngress Publishing; email matt@syngress.com or fax to 781-681-3585.

377_Eth2e_FM.qxd 11/14/06 1:23 PM Page iv

Acknowledgments

v

Syngress would like to acknowledge the following people for their kindness
and support in making this book possible.

A special thank you to Mike Rash and Deapesh Misra for contributing their
expertise to the case studies used in Chapter 7 of this book.

Syngress books are now distributed in the United States and Canada by
O’Reilly Media, Inc.The enthusiasm and work ethic at O’Reilly are incredible,
and we would like to thank everyone there for their time and efforts to bring
Syngress books to market:Tim O’Reilly, Laura Baldwin, Mark Brokering, Mike
Leonard, Donna Selenko, Bonnie Sheehan, Cindy Davis, Grant Kikkert, Opol
Matsutaro, Steve Hazelwood, Mark Wilson, Rick Brown,Tim Hinton, Kyle
Hart, Sara Winge, Peter Pardo, Leslie Crandell, Regina Aggio Wilkinson, Pascal
Honscher, Preston Paull, Susan Thompson, Bruce Stewart, Laura Schmier, Sue
Willing, Mark Jacobsen, Betsy Waliszewski, Kathryn Barrett, John Chodacki,
Rob Bullington, Kerry Beck, Karen Montgomery, and Patrick Dirden.

The incredibly hardworking team at Elsevier Science, including Jonathan
Bunkell, Ian Seager, Duncan Enright, David Burton, Rosanna Ramacciotti,
Robert Fairbrother, Miguel Sanchez, Klaus Beran, Emma Wyatt, Krista
Leppiko, Marcel Koppes, Judy Chappell, Radek Janousek, Rosie Moss, David
Lockley, Nicola Haden, Bill Kennedy, Martina Morris, Kai Wuerfl-Davidek,
Christiane Leipersberger,Yvonne Grueneklee, Nadia Balavoine, and Chris
Reinders for making certain that our vision remains worldwide in scope.

David Buckland, Marie Chieng, Lucy Chong, Leslie Lim,Audrey Gan, Pang Ai
Hua, Joseph Chan, June Lim, and Siti Zuraidah Ahmad of Pansing Distributors
for the enthusiasm with which they receive our books.

David Scott, Tricia Wilden, Marilla Burgess, Annette Scott, Andrew Swaffer,
Stephen O’Donoghue, Bec Lowe, Mark Langley, and Anyo Geddes of Woodslane
for distributing our books throughout Australia, New Zealand, Papua New
Guinea, Fiji,Tonga, Solomon Islands, and the Cook Islands.

377_Eth2e_FM.qxd 11/14/06 1:23 PM Page v

About the CD

Most of the tools covered in this book are Open Source and are there-
fore constantly evolving. If you are deploying any of these tools to your
live network, please be sure to download the most recent versions.
Wherever possible, we have indicated sites where downloads are gener-
ally available. Please look for the CD Icon in the margins to indicate
applications or captures contained on the CD.

For convenience, and to allow for consistency in the examples
used, we have included Wireshark release 0.99.4; it is the most current
stable release of Wireshark as of the printing of this book.

For installation on Win 32 systems, the “Windows Installer” folder
contains the file wireshark-setup-0.99.4.exe.This Nullsoft Scriptable
Install System file prompts you through the installation of Wireshark
and WinPcap. Once installed, the programs are run via Start |
Programs.

The Source Files folder contains the file wireshark-0.99.4.tar.gz for
installation on non Windows systems.

You will also find folders containing the filters discussed in the
book and folder containing captures used in the exercises in Chapters
4, 6 and 7.

Note:This CD contains packet captures of the Code Red Virus
and has “strings” in it that your AntiVirus software will detect. In order
to continue, you may need to disable real time protections.These files
do not contain viruses, just the harmless fingerprints.

Wireshark is subject to U.S. export regulations.Take heed. Consult
a lawyer if you have any questions

vi

377_Eth2e_FM.qxd 11/14/06 1:23 PM Page vi

vii

Lead Author

Angela Orebaugh is an industry-recognized security technology
visionary and scientist, with over 12 years hands-on experience. She
currently performs leading-edge security consulting and works in
research and development to advance the state of the art in infor-
mation systems security.Angela currently participates in several
security initiatives for the National Institute of Standards and
Technology (NIST). She is the lead scientist for the National
Vulnerability Database and author of several NIST Special
Publications on security technologies.Angela has over a decade of
experience in information technology, with a focus on perimeter
defense, secure network design, vulnerability discovery, penetration
testing, and intrusion detection systems. She has a Masters in
Computer Science, and is currently pursuing her Ph.D. with a con-
centration in Information Security at George Mason University.
Angela is the author of the Syngress best seller Ethereal Packet
Sniffing (ISBN: 1932266828). She has also co-authored the Snort
Cookbook and Intrusion Prevention and Active Response: Deploying
Network and Host IPS (Syngress, ISBN: 193226647X).Angela is a
researcher, writer, and speaker for SANS Institute and faculty for
The Institute for Applied Network Security and George Mason
University.Angela has a wealth of knowledge from industry,
academia, and government from her consulting experience with
prominent Fortune 500 companies, the Department of Defense,
dot-com startups, and universities. She is a frequently invited speaker
at a variety of conferences and security events.

Current research interests: intrusion detection, intrusion preven-
tion, data mining, attacker profiling, user behavior analysis, network
forensics

377_Eth2e_FM.qxd 11/14/06 1:23 PM Page vii

viii

Gilbert Ramirez was the first contributor to Ethereal after it was
announced to the public and is known for his regular updates to the
product. He has contributed protocol dissectors as well as core logic to
Ethereal. He is a Technical Leader at Cisco Systems, where he works on
tools and builds systems. Gilbert is a family man, a linguist, a want-to-be
chef, and a student of tae kwon do. He is co-author of Syngress
Publishing’s popular Ethereal Packet Sniffing (ISBN: 1932266828).

Josh Burke (CISSP) is an independent information security consultant in
Seattle, Washington. He has held positions in networking, systems, and
security over the past seven years in the technology, financial, and media
sectors.A graduate of the business school at the University of Washington,
Josh concentrates on balancing technical and business needs for companies
in the many areas of information security. He also promotes an inclusive,
positive security philosophy for companies, which encourages communi-
cating the merits and reasons for security policies, rather than educating
only on what the policies forbid.

Josh is an expert in open-source security applications such as Snort,
Ethereal, and Nessus. His research interests include improving the security
and resilience of the Domain Name System (DNS) and the Network
Time Protocol (NTP). He also enjoys reading about the mathematics and
history of cryptography, but afterward often knows less about the subject
than when he started.

Larry Pesce (CCNA, GCFA Silver, GAWN Silver) is the Manager for
Information Services Security at Care New England, a mid-sized health-
care organization in New England. In the last 13 years in the computer

Technical Editor
and Contributing Author

Contributing Authors

377_Eth2e_FM.qxd 11/14/06 1:23 PM Page viii

ix

industry, Larry has become a jack of all trades; PC repair, Network
Engineering, Web Design, Non-Linear Audio and Video production, and
Computer Security. Larry is also gainfully employed as a Penetration Tester
/ Ethical Hacker with Defensive Intuition, a Rhode Island-based security
consulting company.A graduate of Roger Williams University in
Compute Information Systems, Larry is currently exploring his options
for graduate education.

In addition to his industry experience, Larry is also a Security
Evangelist for the PaulDotCom Security Weekly podcast at
www.pauldotcom.com. Larry is currently completing a work with his
PaulDotCom Security Weekly co-host, Paul Asadoorian on hacking the
Linksys WRT54G. More of Larry’s writing, guides, and rants can be found
on his blog at www.haxorthematrix.com.

Greg Morris (5-CNA, 5-CNE, 3-MCNE, Linux+, LPIC-1) is a Senior
Resolution Engineer for Novell Technical Services in Provo, UT.
Originally from Oklahoma, Greg has spent over 25 years in the computer
industry.Although Greg has a degree in management, his passion is to be
creative.This is what the software development process provides. His vast
experience includes hardware and software troubleshooting on mainframe,
midrange, and PC computers. Greg’s early roots in software development
was in database technologies, dabbling in C and assembly, but mostly
working with a language called Clipper by Nantucket. Greg’s work on
Ethereal began in November of 2000. Since that time he has made a sig-
nificant number of contributions to the Ethereal (now Wireshark) project.
This would include new dissectors (NCP, NDS, NDPS) as well as new
features (Extended Find capabilities). Greg has made a number of modifi-
cations to many other dissectors and is currently developing Novell
Modular Authentication Services (NMAS), Novell SecretStore Services
(SSS), Novell International Cryptographic Infrastructure (NICI), and a
host of other Novell specific decodes. Greg has actively developed cus-
tomer and internal training programs for a number of different Novell
products. One of his most unique programs was developed to teach
internal users the skills necessary to analyze packet traces. Greg started
working with packet traces many years ago with Novell’s LANalyzer
product. From there Greg migrated to Network Associates Sniffer product.
But, since working with Ethereal to add complete Novell NCP/NDS
packet support, Greg would use nothing else. He currently develops on
Windows 2000 with Microsoft’s Visual C++, but has plans to move to
SuSe Linux and the GNU compiler for future Wireshark development.

377_Eth2e_FM.qxd 11/14/06 1:23 PM Page ix

Joshua Wright is the senior security researcher for Aruba Networks, a
worldwide leader in secure wireless mobility solutions.The author of sev-
eral papers on wireless security and intrusion analysis, Joshua has also
written open-source tools designed to highlight weaknesses in wireless
networks. He is also a senior instructor for the SANS Institute, the author
of the SANS Assessing and Securing Wireless Networks course, and a reg-
ular speaker at information security conferences. When not breaking wire-
less networks, Josh enjoys working on his house, where he usually ends up
breaking things of another sort.

Jay Beale is an information security specialist, well known for his work
on mitigation technology, specifically in the form of operating system and
application hardening. He’s written two of the most popular tools in this
space: Bastille Linux, a lockdown tool that introduced a vital security-
training component, and the Center for Internet Security’s Unix Scoring
Tool. Both are used worldwide throughout private industry and govern-
ment.Through Bastille and his work with CIS, Jay has provided leadership
in the Linux system hardening space, participating in efforts to set, audit,
and implement standards for Linux/Unix security within industry and
government. He also focuses his energies on the OVAL project, where he
works with government and industry to standardize and improve the field
of vulnerability assessment. Jay is also a member of the Honeynet Project,
working on tool development.

Jay has served as an invited speaker at a variety of conferences world-
wide, as well as government symposia. He’s written for Information Security
Magazine, SecurityFocus, and the now-defunct SecurityPortal.com. He has
worked on four books in the information security space.Three of these,
including the best-selling Snort 2.1 Intrusion Detection (Syngress, ISBN: 1-
9318360-43-) make up his Open Source Security Series, while one is a
technical work of fiction entitled Stealing the Network: How to Own a
Continent (Syngress, ISBN: 1-931836-05-1).”

Jay makes his living as a security consultant with the firm
Intelguardians, which he co-founded with industry leaders Ed Skoudis,
Eric Cole, Mike Poor, Bob Hillery and Jim Alderson, where his work in
penetration testing allows him to focus on attack as well as defense.

Prior to consulting, Jay served as the Security Team Director for
MandrakeSoft, helping set company strategy, design security products, and
pushing security into the third largest retail Linux distribution.

Series Editor

377_Eth2e_FM.qxd 11/14/06 1:23 PM Page x

xi

Contents

Chapter 1 Introducing Network Analysis 1
Introduction .2
What Is Network Analysis and Sniffing? 2
Who Uses Network Analysis? .5

How Are Intruders Using Sniffers?6
What Does Sniffed Data Look Like? 8
Common Network Analyzers .8

How Does It Work? .10
Explaining Ethernet .10
Understanding
the Open Systems Interconnection Model 12

Layer 1: Physical .13
Layer 2: Data Link .14
Layer 3: Network .16
Layer 4:Transport .17
Layer 5: Session .19
Layer 6: Presentation .19
Layer 7 Application .20

CSMA/CD .22
The Major Protocols: IP,TCP, UDP, and ICMP 23

IP .23
Internet Control Message Protocol 24
TCP .24
UDP .25

Hardware: Cable Taps, Hubs, and Switches 25
Port Mirroring .27
Defeating Switches .29

Detecting Sniffers .31
Sniffing Wireless .34

Hardware Requirements .34
Software .35

Protocol Dissection .36
DNS .36
NTP .38

377_Eth2e_TOC.qxd 11/14/06 12:34 PM Page xi

xii Contents

HTTP .39
SMTP .41

Protecting Against Sniffers .42
Network Analysis and Policy .44
Summary .46
Solutions Fast Track .47
Frequently Asked Questions .49

Chapter 2 Introducing Wireshark:
Network Protocol Analyzer . 51

Introduction .52
What is Wireshark? .52

History of Wireshark .53
Compatibility .54
Supported Protocols .56
Wireshark’s User Interface .59
Filters .60
Great Resources .65

Supporting Programs .66
Tshark .66
Editcap .68
Mergecap .69
Text2pcap .71

Using Wireshark in Your Network Architecture 71
Using Wireshark for Network Troubleshooting 76
Using Wireshark for System Administration 80

Checking for Network Connectivity 80
Checking for Application Network Availability81

Scenario 1: SYN no SYN+ACK81
Scenario 2: SYN immediate response RST 81
Scenario 3: SYN SYN+ACK ACK
Connection Closed .81

Using Wireshark for Security Administration 81
Detecting Internet Relay Chat Activity 82

Wireshark As a Network Intrusion Detection System . . .82
Wireshark as a Detector for
Proprietary Information Transmission83

Securing Ethereal .83

377_Eth2e_TOC.qxd 11/14/06 12:34 PM Page xii

Contents xiii

Optimizing Wireshark .84
Network Link Speed .84
Minimizing Wireshark Extras .84
CPU .84
Memory .85

Advanced Sniffing Techniques .85
Dsniff .85
Ettercap .87
MITM Attacks .88
Cracking .88
Switch Tricks .88

ARP Spoofing .88
MAC Flooding .89

Routing Games .89
Securing Your Network from Sniffers 90

Using Encryption .90
SSH .90

SSL .91
Pretty Good Protection and
Secure/Multipurpose Internet Mail Extensions91
Switching .91

Employing Detection Techniques .91
Local Detection .92
Network Detection .92

DNS Lookups .93
Latency .93
Driver Bugs .93
NetMon .94

Summary .95
Solutions Fast Track .95
Frequently Asked Questions .98

Chapter 3 Getting and Installing Wireshark 101
Introduction .102
Getting Wireshark .103

Platforms and System Requirements 103
Packet Capture Drivers .104

Installing libpcap .105

377_Eth2e_TOC.qxd 11/14/06 12:34 PM Page xiii

xiv Contents

Installing libpcap Using the RPMs 106
Installing libpcap from the Source Files 108

Installing WinPcap .110
Installing Wireshark on Windows .111
Installing Wireshark on Linux .113

Installing Wireshark from the RPMs 113
Installing Wireshark on Mac OS X 115

Installing Wireshark on Mac OS X from Source 115
Installing Wireshark on Mac OS X Using DarwinPorts .120
Installing Wireshark on Mac OS X Using Fink122

Installing Wireshark from Source .123
Enabling and Disabling Features via configure 126

Summary .129
Solutions Fast Track .129
Frequently Asked Questions .131

Chapter 4 Using Wireshark . 133
Introduction .134
Getting Started with Wireshark .134
Exploring the Main Window .135

Summary Window .136
Protocol Tree Window .137
Data View Window .140

Other Window Components .142
Filter Bar .142
Information Field .144
Display Information Field .144

Exploring the Menus .144
File .144

Open .146
Save As .147
Print .149

Edit .153
Find Packet .155
Set Time Reference (toggle) 156
Preferences .157

View .159
Time Display Information 161

377_Eth2e_TOC.qxd 11/14/06 12:34 PM Page xiv

Contents xv

Auto Scroll in Live Capture 161
Apply Color Filters .161
Show Packet in New Window 164

Go .166
Go To Packet .167

Capture .167
Capture Interfaces .168
Capture Options .170
Edit Capture Filter List .177

Analyze .178
Edit Display Filter List .180
“Apply as Filter” and “Prepare a Filter” Submenus . .183
Enabled Protocols .184
Decode As .185
Decode As: Show .187
Follow TCP Stream and Follow SSL Stream 187
Expert Info and Expert Info Composite 189

Statistics .189
Summary .192
Protocol Hierarchy .192
TCP Stream Graph Submenu 194

Help .205
Contents .206
Supported Protocols .206
Manual Pages Submenu .207
Wireshark Online Submenu 209
About Wireshark .210

Pop-up Menus .211
Summary Window Pop-up Menu 211
Protocol Tree Window Pop-up Menu 212
Data View Window Pop-up Menu 214

Using Command-line Options .215
Capture and File Options .215
Filter Options .216
Other Options .216

Summary .217
Solutions Fast Track .217
Frequently Asked Questions .219

377_Eth2e_TOC.qxd 11/14/06 12:34 PM Page xv

xvi Contents

Chapter 5 Filters. 221
Introduction .222
Writing Capture Filters .222

tcpdump Syntax Explained .223
Host Names and Addresses 223
Hardware Addresses .224
Ports .225
Logical Operations .225
Protocols .226
Protocol Fields .228
Bitwise Operators .232
Packet Size .234

Examples .235
Using Capture Filters .235

Writing Display Filters .237
Writing Expressions .238

Integers .241
Booleans .243
Floating Point Numbers .244
Strings .245
Byte Sequences .249
Addresses .250
Time Fields .252
Other Field Types .253
Ranges .254
Logical Operators .256
Functions .257
Multiple Occurrences of Fields 257
Hidden Fields .260

Summary .263
Solutions Fast Track .264
Frequently Asked Questions .265

377_Eth2e_TOC.qxd 11/14/06 12:34 PM Page xvi

Contents xvii

Chapter 6 Wireless Sniffing with Wireshark 267
Introduction .268
Challenges of Sniffing Wireless .268

Selecting a Static Channel .268
Using Channel Hopping .269
Range in Wireless Networks .270
Interference and Collisions .270

Recommendations for Sniffing Wireless 271
Understanding Wireless Card Modes 272
Getting Support for Monitor Mode - Linux 273

Linux Wireless Extensions Compatible Drivers274
MADWIFI 0.9.1 Driver Configuration 276

Capturing Wireless Traffic - Linux 279
Starting a Packet Capture - Linux 280

Getting Support for Monitor Mode - Windows 281
Introducing AirPcap .281
Specifying the Capture Channel282

Capturing Wireless Traffic - Windows 285
Analyzing Wireless Traffic .286

Navigating the Packet Details Window286
Frame Statistics .286
IEEE 802.11 Header .288

Leveraging Display Filters .292
Traffic for a Specific Basic Service Set 293
Traffic for a Specific Extended Service Set 297
Data Traffic Only .302
Unencrypted Data Traffic Only 304
Identifying Hidden SSIDs .306
Examining EAP Exchanges 307
Identifying Wireless Encryption Mechanisms 312

Leveraging Colorized Packet Displays317
Marking From DS and To DS 318
Marking Interfering Traffic 320
Marking Retries .320

Adding Informative Columns 321
Decrypting Traffic .324

Real-world Wireless Traffic Captures 327

377_Eth2e_TOC.qxd 11/14/06 12:34 PM Page xvii

xviii Contents

Identifying a Station’s Channel327
Introduction .327
Systems Affected .328
Breakdown and Analysis .328

Wireless Connection Failures .329
Introduction .329
Systems Affected .330
Breakdown and Analysis .330

Wireless Network Probing .337
Introduction .337
Systems Affected .338
Breakdown and Analysis .338

EAP Authentication Account Sharing341
Introduction .341
Systems Affected .342
Breakdown and Analysis .342

IEEE 802.11 DoS Attacks .344
Introduction .344
Systems Affected .344
Breakdown and Analysis .344

IEEE 802.11 Spoofing Attacks 348
Introduction .348
Systems Affected .348
Breakdown and Analysis .348

Malformed Traffic Analysis .357
Introduction .357
Systems Affected .358
Breakdown and Analysis .358

Summary .366
Solutions Fast Track .367
Frequently Asked Questions .369

Chapter 7 Real World Packet Captures 371
Introduction .372
Scanning .372

TCP Connect Scan .372
SYN Scan .374
XMAS Scan .375

377_Eth2e_TOC.qxd 11/14/06 12:34 PM Page xviii

Contents xix

Null Scan .376
Remote Access Trojans .376

SubSeven Legend .377
NetBus .378
RST.b .380

Dissecting Worms .382
SQL Slammer Worm .382
Code Red Worm .384

Code Red Details .385
Code Red Capture Overview 386
Detailed CodeRed_Stage1 Capture Analysis 388
Detailed CodeRed_Stage2 Capture Analysis 393

Ramen Worm .393
Active Response .398
Summary .402
Solutions Fast Track .402
Frequently Asked Questions .404

Chapter 8 Developing Wireshark. 405
Introduction .406
Prerequisites for Developing Wireshark 407

Skills .408
Tools/Libraries .408

Other Developer Resources .414
The Wireshark Wiki .414

The Wireshark Wish List .415
The Wireshark Mailing List415
Wireshark Design .415

.svn .416
aclocal-fallback and autom4te.cache 416
ASN1 Directory .416
Debian Directory .417
Diameter Directory .417
doc Directory .417
DocBook .418
dtds Definition .418
epan Directory .418

377_Eth2e_TOC.qxd 11/14/06 12:34 PM Page xix

xx Contents

gtk Directory .419
gtk2.tmp Directory .419
Help Directory .419
IDL Directory .419
Image Directory .419
Packaging Directory .420
Plug-ins .421
Radius Directory .421
Test Directory .421
Tools Directory .421
Wiretap Directory .422

Developing a Dissector .422
Step 1 Copy the Template .423
Step 2 Define the Includes .424
Step 3 Create the Function to Register 427
Step 4 Instruct Wireshark .429
Step 5 Create the Dissector .430
Step 6 Pass Payloads .437

Running a Dissector .438
The Dissection Process .440

Advanced Topics .441
Dissector Considerations .442

Creating Subtrees .442
Bitfields .444
Unicode Strings .446
Conversations .447
Packet Retransmissions .448
Passing Data Between Dissectors 449
Saving Preference Settings .450
Packet Fragmentation .450
Value Strings .451
The Expert TAP .452
Debugging Your Dissector .454

The Wireshark GUI .455
The Item Factory .455
Using GTK .457

377_Eth2e_TOC.qxd 11/14/06 12:34 PM Page xx

Contents xxi

TAPs .460
Plug-ins .468

Summary .469
Solutions Fast Track .470
Frequently Asked Questions .473

Chapter 9 Other Programs Packaged with Wireshark 475
Introduction .476
TShark .476

TShark Statistics .485
Protocol Hierarchy Statistics 486
Protocol Statistics by Interval487
Conversation Statistics .489
Packet Length Distribution 490
Destinations Tree .491
Packet Summary Columns 492
SIP Statistics .493
H.225 Counters .494
H.225 Service Response Time 494
Media Gateway Control
Protocol Round Trip Delay494
SMB Round Trip Data .495
SMB Security Identifier Name Snooping496
BOOTP Statistics .496
HTTP Statistics .497
HTTP Tree Statistics .497
HTTP Request Statistics .499

editcap .502
mergecap .509
text2pcap .512
capinfos .516
dumpcap .517
Summary .519
Solutions Fast Track .520
Frequently Asked Questions .522

Index. 523

377_Eth2e_TOC.qxd 11/14/06 12:34 PM Page xxi

377_Eth2e_TOC.qxd 11/14/06 12:34 PM Page xxii

1

Introducing
Network Analysis

Solutions in this chapter:

■ What is Network Analysis and Sniffing?

■ Who Uses Network Analysis?

■ How Does it Work?

■ Detecting Sniffers

■ Protecting Against Sniffers

■ Network Analysis and Policy

Chapter 1

� Summary

� Solutions Fast Track

� Frequently Asked Questions

377_Eth_2e_ch01.qxd 11/14/06 9:27 AM Page 1

Introduction
“Why is the network slow?”“Why can’t I access my e-mail?”“Why can’t I get to
the shared drive?”“Why is my computer acting strange?” If you are a systems
administrator, network engineer, or security engineer you have heard these ques-
tions countless times.Thus begins the tedious and sometimes painful journey of
troubleshooting.You start by trying to replicate the problem from your computer,
but you can’t connect to the local network or the Internet either. What should
you do? Go to each of the servers and make sure they are up and functioning?
Check that your router is functioning? Check each computer for a malfunctioning
network card?

Now consider this scenario.You go to your main network switch or border
router and configure one of the unused ports for port mirroring.You plug in your
laptop, fire up your network analyzer, and see thousands of Transmission Control
Protocol (TCP) packets (destined for port 25) with various Internet Protocol (IP)
addresses.You investigate and learn that there is a virus on the network that
spreads through e-mail, and immediately apply access filters to block these packets
from entering or exiting your network.Thankfully, you were able to contain the
problem relatively quickly because of your knowledge and use of your network
analyzer.

What Is Network Analysis and Sniffing?
Network analysis (also known as traffic analysis, protocol analysis, sniffing, packet anal-
ysis, eavesdropping, and so on) is the process of capturing network traffic and
inspecting it closely to determine what is happening on the network.A network
analyzer decodes the data packets of common protocols and displays the network
traffic in readable format.A sniffer is a program that monitors data traveling over a
network. Unauthorized sniffers are dangerous to network security because they are
difficult to detect and can be inserted almost anywhere, which makes them a favorite
weapon of hackers.

A network analyzer can be a standalone hardware device with specialized soft-
ware, or software that is installed on a desktop or laptop computer.The differences
between network analyzers depend on features such as the number of supported
protocols it can decode, the user interface, and its graphing and statistical capabilities.
Other differences include inference capabilities (e.g., expert analysis features) and the
quality of packet decodes.Although several network analyzers decode the same pro-
tocols, some will work better than others for your environment.

www.syngress.com

2 Chapter 1 • Introducing Network Analysis

377_Eth_2e_ch01.qxd 11/14/06 9:27 AM Page 2

NOTE

The “Sniffer™” trademark, (owned by Network General) refers to the
Sniffer product line. In the computer industry, “sniffer” refers to a pro-
gram that captures and analyzes network traffic.

Figure 1.1 shows the Wireshark Network Analyzer display windows.A typical
network analyzer displays captured traffic in three panes:

■ Summary This pane displays a one-line summary of the capture. Fields
include the date, time, source address, destination address, and the name and
information about the highest-layer protocol.

■ Detail This pane provides all of the details (in a tree-like structure) for
each of the layers contained inside the captured packet.

■ Data This pane displays the raw captured data in both hexadecimal and
text format.

www.syngress.com

Introducing Network Analysis • Chapter 1 3

Figure 1.1 Network Analyzer Display

377_Eth_2e_ch01.qxd 11/14/06 9:27 AM Page 3

A network analyzer is a combination of hardware and software.Although there
are differences in each product, a network analyzer is composed of five basic parts:

■ Hardware Most network analyzers are software-based and work with
standard operating systems (OSes) and network interface cards (NICs).
However, some hardware network analyzers offer additional benefits such as
analyzing hardware faults (e.g., cyclic redundancy check (CRC) errors,
voltage problems, cable problems, jitter, jabber, negotiation errors, and so
on). Some network analyzers only support Ethernet or wireless adapters,
while others support multiple adapters and allow users to customize their
configurations. Depending on the situation, you may also need a hub or a
cable tap to connect to the existing cable.

■ Capture Driver This is the part of the network analyzer that is respon-
sible for capturing raw network traffic from the cable. It filters out the
traffic that you want to keep and stores the captured data in a buffer.This is
the core of a network analyzer—you cannot capture data without it.

■ Buffer This component stores the captured data. Data can be stored in a
buffer until it is full, or in a rotation method (e.g., a “round robin”) where
the newest data replaces the oldest data. Buffers can be disk-based or
memory-based.

■ Real-time Analysis This feature analyzes the data as it comes off the
cable. Some network analyzers use it to find network performance issues,
and network intrusion detection systems (IDSes) use it to look for signs of
intruder activity.

■ Decode This component displays the contents (with descriptions) of the
network traffic so that it is readable. Decodes are specific to each pro-
tocol, thus network analyzers vary in the number of decodes they cur-
rently support. However, new decodes are constantly being added to
network analyzers.

NOTE

Jitter is the term that is used to describe the random variation of signal
timing (e.g., electromagnetic interference and crosstalk with other sig-
nals can cause jitter). Jabber is the term that is used to describe when a
device is improperly handling electrical signals, thus affecting the rest of
the network (e.g., faulty NICs can cause jabber).

www.syngress.com

4 Chapter 1 • Introducing Network Analysis

377_Eth_2e_ch01.qxd 11/14/06 9:27 AM Page 4

Who Uses Network Analysis?
System administrators, network engineers, security engineers, system operators, and
programmers all use network analyzers, which are invaluable tools for diagnosing and
troubleshooting network problems, system configuration issues, and application diffi-
culties. Historically, network analyzers were dedicated hardware devices that were
expensive and difficult to use. However, new advances in technology have allowed
for the development of software-based network analyzers, which make it more con-
venient and affordable for administrators to effectively troubleshoot a network. It also
brings the capability of network analysis.

The art of network analysis is a double-edged sword. While network, system, and
security professionals use it for troubleshooting and monitoring the network,
intruders use network analysis for harmful purposes.A network analyzer is a tool,
and like all tools, it can be used for both good and bad purposes.

A network analyzer is used for:

■ Converting the binary data in packets to readable format

■ Troubleshooting problems on the network

■ Analyzing the performance of a network to discover bottlenecks

■ Network intrusion detection

■ Logging network traffic for forensics and evidence

■ Analyzing the operations of applications

■ Discovering faulty network cards

■ Discovering the origin of virus outbreaks or Denial of Service (DoS)
attacks

■ Detecting spyware

■ Network programming to debug in the development stage

■ Detecting a compromised computer

■ Validating compliance with company policy

■ As an educational resource when learning about protocols

■ Reverse-engineering protocols to write clients and supporting programs

www.syngress.com

Introducing Network Analysis • Chapter 1 5

377_Eth_2e_ch01.qxd 11/14/06 9:27 AM Page 5

How Are Intruders Using Sniffers?
When used by malicious individuals, sniffers can represent a significant threat to the
security of a network. Network intruders use sniffing to capture confidential infor-
mation, and the terms sniffing and eavesdropping are often associated with this practice.
However, sniffing is becoming a non-negative term; most people use the terms
sniffing and network analysis interchangeably.

Using a sniffer in an illegitimate way is considered a passive attack, because it does
not directly interface or connect to any other systems on the network.A sniffer can
also be installed as part of the compromise of a computer on a network using an
active attack.The passive nature of sniffers is what makes detecting them difficult.
(The methods used to detect sniffers are detailed later in this chapter.)

Intruders use sniffers on networks for:

■ Capturing cleartext usernames and passwords

■ Discovering the usage patterns of the users on a network

■ Compromising proprietary information

■ Capturing and replaying Voice over IP (VoIP) telephone conversations

■ Mapping the layout of a network

■ Passive OS fingerprinting

The above are all illegal uses of a sniffer unless you are a penetration tester
whose job is to find and report these types of weaknesses.

For sniffing to occur, an intruder must first gain access to the communication
cable of the systems of interest, which means being on the same shared network seg-
ment or tapping into the cable somewhere between the communication path. If the
intruder is not physically present at the target system or communications access
point (AP), there are still ways to sniff network traffic, including:

■ Breaking into a target computer and installing remotely controlled sniffing
software.

■ Breaking into a communications access point (e.g., an Internet Service
Provider [ISP]) and installing sniffing software.

■ Locating a system at the ISP that already has sniffing software installed.

■ Using social engineering to gain physical access to an ISP in order to install
a packet sniffer.

www.syngress.com

6 Chapter 1 • Introducing Network Analysis

377_Eth_2e_ch01.qxd 11/14/06 9:27 AM Page 6

■ Having an inside accomplice at the target computer organization or the
ISP install the sniffer.

■ Redirecting or copying communications to take a path that includes the
intruder’s computer.

Sniffing programs are included with most rootkits that are typically installed on
compromised systems. Rootkits are used to cover the tracks of an intruder by
replacing commands and utilities and clearing log entries. Intruders also install other
programs such as sniffers, key loggers, and backdoor access software. Windows
sniffing can be accomplished as part of a Remote Admin Trojan (RAT) such as
SubSeven or Back Orifice. Intruders often use sniffing programs that are configured
to detect specific things (e.g., passwords), and then electronically send them to the
intruder (or store them for later retrieval by the intruder). Vulnerable protocols for
this type of activity include Telnet, File Transfer Protocol (FTP), Post Office Protocol
version 3 (POP3), Internet Message Access Protocol (IMAP), Simple Mail Transfer
Program (SMTP), Hypertext Transfer Protocol (HTTP), Remote Login (rlogin), and
Simple Network Management Protocol (SNMP).

One example of a rootkit is “T0rnKit,” which works on Solaris and Linux.The
sniffer that is included with this rootkit is called “t0rns” and is installed in the hidden
directory /usr/srec/.puta.Another example of a rootkit is Linux Rootkit 5 (Lrk5),
which installs with the linsniff sniffer.

Intruders may also use sniffer programs to control back doors (This practice isn’t
quite “common,” but it isn’t unheard of). One method is to install a sniffer on a
target system that listens for specific information and then sends the backdoor con-
trol information to a neighboring system.This type of backdoor control is hard to
detect, because of the passive nature of sniffers.

cd00r is an example of a backdoor sniffer that operates in non-promiscuous
mode, making it even harder to detect. Using a product like Fyodor’s Nmap (http://
insecure.org/nmap) to send a series of TCP synchronize (SYN) packets to several
predefined ports will trigger the backdoor to open up on a pre-configured port.
More information about cdoor can be found at www.phenoelit.de/stuff/cd00r.c.

NOTE

A rootkit is a collection of Trojan programs that are used to replace the
legitimate programs on a compromised system in order to avoid detec-
tion. Some common commands that are replaced are ps, ifconfig, and
ls. Rootkits can also install additional software such as sniffers.

www.syngress.com

Introducing Network Analysis • Chapter 1 7

377_Eth_2e_ch01.qxd 11/14/06 9:27 AM Page 7

What Does Sniffed Data Look Like?
The easiest way to grasp the concept of a sniffer is to watch one in action. Figure
1.2 shows a capture of a simple FTP session from a laptop to a Linux system.The
two highlighted packets show how easy it is to sniff the username and password (i.e.,
“root” and “password”).

Common Network Analyzers
A simple search on SecurityFocus (www.securityfocus.org/tools/category/4) shows
the diversity and number of sniffers available. Some of the most prominent are:

■ Wireshark Wireshark is one of the best sniffers available and is being
developed as a free, commercial-quality sniffer. It has numerous features, a
nice graphical user interface (GUI), decodes over 400 protocols, and is
actively being developed and maintained. It runs on UNIX-based systems,
Mac OS X, and Windows.This is a great sniffer to use in a production
environment, and is available at www.wireshark.org.

www.syngress.com

8 Chapter 1 • Introducing Network Analysis

Figure 1.2 Sniffing a Connection

377_Eth_2e_ch01.qxd 11/14/06 9:27 AM Page 8

■ WinDump WinDump is the Windows version of tcpdump, and is avail-
able at www.winpcap.org/windump. It uses the WinPcap library and runs
on Windows 95, 98, ME, NT, 2000, and XP.

■ Network General Sniffer A Network General Sniffer is one of the most
popular commercial sniffers available. Now a suite of enterprise network cap-
ture tools, there is an entire Sniffer product line at www.networkgeneral.com.

■ Windows 2000 and 2003 Server Network Monitor Both the
Windows 2000 Server and the Windows 2003 Server have a built-in pro-
gram to perform network analysis. It is located in the “Administrative
Tools” folder, but is not installed by default; therefore, you have to add it
from the installation CD.

■ EtherPeek EtherPeek is a commercial network analyzer developed by
WildPackets. Versions for both Windows and Mac, and other network anal-
ysis products can be found at www.wildpackets.com.

■ Tcpdump Tcpdump is the oldest and most commonly used network
sniffer, and was developed by the Network Research Group (NRG) of the
Information and Computing Sciences Division (ICSD) at Lawrence
Berkeley National Laboratory (LBNL). It is command line-based and runs
on UNIX-based systems, including Mac OS X. It is actively developed and
maintained at www.tcpdump.org.

■ Snoop Snoop is a command-line network sniffer that is included with the
Sun Solaris OS.

■ Snort Snort is a network IDS that uses network sniffing, and is actively
developed and maintained at www.snort.org. For more information, refer
to Nessus, Snort, & Ethereal Power Tools: Customizing Open Source Security
Applications (Syngress Publishing: 1597490202) and Snort Intrusion Detection
and Prevention Toolkit (Syngress, ISBN: 1597490997).

■ Dsniff Dsniff is a very popular network-sniffing package. It is a collection
of programs that are used to specifically sniff for interesting data (e.g., pass-
words) and to facilitate the sniffing process (e.g., evading switches). It is
actively maintained at www.monkey.org/~dugsong/dsniff.

■ Ettercap Ettercap was specifically designed to sniff a switched network. It
has built-in features such as password collecting, OS fingerprinting, and
character injection, and runs on several platforms including Linux,
Windows, and Solaris. It is actively maintained at ettercap.sourceforge.net.

www.syngress.com

Introducing Network Analysis • Chapter 1 9

377_Eth_2e_ch01.qxd 11/14/06 9:27 AM Page 9

■ Analyzer Analyzer is a free sniffer that is used for the Windows OS. It is
being actively developed by the makers of WinPcap and WinDump at
Politecnico di Torino, and can be downloaded from analyzer.polito.it.

■ Packetyzer Packetyzer is a free sniffer (used for the Windows OS) that
uses Wireshark’s core logic. It tends to run a version or two behind the cur-
rent release of Wireshark. It is actively maintained by Network Chemistry
at www.networkchemistry.com/products/packetyzer.php.

■ MacSniffer MacSniffer is specifically designed for the Mac OS X envi-
ronment. It is built as a front-end for tcpdump.The software is shareware
and can be downloaded from
personalpages.tds.net/~brian_hill/macsniffer.html.

How Does It Work?
This section provides an overview of how sniffing takes place, and gives background
information on how networks and protocols work. However, there are many other
excellent resources available, including the most popular and undoubtedly one of the
best written, Richard Stevens’“TCP/IP Illustrated, Vol. 1–3.”

Explaining Ethernet
Ethernet is the most popular protocol standard used to enable computers to com-
municate.A protocol is like speaking a particular language. Ethernet was built around
the principle of a shared medium where all computers on the local network segment
share the same cable. It is known as a broadcast protocol because it sends that data to
all other computers on the same network segment.This information is divided up
into manageable chunks called packets, and each packet has a header containing the
addresses of both the destination and source computers. Even though this informa-
tion is sent out to all computers on a segment, only the computer with the
matching destination address responds.All of the other computers on the network
still see the packet, but if they are not the intended receiver they disregard it, unless a
computer is running a sniffer. When running a sniffer, the packet capture driver puts
the computer’s NIC into promiscuous mode.This means that the sniffing computer can
see all of the traffic on the segment regardless of who it is being sent to. Normally
computers run in non-promiscuous mode, listening for information designated only
for themselves. However, when a NIC is in promiscuous mode, it can see conversa-
tions to and from all of its neighbors.

www.syngress.com

10 Chapter 1 • Introducing Network Analysis

377_Eth_2e_ch01.qxd 11/14/06 9:27 AM Page 10

Ethernet addresses are also known as Media Access Control (MAC) addresses
and hardware addresses. Because many computers may share a single Ethernet seg-
ment, each one must have an individual identifier hard-coded onto the NIC.A
MAC address is a 48-bit number, which is also stated as a 12-digit hexadecimal
number.This number is broken down into two halves; the first 24 bits identify the
vendor of the Ethernet card, and the second 24 bits comprise a serial number
assigned by the vendor.

The following steps allow you to view your NIC’s MAC address:

■ Windows 9x/ME Access Start | Run and type winipcfg.exe.The
MAC address will be listed as the “Adapter Address.”

■ Windows NT, 2000, XP, and 2003 Access the command line and type
ipconfig /all.The MAC address will be listed as the “Physical Address.”

■ Linux and Solaris Type ifconfig –a at the command line.The MAC
address will be listed as the “HWaddr” on Linux and as “ether” on Solaris.

■ Macintosh OS X Type ifconfig –a at the Terminal application.The
MAC address will be listed as the “Ether” label.

You can also view the MAC addresses of other computers that you have recently
communicated with, by typing the command arp –a. (Discussed in more detail in
the “Defeating Switches” section.)

MAC addresses are unique, and no two computers have the same one. However,
occasionally a manufacturing error may occur that causes more than one NIC to
have the same MAC address.Thus, most people change their MAC addresses inten-
tionally, which can be done with a program (e.g., ifconfig) that allows you to fake
your MAC address. Faking your MAC address (and other types of addresses) is also
known as spoofing.Also, some adapters allow you to use a program to reconfigure the
runtime MAC address.And lastly, with the right tools and skill you can physically re-
burn the address into the NIC.

NOTE

Spoofing is the process of altering network packet information (e.g., the
IP source address, the MAC address, or the e-mail address). This is often
done to masquerade as another device in order to exploit a trust relation-
ship or to make tracing the source of attacks difficult. Address spoofing is
also used in DoS attacks (e.g., Smurf), where the return addresses of net-
work requests are spoofed to be the IP address of the victim.

www.syngress.com

Introducing Network Analysis • Chapter 1 11

377_Eth_2e_ch01.qxd 11/14/06 9:27 AM Page 11

Understanding the Open Systems
Interconnection Model
The International Standards Organization (ISO) developed the Open Systems
Interconnection (OSI) model in the early 1980s to describe how network protocols
and components work together. It divides network functions into seven layers, each
layer representing a group of related specifications, functions, and activities (see
Figure 1.3).Although complicated at first, the terminology is used extensively in
networking, systems, and development communities.

The following sections define the seven layers of the OSI model.

The following sections define the seven layers of the OSI model.

www.syngress.com

12 Chapter 1 • Introducing Network Analysis

Figure 1.3 Seven boxes corresponding to OSI model.

Physical

Data Link

Network

Session

Transport

Presentation

Application

The OSI Model

Network Medium

377_Eth_2e_ch01.qxd 11/14/06 9:27 AM Page 12

NOTE

The OSI model is not necessarily reflective of the way that applications
and OSes are actually written. In fact, some security tools use the differ-
ences in protocol implementations to extract information from com-
puters (including their OSes) and specific patches and services packs that
may have been installed.

“We still talk about the seven layers model, because it’s a convenient
model for discussion, but that has absolutely zero to do with any real-life
software engineering. In other words, it’s a way to talk about things, not
to implement them. And that’s important. Specs are a basis for talking
about things. But they are not a basis for implementing software.”

– Linus Torvalds, project coordinator for the Linux kernel, in an e-mail
dated September 29, 2005.

Layer 1: Physical
The first layer of the OSI model is the Physical layer, which specifies the electrical
and mechanical requirements for transmitting data bits across the transmission
medium (cable or airwaves). It involves sending and receiving the data stream on the
carrier, whether that carrier uses electrical (cable), light (fiber optic), radio, infrared,
or laser (wireless) signals.The Physical layer specifications include:

■ Voltage changes

■ The timing of voltage changes

■ Data rates

■ Maximum transmission distances

■ The physical connectors to the transmission medium (plug)

■ The topology or physical layout of the network

Many complex issues are addressed at the Physical layer, including digital vs.
analog signaling, baseband vs. broadband signaling, whether data is transmitted syn-
chronously or asynchronously, and how signals are divided into channels (multi-
plexing).

Devices that operate at the Physical layer deal with signaling (e.g., transceivers on
the NIC), repeaters, basic hubs, and simple connectors that join segments of cable).
The data handled by the Physical layer is in bits of 1s (ones) and 0s (zeros), which

www.syngress.com

Introducing Network Analysis • Chapter 1 13

377_Eth_2e_ch01.qxd 11/14/06 9:27 AM Page 13

are represented by pulses of light or voltage changes of electricity, and by the state of
those pulses (on generally representing 1 and off generally representing 0).

How these bits are arranged and managed is a function of the Data Link layer
(layer 2) of the OSI model.

Layer 2: Data Link
Layer 2 is the Data Link layer, which is responsible for maintaining the data link
between two computers, typically called hosts or nodes. It also defines and manages
the ordering of bits to and from packets. Frames contain data arranged in an orga-
nized manner, which provides an orderly and consistent method of sending data bits
across the medium. Without such control, the data would be sent in random sizes or
configurations and the data on one end could not be decoded at the other end.The
Data Link layer manages the physical addressing and synchronization of the data
packets. It is also responsible for flow control and error notification on the Physical
layer. Flow control is the process of managing the timing of sending and receiving
data so that it doesn’t exceed the capacity (speed, memory, and so on) of the physical
connection. Since the Physical layer is only responsible for physically moving the
data onto and off of the network medium, the Data Link layer also receives and
manages error messaging related to the physical delivery of packets.

Network devices that operate at this layer include layer 2 switches (switching
hubs) and bridges.A layer 2 switch decreases network congestion by sending data
out only on the port that the destination computer is attached to, instead of sending
it out on all ports. Bridges provide a way to segment a network into two parts and
filter traffic, by building tables that define which computers are located on which
side of the bridge, based on their MAC addresses.

The Data Link layer is divided into two sublayers: the Logical Link Control
(LLC) sublayer and the MAC sublayer.

The MAC Sublayer
The MAC sublayer provides control for accessing the transmission medium. It is
responsible for moving data packets from one NIC to another, across a shared trans-
mission medium such as an Ethernet or fiber-optic cable.

Physical addressing is addressed at the MAC sublayer. Every NIC has a unique
MAC address (also called the physical address) which identifies that specific NIC on
the network.The MAC address of a NIC is usually burned into a read-only memory
(ROM) chip on the NIC. Each manufacturer of network cards is provided a unique
set of MAC addresses so that theoretically, every NIC that is manufactured has a

www.syngress.com

14 Chapter 1 • Introducing Network Analysis

377_Eth_2e_ch01.qxd 11/14/06 9:27 AM Page 14

unique MAC address.To avoid any confusion, MAC addresses are permanently
burned into the NIC’s memory, which is sometimes referred to as the Burned-in
Address (BIA).

NOTE

On Ethernet NICs, the physical or MAC address (also called the hardware
address) is expressed as 12 hexadecimal digits arranged in pairs with
colons between each pair (e.g., 12:3A:4D:66:3A:1C). The initial three sets
of numbers represent the manufacturer, and the last three bits represent
a unique NIC made by that manufacturer.

MAC refers to the method used to allocate network access to computers while
preventing them from transmitting at the same time and causing data collisions.
Common MAC methods include Carrier Sense Multiple Access/Collision Detection
(CSMA/CD) used by Ethernet networks, Carrier Sense Multiple Access/Collision
Avoidance (CSMA/CA) used by AppleTalk networks, and token passing used by
Token Ring and Fiber Distributed Data Interface (FDDI) networks. (CSMA/CD is
discussed later in this chapter.)

The LLC Sublayer
The LLC sublayer provides the logic for the data link; thus it controls the synchro-
nization, flow control, and error-checking functions of the Data Link layer.This layer
manages connection-oriented transmissions; however, connectionless service can also
be provided by this layer. Connectionless operations are known as Class I LLC,
whereas Class II can handle either connectionless or connection-oriented opera-
tions. With connection-oriented communication, each LLC frame sent is acknowl-
edged.The LLC sublayer at the receiving end keeps up with the LLC frames it
receives (also called Protocol Data Units [PDUs]); therefore, if it detects that a frame
has been lost during transmission, it can send a request to the sending computer to
start the transmission over again, beginning with the PDU that never arrived.

The LLC sublayer sits above the MAC sublayer, and acts as a liaison between the
upper layers and the protocols that operate at the MAC sublayer (e.g., Ethernet,
Token Ring, and so on).The LLC sublayer is defined by Institute of Electrical &
Electronics Engineers (IEEE) 802.2. Link addressing, sequencing, and definition of
Service Access Points (SAPs) also take place at this layer.

www.syngress.com

Introducing Network Analysis • Chapter 1 15

377_Eth_2e_ch01.qxd 11/14/06 9:27 AM Page 15

Layer 3: Network
The next layer is the Network layer (layer 3), which is where packets are sequenced
and logical addressing is assigned. Logical addresses are nonpermanent, software-
assigned addresses that can only be changed by administrators.The IP addresses used
by the TCP/IP protocols on the Internet, and the Internet Package Exchange (IPX)
addresses used by the IPX/Sequenced Packet Exchange (SPX) protocols on
NetWare networks are examples of logical addresses.These protocol stacks are
referred to as routable because they include addressing schemes that identify the net-
work or subnet and the particular client on that network or subnet. Other net-
work/transport protocols (e.g., NETBIOS Extended User Interface [NetBEUI]) do
not have a sophisticated addressing scheme and thus cannot be routed between dif-
ferent types of networks.

NOTE

To understand the difference between physical and logical addresses,
consider this analogy: A house has a physical address that identifies
exactly where it is located. This is similar to the MAC address on a NIC.

A house also has a logical address assigned to it by the post office
that consists of a street name and number. The post office occasionally
changes the names of streets or renumbers the houses located on them.
This is similar to the IP address assigned to a network interface.

The Network layer is also responsible for creating a virtual circuit (i.e., a logical
connection, not a physical connection) between points or nodes.A node is a device
that has a MAC address, which typically includes computers, printers, and routers.
This layer is also responsible for routing, layer 3 switching, and forwarding packets.
Routing refers to forwarding packets from one network or subnet to another.
Without routing, computers can only communicate with computers on the same
network. Routing is the key to the global Internet, and is one of the most important
duties of the Network layer.

Finally, the Network layer provides additional levels of flow control and error
control.As mentioned earlier, from this point on, the primary methods of imple-
menting the OSI model architecture involve software rather than hardware.

Devices that operate at this layer include routers and layer 3 switches.

www.syngress.com

16 Chapter 1 • Introducing Network Analysis

377_Eth_2e_ch01.qxd 11/14/06 9:27 AM Page 16

Layer 4:Transport
Layer 4 is the Transport layer, and is responsible for transporting the data from one
node to another. It provides transparent data transfer between nodes, and manages
the end-to-end flow control, error detection, and error recovery.

The Transport layer protocols initiate contact between specific ports on different
host computers, and set up a virtual circuit.The transport protocols on each host
computer verify that the application sending the data is authorized to access the net-
work and that both ends are ready to initiate the data transfer. When this synchro-
nization is complete, the data is sent.As the data is being transmitted, the transport
protocol on each host monitors the data flow and watches for transport errors. If
transport errors are detected, the transport protocol provides error recovery.

The functions performed by the Transport layer are very important to network
communication. Just as the Data Link layer provides lower-level reliability and con-
nection-oriented or connectionless communications, the Transport layer does the
same thing but at a higher level.The two protocols most commonly associated with
the Transport layer are the Transmission Control Protocol (TCP), which is connec-
tion-oriented and the User Datagram Protocol (UDP), which is connectionless.

NOTE

What’s the difference between a connection-oriented protocol and a con-
nectionless protocol? A connection-oriented protocol (e.g., TCP) creates a
connection between two computers before sending the data, and then
verifies that the data has reached its destination by using acknowledge-
ments (ACKs) (i.e., messages sent back to the sending computer from the
receiving computer that acknowledge receipt). Connectionless protocols
send the data and trust that it will reach the proper destination or that
the application will handle retransmission and data verification.

Consider this analogy: You need to send an important letter to a
business associate that contains valuable papers. You call him before e-
mailing the letter, to let him know that he or she should expect it (estab-
lishing the connection). A few days later your friend calls to let you
know that he received the letter, or you receive the return receipt (ACK).
This is how connection-oriented communication works. When mailing a
postcard to a friend, you drop it in the mailbox and hope it gets to the
addressee. You don’t expect or require any acknowledgement. This is
how connectionless communication works.

www.syngress.com

Introducing Network Analysis • Chapter 1 17

377_Eth_2e_ch01.qxd 11/14/06 9:27 AM Page 17

The Transport layer also manages the logical addressing of ports.Think of a port
as a suite or apartment number within a building that defines exactly where the data
should go.

Table 1.1 Commonly Used Internet Ports

Internet Protocol (IP)
Port(s) Protocol(s) Description

80 TCP HTTP, commonly used for Web
servers

443 TCP Hypertext Transfer Protocol Secure
sockets (HTTPS) for secure Web
servers.

53 UDP and TCP Domain Name Server/Service (DNS)
for resolving names to IP addresses

25 TCP Simple Mail Transfer
Protocol(SMTP), used for sending
e-mail

22 TCP The Secure Shell (SSH) protocol
23 TCP Telnet, an insecure administration

protocol
20 and 21 TCP An insecure Fire Transfer Protocol

(FTP)
135–139 and 445 TCP and UDP Windows file sharing, login, and

Remote Procedure Call (RPC)
500 UDP Internet Security Association and

Key Management Protocol
(ISAKMP) key negotiation for
Secure Internet Protocol (IPSec) vir-
tual private networks (VPNs)

5060 UDP Session Initiation Protocol (SIP) for
some VoIP uses

123 UDP Network Time Protocol (NTP) for
network time synchronization

A computer may have several network applications running at the same time
(e.g., a Web browser sending a request to a Web server for a Web page, an e-mail
client sending and receiving e-mail, and a file transfer program uploading or down-
loading information to and from an FTP server).The mechanism for determining
which incoming data packets belong to which application is the function of port
numbers.The FTP protocol is assigned a particular port, whereas the Web browser

www.syngress.com

18 Chapter 1 • Introducing Network Analysis

377_Eth_2e_ch01.qxd 11/14/06 9:27 AM Page 18

and e-mail clients use different protocols (e.g., HTTP and POP3 or Internet
Message Access Protocol [IMAP]) that have their own assigned ports; thus the infor-
mation intended for the Web browser doesn’t go to the e-mail program by mistake.
Port numbers are used by TCP and UDP.

Finally, the Transport layer deals with name resolution. Most users prefer to iden-
tify computers by name instead of by IP address (i.e., www.microsoft.com instead of
207.46.249.222), however, computers only interpret numbers, therefore, there must
be a way to match names with numerical addresses. Name resolution methods such
as the DNS solve this problem.

Layer 5: Session
After the Transport layer establishes a virtual connection, a communication session is
made between two processes on two different computers.The Session layer (layer 5)
is responsible for establishing, monitoring, and terminating sessions, using the virtual
circuits established by the Transport layer.

The Session layer is also responsible for putting header information into data
packets that indicates where a message begins and ends. Once header information is
attached to the data packets, the Session layer performs synchronization between the
sender’s Session layer and the receiver’s Session layer.The use of ACKs helps coordi-
nate the transfer of data at the Session-layer level.

Another important function of the Session layer is controlling whether the com-
munications within a session are sent as full-duplex or half-duplex messages. Half-
duplex communication goes in both directions between the communicating
computers, but information can only travel in one direction at a time (e.g., radio
communications where you hold down the microphone button to transmit, but
cannot hear the person on the other end). With full-duplex communication, infor-
mation can be sent in both directions at the same time (e.g., a telephone conversa-
tion, where both parties can talk and hear one another at the same time).

Whereas the Transport layer establishes a connection between two machines, the
Session layer establishes a connection between two processes.An application can run
many processes simultaneously to accomplish the work of the application.

After the Transport layer establishes the connection between the two machines,
the Session layer sets up the connection between the application process on one
computer and the application process on another computer.

Layer 6: Presentation
Data translation is the primary activity of the Presentation layer (layer 6). When data
is sent from a sender to a receiver, it is translated at the Presentation layer (i.e., the

www.syngress.com

Introducing Network Analysis • Chapter 1 19

377_Eth_2e_ch01.qxd 11/14/06 9:27 AM Page 19

sender’s application passes data down to the Presentation layer, where it is changed
into a common format). When the data is received on the other end, the
Presentation layer changes it from the common format back into a format that is
useable by the application. Protocol translation (i.e., the conversion of data from one
protocol to another so that it can be exchanged between computers using different
platforms or OSes) takes place here.

The Presentation layer is also where gateway services operate. Gateways are con-
nection points between networks that use different platforms or applications (e.g., e-
mail gateways, Systems Network Architecture (SNA) gateways, and gateways that
cross platforms or file systems). Gateways are usually implemented via software such
as the Gateway Services for NetWare (GSNW). Software redirectors also operate at
this layer.

This layer is also where data compression takes place, which minimizes the
number of bits that must be transmitted on the network media to the receiver. Data
encryption and decryption also take place in the Presentation layer.

Layer 7 Application
The Application layer is the point at which the user application program interacts
with the network. Don’t confuse the networking model with the application itself.
Application processes (e.g., file transfers or e-mail) are initiated within a user applica-
tion (e.g., an e-mail program).Then the data created by that process is handed to the
Application layer of the networking software. Everything that occurs at this level is
application-specific (e.g., file sharing, remote printer access, network monitoring and
management, remote procedure calls, and all forms of electronic messaging).

Both FTP and Telnet function within the Application layer, as does the Simple
Mail Transfer Protocol (SMTP), Post Office Protocol (POP), and Internet Message
access Protocol (IMAP), all of which are used for sending or receiving e-mail. Other
Application-layer protocols include HTTP, Network News Transfer Protocol
(NNTP), and Simple network Management Protocol (SNMP).

You have to distinguish between the protocols mentioned and the applications
that might bear the same names, because there are many different FTP programs
made by different software vendors that use the FTP to transfer files.

The OSI model is generic and can be used to explain all network protocols.
Various protocol suites are often mapped against the OSI model for this purpose.A
solid understanding of the OSI model aids in network analysis, comparison, and
troubleshooting. However, it is important to remember that not all protocols map
well to the OSI model (e.g.,TCP/IP was designed to map to the U.S. Department
of Defense (DoD) model). In the 1970s, the DoD developed its four-layer model.
The core Internet protocols adhere to this model.

www.syngress.com

20 Chapter 1 • Introducing Network Analysis

377_Eth_2e_ch01.qxd 11/14/06 9:27 AM Page 20

The DoD model is a condensed version of the OSI model. Its four layers are:

■ Process Layer This layer defines protocols that implement user-level
applications (e.g., e-mail delivery, remote login, and file transfer).

■ Host-to-host Layer This layer manages the connection, data flow man-
agement, and retransmission of lost data.

■ Internet Layer This layer delivers data from the source host to the desti-
nation host across a set of physical networks that connect the two
machines.

■ Network Access Layer This layer manages the delivery of data over a
particular hardware media.

www.syngress.com

Introducing Network Analysis • Chapter 1 21

Writing Your Own Sniffer
There is an excellent paper titled “Basic Packet-Sniffer Construction from the
Ground Up” by Chad Renfro that is located at www.packetstormsecurity.org
/sniffers/Sniffer_construction.txt. In this paper, he presents a basic 28-line
packet sniffer that is written in C, called sniff.c, which he explains line-by-line
in an easy-to-understand manner. The program demonstrates how to use the
raw_socket device to read TCP packets from the network, and how to print
basic header information to stdout. For simplicity, the program operates in
non-promiscuous mode; therefore, you first need to put your interface in
promiscuous mode using the ifconfig eth0 promisc command.

There is also a header file that must be copied into the same directory as
sniff.c, that provides standard structures to access the IP and TCP fields in order
to identify each field in the IP and TCP header.

To run the program, copy the sniff.c and headers.h files into one directory,
and enter gcc -o sniff sniff.c. This compiles the program and creates an exe-
cutable file called sniff, which is run by typing ./sniff. The following text shows
the output of the sniff program when a Telnet and FTP connection was
attempted:

Bytes received ::: 48

Source address ::: 192.168.1.1

IP header length ::: 5

Notes From the Underground…

Continued

377_Eth_2e_ch01.qxd 11/14/06 9:27 AM Page 21

CSMA/CD
Ethernet uses the CSMA/CD protocol in order for devices to exchange data on
the network.The term multiple access refers to the fact that many network devices
attached to the same segment have the opportunity to transmit. Each device is
given an equal opportunity; no device has priority over another. Carrier sense
describes how an Ethernet interface on a network device listens to the cable
before transmitting.The network interface ensures that there are no other signals
on the cable before it transmits, and listens while transmitting to ensure that no
other network device transmits data at the same time. When two network devices
transmit at the same time, a collision occurs. Because Ethernet interfaces listen to
the media while they are transmitting, they can identify the presence of others
through collision detection. If a collision occurs, the transmitting device waits for a
small, random amount of time before retransmitting.This function is known as
random backoff.

Traditionally, Ethernet operation has been half-duplex, which means that an
interface can either transmit or receive data, but not at the same time. If more
than one network interface on a segment tries to transmit at the same time, a col-
lision occurs per CSMA/CD. When a crossover cable is used to connect two
devices, or a single device is attached to a switch port, only two interfaces on the
segment need to transmit or receive; no collisions occur.This is because the
transmit (TX) of device A is connected to the receive (RX) of device B, and the
TX of B is connected to the RX of device A.The collision detection method is

www.syngress.com

22 Chapter 1 • Introducing Network Analysis

Protocol ::: 6

Source port ::: 1372

Dest port ::: 23

Bytes received ::: 48

Source address ::: 192.168.1.1

IP header length ::: 5

Protocol ::: 6

Source port ::: 1374

Dest port ::: 21

Once you are done capturing data, you can end the program by typing
Ctrl-C. You may also want to remove your interface from promiscuous mode by
typing the ifconfig eth0 –promisc command.

377_Eth_2e_ch01.qxd 11/14/06 9:27 AM Page 22

no longer necessary, therefore, interfaces can be placed in full-duplex mode,
which allows network devices to transmit and receive at the same time, thereby
increasing performance.

The Major Protocols: IP, TCP, UDP, and ICMP
The next four protocols are at the heart of how the Internet works today.

NOTE

Other, different protocols are used across the Internet, and new proto-
cols are constantly created to fulfill specific needs. One of these is
Internet Protocol version 6 (IPv6), which seeks to improve the existing
Internet protocol suite by providing more IP addresses, and by improving
the security of network connections across the Internet using encryption.
For more information on IPv6, see http://en.wikipedia.org/wiki/IPv6.

IP
The IP is a connectionless protocol that manages addressing data from one point to
another, and fragments large amounts of data into smaller, transmittable packets.The
major components of Internet Protocol datagrams are:

■ IP Identification (IPID) Tries to uniquely identify an IP datagram.

■ Protocol Describes the higher-level protocol contained within the
datagram.

■ Time-to-live (TTL) Attempts to keep datagrams and packets from
routing in circles. When TTL reaches 0, the datagram is dropped.The TTL
allows traceroute to function, identifying each router in a network by
sending out datagrams with successively increasing TTLs, and tracking
when those TTLs are exceeded.

■ Source IP Address The IP address of the host where the datagram was
created.

■ Destination IP Address The destination of where the datagram should
be sent.

www.syngress.com

Introducing Network Analysis • Chapter 1 23

377_Eth_2e_ch01.qxd 11/14/06 9:27 AM Page 23

Internet Control Message Protocol
The Internet Control Message Protocol (ICMP) manages errors that occur between
networks on the IP.The following are common types of ICMP messages:

■ Echo Request/Reply Used by programs such as ping to calculate the
delay in reaching another IP address.

■ Destination Unreachable: Network Unreachable and Port
Unreachable Sent to the source IP address of a packet when a network
or port cannot be reached.This happens when a firewall rejects a packet
or if there is a network problem.There are a number of subtypes of
Destination Unreachable messages that are helpful at diagnosing commu-
nication issues.

■ Time Exceeded Occurs when the TTL of a packet reaches 0.

TCP
TCP packets are connection-oriented, and are used most often to transmit data.The
connection-oriented nature of TCP packets makes it a poor choice for source IP
address spoofing. Many applications use TCP, including the Web (HTTP), e-mail
(SMTP), FTP, SSH, and the Windows Remote Desktop Protocol (RDP).

www.syngress.com

24 Chapter 1 • Introducing Network Analysis

It is possible to spoof any part of an IP datagram; however, the most commonly
spoofed IP component is the source IP address. Also, not all protocols function
completely with a spoofed source IP address (e.g., connection-oriented proto-
cols such as TCP require handshaking before data can be transmitted, thereby
reducing the effectiveness of spoofing-based attacks).

Spoofing can also be used as a DoS attack. If Network A sends a datagram
to Network B, with a spoofed source IP host address on Network C, Network C
will see traffic going to it that originates from Network B, perhaps without any
indication that Network A is involved at all.

The best practice for network administrators is to ensure that the network
can only originate packets with a proper Source IP address (i.e., an IP address
in the network itself).

IP Address Source Spoofing

377_Eth_2e_ch01.qxd 11/14/06 9:27 AM Page 24

The TCP Handshake
An important concept of the TCP is handshaking. Before any data can be exchanged
between two hosts, they must agree to communicate. Host A sends a packet with the
SYN flag set to Host B. If Host B is willing and able to communicate, it returns the
SYN packet and adds an ACK flag. Host A begins sending data, and indicates to
Host B that it also received the ACK. When the communication between the hosts
ends, a packet with the FIN (finish) flag is sent, and a similar acknowledgement pro-
cess is followed.

TCP Sequence
Another important component of TCP is sequence identification, where each packet
sent is part of a sequence.Through these numbers,TCP handles complex tasks such
as retransmission, acknowledgement, and order.

UDP
UDP packets are the connectionless equivalent to TCP, and are used for many pur-
poses, the most important being that DNS uses UDP for most of its work. DNS
finds out which IP address corresponds to which hostname (e.g., www.example.com
is not routable as an IP address inside an IP datagram; however, through a DNS
system it can find the IP address to route traffic to). Other uses of UDP include
VoiP and many online games and streaming media types.

Hardware: Cable Taps, Hubs, and Switches
Cable taps are hardware devices that assist in connecting to a network cable.Test
access points (Taps) use this device to access any cables between computers, hubs,
switches, routers, and other devices.Taps are available in full- or half-duplex for 10,
100, and 1,000 Mbps Ethernet links.They are also available in various multi-port
sizes.The following is a list of some popular cable tap products:

■ Net Optics carries several types of network taps for copper and fiber cables,
and is available at www.netoptics.com.

■ The Finisar Tap family offers a variety of taps for copper and fiber cables,
and is available at www.finisar.com/nt/taps.php.

A hub is a device that allows you to connect multiple hosts together on a shared
medium (e.g., Ethernet). When a computer sends information, it travels into the hub
and the hub forwards the information to all other computers connected to it.The
computer that the information was intended for will recognize its own MAC address

www.syngress.com

Introducing Network Analysis • Chapter 1 25

377_Eth_2e_ch01.qxd 11/14/06 9:27 AM Page 25

in the packet header and accept the data.The area that the hub forwards all informa-
tion to is known as a collision domain (also known as broadcast domain).A hub has only
one collision domain for all traffic to share. Figure 1.4 shows a network architecture
with collision domains related to hubs. Large collisions make sniffing easier and
create performance issues such as bandwidth hogging or excessive traffic on the hub.

A switch is also used to connect computers together on a shared medium;
however, when a switch receives information, it doesn’t blindly send it to all other
computers; it looks at the packet header to locate the destination MAC address,
and maintains a list of all MAC addresses and corresponding ports on the switch
that the computers are connected to. It then forwards the packets to the specified
port.This narrows the collision domain to a single port (see Figure 1.5).This type
of collision domain also provides a definite amount of bandwidth for each con-
nection rather than a shared amount on a hub. Because the price of switches has
fallen dramatically in the last few years, there is no reason not to replace hubs
with switches, or to choose switches when purchasing new equipment. Also, some

www.syngress.com

26 Chapter 1 • Introducing Network Analysis

Figure 1.4 Hub Collision Domains

Router

Collision Domain Collision Domain

Hub Hub

External
Network

377_Eth_2e_ch01.qxd 11/14/06 9:27 AM Page 26

of the more costly switches include better technology that makes them more
resistant to sniffing attacks.

As you can see from the diagrams, hubs make sniffing easier and switches make
sniffing more difficult. However, switches can be tricked, as discussed in the
“Defeating Switches” section.

Port Mirroring
If you are working on a network that uses switches and you want to perform net-
work analysis legitimately, you are in luck; most switches and routers come with port
mirroring (also known as port spanning).To mirror ports, you have to configure the
switch to duplicate the traffic from the port you want to monitor to the port you
are connected to.

Using port spanning does not interfere with the normal operation of switches,
but you should always check the documentation of the exact switch you are config-
uring and periodically check the device’s logs.You won’t affect the switch, but you

www.syngress.com

Introducing Network Analysis • Chapter 1 27

Figure 1.5 Switch Collision Domains

External
Network

Collision Domains

Switch

Router

377_Eth_2e_ch01.qxd 11/14/06 9:27 AM Page 27

will increase the amount of traffic on a specific destination port, therefore, make sure
your properly configured network analyzer is the destination port.Also, consult the
documentation for your specific switch to learn the exact command to enable port
mirroring (see Figure 1.6).The switch is configured to mirror all port 1 traffic to
port 5, and the network analyzer sees all traffic to and from Computer A. Sometimes
administrators mirror the uplink port on a switch, so that they can see all of the
traffic to and from the switch and all of its ports.

NOTE

Span stands for Switched Port Analyzer. Cisco uses the word span to
describe the concept of port mirroring. In Cisco terms, spanning a port is
the same as mirroring a port.

www.syngress.com

28 Chapter 1 • Introducing Network Analysis

Figure 1.6 Port Mirroring

External
Network

Computer A Network
Analyzer

Port 1 Port 5

Switch

Router

377_Eth_2e_ch01.qxd 11/14/06 9:27 AM Page 28

Defeating Switches
As mentioned earlier, using switches on a network makes sniffing more difficult. In
theory, you should only see traffic destined for you own computer on a switch;
however, there are ways to circumvent its technology.The following list describes
several ways in which a switch can be defeated:

■ Switch Flooding Some switches can be made to act like a hub, where all
packets are broadcast to all computers.This can be accomplished by over-
flowing the switch address table with a large number of fake MAC
addresses (known as a device failing open), thus removing all security provi-
sions. Devices that fail close incorporate some type of security measure (e.g.,
shutting down all communications).The Dsniff package comes with a pro-
gram called macof that is designed to switch MAC address flooding. It can
be downloaded from www.monkey.org/~dugsong/dsniff.

■ ARP Redirects When a computer needs the MAC address of another
computer, it sends an Address Resolution Protocol (ARP) request. Each
computer also maintains an ARP table that stores the MAC addresses of the
computers it talks to.ARPs are broadcast on a switch; therefore, all com-
puters on that switch see the request and the response.There are several
methods that use ARP to trick a switch into sending traffic somewhere it
shouldn’t. First, an intruder can subvert a switch by sending out an ARP
claiming to be someone else.An intruder can also send an ARP claiming to
be the router, in which case computers will try to send their packets
through the intruder’s computer. Or, an intruder will send an ARP request
to just one victim, claiming to be the router, at which point the victim
starts forwarding packets to the intruder.

■ ICMP Redirect Sometimes computers are on the same physical segment
and switch, but different logical segments.This means they are in different
IP subnets. When Computer A wants to talk to Computer B it sends its
request through a router.The router knows that they are on the same phys-
ical segment, so it sends an ICMP Redirect to Computer A letting it know
that it can send its packets directly to Computer B.An intruder (Computer
X) can send a fake ICMP redirect to Computer A, telling it to send
Computer B’s packets to Computer X.

■ ICMP Router Advertisements These advertisements tell computers
which router to use. Intruders then send out advertisements claiming to be
that router, at which point the computers begin forwarding all packets
through the intruder.

www.syngress.com

Introducing Network Analysis • Chapter 1 29

377_Eth_2e_ch01.qxd 11/14/06 9:27 AM Page 29

■ MAC Address Spoofing An intruder can pretend to use a different com-
puter by spoofing its MAC address. Sending out packets with the source
address of the victim tricks the switch.The switch enters the spoofed infor-
mation into its table and begins sending packets to the intruder. But what
about the victim who is still on the switch, sending updates that are causing
the switch to change the table back? This can be solved by taking the
victim offline with some type of DoS attack, and then redirecting the
switch and continuing communications.An intruder could also broadcast
the traffic that he or she receives to ensure that the victim computer still
receives the packets. Some switches have a countermeasure that allows you
to statically assign a MAC address to a port.This may be difficult to manage
if you have a large network, but it will eliminate MAC spoofing. Other
switch configurations allow a port to be locked to the first MAC it
encounters, and presents a compelling balance between manageability and
security in environments where physical port access is restricted.

To spoof your MAC on Linux or Solaris use the ifconfig command as
follows:

ifconfig eth0 down

ifconfig eth0 hw ether 00:02:b3:00:00:AA

ifconfig eth0 up

Register the MAC on all hosts by broadcast ping: ping -c 1 -b
192.168.1.255.

Now you can sniff all traffic to the computer that owns this MAC
address.

■ Reconfigure Port Spanning On the Switch As mentioned earlier,
switch ports can be configured to see traffic destined for other ports.An
intruder can perform this by connecting to the switch via Telnet or some
other default back door.An intruder can also use SNMP if it is not secured.

■ Cable Taps As mentioned earlier, cable taps can be used to physically tap
into the cable.Tapping into the uplink cable on a switch shows you all of
the traffic entering and exiting that switch.

There are many methods for defeating switches that are contingent on how a
switch operates. Not all of the methods discussed work, especially with new, more
technologically savvy switches.The Dsniff Frequently Asked Questions (FAQ)

www.syngress.com

30 Chapter 1 • Introducing Network Analysis

377_Eth_2e_ch01.qxd 11/14/06 9:27 AM Page 30

helpful information for sniffing in a switched environment, and can be located at
www.monkey.org/~dugsong/dsniff/faq.html.

Detecting Sniffers
As mentioned earlier, sniffers are a form of passive attack.They don’t interact with
any devices or transmit any information, thus making them very difficult to detect.
Although tricky, detecting sniffers is possible.The easiest method is to check your
network interfaces to see if they are in promiscuous mode. On UNIX-based sys-
tems, the command ifconfig –a lists the network adapters on the system. Look for
the PROMISC flag in the output, such as in the following example:

[root@localhost root]# ifconfig -a

eth0 Link encap:Ethernet HWaddr 00:02:B3:06:5F:5A

inet addr:192.168.1.2 Bcast:192.168.1.255 Mask:255.255.255.0

UP BROADCAST RUNNING PROMISC MULTICAST MTU:1500 Metric:1

RX packets:204 errors:0 dropped:0 overruns:0 frame:0

TX packets:92 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:100

RX bytes:46113 (45.0 Kb) TX bytes:5836 (5.6 Kb)

Interrupt:11 Base address:0x1800 Memory:e8120000-e8120038

If ifconfig does not detect a sniffer that you know is currently installed and in
promiscuous mode, you can try using the ip link command, a TCP/IP interface
configuration and routing utility.The following example shows the output from the
IP command:

[root@localhost root]# ip link

1: lo: <LOOPBACK,UP> mtu 16436 qdisc noqueue

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

2: eth0: <BROADCAST,MULTICAST,PROMISC,UP> mtu 1500 qdisc pfifo_fast qlen 100

link/ether 00:02:b3:06:5f:5a brd ff:ff:ff:ff:ff:ff

Detecting promiscuous mode on Windows systems is difficult because there are
no standard commands that list that type of information. However, there is a free
tool called PromiscDetect (developed by Arne Vidstrom), which detects promiscuous
mode network adapters for Windows NT, 2000, and XP. It can be downloaded from
www.ntsecurity.nu/toolbox/promiscdetect.The following example shows the output
of PromiscDetect: the D-link adapter is in normal operation mode, and the Intel
adapter is running Wireshark:

www.syngress.com

Introducing Network Analysis • Chapter 1 31

377_Eth_2e_ch01.qxd 11/14/06 9:27 AM Page 31

C:\>promiscdetect

PromiscDetect 1.0 - (c) 2002, Arne Vidstrom (arne.vidstrom@ntsecurity.nu)

- http://ntsecurity.nu/toolbox/promiscdetect/

Adapter name:

- D-Link DWL-650 11Mbps WLAN Card

Active filter for the adapter:

- Directed (capture packets directed to this computer)

- Multicast (capture multicast packets for groups the computer is a member
of)

- Broadcast (capture broadcast packets)

Adapter name:

- Intel(R) PRO/100 SP Mobile Combo Adapter

Active filter for the adapter:

- Directed (capture packets directed to this computer)

- Multicast (capture multicast packets for groups the computer is a member
of)

- Broadcast (capture broadcast packets)

- Promiscuous (capture all packets on the network)

WARNING: Since this adapter is in promiscuous mode there could be a sniffer

running on this computer!

Some sniffers cover their tracks by hiding PROMISC flags.Also, if a sniffer is
installed on a compromised system using a rootkit, the intruder probably replaces
commands such as ifconfig.The following list describes several other methods that
can be used to detect sniffers on the network:

■ Monitor DNS Reverse Lookups Some sniffers perform DNS queries to
resolve IP addresses to host names. Performing a network ping scan or
pinging your entire network address space can trigger this activity.

■ Send TCP/IP Packets with Fake MAC Addresses to All IP
Addresses On the Same Ethernet Segment Normally, the NIC drops
packets with the wrong MAC address. However, when in promiscuous
mode, some systems answer with a reset (RST) packet.This might also
work in a switched environment, because switches forward broadcast
packets that they don’t have MAC addresses for. Many new sniffers have
built-in defenses for this technique, altering the way they handle MAC
addresses.

■ Carefully Monitor Hub Ports Ideally, you have a network diagram and
your cables are labeled.Then, if something unusual appears (e.g., a new

www.syngress.com

32 Chapter 1 • Introducing Network Analysis

377_Eth_2e_ch01.qxd 11/14/06 9:27 AM Page 32

device or a newly active hub port), you will recognize it. However, in
reality, wiring closets and cabling can be a nightmare. If your hubs are being
monitored with a protocol such as SNMP via a network management
system, you may be able to use the information to detect any unusual con-
nects and disconnects.

■ Remember How ARP is Used to Link IP Addresses to MAC
Addresses Normally, an ARP is sent out as a broadcast to everyone.
However, you can also send out an ARP to a non-broadcast address, fol-
lowed by a broadcast ping. No one should have your information in an
ARP table except the sniffer that was listening to all of the traffic
(including the non-broadcast traffic).Therefore the computer with the
sniffer responds.

■ Use a Honeypot A honeypot is a server that contains fake data and ser-
vices to monitor the activity of intruders. In this case, an intruder can
create fake administrator or user accounts on the honeypot, and then create
connections across the network using cleartext protocols such as Telnet or
FTP. If sniffers are monitoring for usernames and passwords, they will see
the honeypot and the intruder will probably try to log into it. Honeypots
run IDS to monitor activity, and special signatures can be added to trigger
alerts when fake accounts are used.

■ Carefully Monitor Your Hosts This includes disk space, central pro-
cessing unit (CPU) utilization, and response times. Sniffers gradually con-
sume disk space as they log traffic, and can occasionally put a noticeable
load on the CPU.As the infected computer’s resources become more uti-
lized, it begins to respond slower than normal.

There are several tools that can be used to detect sniffers on a network. Many of
them are outdated, no longer actively maintained, and sometimes hard to find. New
sniffers have been rewritten to evade detection.The following is a list of some of
those tools:

■ PromiScan Ver 0.27 This free program was developed by Security Friday,
and is up-to-date and actively maintained. It runs on Windows 2000 and
XP and requires the WinPcap driver. It scans the local network looking for
remote promiscuous mode adapters using ARP packets, and can be down-
loaded from www.securityfriday.com/products/promiscan.html.

■ Sentinel This free program performs remote promiscuous detection, and
runs on various versions of Berkeley Software Distribution (BSD) and

www.syngress.com

Introducing Network Analysis • Chapter 1 33

377_Eth_2e_ch01.qxd 11/14/06 9:27 AM Page 33

Linux. It requires the libpcap and libnet libraries to operate, and can be
downloaded from www.packetfactory.net/projects/sentinel.

■ Check Promiscuous Mode (CPM) This is a free UNIX-based program
developed by the Computer Emergency Response Team/Coordination
Center (CERT/CC) in response to increased network sniffing. More infor-
mation, including the program, can be obtained from www.cert.org/advi-
sories/CA-1994-01.html.

■ Ifstatus This is a free UNIX-based program that detects promiscuous
mode interfaces on Solaris and Advanced IBM Unix (AIX) systems. It can
be downloaded from
ftp://ftp.cerias.purdue.edu/pub/tools/unix/sysutils/ifstatus.

■ Promisc.c This is a free UNIX-based program that detects promiscuous
mode interfaces on Linux and some SunOS systems. It can be downloaded
from www.phreak.org/archives/exploits/unix/network-sniffers/promisc.c.

Sniffing Wireless
From the airport, to the coffee shop, to the library, to your next door neighbor, wire-
less networks are all around us; therefore, wireless security is a serious concern.There
are historical weaknesses in security protocols, because intruders no longer need to be
inside a building to attack an internal network.A wireless network is still a network,
however, and with a few exceptions maps well to the Ethernet and OSI models.

Hardware Requirements
While most Ethernet cards are capable of packet sniffing in promiscuous mode,
many wireless chipsets cannot use monitor mode, which is the wireless equivalent of
promiscuous mode. Complicating the situation is that wireless card manufacturers do
not generally list the chipset that they use in a readily available form.Also, chipsets
can vary within model families. It is best to select the software you want to use, and
then identify which chipsets and specific manufacturer’s model numbers work best
with the specific drivers necessary for the software to function.

Here are some general guidelines on chipset compatibility:

■ Atheros This chipset is compatible with most software and widely avail-
able in a number of adapters.

www.syngress.com

34 Chapter 1 • Introducing Network Analysis

377_Eth_2e_ch01.qxd 11/14/06 9:27 AM Page 34

■ Prism2 This chipset is one of the most capable used with the Host AP
drivers. Not only is it supported by most software, it can also run in an
AP mode.

■ Orinoco One of the first chipsets that supported monitor mode.
Supported by most software. Cannot receive 802.11g traffic.

■ Broadcom There is no native support in Linux for this chipset. With
included drivers, tools such as Kismet do not function with it.You may
be able to use Windows drivers through a Network Driver Interface
Specification (NDIS) compatibility wrapper such as the commercial
DriverLoader, which can be downloaded from
www.linuxant.com/driverloader.

Software
The proper combination of hardware, software, and drivers will enable you to effec-
tively sniff wireless networking traffic.The following tools may be helpful:

■ Netstumbler Netstumbler is more of a network scanner than a network
sniffing tool, but is useful for listing networks detectable from your location.
Netstumbler is an active network scanner that sends out probes that are
detectable by others. It can be downloaded for free from
www.netstumbler.org.

■ Kismet Kismet is an open-source, free, wireless network scanner and vul-
nerability detector, which keeps track of wireless clients and their network
associations. Unlike other scanners, it is a completely passive network
scanner, and can be downloaded from www.kismetwireless.net.

■ Wireshark Wireshark has a number of dissectors for wireless management
traffic; however, it does not track by Service Set Identifier (SSID), nor does
it show signal strength.

■ CommView for WiFi CommView for WiFi is a commercial wireless
network monitor and scanner that can export in tcpdump format, which
Wireshark imports and reads easily. CommView for WiFi can be down-
loaded from www.tamos.com/products/commwifi/.

www.syngress.com

Introducing Network Analysis • Chapter 1 35

377_Eth_2e_ch01.qxd 11/14/06 9:27 AM Page 35

NOTE

Bootable CD-ROMs
There are several bootable Linux distributions that come prepackaged
with the correct drivers and software necessary for wireless and wired
network sniffing. All of these include Kismet and Ethereal or Wireshark.
Below are some that are available and free:

■ Backtrack Backtrack is the result of two highly respected
bootable penetration toolsets combining their efforts toward
one unified bootable CDROM. For additional information, go to
www.remote-exploit.org.

■ Professional Hacker’s Linux Assault Kit (Phlack) Includes
many security tools and wireless auditing and scanning soft-
ware. For additional information, go to www.phlak.org.

■ Knoppix Security Tools Distribution (Knoppix-STD) A general-
purpose collection of security tools on a bootable Linux image.
For additional information, go to www.s-t-d.org.

Protocol Dissection
Now that we’ve reviewed many of the critical portions of layers 1 through 4 of the
OSI networking model, some attention should be paid to some of the protocols that
you may run across while using Wireshark.The larger the network that you are
sniffing, the more types of protocols (and protocol anomalies) you are likely to
encounter.

DNS
The DNS translates hostnames into IP addresses, and vice versa. Most DNS traffic is
transferred over UDP port 53 in a client/server fashion. DNS can be considered for-
ward or reverse. Forward DNS translates a hostname into an IP address, and reverse
DNS translates an IP address into a hostname. On the protocol level, forward and
reverse lookups are nearly identical.

To get an IP address from a given hostname, a DNS system (also known as a
resolver) requests an address (A) record from a DNS server. In the following example,
we ask the authoritative name server for the IP address of www.example.com. In tcp-
dump format, we see the following traffic:

IP 192.168.0.1.33141 > 192.0.34.43.53: 42827+ A? www.example.com.

IP 192.0.34.43.53 > 192.168.0.1.33141: 42827*- 1/2/2 A 192.0.34.166

www.syngress.com

36 Chapter 1 • Introducing Network Analysis

377_Eth_2e_ch01.qxd 11/14/06 9:27 AM Page 36

The resolver (192.168.0.1) asked the authoritative name server (192.0.34.43) on
UDP port 53 for the “A record” for www.example.com. Via UDP, the name server
returned one A record for that name with IP address 192.0.34.166.

Wireshark can also be used to view more information about this DNS transaction.
Wireshark would return the following information about the query and response:

Domain Name System (query)

Transaction ID: 42827

Flags: 0x0100 (Standard query)

0... = Response: Message is a query

.000 0... = Opcode: Standard query (0)

.... ..0. = Truncated: Message is not truncated

.... ...1 = Recursion desired: Do query recursively

....0.. = Z: reserved (0)

....0 = Non-authenticated data OK

Questions: 1

Answer RRs: 0

Authority RRs: 0

Additional RRs: 0

Queries

www.example.com: type A, class IN

Name: www.example.com

Type: A (Host address)

Class: IN (0x0001)

Domain Name System (response)

Transaction ID: 42827

Flags: 0x8180 (Standard query response, No error)

1... = Response: Message is a response

.000 0... = Opcode: Standard query (0)

.... .0.. = Authoritative

.... ..0. = Truncated: Message is not truncated

.... ...1 = Recursion desired: Do query recursively

.... 1... = Recursion available

....0.. = Z: reserved (0)

....0. = Answer authenticated

.... 0000 = Reply code: No error (0)

Questions: 1

Answer RRs: 1

Authority RRs: 13

www.syngress.com

Introducing Network Analysis • Chapter 1 37

377_Eth_2e_ch01.qxd 11/14/06 9:27 AM Page 37

Additional RRs: 2

Queries

www.example.com: type A, class IN

Name: www.example.com

Type: A (Host address)

Class: IN (0x0001)

Answers

www.example.com: type A, class IN, addr 192.0.34.166

Authoritative nameservers

com: type NS, class IN, ns C.GTLD-SERVERS.NET

...

com: type NS, class IN, ns B.GTLD-SERVERS.NET

Additional records

A.GTLD-SERVERS.NET: type A, class IN, addr 192.5.6.30

NOTE

DNS uses TCP instead of UDP for transmitting data when the data size
exceeds 512 bytes. DNS also uses TCP for transferring entire DNS zones
between zones. In either case, port 53 is used.

NTP
The NTP is another helpful protocol that keeps things running smoothly in the
background. In this case, NTP makes sure that all of your computer and device
clocks are synchronized. NTP can use peering or client/server architecture; the net-
work traffic will be similar either way. UDP port 123 is used for NTP.

In the following example, NTP client (192.168.0.1) asks a NTP server
(192.168.0.2) for the current timestamp:

IP 192.168.0.1.ntp > 192.168.0.2.ntp: NTPv4, Client, length 48

IP 192.168.0.2.ntp > 192.168.0.1.ntp: NTPv4, Server, length 48

Network Time Protocol

Flags: 0xe3

11.. = Leap Indicator: alarm condition (clock not synchronized)

..10 0... = Version number: NTP Version 4 (4)

www.syngress.com

38 Chapter 1 • Introducing Network Analysis

377_Eth_2e_ch01.qxd 11/14/06 9:27 AM Page 38

.... .011 = Mode: client (3)

Peer Clock Stratum: unspecified or unavailable (0)

Peer Polling Interval: 6 (64 sec)

Peer Clock Precision: 0.000008 sec

Root Delay: 0.0000 sec

Clock Dispersion: 0.0039 sec

Reference Clock ID: Unindentified reference source 'INIT'

Reference Clock Update Time: NULL

Originate Time Stamp: Mar 29, 2006 06:09:01.6976 UTC

Receive Time Stamp: Mar 29, 2006 06:09:01.7563 UTC

Transmit Time Stamp: Mar 29, 2006 06:10:07.7525 UTC

Network Time Protocol

Flags: 0x24

00.. = Leap Indicator: no warning (0)

..10 0... = Version number: NTP Version 4 (4)

.... .100 = Mode: server (4)

Peer Clock Stratum: secondary reference (5)

Peer Polling Interval: 6 (64 sec)

Peer Clock Precision: 0.000008 sec

Root Delay: 0.0000 sec

Clock Dispersion: 0.0122 sec

Reference Clock ID: 127.127.1.0

Reference Clock Update Time: Mar 29, 2006 06:09:48.4681 UTC

Originate Time Stamp: Mar 29, 2006 06:10:07.7525 UTC

Receive Time Stamp: Mar 29, 2006 06:10:07.6674 UTC

Transmit Time Stamp: Mar 29, 2006 06:10:07.6675 UTC

HTTP
HTTP is the most widely used protocol that supports the Web. HTTP uses TCP to
transmit data exclusively, and in a default configuration uses port 80. Each object
(e.g., Web page, image, audio) fetched from a Web server is transmitted via an indi-
vidual HTTP session.

To begin an HTTP session, a client establishes a regular TCP connection on
port 80 and sends a packet with the SYN flag set.A packet is returned from the
Web server, with an ACK flag added to the SYN flag. Finally, the client sends a
packet with the ACK flag set, and then sends another packet requesting a specific
HTTP object.

www.syngress.com

Introducing Network Analysis • Chapter 1 39

377_Eth_2e_ch01.qxd 11/14/06 9:27 AM Page 39

The following is an example of a client’s request to a HTTP server:

GET /index.html HTTP/1.1

The client requests the index.html page using HTTP v1.1:

Host: www.example.com

The hostname that was typed in the browser allows a server to host multiple
Web services on one IP address:

User-Agent: ELinks/0.11.0 (textmode; Linux; 80x25-2)

The User-Agent describes the Web browser version to the server. Some browsers
allow users to change hostnames; thereby deeming it unreliable.

Accept-Encoding: gzip

Accept-Language: en

Connection: Keep-Alive

These lines tell the Web server that the client supports compression of the object
requested, accepts pages in English, and the Web server doesn’t have to disconnect
upon completion of the object request.

The Web server sends back the following information to the client:

HTTP/1.1 200 OK

The Web server responds in HTTP/1.1 with status code “200 OK,” which indi-
cates to the browser that the object was successfully fetched. Other codes are “403
Forbidden,” (the server does not have permission to send the object to the client,
and “404,” (the server cannot find the object that the client requested).

Date: Thu, 30 Mar 2006 05:23:29 GMTLast-Modified: Wed, 29 Mar 2006 16:22:05 GMT

Server: Apache/2.2.0

These lines allow the client to cache content efficiently. It tells the client what
time the server thinks it is, and when the content was last modified.The server also
identifies its product (Apache) and version (2.2.0), although this can be changed by
the server administrator.

Accept-Ranges: bytes
Content-Length: 40Connection: close
Content-Type: text/html; charset=UTF-8<HTML><BODY>Hello, world!</BODY></HTML>

If needed to restart the transfer, the server tells the client in what form it can
request portions of a file (in this case it accepts bytes).The server then tells the client
to close the connection after the data is finished.The actual HTTP data follows,
beginning with the line “Content-Type.”

www.syngress.com

40 Chapter 1 • Introducing Network Analysis

377_Eth_2e_ch01.qxd 11/14/06 9:27 AM Page 40

SMTP
SMTP is the mechanism by which most e-mail is sent over the Internet. SMTP uses
TCP to transmit data exclusively, and in most situations the server uses port 25.The
entire e-mail (headers and contents) is sent in one SMTP session. It is easy to emu-
late a SMTP session using the Telnet program to port 25 of an e-mail server.

Think of an SMTP connection the same as sending a memo through the reg-
ular mail. On the outside of the envelope are a return address and a destination.
The return address and destination might also be repeated inside the envelope,
but the mail carrier doesn’t care about what is inside the envelope. In an SMTP
connection, the message envelope is transmitted first, followed by the letter con-
tents inside.

The following is an example of an SMTP conversation.The client sends in
normal text, and the server responds in italics:

220 example.org ESMTP Mail Service

HELO client.example.com

250 Ok

Upon connection, the server indicates its presence with a banner that includes
the version of the e-mail server program, but can also be configured by the user to
be an arbitrary banner, as long as it begins with the hostname of the server.The
client says “HELO” to the server, and tells it what name it wants to go by.The
HELO command is also used for clients that support advanced SMTP features such
as encryption.The server acknowledges the client with an “Ok” response.

MAIL FROM:<person@example.com>

250 Ok

The client sends a MAIL FROM command, indicating the return address,
which may or may not match the letter’s contents.Your Mail User Agent or
e–mail reader normally only show the address contained in the letter, disregarding
the envelope.

RCPT TO:<anotherperson@example.org
250 Ok

The client sends the destination of the envelope and the server acknowledges it.
At this point, you may see a “Relaying Denied” message, indicating that the

server will not accept the e-mail.At the beginning of e-mail, systems were free to
send e-mail directly to each other, or by relaying it through any other system on the
Internet. However, this arrangement broke down in the 1990s when spam became a
major issue on the Internet. Most systems now accept e-mail for themselves only,
and relaying is generally only relevant to ISPs.

www.syngress.com

Introducing Network Analysis • Chapter 1 41

377_Eth_2e_ch01.qxd 11/14/06 9:27 AM Page 41

DATA

354 End data with <CR><LF>.<CR><LF>

From: "person" <person@example.com>

To: example@example.com

Example E-Mail subject.

Example e-mail contents.

.

250 Ok: queued as C8243B4039QUIT221

Quit 221 Bye

The client sends the DATA command, telling the server that the contents of the
letter will be transmitted.The e-mail’s headers are normally repeated at this point, and
it is from here that e-mail is communicated.To end the e-mail, the server instructs the
client to send a linefeed, followed by a dot and another linefeed.The client politely
issues the QUIT command, and the server bids the client farewell.

Protecting Against Sniffers
So far, you have learned what sniffing is and how it works.You have also learned
some of the tricks that can be used by intruders for sniffing, and some not-so-fool-
proof methods of detecting sniffers. None of this sheds a positive light on your
plight to protect your network and data. However, there are some methods on your
network that offer protection against sniffing.

We talked earlier about using switches instead of hubs, and we learned the
methods used to defeat switches. Using switches is a network best practice that
allows increased performance and security. While switches present a barrier to casual
sniffing, the best method of protecting your data is to use encryption, which is the
best form of protection against traffic interception on public networks and internal
networks. Intruders can still sniff the traffic, but the data appears unreadable. Only
the intended recipient should be able to decrypt and read the data; however, some
methods of encryption leave the packet headers in cleartext, thereby allowing
intruders to see the source and destination addresses and map the network. However,
the data contained within the packet is protected. Other forms of encryption also
mask the header portion of the packet.

A VPN uses encryption and authentication to provide secure communication over
an otherwise insecure network.VPNs protect the transmission of data over the
Internet and over your internal network. However, if an intruder compromises either
of the end nodes of a VPN, the protection is rendered useless. Different types of VPN
families are not interchangeable, but they can be combined and used in multiples.The

www.syngress.com

42 Chapter 1 • Introducing Network Analysis

377_Eth_2e_ch01.qxd 11/14/06 9:27 AM Page 42

following list describes some of the VPN methods used today that protect your data
against sniffing:

■ SSH SSH is an application-level VPN that runs over TCP to secure client-
to-server transactions.This is often used for system logins and to administer
servers remotely, and is typically used to replace Telnet, FTP, and the BSD r
commands. However, any arbitrary TCP protocol can be tunneled through
an SSH connection and used for numerous other applications. SSH pro-
vides authentication using Rivest, Shamir, & Adleman (RSA) or Digital
Signature Algorithm (DSA) asymmetric key pairs, and many encryption
options for protecting data and passwords sent over the network.The
headers in an SSH session are not encrypted, so an intruder can still view
the source and destination addresses.

■ Secure Sockets Layer (SSL)/Transport Layer Security (TLS) SSL
was originally developed by Netscape Communications to provide secu-
rity and privacy to Internet sessions. It has been replaced by TLS, as
stated in RFC 2246.TLS provides security at the transport layer and
overcomes some security issues of SSL. It is used to encapsulate the net-
work traffic of higher-level applications such as HTTP, Lightweight
Directory Access Protocol (LDAP), FTP, SMTP, POP3, and IMAP. It
provides authentication and integrity via digital certificates and digital
signatures and the source and destination IP headers in a SSL session are
not encrypted.

■ IP Security (IPSec) IPSec is a network-level protocol that incorporates
security into the IPv4 and IPv6 protocols directly at the packet level, by
extending the IP packet header.This allows the ability to encrypt any
higher-layer protocol. It has been incorporated into routing devices, fire-
walls, and clients for securing trusted networks to one another. IPSec
provides several means for authentication and encryption, supporting a
lot of public key authentication ciphers and symmetric key encryption
ciphers. It can operate in tunnel mode to provide a new IP header that
masks the original source and destination addresses in addition to the
data being transmitted. Since IPSec uses protocols other than TCP and
UDP, getting the IPSec traffic through a firewall or NAT device can be
challenging.

■ OpenVPN OpenVPN is a tunneling SSL VPN protocol, which can
encrypt both the contents of a packet and its IP headers. OpenVPN uses a
single TCP or UDP port; therefore, it can be easier to use in environments
with challenging NAT and firewall architectures.Additionally, it can act as a
virtual network bridge (a layer 2 VPN).

www.syngress.com

Introducing Network Analysis • Chapter 1 43

377_Eth_2e_ch01.qxd 11/14/06 9:27 AM Page 43

One-time passwords (OTP) are another method to protect against sniffing.
S/key, One-time Passwords In Everything (OPIE), and other one-time password
techniques protect against the collection and reuse of passwords.They operate using
a challenge-response method, and a different password is transmitted each time
authentication is needed.The passwords that a sniffer collects are eventually useless
since they are only used once. Smart cards are a popular method of implementing
one-time passwords. However, OTP technologies cannot help protect your password
after you enter it.

E-mail protection is a hot topic for companies and individuals.Two methods of
protecting e-mail (i.e., encrypting it in-transit and in storage) are Pretty Good
Privacy (PGP) and Secure Multipurpose Internet Mail Extensions (S/MIME). Each
of these methods also provides authentication and integrity using digital certificates
and digital signatures.

Network Analysis and Policy
Before cracking open your newly installed network analyzer at work, read your
company policy! A properly written and comprehensive “Appropriate Use” network
policy will prohibit you from running network analyzers. Usually the only exception
to this is if network analysis is in your job description.Also, just because you provide
security consulting services for company clients does not mean that you can use
your sniffer on the company network. However, if you are an administrator and
allowed to legitimately run a sniffer, you can use it to enforce your company’s secu-
rity policy. If the policy on using sniffers is not clear in your organization, take the
time to get permission in writing from the appropriate departments before using
them or any other security-related tools. On the other hand, if your security policy
prohibits using file-sharing applications (e.g., KaZaA, Morpheus, BitTorrent or mes-
saging services such as Internet Relay Chat [IRC] or Instant Messenger [IM]), you
could use a sniffer to detect this type of activity.

Also, if you provide security services for clients, be sure that using a sniffer is
included in your Rules of Engagement. Be very specific about how, where, and
when it will be used.Also, provide clauses (e.g., Non-Disclosure Agreements) that
will exempt you from the liability of learning confidential information.

Ensure that your sniffing activities do not violate any laws against wiretapping. In
many countries, wiretapping laws were enacted at a time when modems were the
most complicated network access device, so the clarification of laws and related reg-
ulatory requirements can be complex and differ based on the situation and the par-
ties involved.

www.syngress.com

44 Chapter 1 • Introducing Network Analysis

377_Eth_2e_ch01.qxd 11/14/06 9:27 AM Page 44

CAUTION

Many ISPs prohibit using sniffers in their “Appropriate Use” policy. If they
discover that you are using one while attached to their network, they
may disconnect your service. The best place to experiment with a sniffer
is on your home network that is not connected to the Internet. All you
need is two computers with a crossover cable between them, or a virtual
machine application. You can use one as a client, and install server ser-
vices on the other (e.g., Telnet, FTP, Web, and e-mail).

NOTE

You can download packet traces from numerous Web sites and read
them with your network analyzer to get used to analyzing and inter-
preting packets.

The HoneyNet Project at www.project.honeynet.org has monthly
challenges and other data for analysis.

The Wireshark “wiki” also has many well-described capture files that
are located at www.wiki.wireshark.org/SampleCaptures.

www.syngress.com

Introducing Network Analysis • Chapter 1 45

377_Eth_2e_ch01.qxd 11/14/06 9:27 AM Page 45

Summary
Network analysis is the key to maintaining an optimized network and detecting
security issues. Proactive management can help find issues before they turn into
serious problems and cause network downtime or compromise confidential data. In
addition to identifying attacks and suspicious activity, your network analyzer can be
used to identify security vulnerabilities and weaknesses and enforce your company’s
security policy. Sniffer logs can be correlated with IDSes, firewalls, and router logs to
provide evidence for forensics and incident handling.A network analyzer allows you
to capture data from the network (packet-by-packet), decode the information, and
view it in an easy-to-understand format. Network analyzers are easy to find, often
free, and easy to use; they are a key part of any administrator’s toolbox.

This chapter covered the basics of networking, Ethernet, the OSI model, and the
hardware that is used in a network architecture; however, it only scratched the sur-
face.A good networking and protocol reference should be on every administrator’s
bookshelf. It will come in handy when you discover some unknown or unusual
traffic on your network.

As an administrator, you should know how to detect the use of sniffers by
intruders.You should keep up-to-date on the methods that intruders use to get
around security measures that are meant to protect against sniffing.As always, you
also need to make sure that your computer systems are up-to-date with patches and
security fixes to protect against rootkits and other backdoors.

This chapter also covered a variety of methods used to protect data from eaves-
dropping by sniffers. It is important to remain up-to-date on the latest security tech-
nologies, encryption algorithms, and authentication processes. Intruders are
constantly finding ways to defeat current security practices, thus more powerful
methods are developed (e.g., cracking the Data Encryption Standard [DES] encryp-
tion scheme and its subsequent replacement with Triple Data Encryption Standard
(3DES), followed by the Advanced Encryption Standard (AES).

Finally, remember the rule of network analysis—only do it if you have permis-
sion and the law is on your side.A curious, up-and-coming administrator could
easily be mistaken for an intruder. Make sure you have permission, or use your own
private network to experiment.

www.syngress.com

46 Chapter 1 • Introducing Network Analysis

377_Eth_2e_ch01.qxd 11/14/06 9:27 AM Page 46

Solutions Fast Track

What is Network Analysis and Sniffing?

� Network analysis is capturing and decoding network data.

� Network analyzers can be hardware or software, and are available both free
and commercially.

� Network analyzer interfaces usually have three panes: Summary, Detail,
and Data.

� The five parts of a network analyzer are: hardware, capture driver, buffer,
real-time analysis, and decode.

Who Uses Network Analysis?

� Administrators use network analysis for troubleshooting network problems,
analyzing the performance of a network, and intrusion detection.

� When intruders use sniffers, it is considered a passive attack.

� Intruders use sniffers to capture user names and passwords, collect
confidential data, and map the network.

� Sniffers are a common component of a rootkit.

� Intruders use sniffers to control backdoor programs.

How Does it Work?

� Ethernet is a shared medium that uses MAC or hardware addresses.

� The OSI model has seven layers and represents a standard for network
communication.

� Hubs send out information to all hosts on the segment, creating a shared
collision domain.

� Switches have one collision domain per port and keep an address table of
the MAC addresses that are associated with each port.

� Port mirroring is a feature that allows you to sniff on switches.

www.syngress.com

Introducing Network Analysis • Chapter 1 47

377_Eth_2e_ch01.qxd 11/14/06 9:27 AM Page 47

� Switches make sniffing more difficult; however, the security measures in
switch architectures can be overcome by a number of methods, thus
allowing the sniffing of traffic designated for other computers.

� Sniffing wired traffic can be done with many kinds of NICs; wireless
sniffing requires greater attention to hardware details such as chipset and
drivers.

Detecting Sniffers

� Sometimes sniffers can be detected on local systems by looking for the
PROMISC flag.

� There are several tools available that attempt to detect promiscuous mode
using various methods.

� Carefully monitoring hosts, hub and switch ports, and DNS reverse lookups
assists in detecting sniffers.

� Honeypots are a good method to detect intruders on your network who
are attempting to use compromised passwords.

� New sniffers are smart enough to hide from traditional detection
techniques.

Protocol Dissection

� DNS packets can use either TCP or UDP, depending on the purpose of the
query and the amount of data transmitted.

� NTP data transmissions generally use UDP port 123 for both the client
and server side ports.

� Multiple virtual HTTP servers can listen on one port.The Host: header
indicates to the server which virtual server the client intended to connect
with.

� Α SMTP connection can be emulated with a simple network program such
as Telnet. If your SMTP server is left open on the Internet, it will
eventually be used to send spam.

www.syngress.com

48 Chapter 1 • Introducing Network Analysis

377_Eth_2e_ch01.qxd 11/14/06 9:27 AM Page 48

www.syngress.com

Introducing Network Analysis • Chapter 1 49

Protecting Against Sniffers

� Switches offer little protection against sniffers.

� Encryption is the best method of protecting your data from sniffers.

� SSH, SSL/TLS, and IPSec are all forms of VPNs that operate at various
layers of the OSI model.

� IPSec tunnel mode can protect the source and destination addresses in the
IP header by appending a new header.

Network Analysis and Policy

� Make sure you have permission to use a sniffer on a network that is not
your own.

� Read the appropriate use policies of your ISP before using a sniffer.

� If you are hired to assess a computer network and plan to use a sniffer,
make sure you have a non-disclosure agreement in place, because you may
have access to confidential data.

� One-time passwords render compromised passwords useless.

� E-mail should be protected while in transit, and stored with some type of
data encryption method.

Q: What can I do to protect my network from sniffers?

A: Proper network security comes by design, not just through action. Some argue
that there is nothing you can do to make your network completely secure. A
combination of network access controls like 802.1x, ubiquitous and oppor-
tunistic encryption, and strong policies and procedures will go a long way to

Frequently Asked Questions
The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

377_Eth_2e_ch01.qxd 11/14/06 9:27 AM Page 49

protecting your network from sniffers and other security issues. Using several
layers of security is known as defense-in-depth, and is a standard best practice for
secure network architectures.

Q: What is this opportunistic encryption that you speak of, and where can I buy it?

A: Opportunistic Encryption is the practice where communication between two
parties becomes encrypted, even when those parties cannot be assured of each
other’s identity. More information on opportunistic encryption is available at
www.en.wikipedia.org/wiki/Opportunistic_encryption free of charge.
Ubiquitous opportunistic encryption is the theory that any network communi-
cation that can be encrypted, should be.

Q: How can I ensure that I am sniffing network traffic legally?

A: The best way to ensure that your sniffing activities are legal is to solicit expert
legal counsel. In general, you should be safe if all parties to the communication
that you are sniffing acknowledge that they have no expectation of privacy on
your network.These acknowledgements can be in employment contracts, and
should also be set as banners so that the expectation of no privacy is reinforced.
It is advised that you get authorization (in writing) from your employer to use
sniffing software.

Q: Is a sniffer running a security breach on my network?

A: Possibly. Check the source of the sniffing activity and verify that the interception
has been authorized. Hackers and other network miscreants use sniffers to assist
themselves in their work. It is best to design networks and other applications that
are resilient to network sniffing and other security issues.

Q: Can I use a sniffer as an IDS?

A: While a sniffer can act similarly to an IDS, it is not designed as such. IDSes have
threshold, alerting, and reporting systems that are beyond the design specifica-
tions for most sniffers.

Q: How do I use a sniffer to see traffic inside a VPN?

A: VPN traffic is normally encrypted and most sniffing software does not have the
ability to read encrypted packets, even if you have the decryption key.The best
place to see VPN traffic is outside of the VPN tunnel itself.

www.syngress.com

50 Chapter 1 • Introducing Network Analysis

377_Eth_2e_ch01.qxd 11/14/06 9:27 AM Page 50

51

Introducing
Wireshark: Network
Protocol Analyzer

Solutions in this chapter:

■ What is Wireshark?

■ Supporting Programs

■ Using Wireshark in Your Network Architecture

■ Using Wireshark for Network Troubleshooting

■ Using Wireshark for System Administration

■ Using Wireshark for Security Administration

■ Securing Wireshark

■ Optimizing Wireshark

■ Advanced Sniffing Techniques

■ Securing Your Network from Sniffers

Chapter 2

� Summary

� Solutions Fast Track

� Frequently Asked Questions

377_Eth_2e_ch02.qxd 11/14/06 9:32 AM Page 51

Introduction
You may have picked up this book because you heard about Wireshark (or its prede-
cessor, Ethereal) and its feature-rich graphical user interface (GUI). Or maybe you
read about it on the Internet, overheard a co-worker talking about it, or heard about
it at a security conference. No matter what the case may be, if you are looking for a
comprehensive guide to help you unleash the powers of Wireshark, you’ve come to
the right place.

Wireshark is the best open-source network analyzer available. It is packed
with features comparable to commercial network analyzers, and with a large,
diverse collection of authors, new enhancements are continually developed.
Wireshark is a stable and useful component for all network toolkits, and new fea-
tures and bug fixes are always being developed. A lot of progress has been made
since the early days of Wireshark (when it was still called Ethereal); the applica-
tion now performs comparably (and in some regards) better than commercial
sniffing software.

In this chapter, you will gain an understanding of what Wireshark is, what its
features are, and how to use it for troubleshooting on your network architecture.
Additionally, you will learn the history of Wireshark, how it came to be such a pop-
ular network analyzer, and why it remains a top pick for system and security admin-
istration.Along the way, we go over some tips for running Wireshark in a secure
manner, optimizing it so that it runs advanced techniques smoothly.

What is Wireshark?
Wireshark is a network analyzer. It reads packets from the network, decodes them,
and presents them in an easy-to-understand format. Some of the most important
aspects of Wireshark are that it is open source, actively maintained, and free.The fol-
lowing are some of the other important aspects of Wireshark:

■ It is distributed under the Gnu’s Not UNIX (GNU) General Public
License (GPL) open-source license.

■ It works in promiscuous and non-promiscuous modes.

■ It can capture data from the network or read from a capture file.

■ It has an easy-to-read and configurable GUI.

■ It has rich display filter capabilities.

www.syngress.com

52 Chapter 2 • Introducing Wireshark: Network Protocol Analyzer

377_Eth_2e_ch02.qxd 11/14/06 9:32 AM Page 52

■ It supports tcpdump format capture filters. It has a feature that reconstructs
a Transmission Control Protocol (TCP) session and displays it in American
Standard Code for Information Interchange (ASCII), Extended Binary
Coded Decimal Interchange Code (EBCDIC), hexadecimal (hex) dump,
or C arrays.

■ It is available in precompiled binaries and source code.

■ It runs on over 20 platforms, including Uniplexed Information and
Computing System (UNIX)-based operating systems (OSes) and Windows,
and there are third-party packages available for Mac OS X.

■ It supports over 750 protocols, and, because it is open source, new ones are
contributed frequently.

■ It can read capture files from over 25 different products.

■ It can save capture files in a variety of formats (e.g., libpcap, Network
Associates Sniffer, Microsoft Network Monitor (NetMon), and Sun snoop).

■ It can capture data from a variety of media (e.g., Ethernet,Token-Ring,
802.11 Wireless, and so on).

■ It includes a command-line version of the network analyzer called tshark.

■ It includes a variety of supporting programs such as editcap, mergecap, and
text2pcap.

■ Output can be saved or printed as plaintext or PostScript.

History of Wireshark
Gerald Combs first developed Ethereal in 1997, because he was expanding his
knowledge of networking and needed a tool for network troubleshooting.The first
version (v0.2.0) was released in July 1998.A development team, including Gilbert
Ramirez, Guy Harris, and Richard Sharpe, quickly formed to provide patches,
enhancements, and additional dissectors. Dissectors are what allow Wireshark to
decode individual protocols and present them in readable format. Since then, a large
number of individuals have contributed specific protocol dissectors and other
enhancements to Wireshark.You can view the list of authors at
www.wireshark.org/about.html#authors. Because of the overwhelming development
support and the large user base, Wireshark’s capabilities and popularity continue to
grow every day.

www.syngress.com

Introducing Wireshark: Network Protocol Analyzer • Chapter 2 53

377_Eth_2e_ch02.qxd 11/14/06 9:32 AM Page 53

Compatibility
As stated, Wireshark can read and process capture files from a number of different
products, including other sniffers, routers, and network utilities. Because Wireshark
uses the popular Promiscuous Capture Library (libpcap)-based capture format, it
interfaces easily with other products that use libpcap. It also has the ability to read
captures in a variety of other formats. Wireshark can automatically determine the

www.syngress.com

54 Chapter 2 • Introducing Wireshark: Network Protocol Analyzer

The GNU GPL
The GNU Project was originally developed in 1984 to provide a free UNIX-like
OS. It is argued that Linux, the “OS” should be referred to as the “GNU/Linux”
system because it uses the GNU utilities with a Linux kernel.

The GNU Project is run and sponsored by the Free Software Foundation
(FSF). Richard Stallman wrote the GNU GPL in 1989, for the purpose of dis-
tributing programs released as part of the GNU Project. It is a copyleft (i.e.,
Copyleft—all rights reserved), free software license and is based on similar
licenses that were used for early versions of GNU Editor Emacs (MACroS).

Copyleft is the application of copyright law to ensure public freedom to
manipulate, improve, and redistribute a work of authorship and all derivative
works. This means that the copyright holder grants an irrevocable license to all
recipients of a copy, permitting the redistribution and sale of possibly further
modified copies under the condition that all of those copies carry the same
license and are made available in a form that facilitates modification. There are
legal consequences to face if a licensee fails to distribute the work under the
same license. If the licensee distributes copies of the work, the source code and
modification must be made available.

The text of the GPL software license itself cannot be modified. You can
copy and distribute it, but you cannot change the text of the GPL. You can
modify the GPL and make it your own license, but you cannot use the name
“GPL.” Other licenses created by the GNU project include the GNU Lesser GPL
and the GNU Free Documentation License.

There remains an ongoing dispute about the GPL and whether or not non-
GPL software can link to GPL libraries. Although derivative works of GPL code
must abide by the license, it is not clear whether an executable that links to a
GPL library is considered a derivative work. The FSF states that such executables
are derivatives to the GPL work, but others in the software community dis-
agree. To date, there have not been any court decisions to resolve this conflict.

Notes From the Underground…

377_Eth_2e_ch02.qxd 11/14/06 9:32 AM Page 54

type of file it is reading and can uncompress GNU Zip (gzip) files.The following
list shows the products from which Wireshark can read capture files:

■ Tcpdump

■ Sun snoop and atmsnoop

■ Microsoft NetMon

■ Network Associates Sniffer (compressed or uncompressed) and Sniffer Pro

■ Shomiti/Finisar Surveyor

■ Novell LANalyzer

■ Cinco Networks NetXRay

■ AG Group/WildPackets EtherPeek/TokenPeek/AiroPeek

■ RADCOM’s wide area network (WAN)/local area network (LAN) analyzer

■ Visual Networks’ Visual UpTime

■ Lucent/Ascend router debug output

■ Toshiba’s Integrated Services Digital Network (ISDN) routers dump output

■ Cisco Secure intrusion detection systems (IDS) iplog

■ AIX’s iptrace

■ HP-UX nettl

■ ISDN4BSD project’s i4btrace output

■ Point-To-point Protocol Daemon (PPPD) logs (pppdump-format)

■ VMS’s TCPIPtrace utility

■ DBS Etherwatch Virtual Memory System (VMS) utility

■ CoSine L2 debug

■ Accellent’s 5Views LAN agent output

■ Endace Measurement Systems’ Electronic Remote Fill (ERF) capture format

■ Linux Bluez Bluetooth stack “hcidump –w” traces

■ Catapult DCT2000

■ Network Instruments Observer version 9

■ EyeSDN Universal Serial Bus (USB) S0 traces

www.syngress.com

Introducing Wireshark: Network Protocol Analyzer • Chapter 2 55

377_Eth_2e_ch02.qxd 11/14/06 9:32 AM Page 55

Supported Protocols
When a network analyzer reads data from the network it needs to know how to
interpret what it is seeing and then display the output in an easy-to-read format.
This is known as protocol decoding. Often, the number of protocols a sniffer can read
and display determines its strength, thus most commercial sniffers can support several
hundred protocols. Wireshark is very competitive in this area, with its current sup-
port of over 750 protocols. New protocols are constantly being added by various
contributors to the Wireshark project. Protocol decodes, also known as dissectors, can
be added directly into the code or included as plug-ins.The following list shows the
752 protocols that are currently supported at the time of this writing:

3COMXNS, 3GPP2 A11, 802.11 MGT, 802.11 Radiotap, 802.3 Slow proto-
cols, 9P,AAL1,AAL3/4,AARP,ACAP,ACN,ACSE,ACtrace,ADP,AFP,AFS
(RX),AgentX,AH,AIM,AIM Administration,AIM Advertisements,AIM
BOS,AIM Buddylist,AIM Chat,AIM ChatNav,AIM Directory,AIM E-mail,
AIM Generic,AIM ICQ,AIM Invitation,AIM Location,AIM Messaging,
AIM OFT,AIM Popup,AIM Signon,AIM SSI,AIM SST,AIM Stats,AIM
Translate,AIM User Lookup,AJP13,ALC,ALCAP,AMR,ANS,ANSI
BSMAP,ANSI DTAP,ANSI IS-637-A Teleservice,ANSI IS-637-A Transport,
ANSI IS-683-A (OTA (Mobile)),ANSI IS-801 (Location Services (PLD)),
ANSI MAP,AODV,AOE,ARCNET,Armagetronad,ARP/RARP,ARTNET,
ASAP,ASF,ASN1,ASP,ATM,ATM LANE,ATP,ATSVC,Auto-RP,AVS
WLANCAP,AX4000, BACapp, BACnet, Basic Format XID, BEEP, BER,
BFD Control, BGP, BICC, BitTorrent, Boardwalk, BOFL, BOOTP/DHCP,
BOOTPARAMS, BOSSVR, BROWSER, BSSAP, BSSGP, BUDB, BUTC,
BVLC, CAMEL, CAST, CBAPDev, CCSDS, CCSRL, CDP, CDS_CLERK,
cds_solicit, CDT, CFLOW, CGMP, CHDLC, CIGI, CIMD, CIP, CISCOWL-
L2, CLDAP, CLEARCASE, CLNP, CLTP, CMIP, CMP, CMS, CONV, COPS,
COSEVENTCOMM, CoSine, COSNAMING, COTP, CPFI, CPHA,
cprpc_server, CRMF, CSM_ENCAPS, CUPS, DAAP, DAP, Data, dc, DCCP,
DCE_DFS, dce_update, DCERPC, DCOM, DCP, DDP, DDTP, DEC_DNA,
DEC_STP, DFS, DHCPFO, DHCPv6, DIAMETER, dicom, DIS, DISP,
DISTCC, DLSw, DLT User A, DLT User B, DLT User C, DLT User D, DNP
3.0, DNS, DNSSERVER, DOCSIS, DOCSIS BPKM-ATTR, DOCSIS
BPKM-REQ, DOCSIS BPKM-RSP, DOCSIS DSA-ACK, DOCSIS DSA-
REQ, DOCSIS DSA-RSP, DOCSIS DSC-ACK, DOCSIS DSC-REQ,
DOCSIS DSC-RSP, DOCSIS DSD-REQ, DOCSIS DSD-RSP, DOCSIS
INT-RNG-REQ, DOCSIS MAC MGMT, DOCSIS MAP, DOCSIS REG-
ACK, DOCSIS REG-REQ, DOCSIS REG-RSP, DOCSIS RNG-REQ,

www.syngress.com

56 Chapter 2 • Introducing Wireshark: Network Protocol Analyzer

377_Eth_2e_ch02.qxd 11/14/06 9:32 AM Page 56

DOCSIS RNG-RSP, DOCSIS TLVs, DOCSIS type29ucd, DOCSIS UCC-
REQ, DOCSIS UCC-RSP, DOCSIS UCD, DOCSIS VSIF, DOP,
DRSUAPI, DSI, DSP, DSSETUP, DTP, DTSPROVIDER,
DTSSTIME_REQ, DUA, DVMRP, E.164, EAP, EAPOL, ECHO,
EDONKEY, EDP, EFS, EIGRP, ENC, ENIP, ENRP, ENTTEC, EPM,
EPMv4, ESIS, ESP, ESS, ETHERIC, ETHERIP, Ethernet, EVENTLOG, FC,
FC ELS, FC FZS, FC-dNS, FC-FCS, FC-SB3, FC-SP, FC-SWILS, FC_CT,
FCIP, FCP, FDDI, FIX, FLDB, FR, Frame, FRSAPI, FRSRPC, FTAM, FTBP,
FTP, FTP-DATA, FTSERVER, FW-1, G.723, GIF image, giFT, GIOP,
GMRP, GNM, GNUTELLA, GPRS NS, GPRS-LLC, GRE, Gryphon, GSM
BSSMAP, GSM DTAP, GSM RP, GSM SMS, GSM SMS UD, GSM_MAP,
GSM_SS, GSS-API, GTP, GVRP, H.223, H.225.0, H.235, H.245, H.261,
H.263, H.263 data, H1, h221nonstd, H248, h450, HCLNFSD, HPEXT,
HPSW, HSRP, HTTP, HyperSCSI, IAP, IAPP, IAX2, IB, ICAP, ICBAAccoCB,
ICBAAccoCB2, ICBAAccoMgt, ICBAAccoMgt2, ICBAAccoServ,
ICBAAccoServ2, ICBAAccoServSRT, ICBAAccoSync, ICBABrowse,
ICBABrowse2, ICBAGErr, ICBAGErrEvent, ICBALDev, ICBALDev2,
ICBAPDev, ICBAPDev2, ICBAPDevPC, ICBAPDevPCEvent, ICBAPersist,
ICBAPersist2, ICBARTAuto, ICBARTAuto2, ICBAState, ICBAStateEvent,
ICBASysProp, ICBATime, ICEP, ICL_RPC, ICMP, ICMPv6, ICP, ICQ,
IDispatch, IDP, IEEE 802.11, IEEE802a, iFCP, IGAP, IGMP, IGRP, ILMI,
IMAP, INAP, INITSHUTDOWN, IOXIDResolver, IP, IP/IEEE1394,
IPComp, IPDC, IPFC, IPMI, IPP, IPv6, IPVS, IPX, IPX MSG, IPX RIP, IPX
SAP, IPX WAN, IRC, IrCOMM, IRemUnknown, IRemUnknown2, IrLAP,
IrLMP, ISAKMP, iSCSI, ISDN, ISIS, ISL, ISMP, iSNS, ISUP, isup_thin,
ISystemActivator, itunes, IUA, IuUP, Jabber, JFIF (JPEG) image, Juniper,
JXTA, JXTA Framing, JXTA Message, JXTA UDP, JXTA Welcome, K12xx,
KADM5, KINK, KLM, Kpasswd, KRB4, KRB5, KRB5RPC, L2TP,
LANMAN, LAPB, LAPBETHER, LAPD, Laplink, LDAP, LDP, Line-based
text data, LLAP, llb, LLC, LLDP, LMI, LMP, Log, LogotypeCertExtn, LOOP,
LPD, LSA, Lucent/Ascend, LWAPP, LWAPP-CNTL, LWAPP-L3, LWRES,
M2PA, M2TP, M2UA, M3UA, MACC, Malformed packet, Manolito,
MAP_DialoguePDU, MAPI, MDS Header, Media, MEGACO, message/http,
Messenger, MGCP, MGMT, MIME multipart, MIPv6, MMS, MMSE, Mobile
IP, Modbus/TCP, MOUNT, MPEG1, MPLS, MPLS Echo, MQ, MQ PCF,
MRDISC, MS NLB, MS Proxy, MSDP, MSMMS, MSNIP, MSNMS, MSRP,
MTP2, MTP3, MTP3MG, MySQL, NBAP, NBDS, NBIPX, NBNS, NBP,
NBSS, NCP, NCS, NDMP, NDPS, NetBIOS, Netsync, nettl, NFS, NFSACL,
NFSAUTH, NHRP, NIS+, NIS+ CB, NJACK, NLM, NLSP, NMAS, NMPI,

www.syngress.com

Introducing Wireshark: Network Protocol Analyzer • Chapter 2 57

377_Eth_2e_ch02.qxd 11/14/06 9:32 AM Page 57

NNTP, NORM, NS_CERT_EXTS, NSIP, NSPI, NTLMSSP, NTP, Null,
NW_SERIAL, OAM AAL, OCSP, OLSR, OPSI, OSPF, P_MUL, PAGP, PAP,
PARLAY, PCLI, PCNFSD, PER, PFLOG, PFLOG-OLD, PGM, PGSQL,
PIM, PKCS-1, PKInit, PKIX Certificate, PKIX1EXPLICIT,
PKIX1IMPLICIT, PKIXPROXY, PKIXQUALIFIED, PKIXTSP, PKTC, PN-
DCP, PN-RT, PNIO, PNP, POP, Portmap, PPP, PPP BACP, PPP BAP, PPP
CBCP, PPP CCP, PPP CDPCP, PPP CHAP, PPP Comp, PPP IPCP, PPP
IPV6CP, PPP LCP, PPP MP, PPP MPLSCP, PPP OSICP, PPP PAP, PPP
PPPMux, PPP PPPMuxCP, PPP VJ, PPP-HDLC, PPPoED, PPPoES, PPTP,
PRES, Prism, PTP, PVFS, Q.2931, Q.931, Q.933, QLLC, QUAKE, QUAKE2,
QUAKE3, QUAKEWORLD, R-STP, RADIUS, RANAP, Raw,
Raw_SigComp, Raw_SIP, rdaclif, RDM, RDT, Redback, REMACT,
REP_PROC, RIP, RIPng, RLM, Rlogin, RMCP, RMI, RMP, RNSAP,
ROS, roverride, RPC, RPC_BROWSER, RPC_NETLOGON, RPL, rpriv,
RQUOTA, RRAS, RS_ACCT, RS_ATTR, rs_attr_schema, RS_BIND,
rs_misc, RS_PGO, RS_PLCY, rs_prop_acct, rs_prop_acl, rs_prop_attr,
rs_prop_pgo, rs_prop_plcy, rs_pwd_mgmt, RS_REPADM, RS_REPLIST,
rs_repmgr, RS_UNIX, rsec_login, RSH, rss, RSTAT, RSVP, RSYNC,
RTcfg, RTCP, RTmac, RTMP, RTP, RTP Event, RTPS, RTSE, RTSP,
RUDP, RWALL, RX, SADMIND, SAMR, SAP, SCCP, SCCPMG, SCSI,
SCTP, SDLC, SDP, SEBEK, SECIDMAP, Serialization, SES, sFlow, SGI
MOUNT, Short frame, SIGCOMP, SIP, SIPFRAG, SIR, SKINNY, SLARP,
SliMP3, SLL, SM, SMB, SMB Mailslot, SMB Pipe, SMB2, SMB_NETL-
OGON, smil, SMPP, SMRSE, SMTP, SMUX, SNA, SNA XID, SNAETH,
SNDCP, SNMP, Socks, SONMP, SoulSeek, SPNEGO, SPNEGO-KRB5,
SPOOLSS, SPP, SPRAY, SPX, SRP, SRVLOC, SRVSVC, SSCF-NNI,
SSCOP, SSH, SSL, SSS, STANAG 4406, STANAG 5066, STAT, STAT-CB,
STP, STUN, SUA, SVCCTL, Symantec, Synergy, Syslog,T.38,TACACS,
TACACS+,TALI,TANGO,TAPI,TCAP,TCP,TDMA,TDS,TEI_MAN-
AGEMENT,TELNET,Teredo,TFTP,TIME,TIPC,TKN4Int,TNS,Token-
Ring,TPCP,TPKT,TR MAC,TRKSVR,TSP,TTP,TUXEDO,TZSP,
UBIKDISK, UBIKVOTE, UCP, UDP, UDPENCAP, UDPlite, UMA,
Unreassembled fragmented packet,V.120,V5UA,Vines ARP,Vines Echo,
Vines FRP,Vines ICP,Vines IP,Vines IPC,Vines LLC,Vines RTP,Vines SPP,
VLAN,VNC,VRRP,VTP,WAP SIR,WBXML,WCCP,WCP,WHDLC,
WHO,WINREG,WINS-Replication,WKSSVC,WLANCERTEXTN,
WSP,WTLS,WTP, X.25, X.29, X11, X411, X420, X509AF, X509CE,
X509IF, X509SAT, XDMCP, XML, XOT, XYPLEX,YHOO,YMSG,
YPBIND,YPPASSWD,YPSERV,YPXFRZEBRA, ZIP

www.syngress.com

58 Chapter 2 • Introducing Wireshark: Network Protocol Analyzer

377_Eth_2e_ch02.qxd 11/14/06 9:32 AM Page 58

Wireshark’s User Interface
Wireshark’s GUI is configurable and easy to use.And like other network analyzers,
Wireshark displays capture information in three main panes. Figure 2.1 shows what a
typical Wireshark capture looks like. Each window is adjustable by clicking on the
row of dots between the window panes and dragging up or down.The upper-most
pane is the summary pane, which displays a one-line summary of the capture.
Wireshark’s default fields include:

■ Packet number

■ Time

■ Source address

■ Destination address

■ Name and information about the highest-layer protocol.

These columns are easily configured, and new ones can be added under
Preferences.You can also sort the columns in an ascending or descending order by
field, and you can rearrange the panes.

NOTE

You will notice that the Windows Wireshark GUI resembles a UNIX appli-
cation rather than a native Windows application. This is because
Wireshark uses the GNU Image Manipulation Program (GIMP) Tool Kit
(GTK) library to create the interface. So regardless of the OS you are run-
ning it on Wireshark will look the same.

The middle pane is the protocol detail pane, which provides the details (in a tree-
like structure) of each layer contained in the captured packet. Clicking on various
parts of the protocol tree highlights corresponding hex and ASCII output in the
bottom pane, and the bottom pane displays the raw captured data in both hex and
ASCII format. Clicking on various parts of this data highlights their corresponding
fields in the protocol tree in the protocol view pane. Figure 2.1 shows the
Wireshark interface and an example of a network synchronize (SYN) scan. Notice
that highlighting the source MAC address in the middle protocol view pane auto-
matically highlights that portion of the hexdump in the bottom data pane.

www.syngress.com

Introducing Wireshark: Network Protocol Analyzer • Chapter 2 59

377_Eth_2e_ch02.qxd 11/14/06 9:32 AM Page 59

One of the best features of Wireshark is its ability to reassemble all of the packets
in a TCP conversation and display the ASCII in an easy-to-read format. (It can also be
viewed in EBCDIC, hexdump, and C arrays.) This data can then be saved or printed,
and used to reconstruct a Web page Simple Mail Transfer Protocol (SMTP) or Telnet
session.To reconstruct a Web page, follow the stream of the Hypertext Transfer
Protocol (HTTP) session and save the output to a file.You should then be able to view
the reconstructed Hypertext Markup Language (HTML) offline (without graphics) in
a Web browser. Figure 2.2 shows the TCP stream output of a FTP session.

Filters
Filtering packets help you find a desired packet without sifting through all of them.
Wireshark has the ability to use both capture and display filters.The capture filter
syntax follows the same syntax that tcpdump uses from the libpcap library. It is used
on the command line or in the “Capture Filter” dialog box to capture certain types
of traffic. Display filters provide a powerful syntax to sort traffic that is already cap-
tured.As the number of protocols grows, the number of protocol fields for display
filters also grow. However, not all protocols currently supported by Wireshark have
display filters.Also, some protocols provide display filter field names for some, but
not all, of the fields. Hopefully, as the product matures and more users contribute to

www.syngress.com

60 Chapter 2 • Introducing Wireshark: Network Protocol Analyzer

Figure 2.1 Wireshark’s GUI

377_Eth_2e_ch02.qxd 11/14/06 9:32 AM Page 60

the development process, this will change.Table 2.1 shows an example of a sup-
ported protocol and its display filters:

Table 2.1 IP Display Filters

Internet Protocol (IP)
Field Name Type

ip.addr Source or Destination IPv4 address
Address

ip.checksum Header checksum Unsigned 16-bit integer
ip.checksum_bad Bad Header checksum Boolean
ip.dsfield Differentiated Services Unsigned 8-bit integer

field
ip.dsfield.ce ECN-CE, Explicit Unsigned 8-bit integer

Congestion Notification:
Congestion Experienced

ip.dsfield.dscp Differentiated Unsigned 8-bit integer
Services Codepoint

www.syngress.com

Introducing Wireshark: Network Protocol Analyzer • Chapter 2 61

Figure 2.2 Follow the TCP Stream

Continued

377_Eth_2e_ch02.qxd 11/14/06 9:32 AM Page 61

Table 2.1 continued IP Display Filters

Internet Protocol (IP)
Field Name Type

ip.dsfield.ect ECN-Capable Unsigned 8-bit integer
Transport (ECT)

ip.dst Destination IPv4 address
ip.flags Flags Unsigned 8-bit integer
ip.flags.df Don’t fragment Boolean
ip.flags.mf More fragments Boolean
ip.frag_offset Fragment offset Unsigned 16-bit integer
ip.fragment IP Fragment Frame number
ip.fragment.error Defragmentation error Frame number
ip.fragment.multipletails Multiple tail fragments Boolean

found
ip.fragment.overlap Fragment overlap Boolean
ip.fragment.overlap. Conflicting data in Boolean
conflict fragment overlap
ip.fragment. Fragment too long Boolean
toolongfragment
ip.fragments IP fragments No value
ip.hdr_len Header length Unsigned 8-bit integer
ip.id Identification Unsigned 16-bit integer
ip.len Total length Unsigned 16-bit integer
ip.proto Protocol Unsigned 8-bit integer
ip.reassembled_in Reassembled IP in frame Frame number
ip.src Source IPv4 address
ip.tos Type of service Unsigned 8-bit integer
ip.tos.cost Cost Boolean
ip.tos.delay Delay Boolean
ip.tos.precedence Precedence Unsigned 8-bit integer
ip.tos.reliability Reliability Boolean
ip.tos.throughput Throughput Boolean
ip.ttl Time-to-live Unsigned 8-bit integer
ip.version Version Unsigned 8-bit integer

www.syngress.com

62 Chapter 2 • Introducing Wireshark: Network Protocol Analyzer

377_Eth_2e_ch02.qxd 11/14/06 9:32 AM Page 62

Once a display filter is implemented, all of the packets that meet the require-
ments are displayed in the packet listing in the summary pane.These filters can be
used to compare fields within a protocol against a value such as ip.src ==
192.168.1.1, to compare fields such as ip.src == ip.dst, or to check the existence of
specified fields or protocols. Filters are also used by statistical features and to colorize
the packets.To create a simple filter to search for a certain protocol or field (e.g., you
want to see all of the HTTP packets), type http.To see just HTTP request packets
(e.g., GET POST, HEAD, and so on) type http.request. Filter fields can also be
compared against values such as http.request.method==“GET” to see only
HTTP GET requests.The comparison operators can be expressed using the fol-
lowing abbreviations and symbols:

■ Equal: eq, ==

■ Not equal: ne, !=

■ Greater than: gt, >

■ Less Than: lt, <

■ Greater than or equal to: ge, >=

■ Less than or equal to: le, <=

Three operators can be expressed by name. Is Present allows you to test for the
existence of a field (e.g., in an Address Resolution Protocol [ARP] packet, the MAC
address is present but not the TCP port). Contains allows you to search the data of a
packet for a string or phrase. Matches uses a regular expression (regex) string for more
powerful pattern matching.

As you can see, filters offer a great deal of flexibility when troubleshooting net-
work problems.

NOTE

Wireshark supports many different types of media (e.g., Ethernet, Token
Ring, Wireless, and asynchronous transfer mode [ATM]).

To ensure that you are using a compatible OS, go to the
“Supported Capture Media” table at http://wireshark.org/
CaptureSetup/NetworkMedia. As you will see, Linux supports nearly all
media types, and Ethernet is supported on all OSes.

www.syngress.com

Introducing Wireshark: Network Protocol Analyzer • Chapter 2 63

377_Eth_2e_ch02.qxd 11/14/06 9:32 AM Page 63

www.syngress.com

64 Chapter 2 • Introducing Wireshark: Network Protocol Analyzer

The Subversion System
Subversion (SVN) is a versioning system that allows developers to work on more
than one same project simultaneously while keeping track of the changes
made, who made them, and what versions were made. There are typically
many versions of a project inside a SVN tree.

SVN and its predecessor Concurrent Versions Systems (CVS) are used for
almost every open-source project (e.g., SourceForge [www.sourceforge.net]
has CVS and SVN repositories for all of the projects it contains. Some projects
allow Web-based access to SVN trees and most allow you to browse using a
SVN client application.

Following are some helpful links for SVN:

■ SVN Command-line Client The command-line client is available at
www.SVN.tigris.org or in package form from many Berkeley
Software Distribution (BSD) and UNIX distributions.

■ TortoiseSVN TortioiseSVN is a shell extension for Microsoft
Windows that integrates with the file explorer available from
www.tortoisesvn.tigris.org.

■ RapidSVN RapidSVN is a cross-platform GUI for SVN that is avail-
able for Windows

■ Mac OS X and Linux are available from www.rapidsvn.tigris.org.
■ Visual Studio .NET Developers using Microsoft Visual Studio .NET

can use a AnkhSVN (www.ankhsvn.tigris.org) a third-party integra-
tion tool for SVN.

The Wireshark SVN listing is maintained at www.wireshark.org/
develop.html. There are several ways to obtain the source code for
Wireshark using SVN:

■ SVN Command Line Used to anonymously download the develop-
ment source.

■ Nighly Snapshots Used to download gzipped tarballs containing
nightly snapshots of the development source tree.

■ SVN Web Interface You can download the source tree via the SVN
Web Interface (http://anonsvn.wireshark.org/wireshark/trunk/) and
view each file and the differences between each version file.

When using SVN versions of Wireshark or other open-source products,
remember that they are considered beta code and may have bugs.

Notes From the Underground…

377_Eth_2e_ch02.qxd 11/14/06 9:32 AM Page 64

Great Resources
Some of the best resources for Wireshark information and support include e-mail
distribution lists (see www.wireshark.org/lists for the appropriate form).

NOTE

When filling out the application, a password is sometimes e-mailed to
you in cleartext. Make sure that you don’t use the same password that
you use for other accounts, because anyone sniffing network traffic can
see the cleartext password when it is e-mailed.

■ Wireshark-announce includes announcements of new releases, bug fixes,
and general issues about Wireshark.All Wireshark users should subscribe to
this list to remain current on important topics.This list tends to be low
volume.To post a message, send an e-mail to wiresharkannounce@
waireshark.org.

■ Wireshark-users includes general information and help using Wireshark.
All Wireshark users should subscribe to this list to share ideas and make
suggestions. It contains moderate traffic.To post a message, send an e-mail
to wireshark-users@waireshark.org.

■ Wireshark-dev includes developer-related information about the inner
workings of Wireshark, and is intended for those interested in contributing
to its development.This list receives a high volume of traffic per day.To
post a message, send an e-mail to wireshark-dev@wireshark.org.

■ Wireshark-commits includes developer-related information to monitor
changes to the Wireshark source tree. It informs developers when changes
are made and what the changes are.The SVN repository sends e-mails to
this list every time code is committed to the Wireshark SVN repository;
therefore, it receives a high volume of traffic. Users do not post directly to
this list. Replies to messages on this list should be sent to www.wireshark-
dev@wireshark.org.

When subscribing to mailing lists, you can choose to have your e-mail batched
in a daily digest, which is a great way to cut down on the amount of traffic and mes-
sages on high-volume lists. However, you won’t get any attachments that are
included with the e-mails.All of the messages from the mailing lists are archived on

www.syngress.com

Introducing Wireshark: Network Protocol Analyzer • Chapter 2 65

377_Eth_2e_ch02.qxd 11/14/06 9:32 AM Page 65

the Wireshark Web site and other mirror sites. Messages are categorized by month,
for as far back as 1998. When troubleshooting a problem, a good strategy is to search
for someone else that has the answer.Another great source of information is the
Wireshark User’s Guide (by Richard Sharpe) located at
www.wireshark.org/docs/wsug_html/. It is also available in many other formats
including PDF at www.wireshark.org/docs.And, as always, the Wireshark Web page
www.wireshark.org also has a lot of good information.The sample captures page
(http://wiki.wireshark.org/SampleCaptures) contains packet traces of network traffic
that can be downloaded and viewed with Wireshark.

The Wireshark Wiki page is another great resource, where anyone can add their
own ideas and experiences with Wireshark.There are many examples of usage refer-
ences and solutions for various challenging sniffing environments. If you have found
a solution, feel free to add it to the wiki at http://wiki.wireshark.org.

Supporting Programs
Most people who are familiar with Wireshark use the Wireshark GUI. However,
when Wireshark is installed, it also comes with several other support programs.The
command-line version of Wireshark (called tshark) contains the following three pro-
grams to assist in manipulating capture files.

Tshark
Tshark is the command-line version of Wireshark, which can be used to capture live
packets from the wire or to read saved capture files. By default, tshark prints the
summary line information to the screen.This is the same information contained in
the top pane of the Wireshark GUI.The following shows the default tshark output:

1.199008 192.168.100.132 -> 192.168.100.122 TCP 1320 > telnet [SYN]
Seq=1102938967 Ack=0 Win=16384 Len=0

1.199246 192.168.100.132 -> 192.168.100.122 TCP 1320 > telnet [SYN]
Seq=1102938967 Ack=0 Win=16384 Len=0

1.202244 192.168.100.122 -> 192.168.100.132 TCP telnet > 1320 [SYN

ACK] Seq=3275138168 Ack=1102938968 Win=49640 Len=0

1.202268 192.168.100.132 -> 192.168.100.122 TCP 1320 > telnet [ACK]
Seq=1102938968 Ack=3275138169 Win=17520 Len=0

1.202349 192.168.100.132 -> 192.168.100.122 TCP 1320 > telnet [ACK]
Seq=1102938968 Ack=3275138169 Win=17520 Len=0

The –V option causes tshark to print the protocol tree view like in the middle
pane in the Wireshark GUI.This shows all of the protocols in the packet and

www.syngress.com

66 Chapter 2 • Introducing Wireshark: Network Protocol Analyzer

377_Eth_2e_ch02.qxd 11/14/06 9:32 AM Page 66

includes the data portion at the end of the list.The following shows a more detailed
protocol tree tshark output:

Frame 5 (74 bytes on wire

74 bytes captured)

Arrival Time: Nov 2

2003 15:22:33.469934000

Time delta from previous packet: 0.000216000 seconds

Time relative to first packet: 1.349439000 seconds

Frame Number: 5

Packet Length: 74 bytes

Capture Length: 74 bytes

Ethernet II

Src: 00:05:5d:ee:7e:53

Dst: 08:00:20:cf:5b:39

Destination: 08:00:20:cf:5b:39 (SunMicro_cf:5b:39)

Source: 00:05:5d:ee:7e:53 (D-Link_ee:7e:53)

Type: IP (0x0800)

Internet Protocol

Src Addr: 192.168.100.132 (192.168.100.132)

Dst Addr: 192.168.100.122 (192.168.100.122)

Version: 4

Header length: 20 bytes

Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)

0000 00.. = Differentiated Services Codepoint: Default (0x00)

.... ..0. = ECN-Capable Transport (ECT): 0

.... ...0 = ECN-CE: 0

Total Length: 60

Identification: 0x160c (5644)

Flags: 0x00

.0.. = Don't fragment: Not set

..0. = More fragments: Not set

Fragment offset: 0

Time to live: 128

Protocol: ICMP (0x01)

Header checksum: 0xda65 (correct)

Source: 192.168.100.132 (192.168.100.132)

Destination: 192.168.100.122 (192.168.100.122)

Internet Control Message Protocol

www.syngress.com

Introducing Wireshark: Network Protocol Analyzer • Chapter 2 67

377_Eth_2e_ch02.qxd 11/14/06 9:32 AM Page 67

Type: 8 (Echo (ping) request)

Code: 0

Checksum: 0x3c5c (correct)

Identifier: 0x0500

Sequence number: 0c:00

Data (32 bytes)

0000 61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 abcdefghijklmnop

0010 71 72 73 74 75 76 77 61 62 63 64 65 66 67 68 69 qrstuvwabcdefghi

Finally, the –x command causes tshark to print a hexdump and an ASCII dump
of the packet data with either the summary line or the protocol tree.The following
shows the hex and ASCII output with the summary line:

9.463261 192.168.100.122 -> 192.168.100.132 TELNET Telnet Data ...

0000 00 05 5d ee 7e 53 08 00 20 cf 5b 39 08 00 45 00 ..].~S.. .[9..E.

0010 00 9a c3 8a 40 00 3c 06 30 84 c0 a8 64 7a c0 a8@.<.0...dz..

0020 64 84 00 17 05 29 cd 5d 7d 12 4c 1d ea 76 50 18 d....).]}.L..vP.

0030 c1 e8 47 ca 00 00 4c 61 73 74 20 6c 6f 67 69 6e ..G...Last login

0040 3a 20 53 75 6e 20 4e 6f 76 20 20 32 20 31 35 3a : Sun Nov 2 15:

0050 34 34 3a 34 35 20 66 72 6f 6d 20 31 39 32 2e 31 44:45 from 192.1

0060 36 38 2e 31 30 30 2e 31 33 32 0d 0a 53 75 6e 20 68.100.132..Sun

0070 4d 69 63 72 6f 73 79 73 74 65 6d 73 20 49 6e 63 Microsystems Inc

0080 2e 20 20 20 53 75 6e 4f 53 20 35 2e 39 20 20 20 . SunOS 5.9

0090 20 20 20 20 47 65 6e 65 72 69 63 20 4d 61 79 20 Generic May

00a0 32 30 30 32 0d 0a 23 20 2002..#

When using tshark to save packet data to a file, by default it outputs in the
libpcap format.Tshark can read the same capture files and use the same display filters
(also known as read filters) and capture filters as Wireshark.Tshark can also decode
the same protocols as Wireshark. Basically, it has most of the powers of Wireshark
(except those inherent to the GUI) in an easy-to-use command- line version.

Editcap
Editcap is used to remove packets from a file, and to translate the format of capture
files. It is similar to the Save As feature, but better. Editcap can read all of the same
types of files that Wireshark can, and writes to the libpcap format by default. Editcap
can also write captures to standard and modified versions of:

■ libpcap

■ Sun snoop

www.syngress.com

68 Chapter 2 • Introducing Wireshark: Network Protocol Analyzer

377_Eth_2e_ch02.qxd 11/14/06 9:32 AM Page 68

■ Novel LANalyzer

■ Network Access Identifier (NAI) Sniffer

■ Microsoft NetMon

■ Visual Network traffic capture

■ Accellent 5Views capture

■ Network Instruments Observer version 9

Editcap has the ability to specify all or some of the packets to be translated.The
following is an example of using editcap to translate the first five packets from a
tshark libpcap capture file (called capture) to a Sun snoop output file (called
capture_snoop):

C:\Program Files\Wireshark>editcap -r -v -F snoop capture capture_snoop 1-5

File capture is a libpcap (tcpdump Wireshark etc.) capture file.

Add_Selected: 1-5

Inclusive ... 1

5

Record: 1

Record: 2

Record: 3

Record: 4

Record: 5

Mergecap
Mergecap is used to combine multiple saved capture files into a single output file.
Mergecap can read all of the same types of files that Wireshark can and writes to
libpcap format by default. Mergecap can also write the output capture file to stan-
dard and modified versions of:

■ libpcap

■ Sun snoop

■ Novel LANalyzer

■ NAI Sniffer

■ Microsoft NetMon

www.syngress.com

Introducing Wireshark: Network Protocol Analyzer • Chapter 2 69

377_Eth_2e_ch02.qxd 11/14/06 9:32 AM Page 69

■ Visual Network traffic capture

■ Accellent 5Views capture

■ Network Instruments Observer

By default, the packets from the input files are merged in chronological order
based on each packet’s timestamp. If the –a option is specified, packets are copied
directly from each input file to the output file regardless of the timestamp.The fol-
lowing is an example of using mergecap to merge four capture files (capture1, cap-
ture2 , capture3, and capture4) into a single Sun snoop output file called merge_snoop
that will keep reading packets until the end of the last file is reached:

C:\Program Files\Wireshark>mergecap -v -F snoop -w merge_snoop capture1
capture2 capture3 capture4

mergecap: capture1 is type libpcap (tcpdump Wireshark etc.).

mergecap: capture2 is type libpcap (tcpdump Wireshark etc.).

mergecap: capture3 is type libpcap (tcpdump Wireshark etc.).

mergecap: capture4 is type libpcap (tcpdump Wireshark etc.).

mergecap: opened 4 of 4 input files

mergecap: selected frame_type Ethernet (ether)

Record: 1

Record: 2

Record: 3

Record: 4

Record: 5

Record: 6

Record: 7

Record: 8

Record: 9

Record: 10

output removed

www.syngress.com

70 Chapter 2 • Introducing Wireshark: Network Protocol Analyzer

377_Eth_2e_ch02.qxd 11/14/06 9:32 AM Page 70

Text2pcap
Text2pcap reads in ASCII hexdump captures and writes the data into a libpcap
output file. It is capable of reading hexdumps containing multiple packets and
building a capture file of multiple packets.Text2pcap can also read hexdumps of
application-level data by inserting dummy Ethernet IP and User Datagram Protocol
(UDP) or TCP headers.The user specifies which of these headers to add.This way
Wireshark and other sniffers can read the full data.The following is an example of
the type of hexdump that text2pcap recognizes:

0000 00 05 5d ee 7e 53 08 00 20 cf 5b 39 08 00 45 00 ..].~S.. .[9..E.

0010 00 9a 13 9e 40 00 3c 06 e0 70 c0 a8 64 7a c0 a8@.<..p..dz..

0020 64 84 00 17 05 49 0e a9 91 43 8e d8 e3 6a 50 18 d....I...C...jP.

0030 c1 e8 ba 7b 00 00 4c 61 73 74 20 6c 6f 67 69 6e ...{..Last login

0040 3a 20 53 75 6e 20 4e 6f 76 20 20 32 20 31 37 3a : Sun Nov 2 17:

0050 30 36 3a 35 33 20 66 72 6f 6d 20 31 39 32 2e 31 06:53 from 192.1

0060 36 38 2e 31 30 30 2e 31 33 32 0d 0a 53 75 6e 20 68.100.132..Sun

0070 4d 69 63 72 6f 73 79 73 74 65 6d 73 20 49 6e 63 Microsystems Inc

0080 2e 20 20 20 53 75 6e 4f 53 20 35 2e 39 20 20 20 . SunOS 5.9

0090 20 20 20 20 47 65 6e 65 72 69 63 20 4d 61 79 20 Generic May

00a0 32 30 30 32 0d 0a 23 20 2002..#

The following is an example of using text2pcap to read the previously shown
hexdump hex_sample.txt and output it to the libpcap_output file:

C:\Program Files\Wireshark>text2pcap hex_sample.txt libpcap_output

Input from: hex_sample.txt

Output to: libpcap_output

Wrote packet of 168 bytes at 0

Read 1 potential packets

wrote 1 packets

Using Wireshark in
Your Network Architecture
The previous chapter discussed various cable taps, hubs, and switches that can be
used to attach a sniffer to a network.This section looks at some of the network
architecture and critical points of Wireshark. Network placement is critical for
proper analysis and troubleshooting. Most importantly, make sure that you are on the
proper network segment. When troubleshooting network issues, you may move

www.syngress.com

Introducing Wireshark: Network Protocol Analyzer • Chapter 2 71

377_Eth_2e_ch02.qxd 11/14/06 9:32 AM Page 71

between various wiring closets or even different buildings. For this reason, it is bene-
ficial to run Wireshark on a laptop. It is also a good idea to keep a small hub and
some network cables (crossover and straight-through) with your laptop for a trou-
bleshooting toolkit. Figure 2.3 shows the incorrect placement of Wireshark if you
want to capture communication between the external client and the server.The
Wireshark laptop and the switch it is connected to will not see traffic destined for
the server because it is routed to the server’s switch.

Figure 2.4 shows how to capture traffic from the external client to the server
using port spanning.The Wireshark laptop must be connected to the same switch as
the server. Next, port spanning is activated on the switch to mirror all traffic to and
from the server’s port to the port that Wireshark is plugged into. Using this method
will not cause any disruption of traffic to and from the server.

www.syngress.com

72 Chapter 2 • Introducing Wireshark: Network Protocol Analyzer

Figure 2.3 Incorrect Wireshark Placement

Router

External
Network

Client

ServerEthereal Laptop

Switch Switch

377_Eth_2e_ch02.qxd 11/14/06 9:32 AM Page 72

Figure 2.5 shows how to capture traffic from the external client to the server
using a hub. Install a small hub between the server and the switch and connect the
Wireshark laptop to it. Wireshark will then see all traffic going to and coming from
the server.This method will temporarily disrupt traffic while the hub is being
installed and the cables connected.

www.syngress.com

Introducing Wireshark: Network Protocol Analyzer • Chapter 2 73

Figure 2.4 Correct Wireshark Placement Using Port Spanning

Router

External
Network

Switch

Client

ServerEthereal Laptop

Switch

377_Eth_2e_ch02.qxd 11/14/06 9:32 AM Page 73

Figure 2.6 shows a network architecture that uses a permanent tap installed at
the router. Some administrators use this method for a permanent connection point
at critical areas.The Wireshark laptop then sees all traffic going to and from the
server plus any other traffic on the segment. Using this method does not disrupt
traffic to and from the server if the tap is permanently installed and the cables are
already connected.Taps can also be portable and used like the hub in Figure 2.5.

www.syngress.com

74 Chapter 2 • Introducing Wireshark: Network Protocol Analyzer

Figure 2.5 Correct Wireshark Placement Using a Hub

Router

External
Network

Client

ServerEthereal Laptop

Switch
Switch

Hub

377_Eth_2e_ch02.qxd 11/14/06 9:32 AM Page 74

Most network architectures aren’t as simple as those depicted in this section.
However, these examples should give you a good idea of how to use Wireshark at
various points in your network. Some architectures are complicated and can be fully
meshed and include redundancy (see Figure 2.7).Also, network segments can branch
out for several levels as your network is expanded to buildings and floors within
buildings.You must have a good understanding of your network in order to make
the most effective choices for sniffer placement.

www.syngress.com

Introducing Wireshark: Network Protocol Analyzer • Chapter 2 75

Figure 2.6 Wireshark Placement With a Cable Tap

Router

External
Network

Client

Server

Tap

SwitchSwitch

Ethereal Laptop

377_Eth_2e_ch02.qxd 11/14/06 9:32 AM Page 75

Using Wireshark for
Network Troubleshooting
Every network administrator has had the unpleasant experience of being called in
the middle of the night to fix a network problem, which can often result in a surge
of emotions (e.g., panic, urgency, and perhaps a sense of heroism).The key to suc-
cessfully troubleshooting a problem is knowing how the network functions under
normal conditions, which will allow you to quickly recognize unusual and abnormal

www.syngress.com

76 Chapter 2 • Introducing Wireshark: Network Protocol Analyzer

Figure 2.7 Fully Meshed Network

External
Network

Server A

SwitchSwitch

Server B

Server C

Building
1

Building
2

Building
3

Building
4

Building
5

FirewallFirewall

Router Router

377_Eth_2e_ch02.qxd 11/14/06 9:32 AM Page 76

operations. One way to know how your network normally functions is to use a
sniffer at various points in the network.This will allow you to get a sense of the pro-
tocols that are running on your network, the devices on each segment, and the top
talkers (computers that send and receive data most frequently).

Once you have an idea of how your network functions you can develop a strategy
for network troubleshooting.This way you can approach the problem methodically
and resolve it with minimum disruption to customers.With troubleshooting, a few
minutes spent evaluating the symptoms can save hours of time lost tracking down the
wrong problem.A good approach to network troubleshooting involves the following
seven steps:

1. Recognize the symptoms

2. Define the problem

3. Analyze the problem

4. Isolate the problem

5. Identify and test the cause of the problem

6. Solve the problem

7. Verify that the problem has been solved

The first step to network troubleshooting is recognizing the symptoms.You can
also learn about a network problem from another user network, where the manage-
ment station alerts you of trouble (e.g., performance issues, connectivity issues, or
other strange behaviors) accessing the network. Compare this behavior to normal
network operation: Was a change made to the network or to a server right before
the problem started? Did an automatic process such as a scheduled backup just
begin? Is there a prescheduled maintenance window for this time period? Once you
have answered these questions, the next step is to write a clear definition of the
problem. Once the symptoms have been identified and the problem defined, the
next step is to analyze the problem.You need to gather data for analysis and narrow
down the location of the problem. Is it at the core of the network, a single building,
or a remote office? Is the problem related to an entire network segment or a single
computer? Can the problem be duplicated elsewhere on the network? You may need
to test various parts of your network to narrow down the problem.

Now that you have analyzed and found the problem, you can move onto the
next step of isolating the problem.There are many ways to do this, such as disconnect
the computer that is causing problems, reboot a server, activate a firewall rule to stop
some suspected abnormal traffic, or failover to a backup Internet connection.

www.syngress.com

Introducing Wireshark: Network Protocol Analyzer • Chapter 2 77

377_Eth_2e_ch02.qxd 11/14/06 9:32 AM Page 77

The next step is to identify and test the cause of the problem. Now that you
have a theory about the cause of the problem you need to test it.Your network
analyzer can see what is going on behind the scenes.At this point,you may be
researching the problem on the Internet, contacting various hardware or software
vendors, or contacting your Internet Service Provider (ISP).You may also want to
verify with www.cert.org or www.incidents.org that this is not a widespread issue.
Once you have a resolution to the problem, you need to implement it.This could
involve upgrading hardware or software, implementing a new firewall rule, rein-
stalling a compromised system, replacing failed hardware, or redesigning the seg-
ments of your network.

The last step of network troubleshooting is verifying that the problem has been
resolved. Make sure that the fix for this problem did not create any new problems
or that the problem you solved is not indicative of a deeper underlying problem.
Part of this step of the process includes documenting the steps taken to resolve the
problem, which will assist in future troubleshooting efforts. If you have not solved
the problem, you must repeat the process from the beginning.The flowchart in
Figure 2.8 depicts the network troubleshooting process.

NOTE

To be a successful network troubleshooter you need a strong under-
standing of network protocols. Understanding different protocols and
their characteristics will help you recognize abnormal behavior as it
occurs on your network.

www.syngress.com

78 Chapter 2 • Introducing Wireshark: Network Protocol Analyzer

377_Eth_2e_ch02.qxd 11/14/06 9:32 AM Page 78

www.syngress.com

Introducing Wireshark: Network Protocol Analyzer • Chapter 2 79

Figure 2.8 Network Troubleshooting Methodology

Recognize the
symptoms

Define the
problem

Analyze the
problem

Isolate the
problem

Identify and
test the cause

of the
problem

Solve the
problem

Verify that the
problem has
been solved

Did the
symptoms

stop?

Document
steps

Problem
solved

YES

NO

Did new
symptoms

start?

NO
YES

377_Eth_2e_ch02.qxd 11/14/06 9:32 AM Page 79

Using Wireshark
for System Administration
System administrators are notorious for asking if there is something wrong with the
network, and network administrators are notorious for saying the problem is within
the system. In between this chasm of blame lies the truth waiting to be discovered
by Wireshark.

Checking for Network Connectivity
At the heart of modern TCP/IP networks is Ethernet. Ethernet is a protocol that
works without much fuss; however, there is a myriad of problems involving
drivers, OSes, configurations, applications, network switches, and so forth, that
may occur).The system administrator needs a tool that can detect whether the
network is working from an OSI Layer 2 prospective or from an Ethernet
prospective.

When a system administration problem occurs, the next step is to verify that the
system is receiving the network packets.The most basic packet is the ARP packet.

The basics of the ARP are this: When a system needs to communicate with
another system on the same subnet, and has an IP address for that system but not a
MAC address, an ARP request is broadcast onto the Ethernet segment (e.g., a net-
work with hosts 192.168.1.1 and 192.168.1.2 having MAC addresses
00:01:02:03:04:05 and 06:07:08:09:0a:0b) and issues the following command
sequence through ARP:

00:01:02:03:04:05 to ff:ff:ff:ff:ff:ff Who has 192.168.1.2? Tell 192.168.1.1

06:07:08:09:0a:0b to 00:01:02:03:04:05 192.168.1.2 is at 06:07:08:09:0a:0b

Knowing that ARP traffic is a necessary precursor to normal network traffic,
Ethereal can be used to check for the presence of this traffic on the network.There
are several conditions of ARP that indicate specific problems. If there is no ARP
traffic from the system on the network, either you are not capturing the traffic cor-
rectly or there are driver or OS issues preventing network communication. If the
system is issuing ARP requests but there is no response from the host, it may not be
on the network. Make sure that the system is on the correct LAN; it is no longer as
easy as plugging into the correct network jack. If the system is receiving ARP
requests and sending IP traffic out on the network, but not receiving a response
that you have verified with your sniffer, there may be a firewall or driver issue with
the system.

www.syngress.com

80 Chapter 2 • Introducing Wireshark: Network Protocol Analyzer

377_Eth_2e_ch02.qxd 11/14/06 9:32 AM Page 80

Checking for Application Network Availability
After verifying that you can see the network, the next step in troubleshooting is to
check that systems on the network can connect to the application. Because most
network applications are TCP-based, testing is confined to applications using that
protocol. For this example, we use a Web server operating on port 80.

As previously discussed, the TCP protocol relies on a three-way handshake
before exchanging any data.The handshake itself is indicative of problems with an
application. Because Wireshark is qualified to dissect TCP packets, we can use it to
locate application problems. Following are some of the scenarios you may encounter
while troubleshooting application communication on a network:

Scenario 1: SYN no SYN+ACK
If your Wireshark capture shows that the client is sending a SYN packet, but no
response is received from the server, the server is not processing the packet. It could
be that a firewall between the two hosts is blocking the packet or that the server
itself has a firewall running on it

Scenario 2: SYN immediate response RST
If your Wireshark capture shows that the server is responding with the reset (RST)
flag, the destination server is receiving the packet but there is no application bound
to that port. Make sure that your application is bound to the correct port on the
correct IP address.

Scenario 3: SYN SYN+ACK ACK
Connection Closed
If your Wireshark capture shows that the TCP connection is established and that it
immediately closes, the destination server may be rejecting the client’s IP address due
to security restrictions. On UNIX systems, check the tcpwrappers file at
/etc/hosts.allow and /etc/hosts.deny and verify that you haven’t inadvertently blocked
communication.

Using Wireshark for
Security Administration
“Is this protocol secure?” One of the most common tasks security administrators do, is
verify the security of an arbitrary protocol.Wireshark is the ideal tool to use for this.

www.syngress.com

Introducing Wireshark: Network Protocol Analyzer • Chapter 2 81

377_Eth_2e_ch02.qxd 11/14/06 9:32 AM Page 81

One of the most popular and useful Wireshark features is packet reassembly,
which allows us to see the contents of exchanged data. For protocols such as Telnet
and FTP, Wireshark clearly displays the username and password for the connection,
without any reassembly. For unknown, custom, or otherwise obscure protocols,
packet reassembly can be used.To use reassembly, capture the traffic through
Wireshark or another tool and then load the capture file into Wireshark and right-
click on any packet in the connection. Select the Follow TCP Stream option; a
window will pop up with all of the communication that occurred in that session. It
may help to select the ASCII option, and if the protocol is noisy you can select that
sender, receiver, or Entire Conversation be displayed.

Detecting Internet Relay Chat Activity
Besides the policy implications of chat rooms, IRC is frequented by hackers and
used as a command and control mechanism. IRC normally uses TCP port 6667. If
you set Wireshark to detect traffic with destination port 6667, you will see IRC
traffic that looks like the following:

Local client to IRC server

port 6667:

USER username localsystem.example.com irc.example.net :gaim

Remote IRC server to local client:

NOTICE AUTH :*** Looking up your hostname...

Local client to IRC server

port 6667:

NICK clever-nick-name

Remote IRC server to local client:

NOTICE AUTH :*** Checking identNOTICE AUTH :*** Found your hostname

At this point, you can be reasonably assured that you are seeing an IRC connec-
tion. Make sure that you know who is using it

Wireshark As a Network
Intrusion Detection System
Although there are specialized open-source tools for Network Intrusion Detection
Systems (NIDSes) such as Sourcefire’s Snort (www.snort.org), if you had nothing
except Wireshark to use as an IDS system, it would be able to alert you on any cri-
teria. Consider the following Wireshark “rules” for intrusion detection:

www.syngress.com

82 Chapter 2 • Introducing Wireshark: Network Protocol Analyzer

377_Eth_2e_ch02.qxd 11/14/06 9:32 AM Page 82

■ Database connections to your database from systems other than your
Web servers

■ Attempts to send e-mail to external e-mail servers on TCP port 25 from
servers other than your e-mail relays

■ Attempts to use Remote Desktop Connection (RDC) from outside your
network or use Wireshark as a honeypot, listening for connections to an
unused IP address.

Wireshark as a Detector
for Proprietary Information Transmission
If your company marks its confidential and proprietary information with a consistent
phrase, there is no reason why you cannot use Wireshark to detect the transmission
of information.You could use Wireshark to capture all outbound traffic on a span
port and then use Wireshark’s Find Packet function. However, this could create a lot
of traffic to sort through.To reduce the amount of traffic captured, you can use cap-
ture filters to exclude traffic where you don’t expect proprietary information to be
transferred through (e.g., DNS queries and internal network traffic).

Securing Ethereal
Although Wireshark is considered a security tool, it is not without its own occa-
sional security issues.According to www.Securityfocus.com, between 2002 and 2006
there were 44 security advisories regarding Ethereal and Wireshark. Most of these
were in obscure or rarely used protocol decoders. Still, there are a few things you
can do to minimize the effects of any Wireshark bugs.

The primary step to running a more secure Wireshark installation is to update the
software and the OS. Updates to Wireshark normally come out every few months
and many people use binary versions of Wireshark that are easy to upgrade.The next
step for securing Wireshark is to separate the capture process from the analysis pro-
cess, and run both with the least amount of OS privilege that will work. Normally, all
capture libraries require Local Administrator privilege access in Windows or root
access in UNIX. Since many of the historical issues with Wireshark were in protocol
decoders, if you run your analysis console as a non-privileged or non-root user, it
may reduce the risk of security issues impeding your sniffing efforts.You can also use
tshark or dumpcap (both included with Wireshark) to capture the network traffic to a
file and then view the results later in Wireshark using a non-privileged account.

www.syngress.com

Introducing Wireshark: Network Protocol Analyzer • Chapter 2 83

377_Eth_2e_ch02.qxd 11/14/06 9:32 AM Page 83

Optimizing Wireshark
Optimizing the system that you are running your sniffer on will go a long way
towards speeding up Wireshark or any other sniffing application that you run.Your
network card drivers and Wireshark will do their best to capture all the traffic that
you throw at it, but to make sure that you are seeing the full picture of your net-
work, some system-related issues should be considered.

Network Link Speed
Wireshark cannot capture packets any faster than the slowest point between you and
the data you are sniffing. Careful attention must be paid so that the slowest link is
not the one that Wireshark is on if the network is heavily loaded (e.g., if you are
trying to sniff the connection between two computers that are exchanging data at
75 mbit/second, using a 10 mbit/second port span may cause you to not receive all
of the data onto the sniffer.

Minimizing Wireshark Extras
Wireshark is an efficient packet sniffer, and not only due to its cost. While Ethereal
has the capability to capture data efficiently, some of the more advanced options can
slow it down.

In the “Capture Options” dialog box, the following options can slow down the
capture: Update list of packets in real-time,Automatic scrolling in live capture, and
any of the Name Resolution options.The “Enable network name” resolution option
can particularly slow down the capture of a busy network, because DNS lookups
need to be made for each source and destination. Using capture filters can speed up
Wireshark if you know what type of packet data you are looking for. (Hint: If you
separate the capture functions from the analysis functions of Wireshark, you may be
able to capture more data.) Use tcpdump, tshark, or the specific tool for your OS,
and use it to save the capture data to a file.After the capture is done, load the cap-
ture file into Wireshark.

CPU
A fast computer is not strictly necessary to run Wireshark, but tasks such as finding
strings in large packet captures will complete faster with a speedier processor.The
Wireshark application tries to be as optimized as possible, but faster processors allow
more operations per second, which decreases the amount of time you spend waiting
for it to process packets or to find certain bits of text in a packet capture.

www.syngress.com

84 Chapter 2 • Introducing Wireshark: Network Protocol Analyzer

377_Eth_2e_ch02.qxd 11/14/06 9:32 AM Page 84

Memory
The most effective way to make Wireshark run faster is to give it more random-
access memory (RAM).This becomes especially important when working with cap-
tures that contain many packets.As with most applications, Wireshark needs memory
to hold data. When an OS does not have enough memory to hold an application,
the OS will swap memory from the RAM to the hard drive.The hard drive is much
slower than the system memory, and moving data back and forth between the drive
and RAM takes time. When Wireshark is short on memory, swapping will slow
down the system and applications precipitously.

Advanced Sniffing Techniques
There are alternatives to using Wireshark with port spanning or using a network tap.
Unfortunately, attackers can use these techniques to steal passwords and other data
from your network.

Dsniff
Dsniff is a sniffing toolkit provided by Dug Song. Dsniff and many mirrors are avail-
able on Web site www.monkey.org/~dugsong/dsniff. Dsniff is most famous for its
authentication (i.e., usernames and passwords) and sniffing capabilities.The current
version of dsniff decodes authentication information for the following protocols:

■ America Online (AOL) Instant Messenger (IM) (Citrix Winframe)

■ CVS

■ File Transfer Protocol (FTP)

■ HTTP

■ I Seek You (ICQ)

■ IMAP

■ IRC

■ Lightweight Directory Access Protocol (LDAP)

■ Remote Procedure Call (RPC) mount requests

■ Napster

■ Network News Transfer Protocol (NNTP)

■ Oracle SQL*Net

www.syngress.com

Introducing Wireshark: Network Protocol Analyzer • Chapter 2 85

377_Eth_2e_ch02.qxd 11/14/06 9:32 AM Page 85

■ Open Shortest Path First (OSPF)

■ PC Anywhere

■ Post Office Protocol (POP)

■ PostgreSQL

■ Routing Information Protocol (RIP)

■ Remote Login (rlogin)

■ Windows NT plaintext Server Message Block (SMB)

■ Network Associates Sniffer Pro (remote)

■ Simple Network Management Protocol (SNMP)

■ Socks

■ Telnet

■ X11

■ RPC yppasswd

With today’s switched networks and encrypted protocols, password sniffing
doesn’t always work as well as we want it to. Dsniff contains several redirect and
man-in-the-middle (MITM) utilities to redirect the flow of traffic and decrypt sessions.

The first utility is arpspoof (formerly known as arpredirect), which is used by hosts
to find the local router’s Media Access Control (MAC) address. By spoofing ARP
packets, you can convince other nearby computers that you are the router, which
means that your machine has to forward the packets on to the legitimate router after
receiving them; however, in the meantime, the dsniff password sniffer has a chance to
process the packets.This runs well on local switched networks and cable-modem
networks. However, this tool isn’t completely foolproof; you are essentially trying to
convince other machines of the local MAC address.As a result, traffic flows through
your machine are sometimes intermittent.This technique is easily detected by net-
work-based intrusion detection systems (IDSes). Sniffer Pro also has an expert diag-
nostic mode that will flag these as “duplicate IP addresses” (i.e., multiple machines
claiming to have the IP address of the router).

The dnsspoof utility redirects traffic by spoofing responses from the local Domain
Name System (DNS) server. When you go a Web site such as www.example.com,
your machine sends a request to your local DNS server asking for the IP address of
www.example.com.This usually takes a while to resolve; however, DNS spoofs
quickly send their own response.The victim takes the first response and ignores the
second one.The spoofed response contains a different IP address than the legitimate

www.syngress.com

86 Chapter 2 • Introducing Wireshark: Network Protocol Analyzer

377_Eth_2e_ch02.qxd 11/14/06 9:32 AM Page 86

response, usually the IP address of the attacker’s machine.The attacker is probably
using one of the other dsniff MITM utilities.The name MITM comes from cryp-
tography, and describes the situation when somebody intercepts communications,
alters it, and then forwards it.The dsniff utilities for these attacks are called webmitm
for HTTP traffic (including Secure Sockets Layer [SSL]) and sshmitm (for Secure
Shell [SSH]). Normally, SSH and SSL are thought to be secure encrypted protocols
that cannot be sniffed. MITM utilities work by presenting their own encryption keys
to the SSL/SSH clients.This allows them to decrypt the traffic sniff passwords and
then reencrypt with the original server keys. In theory, you can protect yourself
against this by checking the validity of the server certificate, but in practice, nobody
does this. Dsniff can sniff passwords and other cleartext traffic.

The mailsnarf utility sniffs e-mails (e.g., the FBI’s Carnivore), and reassembles
them into an mbox format that can be read by most e-mail readers.

The msgsnarf utility sniffs messages from ICQ, IRC,Yahoo!, Messenger, and
AOL IM.

The filesnarf utility sniffs files transferred via Network File System (NFS).
The urlsnarf utility saves all Universal Resource Locators (URLs) going across

the wire.
The webspy utility sends those URLs to a Netscape Web browser in real time, essen-

tially allowing you to watch in real-time what a victim sees on his or her Web browser.
The macof utility sends out a flood of MAC addresses, which is intended as another

way of attacking Ethernet switches. Most switches have limited tables that can only
hold 4,000 MAC addresses.When the switch overloads, it “fails open” and starts
repeating every packet out every port, thereby allowing everyone’s traffic to be sniffed.

The tcpkill utility kills TCP connections, and can be used as a Denial of Service
(DoS) attack (e.g., you can configure it to kill every TCP connection your neighbor
makes). It can also be integrated with tools like network-based IDSes to kill connec-
tions from hackers.The tcpnice utility is similar to tcpkill, but instead of killing con-
nections, it slows them down (e.g., you could spoof Internet Control Message
Protocol (ICMP) Source Quenches from your neighbor’s cable modems so that you
can get a higher percentage of bandwidth for your downloads).

Ettercap
Ettercap is similar to dsniff. It has many of the same capabilities (e.g., MITM attacks
against SSL and SSH and password sniffing). It also has additional features for MITM
attacks against normal TCP connections such as inserting commands into the stream.
Ettercap was written by Alberto Ornaghi and Marco Valleri, and is available at
http://ettercap.sourceforge.net.

www.syngress.com

Introducing Wireshark: Network Protocol Analyzer • Chapter 2 87

377_Eth_2e_ch02.qxd 11/14/06 9:32 AM Page 87

MITM Attacks
The most effective defense against sniffing is using encrypted protocols such as SSL
and SSH. However, the latest dsniff and Ettercap packages contain techniques for
fooling encryption, known as a MITM attack.The same technique can be applied
to encrypted protocols, when an attacker sets up a server that answers requests from
clients (e.g., the server answers a request for https://www.amazon.com.A user con-
tacting this machine will falsely believe they have established an encrypted session
to Amazon.com.At the same time, the attacker contacts the real Amazon.com and
pretends to be the user.The attacker plays both roles, decrypting the incoming data
from the user and re-encrypting it for transmission to the original destination. In
theory, encryption protocols have defenses against this.A server claiming to be
Example.com needs to prove that it is indeed Example.com. In practice, most users
ignore this. MITM attacks have proven very effective when used in the field.

Cracking
Tools such as dsniff and Ettercap capture unencrypted passwords and encrypted pass-
words. In theory, capturing encrypted passwords is useless. However, people some-
times choose weak passwords (e.g., words from the dictionary) and it only takes a
few seconds for an attacker to go through a 100,000-word dictionary, comparing the
encrypted form of each dictionary word against the encrypted password. If a match
is found, the attacker has discovered the password.These password cracking programs
already exist.Tools like dsniff and Ettercap simply output the encrypted passwords in
a form that these tools can read.

Switch Tricks
A lot of people think that if they have a switched network it is impossible for an
attacker to use a sniffer successfully to capture information.The following section
discusses methods of successfully sniffing on a switched network.

ARP Spoofing
When attempting to monitor traffic on a switched network, you will run into a
serious problem:The switch will limit the traffic that is passed over your section of
the network. Switches keep an internal list of the MAC addresses of hosts that are
on each port.Traffic is only sent to a port if the destination host is recorded as
being present on that port. It is possible to overwrite the ARP cache on many
OSes, which would allow you to associate your MAC address with the default

www.syngress.com

88 Chapter 2 • Introducing Wireshark: Network Protocol Analyzer

377_Eth_2e_ch02.qxd 11/14/06 9:32 AM Page 88

gateway’s IP address.This would cause all outgoing traffic from the target host to be
transmitted to you.You would have to be sure to manually add an ARP table entry
for the real default gateway, to ensure that the traffic will be sent to the real target
and to ensure that you have IP forwarding enabled. Many cable modem networks
are vulnerable to this type of attack, because the cable modem network is essentially
an Ethernet network with cable modems acting as bridges. In short, there is no
solution to this attack and new generations of cable modem networks will use
alternate mechanisms to connect a user to the network.The dsniff sniffer (devel-
oped by Dug Song) includes a program named arpspoof (formerly arpredirect) for
exactly this purpose. arpspoof redirects packets from a target host (or all hosts) on
the LAN intended for another host on the LAN, by forging ARP replies.This is an
extremely effective way of sniffing traffic on a switch.

MAC Flooding
To serve its purpose, a switch must keep a table of all MAC (Ethernet) addresses
of the hosts that appear on each port. If a large number of addresses appear on a
single port thereby filling the address table on the switch, the switch no longer
has a record of which port the victim MAC address is connected to.This is the
same situation as when a new machine first attaches to a switch and the switch
must learn where that address is. Until it learns which port it is on, the switch
must send copies of frames for that MAC address to all switch ports, a practice
known as flooding.

The dsniff sniffer includes a program named macof that facilitates flooding a
switch with random MAC addresses to accomplish this. macof floods the local net-
work with random MAC addresses (causing some switches to fail open in repeating
mode facilitating sniffing).A straight C port of the original Perl Net::RawIP macof
program by Ian Vitek <ian.vitek@infosec.se>.—dsniff FAQ

Routing Games
One method to ensure that all traffic on a network passes through your host is to
change the routing table of the host you wish to monitor.This may be possible by
sending a fake route advertisement message via the RIP, declaring yourself as the
default gateway. If successful, all traffic will be routed through your host. Make sure
that you have enabled IP forwarding so that all outbound traffic from the host will
pass through your host and onto the real network gateway.You may not receive
return traffic unless you have the ability to modify the routing table on the default
gateway in order to reroute all return traffic back to you.

www.syngress.com

Introducing Wireshark: Network Protocol Analyzer • Chapter 2 89

377_Eth_2e_ch02.qxd 11/14/06 9:32 AM Page 89

Securing Your Network from Sniffers
At this point, you might be considering unplugging the network completely so that
sniffers like Wireshark (or other more nefarious applications) cannot be used against
you. Hold on to those wire cutters: there are other, more function-friendly ways to
help secure your network from a determined eavesdropper.

Using Encryption
Fortunately for the state of network security, when used properly, encryption is the silver
bullet that will render a packet sniffer useless. Using encryption (assuming its mechanism
is valid) will thwart any attacker attempting to passively monitor your network.

Many existing network protocols have counterparts that rely on strong encryp-
tion and all-encompassing mechanisms (e.g., IPSec and OpenVPN) provide this for
all protocols. Unfortunately, IP Security (IPSec) is not widely used on the Internet
outside of large enterprise companies.

SSH
SSH is a cryptographically secure replacement for the standard UNIX Telnet rlogin,
Remote Shell (RSH), and Remote Copy Protocol (RCP) commands. It consists of a
client and server that use public key cryptography to provide session encryption. It
also provides the ability to forward arbitrary TCP ports over an encrypted connec-
tion, which comes in handy for forwarding X11 Windows and other connections.

SSH has received wide acceptance as the secure mechanism to access a remote
system interactively. SSH was conceived and initially developed by Finnish developer
Tatu Ylönen.The original version of SSH turned into a commercial venture and,
although the original version is still freely available, the license has become more
restrictive.A public specification has been created, resulting in the development of a
number of different versions of SSH-compliant client and server software that do
not contain these restrictions (most significantly those that restrict commercial use).
A free version of SSH-compatible software (OpenSSH) developed by the OpenBSD
OS project, can be obtained from www.openssh.com.The new commercialized SSH
can be purchased from SSH Communications Security (www.ssh.com) who have
made the commercial version free to recognized universities. Mac OS X already
contains OpenSSH software. PuTTY is a free alternative for the commercial SSH
software for Windows. Originally developed for cleartext protocols such as Telnet,
PuTTY is very popular among system administrators and can be downloaded at
www.chiark.greenend.org.uk/~sgtatham/putty/.

www.syngress.com

90 Chapter 2 • Introducing Wireshark: Network Protocol Analyzer

377_Eth_2e_ch02.qxd 11/14/06 9:32 AM Page 90

SSL
SSL provides authentication and encryption services and can also be used as a virtual
private network (VPN). From a sniffing perspective, SSL can be vulnerable to a
MITM attack.An attacker can set up a transparent proxy between you and the Web
server.This transparent proxy can be configured to decrypt the SSL connection, sniff
it, and then re-encrypt it. When this happens, the user is prompted with a dialog box
indicating that the SSL certificate was not issued by a trusted authority.The problem
is, most users ignore the warnings and proceed anyway.

Pretty Good Protection and
Secure/Multipurpose Internet Mail Extensions
Pretty Good Protection (PGP) and Secure/Multipurpose Internet Mail Extensions
(S/MIME) are standards for encrypting e-mail. When used correctly, these standards
prevent e-mail sniffers (e.g., dsniff and Carnivore) from being able to interpret inter-
cepted e-mail.The sender and receiver must both use the software in order to
encrypt and decrypt the communication. In the United States, the FBI has designed
a Trojan horse called “Magic Lantern” that is designed to log keystrokes, hopefully
capturing a user’s passphrase. When the FBI gets a passphrase, they can decrypt the
e-mail messages. In the United Kingdom, users are required by law to give their
encryption keys to law enforcement when requested.

Switching
Network switches make it more difficult for attackers to monitor your network, but
not by much. Switches are sometimes recommended as a solution to the sniffing
problem; however, their real purpose is to improve network performance, not pro-
vide security.As explained in the “Advanced Sniffing Techniques” section, any
attacker with the right tools can monitor a switched host if they are on the same
switch or segment as that system.

Employing Detection Techniques
But what if you can’t use encryption on your network for some reason? What do
you do then? If this is the case then you must rely on detecting any network
interface card (NIC) that may be operating in a manner that could be invoked by
a sniffer.

www.syngress.com

Introducing Wireshark: Network Protocol Analyzer • Chapter 2 91

377_Eth_2e_ch02.qxd 11/14/06 9:32 AM Page 91

Local Detection
Many OSes provide a mechanism to determine whether a network interface is run-
ning in promiscuous mode.This is usually represented by the type of status flag that
is associated with each network interface and maintained in the kernel.This can be
obtained by using the ifconfig command on UNIX-based systems.

The following example shows an interface on the Linux OS when it isn’t in
promiscuous mode:

eth0 Link encap:Ethernet HWaddr 00:60:08:C5:93:6B

inet addr:10.0.0.21 Bcast:10.0.0.255 Mask:255.255.255.0

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

RX packets:1492448 errors:2779 dropped:0 overruns:2779 frame:2779

TX packets:1282868 errors:0 dropped:0 overruns:0 carrier:0

collisions:10575 txqueuelen:100

Interrupt:10 Base address:0x300

Note that the attributes of this interface mention nothing about promiscuous
mode. When the interface is placed into promiscuous mode (as shown next) the
PROMISC keyword appears in the attributes section:

eth0 Link encap:Ethernet HWaddr 00:60:08:C5:93:6B

inet addr:10.0.0.21 Bcast:10.0.0.255 Mask:255.255.255.0

UP BROADCAST RUNNING PROMISC MULTICAST MTU:1500 Metric:1

RX packets:1492330 errors:2779 dropped:0 overruns:2779 frame:2779

TX packets:1282769 errors:0 dropped:0 overruns:0 carrier:0

collisions:10575 txqueuelen:100

Interrupt:10 Base address:0x300

It is important to note that if an attacker has compromised the security of the
host on which you run this command, he or she can easily affect the output.An
important part of an attacker’s toolkit is a replacement ifconfig command that does
not report interfaces in promiscuous mode.

Network Detection
There are a number of techniques of varying degrees of accuracy available to detect
whether a host is monitoring a network for all traffic.There is no guaranteed
method to detect the presence of a network sniffer.

www.syngress.com

92 Chapter 2 • Introducing Wireshark: Network Protocol Analyzer

377_Eth_2e_ch02.qxd 11/14/06 9:32 AM Page 92

DNS Lookups
Most programs that are written to monitor networks, perform reverse DNS lookups
when they produce output that consists of the source and destination hosts involved
in a network connection. In the process of performing this lookup, additional net-
work traffic is generated; mainly the DNS query looking up the network address. It
is possible to monitor the network for hosts that are performing a large number of
address lookups alone; however, this may be coincidental and may not lead to a
sniffing host.An easier way that would result in 100 percent accuracy would be to
generate a false network connection from an address that has no business on the
local network.You could then monitor the network for DNS queries that attempt to
resolve the faked address giving away the sniffing host.

Latency
A second technique that can be used to detect a host that is monitoring the network
is to detect latency variations in the host’s response to network traffic (i.e., ping).
Although this technique is prone to a number of errors (e.g., the host’s latency being
affected by normal operation) it can assist in determining whether a host is moni-
toring the network.The method that can be used is to probe the host initially and
sample the response times. Next, a large amount of network traffic is generated that
is specifically crafted to interest a host that is monitoring the network for authenti-
cation information. Finally, the latency of the host is sampled again to determine
whether it has changed significantly.

Driver Bugs
Sometimes an OS driver bug assists in determining whether a host is running in
promiscuous mode. In one case, CORE-SDI (an Argentine security research com-
pany) discovered a bug in a common Linux Ethernet driver.They found that when
the host was running in promiscuous mode, the OS failed to perform Ethernet
address checks to ensure that the packet was targeted toward one of its interfaces.
Instead, this validation was performed at the IP level and the packet was accepted if
it was destined to one of the host’s interfaces. Normally, packets that do not corre-
spond to a host’s Ethernet address are dropped at the hardware level; however, in
promiscuous mode this doesn’t happen.You can determine whether the host was in
promiscuous mode by sending an ICMP ping packet to it with a valid IP address
and an invalid Ethernet address. If the host responds to this ping request, it is deter-
mined to be running in promiscuous mode.

www.syngress.com

Introducing Wireshark: Network Protocol Analyzer • Chapter 2 93

377_Eth_2e_ch02.qxd 11/14/06 9:32 AM Page 93

NetMon
NetMon, available on Windows NT-based systems, has the ability to monitor who is
actively running NetMon on a network. It also maintains a history of who has
NetMon installed on their system. It only detects other copies of NetMon; therefore,
if the attacker is using another sniffer, you must detect it using one of the previous
methods discussed. Most network-based IDSes also detect these instances of NetMon.

www.syngress.com

94 Chapter 2 • Introducing Wireshark: Network Protocol Analyzer

377_Eth_2e_ch02.qxd 11/14/06 9:32 AM Page 94

Summary
In this chapter, we have given you a high-level overview of Wireshark and its various
features and supporting programs. We covered the history of Wireshark, its compati-
bility with other sniffers, and its supported protocols. We took a brief look into the
Wireshark GUI and the filter capabilities, because these areas are covered in detail in
later chapters. We also covered the programs that come with Wireshark, that add
additional functionality by manipulating capture files.

We explored several scenarios for using Wireshark in your network architecture.
Spend time getting to know your network and the way it is connected. Knowing
how your network is segmented will help with placing Wireshark to capture the
information you need.

We also explored how Wireshark can be used by a wide range of people,
including network system and security administrators. Wireshark can also be used by
anyone on their own network. We touched on securing and optimizing Wireshark as
part of your workflow.Although the application is robust and stable, there are some
simple, cost-effective things you can do to improve your Wireshark experience.

Finally, we covered an example network troubleshooting methodology. It is good
practice to use this methodology every time you troubleshoot a problem. Once
again, spending time getting to know your network and the protocols running on it
will help make troubleshooting a lot easier.

Solutions Fast Track

What is Wireshark?

� Wireshark is a free and feature-rich network analyzer that rivals commercial
counterparts

� Wireshark can decode more than 750 protocols

� Wireshark is compatible with more than 25 other sniffers and capture utilities

� Display and capture filters can be used to sort through network traffic

� Wireshark mailing lists are a great resource for information and support

� Wireshark is free of charge and free to distribute, and you are free to
modify it

www.syngress.com

Introducing Wireshark: Network Protocol Analyzer • Chapter 2 95

377_Eth_2e_ch02.qxd 11/14/06 9:32 AM Page 95

Supporting Programs

� Wireshark installs with supporting programs (e.g., tshark)

� editcap

� mergecap

� and text2pcap

� Tshark is a command line version of Wireshark

� Editcap is used to remove packets from a file and to translate the format of
capture files

� Mergecap is used to merge multiple capture files into one

� Text2pcap is used to translate ASCII hexdump captures into libpcap
output files

Using Wireshark in Your Network Architecture

� Τhe correct placement of Wireshark in your network architecture is critical
to capture the data you need.

� Taps, hubs, and switches with port spanning enabled can all be used to
connect Wireshark to your network.

� You can create a troubleshooting toolkit consisting of a small hub, a small
network tap, and extra straight-through and crossover cables.

� Installing Wireshark on a laptop makes troubleshooting at various locations
easier.

System and Security Troubleshooting

� Following a methodical troubleshooting process can minimize the time it
takes to solve a problem.

� Identifying and testing the cause of a problem often involves research on
the Internet or support calls to hardware or software vendors.

� Sometimes solving one problem could create another.

� Keeping detailed notes on how you solved a problem will assist in future
troubleshooting efforts.

www.syngress.com

96 Chapter 2 • Introducing Wireshark: Network Protocol Analyzer

377_Eth_2e_ch02.qxd 11/14/06 9:32 AM Page 96

Securing and Optimizing Wireshark

� Capture packets using the appropriate security privileges; analyze packets
with the least privilege possible.

� Update Wireshark when security vulnerabilities are found.

� Adding system memory will improve application responsiveness when
analyzing large numbers of packets.

Advanced Sniffing Techniques

� MAC and ARP manipulation techniques can be used to sniff switched
traffic without changing your physical network architecture.

� MITM attacks can be used to intercept traffic.

� Tools are available that sniff traffic and capture and crack passwords at the
same time.

Securing Your Network from Sniffers

� If those hosts are also authenticated, host-to-host VPN encryption
effectively hides data within packets from sniffers. Depending on the
method used, the ports and protocols can also be hidden.

� Application-level encryption such as SSL also protects the data within the
packets.

� Switched networks are slightly more difficult to sniff than networks
using hubs.

Employing Detection Techniques

� Promiscuous mode interfaces on hosts may show the presence of a sniffer.

� You can detect the presence of some sniffers by their effects on the
network such as extra DNS lookups, network latency, driver issues, and the
applications themselves.

� No detection tool is effective in an organization without a strong policy
that contains the guidelines for the appropriate use of sniffing technologies.

www.syngress.com

Introducing Wireshark: Network Protocol Analyzer • Chapter 2 97

377_Eth_2e_ch02.qxd 11/14/06 9:32 AM Page 97

www.syngress.com

98 Chapter 2 • Introducing Wireshark: Network Protocol Analyzer

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

Q: Many open-source security tools have recently become commercialized. If the
Wireshark team converted to a commercial product, would the open-source
Wireshark still be free to use?

A: Wireshark was released using the GNU GPL; the source code will remain avail-
able and free for any version of software released using the GPL.

Q: With all the other commercial software out there that my company prefers, why
should I use Wireshark?

A: Wireshark doesn’t require you to decide on it; however, keep it in your toolkit
in case you ever need it.

Q: I think I have found an intruder on my network and I would like to save my
data. Can Wireshark help?

A: The best response is to use your company’s predefined incident response plan. If
your company doesn’t have an incident response policy, the best time to create
one is before you need one.

Q: How can I verify that the version of Wireshark I downloaded doesn’t contain a
virus or other unwanted software?

A: Downloading from a reputable place is a good start. However, no matter where you
downloaded the software from, run md5sum and sha1sum against the file you
downloaded. Check the results of those programs against the hashes in the SIGNA-
TURE file in the Wireshark release directory.To verify that the hashes are correct,
use GnuPG (www.gnupg.org) to verify that the hashes were signed correctly.

Q: How can I create packets for Wireshark to sniff?

A: Using the ping utility or going to a Web page will create traffic on your network. If
you are looking for an example of a specific type of traffic, creating an environment

377_Eth_2e_ch02.qxd 11/14/06 9:32 AM Page 98

where that traffic is likely to happen is the best bet. In other words, if you’re
looking to sniff Web traffic, create a Web server and use a Web browser. If your goal
is to create specifically crafted packets, a Perl module named Raw::IP should do
the trick and is downloadable from CPAN or www.ic.al.lg.ua/~ksv/index.shtml.

Q: How can I sniff all the traffic on my network if my switch doesn’t support
sniffing or is unmanaged?

A: One way or another you’ll need to get into the network path.You can either
run a sniffer on the host that sees the most traffic, replace the switch with a hub
or another sniffable switch, or use ARP trickery such as dsniff.

Q: Is there a way to use Wireshark without installing it?

A: Using a bootable CD or DVD-ROM is a good option.After downloading and
burning a bootable image such as Backtrack (www.remote-exploit.org) or Helix
(www.e-fense.com/helix/), you can use Wireshark and other security tools without
any installation. However, these bootable disks should not be used to violate your
organization’s security policies regarding the use of third-party software.

www.syngress.com

Introducing Wireshark: Network Protocol Analyzer • Chapter 2 99

PV27

377_Eth_2e_ch02.qxd 11/14/06 9:32 AM Page 99

377_Eth_2e_ch02.qxd 11/14/06 9:32 AM Page 100

101

Getting and
Installing Wireshark

Solutions in this chapter:

■ Getting Wireshark

■ Packet Capture Drivers

■ Installing Wireshark on Windows

■ Installing Wireshark on Linux

■ Installing Wireshark on Mac OS X

■ Installing Wireshark from Source

Chapter 3

� Summary

� Solutions Fast Track

� Frequently Asked Questions

ethereal_ch03.qxd 11/14/06 11:03 AM Page 101

Introduction
In this chapter, we will cover all of the steps necessary to complete a functioning
installation of the Wireshark network analyzer. Due to the overwhelming amount of
Unix-based distributions available today, installation instructions can vary from distri-
bution to distribution, and are beyond the scope of this chapter. For this reason, we
will be focusing on information specific to installation on the Fedora Core 6 plat-
form. We have chosen Fedora Core because it is the most commonly used Linux
distribution in the world, and serves as a good starting point on which to base fur-
ther installations. Most of what we cover here should apply to most other popular
distributions without a large amount of modification. If the instructions do vary,
however, the difference should be minimal. For the Windows side, we will be
focusing on Windows XP, due to its common use. Lastly, we have included several
installation options for Mac OS X.

For this chapter, we started with fresh installations of Fedora Core 6, Windows
XP, and Mac OS X. We accepted the default installation parameters for each of the
operating systems (OSs).These types of installations often install needless software,
and leave many security vulnerabilities wide open.You should follow security best
practices when installing new systems and also when subsequently applying oper-
ating system security procedures.These methods are beyond the scope of this book,
but you should pick up a good reference for securing your particular operating
system. Please make sure your operating system is current, patched, and secured.You
will also need to verify that your networking is set up and functioning properly, or
you might not be able to see any packets to analyze!

Let’s take a moment to introduce you to the way we approached this chapter.
When it comes to computers, networking, and security, some of you are beginners
and some are pros. Based on the varying technical abilities of the target audience of
this book, we tried to approach almost every subject as if we were learning it for the
first time. Our only assumption was that you do have a basic understanding of the
operating system and how to use it. For the beginners, we made the step-by-step
instructions for each installation easy to find and read.This chapter will serve as an
excellent skimming reference for the more experienced reader.The only time we will
have a lengthier explanation with the procedures is when there is possibly some pit-
fall to watch for, or during description of certain side notes that might be helpful.
We keep all of our longer descriptions and discussions outside of the chapter installa-
tion instructions. So, let’s start installing Wireshark!

www.syngress.com

102 Chapter 3 • Getting and Installing Wireshark

ethereal_ch03.qxd 11/14/06 11:03 AM Page 102

Getting Wireshark
Wireshark is readily available, in both source and binary form, for download from a
variety of sources.The CD that accompanies this book contains Version 0.99.4.You
may browse to the “Windows Installer” folder to install a Win32 system, or you may
install using the source files.The most authoritative source for downloads is the
Wireshark download Web site at www.wireshark.org/download.html.This Web page
contains a list of locations around the world where users can download binary distri-
butions and ready-to-install packages for several platforms. It also contains the source
code in zipped archive (tar.gz) format.Another source for obtaining Wireshark may
be your OS CD-ROM. However, these tend to be older versions, and it is worth the
time to download the latest versions. Several requirements and dependencies sur-
round the proper installation of Wireshark.These requirements depend on a variety
of factors, including the operating system platform and whether you are installing a
precompiled binary, or compiling from source. We will address these issues for several
platforms throughout this chapter.

The packages needed for installing Wireshark are available free of charge on
the Internet at their respective Web sites.You may want to download the latest
version of the software before beginning. Feel free to do so; just make sure to
substitute package names when necessary. For example, if we reference the file
wireshark-0.99.4.tar.gz and you have wireshark-0.99.5.tar.gz, use your filename
because it’s newer.

Platforms and System Requirements
So, on what operating system platforms can you install Wireshark? The following list
shows a number of platforms that have readily available Wireshark binaries:

■ Mac OS X

■ Debian GNU/Linux

■ FreeBSD

■ Gentoo Linux

■ HP-UX

■ Mandriva Linux

■ Windows

■ NetBSD

■ OpenPKG

■ Red Hat Fedora/Enterprise Linux
www.syngress.com

Getting and Installing Wireshark • Chapter 3 103

ethereal_ch03.qxd 11/14/06 11:03 AM Page 103

■ rPath Linux

■ Sun Solaris/i386

■ Sun Solaris/Sparc

This list is constantly expanding as developers port the Wireshark source to new
platforms. If your operating system is not listed, and you are feeling brave, go ahead
and download the source code and begin building it for your system!

NOTE

Several Wireshark binary packages are available through The Written
Word at www.thewrittenword.com. The Written Word provides precom-
piled binaries of open-source software, specifically for AIX, HP-UX, IRIX,
Red Hat Linux, Solaris, and Tru64 Unix. Releases can be purchased on a
one-time basis, or as a subscription service.

Packet Capture Drivers
When a computer is placed on a network, the network card is responsible for
receiving and transmitting data to other hosts. Network applications use methods, like
sockets, to establish and maintain connections, while the underlying operating system
handles the low-level details and provides protocol stacks for communications. Some
programs, however, need direct access to handle the raw network data, without inter-
ference from protocol stacks.A packet capture driver provides exactly this; it has the
ability capture raw network packets. Better than that, a packet capture driver can cap-
ture all data on a shared network architecture, regardless of the intended recipient.
This is what allows a program like Wireshark to passively monitor network traffic.

Two very famous and widely used packet capture drivers are libpcap, and its
Windows counterpart, WinPcap. Libpcap is a free, open-source packet capture
library originally developed at the Lawrence Berkeley National Laboratory in
California. It is now maintained by a variety of authors at www.tcpdump.org. Not
only does libpcap allow data to be captured, it also provides a mechanism for fil-
tering the data based on user specifications before passing it to the application.
WinPcap is maintained by a group of developers at www.winpcap.org. It uses some
of the code of libpcap as well as some newly added code. Many other programs use
the libpcap and WinPcap libraries, including TCPDump, WinDump, Snort, Ettercap,

www.syngress.com

104 Chapter 3 • Getting and Installing Wireshark

ethereal_ch03.qxd 11/14/06 11:03 AM Page 104

Dsniff, Nmap, tcpflow, and TCPstat. Programs that use libpcap tend to be network
monitors, protocol analyzers, traffic loggers, network intrusion detection systems, and
various other security tools.

NOTE

TCPDump is another protocol analyzer, like Wireshark, that can be used
to monitor network traffic. It is a command-line application that runs on
Unix-based systems. The Windows version is called Windump.

Installing libpcap
A lot of Linux systems already have libpcap preinstalled, including Fedora Core 6.
However, this section addresses two methods of installing libpcap: the Red Hat

www.syngress.com

Getting and Installing Wireshark • Chapter 3 105

Compression Utilities
As you are downloading software packages from the Internet, you will
encounter numerous compression utilities. Many people are already familiar
with the zip compression format used on both Windows and UNIX systems. In
this chapter, we discuss the tar format used for archiving files. The tar format
does not provide compression. Instead, it merely packages files together into
one single file. This single tar file will still take up the same amount of space,
plus a little more, as the sum of all of the individual files. Tar files are typically
compressed with other utilities such as gzip or bzip2.

Gzip is used to reduce the size of files, thus making it a great tool for com-
pressing large packet captures. Gzip files are recognized by the .gz extension.
Wireshark can automatically uncompress and read Gzip compressed files, even
if they don’t have the .gz extension. Files can be compressed by typing the
command gzip filename. Files can be uncompressed by using the commands
gzip –d filename or gunzip filename.

Bzip2 is a newer file compression utility and is capable of greater com-
pression ratios than gzip. Bzip2 files are recognized by the .bz2 extension. Files
can be compressed by typing the command bzip2 filename. Files can be
uncompressed by using the commands bzip2 –d filename or bunzip2 file-
name. At this time, Wireshark can not read bzip2 compressed files.

Notes from the Underground…

ethereal_ch03.qxd 11/14/06 11:03 AM Page 105

Package Manager (RPM), and building from source—for those of you who may still
need to install it. Once you install libpcap (or WinPcap), you won’t have to do any-
thing else with it unless you are a developer. Wireshark will use the libpcap libraries
to passively capture network data. So let’s get started installing libpcap!

If you used the Windows Installer on the CD that accompanies this book,
WinPcap was also installed into Start | Programs.Also if you use Yellow dog
Updater, Modified (YUM) to install Wireshark, it will install libpcap for you.

Installing libpcap Using the RPMs
Installing software from the RPM can be a very tricky process. See the “Notes from
the Underground” sidebar in this chapter for more details on RPMs. Luckily, the
libpcap installation poses no problems. Remember, there might be newer versions
that have been released since the writing of this book; you can download the latest
libpcap RPM from www.rpmfind.net. Make sure you are getting the proper RPM
for your system. Before you begin, you will need to have root privileges to install an
RPM. Make sure you are logged in as root, or switch to root by typing su root,
pressing Enter, and typing the appropriate root password.

1. Install the libpcap RPM by typing rpm -ivh libpcap-0.9.4-
8.1.i386.rpm and pressing Enter.

2. Verify the installation by typing rpm –q libpcap and pressing Enter. If
you see libpcap-0.9.4-8.1 listed, it is installed!

The following output shows how to install the libpcap RPM and then verify it
is installed:

[root@localhost]# rpm -ivh libpcap-0.9.4-8.1.i386.rpm

Preparing... ### [100%]

1:libpcap ### [100%]

[root@localhost root]# rpm -q libpcap

libpcap-0.9.4-8.1

Not too bad! Now that you have libpcap installed, feel free to move on to the
“Installing Wireshark on Linux” or “Installing Wireshark from Source” sections in
this chapter.

www.syngress.com

106 Chapter 3 • Getting and Installing Wireshark

ethereal_ch03.qxd 11/14/06 11:03 AM Page 106

www.syngress.com

Getting and Installing Wireshark • Chapter 3 107

A Word about RPMs
The Red Hat Package Manager (RPM) is a powerful package management
system capable of installing, uninstalling, verifying, querying, and updating
Linux software packages. Finding RPMs is relatively easy, and
www.rpmfind.net has a well-designed search and download system. However,
since RPMs tend to be contributed by various individuals, they are often times
a version or two behind the current source-code release. They are created on
systems with varying file structures and environments, which can lead to dif-
ficulties if your system does not match those parameters. Installing an RPM
can sometimes be easier than compiling from source—provided there are no
dependency problems.

The RPM system, while an excellent package management tool, is
fraught with problems regarding dependencies. It understands and reports
which specific files the package requires that you install, but is not yet capable
of acquiring and installing the packages necessary to fulfill its requirements. If
you are not familiar with the term, dependencies are packages and/or libraries
required by other packages. The Red Hat Linux OS is built on dependencies,
which you can visualize as an upside-down tree structure. At the top of the
tree are your basic user-installed programs, such as Wireshark. Wireshark
depends on libpcap to operate, and libpcap requires other libraries to func-
tion. This tree structure is nice, but it adds to the dependency problem. For
example, you may want to install a new software package and receive an error
stating that another library on the system needs to be updated first. OK, so
you download that library and attempt to update it. But, now, that library has
dependencies too that need to be updated! This can be a never-ending and
stressful adventure.

You can get information about RPMs in several ways:

■ rpm –q (query) can be used to find out the version of a package
installed—for example, rpm –q wireshark.

■ rpm –qa (query all) can be used to show a very long list of all of
the packages on the system. To make this list shorter, you can pipe
the query into a grep to find what you are looking for: rpm –qa |
grep wireshark.

■ rpm –ql (query list) shows all of the files that were installed on the
system with a particular package—for example, rpm –ql wireshark.

■ rpm –qf (query file) can be used to find out which RPM a particular
file belongs to—for example, rpm –qf /usr/bin/wireshark.

Notes from the Underground…

Continued

ethereal_ch03.qxd 11/14/06 11:03 AM Page 107

Installing libpcap from the Source Files
Installing libpcap from the source tarball is a relatively simple process.A tarball is a
single file that can contain many other files, like a zip file.The tar format by itself
does not provide compression like the zip format does, so it is customary to com-
press the tar file with either gzip or bzip2. See the sidebar for more information on
using the gzip and bzip2 compression utilities. We will be extracting the contents of
the tar file as well as compiling the source code by following the common con-
figure | make | make install format for building the package into the system. It
is standard practice NOT to build software as root, but to change to root to do the
make install step. Perform the following steps to install libpcap from the source files.

1. Unzip and extract the tarball by typing tar –zxvf libpcap-0.9.5.tar.gz
and pressing Enter.This will create a new directory called libpcap-0.9.5.
Notice the extracted output displayed on the screen.

2. Change directories by typing cd libpcap-0.9.5 and pressing Enter.

3. Run the configure script by typing ./configure and pressing Enter.The
configure script will analyze your system to make sure that dependencies,
environment variables, and other parameters are acceptable. Note the ques-
tion-and-answer type of analysis displayed on the screen.

www.syngress.com

108 Chapter 3 • Getting and Installing Wireshark

When using the RPM utility, you can install software three ways:

■ rpm –i (install) installs a new RPM file, and leaves any previously
installed versions alone.

■ rpm –u (update) installs new software and removes any existing
older versions.

■ rpm –f (freshen) installs new software, but only if a previous ver-
sion already exists. This is typically used for installing patches.

You can uninstall an RPM from your system by using the following:

■ rpm –e (erase) removes an RPM from the system—for example,
rpm –e wireshark.

Sometimes you can be successful by installing a package with the
--nodeps option (notice it includes two hyphens). This causes the package to
install regardless of the dependencies it calls for. This may, or may not, work,
depending on whether the package you are installing really does need all of the
dependencies to function.

ethereal_ch03.qxd 11/14/06 11:03 AM Page 108

4. When the configure process is complete, and the command prompt is dis-
played, make sure there are no errors. If everything appears trouble-free, run
the make utility simply by typing make and pressing Enter.This utility will
compile the actual source code.The output of the compilation should
appear on the screen.

5. The last step of the process is to distribute the executables and other files to
their proper locations in the systems directories. Switch to the root user to
perform this step. If the make utility completes without errors, type sudo
make install and press Enter. Enter the password for root and press
Enter. Once again, the output of this process should appear on the screen.

6. After the make install process completes, the command prompt will be dis-
played once again. If everything looks error free, you are done!

If at any time during the installation process you receive errors, you will need to
investigate the problem and resolve it before continuing. Most of the time, dependency
issues, software versions, or environment settings cause compiling errors. Compiling
software from the source files offers the benefit of providing highly customized and
optimized software for your system. Now that you have libpcap installed, move on to
the “Installing Wireshark from Source” section where you can continue compiling
Wireshark from the source code or choose one of the other processes.

NOTE

Let’s take a moment to define the typical variables used for the tar com-
mand: -z, -x, -v, and -f options.

The -z option specifies that the file must be processed through the
gzip filter. You can tell if an archive was created with gzip by the .gz
extension. The -z option is only available in the GNU version of tar. If you
are not using the GNU version, you will have to unzip the tar file with a
command such as gunzip or gzip –dc filename.tar.gz | tar xvf -.

The -x option indicates you want the contents of the archive to be
extracted. By default, this action will extract the contents into the cur-
rent working directory unless otherwise specified.

The -v option stands for verbose, which means that tar will display all
files it processes on the screen. This is a personal preference and is not
critical to the extraction operation.

The -f option specifies the file that tar will process. For example, this
could be libpcap-0.9.5.tar.gz. Sometimes it might be necessary to specify a
full path if the file you want to work with is located in another directory.

www.syngress.com

Getting and Installing Wireshark • Chapter 3 109

ethereal_ch03.qxd 11/14/06 11:03 AM Page 109

NOTE

Some Linux distributions have software like libpcap and others prein-
stalled. It is worth the time and effort to install the latest versions of
these packages. You will benefit from the increased stability, features,
bug fixes, and speed of updated software.

Installing WinPcap
The Windows version of Wireshark now includes WinPcap, which you can choose
to install as you are installing Wireshark. However, we wanted to include instructions
for those of you who wish to install WinPcap separately.The latest WinPcap installa-
tion executable can be downloaded from www.winpcap.org.To install WinPcap, you
need to have the right to install new drivers to your system, and you will need to be
logged in as Administrator or have Administrator rights. Perform the following steps
to install WinPcap 3.1 on a Windows XP system:

1. Download the WinPcap executable from www.winpcap.org.

2. Begin the installation process by double-clicking the installer,
WinPcap_3_1.exe.The first screen is a general welcome screen for the
installation wizard. Click Next to continue.

3. The next screen displays information on the WinPcap license. Once you
have read and accepted the terms of the agreement, click I Agree to accept
the license and continue.

4. The Setup Status window appears, showing the files being copied and dis-
playing a progress bar. Once the installation is complete, click Finish to
exit the setup.

NOTE

If you do not have WinPcap installed, you will be able to open saved
capture files, but you won’t be able to capture live network traffic.

www.syngress.com

110 Chapter 3 • Getting and Installing Wireshark

ethereal_ch03.qxd 11/14/06 11:03 AM Page 110

WARNING

If you have an older version of WinPcap and would like to install a new
one, you must uninstall the old version and reboot. This ensures the new
version of WinPcap installs properly. At the time of this writing, version
3.1 was recommended.

NOTE

To make sure WinPcap is installed on your system, check by choosing
Start | Control Panel | Add or Remove Programs. You should see
WinPcap listed under the currently installed programs list.

WinPcap installs by default in C:\Program Files\WinPcap. If you need to unin-
stall WinPcap, use the provided uninstall executable located in this directory. See
how easy that was! Now let’s move on to the Wireshark installation.

Installing Wireshark on Windows
The latest Wireshark Windows executable can be downloaded from www.wireshark.org
/download.html, and installs on a variety of Windows platforms. Note that you don’t
need Administrator rights to install Wireshark. Now that WinPcap is installed, perform
the following to install Wireshark 0.99.4 on a Windows XP system.

1. Download the Wireshark executable from
www.wireshark.org/download.html.

2. Begin the installation process by double-clicking the installer: wireshark-
setup-0.99.4.exe.The first screen is a general welcome screen for the
setup wizard. Click Next to continue.

3. The next screen is the Wireshark GNU General Public License Agreement.
After reading and accepting the terms of the license, click I Agree to
accept the license and continue.

4. The next screen allows you to choose which Wireshark components to install.
The Appendix discusses other programs packaged with Wireshark.The default
components require 65.2MB of free space. Of course, you should have ade-
quate free space for storing your capture files as well. Click Next to continue.

www.syngress.com

Getting and Installing Wireshark • Chapter 3 111

ethereal_ch03.qxd 11/14/06 11:03 AM Page 111

5. The screen that appears allows you to select shortcuts to create and asso-
ciate file extensions with Wireshark. Click Next to continue.

6. The next screen allows you to choose the folder where you would like to
install Wireshark.Accept the default of C:\Program Files\Wireshark and
click Next.

7. The screen that next appears allows you to install WinPcap if it is not
already installed. If you have not installed WinPcap already, you may choose
to do so by clicking the Install WinPcap 3.1 box. Click Install to begin the
installation process.

8. A screen showing the status of the installation process should appear. It
gives line-by-line details of what is happening behind the scenes, as well as
an overall progress bar. If Wireshark is installing WinPcap for you, you will
need to click Next through the WinPcap installation screens and accept
the WinPcap license agreement. Once the Wireshark installation is com-
plete, click Next to continue.

9. All done! Wireshark is now installed and ready to go. It even puts a nice
shortcut icon right on the desktop.You may click the boxes to run
Wireshark and to show the Wireshark news file. Click Finish to close the
dialog box.You can now double-click the Wireshark desktop icon to open
the Wireshark network analyzer GUI.

NOTE

A nice feature of the completed installation box is the ability to save the
installation log to a file. Simply right-click one of the lines in the box and
a small window pops up that says “Copy Details To Clipboard.” Select this
option and paste the results into Notepad or your favorite text editor.

By default, Wireshark is installed in C:\Program Files\Wireshark.As you saw
during the installation process, this can be changed. Several files are placed within
the Wireshark directory, including the uninstall.exe file.You can use this executable
to uninstall Wireshark if necessary. Other important files to note are the seven exe-
cutables and their associated manual pages in HTML format: wireshark.exe,
tshark.exe, capinfos.exe, dumpcap.exe, editcap.exe, mergecap.exe, and text2pcap.exe.
These supporting programs are discussed in detail in Chapter 9.

www.syngress.com

112 Chapter 3 • Getting and Installing Wireshark

ethereal_ch03.qxd 11/14/06 11:03 AM Page 112

NOTE

If you are having trouble capturing packets with Wireshark, ensure
that WinPcap is working properly by using Windump to try capturing
packets. Windump can be downloaded from
http://www.winpcap.org/windump/install/default.htm. The command
windump –D will display a list of valid adapters that WinPcap is able
to detect.

Installing Wireshark on Linux
In this section, we will cover the Yellow dog Updater, Modified (YUM) method of
installing Wireshark.YUM is an open-source, command-line package management
utility for RPM-compatible Linux systems. It is an automated method of installing,
updating, and removing RPM packages.The next section will focus on building
Wireshark from source. Each example performs the process of installing Wireshark
0.99.4 on Fedora Core 6. So let’s get started installing Wireshark!

Installing Wireshark from the RPMs
Installing software from the RPMs can be a very tricky process because of depen-
dencies. Luckily,YUM takes care of dependencies and does all the work for us. For
example, you don’t need to worry about installing libpcap because YUM downloads
and installs it as part of the Wireshark package.The following step-by-step process
can be used to install Wireshark on Fedora Core 6. Remember, newer versions may
have been released since the writing of this book. Before beginning, you must have
root privileges to install Wireshark. Make sure you are logged in as root, or switch
to root by typing su root, pressing Enter, and typing the appropriate root pass-
word. Let’s begin the Wireshark installation process:

1. Install the Wireshark package by typing yum install wireshark-gnome
and pressing Enter.

That’s it! YUM downloads Wireshark and its dependencies and installs them for
you. Verify the installation by typing wireshark and pressing Enter.You should see
the Wireshark GUI appear on your screen.

www.syngress.com

Getting and Installing Wireshark • Chapter 3 113

ethereal_ch03.qxd 11/14/06 11:03 AM Page 113

NOTE

When using YUM, you must install the wireshark-gnome package to get
the Wireshark GUI.

The following output shows how to install the Wireshark RPMs and their
dependencies using YUM:

[root@localhost]# yum install wireshark-gnome

Loading "installonlyn" plugin

Setting up Install Process

Setting up repositories

Reading repository metadata in from local files

Parsing package install arguments

Resolving Dependencies

--> Populating transaction set with selected packages. Please wait.

---> Downloading header for wireshark-gnome to pack into transaction set.

wireshark-gnome-0.99.4-1. 100% |=========================| 4.9 kB 00:00

---> Package wireshark-gnome.i386 0:0.99.4-1.fc6 set to be updated

--> Running transaction check

--> Processing Dependency: libwiretap.so.0 for package: wireshark-gnome

--> Processing Dependency: wireshark = 0.99.4-1.fc6 for package: wireshark-
gnome

--> Processing Dependency: libwireshark.so.0 for package: wireshark-gnome

--> Restarting Dependency Resolution with new changes.

--> Populating transaction set with selected packages. Please wait.

---> Downloading header for wireshark to pack into transaction set.

Wireshark-0.99.4-1.fc6.i3 100% |=========================| 27 kB 00:00

---> Package wireshark.i386 0:0.99.4-1.fc6 set to be updated

--> Running transaction check

Dependencies Resolved

==

Package Arch Version Repository Size

==

Installing:

wireshark-gnome i386 0.99.4-1.fc6 updates 542 k

Installing for dependencies:

wireshark i386 0.99.4-1.fc6 updates 7.8 M

www.syngress.com

114 Chapter 3 • Getting and Installing Wireshark

ethereal_ch03.qxd 11/14/06 11:03 AM Page 114

Transaction Summary

==

Install 2 Package(s)

Update 0 Package(s)

Remove 0 Package(s)

Total download size: 8.4 M

Is this ok [y/N]: y

Downloading Packages:

(1/2): wireshark-gnome-0. 100% |=========================| 542 kB 00:03

(2/2): wireshark-0.99.4-1 100% |=========================| 7.8 MB 00:45

warning: rpmts_HdrFromFdno: Header V3 DSA signature: NOKEY, key ID 4f2a6fd2

Importing GPG key 0x4F2A6FD2 "Fedora Project <fedora@redhat.com>"

Is this ok [y/N]: y

Running Transaction Test

Finished Transaction Test

Transaction Test Succeeded

Running Transaction

Installing: wireshark ######################### [1/2]

Installing: wireshark-gnome ######################### [2/2]

Installed: wireshark-gnome.i386 0:0.99.4-1.fc6

Dependency Installed: wireshark.i386 0:0.99.4-1.fc6

Complete!

Installing Wireshark on Mac OS X

Installing Wireshark on Mac OS X from Source
Building Wireshark from the source code on Mac OS X is a lengthy, and sometimes
tricky, process. However, many people prefer this method because of the control they
have over the packages installed. We performed the source-code method of installing
Wireshark on Mac OS X Tiger. If you have some free time and are feeling ambitious,
you may try this method of installation; otherwise, use one of the ported methods
such as DarwinPorts or Fink. If you downloaded newer versions of the software, make
sure you change the names accordingly as you proceed through the installation steps.

1. Prepare your Mac by installing Xcode Tools, which is located on your Mac
OS X CD.This installs the gcc compiler and other development tools
needed to compile source code, such as the X11 environment. If you are
running Tiger, find the Xcode Tools folder on the Mac OS X Install Disc 1.

www.syngress.com

Getting and Installing Wireshark • Chapter 3 115

ethereal_ch03.qxd 11/14/06 11:03 AM Page 115

Double-click the XcodeTools.mpkg in this folder and follow the
onscreen instructions to install Xcode Tools.

2. Install the X11 user environment, which is also located on your Mac OS X
Install Disc 1.The package is located in System | Installation | Packages
| X11User.pkg. Double-click the X11User.pkg and follow the onscreen
instructions.This installs the X11 application in the Utilities folder.

3. Download the following packages and save them to your user folder, typi-
cally /Users/username:

■ Pkg-config pkgconfig.freedesktop.org

■ Gettext www.gnu.org/software/gettext

■ Glib www.gtk.org/download

■ ATK ftp.gtk.org/pub/gtk/v2.10/dependencies

■ Libpng libpng.sourceforge.net

■ Libxml ftp://xmlsoft.org/libxml2

■ Freetype freetype.sourceforge.net

■ Fontconfig fontconfig.org

■ Cairo ftp.gtk.org/pub/gtk/v2.10/dependencies

■ Pango www.gtk.org/download

■ Jpgsrc ftp.gtk.org/pub/gtk/v2.10/dependencies

■ Tiff ftp.gtk.org/pub/gtk/v2.10/dependencies

■ GTK+ www.gtk.org/download

■ Libpcap www.tcpdump.org

■ Wireshark www.wireshark.org

4. Run the X11 application in the Utilities folder by double-clicking it.This
will open an Xterminal window. By default, Xterminal should put you into
the /Users/username directory and you should be able to see all of the
packages you just downloaded by typing ls and pressing Enter.

5. Ensure that /usr/local/bin is in your $PATH. If not, add it by typing
PATH=$PATH:/usr/local/bin and pressing Enter.

6. Extract pkg-config by typing tar zxvf pkg-config-0.21.tar.gz and
pressing Enter. Next, change into the pkg-config directory by typing cd

www.syngress.com

116 Chapter 3 • Getting and Installing Wireshark

ethereal_ch03.qxd 11/14/06 11:03 AM Page 116

pkgconfig-0.21 and pressing Enter. Run the configure script by typing
./configure and pressing Enter. Compile the source code by typing make
and pressing Enter. Next, install the files in their appropriate locations by
typing sudo make install and pressing Enter.To install the software, you
must enter the root password when prompted. When the software install is
complete, change back to the original directory by typing cd .. and
pressing Enter.

7. Extract gettext by typing tar zxvf gettext-0.12.1.tar.gz and pressing
Enter. Next, change to the gettext directory by typing cd gettext-0.12.1
and pressing Enter. Run the configure script by typing ./configure and
pressing Enter.Then, compile the source code by typing make and
pressing Enter. Next, install the files in their appropriate locations by
typing sudo make install and pressing Enter.To install the software, you
must enter the root password when prompted. When the software install is
complete, change back to the original directory by typing cd .. and
pressing Enter.

8. Extract Glib by typing tar zxvf glib-2.12.4.tar.gz and pressing Enter.
Next, change to the glib directory by typing cd glib-2.12.4 and pressing
Enter. Run the configure script by typing ./configure and pressing
Enter.Then, compile the source code by typing make and pressing Enter.
Next, install the files in their appropriate locations by typing sudo make
install and pressing Enter.To install the software, you must enter the root
password when prompted. When the software install is complete, change
back to the original directory by typing cd .. and pressing Enter.

9. Extract ATK by typing tar zxvf atk-1.12.3.tar.gz and pressing Enter.
Next, change into the ATK directory by typing cd atk-1.12.3 and pressing
Enter. Run the configure script by typing ./configure and pressing
Enter.Then, compile the source code by typing make and pressing Enter.
Next, install the files in their appropriate locations by typing sudo make
install and pressing Enter.To install the software, enter the root password
when prompted. When the software install is complete, change back to the
original directory by typing cd .. and pressing Enter.

10. Extract libpng by typing tar zxvf libpng-1.2.12.tar.gz and pressing
Enter. Next, change to the libpng directory by typing cd libpng-1.2.12
and pressing Enter. Run the configure script by typing ./configure and
pressing Enter. Compile the source code by typing make and pressing
Enter. Next, install the files in their appropriate locations by typing sudo

www.syngress.com

Getting and Installing Wireshark • Chapter 3 117

ethereal_ch03.qxd 11/14/06 11:03 AM Page 117

make install and pressing Enter.To install the software, you must enter
the root password when prompted. When the software install is complete,
change back to the original directory by typing cd .. and pressing Enter.

11. Extract libxml by typing tar zxvf libxml2-2.6.27.tar.gz and pressing
Enter. Next, change to the libxml directory by typing cd libxml2-2.6.27
and pressing Enter. Run the configure script by typing ./configure and
pressing Enter. Compile the source code by typing make and pressing
Enter. Next, install the files in their appropriate locations by typing sudo
make install and pressing Enter.To install the software, you must enter
the root password when prompted. When the software install is complete,
change back to the original directory by typing cd .. and pressing Enter.

12. Extract Freetype by typing tar zxvf freetype-2.2.1.tar.gz and pressing
Enter. Next, change to the freetype directory by typing cd freetype-2.2.1
and pressing Enter. Run the configure script by typing ./configure and
pressing Enter.Then, compile the source code by typing make and
pressing Enter. Next, install the files in their appropriate locations by
typing sudo make install and pressing Enter.To install the software, you
must enter the root password when prompted. When the software install is
completed, change back to the original directory by typing cd .. and
pressing Enter.

13. Extract Fontconfig by typing tar zxvf fontconfig-2.4.1.tar.gz and
pressing Enter. Next, change to the fontconfig directory by typing cd
fontconfig-2.4.1 and pressing Enter. Run the configure script by typing
./configure and pressing Enter.Then, compile the source code by typing
make and pressing Enter. Next, install the files in their appropriate loca-
tions by typing sudo make install and pressing Enter.To install the soft-
ware, you must enter the root password when prompted. When the
software install is complete, change back to the original directory by typing
cd .. and pressing Enter.

14. Extract Cairo by typing tar zxvf cairo-1.2.4.tar.gz and pressing Enter.
Next, change to the cairo directory by typing cd cairo-1.2.4 and pressing
Enter. Run the configure script by typing ./configure and pressing
Enter.Then, compile the source code by typing make and pressing Enter.
Next, install the files in their appropriate locations by typing sudo make
install and pressing Enter.To install the software, enter the root password
when prompted. When the software install is complete, change back to the
original directory by typing cd .. and pressing Enter.

www.syngress.com

118 Chapter 3 • Getting and Installing Wireshark

ethereal_ch03.qxd 11/14/06 11:03 AM Page 118

15. Extract Pango by typing tar zxvf pango-1.14.7.tar.gz and pressing
Enter. Next, change to the pango directory by typing cd pango-1.14.7
and pressing Enter. Run the configure script by typing ./configure and
pressing Enter. Compile the source code by typing make and pressing
Enter. Next, install the files in their appropriate locations by typing sudo
make install and pressing Enter.To install the software, enter the root
password when prompted. When the software install is complete, change
back to the original directory by typing cd .. and pressing Enter.

16. Extract jpgsrc by typing tar zxvf jpgsrc.v6b.tar.gz and pressing Enter.
Next, change to the jpgsrc directory by typing cd jpgsrc-6b and pressing
Enter. Run the configure script by typing ./configure and pressing
Enter.Then, compile the source code by typing make and pressing Enter.
Next, install the files in their appropriate locations by typing sudo make
install and pressing Enter.To install the software, enter the root password
when prompted. When the software install is complete, change back to the
original directory by typing cd .. and pressing Enter.

17. Extract tiff by typing tar zxvf tiff-3.7.4.tar.gz and pressing Enter. Next,
change to the tiff directory by typing cd tiff-3.7.4 and pressing Enter.
Run the configure script by typing ./configure and pressing Enter.
Compile the source code by typing make and press Enter. Next, install
the files in their appropriate locations by typing sudo make install and
pressing Enter.To install the software, enter the root password when
prompted. When the software install is complete, change back to the orig-
inal directory by typing cd .. and pressing Enter.

18. Extract GTK+ by typing tar zxvf gtk+-2.10.6.tar.gz and pressing
Enter. Next, change to the gtk+ directory by typing cd gtk+-2.10.6 and
pressing Enter. Run the configure script by typing ./configure and
pressing Enter. Compile the source code by typing make and pressing
Enter. Next, install the files in their appropriate locations by typing sudo
make install and pressing Enter.To install the software, enter the root
password when prompted. When the software install is complete, change
back to the original directory by typing cd .. and pressing Enter.

19. Extract libpcap by typing tar zxvf libpcap-0.9.5.tar.gz and pressing
Enter. Next, change to the libpcap directory by typing cd libpcap-0.9.5
and pressing Enter. Run the configure script by typing ./configure and
pressing Enter. Compile the source code by typing make and pressing
Enter. Next, install the files in their appropriate locations by typing sudo

www.syngress.com

Getting and Installing Wireshark • Chapter 3 119

ethereal_ch03.qxd 11/14/06 11:03 AM Page 119

make install and pressing Enter.To install the software, enter the root
password when prompted. When the software install is complete, change
back to the original directory by typing cd .. and pressing Enter.

20. Finally the moment we have been waiting for. Extract Wireshark by typing
tar zxvf wireshark-0.99.4.tar.gz and pressing Enter. Next, change to
the wireshark directory by typing cd wireshark-0.99.4 and pressing
Enter. Run the configure script by typing ./configure and pressing
Enter.Then, compile the source code by typing make and pressing Enter.
Next, install the files in their appropriate locations by typing sudo make
install and pressing Enter.To install the software, enter the root password
when prompted. When the software install is complete, change back to the
original directory by typing cd .. and pressing Enter.

21. To run Wireshark, type wireshark and press Enter.The GUI should open.

Now you have successfully built Wireshark from the source code! Each time you
wish to run Wireshark, make sure to run the X11 application and run Wireshark
from the Xterminal window that opens.The Wireshark binary installs in
/usr/local/bin, so if you don’t have that directory in your permanent $PATH, you
will need to add it. Once everything is installed, you may also remove the *.tar.gz
files from your /User/username folder.

NOTE

SharkLauncher is a helpful tool that will launch the X11 environment
and the Wireshark binary. It may be downloaded from
sourceforge.net/projects/aquaethereal.

Installing Wireshark on
Mac OS X Using DarwinPorts
DarwinPorts contains Unix-based software that has been modified to run on Mac
OS X, known as porting. DarwinPorts automates the process of building third-party
software for Mac OS X and other operating systems. It also tracks all dependency
information for a given software tool. It knows what to build and install and in what
order.After you download and install DarwinPorts, you can use it to easily install all
kinds of other software—in our case, Wireshark.

www.syngress.com

120 Chapter 3 • Getting and Installing Wireshark

ethereal_ch03.qxd 11/14/06 11:03 AM Page 120

1. Prepare your Mac by installing Xcode Tools, which is located on your Mac
OS X CD.This will install the gcc compiler and other development tools
needed to compile source code, such as the X11 environment. If you are
running Tiger, find the Xcode Tools folder on the Mac OS X Install Disc
1. Double-click the XcodeTools.mpkg in this folder and follow the
onscreen instructions to install Xcode Tools.

2. Install the X11 user environment located on your Mac OS X Install Disc 1
as well.The package is located in System | Installation | Packages |
X11User.pkg. Double-click the X11User.pkg and follow the onscreen
instructions.This installs the X11 application in the Utilities folder.

3. Download DarwinPorts from macports.com. Copy the file to the
/Users/username folder.

4. Run the X11 application in the Utilities folder by double-clicking it.This
will open an Xterminal window. By default, Xterminal should put you into
the /Users/username directory and you should be able to see the package
you just downloaded by typing ls and pressing Enter.

5. Extract DarwinPorts by typing tar zxvf DarwinPorts-1.3.2.tar.gz and
pressing Enter. Next, change into the DarwinPorts base directory by
typing cd DarwinPorts-1.3.2/base and pressing Enter. Run the con-
figure script by typing ./configure and pressing Enter. Compile the
source code by typing make and pressing Enter. Install the files in their
appropriate locations by typing sudo make install and pressing Enter.To
install the software, enter the root password when prompted. When the
software install is complete, change back to the original directory by typing
cd ../.. and pressing Enter.

6. DarwinPorts installs the binary in the /opt/local/bin directory, so you may
need to add that to your PATH by typing
PATH=$PATH:/opt/local/bin and pressing Enter.

7. Update the ports to make sure they are current by typing sudo port –d
selfupdate and pressing Enter.

8. Install Wireshark by typing sudo port install wireshark and pressing
Enter. DarwinPorts will then start fetching and installing the appropriate
software dependencies and the Wireshark binary.This may take a while to
complete.

9. Once the installation is complete, run Wireshark by typing wireshark and
pressing Enter.The GUI will now open.

www.syngress.com

Getting and Installing Wireshark • Chapter 3 121

ethereal_ch03.qxd 11/14/06 11:03 AM Page 121

Now you have successfully installed Wireshark using DarwinPorts! Each time
you wish to run Wireshark, make sure you run the X11 application and run
Wireshark from the Xterminal window that opens.The Wireshark binary installs in
/usr/local/bin, so if you don’t have that directory in your permanent $PATH, you
will need to add it. Once everything is installed, you may also remove the
DarwinPorts-1.3.2.tar.gz file from your /User/username folder.

Installing Wireshark on Mac OS X Using Fink
The Fink Project modifies UNIX software so it compiles and runs on Mac OS X.
This is known as porting.The distribution is then built with the package management
tools dpkg and apt-get.

1. The first thing you need to do is prepare your Mac by installing Xcode
Tools, which are located on your Mac OS X CD.This installs the gcc
compiler and other development tools needed to compile source code,
such as the X11 environment. If you are running Tiger, an Xcode Tools
folder can be found on the Mac OS X Install Disc 1. Double-click the
XcodeTools.mpkg in this folder and follow the onscreen instructions
to install Xcode Tools.

2. Install the X11 user environment, which is located on your Mac OS X
Install Disc 1 as well.The package can be found by choosing System |
Installation | Packages | X11User.pkg. Double-click the
X11User.pkg and follow the onscreen instructions.This installs the X11
application in the Utilities folder.

3. Download the Fink installer image from fink.sourceforge.net. Double-
click the image to uncompress it, then double-click the Fink pkg file to
launch the installer. Follow the onscreen instructions to walk through the
Fink installer.

4. Open the FinkCommander file on the installer image and drag the
FinkCommander binary to the Applications folder.

5. Double-click the FinkCommand application to open the GUI.

6. Perform an update by clicking the Source menu and choosing
Selfupdate-rsync.This will ensure that all of the packages are current.

7. Now you are ready to install Wireshark. Scroll down through the list of
packages and choose the Wireshark package. Click the icon in the upper-
left corner of the window to install the binary package.

www.syngress.com

122 Chapter 3 • Getting and Installing Wireshark

ethereal_ch03.qxd 11/14/06 11:03 AM Page 122

8. Once the installation is complete, you must open an Xterminal windows to
run Wireshark. Run Wireshark by typing wireshark and pressing Enter.
The GUI will open.

Now you have successfully installed Wireshark using Fink. Each time you wish
to run Wireshark, make sure you run both the X11 application and Wireshark from
the Xterminal window that opens.The Wireshark binary installs in /sw/bin, so if
you don’t have that directory in your permanent $PATH, you should add it.

Installing Wireshark from Source
Installing Wireshark from the source code is very beneficial in a number of ways. Not
only will you have all of the source code, additional documentation, and miscellaneous
files to peruse, you will also have the ability to control numerous aspects of the build
process.Wireshark can be built from sources on both the Windows and Unix/Linux
OS.We will only focus on the Unix-based build in this book, however. Building soft-
ware from source will give you a better feel for how the whole process works and
what goes on behind the scenes.What you will take away is a wealth of knowledge
about the software package, programming, and operating system management.

The first thing we need to do to install Wireshark software from source code is
install all of the required dependencies. Remember that we earlier stated we need
certain files for Wireshark to operate smoothly and effectively? In addition to
libpcap, Wireshark requires the following prerequisites: GTK+ and Glib. However,
depending on your version of Unix/Linux you may also have the following addi-
tional prerequisites:

■ Pkg-config pkgconfig.freedesktop.org

■ Gettext www.gnu.org/software/gettext

■ ATK ftp.gtk.org/pub/gtk/v2.10/dependencies

■ Libpng libpng.sourceforge.net

■ Libxml ftp://xmlsoft.org/libxml2

■ Freetype freetype.sourceforge.net

■ Fontconfig fontconfig.org

■ Cairo ftp.gtk.org/pub/gtk/v2.10/dependencies

■ Pango www.gtk.org/download

■ Jpgsrc ftp.gtk.org/pub/gtk/v2.10/dependencies

www.syngress.com

Getting and Installing Wireshark • Chapter 3 123

ethereal_ch03.qxd 11/14/06 11:03 AM Page 123

■ Tiff ftp.gtk.org/pub/gtk/v2.10/dependencies

For more information on installing these packages, see the section “Installing
Wireshark on Mac OS X from Source.”

NOTE

As we stated previously, most installations follow the configure | make
| make install format. However, in some instances, there may be other
steps. Once the tar file has been extracted, there is usually an INSTALL
text file included in the software subdirectory. Take a look at this file by
typing more INSTALL to verify the installation process.

After the required dependencies are installed, we are ready to install Wireshark.
There may be newer versions that have been released since the writing of this book,
and you can download the latest versions from www.wireshark.org. Remember, it is
standard practice NOT to build software as root, but to change to root to do the
make install step.

1. Uncompress and extract the Wireshark tarball by typing tar zxvf wire-
shark-0.99.4.tar.gz and pressing Enter.This will create a new directory
called wireshark-0.99.4.

2. Change to the wireshark directory by typing cd wireshark-0.99.4 and
pressing Enter.

3. Run the configure script by typing ./configure and pressing Enter.At the
end of the configure script output, you will see a summary of the options.
These can be changed by using specific parameters with the configure
script, something which is discussed in the section “Enabling and Disabling
Features via configure.”

4. When the configure process is complete and the command prompt is dis-
played, make sure there are no errors. If everything appears trouble-free, run
the make utility simply by typing make and pressing Enter.

5. If the make utility completed without errors, type su root and press Enter.
Enter the password for root and press Enter. Next, install the files in their
appropriate locations by typing make install and pressing Enter. When

www.syngress.com

124 Chapter 3 • Getting and Installing Wireshark

ethereal_ch03.qxd 11/14/06 11:03 AM Page 124

the software install is completed, change back to the original directory by
typing cd .. and pressing Enter.

6. After the make install process completes, the command prompt will be dis-
played once again.To run Wireshark, type wireshark and press Enter.The
GUI will open.

Now you have successfully built Wireshark from the source code! The Wireshark
binary installs in /usr/local/bin, so if you don’t have that directory in your perma-
nent $PATH, you must add it. Once everything is installed, you may also remove the
*.tar.gz files.

NOTE

Other programs are listed in the configure output that you may not be
familiar with. They are each very useful when you are developing for
Wireshark. The idl2wrs program is used by developers to convert a
CORBA Interface Definition Language (IDL) file to C source code for a
Wireshark plug-in. The randpkt program is used to generate random
packet capture files. It can generate different types of packets with a
user-specified maximum byte count and the number of packets to
create. Finally, the dftest program is a display filter compiler test pro-
gram. It is used to display filter byte-code for debugging filter routines.

Once the installation is complete, the following programs should now be
installed in /usr/local/bin: wireshark, tshark, editcap, mergecap, dumpcap, text2pcap,
and idl2wrs. Plugins are installed in /usr/local/lib/wireshark/plugins/0.99.4. Some
important resources to note are the files in the wireshark-0.99.4/doc directory.They
contain several good README files about the inner workings of Wireshark. Several
helpful README files can also be found in the wireshark-0.99.4 directory. Finally,
the INSTALL and INSTALL.configure files located in the wireshark-0.99.4 direc-
tory are also a good resource.

NOTE

The manuf file is a text document, located in the /usr/local/share/wire-
shark directory, that contains a very large listing of well-known vendor
MAC addresses. This can come in handy when troubleshooting network
problems.

www.syngress.com

Getting and Installing Wireshark • Chapter 3 125

ethereal_ch03.qxd 11/14/06 11:03 AM Page 125

NOTE

The absolute latest version of Wireshark can be downloaded from the
automated build section at www.wireshark.org/download/automated.
This is the version of Wireshark that the developers are currently working
on, so you must be aware that this is a beta version that may contain bugs.

Enabling and Disabling Features via configure
During the configure script portion of the build process, you can pass options to the
installer to customize the application to your specific needs.The following options
were harvested from the INSTALL file in the Wireshark tarball.

NOTE

Running ./configure—help will give you information on the optional
parameters, plus a whole lot more!

■ --sysconfdir=DIR Wireshark installs a support file (manuf) in
${PREFIX}/etc by default, where ${PREFIX} comes from
--prefix=DIR. If you do not specify any --prefix option, ${PREFIX} is
“/usr/local”.You can change the location of the manuf file with the
–sysconfdir option.

■ --disable-usr-local By default, configure will look in /usr/local/{include,lib}
for additional header files and libraries. Using this switch keeps configure
from looking there.

■ --disable-wireshark By default, if configure finds the GTK+ libraries, the
Makefile builds Wireshark, the GUI packet analyzer.You can disable the
build of the GUI version of Wireshark with this switch.

■ --disable-gtk2 Build Glib/Gtk+ 1.2[.x]–based Wireshark.

■ --disable-tshark By default, the line-mode packet analyzer,Tshark, is built.
Use this switch to avoid building it.

www.syngress.com

126 Chapter 3 • Getting and Installing Wireshark

ethereal_ch03.qxd 11/14/06 11:03 AM Page 126

■ --disable-editcap By default, the capture-file editing program is built. Use
this switch to avoid building it.

■ --disable-mergecap By default, the capture-file merging program is built.
Use this switch to avoid building it.

■ --disable-text2pcap By default, the hex-dump-to-capture file conversion
program is built. Use this switch to avoid building it.

■ --disable-idl2wrs By default, the IDL-to-wireshark-dissector-source-code
converter is built. Use this switch to avoid building it.

■ --enable-dftest By default, the display-filter-compiler test program is not
built. Use this switch to build it.

■ --enable-randpkt By default, the program that creates random packet-cap-
ture files is not built. Use this switch to build it.

■ --without-pcap If you choose to build a packet analyzer that can analyze
capture files but cannot capture packets on its own, but you do have libpcap
installed, or if you are trying to build Wireshark on a system that doesn’t
have libpcap installed (in which case you have no choice but to build a ver-
sion that can analyze capture files but cannot capture packets on its own),
use this option to avoid using libpcap.

■ --with-pcap=DIR Use this to tell Wireshark where you have libpcap
installed (if it is installed in a nonstandard location).

■ --without-zlib By default, if configure finds zlib (a.k.a., libz), the wiretap
library will be built so that it can read compressed capture files. If you have
zlib but do not wish to build it into the wiretap library used by Wireshark,
Tshark, and the capture-file utilities that come in this package, use this
switch.

■ --with-zlib=DIR Use this to tell Wireshark where you have zlib installed,
if it is installed in a nonstandard location.

■ --disable-ipv6 If configure finds support for IPv6 name resolution on your
system, the packet analyzers will make use of it.To avoid using IPv6 name
resolution if you have the support for it, use this switch.

■ --enable-setuid-install Use this switch to install the packet analyzers as
setuid. Installing Wireshark and Tshark as setuid root is dangerous. Repeat:
IT’S DANGEROUS. Don’t do it.

www.syngress.com

Getting and Installing Wireshark • Chapter 3 127

ethereal_ch03.qxd 11/14/06 11:03 AM Page 127

■ --with-ssl=DIR If your SNMP library requires the SSL library, and your
SSL library is installed in a nonstandard location, you can specify where
your SSL library is with this switch.

■ --without-net-snmp If configure finds a supported version of the Net
SNMP library on your system, the SNMP dissector will be enhanced to
use routines from that SNMP library. Employ this switch to avoid using the
Net SNMP library even if you have it installed.

■ --with-net-snmp=PATH Tell the configure script where your net-snmp-
config shell script that comes with the Net-SNMP package is located, if
not in a standard location.

■ --without-ucd-snmp If configure finds a supported version of the UCD
SNMP library on your system, the SNMP dissector will be enhanced to
use routines from that SNMP library. Use this switch to avoid using the
UCD SNMP library even if you have it installed.

■ --with-ucd-snmp=DIR Tell the configure script where your UCD SNMP
library is located, if not in a standard location.

■ --without-plugins By default, if your system can support run-time loadable
modules, the packet analyzers are built with support for plug-ins. Use this
switch to build packet analyzers without plug-in support.

■ --with-plugins=DIR By default, plug-ins are installed in
${LIBDIR}/wireshark/plugins/${VERSION}. ${LIBDIR} can be set
with —libdir, or they default to ${EPREFIX/lib}. ${EPREFIX} can be set
with —exec-prefix, or iy can default to ${PREFIX}. ${VERSION} is the
Wireshark version. Use this switch to change the location where plug-ins
are installed.

www.syngress.com

128 Chapter 3 • Getting and Installing Wireshark

ethereal_ch03.qxd 11/14/06 11:03 AM Page 128

Summary
In this chapter, we covered the basics of Wireshark installation, including RPM and
source-code packages. We also covered complete installations of the libpcap and
WinPcap libraries, as well as Wireshark for Windows, Mac OS X, and UNIX-based
and Windows systems. We also learned how to install the necessary prerequisite soft-
ware, and troubleshoot dependency issues.You are now armed with the knowledge
and software necessary to continue with this book.

As stated previously in this chapter, it is important to keep your Wireshark instal-
lation up-to-date.This includes the packet capture libraries, the supporting prerequi-
site software, and the Wireshark software itself.You should also visit the Wireshark
site frequently to keep up on the latest announcements, as well as subscribe to some
of the mailing lists. We also strongly recommend you keep your OS up-to-date as
well, especially when it comes to security updates and patches. Computer security is
an ever-changing technology, and it is necessary to keep up with things to avoid
system compromises.

All of these parts will come together to form a solid network analysis system that
will assist your network troubleshooting and security efforts for years to come.

Solutions Fast Track
Getting Wireshark

� Wireshark can be downloaded as binaries or source code.

� Wireshark binaries are available for a number of platforms.

� The packages you will need for installing Wireshark are available for free
on the Internet at their respective Web sites.

Packet Capture Drivers

� Packet capture drivers are responsible for capturing the raw network packets.

� libpcap is a packet capture library for Unix systems; Windows uses WinPcap.

� Sometimes RPMs are a version or two behind the current source-code
release.

� Wireshark must have libpcap (or WinPcap) installed to capture packets.

� Libpcap can be installed from a binary or source code.

www.syngress.com

Getting and Installing Wireshark • Chapter 3 129

ethereal_ch03.qxd 11/14/06 11:03 AM Page 129

� Uninstall older versions of WinPcap before installing newer ones.

Installing Wireshark on Windows

� Wireshark installs WinPcap for you if selected.

� Uninstall Wireshark by using the uninstall.exe program.

� Wireshark for Windows also installs tshark, editcap, mergcap, and text2pcap.

Installing Wireshark on Linux

� Yellow dog Updater, Modified (YUM) installs Wireshark and all its
dependencies automatically.

� When using YUM, you must install the Wireshark-gnome package to get
the Wireshark GUI.

� You may also install the individual Wireshark RPMs for your Linux system,
but this can be a tricky process due to dependencies.

Installing Wireshark on Mac OS X

� You may install Wireshark on Mac OS X using DarwinPorts, Fink, or by
compiling from source code.

� You must have Xcode Tools and the X11 user environment installed on
your Mac OS to run Wireshark.

� DarwinPorts and Fink will install Wireshark and its dependencies for you
automatically.

Installing Wireshark from Source

� Wireshark source-compiling prerequisites include libpcap, GTK+, and Glib.

� Source code installs are accomplished with the configure | make | make
install process.

� Installing from source code gives you more control over the installation
process.

� Installing from source gives you access to the source code and additional
documentation.

www.syngress.com

130 Chapter 3 • Getting and Installing Wireshark

ethereal_ch03.qxd 11/14/06 11:03 AM Page 130

� Wireshark installs by default in the /usr/local/bin directory.

� Many options to the configure script are available to customize your install.

Q: Can I mix methods of installation? For example, can I install libpcap with the
RPM and then build Wireshark from source, or vice-versa?

A: Yes, you can, as long as your OS supports the methods you are trying to use.
Depending on the method, you may have to adjust your $PATH variable for the
install to find the necessary dependencies.

Q: What if I installed Wireshark and then later upgraded to GTK+2?

A: No problem, just re-run the configure script for Wireshark and then run make and
make install again.Wireshark will automatically detect GTK+2 and use that version.

Q: A new version of Wireshark was released and I want to upgrade. How do I do that?

A: For Linux, you would use the rpm –Uvh command or yum. For Windows, simply
run the new executable and it will upgrade your current version. For Mac OS X
using DarwinPorts, you may use the port upgrade wireshark command. If you have
compiled the code from source, you will need to perform the configure | make |
make install process again for the new version

Q: A new version of WinPcap was released. How do I upgrade to it?

A: First, go to the directory with your current version of WinPcap (usually
C:\Program Files\WinPcap) and run the uninstall.exe program. Reboot and
proceed with installing the executable for the new version.

www.syngress.com

Getting and Installing Wireshark • Chapter 3 131

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

ethereal_ch03.qxd 11/14/06 11:03 AM Page 131

Q: I installed everything and it looks like it worked okay, but when I try to run
Wireshark it says it can’t find it?

A: Make sure the Wireshark directory is in the proper path—for example,
/usr/local/bin.

Q: Why do I have to install all this other stuff just to compile Wireshark?

A: Wireshark is a feature-rich, multifaceted software program. It relies on the details
of some previously written libraries to take care of the low-level functions.

www.syngress.com

132 Chapter 3 • Getting and Installing Wireshark

ethereal_ch03.qxd 11/14/06 11:03 AM Page 132

133

Using Wireshark

Solutions in this chapter:

■ Getting Started with Wireshark

■ Exploring the Main Window

■ Other Window Components

■ Exploring the Menus

■ Using Command-line Options

Chapter 4

� Summary

� Solutions Fast Track

� Frequently Asked Questions

377_Eth_2e_ch04_web.qxd 11/20/06 12:38 PM Page 133

Introduction
Wireshark provides insight into what is occurring on a network, which is useful
when implementing protocols, debugging network applications, testing networks,
and debugging live networks. In situations involving interaction with a network at a
technical level, most problems can be resolved using Wireshark.

Wireshark is an excellent educational aid. Being able to see and analyze network
traffic is very instructive.This chapter covers the main components of the Wireshark
Graphical User Interface (GUI), including:

■ Main window

■ Menu bar

■ Tool bar

■ Summary window

■ Protocol Tree window

■ Data View window

■ Filter bar

■ Information field

■ Display information

This chapter also covers the context-sensitive pop-up windows available in the
Summary window, the Protocol Tree window, and the Data View window. It also
explains the various dialog boxes that are launched by the menus and toolbars.

You will learn how to perform basic tasks in Wireshark (e.g., capturing network
traffic, loading and saving capture files, performing basic filtering, printing packets)
using the advanced tools provided by Wireshark. Examples have been provided to
show you step-by-step how some of the less obvious areas of Wireshark work.

Getting Started with Wireshark
In order to use Wireshark you must first acquire Wireshark and install it. If you are
running a Linux distribution it is likely that your distribution shipped with Ethereal,
which is the predecessor to Wireshark. Due to the recent name change for the pro-
ject, it is unlikely that Wireshark has been included and you will need to download
and install it. If you are running Windows or some version of UNIX (Solaris, HP-
UX,AIX, etc) you will have to download Wireshark and install it.

You can download binary packages for Wireshark from the Wireshark website at
www.wireshark.com. If there are no binary packages there for your platform, if they

www.syngress.com

134 Chapter 4 • Using Wireshark

377_Eth_2e_ch04_web.qxd 11/20/06 12:38 PM Page 134

are not up to date, compiled without options you need, you may download the
source code from the Wireshark website and compile Wireshark yourself. Installing
Wireshark is covered in detail in Chapter 3.

You may also wish to download the bgp.pcap.gz capture at http://wiki.wire-
shark.com/SampleCaptures, as it is used in many examples in this chapter.You can
follow along through the examples with your own copy of Wireshark. Once you
have installed Wireshark on the computer you wish to capture with, execute at the
command line:

wireshark

To launch Wireshark on Windows, select Start | Programs | Wireshark |
Wireshark.The Main Window of the Wireshark application will now be displayed.

Exploring the Main Window
It is important to define a common set of labels for the different components of the
Main window. Figure 4.1 shows the Main window of Wireshark with its major
components labeled.

The Main window components are described in Table 4.1.

www.syngress.com

Using Wireshark • Chapter 4 135

Figure 4.1 Main Window

Continued

377_Eth_2e_ch04_web.qxd 11/20/06 12:38 PM Page 135

Table 4.1 Main Window Components

Window Component Description

Menu Bar A typical application menu bar containing drop-
down menu items.

Tool Bar Contains buttons for some commonly used func-
tions of Wireshark. The Tool Bar icons have tool
tips that are displayed when you pause the
mouse pointer over them.

Filter Bar Applies filters to the Summary window to
restrict which packets in the capture are dis-
played, based on their attributes.

Summary Window Provides a one-line summary for each packet in
the capture.

Protocol Tree Window Provides a detailed decode of the packet
selected in the Summary window.

Data View Window Provides a view of the raw data in the packet
selected in the Summary window.

Information Field A display area that provides information about
the capture or field selected in the Protocol
Tree window.

Display Information Field A display area that provides information about
the packet count in the current capture

Summary Window
The Summary window displays a summary of each packet (one per line) in a cap-
ture. One or more columns of summary data are displayed for each packet.Typical
columns are shown in Table 4.2.

Table 4.2 Summary Window Columns

Column Name Description

No. The frame number within the capture.
Time The time from the beginning of the capture to the time

when the packet was captured (in seconds).
Source This is the highest level source address, (frequently the

Internet Protocol (IP) address); however, it can also be
the Media Access Control (MAC) address for layer 2

www.syngress.com

136 Chapter 4 • Using Wireshark

Continued

377_Eth_2e_ch04_web.qxd 11/20/06 12:38 PM Page 136

Table 4.2 continued Summary Window Columns

Column Name Description

Ethernet protocols, or other address types for other
protocols (e.g., Internetwork Packet Exchange [IPX],
Appletalk, and so forth). (See the Wireshark “Name
Resolution” sidebar for a discussion of MAC addresses.)

Destination This is the highest level destination address (frequently
the IP destination address); however, it can also be the
MAC address for layer 2 Ethernet protocols, or other
address types for other protocols (IPX, Appletalk, and
so forth).

Protocol Typically the highest level protocol that is decoded.
Examples include user-level protocols such as Hypertext
Transfer Protocol (HTTP), File Transfer Protocol (FTP),
and Simple Mail Transfer Protocol (SMTP).

Info This field contains information that was determined by
the highest level decode to be useful or informative as
part of a summary for this packet.

The “Preferences” feature can be used to select which columns are displayed in
the Summary window. Go to Edit | Preferences from the Menu bar.

The summary information for the packet selected in the Summary window in
Figure 4.1, is shown in Table 4.3.

Table 4.3 Summary Window Column

Column Name Value

No. 8
Time 8.004042 seconds since the capture started
Source IP number 192.168.0.15
Destination IP number 192.168.0.33
Protocol Border Gateway Protocol (BGP)
Info OPEN Message

We immediately see that this packet is carrying a message for opening a BGP ses-
sion between 192.168.0.15 and 192.168.0.33. (More information on BGP is available
in Request for Comment (RFC) 1771 at www.ietf.org/rfc/rfc1771.txt?number=1771.)
Select packets in the Summary window by clicking on the row summarizing a given
packet.The information for the selected packet is then displayed in the Protocol Tree

www.syngress.com

Using Wireshark • Chapter 4 137

377_Eth_2e_ch04_web.qxd 11/20/06 12:38 PM Page 137

window and the Data View window. Once you have selected a packet in the Summary
window, you can use the Protocol Tree window to go into greater detail.

Protocol Tree Window
Conceptualize a packet as a tree of fields and subtrees. For each protocol, there is a
tree node that can be expanded to provide the values in that protocol’s fields. Within
some protocols, there may be tree nodes summarizing more complicated data struc-
tures in the protocol.These tree nodes can be expanded to show those data structures.
For any given node that has a subtree, you can expand its subtree to reveal more
information, or collapse it to only show the summary.The Protocol Tree window
allows you to examine the tree created by Wireshark from decoding a packet.

Now we’ll examine the Protocol Tree window in the packet that was selected in
the previous example (see Figure 4.2).

In the Protocol Tree window, each layer in the protocol stack for this packet
contains a one-line summary of that layer (see Table 4.4).

Table 4.4 Protocol Layer Example

Layer Protocol Description

Packet Meta Data Frame 83 bytes on wire, 83 bytes captured
Data Link (Layer 2/L2) Ethernet II Src Addr: 00:c0:4f:23:c5:95,

Dst Addr: 00:00:0c:35:0e:1c

www.syngress.com

138 Chapter 4 • Using Wireshark

Figure 4.2 Protocol Tree Window Collapsed

Continued

377_Eth_2e_ch04_web.qxd 11/20/06 12:38 PM Page 138

Table 4.4 continued Protocol Layer Example

Layer Protocol Description

Network (Layer 3/L3) IP Src Addr: 192.168.0.15,
Dst Addr: 192.168.0.33

Transport (Layer 4/L4) Transmission Src Port: 2124, Dst Port: bgp(179),
Control Seq: 2593706850, Ack …
Protocol (TCP)

Application Layer
(Layer 7/L7) BGP

Each of these layers have plus (+) signs next to them, which indicate that there is
a subtree that can be expanded to provide more information about that particular
protocol.

In Figure 4.3, the BGP tree was expanded to reveal one OPEN message, and
then the OPEN message was expanded to reveal the fields contained within.

www.syngress.com

Using Wireshark • Chapter 4 139

Figure 4.3 Protocol Tree Window Expanded

377_Eth_2e_ch04_web.qxd 11/20/06 12:38 PM Page 139

Selecting the Type field in the Protocol Tree window displayed the message,
“BGP message type (bgp.type), 1byte.”This indicates the long name of this field (BGP
message type), the display filter field name used to identify this field for filtering and
colorization (bgp.type), and the size of this field in the packet (1 byte).

Data View Window
The Data View window contains a series of rows that each begin with a four-digit
number that represents the number of bytes in an octet. (An octet is comprised of
either 8 bits, 1 byte, or 2 hexadecimal digits).The first octet in that row is offset
from the beginning of the packet (see Figure 4.4).This offset is then followed by 16
two-character hexadecimal bytes.The last item in each row is a series of 16
American Standard Code for Information Interchange (ASCII) characters repre-
senting the same 16 bytes from the packet. Not all bytes can be displayed in ASCII.
For those bytes, a period (.) is substituted as a placeholder.

When a field in the Protocol Tree window is selected, the bytes corresponding
to that field are highlighted in the Data View window. In Figure 4.4 we selected
the BGP Message Type field in the Protocol Tree window. In the Data View

www.syngress.com

140 Chapter 4 • Using Wireshark

Figure 4.4 Data View Window

377_Eth_2e_ch04_web.qxd 11/20/06 12:38 PM Page 140

window, that byte is highlighted in the row with offset 0040 representing 0 ×40
hexadecimal or 64 bytes into the packet.The ninth byte in the row is highlighted,
and has a value of 01 hexadecimal. In the ASCII representation, there is a period
(.), because the value 0 ×01 is not represented in ASCII.

When you click on a hexadecimal byte or ASCII character in the Data View
window, Wireshark highlights the field in the Protocol Tree window that corre-
sponds to the selected byte and to all of the bytes in the Data View window associ-
ated with that Protocol field.

In Figure 4.5, we clicked on the beginning of row 0030 (note that the 48th byte
[0030 or hexadecimal 0 ×30] is the first byte of the 2-byte TCP Window Size field).
As a result, the TCP Protocol Tree was automatically expanded and the Window Size
field was highlighted.Additionally, the second byte (78 hexadecimal) in the 0030
row was also selected, because the TCP Window Size field is a 2-byte field.

This feature makes it easy to use the Protocol Tree window and the Data View
window together, in order to obtain a solid grasp of the relationships between the
fields in a protocol and the actual bits on the wire.

www.syngress.com

Using Wireshark • Chapter 4 141

Figure 4.5 Data View Window Byte Selection

377_Eth_2e_ch04_web.qxd 11/20/06 12:38 PM Page 141

Other Window Components
The following are additional various components of the Wireshark window that you
will find useful when examining packets.

Filter Bar
The Filter Bar (see Figure 4.6) allows you to enter a filter string that restricts which
packets are displayed in the Summary window. Only packets that match the display
filter string are displayed in the Summary window.A display filter string defines the
conditions on a packet that may or may not match the packet (e.g., the display filter
string (ip.addr == 10.15.162.1 && bgp) would match all packets with an IP address
[source or destination] of 10.15.162.1 that are BGP protocol packets).

In Figure 4.6, a bgp filter has been applied.To apply a filter, enter the desired
string into the Filter: text field and press Enter (or click the Apply button). Note
that filter strings are case-sensitive; therefore, filter string BGP (uppercase) will not
work. (Traditionally, filter string labels such as bgp are entirely in lowercase.) Also

www.syngress.com

142 Chapter 4 • Using Wireshark

Figure 4.6 Filter Bar

377_Eth_2e_ch04_web.qxd 11/20/06 12:38 PM Page 142

note that the Filter Bar text field has three different background colors, which indi-
cate the status of the current filter. When the Filter Bar text field changes color,
white indicates that there is no current filter, green indicates that a filter has valid
syntax, and red indicates that the filter is incomplete or the syntax is invalid.

NOTE

Even though the Filter Bar text field is green (indicating a valid filter), it
may not have been applied. When the field is red, Wireshark does not
allow an invalid filter to be applied, and provides a warning message if
you attempt to apply it.

Once the display filter string bgp is applied, only BGP packets are displayed in
the Summary window.The No. column displays jumps between the frame numbers
of the displayed packets, because there are packets in the capture that are being sup-
pressed by the bgp filter string. Previously used filters can be easily recalled (see
Figure 4.7).

www.syngress.com

Using Wireshark • Chapter 4 143

Figure 4.7 Filter Bar Drop-down List

377_Eth_2e_ch04_web.qxd 11/20/06 12:38 PM Page 143

By clicking the drop-down arrow at the end of the Filter field, you can access a
list of previously applied filters.To use one of these filters, select it from the list and
press Enter or click the Apply button.To remove the currently displayed filter
string and redisplay all packets, click the Reset button. If you click the Filter:
button, the Display Filter dialog box will be displayed.

NOTE

To remove items from the Filter drop-down list, edit the RECENT file under
the user’s profile under C:\Documents and Settings\<user>\Application
Data\Wireshark. Remove the appropriate lines from the RECENT file
located in the “Recent Display Filters” section.

Information Field
The Information field displays the name of the capture file, or information about
the protocol field selected in the Protocol Tree window.

Display Information Field
The Display Information field displays the number of packets displayed in or filtered
from the Summary window. P indicates the number of total packets, D indicates the
total displayed packets, and M indicates the total marked packets.

Exploring the Menus
All of the functionality available within Wireshark is accessible from the Menu bar.
In this section, we systematically explore that functionality and provide examples
of its use.

File
The File menu provides access to loading, saving, and printing capture files (see
Figure 4.8).The File menu options are defined in Table 4.5.

www.syngress.com

144 Chapter 4 • Using Wireshark

377_Eth_2e_ch04_web.qxd 11/20/06 12:38 PM Page 144

Table 4.5 File Menu Options

Menu Option Description

Open… Opens a capture file.
Open Recent Displays the Open Recent submenu to open a capture file

from a list of recently used capture files.
Merge Merges one or more capture files with the current capture file.
Close Closes the current capture file.
Save Saves the current capture file.
Save As… Saves the current capture file with a different filename/format.
File Set Displays the File Set submenu for file set information and

navigation
Export Displays the Export submenu, allowing the portion of the

packet highlighted in the Data View window to be exported
as a hexadecimal dump.

Print… Prints the current capture file.
Quit Quits the Wireshark application.

www.syngress.com

Using Wireshark • Chapter 4 145

Figure 4.8 File Menu

377_Eth_2e_ch04_web.qxd 11/20/06 12:38 PM Page 145

Open
To open a file select File | Open (see Figure 4.9).

The Open dialog box provides normal mechanisms for navigation in selecting a
file.Additionally, it provides a Filter: field where a Wireshark display filter string can be
entered to filter out which packets are read from the capture file. Clicking the Filter:
button opens the Display Filter dialog box (described in the “Analyze” section).

The Open dialog box also has checkboxes to enable name resolution for MAC
addresses, network names, and transport names.To open a file, browse to the correct
location and select the desired file, optionally provide a filter string, and enable or
disable the name resolutions you want to use. Finally, click the OK button.

www.syngress.com

146 Chapter 4 • Using Wireshark

Figure 4.9 Open Dialog Box

Wireshark Name Resolution
Wireshark provides three kinds of name resolution to make the numbers found
in network protocols more comprehensible. You can choose to enable or disable
MAC name resolution, network name resolution, and transport name resolution,

Notes from the Underground…

Continued

377_Eth_2e_ch04_web.qxd 11/20/06 12:38 PM Page 146

Save As
The Save As dialog box is displayed by selecting File | Save As (or by selecting File
| Save for a capture that was previously saved). (See Figure 4.10.)

The Save As dialog box allows you to perform normal tasks for saving a capture
file in the desired location and with the desired name.You can save various subsets of
the packets by selecting different radio options in the Packet Range section (e.g.,
only the packets that pass the currently active display filter) by enabling the All
packets radio button while selecting the Displayed column radio button.To save
only marked packets that pass the currently active display filter, select the Marked
Packets radio button while selecting the Displayed column radio button.

www.syngress.com

Using Wireshark • Chapter 4 147

when opening a file, starting a capture, or while a capture is running. It is useful
to understand what the different name resolutions mean.

Every host on a LAN is identified by a 6-byte MAC address, which is used
in Ethernet frames to provide source and destination addresses at the Data Link
layer. MAC addresses are globally unique. To achieve this, the Institute of
Electrical and Electronic Engineers (IEEE) assigns blocks of MAC addresses to
manufacturers. The first 3 bytes of every MAC address designate the manufac-
turer who produced the device. When you select the Enable MAC name reso-
lution checkbox in the Open dialog box, Wireshark resolves the first 3 bytes of
the MAC address to a manufacturer and displays that information for each
MAC address (e.g. the prefix 00:00:0c has been assigned to Cisco Systems).
When MAC address resolution is enabled, Wireshark displays the MAC address
00:00:0c:35:0e 1c as 00:00:0c:35:0e:1c (Cisco_35:0e:1c).

Every node on an IP network has an IP address. When you select the
Enable network name resolution checkbox, Wireshark performs a reverse
Domain Name System (DNS) lookup when it encounters an IP address, to deter-
mine its associated domain name (e.g., www.syngress.com). Wireshark then dis-
plays this domain name with the IP address (e.g., IP address 66.35.250.150 can
be resolved via reverse DNS to the domain name slashdot.org If network name
resolution is enabled, Wireshark displays it as slashdot.org (66.35.250.150).

Transport layer protocols like TCP and User Datagram Protocol (UDP) typ-
ically provide some form of multiplexing by allowing a source and destination
port to be specified. As a result, two hosts can have multiple clearly delineated
conversations at the same time, as long as they have unique source port and
destination port pairs for each conversation. Many protocols that use TCP or
UDP for their Transport layer have well-known ports that servers listen in on.
When you select the Enable transport name resolution checkbox, Wireshark
displays the name of the service that traditionally runs over each port. This
behavior can be seen in many of the examples in this chapter, where port 179
was labeled by the protocol that is known to run over that port: bgp. It’s impor-
tant to note that most ports have no protocols associated with them.

377_Eth_2e_ch04_web.qxd 11/20/06 12:38 PM Page 147

Finally, save the file in one of the supported capture file formats (see Figure 4.11).

www.syngress.com

148 Chapter 4 • Using Wireshark

Figure 4.10 The Save As Dialog Box

Figure 4.11 File Formats

377_Eth_2e_ch04_web.qxd 11/20/06 12:39 PM Page 148

Print
The Print dialog box is displayed by selecting File | Print (see Figure 4.12).

The Print dialog box helps answer the relevant questions regarding printing in
Wireshark:

■ How am I going to print?

■ Which packets am I going to print?

■ What information am I going to print for each packet?

The Printer section allows you to choose which packets you are going to print.
You can choose your output format to be either Plaintext or Postscript. Once you
have selected your output format, you may choose to print the output to a file by
enabling the Output to File: checkbox and providing a filename in the Output to
File: text box. If you do not choose to print to file, you can provide a command to
be executed to print in the Print command: text box.This option is not available
on Windows.

The Print Range section allows you to choose which packets you are going
to print.You may choose to print only the packet currently selected in the
Summary window, only packets that are marked in the Summary window, all
packets displayed in the Summary window by the currently applied filter, or all
packets captured.You can choose to print only the packet currently selected in
the Summary window by selecting the Selected packet only radio button and

www.syngress.com

Using Wireshark • Chapter 4 149

Figure 4.12 Print Dialog Box

377_Eth_2e_ch04_web.qxd 11/20/06 12:39 PM Page 149

the Captured column button.To print only the packets that have been marked
in the Summary window, select the Marked packets only radio button and the
Captured column button.To print all of the packets between the first and last
marked packets, select the From first to last marked packet radio button and
the Captured column button. If you want the current filter to apply, select the
Displayed column button. By selecting the Specify a packet range radio
button, Wireshark allows you to specify a packet range entered in a comma sepa-
rated list (e.g., 1-12,15,17,17-19).To print all packets displayed in the Summary
window by the currently applied display filter, select the All packets displayed
radio button and the Displayed column button. Printing all packets displayed or
captured means that all of the packets that pass the currently applied filter will
print. When you scroll up and down to a packet in the Summary window, it is
considered to be “displayed” for the purposes of this print range option.You can
print all packets in the capture by selecting the All packets radio button and the
Captured column button.

The Packet Format section allows you to choose which information you want
to print for each packet. If you do not enable the Print packet details checkbox,
a one-line summary consisting of the columns currently being displayed in the
Summary window, will be printed for each packet If the Print packet details
checkbox is not selected, the result of just printing the selected packet (packet 8)
would be:

No. Time Source Destination Protocol Info

8 8.004042 192.168.0.15 192.168.0.33 BGP OPEN Message

The Packet Details section allows you to choose which details are printed for a
packet when you enable the Print packet details checkbox.You may choose to
print the protocol tree with all subtrees collapsed, with subtrees expanded in the
Protocol Tree window, or with all subtrees in the protocol tree expanded. If you
select the All collapsed option, the protocol tree prints with all subtrees collapsed.
When printing only the selected packet, the output would look like:

Frame 8 (83 bytes on wire, 83 bytes captured)

Ethernet II, Src: 00:c0:4f:23:c5:95, Dst: 00:00:0c:35:0e:1c

Internet Protocol, Src Addr: 192.168.0.15 (192.168.0.15), Dst Addr:
192.168.0.33 (192.168.0.33)

Transmission Control Protocol, Src Port: 2124 (2124), Dst Port: bgp (179),
Seq: 3593706850, Ack: 2051072070, Len: 29

Border Gateway Protocol

www.syngress.com

150 Chapter 4 • Using Wireshark

377_Eth_2e_ch04_web.qxd 11/20/06 12:39 PM Page 150

If you select the As displayed option, the protocol tree is printed with the sub-
trees that would be expanded in the Protocol Tree window if that packet was
selected in the Summary window. Using this option to print only the selected
packet would produce output like:

Frame 8 (83 bytes on wire, 83 bytes captured)

Ethernet II, Src: 00:c0:4f:23:c5:95, Dst: 00:00:0c:35:0e:1c

Internet Protocol, Src Addr: 192.168.0.15 (192.168.0.15), Dst Addr:
192.168.0.33 (192.168.0.33)

Transmission Control Protocol, Src Port: 2124 (2124), Dst Port: bgp (179),
Seq: 3593706850, Ack: 2051072070, Len: 29

Border Gateway Protocol

OPEN Message

Marker: 16 bytes

Length: 29 bytes

Type: OPEN Message (1)

Version: 4

My AS: 65033

Hold time: 180

BGP identifier: 192.168.0.15

Optional parameters length: 0 bytes

If you select the All expanded option, the protocol tree will be printed with all
subtrees expanded. Printing just the selected packet would produce the output:

Frame 8 (83 bytes on wire, 83 bytes captured)

Arrival Time: Mar 29, 2000 23:56:56.957322000

Time delta from previous packet: 0.000088000 seconds

Time since reference or first frame: 8.004042000 seconds

Frame Number: 8

Packet Length: 83 bytes

Capture Length: 83 bytes

Ethernet II, Src: 00:c0:4f:23:c5:95, Dst: 00:00:0c:35:0e:1c

Destination: 00:00:0c:35:0e:1c (Cisco_35:0e:1c)

Source: 00:c0:4f:23:c5:95 (DellComp_23:c5:95)

Type: IP (0x0800)

Internet Protocol, Src Addr: 192.168.0.15 (192.168.0.15), Dst Addr:
192.168.0.33 (192.168.0.33)

Version: 4

Header length: 20 bytes

www.syngress.com

Using Wireshark • Chapter 4 151

377_Eth_2e_ch04_web.qxd 11/20/06 12:39 PM Page 151

Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)

0000 00.. = Differentiated Services Codepoint: Default (0x00)

.... ..0. = ECN-Capable Transport (ECT): 0

.... ...0 = ECN-CE: 0

Total Length: 69

Identification: 0x48e9 (18665)

Flags: 0x04

.1.. = Don't fragment: Set

..0. = More fragments: Not set

Fragment offset: 0

Time to live: 64

Protocol: TCP (0x06)

Header checksum: 0x7049 (correct)

Source: 192.168.0.15 (192.168.0.15)

Destination: 192.168.0.33 (192.168.0.33)

Transmission Control Protocol, Src Port: 2124 (2124), Dst Port: bgp (179),
Seq: 3593706850, Ack: 2051072070, Len: 29

Source port: 2124 (2124)

Destination port: bgp (179)

Sequence number: 3593706850

Next sequence number: 3593706879

Acknowledgement number: 2051072070

Header length: 20 bytes

Flags: 0x0018 (PSH, ACK)

0... = Congestion Window Reduced (CWR): Not set

.0.. = ECN-Echo: Not set

..0. = Urgent: Not set

...1 = Acknowledgment: Set

.... 1... = Push: Set

.... .0.. = Reset: Not set

.... ..0. = Syn: Not set

.... ...0 = Fin: Not set

Window size: 32120

Checksum: 0x1903 (correct)

Border Gateway Protocol

OPEN Message

Marker: 16 bytes

Length: 29 bytes

www.syngress.com

152 Chapter 4 • Using Wireshark

377_Eth_2e_ch04_web.qxd 11/20/06 12:39 PM Page 152

Type: OPEN Message (1)

Version: 4

My AS: 65033

Hold time: 180

BGP identifier: 192.168.0.15

Optional parameters length: 0 bytes

Regardless of the option you choose for expanding protocol tree subtrees, if you
enable the Packet bytes checkbox, following the protocol tree for each packet will
be a hexadecimal dump of that packet. Printing only the packet with the All dis-
sections collapsed checkbox enabled and the Packet bytes checkbox enabled
would produce this output:

Frame 8 (83 bytes on wire, 83 bytes captured)

Ethernet II, Src: 00:c0:4f:23:c5:95, Dst: 00:00:0c:35:0e:1c

Internet Protocol, Src Addr: 192.168.0.15 (192.168.0.15), Dst Addr:
192.168.0.33 (192.168.0.33)

Transmission Control Protocol, Src Port: 2124 (2124), Dst Port: bgp (179),
Seq: 3593706850, Ack: 2051072070, Len: 29

Border Gateway Protocol

0000 00 00 0c 35 0e 1c 00 c0 4f 23 c5 95 08 00 45 00 ...5....O#....E.

0010 00 45 48 e9 40 00 40 06 70 49 c0 a8 00 0f c0 a8 .EH.@.@.pI......

0020 00 21 08 4c 00 b3 d6 33 9d 62 7a 40 e0 46 50 18 .!.L...3.bz@.FP.

0030 7d 78 19 03 00 00 ff ff ff ff ff ff ff ff ff ff }x..............

0040 ff ff ff ff ff ff 00 1d 01 04 fe 09 00 b4 c0 a8

0050 00 0f 00 ...

If the Each Packet on a new page checkbox is selected, each new packet that
is printed starts on a new page.

Edit
The Edit menu (see Figure 4.13) allows you to find and mark packets and set user
preferences. Descriptions of the Edit menu options are given in Table 4.6.

www.syngress.com

Using Wireshark • Chapter 4 153

377_Eth_2e_ch04_web.qxd 11/20/06 12:39 PM Page 153

Table 4.6 Edit Menu Options

Menu Option Description

Find Packet… Searches for a packet using a display filter or by
searching for a matching hexadecimal string or
character string.

Find Next Finds the next packet that matches the search
defined in the Find Packet dialog box.

Find Previous Finds the previous packet that matches the
search defined in the Find Packet dialog box.

Mark Packet Marks the packet currently selected in the
Summary window. Marking provides a mecha-
nism for manually selecting a packet or group
of packets to be subsequently printed or saved.

Find Next Mark Finds and highlights the next marked packet in
the capture.

www.syngress.com

154 Chapter 4 • Using Wireshark

Figure 4.13 Edit Menu

Continued

377_Eth_2e_ch04_web.qxd 11/20/06 12:39 PM Page 154

Table 4.6 Edit Menu Options

Menu Option Description

Find Previous Mark Finds and highlights the previously marked
packet in the capture.

Mark All Packets Marks all packets that match the currently
applied display filter.

Unmark All Packets Unmarks all packets that match the currently
applied display filter.

Set Time Reference (toggle) Toggles the Time Reference flag for the cur-
rently selected packet.

Find Next Reference Finds and highlights the next marked time ref-
erence packet in the capture.

Find Previous Reference Finds and highlights the previous marked time
reference packet in the capture.

Preferences… Change user preferences, including preferences
for packet decodes.

Find Packet
The Find Packet dialog box is displayed when you select Edit | Find Packet…
(see Figure 4.14).

The Find Packet dialog box helps answer relevant questions regarding finding a
packet in Wireshark:

■ What am I trying to find?

■ Which direction should I search in?

www.syngress.com

Using Wireshark • Chapter 4 155

Figure 4.14 Find Packet Dialog Box

377_Eth_2e_ch04_web.qxd 11/20/06 12:39 PM Page 155

The Filter: text box allows you to define a search criterion by entering a
string such as a display filter or hexadecimal or ASCII string. If you need assistance
constructing a filter string, click the Filter: button to display the Display Filter
dialog box.

The Direction section allows you to choose which direction you want to
search in: forward from the packet currently selected in the Summary window, or
backward from the packet currently selected in the Summary window.

The Find Syntax section allows you to define your search criteria.You can
choose to search for packets that match a display filter string, a hexadecimal string,
or a character string. If you select the Display Filter option, the string in the
Filter: text box will be interpreted as a display filter string and you will search for
matches to that display filter string. If you select the Hex option, the string in the
Filter: text box will be interpreted as a hexadecimal string and will search for
packets that contain that string.

If you select the String option, the string in the Filter: will be interpreted as a
character string and you will search for packets that contain that character string.

The search for character strings is handled differently than the search for hex-
adecimal strings. Hexadecimal string searches attempt to search for a packet con-
taining a particular sequence of bytes anywhere in the raw data of that packet.The
search for character strings will not look for a packet that contains a string anywhere
in the packet. Instead, you can use the Search In section to specify whether to look
for the string in the Packet data left over after decoding all possible fields, look for
the character string in the Decoded packet displayed in the Protocol Tree window,
or look for the character string in the one-line Packet summary in the Summary
window. If you select the Packet data option, Wireshark will search for the char-
acter string in the packet data. By packet data, we mean the data in the packet that is
left over after decoding the protocol fields. Selecting the Find Decoded packet
will cause Wireshark to search for the character string in the protocol field strings
that are displayed in the Protocol Tree window. It does not matter if the subtree of
the protocol tree containing the character string is collapsed or expanded. If you use
the Decoded packet option, you must also use the Character Set drop-down list
to select the character set for the character string you are trying to find.To make
your character string search case-insensitive, enable the Case Insensitive Search
checkbox.

Set Time Reference (toggle)
The Set Time Reference (toggle) menu option will toggle the time reference
flag in the Summary window so that we may perform some time calculation based

www.syngress.com

156 Chapter 4 • Using Wireshark

377_Eth_2e_ch04_web.qxd 11/20/06 12:39 PM Page 156

upon the marked packet. When the Time column in the Summary window is con-
figured to display the time that has elapsed since the beginning of the capture, then
the time displayed is the number of seconds since the beginning of the capture or
the last time reference packet.

In Figure 4.15 below, we have set packets 5 and 10 as time reference packets.
This is indicated by their Time column value (*REF*). Packets 1-4 are marked
with the time since the beginning of the capture in which they were captured.
Packets 6-9 are marked with the time since the time reference packet 5. Packets 11
and greater are marked with the time since the time reference packet 10.

Preferences
The Preferences dialog box, shown in Figure 4.16, is displayed when you select Edit
| Preferences….

The Preferences dialog box allows you to set preferences for various subsystems
of Wireshark, including setting preferences for decodes of various protocols.To edit
preferences for an area of Wireshark, like Columns in Figure 4.16, select that area

www.syngress.com

Using Wireshark • Chapter 4 157

Figure 4.15 Set Time Reference (toggle) Example

377_Eth_2e_ch04_web.qxd 11/20/06 12:39 PM Page 157

from the box on the left and change the settings displayed in the box on the right. It
is strongly recommended that you browse through the protocol preferences for any
protocol you use frequently, as protocol preferences can change the way a protocol is
decoded or displayed.

When you have made your changes to Wireshark’s preferences you can choose
to apply them without closing the Preference dialog box by clicking the Apply
button.To apply your settings and close the Preferences dialog box, click the OK
button.To save your preferences for use in a different Wireshark session, click the
Save button.

NOTE

The Columns preference, selected in Figure 4.18, is subtly broken in
Wireshark. You can add, delete, or reorder columns in the Preferences
dialog box, but your changes will not take effect unless you save them,
then exit and restart Wireshark. As an upgrade to previous versions, this
note is mentioned in the Preferences dialog box.

www.syngress.com

158 Chapter 4 • Using Wireshark

Figure 4.16 Preferences Dialog Box

377_Eth_2e_ch04_web.qxd 11/20/06 12:39 PM Page 158

View
The View menu, shown in Figure 4.17, allows you to control GUI toolbar elements
as well as how packets are displayed in the Summary window and the Protocol Tree
window.You can also set up color filters to color the packets in the Summary
window.The View menu options are described in Table 4.8.

Table 4.8 View Menu Options

View Submenu Options

Menu Option Description

Main Toolbar Display or remove the Main Toolbar
Filter Toolbar Display or remove the Filter Toolbar
Status Bar Display or remove the Information Field and the

Display Information Field
Packet List Display or remove the Summary window

www.syngress.com

Using Wireshark • Chapter 4 159

Figure 4.17 View Menu

Continued

377_Eth_2e_ch04_web.qxd 11/20/06 12:39 PM Page 159

Table 4.8 continued View Menu Options

View Submenu Options

Menu Option Description

Packet Details Display or remove the Protocol Tree window
Packet Bytes Display or remove the Data View window
Time Display Format A submenu for modifying the time displayed in the

Summary window
Name Resolution A submenu for selecting the name resolution options

to perform during capture.
Colorize Packet List Apply or remove the coloring defined in Coloring

Rules to the Summary window
Auto Scroll in Live Sets the option to automatically scroll and update the
Capture Summary window list while capturing packets.
Zoom In Proportionally increases the font and column size in

the Summary window
Zoom Out Proportionally decreases the font and column size in

the Summary window
Normal Size Returns the Summary window font and column size

to the default setting.
Resize All Columns Automatically resizes column width in the Summary

window to eliminate white space.
Expand Subtrees Expands the entire selected subtree in the Protocol

Tree window
Expand All Expand all subtrees in the Protocol Tree window
Collapse All Collapse all subtrees in the Protocol Tree window
Coloring Rules… Create and edit color filters to colorize the packets in

the Summary window that match a given display
filter string.

Show Packet In For the packet currently selected in the Summary
New window window display it’s Protocol Tree window and Data

View window in a new window.
Reload Reload the current capture file.

www.syngress.com

160 Chapter 4 • Using Wireshark

377_Eth_2e_ch04_web.qxd 11/20/06 12:39 PM Page 160

Time Display Information
For a given packet, you may choose to have the Time column in the Summary
window display the Time of day when that packet was captured, Date and time
of day when that packet was captured, Seconds since beginning of capture (or
the last time reference packet) that packet was captured, or the Seconds since the
previous frame that matched the current display filter.

Auto Scroll in Live Capture
In a live capture, you can choose to have old packets scroll up and out of view as
new packets are captured and appended to the end of the Summary window.To do
so, enable the Automatic scrolling in live capture menu option.This option is
particularly helpful while performing a packet capture in which you need to watch
for a particular even in real time.

Apply Color Filters
The Apply Color Filters dialog box, shown in Figure 4.19, can be displayed by
selecting View | Coloring Rules….

www.syngress.com

Using Wireshark • Chapter 4 161

Figure 4.18 Time of Day Display

377_Eth_2e_ch04_web.qxd 11/20/06 12:39 PM Page 161

Wireshark has the ability to color packets in the Summary window that match a
given display filter string, making patterns in the capture data more visible.This can
be hugely useful when trying to follow request response protocols where variations
in the order of requests or responses may be interesting.You can color such traffic
into as many categories as you’d like and will be able to see at a glance what is going
on from the Summary window instead of having to go through the Protocol Tree
window for each packet.

To create a color filter click the New button in the Apply Color Filters dialog
box.The Edit Color Filter dialog box will be displayed (Figure 4.20).

When the Edit Color Filter dialog box is first opened, the Name text box will
have the string name in it, and the String field will contain the string filter.To create a
color filter you should first fill in a name for it in the Name text box.Then, you
should enter a filter string in the String text box.You may use the Add Expression
button to display the Filter Expression dialog box to assist you in constructing a filter

www.syngress.com

162 Chapter 4 • Using Wireshark

Figure 4.19 Apply Color Filters Dialog Box

Figure 4.20 Edit Color Filter Dialog Box

377_Eth_2e_ch04_web.qxd 11/20/06 12:39 PM Page 162

string.The Filter Expression dialog box is described in the section entitled “Analyze”.
Once you have a name and filter string you are happy with, you need to select the
foreground and background color to colorize the packets matching your filter string.
Click the Background Color… button to set the foreground color, as shown in
Figure 4.21.

When you are happy with the color you have selected click the OK button.The
Edit Color Filter dialog box (Figure 4.25) will be displayed.

In Figure 4.22 we have created a filter named BGP Update with a filter string
bgp.type == 2.The name and filter string will be colored to match our background
color choice. Click the Foreground Color… button to set the foreground color
and proceed as you did with the background color. When you are happy with your
name, filter string, and text coloring click the OK to close the Edit Color Filter
dialog box.

Figure 4.23 shows the Apply Color Filters dialog box now populated with the
new BGP Update entry and a BGP filter.

www.syngress.com

Using Wireshark • Chapter 4 163

Figure 4.21 Background Color Dialog box

Figure 4.22 Edit Color Filter

377_Eth_2e_ch04_web.qxd 11/20/06 12:39 PM Page 163

Click the OK button to apply the changes and close the dialog box. Click
Apply to apply the changes and leave the dialog box open. If you wish to use your
color filters with another Wireshark session, click Save.

If you click the Revert button, all coloring will be removed from the Summary
window, the color filters will be removed from the Filter list, and the saved color file
will be deleted. Use the Export or Import buttons to export your color filters to
another file or import the color filters from a file of your choice.This is very useful
for sharing color filters with coworkers or between different machines on which you
have Wireshark installed. Notice the order of the color filters in the Filter list in
Figure 4.23. For every packet in the Summary View the color filters strings will be
tried in order until one is matched.At that point, its associated color will be applied.
The filters in the Filter list are applied from the top down, so the BGP Update color
filter will be tried first. Only if the BGP Update color filter does not match a packet
will Wireshark proceed to try the BGP color filter to that packet.An example of the
application of these color filters can be seen in Figure 4.24.

In Figure 4.24, the BGP Update messages (lines 16 and 17) are black text on
light blue, not white text on dark blue, even though they would also match the
white text on dark blue BGP color filter.This is because the black text on light blue
BGP Update filter is applied first, and since it matches, no further color filter is tried.

Show Packet in New Window
You can display a packet’s Protocol Tree window and Data View window in a new
window by selecting a packet in the Summary window and selecting View | Show

www.syngress.com

164 Chapter 4 • Using Wireshark

Figure 4.23 Apply Color Filters Dialog Box

377_Eth_2e_ch04_web.qxd 11/20/06 12:39 PM Page 164

Packet in New Window (see Figure 4.25).This is useful when you would like to
be able to see detailed information about more than one packet at once. Note that
the title bar shows the same information as the summary line for this packet in the
Summary window.

www.syngress.com

Using Wireshark • Chapter 4 165

Figure 4.24 Application of Color Filters

Figure 4.25 Show Packet in New Window

377_Eth_2e_ch04_web.qxd 11/20/06 12:39 PM Page 165

Go
The Go menu is shown in Figure 4.26, and the menu entries are explained in
Table 4.9.

Table 4.9 Go Menu Options

Back Moves to the previous packet displayed in the current
capture.

Forward Moves to the next packet displayed in the current
capture.

Go To Packet… Go to a packet by frame number.
Go To Corresponding When a field that refers to another frame is selected
Packet in the Protocol Tree window, select the packet being

referred to in the Summary window.
First Packet Moves to the first displayed packet
Last Packet Moves to the last displayed packet

www.syngress.com

166 Chapter 4 • Using Wireshark

Figure 4.26 Go Menu

377_Eth_2e_ch04_web.qxd 11/20/06 12:39 PM Page 166

Go To Packet
The Go To Packet dialog box, shown in Figure 4.27, can be displayed by selecting
Edit | Go To Packet Dialog.

Enter a packet number in the Packet Number text box and click OK.The
packet with that packet number will be selected in the Summary window.

Capture
The Capture menu is shown in Figure 4.28, and the menu entries are explained in
Table 4.10.

www.syngress.com

Using Wireshark • Chapter 4 167

Figure 4.27 Go To Packet Dialog Box

Figure 4.28 Capture Menu

377_Eth_2e_ch04_web.qxd 11/20/06 12:39 PM Page 167

Table 4.10 Capture Menu Options

Menu Option Description

Interfaces… Opens the Interfaces dialog box
Options… Opens the Capture Options
Start Start a capture.
Stop Stop a running packet capture.
Restart Restart a stopped packet capture
Capture Filters… Edit the capture filters.

Capture Interfaces
The Capture Interfaces dialog box, shown in Figure 4.29, can be displayed by
selecting Capture | Interfaces….

This dialog box gives us a wealth of information about the current interfaces in
the system. With this dialog box we are presented a list and description of the cur-
rent interfaces, the IP address assigned to each interface, the number of packets seen
by the interface, and the rate at which they are seen (in packets per second). We are
also presented with a number of options that can be performed on each interface.

NOTE

The packet count and packets per second displayed in the Capture
Interfaces dialog box are not the total seen by the interfaces, but are the
total count and rate seen by the interface from the time the Capture
Interface dialog box was opened.

www.syngress.com

168 Chapter 4 • Using Wireshark

Figure 4.29 Capture Interfaces Dialog

377_Eth_2e_ch04_web.qxd 11/20/06 12:39 PM Page 168

The Capture button immediately starts capturing packets in the selected interface
with the options previously defined in the Capture Options dialog box. By utilizing
the Prepare we are able to display the Capture Options dialog box to allow us to
change options for the capture session before beginning to capture packets. Please refer
to the Capture Options section later in this chapter for more information on the
Capture Options dialog box.

If we need to know more information about the interface itself, we can select
the Details button for the desired interface.

In the Interface Details dialog box, we are presented with five tabs that provide
extremely detailed information about the selected interface, as queried from the
underlying system driver.This information can prove invaluable in determining
capabilities of the selected interface, as well some vital statistics including packet
counts and driver information

www.syngress.com

Using Wireshark • Chapter 4 169

Where Did My Loopback Go?
You may notice in the screenshots for this section, there is no option for a loop-
back (or lo) interface, as these screen captures were taken under Windows. Due
to the way Windows implements its loopback, it is not possible for us to cap-
ture traffic on the true loopback under Windows.

Wireshark relies on winpcap to provide an interface to the network
devices on the system. Winpcap is only able to discover actual physical devices
installed on the system through discovery of the actual network drivers.
Unfortunately the Windows loopback adapter is not considered a physical
device, and Windows does not install drivers. As a result, winpcap is unable to
bind to non-existent drivers to capture the loopback traffic.

It is possible to install a loopback adapter under Windows, but again it is
not a true loopback adapter, and does not get an address assigned out of the
127.0.0.0 subnet. Microsoft designed the special loopback adapter to provide
a dummy interface for certain applications that require a network interface to
function, and that may be installed in instances where a real network adapter
is not needed, for example in a standalone demo system.

Notes from the Underground…

377_Eth_2e_ch04_web.qxd 11/20/06 12:39 PM Page 169

Capture Options
The Capture Options dialog box, shown in Figure 4.31, can be displayed by
selecting Capture | Start….

This dialog box helps answer basic questions about capturing data:

■ What traffic am I capturing?

■ Where am I saving it?

■ How am I displaying it?

■ When do I stop capturing?

The Capture section allows you to choose which traffic you are capturing.
When choosing what traffic to capture ask:

■ Which interface am I capturing from?

■ How much of each packet am I capturing?

■ Which packets arriving at the interface am I capturing?

The Interface drop-down list allows you to choose the interface you want to
capture from.You can choose from the interfaces listed in the drop-down list, or you
can enter one manually into the text box. If both libpcap and the interface you

www.syngress.com

170 Chapter 4 • Using Wireshark

Figure 4.30 Capture Interfaces Details

377_Eth_2e_ch04_web.qxd 11/20/06 12:39 PM Page 170

select support multiple link layers for that interface, you can choose the link layer
header type to capture using the Link-layer header type: selector.

The Limit Each Packet To field lets you choose to capture a piece of an entire
packet. When the Limit each packet to checkbox is enabled and a number is pro-
vided in the Limit each packet to text box, only the first number of bytes are
captured from each packet. Be aware that if you choose to capture less than the full
packet, Wireshark may mark your packets as fragments.

The Capture packets in promiscuous mode checkbox and the Filter: textbox
allow you to choose which packets arriving at the interface will be captured. If you
enable the Capture packets in promiscuous mode checkbox,Wireshark will put
the interface into promiscuous mode before capturing data. Normally, an interface
only passes onto the operating system packets that are destined for the MAC address of
the interfaces, as well as broadcast and multicast packets for groups in which the inter-
face is a part of.When an interface is in promiscuous mode it passes on all packets
arriving at the interface to the operating system. So, if you choose not to capture in
promiscuous mode, you will only capture packets addressed to or being sent by the
interface on which you are capturing. If you choose to capture in promiscuous mode
you will capture all packets arriving at the interface. Entering a tcpdump-style capture
filter in the Filter textbox will cause Wireshark to only capture packets matching that
capture filter. If you click on the Filter button then the Edit Capture Filter List dialog

www.syngress.com

Using Wireshark • Chapter 4 171

Figure 4.31 Capture Options Dialog

377_Eth_2e_ch04_web.qxd 11/20/06 12:39 PM Page 171

box will be displayed to allow you to choose among previously defined capture filters.
See the section entitled “Edit Capture Filter List” for more details.

The Capture File(s) section allows you to choose where to save a capture. If
this section is left blank, Wireshark saves the capture to a temporary file until it is
saved by selecting File | SaveAs. If you enter a filename in the File text box,
Wireshark saves the capture to that file. Clicking the File button opens the Save
As dialog box. If the Use ring buffer checkbox is enabled, you can save your
capture to a ring buffer.

The Display options section allows you to choose how you are going to dis-
play packets as they are captured. By default, Wireshark does not update the list of
packets in the Summary window during capture; only once the capture is stopped. If
the Update list of packets in real time checkbox is enabled, Wireshark updates
the Summary window as soon as a packet is captured and processed. By default,

www.syngress.com

172 Chapter 4 • Using Wireshark

Promiscuous Mode Detection
There are many instances in which you may want to perform packet captures
with Wireshark in promiscuous mode, and go undetected using an Intrusion
detection System (IDS)/Intrusion Prevention System (IPS). Promiscuous mode
captures all of the traffic seen by an interface, as well as traffic for other devices.

Assume that an attacker has installed Wireshark on a computer that is
attached to your network, and is actively capturing traffic on your network in
promiscuous mode with Network Name Resolution enabled. You monitor the
uplink for this particular network segment with your installation of Wireshark, so
that you can detect the attacker. If a user on the same network segment as the
attacker opens a Web browser and directs it to the www.syngress.com Web site,
both the attacker’s installation and your installation will capture the request to
DNS. (In this instance, you were able to detect the malicious individual, because
Network Name Resolution was enabled in the attacker’s copy of Wireshark.)
Under normal circumstances, you should only see one DNS request for the
www.syngress.com domain; however, because the attacker’s copy of Wireshark
has Network Name Resolution enabled, his or her copy attempts to resolve the
www.syngress.com domain. As a result, there is a second DNS lookup for
www.syngress.com that did not originate from the original computer.

With this information, you can discern that there is a computer on this
network segment that is capturing packets in promiscuous mode.

Notes from the Underground…

377_Eth_2e_ch04_web.qxd 11/20/06 12:39 PM Page 172

when Wireshark updates the Summary window during live capture, new packets are
appended to the end of the Summary window. Consequently, the Summary window
does not reveal new packets.To enable the Summary window to display the most
recent packets, enable the Automatic scrolling in live capture checkbox. If you
decide that you want automatic scrolling once a capture has started, select View |
Options to disable this feature.

The Capture limits section allows you to choose when to stop capturing.
You can manually stop a capture by selecting Capture | Stop; however, some-
times it’s convenient to set conditions under which a capture will automatically
stop.There are three types of automatic limits to a capture that are supported by
Wireshark:

■ Capture a specified number of packets.

■ Capture a specified number of kilobytes of traffic.

■ Capture for a specified number of seconds.

Wireshark allows you to set up any combination of these three limits simultane-
ously (i.e., it is possible to limit the number of packets, kilobytes, and seconds at the
same time. Whenever one of the limits is satisfied, the capture stops.

When you enable the Stop capture after… packet(s) captured checkbox
and enter a number of packets in the Stop capture after… packet(s) captured
text box, the capture stops when it has reached the specified number of packets.
When you enable the Stop capture after… kilobyte(s) captured checkbox and
enter a number of kilobytes in the Stop capture after… kilobytes(s) captured
text box, the capture stops once it has reached the specified number of kilobytes.
When you enable the Stop capture after… seconds(s) checkbox and enter a
number of packets in the Stop capture after… seconds(s) text box, the capture
stops when the specified number of seconds have elapsed since the beginning of the
capture.The Name resolution section allows you to choose the name resolution
options for the capture.

When you have specified your capture choices via the Capture Options dialog
box, start the capture by clicking the OK button.The Capture Dialog dialog box
will be displayed (see Figure 4.32).

The Capture dialog box displays the number of packets of the various protocols
that have been captured, and the percentage of all captured traffic consisting of those
protocols. In Figure 4.32, a total of 12 packets have been captured, of which seven
(58.3 percent) are TCP packets, four (33.3 percent) are UDP packets, and one (8.3
percent) is an Other (miscellaneous) packet.The capture can be stopped at any time
by clicking the Stop button.

www.syngress.com

Using Wireshark • Chapter 4 173

377_Eth_2e_ch04_web.qxd 11/20/06 12:39 PM Page 173

Ring Buffer Captures
There are applications where it makes sense to capture network traffic to a series of
smaller files.At times, you may want to limit the number of small files and delete
the oldest when starting a new one.This structure is called a ring buffer, because
conceptually the data fills up a buffer and loops back to the beginning when it
reaches the end.

There are certain questions that must be answered regarding ring buffer files:

■ How many capture files in the ring buffer?

■ What are the capture files named?

■ When do I rotate to the next capture file?

To enable ring buffer captures, access the Capture Options dialog box and enable the
Use ring buffer checkbox.The appearance of the Capture Options dialog box
changes (see Figure 4.33).

The Rotate capture file every… second(s) checkbox becomes available and
the Stop capture after… kilobytes captured checkbox is renamed Rotate cap-
ture file very… kilobyte(s) and becomes unavailable.

The Number of files text box allows you to choose how many files are in the
ring buffer. If you choose zero, the number of ring buffer files is assumed to be infi-
nite (i.e., no old files are deleted to make room for new files).

The File text box provides the base name for the filenames in the capture ring
buffer.The base name is broken up into a prefix and a suffix.The filename of a ring
buffer capture file is prefix_NNNNN_YYYYMMDDhhmmss.suffix, where NNNNN is

www.syngress.com

174 Chapter 4 • Using Wireshark

Figure 4.32 Capture Dialog Box

377_Eth_2e_ch04_web.qxd 11/20/06 12:39 PM Page 174

a 5-digit 0-padded count indicating the sequence number of the ring buffer file;
YYYY is a 4-digit year; MM is the 2-digit 0-padded month; DD is a 2-digit zero-
padded date; hh is a 3-digit 0-padded hour; mm is a 2-digit 0-padded minute; and ss
is a 2-digit 0-padded second. (e.g., if the foo.bar.libpcap file is the fifth capture file in
the ring buffer created at 23:21:01 on January 8, 2004, it would be named
foo.bar_00005_20040108232101.libpcap). It is important to note that the sequence
numbers in the filenames increase monotonically. If a ring buffer contains three files,
when the fourth capture file is started it has sequence number 00004, and the file
with sequence number 00001 is deleted.The sequence numbers are not recycled as
you loop through the ring.

The Rotate capture file every… kilobyte(s) text box and the optional
Rotate capture file every… second(s) text box allow you to choose when the
capture files are rotated. Provide a kilobyte limit to the size of a capture file in the
ring buffer, by entering a number (or accepting the default value) in the Rotate
capture file every… kilobyte(s) text box. When a capture file reaches the number
of kilobytes you have specified, a new capture file is created to store any new
packets, and the oldest capture file in the ring buffer is deleted if the new capture
file exceeds the limit specified in the Number of files text box. If you enable the
Rotate capture file every… second(s) checkbox and enter a number of seconds
in the Rotate capture file every… second(s) text box, if a capture file is open for

www.syngress.com

Using Wireshark • Chapter 4 175

Figure 4.33 Capture Options Dialog Box - Use Ring Buffer Selected

377_Eth_2e_ch04_web.qxd 11/20/06 12:39 PM Page 175

that number of seconds, a new capture file is created to store any new packets cap-
tured.The oldest capture file in the ring buffer may then be deleted if the new cap-
ture file exceeds the limit specified in the Number of files text box.

NOTE

The Use ring buffer checkbox and the Update list of packets in real
time checkbox are incompatible; therefore, Wireshark will not enable Use
ring buffer if the Update list of packets in real time is already enabled.
However, Wireshark will allow you to select Update list of packets in
real time if Use ring buffer has already been selected. When this occurs,
the Use Ring buffer checkbox is automatically (and without warning) dis-
abled, which, in turn, causes the Rotate capture file every… kilobyte(s)
checkbox to revert to Stop capture after… kilobyte(s).

www.syngress.com

176 Chapter 4 • Using Wireshark

Handling Large Captures
Eventually, everyone encounters a problem that involves enormous amounts of
network data to analyze. Maybe it’s an intermittent problem that happens
every couple of days, where you need to see the message exchange that led up
to the problem, or maybe it’s a problem on a fairly active network. Whatever
the reason, the issue of capturing and analyzing large captures is common. As
captures become larger, Wireshark uses up memory; thus, filtering and finding
packets takes a long time.

In these situations, it is best to use Tshark (the console-based version of
Wireshark) to do the actual capture and initial processing of the data. To cap-
ture from an interface <interface> to a file <savefile>, use this command:

tshark –i <interface> -w <savefile>

If you have a limited amount of space and/or want to limit the size of your
capture files, you can use the ring buffer functionality with Tshark to capture
from interface <interface> to <num_capture_files> capture files with a max-
imum size each <filesize> and a base filename <savefile> by executing the fol-
lowing at the command line:

tshark –i <interface> -w <savefile> -b <num_capture_files> -a
filesize:<filesize>

Tools & Traps…

Continued

377_Eth_2e_ch04_web.qxd 11/20/06 12:39 PM Page 176

Edit Capture Filter List
The Edit Capture Filter List dialog box is displayed by selecting Capture |
Capture Filters… (see Figure 4.34).

www.syngress.com

Using Wireshark • Chapter 4 177

Once you have captured the data you need, you can use Tshark to reduce
the capture to a more manageable size. To use a display filter string <filter
string> to filter a capture file <savefile> and save the results to a new capture
file <newsavefile>, execute the following at the command line:

tshark –r <savefile> -w <newsavefile> -R <filter string>

If you need to extract all packets from the capture file that were cap-
tured between Jan 8, 2004 22:00 and Jan 8, 2004 23:00, execute the fol-
lowing command:

tshark –r <savefile> -w <newsavefile> -R '(frame.time >= "Jan 8, 2004
22:00:00.00") && (frame.time <= "Jan 8, 2004 23:00:00.00")'

Once you have reduced the data down to a size where Wireshark’s per-
formance is workable, open the Capture file in Wireshark to perform more
involved analysis.

Figure 4.34 Edit Capture Filter List Dialog Box

377_Eth_2e_ch04_web.qxd 11/20/06 12:39 PM Page 177

This dialog box allows you to create new tcpdump-style capture filters and save
them for later use.To create a new capture filter, provide a name for your filter in
the Filter name text box, provide a tcpdump-style capture filter string in the Filter
string text box, and then click the New button (see Figure 4.35).

You can select an existing capture filter from the Capture Filters list to create a
new capture filter, change an existing filter, or delete a filter.To change an existing
capture filter, select it from the Capture Filters list and double-click on its name in
the Filter name text box, and/or change its tcpdump-style capture filter string in
the Filter string text box and then click Save.To create a new capture filter, enter
a new Filter name and a new Filter string in the appropriate fields and select New.

You can delete a capture filter by selecting it from the Capture Filters list and
clicking the Delete button. If you want your list of capture filters to be available in a
subsequent Wireshark session, click the Save button to save them to disk.

Analyze
The Analyze Menu is shown in Figure 4.36, and its options are explained in Table 4.11.

www.syngress.com

178 Chapter 4 • Using Wireshark

Figure 4.35 Edit Capture Filter List Dialog Box

377_Eth_2e_ch04_web.qxd 11/20/06 12:39 PM Page 178

Table 4.11 Analyze Menu Options

Menu Option Description

Display Filters… Edits the display filters.
Apply as Filter A submenu for preparing and automatically

applying a display filter based on any field selected
in the Protocol Tree window.

Prepare a Filter A submenu for preparing a display filter based on
any field selected in the Protocol Tree window.

Firewall ACL Rules Creates a filter for several standard firewall types
based on the current selected packet in the
Summary Window.

Enabled Protocols… Enables and disables the decoding of individual
protocols.

Decode As… Specifies decoding certain packets as being part of a
particular protocol.

User Specified Decodes Reports which user-specified decodes are currently
in force.

www.syngress.com

Using Wireshark • Chapter 4 179

Figure 4.36 Analyze Menu

Continued

377_Eth_2e_ch04_web.qxd 11/20/06 12:39 PM Page 179

Table 4.11 continued Analyze Menu Options

Menu Option Description

Follow TCP Stream Displays an entire TCP stream at once.
Follow SSL Stream Displays an entire SSL stream at once.
Expert Info Displays a summary of the capture file.
Expert Info Composite Displays statistics in a Protocol Tree view for the

protocols in the capture.

Edit Display Filter List
The Edit Display Filter List dialog box can be displayed by selecting Analyze |
Display Filter... (see Figure 4.37).

This dialog box is designed to help you construct a filter string.To create a new
filter string, click the Add Expression button.The Filter Expression dialog box is
displayed (see Figure 4.38).

Select the protocol you want for your filter expression and expand it to show
which of its fields can be filtered. Select the desired filter field. When you pick a
relation other than is present, the Filter Expression dialog box changes to show
your options for that field (see Figure 4.39).

www.syngress.com

180 Chapter 4 • Using Wireshark

Figure 4.37 Edit Display Filter List Dialog Box

377_Eth_2e_ch04_web.qxd 11/20/06 12:39 PM Page 180

In this case, we have chosen the equality (==) relation. Choose the value you
want to match and click the Accept button, which will insert the filter expression
you just constructed into the Filter string: text box (see Figure 4.40).

If you want to save the filter string you have just created, type a name in the
Filter name text box and click the New button.The filter string will be added to
the Display Filters List dialog box (see Figure 4.41).

www.syngress.com

Using Wireshark • Chapter 4 181

Figure 4.38 Filter Expression Dialog Box

Figure 4.39 Filter Expression Dialog - Equality

377_Eth_2e_ch04_web.qxd 11/20/06 12:39 PM Page 181

Select an existing display filter from the list and choose to either change, delete,
or copy it.To change an existing display filter, select it from the list, change its name
in the Filter name text box (or change its display filter string in the Filter string
text box), and click the Change button.To copy an existing display filter, select it
from the list and click the Copy button. Save the list by clicking the Save Button.

www.syngress.com

182 Chapter 4 • Using Wireshark

Figure 4.40 Edit Display Filter List Dialog Box - Filter String

Figure 4.41 Edit Display Filter List Dialog Box - Filter Name

377_Eth_2e_ch04_web.qxd 11/20/06 12:39 PM Page 182

When you have accessed the Edit Display Filter List dialog box from the filter
bar, click OK to apply the filter and close the dialog box. Use the Apply button to
apply the filter and leave the dialog box open (see Figure 4.42).

“Apply as Filter” and “Prepare a Filter” Submenus
The Apply as Filter and Prepare a Filter submenus have the same options and
behave in the same way with one exception: the Prepare a Filter submenu items
prepare a display filter string and place it in the Filter text box.The Apply as Filter
submenu items prepare a display filter string, place it in the Filter text box, and
apply it to the capture. Because of their close similarity, we will only discuss the
Apply as Filter submenu.

The Apply as Filter submenu becomes available when a field in the Protocol
Tree window is selected with an associated filter name that can be used in a display
filter string (see Figure 4.43).

In Table 4.12, the filter string has been put into the Filter: text box for each of
the Apply as Filter submenu options (see Figure 4.43). Note that the ip.addr ==
192.168.0.15 filter changes the initial behavior of And Selected, Or Selected,
And Not Selected, and Or Not Selected (see Table 4.12).

www.syngress.com

Using Wireshark • Chapter 4 183

Figure 4.42 Display Filter Dialog Box - OK and Apply Buttons

377_Eth_2e_ch04_web.qxd 11/20/06 12:39 PM Page 183

Table 4.12 Apply as Filter Submenu Option Examples

Menu Option Display Filter String

Selected bgp.type == 1
Not Selected !(bgp.type == 1)
And Selected (ip.addr == 192.168.0.15) && (bgp.type == 1)
Or Selected (ip.addr == 192.168.0.15) || (bgp.type == 1)
And Not Selected (ip.addr == 192.168.0.15) && !(bgp.type == 1)
Or Not Selected (ip.addr == 192.168.0.15) || !(bgp.type == 1)

Enabled Protocols
The Enabled Protocols dialog box is displayed by selecting Analyze | Enabled
Protocols… (see Figure 4.44).

This dialog box allows you to enable or disable the decoding of one or more pro-
tocols.This can be done by clicking the Status column to toggle the status between

www.syngress.com

184 Chapter 4 • Using Wireshark

Figure 4.43 Apply as Filter Submenu

377_Eth_2e_ch04_web.qxd 11/20/06 12:39 PM Page 184

Enabled and Disabled.Additionally, you can enable all protocols by clicking the Enable
All button, disable all protocols by clicking the Disable All button, or enable all dis-
abled protocols and disable all enabled protocols by clicking the Invert button.These
settings can be applied to all Wireshark sessions by clicking the Save button.

Decode As
To force the decode of a packet as a particular protocol, select it in the Summary
window and then select Analyze | Decode As….The Decode As dialog box will
be displayed (see Figure 4.45).

When Wireshark is decoding a packet, it uses magic numbers in each protocol to
decide which dissector to use to decode subsequent parts of the packet. Magic
numbers are values that specify a higher-level protocol (e.g., Ethertype 0 ×0800
specifies that an Ethernet packet contains an IP packet; IP protocol 6 specifies that
an IP packet contains a TCP payload;TCP port 179 specifies that a TCP packet is
carrying a BGP payload).There are occasions when you want to override
Wireshark’s choices of how to decode subsequent parts of a packet based on the
magic numbers.The most common examples involve TCP ports; Wireshark fre-
quently decides which dissector to call for a TCP packet, based on the source or
destination port.You may be running a protocol over a non-standard port (e.g.,

www.syngress.com

Using Wireshark • Chapter 4 185

Figure 4.44 Enabled Protocols Dialog Box

377_Eth_2e_ch04_web.qxd 11/20/06 12:39 PM Page 185

running HTTP over port 7000).The Decode As feature allows you to tell
Wireshark about these non-standard cases.

Wireshark allows you to force decodes based on the magic numbers in the Link,
Network, and Transport layers. For the transport layer, you have the option of
decoding based on source, destination, or both (see Figure 4.46).

To force a particular decode, you need to answer these questions:

■ After which layer do I want to start forcing my custom decode?

■ Which magic number do I want to key off of to determine whether to
decode a packet with my custom decode?

■ Which protocol do I want the remaining traffic in the packet decoded as?

www.syngress.com

186 Chapter 4 • Using Wireshark

Figure 4.45 Decode As Dialog Box - Link Tab

Figure 4.46 Decode As Dialog Box - Transport Tab

377_Eth_2e_ch04_web.qxd 11/20/06 12:39 PM Page 186

To choose the layer where you want to start forcing your custom decode, select the
appropriate tab (Link, Network, or Transport), and choose which magic numbers to
pick for the Transport layer (by source port, destination port, or both).Then, select from
the list of protocols as to how you want the remaining traffic in the packet decoded.

Click the Show Current button to open the Decode As: Show dialog box, in
order to see which decodes are currently being forced.

Decode As: Show
The Decode As: Show dialog box can also be displayed by selecting Analyze |
User Specified Decodes from the menu bar (see Figure 4.47).

This dialog box displays the decodes specified through the Decode As dialog
box (one per line).The Table column shows the magic number of the alternate
decode (in this case, the TCP port).The Port column shows the magic number of
the alternate decode (in this case 179).The Initial column shows the dissector that
would normally be used to decode the payload of a packet with this magic number
and magic number type (in this case, BGP).And, finally, the Current column shows
the dissector currently being used to decode the payload of packets having this
magic number and magic number type (in this case HTTP).

Follow TCP Stream and Follow SSL Stream
The Follow TCP Stream and Follow SSL Stream windows have the same options
and behave in the same way with one exception; the Follow TCP Stream window
follows any TCP stream, while the Follow SSL Stream only follows the selected
Secure Sockets Layer (SSL) stream. Because of their close similarity, we will only dis-
cuss the Follow TCP Stream submenu.

www.syngress.com

Using Wireshark • Chapter 4 187

Figure 4.47 Decode As: Show

377_Eth_2e_ch04_web.qxd 11/20/06 12:39 PM Page 187

The Follow TCP Stream window can be displayed by selecting a TCP packet in the
Summary window and then selecting Analyze | Follow TCP Stream from the
menu bar (see Figure 4.48).

In this example, a TCP packet that was part of an HTTP conversation with the
Web server for www.syngress.com, is shown. By default, one side of the conversation
is shown in red (the upper portion), and the other portion is shown in blue (the
lower portion). For readability purposes, the side of the conversation that is usually
highlighted blue is shown as white text on a dark blue background. By scrolling
down in this window, you can see all of the data exchanged during this TCP conver-
sation. Click the Entire conversation selector to choose between displaying the
entire conversation or one of the directions (see Figure 4.49).

Clicking the Save As button brings up a Save As dialog box where you can save
the stream contents as a text file. Clicking the Print button prints the capture as
text. (Note that there is no dialog box associated with the Print button.) The Filter
out this stream button appends the necessary filter string to the one in the filter
bar and closes the Contents of the TCP Stream window.This can be useful when
going through a large capture.As you look at the possible TCP streams of interest
one by one and exclude them from the Summary window, you are left with only
the unconsidered data.

www.syngress.com

188 Chapter 4 • Using Wireshark

Figure 4.48 Follow TCP Stream Window

377_Eth_2e_ch04_web.qxd 11/20/06 12:39 PM Page 188

You also have the option of choosing how the TCP stream is presented. In
Figure 4.49, the ASCII option is selected. By choosing the EBCDIC option, you
can cause the stream to be presented with Extended Binary Coded Decimal
Interchange Code (EBCDIC). If you choose the Hex Dump option, there will be a
hexadecimal dump of the TCP stream.And, if you choose the C Arrays option, the
TCP stream will appear as a series of C arrays.

Expert Info and Expert Info Composite
The Expert Info and Expert Info Composite menu options provide identical infor-
mation in similar layouts. Both options provide a breakdown of the current capture,
and display summary information about current conversations, errors, and warnings
that can be derived from the traffic patterns.These options are a great method to use
to begin troubleshooting traffic-related issues, as they provide some simple error-
related information without having to analyze each packet by hand.

Statistics
The Statistics Menu provides a variety of specialized tools to analyze network traffic
(see Figure 4.50).These statistics are reported for certain protocol features. Many of
the tools in the Statistics Menu are specialized and beyond the scope of this book;

www.syngress.com

Using Wireshark • Chapter 4 189

Figure 4.49 Follow TCP Stream: Direction Selector

377_Eth_2e_ch04_web.qxd 11/20/06 12:39 PM Page 189

however, we will discuss some of the more generalized items, including graphing.
The menu items are described in Table 4.13

Table 4.13 Statistics Menu Options

Menu Option Description

Summary Provides basic statistics about the current capture.
Protocol Hierarchy Displays a hierarchical breakdown of the protocols in

the current capture
Conversations Provides basic information on all of the conversations in

the current capture.
Endpoints Provides basic information on all endpoint counts in the

current capture.
IO Graphs Displays basic time sequence graphs.
Conversation List A submenu for displaying conversation counts and basic

statistics for 13 different layer 2 and layer 3 protocols
and transport methods

www.syngress.com

190 Chapter 4 • Using Wireshark

Figure 4.50 Statistics Menu

Continued

377_Eth_2e_ch04_web.qxd 11/20/06 12:39 PM Page 190

Table 4.13 continued Statistics Menu Options

Menu Option Description

Endpoint List A submenu for displaying endpoint counts and basic
statistics for 12 different layer 2 and layer 3 protocols
and transport methods

Service Response A submenu for displaying the service response time for
Time 11 different protocols.
ANSI A submenu for displaying breakdown counts of three

different American National Standards Institute (ANSI)
protocols.

Fax T38 Analysis… Displays basic information on Fax T.38. This feature is
currently implemented in the Voice Over Internet
Protocol (VoiP) Calls menu.

Global System for A submenu for displaying breakdown counts for GSM
Mobile Com- ANSI protocols.
munications (GSM)
H.225… Displays counts of H.225 messages.
MTP3 A submenu for displaying basic MTP3 count A submenu.
RTP A submenu for displaying Real-Time Protocol (RTP)

stream sessions and analysis of selected RTP streams.
SCTP A submenu for analyzing and providing statistics

on Stream Control Transmission Protocol (SCTP)
associations.

SIP Provides basic analysis of Session Initiation Protocol
(SIP) code volumes.

VoiP Calls Displays session information on Voice over Internet
Protocol (VoiP) calls.

Wireless Application Provides basic analysis of WAP-WSP.
Protocol—Wireless
Session Protocol
(WAP-WSP…)
BOOTP-DHCP… Displays a count of Dynamic Host Configuration

Protocol (DHCP) and Bootstrap Protocol (BOOTP) mes-
sages broken down by message type.

Destinations… Provides a hierarchical view of all conversations in the
current capture.

Flow Graph… Provides a detailed graphical display of protocol flow
information.

www.syngress.com

Using Wireshark • Chapter 4 191

Continued

377_Eth_2e_ch04_web.qxd 11/20/06 12:39 PM Page 191

Table 4.13 continued Statistics Menu Options

Menu Option Description

HTTP A submenu for displaying HTTP request information.
IP Address… Provides a hierarchical view of all IP conversations in the

current capture.
ISUP Messages… Displays a count of ISUP message types for the current

captures.
Multicast Streams Displays a detailed breakdown of multicast streams,

and allow for Summary window filter preparation.
ONC-RPC Programs Provides summary information on Open Network

Computing (ONC)-Remote Procedure Call (RPC) conver-
sations.

Packet Length… Calculates packet length statistics by ranges for the
current capture.

Port Type… Provides a hierarchical view of all port usage for
conversations in the current capture.

TCP Streams Graph A submenu for calculating and displaying robust graphs.

Summary
The Summary dialog box can be displayed by selecting Statistics | Summary
from the menu bar (see Figure 4.51).

This Summary dialog box provides information about the capture file, basic
statistics about the capture data, and basic information about the capture.

Protocol Hierarchy
The Protocol Hierarchy dialog box can be displayed by selecting Statistics |
Protocol Hierarchy from the menu bar (see Figure 4.52).

www.syngress.com

192 Chapter 4 • Using Wireshark

377_Eth_2e_ch04_web.qxd 11/20/06 12:39 PM Page 192

www.syngress.com

Using Wireshark • Chapter 4 193

Figure 4.51 Summary Dialog Box

Figure 4.52 Protocol Hierarchy Statistics Dialog Box

377_Eth_2e_ch04_web.qxd 11/20/06 12:39 PM Page 193

This dialog box provides a tree representation of protocols and statistics associ-
ated with them.Table 4.14 provides a description of what each columns means.

Table 4.14 Protocol Hierarchy Statistics Columns

Column Description

Protocol The protocol on which statistics are being reported. The pro-
tocol may have subitems on the tree representing the proto-
cols it contains (e.g., the IP contains TCP and UDP).

% Packets Percentage of all packets in the capture that are of this protocol.
Packets The number of packets in the capture that are of this protocol.
Bytes The number of bytes in this capture containing this protocol.
End Packets The number of packets for which this protocol is the last pro-

tocol in the decode (e.g., a TCP synchronize [SYN] packet con-
taining no data would be an end packet for TCP and counted
in TCP’s end packets count).

End Bytes The number of bytes for which this protocol is the last pro-
tocol in the decode.

TCP Stream Graph Submenu
The TCP Stream Analysis submenucan be displayed by selecting a TCP packet in
the Summary window and selecting Statistics | TCP Stream Graph from the
menu bar (see Figure 4.53). the TCP Stream Graph submenu options are shown
in Table 4.15.

Table 4.15 TCP Stream Graph Submenu Options

Menu Option Description

Round Trip Time Graph Displays a graph of the round trip time
(RTT) vs. the sequence number.

Throughput Graph Displays a graph of throughput vs. time.
Time-Sequence Graph (Stevens) Displays a time-sequence graph in the style

used by W. Richard Stevens’ TCP/IP
Illustrated book.

Time-Sequence Graph (tcptrace) Displays a time-sequence graph in the style
used by the tcptrace program, which can
be found at www.tcptrace.org.

www.syngress.com

194 Chapter 4 • Using Wireshark

377_Eth_2e_ch04_web.qxd 11/20/06 12:39 PM Page 194

RTT Graph
The RTT graph shows the RTT vs. the sequence number (see Figure 4.54).

You can see the RTT spike around sequence number 1000000, which is
roughly the same sequence number where you will see discontinuity in the time-
sequence graphs.

Throughput Graph
The throughput graph shows the throughput of the TCP stream vs. time (see
Figure 4.55).

In Figure 4.58, the throughput fell off dramatically during the retransmit
sequence seen in the time-sequence graphs.

www.syngress.com

Using Wireshark • Chapter 4 195

Figure 4.53 TCP Stream Graph Submenu

377_Eth_2e_ch04_web.qxd 11/20/06 12:39 PM Page 195

www.syngress.com

196 Chapter 4 • Using Wireshark

Figure 4.54 RTT Graph

Figure 4.55 Throughput Graph

377_Eth_2e_ch04_web.qxd 11/20/06 12:39 PM Page 196

Time-sequence Graph (Stevens)
The time-sequence graph (Stevens) produces a simple graph of TCP sequence num-
bers vs. time for the TCP stream containing the packet that was selected in the
Summary window.The first derivative of this graph is the TCP traffic throughput. In
an ideal situation where there is a constant throughput, the graph would be a
straight rising line with its slope equaling the throughput. Unfortunately, things are
seldom ideal, and you can learn a lot about where the source of throughput issues is
coming from by looking at the time-sequence graph. In Figure 4.56, there is a graph
showing a throughput problem.You can reproduce this graph by selecting the first
packet of the tcp_stream_analysis.libpcap capture file, and selecting Statistics | TCP
Stream Graph | Time-Sequence Graph (Stevens). The captured file used in
this graph is a classic example of TCP retransmit and the kind of issues you use the
TCP Stream Analysis tool to debug.The full network capture can be found on the
accompanying CD, and has been added to the collection of network captures on the
Wireshark Web site.

After about 0.3 seconds, the traffic has an even slope (constant throughput) for
approximately 3 seconds, when there is a major disruption, as shown by the disconti-
nuity in the graph.This gap suggests TCP retransmissions.The Steven’s style time-
sequence graph is simple, but you can see where the problems are.

www.syngress.com

Using Wireshark • Chapter 4 197

Figure 4.56 Time-sequence Graph (Stevens)

377_Eth_2e_ch04_web.qxd 11/20/06 12:39 PM Page 197

Time-Sequence Graph (tcptrace)
The time-sequence graph (tcptrace) is also primarily a graph of TCP sequence num-
bers vs. time. Unlike the Stevens’ style time-sequence graph, however, it conveys a
lot more information about the TCP stream. Figure 4.57 shows that the tcptrace
style time-sequence graph of this stream looks very similar to the Stevens’ style time-
sequence graph.

Explaining the elements shown in the tcptrace style time-sequence graph is easy
using some of the graph manipulation tools that are available in all of the TCP
stream analysis graphs.You can magnify a portion of the graph by pressing
Ctrl+right-click on the graph (see Figure 4.58).

The box in the middle of the graph in Figure 4.58 is magnifying the region of
discontinuity where packet loss has occurred.To get an even better view of it, use the
zoom feature. Clicking on the graph with the middle mouse button allows you to
zoom in on the part of the graph you are clicking on. Pressing Shift+middle-click
zooms out. Whether you have zoomed in or out, clicking and dragging with the
right mouse button on the graph allows you to move around in the zoomed graph.A
zoom-in on the region of discontinuity in Figure 4.58, is shown in Figure 4.59.

www.syngress.com

198 Chapter 4 • Using Wireshark

Figure 4.57 Time-sequence Graph (tcptrace)

377_Eth_2e_ch04_web.qxd 11/20/06 12:39 PM Page 198

Figure 4.59 is a zoom-in on the section of the graph right before the disconti-
nuity.The beginning of the discontinuity can be seen on the far right of the graph.
There are the different elements of the tcptrace style time-sequence graph.The
lower line represents the sequence number of the last Acknowledgement (ACK)
(TCP acknowledgement) seen.The top line represents the TCP window and consists
of the sequence number of the last observed TCP ACK plus the previously seen
TCP window size.The hash marks on the lower line represent duplicate ACKs, and
the “I” bars represent transmitted segments.

www.syngress.com

Using Wireshark • Chapter 4 199

Figure 4.59 Time-sequence Graph (tcptrace) - Zoom

Figure 4.58 Time-sequence Graph (tcptrace) - Magnify

377_Eth_2e_ch04_web.qxd 11/20/06 12:39 PM Page 199

Figure 4.59 is the same graph as Figure 4.60, but with different annotations to
magnify what went wrong for this TCP stream.The capture behind this graph was
taken from the receiver of a large transmission over TCP.Therefore, we only see the
segments that we are receiving from the far end. What is seen in this graph is that
early on the receiver missed two segments.The receiver continued to ACK the last
segment received, and to receive subsequent segments until the segments received
filled the TCP window.A couple of other segments were lost along the way. Finally,
we receive the second missed segment, the third missed segment, and then the
fourth missed segment. However, because the first missed segment has not yet turned
up, the receiver continues sending the same duplicate ACK.

Figure 4.61 shows how this logjam is resolved.
In Figure 4.61, you can see the missing segment (presumed to be a retransmit)

arrive.At this point, an ACK is transmitted acknowledging the last received segment,
the TCP window increases, and the receiver begins to receive segments again.

Throughput Graph
The throughput graph shows the throughput of the TCP stream vs. time (see
Figure 4.62).

www.syngress.com

200 Chapter 4 • Using Wireshark

Figure 4.60 Time-sequence Graph (tcptrace) - Diagnosis

377_Eth_2e_ch04_web.qxd 11/20/06 12:39 PM Page 200

www.syngress.com

Using Wireshark • Chapter 4 201

Figure 4.61 Time-sequence Graph (tcptrace) - Zoom in on Retransmit

Figure 4.62 Throughput Graph

377_Eth_2e_ch04_web.qxd 11/20/06 12:39 PM Page 201

As seen in Figure 4.62, the throughput fell off dramatically during the retransmit
sequence seen in the time-sequence graphs.

Graph Control
Throughout this section, we refer to any window containing a TCP stream analysis
graph as a graph window.The term graph window refers to a Stevens’ or tcptrace style
time-sequence graph, a throughput graph, or an RTT graph. Whenever a graph
window is created, a Graph Control dialog box is also created (see Figure 4.63).

Notice that the number on the dialog box (1) matches the number on the graph
window in Figure 4.59 (1). In the event that multiple graph windows are opened,
you can use the index number to associate a Graph Control dialog box with its
graph window.

The Zoom tab allows you to set the parameters related to the zoom function-
ality of the graph function (see Figure 4.63).The Horizontal and Vertical text
boxes show the amount of zoom currently employed in the graph window.

The Horizontal step and Vertical step text boxes allow you to set the hori-
zontal and vertical zoom factors applied to the graph when you press
Shift+middle-click in the graph window. If you enable the Keep them the
same checkbox, whenever you change either the horizontal step or the vertical step,
the other will be changed to the same value.The Preserve their ratio checkbox
causes the ratio between the horizontal step and the vertical step to be preserved. If
the horizontal step is 1.2 and the vertical step is 2.4, when you change the hori-
zontal step to 1.3, the vertical step will automatically change to 2.6.

The Zoom lock section allows you to lock the horizontal or vertical steps so
that zoom is not applied to them. If the horizontal option is enabled, no matter

www.syngress.com

202 Chapter 4 • Using Wireshark

Figure 4.63 Graph Control Dialog Box: Zoom Tab

377_Eth_2e_ch04_web.qxd 11/20/06 12:39 PM Page 202

what the value is for the horizontal step, zooming will not change the horizontal
scale. If the vertical option is enabled, no matter what the value is for a vertical step,
zooming will not change the vertical scale.

The Magnify tab allows you to control the parameters associated with the mag-
nify functionality (see Figure 4.64).

The Width and Height text boxes allow you to set the width and height of the
magnification box that is displayed when you press Ctrl+right-click in the graph
window.The X: and Y: text boxes allow you to set the x and y offset of the magni-
fication box from the location of the mouse pointer.This can be useful for offsetting
the magnification box to where it won’t occlude the graph.The Horizontal: and
Vertical: text boxes allow you to set the zoom factor used to blow up the graph in
the magnification box.The Keep them the same checkbox causes the horizontal
and vertical zoom factors to change in accordance with one another, and the
Preserve their ratio checkbox causes the ratio between the horizontal and vertical
zoom factors to remain constant.

The Origin tab allows you to change the various origins of the graph (see
Figure 4.65).

The Time origin section allows you to choose the zero of time for your graph.
If you select the beginning of this TCP connection option, you establish the
beginning of the TCP connection as being graphed as your zero of time. If you
select the beginning of capture option, you establish the beginning of the capture
as your zero of time.

The Sequence number origin section allows you to choose whether your
actual TCP sequence numbers or the relative TCP sequence numbers (the TCP
sequence numbers minus your initial TCP sequence number) are shown on the

www.syngress.com

Using Wireshark • Chapter 4 203

Figure 4.64 Graph Control Dialog Box - Magnify Tab

377_Eth_2e_ch04_web.qxd 11/20/06 12:39 PM Page 203

graph. It is often convenient to use the relative sequence number, because it gives
you an idea of how much data has been transmitted. If you select the initial
sequence number option, the relative TCP sequence numbers will be used. If you
select the 0 (=absolute) option, the actual TCP sequence numbers will be used in
the graph.

The Cross tab allows you to control whether crosshairs follow the mouse
pointer in the graph window (see Figure 4.66).

If you select the off radio button, there will be no crosshairs following the
mouse pointer in the graph window. If you select the on option, there will be
crosshairs following the mouse pointer in the graph window.

Once the graph window is displayed, use the Graph type tab to change which
type of graph is being displayed (see Figure 4.67).

www.syngress.com

204 Chapter 4 • Using Wireshark

Figure 4.65 Graph Control Dialog Box - Origin Tab

Figure 4.66 Graph Control Dialog Box - Cross Tab

377_Eth_2e_ch04_web.qxd 11/20/06 12:39 PM Page 204

If you select the Time/Sequence (tcptrace-style) option, the Time-sequence
(tcptrace-style) window will be displayed. If you select the Time/Sequence (Stevens’-
style) option, the time-sequence (Stevens’-style) window will be displayed. If you
select the Throughput option, the throughput graph window will be displayed. If
you select the Round-trip Time option, the RTT graph window will be displayed.

By default, if you have applied a zoom to the graph window for one graph type,
it will persist if you change graph types. If the Init on change checkbox is enabled,
each time you change graph types the zoom will be reset.

Help
The Help menu is shown in Figure 4.68, and the Help options are explained in
Table 4.16.

Table 4.16 Help Menu Options

Menu Option Description

Contents Displays the contents for the Wireshark online help.
Supported Protocols Displays a list of the supported protocols and the dis-

play filter fields they provide.
Manual Pages A submenu for accessing traditional UNIX-style manual

pages for Wireshark, Wireshark filters, and command
line utilities.

Wireshark Online A submenu for accessing online Wireshark resources.
About Wireshark Displays information about Wireshark version and

compile information.

www.syngress.com

Using Wireshark • Chapter 4 205

Figure 4.67 Graph Control Dialog Box - Graph Type Tab

377_Eth_2e_ch04_web.qxd 11/20/06 12:39 PM Page 205

Contents
The Contents dialog box can be displayed by selecting Help | Contents from the
menu bar (see Figure 4.69).

This dialog box provides an overview of Wireshark information, including
Getting Started, Capturing, Capture Filters, Display Filters, and answers to
Frequently Asked Questions (FAQs).

Supported Protocols
The Supported Protocols dialog box can be displayed by selecting Help | Supported
Protocols from the menu bar (see Figure 4.70).

This dialog box provides a list of the protocols supported by the current version
of Wireshark, and a list of the display filter fields provided in the current version of
Wireshark.

www.syngress.com

206 Chapter 4 • Using Wireshark

Figure 4.68 Help Menu

377_Eth_2e_ch04_web.qxd 11/20/06 12:39 PM Page 206

Manual Pages Submenu
The Manual Pages submenu can be displayed by selecting Help | Manual Pages
from the menu bar (see Figure 4.71).The Manual Pages submenu options are
described in Table 4.17.

www.syngress.com

Using Wireshark • Chapter 4 207

Figure 4.69 Help Contents Dialog Box

Figure 4.70 Supported Protocols Dialog Box

377_Eth_2e_ch04_web.qxd 11/20/06 12:39 PM Page 207

Table 4.17 Manual Pages Submenu Options

Menu Option Description

Wireshark Opens the manual page (manpage) for Wireshark.
Wireshark Filter Opens the manpage for creating Wireshark filters.
TShark Opens the manpage for TShark, the command-line version

of Wireshark.
Dumpcap Opens the manpage for Dumpcap, a command-line packet

capture utility.
Mergecap Opens the manpage for Mergecap, a command-line utility

for merging two or more libpcap capture files
Editcap Opens the manpage for Mergecap, a command-line utility

for editing and translating libpcap files.
Text2pcap Opens the manpage for text2pcap, a command-line utility

for generating capture files from a text hexdump of packets

www.syngress.com

208 Chapter 4 • Using Wireshark

Figure 4.71 Manual Pages Submenu

377_Eth_2e_ch04_web.qxd 11/20/06 12:39 PM Page 208

All of the Manual Pages submenu options display a Hypertext Markup Language
(HTML)-formatted UNIX-style manpage with the default system Web browser.All
of the command-line tools support libpcap files, (as indicated by the manpages),
which is the default format used by Wireshark.

Wireshark Online Submenu
The Wireshark Online submenu can be displayed by selecting Help | Wireshark
Online from the menu bar (see Figure 4.72).The Wireshark Online submenu
options are described in Table 4.18.

Table 4.18 Wireshark Online Options

Menu Option Description

Home Page Opens the Wireshark homepage, www.wireshark.org.
Wiki Opens the Wireshark Wiki, http://wiki.wireshark.org.
User’s Guide Opens the online Wireshark User’s Guide.

www.syngress.com

Using Wireshark • Chapter 4 209

Figure 4.72 Wireshark Online Submenu

Continued

377_Eth_2e_ch04_web.qxd 11/20/06 12:39 PM Page 209

Table 4.18 continued Wireshark Online Options

Menu Option Description

FAQ’s Opens the FAQ section of the Wireshark Web site.
Downloads Opens the Downloads section of the Wireshark Web site.
Example Files Opens the Sample captures section of the Wireshark Wiki.

Here you can find the bgp.pcap.gz capture used in this
chapter, as well as other real-world captures.

The Wireshark Online Options submenu provides instant access to more online
content than we can cover in this book.The items and information available online
are a great supplement to this book.

About Wireshark
The About Wireshark dialog box can be displayed by selecting Help | About
Plugins from the menu bar (see Figure 4.73).

This dialog box contains information about the version of Wireshark you are
running and the options it was compiled with.This information is important to
know when you report a bug to the Wireshark developers.

www.syngress.com

210 Chapter 4 • Using Wireshark

Figure 4.73 About Wireshark Dialog Box

377_Eth_2e_ch04_web.qxd 11/20/06 12:39 PM Page 210

Pop-up Menus
Wireshark has context-sensitive pop-up menus to assist you in performing tasks.
None of these menus provide any additional functionality beyond what is available
through the menu bar, but they are easier and quicker to use in some circumstances.

Summary Window Pop-up Menu
The Summary window pop-up menu can be displayed by right-clicking on the
Summary window (see Figure 4.74).

Table 4.19 indicates where to find more information in this chapter on the
Summary window pop-up menu options.

www.syngress.com

Using Wireshark • Chapter 4 211

Figure 4.74 Summary Window Pop-up Menu

377_Eth_2e_ch04_web.qxd 11/20/06 12:39 PM Page 211

Table 4.19 Summary Window Pop-up Menu References

Menu Option Reference

Mark Packet (toggle) See “Edit: Mark Packet”
Set Time Reference (toggle) See “Edit: Time Reference”
Apply as Filter See “Analyze: Apply as Filter”
Prepare a Filter See “Analyze: Prepare a Filter”
Conversation Filter Opens the Conversation Filter submenu for

filtering based on Ethernet, IP, TCP, UDP or
PN-CBA Server

SCTP Submenu Opens the SCTP submenu for following SCTP
streams for Public Switched Telephone
Network (PSTN) over IP

Follow TCP Stream See ”Analyze: Follow TCP Stream”
Follow SSL Stream See “Analyze: Follow SSL Stream”
Decode As… See ”Analyze: Decode As”
Print… See “File: Print”
Show Packet in New Window See “View: Show Packet in New Window”

Protocol Tree Window Pop-up Menu
The Protocol Tree pop-up menu can be displayed by right-clicking on the Protocol
Tree window (see Figure 4.75).

Table 4.20 includes descriptions for some items and indicates where to find
more information in this chapter for other items.

Table 4.20 Protocol Tree Window Pop-up Menu References/Descriptions

Menu Option Reference/Description

Copy Copies the contents of the selected line to the clipboard
Expand Subtrees See “View: Expand Subtrees”
Expand All See “View: Expand All”
Collapse All See “View: Collapse All”
Apply as Filter See “Analyze: Apply as Filter”
Prepare a Filter See “Analyze: Prepare a Filter”
Follow TCP Stream See ”Analyze: Follow TCP Stream”

www.syngress.com

212 Chapter 4 • Using Wireshark

Continued

377_Eth_2e_ch04_web.qxd 11/20/06 12:39 PM Page 212

Table 4.20 continued Protocol Tree Window Pop-up Menu
References/Descriptions

Menu Option Reference/Description

Follow SSL Stream See “Analyze: Follow SSL Stream”
Wiki Protocol Page Opens the Wireshark Wiki at http://wiki.wireshark.org

with the default system Web browser to the page for
the selected protocol in the tree.

Filter Field Reference Opens the Wireshark Documentation Web site on cre-
ating filters for the selected protocol with the default
system Web browser.

Protocol Preferences See “Edit: Preferences”
Decode As… See “Analyze: Decode As”
Resolve Name Forces resolution of all names for this packet. See the

Wireshark Name Resolution sidebar for more informa-
tion about Wireshark name resolution. Note that this
option is only available if all name resolution is dis-
abled.

Go to Corresponding See “Edit: Go To Corresponding Packet”
Packet

Using Wireshark • Chapter 4 213

Figure 4.75 Protocol Tree Window Pop-up Menu

www.syngress.com

377_Eth_2e_ch04_web.qxd 11/20/06 12:39 PM Page 213

Data View Window Pop-up Menu
The Data View window pop-up menu can be displayed by right-clicking in the
Data View window (see Figure 4.76).

Table 4.22 indicates where to find more information in this chapter on the Data
View window pop-up menu options.

Table 4.22 Data View Window Pop-up Menu References

Menu Option Reference

Copy Submenu Displays the Copy submenu in order to copy
the entire contents of the decoded packet, as
either the entire data block or just the ASCII
reproducible characters.

Export Selected Packet Bytes Allows the currently selected bytes to be
exported in raw data format.

www.syngress.com

214 Chapter 4 • Using Wireshark

Figure 4.76 Data View Window Pop-up Menu

377_Eth_2e_ch04_web.qxd 11/20/06 12:40 PM Page 214

Using Command-line Options
Wireshark supports a large number of command-line options.This section docu-
ments some of the most commonly used options.

Capture and File Options
The most commonly used Wireshark options are those related to captures and
files.Table 4.23 lists some of the most common command-line options related to
these tasks.

Table 4.23 Capture and File Command Line Options

Command Line Option Description

-i <interface> Sets the name of the interface used for live cap-
tures to <interface>.

-k Starts capture immediately; requires the –i option.
-a <test>:<value> Sets an autostop condition for the capture. <test>

may be one of duration or filesize. If the <test> is
duration, <value> must be the number of seconds
the capture should run before it stops. If <test> is
the filesize, <value> is the number of kilobytes
that should be captured before the capture stops.

-c <count> Sets the number of packets to read before stop-
ping the capture. After <count> packets have
been read the capture stops.

-r <filename> Reads the capture saved in <filename>.
-w <filename> Writes the capture to <filename>.
-b <count> Enables the use of <count> files in a ring buffer

for captures. A maximum capture size must be
specified with the –a filesize:<value> option.

To capture on interface eth0 immediately and write the results to a ring buffer
with three files of maximum size 100 kilobytes with base filename foo.bar.libpcap,
execute the following at the command line:

Wireshark –i eth0 –k –w foo.bar.libpcap –b 3 –a filesize:100

www.syngress.com

Using Wireshark • Chapter 4 215

377_Eth_2e_ch04_web.qxd 11/20/06 12:40 PM Page 215

Filter Options
Wireshark also allows you to specify filter information from the command line.
Table 4.24 lists some of the most commonly used filter-related command-line options.

Table 4.24 Filter Command Line Options

Command Line Option Description

-f <capture filter > Set the tcpdump style capture filter string to
<filter string>.

-R <display filter> Only applicable when reading a capture from a file
with the –r option. Applies the display filter <dis-
play filter> to all packets in the capture file and
discards those that do not match.

To extract all packets from capture file bgp.pcap.gz with bgp.type == 2, execute
the following at the command line:

Wireshark –r bgp.pcap.gz –R "bgp.type == 2"

Other Options
Other commonly used options are shown in Table 4.25.

Table 4.25 Other Command-line Options

Command Line Option Description

-N <flags> Turns on name resolution. Depending on which
letters follow –N, various names will be resolved by
Wireshark. n will cause network name resolution to
be turned on, t will enable transport name resolu-
tion, m will enable MAC address resolution, and C
will enable asynchronous DNS lookups for network
name resolution.

-v Prints the Wireshark version information.
-h Prints Wireshark’s help information.

www.syngress.com

216 Chapter 4 • Using Wireshark

377_Eth_2e_ch04_web.qxd 11/20/06 12:40 PM Page 216

Summary
In this chapter, you learned about the major components of the Wireshark GUI.You
also learned about the major functionality of the Wireshark application and how to
access it.

You should now be able to perform network captures, open saved network
captures, and print captures.You are also equipped to use display filters to filter the
packets displayed in the Summary window, color the packets in the Summary
window for easier readability, or find a packet in the capture with particular char-
acteristics.

We’ve shown you how to navigate the protocol tree in the Protocol Tree
window to examine the contents of a packet, and to use the Protocol Tree fields to
prepare new display filter strings.

Finally, we showed you how to force a packet or group of packets to be decoded
by a particular dissector.You also learned how to enable and disable decoding of par-
ticular protocols, and should have some understanding of how to use some of the
more commonly used tools in Wireshark to gain better visibility into TCP Streams.

Solutions Fast Track

Getting started with Wireshark

� Binary Wireshark packages for Windows, Linux, and various UNIX
programs can be downloaded from www.wireshark.org.

� Source code can be downloaded and compiled from www.wireshark.org if
the binary packages available don’t meet your needs.

� Wireshark can be launched by typing wireshark at the command line.

Exploring the Main Windows

� The Summary window provides a one-line summary for each packet.

� The Protocol Tree window provides a detailed decode of the packet
selected in the Summary window.

� The Data View window provides the hexadecimal dump of a packet’s
actual bytes.

www.syngress.com

Using Wireshark • Chapter 4 217

377_Eth_2e_ch04_web.qxd 11/20/06 12:40 PM Page 217

www.syngress.com

218 Chapter 4 • Using Wireshark

Other Window Components

� The filter bar provides a quick mechanism for filtering the packets
displayed in the Summary window.

� Clicking the filter bar’s Filter: button displays the Display Filter dialog box
to help you construct a display filter string.

� The Information field shows the display filter field name of the field
selected in the Protocol Tree window.

Exploring the Menus

� Most preferences can be set in the Preferences dialog box.

� There are context-sensitive pop-up menus available by right-clicking on
the Summary window, Protocol Tree window, or Data View window.

� Packets in the Summary window can be color-coded for easy reading using
the Apply Color Filters dialog box.

Using Command-line Options

� Wireshark can apply display filters to packets read from a file with the –R
flag, discarding packets that don’t match the filter.

� Wireshark uses –r to indicate a file to read from and –w to indicate a file to
write to.

� Wireshark can be made to start capturing from an interface immediately on
startup by using the –i and -k options.

377_Eth_2e_ch04_web.qxd 11/20/06 12:40 PM Page 218

Q: Why is Wireshark so slow displaying data during capture? It seems to lock up.

A: Your version of Wireshark may have been compiled without the Asynchronous
DNS (ADNS) library. If so, Wireshark is stopping to do a DNS lookup for the
source and destination IP address in each packet it decodes. It can take a long
time for DNS queries to time out if they fail, and during this time, Wireshark
may lock up while waiting for those failures.To solve this problem, get a version
of Wireshark with ADNS compiled in.To work around this problem, deselect
Enable Network Name Resolution in the Capture Options dialog box when
starting a capture, or in the File dialog box when opening a capture file.

Q: Why is it that when I select some fields in the Protocol Tree window I don’t see
the field name in the Information field? How can I filter on the field if I can’t
find out its name?

A: Wireshark has been developed over many years by a team of volunteer program-
mers. Many different people have written the dissectors, which decode the pro-
tocols in Wireshark, at many different times. Not all dissector authors associated
a filterable field with each field they display in the Protocol Tree.You will not be
able to filter on such fields. If such filtering is important to you for a particular
protocol, you are encouraged to alter the source code for that dissector to
include the capacity, and submit it to the Wireshark team for inclusion.

Q: Why do I sometimes see an IP address or a TCP/UDP port number or a MAC
address twice, once in parenthesis and once not?

A: When name resolution is turned off for an address type, or when no name is
found for a given address, Wireshark inserts the actual address into the place
where the name would have gone.As a result, the place where you would have
seen the name with the address in parentheses (or vice versa) will show two
copies of the address.

www.syngress.com

Using Wireshark • Chapter 4 219

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

377_Eth_2e_ch04_web.qxd 11/20/06 12:40 PM Page 219

Q: I need more complicated capture filtering than tcpdump-style capture filters
provide. Can I use Wireshark’s display filters to restrict what I capture?

A: The short answer is no. Wireshark will not allow you to use display filters to
filter on capture. However, there is a workaround to achieve this. While
Wireshark will not allow you to use display filters on capture,Tshark will.To
capture from an interface <interface> to a file <savefile> filtering with a display
filter string <filter string> execute the following at the command line:

tshark –i <interface> -w <savefile> -R <filter string>

Tshark will capture from <interface> and only save to <savefile> those
packets that match <filter string>. In many cases, display filter strings will not be
as fast as the tcpdump-style capture filters.

Q: Does Wireshark really capture all the traffic arriving at an interface when cap-
turing in promiscuous mode?

A: That depends. Wireshark gets whatever is captured by libpcap. Sometimes, due to
a high load on the system you are capturing from, or just due to trying to cap-
ture from too-high bandwidth an interface, packets may be lost for a number of
reasons, including being dropped by the kernel.

Q: Why am I seeing packets that aren’t addressed to or being sent by my local inter-
face even though I’ve turned off capturing in promiscuous mode?

A: There may be other applications running (e.g., Snort) on the system you are
capturing from that have put the interface into promiscuous mode. Whether
Wireshark or some other application puts the interface in promiscuous mode, if
the interface is in promiscuous mode, you will see all traffic that arrives at it, not
just the traffic addressed to or sent from the interface.

www.syngress.com

220 Chapter 4 • Using Wireshark

377_Eth_2e_ch04_web.qxd 11/20/06 12:40 PM Page 220

221

Filters

Solutions in this chapter:

■ Writing Capture Filters

■ Writing Display Filters

Chapter 5

� Summary

� Solutions Fast Track

� Frequently Asked Questions

377_Eth_2e_ch05.qxd 11/14/06 10:18 AM Page 221

Introduction
When capturing packets from a network interface, Wireshark’s default behavior is to
capture all of the packets provided by the operating system’s (OSes) device driver.
On a lightly loaded home network this is not a problem; however, on a busy net-
work at a large enterprise, the deluge of packets would be too much to handle.
Wireshark provides capture filters, which allow you to capture only the packets that
you are interested in. By using capture filters, the OS sends only selected packets to
Wireshark for processing.

Once the packets are loaded into Wireshark, there may still be too many. For this
situation, Wireshark provides display filters, which allow you to specify which packets
are shown in Wireshark’s Graphical User Interface (GUI). Because all of the packets
are still in memory, they become visible when you reset your display filter.

The difference between capture filters and display filters is in how they are imple-
mented in Wireshark.The Wireshark program relies on a program library to capture
packets. On UNIX, the library is pcap (also known as libpcap), and is maintained by
the same group that developed tcpdump, the UNIX Command Line Interface (CLI)
sniffer (available at www.tcpdump.org). On Windows, the library is WinPcap, which
is a device driver and dynamic link library (DLL) that provides a pcap interface for
Windows programs. For convenience, we refer to pcap and WinPcap as pcap, because
for our purposes they are operationally equivalent.

The pcap library provides a capture-filtering mechanism and a fast filtering
engine to Wireshark.The packet data must be analyzed to determine if it passes the
filter condition. If the analysis takes a long time, your OS may not have time to
address the next incoming packet, thus resulting in a dropped packet.

pcap’s filter language is not powerful or expressive enough for many sniffing and
analysis needs.To overcome this deficiency, display filters were introduced to
Wireshark that enable you to use the protocol and field names to filter packets for
display. Display filters rely on a complete dissection of the packet by Wireshark, and
thus are much slower than capture filters. Each type of filter has its place; capture fil-
ters are good for quickly discarding packets from a live network interface, and display
filters are good for fine-tuning which packets you see after they have been loaded
into Wireshark.

Writing Capture Filters
Wireshark’s capture filters (often called tcpdump filters) use the pcap library’s filter
mechanism.The filter syntax is documented in the tcpdump manual page (man page).
Any program that uses pcap (e.g., tcpdump or Wireshark) can use this filter syntax.

www.syngress.com

222 Chapter 5 • Filters

377_Eth_2e_ch05.qxd 11/14/06 10:18 AM Page 222

While tcpdump can decode protocols, it cannot directly address many of them.The
keywords defined in the tcpdump filter language are oriented toward Link layer (layer 2)
and Transmission Control Protocol/Internet Protocol (TCP/IP) filtering.

NOTE

The man page is the documentation that comes with UNIX programs.
Man pages can be read using the UNIX man command (e.g., you would
type man tcpdump to read the tcpdump man page). The Wireshark
man page can be read by typing man wireshark. Many man pages are
available on the Web as Hypertext Markup Language (HTML). See the
tcpdump man page at www.tcpdump.org/tcpdump_man.html.

tcpdump Syntax Explained
The tcpdump filter language provides keywords that are used to match the values of
host addresses, hardware addresses, and ports. It also allows to you look for specific
protocols or at arbitrary bytes in the packet data.

Host Names and Addresses
tcpdump filters are commonly used to capture network traffic that is originating from
or destined for a particular Internet Protocol (IP) address.An Internet Protocol ver-
sion 4 (IPv4) address, Internet Protocol version 6 (IPv6) address, or a hostname can
be identified using the host command; e.g., to capture all IPv4 packets that have a
source or destination address of 192.168.1.1, you would use:

host 192.168.1.1

You can use an IPv6 address to capture IPv6 packets:

host 2::8100:2:30a:c392:fc5a

You can also use a hostname that resolves to either an IPv4 or IPv6 address:

host www.wireshark.org

The above codes return any IP packets (e.g.,Transmission Control Protocol [TCP]
and User Datagram Protocol [UDP]) that have an IP source or destination address that
matches the given IP address or hostname. Furthermore, if the hostname resolves to
more than one IP address, all of the resolved IP addresses are used in the match.

www.syngress.com

Filters • Chapter 5 223

377_Eth_2e_ch05.qxd 11/14/06 10:18 AM Page 223

To narrow the filter to capture packets that only originate from an IP address,
use the src (source) command:

src host 192.168.1.1

Similarly, to match a destination IP address, use the dst (destination) command:

dst host 192.168.255.255

You can also use a shorthand notation to check host addresses without using host:

src 192.168.1.1

dst 192.168.255.255

The host command allows you to check for an IP address, and the net command
allows you to check for an IP network. Use the net keyword in combination with an
address formatted in Classless Inter-domain Routing (CIDR) notation. CIDR nota-
tion is made up of an IPv4 address and a number, separated by a slash (/).The
number after the slash specifies the number of bits (out of 32) in the IPv4 address
that make up the network portion of the address.To look at packets coming from
any host on the 192.168.100.0 network, i.e. which uses 24 bits for the network
number (255.255.255.0 netmask), you would use this capture filter:

src net 192.168.100.0/24

Hardware Addresses
Use the ether (Ethernet) modifier to capture packets based on the hardware address
of the network card. For example, to find all broadcast packets (i.e., packets destined
for the hardware address ff:ff:ff:ff:ff:ff) use:

ether host ff:ff:ff:ff:ff:ff

There are also Fiber Distributed Data Interface (fddi) and Token Ring (tr) key-
words that match the hardware addresses of Network Interface Cards (NICs).
However, because ether, fddi, and tr all contain 6-byte hardware addresses in their pro-
tocol headers, the tcpdump filter language treats them as synonyms.Any of the three
keywords can be used, no matter which topology is on your NIC; however, in prac-
tice, ether is most commonly used.

The ether modifier is placed before the dst and src modifiers.To capture packets
destined for a particular hardware address enter:

ether dst host ff:ff:ff:ff:ff:ff

You can also use shorthand:

ether dst ff:ff:ff:ff:ff:ff

www.syngress.com

224 Chapter 5 • Filters

377_Eth_2e_ch05.qxd 11/14/06 10:18 AM Page 224

The src modifier is used to filter packets based on the source hardware address:

ether src host 00:f9:06:aa:01:03

ether src 00:f9:06:aa:01:03

Ports
The port keyword can be used to capture packets that are destined for certain appli-
cations. For example, to capture only Hypertext Transfer Protocol (HTTP) packets
(commonly sent on TCP port 80), use:

port 80

This checks for packets on both UDP port 80 and TCP port 80.To narrow it
down to TCP, use tcp as the qualifier:

tcp port 80

If HTTP is defined for a port number in the /etc/services file on UNIX, use:

tcp port http

The udp keyword can be used to capture UDP packets on a certain port. If you
are sniffing for UDP requests being sent to a Domain Name Server (DNS), you
want to capture UDP packets destined for port 53:

udp dst port 53

If you want replies, look for UDP packets with a port 53 source:

udp src port 53

Logical Operations
The tcpdump filter language allows you to combine several statements with logical
operators to create complicated filters.The logic operator not reverses the value of a
test, while and and or let you join multiple tests.These three logic keywords have
alternate representations that are used in the C programming language:

■ not is equivalent to !

■ and is equivalent to &&

■ or is equivalent to ||

You can also use parentheses when you need to group multiple statements with
logical operations. Parentheses are not always needed, but can be used to make a
filter easier to understand.

www.syngress.com

Filters • Chapter 5 225

377_Eth_2e_ch05.qxd 11/14/06 10:18 AM Page 225

To capture everything except DNS lookups, use:

not port 53

Normally, port 53 captures any TCP or UDP packets with a source or destina-
tion port of 53.The logical keyword not reverses the sense of the filter so that
everything is captured except for TCP and UDP packets with a source or destination
port of 53.

The logical operator and is used to require that multiple conditions in a test be true.
For example, to look at Telnet packets to or from the host www.wireshark.org, use:

host www.wireshark.org and port telnet

If you want either Telnet packets or Secure Shell (SSH) packets, use:

port telnet or port ssh

To combine the port telnet or port ssh test with a test for the www.wireshark.org
host, use and and parentheses:

host www.wireshark.org and (port telnet or port ssh)

The logical operators and and or have the same precedence, which means that
they are analyzed in the order in which they are listed in the capture filter. If paren-
theses are not used, the capture filter will test for Telnet packets to or from the host
www.wireshark.org, or SSH packets to and from any IP address:

host www.wireshark.org and port telnet or port ssh

Protocols
The tcpdump filter syntax provides some protocol names as keywords, allowing you
to test for the existence of those protocols.These protocol keywords are:

■ aarp AppleTalk Address Resolution Protocol

■ ah Authentication Header

■ arp Address Resolution Protocol

■ atalk AppleTalk

■ clnp Connectionless Network Protocol

■ decnet Digital Equipment Corporation Network protocol suite

■ esis (or es-is) End System-to-Intermediate System

■ esp Encapsulating Security Payload

www.syngress.com

226 Chapter 5 • Filters

377_Eth_2e_ch05.qxd 11/14/06 10:18 AM Page 226

■ icmp Internet Control Message Protocol

■ icmp6 Internet Control Message Protocol, for IPv6

■ igmp Internet Group Management Protocol

■ igrp Interior Gateway Routing Protocol

■ ip Internet Protocol

■ ip6 Internet Protocol version 6

■ ipx Internetwork Packet Exchange

■ isis (or is-is) Intermediate System-to-Intermediate System

■ iso International Organization for Standardization

■ lat Local Area Transport

■ mopdl Maintenance Operation Protocol

■ moprc Maintenance Operation Protocol

■ netbeui NetBIOS Extended User Interface

■ pim Protocol Independent Multicast

■ rarp Reverse Address Resolution Protocol

■ sca Systems Communication Architecture

■ sctp Stream Control Transmission Protocol

■ stp Spanning Tree Protocol

■ tcp Transmission Control Protocol

■ udp User Datagram Protocol

■ vrrp Virtual Router Redundancy Protocol

For example, to capture all ICMP packets the capture filter use:

icmp

To capture everything that is not an Internetwork Packet Exchange (IPX)
packet, use negation and the protocol keyword:

not ipx

Some protocols indicate the type of payload a packet is carrying (e.g., the IP
header contains a protocol field whose numeric value indicates the type of payload it is
carrying). Possible values for this protocol field are 1 (ICMP), 5 (TCP), and 17 (UDP).
On UNIX systems, there is a list of IP protocol numbers in the /etc/protocols file.

www.syngress.com

Filters • Chapter 5 227

377_Eth_2e_ch05.qxd 11/14/06 10:18 AM Page 227

The tcpdump filter syntax allows you to test the proto (protocol) field.You can also
use the proto keyword with the ether, fddi, tr, ppp, ip, ip6, and iso protocol keywords.
For example, while you can test for the presence of the TCP protocol via the tcp
keyword, you can also check for 5 as the value of the IP protocol field, as “5” desig-
nates TCP:

ip proto 5

Protocol Fields
While tcpdump can decode many protocols, the tcpdump filter syntax does not allow
you to easily test for the values of all fields that tcpdump knows how to parse. Many
protocol names are provided as keywords, but very few fields within these protocols
have names in the tcpdump filter syntax.

tcpdump filters allow you to compare values out of a packet, so that if the offset
of a field within a protocol is known, its value can be checked.This method is not as
good as using a field name, but it works.

To retrieve a single byte from a packet, use square brackets to indicate the offset
of that byte from the beginning of a particular protocol. Offsets start at zero (e.g.,
tcp[0] gives the first byte in the TCP header and tcp[1] gives the second byte). Figure
5.1 shows the bit layout of the TCP header, as defined by Request For Comment
(RFC) 793 (available at www.ibiblio.org/pub/docs/rfc/rfc793.txt).

Figure 5.1 TCP Header Layout

You can also retrieve a 2-byte integer (tcp[0:2]) or a 4-byte integer (tcp[0:4]) by
using a colon inside the square brackets. Multi-byte integers are always extracted in
network order (also known as big-endian order).To compute the value of multi-byte
network-order integers, use these formulas:

www.syngress.com

228 Chapter 5 • Filters

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 26 27 28 29 30 31 32

Source Port Destination Port

Sequence Number

Acknowledgment Number

Data Offset Reserved
U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

Windows

Checksum Urgent Pointer

Options Padding

Data

377_Eth_2e_ch05.qxd 11/14/06 10:18 AM Page 228

■ 2-byte value = byte0 * 0 ×100 + byte1

■ 4-byte value = byte0 * 0 ×1000000 + byte1 * 0 ×10000 + byte2 * 0 ×100
+ byte3

The numbers preceded by 0 × in the formulas are hexadecimal.
Unfortunately, only some protocols allow you to retrieve bytes from their data.

Interestingly, some protocols whose names cannot be used as keywords, allow you to
retrieve their data by using square brackets. Square brackets can be used to retrieve
bytes from these protocols:

■ arp Address Resolution Protocol

■ atalk Appletalk

■ decnet Digital Equipment Corporation Network protocol suite

■ ether Ethernet

■ fddi Fiber Distributed Data Interface

■ icmp Internet Control Message Protocol

■ igmp Internet Group Management Protocol

■ igrp Interior Gateway Routing Protocol

■ ip Internet Protocol

■ lat Local Area Transport

■ link Link layer

■ mopdl Maintenance Operation Protocol

■ moprc Maintenance Operation Protocol

■ pim Protocol Independent Multicast

■ ppp Point-to-Point Protocol

■ rarp Reverse Address Resolution Protocol

■ sca Systems Communication Architecture

■ sctp Stream Control Transmission Protocol

■ tcp Transmission Control Protocol

■ tr Token-Ring

■ udp User Datagram Protocol

■ vrrp Virtual Router Redundancy Protocol

www.syngress.com

Filters • Chapter 5 229

377_Eth_2e_ch05.qxd 11/14/06 10:18 AM Page 229

The value that is retrieved from the packet data is an integer, which can be com-
pared with any of the numeric relations shown in Table 5.1.

Table 5.1 Numeric Relations

Numeric Relation Meaning

> Greater Than
>= Greater Than or Equal To
< Less Than
<= Less Than or Equal To
= or == Equal To
!= Not Equal To

Additionally, the arithmetic operators +, -, *, and / are provided, as are the bit-
wise operators & and |.The bitwise operator & allows you to logically AND the
bits of integers, while the bitwise operator | allows you to logically OR the bits.

For example, the icmp keyword lets you filter for any ICMP packet; however,
there are different types of ICMP packets, depending on their function. What if you
want to look only for ICMP ping packets? The ICMP ping, or echo request/reply
packet layout is shown in Figure 5.2, and comes from RFC 792 (available at
www.ibiblio.org/pub/docs/rfc/rfc792.txt).

Figure 5.2 ICMP Echo Request/Reply Header Layout

The type ICMP protocol field, which is a 1-byte field at the very beginning of
the ICMP protocol header, indicates the type of an ICMP packet. If the type field is
8, the packet is an ICMP echo (ping) request. If the type field is 0, the packet is an
ICMP echo (ping) reply.This capture filter tests for packets that are either ICMP ping
requests or ICMP ping replies by retrieving the first byte:

icmp[0] == 8 or icmp[0] == 0

libpcap has some constant value keywords (named after ICMP fields) that give the
offset and the possible values of those fields.The value keywords can be used so that
the numbers they stand for do not need to be remembered. For example, the icmptype

www.syngress.com

230 Chapter 5 • Filters

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 26 27 28 29 30 31 32

Type Code Checksum

Identifier Sequence Number

Data…

377_Eth_2e_ch05.qxd 11/14/06 10:18 AM Page 230

is equal to the offset of the ICMP type field (which is 0), the icmp-echo variable is
equal to 8, which means that the ICMP packet is an echo request, and icmp-echoreply
is equal to 0, which means that the ICMP packet is an echo reply.The test for
ICMP ping requests and replies can be written as:

icmp[icmptype] == icmp-echo or icmp[icmptype] == icmp-echoreply

The keywords that define constant values for field offsets are listed in Table 5.2.

Table 5.2 Constant Value Keywords

Keyword Value Used in Protocol

icmptype 0 ICMP
icmpcode 1 ICMP
tcpflags 13 TCP

Table 5.3 lists the keywords that provide names for the ICMP type values.

Table 5.3 ICMP type Constant Value Keywords

Keyword Value

icmp-echoreply 0
icmp-unreach 3
icmp-sourcequench 4
icmp-redirect 5
icmp-echo 8
icmp-routeradvert 9
icmp-routersolicit 10
icmp-timxceed 11
icmp-paramprob 12
icmp-tstamp 13
icmp-tstampreply 14
icmp-ireq 15
icmp-ireqreply 16
icmp-maskreq 17
icmp-maskreply 18

www.syngress.com

Filters • Chapter 5 231

377_Eth_2e_ch05.qxd 11/14/06 10:18 AM Page 231

Bitwise Operators
The TCP flags field is a bit field, which is an integer where the individual bits are
used as separate fields. For example, the TCP flags field is an 8-bit integer field, but
the bits in that integer represent independent fields that are either true or false (or 1
or 0). In the tcpdump filter language, the fields for TCP flags have keywords with
constant values, as shown in Table 5.4.

Table 5.4 TCP Flags Constant Value Keywords

Keyword Value

tcp-fin 0x01
tcp-syn 0x02
tcp-rst 0x04
tcp-push 0x08
tcp-ack 0x10
tcp-urg 0x20

The tcpdump filter language defines keywords with constant values for the TCP flags
field, because it is common to test for the values of this field when looking at TCP
problems, especially when related to firewalls or Network Address Translation (NAT). It
is important to know how to use bit-field operators properly, because complications
arise when multiple bits can be set in the bit field.The TCP flags field can have multiple
bits set.Table 5.5 shows the flags field of a TCP packet with its SYN bit (tcp-syn) set.

Table 5.5 TCP SYN Packet Flags Bit Field

URG ACK PUSH RST SYN FIN

0 0 0 0 1 0

In this case, only the tcp-syn bit is set; therefore, the value 0 ×02 can be tested,
which is the value of tcp-syn:

tcp[tcpflag] == 0x02

or:

tcp[tcpflag] == tcp-syn

However, in the case of the second packet in a TCP handshake (a Synchronize
(SYN)/Acknowledge (ACK) packet), both the tcp-syn and tcp-ack bits are set, as
shown in Table 5.6.

www.syngress.com

232 Chapter 5 • Filters

377_Eth_2e_ch05.qxd 11/14/06 10:18 AM Page 232

Table 5.6 TCP SYN/ACK Packet Flags Bit Field

URG ACK PUSH RST SYN FIN

0 1 0 0 1 0

When SYN and ACK are both set, the TCP flags field equals 0 ×02 + 0 ×10, or 0
×12.Thus, the filter tcp[tcpflag] == tcp-syn will fail to show the packets that have
SYN plus any other field set; the filter will give you packets that have only SYN set.
To write a filter to test for the SYN bit, use the bitwise & operator to mask out all
of the bits except for the SYN bit.

tcp[tcpflag] & tcp-syn == 0x02

or:

tcp[tcpflag] & tcp-syn == tcp-syn

The bitwise arithmetic using & (bitwise AND) when comparing a TCP flags
field that has SYN and ACK set, is shown in Table 5.7.

Table 5.7 TCP SYN/ACK Packet Bitwise &Against tcp-syn

URG ACK PUSH RST SYN FIN Value Meaning

0 1 0 0 1 0 0x12 SYN/ACK
AND 0 0 0 0 1 0 0x02 tcp-syn

0 0 0 0 1 0 0x02 tcp-syn

In this case, the bitwise & produces a result of 0 ×02, which is equal to tcp-syn;
therefore, we have determined that the SYN bit is indeed set. By using bitwise &, you
can tell if any particular bit in the bit field is set.Table 5.8 shows the bitwise arithmetic
when the TCP packet is an ACK packet, and the TCP flags field has only ACK set.

Table 5.8 TCP ACK Packet Bitwise & Against tcp-syn

URG ACK PUSH RST SYN FIN Value Meaning

0 1 0 0 0 0 0x10 ACK
AND 0 0 0 0 1 0 0x02 tcp-syn

0 0 0 0 0 0 0x00 0

The result is 0 ×00, which does not equal tcp-syn; therefore, a TCP ACK packet
does not pass the tcp[tcpflag] & tcp-syn == tcp-syn test.

www.syngress.com

Filters • Chapter 5 233

377_Eth_2e_ch05.qxd 11/14/06 10:18 AM Page 233

Packet Size
The tcpdump filter language allows you to test metadata about a packet instead of
data from a packet itself.The packet size is available in a variable named len, and can
be tested with the standard arithmetic operators.To test for packets smaller than 100
bytes, use:

len < 100

The less and greater operators are built-in shorthand keywords for testing the
len veriable against a number.

www.syngress.com

234 Chapter 5 • Filters

Testing Capture Filters
Would you like to test your capture filter without actually loading Wireshark?
Capture filters are the same filters that tcpdump uses, therefore, you can supply
the capture filter on tcpdump’s command line to see if tcpdump can under-
stand your capture filter:

$ tcpdump less 100

If your capture filter uses punctuation that is normally special to the UNIX
shell, you must enclose your capture filter in single quotes:

$ tcpdump 'len > 1500'

Tcpdump has a –d option, which shows you the Berkeley Packet Filter
(BPF) code used to operate the capture filter. BPF is the mechanism that many
OSes provide for packet capture filters. You can read about BPF, “The BSD
Packet Filter: A New Architecture for User-Level Packet Capture,” by Steven
McCanne and Van Jacobson, at www.tcpdump.org/papers/bpf-usenix93.pdf.
Here’s an example of BPF code:

$ tcpdump -d 'len > 0xff'

(000) ld #pktlen

(001) jgt #0xff jt 2 jf 3

(002) ret #96

(003) ret #0

Tools & Traps…

377_Eth_2e_ch05.qxd 11/14/06 10:18 AM Page 234

Examples
The following list includes some examples of capture filters.

■ All HTTP Packets tcp port 80

■ Non-HTTP Packets not tcp port 80, !tcp port 80, tcp port not 80, or tcp
port !80

■ HTTP Browsing to www.wireshark.org tcp port 80 and dst www.wire-
shark.org

■ HTTP Browsing to Hosts Other Than www.wireshark.org tcp port
80 and not dst www.wireshark.org

■ IPX Packets ipx

■ IPX Packets Destined for IPX Network 00:01:F0:EE Not possible,
because you cannot retrieve bytes using the ipx keyword

■ TCP Packets tcp or ip proto 5

■ TCP SYN Packets tcp[tcpflag] & tcp-syn == tcp-syn

■ IP Packets with Total Length > 255 ip[2:2] > 0xff

■ IP or IPX Packets ip or ipx

Using Capture Filters
TShark accepts capture filters on the command-line with the -f option, as shown in
this example.

tshark -i eth1 -f icmp

Capturing on eth1

0.000000 10.0.0.5 -> 10.0.0.1 ICMP Echo (ping) request

0.000062 10.0.0.1 -> 10.0.0.5 ICMP Echo (ping) reply

1.010753 10.0.0.5 -> 10.0.0.1 ICMP Echo (ping) request

1.010814 10.0.0.1 -> 10.0.0.5 ICMP Echo (ping) reply

Remember that the argument to -f is a single argument. If your capture filter has
spaces in it, you must surround the capture filter in quotes so that it is passed as a
single argument of the -f option:

tshark -i eth1 -f 'icmp[0] == 0 or icmp[0] == 8'

www.syngress.com

Filters • Chapter 5 235

377_Eth_2e_ch05.qxd 11/14/06 10:18 AM Page 235

Conveniently, like tcpdump, tshark also accepts any leftover arguments on the
command line and uses them as a capture filter:

tshark -i eth1 icmp[0] == 8

When using this facility, you cannot use the -f option.

tshark -f icmp -i eth1 icmp[0] == 8

tshark: Capture filters were specified both with "-f" and with additional
command-line arguments

When using capture filters on the command line, be aware of characters that are
special to the UNIX shell.This filter should be picking up echo requests and echo
replies, however, only echo replies are seen.

tshark -i eth1 icmp[0] == 0 || icmp[0] == 8

Capturing on eth1

0.000000 10.0.0.1 -> 10.0.0.5 ICMP Echo (ping) reply

1.009672 10.0.0.1 -> 10.0.0.5 ICMP Echo (ping) reply

2.016646 10.0.0.1 -> 10.0.0.5 ICMP Echo (ping) reply

The problem is that the two vertical bars (||) are interpreted by the UNIX shell
and the two vertical bars and the rest of the command line are never seen by tshark.
To avoid this behavior, use quotes around the capture filter:

tshark -i eth1 'icmp[0] == 0 || icmp[0] == 8'

Capturing on eth1

0.000000 10.0.0.5 -> 10.0.0.1 ICMP Echo (ping) request

0.000057 10.0.0.1 -> 10.0.0.5 ICMP Echo (ping) reply

1.010248 10.0.0.5 -> 10.0.0.1 ICMP Echo (ping) request

1.010299 10.0.0.1 -> 10.0.0.5 ICMP Echo (ping) reply

Like TShark, Wireshark accepts capture filters with the -f option. If you use
Wireshark’s -k option, Wireshark will immediately begin capturing packets.You can
use the -k option to start a capture and the -f option to supply a capture filter.
Besides -k and -f, Wireshark and TShark share many of the same capture-related
command-line options. However, Wireshark does not treat leftover arguments on the
command line, as a capture filter.

Being a graphical application, Wireshark also accepts capture filters in its
GUI. Before starting to capture packets, the “Capture Options” dialog box pro-
vides a Capture Filter text entry box where you can type a capture filter (see
Figure 5.3).

www.syngress.com

236 Chapter 5 • Filters

377_Eth_2e_ch05.qxd 11/14/06 10:18 AM Page 236

Writing Display Filters
Wireshark’s display filter mechanism is designed differently than tcpdump’s filters.
Tcpdump is a packet analyzer that knows how to decode many protocols, but relies
on libpcap’s filtering engine. Libpcap is a separate library that does not know how to
parse many protocols.

In Wireshark, the protocol dissection mechanism is intertwined with the display
filter mechanism. For almost every item you see in the protocol tree in the middle pane
of Wireshark’s GUI,Wireshark has a field name that you can use in a display filter.The
CD-ROM that accompanies this book lists some commonly used display filter field
names that Wireshark defines, and the CD-ROM that accompanies this book provides
HTML pages that show all of the display filter field names for Wireshark version
0.99.4.These HTML pages are in the /filters directory on the CD-ROM).You can also
go to the Help | Supported Protocols | Display Filter Fields option in
Wireshark to see a similar list. Perhaps the easiest way to find the display-filter name of
a field that you’re interested in is to highlight that field in the Wireshark GUI.When
highlighted,Wireshark provides the display filter field name on the left-hand side of the
status bar at the bottom of the GUI. Figure 5.4 shows that ip.len is the name of the IP
Total Length field.The ip.len field name is shown in parentheses in the status bar on the
bottom left side of the Wireshark window. Be aware that the status bar can be hidden
by toggling View | Statusbar; therefore, be sure it is enabled if you want to see the
field name.

www.syngress.com

Filters • Chapter 5 237

Figure 5.3 Capture Options Dialog Box

377_Eth_2e_ch05.qxd 11/14/06 10:18 AM Page 237

The protocol names also have display-filter names. Figure 5.5 shows that the ip
field name represents the IP protocol.

Writing Expressions
To test for the existence of a protocol or a field, the display filter is simply the dis-
play filter field name of that protocol or field.To show all IP packets use:

ip

This shows all of the packets where the IP protocol is present.You can also show
all of the packets where a field is present:

ip.len

www.syngress.com

238 Chapter 5 • Filters

Figure 5.4 Display Filter Name for IP Total Length

377_Eth_2e_ch05.qxd 11/14/06 10:18 AM Page 238

Because IP packets always have a total length (ip.len) field, this is functionally
equivalent to testing for an ip. However, some protocols (e.g.,TCP) can vary the
fields that are present in a protocol header.TCP has optional fields such as MSS,
which is represented by the tcp.options.mss_val field name.To find all packets that have
the tcp.options.mss_val field, name the field in the display filter:

tcp.options.mss_val

The values of display filter fields in Wireshark belong to specific types, which
means that depending on its type, a field can hold only certain values.The types in
the display filter language are shown in Table 5.9.

www.syngress.com

Filters • Chapter 5 239

Figure 5.5 Display Filter Name for IP

377_Eth_2e_ch05.qxd 11/14/06 10:18 AM Page 239

Table 5.9 Display Filter Field Types

Display Filter
Field Types Possible Values Example Values

Unsigned Integer Non-negative integers: can 80
be 8-, 16-, 24-, 32-, or
64-bits wide

Signed Integer Integers: can be 8-, 16-, 24-, -1
32-, or 64-bits wide

Boolean True or False true
Frame Number Like a 32-bit Unsigned Integer, 55

but with special behaviors
Floating Point A decimal number (i.e., real 2.3

numbers)
Double-precision A floating point number that 82.390923033
Floating Point can store more digits
String A sequence of characters “hello”
Byte String A sequence of hexadecimal 12:23:2c

digits
Hardware Address A 6-byte long byte string with 14:0a:ff:3c:42:9a

name-lookup capabilities
IPv4 Address An IPv4 address with 192.168.1.200

name-lookup capabilities
IPv6 Address An IPv6 address with 2::8100:2:30a:c392:fc5a

name-lookup capabilities
IPX Network A 4-byte IPX network number 0xc08022aa

with name-lookup capabilities
Absolute Time A date/time stamp “Oct 31, 2006 15:00:00”
Relative Time The number of seconds 180

between two absolute times
None A field that holds no value

and is used only as a label or
placeholder

Protocol The protocol keywords http

The operators that can be used to compare values are shown in Table 5.10.

www.syngress.com

240 Chapter 5 • Filters

377_Eth_2e_ch05.qxd 11/14/06 10:18 AM Page 240

Table 5.10 Operators Used to Compare Values

Operators Meanings

> or gt Greater Than
>= or ge Greater Than or Equal To
< or lt Less Than
<= or le Less Than or Equal To
== or eq Equal To
!= or ne Not Equal To
contains A string or byte string is found within another
matches A regular expression matches a string
& or bitwise_and “Bitwise AND” to test specific bits

Multiple relations can be combined with the logical operators and and or.You
can negate the logical meanings with not. Parenthesis can be used to group logical
operations correctly.

NOTE

The matches operator only works if your copy of Wireshark was com-
piled with support for the Perl Compatible Regular Expressions (PCRE)
library. Select Help | About Wireshark from Wireshark’s menu to check
if Wireshark was compiled with or without libpcre. If you have libpcre,
the matches operator works in your copy of Wireshark.

Integers
Integer fields hold numeric values, which are integers (or whole numbers) without
fractional parts. Integers can be expressed in decimal, octal, or hexadecimal notation.
The octal notation requires an initial 0, while hexadecimal notation requires an ini-
tial 0 ×.Table 5.11 shows examples of how to write the same integer in decimal,
octal, and hexadecimal representations.

www.syngress.com

Filters • Chapter 5 241

377_Eth_2e_ch05.qxd 11/14/06 10:18 AM Page 241

Table 5.11 Different Representations for the Same Integer

Display Filter Integer Notation

eth.len > 1500 Decimal
eth.len > 02734 Octal
eth.len > 0x5dc Hexadecimal

Integer fields are categorized as either signed or unsigned, and as 8, 16, 24, 32, or
64 bits wide.These two categories describe how the integers are stored in a com-
puter’s memory, and the categories determine the range of values that the integer
can be (see Table 5.12).

Table 5.12 Range of Values According to Integer

Bit Width Signed Range Unsigned Range

8-bit –27 to 27–1 0 to 28–1
–128 to 127 –128 to 127

16-bit –215 to 215–1 0 to 216–1
–32,768 to 32,767 0 to 65,535

24-bit –223 to 223–1 0 to 224–1
–8,388,608 to 8,388,607 0 to 16,777,215

32-bit –231 to 231–1 0 to 232–1
–2,147,483,648 to to 4,294,967,295
2,147,483,647

64-bit –263 to –263–1 0 to 264–1
-9,223,372,036,854,775,008 0 to 18,446,744,073,709,551,615
to
9,223,372,036,854,775,807

Some integer fields also have labels representing the specific values of fields. For
example, the Systems Network Architecture (SNA) Transmission Group Segmenting
Field (or sna.th.tgsf) can have four distinct values, as shown in Table 5.13.

Table 5.13 SNA Transmission Group Segmenting Field

Integer Field/Value Label

0 Not Segmented
1 Last segment
2 First segment
3 Middle segment

www.syngress.com

242 Chapter 5 • Filters

377_Eth_2e_ch05.qxd 11/14/06 10:18 AM Page 242

In these cases, either the integer value or the label can be used when testing for
values of sna.th.tgsf.These display filters are equivalent to:

sna.th.tgsf == 2

sna.th.tgsf == "First segment"

This example also shows how text (or strings) can be represented in a display
filter. Note that the label is enclosed by double quotes.

NOTE

You can use the “Filter Expression” dialog box to look at the possible
values for fields with label values. You can also use the HTML pages in
the /filters directory on the accompanying CD-ROM to find the same
information.

Some integer fields are of a type called frame number, which is a special integer
type within Wireshark that acts like a 32-bit unsigned integer type. By right-clicking
on this field in the GUI, the pop-up menu has the option “Go to Corresponding
Frame” that brings you to the frame indicated in the field.This is used for protocols
that use request/response packet pairs (e.g., the Server Message Block [SMB] pro-
tocol and the NetWare Core Protocol [NCP] use frame number fields). Figure 5.6
shows an SMB response packet with a field smb.response_to, which gives the frame
number of the request packet. Being able to jump to the request packet by clicking
on a field in the reply packet can be handy when debugging network problems.

Booleans
Boolean fields are fields that have a true or false value. In some cases, boolean fields,
like integer fields, have labels that better describe the 1 or 0 value. For example,
the sna.rh.sdi field is a boolean field that has the labels Included and Not Included,
which describe its values more accurately than True or False.These display filters
are equivalent:

sna.rh.sdi == 0

sna.rh.sdi == "Not Included"

sna.rh.sdi == false

www.syngress.com

Filters • Chapter 5 243

377_Eth_2e_ch05.qxd 11/14/06 10:18 AM Page 243

Floating Point Numbers
Floating point numbers are different from integer numbers in that they contain frac-
tional parts. Wireshark provides two types of floating point numbers: regular and
double-precision. Double-precision floating point numbers more accurately represent
numbers than regular floating point numbers, because more digits can be stored. In
practice, all of Wireshark’s floating point numbers are double-precision.

Whether regular or double-precision, floating point numbers are not usually
found in protocols, but they do exist. For example, the who protocol (i.e., the
format of the messages sent by the rwhod program on UNIX systems announcing
load averages and current logins) has floating point numbers. Some example dis-
play filters include:

www.syngress.com

244 Chapter 5 • Filters

Figure 5.6 SMB Response

377_Eth_2e_ch05.qxd 11/14/06 10:18 AM Page 244

who.loadav_5 > 3.5

who.loadav_10 <= 10

who.loadav_10 <= 10.0

Strings
Some fields hold text files, text values, or sequence of characters, are called strings. If
the string you want to represent does not contain spaces and does not have the same
name as one of the fields, you can use the string directly in your display filter:

sna.rh.csi == ASCII

However, if the string has a space in it, or has the same name as a field, the string
must be enclosed in double quotes:

sna.rh.sdi == "Not included"

If the string you’re providing contains a double quote, use a backspace followed
by a double quote to embed that double quote into the string.The following display
filter looks for a double-quote, followed by YES, followed by another double-quote.

http contains "\"YES\""

The backslash also allows you to embed 8-bit unsigned integers (i.e., single
bytes) inside the string by using either hexadecimal or octal notation:

frame contains "\0777"

frame contains "\xff"

To look for a backslash, use a backslash followed by another backslash.To look
for \begin, the display filter would look like:

http contains "\\begin"

Wireshark’s display filter syntax currently only allows you to look for American
Standard Code for Information Interchange (ASCII) strings. While the Edit | Find
Packet GUI option allows you to search for ASCII and Unicode strings, the display
filter language doesn’t allow you to search for any other string encoding, including
Unicode or Extended Binary Coded Decimal Interchange Code (EBCDIC) strings.
Similarly, be aware that all string comparisons are case-sensitive.The information in
the display filter language is case-sensitive.A new facility called “display filter func-
tions” has been provided to overcome this deficit.

The matches operator lets you search for text in string fields (and byte sequences)
using a regular expression.The matches operator and the regular expressions supported
by Wireshark are the same expressions that Perl uses.Wireshark does this by using the

www.syngress.com

Filters • Chapter 5 245

377_Eth_2e_ch05.qxd 11/14/06 10:18 AM Page 245

PCRE library, which is helpful because you can leverage existing knowledge of regular
expressions from Perl, Python,Apache, Exim, or many other applications.

Regular Expressions
The best documentation for Perl regular expressions comes from the Perl regular
expression manual page, available online at http://perldoc.perl.org/perlre.html.The
Python documentation at www.python.org/doc/current/lib/re-syntax.html also
provides a useful summary of regular expression syntax. In short, by using a special
syntax, you can search for patterns of strings instead of just simple strings, in a
string field. A regular expression (or regex) lets you cope with variability in your
search pattern.You can vary the content of substrings and the number of instances
of the substrings.

To accomplish this, the regex syntax gives meaning to certain punctuation marks
e.g., the * character means match the preceding item zero or more times. In other
words, the preceding item might not occur, might occur once, or might occur many
times. If we search with this regular expression, the preceding item (the letter s) can
occur zero or more times.

files*

The regex would match these strings:

file

files

filessss

filesssssssss

but would not match these strings:

Files

filed

file search

An item can be a character, a class of characters, or a string of characters.A class
of characters means a group from which any character can be chosen.A string of
characters is a sequence of specific characters. Square brackets denote classes, while
parentheses denote strings.

If you want to find a string starting with eth followed by any numerical digit,
you can use a character class by listing the characters inside square brackets:

eth[0123456789]

www.syngress.com

246 Chapter 5 • Filters

377_Eth_2e_ch05.qxd 11/14/06 10:18 AM Page 246

or, you can use a character range:

eth[0-9]

Both of those regexes would match these strings:

eth0

eth1

eth2

eth3

eth4

eth5

eth6

eth7

eth8

eth9

But, neither regex would match eth10, because the character class matches only
one character in the text that is being searched. However, the * quantifier applies to
a character class, so you could use this regex to match eth10 or eth followed by any
number of digits:

eth[0-9]*

Because the * matches zero or more times, the regex would also match eth.You
want to use the + quantifier, which matches one or more items:

eth[0-9]+

There are three quantifiers, as shown in Table 5.14.

Table 5.14 Regular Expression Quantifiers

Character Meaning

* The preceding item occurs zero or more times
+ The preceding item occurs one or more times
? The preceding item either occurs once, or not at all

Furthermore, you can indicate that an item occurs a specific number of times
using curly brackets.The three varieties are shown in Table 5.15.

www.syngress.com

Filters • Chapter 5 247

377_Eth_2e_ch05.qxd 11/14/06 10:18 AM Page 247

Table 5.15 Specific Regular Expression Quantifiers

Syntax Meaning

{m} The preceding item occurs exactly m times
{m,} The preceding item occurs at least m times
{m,n} The preceding item occurs a minimum of m times, and a

maximum of n times.

For example, to find eth followed by 2 or 3 digits, the regex would be:

eth[0-9]{2,3}

If you want to search for a substring that occurs one or more times, put the
substring in parentheses:

file(\.txt)+

The period (.) has a special meaning in regex syntax; it matches any character
except new line characters.Thus, to find the period itself, we have to prepend a
backslash.The regex would match these strings:

file.txt

file.txt.txt

file.txt.txt.txt

Parentheses also allow you to match on alternatives. If you want to find an inter-
face name that is eth or tr followed by one or more numerical digits, use:

(eth|tr)[0-9]+

The Perl regular expression syntax that Wireshark uses also has pre-defined char-
acter classes that are listed in Table 5.16.

Table 5.16 Regular Expression Character Classes

Syntax Character Class

\d Any numerical digit
\D Any non-digit character
\s Any whitespace character (e.g., space, tab)
\S Any non-whitespace character

www.syngress.com

248 Chapter 5 • Filters

377_Eth_2e_ch05.qxd 11/14/06 10:18 AM Page 248

Knowing this, the previous example of finding eth followed by one or more
digits could be written in shorthand form:

eth\d+

Some other punctuation marks also have special meaning, as shown in Table 5.17.

Table 5.17 Special Regular Expression Punctuation

Character Meaning

^ Match the beginning of a string
$ Match the end of a string
. Match any character except the new line character

For example, to find .doc at the end of a string, use $:

\.doc$

As mentioned earlier, use the backslash character (\) to find a punctuation mark
that normally would have a special regex meaning.That is, to find the word eth fol-
lowed by any number of digits in square brackets, use the backslash in front of the
square brackets:

eth\[\d+\]

Byte Sequences
A sequence of bytes, including Ethernet addresses, is represented by a sequence of
hexadecimal digits in uppercase or lowercase letters and separated by colons, periods,
or dashes. For example, the broadcast Ethernet address ff:ff:ff:ff:ff:ff can be also be
represented as ff.ff.ff.ff.ff.ff or as ff-ff-ff-ff-ff-ff.

Ethernet addresses are byte sequences that have names assigned to them via an
ethers file. On UNIX, the global file is /etc/ethers and the personal file is
$HOME/.wireshark/ethers. On Windows, the global ethers file would be placed in
the Wireshark installation directory, and the personal file would be created as
%APPDATA%\Wireshark\ethers, or if %APPDATA% doesn’t exist, %USERPRO-
FILE%\Application Data\Wireshark\ethers.The ethers file format is one hardware
address and one name per line, separated by any amount of spaces or tabs:

00:09:f6:01:cc:b3 picard

01:1a:e3:01:fe:37 worf

www.syngress.com

Filters • Chapter 5 249

377_Eth_2e_ch05.qxd 11/14/06 10:19 AM Page 249

When a name exists for an Ethernet address, it can be used in the display filter:

eth.src == 00:09:f6:01:cc:b3

eth.src == picard

Internally, Wireshark treats protocols as a special field type; however, in one
aspect, protocols act like byte sequence fields.The contains and matches operators
can be used to search through the bytes that belong to each protocol in the
packet.The bytes in a packet that are specific to a protocol are treated as belonging
to that protocol in the display filter language.The exception is the special frame
pseudo-protocol. At the top of every protocol tree, Wireshark places a pseudo pro-
tocol that contains metadata about the packet, including the arrival time and the
length of packet.These fields don’t actually appear in the packet data, but are rele-
vant to the packet. Wireshark regards all the bytes in the packet as belonging to
the frame pseudo-protocol.Therefore, you can use the contains operator to search
for any bytes or ASCII text within the entire packet by checking if the frame pro-
tocol contains the bytes or text:

frame contains "POST"

frame contains 50:4f:53:54

You can limit your search to a more specific protocol. For example, to search for
GET in the http protocol, use:

http contains "GET"

Addresses
Address fields have the distinction of being represented by either a numeric value or
a name.The Ethernet address field is both an address field and a byte sequence field.
The other address fields are the IPv4 address, IPv6 address, and IPX network fields.

IPv4 address fields can be compared against the dotted-quad format of IPv4
addresses, hostnames, and DNS names.The dotted-quad notation is four numbers
separated by periods (or dots). In this example, the source IP address field name is
ip.src and the destination IP address field name is ip.dst:

ip.src == 192.168.1.1

ip.dst == wizard

ip.dst == www.wireshark.org

To test if either the source IP address or the destination IP address is wizard, can
use the logic or operator to combine two tests:

ip.src == wizard or ip.dst == wizard

www.syngress.com

250 Chapter 5 • Filters

377_Eth_2e_ch05.qxd 11/14/06 10:19 AM Page 250

Wireshark provides another field, ip.addr, which stands for either ip.src or ip.dst:

ip.addr == wizard

Most of the fields with a concept of source and destination, provide a third field
that tests for either source or destination, to help you write display filters that test
both addresses.

To test if an IPv4 address is within a certain subnet, the == operator and
CIDR notation can be used. In CIDR notation, the IPv4 address, hostname, or
DNS name is followed by a slash and the number of bits that make up the net-
work portion of the IPv4 address:

ip.addr == 192.168.1.0/24

ip.addr == wizard/24

IPv6 address fields are similar to their IPv4 counterparts: ipv6.src for the source
address, ipv6.dst for the destination address, and ipv6.addr to test either source or des-
tination address. For example:

ipv6.dst == 2::8100:2:30a:c392:fc5a or ipv6.dst == 2::8100:2:30a:c392:fc5a

ipv6.addr == 2::8100:2:30a:c392:fc5a

IPX addresses are comprised of two parts, the network address and the node address.
This is comparable to an IPv4 address, where part of the 32-bit IPv4 address is the
network portion, and the other part refers to a specific host on that IPv4 network.
In IPX, however, the network and node (i.e., the host) are separate fields instead of
being combined into a single value.

The IPX node fields are hardware address-type fields, but the IPX network
fields are unsigned 32-bit integer fields. Wireshark treats IPX network fields dif-
ferently than normal integer fields, in that Wireshark allows you to give names to
IPX network numbers.This is useful if you need to analyze IPX packets in an
environment where there are many different IPX networks; names are easier to
remember than numbers.To define the IPX network names, create a file called
ipxnets. On UNIX, you can create a global ipxnets file in /etc/ipxnets, and a per-
sonal file whose values override the global values in $HOME/.wireshark/ipxnets.
On Windows, the global file is the ipxnets file in the Wireshark installation direc-
tory, while the personal file is %APPDATA%\Wireshark\ipxnets, or if %APPDATA%
doesn’t exist, then %USERPROFILE%\Application Data\Wireshark\ipxnets.The
format of the ipxnets file is the same as the ethers file, except that the hexadecimal
bytes representing the IPX network number can be separated by periods, dashes,
colons, or nothing. Following is an example from the Wireshark man page:

www.syngress.com

Filters • Chapter 5 251

377_Eth_2e_ch05.qxd 11/14/06 10:19 AM Page 251

C0.A8.2C.00 HR

c0-a8-1c-00 CEO

00:00:BE:EF IT_Server1

110f FileServer3

Given this ipxnets file, these two display filters are equivalent:

ipx.src.net == 0xc0a82c00

ipx.src.net == HR

NOTE

Storing hardware addresses in an /etc/ethers file used to be common
practice on UNIX systems; however, the UNIX systems used today no
longer come with an /etc/ethers file. The /etc/ipxnets file is a file that is
unique to Wireshark.

Time Fields
There are two types of time fields in Wireshark that are represented very differently.
An absolute time is a timestamp that combines a date and a time in order to specify a
specific moment in time.A relative time is a floating point number (i.e., the number
of seconds [including fractional seconds] between two absolute times).

Absolute times are represented as strings of the format:

Month Day, Year Hour:Minute:Seconds

and can include fractions of a second, with nanosecond resolution:

Month Day, Year Hour:Minute:Seconds.Nsecs

To look at packets that arrived before December 31st, 2003, at 5:03AM, the dis-
play filter would be:

frame.time < "Dec 31, 2003 05:03:00"

Wireshark provides the frame.time_delta field to record the difference in arrival
times between a packet and its immediate predecessor. Currently, the only way to
represent this relative time is with a floating point number that indicates seconds
with nanosecond resolution:

frame.time_delta > 0.02

www.syngress.com

252 Chapter 5 • Filters

377_Eth_2e_ch05.qxd 11/14/06 10:19 AM Page 252

Other Field Types
Some fields have no values associated with them (e.g., an integer value, string value,
or any other value).You can test for the existence of these fields, but they don’t have
a value that can be checked with ==, <, >, or any other relation.These no-value
fields are generally used by the protocol dissector to place text or a branch in a pro-
tocol tree.

If you inspect the protocol trees in your packet captures, you’ll eventually dis-
cover that some of the items in the protocol tree don’t have any display filter field
associated with them. In some cases, protocol dissectors merely add text to the pro-
tocol tree, without labeling the text as belonging to a field. Figure 5.7 shows how
the HTTP protocol dissector does this for the HTTP headers. It places the Keep-
Alive field in the protocol tree without giving it a display filter field name.

www.syngress.com

Filters • Chapter 5 253

Figure 5.7 HTTP Headers as Text

377_Eth_2e_ch05.qxd 11/14/06 10:19 AM Page 253

You cannot create a display filter to search for these types of text labels.
However, if the text is found in the packet data, the contains operator can be used to
search for the text in a protocol or the entire packet by using the frame pseudo-pro-
tocol.To find HTTP packets where the Keep-Alive is “300,” use the contains operator:

http contains "Keep-Alive: 300"

Ranges
The string, byte sequence, and protocol field types have something in common
besides being searchable by the contains and matches operators: they are all sequences
of bytes. Strings are sequences of characters, and characters are bytes.The other field
types (e.g., integers, floating points, times, and so forth) can be thought of as single
values rather than sequences. Sometimes it is useful to take a portion of a string, byte
sequence, or protocol and slice the data into smaller sections and compare it against
a value.A sequence can be sliced using the ranges functionality of Wireshark’s display
filter language.The ranges syntax uses square brackets: [and].

To obtain a single byte from a sequence, use the offset of that byte in square
brackets.The offset is the position of the byte starting at the beginning of the named
field. Wireshark’s display filter language offsets begin at 0.To compare the very first
byte in an Ethernet address to the hexadecimal value 0xaa, use:

eth.addr[0] == aa

The value that is compared against a range is always treated as a sequence of
bytes.The hexadecimal byte value aa is not interpreted as the string aa, nor can you
provide a integer value by typing 0xaa.

www.syngress.com

254 Chapter 5 • Filters

Exchanging Filters With Your Friends
Do you need an easy way to exchange your extensive collection of capture
filters or display filters with your friends? Wireshark saves capture filters in
a file named cfilters, and saves display filters in a file name dfilters. On a
UNIX system, those files are in the $HOME/.wireshark directory, while on a
Windows system those files are in %APPDATA%\Wireshark, or if %APPDATA%
isn’t defined, in %USERPROFILE%\Application Data\Wireshark. cfilter and dfilte
are simple text files with one record per line. You can paste new entries into these
files and the next time you start Wireshark, the new filters will be available.

Notes from the Underground…

377_Eth_2e_ch05.qxd 11/14/06 10:19 AM Page 254

Since 0 is the offset of the first byte, 1 is the offset of the second byte.To com-
pare the second byte of the bytes in the telnet portion of the packet to the hexadec-
imal value 0xff, use:

telnet[1] == ff

A sample of a full hexadecimal table can be found at:
www.cookwood.com/cookwood/html4_examples/4files/colorhex/hexchart.html.

Ranges can do more than extract single bytes; they can also extract actual
ranges of bytes from the fields. Use a colon to separate the offset from the number
of bytes in the brackets.To compare the first 3 bytes of a tr address to 00:06:29, type
the length of the slice after the colon.The length is 3 because we are comparing
three bytes:

tr.addr[0:3] == 00:06:29

If you would rather provide ranges of offsets rather than offset/length pairs, a
hyphen in the brackets can be used.This display filter also compares the first 3 bytes
of a tr address to 00:06:29, but by slicing the tr.addr field from offset 0 up to and
including byte 2:

tr.addr[0-2] == 00:06:29

When using the colon notation to give byte offset and range length, you can
choose not to provide either the offset or the length, yet keep the colon.

eth[:2] == ff:ff

http[10:] contains 00:01:02

When the offset is not provided, as in the eth[:2] case, the offset is assumed to be
0. When the length is not provided, as in the http[10:], the range includes all of the
bytes until the end of the field or protocol mentioned.

Within the brackets, you can use commas to concatenate multiple ranges of the
same field. For example, if you want to look at the first byte (offset = 0) and the
third byte (offset = 2) of the tr protocol, you can either create two ranges combining
them with the and logical operator, or combine the ranges into one range using a
comma inside the square brackets:

tr[0] == ff and tr[2] == ee

tr[0,2] == ff:ee

The comma operator can combine any number of ranges, therefore, the fol-
lowing is entirely legal:

tr[0-2,4:3,7,9] == 01:02:03:04:05:06:07:08

www.syngress.com

Filters • Chapter 5 255

377_Eth_2e_ch05.qxd 11/14/06 10:19 AM Page 255

Table 5.18 is a summary of the range syntax options.

Table 5.18 Range Syntax

Range Syntax Meaning

[offset] Slice a single byte at “offset”
[offset : length] Slice “length” bytes starting at “offset”
[offset1 – offset2] Slice bytes from “offset1” to “offset2”, inclusive
[: length] Slice “length” bytes starting at offset 0
[offset :] Slice bytes from “offset” to end of field
[range , range] Combine any range syntax with another

NOTE

The Wireshark documentation states that you are supposed to be able to
use negative numbers as offsets. Negative offsets indicate the offset
counting backwards from the end of the field. However, in our testing,
this doesn’t work as advertised. It is likely that this will be fixed in a
future version of Wireshark.

Logical Operators
The and logical operator tests whether the two relations it combines are true.To
filter for a specific source IP address and a specific destination IP address, use and:

ip.src == 192.168.1.1 and ip.dst == 192.168.2.2

The or logical operator tests if either, or both, of the two relations that it joins is
true. If you want to test an IP address to see if it was one of two values, use or:

ip.addr == 192.168.3.3 or ip.addr == 192.168.4.4

The not logical operator reverses the sense of the relation.To find NetWare Core
Protocol packets that have an ncp.directory_name field that does not contain the string
“System,” use this display filter:

not ncp.directory_name contains "System"

www.syngress.com

256 Chapter 5 • Filters

377_Eth_2e_ch05.qxd 11/14/06 10:19 AM Page 256

Parentheses are used to group relations according to how not, and, and or, should
combine them.These two display filters are not the same, due to the presence of
parenthesis:

not eth.dst eq ff:ff:ff:ff:ff:ff and ip.len gt 1000

not (eth.dst eq ff:ff:ff:ff:ff:ff and ip.len gt 1000)

In the first example, not negates the meaning of the eq. In the second example,
not negates the meaning of the grouped expression, which is an and expression.

Functions
A new feature called “display filter functions” (or functions) is available in Wireshark.
These functions operate on field data and return new values.

The only two functions currently defined in Wireshark are upper and lower,
which convert a string field to either uppercase or lowercase.This is useful if you
need to perform a case-insensitive search. For example, if the hostname can be
“angel” or “Angel” or any combination of upper- and lowercase letters, you want to
do a case-insensitive search:

upper(mount.dump.hostname) == "ANGEL"

lower(mount.dump.hostname) == "angel"

Ensure that if you use upper, the string you’re matching against is in uppercase. If
you use lower, the string you’re matching against should be in lowercase. It doesn’t
matter which function you use, because either allow you perform a case-insensitive
search.

Multiple Occurrences of Fields
Some protocols occur more than once per packet.This can happen when you’re
looking at encapsulated or tunneled protocols. For example, Protocol Independent
Multicast (PIM) can run on top of IPv6 and at the same time send other IPv6 data.
Thus, you can have two instances of IPv6 in a single packet by using PIM. More com-
monly, the same field can occur more than once in a single protocol. Some protocols
have repeated fields (e.g., the ring/bridge pairs in source-routed token-ring packets).

In cases where the protocol does not normally have multiple occurrences of
fields, Wireshark can create multiple occurrences of fields to enhance the filtering.As
mentioned in the discussion about address fields, there are many fields that have a
source version and a destination version. In those cases, the protocol dissector adds
two generic (non-source, non-destination) versions of the field so that a display filter

www.syngress.com

Filters • Chapter 5 257

377_Eth_2e_ch05.qxd 11/14/06 10:19 AM Page 257

can test both the source and destination fields in one statement.Table 5.19 shows
some examples of those fields.

Table 5.19 Generic Versions of Source and Destination Fields

Source Field Destination Field Generic Version

eth.src eth.dst eth.addr
fddi.src fddi.dst fddi.addr
ip.src ip.dst ip.addr
ipx.src.net ipx.dst.net ipx.net
ipx.src.node ipx.dst.node ipx.node
tcp.srcport tcp.dstport tcp.port
tr.src tr.dst tr.addr
udp.srcport udp.dstport udp.port

Care must be given when testing fields that occur more than once in a packet.
For example, if you have a packet capture that has a lot of HTTP traffic in it and
you want to use a display filter to hide the HTTP traffic, you might be tempted to
use the following display filter, where 80 is the TCP port for HTTP:

tcp.port != 80

Unfortunately, this doesn’t work, because this display filter is saying “show me all
the packets that have a tcp.port that does not equal 80.” Look at Figure 5.8; one
tcp.port (the destination port) is 80, while the other tcp.port (the source port) is
55,438.This packet passes the tcp.port != 80 filter, because it has one tcp.port that is
not equal to 80.

What you want to say is “show me all of the packets where none of the tcp.port
values are equal to 80.” Or equivalently,“show me the packets which do not have at
least one tcp.port equal to 80.” In the correct display filter language, this is:

not tcp.port == 80

It takes some getting used to, but once you understand what the display filter
language is doing, you will become more comfortable with it.

www.syngress.com

258 Chapter 5 • Filters

377_Eth_2e_ch05.qxd 11/14/06 10:19 AM Page 258

www.syngress.com

Filters • Chapter 5 259

Figure 5.8 TCP Ports for HTTP Traffic

Other Uses of Display Filters
Display filters are used in Wireshark for other reasons besides limiting which
packets are shown in Wireshark’s main window. Wireshark allows you to use
display filters any time you want to select packets. The View | Coloring Rules
facility for colorizing packet summaries lets you use display filters to select
which packets to colorize. The Statistics | IO Graphs report, as well as many
other reports, allow you to select packets with display filters. And the File | Open

Tools & Traps…

Continued

377_Eth_2e_ch05.qxd 11/14/06 10:19 AM Page 259

Hidden Fields
By looking closely at some protocols in the protocol dissection tree, you will notice
that some fields that should be present are not visible. For example, if you look at
the Ethernet portion of a protocol tree in Figure 5.9, you’ll find the Ethernet source
address (eth.src) and the Ethernet destination address (eth.dst), but you’ll never find a

www.syngress.com

260 Chapter 5 • Filters

dialog box allows you to supply a display filter for use when reading a capture
file from disk. This facility is unique among the various uses of display filters.
While reading a capture file, if a packet does not match the display filter, the
packet is skipped and is not loaded into Wireshark’s memory. In this way, the
read display filter acts like a capture filter, in that it limits the packets that are
loaded into Wireshark’s memory. But of course, it uses the display filter syntax,
not the capture filter syntax.

Figure 5.9 Ethernet Source and Destination Address Fields

377_Eth_2e_ch05.qxd 11/14/06 10:19 AM Page 260

field labeled “Source or Destination Address,” which is the description for the
eth.addr field.This is because eth.addr was placed in the protocol tree as a hidden field
to aid in writing display filters.You can use the hidden fields in display filters, but
you never see them in the protocol tree. Wireshark does this for convenience, and to
keep the protocol tree from having duplicate information. Unfortunately, there is no
option to make Wireshark display hidden fields.

www.syngress.com

Filters • Chapter 5 261

Undocumented Glossary Option
TShark has an undocumented command-line switch that produces a glossary of
protocol and field names. The -G switch causes the program to output the glos-
sary, then quit. Even the format of the output is undocumented, but you can
look at the epan/proto.c file in the Wireshark source code. Search for
proto_registrar_dump_fields, which is the function that documents the format.

/* Dumps the contents of the registration database

* to stdout. An indepedent

* program can take this output and format it into

* nice tables or HTML or

* whatever.

*

* There is one record per line. Each is either a

* protocol or a header

* field, differentiated by the first field.

* The fields are tab-delimited.

*

* Protocols

* ---------

* Field 1 = 'P'

* Field 2 = protocol name

* Field 3 = protocol abbreviation

*

* Header Fields

* -------------

Notes from the Underground…

Continued

377_Eth_2e_ch05.qxd 11/14/06 10:19 AM Page 261

www.syngress.com

262 Chapter 5 • Filters

* Field 1 = 'F'

* Field 2 = field name

* Field 3 = field abbreviation

* Field 4 = type (text representation of the ftenum type)

* Field 5 = parent protocol abbreviation

*/

You can see this glossary by running tshark -G. The -G option can also take
a parameter, which can cause tshark to produce a different type of glossary.
The -G protocols option makes tshark show the glossary only for protocols. The
-G fields option shows both protocol and non-protocol fields, just like the -G
option with no additional parameters. The tshark.c source file shows the var-
ious parameters of -G: fields, fields2, fields3, protocols, values, decodes,
defaultprefs, and currentprefs. You can also look at doc/Makefile.am (or
doc/Makefile.nmake for Windows) and doc/dfilter2pod.pl in the Wireshark
source distribution to see how the Wireshark build system uses the -G switch
to produce the wireshark-filter man page.

377_Eth_2e_ch05.qxd 11/14/06 10:19 AM Page 262

Summary
If you’re trying to pinpoint a network problem or understand how a particular net-
work operation works, the amount of extraneous traffic on the network can over-
whelm you. Filters are the way to manage this huge amount of information. Capture
filters allow you to limit the amount of packets that Wireshark receives from the OS.
Display filters allow you to limit the packets that are shown in Wireshark’s main
window, giving you the opportunity to concentrate on the problem at hand.

Wireshark’s capture filter syntax is the same as tcpdump’s filter syntax.This is
because both Wireshark and tcpdump use a library called libpcap, which is the library
that provides the filter engine.The filter engine provided by libpcap, while fast, does
not provide many protocol or field names in its language.To find data for fields
whose names are not provided in the filter language, you must extract bytes from the
packet by using offsets within specific protocols.

Wireshark’s display filter syntax is unique to Wireshark. It is part of Wireshark’s
protocol dissection engine, and provides names for almost all protocols and fields that
Wireshark can dissect. Display filters are slower at processing packets than capture fil-
ters, but the trade-off is ease of use.

To find the names of all of the available fields and protocols in the display filter
language, Wireshark provides some information in its GUI and manual pages.The
wireshark Web site has a reference, and this book provides a reference on the
included CD-ROM.

www.syngress.com

Filters • Chapter 5 263

377_Eth_2e_ch05.qxd 11/14/06 10:19 AM Page 263

www.syngress.com

264 Chapter 5 • Filters

Solutions Fast Track

Writing Capture Filters

� Capture filters operate quickly and are good for limiting the number of
packets captured by Wireshark.

� The capture filter language has keywords for comparing host names and
addresses, hardware addresses, ports, and protocols.

� Tcpdump can dissect many protocols and fields, but only a handful of those
protocols and fields are available in the tcpdump filter (or “capture filter”)
language.

� To test individual fields in a bit-field correctly, you must use the bitwise
AND operator: &.

Writing Display Filters

� Display filters are slower than capture filters, but allow you to test almost
any field or protocol that Wireshark knows how to dissect.

� Display filter fields have values of certain types, which means each field can
hold only certain values.

� The contains operator searches for text; the matches operator searches using
regular expressions.

� Take care when testing fields that occur multiple times in a packet; you
might be testing these fields may be the wrong way.

� The upper() and lower() display filter functions let you test strings, regardless
of case.

� Display filters are important to understand because they are used
throughout Wireshark for selecting packets (i.e., for viewing, colorization,
graphing, and reporting).

377_Eth_2e_ch05.qxd 11/14/06 10:19 AM Page 264

www.syngress.com

Filters • Chapter 5 265

Q: My capture filter or display filter that uses multiple ands and ors doesn’t work the
way I intended it to work.

A: The precedence of the operations may not be what you’re expecting it to be.
This means that the parts of your filter are being run in an order that you didn’t
expect. Use parentheses to group the parts properly.

Q: I’m using contains to look for a certain string that I know should be there, but
Wireshark can’t find it.

A: When you have the field that you’re interested in selected, look closely at the
hex dump; the encoding of the string may be Unicode or EBCDIC, which
won’t work with the contains operator. Only ASCII strings are currently compat-
ible with contains.

Q: I want to find all packets that do not have an IP address of 1.2.3.4. Why does
ip.addr != 1.2.3.4 show all packets instead of limiting the packets to what I
want?

A: The ip.addr field occurs more than once in a packet.Your display filter is running
correctly; it shows you all of the packets that have at least one ip.addr that is not
equal to 1.2.3.4.You want not ip.addr == 1.2.3.4.

Q: How can I search a packet for strings that can be in either uppercase or lower-
case?

A: You can use the display filter function upper() to convert a string entirely to
uppercase, and test against an uppercase version of the matching string. For
example, you can use upper(mount.dump.hostname) == “ANGEL.” Note that you
can use lower() in a similar way.

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

377_Eth_2e_ch05.qxd 11/14/06 10:19 AM Page 265

Q: My filter can be expressed very easily in both the capture filter and display filter
languages. Which should I choose?

A: If you have little traffic on your network, it’s easier to use only display filters.
However, if you have a lot of traffic on the network, especially extraneous traffic,
and you’re sure that your filter will provide all the packets that you need, then
use a capture filter. If you’re not sure where to find the clues that will help you
solve your problem, capture everything and use a display filter to look for
packets that might help you.

Q: Wireshark comes with a manual for its display filter language. Where’s the
manual for the capture filter language?

A: It’s provided by the tcpdump manual page. It’s also on-line at
www.tcpdump.org/tcpdump_man.html.

www.syngress.com

266 Chapter 5 • Filters

377_Eth_2e_ch05.qxd 11/14/06 10:19 AM Page 266

267

Wireless Sniffing
with Wireshark

Solutions in this chapter:

■ Techniques for Effective Wireless Sniffing

■ Understanding Wireless Card Operating
Modes

■ Configuring Linux for Wireless Sniffing

■ Configuring Windows for Wireless Sniffing

■ Using Wireless Protocol Dissectors

■ Useful Wireless Display Filters

■ Leveraging Wireshark Wireless Analysis
Features

Chapter 6

 Summary

 Solutions Fast Track

 Frequently Asked Questions

377_Eth_2e_ch06_web.qxd 11/20/06 11:01 AM Page 267

Introduction
Wireless networking is a complex field. With countless standards, protocols, and
implementations, it is not uncommon for administrators to encounter configuration
issues that require sophisticated troubleshooting and analysis mechanisms.

Fortunately, Wireshark has sophisticated wireless protocol analysis support to
help administrators troubleshoot wireless networks. With the appropriate driver sup-
port, Wireshark can capture traffic “from the air” and decode it into a format that
helps administrators track down issues that are causing poor performance, intermit-
tent connectivity, and other common problems.

Wireshark is also a powerful wireless security analysis tool. Using Wireshark’s
display filtering and protocol decoders, you can easily sift through large amounts of
wireless traffic to identify security vulnerabilities in the wireless network, including
weak encryption or authentication mechanisms, and information disclosure risks.You
can also perform intrusion detection analysis to identify common attacks against
wireless networks while performing signal strength analysis to identify the location
of a station or access point (AP).

This chapter introduces the unique challenges and recommendations for traffic
s n i f fing on wireless netwo r k s . We examine the different operating modes support e d
by wireless card s , and config u re Linux and Wi n d ows systems to support wire l e s s
t r a f fic capture and analysis using Wi reshark and third - p a rty tools. Once you have mas-
t e red the task of capturing wireless traffic, you will learn how to leverage Wi re s h a r k ’s
p owerful wireless analysis feature s , and learn how to apply your new skills.

All of the files used in this chapter’s exe rcises can be found in the /captures dire c-
t o ry on the CD-RO M , a c c o m a pying this book.A wireless card is re q u i re d .

Challenges of Sniffing Wireless
Traditional network sniffing on an Ethernet network is fairly easy to set up. In a s h a r e d
e n v i r o n m e n t, an analysis workstation running Wi reshark starts a new packet capture,
which config u res the card in promiscuous mode and waits until the desired amount of
t r a f fic has been capture d . In a s w i t ched environment, you need to config u re a span port
that mirro rs the traffic sent to other stations, b e f o re initiating the packet capture.

In both of these cases, it is easy to initiate a packet capture and start collecting
traffic for analysis. When you switch to wireless analysis, however, the process of
traffic sniffing becomes more complicated and requires additional decisions up front
to best support the analysis you want to perform.

www.syngress.com

268 Chapter 6 • Wireless Sniffing with Wireshark

377_Eth_2e_ch06_web.qxd 11/20/06 11:01 AM Page 268

Selecting a Static Channel
Where a wired network offers a single medium mechanism for packet capture (i.e.,
the wire), wireless networks can operate on multiple wireless channels using different
frequencies in the same location.A table of wireless channel nu m b e rs and the cor-
responding frequencies is listed in Ta ble 6.1. E ven if two wireless users are sitting
s i d e - by - s i d e, their computers may be operating on different wireless channels.

Table 6.1 Wireless Frequencies and Channels

Frequency Channel Number Frequency Channel Number

2.412 GHz 1 2.484 GHz 14
2.417 GHz 2 5.180 GHz 36
2.422 GHz 3 5.200 GHz 40
2.427 GHz 4 5.220 GHz 44
2.432 GHz 5 5.240 GHz 48
2.437 GHz 6 5.260 GHz 52
2.442 GHz 7 5.280 GHz 56
2.447 GHz 8 5.300 GHz 60
2.452 GHz 9 5.320 GHz 64
2.457 GHz 10 5.745 GHz 149
2.462 GHz 11 5.765 GHz 153
2.467 GHz 12 5.785 GHz 157
2.472 GHz 13 5.805 GHz 161

If you want to analyze the traffic for a specific wireless AP or station, you must
identify the channel or frequency used by the target device, and configure your
wireless card to use the same channel before initiating your packet capture.This is
because wireless cards can only operate on a single frequency at any given time. If
you wanted to capture traffic from multiple channels simultaneously, you would
need an additional wireless card for every channel you wanted to monitor.

Using Channel Hopping
If you want to capture traffic for a specific station, h ow do you locate the channel
number that it is operating on? One technique is to use channel hopping to rapidly scan
t h rough all ava i l a ble wireless channels until the appro p riate channel number is identi-
fie d .With channel hopping, the wireless card is still only operating on a single fre-
quency at any given time, but is rapidly switching between different channels, t h u s

www.syngress.com

Wireless Sniffing with Wireshark • Chapter 6 269

377_Eth_2e_ch06_web.qxd 11/20/06 11:01 AM Page 269

a l l owing Wi reshark to capture any traffic that is present on the current channel.
Fo rt u n a t e l y,Wi reshark operates independently of the current channel selection; t h e re-
f o re, it is not necessary to stop and re s t a rt the packet capture before each channel hop.
Change to the desired channel while Wi reshark is running and Wi reshark will con-
t i nue to collect traffic.

Unfortunately, you cannot rely on channel hopping for all of your wireless traffic
sniffing needs. Channel hopping will cause you to lose traffic, because you are
rapidly switching channels. If your wireless card is configured to operate on channel
11 and you hop to another channel, you will not be able to “hear” any traffic that is
occurring on channel 11 until you return as part of the channel-hopping pattern.As
a result, channel hopping is not a useful technique for analyzing traffic for a specific
AP or station, but it can be useful to identify the channel the network is operating
on, which can be used to set a static channel assignment.

Range in Wireless Networks
Another unique characteristic of Wireshark is the range between the capture station
and the transmitting device(s). When capturing wireless traffic, the range between
the capture station and the transmitter is significant, and must be accounted for to
provide the most reliable traffic collection.

If the capture station is too far away from one or more transmitters, it is unable
to “hear” the wireless traffic. If the capture station is too close to another transmit-
ting station, the radio interface may become overwhelmed with too much signal,
resulting in corrupted traffic. Placing the station near the transmitter no closer than 3
feet is the most desirable location for achieving optimal traffic capture.You can
achieve satisfactory results for a wireless packet capture from further away, but you
will lose traffic from the capture if there is a significant distance between the capture
station and the transmitter(s).

Interference and Collisions
Another challenge of sniffing wireless networks is the risk of interference and lost
p a c ke t s . U n l i ke an Ethernet network that can transmit and monitor the network simu l-
t a n e o u s l y, w i reless cards can only re c e ive or transmit asynchro n o u s l y.As a re s u l t , w i re l e s s
n e t works must take special precautions to prevent multiple stations from transmitting at
the same time.While these collision-avoidance mechanisms work we l l , it is still possibl e
to experience collisions between multiple transmitters on the same channel, or to
e x p e rience collisions with wireless local area networks (LANs) and other devices using
the same frequency (e. g . , c o rdless phones, b a by monitors , m i c rowave ove n s , and so on).

When two devices transmit simultaneously within range of the sniffing station, t h e
transmission becomes corrupted and is rejected by the re c e iver as an invalid packe t .

www.syngress.com

270 Chapter 6 • Wireless Sniffing with Wireshark

377_Eth_2e_ch06_web.qxd 11/20/06 11:01 AM Page 270

After waiting random back-off interva l s , the two stations repeat their transmission,
indicating they are attempting to transmit the same information again.This is norm a l
a c t ivity in a wireless LAN, but presents a challenge to the sniffing station.

When capturing traffic on a wireless network, there is no guarantee that you
captured 100 percent of the traffic. Some traffic may have become corrupted in
transit and rejected by the capture station wireless driver as noise. In other cases, your
capture station may be positioned such that it receives valid frames before they
become corrupt en-route to the destination host.This forces the transmitting station
to re-transmit the corrupted packets, which causes the capture station to have mul-
tiple copies of the same packet in the capture.

Recommendations for Sniffing Wireless
Now that you understand some of the limitations and challenges in sniffing wireless
networks, you can apply some recommendations to achieve the best fidelity in wire-
less packet captures:

■ Locate the Capture Station Near the Source When initiating a
packet capture, locate the capture station close to the source of the wireless
activity you are interested in (i.e., an AP or a wireless station).

■ Disable Other Nearby Transmitters If you are using an external wire-
less card (such as a PC-Card) for sniffing traffic, and you have a built-in
card in your laptop, it is common to experience lost traffic on the sniffing
card due to interference from the built-in card.To eliminate this factor and
achieve a more accurate packet capture, disable any built-in wireless trans-
mitters on the capture station during the packet capture, including Institute
of Electrical & Electronics Engineers (IEEE) 802.11 interfaces and
Bluetooth devices.

■ Reduce CPU Utilization While Capturing If your host experiences
excessive CPU utilization during a packet capture, you may experience
packet loss in the wireless capture (e.g., it is not a good idea to burn a
DVD while capturing wireless traffic).To prevent packet loss, try to reduce
your CPU utilization when capturing traffic with any sniffer software.

■ Match Channel Selection If you take a comprehensive packet capture of
a wireless network, make sure your wireless card is sniffing on the same
channel as the target network. If you are channel hopping during a packet
capture, you will inevitably lose traffic from your target network. Only use
channel hopping to discover the available networks; focus your capture on a
single channel. Note that while you may capture some traffic from a nearby

www.syngress.com

Wireless Sniffing with Wireshark • Chapter 6 271

377_Eth_2e_ch06_web.qxd 11/20/06 11:01 AM Page 271

channel (e.g., you see traffic from channels 1 and 6 when listening on
channel 3), the captured traffic will be sporadic and incomplete.

■ Match Modulation Type With the progression of different IEEE 802.11
Physical layer standards, different modulation mechanisms have been devel-
oped to accommodate faster data rates. Ensure the supported modulation
mechanism for your wireless card matches the target network you are tar-
geting. For example, an IEEE 802.11b wireless card sniffing an IEEE
802.11g network will capture some backward-compatible modulated
traffic, but may miss other traffic modulated for an 802.11g network. If in
doubt, ensure the card you are using for traffic capture supports all the stan-
dard modulation mechanisms. Currently, this includes an IEEE 802.11a/b/g
card, but will also include IEEE 802.11n cards with MIMO (multiple
input, multiple output) technology in the future.

Understanding Wireless Card Modes
Before we start wireless sniffing using Wireshark, it is helpful to understand the dif-
ferent operating modes supported by wireless cards. Most wireless users only use
their wireless cards as a station to an AP. In managed mode, the wireless card and
driver software rely on a local AP in managed mode to provide connectivity to the
wireless network.

Another common mode for wireless cards is ad-hoc mode (or Independent Basic
Service Set [IBSS] mode.Two wireless stations that want to communicate with each
other directly can do so by sharing the responsibilities of an AP for a limited subset
of wireless LAN services.Ad-hoc mode is used for short-term connectivity between
stations, when an AP is not available to provide connectivity.

Many wireless cards also support master mode, where the wireless card provides
the services of an AP when paired with the appropriate software. Managed mode
allows you to configure your laptop or desktop system as an AP for providing con-
nectivity to other wireless stations.

F i n a l l y, w i reless cards support monitor mode f u n c t i o n a l i t y.When config u red in mon-
itor mode, the wireless card stops transmitting data and sniffs the currently config u re d
c h a n n e l , re p o rting the contents of any observed packets to the host operating system.
This is the most useful mode of operation for analysis when using Wi re s h a r k , b e c a u s e
a wireless card config u red in monitor mode re p o rts the entire contents of wire l e s s
p a c ke t s , including header information and the encrypted or unencrypted data con-
t e n t s . When in monitor mode, the wireless card and driver re p o rts the wireless frames
“ a s - i s ,” giving the most accurate view of the wireless activity for the selected channel.

www.syngress.com

272 Chapter 6 • Wireless Sniffing with Wireshark

377_Eth_2e_ch06_web.qxd 11/20/06 11:01 AM Page 272

In order to analyze a wireless network effectively using Wi re s h a r k , you need
to configure your wireless card to operate in monitor mode on the appro p ri a t e
c h a n n e l , and then start a packet capture. U n f o rt u n a t e l y, this is easier said than
d o n e. Because the majority of wireless card users use their wireless cards in man-
aged or ad-hoc mode, w i reless driver deve l o p e rs may not include support for
monitor mode access. In the case of Linu x , m a ny drive rs support monitor mode.
Those Linux drive rs that do not natively support monitor mode are often
“ p a t c h e d ” by other interested users or deve l o p e rs in order to access monitor
mode functionality. H oweve r, in the case of Wi n d ow s , d rive rs are closed-sourc e,
which prevents anyone except the driver developer from supplying monitor mode
f u n c t i o n a l i t y. H oweve r, some commercial options exist for Wi n d ows that allow
you to leverage the monitor mode support in your wireless card with custom
d river softwa re.

Next, we examine the steps necessary to configure your wireless card to support
monitor mode access on Linux and Windows systems.

Getting Support for
Monitor Mode - Linux
In order to begin sniffing wireless traffic with Wi re s h a r k , your wireless card must be
in monitor mode. Wi reshark does not do this automatically; you have to manu a l l y
c o n fig u re your wireless card before starting your packet capture. H oweve r, the com-
mands you need in order to config u re the card in monitor mode can differ based
on the type of wireless card and driver that you are using.This section discusses
h ow to complete this step based on the most common wireless card and drive r
combination for Linu x .

TIP

Determining the type of wireless card you have isn’t always easy. While
there are only a handful of manufacturers that make the wireless
chipset hardware, multiple vendors re-brand the cards, thus making it
difficult to identify what the actual chipset is. One resource for identi-
fying the chipset from the card manufacturer is available at
h t t p : / / l i n u x - w l e s s . p a s s y s . n l. If your specific card isn’t listed here you
can search using Google with the card name and keyword “chipset”
(e.g., WPC55AG chipset).

www.syngress.com

Wireless Sniffing with Wireshark • Chapter 6 273

377_Eth_2e_ch06_web.qxd 11/20/06 11:01 AM Page 273

Linux Wireless Extensions Compatible Drivers
Most wireless drivers for Linux systems use the Linux Wireless Extensions interface,
providing a consistent configuration interface for manipulating the wireless card.
First, let’s identify the wireless driver interface name by running the wireless card
configuration utility iwconfig with no parameters:
$ iwconfig

eth0 no wireless extensions.

lo no wireless extensions.

eth1 IEEE 802.11b ESSID:”Beacon Wi-Fi Network”

Mode:Managed Frequency:2.462 GHz Access Point:
00:02:2D:8B:70:2E

Bit Rate:11 Mb/s Tx-Power=20 dBm Sensitivity=8/0

Retry limit:7 RTS thr:off Fragment thr:off

Power Management:off

Link Quality=50/100 Signal level=-71 dBm Noise level=-86 dBm

Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0

Tx excessive retries:0 Invalid misc:286 Missed beacon:5

NOTE

It is recommended that users take advantage of the Linux 2.6 kernel
whenever possible. Most Linux distributions install their wireless tools
packages for i w c o n fig and i w p r i v by default; you will need to install
these tools manually if they are not included with your default distribu-
tion. Use the package management utilities that come with your Linux
distribution to search for packages with the name “wireless-tools” to
identify installation options. Information specific to older Debian, SuSE,
RedHat, and Mandrake distributions is available at
w w w. h p l . h p . c o m / p e r s o n a l / J e a n _ To u r r i l h e s / L i n u x / D I S T R I B U T I O N S . t x t .

F rom this output, we determine that interfaces e t h 0 and l o do not support Linu x
Wi reless Extensions; h oweve r, i n t e r face e t h 1 does support wireless extensions. F ro m
the output, we can see that the card is currently in managed mode and is associated
with an IEEE 802.11b network with the Service Set Identifier (SSID) “Beacon Wi - F i
N e t wo r k ” at 2.462 GHz (channel 11).

www.syngress.com

274 Chapter 6 • Wireless Sniffing with Wireshark

377_Eth_2e_ch06_web.qxd 11/20/06 11:01 AM Page 274

Since we want to use this wireless interface for wireless traffic sniffing, we need
to place the card in monitor mode. In order to make changes to the wireless card
configuration, we need to be the root user. Become the root user by running the su
command and supplying the root user password:
$ su

Password: (enter root password)
#

After becoming the root user, you can use the iwconfig utility to configure the
card for monitor mode, by specifying the interface name followed by mode monitor:
iwconfig eth1 mode monitor

After placing the card in monitor mode, run the iwconfig utility with the inter-
face name as the only command-line argument, to verify the configuration change:
iwconfig eth1

eth1 unassociated ESSID:off/any

Mode:Monitor Channel=0 Access Point: 00:00:00:00:00:00

Bit Rate:0 kb/s Tx-Power=20 dBm Sensitivity=8/0

Retry limit:7 RTS thr:off Fragment thr:off

Encryption key:off

Power Management:off

Link Quality:0 Signal level:0 Noise level:0

Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0

Tx excessive retries:0 Invalid misc:7007 Missed beacon:0

In this output, we see that the mode has changed from managed to monitor.At
this point, the wireless card is operating in monitor mode. Next, we need to make
sure the interface is in the “up” state with the ifconfig utility, again using the interface
name as the only command-line parameter:
eth1 Link encap:UNSPEC HWaddr 00-13-CE-55-B5-EC-BC-A9-00-00-00-00-00-
00-00-00

BROADCAST MULTICAST MTU:1500 Metric:1

RX packets:18176 errors:0 dropped:18462 overruns:0 frame:0

TX packets:123 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:1000

RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)

Interrupt:11 Base address:0x4000 Memory:a8401000-a8401fff

www.syngress.com

Wireless Sniffing with Wireshark • Chapter 6 275

377_Eth_2e_ch06_web.qxd 11/20/06 11:01 AM Page 275

The first indented line of text following the interface name and hardware
address (HWaddr) reports the operating flags for the interface. In this example, the
interface is configured to accept broadcast and multicast traffic.The interface is not
currently in the up state, due to the lack of the UP keyword. Modify the interface
configuration by placing the interface in the up state, then examine the interface
configuration properties as shown below:
eth1 Link encap:UNSPEC HWaddr 00-13-CE-55-B5-EC-3C-4D-00-00-00-00-00-
00-00-00

UP BROADCAST MULTICAST MTU:1500 Metric:1

RX packets:34604 errors:0 dropped:34583 overruns:0 frame:0

TX packets:232 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:1000

RX bytes:18150 (17.7 Kb) TX bytes:0 (0.0 b)

Interrupt:11 Base address:0x4000 Memory:a8401000-a8401fff

In this output we see that the interface is now in the up state and is ready to
begin sniffing wireless traffic.

NOTE

Unlike the iwconfig tool, ifconfig does not understand the properties of
an interface that is in monitor mode. When associated to a wireless net-
work, the interface appears as a standard Ethernet interface; however,
when in monitor mode, it appears as an unknown or unspecified link
encapsulation mechanism. As a result, ifconfig displays a default of 16
bytes to represent the Media Access Control (MAC) address of the
unspecified interface encapsulation (denoted with the string UNSPEC). In
what appears to be a bug in the ifconfig tool, 8 bytes are printed to rep-
resent the MAC address, followed by 8 NULL bytes. The first 6 bytes rep-
resent the actual MAC address of the wireless card, followed by 2 bytes
of uninitialized memory.

MADWIFI 0.9.1 Driver Configuration
The Multiband Atheros Driver for WiFi (MADWIFI) supports wireless cards based
on the popular Atheros chipsets supporting IEEE 802.11a, IEEE 802.11b, and IEEE

www.syngress.com

276 Chapter 6 • Wireless Sniffing with Wireshark

377_Eth_2e_ch06_web.qxd 11/20/06 11:01 AM Page 276

802.11g wireless networks. While this driver supports monitor mode access, it does
not support the configuration of monitor mode access using the iwconfig utility.
Instead, the MADWIFI developers include a custom tool for configuring wireless
card properties called the wlanconfig utility.

The MADWIFI drivers are unique in that they support multiple interfaces on
the same wireless card known as Virtual Access Points (VAPs). Each VAP appears as
its own interface name with a single default VAP configured in managed mode. In
order to create an interface in monitor mode, however, we need to remove all VAPs
on the local system with the wlanconfig utility. First, examine the list of wireless
devices on the system using the iwconfig utility with no command-line arguments:
iwconfig

wifi0 no wireless extensions.

ath0 IEEE 802.11b ESSID:””

Mode:Managed Channel:0 Access Point: 00:00:00:00:00:00

Bit Rate:0 kb/s Tx-Power:0 dBm Sensitivity=0/3

Retry:off RTS thr:off Fragment thr:off

Encryption key:off

Power Management:off

Link Quality=0/94 Signal level=-95 dBm Noise level=-95 dBm

Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0

Tx excessive retries:0 Invalid misc:0 Missed beacon:0

NOTE

The MADWIFI drivers use a “master” interface with the naming conven-
tion wifiX, where X is 0 for the first wireless card, 1 for the second wire-
less card, and so on. The master interface is used to create one or more
virtual interfaces with the wlanconfig utility. In most cases, you will only
refer to the master interface when creating or destroying virtual inter-
faces. You will use the virtual interface for all other tasks, including
sniffing wireless traffic with Wireshark, or accessing a wireless network
as a station.

From this output we can see two interfaces; wifi0 which does not support wire-
less extensions, and ath0 which does.The ath0 interface is named for the Atheros
w i reless chipset (a t h) which is created by default in managed mode. In order to

www.syngress.com

Wireless Sniffing with Wireshark • Chapter 6 277

377_Eth_2e_ch06_web.qxd 11/20/06 11:01 AM Page 277

c o nfigure an interface in monitor mode, we must delete or “destroy” this interface
using the wlanconfig utility:
wlanconfig ath0 destroy

iwconfig

wifi0 no wireless extensions.

From the output of the iwconfig utility, we see that the ath0 interface is no longer
present. Next, we re-create the ath0 interface with the wlanconfig utility, this time
indicating that the interface should be created in monitor mode, referencing the
wifi0 interface as the master interface:
wlanconfig ath0 create wlandev wifi0 wlanmode monitor

ath0

iwconfig

wifi0 no wireless extensions.

ath0 IEEE 802.11b ESSID:””

Mode:Monitor Channel:0 Access Point: 00:00:00:00:00:00

Bit Rate:0 kb/s Tx-Power:0 dBm Sensitivity=0/3

Retry:off RTS thr:off Fragment thr:off

Encryption key:off

Power Management:off

Link Quality=0/94 Signal level=-95 dBm Noise level=-95 dBm

Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0

Tx excessive retries:0 Invalid misc:0 Missed beacon:0

Next, we must ensure the ath0 interface is in the up state using the ifconfig utility,
as shown below:
ifconfig ath0 up

ifconfig ath0

ath0 Link encap:UNSPEC HWaddr 00-20-A6-4F-01-40-BC-9D-00-00-00-00-00-
00-00-00

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

RX packets:0 errors:0 dropped:0 overruns:0 frame:0

TX packets:0 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:0

RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)

From the output of the ifconfig utility we see that the interface is now in the up
state and is ready to start sniffing wireless traffic.

www.syngress.com

278 Chapter 6 • Wireless Sniffing with Wireshark

377_Eth_2e_ch06_web.qxd 11/20/06 11:01 AM Page 278

Capturing Wireless Traffic - Linux
Once your wireless card in Linux has been placed in monitor mode, you are ready
to start capturing wireless traffic. Recall that wireless cards can only capture traffic
on a single channel at any given time. If you know the wireless channel you want to
capture traffic on, configure your wireless card to listen on that channel using the
iwconfig utility:
iwconfig ath0 channel 1

iwconfig ath0

Replace ath0 with the name of your wireless interface, and the number 1 with
the channel number you want to capture traffic on. As seen from the output of the
iwconfig command, the card is currently configured to listen on 2.412 GHz (channel
1).

If you don’t know the target channel number you want to use to capture traffic,
you can configure your wireless card to perform channel hopping. Unfortunately,
Linux doesn’t come with a built-in tool for channel hopping; however, you can con-
figure channel hopping manually with a short shell script. Enter the text found in
Code 6.1 into a short shell script using your favorite text-editor. Line numbers have
been added for clarity; do not enter the line numbers when creating this script.

Code 6.1 Channel Hopping Shell Script

1. #!/bin/bash

2. IFACE=ath0

3. IEEE80211bg="1 2 3 4 5 6 7 8 9 10 11"

4. IEEE80211bg_intl="$IEEE80211b 12 13 14"

5. IEEE80211a="36 40 44 48 52 56 60 64 149 153 157 161"

6. IEEE80211bga="$IEEE80211bg $IEEE80211a"

7. IEEE80211bga_intl="$IEEE80211bg_intl $IEEE80211a"

8.

9. while true ; do

10. for CHAN in $IEEE80211bg ; do

11. echo “Switching to channel $CHAN”

12. iwconfig $IFACE $CHAN

13. sleep 1

14. done

15. done

www.syngress.com

Wireless Sniffing with Wireshark • Chapter 6 279

377_Eth_2e_ch06_web.qxd 11/20/06 11:01 AM Page 279

After saving the shell script, change the permissions on the file to make it an
executable program:
chmod 755 chanhop.sh

Change the interface name ath0 on line 2 to reflect the name of your wireless
interface.Also, change the channel designator $IEEE802.11bg on line 10 to reflect
the channels that are supported by your wireless card.To start the channel-hopping
script, run the shell script from the directory where it was created:
./chanhop.sh

Switching to channel 1

Switching to channel 2

When you want to stop the channel-hopping script, press Ctrl+C.

NOTE

If creating shell scripts for channel hopping isn’t appealing, you can
download a more sophisticated copy of this script from the Wireshark
web site wiki at http://wiki.wireshark.org/CaptureSetup/WLAN.

Starting a Packet Capture - Linux
Whether you have specified a single channel for capturing wireless traffic or are cur-
rently channel hopping, the process for capturing wireless traffic on Linux remains
the same. Start Wireshark by running the wireshark executable with no command-
line arguments as the root user, and initiate a new packet capture by pressing
Capture | Options.This opens the “Wireshark Capture” options dialog box (see
Figure 6.1).

Choose the wireless interface that has been placed in monitor mode by selecting
the drop-down box labeled “Interface:” and then specify the desired capture options.
Next, click Start to initiate the packet capture.

At this point, you’ve configured your system to capture wireless traffic in mon-
itor mode.The next step is to utilize the information contained in the packets you
are capturing. Fortunately, Wireshark has sophisticated analysis mechanisms that can
be used for wireless traffic analysis. Let’s examine the steps for configuring monitor
mode support on Windows systems.

www.syngress.com

280 Chapter 6 • Wireless Sniffing with Wireshark

377_Eth_2e_ch06_web.qxd 11/20/06 11:01 AM Page 280

Getting Support for
Monitor Mode - Windows
Unfortunately, Windows drivers for wireless cards do not normally include support
for monitor mode access, instead restricting users to operating the card in managed
mode. Fortunately, through a combination of commercial and open-source software,
we can overcome this limitation to use Windows hosts for wireless traffic analysis
with Wireshark.

Introducing AirPcap
In order to overcome the limitations with most wireless drivers for Windows sys-
tems, the engineers at CACE Technologies have introduced a commercial product
called AirPcap.A combination of a USB IEEE 802.11b/g adapter, supporting driver
software, and a client configuration utility,AirPcap provides a simple mechanism to
capture wireless traffic in monitor mode on Windows workstations at a reasonable
cost.AirPcap is available at www.cacetech.com.

After obtaining the AirPcap CD and USB wireless adapter, follow the installation
instructions detailed in the AirPcap User’s Guide. Ensure you have installed the
appropriate version (WinPcap 4.0 beta 1) of WinPcap to support the AirPcap.

www.syngress.com

Wireless Sniffing with Wireshark • Chapter 6 281

Figure 6.1 Wireshark Capture Options Dialog Box - Linux

377_Eth_2e_ch06_web.qxd 11/20/06 11:01 AM Page 281

NOTE

Unfortunately, at the time of this writing, there are no free software
solutions that allow Windows users to capture wireless traffic reliably,
and without violating other software license restrictions. If you need to
perform wireless traffic analysis with a Windows workstation, Wireshark
is an effective tool; however, you would have to purchase a driver and
hardware combination that supports monitor mode.

If you want to avoid any costs associated with drivers for monitor
mode packet capture, you are encouraged to use a Linux option that
bundles monitor mode support with the free wireless drivers. Using a
bootable Linux CD such as Backtrack from www.remote-exploit.org, you
can create an easily accessible Linux environment by booting from the
Linux CD and plugging in a supported wireless card.

TIP

Another option for Windows users is to use the licensed AiroPeek NX
software to collect packet captures. Since Wireshark can read AiroPeek
NX’s .apc files, you can use Wireshark to augment the features you get
from AiroPeek NX. Unfortunately, the demo version of AiroPeek NX does
not allow you to save packet captures.

Specifying the Capture Channel
After installing the AirPcap drivers, start the AirPcap control panel tool by navigating
to Start | All Programs | airpcap | Airpcap Control Panel (see Figure 6.2).
Using this utility, you can manipulate the following settings for the wireless capture,
as described in Table 6.2.

www.syngress.com

282 Chapter 6 • Wireless Sniffing with Wireshark

377_Eth_2e_ch06_web.qxd 11/20/06 11:01 AM Page 282

Table 6.2 AirPcap Control Panel Settings

Parameter Options Description

Blink LED On, Off Blinks the LED on the Airpcap USB adapter;
useful when using multiple AirPcap dongles
on the same host.

Channel 1–14 Specifies the channel that Wireshark will cap-
ture traffic on with the specified AirPcap
adapter. Because the AirPcap adapter is listen-
only, it allows users to capture on all sup-
ported IEEE 802.11b/g channels, even those
that are not permitted for use by the Federal
Communications Commission (FCC). At the
time of this writing, AirPcap does not include
a tool to perform channel hopping during a
packet capture.

Include 802.11 On, Off The last 4 bytes of every packet on a wireless
FCS in Frames network is known as the Frame Check

Sequence (FCS), which is a 32-bit checksum
that is used to identify whether a packet was
accidentally corrupted in transmission. This
information is often stripped from monitor

www.syngress.com

Wireless Sniffing with Wireshark • Chapter 6 283

Figure 6.2 AirPcap Control Panel

Continued

377_Eth_2e_ch06_web.qxd 11/20/06 11:01 AM Page 283

Table 6.2 continued AirPcap Control Panel Settings

Parameter Options Description

mode packet captures on Linux systems, but
can be useful to validate the integrity of a
packet if present.
The recommended value is to set this option
to “On” to record the FCS information in
each packet.

Capture Type 802.11 Only, Each libpcap packet capture file or
802.11 interface has a capture link type assigned
+ Radio to it that tells Wireshark and other sniffer

tools what to expect from the sniffer. The
AirPcap Control Panel allows you to specify
802.11 Only or 802.11 + Radio as the link
type. The 802.11 Only link type will produce a
packet capture where each packet begins
with the IEEE 802.11 header contents. The
802.11 + Radio link type will prepend a
header before the start of the IEEE 802.11
header, known as the Radiotap header. This
header allows the capture to store additional
information from the driver for each packet
that is not part of the 802.11 header infor-
mation (e.g., signal strength, signal quality,
modulation type, channel type [802.11b,
802.11g], the data rate, channel number and
other useful information).
The recommended value is to set this option
to 802.11 + Radio to record the additional
information with each packet.

FCS Filter All Packets, Regardless of whether the Frame Check
Valid Packets, Sequence (FCS) is recorded for each frame in
Wrong FCS the packet capture, the AirPcap adapter will
Packets check the FCS of each frame to determine if it

is valid or corrupted when received. AirPcap
allows users to specify if they want to receive
both valid and invalid packets (All Packets),
only valid packets (correct FCS), or invalid
packets (wrong FCS).
For most uses of AirPcap, it is recommended
you select “Valid Packets,” since any packets

www.syngress.com

284 Chapter 6 • Wireless Sniffing with Wireshark

Continued

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 284

Table 6.2 continued AirPcap Control Panel Settings

Parameter Options Description

that are invalid were likely not properly
received by the station they were directed to.
However, it may be useful to capture packets
with a wrong FCS to determine how many
packets are being corrupted in transit.

WEP Settings Multiple The AirPcap Control Panel allows users to
specify static Wired Equivalent Privacy (WEP)
keys to use for decrypting traffic with
Wireshark. This option is also available from
the Wireshark GUI, and is examined later in
this chapter. After selecting the desired
options, press the OK button to activate and
save your preferences.

Capturing Wireless Traffic - Windows
After specifying your capture preferences in the AirPcap Control Panel, start
Wireshark and initiate a new packet capture by navigating to Capture | Options.
This opens the Wireshark capture options dialog box (see Figure 6.3).

www.syngress.com

Wireless Sniffing with Wireshark • Chapter 6 285

Figure 6.3 Wireshark Capture Options - Windows

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 285

Choose the AirPcap interface by selecting the drop-down box labeled
“Interface:,” and then specify the desired capture options. Next, click Start to ini-
tiate the packet capture. Stop the capture after you have collected the desired
amount of traffic by clicking on the Stop button, or go to Capture | Stop in the
capture dialog box.

At this point, you are capturing wireless traffic in monitor mode on Windows.
Next comes the challenging part: extracting useful information from the packet cap-
ture contents.The following section examines the many Wireshark features that
make this analysis easier.

Analyzing Wireless Traffic
Regardless of whether you are reading a packet capture from a stored file or from a
live interface on a Windows or Linux host, Wireshark’s analysis features are nearly
identical. Wireshark offers many useful features for analyzing wireless traffic,
including detailed protocol dissectors, powerful display filters, customizable display
properties, and the ability to decrypt wireless traffic. Each of these features are exam-
ined in detail.

Navigating the Packet Details Window
One of the most impressive Wireshark features is the ability to dissect the contents
of traffic and present it in a collapsible “tree-like” manner. For wireless traffic,
Wireshark presents the Frame Dissector window starting with frame statistics, and
then the 802.11 MAC layer contents. If additional data follows for the 802.11
header, Wireshark logically divides each of the protocols that follow into a new
window.

Frame Statistics
The first group in the Packet Details window detailed summary information about
the currently selected frame.The Frame window doesn’t display any of the selected
frame’s contents, but rather general information contained in the packet capture for
the selected frame (see Table 6.3).

www.syngress.com

286 Chapter 6 • Wireless Sniffing with Wireshark

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 286

Table 6.3 Frame Statistical Detail

Display Filter
Field Name Description Reference Name

Arrival Time The “Arrival Time” reflects the timestamp frame.time
recorded by the station that is capturing
traffic when the packet arrived. The
accuracy of this field is only as accurate
as the time on the receiving station.
Note that packet captures from Windows
systems are only represented with
accuracy in seconds; no support for
representing fractional seconds is available.

Time Delta The “Time Delta” field identifies the frame.time_delta
from Previous elapsed time between the selected frame
Packet and the frame immediately before this

frame. This field is updated when a display
filter is applied to reflect the time from
the previously displayed frame. This feature
can be very useful when analyzing traffic
that is transmitted with a consistent time
interval (such as beacon frames) to identify
interference causing dropped frames.

Time Since The “Time Since Reference” or “First Frame” frame.time_relative
Reference or field indicates the amount of time that has
First Frame elapsed since the start of the packet

capture for the currently selected frame.
This field is not updated when a display
filter is applied.

Frame The “Frame Number” field is a sequential frame.number
Number counter starting with 1, uniquely

representing the current frame. This field
is useful for applying a display filter where
one or more frames need to be selected
or excluded from the display.

Packet Length The “Packet Length” reflects the actual frame.pkt_len
length of the entire packet, regardless of
how much of the packet was captured.
By default, the entire frame is captured
with Wireshark and Airodump.

www.syngress.com

Wireless Sniffing with Wireshark • Chapter 6 287

Continued

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 287

Table 6.3 continued Frame Statistical Detail

Display Filter
Field Name Description Reference Name

Capture The “Capture Length” reflects how much frame.cap_len
Length data was captured based on the specified

number of bytes the user wanted to
capture for each frame (known as the
“snap length”). By default, Wireshark
uses a snap length of 65,535 bytes to
capture the entire frame contents. When
an alternative snap length is specified,
the capture length can be smaller if the
frame size is smaller than the snap length.

Protocols in The “Protocols in Frame” field specifies all frame.protocols
Frame the protocols that are present, starting

with the IEEE 802.11 header.

TIP

Maintaining accurate host time is important for many kinds of protocol
analysis, and especially important if you want to correlate events across
multiple systems. Consider using the Network Time Protocol (NTP) on
you Linux or Windows clients to ensure your local system time is always
accurate.

IEEE 802.11 Header
Following the frame statistics data, Wireshark starts to dissect the protocol informa-
tion for the selected packet.The IEEE 802.11 header is fairly complex; unlike a stan-
dard Ethernet header, it is between 24 and 30 bytes (compared to the standard
Ethernet header of 14 bytes), has three or four addresses (compared to Ethernet’s
two addresses), and has many more fields to specify various pieces of information
pertinent to wireless networks. What’s more, wireless frames can have additional pro-
tocols appended to the end of the IEEE 802.11 header, including encryption
options, Quality of Service (QoS) options, and embedded protocol identifiers (IEEE
802.2 header), all before actually getting any data to represent the upper-layer
Network layer protocols.

www.syngress.com

288 Chapter 6 • Wireless Sniffing with Wireshark

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 288

Fortunately, Wireshark makes this analysis simple by intelligently representing
this data in an easy-to-navigate form. We’ll use many of these data fields when we
start using display filters on wireless traffic and analyzing real-life packet captures, so
it’s beneficial to start with an analysis of each of the fields in the IEEE 802.11
header as shown in Table 6.4 below.

Figure 6.4 IEEE 802.11 Header Fields

Display Filter
Field Name Description Reference Name

Ty p e / S u b t y p e The Type/Subtype field value is not w l a n . f c . t y p e _ s u b t y p e
represented as data in the IEEE 802.11
header; rather, it is included as a
convenience mechanism to uniquely
identify the type and subtype
combination that is included in the
header of this frame. This field is
commonly used in display filters.

Frame Control The Frame Control field is a 2-byte field wlan.fc
that represents the first 2 bytes of the
IEEE 802.11 header. Wireshark further
dissects this field into four additional
fields, as described below.

Version The Version field is included in the frame wlan.fc.version
control header and specifies the version
of the IEEE 802.11 header. At the time
of this writing, this value is 0.

Type The Type field is included in the frame wlan.fc.type
control header and specifies the type of
frame (data, management, or control).

Subtype The Subtype field is included in the wlan.fc.subtype
frame control header and specifies the
function for the specified frame type.
For example, if the frame is a type
management frame, the subtype field
indicates the type of management frame
(e.g., a beacon frame, authenticate
request, or disassociate notice).

Flags The Flags field is a 1-byte field in the wlan.fc.flags
frame control header that specifies eight

www.syngress.com

Wireless Sniffing with Wireshark • Chapter 6 289

Continued

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 289

Figure 6.4 continued IEEE 802.11 Header Fields

Display Filter
Field Name Description Reference Name

different options of the frame. Wireshark
further dissects this field into each
unique option, as described below.

DS status The Distribution System (DS) Status field wlan.fcds
represents the direction the frame is
traveling in. Wireshark represents two
unique fields as one display entry:
From DS and To DS. When From DS is
set to 1 and To DS is set to 0, the frame
is traveling from the AP to the wireless
network. When From DS is set to 0 and
To DS is set to 1, the frame is traveling
from a wireless client to the AP.

More The More Fragments field in the flags wlan.fc.flag
Fragments header is used to indicate if additional

fragments of a frame must be
reassembled to process the entire frame.
This field is not used often.

Retry The Retry field in the flags header is used wlan.fc.retry
to indicate if the current frame is being
retransmitted. The first time a frame is
transmitted, the retry bit is cleared. If it
is not received properly, the transmitting
station retransmits the frame and sets
the retry bit to indicate this status.

Power The Power Management field in the flags wlan.fc.pwrmgmt
Management header is used to indicate if the station is

planning to enter a “dozing” state where
they will reduce their participation in the
network in an attempt to conserve power.

More Data The More Data field in the flags header is wlan.fc.moredata
used by an AP to indicate that the station
receiving frames has more packets
waiting in a buffer for delivery. The More
Data field is often used when a station
awakens from a power-conservation
mode to deliver all pending traffic.

www.syngress.com

290 Chapter 6 • Wireless Sniffing with Wireshark

Continued

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 290

Figure 6.4 continued IEEE 802.11 Header Fields

Display Filter
Field Name Description Reference Name

Protected The Protected field in the flags header is wlan.fc.protected
used by an AP to indicate that an
IEEE 802.11 encryption mechanism is
used to encrypt the contents of the
frame. At the time of this writing, the
protected field indicates that the payload
of the frame is encrypted with the Wired
Equivalence Privacy (WEP) protocol,
Temporal Key Integrity Protocol (TKIP), or
the Counter Mode with Cipher Block
Chaining Message Authentication Code
Protocol (CCMP).

Order The Order field in the flags header is wlan.fc.order
used to indicate that the transmission of
frames should be handled in a strict order,
preventing a station from re-ordering the
delivery of frames to improve
performance or operational management.
This field is not used often.

Duration The Duration field follows the frame wlan.duration
control header and serves one of two
functions. In most frames, the duration
field specifies the amount of time
required to complete the transmission of
the frame in a quantity of microseconds.
When associating to the AP, however, the
duration field identifies the association
i d e n t i fier (i.e., a unique value assigned to
each station connected to the AP).

Address The IEEE 802.11 header contains one wlan.da
Fields Address Field (receiver or destination (destination),

address) if the type of frame is a control wlan.sa (source),
message, and three Address Fields for wlan.bssid (BSSID),
normal data or management traffic wlan.ra (receiver)
(source, destination, and basic SSID
[BSSID]). Wireless LANs that bridge
multiple networks together also include
a fourth address. Complicating things,

www.syngress.com

Wireless Sniffing with Wireshark • Chapter 6 291

Continued

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 291

Figure 6.4 continued IEEE 802.11 Header Fields

Display Filter
Field Name Description Reference Name

the order of these addresses isn’t
consistent, and changes depending on
the To DS and From DS flag settings in
the frame control header. Fortunately,
Wireshark correctly represents all of
these fields, allowing us to apply filters
using the appropriate display name.

Fragment The fragment number (FN) field is a wlan.frag
Number sequential number that is used to

uniquely identify a fragment of a frame,
starting at 0. This field is not used often.

Sequence The sequence number (sn) field is a wlan.seq
Number sequential number that is used to

identify the entire frame, starting at 0.
Each frame transmitted by a station
should have a sequence numberthat is one greater
than the previous frame, until the
counter wraps at 4,095.

As mentioned previously, there are additional header fields that follow the IEEE
802.11 header, and Wireshark also dissects the contents of these fields. We will use
our understanding of the fields in the IEEE 802.11 header in the next section,
where we apply useful display filters to a traffic capture.

Leveraging Display Filters
One of the most powerful and useful features in Wireshark is the ability to apply
inclusive or exclusive display filters to a packet capture, in order to narrow down the
number of packets to those containing useful data. When capturing traffic on a wire-
less network, it is easy to become overwhelmed by the sheer quantity of data that is
captured. (At an absolute minimum, a wireless network transmits 10 frames per
second, before a single station connects to the network.) Using display filters, you
can exclude uninteresting traffic to reveal useful information, or search through a
large packet capture for a specific set of information.

In this section, we demonstrate several useful display filters for analyzing wireless
traffic. We focus on using our knowledge of the IEEE 802.11 header and frame
statistic contents to apply wireless-specific filters that can be applied in real-world
analysis scenarios.

www.syngress.com

292 Chapter 6 • Wireless Sniffing with Wireshark

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 292

Traffic for a Specific Basic Service Set
An IEEE 802.11 wireless network with an AP providing connectivity to one or
more client systems is known as a Basic Service Set (BSS).This is the most common
wireless LAN implementation, and is used everywhere from corporate networks to
hotspot environments and high-security government institutions.

Each wireless AP is uniquely identified by the Basic Service Set Identifier
(BSSID). Recall that the BSSID is one of the addresses found in the IEEE 802.11
header, and is present in every data or management frame transmitted by a wireless
station or an AP to uniquely identify the wireless LAN.

When traffic is captured in monitor mode, the wireless card reports all valid
IEEE 802.11 frames for the specified channel, regardless of the BSSID or the net-
work name being used.This can also include traffic from other nearby channels,
because many wireless cards also have sufficient radio sensitivity to capture traffic
from other nearby frequencies (e.g., it’s not uncommon for a wireless card on
channel 3 to capture traffic from channels 1, 2, 3, 4, and 5).

TIP

The BSSID address is often the same Medium Access Control (MAC)
address as the wireless card on the AP, when there is a single network
name configured. When multiple network names or virtual APs are con-
figured, the BSSID may be similar to the MAC address of the AP’s wire-
less card with minor variations (often in the last byte of the address).

When doing troubleshooting analysis, however, you usually want to limit the
analysis to traffic to and from a specific AP that is servicing the problematic client.
Using display filters, you can easily exclude traffic from nearby APs and focus the
analysis on a specific AP. In this display filter, the goal is to identify all of the traffic
for a single AP.

Identify the Station MAC Address
We start by obtaining the MAC address of the station that we are tro u-
bl e s h o o t i n g , or any station that is connected to the target BSS. On a Wi n d ow s
s y s t e m , we can extract this information by running the ipconfig /all utility from a
command shell (see Figure 6.4). On a Linux system, use ifconfig -a to determ i n e
the MAC address (see Figure 6.5).

www.syngress.com

Wireless Sniffing with Wireshark • Chapter 6 293

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 293

Once we have identified the correct station address, you can use it to apply a
display filter to your packet capture.

Filter for Station MAC
With the packet capture open, apply a display filter to display only traffic from the
client station using the wlan.sa display field name.Assuming the station MAC address
is 00:09:5b:e8:c4:03, the display filter would be applied as:
wlan.sa eq 00:09:5b:e8:c4:03

A sample packet capture showing the results of this filter are shown in Figure 6.6.
F rom the Display Filter window, we see that 125 frames we re re t u rned from a

p a c ket capture of 1,141 total. H oweve r, when we examine the Pa c ket Details window
for the selected frame, we see that the BSSID is the broadcast address (f f : f f : f f : f f : f f : f f) .T h i s
is because the selected frame is a probe request p a c ke t , which the client uses as a mecha-
nism to discover networks in the are a .We can re fine our display filter to re t u rn only

www.syngress.com

294 Chapter 6 • Wireless Sniffing with Wireshark

Figure 6.4 Windows MAC Address Information

Figure 6.5 Linux MAC Address Information

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 294

t r a f fic destined specifically for the A P, by amending the display filter to re t u rn only
frames with our station MAC address as the source that are not destined to the bro a d-
cast BSSID.The display filter now becomes:
wlan.sa eq 00:09:5b:e8:c4:03 and wlan.bssid ne ff:ff:ff:ff:ff:ff

This updated filter is shown in Figure 6.7.

Filter on BSSID
From the previous filter, we see that the BSSID for the station with the specified
source address is 00:11:92:6e:cf:00. We can use this information to apply a filter for
only this BSSID, to exclude traffic from any other APs:
wlan.bssid eq 00:11:92:6e:cf:00

This final filter excludes any traffic not specifically destined to this AP, which
will allow us to focus our analysis on this specific network.

www.syngress.com

Wireless Sniffing with Wireshark • Chapter 6 295

Figure 6.6 Filtering on Source MAC Address

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 295

www.syngress.com

296 Chapter 6 • Wireless Sniffing with Wireshark

Figure 6.7 Filtering on Source MAC Address and BSSID

Figure 6.8 Filtering on BSSID

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 296

Traffic for a Specific Extended Service Set
Filtering for a specific BSS is useful if you can narrow your troubleshooting down to
a specific AP; however, initially, you may need to take a broader look at your wireless
network and assess traffic for all of the APs in your capture file. Indeed, many of the
problems in wireless networking have to do with roaming between APs, which
forces us to assess traffic from multiple APs. Fortunately, Wireshark display filters
come to the rescue.

When you configure and deploy a wireless network, each AP is configured with
one or more network names (or SSIDs), also known as an Extended SSID (ESSID).
When you deploy multiple APs that facilitate a client’s ability to roam between APs,
all of the APs with the same SSID are referred to as participating in an Extended
Service Set (ESS).

In the display filter example, our goal is to identify all of the traffic for a specific
ESS identified by the SSID or network name. Unfortunately, we cannot apply a filter
to identify all frames for a given SSID, as many management frames and all data and
control frames do not include the SSID information. Instead, we need to enumerate
all the BSSIDs for a specified SSID to develop an inclusive filter.

Filter on SSID
The first step is to apply a filter for a target SSID.As mentioned previously, this only
returns management frames that include the SSID information element; however, it
will present a list of all of the APs that use this SSID for additional filtering.

The SSID is included in the payload of beacon frames, p robe response frames,
and associate request frames. N avigate to this field by selecting any beacon frame,
go to the Pa c ket Details window, and then go to IEEE 802.11 Wi reless LAN
M a n a gement Frame | Ta g ged Pa r a m e t e rs | SSID Parameter Set | Ta g
I n t e rp re t a t i o n. The display name for this field will be revealed as
w l a n _ m g t . t a g. i n t e rp r e t a t i o n (see Figure 6.9).

We can apply a display filter to identify all packets that includes the SSID
“NOWIRE” as shown:
wlan_mgt.tag.interpretation eq "NOWIRE"

WARNING

All string references in Wireshark, including the SSID, are case-sensitive.
When applying any filter that includes a string, ensure that you specify
the proper case for a successful filter expression.

www.syngress.com

Wireless Sniffing with Wireshark • Chapter 6 297

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 297

Exclude Each BSSID
Once we have applied the filter on the SSID, the capture has been reduced to man-
agement frames (mostly beacon frames). Since our goal is to identify all of the traffic
for the ESS, we need to modify this filter to identify all traffic for each BSS.
Fortunately, the display filter for the SSID has revealed a list of all the APs config-
ured with the specified SSID, which allows us to identify the BSSID for each AP.

In order to ensure that we have a complete list of all the BSSIDs, we start by
applying an exclusive filter for each BSSID. Click on any beacon frame and navigate
to the BSSID field by clicking IEEE 802.11 | BSS Id. Using the display field
name, wlan.bssid, add an exclusion display filter to the existing display filter for the
given BSSID. For example, if the BSSID is 00:02:2d:37:4f:89, our display filter
becomes:
w l a n _ m g t . t a g . i n t e r p r e t a t i o n e q " N O W I R E " a n d ! (w l a n . b s s i d e q 0 0 : 0 2 : 2 d : 3 7 : 4 f : 8 9)

Note that in this display filter, we are using the exclamation point as a negation
operator, and testing for the BSSID equal to the specified address.This effectively
returns all frames with a matching SSID except for the specified BSSID. Since our
ultimate goal is to include only traffic from these BSSIDs, we negate the display
filter with a leading exclamation point, which will make it easy to reverse the effect
of the display filter simply by removing the exclamation point.

www.syngress.com

298 Chapter 6 • Wireless Sniffing with Wireshark

Figure 6.9 Displaying the SSID Tagged Parameter

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 298

Next, we repeat this step for each of the remaining frames in the packet capture,
selecting another BSSID and adding it to the exclusion list. For example, if the next
BSSID is 00:40:05:df:93:c6, it is added to our exclusion list:
wlan_mgt.tag.interpretation eq "NOWIRE" and !(wlan.bssid eq
00:02:2d:37:4f:89 or wlan.bssid eq 00:40:05:df:93:c6)

Repeat this process until there are no packets remaining in the capture display.

Invert Filter
At this point, our display filter should have no packets displayed. We have effectively
identified each AP in the packet capture that is associated with the specified SSID.
Now, we can modify the packet capture to invert the exclusion filter on the
wlan.bssid field to include all of the specified addresses. For example, if our packet
capture looks like this:
wlan_mgt.tag.interpretation eq "NOWIRE" and !(wlan.bssid eq
00:02:2d:37:4f:89 or wlan.bssid eq 00:40:05:df:93:c6 or wlan.bssid eq
00:40:96:36:80:f0)

We can modify it by removing the filter on the wlan_mgt.tag.interpretation field,
and the exclamation point before the list of BSSIDs:
(wlan.bssid eq 00:02:2d:37:4f:89 or wlan.bssid eq 00:40:05:df:93:c6 or
wlan.bssid eq 00:40:96:36:80:f0)

Applying this filter will return all traffic for the specified BSSIDs, effectively
excluding any traffic from neighboring networks that are not part of the initially
specified SSID.This allows us to focus our analysis only on traffic to and from the
networks associated with the initial SSID.

TIP

After applying a significant display filter (as shown in this example), it is
wise to save the resulting packets in a new packet capture file. This way,
you can assess the results of your filter at a later time without having to
repeat the filtering process. To save an extract of packets, click File |
Save As, and then click on the Displayed button. Enter an appropriate
filename for the results of the display filter and click on Save.

You can also save the display filter itself by clicking Analyze | Display
F i l t e r s. Enter a name for the display filter in the “Filter name” text box
and click on S a v e. When you want to recall the fil t e r, go to Analyze |
Display Filters and double-click on the desired display filter name.

www.syngress.com

Wireless Sniffing with Wireshark • Chapter 6 299

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 299

Even when there are no stations participating on the network, an AP will
transmit at least ten packets a second to advertise the presence and capabilities of the
network.These beacon frames are a vital component of any wireless network, but
they can be difficult to assess a packet capture if these frames aren’t particularly inter-
esting to you.

Fortunately, we can easily apply a display filter to exclude these frames. In the
Packet Details window, Wireshark identifies the type and subtype fields in the IEEE
802.11 header. By selecting a beacon frame, we can see that the type has a value of
0, and the subtype has a value of 4 (see Figure 6.10).

We can exclude these frames by applying a display filter as shown below:
!(wlan.fc.type eq 0 and wlan.fc.subtype eq 8)

Wireshark also gives us the “Type and Subtype Combined” field that can also be
used for filtering. Instead of applying a filter on the Type and Subtype fields, we can
apply a filter on the Combined Type and Subtype field as follows:
wlan.fc.type_subtype ne 8

www.syngress.com

300 Chapter 6 • Wireless Sniffing with Wireshark

Figure 6.10 Beacon Frame Type/Subtype

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 300

www.syngress.com

Wireless Sniffing with Wireshark • Chapter 6 301

Representing Wireless Frame Types
When assessing a wireless packet capture with Wireshark, it is common to apply
display filters to look for or exclude certain frames based on the IEEE 802.11
frame type and frame subtype fields. If you are trying to exclude frames from a
capture, it is easy to identify the Type and Subtype fields by navigating the
Packet Details window and using the values for your fil t e r. If you are looking for
a specific frame type, however, you have to remember either the Frame Type and
Subtype values, or the Combined Type/Subtype value assigned by Wireshark.

Instead of expecting you to memorize the 35+ values for different frame
types, we’ve included them here for easy reference.

Frame Type/Subtype Filter

Management Frames wlan.fc.type eq 0
Control Frames wlan.fc.type eq 1
Data Frames wlan.fc.type eq 2
Association Request wlan.fc.type_subtype eq 0
Association response wlan.fc.type_subtype eq 1
Reassociation Request wlan.fc.type_subtype eq 2
Reassociation Response wlan.fc.type_subtype eq 3
Probe Request wlan.fc.type_subtype eq 4
Probe Response wlan.fc.type_subtype eq 5
Beacon wlan.fc.type_subtype eq 8
Announcement Traffic Indication wlan.fc.type_subtype eq 9
Map (ATIM)
Disassociate wlan.fc.type_subtype eq 10
Authentication wlan.fc.type_subtype eq 11
Deauthentication wlan.fc.type_subtype eq 12
Action Frames wlan.fc.type_subtype eq 13
Block Acknowledgement (ACK) Request wlan.fc.type_subtype eq 24
Block ACK wlan.fc.type_subtype eq 25
Power-Save Poll wlan.fc.type_subtype eq 26
Request to Send wlan.fc.type_subtype eq 27

Tools & Traps

Continued

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 301

Data Traffic Only
Excluding beacon frames will reduce the amount of traffic in your wireless packet
capture, but it will also leave many other types of packets including other manage-
ment frames, control frames, and data frames. In some cases, you may only want to
examine data traffic to assess potential information disclosure risks on the network,
or as a measurement of efficiency for client traffic.

The process of applying a display filter for data traffic is similar to filtering
beacon frames. Navigate to a data packet and inspect the Packet Details window to
inspect the packet Type and Subtype Combined field (see Figure 6.11).

www.syngress.com

302 Chapter 6 • Wireless Sniffing with Wireshark

Frame Type/Subtype Filter

Clear to Send wlan.fc.type_subtype eq 28
ACK wlan.fc.type_subtype eq 29
Contention Free Period End wlan.fc.type_subtype eq 30
Contention Free Period End ACK wlan.fc.type_subtype eq 31
Data + Contention Free ACK wlan.fc.type_subtype eq 33
Data + Contention Free Poll wlan.fc.type_subtype eq 34
Data + Contention Free ACK + wlan.fc.type_subtype eq 35
Contention Free Poll
NULL Data wlan.fc.type_subtype eq 36
NULL Data + Contention Free ACK wlan.fc.type_subtype eq 37
NULL Data + Contention Free Poll wlan.fc.type_subtype eq 38
NULL Data + Contention Free ACK + wlan.fc.type_subtype eq 39
Contention Free Poll
QoS Data wlan.fc.type_subtype eq 40
QoS Data + Contention Free ACK wlan.fc.type_subtype eq 41
QoS Data + Contention Free Poll wlan.fc.type_subtype eq 42
QoS Data + Contention Free ACK + wlan.fc.type_subtype eq 43
Contention Free Poll
NULL QoS Data wlan.fc.type_subtype eq 44
NULL QoS Data + Contention Free Po l l wlan.fc.type_subtype eq 46
NULL QoS Data + Contention Free ACK wlan.fc.type_subtype eq 47
+ Contention Free Poll

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 302

In Figure 6.11,we see that the Type and Subtype Combined field has a value of 32.
We can use this field to apply a display filter that displays only this type of packe t :
wlan.fc.type_subtype eq 32

While this display filter is effective at excluding traffic, it can be too re s t ri c t ive
for some analysis needs. Remember that that Type and Subtype Combined field is
a unique identifier for both field va l u e s . When we apply a filter to display only
frames with a Type and Subtype combined value of 32, we exclude other types of
data frames including QoS marked wireless frames. An altern a t ive display filter is
to examine only the IEEE 802.11 type field without re f e rencing the subtype field
as we l l :
wlan.fc.type eq 2

A sample of this display filter is shown in Figure 6.12.
With this modified display filter, we can see all of the data frames, regardless of

the Subtype field. In this example, we can see normal data traffic (such as the
Internet Control Message Protocol [ICMP] request and reply frames), but we also
have NULL data frames. NULL data frames are used by some APs and station cards
to enter power conservation mode, or are used right before switching frequencies to

www.syngress.com

Wireless Sniffing with Wireshark • Chapter 6 303

Figure 6.11 Data Frame Type/Subtype

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 303

scan for other nearby networks. If NULL data frames aren’t useful in your analysis,
you can exclude them by modifying the display filter:
wlan.fc.type eq 2 and !(wlan.fc.subtype eq 4)

If this display filter reveals more data subtypes than are necessary for your analysis,
add additional exclusion fil t e rs inside the pare n t h e s i s , separated by the o r key wo rd .

Unencrypted Data Traffic Only
Another common analysis technique is to identify wireless traffic that is not
encrypted.This may be in an effort to identify misconfigured devices that could be
disclosing sensitive information over the wireless network, or as part of an audit to
ensure wireless traffic is encrypted, or to identify rogue APs, since most rogue
devices are deployed with no encryption.

As seen in the IEEE 802.11 header analysis, one of the bits in the frame contro l
header is known as the protected bit (f o rmerly known as the WEP bit, or the priva c y
b i t) .The protected bit is set to 1 when the packet is encrypted using an IEEE 802.11
e n c ryption mechanism such as W E P,T K I P, or CCMP; otherwise it is set to 0.We can
apply a filter using this field to identify all unencrypted wireless traffic :
wlan.fc.protected ne 1

www.syngress.com

304 Chapter 6 • Wireless Sniffing with Wireshark

Figure 6.12 Limiting Data Frame Type Filter

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 304

A sample packet capture with this display filter applied is shown in Figure 6.13.
While this filter shows the unencrypted wireless traffic, it is not the most effec-

tive display filter because it also reveals unencrypted management and control
frames. Since these frames are always unencrypted, we can extend the display filter to
identify unencrypted data frames only to get the most effective analysis:
wlan.fc.protected ne 1 and wlan.fc.type eq 2

NOTE

At the time of this writing, the available encryption mechanisms for IEEE
802.11 wireless networks only apply to data frames, and do not provide
any confidentiality for management or control frames. However, this was
slated for change with the ratification of the IEEE 802.11w amendment
that was designed to extend security to management traffic as well as
data traffic. The IEEE 802.11w task group is scheduled to ratify the
Protected Management Frames amendment in April 2008.

www.syngress.com

Wireless Sniffing with Wireshark • Chapter 6 305

Figure 6.13 Excluding Encrypted Frames

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 305

Identifying Hidden SSIDs
M a ny organizations have adopted SSID cloaking, or prevented their APs from adve r-
tising their SSIDs to anyone who asks.While this provides a minimal measure of secu-
ri t y, it is an ineffective mechanism for controlling access to the network and should
only be used in conjunction with a strong encryption and authentication mechanism.

When an AP wants to obscure the SSID of the network, it does not respond
when it receives a request for the network name, and it removes the SSID advertise-
ment from beacon frames. Because it is mandatory to include some indicator of the
network name (whether legitimate or not) in beacon frames, vendors have adopted
different conventions for obscuring the SSID by replacing it with one or more space
characters or NULL bytes (one or more 0s) or an SSID with a length of 0.An
example of a cloaked SSID represented by Wireshark is shown in Figure 6.14.

In this case, the SSID for this network has been replaced with an empty value 0
bytes in length. While this may prevent the disclosure of the SSID to the casual
observer, stations will still send the SSID in plaintext over the network each time
they associate to the wireless network. In this example, we see that the BSSID of the
network is 00:0b:86:c2:a4:89; we can apply a display filter for this network BSSID
and associate request frames to examine the SSID name sent by the client:

www.syngress.com

306 Chapter 6 • Wireless Sniffing with Wireshark

Figure 6.14 Cloaked SSID Tagged Parameter

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 306

wlan.bssid eq 00:0b:86:c2:a4:89 and wlan.fc.type_subtype eq 0

By applying this filter, we reveal any association requests for the specified BSSID.
By clicking IEEE 802.11 Wireless LAN Management Frame | Tagged
Parameters | SSID Parameter Set, we can see the SSID specified by the client
station, revealing the SSID for the network as guestnet (see Figure 6.15).

Examining EAP Exchanges
So fa r, we ’ve limited our usage of display fil t e rs to the IEEE 802.11 header and man-
agement payload data. Wi reshark can also identify and apply display fil t e rs to other
w i re l e s s - related protocols including the Extensible Authentication Protocol (EAP).

EAP is used in conjunction with the IEEE 802.1x network authentication
mechanism to authenticate users to a wireless network by using one of several EAP
methods. Common EAP methods include the Protected Extensible Authentication
Protocol (PEAP), the Extensible Authentication Protocol with Transport Layer
Security (EAP/TLS),Tunneled Transport Layer Security (TTLS) and the
Lightweight Extensible Authentication Protocol (LEAP). By examining the
exchange of EAP data with Wireshark, we can troubleshoot user authentication
issues, evaluate potential security risks, and discover architecture components used by
the wireless network.

www.syngress.com

Wireless Sniffing with Wireshark • Chapter 6 307

Figure 6.15 Revealed SSID on a Cloaked Network

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 307

To identify any EAP traffic in a capture file, apply a display filter for the EAP
Over LAN protocol:
eapol

This filter will return any EAP traffic present in the capture file, including
authentication requests, identity negotiation, key and encryption negotiation
exchanges, and success or failure messages. Next, we examine each data exchange
mechanism in the EAP exchange.

Identifying the EAP type
If you are auditing a wireless network or trying to identify potentially misconfigured
client systems, you may need to identify the EAP method used by those client sys-
tems.The EAP method is reported in an EAP exchange in the EAP type field. We
can use a display filter to identify frames that report this information:
eap.type

After applying this fil t e r, select a frame and navigate to the EAP type field by
clicking 802.1x Authentication | Extensible Authentication Protocol | Ty p e
in the Pa c ket Details window. Wi reshark will identify the nu m e ric value for the
EAP type, the name of the EAP type, and the last name of the pri m a ry author who
d eveloped the Internet Engi n e e ring Task Fo rce (IETF) draft to describe the EAP
t y p e. In Figure 6.16, we can see that the EAP type has a value of 25, which indi-
cates the use of the PEAP pro t o c o l .

Evaluating Username Disclosure
EAP methods that rely on username and password authentication include PEAP,
TTLS and LEAP.These methods may disclose user identity information (e.g., a user-
name) in plaintext over the wireless network.This can be an information disclosure
risk for some organizations, because it allows an attacker to enumerate valid user-
names, which can be the basis for additional attacks against the wireless network.

Wi reshark allows you to identify usernames that are disclosed on the network by
examining the EAP Type field for a special value indicating identity information is
p resent in the frame.This EAP mechanism uses an initial EAP Identity Request f ro m
the AP or the client to request the identity inform a t i o n , f o l l owed by an EAP Identity
R e s p o n s e that contains the identify inform a t i o n . We can apply a display filter to re t u rn
only EAP Identify Response frames by fil t e ring on the EAP type and EAP code fie l d s :
eap.type eq 1 and eap.code eq 2

In the sample packet capture displayed in Figure 6.17, we see that the identity
information has been disclosed as the username jwright.

www.syngress.com

308 Chapter 6 • Wireless Sniffing with Wireshark

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 308

www.syngress.com

Wireless Sniffing with Wireshark • Chapter 6 309

Figure 6.16 Identifying the EAP Type

Figure 6.17 EAP Identity Disclosure

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 309

A notable exception to this rule for identifying EAP identity information is the
case of non-standard EAP types; specifically, the LEAP protocol. In a LEAP
exchange, identify information is not exchanged using the EAP Identity type; rather,
it is included in EAP request and response frames in the data payload. We can
modify our display filter to accommodate for this inconsistency by also identifying
any LEAP traffic with an additional clause for the LEAP EAP type (see Figure 6.18).

In Figure 6.18, we see that the EAP type is LEAP, and the identity information
is disclosed as CORP\ndoanhuy. From this identity information, we can also ascertain
that the target network is using a Microsoft Windows infrastructure with the domain
name CORP.

Identifying EAP Authentication Failures
Troubleshooting authentication problems on the wireless network can be chal-
lenging, and often requires a packet sniffer to determine if the failure is happening
on the client or over the network. Wireshark can assist in providing this information
by identifying EAP authentication failure messages.

The EAP code field is present in all EAP packets, and is used to indicate the
content of the message that follows. Presently there are four EAP codes:

www.syngress.com

310 Chapter 6 • Wireless Sniffing with Wireshark

Figure 6.18 Cisco LEAP Identity Disclosure

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 310

■ Code 1 - EAP Request A value of 1 in the EAP Code field indicates
that the EAP frame is requesting information from the recipient.This can
be identity information, encryption negotiation content, or a response-to-
challenge text.

■ Code 2 - EAP Response A value of 2 in the EAP Code field indicates
that the EAP frame is responding to an EAP Request frame.

■ Code 3 - EAP Success A value of 3 in the EAP Code field indicates
that the previous EAP Response was successful.This is primarily used as a
response to authentication messages.

■ Code 4 - EAP Failure A value of 4 in the EAP Code field indicates that
the previous EAP Response failed authentication.

We can apply a display filter on the EAP Code field to identify EAP failures:
eap.code eq 4

The result of this display filter on a sample packet capture is displayed in
F i g u re 6.19.

www.syngress.com

Wireless Sniffing with Wireshark • Chapter 6 311

Figure 6.19 EAP Failure Notification

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 311

In Figure 6.19, we can see three authentication failures at approximately 8 sec-
onds and 7 seconds apart. We can also see that the From DS bit is set in the IEEE
802.11 header, indicating that the failure message is coming from the AP. From this,
we can determine that the failure message is coming from the client system, not
from the network.

Identifying Key Negotiation Properties
Some EAP methods negotiate a Transport Layer Security (TLS) tunnel before
exchanging authentication information to protect weak authentication protocol data.
In order to establish the TLS tunnel, at least one digital certificate is transmitted from
the AP to the station. We can use Wireshark to examine this certificate information,
and possibly determine other sensitive information about the network including the
organization name and address.

First, apply a display filter to identify the portions of the EAP exchange that are
exchanging Secure Sockets Layer (SSL) digital certificate content:
eap and ssl.handshake.type eq 11

This filter will display only EAP traffic with embedded SSL information that
includes a SSL handshake exchange type that includes a digital certificate (type 11).
After selecting the frame, navigate to the Packet Details window and click 802.1X
Authentication | Extensible Authentication Protocol | Secure Socket
Layer | TLS Record Layer: Handshake Protocol: Certificate | Handshake
Protocol: Certificate | Certificate | Certificate | signedCertificate |
Extensions | AuthorityKeyIdentifier | Item | directoryName |
rdnSequence.This will reveal the digital certificate content indicating the country
name, state, and possibly address information and the organization name to which
the certificate was issued.A sample packet capture that reveals certificate content is
shown in Figure 6.20.

In Figure 6.20, we see that the certificate content reveals the organization name
as Internet Widgits Pty Ltd, with the country identifier AU (Australia) and the state or
province name Some-State.

Identifying Wireless Encryption Mechanisms
The IT industry analysis group Gartner published a report indicating that 70 percent
of successful attacks against wireless LANs will be due to the misconfiguration of
APs and wireless clients.This prediction is easy to believe; many organizations deploy
wireless networks without auditing their post-deployment environment with a tool
like Wireshark. With the complexity of wireless APs and client systems, it is easy to

www.syngress.com

312 Chapter 6 • Wireless Sniffing with Wireshark

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 312

make a configuration mistake that exposes devices to weak encryption mechanisms,
or no encryption.

We can assess wireless packet captures with Wireshark to identify the security
mechanisms used to protect the network. We’ve learned how to identify the authen-
tication mechanisms that are in place by looking for EAP traffic; we can also assess
the encryption mechanism using display filters.

Common encryption mechanisms on wireless networks include standard IEEE
wireless LAN encryption protocols such as WEP,TKIP and CCMP, as well as upper-
layer encryption mechanisms such as Secure Internet Protocol (IPSec)/Virtual
Private Network (VPN). We examine each of these mechanisms and how we can
assess a packet capture to identify the encryption protocol in use.

Identifying WEP
WEP is the most prevalent encryption mechanism used to protect wireless networks;
however, it is also widely known as an insecure protocol. Wireshark uniquely identi-
fies WEP-encrypted traffic by decoding the 4-byte WEP header that follows the
IEEE 802.11 header. We can identify WEP traffic by identifying any frames that
include the mandatory WEP Initialization Vector (IV):
wlan.wep.iv

www.syngress.com

Wireless Sniffing with Wireshark • Chapter 6 313

Figure 6.20 SSL Digital Certificate Content

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 313

A sample packet capture with this filter applied is shown in Figure 6.21.
Wireshark identifies the WEP header and the IV value, along with the key index
value and the WEP integrity check value (ICV).

Identifying TKIP and CCMP
TKIP is the successor to WEP, and is designed to be a software upgrade for hardware
built only to support WEP. Since TKIP was designed to work on legacy WEP hard-
ware, it retained the use of the same underlying encryption protocol, RC4.And
while RC4 is still considered safe for current use, it is no longer an acceptable
encryption mechanism for use by U.S. government agencies.Another alternative is
to use the CCMP protocol, which uses the Advanced Encryption System (AES)
cipher.

Like WEP, both TKIP and CCMP use an encryption protocol header that fol-
lows the IEEE 802.11 header.This header is modified from the legacy WEP header,
allowing us to identify whether TKIP or CCMP are in use, but does not allow us to
differentiate TKIP from CCMP; we can only determine that one or the other is cur-
rently in use by looking at this header. We can use a display filter to identify this
header by filtering on the extended IV field:
wlan.tkip.extiv

www.syngress.com

314 Chapter 6 • Wireless Sniffing with Wireshark

Figure 6.21 Identifying WEP Traffic

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 314

Despite the use of tkip in this display filter, it’s not possible to differentiate
between TKIP or CCMP by looking at the encryption header.A sample packet cap-
ture that displays this filter and the TKIP/CCMP header is shown in Figure 6.22.

By applying this filter, we know that either TKIP or CCMP is in use for this
BSS.To further differentiate whether TKIP or CCMP is in use, we need to inspect
data in a beacon frame.To identify a beacon frame for this network, apply a display
filter using the BSSID identified with this filter, looking for packets with the
type/subtype for a beacon frame.
wlan.bssid eq 00:0f:66:e3:e4:03 and wlan.fc.type_subtype eq 8

After applying this filter, navigate to the beacon frame’s tagged information ele-
ment data by clicking IEEE 802.11 Wireless LAN Management Frame |
Tagged Parameters. Look for an information element labeled “Vendor Specific:
WPA” or “RSN Information.”A Wi-Fi Protected Access (WPA) information ele-
ment indicates that the AP has passed the testing certification program designed by
the WiFi Alliance (WFA), known as WiFi Protected Access (WPA), while a RSN
information element tag indicates that the AP has implemented the robust security
network (RSN) standards in the IEEE 802.11i amendment. In either case, expand
the information element to identify the encryption mechanism used for unicast and

www.syngress.com

Wireless Sniffing with Wireshark • Chapter 6 315

Figure 6.22 Identifying TKIP or CCMP Traffic

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 315

multicast traffic (either AES indicating the CCMP cipher or TKIP). We can also
determine the key derivation mechanism (how the dynamic keys are generated) used
for the network, by examining the value next to the auth key management suite string;
either PSK indicating a pre-shared key, or WPA indicating key derivation from a
Remote Authentication Dial-In User Service (RADIUS) server over IEEE 802.1x.

A sample packet capture shown in Figure 6.23, demonstrates a beacon frame’s
information element indicating encryption information. In this example, we see that
the “Vendor Specific: WPA” information element, which indicates both the multicast
and unicast cipher suites, are using the TKIP algorithm, with Pre-Shared Key (PSK)
as the authentication key management suite mechanism.

Identifying IPSec/VPN
Some wireless networks will not use the standard IEEE 802.11 encryption mecha-
nisms, instead opting for an upper-layer encryption mechanism such as IPSec.
Wireshark can identify this type of encryption mechanism by applying a display
filter for any of the associated IPSec protocols such as the Internet Security
Association and Key Management Protocol (ISAKMP), the Encapsulating Security
Payload (ESP), or the Authentication Header (AH) protocol.To identify IPSec
traffic, apply a display filter as follows:

www.syngress.com

316 Chapter 6 • Wireless Sniffing with Wireshark

Figure 6.23 Identifying Multicast and Unicast Cipher Suites - Authentication
Mechanism

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 316

isakmp or ah or esp

This filter will re t u rn any of the associated IPSec pro t o c o l s , as shown in
F i g u re 6.24.

Note in Figure 6.24 that an ICMP Destination Unreachable packet is also
returned.This is because Wireshark also decodes the embedded protocol within the
ICMP packet, which includes ESP information.

So fa r, we have seen how powerful Wi re s h a r k ’s display filter functionality can
b e.The usefulness of display fil t e rs is only limited to the fields that can be identifie d
by display name, and your cre a t iveness in taking advantage of this powerful feature.
W h a t ’s more, d i s p l ay fil t e rs can be used for other classification and identific a t i o n
mechanisms as we l l , including the ability to colorize packets matching arbitrary dis-
p l ay fil t e rs .

Leveraging Colorized Packet Displays
Looking at a packet trace of any more than a handful of packets can be intimidating.
If you aren’t sure exactly what it is you are looking for in the packet capture, you’re
often left to blindly click on packets to examine the contents, or to start applying
predefined display filters in the hope of identifying something useful.

www.syngress.com

Wireless Sniffing with Wireshark • Chapter 6 317

Figure 6.24 Identifying IPSec/VPN Traffic

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 317

In order to make it easier to examine and assess a packet capture at a glance,
Wireshark allows you to customize the color of packets in the Packet List window.
This often overlooked feature can be very useful for assessing a packet capture, and
to simplify the process of troubleshooting a wireless connection issue when applied
with useful display filters.

Marking From DS and To DS
When examining a packet capture, it is helpful to identify if the traffic is originating
from the wired network or the wireless network. For example, if you see traffic
coming from a local IP address, it may not necessarily be traffic from a wireless sta-
tion; it may be a wired station that is communicating with a wireless station or a
wired station sending broadcast traffic.

We can determine if traffic is originating from the wireless network by exam-
ining the flags in the frame control header, looking for the From DS bit and the To
DS bit set. If the From DS bit is set and the To DS bit is clear, we know that the
traffic originated from the wired network (or the AP).

Applying this logic to a coloring rule that marks traffic from the wired network
using one color and traffic from the wireless network using a different color allows
us to determine where the traffic originated.To access the coloring rules dialog box
click View | Coloring rules. Click New to create a new coloring rule with the
following properties:

■ Filter Name: Traffic from a wireless station
■ Filter String: wlan.fc.fromds eq 0 and wlan.fc.tods eq 1

Next, select a foreground color and a background color to uniquely identify
traffic from a wireless station.The Name and String dialog boxes will update to
reflect the colors you select (see Figure 6.25).

When you are happy with your selection, click OK.

www.syngress.com

318 Chapter 6 • Wireless Sniffing with Wireshark

Figure 6.25 Color Filtering Traffic From a Wireless Station

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 318

Next, create a second coloring rule to mark traffic originating from the wired
network using the following properties:

■ Filter Name: Traffic from a wired station
■ Filter String: wlan.fc.fromds eq 1 and wlan.fc.tods eq 0

Select a foreground color and a background color to uniquely identify this
traffic (see in Figure 6.26).

Press OK to accept the new filter, and then press Apply. If you want to save this
color filter for later analysis, press Save; otherwise click OK to close the Coloring
Rules dialog box. Wireshark will automatically update your packet display to apply
the new coloring rules (see Figure 6.27).

www.syngress.com

Wireless Sniffing with Wireshark • Chapter 6 319

Figure 6.26 Color Filtering Traffic From a Wired Station

Figure 6.27 Applied Wired/Wireless Traffic Coloring Rules

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 319

In Figure 6.27, we can identify frames 52 and 58 as traffic originating on the
wireless network, and frames 48, 50, 54, 56, and 60 as originating on the wired net-
work.The remaining frames have neither the From DS nor To DS bits set, which is
appropriate for management and control frames.

Marking Interfering Traffic
As more organizations deploy wireless netwo r k s , the amount of interference fro m
n e i g h b o ring networks grow s , which can have an adve rse affect on the perform a n c e
of wireless LANs. While many organizations go to significant tro u ble to select
channel plans that minimize interference for a given BSS, i t ’s not uncommon for an
AP from a neighboring organization to occupy similar frequencies and interfere
with your netwo r k .

Earlier in this chapter, we learned how to create a display filter to identify all of
the APs for a specific BSS. We can apply this filter to Wireshark’s coloring rules
using an inverse display filter, to easily identify traffic from interfering networks.
Assuming our list of BSSIDs includes 00:0f:66:e3:e4:03 and 00:0f:66:e3:25:92,
create a new coloring rule with the following properties:

■ Filter Name: Interfering networks
■ Filter String: !(wlan.bssid eq 00:0f:66:e3:e4:03 or wlan.bssid eq

00:0f:66:e3:25:92) and !wlan.fc.type eq 1

In this display filter, we exclude any traffic that is from one of the specified
BSSIDs, as well as any control frames, since control frames do not specify a BSSID in
the IEEE 802.11 header. Next, assign a foreground color and a background color to
uniquely identify this coloring rule, then press OK and Apply. Wireshark will
update the display to reflect the new coloring rule and allow you to identify inter-
fering networks (see Figure 6.28).

Marking Retries
For each data frame transmitted by a wireless station of the AP, the recipient must
transmit an acknowledgement frame to indicate the successful delivery of the packet.
If the packet was not received or was received in a corrupted state, the recipient
waits for the source to retransmit the packet. In all retransmitted packets, the
retransmit bit in the frame control header is set.

Evidence of retransmitted frames can indicate interference on the network that is
causing the initial delivery of packets to fail. We can create a coloring rule to help us
identify retransmitted frames using the following properties:

www.syngress.com

320 Chapter 6 • Wireless Sniffing with Wireshark

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 320

■ Filter Name: Retransmitted frames
■ Filter String: wlan.fc.retry eq 1

Once we apply this color filter, Wireshark will highlight retransmitted frames
(see Figure 6.29).

In Figure 6.29, frame 503 is a retransmit of frame 502. Notice that frame 500 wa s
sent to the station at 0 0 : 1 1 : 5 0 : 7 8 : 0 a : 3 7 and then acknowledged within 2/1000t h o f
a second.The frame at 502 was not positively acknow l e d g e d , or there was interfer-
ence that caused the loss of the ACK frame, which then re q u i red a re t r a n s m i t .

Creative use of custom coloring rules can make analyzing a packet capture much
easier. Remember that you can use any Wireshark display filter to create a custom
coloring rule, making this feature very flexible and effective at easily identifying
important traffic characteristics.

Adding Informative Columns
By default, Wireshark displays six columns in the Packet List window, including the
frame number, time, source, destination, protocol, and information string. Wireshark
allows you to customize this view, including the ability to add two additional
columns that are pertinent to wireless packet captures: the IEEE 802.11 RSSI and
IEEE 802.11 TX Rate columns.

www.syngress.com

Wireless Sniffing with Wireshark • Chapter 6 321

Figure 6.28 Marking Interfering Network Traffic

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 321

The IEEE 802.11 Received Signal Strength Indication (RSSI) column gives you
an indicator as to the radio signal strength for the selected packet, while the IEEE
802.11 RX Rate column indicates the data rate that was used for transmission of
this packet. Note that this information is not present in any standard IEEE 802.11
header information; rather, it is supplied in the Radiotap header information or in
the Linux Prism AVS header contents.As such, this feature will not work with
packet captures that do not supply this additional information, including packet cap-
tures using only the standard IEEE 802.11 link type.

To add these columns to your Packet List window, click Edit | Preferences
and then select Columns under the “User Interface” menu selection. Click New
and type RSSI in the “Title” text box, then click on the Format drop-down list and
select the IEEE 802.11 RSSI item. Repeat this step to add the data rate column
using the title “Rate,” and select the IEEE 802.11 TX rate item from the Format
drop-down list (see Figure 6.30).

Next, click Save | OK. Unlike other Wireshark preferences, adding a new
column requires you to restart Wireshark in order for the change to take effect.
Close Wireshark and your capture file by clicking File | Quit, and then restart
Wireshark and open a wireless capture file. If the RSSI and TX Rate information is
present in your capture file, Wireshark will populate these new columns with the
appropriate information (see Figure 6.31).

www.syngress.com

322 Chapter 6 • Wireless Sniffing with Wireshark

Figure 6.29 Marking Retransmitted Frames

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 322

www.syngress.com

Wireless Sniffing with Wireshark • Chapter 6 323

Figure 6.30 Wireshark Column Editor

Figure 6.31 Displaying RSSI and Rate Columns

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 323

The ability to view these fields can be useful for troubleshooting and wireless
intrusion detection purposes.As a station gets farther away from the AP, the TX rate
for data frames drops in order to sustain connectivity to an AP. Observing a large
number of stations transmitting below the optimal 11 Mbps for IEEE 802.11b net-
works or 54 Mbps for IEEE 802.11g or IEEE 802.11a networks, is an indicator of
poor AP selection on behalf of the client (there may be a more optimal AP avail-
able), or poor deployment or configuration of APs. Inspecting the RSSI information
allows you to identify drops in the signal strength for a client, which can be an indi-
cator of interference or other Radio Frequency (RF) loss characteristics, which can
also affect network performance.

Decrypting Traffic
One of the challenges of wireless traffic analysis is the ability to inspect the contents
of encrypted data frames. While Wireshark has the ability to decode many different
Network layer and higher protocols, encrypted traffic limits your ability to analyze
packets and troubleshoot network problems.

Fortunately, Wireshark offers some options to analyze WEP-encrypted data.
When configured with the appropriate WEP key, Wireshark can automatically
decrypt WEP-encrypted data and dissect the plaintext contents of these frames.This
allows you to use display filters, coloring rules, and all other Wireshark features on
the decrypted frame contents.

In order for Wireshark to decrypt the contents of WEP-encrypted packets, it
must be given the appropriate WEP key for the network. Wireshark does not assist
you in breaking WEP keys or attacking the WEP protocol. If you are the legitimate
administrator of the wireless network, you can configure Wireshark with the appro-
priate WEP key by clicking Edit | Preferences, and then expanding the
“Protocols” menu and selecting IEEE 802.11. In the Wireshark Preferences window,
supply one or more WEP keys in hexadecimal form separated by colons (see Figure
6.32).After entering one or more WEP keys, select the Enable Decryption
checkbox. Click OK when finished.

Wireshark will automatically apply the WEP key to each WEP-encrypted packet
in the capture. If the packet decrypts properly, Wireshark will add a tabbed view to
the Packet Bytes window, allowing you to choose between the encrypted and
decrypted views. Wireshark will also dissect the contents of the unencrypted frame,
allowing you to view the embedded protocol information as if the frame were
unencrypted in its original state.

Unfortunately, at the time of this writing, Wireshark does not support
decrypting TKIP or CCMP packets. However, you can use external tools such as the

www.syngress.com

324 Chapter 6 • Wireless Sniffing with Wireshark

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 324

www.syngress.com

Wireless Sniffing with Wireshark • Chapter 6 325

Figure 6.32 Specifying WEP Keys

Figure 6.33 Viewing Encrypted and Unencrypted WEP Traffic

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 325

airdecap-ng utility (included in the open-source Aircrack-ng suite of tools) to rewrite a
packet capture that uses the TKIP protocol. Similar to Wireshark’s ability to decrypt
WEP traffic, airdecap-ng requires you to have knowledge of either the PSK or the
Pairwise Master Key (PMK) in order to decrypt TKIP traffic.

To install airdecap-ng on your system, you must download and complete the
installation instructions for the Aircrack-ng tools. Download the latest version of
Aircrack-ng from www.aircrack-ng.org. For Windows systems, download the Aircrack-ng
zip file for Windows and extract it to a directory of your choosing. For Linux users,
you must build the software using a C compiler, or obtain a precompiled binary
from your Linux distribution vendor.

Once Aircrack-ng is installed, you can use the airdecap-ng tool to decrypt WEP or
TKIP traffic, generating a new libpcap output file containing unencrypted traffic.
There is no GUI interface for airdecap-ng, therefore, it is necessary to open a com-
mand shell and execute airdecap-ng from the command prompt (see Figure 6.34).

You can decrypt WEP traffic by specifying the WEP key in hexadecimal format
using the -w flag. We’ll also supply the -l flag to retain the IEEE 802.11 header data.
By default, airdecap-ng strips the IEEE 802.11 header, making the traffic appear to be
a wired packet capture. Airdecap-ng will decrypt the traffic in the identified capture
file, generating a new file with -dec appended after the filename and before the file
extension (see Figure 6.35).

Similarly, you can decrypt a TKIP packet capture using the same technique, by
specifying the TKIP PMK with the -k parameter or by specifying the PSK with the
-p parameter. When decrypting TKIP traffic, you must also specify the network SSID
(see Figure 6.36).

In Figure 6.36, Airdecap-ng creates the output file wpapsk-dec.dump, which con-
tains the unencrypted data frames.

www.syngress.com

326 Chapter 6 • Wireless Sniffing with Wireshark

Figure 6.34 Airdecap-ng Command Parameters

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 326

Once you have decrypted the packet captures with airdecap-ng, you can open and
inspect the unencrypted packet contents with Wireshark.

Real-world Wireless Traffic Captures
N ow that you have learned how to leverage the wireless analysis features of Wi re s h a r k ,
you can examine re a l - world wireless traffic capture s . Each of the captures rev i ewed in
this section we re selected to help re i n f o rce the concepts learned in this chapter while
demonstrating techniques that you can use to assess your own wireless netwo r k .

Identifying a Station’s Channel
Introduction
M a ny administrators would agree that the wireless network configuration and man-
agement interface in Wi n d ows XP has improved steadily with each XP service pack.
One of the remaining frustrations with the Wi n d ows Zero Configuration (WZC)
i n t e r face for wireless netwo r k i n g , is the inability to re p o rt the current wireless channel

www.syngress.com

Wireless Sniffing with Wireshark • Chapter 6 327

Figure 6.35 Decrypting WEP Traffic with Airdecap-ng

Figure 6.36 Decrypting TKIP Traffic with Airdecap-ng

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 327

that the client is operating on.This is necessary information for tro u bleshooting con-
n e c t ivity pro blems or intermittent performance issues on the wireless LAN.

Identifying the channel number requires you to analyze information elements
transmitted by the AP. While it is possible to estimate the channel number by
switching through the channels manually with the iwconfig utility on Linux systems,
wireless cards often receive frames from off-channels. In these cases, you might con-
figure the wireless card on channel 1 and see traffic from the wireless station; how-
ever, the station could be operating on channel 3 instead.

In this packet real-world wireless traffic capture, we examine how to identify the
current channel that a target wireless station is operating on.

Systems Affected
This traffic capture applies to all operating systems as a general analysis mechanism
that is useful for network troubleshooting.The devices involved include the target
wireless station and the AP.The wireless capture station will channel hop for this
analysis, because it does not know which channel the target wireless station is using.

Breakdown and Analysis
In this real-world traffic capture analysis, we reference the capture file wireless-rwc-
1.cap. In this case, we need to identify the operating channel for the station with the
MAC address 00:60:1d:1f:c5:18.

After opening the capture file in Wireshark, apply a display filter to identify data
traffic for the target station MAC address:
wlan.sa eq 00:60:1d:1f:c5:18 and wlan.fc.type eq 2

This excludes all traffic except that which ori ginates from the target station. We
apply this filter so we can examine the IEEE 802.11 protocol header information to
d e t e rmine the BSSID addre s s . Click on any frame from this station and then nav i g a t e
to the Pa c ket Details window and click IEEE 802.11 | BSS Id.The BSSID re fle c t s
the unique identifier for this netwo r k , which we’ll use to continue our analysis.

Once we know the BSSID for the network, we can clear the existing display
filter and create a new filter to identify beacon frames from the AP servicing the
identified station:
wlan.bssid eq 00:02:2d:09:c0:da and wlan.fc.type_subtype eq 8

Applying this filter will display beacon frames from the A P. On the summary line,
we can see the source and destination address information and the summary inform a-
tion including the network SSID. By navigating to the Pa c ket Details window and
clicking IEEE 802.11 Wi reless LAN Management Frame | Ta g ge d

www.syngress.com

328 Chapter 6 • Wireless Sniffing with Wireshark

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 328

Pa r a m e t e rs | DS Parameter Set | Tag Interp re t a t i o n, we can examine the
contents of this information element.This tag re p resents the current channel nu m b e r
for the AP (see Figure 6.37).

By examining this capture, we can see that the beacon contents from the AP
indicate that it is operating on channel 1. By association with the BSSID, we know
that the station is also on channel 1.

Wireless Connection Failures
Introduction
Connection problems create common troubleshooting tasks for wireless LAN
administrators. Often, the errors that are observed on the wireless network don’t
make their way to the client system in a mechanism that allows the end user (or
administrator) to identify the problem. Fortunately, Wireshark can be used to help
you gain more visibility into the problems “on the air” that prevent users from estab-
lishing connectivity to the wireless network.

Because this is such an important and recurring issue for administrators, we
examine three different real-world packet captures to troubleshoot an authentication
issue at the IEEE 802.11 layer, and two issues at the IEEE 802.1x/EAP layer.

www.syngress.com

Wireless Sniffing with Wireshark • Chapter 6 329

Figure 6.37 Tagged Parameters - Current Channel

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 329

Systems Affected
These traffic captures apply to all client and server operating systems that support
wireless networking. One capture deals with an issue affecting a WEP-based net-
work, and the other two captures deal with issues in LEAP networks.These princi-
ples also apply to other encryption mechanisms (e.g.,TKIP, CCMP, and EAP).

Breakdown and Analysis
Capture 1
In this real-world traffic capture analysis, we reference the capture file wireless-rwc-
2a.cap. In this case, we are responding to a Windows XP SP2 station that is unable to
connect to the wireless network using WEP encryption.After examining standard
logging mechanisms (e.g., the Windows event log) on the XP workstation, there are
no apparent error messages that indicate the source of the problem.A cursory glance
of the client configuration appears correct, and the WEP key was re-keyed to verify
that it is correct.The Wireless Network Properties Configuration window for this
network is shown in Figure 6.38.

In an effort to troubleshoot this network, a wireless packet capture has been
taken while the client was attempting to connect to the wireless network. Open the
capture file wireless-rwc-2a.cap with Wireshark to begin analyzing the traffic.

In all wireless networks, the connection process starts with the station sending
probe request frames to identify available APs in the area.The AP responds with a

www.syngress.com

330 Chapter 6 • Wireless Sniffing with Wireshark

Figure 6.38 Station Wireless Network Configuration Properties

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 330

probe response frame (unless configured otherwise), which informs the station that
the AP is available.After identifying an available AP, the station continues the con-
nection process to authenticate and associate to the AP.

In WEP networks, the client sends an authenticate request to the AP, which
elicits an authenticate response. In the case of shared-key network authentication, the
AP sends a random challenge value that the client encrypted with their WEP key,
and returns to the AP to verify before receiving an authenticate success or failure
message. In the case of open network authentication, the AP skips the
challenge/response step and issues a success message. Following authentication, the
station associates to the AP by transmitting an association request packet.The AP
responds with an association response message, after which the station can commu-
nicate on the wireless network.

As a logical troubleshooting step, it makes sense to verify each of these steps to
identify where the connection process is failing.To reduce the number of frames dis-
played in the packet capture, apply the following display filter to exclude beacon
frames and all control frames:
wlan.fc.type_subtype ne 8 and wlan.fc.type ne 1

The results of this display filter are shown in Figure 6.39.

www.syngress.com

Wireless Sniffing with Wireshark • Chapter 6 331

Figure 6.39 Filtering Beacons and Control Frames - Real-world Capture 2a

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 331

In frame 34, we see the station sending probe requests for the SSID <No current
ssid>; another probe request in frame 35 is targeting the broadcast SSID.These repeat
without response until frame 70, which probes for the gogowepnet SSID, gets a
response from the AP in the form of a probe response frame.This is appropriate
behavior, because the station needs to know the BSSID and other capability infor-
mation contained in the probe response frame before connecting to the AP.

Following the probe response in frames 74, 76, and 77, we see authentication
traffic. We can tell that frame 77 is a retransmit of frame 76, because the sequence
number (3121) listed in the information column is the same for both packets. We
start our detailed analysis with frame 74; click on this frame and expand the manage-
ment parameters by clicking IEEE 802.11 Wireless LAN Management Frame |
Fixed Parameters.This will reveal the authentication algorithm as shared key, the
authentication SN, and the status code. Because this is the first packet in the authen-
tication exchange, the status code value is irrelevant.

Now that we know the authentication algorithm information that is being
requested, look at frame 77. In the management parameters information we see the
authentication algorithm is still shared key, but the status code has a message indi-
cating “Responding station does not support the specified authentication algorithm.”
This error is preventing the client from connecting to the AP.

As a security feature, modern APs using WEP only support open authentication
with WEP encryption, because shared key authentication introduces additional vul-
nerabilities to the network. Since this client is requesting shared-key authentication,
the AP is rejecting the request with an error.To resolve this problem, reconfigure the
client system to use open authentication with WEP instead of shared authentication.

Capture 2
In this re a l - world traffic capture analysis, we re f e rence the capture file w i r e l e s s - r w c - 2 b. c a p.
This is another example of a client that is unable to connect to the netwo r k . Open the
c a p t u re file w i r e l e s s - r w c - 2 b. c a p and use the same display filter as in the previous capture to
exclude beacon frames and control frames from the display :
wlan.fc.type_subtype ne 8 and wlan.fc.type ne 1

The result of this display filter is shown in Figure 6.40.
We can identify that the station is connecting to the AP successfully by looking

at the Packet List window Information column. In frames 23 and 25, we see the
probe request and response exchange, followed by two authentication frames.
Clicking on frame 29 to select the second authentication frame, and clicking on
IEEE 802.11 Wireless LAN Management Frame | Fixed Parameters |
Status Code reveals that the authentication exchange was successful.

www.syngress.com

332 Chapter 6 • Wireless Sniffing with Wireshark

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 332

Fo l l owing the authentication exchange, t h e re is an association request in frame
3 1 , and three authentication responses in frames 34, 3 6 , and 38. Looking at the
i n f o rmation column in the Pa c ket List window for these three frames indicates
that the sequence number is 68 for each packe t , and that that they are re t r a n s m i s-
sions that we re not properly acknowledged by the re c i p i e n t . We can select frame
36 or 38 and click IEEE 802.11 | Frame Control | Flags | Retry to ve ri f y
that these frames are re t r a n s m i s s i o n s , by examining the value of the retransmit fl a g
in the frame control header.This isn’t unusual activ i t y ; h oweve r, it could indicate
that some other interference source on the network is preventing the earlier
frames from being re c e ived pro p e r l y.

Examining the contents of the status code in the last association frame (frame
number 38) by clicking IEEE 802.11 Wireless LAN Management Frame |
Fixed Parameters | Status Code, indicates that the association was successful in
completing the IEEE 802.11 authentication and association exchange.

At this point, we don’t know exactly what we need to troubleshoot in this cap-
ture; therefore, it is helpful to use the coloring rules to assess the traffic capture.
Apply a coloring rule to mark packets from the wired network with one color, and
packets from the wireless network with a second color.This will allow you to easily
assess the remainder of the frames to identify the traffic that is coming from the AP
or from client systems.

www.syngress.com

Wireless Sniffing with Wireshark • Chapter 6 333

Figure 6.40 Filtering Beacons and Control Frames - Real-world Capture 2b

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 333

Following the association response frame, we see that the beginning of the EAP
authentication exchange in frame 41 is coming from the AP; this frame is requesting
identity information from the station, which is returned in frame 43 with an identity
response frame. In frame 46, we see a new EAP request frame indicating that the
EAP type is the Cisco LEAP protocol. We can inspect the EAP details of this frame
by clicking 802.1X Authentication | Extensible Authentication Protocol.
Inspecting the details of this frame, we see that the payload of the EAP packet
includes an 8-byte random value and the name of the user authentication to the
network.The 8-byte random value represents the challenge value that must be
encrypted and returned by the authenticating station.

Frame 51 indicates a NULL data frame.This frame is not part of the EAP
exchange. Rather, it is a mechanism that is used by the station to enter power-con-
servation mode while advertising to the AP that it should save any pending traffic
for that station until it returns to the network.This can be confirmed by inspecting
the power management bit in the frame control header, and by clicking IEEE
802.11 | Frame Control | Flags | PWR MGT. Since this value is set to 1, we
know that the station is entering power management mode.This is normal activity
for some stations, especially Intel Centrino wireless cards, which are more aggressive
at power conservation than other chipset manufacturers.

The station returns from power conservation mode in frame 66 with an EAP
response frame.Again, we can inspect the contents of the EAP payload by clicking
802.1X Authentication | Extensible Authentication Protocol. In the EAP
payload contents, we see something labeled “Peer Challenge [8] Random Value”; this
is an incorrect representation by Wireshark. Instead of being a peer challenge value,
this is the actual peer response. Further, the peer response value is 24 bytes in length,
not 8 bytes as indicated.This frame represents the response from the wireless station
following the earlier challenge value.

Following the EAP response from the station, we would normally expect to see
an EAP Success message from the AP. In this capture, we see an additional NULL
data frame from the station indicating additional power management activity, fol-
lowed by a multicast data frame for the Spanning Tree Protocol (STP) in frames 71
and 77, respectively. Instead of an EAP Success message, we see several deauthentica-
tion messages from the AP to the wireless client.This indicates that the LEAP
authentication exchange was not successful, and that the AP is notifying the station
that it has been disconnected from the network.The deauthentication frame is trans-
mitted multiple times, because it is not properly acknowledge by the wireless station,
possibly because the station is in power conservation mode.

In this packet capture, we see that the station has successfully completed the
IEEE 802.11 authentication and association exchange, but was unable to comp l e t e

www.syngress.com

334 Chapter 6 • Wireless Sniffing with Wireshark

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 334

the IEEE 802.1X authentication exchange.This fa i l u re is repeated several times
by the client and the AP in the capture file, s t a rting at frames 376 and again at
frame 724.The lack of an EAP Success message indicates that there was an
authentication pro blem that caused the EAP exchange to fail (pro b a bly the re s u l t
of an incorrect passwo rd entered by the user). While Wi reshark cannot confirm
t h i s , we can use other sources of information to tro u bleshoot this issue, i n c l u d i n g
l og ging messages on the AP and on the RADIUS server used to perform user
a u t h e n t i c a t i o n .

Capture 3
In this real-world traffic capture analysis, we reference the capture file wireless-rwc-
2c.cap.This is another example of a client that is unable to connect to the network.
Open the capture file wireless-rwc-2c.cap and use the same display filter as used in the
previous capture to exclude beacon frames and control frames from the display:
wlan.fc.type_subtype ne 8 and wlan.fc.type ne 1

Also apply the coloring rules to identify traffic from the AP or from a station
with different colors.The result of this display filter and coloring rule is shown in
Figure 6.41.

www.syngress.com

Wireless Sniffing with Wireshark • Chapter 6 335

Figure 6.41 Filtering Beacons and Control Frames - Real-world Capture 2c

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 335

Like the previous packet capture, we determine that the station at
00:20:a6:4f:01:40 is able to complete the IEEE 802.11 authentication and associa-
tion process by examining the contents of the information column in the Packet List
window for frames 24 through 29. Following the association response frame, we see
the beginning of the EAP exchange in frame 30 with an EAP Identity Request, fol-
lowed by the EAP Identity Response.

In frames 32 through 34, we see an EAP request from the AP multiple times.This is
another example of the station not immediately replying with an ACK frame, t h e re by
causing the AP to retransmit the frame until a response is re c e ive d . In the inform a t i o n
column for these frames, we see the EAP type of Message Digest 5 (MD5) Challenge,
also known as EAP-MD5.This indicates that the network is config u red to use EAP-
MD5 authentication on the RADIUS serve r, and that the AP is issuing an EAP-MD5
challenge for the station to encrypt as part of the authentication exchange.

In frame 35, we see a response from the station indicating an EAP negative
ACK or Negative A c k n owledgement (NAK) re s p o n s e. We can view the contents of
the EAP payload for frame 35 by clicking 802.1X Authentication | Extensible
Authentication Pro t o c o l. We can see that the EAP type is a NAK message,
which indicates that there is an error in the EAP exchange. Fo l l owing the Ty p e
fie l d , we see that the EAP payload indicates the desired authentication type of
Cisco LEAP (see Figure 6.42).

www.syngress.com

336 Chapter 6 • Wireless Sniffing with Wireshark

Figure 6.42 Identifying the EAP Type - Real-world Capture 2c

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 336

In this packet capture, the station failed to connect to the wireless network,
because it was configured to use LEAP authentication when the infrastructure net-
work was configured to use EAP-MD5 authentication. Because there was no
common EAP mechanism that was acceptable to both the client and the RADIUS
server, authentication failed, which resulted in the AP issuing a deauthenticate mes-
sage in frame 90. Visiting the client system and reconfiguring it to use the proper
authentication mechanism would solve this problem, allowing the client to success-
fully authenticate to the network.

Wireless Network Probing
Introduction
Modern wireless client software is designed to make it easier for end users to main-
tain a list of preferred wireless networks. Users often connect to more than one
wireless network (e.g., when in the office, a user may connect a corporate wireless
network called “CORPNET”; when at home, they may connect to a home wireless
network called “HOMENET”). When on the road, users may connect to hotel
wireless networks such as STSN or hhonors, or public hotspot networks such as
PANERA or T-Mobile.

In order to simplify the process of connecting to any of these netwo r k s , most wire-
less clients store a list of pre f e rred networks in a Pre f e rred Network List (PNL). O n
Wi n d ows XP systems, the PNL is ava i l a ble by right-clicking on the wireless adapter in
the Network Connections window and selecting Pro p e rties (see Figure 6.43).

www.syngress.com

Wireless Sniffing with Wireshark • Chapter 6 337

Figure 6.43 Windows XP PNL

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 337

In Figure 6.43, we can see that networks linksys, DUG_12, STSN, and wipop1
are all preferred networks for this client system, allowing the station to easily connect
to any of these available networks without interaction from the end user.

In order to identify if the networks in the PNL are available, wireless stations
regularly transmit probe request frames with the SSID specified in the payload of the
frame, and wait for responses from any available networks matching the SSID.This
can be a potential information disclosure threat, because it allows an attacker to
monitor and identify all of the network names configured in the station’s PNL, by
enumerating probe request frames.

In this real-world packet capture, we examine a mechanism to enumerate the
networks configured in the PNL to evaluate potential information disclosure threats,
or to identify stations that are connecting to wireless networks in an unauthorized
manner, by identifying suspicious SSIDs.

Systems Affected
Both Windows and Mac OS X stations include support for PNLs, and regularly
probe for all of these networks. Standard Linux systems do not include support for
PNLs, although third-party applications may include support for this functionality
with desktop environments such as KDE or GNOME.

Breakdown and Analysis
In this re a l - world traffic capture analysis,we re f e rence the capture file w i r e l e s s - r w c - 3 . c a p.
Open this packet capture file with Wi reshark to examine the contents.

In order to identify network names from the PNL, we need to examine probe
request frames coming from client systems.The packet capture file for this example
has already been filtered to include only probe request frames, but we could use a
display filter to identify only this frame type:
wlan.fc.type_subtype eq 4

The packet capture is displayed in Figure 6.44.
In frame 1, we see traffic from a station at 00:90:4b:1e:da:ca sending a probe

request frame to the broadcast destination address. In the information column in the
Packet List window, we see that the desired SSID name for the probe request is
rogers. In frame 2, we see another probe request, this time looking for the SSID
Rogers. (SSID names are case sensitive.) The “Rogers” SSID is repeated until frame 8
where the SSID changes to the broadcast SSID.The broadcast SSID is indicated by

www.syngress.com

338 Chapter 6 • Wireless Sniffing with Wireshark

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 338

the lack of an SSID or a 0-length SSID.After selecting frame 8, we can confirm this
by examining the contents of the SSID field by clicking IEEE 802.11 Wireless
LAN Management Frame | Tagged Parameters | SSID Parameter Set |
Tag Length.

We can continue to examine the SSIDs specified in the packet capture file by
s c rolling through the entire packet capture. U n f o rt u n a t e l y, Wi reshark display fil-
t e rs do not include the ability to apply a “ u n i q u e ” f i l t e ring mechanism where
only one of each unique SSID value is specified. We can effectively get the same
results from using the text-based Wi reshark tool using some common UNIX
t e x t - p rocessing utilities.

From a shell prompt, examine the contents of the wireless-rwc-3.cap packet cap-
ture file with the tshark tool as shown:
tshark -r wireless-rwc-3.cap -R "wlan.fc.type_subtype eq 4" -V

This syntax instructs tshark to read (-r) from the packet capture file using the
display filter (-R) wlan.fc.type_subtype eq 4 (display only probe request frames) with
verbose decoding output (-V).Tshark processes and displays the contents of the
packet capture file (see Figure 6.45).

www.syngress.com

Wireless Sniffing with Wireshark • Chapter 6 339

Figure 6.44 Examining Probe Request Content - Real-world Capture 3

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 339

TIP

UNIX operating systems are distributed with several text-processing tools
that make parsing and extracting data from text-based output simple.
You can download many of the most common and useful text-pro-
cessing tools for Windows systems by visiting the GNU utilities for
Win32 project Web site at http://unxutils.sourceforge.net. Download the
UnxUtils.zip file and extract it to a directory in your local execution path
such as C:\WINDOWS, or create a new directory such as C:\BIN for these
tools and add this new directory to your system path. You can modify
the system path by right-clicking on My Computer and then selecting
Properties | Advanced | Environment Variables. In the System
Variables section, scroll to the path variable, double-click on the value
for this variable and append the new directory with a leading semi-colon
to the end of the path list (e.g. ;C:\BIN).

In this output, we see that the line beginning with SSID parameter set indicates
the SSID in the probe request packet.The text processing tool grep can be used to
filter the output from tshark to list only this line, and pass the output from grep into

www.syngress.com

340 Chapter 6 • Wireless Sniffing with Wireshark

Figure 6.45 TShark Output - Real-world Capture 3

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 340

the sort utility. It then passes the output from sort to the uniq tool to remove dupli-
cates using the following command-line argument:
tshark -r wireless-rwc-3.cap -R "wlan.fc.type_subtype eq 4" -V | grep "SSID
parameter set:" | sort | uniq

By processing the output from tshark with the grep, sort, and uniq tools, we can
get a unique list of the SSIDs identified from probe request frames:
C:\wireshark>tshark -r wireless-rwc-3.cap -nV | grep "SSID parameter set:" |
sort | uniq

SSID parameter set: "hhonors"

SSID parameter set: "linksys"

SSID parameter set: "matrix"

SSID parameter set: "rogers"

SSID parameter set: "Rogers"

SSID parameter set: "turbonet"

SSID parameter set: "wldurel"

SSID parameter set: Broadcast

C:\wireshark>

Using this technique, you can enumerate all of the SSIDs being probed by
clients for the specified capture file. If you are interested in the PNL for a specific
c l i e n t , modify the display filter specified with the - R command-line argument to
specify the target client MAC address (e. g . , if the client MAC address you wa n t
to assess is 0 0 : 9 0 : 4 b : 1 e : d a : c a, modify the display filter used in the prev i o u s
e x a m p l e :
wlan.fc.type_subtype eq 4 and wlan.sa eq 00:90:4b:1e:da:ca

This analysis can be useful for identifying misconfigured client systems that
h ave deprecated wireless networks still listed in the PNL, or to identify stations
that have possibly violated organizational policy by connecting to unauthori z e d
n e t wo r k s .

EAP Authentication Account Sharing
Introduction
Pa s swo rd-based EAP types are the most popular IEEE 802.1x authentication mech-
anism for wireless netwo r k s . M a ny of these EAP types, including PEAPv0, L E A P,
and EAP-MD5, can disclose username information in plaintext as part of the

www.syngress.com

Wireless Sniffing with Wireshark • Chapter 6 341

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 341

authentication exchange.This can be potentially advantageous to an attacke r, but is
also advantageous to an administrator to assess the identities of users on the wire l e s s
n e t wo r k .

Systems Affected
This analysis applies to wireless networks using IEEE 802.1x authentication for
wireless networks, with an EAP type that discloses username information in plain-
text as part of the authentication exchange. Examples of EAP types that disclose this
information include EAP-MD5, LEAP, and PEAPv0.

Breakdown and Analysis
In this real-world traffic capture analysis, we reference the capture file wireless-rwc-
4.cap. Open this packet capture file with Wireshark to examine the contents.

NOTE

It was necessary to sanitize the wireless-rwc-4.cap contents before being
allowed to include it as a reference for this book. Please disregard the
timestamp information for each frame, as it is not valid for this analysis.
Other sources of information in the capture have also been modified
that do not affect the outcome of the analysis.

In order to examine username information disclosed in plaintext, we are pri-
marily concerned with EAP traffic.Apply the following display filter to examine all
EAP traffic in the capture file:
eap

The initial display after applying the filter for this packet capture is displayed in
Figure 6.46.

Looking at the information column, we can see that this is a capture of Cisco
LEAP (EAP-Cisco) traffic. While the first two frames in the display filter results
don’t disclose username information, selecting frame 12 (the third frame of the dis-
play filter results) displays the string nthom in the Packet Bytes window. Clicking
802.1X Authentication | Extensible Authentication Protocol | Identity
confirms that this is the username of the person at this workstation who is authenti-
cating to the wireless network.

www.syngress.com

342 Chapter 6 • Wireless Sniffing with Wireshark

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 342

Examining the contents of the EAP header, we can reduce the number of
packets returned in our display filter to include only EAP traffic of type identity and
code response by applying the following display filter:
eap.code eq 2 and eap.type eq 1

The results of this updated filter allow us to focus on the usernames reported for
each packet. Scrolling through each packet, we see the username nthom in frames 12
and 13 for the station at 00:09:b7:13:a8:27, and the username plynn in frames 35
and 36 for the same station.This could indicate multiple users sharing a single work-
station, or it could indicate a single user attempting to authenticate with multiple
different usernames. Frequent occurrences of this type of activity or attempts for
multiple usernames should be investigated for a potential security breach.

C o n t i nuing to examine the results of the display fil t e r, we see the username h b o n n
is used from the station at 0 0 : 0 a : 8 a : 4 7 : d b : 7 b in frames 77, 7 8 , 8 4 , 8 5 , 1 0 1 , 1 0 2 , 2 1 0 ,
and 211. E ven more interesting is the re o c c u rrence of the username n t h o m in frame
210 from the station at 0 0 : 4 0 : 9 6 : 4 2 : d b : 0 8.This indicates that a single usern a m e
(n t h o m) is being used from multiple stations, which is the result of multiple users
s h a ring the same username and passwo rd . If your organization has a policy against this
kind of activ i t y, you could use this analysis to identify the offending stations and users .

www.syngress.com

Wireless Sniffing with Wireshark • Chapter 6 343

Figure 6.46 Displaying EAP Traffic - Real-world Capture 4

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 343

IEEE 802.11 DoS Attacks
Introduction
IEEE 802.11 networks are vulnerable to a wide range of DoS attacks, allowing an
attacker to indefinitely prevent one or more users from being able to access the
medium for an indefinite amount of time. When under a DoS attack, the victim
only knows that they are unable to access the wireless network and unable to iden-
tify that their loss of connectivity is the result of a malicious action or a network
anomaly. Using Wireshark to analyze a traffic capture, the administrator can deter-
mine if the DoS condition is the result of malicious or non-malicious activity.

Systems Affected
This analysis applies to any wireless network that is potentially susceptible to DoS
attacks, including all wireless networks where a potential adversary can be near the
physical proximity of the network.

Breakdown and Analysis
In this real-world traffic capture analysis, we reference the capture file wireless-rwc-
5.cap. Open this packet capture file using Wireshark to examine the contents.

After opening the packet capture, we see that the first frame is a beacon frame
from the AP. By examining the packet list row for this frame, we determine that the
source MAC address of the AP is 00:e0:63:82:19:c6, and that the AP is attempting
to hide or cloak the network SSID by replacing the legitimate SSID with a single
space character (0x20).The information column for the Packet List window also
gives us other information, including the packet sequence number, FN, and BI. (Of
particular interest is the sequence number information.) See Figure 6.47.

All management and data frames on an IEEE 802.11 network are transmitted
with a sequence number in the 802.11 header contents.The sequence number is a
12-bit field used for fragmentation. If a transmitting station needs to fragment a large
packet into multiple smaller packets, the receiving station knows which fragments
belong together by the sequence number value. When an AP boots, it will start using
the sequence number 0, incremented by 1 for each packet transmitted. Once the
sequence number reaches 4,095, the sequence returns to 0 and repeats.

When examining a packet capture, each packet from a single source should have
a sequence number that is a positively incrementing integer value, modulo 4,095. In
some cases, there may be gaps in the sequence number (usually when a transmitter
goes off-channel to scan for other networks, and your capture card misses those

www.syngress.com

344 Chapter 6 • Wireless Sniffing with Wireshark

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 344

frames while remaining on a single channel), but the value should always be incre-
mented by a positive value until it wraps. We can observe this behavior in the first
several frames of this packet capture, where three beacons are transmitted sequen-
tially, each with a new sequence number that is incremented by one (599, 600, 601).

TIP

The concept of monitoring the activity of SNs for a transmitter is an
important characteristic of wireless Intrusion Detection Software (IDS),
and is used for a variety of analysis mechanisms.

Continuing to scroll through the packets listed in the Packet List window, we see
regular beacon frame activity from the AP, as well as unencrypted data frames from
multiple stations, including a regular ICMP Echo Request and Response pair
between the stations at 10.9.1.48 and 10.9.1.20, respectively.At frames 45 and 46,
however, we see deauthentication and disassociate frames transmitted by the AP to
the broadcast address.These frames are a legitimate part of the IEEE 802.11 specifi-
cation, and are used by the AP to inform stations that they have been disconnected
from the network. Both deauthentication and disassociate frames include a parameter

www.syngress.com

Wireless Sniffing with Wireshark • Chapter 6 345

Figure 6.47 Information Column Content Analysis - Real-world Capture 5

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 345

in the payload of the management frame known as the reason code, which identifies
why the station was disconnected from the network. Selecting frame 45 and clicking
IEEE 802.11 | IEEE 802.11 Wireless LAN Management Frame | Fixed
Parameter reveals the reason code for the deauthenticate frame as 0x0002, which
indicates that the previous authentication is no longer valid. Selecting frame 46 and
navigating to the reason code indicate that the station was disassociated because the
AP is unable to handle all currently associated stations (0x0005 (see Figure 6.48).

By carefully inspecting the Packet List window, we can spot several unusual con-
ditions with this packet capture:

■ A beacon in frame 47 follows the deauthentication and disassociate frames
with an anomalous SN. Starting with the two beacons prior to the deau-
thentication frame, the sequence number pattern is 637 (beacon), 638
(beacon), 1957 (deauthentication), 1958 (disassociate), and 639 (beacon).
The deauthentication and disassociate frames were transmitted with the
same source MAC address as the beacon frames, but do not follow the stan-
dard convention for selection of the sequence number.

www.syngress.com

346 Chapter 6 • Wireless Sniffing with Wireshark

Figure 6.48 Deauthentication and Disassociate Reason Code Analysis - Real-
world Capture 5

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 346

■ Following frame 47, we have two probe response frames with SNs that
follow the previous deauthentication and disassociate frames, but conflict
with the beacon frame.This is unusual from a sequence number perspec-
tive, because we are observing probe responses without a prior probe
request frame. However, it is possible that our sniffer dropped the probe
request frame, which must be taken into consideration.

■ The source MAC address of the probe response frames is 00:00:de:ad:be:ef.
While this is a valid MAC address, it is not the original MAC address
assigned to the station that transmitted this packet.

■ The SSID contents of the probe response frame are sent to the broadcast
SSID (a 0-length SSID indicates the broadcast SSID).This is also unusual,
because the AP must include an SSID in the probe response frame, even if
it is the cloaked SSID. (In this network, the cloaked SSID is represented
with a single space character.)

These factors all point to the notion that the deauthentication and disassociate
frames were spoofed and not transmitted by the legitimate source, and that the probe
response frames were sent in an effort to otherwise manipulate the network to the
attacker’s goals.

Examining the contents of the packet capture further, we see more similar deau-
thentication and disassociate activity with anomalous sequence number values, as
well as additional unsolicited probe responses with the unusual source MAC address.
With this analysis, we can determine that any DoS conditions users are experiencing
are the effect of an attack against the network, not from the result of misconfigured
clients or other legitimate network anomalies.

NOTE

The technique used in this packet capture is known as the NULL SSID
DoS attack, where an attacker is attempting to get client stations to pro-
cess malformed probe response frames in an effort to manipulate
firmware on legacy wireless LAN cards. This is particularly effective as a
DoS attack, because it renders the victim wireless card inoperable until
the card has been power-cycled. More information on this bug is avail-
able in the Wireless Vulnerabilities and Exploits database as WVE-2006-
0064 (www.wve.org/entries/show/WVE-2006-0064).

www.syngress.com

Wireless Sniffing with Wireshark • Chapter 6 347

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 347

IEEE 802.11 Spoofing Attacks
Introduction
A significant security weakness in IEEE 802.11 networks is the lack of a cry p t o-
graphically secure integrity check mechanism for traffic on the wireless netwo r k .
While more modern encryption protocols such as TKIP or CCMP provide a
s e c u re integrity check over the payload of a data frame, it does not prevent at least
p a rtial analysis of a frame transmitted by an attacker with a spoofed source MAC
a d d re s s .This weakness exposes a wireless network to several classes of attacks,
including packet spoofing attacks where an attacker impersonates a legitimate sta-
tion on the netwo r k .

Systems Affected
This analysis focuses on a vulnerability in a WEP network, but the principles of
analysis for identifying spoofed traffic, apply to all IEEE 802.11 wireless networks.

Breakdown and Analysis
In this real-world traffic capture analysis, we reference the capture file wireless-rwc-
6.cap. Open this packet capture file with Wireshark to examine the contents.

Upon opening the packet capture, we see traffic from multiple stations and
beacon frames for the WEPNET SSID.After examining the first few frames, you
may notice an anomalous sequence number combination for the station at
00:13:ce:55:98:ef in frames 4 (SN=2651), 8 (SN=2652), and 10 (SN=591).
However, when assessing the contents of frames, it is important to examine the status
of the From DS and To DS flags to determine if the frame is coming from a station
on the wireless network, or if it is being retransmitted by an AP to other stations on
the network. Select frame 8 and click IEEE 802.11 | Frame Control | Flags to
examine the DS status information (see Figure 6.49).

Examining the DS status line, we see that the frame is being transmitted to the
distribution system (To DS).This indicates that frame 8 is being transmitted by a
wireless station to the AP. Selecting frame 10 and navigating to the DS status line
indicates that the frame is being transmitted from the distribution system (From DS)
by the AP.This is not indicative of a spoofing attack; rather, the AP is retransmitting
the frame from the station to be received by other stations on the AP.

In order to inspect the sequence number patterns for signs of possible spoofing
activity, we can apply a display filter to examine only traffic sent to the DS from
wireless stations:
wlan.fc.tods eq 1 and wlan.fc.fromds eq 0

www.syngress.com

348 Chapter 6 • Wireless Sniffing with Wireshark

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 348

After applying this display fil t e r, we can focus our attention on traffic from wire-
less stations. In the first packe t , we see a NULL function frame from the wireless sta-
tion with sequence number 3885. (Recall that this is often used for powe r
management on wireless clients, to indicate to the AP that the client is entering a
p owe r - c o n s e rvation state.) In frame number 4, we have a data frame with sequence
number 2651 sent to a unicast addre s s , f o l l owed by a frame with that next sequence
number in the series sent to the broadcast addre s s . N e x t , we have another NULL
function frame, re t u rning to the ori ginal sequence number seri e s .

Continuing to look at the packet capture contents, we see additional data frames
sent to the broadcast address with SNs that are not part of the series used by the
NULL function frames. By selecting one of these anomalous frames (e.g., frame
number 11) and clicking IEEE 802.11 | WEP Parameters, we determine that this
is a WEP-encrypted network. At this point, we have determined that there is a sta-
tion that is transmitting spoofed WEP-encrypted packets sent to the broadcast
address; our next task is to evaluate what the potential impact is to the network.

Wireshark can produce a simple but effective Input/Output (IO) graph to illus-
trate the behavior of traffic on the network. Click Statistics | IO Graphs to open
the IO Graphs window (see Figure 6.50).

In Figure 6.50, Wireshark illustrates the characteristics of the packet capture
based on our analysis preferences. By default, Wireshark plots the time on the X axis

www.syngress.com

Wireless Sniffing with Wireshark • Chapter 6 349

Figure 6.49 sequence number Analysis - Real-world Capture 6

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 349

and the number of packets on the Y axis.This allows us to determine that there was
little activity on the wireless network for the first 10 seconds of the packet capture,
which increased to a rate of approximately 1,000 packets per second for approxi-
mately 38 seconds before the activity returned to a minimal level.

We can refocus the graph by modifying the X axis and Y axis values to give the
best view of the network activity. Change the Tick interval on the X axis to 0.1 sec-
onds and change the pixels per tick to 2.This will extend the width of the graph,
forcing us to scroll to see the activity of the entire capture.

NOTE

To obtain a better view of the graph content, you can expand the size of
the IO Graphs window to any resolution supported by your video card.

By defa u l t , the IO graph illustration shows the analysis for all traffic in the capture
fil e.We can add additional graphs to this view based on any cri t e ria we specify with
Wi reshark display fil t e rs . For this example, it is useful to identify exactly how mu c h
t r a f fic is ori ginating from wireless stations (To the DS), and how much traffic is ori gi-
nating from the AP (From the DS). Click on the Graph 2 line in the Filter text box and
enter the following display filter to identify all traffic from wireless stations to the DS:
wlan.fc.fromds eq 0 and wlan.fc.tods eq 1

Next, click the Graph 2 button to update the IO illustration (see Figure 6.51).

www.syngress.com

350 Chapter 6 • Wireless Sniffing with Wireshark

Figure 6.50 IO Graph Analysis - Real-world Capture 6

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 350

The new graph filter line illustrates the quantity and frequency of packets being
transmitted from wireless stations to the DS.Approximately 30 percent of the traffic
is from wireless stations; the remaining traffic is made up of traffic from the AP to
the stations or management or control frames that do not set the From DS or To DS
bits in the 802.11 frame control header.

In order to focus on the spoofed packe t s , we want to identify a pattern in the
p a c kets and apply a display filter to display only those frames.We have determined that
the significant increase in activity on the network started at approximately 10 seconds
into the packet capture, t h e re f o re, we can switch back to the Pa c ket List window and
s c roll to this point in the capture to examine the traffic activity (see Figure 6.52).

Fortunately, this packet capture was taken with the Radiotap Link layer header
information, which allows us to identify additional information about the character-
istics of the traffic beyond the 802.11 header contents (e.g., the signal strength indi-
cator is recorded with each packet that is captured, as well as the channel type and
data rate information. Selecting packet 624 and clicking Radiotap Header | SSI
Signal reveals the signal strength as 33 decibels (dB) for this NULL function packet,
which is believed to be from the legitimate station. Repeating the process for frame
629 reveals the signal strength as 60 dB for the data frame that is believed to be
spoofed. Sampling additional packets reveals similar information; legitimate frames
have a signal level between 31 dB and 46 dB, while illegitimate (spoofed) frames
have a signal level between 54 dB and 67 dB.This characteristic can be described in
a display filter to display only spoofed traffic:
wlan.fc.tods eq 1 and wlan.fc.fromds eq 0 and wlan.sa eq 00:13:ce:55:98:ef
and radiotap.db_antsignal > 50

www.syngress.com

Wireless Sniffing with Wireshark • Chapter 6 351

Figure 6.51 IO Graph/Wireless Station Traffic - Real-world Capture 6

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 351

This new display filter returns 12,574 frames, all of which appear to be trans-
mitted by an attacker through packet-spoofing techniques. While it may not be a
comprehensive list of all of the spoofed frames in the packet capture (it’s conceivable
that some frames were transmitted with lower signal levels), it is sufficient to use for
additional analysis.

With the display filter applied that only displays traffic suspected as being
spoofed, we can use Wireshark’s analysis and summarization features to glean addi-
tional information about this activity. Click Statistics | Summary to examine the
summary information (see Figure 6.53).

The bottom of the Wi reshark Summary window identifies several metri c s
re g a rding the traffic for all of the frames in the capture, and for packets re t u rn e d
with a display fil t e r. In this case, our display filter is showing 37.5 seconds of traffic
for a total of 12,574 frames at a rate of over 335 packets per second.This gives us
an idea as to the rate of the attack, which appears to be aggre s s ive based on the
number of packets per second.

Returning to the IO Graphs window, we can add this new display filter and
graph a third line to illustrate the traffic that is spoofed, compared to traffic sent
from wireless stations. Enter the same display filter in the Filter text box for graph 3

www.syngress.com

352 Chapter 6 • Wireless Sniffing with Wireshark

Figure 6.52 Examining Increasing Traffic Activity - Real-world Capture 6

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 352

and click the Graph 3 button. Wireshark processes the new display filter and returns
a new IO graph line (see Figure 6.54).

With this new graph line, we see that nearly all of the traffic sent from the wire-
less network is spoofed traffic from the attacker.

www.syngress.com

Wireless Sniffing with Wireshark • Chapter 6 353

Figure 6.53 Frame Statistics Summary - Real-world Capture 6

Figure 6.54 IO Graph/Spoofed Traffic Comparison - Real-world Capture 6

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 353

At this point in the analysis, we’ve determined several factors that are useful for
our analysis:

■ The wireless network was relatively quiet until 10 seconds into the packet
capture

■ An attacker started transmitting illegitimate WEP-encrypted frames into
the wireless network, spoofing the source address of a legitimate station

■ The attacker represents nearly 100 percent of the wireless frames sent to
the DS

■ The attacker is transmitting frames at approximately 335 packets per second
■ In response to their spoofed traffic, the attacker’s activity is generating a sig-

nificant number of packets from the AP to the wireless network

With this information and some background knowledge in the weaknesses of
WEP networks, we can determine that an attacker is manipulating the wireless net-
work to accelerate the amount of traffic on the network.This is a common tech-
nique used for WEP cracking; an attacker may require several hundred-thousand
packets on the wireless network to recover a WEP key. With a single station that is
not regularly transmitting any encrypted traffic, it may take an attacker weeks to
recover a sufficient quantity of traffic to recover the WEP key. By manipulating the
network in this fashion, the attacker has increased the traffic level from a minimal
number of frames to over 300 frames per second.At this rate, an attacker will have
collected a sufficient number of packets (approximately 150,000 unique encrypted
packets is a useful quantity for WEP cracking) in less than 10 minutes.

As the administrator of this network, you may have knowledge of the WEP key
used to decrypt traffic. In this example, the WEP key for the network is
f0:00:f0:00:f0. We can supply Wireshark with this encryption key and Wireshark will
display both the encrypted and unencrypted content for each packet.

To enter the encryption key for this capture click Edit | Pre f e rences |
P rotocols | IEEE 802.11.Type f 0 : 0 0 : f 0 : 0 0 : f 0 in an ava i l a ble WEP key slot, a n d
check the E n able decry p t i o n c h e c k b ox (see Figure 6.55). Click O K when fin i s h e d .

After Wireshark reloads the packet capture and decrypts each packet, any packets
that are successfully decrypted with the specified WEP key include two tabs at the
bottom of the Packet Bytes window labeled “Frame” and “Decrypted WEP data.”
With this new information, we can identify the activity that was generated by the
attacker. Select frame 663 (one of the spoofed packets) and inspect the Packet Details
window to identify the nature of the traffic (see Figure 6.56).

www.syngress.com

354 Chapter 6 • Wireless Sniffing with Wireshark

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 354

www.syngress.com

Wireless Sniffing with Wireshark • Chapter 6 355

Figure 6.55 Supplying WEP Encryption Keys - Real-world Capture 6

Figure 6.56 Examining Decrypted Frame Contents - Real-world Capture 6

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 355

We can see that the traffic being transmitted by the attacker is a repetitive series
of Address Resolution Protocol (ARP) Request packets that elicit ARP Response
packets from a station on the network.This activity reinforces our analysis that the
attacker is attempting to increase traffic levels on the network in order to collect
enough packets to use a WEP cracking tool. We can return to the IO Graphs view
and add another display filter to evaluate our earlier signal strength indicator display
filter, verifying if our initial analysis of spoofed traffic matches the series of ARP
request frames on the network.

Return to the IO Graphs window and add a third (and final) display filter to
identify only ARP request packets in the graph 4 line:
wlan.fc.tods eq 1 and wlan.fc.fromds eq 0 and wlan.sa eq 00:13:ce:55:98:ef
and arp.opcode eq 1

Modify the line style for this graph from “Line” to “Impulse” to make the graph
easier to see in context with the other graphs (see Figure 6.57).

We can see that the lines from graphs 3 and 4 match very closely, indicating that
our analysis of the attacker’s activity based on signal strength indicators and the
decrypted protocol activity are both correct.

www.syngress.com

356 Chapter 6 • Wireless Sniffing with Wireshark

Figure 6.57 IO Graph/ARP Request Tr a f fic Comparison - Real-world Capture 6

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 356

NOTE

This attack activity matches the mechanism implemented in the Aireplay
tool that ships with the Aircrack-ng suite of WEP and WPA-PSK cracking
tools. This attack tool is assigned the identifier WVE-2005-0015 by the
Wireless Vulnerabilities and Exploits group; visit
www.wve.org/entries/show/WVE-2005-0015 for additional information
about this attack tool.

Malformed Traffic Analysis
Introduction
A recent development in the saga of wireless LAN security is the use of IEEE
802.11 protocol fuzzing against wireless stations to identify bugs in driver software.
Fuzzing is a technique where an attacker sends malformed packets that violate the
specification of a protocol to a client or a server. If the server or client software is
not written to expect invalid packets, it can sometimes trigger flaws in software that
can be exploited by an attacker.

www.syngress.com

Wireless Sniffing with Wireshark • Chapter 6 357

IEEE 802.11 Protocol Fuzzing
A recent advancement in the list of techniques that can be used to compromise
the security of a wireless network, is the use of IEEE 802.11 protocol fuzzing.
Fuzzing is a technique used by security researchers and attackers to identify
software weaknesses when presented with unexpected data. This technique is
frequently used to identify potential security flaws in software that can be suc-
cessfully exploited to the attacker’s gain. Once an attacker identifies a sequence
of data that causes a victim to behave in a way the target software’s author did
not intend, the technique is developed into an exploit that can be used repeat-
edly against vulnerable stations. In the case of IEEE 802.11 wireless LANs,
fuzzing is being used to identify weaknesses in device driver software when
presented with malformed or unexpected wireless frames. These frames can be
malformed by violating the framing rules stated in the 802.11 specification or
by violating the expected order and timing of otherwise legitimate packets.

Notes from the Underground…

Continued

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 357

Systems Affected
This analysis applies to all wireless LANs where an attacker can get within physical
range of the wireless network.

Breakdown and Analysis
Capture 1
In this real-world traffic capture analysis, we reference the capture file wireless-rwc-
7.cap. Open this packet capture file with Wireshark to examine the contents.

This packet capture includes the 4-byte FCS at the end of each frame; however,
Wireshark has no way of knowing that the FCS is present. In order to successfully
analyze the contents of this capture, instruct Wireshark to expect the FCS informa-
tion by clicking Edit | Preferences | Protocols | IEEE 802.11 and ensure
“Assume packets have FCS” is selected. Click OK.

www.syngress.com

358 Chapter 6 • Wireless Sniffing with Wireshark

The use of 802.11 protocol fuzzing is not necessarily a bad thing. If a
researcher uses this technique to identify potential software flaws in station
drivers, and uses ethical disclosure practices to communicate these flaws to the
vendor, all wireless users benefit from improving the quality of otherwise
buggy software. However, if the intention of the researcher is not to ethically
disclose the vulnerabilities, but rather to turn them into exploits for their own
gain (potentially by exploiting systems or by selling their exploits to others who
will use them for ill gain), the risk to vulnerable organizations is significant.

In a wireless LAN, any attacker that gets within physical proximity of the
victim network can inject packets that will be received by wireless stations,
regardless of the encryption or authentication mechanisms used. If an attacker
can identify a driver vulnerability in the processing of these packets, there is little
that can be done to protect the vulnerable station. This is amplified because there
is little security software designed to protect the integrity of client systems at the
wireless LAN layer (OSI model layer 2). Most firewalls and other security tools
(e.g., host-based intrusion prevention tools) start assessing traffic at layer 3 and
h i g h e r, often leaving stations vulnerable and blind to any attacks at layer 2.

Fortunately, independent security researchers are actively looking for,
identifying, and communicating these driver flaws to the appropriate vendors,
in an effort to resolve them before they become actively exploited by attackers.
Concerned organizations should take care to ensure driver software on client
stations remains current, and that upper-layer analysis tools (such as intrusion
detection systems) are used to identify questionable activity from compromised
stations (including Internet Relay Chat [IRC] information, or signs of spyware
infections and other unauthorized network use) to monitor for potentially com-
promised stations.

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 358

Upon opening the packet capture, we see traffic from networks with the SSIDs
Lexie and NETGEAR, as well as some unencrypted data frames in the form of
ICMP echo requests and responses. Scrolling through the packet capture, we notice
the information column for frame 42 is labeled “Reassociation
Response,SN=4027,FN=0[Malformed Packet].”This is Wireshark’s mechanism to
indicate that this packet does not comply with the packet framing rules of the IEEE
802.11 specification. As soon as Wireshark comes to the point in the packet where it
evaluates the content as invalid, it will stop processing the remainder of the frame
and insert the “Malformed Packet” label. We can navigate the Packet Details window
to identify the content that caused the frame to be marked as invalid, by going to
the end of the Packet Details window. In frame 42, click IEEE 802.11 Wireless
LAN Management Frame | Tagged Parameters | Reserved Tag Number.
Wireshark will attempt to decode this information, as shown in Figure 6.58:

In this case, we see that the management frame payload information element is
not properly evaluated by Wireshark. Each of the tagged parameters in IEEE 802.11
management packets is consistently formatted as shown below:

Tag Type Tag Length Data (variable length, corresponding to tag length,
(1 byte) (1 byte) between 0 and 255 bytes)

www.syngress.com

Wireless Sniffing with Wireshark • Chapter 6 359

Figure 6.58 Assessing Malformed Frames - Real-world Capture 7

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 359

In this example, Wireshark identifies the tag number as 155 or 0 ×9b with a
length is 65 bytes (0 ×41). However, only 8 bytes remain at the end of the packet
before the FCS, not 65 as indicated by the frame length.This prompts Wireshark to
identify the packet as malformed.

NOTE

Wireshark identifies this packet as malformed, because the reported tag
length exceeds the number of remaining bytes in the packet, and
because Wireshark knows it has received 100 percent of the bytes in the
packet, as indicated by the frame packet length and capture length
information. However, Wireshark also identifies this tagged parameter as
using a reserved tag number.

Throughout the development of Wireshark, the authors of various
dissectors maintained the software to stay current with the supported
protocols and the values used in these protocols. However, over time,
standards bodies such as the IEEE and IETF may allocate previously
reserved values for new uses of existing protocols. As such, Wireshark
doesn’t assume the packet is invalid simply because it does not know
how to interpret a value that it observed, such as the tag number 155
in this example.

Observing a single malformed frame does not suggest that the capture is the
product of protocol fuzzing techniques or other potentially hostile activity; it is pos-
sible that this frame was accidentally corrupted when it was transmitted, or that the
station that is sending this data is flawed and is sending invalid frames. We can easily
determine if the first condition caused the frame to be malformed by checking the
contents of the FCS field. In frame 42, click IEEE 802.11 | Frame Check
Sequence. We see that Wireshark reports the FCS as 0 ×4e2e3e6f, which it reports as
correct for this packet. While it is possible that the packet could be modified by
retaining a valid FCS, it is highly unlikely.As such, we can assume the packet was
received in this capture exactly as it was transmitted.

The second possibility of a flawed implementation re m a i n s , which would also
suggest that we would see multiple packets that shared the characteristic of the
re s e rved tag number with a length that is longer than the number of bytes ava i l a bl e
in the capture. We can use a display filter to identify other frames that are similar to
frame 42, in an attempt to prove / d i s p rove this theory. Right-click on R e s e rve d

www.syngress.com

360 Chapter 6 • Wireless Sniffing with Wireshark

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 360

Tag Number and select P re p a re a Filter | Selected.This will place a display
filter in the Filter text-box :
frame[174:10] == 9b:41:66:6f:11:22:53:d6:d2:9f

This filter instructs Wi reshark to start looking at the 174-byte offer in this
p a c ket for a 10-byte sequence matching 9 b : 4 1 : 6 6 : 6 f : 1 1 : 2 2 : 5 3 : d 6 : d 2 : 9 f (note that
0 ×9 b is the re s e rved tag or 155, 0 ×4 1 is the malformed length [65], and the
remaining bytes re p resent the actual data following this tag. Clicking A p p l y w i l l
p rompt Wi reshark to process this display filter and display only frames that match
this characteri s t i c. When the display filter is applied, we see that only a single
frame has this characteri s t i c, which makes the possibility of a fl awed implementa-
tion generating this malformed frame less of a possibility.

Fortunately, Wireshark has a facility for performing expert information analysis
in order for the packet capture to identify anomalies such as malformed frames.
Instead of scrolling through the capture looking for information lines that indicate
malformed frames, we can use the Expert Information feature by clicking Analyze
| Expert Info Composite. Wireshark assesses the contents of the packet capture
and opens a new window (see Figure 6.59).

We see that Wireshark has detected 407 malformed frames in this packet cap-
ture. Expanding the list of malformed frames by clicking on the plus (+) sign in the
group column, reveals the list of packets that are malformed. Clicking on any of the
packet’s identifiers will update the Packet List window to display the contents for the
selected packet. Clicking on the Details tab will display additional information for
each of the errors detected (see Figure 6.60).

www.syngress.com

Wireless Sniffing with Wireshark • Chapter 6 361

Figure 6.59 Expert Information Analysis - Real-world Capture 7

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 361

H e re we see that each of the malformed frames has an exception in the IEEE
802.11 protocol analysis. Select frame 67 and click IEEE 802.11 Wi reless LAN
M a n a gement Frame | Ta g ged Pa r a m e t e rs to view the tagged parameter list.
A g a i n , Wi reshark attempts to dissect the contents of the tagged parameters , bu t
c h a r a c t e rizes each tag as a re s e rved tag nu m b e r. Expanding the last tag in the man-
agement payload reveals that it is using tag number 64 with a length of 62 by t e s ,
even though only 28 bytes are remaining in the packet payload (excluding 4 by t e s
for the trailing FCS).

Returning to the main Wireshark window, we can use the display filter function
to display only malformed frames with the following filter:
malformed

Enter this display string in the Filter text-box and click Apply. Wireshark will
display a list of all the frames that were identified as malformed (see Figure 6.61).

In this display we are examining only the malformed frames, which gives us
some curious information about the packet capture:

■ Each malformed frame has a consistent source MAC address and destina-
tion address.

■ The frame types va ry including reassociation re s p o n s e, re a s s o c i a t i o n
re q u e s t , p robe re s p o n s e, a c t i o n , p robe re q u e s t s , b e a c o n s , and so on.This is
u nusual because frames that should only be transmitted by an AP (beacons,
reassociation re s p o n s e, p robe response) are mixed with frames that should
only be transmitted by stations (probe re q u e s t , reassociation re q u e s t , a s s o c i-
ation re q u e s t) .

www.syngress.com

362 Chapter 6 • Wireless Sniffing with Wireshark

Figure 6.60 Expert Information Analysis - Detail Window - Real-world
Capture 7

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 362

■ Individual frames include values that are not reasonable; frame 278 indicates
the beacon interval is 42,281 millisecond (msec) (BI=42281), which means
the AP is transmitting beacons once every 43.3 seconds, as opposed to the
standard convention of 10 times per second. Similarly, frame 472 reports a
beacon interval of 18,146, or one beacon every 18.1 seconds.

Selecting individual frames reveals more anomalous activity (e. g . , frame 311 is
identified as an action frame, a new type of management frame designed to sup-
p o rt the IEEE 802.11h, IEEE 802.11k, and IEEE 802.11r working gro u p s .T h e
Flags byte in the frame control header for this frame has the To DS bit set and the
F rom DS bit clear, which indicates it is a wireless station and not an A P, but it
also has the power management bit set (indicating the station is going to enter a
p owe r - c o n s e rvation mode) and the more data bit set (indicating it is an AP which
has bu f f e red packets waiting to be delive red to a station). F u rt h e r, the stri c t - o rd e r
bit is set, which is generally not used in IEEE 802.11 implementations and should
a lways be clear.

www.syngress.com

Wireless Sniffing with Wireshark • Chapter 6 363

Figure 6.61 Filtering on Malformed Frames - Real-world Capture 7

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 363

TIP

A great place to get information about upcoming IEEE 802.11 stan-
dards is the IEEE 802.11 timelines page, where each working group
provides a short summary of the activity of the working group and
the estimated schedule for the ratification of the standard or amend-
ment. Linked to each task group is the project authorization request
form and approval letter, which documents the intentions of the
working group and the detailed status page for the activity of the
working group. The IEEE 802.11 timelines page is available at
h t t p : / / g r o u p e r. i e e e . o r g / g r o u p s / 8 0 2 / 1 1 / R e p o r t s / 8 0 2 . 1 1 _ T i m e l i n e s . h t m.

Our analysis suggests evidence of IEEE 802.11 protocol fuzzing; our “mal-
formed” display filter revealed over 400 packets that have conflicting field settings
and reserved field values. However, further analysis also indicates that these 400
frames are not the only packets that appear to be the result of protocol fuzzing.
Apply the following display filter to identify all frames with the consistent source
and destination address we have identified for this traffic.
wlan.sa eq 00:07:0e:b9:74:bb and wlan.da eq 00:20:a6:4c:d9:4a

Applying this filter returns 4,580 frames (see Figure 6.62).
Even though many of these frames aren’t recognized as malformed by

Wireshark, they appear to have similar characteristics that would lead us to believe
that they are also the result of IEEE 802.11 protocol fuzzing. For example, frame 55
is reported as a fragmented packet, a feature that is seldom-used in wireless LANs.
However, it is also indicating that the station is going to sleep, effectively saying,
“Here’s the first part of a packet, now I’m going to sleep, so hold on to this for me.”

From a security researcher’s perspective, Wireshark is an indispensable tool for
analyzing the results of protocol fuzzing activity, assisting in narrowing down the
activity that caused misbehavior in the target station. From an intrusion analysis per-
spective, it’s not likely you’ll see this kind of activity on your network, because most
of these packets don’t elicit a response from the target station; rather, a Wireless Local
Area Network (WLAN) IDS system may observe the few frames sent by the attacker
to reproduce an identified vulnerability in an effort to exploit a victim system.

www.syngress.com

364 Chapter 6 • Wireless Sniffing with Wireshark

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 364

www.syngress.com

Wireless Sniffing with Wireshark • Chapter 6 365

Figure 6.62 Filtering on Consistent Source and Destination - Real-world
Capture 7

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 365

Summary
Packet sniffing on wireless networks has unique challenges that are different than the
challenges of capturing traffic on wired networks. Fortunately, many wireless cards
support the ability to capture wireless traffic without needing to connect to a net-
work with the monitor mode feature. By leveraging available tools and drivers for
Windows and Linux systems, you can use a standard wireless card to capture traffic
on the wireless network for analysis.

Wireshark’s wireless analysis features have grown to be a very powerful tool for
troubleshooting and analyzing wireless networks. Leveraging Wireshark’s display fil-
ters and powerful protocol dissector features, you can sift through large quantities of
wireless traffic to identify a specific condition or field value you are looking for, or
exclude undesirable traffic until you are left with only a handful of traffic to assess.
In this chapter, we examined several examples of display filters taken from practical
analysis needs that you can apply to your own network analysis needs.

Wireshark doesn’t limit itself to display filters for wireless analysis; we can also
take advantage of other analysis features built into Wireshark to simplify wireless net-
work analysis. Features like Wireshark’s coloring rules allow us to leverage display fil-
ters to uniquely color-code packets in the Packet List window, which allows you to
assess the contents of a packet capture by looking at the number of packets. If your
packet capture includes radio signal strength information or transmission rate infor-
mation, Wireshark can make that information visible as well, giving extra visibility
into the health and robustness of wireless client connectivity. Finally, when config-
ured with the appropriate encryption keys, Wireshark can decrypt traffic dynami-
cally, to further simplify the task of network troubleshooting.

Finally, we examined several packet captures taken from production and lab
wireless environments, to demonstrate Wireshark’s wireless analysis and trou-
bleshooting capabilities. Without a doubt, Wireshark is a powerful assessment and
analysis tool for wireless networks that should be a part of every auditor, engineer,
and consultant toolkit.

www.syngress.com

366 Chapter 6 • Wireless Sniffing with Wireshark

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 366

Solutions Fast Track
Techniques for Effective Wireless Sniffing

 Wireless cards can sniff on one channel at a time.

 Channel hopping is used to rapidly change channels and briefly capture
traffic.

 Interference can result in lost traffic and incomplete packet captures.

 Locate the capture station near the station being monitored, while disabling
any local transmitters and minimizing CPU utilization.

Understanding Wireless Card Operating Modes
 Wireless card operating modes include managed, master, ad-hoc, and

monitor.

 Monitor mode causes the card to passively capture wireless traffic without
connecting to a network.

 Wireless cards do not normally transmit while in monitor mode.

Configuring Linux for Wireless Sniffing
 Linux Wireless Extensions compatible drivers use the iwconfig utility to

configure monitor mode.

 The Linux MADWIFI drivers for Atheros cards use the wlanconfig utility to
configure monitor mode.

 Linux Wireless Extensions compatible drivers and the MADWIFI drivers
use the iwconfig utility to specify the channel number.

Configuring Windows for Wireless Sniffing
 Windows does not have a built-in mechanism for using a wireless driver in

monitor mode.

 The commercial AirPcap drivers and USB wireless dongle can be used to
capture traffic in monitor mode.

www.syngress.com

Wireless Sniffing with Wireshark • Chapter 6 367

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 367

www.syngress.com

368 Chapter 6 • Wireless Sniffing with Wireshark

Using Wireless Protocol Dissectors
 Frame statistic information is included as the first group of fields in the

Packet Details window.

 Protocol dissectors extract and enumerate fields in the IEEE 802.11 header
and payload.

 The IEEE 802.11 header and payload data can be very complex, but the
data is easily assessed with protocol dissectors.

Useful Wireless Display Filters
 Display filters can be applied to any of the fields in the IEEE 802.11 header

and payload data.

 Complex display filters can be built by adding to a filter with AND or OR
conditions.

 You can apply inclusive filters when looking for a specific set of data, or to
remove uninteresting data from the packet list.

Leveraging Wireshark Wireless Analysis Features
 Coloring rules leverage display filters to identify matching display filter

conditions.

 Applying a handful of helpful coloring rules can make it easier to analyze
large quantities of frames.

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 368

www.syngress.com

Wireless Sniffing with Wireshark • Chapter 6 369

Q: Can I use Wireshark for wireless intrusion analysis?

A: Wireshark’s display filter functionality can be used to identify some attacks on
wireless networks, such as deauthenticate DoS attacks (wlan.fc.type_subtype eq 12),
FakeAP (wlan_mgt.fixed.timestamp < “0 ×000000000003d070”) and NetStumbler
(wlan.fc.type_subtype eq 32, llc.oui eq 0x00601d, and llc.pid eq 0x0001), but it is not
a replacement for a sophisticated WLAN IDS system.

Q: Can I use Wireshark to crack wireless encryption keys?

A: No, Wireshark does not include any key cracking functionality. Wireshark can
decrypt WEP traffic, but only when configured with the correct WEP key.

Q: Can I use Wireshark to analyze traffic captured with Kismet?

A: Ye s , Kismet generates several output file types including libpcap files with a . d u m p
e x t e n s i o n . Wi reshark can open and assess libpcap files generated with Kismet.

Q: Can I use Wireshark to analyze traffic captured with NetStumbler?

A: No, NetStumbler does not capture traffic in monitor mode and is unable to
create libpcap files for use with Wireshark.

Q: What is the best card to get for wireless analysis?

A: Wireless cards with an Atheros chipset are known to be effective at capturing
wireless traffic on Linux systems, often allowing you to select between IEEE
802.11a, 802.11b and 802.11g traffic. Visit the Atheros Product Database at
http://customerproducts.atheros.com/customerproducts/ResultsPageBasic.asp to
identify if a card is based on an Atheros chipset. For Windows hosts, the AirPcap
adapter is functional and well-supported by Wireshark, but does not yet support
IEEE 802.11a channels.

Frequently Asked Questions
The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 369

Q: Can I use Wireshark to capture traffic while connected to an AP?

A: When associated to an AP, the wireless card is working in managed mode. Some
drivers allow you to capture traffic in managed mode, but the data is reported as
if it were coming from a standard Ethernet interface.This prevents you from
seeing management frames, control frames, and data destined for other networks.

Q: Can Wireshark sniff IEEE 802.11a/b/g/n networks?

A: Wireshark isn’t limited in its ability to sniff any physical layer wireless network
type, as long as the driver is compatible with libpcap/winpcap and the wireless
card supports monitor mode for the desired spectrum. At the time of this
writing we are just starting to see pre-802.11n networks; if your wireless card
and driver support monitor mode for IEEE 802.11n modulation, Wireshark can
be used to analyze the traffic.

Q: How can I examine signal strength information in a Wireshark capture?

A: Wireshark will display signal strength information in any packet capture that
includes this information in the frame header contents. Some packet captures
only contain the IEEE 802.11 header contents, which does not include signal
strength information. When capturing traffic for a wireless network, use the
Radiotap of Prism AVS link types to record signal strength information.

www.syngress.com

370 Chapter 6 • Wireless Sniffing with Wireshark

377_Eth_2e_ch06_web.qxd 11/20/06 11:02 AM Page 370

371

Real World
Packet Captures

Solutions in this chapter:

■ Scanning

■ Remote Access Trojans

■ Dissecting Worms

■ Active Response

Chapter 7

� Summary

� Solutions Fast Track

� Frequently Asked Questions

ethereal_ch07.qxd 11/14/06 12:43 PM Page 371

Introduction
Now that you have learned how Wireshark works and how to use it, you are armed
and ready to read real network packet captures. In this chapter we discuss real-world
packet captures and traffic that you could be seeing on your network.You will learn
how to read the captures, what to look for, and how to identify various types of net-
work traffic.The Honeynet Project at http://project.honeynet.org provided some of
the packet capture data in this chapter, which we have included on the accompanying
CD-ROM in the /captures directory.The Honeynet Project Web site includes a great
challenge called Scan of the Month that will exercise your capture analysis abilities.

Scanning
Network scanning is used to identify available network resources.Also known as dis-
covery or enumeration, network scanning can be used to discover available hosts, ports,
or resources on the network. Once a vulnerable resource is detected, it can be
exploited, and the device can be compromised. Sometimes, an actual intruder is
behind the scanning, and sometimes it is a result of worm activity. In this section we
focus on active intruder scanning, and worm activity is covered in a later section.
Security professionals also use network scanning to assist in securing and auditing
the network. In this section we use Scan1.log, which contains several different types
of scans and was provided by the Honeynet Research Alliance as part of the
Honeynet Project’s Scan of the Month challenge. Scan1.log is located on the accom-
panying CD-ROM in the /captures directory.

NOTE

The Transmission Control Protocol (TCP) is connection oriented and ini-
tialized by completing a three-way handshake. The TCP three-way hand-
shake consists of an initial packet that is sent with the SYN flag, a return
packet that includes both the SYN and ACK flags, and a third packet that
includes an ACK flag.

TCP Connect Scan
The first scan that we will analyze is the TCP Connect scan, which is used to
determine which ports are open and listening on a target device.This type of

www.syngress.com

372 Chapter 7 • Real World Packet Captures

ethereal_ch07.qxd 11/14/06 12:43 PM Page 372

scanning is the most basic because it completes the TCP three-way handshake
with open ports and immediately closes them. An intruder sends a SYN packet
and analyzes the response. A response packet with the Reset (RST) and
Acknowledgment (ACK) flags set indicates that the port is closed. If a SYN/ACK
is received, it indicates that the port is open and listening.The intruder will then
respond with an ACK to complete the connection followed by an RST/ACK to
immediately close the connection.This aspect of the scan makes it easily
detectable because the error messages made during attempts to connect to a port
will be logged.

Figure 7.1 shows the attacker, 192.168.0.9, sending SYN packets to the target,
192.168.0.99. Most ports respond with an RST/ACK packet; however, the high-
lighted packets show the SYN/ACK response and the subsequent ACK followed
by the RST/ACK exchange on the domain name system (DNS) port.You will
also notice that the intruder’s source port increases by one for each attempted
connection.

Figure 7.2 shows the active ports on the target device.You can find these by
using a filter such as tcp.flags.syn==1&&tcp.flags.ack==1 or tcp.flags==18 to view
packets with the SYN and ACK flags set.The filter will show multiple responses for
each port because several scanning methods were used. We removed the duplicates
by saving the marked packets to a file.

www.syngress.com

Real World Packet Captures • Chapter 7 373

Figure 7.1 TCP Connect Scan

ethereal_ch07.qxd 11/14/06 12:43 PM Page 373

NOTE

The filter tcp.flags==18 will display packets with the SYN and ACK flags
set because the binary value of the TCP flags field of a SYN/ACK packet is
00010010, which equals 18 in decimal format.

SYN Scan
The next scan that we will analyze is a TCP SYN scan, also known as a half-open
scan because a full TCP connection is never completed. It is used to determine
which ports are open and listening on a target device.An intruder sends a SYN
packet and analyzes the response. If an RST/ACK is received, it indicates that the
port is closed. If a SYN/ACK is received, it indicates that the port is open and lis-
tening.The intruder will then follow with an RST to close the connection. SYN
scans are known as stealth scans because few devices will notice or log them because
they never create a full connection. However, many current firewalls and intrusion
detection systems (IDSes) will notice this type of activity.

In Figure 7.3, the attacker, 192.168.0.9, is sending SYN packets to the target,
192.168.0.99. Most ports respond with an RST/ACK packet; however, the high-
lighted packets show the SYN/ACK response and the subsequent RST exchange on

www.syngress.com

374 Chapter 7 • Real World Packet Captures

Figure 7.2 SYN/ACK Responses

ethereal_ch07.qxd 11/14/06 12:43 PM Page 374

the https port.You will also notice that the intruder is using somewhat static source
ports, 52198 and 52199.

XMAS Scan
The XMAS scan determines which ports are open by sending packets with invalid
flag settings to a target device. It is considered a stealth scan because it may be able
to bypass some firewalls and IDSes more easily than the SYN scans.This XMAS
scan sends packets with the Finish (FIN), Push (PSH), and Urgent (URG) flags set.
Closed ports will respond with an RST/ACK, and open ports will drop the packet
and not respond. However, this type of scan will not work against systems running
Microsoft Windows, Cisco IOS, BSDI, HP/UX, MVS, and IRIX.They will all
respond with RST packets, even from open ports.

Notice that in Figure 7.4 the attacker, 192.168.0.9, is sending packets to the
target, 192.168.0.99, with the FIN, PSH, and URG flags set. Most ports respond
with an RST/ACK packet; however, the highlighted packet for the sunrpc port
never receives a response.This lack of a response indicates that the port is open and
has dropped the packet.You will also notice that the intruder is using decoy
addresses of 192.168.0.1, 192.168.0.199, and 192.168.0.254. Decoy addresses are
often used to obscure the real intruder’s Internet Protocol (IP) address, making it
harder to track down the real source of the scan. Looking closely at those packets
reveals the same Media Access Control (MAC) address for all IP addresses.You will
also notice that the intruder is using somewhat static source ports, 35964 and 35965.

www.syngress.com

Real World Packet Captures • Chapter 7 375

Figure 7.3 SYN Scan

ethereal_ch07.qxd 11/14/06 12:43 PM Page 375

Null Scan
The Null scan determines which ports are open by sending packets with invalid flag
settings to a target device. It is considered a stealth scan because it may be able to
bypass some firewalls and IDSes more easily than the SYN scans.This Null scan sends
packets with all flags turned off. Closed ports will respond with an RST/ACK, and
open ports will drop the packet and not respond. However, this type of scan will not
work against systems running Microsoft Windows, Cisco IOS, BSDI, HP/UX, MVS,
and IRIX.They will all respond with RST/ACK packets, even from open ports.

In Figure 7.5, the attacker, 192.168.0.9, is sending packets to the target,
192.168.0.99, with all flags turned off, as indicated by the empty brackets []. Most
ports respond with an RST/ACK packet; however, the highlighted packet for the
https port never receives a response, thereby indicating that the port is open and has
dropped the packet. Notice that the intruder is using somewhat static source ports,
42294 and 42295.

Remote Access Trojans
The term Trojan horse originally came from the Greek epic poem “The Odeyssey” by
Homer. In the story of the Trojan War, the Greeks left a large wooden horse as an
apparent peace offering to the Trojans. Once the horse was brought inside the city
walls of Troy, the Greek soldiers who were hiding inside of the hollow horse emerged

www.syngress.com

376 Chapter 7 • Real World Packet Captures

Figure 7.4 XMAS Scan

ethereal_ch07.qxd 11/14/06 12:43 PM Page 376

and assisted in capturing the city. In the information security field, trojans are mali-
cious programs that are often disguised as other programs such as jokes, games, net-
work utilities, and sometimes even the trojan removal program itself! Trojans are often
used to distribute backdoor programs without the victims being aware that they are
being installed. Backdoors operate in a client-server architecture and allow the
intruder to have complete control of a victim’s computer remotely over the network.
They give an intruder access to just about every function of the computer, including
logging keystrokes, activating the Webcam, logging passwords, and uploading and
downloading files.They even have password protection and encryption features for
intruders to protect the computers that they own! There are hundreds, maybe even
thousands, of trojan programs circulating the Internet, usually with many variations of
the code, making their detection with antivirus software very difficult.

In this section we will use Scan2.log, which was provided by the Honeynet
Research Alliance as part of the Honeynet Project Scan of the Month challenge.
Scan2.log is located on the accompanying CD-ROM in the /captures directory. We
will also use our own lab-created backdoor packet captures, called subseven_log and
netbus_log, also located on the accompanying CD-ROM in the /captures directory.

SubSeven Legend
SubSeven is one of the most common Windows backdoor trojans. It is an older pro-
gram, and most virus software can detect it, but there are many variations of it
floating around the Internet. SubSeven is smart enough to notify the intruder, via

www.syngress.com

Real World Packet Captures • Chapter 7 377

Figure 7.5 Null Scan

ethereal_ch07.qxd 11/14/06 12:43 PM Page 377

Internet Relay Chat (IRC), e-mail, or some other method, that the victim’s com-
puter is online. It runs over a TCP connection with a default port of 27374,
although this port is configurable. SubSeven has numerous features that allow the
intruder to completely control the victim’s computer.

Figure 7.6 shows a packet capture of a SubSeven Legend client-server interac-
tion. SubSeven Legend is the anniversary edition of SubSeven.The intruder is run-
ning the client on 192.168.1.1, which is connected to the server on the victim’s
computer at 192.168.1.200.You will notice that the server is running on the default
port 27374 and that data is being pushed between the client and server.

Using the Follow TCP Stream feature of Wireshark will show what is going on
between the SubSeven server and client. Figure 7.7 shows the connection day and
time and the version of the SubSeven server. Next, it shows that the intruder per-
formed a directory listing of C:\ and downloaded the file secret.txt. However, the
data for this file is obscured.

NetBus
The NetBus backdoor trojan is also one of the older and more common Windows
backdoor trojans. It is easily detectable using antivirus software, but like SubSeven,
many variations exist. It runs over a TCP connection with default ports of 12345
and 12346, but it also is configurable. Like SubSeven it has numerous features that
allow the intruder to completely control the victim’s computer.

www.syngress.com

378 Chapter 7 • Real World Packet Captures

Figure 7.6 SubSeven Legend Backdoor Trojan

ethereal_ch07.qxd 11/14/06 12:43 PM Page 378

Figure 7.8 shows a packet capture of a NetBus client-server interaction.The
intruder is running the client on 192.168.1.1, which is connected to the server on
the victim’s computer at 192.168.1.200.You will notice that the server is running on
the default ports 12345 and 12346 and that data is being pushed between the client
and server.The two separate source ports indicate two distinct TCP connections.

www.syngress.com

Real World Packet Captures • Chapter 7 379

Figure 7.7 SubSeven Client-Server Interaction

Figure 7.8 NetBus Backdoor Trojan

ethereal_ch07.qxd 11/14/06 12:43 PM Page 379

Using the Follow TCP Stream feature of Wireshark will show what is going on
between the NetBus server with the port 12345 and the client. Figure 7.9 shows the
version of the NetBus server and also indicates that the intruder downloaded the file
C:\temp\secret.txt. Figure 7.10 shows the client revealing the contents of the down-
loaded file! This data means that not only the intruder but also anyone else on the
line with a sniffer can read the contents of the file as it is transmitted.

RST.b
RST.b is a less widely used backdoor access trojan that affects various Linux plat-
forms.The backdoor listens in promiscuous mode for User Datagram Protocol
(UDP) packets to any port.To access the backdoor, the intruder sends a UDP packet
containing the payload “DOM.”

Figure 7.11 shows a packet capture of an intruder scanning for systems
infected with the RST.b trojan. We filtered on UDP to focus on the last nine
UDP packets.The intruder uses different source IP addresses and random destina-
tion ports to prevent IDSes from detecting the scan. Because the RST.b trojan lis-
tens in promiscuous mode, it will respond to UDP packets containing the
“DOM” payload on any port.

www.syngress.com

380 Chapter 7 • Real World Packet Captures

Figure 7.9 NetBus Client-Server Interaction

Figure 7.10 NetBus Client-Server Content

ethereal_ch07.qxd 11/14/06 12:43 PM Page 380

www.syngress.com

Real World Packet Captures • Chapter 7 381

Figure 7.11 RST.b Backdoor Scan

Trojan, Virus, and Worm: What’s the Difference?
Many people get confused over the difference between a virus, a worm, and a
trojan. The terms tend to be used interchangeably, but they are really three very
distinct entities. Each uses different ways to infect computers, and each has dif-
ferent motivations behind its use.

A virus is a program that can infect files by attaching to them, or replacing
them, without the user’s knowledge. A virus can execute itself and replicate itself
to other files within the system, often by attaching itself to executable files, known
as host files. Viruses travel from computer to computer when users transmit
infected files or share storage media, such as a floppy disk. Viruses may be benign
or malicious. A benign virus does not have any destructive behavior; it presents
more of an annoying or inconvenient behavior, such as displaying messages on the
computer at certain times. A benign virus still consumes valuable memory, CPU
time, and disk space. Malignant viruses are the most dangerous because they can
cause widespread damage, such as altering software and data, removing files, or
erasing the entire system. However, no viruses can physically damage your com-
puter hardware. There are several types of viruses, including the following:

■ File infector A virus that attaches to an executable file
■ Boot sector A virus that places code in the disk sector of a com-

puter so that it is executed every time the computer is booted

Notes from the Underground…

Continued

ethereal_ch07.qxd 11/14/06 12:44 PM Page 381

Dissecting Worms
Throughout the past few years we have seen an increase in not only worm activity
but also the severity of worm attacks on systems and networks. Internet worms are
becoming faster, smarter, and stealthier. Most worms attack vulnerabilities in software
for which patches have been readily available for quite some time before the exploit
appeared. Complex worms that can exploit several vulnerabilities and propagate in a
number of different ways are beginning to emerge, making reverse engineering and
defending against the worm more difficult.This section will explore three well-
known worms: SQL Slammer, Code Red, and Ramen.

SQL Slammer Worm
The SQL Slammer worm began propagating on the Internet on January 25, 2003.
It exploits a vulnerability in the Resolution Service of Microsoft SQL Server 2000
and Microsoft Desktop Engine (MSDE) 2000. It is also known as the
W32.Slammer worm, Sapphire worm, and W32.SQLExp.Worm. Known as the
fastest-spreading worm, it infected most vulnerable systems within 10 minutes. As

www.syngress.com

382 Chapter 7 • Real World Packet Captures

■ Master boot record A virus that infects the first physical sector of
all disks

■ Multi-partite A virus that will use a number of infection methods
■ Macro A virus that attaches itself to documents in the form of

macros

A trojan is a program that is covertly hiding another potentially malicious
program. The trojan is often created to appear as something fun or beneficial,
such as a game or helpful utility. However, when a user executes the program,
the hidden malicious program is also executed without the user’s knowledge.
The malicious program is then running in memory and could be controlling
backdoor access for the intruder or destroying system files or data. A trojan
could also contain a virus or a worm. Trojans do not replicate or propagate
themselves; they are often spread by unknowing users who open an e-mail
attachment to execute a file downloaded from the Internet.

A worm is a program much like a virus that has the added functionality of
being able to replicate itself without the use of a host file. With a worm, you
don’t have to receive an infected file or use an infected floppy to become
infected; the worm does this all on its own. A worm actively replicates itself and
propagates itself throughout computer networks. A worm will consume not
only valuable system resources but also network bandwidth while it is propa-
gating or attempting to propagate.

ethereal_ch07.qxd 11/14/06 12:44 PM Page 382

the worm propagated and compromised more systems, the Internet showed signifi-
cant signs of degradation.

The SQL Slammer worm exploits a stack buffer overflow vulnerability that allows
for the execution of arbitrary code. Once a system is compromised, the worm will
attempt to propagate itself by sending 376-byte packets to randomly chosen IP
addresses on UDP port 1434.All vulnerable systems that are discovered will become
infected and also begin to scan for more vulnerable systems.With this type of expo-
nential growth, it is no wonder that the worm spread so fast! This type of propagation
leads to many other problems, including performance issues, crashed systems, and
denial of service. Details on the SQL Slammer worm, including the patch, instructions
on applying ingress and egress filtering, and recovery from a compromised system, can
be found in the CERT Advisory at www.cert.org/advisories/CA-2003-04.html.

The Scan3.log file, provided by the Honeynet Research Alliance as part of the
Honeynet Project Scan of the Month challenge, shows evidence of the SQL
Slammer worm attempting propagation. Scan3.log is located on the accompanying
CD-ROM in the /captures directory.After you open the packet capture in
Wireshark, apply the UDP filter with destination port 1434, and you will see the
Slammer scan traffic, as shown in Figure 7.12.You will notice that there are 55
packets from random source addresses that are sending a UDP packet to port 1434.
The UDP packet also has a length of 384 bytes, which is the 376 bytes of data plus
the 8-byte header.All the packets are incoming to the target 172.16.134.191, and
none are going out—an indication that the system is not compromised but rather
just the target of the randomly generated IP addresses on other compromised sys-
tems.You will also notice that each of the packets contains data, and although it is a

Real World Packet Captures • Chapter 7 383

Figure 7.12 SQL Slammer Propagation Attempt

www.syngress.com

ethereal_ch07.qxd 11/14/06 12:44 PM Page 383

bit scrambled, you can make out the various parts of the exploit code such as
ws2_32.dll, kerne32.dll, GetTickCount, socket, and send to.

Code Red Worm
The Code Red worm was originally discovered on July 13, 2001, and since then,
many variants, including Code Red II and III, have emerged.The worm infects
Microsoft Windows NT, 2000, and beta versions of XP that are running ISS 4.0 and
5.0 Web servers. It exploited a vulnerability, which was discovered on June 18, 2001,
by eEye Digital Security[1]. Code Red exploits a known buffer overflow vulnera-
bility in the ISS Indexing services IDQ.DLL file. Details on the Code Red worm,
including the patches, workarounds, and recovery from a compromised system, can
be found in the CERT advisory CA-2001-13 [2] and CVE-2001-0500 [3].

A system infected with the Code Red worm attempts to connect to randomly
generated IP addresses on port 80. If the worm discovers a Web server on the target

www.syngress.com

384 Chapter 7 • Real World Packet Captures

Why Did Slammer Spread So Fast?
SQL Slammer has been the fastest-spreading worm to date. A detailed analysis
of the spread of the SQL Slammer worm can be found at www.caida.org/anal-
ysis/security/sapphire. Several key attributes of the worm enabled it to spread
at such an alarming rate:

■ Random scanning The random scanning of the worm allowed for
initial exponential growth.

■ Simple and fast scanner The worm could scan as fast as the
compromised computer could transmit packets or the network
could deliver them.

■ Small size The SQL Slammer worm was only 376 bytes.
■ UDP The use of a single UDP packet allowed for efficient propaga-

tion because the connection does not have to wait for a response.

The propagation of the Slammer worm caused worldwide disruption in
approximately 10 minutes. Fast-spreading Internet worms are a significant
milestone in computer security and a reality that should be met with all avail-
able countermeasures.

Notes from the Underground…

ethereal_ch07.qxd 11/14/06 12:44 PM Page 384

system, it then tries to exploit the IIS buffer flow vulnerability by sending a specially
crafted Hypertext Transfer Protocol (HTTP) GET request. If successful, the worm
creates 100 threads of itself on the infected system.The first 99 threads are used to
spread the worm, while the 100th thread is used to deface the Web. If the newly
infected Web server is a U.S. English Windows NT/2000 system, the worm defaces
all pages on the Web site with the message ”HELLO!Welcome to www.worm.com!
Hacked By Chinese!” Next, the worm performs a DOS attack on 198.137.240.91,
which is the U.S. White House Web site.

The IP addresses of the target systems the worm attempts to infect are randomly
generated. However, in the first version of this worm, the seed of the random
number generator is a constant, resulting in all infected computers generating the
same list of IP addresses to infect.Thus, the same group of infected systems is re-
infected by other newly infected systems. Consequently, much network traffic is
generated, resulting in an unintended DOS attack.

The first version of the worm was not as destructive as the second version of the
worm.The analysis presented here is for the first version of the Code Red Worm.
Both capture files, CodeRed_Stage1 and CodeRed_Stage2, are located in the /cap-
tures directory on the accompanying CD-ROM.

Code Red Details
The Code Red worm operates in three stages, which are time sensitive: propagation,
denial of service, and sleep.Although there are many variations, the general pattern
of behavior is as follows:

■ Propagation mode This stage takes place during the first 19 days of the
month.An infected system will randomly generate IP addresses and attempt to
connect to them on HTTP port 80. If a system is discovered and is vulnerable,
the exploit code will be sent via an HTTP GET request and the Web page of
the server will be defaced.The original worm defaced Web pages by displaying
“HELLO! Welcome to www.worm.com! Hacked By Chinese!” However,
some new variations will not deface the Web page.The worm places a file
called C:\notworm on the system to signal that it has been infected.This way,
if the system gets infected again, the worm will go into an infinite sleep state.
If the c:\notworm file does not exist, this is the first time this system has been
infected, and it will create new threads to continue the propagation scanning.
This propagation activity will continue until the 20th day of the month.

■ Denial-of-service mode This stage begins on the 20th day of the month
and lasts until the 27th day. In this stage, the worm will attempt to packet-flood
a specific IP address that is designated in the code by sending large amounts

www.syngress.com

Real World Packet Captures • Chapter 7 385

ethereal_ch07.qxd 11/14/06 12:44 PM Page 385

of data to the target’s HTTP port 80.The first target was originally the
White House Website at 198.137.240.91. By directing the flood to the IP
address instead of the DNS host name, it was easy for whitehouse.gov system
administrators to change the IP, thus making the flood ineffective.

■ Sleep mode This stage causes the worm to enter a sleep state from the 28th
day of the month until the end of the month. It will remain in memory, but
it will not be active until the cycle repeats on the first day of the month.

Code Red Capture Overview
The CodeRed_Stage1 capture (see Figure 7.13) shows the Code Red exploit and
propagation in action.The Code Red capture files were provided by L. Christopher
Paul and can also be downloaded from www.bofh.sh/CodeRed.This capture was lab
generated to show the various Code Red stages, so time stamps may not reflect the
proper dates for the various stages.The worm spreads from the system (192.168.1.1)
and infects the vulnerable target (192.168.1.105).The newly compromised system
then begins scanning random IP addresses for open HTTP port 80.A definite give-
away in this capture is frame number 4,“GET /default.ida?NNNNNNNNN…”,
which is the exploit for Code Red.The random HTTP port 80 scanning beginning
at frame number 12 should also alert you to something strange: this isn’t typical Web
surfing because none of the targets are responding.

Figure 7.14 shows the “Follow TCP Stream” output of the initial exploit. Notice
the exploit in the HTTP GET request at the beginning, as well as the checking of
the C:\notworm file and Web page defacement at the end.

www.syngress.com

386 Chapter 7 • Real World Packet Captures

Figure 7.13 Code Red Stage 1 – Infection and Propagation

ethereal_ch07.qxd 11/14/06 12:44 PM Page 386

The CodeRed_Stage2 capture (see Figure 7.15) shows the denial-of-service
mode of the worm.The infected server, 192.168.1.105, is attempting to flood the
White House Web server at 198.137.240.91. Because this attack was performed in a
lab environment, however, the actual denial of service was not accomplished.

Real World Packet Captures • Chapter 7 387

Figure 7.14 Code Red Exploit Output

Figure 7.15 Code Red Stage 2: Denial of Service

www.syngress.com

ethereal_ch07.qxd 11/14/06 12:44 PM Page 387

NOTE

You can change the format for viewing the time stamps under the View
� Time Display Format menu option.

Detailed CodeRed_Stage1 Capture Analysis
CodeRed_Stage1 involves three systems:

■ 192.168.1.1 This is the infected system that successfully attacks another
server (192.168.1.105) on the network.

■ 192.168.1.105 This system becomes infected by 192.168.1.1 and launches
the worm propagation attack against random IP addresses.

■ 192.168.1.222 This is another system on the local network.The first frame
arrives at 17:51:57 of July 21, 2001.The last frame arrives at 19:22:59 of July
21, 2001.

■ Frame 1 The infected system at 192.168.1.1 sends a SYN packet to
192.168.1.105.The packet is directed to port 80 of the destination system
and is from a high port 7329 of the infected system.The TTL value of the
system at 192.168.1.1 is 64.

■ Frame 2 The system at 192.168.1.105, which is running a Web server at
port 80, replies back with a SYN-ACK packet to the infected system.The
time delay between the packets is zero because this was a lab experiment.
The system 192.168.1.105 has a TTL value of 128.

■ Frame 3 The three-way handshake is completed.The computer increases
its window size.

■ Frame 4 The attack starts with the worm source at 192.168.1.1, sending a
crafted long GET request.The attack is on the buffer overflow vulnerability
in the ida.dll of 192.168.1.105.The signature pattern of the Code Red
worm is seen here.Thus, at 17:51:57 on Jul 21 2001, the successful attack
began on 192.168.1.105.

■ Frames 5 to 11 The exploit code is sent from the worm source to the
newly infected system. In Frame 7, the details of the HTML page, with which
the Web site is defaced, can be seen. Frame 8 is where the newly infected
system sends a GET packet back to the source system that infected it.

www.syngress.com

388 Chapter 7 • Real World Packet Captures

ethereal_ch07.qxd 11/14/06 12:44 PM Page 388

■ Frames 12 onward The system at 192.168.1.105 has been surely infected
as it attempts a series of connections to port 80 on random IP addresses.The
connections are initiated from higher numbered ports in the range of 1029
to1140.Though the infected system uses port numbers that are sequentially
increasing, at points there are sudden jumps in the port numbers, as shown in
Table 7.1. Note the long delay between frames 11 and 12.

■ Frame 111 This frame is the last frame that has a clearly sequentially
increasing port number.

■ Frame 112 This is a special point in the capture.There is a relatively huge
time gap of 2.81 seconds from the time the previous packet was sent and this
packet.The source port is now 1105 and is not the next number in the
arithmetical progression.The time delay can be explained and is expected
behavior. Frame number 112 is the 101st attempt to connect to a random IP
address.After having sent the 100th packet, the worm, checks whether to
branch into the Web page defacement routine.This check results in the rela-
tively large delay. Each of the 100 destination IP addresses is now being sent
a second, and then a third,TCP SYN packet. So there are three attempts to
connect to port 80 on each IP address. Frame 112 is actually a retry of frame
80, and frame 212 is the third retry.

■ Frame 113 onwards The infected host continues to retry each target
system on port 80.

■ Frame 312 This is an incoming frame that came after 9.12 seconds had
passed since the 100th packet was sent.The infected system’s Web service is
accessed by another system at 192.168.1.222, which seeks a Web page
through the GET command.The packet trace does not contain all the data
that was transmitted.

■ Frame 313, 314, 315, 316 In Frame 313, the infected system returns an
HTTP 200 code (success) to the system at 192.168.1.222. In Frame 314, the
system at 192.168.1.222 sends a GET request. In frame 315, the infected
Web server returns an HTTP 304 message.The packet traces do not contain
all the data that was transmitted and thus all the details of the traffic are not
known.

■ Frame 317 onwards From this frame onward, the infected computer again
continues to try to infect other systems.This time, there is a new set of 100
random IP addresses.The source ports from which the packets are sent again
become sequential starting from 1141. Remember, we left off at 1140 with the
previous scan.Again, there are discrepancies in the sequence now and then

www.syngress.com

Real World Packet Captures • Chapter 7 389

ethereal_ch07.qxd 11/14/06 12:44 PM Page 389

because the numbers are not strictly in arithmetical progression, and some-
times the port numbers increase by 2.The infected system makes three
attempts to connect to each new 100 IP address. Frame 417 marks the begin-
ning of the second pass, and frame 517 marks the beginning of the third pass.

■ Frame 617 onward From this frame onward, the infected computer again
continues to try to infect a new batch of 100 systems.The source port
resumes at 1253, after leaving off at 1252 in frame 416.

■ Frame 917 onward From this frame onward, the infected computer again
continues to try to infect a new batch of 100 systems.After leaving off at
1363 in frame 716, the source port resumes at 1364.

■ Frame 1218 onward From this frame onward, the infected computer again
continues to try to infect a new batch of 100 systems.After leaving off at 1471
in frame 1016, the source port resumes at 1472. Looking at the pattern, you
may notice that this sequence is off by 1 frame. It should have started a new
scan at frame 1217. However, another packet slipped into the traffic. Frame
1217 shows an RST packet that was sent from 192.168.1.222 to the infected
system.This packet closed the connection that we saw in frames 312 to 316.

■ Frame 1518 onward From this frame onward, the infected computer again
continues to try to infect a new batch of 100 systems.After leaving off at
1585 in frame 1317, the source port resumes at 1586.

■ Frame 1818 onward From this frame onward, the infected computer again
continues to try to infect a new batch of 100 systems.After leaving off at
1695 in frame 1617, the source port resumes at 1696.

■ Frame 2133 onward From this frame onward, the infected computer again
continues to try to infect a new batch of 100 systems.After leaving off at
1807 in frame 1917, the source port resumes at 1808.According to the pre-
vious sequence, this new scan should have started at frame 2118; however,
there is another connection and exchange of HTTP traffic between the
system 192.168.1.122 and the infected system in frames 1918 through 1928,
as we saw previously. It is still unknown what the exchange is actually doing
because the entire contents of the packets were not captured.There is also a
FIN/ACK packet sent from 192.168.1.1 to the infected system in frame
2129 and the associated ARP request and reply in frames 2130 and 2131.

■ Frame 2433 onward From this frame onward, the infected computer again
continues to try to infect a new batch of 100 systems.After leaving off at
1919 in frame 2232, the source port resumes at 1920.This is the last propa-
gation attempt, and the scanning (and the capture file) ends at frame 2732.

www.syngress.com

390 Chapter 7 • Real World Packet Captures

ethereal_ch07.qxd 11/14/06 12:44 PM Page 390

There are some interesting patterns in the numbers associated with the worm.
One interesting pattern is in the port numbers used by the infected system, as shown
in Table 7.1.

Table 7.1 Pattern in Source Port Numbers in Frames 12 to 112

Frame Number Port Number Frame Number Port Number

12 1029 53-57 Sequentially Increases

13 1030 58 Jumps by 2 to 1081

14-16 Sequentially Increases 58-63 Sequentially Increases

17 Jumps by 2 to 1035 64 Jumps by 2 to 1088

17-22 Sequentially Increases 64-75 Sequentially Increases

23 Jumps by 2 to 1042 76 Jumps by 2 to 1101

23-34 Sequentially Increases 76-87 Sequentially Increases

35 Jumps by 2 to 1055 88 Jumps by 2 to 1114

35-46 Sequentially Increases 88-93 Sequentially Increases

47 Jumps by 2 to 1068 94 Jumps by 2 to 1121

47-52 Sequentially Increases 94-97 Sequentially Increases

53 Jumps by 2 to 1075 98 Jumps by 3 to 1127

98-111 Sequentially Increases

112 Resets to 1105

Another pattern is in the time flow.After the 100th frame there is always a delay
since the worm begins retrying the connection attempts to the 100 random IP
addresses or attempting to scan a new set of random 100 IP addresses.Table 7.2 pro-
vides the frame numbers of the 101st packet being sent at various points in the flow
and the time delay between sending the 100th and 101st frames.Across different sets
of 100 packets there is also a pattern, which can be approximated as 3-, 6-, and 12-
second delays.Thus, the approximate pattern of 3-6-12 second delays can be seen
running through the Delay column of Table 7.2.The shorter delays are when the
same IP addresses are scanned for the second and third time.The longest delay is
when the scanning begins on a new set of 100 random IP addresses.

NOTE

To search for all frames that were sent, for example, three seconds after
their preceding frame, use the Edit � Find Packet search feature.

www.syngress.com

Real World Packet Captures • Chapter 7 391

ethereal_ch07.qxd 11/14/06 12:44 PM Page 391

Choose string and search for “Time delta from previous packet: 3” in
packet details. This will search for frames with 3.x.x delay. You must
continue to choose Find Next (Ctrl-N) to locate all matching packets.
Before this step, ensure that the View � Time Display Format is
selected to be Seconds Since Previous Packet. You may also use the
frame.time_delta filter to search for various time deltas.

Table 7.2 Delay between the 100th and 101st Frames

Frame Number Frame Number
of 101st packet Delay (Seconds) of 101st packet Delay (Seconds)

112 2.81 1418 5.81
212 5.9 1518 11.92
317 2.66 1618 2.69
417 2.77 1718 5.71
517 5.8 1818 11.82
617 11.9 1918 2.03
717 2.77 2029 5.71
817 5.8 2133 11.48
917 11.91 2233 2.69
1017 2.79 2333 5.71
1117 5.8 2433 11.83
1218 5.75 2533 2.5
1318 2.78 2633 5.51

Viewing the packet capture source port information also reveals interesting pat-
terns.To understand the source ports better, click on the Info column in the Packet
List frame.This will sort the frames according to the Info field, which by default
contains the source port first.This sort will show the lowest source port to highest
source port in sequential order.You can see the lowest and highest source port num-
bers used and the pattern of three attempts to each port. Table 7.3 represents the
frames and source port sequence numbers.The pattern represented goes on similarly
for the rest of the packets.

www.syngress.com

392 Chapter 7 • Real World Packet Captures

ethereal_ch07.qxd 11/14/06 12:44 PM Page 392

Figure 7.3 Source port patterns

Packet Number Frame Number Source Port Range

In approximate
sequence Not in sequence

0 12 1029-1140
100 111
0 112 1029-1140
100 211
0 212 1029-1140
100 311

0 317 1141-1252
100 416
0 417 1141-1252
100 516
0 517 1141-1252
100 616

0 617 1253-1363
100 716
0 717 1253-1363
100 816
0 817 1253-1363
100 916

Detailed CodeRed_Stage2 Capture Analysis
This packet capture file covers the second stage of the Code Red worm’s activity. In
this stage the worm attempts a denial-of-service attack against the IP address
198.137.240.91, which was reportedly the IP address of the White House Web site
and is now registered to the Executive Office of the President of the United States.

In this capture file the infected system packet floods SYN packets to the IP
address 198.137.240.91.The capture file contains 299 frames.The infected system
starts sending the packets from port 1237 and sequentially increases the port number
to 1335 in frame 99.There is a relatively large delay between sending the 99th and
the 100th packet and between the 199th and the 200th frames.This is when the
worm restarts the synflood a second and third time.You may verify this by applying

www.syngress.com

Real World Packet Captures • Chapter 7 393

ethereal_ch07.qxd 11/14/06 12:44 PM Page 393

the tcp.srcport filter and searching on the various source ports. Each should occur
three times.

We would like to thank Deapesh Misra for contributing this detailed, frame-by-
frame analysis and insightful pattern detection.

References
[1] eEye Digital security Advisory al 20010717
http://www.eeye.com/html/research/advisories/AL20010717.html
[2] Cert advisory CA-2001-13. http://www.cert.org/advisories/CA-2001-13.html
[3] CVE-2001-0500. http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-
2001-0500

Ramen Worm
The Ramen worm is a collection of tools that can exploit several known vulnerabil-
ities and can self-propagate.The original CERT Incident Note, posted on January
18, 2001, can be found at www.cert.org/incident_notes/IN-2001-01.html. Ramen
targets Red Hat Linux 6.2 and Red Hat Linux 7.0 servers with vulnerable versions
of the following:

■ wu-ftpd This program runs on TCP port 21, and vulnerable versions con-
tain a format string input validation error in the site_exec() function.

■ rpc.statd This program runs on UDP port 111, and vulnerable versions
contain format string input validation errors in the syslog() function.

■ Lprng This program runs on TCP port 515, and vulnerable versions con-
tain format string input validation errors in the syslog() function.

Once a host is compromised, the Ramen tools are copied into a directory called
/usr/src/.poop.They are started and controlled by a series of shell scripts. Some of
the important characteristics of the Ramen worm include the following:

■ The Web page is defaced by replacing the index.HTML file.The new Web
page consists of the phrase “Hackers looooooooooooooooove noodles” and a
picture of a package of Ramen noodles.

■ E-mail is sent to gb31337@yahoo.com and gb31337@hotmail.com with the
text “Eat Your Ramen!”

■ The tcpwrappers access control list (ACL) is disabled by removing the
/etc/hosts.deny file.

■ The file /usr/src/.poop/myip contains the IP address of the local system.

www.syngress.com

394 Chapter 7 • Real World Packet Captures

ethereal_ch07.qxd 11/14/06 12:44 PM Page 394

■ The file /etc/rc.d/rc.sysinit is modified to include a startup script that initi-
ates scanning and exploitation.

■ A new program called asp is added, which creates a listener on TCP port
27374.This port is used to send the ramen.tgz toolkit file to other compro-
mised systems. SubSeven also uses this port. Coincidence? It is unclear why
the author would want to use an already well-known port because most
IDSes should have been configured to alert activity on that port.

■ The user names ftp and anonymous are added to /etc/ftpusers to disable
anonymous FTP (File Transfer Protocol). By disabling anonymous FTP, this
part of the worm code is actually fixing the vulnerability that it used to
exploit the system!

■ The rpd.statd and rpc.rstatd services are terminated, and the /sbin/rpc.statd
and /usr/sbin/rpc.statd files are deleted. However, there is no service called
rpc.rstatd.

■ The lpd service is terminated and the /usr/sbin/lpd system file is deleted.

Once the system has been modified, the Ramen worm begins scanning and
exploiting the vulnerable systems that it finds.The worm generates random class B
IP addresses to scan. It will then send packets with the SYN and FIN flags set and
with a source and destination port of 21. Once a vulnerable system is compromised,
the following actions occur:

■ The /usr/src/.poop directory is created on the victim.

■ The ramen.tgz toolkit is copied to the new directory and to the /tmp direc-
tory.The /tmp directory is where the toolkit is stored so that it can be
copied out to new vulnerable systems.

■ The ramen.tgz toolkit is unarchived in the /usr/src/.poop directory, and the
initial shell script is started.The system is now fully compromised and will
begin scanning for new vulnerable systems.

The ramenattack.gz packet capture was downloaded from
www.ouah.org/ramenworm.htm. Here, you will find a very detailed analysis of the
Ramen worm by Max Vision, called “Ramen Internet Worm Analysis” as well as the
ramen.tgz source code.The ramen attack.gz capture file is also located on the
accompanying CD-ROM in the /captures directory. Wireshark will automatically
uncompress the file when you open it.

We will step through the various parts of the packet capture to show how the
Ramen worm works.

www.syngress.com

Real World Packet Captures • Chapter 7 395

ethereal_ch07.qxd 11/14/06 12:44 PM Page 395

1. In Figure 7.16, the infected system 192.168.0.23 is performing a SYN/FIN
scan on the 10.0.0.0/24 Class B network. It receives a SYN/ACK from the
target system at 10.0.0.23.

2. Next, in packet 26, the worm connects to the system to grab the FTP
banner and determine if the system is a Red Hat 6.2 or 7.0 server.The
banner that the Red Hat 6.2 server returns is as follows:

220 test2.whitehats.com FTP server (Version wu-2.6.0(1) Mon Feb 28
10:30:36 EST 2000) ready.

221 You could at least say goodbye.

3. Next, the wu-ftp and rpc.statd exploits are launched against the potential
target.The wu-ftp attempt begins at packet 137 and is unsuccessful, but the
rpc.statd exploit succeeds. Figure 7.17 shows the payload of the rpc.statd
exploit. Notice the padding of “90 90 90 90…” and the trailing “/bin/sh”
that will execute a command shell.You will also notice in packet 289 that
once the SYN/FIN scan is finished scanning the target 10.0.0.0/24 range,
it sends a SYN/FIN packet to 10.9.9.9 from port 31337.This represents
the packet that is sent to www.microsoft.de when the scan is complete.
Because the worm was activated and analyzed in a lab environment,
10.9.9.9 was chosen to represent www.microsoft.de.

www.syngress.com

396 Chapter 7 • Real World Packet Captures

Figure 7.16 Ramen Work Propagation Scanning

ethereal_ch07.qxd 11/14/06 12:44 PM Page 396

4. You will also notice in packet 290 that a connection is made with the port
39168 on the target system.The rpc.statd exploit created a backdoor on the
victim’s computer on this port, and it is now used to initiate the transfer of
the worm and execute it. It also sends an e-mail to accounts at Hotmail
and Yahoo.The output from this transfer is shown in Figure 7.18.

www.syngress.com

Real World Packet Captures • Chapter 7 397

Figure 7.17 Ramen Worm rpc.statd Exploit

Figure 7.18 Ramen Worm Execution

ethereal_ch07.qxd 11/14/06 12:44 PM Page 397

5. The last connection you will see, beginning in packet 297 in Figure 7.17, is
the actual transfer of the Ramen toolkit that was initiated in previous
script.The new compromised system connects back to the attacker at port
27374 to download a copy of the worm.

6. The worm is now executing on the victim and will begin scanning for
new vulnerable hosts.

Overall, the Ramen worm is easy to detect, especially since it uses a well-known
trojan port for the worm transfer. It contains unexplained and inefficient code and
makes no attempt to be stealthy.There are also several places where its functionality
could be optimized. However, this worm exploits several different vulnerabilities and
self-propagates, so you should be on the lookout for more versions of this worm.

NOTE

A day-zero attack is an exploit on a vulnerability that is not yet known
about and for which there is no patch.

Active Response
Both the Snort Intrusion Detection System (IDS) and the Netfilter firewall in the
Linux kernel offer the ability to send TCP RST packets to forcibly close TCP ses-
sions.These RST packets are generated in response to a rule match on specific cri-
teria such as malicious application layer data within one of the TCP packets in an
established TCP stream. However, the mechanisms used by Snort and Netfilter to
build RST packets are quite distinct, resulting in RST packets that also exhibit
many differences under Wireshark’s gaze.An attacker may also be able to analyze
these variations to identify the type of active response solution you are using.This
real-world packet capture examines the RST packets that emanate from the flexresp
and flexresp2 detection plugins in Snort, as well as from the REJECT target in
Netfilter, after detecting a simplistic client attempt to view the /etc/passwd file
through a Web server (note that we are dissecting a response technology here as
opposed to presenting a new exploit). In all of the following examples we execute
the command echo “/etc/passwd” | nc webserver 80 to put the string /etc/passwd
within a TCP session with a Web server (with hostname “webserver”).The
Wireshark screen shots display the resulting RST packets from Snort and from the
Netfilter REJECT target.

www.syngress.com

398 Chapter 7 • Real World Packet Captures

ethereal_ch07.qxd 11/14/06 12:44 PM Page 398

NOTE

Netfilter is a kernel level packet filtering framework that offers applica-
tion layer inspection with its string match extension. It is located at
www.netfilter.org.

Because Netfilter is specific to the Linux kernel, the TCP RST packets gener-
ated by the Netfilter REJECT target can come from only a Linux system. Snort has
been ported to many platforms, so there is no such restriction on RST packets sent
by the flexresp or flexresp2 detection plugins.

First, we examine the RST packet that the flexresp plugin in Snort sends when
we try to view the /etc/passwd file from a Web server.To accomplish this, we need
to add a basic rule to Snort that interfaces with the flexresp plugin to send an RST.
Note the use of the resp keyword with an argument of rst_all, which instructs Snort
to send RST packets to both the client and server sides of the TCP connection:

alert tcp any any -> any 80 (msg:"WEB /etc/passwd attempt";
content:"/etc/passwd"; sid:100226; rev:1; resp:rst_all;)

Upon sending the string /etc/passwd across a TCP session with a Web server
and capturing the traffic, we see the RST packet in Wireshark as shown in Figure
7.19. Notice that the RST packet exhibits several characteristics, including a Time To
Live (TTL) of 81 in the IP header. Both the RST and ACK flags are set, and the
TCP Window value is set to zero.The flexresp plugin sets the TTL value randomly
between 64 and 255, but always sets the TCP Window value to zero (these details
can be verified by examining the file snort-2.6.0/src/detection-plugins/sp_respond.c
in the Snort-2.6.0 sources).

Figure 7.19 Flexresp RST Packet

Real World Packet Captures • Chapter 7 399

www.syngress.com

ethereal_ch07.qxd 11/14/06 12:44 PM Page 399

The flexresp2 plugin uses a different strategy to close a TCP connection by
blasting several RST packets with slightly different sequence and acknowledgment
numbers in an attempt to throw a connection into an unusable state.The syntax for
the resp keyword is slightly different for the flexresp2 plugin than for the flexresp
plugin.The reset_both argument again instructs Snort to send a RST packet to both
sides of the TCP connection:

alert tcp any any -> any 80 (msg:"WEB /etc/passwd attempt";
content:"/etc/passwd"; sid:100226; rev:1; resp:reset_both;)

Figure 7.20 shows the flexresp2 plugin in action. In this case, we see that five
RST packets have been sent back to the client (these have been spoofed by Snort as
though the server generated them). With the exception of the TCP sequence and
acknowledgment numbers, each of these packets is identical with the TTL value set
at 128, both the RST and ACK flags are set, the TCP Window size is 184 (scaled).
The flexresp2 plugin calculates the TTL and TCP Window sizes based on the values
of the packet that matches the Snort rule. For more information, see the file snort-
2.6.0/src/detection-plugins/sp_respond2.c in the Snort-2.6.0 sources).

Figure 7.20 Flexresp2 RST Packet

Finally, we examine an RST packet that is generated by the Netfilter REJECT
target from within the Linux kernel.To have Netfilter send an RST when our Web
client tries to grab the /etc/passwd file, we execute the following iptables command
on the Web server:

www.syngress.com

400 Chapter 7 • Real World Packet Captures

ethereal_ch07.qxd 11/14/06 12:44 PM Page 400

iptables -I INPUT 1 -p tcp --dport 80 -m string --string "/etc/passwd" --
algo bm -j REJECT --reject-with tcp-reset

Now, when we connect to the Web server and attempt to view the /etc/passwd
file, the RST packet looks like the one shown in Figure 7.21.This time, there is only
one RST packet so the REJECT target is similar to the flexresp plugin. However,
one significant difference (not displayed here because the packet trace is captured on
the client system) is that the REJECT target can generate the RST packet only to
the source IP address of the packet that matches the string match rule; it cannot also
send an RST packet to the destination IP address (in this case the server IP). Initially,
this would seem to be a fairly severe limitation because the client system could
simply filter the incoming RST packet before it hits the local TCP stack so that the
connection would not be shut down (Netfilter on the client side could be used to
accomplish this). However, the Netfilter REJECT target also drops the matching
packet (in this case the packet that contains the /etc/passwd string) so that the TCP
connection would never progress beyond the point where /etc/passwd is sent
because the server would never receive it.The ability to drop the packet stems from
the fact the Netfilter is a firewall and is therefore by definition inline to network
traffic. Snort cannot drop packets unless it is deployed in inline mode.

Figure 7.21 Netfilter REJECT target RST Packet

Finally, the TCP Window size is set to zero, and although the TTL value here is
64, all versions of the Linux kernel before 2.6.16 used the value 255.These values

www.syngress.com

Real World Packet Captures • Chapter 7 401

ethereal_ch07.qxd 11/14/06 12:44 PM Page 401

are assigned within the REJECT sources located in the file linux/net/ipv4/net-
filter/ipt_REJECT.c in the Linux kernel sources.

This real-world packet capture was contributed by Mike Rash. We thank him
for his keen insight and expert analysis.

Summary
Analyzing real-world packet captures is both a science and an art.A high-traffic net-
work segment can present the analyzer with thousands of packets containing hun-
dreds of connections, sessions, and protocols. Wireshark’s built-in features, such as
TCP session reconstruction, display filters, and packet colorization, help simplify the
process of analyzing data. However, as with honing any skill, you must practice, prac-
tice, practice. Constantly analyzing network data will help you quickly assess what is
normal and what is unusual behavior. If you don’t have the ability to analyze your
own network traffic data, participate in the Honeynet Project Scan of the Month
challenge.These challenges cover network traffic analysis, as well as malicious code,
exploits, and methodology.

You should also become familiar with reading and interpreting hexadecimal
output.This experience will come in handy when you are analyzing day-zero attacks,
and you may have to implement your own custom signature. Intrusion detection sys-
tems often match a signature on the content of a packet in hexadecimal format.

In this chapter we presented several different types of packet captures and the
processes used to analyze the data.You should have an understanding of the types of
activity to look for in a packet capture and how to identify various types of network
traffic. Combining this skill with the network troubleshooting methodology pre-
sented in Chapter 2 will help you to detect, analyze, and respond quickly to the next
major worm outbreak.

Solutions Fast Track
Scanning

� Network scanning is used to detect open ports and services on systems.

� A TCP Connect scan completes the TCP three-way handshake and is easily
logged and detected.

� SYN scans were once used as stealthy scanning techniques; however, most
firewalls and IDSes can now detect these types of scans.

www.syngress.com

402 Chapter 7 • Real World Packet Captures

ethereal_ch07.qxd 11/14/06 12:44 PM Page 402

� XMAS scans are ineffective against Microsoft operating systems because
they will respond with an RST from all ports, even if they are open.

� A Null scan sends packets with all flags turned off. Closed ports will
respond with an RST/ACK, and open ports will just drop the packet.

Remote Access Trojans

� Remote access backdoor programs are often delivered to unsuspecting users
within a trojan program.

� Remote access backdoors operate in a client-server architecture, allowing
the intruder complete control over the compromised system.

� SubSeven can notify the intruder—via IRC, e-mail, or some other
method—that the victim’s computer is online.

� NetBus is an older Windows backdoor trojan that is easily detected by
antivirus software, but like SubSeven, many variations exist.

� The RST.b trojan listens in promiscuous mode and will respond to UDP
packets containing the “DOM” payload on any port.

Dissecting Worms

� Internet worms are becoming increasingly fast and complex.

� The SQL Slammer worm uses UDP to accomplish its fast propagation.

� The original Code Red worm operated in three stages: propagation, denial
of service, and sleep.

� The Ramen worm is a collection of tools that can exploit several known
vulnerabilities in the wu-ftpd, rpc.statd, and lprng utilities.

Active Response

� Both Snort and Netfilter perform active response by terminating a TCP
session with a TCP RST.

� An attacker may be able to identify the active response solution based on
the characteristics in the TCP RST packets.

www.syngress.com

Real World Packet Captures • Chapter 7 403

ethereal_ch07.qxd 11/14/06 12:44 PM Page 403

� TCP RST packets from Snort flexresp, Snort flexresp2, and Netfilter are
each very distinct.

Q: Why is it that when I right-click on some of my packets, the “Follow TCP
Stream” option is grayed out?

A: The underlying protocol that you are trying to reconstruct does not use TCP
for its connection method. It may use the connectionless UDP method for its
transmission.

Q: Can I use Wireshark to discover a trojan that is being sent to someone on my
network?

A: No, Wireshark can be used to discover only the active use of the backdoor access
program that the trojan installs.To Wireshark or any network analyzer, the trans-
mission of the trojan will appear to be a regular executable file.

Q: Can I use Wireshark to discover a virus that is being sent to someone on my
network?

A: No, like a trojan, the transmission of a virus will look like a regular executable or
some other type of file. Wireshark will not be able to tell that the file is infected.

Q: Are there network activities that will falsely resemble network scan attacks?

A: Yes, there are lots of activities that will resemble network scans.A client program
that is automatically searching for a server at startup may continue to send TCP
SYN packets to the target address. Often multiple and rapid TCP connections
that are associated with FTP and HTTP downloads also resemble network scan
attacks and trigger alarms.

www.syngress.com

404 Chapter 7 • Real World Packet Captures

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

ethereal_ch07.qxd 11/14/06 12:44 PM Page 404

405

Developing
Wireshark

Solutions in this chapter:

■ Prerequisites for Developing Wireshark

■ Wireshark Design

■ Developing a Dissector

■ Running a Dissector

■ Advanced Topics

Chapter 8

� Summary

� Solutions Fast Track

� Frequently Asked Questions

377_Eth_2e_ch08.qxd 11/14/06 10:21 AM Page 405

Introduction
Because Wireshark is open-source code software that is distributed under the
General Public License (GPL), many developers throughout the world are able to
contribute to the Wireshark project.This collaboration by many different individuals
has made Wireshark a viable tool for many organizations.

Wireshark developers have contributed new features to the growing number of
tools in the Wireshark distribution, including the console-based version of Wireshark
named,Tshark, as well as a number of other tools that are part of the Wireshark dis-
tribution.

The main Wireshark application is a Graphical User Interface (GUI) application
that utilizes components of GNU’s Not UNIX (GNU) Image Manipulation
Program (GIMP).The latest version of the GIMP Toolkit is called GTK+, and is
maintained as a separate entity at www.gtk.org. Wireshark uses the GTK library for
its GUI implementation, and new features often require modifications to the GUI
(e.g., new menu items or modifications to existing menu selections).The core of this
application includes the main window, menus, utility functions, and so forth.

The components of Wireshark that dissect packet structures are called protocol dis-
sectors.These components are individual source code modules that instruct the main
Wireshark application on how to dissect a specific type of protocol.The dissector
can be complex or simple, based on the protocol that is being dissected. Most of the
contributions to the Wireshark project are either new dissectors or enhancements to
existing ones.

By utilizing the concepts within this chapter, you will learn the basic steps to
become a contributor to the Wireshark project. Many users and developers world-
wide will benefit from your efforts and welcome your contribution.

www.syngress.com

406 Chapter 8 • Developing Wireshark

Development Note
Because of the wide range of development on the Wireshark project, there may
already be work in progress on a specific feature or protocol dissector. The
Wireshark developer mailing list (wireshark-dev@wireshark.org) is a good way
to stay abreast of any work being done in a specific area. Questions can also
be posted to the wireshark-dev mailing list, or you can consult the Wireshark
Web site for more information at www.wireshark.org.

Notes from the Underground…

377_Eth_2e_ch08.qxd 11/14/06 10:21 AM Page 406

Prerequisites for Developing Wireshark
The first step in the development process is to acquire the Wireshark source code.
You can download many different distributions from the Wireshark Web site, such as
the currently released source code or the last nightly backup of the source code.You
can also utilize the Subversion (SVN) repository to keep up to date throughout the
development process. SVN is the most risky compared to released versions of
Wireshark, because with SVN you are compiling code that hasn’t been fully tested.
Generally, however, the SVN code is of high quality.

If you have an issue with the current SVN code, you can usually get a member
of the Wireshark mailing list (wireshark-dev@wireshark.org) to help resolve the
issue. SVN gives you access to code changes as they are checked into the master
build. It is the most up-to-date, but can contain unidentified bugs. Keep in mind
that the SVN distribution is routinely updated; you might develop code using the
current SVN code base and then find out that a specific function you are working
with has changed. Instructions for utilizing the latest builds and the SVN repository
can be found at www.wireshark.org.

Before you can add to or modify Wireshark, you must be able to build the
application from source code.To build from source code, you need additional
libraries and tools. Wireshark is a multi-platform application (i.e., runs on many dif-
ferent operating systems); you need to be able to successfully build on the particular
operating system that you will be developing on.

It is important to understand that Wireshark was developed and built using a
number of different programming languages, including many Uniplexed
Information and Computing System (UNIX)-based programs and shell scripts
(e.g., several modules within Wireshark are written in Python and Perl). Although
it may not be necessary for you to be proficient in each programming language,
you might find times where you need to understand just enough of the language
to make a simple change. A majority of the code base for Wireshark is American
National Standards Institute (ANSI)-C.The requirement for ANSI-C is due to
the portability of the code to multiple operating system platforms. When writing
in C, special care must be taken to use only those functions that are defined as
ANSI-C and are portable.You should be able to use most C compilers with the
Wireshark source code, including GNU C Compiler (GCC) on Linux and
Microsoft Visual C++ on Windows.

www.syngress.com

Developing Wireshark • Chapter 8 407

377_Eth_2e_ch08.qxd 11/14/06 10:21 AM Page 407

Skills
To build a new dissector or modify the main application, you must be able to pro-
gram in C. However, keep in mind that modifications to existing dissectors may also
require that you be knowledgeable in another language.

Modifications to the Wireshark GUI requires some knowledge of GTK.To
obtain online and downloadable tutorials for programming in GTK, go to
www.gtk.org.

Contributions to the Wireshark project come from many different levels of
developers. Some are novices while others are experts. However, the overall
Wireshark project is maintained by a single group of highly experienced developers.
New contributions are reviewed by this group and then, following any necessary
changes, incorporated into the source code distribution. In some cases, the individual
reviewing the changes may make a recommendation for a specific change; in other
cases, the individual may actually make the changes.

Tools/Libraries
In most cases, you need the developer kit for access to the necessary libraries.A devel-
oper kit is different from a normal binary distribution. Generally, the developer
package includes the compiled binaries for the operating system it was built for (e.g.,
because Wireshark utilizes the GTK libraries for its GUI implementation, you must
have the developer kit for GTK).You also need to download the correct developer kit
for the operating system that you are going to develop on. If possible, use the latest

www.syngress.com

408 Chapter 8 • Developing Wireshark

Portability
Before starting any work, read the Portability section 1.1.1 of the
README.developer document contained in the .doc directory of the source
code distribution. The word portability is used in reference to the steps a
developer should take to ensure that Wireshark source code can be compiled
on all of the supported operating systems (e.g., you don’t want to use a func-
tion that only exists on a win32 platform). This would cause the Wireshark
source code to not compile or build correctly on the other supported oper-
ating systems. Porting is when a program is written to one operating system
platform and then made to run on a different platform.

Damage & Defense

377_Eth_2e_ch08.qxd 11/14/06 10:21 AM Page 408

released version of the developer kit.Although you might be able to build Wireshark
with an older set of libraries, the results might not be as expected. However, in some
cases, this might not be an option. Some operating systems only support certain ver-
sions of support libraries. In general, you can consult the Wireshark developer mailing
list or the developer section of the www.wireshark.org Web site.

The Win32 ports of the required libraries are not necessarily located at their
respective project sites (e.g., the win32 port for the promiscuous capture library
(libpcap) is called WinPcap).The Web page anonsvn.wireshark.org/wireshark-
win32-libs/trunk/packages/ contains most of what you need, but if you want to
build with an additional library package that is not listed on the Wireshark site, refer
to the respective organization’s Web page to locate the correct Win32 ports.

When building Wireshark, you need the GTK library and the General Language
for Instrument Behavior (GLIB) library. Wireshark can be built using either the
older GTK v1.2, v1.3 or the newer GTK v2.x versions.The newer v2.x version adds
more font control and has a better look and feel; it can be downloaded from
www.gtk.org.The “Installation” section of this book identifies some of these issues
when installing on Solaris and Red Hat distributions.

The console version of Wireshark, called Tshark, only requires the GLIB
libraries. If you are just building the Tshark application, you do not need GTK.

If you are going to build with packet capture support in Wireshark or Tshark,
you need to have the libpcap libraries found at www.tcpdump.org. Without packet
capture support, users of the compiled program can only view packet trace files; they
will not be able to perform new packet captures. Win32 developers need the
WinPcap libraries, which can be downloaded from winpcap.polito.it/.

UNIX/Linux operating systems detect installed libraries using the automake pro-
cess, which identifies the library packages that can be included when building
Wireshark.Additionally, you can enable/disable optional library components during
the configure process. For example:

mylinuxbox:/home/user1/wireshark $./autogen.sh

mylinuxbox:/home/user1/wireshark $./configure –without-net-snmp –with-ucd-
snmp –with-ssl

On Win32-based computers, the config.nmake file should be modified to define
what libraries you want to include in the build process.These libraries are added to the
final binary during the linker process of the build. On Windows, the developer kits are
required to build the Wireshark binaries. However, if you decide to build a binary dis-
tribution package, the normal support library binary packages are also required,
because the Win32 binary distribution copies the dynamically linked libraries (DLLs)
to the /Program Files/Wireshark directory for use when the application is executed.

www.syngress.com

Developing Wireshark • Chapter 8 409

377_Eth_2e_ch08.qxd 11/14/06 10:21 AM Page 409

The following is a list of the libraries needed to build Wireshark. Remember that
you need to download the developer kit to acquire the necessary libraries for your oper-
ating system. Some packages are optional and can be linked to add additional features.

The following library packages are required when building the Wireshark binaries:

■ glib Low-level core library for GTK.

■ gettext GNU language conversion.

■ libiconv Character set conversion library.

■ GTK GIMP toolkit for creating Wireshark.

The following library packages are optional and can be linked to provide mul-
tiple features. On UNIX/Linux use the –with and –without command-line
switches with the configure process. On Win32, comment and uncomment the
respective lines in the config.nmake file.

■ libpcap Packet capture library for UNIX/Linux-based operating systems
(UNIX/Linux).

■ WinPcap Packet capture library for Win32-based operating systems (Win32).

■ ADNS GNU Advanced Domain Name Server (ADNS) client library.
Adds DNS lookup support (All).

■ GNUTLS TLS Library for decryption of Secure Sockets Layer (SSL) and
other encrypted protocols (All).

■ libgcrypt Cryptographic libraries for decryption of encrypted packets (All)

■ GTK_Wimp GTK theme for Windows.Adds Windows XP-type look
and feel to Wireshark (Win32).

■ Lua A powerful lightweight programming language library. Enables Lua
scripting support (All). www.lua.org

■ net-snmp Simple Network Management Protocol (SNMP) library.Adds
SNMP Management Information Base (MIB) support (ALL).

■ ucd-snmp Alternative SNMP library for UNIX/Linux operating systems
(UNIX/Linux).

■ nettle A low-level encryption library.Adds Kerberos decryption support (All).

■ Perl Compatible Regular Expressions (PCRE) Library Adds Perl
regular expression filters (All).

■ zlib File compression library.Adds compressed file support (All).

www.syngress.com

410 Chapter 8 • Developing Wireshark

377_Eth_2e_ch08.qxd 11/14/06 10:21 AM Page 410

If you are building with GTK version 1.2 or 1.3, no additional libraries are
needed. Otherwise, when building with GTK 2.x, you need the following additional
libraries:

■ atk Accessibility toolkit (All).

■ pango Internalization of text (All).

Windows users must choose to either attempt to build from within cygwin
using GCC, or with a Win32-based compiler such as Microsoft’s Visual C++
(MSVC++). Windows users must also download a number of additional libraries.
The default location specified in the Wireshark distribution for the libraries on a
Win32 workstation is C:\wireshark-win32-libs. Download and extract each required
library to this location. Wireshark’s scripts will then locate the libraries at build time.
Otherwise, you will have to modify the config.nmake file located in the main distribu-
tion directory to point to the correct location for each library.

Each tool is specific to the operating system it runs on.The Wireshark compile
and build process utilizes script files that require a number of tools to run successfully.

www.syngress.com

Developing Wireshark • Chapter 8 411

Win32 Development Note
Most, if not all, of the necessary Win32 development packages have been
placed in the Wireshark repository. Win32 developers can execute a switch with
nmake to download these packages automatically.

nmake -f Makefile.nmake setup

The nmake process will download and extract the necessary library pack-
ages as configured in the config.nmake file in the root directory of the distri-
bution. The directory \wireshark-win32-libs will be created on the local boot
drive if it doesn’t exist. Once a package has been downloaded and decom-
pressed, the original compressed file is removed from the system. If all config-
ured libraries can be downloaded and installed a message will be displayed to
indicate that wireshark is ready to build.

In order for this option to work with nmake, Win32 developers must
make sure that they have Cygwin, the Wireshark source code, and the appro-
priate C compiler installed. Refer to the Wireshark wiki site at
wiki.wireshark.org for more information.

Notes from the Underground…

377_Eth_2e_ch08.qxd 11/14/06 10:21 AM Page 411

Most of the tools have roots in the UNIX/Linux operating systems.To compile and
build Wireshark on non-UNIX-based operating systems, you need to have access to
similar tools.

Windows users need to install Cygwin, which is a Linux-like environment for
Windows-based computers. It gives both a Linux Application Program Interface
(API) emulator and a set of Linux-based tools.These tools allow the scripts utilized
by Wireshark during the build process to work on Windows-based computers.
Cygwin can be downloaded and installed from www.cygwin.com.

Windows users must use Python, the native Windows package can be down-
loaded and installed from www.python.org. But Python from the Cygwin distribu-
tion can be used and is the preferred method based on the comments in the
config.nmake configuration file.

Most UNIX and Linux-based operating systems include a C compiler and many
of the required tools needed to build Wireshark.

The following is a list of the tools needed to compile and build Wireshark:

■ Cygwin Provides UNIX/Linux tools for Win32 developers.This is not
needed for UNIX/Linux.

■ Perl Needed for all operating systems.

■ pod2man Part of Perl.

■ pod2html Part of Perl.

■ Python Needed for all operating systems.

■ Flex Needed for all operating systems.

■ Bison Needed for all operating systems.

■ Nullsoft Scriptable Install System (NSIS) (Win32 only) This
optional package allows developers to build Win32 distribution packages.
You do not need this tool on Win32 if you do not plan on building a dis-
tribution package.

■ Doxygen Optional tool for all operating systems. Builds off-line docu-
mentation.

■ Hand-held Computer (HHC) Win32 only.Adds compressed Windows-
based Help files (.chm)

www.syngress.com

412 Chapter 8 • Developing Wireshark

377_Eth_2e_ch08.qxd 11/14/06 10:21 AM Page 412

www.syngress.com

Developing Wireshark • Chapter 8 413

Building on UNIX- and Linux-based Operating Systems
Detailed instructions for building the Wireshark binary code from source code
are included in the .install file located in the main source directory. Chapter 3
of this book also outlines the build process on Red Hat Linux.

It is important to understand the implications of building binary Red Hat
Package Manager (RPM) packages for distribution to a diverse user base (e.g.,
when building with a feature such as SSL decryption). You should require your
user base to have the required library components installed prior to the instal-
lation of your new Wireshark RPM. The SSL decryption libraries that are
required for SSL decryption support are part of the gnutls and gcrypt library
packages. Unless you are running the same version of UNIX/Linux as your devel-
opment system, you may find it difficult to locate the correct dependency pack-
ages. When building an RPM to be distributed to a wide range of users, you
may choose to limit the feature set of Wireshark to the basic functionality.

Building on Windows-based Operating Systems
Detailed instructions for building the Wireshark binaries from source code are
included in the README.win32 file located in the main source code directory. This
file includes instructions for building on both MSVC++ and cygwin. It is also
important to use the cmd.exe command (not command.com) when attempting
to build Wireshark. The cmd.exe command provides many file-naming conven-
tions, whereas the older command.com is limited to 8.3 file-naming con-
ventions. Wireshark’s source code contains many file-naming conventions and is
not supported with command.com.

Windows users may need to update or change the default environment
variables in order for their compiler to locate additional support libraries (e.g.,
when building Wireshark, the wiretap source code must include header files for
Windows Sockets (winsock) support. It is important that the build process can
locate the correct “include” files. Validate that the following user environment
variables are defined correctly:

■ Include
■ Lib

It’s also important to make sure that cygwin is located in the user-path
environment variable in order to locate the necessary cygwin executables
during the build process. These executables are the Windows equivalent of
UNIX/Linux binaries (e.g., bison.exe is the equivalent of its UNIX/Linux coun-
terpart bison.

Tools & Traps…

Continued

377_Eth_2e_ch08.qxd 11/14/06 10:21 AM Page 413

Other Developer Resources
The Wireshark Web site hosts several different pages to assist in the development
process.They include a bug database (Bugzilla) at bugs.wireshark.org/bugzilla, a wiki
section for developer comments, information, and details at wiki.wireshark.org, and a
Wish List page located on the Wireshark wiki at wiki.wireshark.org/WishList.These
online resources can be utilized by developers for additional information.

Bugzilla is the online bug report database.Any Wireshark user can submit a bug
report, which should contain the following information.

■ Copy and paste the version information from the Wireshark’s “about” box.

Version 0.99.4 (SVN 20061028081818)

Copyright 1998-2006 Gerald Combs <gerald@wireshark.org> and contributors.

This is free software; see the source for copying conditions. There is NO

warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

Compiled with GTK+ 2.6.8, with GLib 2.6.5, with WinPcap (version unknown),

with libz 1.2.3, with libpcre 6.3, with Net-SNMP 5.2.1.2, with ADNS,

without Lua.

Running with WinPcap version 3.1 (packet.dll version 3, 1, 0, 27), based on
libpcap version 0.9[.x] on Windows XP S, build 2600.

■ Describe the bug in as much detail as possible.

■ Include steps to duplicate the bug.

■ Attach any screenshots, sample packet traces, and so on.

The Wireshark Wiki
The wiki page contains a lot of information, including user and developer resources,
protocol information, and developer notes.The Developer Guide and the User

www.syngress.com

414 Chapter 8 • Developing Wireshark

If you are developing with MSVC++ and need to change the environ-
ment to include the cygwin paths, make sure that you always append the path
to the end. Otherwise, during the compile or link process, you may retrieve a
cygwin-based include or library component instead of the desired MSVC++
component.

377_Eth_2e_ch08.qxd 11/14/06 10:21 AM Page 414

Guide are also located on the Wireshark wiki.This site should be reviewed if you
have any questions about a specific feature or resource.

The Wireshark Wish List
The Wireshark Wish List is a list of the top feature requests made by users and
developers, and is a good place to go to when beginning the Wireshark develop-
ment process.

The Wireshark Mailing List
In addition to the newer resources for developers and users, the Wireshark mailing
lists are your lifeline to the Wireshark community. If you can’t find the information
you need from the documentation included in the Wireshark distribution or the
online resources, you can subscribe to the wireshark-dev mailing list and submit
questions, patches, and so forth.

Wireshark Design
The Wireshark source code distribution includes a main source code directory and
several subdirectories.The main source code directory contains the following impor-
tant source code files:

■ autogen.sh Wireshark configuration script for UNIX/Linux autogen utility.

■ config.nmake Instructs Wireshark where to locate libraries during the build
with nmake on Win32.

■ Makefile.nmake The instructions for nmake to build the Wireshark binaries
on Win32.

■ Makefile.am Automake configuration file for UNIX/Linux.

■ Makefile.common Common makefile definitions for both make and nmake.

■ cleanbld.bat Removes some generated files so that the build system is
not confused when switching between UNIX and Win32 builds in the
same tree.

■ configure File for UNIX/Linux build and install.

■ INSTALL UNIX/Linux installation instructions.

■ make-xxx Script files to build support modules.

www.syngress.com

Developing Wireshark • Chapter 8 415

377_Eth_2e_ch08.qxd 11/14/06 10:21 AM Page 415

■ README.xxx Associated readme files for multiple platforms.

■ tap-xxx Protocol TAPs.

■ xxxx Remaining files contain utility functions for Wireshark’s Tshark.

In Figure 8.1, you can see a breakdown of the directories contained in the
Wireshark distribution.

.svn
The hidden .svn directory contains configuration information for the SVN client.

aclocal-fallback and autom4te.cache
The aclocal-fallback and aclocal-missing directories are used to store the information
used by automake on UNIX/Linux-based systems.

ASN1 Directory
If a protocol has an ASN1 specification, the “asn2wrs” utility that is shipped with
Wireshark allows developers to create a dissector based on the actual specification.
The associated files are stored in the ASN1 directory.To use the asn2wrs compiler
you must have the following four input files:

■ ASN1 protocol specification

■ xxx.cnf configuration

■ packet-xxx-template.h

■ packet-xxx-template.c

For details and examples of each type of required file, consult the Wireshark
wiki site at .wiki.wireshark.org.

www.syngress.com

416 Chapter 8 • Developing Wireshark

Figure 8.1 Main Directory

377_Eth_2e_ch08.qxd 11/14/06 10:21 AM Page 416

Debian Directory
The Debian directory is used for compatibility with Debian Linux-based operating
systems.These files are not located under packaging, because the Debian tools
require that the Debian directory be at the top-level directory of a source code
package.

Diameter Directory
This directory contains the eXtensible Markup Language (XML) protocol specifica-
tion files for the diameter protocol dissector.

doc Directory
Contained within the doc directory are text documents to assist you in the develop-
ment process.They are:

■ README.binarytrees Provides information for utilizing binary trees
within a protocol dissector.

■ README.capture Provides information on the capture interface to
XML/Packet Capture (pcap) libraries.

■ README.design Provides some useful information on the core structure
of Wireshark.

■ README.developer The main document to assist in the development of
new protocol dissectors.Also included are helpful design pointers, a sample
template, and potential problems.

■ README.idl2wrs Refer to this document when you want to build a dis-
sector from an IDL file.

■ README.malloc Outlines the new memory management API of
Wireshark.

■ README.packaging Gives information on the redistribution of Wireshark.

■ README.plug-ins Documentation for utilizing the plug-in interface of
Wireshark.

■ README.regression Steps for testing and regressing new dissectors.This
file provides a template that you can use to test for regressions in packet
decodes.The file is structured as a makefile that can be utilized after modi-
fying the core Wireshark code or a dissector to ensure that Wireshark oper-
ates correctly.

www.syngress.com

Developing Wireshark • Chapter 8 417

377_Eth_2e_ch08.qxd 11/14/06 10:21 AM Page 417

■ README.stats_tree The stats tree is a generic GUI that gives developers
the ability to add specific Terminal Access Controller (TAC) information
to their protocol dissectors without having to learn GTK or programming
in the Wireshark GUI.This document outlines the process of using the
stats tree.

■ README.tapping Detailed information on the tapping system built into
Wireshark.

■ README.xml-output Tshark provides a mechanism to output data in
XML/Packet Details Markup Language (PDML) format.This document
outlines what this capability provides.

■ xxx.html A number of html files are also included in the doc directory.
These files are the basic manual pages for each standalone binary included
in the Wireshark distribution.

DocBook
The Wireshark user’s guide and developer’s guide are included in the Wireshark
source code, to allow developers to add these files to their distribution.To utilize the
DocBook features, you have to install the DocBook application within cygwin (on
win32). Refer to the README.txt file in this directory for more information.

dtds Definition
This directory contains the Document Type Definition (DTD) files used by the
XML dissector.The XML dissector uses these files to dissect specific XML data that
is being transported by Hypertext Transfer Protocol (HTTP), Session Initiation
Protocol (SIP), and other protocols. For information on the structure of the DTD
files, refer to the XML section of the Wireshark wiki.

epan Directory
The Ethernet Protocol Analyzer (EPAN) directory contains the protocol dissectors and
most of the utility and global functions used within dissectors.The subdirectory
dfilter contains source code for display filter functionality. Dissectors contains all of
the non-plug-in protocol dissectors.The ftypes subdirectory contains source code
that defines the different data types that are utilized in the data type logic (see
Figure 8.2).

www.syngress.com

418 Chapter 8 • Developing Wireshark

377_Eth_2e_ch08.qxd 11/14/06 10:21 AM Page 418

gtk Directory
Contained within the gtk directory are the source code files for the main Wireshark
application, which includes the main GUI as well as the menu, toolbar, conversations
statistics, endpoints statistics, and so on. Basically, the Wireshark source code needed
to access the GUI resides within this directory.

gtk2.tmp Directory
When building with GTK+ 2.x, the make process creates the gtk2.tmp directory. It
copies the gtk directory source code files and then compiles them.These files should
not be edited, because they will be deleted/refreshed the next time a build is per-
formed.The modification of files should be done in the gtk directory.

Help Directory
The Help directory holds the source code files that are used to build the content for
the Help menu dialogs.These are built during compile time and linked to the
Wireshark binary file.

IDL Directory
The IDL directory contains the IDL definitions for protocol dissectors developed
using the idl2wrs application. For more information, consult the Wireshark wiki.

Image Directory
The icons and bitmaps linked to the Wireshark binary are stored in the image direc-
tory (see Figure 8.3).The custom icons are stored in the toolbar subdirectory and are
in X PixMap (XPM) format.The XPM file format is used to create icons and
bitmaps for X-Windows-based operating systems.

www.syngress.com

Developing Wireshark • Chapter 8 419

Figure 8.2 EPAN Directory

Figure 8.3 Image Directory

377_Eth_2e_ch08.qxd 11/14/06 10:21 AM Page 419

Packaging Directory
The packaging directory contains the necessary scripts and files to generate a binary
distribution (see Figure 8.4). Currently supported distributions include the
Nullsoft Scriptable Installation System (NSIS) to generate a Windows installation
package, or the RPM and System V Release 4 (SVR4) to generate Linux and
UNIX installation packages.

www.syngress.com

420 Chapter 8 • Developing Wireshark

Custom Icons
GTK 2.x allows you to change from stock icons to custom icons. When making
custom icons, make sure you create them with the same physical dimensions
as the other bitmaps contained in the toolbar subdirectory.

Notes from the Underground…

Figure 8.4 Packaging Directory

NSIS Package
To build the NSIS install package for Windows-based systems, you need to
download the NSIS compiler from nsis.sourceforge.net/Download.

RPM Package
When building an RPM package, it may be necessary to modify the wire-
shark.spec.in file located in the SPECS directory. The CFLAGS line of this file
indicates the syntax of the configure command when building the package.
The CFLAGS line includes the parameters –with-ssl=/usr –with-krb5. If you are
building a binary RPM package, you may need to change these configure
parameters to match the desired Wireshark feature set.

Notes from the Underground…

377_Eth_2e_ch08.qxd 11/14/06 10:21 AM Page 420

Plug-ins
A number of dissectors have been written to interface with Wireshark through the
plug-in interface (see Figure 8.5). For detailed information on how to create a plug-
in, refer to the README.plugins document in the doc directory.

Radius Directory
Located in the radius directory are the dictionary files that define the different
vendor specifications for the Radius dissector. Please refer to the Wireshark wiki for
more information.

Test Directory
The test directory is a combination of scripts that are used to test the command line
interface of the Tshark applications.

Tools Directory
Wireshark’s source code distribution contains several tools in the tools directory.The
WiresharkXML.py file is a Python script used to read Tshark-generated PDML files.The
lemon directory contains the Lemon tool, which generates C source code files based on a
supplied template (see Figure 8.6). Lemon is a parser generator for C and C++ that
does the same job as Bison and Yet Another Compiler-Compiler (Yacc); however,
Lemon provides more flexibility and does a better job of eliminating common errors. It
also runs much faster than the other tools and is reentrant and thread-safe.

Developing Wireshark • Chapter 8 421

Figure 8.5 Plug-ins Interface

Figure 8.6 Lemon Directory

www.syngress.com

377_Eth_2e_ch08.qxd 11/14/06 10:21 AM Page 421

Wiretap Directory
The wiretap directory is the core capture file support library, which provides the sup-
port to read and write different capture file formats. For information on how to add
or modify the capture file types supported by Wireshark, refer to the
README.developer document located in the wiretap directory.

Developing a Dissector
A protocol dissector is commonly written in C, although there are components of
Wireshark that build C source code from Python scripts, IDL files, and Perl
scripts.These files are named after the protocol they dissect (e.g., a protocol dis-
sector for a protocol called myprot would be named packet-myprot.c).These files are
located off of the main source code directory in the EPAN/dissectors directory .
Some dissectors have been implemented as plug-ins.The advantage of a plug-in is
that it does not require a complete recompile of the whole Wireshark source
code during development. However, even a plug-in starts out as a packet-xxx.c
source code file.This section discusses the necessary steps for creating a standard
packet-xxx.c dissector.

www.syngress.com

422 Chapter 8 • Developing Wireshark

Before You Start
Before you start work on your dissector, open the README.developer file in the
doc directory. Cut and paste the sample template, which provides enough of a
skeleton to get you started.

Notes from the Underground…

377_Eth_2e_ch08.qxd 11/14/06 10:21 AM Page 422

Step 1 Copy the Template
There are several steps that must be completed in order to integrate a new dissector
into Wireshark.The first step is the comments, as seen in the following code.
Remember that Wireshark is open-source code, so the main comment identifies not
only that you created the dissector, but also includes information on the original
contributor of Wireshark and the GPL.

/* packet-PROTOABBREV.c

* Routines for PROTONAME dissection

* Copyright 2000, YOUR_NAME <YOUR_EMAIL_ADDRESS>

*

* $Id: README.developer,v 1.86 2003/11/14 19:20:24 guy Exp $

*

* Wireshark - Network traffic analyzer

* By Gerald Combs <gerald@wireshark.org>

* Copyright 1998 Gerald Combs

*

* Copied from WHATEVER_FILE_YOU_USED (where "WHATEVER_FILE_YOU_USED"

* is a dissector file; if you just copied this from README.developer,

* don't bother with the "Copied from" - you don't even need to put

* in a "Copied from" if you copied an existing dissector, especially

* if the bulk of the code in the new dissector is your code)

*

* This program is free software; you can redistribute it and/or

* modify it under the terms of the GNU General Public License

www.syngress.com

Developing Wireshark • Chapter 8 423

Source Code Editor Considerations
It is important that your editor save files in the proper format. Wireshark source
code is composed of UNIX-style files. The source code file should not contain
lines that end in carriage return, line feeds (CR/LF). Lines of text should be ter-
minated only by the line feed character. If you are programming on non-UNIX-
based computers, you need to make sure that your editor supplies the correct
end-of-line formatting. Otherwise, you will have to reformat the source code
files prior to submitting them back to the wireshark-dev mailing list.

Tools & Traps…

377_Eth_2e_ch08.qxd 11/14/06 10:21 AM Page 423

* as published by the Free Software Foundation; either version 2

* of the License, or (at your option) any later version.

*

* This program is distributed in the hope that it will be useful,

* but WITHOUT ANY WARRANTY; without even the implied warranty of

* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

* GNU General Public License for more details.

*

* You should have received a copy of the GNU General Public License

* along with this program; if not, write to the Free Software

* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

*/

When working with the template, you need to replace certain text with your
information. For example, for line 1, you would replace packet-PROTOABBREV.c
with packet-myprot.c. Change line 2 (PROTONAME) to indicate the protocol your
dissector is meant to decode. Line 3 should be modified with the copyright date,
your name, and your e-mail address. Note that since Wireshark is open-source code,
this is your claim to ownership of the submitted code.This doesn’t keep other devel-
opers from modifying your code, but it limits other people from taking ownership of
your work. Once you contribute your code to the Wireshark project, it becomes
part of the GPL and you are added to the growing list of Wireshark contributors.
Line 5 of the comment is important to the SVN system, as it identifies the current
file intrusion detection (ID) and revision.This line is modified when source code is
checked in and out of the SVN system; make sure you do not remove this line.
Finally, line 11 should be modified to document the source code of your informa-
tion used to build the dissector. If this information is not available or cannot be dis-
closed, this section can be omitted.The rest of the comments should remain intact to
reflect the original author (Gerald Combs) and the GPL information.

Step 2 Define the Includes
As seen in the following code, the next portion of the template defines the includes
for this source code program. Includes are needed for global functions that this dis-
sector calls. Wireshark defines a number of global functions that can be used within
your protocol dissector.You may need to include standard header files from your
compiler or standard library (e.g., string.h is a standard header file for string functions).

#ifdef HAVE_CONFIG_H

include "config.h"

#endif

www.syngress.com

424 Chapter 8 • Developing Wireshark

377_Eth_2e_ch08.qxd 11/14/06 10:21 AM Page 424

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <glib.h>

#ifdef NEED_SNPRINTF_H

include "snprintf.h"

#endif

#include <epan/packet.h>

#include "packet-PROTOABBREV.h"

Output variables are set or passed to the C pre-processor to determine specific
includes that may be needed to perform the build under specific conditions (e.g., the
HAVE_CONFIG_H include is only processed by make if this value is true). On
Linux-based operating systems, autoconf generates output variables that may define
additional output variables based on the build environment. Please refer to
www.gnu.org/software/autoconf for more information.

www.syngress.com

Developing Wireshark • Chapter 8 425

Global Functions
Wireshark includes a large number of functions that can be used within your
protocol dissector. To use these functions, you must include the header file for
the source code that contains the defined function. One of the hardest parts in
utilizing the global functions provided by Wireshark is identifying those avail-
able for use. Say that you have an Internet Protocol (IP) address that you want
to display. You could manually format a display string or you could use the
built-in global function. But where is the global function? The following list dis-
plays some of the most common includes that define the global functions that
might be needed by your dissector:

■ prefs.h Structure and functions for manipulating system preferences.
■ reassemble.h Structure and functions for reassembly of packet

fragments.
■ tap.h Functions for utilizing the built-in TAP interface.

Notes from the Underground…

Continued

377_Eth_2e_ch08.qxd 11/14/06 10:21 AM Page 425

www.syngress.com

426 Chapter 8 • Developing Wireshark

■ epan/column-utils Functions for manipulating the Summary
window column data.

■ epan/conversation.h Functions for tracking conversations (Request
to Reply).

■ epan/int-64bit.h Functions for manipulating 64-bit integers.
■ epan/plugins.h Functions for plug-in support.
■ epan/resolve.h Functions for resolving addresses to names.
■ epan/strutil.h Common string functions.
■ epan/to_str.h Functions for string conversion.
■ epan/tvbuff.h Testy Virtual Buffer (tvbuff). A method used by

dissectors to access packet data.
■ epan/value_string.h Functions to locate strings based on numeric

values.

The following structures may contain information important for your dissector.

■ epan/column-info.h Structure of Summary window column data.
■ epan/framedata.h Structure of frame data.
■ epan/packet-info.h Structure of packet information.
■ epan/expert.h Structure and functions to call the expert TAP.

There are many more functions and structures defined in the Wireshark
source code. In some cases, you will need to research available functions by
analyzing other packet-xxx.c dissectors. Most of the utility functions you will
need are located in the epan directory.

Static Functions
It is strongly recommended that the functions you create within your dissector
be declared static. This will limit their scope to the current dissector and not
conflict with any other functions that may be defined in another dissector or
program. For example, if you create a function called dissect_my_protocol, you
should create a function prototype as:

static void dissect_my_protocol();

Damage & Defense

Continued

377_Eth_2e_ch08.qxd 11/14/06 10:21 AM Page 426

Step 3 Create the Function to Register
This step in the development of a protocol dissector is to create the function to reg-
ister your dissector with Wireshark.

/* Register the protocol with Wireshark

/* this format is required because a script is used to build the C function

that calls all the protocol registration.

*/

void

proto_register_PROTOABBREV(void)

{

/* Setup list of header fields See Section 1.6.1 for details */

static hf_register_info hf[] = {

{ &hf_PROTOABBREV_FIELDABBREV,

{ "FIELDNAME", "PROTOABBREV.FIELDABBREV",

FIELDTYPE, FIELDBASE, FIELDCONVERT, BITMASK,

"FIELDDESCR" }

},

};

/* Setup protocol subtree array */

static gint *ett[] = {

&ett_PROTOABBREV,

};

/* Register the protocol name and description */

proto_PROTOABBREV = proto_register_protocol("PROTONAME",

"PROTOSHORTNAME", "PROTOABBREV");

www.syngress.com

Developing Wireshark • Chapter 8 427

How does Wireshark know how to call your protocol dissector if the functions
are declared static? Part of the build process includes a Python script, which
processes each defined protocol dissector. During this process, the required
functions are automatically registered with the main Wireshark application. In
the next step, we look further into the registration of a protocol dissector.

377_Eth_2e_ch08.qxd 11/14/06 10:21 AM Page 427

/* Required function calls to register the header fields and subtree used */

proto_register_field_array(proto_PROTOABBREV, hf, array_length(hf));

proto_register_subtree_array(ett, array_length(ett));

It is important that the proto_register_xxx function is left-justified, as shown in the
template.The scripts used to register protocol dissectors are make-reg-dotc and make-
reg-dotc.py.These scripts parse all of the packet-xxx files to build a list of all dissectors
to be registered with the Wireshark engine. If this function does not meet the
proper syntax requirements, the scripts will fail to register your new dissector.The
file that is generated by the scripts is called register.c and is located in the epan/dissec-
tors directory.This file should not be edited manually, because it is recreated each
time you compile and build Wireshark.

The first part of the proto_register_myprot function sets up the hf array fields of the
dissection.Although these are not required for packet dissection, they are recom-
mended to take advantage of the full-featured display filter capabilities of Wireshark.
Each item that is defined within the hf array will be an individual item that can be
filtered within Wireshark (e.g., ip.src is an element within the packet-ip dissector).You
can enter a display filter of ip.src==10.10.0.1. If the ip.src element was not defined,
this would be an invalid filter.

{ &hf_ip_src,

{ "Source", "ip.src", FT_IPv4, BASE_NONE, NULL, 0x0,

"", HFILL }},

The next part of the registration process is to define the array for the subtree
called ett.The ett variables keep track of the state of the tree branch in the GUI pro-
tocol tree (e.g., whether the tree branch is open [expanded] or closed).The protocol
is registered with both short and long naming conventions with Wireshark by calling
the proto_register_protocol function (this causes the protocol to be displayed in the
Enabled Protocols window).The final step is to register the hf and ett arrays with the
proto_register_field_arry and the proto_register_subtree_array.

www.syngress.com

428 Chapter 8 • Developing Wireshark

hf Element Items
For a detailed description of each component of an element within the hf array,
refer to the README.developer document located in the doc directory.

Tools & Traps…

377_Eth_2e_ch08.qxd 11/14/06 10:21 AM Page 428

How would Wireshark know when to pass the data stream from a specific type
of packet to this new dissector? Wireshark requires that each dissector instructs
Wireshark when it should be called. For example, suppose you are writing a dis-
sector to decode packets that are being transported on top of Transmission Control
Protocol (TCP) with a port of 250.You need to instruct Wireshark to pass all
packets that meet this criteria to your new dissector.

Step 4 Instruct Wireshark
void

proto_reg_handoff_PROTOABBREV(void)

{

dissector_handle_t PROTOABBREV_handle;

PROTOABBREV_handle = create_dissector_handle(dissect_PROTOABBREV,

proto_PROTOABBREV);

dissector_add("PARENT_SUBFIELD", ID_VALUE, PROTOABBREV_handle);

The proto_reg_handoff_xxx function is used to instruct Wireshark on when to call
your dissector.The create_dissector_handle function passes the function that Wireshark
will call to dissect the packets and the proto_xxx value that was registered as the pro-
tocol in the proto_register_protocol function.The dissector_add function allows you to
specify the criteria that will trigger Wireshark to pass the packet to your dissector.
The PARENT_SUBFIELD function allows you to specify the element within the
parent dissector that you will trigger off of (e.g., for TCP port 250, you would set
this value to tcp.port.You would then set the ID_VALUE to 250). Wireshark then
automatically passes data to your dissector by calling the function defined in
create_dissector_handle if the value of tcp.port equals 250.

Also note that PARENT_SUBFIELDs are named similar to hf fields, but they
are not the same.The PARENT_SUBFIELDS are values that are exported by parent
dissectors to allow linking with the next dissector (e.g., there is a value ethertype that
is a PARENT_SUBFIELD, but it does not follow the pattern of being named after
an hf field.

void

proto_reg_handoff_myprot(void)

{

dissector_handle_t myprot_handle;

myprot_handle = create_dissector_handle(dissect_myprot,

www.syngress.com

Developing Wireshark • Chapter 8 429

377_Eth_2e_ch08.qxd 11/14/06 10:21 AM Page 429

proto_myprot);

dissector_add("tcp.port", 250, myprot_handle);

}

Step 5 Create the Dissector
The next step is to create your dissector.You need to create the function that was
registered with Wireshark for your packet dissection. In this example, this function is
called dissect_myprot. Wireshark passes three data structures to this function: tvb, pinfo,
and tree.The tvb structure is used to extract and decode the data contained in each
element of the packet.The pinfo structure provides specific information about the
packet, based on information that was previously dissected by other processes (e.g.,
the pinfo structure tells you which packet number this packet relates to). It also con-
tains flags for processing fragmented packets or multiple dissections. Finally, the tree
structure provides a pointer to the location in memory of the protocol tree data. For
this example, the pointer points to a memory location that represents the data just
below the TCP protocol, and is the starting point for where your dissected data is
displayed in the Decode window by the Wireshark GUI (see Figure 8.7).

Your decode data will start immediately after the TCP section. In some cases,
you may want to put information from the data stream into a local variable so that
you can make logical decisions based on its value.To acquire data from the packet,
we used tvb_get_xxx functions. For example, let’s assume that the first byte in the
packet is an unsigned integer that contains the value 0 for a request packet, or a
value of 1 for a reply packet. First define your variable and then use a tvb_get_guint8
function to get the data from the packet.

guint request_reply;

request_reply = tvb_get_guint8(tvb, 0);

The variable request_reply now contains the value of the first byte in the data
stream.The parameters passed to the tvb_get_xxx functions vary, but all will take the
pointer to your local tvb and an offset. In many cases, it makes sense to create a vari-
able for the offset value and then increment that variable after making each tvb call.

guint request_reply, offset = 0;

request_reply = tvb_get_guint8(tvb, offset);

www.syngress.com

430 Chapter 8 • Developing Wireshark

Figure 8.7 Dissector Data Displayed in the Decode Window

377_Eth_2e_ch08.qxd 11/14/06 10:21 AM Page 430

www.syngress.com

Developing Wireshark • Chapter 8 431

Variable and Function Name Syntax
Wireshark utilizes a lower-case format for all syntax. The C language is case-
sensitive and the variable RequestReply is a different variable than one named
requestreply. The preferred syntax when writing source code for Wireshark is
to use all lower-case characters and to separate words with the underscore (_)
character. For our example, request_reply was used. It is strongly recom-
mended that you follow this requirement, because it allows all of the Wireshark
code to have the same look and feel.

Endianness
Wikipedia (www.wikipedia.com) defines endianess as:
In computing, endianness generally refers to sequencing methods used in a
one-dimensional system (such as writing on computer memory). The two main
types of endianness are known as big-endian (big units first) and little-endian
(little units first). Systems which exhibit aspects of both conventions are often
described as middle-endian. When specifically talking about bytes in com-
puting, endianness is also referred to as byte order or byte sex.

There seems to be no significant advantage in using one method of endi-
anness over the other, and both have remained common in terms of the
number of different architectures that use them. However, because little-
endian Intel x86 based processors (and their clones) are used in most personal
computers and laptops, the vast majority of desktop computers in the world
today are little-endian. This is sometimes called “Intel format”. Networks gen-
erally use big-endian numbers as addresses; this is historically because this
allowed the routing to be decided as a telephone number was dialed.

Motorola tvb_get Functions
There are a number of tvb_get_xxx functions that allow you to retrieve data
from the packet data stream based on the type of data you want to acquire.
For example, you may need x number of bytes or you may need a 4-byte value.
You may also find that the data in the data stream is in the wrong order. For
example, you are expecting a value to be returned as 0001 from the packet
data stream, but instead it is returned as 1000. There are two types of
tvb_get_xxx functions that allow you to obtain the data from the data stream
in the endianess you need. Refer to the README.tvbuff and the README.devel-
oper documents located in the doc directory.

Notes from the Underground…

Continued

377_Eth_2e_ch08.qxd 11/14/06 10:21 AM Page 431

Now, we want to display whether this is a request or reply packet.This is done
with the proto_tree_add_xxx functions. In our example, we only want to display a
message indicating if this is a request or reply packet.

if (request_reply==0)

proto_tree_add_text(tree, tvb, offset, 1, "Request-(%d)",

request_reply);

else

proto_tree_add_text(tree, tvb, offset, 1, "Reply-(%d)",

request_reply);

The proto_tree_add_text function requires the following parameters.

■ tree Pointer to the protocol tree.

■ tvb The tvbuff to mark as the source code data.

■ offset The offset in the tvb where the data is located.

■ 1 The length of the value (in bytes) in the tvb.

■ Request Packet (%d) The printf type format for displaying the data.

■ request_reply The data value to be displayed via the printf format.

www.syngress.com

432 Chapter 8 • Developing Wireshark

Value Types
Wireshark utilizes a number of common value definitions that are defined in
the README.tvbuff and the README.developer documents located in the doc
directory. Different development environments refer to value types by different
names. Wireshark provides a common set of value types to allow for easier
portability between operating systems. The following is a brief listing of the
most common:

■ guint8 1-byte value
■ guint16 2-byte value
■ guint32 4-byte value
■ guint64 8-byte value
■ guint8* pointer to a byte value
■ gchar* pointer to a character string

377_Eth_2e_ch08.qxd 11/14/06 10:21 AM Page 432

There is one problem with this example. If we utilize the proto_tree_add_text func-
tion, this value is not a filterable element.Therefore, if a user wanted to create a filter
for all request packets in your dissector, they would not be able to.You could rewrite
the example to utilize the hf array and make the request_reply value a filterable item.

if (request_reply==0)

proto_tree_add_item(tree, hf_request, tvb, offset, 1, FALSE);

else

proto_tree_add_item(tree, hf_reply, tvb, offset, 1, FALSE);

Although this example allows users to filter on the request or reply condition,
this is not the most efficient use of the proto_tree_add_xxx functions. Because the
value is already stored, there is no reason to force the dissector to reread the data.
The proto_tree_add_uint function can be used to display the data already stored in the
request_reply variable. If the value had not already been stored in a variable, the
proto_tree_add_item function would be the most efficient to use.

if (request_reply==0)

proto_tree_add_uint(tree, hf_request, tvb, offset, 1,

request_reply);

else

proto_tree_add_uint(tree, hf_reply, tvb, offset, 1,

request_reply);

www.syngress.com

Developing Wireshark • Chapter 8 433

proto_tree_add_xxx
You might wonder why the tvbuff information gets passed to the
proto_tree_add_xxx function. We have already extracted the information into
the variable request_reply. The tvbuff parameters tell Wireshark the portion of
the data in the hex display window to highlight when this value is selected in
the Decode window. Also note that the tvbuff starts at the beginning of the
data passed to your dissector (e.g., getting data from the tvbuff with an offset
of 0 is the first byte of the packet data that is related to your protocol). The pre-
vious packet data that was decoded by a higher-level dissector is not accessible.
This ensures that the data seen by your dissector only pertains to the protocol
dissection you are attempting to accomplish.

Notes from the Underground…

377_Eth_2e_ch08.qxd 11/14/06 10:21 AM Page 433

If we change the proto_tree_add_text to proto_tree_add_xxx, we utilize an hf ele-
ment for displaying the data in the Decode window. Now we need to add the
hf_request and hf_reply variables to the hf array.

You must first declare the hf variables at the top of the source code file after
your include statements.

static int hf_request = -1;

static int hf_reply = -1;

Now, we add the element information to the hf array.

{ &hf_request,

{ "Request Packet", "myprot.request",

FT_UINT8, BASE_DEC, NULL, 0x0,

"", HFILL }},

{ &hf_reply,

{ "Reply Packet", "myprot.reply",

FT_UINT8, BASE_DEC, NULL, 0x0,

"", HFILL }},

With these changes, if the user wants to filter on all request packets in the myprot
dissector, they enter the myprot.request filter.Any packet that meets the request_reply
value of 0 will contain an array element of myprot.request. Reply packets contain an
element of myprot.reply. Figure 8.8 shows an example of how a user might enter a
display filter to force Wireshark to only display the packets for the new dissector.

NOTE

It is important to understand that the example above is not the most
efficient way to complete this activity. It would be much easier to define
a value string (covered later in this chapter) to identify the request/reply
values. The values could then be passed to a single hf item, which would
display the proper information to the user based on the actual value
contained in the packet. For example:

www.syngress.com

434 Chapter 8 • Developing Wireshark

Figure 8.8 Sample Display Filter

377_Eth_2e_ch08.qxd 11/14/06 10:21 AM Page 434

static const value_string myprot_packet_types[] = {

{ 0x00000000, "Request" },

{ 0x00000001, "Reply" },

{ 0, NULL }

};

/* inside our dissection code */

my_prot_packet_type = tvb_get_ntohl(tvb, foffset);

proto_tree_add_uint(my_prot_tree, hf_my_prot_packet_type, tvb, foffset, 4,
my_prot_packet_type);

/* defined in the hf array */

{ &hf_my_prot_packet_type,

{ "Packet Type", "my_prot.packet_type",

FT_UINT32, BASE_HEX, VALS(my_prot_packet_types), 0x0,

"Packet Type", HFILL }},

With this modified example, you can filter just request packets by entering the
filter myprot.packet_type==0 for request packets or myprot.packet_type==1 for replies.
If you want to enter a filter to just locate all packets of the protocol myprot, you
could enter a myprot filter.

www.syngress.com

Developing Wireshark • Chapter 8 435

proto_tree Functions
There are many variations of the proto_tree_add_xxx functions. The
proto_tree_add_item is the most versatile, because it allows the format of the
data to be defined in the hf array. If you attempt to pass the wrong data types
to any of the proto_tree_add_xxx functions, a runtime error will be displayed
and Wireshark will halt. This error processing allows Wireshark to trap for errors
instead of allowing memory to be overrun or corrupted. It is good practice to
utilize the hf array even if you do not want end users to be able to filter on a
specific item in the decode. For these conditions, you can specify that the ele-
ment be hidden so that the end users will not know of its definition. For detailed
information on all of the different proto_tee_add_xxx types and the format of
the hf array, refer to the README.developer document in the doc directory.

Notes from the Underground…

377_Eth_2e_ch08.qxd 11/14/06 10:21 AM Page 435

The real work of the dissector begins here.You must go through the logic of
each type of packet that the dissector decodes.You should utilize the tvb_get_xxx
functions to obtain the data you need to evaluate as well as the proto_tree_add_xxx
functions to display information in the Decode window.

The Summary window (see Figure 8.9) allows you to browse quickly through
the packet trace without having to look at each packet decode. It also allows you to
display brief, but important, information relative to the packet.Typically, most devel-
opers provide summary data on request packets and error information on reply
packets.The col_set_str function allows you to set the value of the data within any of
the displayed Summary window columns.

The following code shows the check_col() and col_set_str() functions, which are a
subset of the column functions available.

if (check_col(pinfo->cinfo, COL_PROTOCOL))

col_set_str(pinfo->cinfo, COL_PROTOCOL, "MYPROT");

Note that the first thing we do is to evaluate whether the column data exists. If
not, we cannot write to the column data structure.This is an important step, because
without this check you could potentially write to undefined memory. We then make
the col_set_str function call to set the value of the protocol column COL_PRO-
TOCOL to our protocol name MYPROT.

if (request_reply==0)

{

if (check_col(pinfo->cinfo, COL_INFO))

col_set_str(pinfo->cinfo, COL_INFO, "Request");

}

else

{

if (check_col(pinfo->cinfo, COLINFO))

www.syngress.com

436 Chapter 8 • Developing Wireshark

Figure 8.9 Summary Window

377_Eth_2e_ch08.qxd 11/14/06 10:21 AM Page 436

col_set_str(pinfo->cinfo, COL_INFO, "Reply");

}

Now we want to set the summary column to reflect if this is a request or reply
packet.This is done by using the col_set_str function. Note that we still perform the
check to validate that the column information is valid. Later in our dissector, we can
append information to the info column by using the col_append_str function.

Step 6 Pass Payloads
The final thing a dissector should do is pass on any payload remaining to be dis-
sected by additional dissectors.This handoff of the payload data is what each of the
lower-level dissectors performs to allow entry points for further dissection (e.g.,
the TCP dissector decodes the TCP header information but the remaining payload
is dissected by different higher-level dissectors). In some cases, you may not need
to pass on payload data, but it is recommended that your dissector look at the
remaining data in the packet and pass it on if there is anything else to dissect. In
some cases, your dissector may contain a data payload that can’t be dissected. In
this case, if you have remaining data in the packet structure that needs to be
decoded by another dissector or as payload information.The remaining data
should be displayed in some manner.The passing of the remaining payload back to
Wireshark will automatically be displayed as [Data] if no further dissection can be
performed (e.g., there is no defined lower-level dissector to handle the decoding
of the remaining data). If the remaining data is payload for your dissector, utilize
the proto_tree_add_item and pass a -1 as the length parameter. Wireshark will then
mark all of the remaining data in the packet as the defined proto_tree_add_item.The
following information is extracted from the README.developer document located
in the doc directory.

www.syngress.com

Developing Wireshark • Chapter 8 437

Column Functions
Wireshark includes a number of column functions that allow you to clear, set,
and append to existing column data. These functions are defined in the
epan/column-utils.h file and the README.developer document in the doc
directory.

Notes from the Underground…

377_Eth_2e_ch08.qxd 11/14/06 10:21 AM Page 437

An example from packet-ipx.c –

void

dissect_ipx(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)

{

tvbuff_t *next_tvb;

int reported_length, available_length;

/* Make the next tvbuff */

next_tvb = tvb_new_subset(tvb, IPX_HEADER_LEN, -1, -1);

/* call the next dissector */

dissector_next(next_tvb, pinfo, tree);

The information contained in this portion of the chapter allows you to create a
simple dissector. In the next section, we discuss how to modify the files used to build
Wireshark so that it can be compiled into the rest of the project. Before you start
major work on your dissector, you should make sure that the build process will
complete with your new dissector included.This will also validate that your registra-
tion is working and that Wireshark passes the packet data to your dissector as
expected. In the “Advanced Topics” section of this chapter, we explore some of the
more complex issues you may encounter when creating a protocol dissector.

Running a Dissector
To add a new dissector to the Wireshark project you need to modify the
Makefile.common file located in the epan/dissectors directory.

DISSECTOR_SRC = \

packet-aarp.c \

packet-acap.c \

packet-afp.c \

packet-afs.c \

Add your dissector to the DISSECTOR_SRC section of the file. When you
build Wireshark, this section is parsed and each dissector is compiled and linked into
the main Wireshark binary.

In the Makefile.common file you will also find an additional section to define any
includes you may have for your dissector.

DISSECTOR_INCLUDES = \

$(PIDL_DISSECTOR_INCLUDES) \

www.syngress.com

438 Chapter 8 • Developing Wireshark

377_Eth_2e_ch08.qxd 11/14/06 10:21 AM Page 438

format-oid.h \

packet-acp133.h \

packet-acse.h \

Add your dissector includes to the DISSECTOR_INCLUDES section of the
file.As with the dissector source code definition, the section will be parsed and
included during the compile and link process.

Once you have successfully built Wireshark with your modifications, go back
and analyze your code in places where you have not made comments.This allows
you to look at the code at a later date to determine what that particular section is
doing.Also make note of any warnings reported by your compiler and try to resolve
them.This might be improper data type casts or unused variable definitions.

After you have finished cleaning up of the code and are satisfied with its func-
tionality, please contribute your changes to the Wireshark project by sending a patch
to the wireshark-dev mailing list. For changes to existing files, it is recommended that
the changes be sent as a patch to the existing file in SVN. It is also important to
consult with the proper individuals before submitting any proprietary information
back to the Wireshark distribution. Remember that Wireshark is released under GPL
and your submissions will automatically be under the same license agreement.

If you are working with a SVN distribution you can perform an update by
issuing the following command:

svn up

or

svn update

Then you should generate a patch based on the full source code with the com-
mand:

svn diff | gzip > my_patch.gz

Or, for an individual file, you can specify the filename.

svn diff my_prot.c | gzip > my_prot.c.diff.gz

If the file you need to send is a new dissector, you should send the complete
source code file packet-myprot.c, any includes, and a patch to the file Makefile.common.
Attempting to create an SVN patch on your new dissector will not generate any
information if your source code does not exist in the SVN repository.Your initial
contribution should be a complete copy of the new source code and patch files for
any modified files that already exist in the current repository. Future modifications
should be submitted in patch form by generating a SVN unified patch file.An SVN
unified patch file is sometimes referred to as a diff file or differential file.

www.syngress.com

Developing Wireshark • Chapter 8 439

377_Eth_2e_ch08.qxd 11/14/06 10:21 AM Page 439

The Dissection Process
When does your dissector get called? When Wireshark reads a packet via the wiretap
library it performs the following steps:

1. The frame data is passed to the epan_dissect_run() function.

2. The epan_dissect_run() function defines the frame, column, and data pointers
and calls the function dissect_packet().

3. The dissect_packet() function creates the topmost tvbuff and then calls the dis-
sect_frame() function.

4. The dissect_frame() function dissects the frame data and displays it in the
Decode window of the GUI (e.g., arrival time, frame number, frame
length).

5. The dissect_frame() function then calls the dissector_try_port() to see if there
are any protocol dissectors to dissect the next part of the tvbuff. In Figure 8.7,
we can see in the Decode window that we were passed to the Ethernet
packet type dissector; this is the dissect_eth_common() function.

6. The dissect_eth_common() function then decodes and displays the Ethernet
header in the Decode window of the Wireshark GUI. Several different
functions can be called at this point based on the Ethernet frame type.
However, once the Ethernet frame type has been decoded, the remaining
tvbuff is passed to the core Wireshark function dissector_try_port() again.

7. The dissector_try_port() function again looks to see if there is another dis-
sector registered for the remaining tvbuff.

8. This process of decoding each layer of the packet continues, header-by-
header, until you reach your protocol dissector. Wireshark calls each dis-
sector, each dissector processes its data, and then the dissector creates a new
tvbuff and sends it back to dissector_try_port(). In our example, we saw that
myprot would eventually be the payload of a TCP packet, and that
Wireshark would continue each dissection until the TCP dissector was pro-
cessed.At this point, dissector_try_port() would see that we are registered for
TCP port 250.

9. Finally, the dissector_try_port() function calls the dissector myprot.

10. Once the dissector has completed its work, it passes any remaining tvbuff
back again.The process continues until there is no more data or no more
registered dissectors for the remaining data. Once this happens, the next
frame is read from the packet trace file.

www.syngress.com

440 Chapter 8 • Developing Wireshark

377_Eth_2e_ch08.qxd 11/14/06 10:21 AM Page 440

Advanced Topics
The previous section discussed the information necessary to create a basic dissector.
However, as your dissector becomes more complex you will need to implement
more advanced features. Wireshark provides many different mechanisms to assist you
in making your dissector display and decode packet data into a more informative
manner. In this section, we look at some of the more complex tasks that you may
want to incorporate into your packet-xxx dissector.

We also look at modifying the Wireshark GUI.This process requires that you
have some knowledge of GTK features and mechanisms. Since Wireshark’s GUI is
generated using the GTK libraries, it makes calls to functions that are not included
in the Wireshark distribution.These functions are part of the GTK binaries that you
downloaded in the GTK developer kit. Documentation on these functions is avail-
able at the GTK Web site at www.gtk.org.

Finally, this section includes a short description of the TAP and plug-in imple-
mentations in Wireshark.TAPs allow you to build tools that acquire real-time data
from Wireshark.The plug-in interface allows you to convert a packet-xxx dissector
into a plug-in that can be loaded and unloaded.

www.syngress.com

Developing Wireshark • Chapter 8 441

When Wireshark Calls Your Dissector
It is important to know that your dissector can be called multiple times. Every
time a display or color filter is applied to a packet trace, Wireshark re-dissects
the data. When a user clicks on an item in the Decode window, the dissector is
called again to dissect that specific packet. Your dissector should evaluate the
fd.flags.visited flag in the pinfo data structure to determine if it needs to per-
form additional work. Otherwise, you might overwrite data that is necessary to
properly decode your packets (e.g., adding new conversations into an existing
conversation list). Construct your dissector to take into consideration whether
or not the initial dissection has already been completed.

Notes from the Underground…

377_Eth_2e_ch08.qxd 11/14/06 10:21 AM Page 441

Dissector Considerations
When composing a dissector you need to consider the following factors:

■ If the protocol that needs dissection runs on top of a connection-oriented
protocol, you may need to track the request reply packets to ensure that
they match.

■ Connection-oriented protocols generally guarantee delivery.

■ The underlying protocol retransmits packets if they are not acknowledged
by their peer.

■ Your dissector may need to handle payloads that exceed the maximum
packet size.

■ The actual payload may span several packets that your dissector needs to
defragment.

■ There are situations where you might want to store information either in
the form of a memory value or across loading of the application.

You will probably encounter at least one of these conditions.The following
section provides some advanced topics to help you develop ways to handle these
situations.

Creating Subtrees
Most of the time, decoded data should be branched to a separate subtree.This practice
allows you to see important summary information in the Decode window and allows
you to expand specific sections of the Decode window to see more detail (e.g., you
might want to branch at a sub-level or a particular item that contains more data or
attributes than would normally be displayed (see Figure 8.10 and Figure 8.11).

www.syngress.com

442 Chapter 8 • Developing Wireshark

Figure 8.10 Closed Item in Decode Window

Figure 8.11 Expanded Item in Decode Window

377_Eth_2e_ch08.qxd 11/14/06 10:21 AM Page 442

You can click on the Entry Information field within the Decode window to
expand the item and get more detailed information. Subtrees are easily implemented
with the proto_tree functions.

proto_item *subitem;

proto_tree *subtree;

subitem = proto_tree_add_text(tree, tvb, offset, -1, "Some Description");

subtree = proto_item_add_subtree(subitem, ett_myprot);

proto_tree_add_item(subtree, hf_myvalue, tvb, offset, 4, FALSE);

proto_item_set_end(subitem, tvb, offset+4);

The first step is to declare the proto_item and proto_tree variables.The
proto_tree_add_text function allows you to create a label.This is only one of many
uses of the proto_tree_add_text function. In this example, we pass the tree pointer that
was given to us when our dissector was called. We also pass the tvb, offset, and length
of the function so that when you highlight the label in the Decode window, the
remaining packet data will be highlighted.The -1 tells proto_tree_add_text that the
function is comprised of all remaining data starting from the beginning offset.
Finally, the label is passed to the function to describe what the subtree actually con-
tains.You can branch from an actual element within the Decode window and create
a label.To do this you could replace the proto_tree_add_text with a different
proto_tree_add function. Once the label has been created in the original tree a new
item pointer is returned in the sub-item variable.

The proto_item_add_subtree function sets up the subtree in the display. It creates
the subtree so that when you perform another proto_tree_add function, you can refer-
ence the new subtree pointer.

The next call is to the proto_tree_add_item function, which is where the pointer
for the new subtree is passed to.This places the new element beneath the expandable
label that was created.The value is not viewable in the Decode window until the
subtree label is clicked on and expanded.

The final step in this example is to set the overall length of the
proto_tree_add_item with the proto_item_set_end function.This is used when the length
of the value being set is unknown. If you are working with items of known length,
this function call is not necessary.

There will be times when you want to create several branches of subtrees.To do
this, create multiple proto_items and proto_tree pointers.You would create subtree 1
and then subtree 2, but reference subtree 1 as the source code tree.A visual display
of the multi-level tree view can be seen in Figure 8.12.

www.syngress.com

Developing Wireshark • Chapter 8 443

377_Eth_2e_ch08.qxd 11/14/06 10:21 AM Page 443

item1 = proto_tree_add_text(tree, tvb, offset, -1,

"Selector Option");

tree1 = proto_item_add_subtree(item1, ett_myprot);

number_of_items = tvb_get_ntohl(tvb, offset);

proto_tree_add_uint(tree, hf_num_objects, tvb, offset, 4,

number_of_items);

foffset += 4;

for (i = 1 ; i <= number_of_items; i++)

{

item2 = proto_tree_add_text(tree1, tvb, offset, -1,

"Option - %u", i);

tree2 = proto_item_add_subtree(item2, ett_myprot);

}

Bitfields
In some cases, you may have a value that represents specific information based on
what bits are set within the value. Bitfields give you a visual display of each bit and
whether they are enabled within the value (see Figure 8.13).

Bitfields are implemented using the hf array elements.The following code is an
example of the calling function that builds the subtree and summary data:

#define FLAG1 0x01

#define FLAG2 0x02

flags = tvb_get_guint8(tvb, offset);

strcpy(flags_str, "");

sep = " (";

www.syngress.com

444 Chapter 8 • Developing Wireshark

Figure 8.12 Visual Display of Multi-level Tree View

Figure 8.13 Visual Display of Bits

377_Eth_2e_ch08.qxd 11/14/06 10:21 AM Page 444

if (flags & FLAG1) {

strcat(flags_str, sep);

strcat(flags_str, "Flag 1");

sep = ",";

}

if (flags & FLAG2) {

strcat(flags_str, sep);

strcat(flags_str, "Flag 2");

sep = ",";

}

if (flags_str[0] != '\0')

strcat(flags_str, ")");

ti = proto_tree_add_uint_format(tree, hf_flags,

tvb, offset, 1, flags, "Flags: 0x%04x%s", flags,

flags_str);

flags_tree = proto_item_add_subtree(ti, ett_myprot);

The first step is to acquire the value from the tvbuff into the value flags. Next,
you build the initial string and compare the value of flags with your defined flag
bits. If they match, you combine the string with the flag information. Once your
summary string has been built, you can create a subtree and display the data.You
now have to display each of the valid bits in a bit view:

proto_tree_add_item(flags_tree, hf_flag_1,

tvb, offset, 1, FALSE);

proto_tree_add_item(flags_tree, hf_flag_2,

tvb, offset, 1, FALSE);

{ &hf_flag_1,

{ "Flag 1", "myprot.flag.1",

FT_BOOLEAN, 8, NULL, FLAG1,

"Is Flag one set? ", HFILL }},

{ &hf_flag_2,

{ "Flag 2", "myprot.flag.2",

FT_BOOLEAN, 8, NULL, FLAG2,

"Is Flag two set? ", HFILL }},

The bitfields are displayed by calling the proto_tree_add_item function with refer-
ence to the new subtree and the bitfield hf element names.Then, in the hf array, we
define our new values.The key here is parameters 3, 4, and 6. Parameter 3 defines

www.syngress.com

Developing Wireshark • Chapter 8 445

377_Eth_2e_ch08.qxd 11/14/06 10:21 AM Page 445

this as a Boolean value, which means that it will evaluate this as a true or false con-
dition. Parameter 4 defines that we will display 8 bits. Parameter 6 defines the actual
value of the bitmask.As seen in our example, this value can be substituted with the
explicit mask or a variable.

Unicode Strings
There will be times when you run into situations where the actual data contained in
the packet contains Unicode data. Unicode data is normally seen in the Hex Data
window as a 2-byte value. For example you might see:

57 00 6f 00 72 00 6b 00 73 00 74 00 61 00 74 00 69 00 6f 00 6e 00

W o r k s t a t i o n

When processing the data, most string conversion utilities see the second byte of
the multi-byte character as a terminating null.You may find that you need to parse
the string to acquire single-byte character strings. Many of the main string functions
within Wireshark perform this process for you, but you may have a situation that
requires you to manually perform the conversion. Several dissectors include func-
tions to convert multi-byte character strings to single-byte strings.The following
code is an example extracted from packet-ncp2222.inc:

static void

uni_to_string(char * data, guint32 str_length, char *dest_buf)

{

guint32 i;

guint16 c_char;

guint32 length_remaining = 0;

length_remaining = str_length;

dest_buf[0] = '\0';

if(str_length == 0)

{

return;

}

for (i = 0; i < str_length; i++)

{

c_char = data[i];

if (c_char<0x20 || c_char>0x7e)

{

if (c_char != 0x00)

www.syngress.com

446 Chapter 8 • Developing Wireshark

377_Eth_2e_ch08.qxd 11/14/06 10:21 AM Page 446

{

c_char = '.';

dest_buf[i] = c_char & 0xff;

}

else

{

i--;

str_length--;

}

}

else

{

dest_buf[i] = c_char & 0xff;

}

length_remaining--;

if(length_remaining==0)

{

dest_buf[i+1] = '\0';

return;

}

}

dest_buf[i] = '\0';

return;

}

Conversations
Wireshark conversations are a key component of many protocol dissectors. Each dis-
sector that needs to track conversations defines and maintains their own conversation
table, which gives the dissector the ability to track request and reply packets.You
might ask why you would need to track the conversation. What if there is no infor-
mation contained in the reply packets that identifies which request the reply is for?
In this case, you would store the original request packet in memory so that when
the reply packet is found it can be decoded. (e.g., the NetWare Core Protocol
(NCP) only defines a sequence number on the request packet; each request reply
sequence is a unique session. Running on top of TCP or Internetwork Packet
Exchange (IPX), the request packet is made from a specific address with a unique
port/socket. If you match these conversation components you can logically assume

www.syngress.com

Developing Wireshark • Chapter 8 447

377_Eth_2e_ch08.qxd 11/14/06 10:21 AM Page 447

that the reply packet is a response to the original request. Unfortunately, these may
not come in the proper order in a packet trace.The conversation list saves each
request conversation within your conversation list. When you encounter a reply
packet, you should perform a lookup in the conversation list to determine which
request the reply matches. If no originating request packet is found, display a mes-
sage in the Decode window that the packet could not be decoded due to no request
packet being found. Section 2.2 of the README.developer document located in the
doc directory provides basic skeleton code and associated information necessary to set
up a conversation table.

Important steps should not be missed when using conversations lists, including
the initialization function and the cleanup function, which have to be placed in the pro-
tocol register routine. Many dissectors include conversation lists. If, after reviewing
the section in the README.developer document, you still need a clearer example,
refer to other dissectors that utilize this capability.

Packet Retransmissions
Packet retransmissions are common on busy networks.Your dissector should be able
to handle such an occurrence if it is going to attempt to handle fragmented packets.
If your dissector or protocol does not process fragmented packets, it can treat these
packets as normal packets. In most cases, a simple conversation list can check for the
occurrence of a request packet; however, if nothing triggers your dissector, it might
be a duplicate entry.You may also find that you need to manage another memory
table to track a retransmitted packet. However, in other cases, the lower-level pro-
tocol might have already detected the retransmissions.

The packet information structure, pinfo, provides information for the status of the
current packet being decoded.TCP and Sequenced Packet Exchange (SPX) are both
connection-oriented protocols that retransmit data if acknowledgments are not
received. Since TCP handles both the retransmission and fragmentation of packets,
your higher-level dissector only has to be concerned with the real data. However, in
the case of SPX, the higher-level dissector has to trap for retransmissions if it is han-
dling packet fragmentation.The next section discusses how the SPX dissector passes
this information to the higher-level dissectors. It is important to understand that a
retransmission is a common occurrence on many networks.Your dissector should be
able to determine if a packet is a retransmission or a normal packet. In some cases,
you may choose not to dissect retransmitted packets and just identify the original
packet. Remember that a retransmission can occur at any time, and may consist of a
complete packet or an individual fragment.

www.syngress.com

448 Chapter 8 • Developing Wireshark

377_Eth_2e_ch08.qxd 11/14/06 10:21 AM Page 448

Passing Data Between Dissectors
The pinfo->private_data element can be used to pass a pointer to a memory table
with information regarding the specific packet being decoded.You should first
define a structure in your lower-level dissector that will hold the information.The
following information was extracted from packet-ipx.h and packet-ipx.c:

/*

* Structure passed to SPX subdissectors, containing information from

* the SPX header that might be useful to the subdissector.

*/

typedef struct {

gboolean eom; /* end-of-message flag in SPX header */

guint8 datastream_type; * datastream type from SPX header */

} spx_info;

We then update the structure and save it to pinfo:

static void

dissect_spx(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)

{

spx_info spx_info;

/*

* Pass information to subdissectors.

*/

spx_info.eom = conn_ctrl & SPX_EOM;

spx_info.datastream_type = datastream_type;

pinfo->private_data = &spx_info;

Now, you can retrieve this information in the higher-level dissector.The fol-
lowing information was extracted from the source code file packet-ndps.c:

static void

ndps_defrag(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)

{

spx_info *spx_info;

/* Get SPX info from SPX dissector */

spx_info = pinfo->private_data;

The higher-level dissector can now utilize the information from the lower-level
dissector to perform logical operations on the packet data.

www.syngress.com

Developing Wireshark • Chapter 8 449

377_Eth_2e_ch08.qxd 11/14/06 10:21 AM Page 449

Saving Preference Settings
It is important to determine how the protocol dissector might handle specific fea-
tures of your dissector (e.g., the packet fragmentation code can be enabled or dis-
abled under the protocol preferences dialog).To implement a user-configurable
setting that will either be used during runtime or saved across multiple loads of
Wireshark, you should add the ability to utilize the system preference file.

ldap_module = prefs_register_protocol(proto_ldap, NULL);

prefs_register_bool_preference(ldap_module, "desegment_tcp",

"Desegment all LDAP messages spanning multiple TCP segments",

"Whether the LDAP dissector should desegment message",

&ldap_desegment);

This code goes into the proto_register_xxx routine and creates a new entry in the
preference files with the value of the referenced variable myprot_desegment.The fol-
lowing is an example of the entry created in the preference file. Figure 8.14 is an
example of how the value will look when you go to the preferences option in
Wireshark and select your protocol. We used the Lightweight Directory Access
Protocol (LDAP) protocol dissector for our example.

Whether the LDAP dissector should desegment messages

TRUE or FALSE (case-insensitive).

ldap.desegment: TRUE

Packet Fragmentation
Packet fragmentation can be handled at many different protocol layers.TCP already
includes packet reassembly. If your dissector needs to do additional packet reassembly,
you can utilize the reassembly functions defined in Wireshark.A good example of
how to handle packet reassembly by TCP is located in section 2.7 of the
README.developer document in the doc directory. It covers how to handle packet
reassembly when your dissector is running on top of TCP and User Datagram
Protocol (UDP).

The packet-ncp2222.inc, packet-atalk.c, and packet-clnp.c files give examples of how to
defragment messages that are fragmented within the protocol you are dissecting.The
logic involved in defragmented packets can be complicated.You will find yourself
spending many hours troubleshooting and fine-tuning the defragmentation function.

www.syngress.com

450 Chapter 8 • Developing Wireshark

Figure 8.14 Example of a LDAP Preference

377_Eth_2e_ch08.qxd 11/14/06 10:21 AM Page 450

Value Strings
There will be times when you read a specific value from the packet datastream that
could be defined by many different descriptions based on that value.You should pre-
sent a string to the user indicating what the value actually means (e.g., an error
return value in a reply packet).The numerical value indicates which error is being
returned. Section 1.7.1 in the README.developer document located in the doc
directory lists the match_strval and the val_to_str functions.The first step is to create
the array of values:

static const value_string my_values[] = {

{ 0x00000000, "Value 1"),

{ 0x00000001, "Value 2" },

{ 0x00000002, "Value 3" },

{ 0, NULL }

};

It is important to note that the final line in the value string {0, NULL}.This is
the termination record for the value_string function. If this is omitted, Wireshark will
continually scan memory and possibly generate a bounds error.

You can now utilize the match_strval or val_to_str functions to process the value:

valuestr = match_strval(value2, my_values);

This process can be simplified even further by utilizing the values (VALS) capa-
bility of the hf array:

{ &hf_valuestr,

{ "This is my value", "myprot.valuestr",

FT_UINT8, BASE_DEC, VALS(my_values), 0x0,

"My value string", HFILL }}

This way, you can just utilize the simple tvb_get and proto_tree_add functions:

value2 = tvb_get_guint8(tvb, 1);

proto_tree_add_uint(tree, hf_valuestr, tvb, 1, 1, value2);

The same feature can be utilized to display true or false value strings in the
Decode window of the GUI (e.g., if you want to display “Yes” or “No” based on a
true or false value).

typedef struct true_false_string {

char *true_string;

char *false_string;

} true_false_string;

www.syngress.com

Developing Wireshark • Chapter 8 451

377_Eth_2e_ch08.qxd 11/14/06 10:21 AM Page 451

Value strings are important for processing return values that might contain a
large number of error codes.The value string gives you the ability to process all of
the possible values and return a specific string to identify the actual error. Without
this information, end users are forced to research and locate the return value. In
some cases, the value may not really indicate a problem; however, by providing the
string to the end user you will eliminate much frustration and make your dissector
even more valuable. Figure 8.15 shows an example of data displayed in the Decode
window when utilizing a value string to return a string based on the return value.

The Expert TAP
One of the newer features of Wireshark is the expert TAP.This TAP is an important
addition to building a dissector.The expert TAP has the ability to display expert
information to end users.There are a number of conditions that can be defined as
well as a wide range of parameters. More developers are choosing to add the expert
TAP to their dissectors. It is recommended that advanced expert information be
configurable via the protocol preferences, so that users can enable or disable the
echoing of statistical information to the expert TAP (e.g., you may choose to have
your dissector echo a message to the expert TAP each time it detects a specific con-
dition).This information might be very valuable to some users, but clutter up the
statistical information for others. If your protocol dissector allows users to disable the
feature, those not wanting the information can turn it off:

To enable the expert TAP you have to include the expert header file
epan/expert.h:

#include <epan/expert.h>

We now need to make global proto item and value parameters to pass to the
expert TAP.

/* global item and value for passing expert data */

static proto_item *expert_item;

static guint32 expert_status;

Finally, we build our expert data and call the expert_add_info_format function to
pass the data to the expert TAP. Note that the example function looks to see if the
return value is non-0. If it is, we call the expert TAP with the required parameters:

www.syngress.com

452 Chapter 8 • Developing Wireshark

Figure 8.15 Example of a Value String

377_Eth_2e_ch08.qxd 11/14/06 10:21 AM Page 452

expert_status = tvb_get_ntohl(tvb, foffset);

expert_item = proto_tree_add_item(my_tree, hf_my_return_code, tvb,
foffset, 4, FALSE);

if (expert_status != 0) {

expert_add_info_format(pinfo, expert_item, PI_RESPONSE_CODE,

PI_ERROR, "Fault: %s", val_to_str(expert_status,
my_error_types, "Unknown Error (0x%08x)"));

}

Note that the expert_add_info_format will process strings in the typical printf style
format.

The expert TAP utilizes the following defined severity values from the
epan/proto.h file:

/* expert severities */

#define PI_SEVERITY_MASK

#define PI_CHAT

#define PI_NOTE

#define PI_WARN

#define PI_ERROR

/* expert "event groups" */

#define PI_GROUP_MASK

#define PI_CHECKSUM

#define PI_SEQUENCE

#define PI_RESPONSE_CODE

#define PI_REQUEST_CODE

#define PI_UNDECODED

#define PI_REASSEMBLE

#define PI_MALFORMED

#define PI_DEBUG

The expert TAP is processed during the initial decoding of Wireshark to colorize
the Decode window (e.g., the following colors are defined for the expert TAP):

■ Errors: Red

■ Warnings: Yellow

■ Notes: Cyan

■ Chat: Grey

www.syngress.com

Developing Wireshark • Chapter 8 453

377_Eth_2e_ch08.qxd 11/14/06 10:21 AM Page 453

The process of colorizing decoded data to display the item passed by the
expert TAP, allows dissectors to identify certain conditions and then relay that
information directly to the user through a visual display. Without this feature, users
would be required to develop color filters to identify these types of packets in the
Summary window.

The expert TAP data is also available via the menu items expert Info and expert
Info Composite from the “Analyze” menu.

IMPORTANT

If you do not pass a proto item with the expert info, the item will not be
filterable from the composite expert info dialog. The composite expert
info statistic will use the proto item passed to build a display filter when
selected by the user.

Debugging Your Dissector
There are a number of ways to debug Wireshark or a protocol dissector.The easiest
method is to utilize a live debugger (e.g., on Windows you can use the Microsoft Visual
Studio to step through your protocol dissector).There are a number of real time debug-
gers available from proprietary software vendors as well as open-source code solutions.

www.syngress.com

454 Chapter 8 • Developing Wireshark

Development Note
The expert TAP does not require you to pass a proto item. You can construct
the expert_add_info_format() function in a more simplified manner if you just
want to pass some informational data. For example:

expert_add_info_format(pinfo, NULL,
PI_RESPONSE_CODE, PI_ERROR, "Fault in my
protocol");

In this example we are only passing the message “Fault in my protocol”
to the expert TAP.

Notes from the Underground…

377_Eth_2e_ch08.qxd 11/14/06 10:21 AM Page 454

Another solution might be to add debug messages to a file or the console.An
example of this type of debugging is included in the protocol dissector for SSL
called /epan/dissectors/packet-ssl.c:

ssl_debug_printf("ssl_association_add port %d ctport %d info %s handle
%p\n", port, ctport, info, assoc->handle);

One other method implemented by several components of Wireshark is the use
of a simple dialog message.This is a GTK Message window that displays an icon,
some text, and an OK button. During the development process, you may decide to
display a simple message to the user, or even to yourself, to aid in the further devel-
opment of your code.

#include "simple_dialog.h"

simple_dialog(ESD_TYPE_ERROR, ESD_BTN_OK, error_string->str);

UNIX developers can utilize the standard printf function, which will echo to the
console program.A newer proto_tree_xxx function added to Wireshark called
proto_tree_add_debug_text can also be utilized instead of generating a pop-up window
like the simple_dialog function does. Most developers have their own preferred method
of debugging. It can be a combination of methods, but not all will agree on what is
the best for all situations. Depending on the OS on which you are debugging, there
may be times that certain methods work better then others. Wireshark gives you flex-
ibility in debugging by providing several different ways to achieve the same results.

The Wireshark GUI
The Wireshark GUI is created through calls to the GTK library. When you develop
for the Wireshark GUI, you must consider compatibility issues for other builds of
Wireshark.This means that you must program for GTK versions 1.2 and 2.x. Some
GTK functions work in both versions, but others need to be programmed specifically
for the version that Wireshark is built with.As a reference, you can use the GTK Web
site at www.gtk.org as well as other GUI code located in the gtk directory.

The Item Factory
The main menu for Wireshark is created via a GTK item factory.The following
information is extracted from the gtk/menu.c source file included in the Wireshark
source code distribution:

/* This is the GtkItemFactoryEntry structure used to generate new menus.

Item 1: The menu path. The letter after the underscore indicates an

accelerator key once the menu is open.

www.syngress.com

Developing Wireshark • Chapter 8 455

377_Eth_2e_ch08.qxd 11/14/06 10:21 AM Page 455

Item 2: The accelerator key for the entry

Item 3: The callback function.

Item 4: The callback action. This changes the parameters with

which the function is called. The default is 0.

Item 5: The item type, used to define what kind of an item it is.

Here are the possible values:

NULL -> "<Item>"

"" -> "<Item>"

"<Title>" -> create a title item

"<Item>" -> create a simple item

"<ImageItem>" -> create an item holding an image (gtk2)

"<StockItem>" -> create an item holding a stock image (gtk2)

"<CheckItem>" -> create a check item

"<ToggleItem>" -> create a toggle item

"<RadioItem>" -> create a radio item

<path> -> path of a radio item to link against

"<Separator>" -> create a separator

"<Tearoff>" -> create a tearoff separator (gtk2)

"<Branch>" -> create an item to hold sub items
(optional)

"<LastBranch>" -> create a right justified branch

Item 6: extra data needed for ImageItem and StockItem (gtk2)

*/

ITEM_FACTORY_ENTRY("/Copy", NULL, copy_selected_plist_cb, 0, NULL, NULL),

ITEM_FACTORY_ENTRY("/<separator>", NULL, NULL, 0, "<Separator>", NULL),

ITEM_FACTORY_ENTRY("/Expand Subtrees", NULL, expand_tree_cb, 0, NULL,
NULL),

ITEM_FACTORY_ENTRY("/Expand All", NULL, expand_all_cb, 0, NULL, NULL),

ITEM_FACTORY_ENTRY("/Collapse All", NULL, collapse_all_cb, 0, NULL,
NULL),

When the item factory option is selected, the function listed in Item 3 is called.
In GTK, callback functions are called when an item is selected.

The set_menu_sensitivity function enables and disables the availability of menu
items based on a specified condition:

/* make parent menu item sensitive only, if we have any valid files in
the list */

set_menu_sensitivity(main_menu_factory, MENU_RECENT_FILES_PATH, cnt);

www.syngress.com

456 Chapter 8 • Developing Wireshark

377_Eth_2e_ch08.qxd 11/14/06 10:21 AM Page 456

Generally, you only need to modify the Wireshark menu if you are creating a
tool or making a change to some other portion of the GUI.

Using GTK
When an item is selected, GTK passes a handle to the active selection, which are
called widgets.

void

my_widget(GtkWidget *w _U_, gpointer d _U_)

{

GtkWidget *main_vb

GtkTooltips *tooltips;

#if GTK_MAJOR_VERSION < 2

GtkAccelGroup *accel_group;

#endif

When our menu item is selected, GTK passes the GTK widget pointer and data
structure to us. We then create a new GTK widget for our window.

The GtkTooltips is a structure that allows you to store information about a
widget that is displayed when the user places his or her mouse pointer over the
GTK item. For example, suppose you have a button on our window that (when
clicked) changes the current display filter to one of our choosing.Although the size

www.syngress.com

Developing Wireshark • Chapter 8 457

Development Note
Note the _U_ value being defined in the my_widget function. The _U_ repre-
sents an undefined parameter. These values are not used within the function.
The process of defining them as _U_ allows the compiler to not issue a warning
on the function due to undefined variables.

Function Names
It is important to understand that the GTK functions used within the Wireshark
GUI code are not always the original GTK function name. Most GTK functions
are globally defined within the Wireshark source code include file
gtk/compat_macros.h. It may sometimes be necessary to consult this file prior
to looking up specific information on the GTK Web site.

Notes from the Underground…

377_Eth_2e_ch08.qxd 11/14/06 10:21 AM Page 457

of the button only allows us to label it “Filter,” we can define a tool tip that provides
a more detailed description of the button’s function.

The GtkAccelGroup is necessary for GTK version 1.2. It allows for accelerator
keys to be used on the keyboard to access menu items:

/* First check to see if the window already exists. If so make it active. */

if (mywindow_w != NULL) {

/* There's already a "My Window" dialog box; reactivate it. */

reactivate_window(mywindow_w);

return;

}

/* Create our new window */

mywindow = dlg_window_new("Wireshark: My Window");

/* Register our callback function to clean up memory if the window is

closed */

SIGNAL_CONNECT(mywindow_w, "destroy", mywindow_destroy_cb, NULL);

/* Start the tooltips */

tooltips = gtk_tooltips_new ();

#if GTK_MAJOR_VERSION < 2

/* Accelerator group for the accelerators (or, as they're called in

Windows and, I think, in Motif, "mnemonics"; Alt+<key> is a mnemonic,

Ctrl+<key> is an accelerator). */

accel_group = gtk_accel_group_new();

gtk_window_add_accel_group(GTK_WINDOW(mywindow_w), accel_group);

#endif

We first check to make sure the window is not already open. If it is, we reacti-
vate it. If it is not, we create a new dialog window. When creating the new window,
you should create a callback handler to take care of the window being closed, by the
user clicking the EXIT button in the upper right-hand corner of the dialog box.
The SIGNAL_CONNECT function tells GTK what to do when the specified
signal occurs. In this case, we are trapping for the destroy signal.

Finally, we initialize the tooltips. Notice that we only perform the accelerator
group for GTK versions older then GTK 2.x.Accelerator keys in GTK 2.x are
defined when creating the item:

/* Container for each row of widgets */

main_vb = gtk_vbox_new(FALSE, 3);

gtk_container_border_width(GTK_CONTAINER(main_vb), 5);

www.syngress.com

458 Chapter 8 • Developing Wireshark

377_Eth_2e_ch08.qxd 11/14/06 10:21 AM Page 458

gtk_container_add(GTK_CONTAINER(mywindow_w), main_vb);

gtk_widget_show(main_vb);

The first step is to create our main window. Next, we create a box on the new
window.The gtk_vbox_new creates the new box that we will add to our window.The
gtk_container_border_width defines the border for our window.The gtk_container_add
now adds our new box to the main window. Finally, the gtk_widget_show forces GTK
to paint the information to the screen.The following demonstrates the creation of
an OK button on the main_vb window.

/* Button row: OK button */

bbox = gtk_hbutton_box_new();

gtk_button_box_set_layout (GTK_BUTTON_BOX (bbox), GTK_BUTTONBOX_END);

gtk_button_box_set_spacing(GTK_BUTTON_BOX(bbox), 5);

gtk_container_add(GTK_CONTAINER(main_vb), bbox);

gtk_widget_show(bbox);

#if GTK_MAJOR_VERSION < 2

ok_bt = gtk_button_new_with_label ("OK");

#else

ok_bt = gtk_button_new_from_stock(GTK_STOCK_OK);

#endif

SIGNAL_CONNECT(ok_bt, "clicked", capture_prep_ok_cb, cap_open_w);

GTK_WIDGET_SET_FLAGS(ok_bt, GTK_CAN_DEFAULT);

gtk_box_pack_start (GTK_BOX (bbox), ok_bt, TRUE, TRUE, 0);

gtk_widget_grab_default(ok_bt);

gtk_widget_show(ok_bt);

The first section of this code creates a new horizontal button box, adds it to the
main_vb window, and forces GTK to paint the new box.

We then check the GTK version and create the new button depending on
the version of GTK. Note that GTK version 2.x allows us to specify the icon
used for this button.This is how you create custom icons and incorporate them
into Wireshark. We register the callback function for GTK to use when the
button is clicked, register the button as the default button, and paint the button
on the screen. Note that it is not necessary to force GTK to draw each time the
window is updated or a new item is added.You can build your dialog window
and then call gtk_widget_show() to have GTK draw the window and all of it’s
attached components.

www.syngress.com

Developing Wireshark • Chapter 8 459

377_Eth_2e_ch08.qxd 11/14/06 10:21 AM Page 459

You can also register widget data to a widget so that when it is selected, the data
associated to the widget is passed to the calling function (e.g., in the gtk/find_dlg.c
file, a number of defines are set to identify the buttons within the find window):

/* Capture callback data keys */

#define E_FIND_FILT_KEY "find_filter_te"

#define E_FIND_BACKWARD_KEY "find_backward"

Next, the keys are registered as data to the dialog with the object_set_data
function.

OBJECT_SET_DATA(find_frame_w, E_FIND_FILT_KEY, filter_text_box);

OBJECT_SET_DATA(find_frame_w, E_FIND_BACKWARD_KEY, backward_rb);

Finally, when the find_frame_w is selected, the callback function can access the
values of the attached buttons by calling the object_get_data function:

filter_te = (GtkWidget *)OBJECT_GET_DATA(parent_w, E_FIND_FILT_KEY);

backward_rb = (GtkWidget *)OBJECT_GET_DATA(parent_w, E_FIND_BACKWARD_KEY);

The GTK Web site contains many examples and a window builder tool that you
can download and experiment with.To program in GTK, you must know the static
defines for predefined items like GTK_STOCK_XXX and GTK_CAN_DEFAULT.

TAPs
Wireshark implements a TAP system to allow for real-time statistics during packet
captures.These can also be used by statistical information tools that register to the
TAP interface and command Wireshark to re-dissect a saved packet capture file.
Examples of this type of use of the TAP system include conversation lists, endpoints,
expert TAP, and so on.The TAP system is documented in the README.tapping
document located in the doc directory.Also in the main source code directory you
will find a number of tap-xxx files that you can use for a reference on the TAP
interface.The gtk/endpoint_talkers_table.c file can be used as an example of how to
implement a TAP inside of an included statistics menu option.

The TAP interface is implemented in two steps.The first step is to install the
TAP into the protocol dissector you want to get information from.The second
step is to add the TAP listener to your new application. Many of the protocol dis-
sectors included in Wireshark already contain TAPs. Most likely you will only
need to create your TAP listener and perform the work you need to do. If you
find that a TAP is not installed in the protocol you need, adding the TAP is simple
through the use of a few lines of code. Refer to the README.tapping for more
information.

www.syngress.com

460 Chapter 8 • Developing Wireshark

377_Eth_2e_ch08.qxd 11/14/06 10:21 AM Page 460

Some of the most common TAPs used today in protocol dissectors are:

■ Expert

■ Conversations

■ Endpoints

■ SRT

There are a number of examples for each of these types of TAPs. Protocol dis-
sectors define and register the TAPs that they will be providing information too.To
register a TAP, the following process must be added to your dissectors
proto_register_xxx function:

my_srt_tap=register_tap("my_srt");

Inside of the protocol dissection process you should call the tap_queue_packet
function with the necessary information needed by the TAP:

tap_queue_packet(my_srt_tap, pinfo, pointer_to_my_tap_data);

Note that pointer_to_my_tap_data can be a pointer to any data that you want to
pass to your specific TAP implementation. However, it is important when adding
TAPs for already established interfaces like, conversations, endpoints, and so on, that
you verify that your new TAP will pass a pointer to the correct information required
by that TAP interface.

Now that the protocol dissector is registering the TAP, you can create a conver-
sation, endpoint, or SRT statistic option to use the information the TAP provides.
The first step in writing the code to manage the information is to create a new file
in the gtk directory for the specific TAP data type.The file naming convention used
for each type of statistic source code file is:

■ gtk/conversations_myprot Conversations

■ gtk/myprot_stat SRTs

■ hostlist_myprot Endpoints

Note that the TAP modules for Tshark are located in the root directory of the
source code distribution.These files are typically named tap-myprot.

First we create the standard header and includes. We will need different includes
depending on the type of statistic we are processing. In this example we are using
the SRT statistics:

/* mysrt_stat.c

* mysrt_stat 2006 My_Name

*

www.syngress.com

Developing Wireshark • Chapter 8 461

377_Eth_2e_ch08.qxd 11/14/06 10:21 AM Page 461

* $Id: mysrt_stat.c 00000 2006-01-01 00:00:00Z xxx $

*

* Wireshark - Network traffic analyzer

* By Gerald Combs <gerald@wireshark.org>

* Copyright 1998 Gerald Combs

*

* This program is free software; you can redistribute it and/or

* modify it under the terms of the GNU General Public License

* as published by the Free Software Foundation; either version 2

* of the License, or (at your option) any later version.

*

* This program is distributed in the hope that it will be useful,

* but WITHOUT ANY WARRANTY; without even the implied warranty of

* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

* GNU General Public License for more details.

*

* You should have received a copy of the GNU General Public License

* along with this program; if not, write to the Free Software

* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

*/

#ifdef HAVE_CONFIG_H

include "config.h"

#endif

#ifdef HAVE_SYS_TYPES_H

include <sys/types.h>

#endif

#include <string.h>

#include <gtk/gtk.h>

#include <epan/packet_info.h>

#include <epan/epan.h>

#include <epan/value_string.h>

#include <epan/tap.h>

#include "service_response_time_table.h"

#include "../stat_menu.h"

#include "../tap_dfilter_dlg.h"

#include "gtkglobals.h"

www.syngress.com

462 Chapter 8 • Developing Wireshark

377_Eth_2e_ch08.qxd 11/14/06 10:21 AM Page 462

We now need a structure to store our SRT statistics in:

/* used to keep track of the statistics for an entire program interface */

typedef struct _mysrtstat_t {

GtkWidget *win;

srt_stat_table my_srt_table;

} mysrtstat_t;

We must register our new SRT statistics option with Wireshark.This registration
process will add the new option to the SRT statistical menu and add this statistic as a
sub-option of the SRT menu item or as a tab in the tabbed/notebook view:

static tap_dfilter_dlg mysrt_stat_dlg = {

"My Protocol SRT Statistics",

"mysrt,srt",

gtk_mysrtstat_init,

-1

};

void

register_tap_listener_gtkmysrtstat(void)

{

register_dfilter_stat(&mysrt_stat_dlg, "MYSRT",

REGISTER_STAT_GROUP_RESPONSE_TIME);

}

The main registration function (register_dfilter_stat()) passes the parameters, points
to the function to call when a user selects the item (mysrt_stat_dlg), and names the
display in the menu (MYSRT) and the statistical menu item we are adding this item
too (REGISTER_STAT_GROUP_RESPONSE_TIME).

The function called when the user selects the new SRT menu option
(mysrt_stat_dlg()) passes the information to the initialization function (gtk_mysrtstat_init).

The first process in the initialization function (gtk_mysrtstat_init) is to create the
GTK window that will hold our statistical information.

static void

gtk_mysrtstat_init(const char *optarg, void *userdata _U_)

{

/* Define a pointer to our structure */

mysrtstat_t *ss;

const char *filter=NULL;

www.syngress.com

Developing Wireshark • Chapter 8 463

377_Eth_2e_ch08.qxd 11/14/06 10:21 AM Page 463

/* Allocate memory for our table */

ss=g_malloc(sizeof(mysrtstat_t));

/* Get the current filter passed */

if(!strncmp(optarg,"mysrt,srt,",8)){

filter=optarg+8;

} else {

filter=NULL;

}

/* Create the main window */

ss->win=window_new(GTK_WINDOW_TOPLEVEL, "mysrt-stat");

gtk_window_set_default_size(GTK_WINDOW(ss->win), 300, 400);

vbox=gtk_vbox_new(FALSE, 3);

gtk_container_add(GTK_CONTAINER(ss->win), vbox);

gtk_container_set_border_width(GTK_CONTAINER(vbox), 12);

/* Print a label on the menu to describe this statistic */

label=gtk_label_new("My Protocol Service Response Time Statistics");

gtk_box_pack_start(GTK_BOX(vbox), label, TRUE, TRUE, 0);

/* Display the current display filter */

g_snprintf(filter_string,255,"Filter:%s",filter?filter:"");

label=gtk_label_new(filter_string);

gtk_box_pack_start(GTK_BOX(vbox), label, FALSE, FALSE, 0);

/* Let's create a notebook view */

main_nb = gtk_notebook_new();

gtk_box_pack_start(GTK_BOX(vbox), main_nb, TRUE, TRUE, 0);

temp_page = gtk_vbox_new(FALSE, 6);

label = gtk_label_new("Groups");

gtk_notebook_append_page(GTK_NOTEBOOK(main_nb), temp_page, label);

/* Create a Close button row. */

bbox = dlg_button_row_new(GTK_STOCK_CLOSE, NULL);

gtk_box_pack_end(GTK_BOX(vbox), bbox, FALSE, FALSE, 0);

close_bt = OBJECT_GET_DATA(bbox, GTK_STOCK_CLOSE);

window_set_cancel_button(ss->win, close_bt, window_cancel_button_cb);

www.syngress.com

464 Chapter 8 • Developing Wireshark

377_Eth_2e_ch08.qxd 11/14/06 10:21 AM Page 464

/* Tell GTK what functions to call when a delete or destroy is
detected */

SIGNAL_CONNECT(ss->win, "delete_event", window_delete_event_cb, NULL);

SIGNAL_CONNECT(ss->win, "destroy", win_destroy_cb, ss);

gtk_widget_show_all(ss->win);

window_present(ss->win);

Inside the initialization function, after creating the window for the data, we must
register a listener for the TAP information.

/* Register the tap listener */

error_string=register_tap_listener("my_srt", ss, filter,

mysrt_reset, mysrt_packet, mysrt_draw);

if(error_string){

simple_dialog(ESD_TYPE_ERROR, ESD_BTN_OK, error_string->str);

g_string_free(error_string, TRUE);

g_free(ss);

return;

}

When you register the TAP listener, you pass the TAP name as parameters
(my_srt), the pointer to the local srt_stat_table variable/structure (SS), the current
filter (if used; otherwise pass NULL), the function to call when a reset signal is
detected by GTK (mysrt_reset), the function to call when a new packet/event is
detected (mysrt_packet), and the function to call when GTK performs a refresh
(mysrt_draw).

At this point, most of the TAP listener applications will initiate a retap/redissect
process so that the information will again be passed to the TAP channel.There are
two methods available to initiate this process:

cf_redissect_packets(&cfile);

or

cf_retap_packets(&cfile, FALSE);

The main difference between these two calls is that the cf_redissect_packets forces
Wireshark to do a complete reload and dissection of the current trace, including
recreation of the GUI items, whereas, the cf_retap_packets forces Wireshark to reload
and rescan the packet data.The retap function is preferred, if possible, because it takes
less time for Wireshark to complete and is less intensive. However, in cases where
dissector information requires a re-dissection process including the GUI items, you

www.syngress.com

Developing Wireshark • Chapter 8 465

377_Eth_2e_ch08.qxd 11/14/06 10:21 AM Page 465

may need to perform the cf_redissect_packets instead. Developers should weigh the
benefit vs. cost prior to implementing a full re-dissection of the packet trace.

The remaining code for handling conversations, endpoints, or SRT statistics,
varies depending on the implementation. In our example, we now need to compose
our functions to handle the reset, packet, and draw conditions:

static void

mysrtstat_reset(void *pss)

{

mysrtstat_t *ss=(mysrtstat_t *)pss;

/* Call the global SRT function to reset the table data */

reset_srt_table_data(&ss->my_srt_table);

}

static int

mysrtstat_packet(void *pss, packet_info *pinfo, epan_dissect_t *edt _U_,
const void *prv)

{

mysrtstat_t *ss=(mysrtstat_t *)pss;

const my_dissectors_tap_data_type *request_val=prv;

/* if we haven't seen the request, just ignore it */

if(!request_val){

return 0;

}

/* Call the global SRT function to add the new packet data */

add_srt_table_data(&ss->my_srt_table, request_val->command,

&request_val->req_time, pinfo);

return 1;

}

static void

mysrtstat_draw(void *pss)

{

mysrtstat_t *ss=(mysrtstat_t *)pss;

/* Call the global SRT function to draw the window */

draw_srt_table_data(&ss->my_srt_table);

}

www.syngress.com

466 Chapter 8 • Developing Wireshark

377_Eth_2e_ch08.qxd 11/14/06 10:21 AM Page 466

It is also important to remember to clean up the memory when your application
ends.Therefore, we also need to define our cleanup function if the window is just
closed by the user:

void protect_thread_critical_region(void);

void unprotect_thread_critical_region(void);

static void

win_destroy_cb(GtkWindow *win _U_, gpointer data)

{

mysrtstat_t *ss=(mysrtstat_t *)data;

protect_thread_critical_region();

remove_tap_listener(ss);

unprotect_thread_critical_region();

free_srt_table_data(&ss->my_srt_table);

g_free(ss);

}

It is recommended that you utilize one or more of the currently available
sources for any new additions. Inside the gtk directory are a number of examples for
all of the defined types of TAPs.Although our example was for the service response
time statistics, the coding for conversations and endpoints are basically the same.

www.syngress.com

Developing Wireshark • Chapter 8 467

Development Note
It is important to note that even though the expert info is a TAP, you do not
have to implement any type of utility code to process the expert info as you do
with conversations, SRT, and endpoints statistics. As mentioned previously, you
modify your dissector to call the expert TAP directly.

Notes from the Underground…

377_Eth_2e_ch08.qxd 11/14/06 10:21 AM Page 467

Plug-ins
Wireshark also supports the implementation of protocol dissectors as plug-ins. Plug-
ins are preferred by some developers, because they can be developed and debugged
without having to rebuild the whole Wireshark distribution.Another reason that
some developers utilize the plug-in option for their dissector, is to protect propri-
etary information. When releasing a protocol dissector in Wireshark, your code is
checked and automatically becomes subject to the rules defined in the GPL; how-
ever, a plug-in can be distributed in binary form, and, therefore, the GPL will not
apply to the specific plug-in.

You can compile and build your plug-in and then copy the binary to the plug-
ins directory under the name of your plug-in. Wireshark ships with a number of
plug-ins and each can be loaded or unloaded depending on whether they are
installed prior to launching Wireshark.The plug-in interface mimics the dissector
interface. In fact, plug-ins are first developed as a normal dissector.Then, additional
code is added to make the dissector a plug-in.This procedure changed starting with
Ethereal version 0.10.10. Making your packet-xxx protocol dissector a plug-in is a
multi-step process, which includes the creation of a source code directory to house
the plug-in and it’s support files, as well as modifications to the makefiles in the root
of the source code distribution.The README.plugins file located in the doc direc-
tory outlines the steps you need to take to generate a plug-in dissector for
Wireshark.

www.syngress.com

468 Chapter 8 • Developing Wireshark

377_Eth_2e_ch08.qxd 11/14/06 10:21 AM Page 468

Summary
This chapter outlined some of the most important parts of developing in Wireshark.
There are several components that can contributed:

■ Protocol dissectors

■ Plug-ins

■ The Wireshark GUI

■ Tools

This chapter went into great detail documenting the proper steps to take when
creating a dissector. By consulting the README.developer document in the doc
directory, you can cut and paste a template to help you get started. However, the
document does not clearly define each step necessary in the development process.
This chapter attempts to provide these steps in a logical order. First, modify the
header and the include statements. Next, register the protocol dissector. Finally, create
the dissector code to decode the data.The important factor in the decode section is
to utilize the hf array in the register function so that elements can be filtered upon.

This chapter also covered several advanced topics including a basic guide to
GTK programming. Many of the topics covered will be experienced by someone
creating a protocol dissector. Handling advanced topic issues correctly can eliminate
many hours of unnecessary work and research.After debugging your work, make
sure you go back and clean up as much of the code as possible. Insert comments to
make the code clear. In addition, make sure you remove unused variable definitions.
If possible, clean up any remaining warnings displayed in the compile process by
your compiler. Finally, contribute your modifications back to the Wireshark project
by e-mailing a patch to the wireshark-dev mailing list.Again, make sure that any
information that you contribute back to Wireshark is not going to violate any pro-
prietary claims. Wireshark is released under the GPL and all contributions should be
consistent with this licensing agreement.

www.syngress.com

Developing Wireshark • Chapter 8 469

377_Eth_2e_ch08.qxd 11/14/06 10:21 AM Page 469

www.syngress.com

470 Chapter 8 • Developing Wireshark

Solutions Fast Track
Prerequisites for Developing Wireshark

� The Wireshark source code must be obtained before you can start any
new development.You have the option of downloading different types of
download packages.The Wireshark Web site (www.wireshark.org) contains
links to download previous versions, the current release version, nightly
backups, and SVN code.

� The requirements for Windows-based computers are different from
UNIX/Linux-based computers. Windows-based computers require
additional tools to emulate the UNIX/Linux environment.

� To build Wireshark, a number of libraries and tools are needed.There are
several libraries that are optional depending on whether you decide to add
a specific feature.

� Wireshark can be compiled and run on a number of operating systems. For
this reason, you must ensure that you program in ANSI C for portability
between all of the supported platforms.

� Before you start any work on Wireshark, make sure you can compile and
link Wireshark into its executable binary form.

� The Wireshark Web site contains a number of additional resources for
developers, including Bugzilla, wiki, and the Wish List.

Wireshark Design

� The main directory of the source code distribution is the primary location of
the configuration files used by the compiler to build the Wireshark binaries.

� The GTK directory is used to store the GUI source code used in Wireshark.
You will find the main application as well as the toolbar, menu, conversations,
endpoints, SRT statistics, and other GTK source code in this directory.

� Most of the utility functions for Wireshark are located in the EPAN
directory.These functions include conversion functions as well as tvb and
column functions.

� The doc directory of the distribution is where you will locate most of the
documentation that is shipped with the Wireshark source code.This is a
great resource for anyone wanting to develop in Wireshark.

377_Eth_2e_ch08.qxd 11/14/06 10:21 AM Page 470

www.syngress.com

Developing Wireshark • Chapter 8 471

Developing a Dissector

� Before you start any Wireshark development, make sure you can build the
Wireshark executable.

� The first step in developing a dissector is to utilize the template provided in
the README.developer document.

� It is important to consider the GPL and other factors when modifying the
header comments from the template. Note that this is where you need to
add your personal information so that you can receive credit for your work.

� Global Wireshark functions are provided to ease the development of
dissectors.

� Registering your protocol dissector is a necessary process so that Wireshark
knows when to pass packet data on to your dissector.

� The hf array provides the mechanism to incorporate display and color
filters. By utilizing the proto_tree_add_item() functions, the hf array defines
the data type to be used to convert specific data into the proper string
representations in the Decode window.

� Use tvb_get_xxx functions to access data from the frame.The data passed to
your dissector does not include the data that has already been decoded by
other dissectors.

� Using the proto_tree functions allow you to print to the Decode window of
the Wireshark GUI.

� One of the most important steps a dissector should do is to pass any
remaining packet data back to Wireshark.This way, future dissectors can be
written to dissect the remaining packet data.

Advanced Topics

� Creating subtrees allows you to display data in a more informative way in
the Decode window of the GUI. Users needing more detailed information
can expand the item to view the details.

� Wireshark provides a mechanism to display bitfields in a graphical view.This
allows the user to see from the bit display what the actual fields represent.

� Many dissectors must be able to handle Unicode strings. Unicode strings
present a challenge to normal string processing, because of their 2-byte width.

377_Eth_2e_ch08.qxd 11/14/06 10:21 AM Page 471

� There are situations that require you to have the ability to track request and
reply packet pairs. Wireshark provides the conversations list functions to
keep specific information of a source code packet so that it can be matched
to a reply packet.

� Packet retransmissions are a normal occurrence on most networks. It is
important that Wireshark protocol dissectors can handle this type of
condition.The use of conversation lists can help in this process.

� Users should have the ability to configure different components in
Wireshark, including the ability to turn a feature on or off within your
protocol dissector.The preference files give you a place to store values so
that your dissector can retrieve them the next time Wireshark is active.

� During the processing of data within a packet, you may need to know
certain information from another dissector. Wireshark provides a mechanism
to pass data between dissectors with the pinfo->private_data pointer.

� Fragmentation occurs when the payload of a packet exceeds the actual size
of the packet.The protocol breaks the payload into pieces and then sends
each one within a fragment.The destination device then collects all of the
fragments and reassembles the original payload. Dissectors need to have the
ability to process these packet fragments. Wireshark utilizes several
defragment functions to track and reassemble fragmented data.

� There are many times within the packet data that number should be
displayed as a user-friendly string to define the value. Most error codes are
returned as numerical values, but the number itself means little to end users.
Value strings give you the ability to convert numerical values to a meaningful
message.

� Wireshark’s GUI utilizes the GTK item factory for creating and
manipulating its menu items.Adding a new menu item is a quick process
by adding new items to the item factory.

� If you plan to develop or modify any of the Wireshark GUI, you need to
become familiar with GTK programming and it’s rich set of functions.The
GTK Web (www.gtk.org) site provides documentation and examples on
the proper ways of writing to the GTK library.

� Wireshark provides a mechanism to receive real-time data.Tools can utilize
the TAP system to gather information from a live capture or from an
existing packet trace. Examples of tools that utilize the Wireshark TAP
interface are conversations, endpoints, SRTs, and the expert.

www.syngress.com

472 Chapter 8 • Developing Wireshark

377_Eth_2e_ch08.qxd 11/14/06 10:21 AM Page 472

� Programming to the expert TAP only requires modification to the protocol
dissector, whereas other TAPs require a more extensive work to process the
TAP information and extend the Wireshark menu.

� Packet dissectors do not have to be compiled into the Wireshark source
code.The plug-in interface provides a mechanism to convert your dissector
from packet-xxx type source code to a plug-in. Plug-ins can be compiled
quicker and can also be added and removed prior to launching the
Wireshark executable.

Q: How does Wireshark know when a dissector should be called?

A: The dissector_add function defines the condition in which the dissector should
be called.

Q: Where do I locate the design document for developing Wireshark?

A: There really isn’t a design document, but the README.developer document and
the other documents contained in the doc directory contain useful information.
A developer’s guide is being constructed on the Wireshark wiki site as well.

Q: How do you pass information from one dissector to another?

A: By using the pinfo->private_data to pass a pointer to the other dissectors data.

Q: How do I know what functions are provided by Wireshark?

A: We have tried to list many of the common functions within this chapter, but for
a complete listing you should look at the header files of the source code for all
exports. Exports are the mechanism that allows you to define the public functions
that will be available to the rest of the application. Functions that are not
exported are limited in visibility to the module in which they are defined.
However, although they may be limited in their visibility, it is important that you
do not create a function within your dissector that might conflict with a public

www.syngress.com

Developing Wireshark • Chapter 8 473

Frequently Asked Questions
The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

377_Eth_2e_ch08.qxd 11/14/06 10:21 AM Page 473

function that has been exported.This is one of the reasons why you should
declare your private functions as static unless you plan to export the function to
use with other Wireshark modules. Note that exports are ignored by some oper-
ating systems but used in others (e.g., Windows uses exports to define global
application functions as described above).

Q: Can I build Wireshark with Microsoft Visual C++?

A: Yes.You need to make sure you have all of the required libraries and tools. It is
important to realize that building under Microsoft Visual C++ does not include
using the visual studio environment. Building Wireshark utilizes the command-
line interface and you build Wireshark.exe with nmake.exe. Wireshark does not
include any visual studio workspace or configuration files to be used with the
visual studio GUI.To build Wireshark under Microsoft Visual C++, open a
command (CMD) window and navigate to the main source code directory of
Wireshark. Finally, execute nmake with the syntax nmake –f makefile.nmake.

Q: Where can I find more information on programming the GUI?

A: The GTK Web site has development tutorials and examples at www.gtk.org.

Q: I built an Wireshark Red Hat Package Manager (RPM) with SSL decryption,
but some of my users complain that they can’t find the dependency file
libgcrypt.so.11.

A: When building with features like SSL decryption, the actual decryption is per-
formed by decryption libraries gnutls and libgcrypt. Many systems may have a
newer version of these modules. For systems with newer packages, you can per-
form the following.

■ Create a softlink to the newer library package (/usr/lib/ # ln -s
libgcrypt.so.12 libgcrypt.so.11).

■ Then you need to update the system configuration (/usr/lib/ # ldconfig).

For systems running older versions of the failing dependency package, it is
recommended that users upgrade to a newer version. If none are available, it is
recommended that you build another RPM without this feature.

www.syngress.com

474 Chapter 8 • Developing Wireshark

377_Eth_2e_ch08.qxd 11/14/06 10:21 AM Page 474

475

Other Programs
Packaged with
Wireshark

Solutions in this chapter:

■ TShark

■ editcap

■ mergecap

■ text2pcap

■ capinfos

■ dumpcap

Chapter 9

� Summary

� Solutions Fast Track

� Frequently Asked Questions

377_eth_2e_ch09.qxd 11/14/06 10:13 AM Page 475

Introduction
Most people familiar with Wireshark tend to use the Wireshark graphical user inter-
face (GUI). However, when Wireshark is installed, it also comes with several other
supporting programs: the command-line version of Wireshark, called TShark, and
five other programs to assist you in manipulating, assessing, and creating capture
files—editcap, mergecap, text2pcap capinfos and dumpcap.These supporting pro-
grams can be used together to provide very powerful capture file manipulation. For
example, files can be captured with TShark, edited with editcap, and merged into a
single packet capture file with mergecap.They can then be viewed with TShark or
Wireshark.As you read this chapter, you will see the vast capabilities and the gran-
ular control these supporting programs give you when manipulating capture files.

TShark
TShark is the command-line version of Wireshark. It can be used to capture, decode,
and print to screen live packets from the wire or to read saved capture files. Some of
the same features apply to both TShark and Wireshark, as they use the same capture
library, libpcap, and most of the same code.TShark can read all the same packet cap-
ture formats as Wireshark, and will automatically determine the type. If TShark is
compiled with the zlib library, it can automatically uncompress and read files that
have been compressed with gzip.The advantage to using TShark is that it is highly
scriptable.

The following information is the usage output for the TShark program. Notice
the various types of formats in which TShark can save files by using the –F option:

$ tshark -h

TShark 0.99.4 (SVN Rev 19507)

Dump and analyze network traffic.

See http://www.wireshark.org for more information

Copyright 1998-2006 Gerald Combs <gerald@wireshark.org> and contributors.

This is free software; see the source for copying conditions. There is NO

warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

Usage: tshark [options] ...

Capture interface:

-i <interface> name or idx of interface (def: first non-loopback)

-f <capture filter> packet filter in libpcap filter syntax

www.syngress.com

476 Chapter 9 • Other Programs Packaged with Wireshark

377_eth_2e_ch09.qxd 11/14/06 10:13 AM Page 476

-s <snaplen> packet snapshot length (def: 65535)

-p don't capture in promiscuous mode

-y <link type> link layer type (def: first appropriate)

-D print list of interfaces and exit

-L print list of link-layer types of iface and exit

Capture stop conditions:

-c <packet count> stop after n packets (def: infinite)

-a <autostop cond.> ... duration:NUM - stop after NUM seconds

filesize:NUM - stop this file after NUM KB

files:NUM - stop after NUM files

Capture output:

-b <ringbuffer opt.> ... duration:NUM - switch to next file after NUM secs

filesize:NUM - switch to next file after NUM KB

files:NUM - ringbuffer: replace after NUM files

Input file:

-r <infile> set the filename to read from (no pipes or stdin!)

Processing:

-R <read filter> packet filter in Wireshark display filter syntax

-n disable all name resolutions (def: all enabled)

-N <name resolve flags> enable specific name resolution(s): "mntC"

-d <layer_type>==<selector>,<decode_as_protocol> ...

"Decode As", see the man page for details

Example: tcp.port==8888,http

Output:

-w <outfile|-> set the output filename (or '-' for stdout)

-F <output file type> set the output file type, default is libpcap

an empty "-F" option will list the file types

-V add output of packet tree (Packet Details)

-x add output of hex and ASCII dump (Packet Bytes)

-T pdml|ps|psml|text output format of text output (def: text)

-t ad|a|r|d output format of time stamps (def: r: rel. to
first)

-l flush output after each packet

-q be more quiet on stdout (e.g. when using
statistics)

-X <key>:<value> eXtension options, see the man page for details

-z <statistics> various statistics, see the man page for details

www.syngress.com

Other Programs Packaged with Wireshark • Chapter 9 477

377_eth_2e_ch09.qxd 11/14/06 10:13 AM Page 477

Miscellaneous:

-h display this help and exit

-v display version info and exit

-o <name>:<value> ... override preference setting

The following command-line options are used to control TShark’s data capture
and output:

■ Capture Interface Options

■ –i interface Specifies the interface you want to use to capture data.The
–D option can be used to find out the names of your network inter-
faces.You can use the number or the name as a parameter to the –i
option. If you run TShark without the –i option, it will search the list
of interfaces and choose the first non-loopback interface it finds. If it
doesn’t find any non-loopback interfaces, it will use the first loopback
interface. If this doesn’t exist,TShark will exit with an error.

■ –f capture filter expression Allows you to set the filter expression to
use when capturing data. For example, tshark -f tcp port 80 will
only capture incoming and outgoing HTTP packets.

■ –s snaplen Allows you to set the default snapshot length to use when
capturing data.The parameter snaplen specifies the length, in bytes, of
each network packet that will be read or saved to disk.The default
snaplen is 65535 bytes, which should be large enough to capture the
entire frame contents for all data link types.

■ –p Tells TShark to not put the interface in promiscuous mode.This
will cause TShark to only read traffic sent to and from the system on
which TShark is running, broadcast traffic, and multicast traffic.

■ –y type Allows you to set the data link type to use while capturing
packets.You can use the –L option to lists the data link types that are
supported by an interface.

■ –D Instructs TShark to print a list of available interfaces on the
system. It will print the interface number, name, and description and
then return to the command prompt.You can then supply the
number or the name to the –i flag to specify an interface on which
to capture data. Specifying this option causes TShark to open and
attempt to capture on each interface it finds. It will only display the

www.syngress.com

478 Chapter 9 • Other Programs Packaged with Wireshark

377_eth_2e_ch09.qxd 11/14/06 10:13 AM Page 478

interfaces on which this was successful. Also, if you need to be logged
in as root to run TShark but are not, this option will not display any
available interfaces.

■ –L Lists the data link types that are supported by an interface and then
exits.You can specify an interface to use, or TShark will choose the first
one it finds as stated in the –i option information.

■ Capture Stop Options

■ –c count Sets the default number of packets to read when capturing
data. For example, if you only want to capture 100 packets you would
specify –c 100.

■ –a test:value Used when capturing to a file. It specifies to TShark
when to stop writing to the file.The criterion is in the form test:value,
where test is either duration or file size. Duration will stop writing to a
file when the specified number of seconds have elapsed, and file size
will stop writing to a file after a size of value kilobytes has been
reached.

■ Capture Output Option

■ –b number of ring buffer files [:duration] Used with the –a option,
and causes TShark to continue capturing data to successive files.This
is known as ring buffer mode and will keep saving files up to the
number specified within the option. When the first file reaches the
maximum size, as specified with the –a option,TShark will begin
writing to the next file. When all files are full, it will continue to
write new files as it removes the older ones. However, if the number
of files is specified as 0, the number of files TShark writes to will be
unlimited, and will only be restricted to the size of the hard disk. An
optional duration parameter can also be specified so TShark will
switch to the next file when the instructed number of seconds has
elapsed.This will happen even if the current file is not yet full.The
filenames created are based on the number of the file and the cre-
ation date and time.You can only save files in the libpcap format
when this option is used.

■ Capture Input Option

■ –r file Reads and processes a saved capture file.

www.syngress.com

Other Programs Packaged with Wireshark • Chapter 9 479

377_eth_2e_ch09.qxd 11/14/06 10:13 AM Page 479

■ Capture Processing Options

■ –R filter Causes a read filter to be applied before displaying or writing
the packets to a file. Packets that do not match the filter will be dis-
carded.

■ –n Used to disable network object name resolution, such as host names
and port names.

■ –N resolving flags Used to enable name resolving for specified address
types and port numbers.The m flag enables MAC address resolution,
the n flag enables network address resolution, and the t flag enables
transport-layer port number resolution.The C flag enables concurrent
(asynchronous) Domain Name System (DNS) lookups if TShark is
compiled with Asynchronous DNS (ADNS).The –N option overrides
the –n option.

■ –d layer type==selector, decode-as protocol Allows you to specify the
way in which traffic is decoded.The parameters denote that if the
layer type has a specified value, packets should be decoded as the
specified protocol. For example, –d tcp.port==8080, http would
decode all traffic to and from Transmission Control Protocol (TCP)
port 8080 as HyperText Transfer Protocol (HTTP) traffic.This is
valuable for applications that allow you to run services on nonstan-
dard ports.

■ –B buffer size Available only on Windows systems, causing TShark to
allocate a buffer size in MB (default is 1MB) to use for storing packet
data during a capture before writing to the disk.This option is useful if
your packet capture is dropping frames due to the overhead associated
with writing to the disk.

■ Capture Output Options

■ –w file Writes the packets to the filename specified following the
option. If the option specified is -, standard output is used.This
option suppresses the packet display decoding unless the S option is
also specified.

■ –F type Used to set the format of the output of the capture file. For
example, if you want to save a file in the Sun snoop format so snoop
can read the capture file, you would use the –F snoop option.

www.syngress.com

480 Chapter 9 • Other Programs Packaged with Wireshark

377_eth_2e_ch09.qxd 11/14/06 10:13 AM Page 480

■ –V Displays the capture in protocol tree form instead of the default
summary packet form.

■ –S Decodes and displays the contents of packets even when writing
to a file.

■ –x Displays the capture in a hexadecimal and ASCII dump format
along with the summary or protocol tree view.

■ –T pdml|ps|text Allows you to set the display format to use when
viewing packet data. When using the Packet Details Markup Language
(PDML) option, the protocol data tree is always displayed. If the desired
format is omitted,“text” is used as the default.

■ –t format Allows you to set the format of the packet timestamp that
is displayed on the summary line.The format parameter will specify
the method used to display the data. Relative time is specified by the r
parameter and displays the time elapsed between the first packet and
the current packet.Absolute time is specified by the a parameter and is
the actual time the packet was captured.The absolute date and time
are specified by the ad parameter and are the actual time and date the
packet was captured.The delta time is specified by the d parameter
and displays the time since the previous packet was captured. By
default, the time is specified as relative.

■ –l Flushes the standard output buffer after each packet is printed
instead of waiting until it fills up. It is normally used when piping a
capture to a script so that the output for each packet is sent as soon as
it is read and dissected.

■ –q Allows you to turn off the packet count when capturing network
packets to a file.The count will still be displayed at the end of the cap-
ture. On some systems, such as various BSD systems, that support the
SIGINFO signal, typing control-T will cause the current count status
to be displayed.

■ –X Allows the user to specify an option that will be passed to a TShark
module. Currently, this option is used to specify additional analysis
functionality using Lua scripts with the syntax lua_script:filename.

■ –z statistics Causes TShark to collect various types of statistics about
the data being captured.The results will be displayed after reading the
capture file.

www.syngress.com

Other Programs Packaged with Wireshark • Chapter 9 481

377_eth_2e_ch09.qxd 11/14/06 10:13 AM Page 481

■ Miscellaneous Options

■ –h Prints the version of TShark and the help options and then exits.

■ –v Prints the TShark version information and then exits.

■ –o prefname:value Allows you to set a preference value that will over-
ride any default value or value read from a preference file.The param-
eter to this option is in the format of prefname:value, where prefname is
the name of the preference as it would appear in the preference file,
and value is the value to which it should be set.

By default,TShark will display packets to the screen in summary line form.
These are the same lines that are displayed in the Wireshark summary pane.
However, it does not print the frame number field when capturing and displaying real
time.The –V option can be used to print detailed information about the packets
instead of just a summary.TShark can also read saved data capture files, and print the
information in either summary (default) or detailed form (–V).This method will
display the frame numbers with the saved packets. Finally, the –x command will
cause TShark to print a hexadecimal and ASCII dump of the packet data with either
the summary line or detailed protocol tree.TShark has a very strong display filter
language and can use the TCPDump filter syntax as well.These can be used to
narrow the type of traffic you want to capture.

When using TShark to write a capture to a file, the file will be written in
libpcap format by default. It will write all the packets and all the detail about the
packets to the output file; thus, the –V and the –x options aren’t necessary. Since
TShark and Wireshark are compatible with many other sniffers, you can also write
the output in several different formats.The –F option can be used to specify a
format in which to write the file.

The following is a basic example of using TShark to perform a capture and dis-
play the output in a protocol tree view along with the associated hexadecimal and
ASCII output.

C:\Program Files\Wireshark>tshark -V -x

Capturing on \Device\NPF_{A302C81E-256D-4C92-8A72-866F2E1ED55F}

Frame 1 (114 bytes on wire, 114 bytes captured)

Arrival Time: Nov 28, 2003 22:14:16.221349000

Time delta from previous packet: 0.000000000 seconds

Time since reference or first frame: 0.000000000 seconds

Frame Number: 1

Packet Length: 114 bytes

Capture Length: 114 bytes

www.syngress.com

482 Chapter 9 • Other Programs Packaged with Wireshark

377_eth_2e_ch09.qxd 11/14/06 10:13 AM Page 482

IEEE 802.3 Ethernet

Destination: ff:ff:ff:ff:ff:ff (Broadcast)

Source: 00:05:5d:ee:7e:53 (D-Link_ee:7e:53)

Length: 100

Logical-Link Control

DSAP: NetWare (0xe0)

IG Bit: Individual

SSAP: NetWare (0xe0)

CR Bit: Command

Control field: U, func = UI (0x03)

000. 00.. = Unnumbered Information

.... ..11 = Unnumbered frame

Internetwork Packet eXchange

Checksum: 0xffff

Length: 96 bytes

Transport Control: 0 hops

Packet Type: PEP (0x04)

Destination Network: 0x00000000 (00000000)

Destination Node: ff:ff:ff:ff:ff:ff (Broadcast)

Destination Socket: SAP (0x0452)

Source Network: 0x00000000 (00000000)

Source Node: 00:05:5d:ee:7e:53 (D-Link_ee:7e:53)

Source Socket: Unknown (0x4008)

Service Advertisement Protocol

General Response

Server Name: TARGET1!!!!!!!!A5569B20ABE511CE9CA400004C762832

Server Type: Microsoft Internet Information Server (0x064E)

Network: 00 00 00 00

Node: 00:05:5d:ee:7e:53

Socket: Unknown (0x4000)

Intermediate Networks: 1

0000 ff ff ff ff ff ff 00 05 5d ee 7e 53 00 64 e0 e0].~S.d..

0010 03 ff ff 00 60 00 04 00 00 00 00 ff ff ff ff ff`...........

0020 ff 04 52 00 00 00 00 00 05 5d ee 7e 53 40 08 00 ..R......].~S@..

0030 02 06 4e 54 41 52 47 45 54 31 21 21 21 21 21 21 ..NTARGET1!!!!!!

0040 21 21 41 35 35 36 39 42 32 30 41 42 45 35 31 31 !!A5569B20ABE511

0050 43 45 39 43 41 34 30 30 30 30 34 43 37 36 32 38 CE9CA400004C7628

0060 33 32 00 00 00 00 00 00 05 5d ee 7e 53 40 00 00 32.......].~S@..

0070 01 01

www.syngress.com

Other Programs Packaged with Wireshark • Chapter 9 483

377_eth_2e_ch09.qxd 11/14/06 10:13 AM Page 483

The following is an example of using TShark to capture traffic on interface 4
and output the data to a file called output.The output files will have a maximum file
size of 5 kilobytes each, and when they are full, a new output file will be created.
This will continue to a maximum of 10 output files.The following example is the
command used to perform this capture.

C:\Program Files\Wireshark>tshark -i4 -a filesize:5 -b 10 -w output

The output files generated are appended with the file number, date, and times-
tamp.You will see the following 10 output files start at number 43 because they have
begun to drop the oldest file as they create new files, so a maximum of 10 files exists
at all times.

output_00043_20031128212900

output_00044_20031128212900

output_00045_20031128212900

output_00046_20031128212900

output_00047_20031128212901

output_00048_20031128212903

output_00049_20031128212958

output_00050_20031128213045

output_00051_20031128213211

output_00052_20031128213316

The following is an example of using a TShark capture filter to capture all traffic
except packets to and from HTTP port 80.

C:\Program Files\Wireshark>tshark -f "tcp port !80"

Capturing on \Device\NPF_{A302C81E-256D-4C92-8A72-866F2E1ED55F}

0.000000 D-Link_ed:3b:c6 -> Broadcast ARP Who has 192.168.100.40? Tell
192.168.100.5

0.000026 D-Link_ee:7e:53 -> D-Link_ed:3b:c6 ARP 192.168.100.40 is at
00:05:5d:ee:7e:53

0.000066 D-Link_ee:7e:53 -> D-Link_ed:3b:c6 ARP 192.168.100.40 is at
00:05:5d:ee:7e:53

10.089720 00000000.00055dee7e53 -> 00000000.ffffffffffff IPX SAP General
Response

10.089763 00000000.00055dee7e53 -> 00000000.ffffffffffff IPX SAP General
Response

The following is an example of using a TShark read filter to output the Telnet
data packets from a file called capture.

www.syngress.com

484 Chapter 9 • Other Programs Packaged with Wireshark

377_eth_2e_ch09.qxd 11/14/06 10:13 AM Page 484

C:\Program Files\Wireshark>TShark -r capture -R "telnet"

7 10.071157 192.168.100.122 -> 192.168.100.132 TELNET Telnet Data ...

8 10.071464 192.168.100.132 -> 192.168.100.122 TELNET Telnet Data ...

9 10.071515 192.168.100.132 -> 192.168.100.122 TELNET Telnet Data ...

11 10.076114 192.168.100.132 -> 192.168.100.122 TELNET Telnet Data ...

12 10.076155 192.168.100.132 -> 192.168.100.122 TELNET Telnet Data ...

14 10.089546 192.168.100.122 -> 192.168.100.132 TELNET Telnet Data ...

15 10.089672 192.168.100.132 -> 192.168.100.122 TELNET Telnet Data ...

The following is an example of using TShark to read a libpcap capture file called
capture2 and output it to a file called netmon_output in the Microsoft Network
Monitor 2.x format; this command generates no output. Note that the editcap com-
mand can also be used to perform this function, as we’ll see later in this chapter.

C:\Program Files\Wireshark>tshark -r capture2 -w netmon_output -F netmon2

TShark Statistics
Whether troubleshooting network activity, identifying potential attacks, or perfor-
mance-tuning network links, a common task in analyzing traffic is to identify statis-
tical information. Using this statistical data, we can narrow our focus on specific
protocols or data exchanges, instead of trying to assess a larger set of packets.

Fortunately,TShark can collect and display statistical information for live or
stored packet captures, supplying basic analysis information and detailed protocol
information. By specifying the z flag with TShark, you can specify one or more of
several supported statistics reporting options.The format of the statistics reporting
options uses the following convention:

-z major name, minor name, option(s), filter

In this example where -z is the command-line option to TShark, instructing it
to expect a statistics reporting option, and major and minor name are one of several
available statistics reporting options. Following the minor statistics reporting name
are one or more options specific for the selected statistics option.At the end of each
statistics reporting option, you can specify a filter string that will cause the statistics
reporting to be applied only to the packets matching the specified filter.As of
Wireshark 0.99.4, 30 unique statistics reporting options are available. We’ve provided
detailed explanations of several of the most commonly used statistics reporting
options in the following section.

www.syngress.com

Other Programs Packaged with Wireshark • Chapter 9 485

377_eth_2e_ch09.qxd 11/14/06 10:13 AM Page 485

TIP

By default, TShark will print a one-line summary for each packet
received. When examining statistical information by using the -z option,
you may want to suppress this information and show only the statistics
reporting by adding the -q option as well.

Protocol Hierarchy Statistics
Syntax: -z io,phs[,filter]

Description: The protocol hierarchy statistics (PHS) option reports a summary of
the protocols identified in the packet capture, and the number of packets and bytes
for each protocol. Optionally, specify a display filter to report protocol hierarchy and
traffic statistics for an identified group of frames.
Example: The following is an example of using the TShark statistics function to
display a report of all bytes and frames for each protocol detected during a live
capture on the first available interface, disabling name resolution and the packet
summary output, and reporting the collected statistics after ending the capture by
typing Ctrl + C.

C:\Program Files\Wireshark>tshark –nqz io,phs

<cntrl-c>

===

Protocol Hierarchy Statistics

Filter: frame

frame frames:560 bytes:115233

eth frames:560 bytes:115233

ip frames:558 bytes:115005

udp frames:53 bytes:10383

dns frames:21 bytes:3215

data frames:8 bytes:496

isakmp frames:24 bytes:6672

tcp frames:505 bytes:104622

http frames:107 bytes:81798

llc frames:2 bytes:228

ipx frames:2 bytes:228

ipxsap frames:2 bytes:228

===

www.syngress.com

486 Chapter 9 • Other Programs Packaged with Wireshark

377_eth_2e_ch09.qxd 11/14/06 10:13 AM Page 486

Protocol Statistics by Interval
Syntax: -z io,stat,interval[,filter][,filter][,filter]...

Description: The protocol statistics by interval option reports a summary of the
number of frames and bytes recorded in the capture file for each specified interval
duration.The interval must be specified in a duration of seconds as a whole or a
fractional number of seconds.The output of the statistics reporting will contain one
or more columns; by default, with no display filter specified, the first column will
indicate the statistics for the entire contents of the packet capture. If one or more
display filters are specified, the results of each will be displayed in the first and suc-
cessive columns.This allows you the quickly examine the nature of traffic for the
entire packet capture, and the results of one or more display filters.

The protocol statistics by interval option can also report statistics based on calcu-
lations, including COUNT(), SUM(), MIN(), MAX(), and AVG() using the following con-
vention in the place of a display filter:

[COUNT|SUM|MIN|MAX|AVG](<field>)<filter>

where <field> is the name of a display field you wish to apply the calculations on,
and <filter> is a display filter that includes the specified field name. Note that you
can only perform the calculations on fields that are integers or relative time fields,
and the display filter must include the named field in the filter syntax.
Example: The following example demonstrates TShark statistics by interval
reporting while reading from a stored packet capture file named Kismet-Sep-06-
2005.dump in five-minute (300 second) intervals for both the entire capture file
(denoted with the globally matching display filter frame) and the results of the dis-
play filter ip.addr eq 10.18.129.130, while suppressing the standard display
output.

C:\>tshark -r Kismet-Sep-06-2005.dump -z io,stat,300,"frame","ip.addr eq
10.18.129.130" -q

===

IO Statistics

Interval: 300.000 secs

Column #0: frame

Column #1: ip.addr eq 10.18.129.130

| Column #0 | Column #1

Time |frames| bytes |frames| bytes

000.000-300.000 82 5874 0 0

300.000-600.000 248 18104 8 928

www.syngress.com

Other Programs Packaged with Wireshark • Chapter 9 487

377_eth_2e_ch09.qxd 11/14/06 10:13 AM Page 487

600.000-900.000 1171 86793 9 1044

900.000-1200.000 1247 93774 10 1160

1200.000-1500.000 1377 102314 6 696

1500.000-1800.000 2128 819636 4 464

1800.000-2100.000 1357 102840 8 928

2100.000-2400.000 1587 116295 10 1160

2400.000-2700.000 1565 179061 2 232

2700.000-3000.000 1450 98959 7 812

3000.000-3300.000 1436 101291 4 464

3300.000-3600.000 1826 218948 7 812

3600.000-3900.000 517 48140 0 0

===

TIP

When specifying display filters using command-line tools, use the alpha-
betic comparison operators (eq, ne, lt, gt). This will prevent your shell
from interpreting meta-characters such as the exclamation mark.

The next example of statistics interval reporting reports the average frame size
(using the display filter frame.pkt_len), the smallest frame size, and the maximum
frame size in five-minute intervals.

C:\>tshark -r wireless-rwc-1.cap -qz
io,stat,300,AVG(frame.pkt_len)frame.pkt_len,MIN(frame.pkt_len

)frame.pkt_len,MAX(frame.pkt_len)frame.pkt_len

===

IO Statistics

Interval: 300.000 secs

Column #0: AVG(frame.pkt_len)frame.pkt_len

Column #1: MIN(frame.pkt_len)frame.pkt_len

Column #2: MAX(frame.pkt_len)frame.pkt_len

| Column #0 | Column #1 | Column #2

Time | AVG | MIN | MAX

000.000-300.000 71 58 82

300.000-600.000 73 58 116

600.000-900.000 74 54 608

www.syngress.com

488 Chapter 9 • Other Programs Packaged with Wireshark

377_eth_2e_ch09.qxd 11/14/06 10:13 AM Page 488

900.000-1200.000 75 58 388

1200.000-1500.000 74 58 132

1500.000-1800.000 385 58 1532

1800.000-2100.000 75 58 1432

2100.000-2400.000 73 58 388

2400.000-2700.000 114 58 1532

2700.000-3000.000 68 58 116

3000.000-3300.000 70 58 360

3300.000-3600.000 119 52 1532

3600.000-3900.000 93 58 336

===

Conversation Statistics
Syntax: -z conv,type[,filter]

Description: The conversation statistics reporting option will display the conversa-
tions between stations in the capture file of the specified type, matching the specified
display filter or all traffic if the display filter is omitted. Currently supported conver-
sation types are:

■ eth Ethernet

■ fc Fiber channel

■ fddi FDDI

■ ip IP addresses

■ ipx IPX addresses

■ tcp TCP/IP socket pairs

■ tr Token ring

■ udp UDP/IP socket pairs

This option is useful to assess the conversations between stations on the net-
work.This is a common technique for analyzing traffic for signs of worm activity,
since an infected station will often scan large quantities of hosts to look for addi-
tional infection targets, as opposed to stations that are not infected, which typically
restrict their conversations to a small number of hosts.
Example: This example reads from the capture file defcon.dump and collects statis-
tics for IP conversations, using the display filter ip.addr eq 216.250.64.68, which
will restrict the statistics to conversations from this host (output of this command has
been trimmed for space).

www.syngress.com

Other Programs Packaged with Wireshark • Chapter 9 489

377_eth_2e_ch09.qxd 11/14/06 10:13 AM Page 489

$ tshark -r defcon.dump -nqz conv,ip,"ip.addr eq 216.250.64.68"

==

IPv4 Conversations

Filter:ip.addr eq 216.250.64.68

| <- | | -> | | Total |

|Frames Bytes| |Frames Bytes| |Frames Bytes|

216.250.64.68 <-> 192.168.2.215 85 8887 98 19007 183 27894

216.250.64.68 <-> 192.168.2.237 69 7076 42 8555 111 15631

216.250.64.68 <-> 192.168.2.23 60 6064 4 795 64 6859

216.250.64.68 <-> 192.168.2.212 51 4687 2 453 53 5140

216.250.64.68 <-> 192.168.0.173 35 3859 16 3099 51 6958

216.250.64.68 <-> 192.168.2.149 19 1791 26 4493 45 6284

216.250.64.68 <-> 192.168.2.102 18 2933 20 3852 38 6785

216.250.64.68 <-> 192.168.1.120 29 2657 9 1257 38 3914

216.250.64.68 <-> 192.168.2.72 9 864 22 5472 31 6336

216.250.64.68 <-> 192.168.0.153 20 1871 9 3658 29 5529

216.250.64.68 <-> 192.168.41.150 25 2348 3 348 28 2696

216.250.64.68 <-> 192.168.2.248 12 2370 15 3459 27 5829

216.250.64.68 <-> 192.168.2.192 14 1454 13 2460 27 3914

216.250.64.68 <-> 192.168.2.185 10 1087 17 5907 27 6994

216.250.64.68 <-> 192.168.2.103 16 1690 10 1759 26 3449

216.250.64.68 <-> 192.168.3.2 19 1735 6 1973 25 3708

216.250.64.68 <-> 192.168.2.7 13 1208 11 4155 24 5363

216.250.64.68 <-> 192.168.0.127 11 1123 12 2094 23 3217

216.250.64.68 <-> 192.168.2.121 18 1752 5 1150 23 2902

Packet Length Distribution
Syntax: -z plen,tree[,filter]

Description: The packet length distribution reporting option will identify the dis-
tribution of frames in the capture file by 20-byte increments, identifying the rate and
percentage of each packet length group.This feature can be helpful in network trou-
bleshooting, where large quantities of small packets can place additional burden on
networking equipment that leads to reduced throughput.
Example: The following example reads from the dc11.dump capture file and
reports the distribution of packet sizes.This particular capture has an unusually large
quantity of frames between 40 and 79 bytes in length, which might warrant further
analysis.

www.syngress.com

490 Chapter 9 • Other Programs Packaged with Wireshark

377_eth_2e_ch09.qxd 11/14/06 10:13 AM Page 490

C:\>tshark -r dc11.dump -nqz plen,tree

===

Packet Length value rate percent

Packet Length 664070 0.001293

0-19 0 0.000000 0.00%

20-39 0 0.000000 0.00%

40-79 494456 0.000962 74.46%

80-159 114463 0.000223 17.24%

160-319 16117 0.000031 2.43%

320-639 13583 0.000026 2.05%

640-1279 3597 0.000007 0.54%

1280-2559 21854 0.000043 3.29%

2560-5119 0 0.000000 0.00%

5120- 0 0.000000 0.00%

===

Destinations Tree
Syntax: -z dests,tree,filter

Description: The Destinations Tree statistics option identifies the number of frames,
data rate, and transport-layer protocol information for the specified capture file.This
report allows you to quickly assess the activity in the capture file, characterizing the
nature of traffic to destination hosts.
Example: The following example reads from the http.cap capture file and identifies
the destination addresses, transport protocol, and the percentage of network activity
by destination address.

C:\>tshark -r http.cap -nqz dests,tree

===

Destinations value rate percent

Destinations 43 0.001415

145.254.160.237 20 0.000658 46.51%

TCP 19 0.000625 95.00%

80 19 0.000625 100.00%

UDP 1 0.000033 5.00%

www.syngress.com

Other Programs Packaged with Wireshark • Chapter 9 491

377_eth_2e_ch09.qxd 11/14/06 10:13 AM Page 491

53 1 0.000033 100.00%

65.208.228.223 18 0.000592 41.86%

TCP 18 0.000592 100.00%

3372 18 0.000592 100.00%

145.253.2.203 1 0.000033 2.33%

UDP 1 0.000033 100.00%

3009 1 0.000033 100.00%

216.239.59.99 4 0.000132 9.30%

TCP 4 0.000132 100.00%

3371 4 0.000132 100.00%

===

Packet Summary Columns
Syntax: -z proto,colinfo,filter,field

Description: The packet summary columns statistics option allows you to add any
Wireshark protocol field to the one-line display output. By default,TShark will dis-
play several fields in the one-line display output when processing a packet capture. If
you require additional fields to be reported, you can specify additional fields to be
reported as well, giving us tremendous reporting flexibility that can be sent to other
scripting tools to extract and use the reported data.This parameter can be specified
multiple times on the command line to add an arbitrary number of additional
columns. Note that it is necessary to include the field you wish to append to the
packet summary output in the display filter string.
Example: The following example reads from the http.cap capture file and reports
the standard summary output.

C:\>tshark -r http.cap -n

1 0.000000 145.254.160.237 -> 65.208.228.223 3372 > 80 [SYN] Seq=0 Len=0
MSS=1460

2 0.911310 65.208.228.223 -> 145.254.160.237 80 > 3372 [SYN, ACK] Seq=0
Ack=1 Win=5840 Len=0 MSS=1380

3 0.911310 145.254.160.237 -> 65.208.228.223 3372 > 80 [ACK] Seq=1 Ack=1
Win=9660 Len=0

The next example uses the packet summary columns feature to add the IP iden-
tification and time-to-live values to the summary output.

C:\>tshark -r http.cap -nz proto,colinfo,ip.ttl,ip.ttl -z
proto,colinfo,ip.id,ip.id

www.syngress.com

492 Chapter 9 • Other Programs Packaged with Wireshark

377_eth_2e_ch09.qxd 11/14/06 10:13 AM Page 492

1 0.000000 145.254.160.237 -> 65.208.228.223 3372 > 80 [SYN] Seq=0 Len=0
MSS=1460 ip.id == 0x0f41 ip.ttl == 128

2 0.911310 65.208.228.223 -> 145.254.160.237 80 > 3372 [SYN, ACK] Seq=0
Ack=1 Win=5840 Len=0 MSS=1380 ip.id == 0x0000 ip.ttl == 47

3 0.911310 145.254.160.237 -> 65.208.228.223 3372 > 80 [ACK] Seq=1 Ack=1
Win=9660 Len=0 ip.id == 0x0f44 ip.ttl == 128

SIP Statistics
Syntax: -z sip,stat,filter

Description: The Session Initialization Protocol (SIP) statistics reporting option
will identify all the SIP traffic in the capture and report the number of sent and re-
sent messages, the status codes from SIP responses, and the observed SIP messages.
This reporting option is helpful to assess the activity on voice over IP (VoIP) net-
works that use the SIP protocol for call setup and teardown. By default, statistics are
reported on all SIP activity in the capture; note that you can supply a display filter to
limit the statistics reporting to a single host (such as ip.addr eq 192.168.1.1).
Example: The following example reads from the sip1.dump stored capture file and
reports the observed SIP statistics for all hosts:

C:\>tshark -r sip1.dump -nqz sip,stat

===

SIP Statistics

Number of SIP messages: 37

Number of resent SIP messages: 0

* SIP Status Codes in reply packets

SIP 407 Proxy Authentication Required : 1 Packets

SIP 200 OK : 10 Packets

SIP 100 Trying : 4 Packets

SIP 180 Ringing : 2 Packets

* List of SIP Request methods

INVITE : 9 Packets

BYE : 2 Packets

ACK : 9 Packets

www.syngress.com

Other Programs Packaged with Wireshark • Chapter 9 493

377_eth_2e_ch09.qxd 11/14/06 10:13 AM Page 493

H.225 Counters
Syntax: -z h225,counter[,filter]

Description: VoIP networks using H.323 also use the H.225 protocol for call
establishment and control (signaling) and registration, admission and status functions
(RAS).The H.225 counters statistics will count H.225 messages in the capture and
the reason codes associated with the messages. By default, all H.225 messages will be
used for reporting, but you may optionally supply a display filter to restrict the anal-
ysis to a specified group of packets.
Example: The following example reads from the specified compressed capture file
and reports observed H.225 statistics.

C:\>tshark -r rtp_example.raw.gz -nqz h225,counter

================== H225 Message and Reason Counter ==================

RAS-Messages:

Call Signalling:

setup : 1

callProceeding : 1

connect : 1

alerting : 1

===

H.225 Service Response Time
Syntax: -z h225,srt[,filter]

Description: Another H.225 statistics reporting mechanism, the H.225 Service
Response Time (SRT) statistics option reports the RAS message type; minimum,
maximum, and average SRT metrics; the number of open requests (that have not yet
received a response); discarded requests; and duplicate messages. Each of these statis-
tics can be useful for analyzing activity on VoIP networks to identify traffic patterns
and metrics that could negatively influence VoIP service.

Media Gateway Control Protocol Round Trip Delay
Syntax: -z mgcp,rtd[,filter]

Description: The Media Gateway Control Protocol (MGCP) is used in VoIP net-
works as an intermediary between traditional telephone circuits and data packets.
Using this statistics reporting option, you can identify the response time delay
(RTD) between stations and the MGCP server, and duplicate requests and responses,
requests to unresponsive servers, and responses that do not match any requests.

www.syngress.com

494 Chapter 9 • Other Programs Packaged with Wireshark

377_eth_2e_ch09.qxd 11/14/06 10:13 AM Page 494

SMB Round Trip Data
Syntax: -z smb,rtt[,filter]

Description: The Server Message Blocks (SMB) protocol is a mechanism used for
networked file systems, predominately used for Microsoft Windows clients. Using
the SMB Round Trip Data (RTD) statistics reporting option, we can assess the
responsiveness of Windows file-sharing servers and other SMB resources (including
some networked printers) to identify the responsiveness of server resources.
Example: In this example, the packet capture file rtl-fileshare.dump is read using
TShark to report SMB RTT statistics. Note that the Max RTT for the SMB Trans
request in this output may indicate a burdened server resource that is unable to
respond to the request sooner.

$ tshark -r rtl-fileshare.dump -nqz smb,rtt

===

SMB RTT Statistics:

Filter:

Commands Calls Min RTT Max RTT Avg RTT

Open 1 0.00186 0.00186 0.00186

Close 4 0.00023 0.00176 0.00066

Trans 5 0.00190 13.69178 2.76430

Open AndX 1 0.00450 0.00450 0.00450

Read AndX 309 0.00025 0.01865 0.00412

Tree Disconnect 7 0.00117 0.14601 0.02324

Negotiate Protocol 8 0.00026 0.07451 0.02226

Session Setup AndX 16 0.00028 0.01928 0.00578

Logoff AndX 12 0.00074 0.00872 0.00258

Tree Connect AndX 7 0.00081 0.00399 0.00190

NT Create AndX 4 0.00029 0.00270 0.00132

Transaction2 Commands Calls Min RTT Max RTT Avg RTT

FIND_FIRST2 1 0.19993 0.19993 0.19993

QUERY_FS_INFO 2 0.00023 0.00248 0.00135

QUERY_FILE_INFO 2 0.00040 0.00551 0.00296

NT Transaction Commands Calls Min RTT Max RTT Avg RTT

===

www.syngress.com

Other Programs Packaged with Wireshark • Chapter 9 495

377_eth_2e_ch09.qxd 11/14/06 10:13 AM Page 495

SMB Security Identifier Name Snooping
Syntax: -z smb,sids

Description: Another SMB analysis feature is the capability to use security identi-
fier (SID) snooping techniques to identify potentially sensitive SIDs and their associ-
ated account names.This feature can be useful when performing a security audit of
traffic captured from a Windows network, representing information that is valuable
to an attacker for impersonating a legitimate user.

Because of the sensitive nature of this feature, the SMB SID snooping feature is
not enabled by default.To use this statistics reporting option on the command line,
you must also enable the Snoop SID preference in Wireshark by clicking Edit |
Preferences | Protocols | SMB | Snoop SID to name mappings, or specify
the preference on the command line with -o smb.sid_name_snooping:TRUE.

BOOTP Statistics
Syntax: -z bootp,stat,[filter]

Description: TShark can report statistics for the BOOTP protocol used by DHCP,
including the DHCP message and the number of packets for each type.This can be
helpful to troubleshoot DHCP server problems, or to diagnose rogue (e.g., unautho-
rized) DHCP servers that may exist on your network.
Example: The following example reads from a stored capture file and identifies the
BOOTP statistics in the file, identifying the DHCP server message types and packet
counts. Note that the tailing comma after the stat keyword is required, even though a
display filter is not specified in this example.

$ tshark -nqr rtl-fileshare.dump -z bootp,stat,

===

BOOTP Statistics with filter

BOOTP Option 53: DHCP Messages Types:

DHCP Message Type Packets nb

Inform 74

ACK 275

Release 10

NAK 82

Decline 25

Request 1255

Discover 1811

Offer 279

===

www.syngress.com

496 Chapter 9 • Other Programs Packaged with Wireshark

377_eth_2e_ch09.qxd 11/14/06 10:13 AM Page 496

HTTP Statistics
Syntax: -z http,stat,[filter]

Description: TShark can report statistics for the HTTP transactions, identifying the
status response codes and request methods observed in the capture file.This feature
can be useful to quickly identify how a particular Web server is being used, identi-
fying errors being returned from the server.
Example: The following example reads from a stored capture file and identifies the
observed HTTP statistics. Note that the tailing comma after the stat keyword is
required, even though a display filter is not specified in this example.

$ tshark -r Kismet-Aug-01-2002-2.dump -nqz http,stat,

===

HTTP Statistics

* HTTP Status Codes in reply packets

HTTP 408 Request Time-out

HTTP 301 Moved Permanently

HTTP 302 Moved Temporarily

HTTP 304 Not Modified

HTTP 200 OK

HTTP 206 Partial Content

HTTP 100 Continue

HTTP 403 Forbidden

HTTP 404 Not Found

* List of HTTP Request methods

SEARCH 336

GET 1447

POST 8

HEAD 2

===

HTTP Tree Statistics
Syntax: -z http,tree[,filter]

Description: In addition to the HTTP statistics reporting feature,TShark can also
present a tree-like view of HTTP activity, identifying the types of request and
response packets, the quantities of each type, data rates, and overall percentages of all
request and response types.This feature is also helpful at identifying how a Web

www.syngress.com

Other Programs Packaged with Wireshark • Chapter 9 497

377_eth_2e_ch09.qxd 11/14/06 10:13 AM Page 497

server is being used, and can even identify potentially malicious activity with unsup-
ported or broken HTTP requests or responses.
Example: The following example reads from a stored capture file and reports
HTTP statistics in the tree-like view.

C:\>tshark -r Kismet-Aug-01-2002-2.dump -nqz http,tree

===

HTTP/Packet Counter value rate percent

Total HTTP Packets 8067 0.001504

HTTP Request Packets 1793 0.000334 22.23%

SEARCH 336 0.000063 18.74%

GET 1447 0.000270 80.70%

POST 8 0.000001 0.45%

HEAD 2 0.000000 0.11%

HTTP Response Packets 1296 0.000242 16.07%

???: broken 0 0.000000 0.00%

1xx: Informational 121 0.000023 9.34%

100 Continue 121 0.000023 100.00%

2xx: Success 689 0.000128 53.16%

200 OK 685 0.000128 99.42%

206 Partial Content 4 0.000001 0.58%

3xx: Redirection 479 0.000089 36.96%

304 Not Modified 452 0.000084 94.36%

302 Found 24 0.000004 5.01%

301 Moved Permanently 3 0.000001 0.63%

4xx: Client Error 7 0.000001 0.54%

408 Request Time-out 4 0.000001 57.14%

404 Not Found 1 0.000000 14.29%

403 Forbidden 2 0.000000 28.57%

5xx: Server Error 0 0.000000 0.00%

Other HTTP Packets 4978 0.000928 61.71%

===

www.syngress.com

498 Chapter 9 • Other Programs Packaged with Wireshark

377_eth_2e_ch09.qxd 11/14/06 10:13 AM Page 498

HTTP Request Statistics
Syntax: -z http_req,tree[,filter]

Description: If you wish to get more detailed reporting of activity with an HTTP
server, you can use TShark’s HTTP Request statistics reporting option, which will
identify all the HTTP request URLs for each HTTP server in the packet capture,
including the number of frames, data rate, and request percentage.This is useful to
identify popular requests for a specific server (the HTTP requests that are most pop-
ular will have the highest percentage values for each server).This option is often
used with a display filter to assess the activity for one or more hosts, but can also be
used without a display filter to identify the servers and URLs requests by client sys-
tems within your organization.
Example: The following example reads from a stored capture file and reports
HTTP request statistics in the tree-like format, limiting the analysis to traffic to or
from the host at 66.207.160.150.

C:\>tshark -r Kismet-Aug-01-2002-2.dump -nqz http_req,tree,"ip.addr eq
66.207.60.150"

===

HTTP/Requests value rate percent

HTTP Requests by HTTP Host 35 0.000757

www.megatokyo.com 35 0.000757 100.00%

/parts/mt2-head-top.gif 3 0.000065 8.57%

/parts/mt2-merchandise.gif 2 0.000043 5.71%

/parts/mt-shadow-right.gif 8 0.000173 22.86%

/parts/mt-glow-top.gif 4 0.000087 11.43%

/parts/mt-blk_bar-credits.gif 14 0.000303 40.00%

/parts/pix-dark.gif 1 0.000022 2.86%

/parts/mt-bottom-prev.gif 2 0.000043 5.71%

/parts/mt-glow-bottom.gif 1 0.000022 2.86%

===

www.syngress.com

Other Programs Packaged with Wireshark • Chapter 9 499

377_eth_2e_ch09.qxd 11/14/06 10:13 AM Page 499

www.syngress.com

500 Chapter 9 • Other Programs Packaged with Wireshark

XML Compatible Protocol Dissection
A new feature to TShark in version 0.10.0 is the ability to display output in
PDML format by using the –T pdml option. The Politecnico Di Torino group,
known for Analyzer and WinPcap, created the PDML specification. PDML is a
simple language to format information related to packet decodes. The PDML
data TShark produces differs slightly from the specification and is not readable
by Analyzer. The TShark PDML output contains the following flags:

■ <pdml> This PDML file is delimited by the <pdml> and
</pdml> tags. This tag does not have any attributes.

Example: <pdml version=”0” creator=”Wireshark/0.10.0”>

■ <packet> A PDML file can contain multiple packets by using the
<packet> element. This tag does not have any attributes.

■ <proto> A packet can contain multiple protocols, designated by
the <proto> element. The <proto> tag can have the following
attributes:

■ name The display filter name for the protocol.
■ showname The label used to describe this protocol in the pro-

tocol tree.
■ pos The starting offset within the packet data where this pro-

tocol starts.
■ size The number of octets in the packet data this protocol

covers.
Example: <proto name=”ip” showname=”Internet Protocol,
Src Addr: 192.168.100.132

(192.168.100.132), Dst Addr: 192.168.129.201
(192.168.129.201)” size=”20” pos=”14”>

■ <field> A protocol can contain multiple fields, designated by the
<field> element. The <field> tag can have the following
attributes:

■ name The display filter name for the field.
■ showname The label used to describe this field in the pro-

tocol tree.
■ pos The starting offset within the packet data where this

field starts.

Notes from the Underground…

Continued

377_eth_2e_ch09.qxd 11/14/06 10:13 AM Page 500

www.syngress.com

Other Programs Packaged with Wireshark • Chapter 9 501

■ size The number of octets in the packet data this field covers.
■ value The actual packet data, in hex, this field covers.
■ show The representation of the packet data as it appears in a

display filter.

Example: <field name=”ip.version” showname=”Version: 4”
size=”1”

pos=”14” show=”4” value=”45”/>

Two tools are provided in the Wireshark-0.10.0a/tools directory to assist
with PDML output parsing. WiresharkXML.py is a Python module used to read
a PDML file and call a specified callback function. msnchat is a sample program
that uses WiresharkXML to parse PDML output for MSN chat conversations. It
takes one or more capture files as input, invokes TShark with a specified read
filter, and produces HTML output of the conversations. The usage output for
msnchat is as follows:

[root@localhost tools]# ./msnchat -h

msnchat [OPTIONS] CAPTURE_FILE [...]

-o FILE name of output file

-t TSHARK location of TShark binary

-u USER name for unknown user

The following command can be used to read and parse a saved capture
file called msn_test1.

[root@localhost tools]# ./msnchat -o outfile msn_test1

When viewed with a Web browser, the HTML outfile looks like this:

---- New Conversation @ Dec 30, 2003 14:21:08 ----

(14:21:08) Luke: hello

(14:21:22) Unknown: how are you?

(14:21:53) Luke: are we meeting at noon?

(14:22:03) Unknown: yes, at the secret location.

(14:22:11) Luke: great, see you then

(14:22:17) Unknown: ok

(14:22:18) Unknown: bye

You can add a name for the Unknown user by typing the command:

[root@localhost tools]# ./msnchat -o outfile -u Leia msn_test1

The HTML output would then look like this:

Continued

377_eth_2e_ch09.qxd 11/14/06 10:13 AM Page 501

editcap
editcap is a program used to remove or select packets from a file and to translate the
format of captured files. It doesn’t capture live traffic; it only reads data from a saved
capture file and then saves some or all of the packets to a new capture file. editcap
can read all of the same types of files Wireshark can, and by default writes to libpcap
format. editcap can also write captures to standard and modified versions of libpcap,
Sun snoop, Novell LANalyzer, Networks Associate’s Sniffer, Microsoft Network
Monitor, Visual Network traffic capture,Accellent 5Views capture, and Network
Instruments Observer version 9 captures. editcap can determine the file type it is
reading, and is capable of reading files that are compressed with gzip.

By default, editcap writes all of the packets in the capture file to the output file. If
you specify a list of packet numbers on the command line, those packets will not be
written to the output capture file. If the –r option is specified, it will reverse the default
configuration and write only the specified packets to the output capture file.You can
also specify a range of packets to include or exclude in the output capture file.

The following information is the usage output for the editcap program.

C:\Program Files\Wireshark>editcap

Usage: editcap [-r] [-h] [-v] [-T <encap type>] [-E <probability>]

[-F <capture type>] [-s <snaplen>] [-t <time adjustment>]

[-c <packets per file>]

<infile> <outfile> [<record#>[-<record#>] ...]

where

-c <packets per file> If given splits the output to different files

www.syngress.com

502 Chapter 9 • Other Programs Packaged with Wireshark

---- New Conversation @ Dec 30, 2003 14:21:08 ----

(14:21:08) Luke: hello

(14:21:22) Leia: how are you?

(14:21:53) Luke: are we meeting at noon?

(14:22:03) Leia: yes, at the secret location.

(14:22:11) Luke: great, see you then

(14:22:17) Leia: ok

(14:22:18) Leia: bye

The msnchat code will give you a good idea of how to write your own
scripts to parse capture files, manipulate the PDML data, and print the output
in HTML format.

377_eth_2e_ch09.qxd 11/14/06 10:13 AM Page 502

-E <probability> specifies the probability (between 0 and 1)

that a particular byte will have an error.

-F <capture type> specifies the capture file type to write:

libpcap - libpcap (tcpdump, Ethereal, etc.)

rh6_1libpcap - RedHat Linux 6.1 libpcap (tcpdump)

suse6_3libpcap - SuSE Linux 6.3 libpcap (tcpdump)

modlibpcap - modified libpcap (tcpdump)

nokialibpcap - Nokia libpcap (tcpdump)

nseclibpcap - Nanosecond libpcap (Ethereal)

lanalyzer - Novell LANalyzer

ngsniffer - Network Associates Sniffer (DOS-based)

snoop - Sun snoop

netmon1 - Microsoft Network Monitor 1.x

netmon2 - Microsoft Network Monitor 2.x

ngwsniffer_1_1 - Network Associates Sniffer (Windows-based) 1.1

ngwsniffer_2_0 - Network Associates Sniffer (Windows-based) 2.00x

nettl - HP-UX nettl trace

visual - Visual Networks traffic capture

5views - Accellent 5Views capture

niobserverv9 - Network Instruments Observer version 9

rf5 - Tektronix K12xx 32-bit .rf5 format

default is libpcap

-h produces this help listing.

-r specifies that the records specified should be kept, not deleted,

default is to delete

-s <snaplen> specifies that packets should be truncated to

<snaplen> bytes of data

-t <time adjustment> specifies the time adjustment

to be applied to selected packets

-T <encap type> specifies the encapsulation type to use:

ether - Ethernet

tr - Token Ring

slip - SLIP

ppp - PPP

fddi - FDDI

fddi-swapped - FDDI with bit-swapped MAC addresses

rawip - Raw IP

arcnet - ARCNET

www.syngress.com

Other Programs Packaged with Wireshark • Chapter 9 503

377_eth_2e_ch09.qxd 11/14/06 10:13 AM Page 503

arcnet_linux - Linux ARCNET

atm-rfc1483 - RFC 1483 ATM

linux-atm-clip - Linux ATM CLIP

lapb - LAPB

atm-pdus - ATM PDUs

atm-pdus-untruncated - ATM PDUs - untruncated

null - NULL

ascend - Lucent/Ascend access equipment

isdn - ISDN

ip-over-fc - RFC 2625 IP-over-Fibre Channel

ppp-with-direction - PPP with Directional Info

ieee-802-11 - IEEE 802.11 Wireless LAN

prism - IEEE 802.11 plus Prism II monitor mode header

ieee-802-11-radio - IEEE 802.11 Wireless LAN with radio
information

ieee-802-11-radiotap - IEEE 802.11 plus radiotap WLAN header

ieee-802-11-avs - IEEE 802.11 plus AVS WLAN header

linux-sll - Linux cooked-mode capture

frelay - Frame Relay

frelay-with-direction - Frame Relay with Directional Info

chdlc - Cisco HDLC

ios - Cisco IOS internal

ltalk - Localtalk

pflog-old - OpenBSD PF Firewall logs, pre-3.4

hhdlc - HiPath HDLC

docsis - Data Over Cable Service Interface Specification

cosine - CoSine L2 debug log

whdlc - Wellfleet HDLC

sdlc - SDLC

tzsp - Tazmen sniffer protocol

enc - OpenBSD enc(4) encapsulating interface

pflog - OpenBSD PF Firewall logs

chdlc-with-direction - Cisco HDLC with Directional Info

bluetooth-h4 - Bluetooth H4

mtp2 - SS7 MTP2

mtp3 - SS7 MTP3

irda - IrDA

user0 - USER 0

www.syngress.com

504 Chapter 9 • Other Programs Packaged with Wireshark

377_eth_2e_ch09.qxd 11/14/06 10:13 AM Page 504

user1 - USER 1

user2 - USER 2

user3 - USER 3

user4 - USER 4

user5 - USER 5

user6 - USER 6

user7 - USER 7

user8 - USER 8

user9 - USER 9

user10 - USER 10

user11 - USER 11

user12 - USER 12

user13 - USER 13

user14 - USER 14

user15 - USER 15

symantec - Symantec Enterprise Firewall

ap1394 - Apple IP-over-IEEE 1394

bacnet-ms-tp - BACnet MS/TP

raw-icmp-nettl - Raw ICMP with nettl headers

raw-icmpv6-nettl - Raw ICMPv6 with nettl headers

gprs-llc - GPRS LLC

juniper-atm1 - Juniper ATM1

juniper-atm2 - Juniper ATM2

redback - Redback SmartEdge

rawip-nettl - Raw IP with nettl headers

ether-nettl - Ethernet with nettl headers

tr-nettl - Token Ring with nettl headers

fddi-nettl - FDDI with nettl headers

unknown-nettl - Unknown link-layer type with nettl headers

mtp2-with-phdr - MTP2 with pseudoheader

juniper-pppoe - Juniper PPPoE

gcom-tie1 - GCOM TIE1

gcom-serial - GCOM Serial

x25-nettl - X25 with nettl headers

juniper-mlppp - Juniper MLPPP

juniper-mlfr - Juniper MLFR

juniper-ether - Juniper Ethernet

juniper-ppp - Juniper PPP

www.syngress.com

Other Programs Packaged with Wireshark • Chapter 9 505

377_eth_2e_ch09.qxd 11/14/06 10:13 AM Page 505

juniper-frelay - Juniper Frame-Relay

juniper-chdlc - Juniper C-HDLC

default is the same as the input file

-v specifies verbose operation, default is silent

A range of records can be specified as well

The following command-line options are used to control editcap’s data transla-
tion and output.

■ –F type Used to set the format of the output capture file. For example, if
you want to save a file in the Sun snoop format so snoop can read the cap-
ture file, you would use the –F snoop option.

■ –h Prints the help options of editcap, and then exits.

■ –r Causes the packets whose numbers are specified on the command line
to be written to the output capture file.This is opposite of the default
action, which is to remove the packets that are specified on the command
line. Packets can only be specified as a consecutive range in the start-end
format, or individually; they cannot be comma delimited.

■ –s snaplen Sets the snapshot length to use when writing the data to the
output capture file. Packets that are larger than the snaplen will be trun-
cated.This option is helpful if you only want to save the packet headers, or
if the program you will be importing the capture file into can only read
packets of a certain size.

■ –t [-]seconds[.fractional seconds] Allows you to specify a time adjustment
to apply to selected frames in the output capture file.The time adjustment
is specified in seconds and fractions of seconds.An option of –t 3600 will
advance the timestamp on the selected frames by one hour, while the
option of –t –3600 will reduce the timestamp on the selected frames by
one hour.This option is useful when you need to synchronize packet traces
with other logs from different devices.

■ –T type Sets the packet encapsulation type of the output capture file.The
default type is the same encapsulation type as the input file.This option
forces the encapsulation type of the output capture file to be a specified
type; however, the packet headers will remain the same encapsulation type
as the input capture file.This is because the encapsulation type is stored as
meta-data, outside of the packet data.The encapsulation type is a single

www.syngress.com

506 Chapter 9 • Other Programs Packaged with Wireshark

377_eth_2e_ch09.qxd 11/14/06 10:13 AM Page 506

variable that is changed, thus allowing the packet data and headers of the
original packet to remain unchanged.

■ –v Causes editcap to print various messages to the screen while it is pro-
cessing files.

The following is an example of using editcap to translate the first five packets,
and packets 10, 15, and 17 from a TShark libpcap capture file called capture to a Sun
snoop output file called capture_snoop.

C:\Program Files\Wireshark>editcap -r -v -F snoop capture capture_snoop 1-5
10 15 17

File capture is a libpcap (tcpdump, Wireshark, etc.) capture file.

Add_Selected: 1-5

Inclusive ... 1, 5

Add_Selected: 10

Not inclusive ... 10

Add_Selected: 15

Not inclusive ... 15

Add_Selected: 17

Not inclusive ... 17

Record: 1

Record: 2

Record: 3

Record: 4

Record: 5

Record: 10

Record: 15

Record: 17

The next example uses editcap to copy all packets, except packets 5 through
120, from a libpcap capture file called capture to a libpcap output file called
capture_out.

C:\Program Files\Wireshark>editcap -v capture capture_out 5-120

File capture is a libpcap (tcpdump, Wireshark, etc.) capture file.

Add_Selected: 5-120

Inclusive ... 5, 120

Record: 1

Record: 2

Record: 3

www.syngress.com

Other Programs Packaged with Wireshark • Chapter 9 507

377_eth_2e_ch09.qxd 11/14/06 10:13 AM Page 507

Record: 4

Record: 121

Record: 122

The next example uses editcap to adjust the timestamp forward by five and a
half seconds on all packets. It uses an NAI Sniffer capture file called capture.dump as
input and saves the output to a Novell LANalyzer file called capture_out.

C:\Program Files\Wireshark>editcap -v -F lanalyzer -t 5.5 capture.dump
capture_out

File capture is a libpcap (tcpdump, Wireshark, etc.) capture file.

Record: 1

Record: 2

Record: 3

Record: 4

Record: 5

Record: 6

Record: 7

Record: 8

Record: 9

Record: 10

output removed

The next example uses editcap to save the first 35 bytes of the input capture file
called capture to the output capture file called capture_out.This will include the full
Ethernet and IP headers in the output file.

C:\Program Files\Wireshark>editcap -v -s 35 capture capture_out

File capture is a libpcap (tcpdump, Wireshark, etc.) capture file.

Record: 1

Record: 2

Record: 3

Record: 4

Record: 5

Record: 6

Record: 7

Record: 8

Record: 9

Record: 10

output removed

www.syngress.com

508 Chapter 9 • Other Programs Packaged with Wireshark

377_eth_2e_ch09.qxd 11/14/06 10:13 AM Page 508

The next example uses editcap to translate the input capture file called capture to
the output capture file called capture_out with an encapsulation type of IEEE 802.11
Wireless LAN.

C:\Program Files\Wireshark>editcap -v -T ieee-802-11 capture capture_out

File capture is a libpcap (tcpdump, Wireshark, etc.) capture file.

Record: 1

Record: 2

Record: 3

Record: 4

Record: 5

Record: 6

Record: 7

Record: 8

Record: 9

Record: 10

output removed

mergecap
mergecap is used to combine multiple saved capture files into a single output file.
mergecap can read all of the same types of files Wireshark can, and by default writes
to libpcap format. mergecap can also write the output capture file to standard and
modified versions of libpcap, Sun snoop, Novel LANalyzer, NAI Sniffer, Microsoft
Network Monitor, Visual Network traffic capture,Accellent 5Views capture, and
Network Instruments Observer version 9 captures. mergecap can determine the file
type it is reading, and is capable of reading files that are compressed with gzip. By
default, the packets from the input files are merged in chronological order based on
each packet’s timestamp. If the –a option is specified, packets will be copied directly
from each input file to the output file regardless of timestamp.

The following command-line options are used to control editcap’s data transla-
tion and output.

■ –a Ignores the timestamps in the input capture files and merges the capture
files one after the other.When this option is omitted, the packets in the input
files are merged in chronological order based on the packet timestamps.

■ –F type Used to set the format of the output capture file. For example, if
you want to merge capture files and save them in the Sun snoop format so
snoop can read the output file, you would use the –F snoop option.

www.syngress.com

Other Programs Packaged with Wireshark • Chapter 9 509

377_eth_2e_ch09.qxd 11/14/06 10:13 AM Page 509

■ –h Prints the help options of mergecap, and then exits.

■ –s snaplen Sets the snapshot length to use when writing the data to the
output capture file. Packets larger than the snaplen will be truncated.This
option is helpful if you only want to save the packet headers, or if the pro-
gram you will be importing the capture file into can only read packets of a
certain size.

■ –T type Sets the packet encapsulation type of the output capture file.The
default type is the same encapsulation type as the input files, if they are all
the same. If the input files do not all have the same encapsulation type, the
encapsulation type of the output file will be set to
WTAP_ENCAP_PER_PACKET. However, libpcap and other capture for-
mats do not support this type of encapsulation.The –T option forces the
encapsulation type of the output capture file to be a specified type; how-
ever, the packet headers will remain the same encapsulation type as the
input capture file.

■ –v Causes mergecap to print various messages to the screen while it is pro-
cessing files.

■ –w file Writes the packets to the filename specified following the option.
This option is required for mergecap to merge files.

The following is an example of using mergecap to merge the first 35 bytes of
each of the four capture files (capture1, capture2, capture3, and capture4) into a single
Sun snoop output file called merge_snoop in chronological order by packet times-
tamp; it will keep reading packets until the end of the last file is reached.

C:\Program Files\Wireshark>mergecap -s 35 -v -F snoop -w merge_snoop
capture1 capture2 capture3 capture4

mergecap: capture1 is type libpcap (tcpdump, Wireshark, etc.).

mergecap: capture2 is type libpcap (tcpdump, Wireshark, etc.).

mergecap: capture3 is type libpcap (tcpdump, Wireshark, etc.).

mergecap: capture4 is type libpcap (tcpdump, Wireshark, etc.).

mergecap: opened 4 of 4 input files

mergecap: selected frame_type Ethernet (ether)

Record: 1

Record: 2

Record: 3

Record: 4

Record: 5

Record: 6

www.syngress.com

510 Chapter 9 • Other Programs Packaged with Wireshark

377_eth_2e_ch09.qxd 11/14/06 10:13 AM Page 510

Record: 7

Record: 8

Record: 9

Record: 10

output removed

The following is an example of using mergecap to merge four capture files (cap-
ture1, capture2, capture3, and capture4) into a single output file called merge_file regard-
less of packet timestamp; it will write all of the packets of capture1, followed by
capture 2, and so on.

C:\Program Files\Wireshark>mergecap -v -a -w merge_file capture1 capture2
capture3 capture4

mergecap: capture1 is type libpcap (tcpdump, Wireshark, etc.).

mergecap: capture2 is type libpcap (tcpdump, Wireshark, etc.).

mergecap: capture3 is type libpcap (tcpdump, Wireshark, etc.).

mergecap: capture4 is type libpcap (tcpdump, Wireshark, etc.).

mergecap: opened 4 of 4 input files

mergecap: selected frame_type Ethernet (ether)

Record: 1

Record: 2

Record: 3

Record: 4

Record: 5

Record: 6

Record: 7

Record: 8

Record: 9

Record: 10

output removed

The following is an example of an attempt to use mergecap to merge three cap-
ture files with different encapsulation types (capture1, capture2, and capture3) into a
single output file called merge_encap The merge will attempt to set the default encap-
sulation type and then report an error because libpcap does not understand that type
of encapsulation.

C:\Program Files\Wireshark>mergecap -v -w merge_encap capture1 capture2
capture3

mergecap: capture1 is type libpcap (tcpdump, Wireshark, etc.).

mergecap: capture2 is type libpcap (tcpdump, Wireshark, etc.).

mergecap: capture3 is type libpcap (tcpdump, Wireshark, etc.).

www.syngress.com

Other Programs Packaged with Wireshark • Chapter 9 511

377_eth_2e_ch09.qxd 11/14/06 10:13 AM Page 511

mergecap: opened 3 of 3 input files

mergecap: multiple frame encapsulation types detected

defaulting to WTAP_ENCAP_PER_PACKET

capture1 had type (null) ((null))

capture2 had type Ethernet (ether)

mergecap: selected frame_type (null) ((null))

mergecap: Can't open/create merge_encap:

That file format doesn't support per-packet encapsulations

The following is an example of an attempt to use mergecap to merge three cap-
ture files with different encapsulation types (capture1, capture2, and capture3) into a
single output file called merge_encap; the –T option is used to force an Ethernet
encapsulation type for the output file.

C:\Program Files\Wireshark>mergecap -v -T ether -w merge_encap capture1
capture2 capture3

mergecap: capture1 is type libpcap (tcpdump, Wireshark, etc.).

mergecap: capture2 is type libpcap (tcpdump, Wireshark, etc.).

mergecap: capture3 is type libpcap (tcpdump, Wireshark, etc.).

mergecap: opened 3 of 3 input files

Record: 1

Record: 2

Record: 3

Record: 4

Record: 5

Record: 6

Record: 7

Record: 8

Record: 9

Record: 10

output removed

text2pcap
text2pcap generates capture files by reading ASCII hexadecimal dump captures and
writing the data to a libpcap output file. It is capable of reading a hexdump of single
or multiple packets, and building capture files from it. text2pcap can also read hex-
dumps of application-level data only, by creating dummy Ethernet, IP, and User
Datagram Protocol (UDP) or TCP headers so Wireshark and other sniffers can read
the full data.The user can specify which headers to add.

www.syngress.com

512 Chapter 9 • Other Programs Packaged with Wireshark

377_eth_2e_ch09.qxd 11/14/06 10:13 AM Page 512

text2pcap uses the octal dump (od) format of hexadecimal output. Octal dump
is a UNIX command used to output a file or standard input to a specified form,
such as octal, decimal, or hexadecimal format.The format is specified by the parame-
ters given to the –t option.The command od –t x1 will generate output text2pcap
can understand (the x1 describes the format of hexadecimal).The following is an
example of the type of hexadecimal dump text2pcap can read.

0000 00 05 5d ee 7e 53 08 00 20 cf 5b 39 08 00 45 00 ..].~S.. .[9..E.

0010 00 9a 13 9e 40 00 3c 06 e0 70 c0 a8 64 7a c0 a8@.<..p..dz..

0020 64 84 00 17 05 49 0e a9 91 43 8e d8 e3 6a 50 18 d....I...C...jP.

0030 c1 e8 ba 7b 00 00 4c 61 73 74 20 6c 6f 67 69 6e ...{..Last login

0040 3a 20 53 75 6e 20 4e 6f 76 20 20 32 20 31 37 3a : Sun Nov 2 17:

0050 30 36 3a 35 33 20 66 72 6f 6d 20 31 39 32 2e 31 06:53 from 192.1

0060 36 38 2e 31 30 30 2e 31 33 32 0d 0a 53 75 6e 20 68.100.132..Sun

0070 4d 69 63 72 6f 73 79 73 74 65 6d 73 20 49 6e 63 Microsystems Inc

0080 2e 20 20 20 53 75 6e 4f 53 20 35 2e 39 20 20 20 . SunOS 5.9

0090 20 20 20 20 47 65 6e 65 72 69 63 20 4d 61 79 20 Generic May

00a0 32 30 30 32 0d 0a 23 20 2002..#

The beginning of each line has an offset of more than two hexadecimal, or
octal, digits that is used to track the bytes in the output. If the offset is 0, this indi-
cates the beginning of a new packet. If there are multiple packets in a file, they will
be output to the packet capture file with one second between each packet. If a line
doesn’t have this offset, it is ignored.The text output at the end of the line is also
ignored.Text files can also contain comments that begin with the # character.
text2pcap has the capability to support commands and options by using the
#TEXT2PCAP command at the beginning of the line. text2pcap currently doesn’t
have any commands and options supported, but future development could incorpo-
rate methods to control the way the hexadecimal dump is processed.

The following command-line options are used to control text2pcap’s data pro-
cessing and output.

■ –h Prints the help options of text2pcap, and then exits.

■ –d Displays debugging information during the processing. Like verbose
options, it can be used several times for more information.

■ –q Causes text2pcap to be quiet while processing.

■ –o h|o Specifies either hexadecimal or octal formats for the offset of the
output.The default is hexadecimal.

www.syngress.com

Other Programs Packaged with Wireshark • Chapter 9 513

377_eth_2e_ch09.qxd 11/14/06 10:13 AM Page 513

■ –l typenum Lets you specify the data link layer type of encapsulation for
the packet.This option is used when your hexdump is a complete, encap-
sulated packet.The encapsulation type is specified as a number using the
typenum parameter. A complete list of encapsulation types and their asso-
ciated numbers can be found in the /libpcap-0.7.2/bpf/net/bpf.h file
included in the libpcap source distribution. For example, Point-to-Point
Protocol (PPP) is encapsulation type 9.The default is Ethernet, encapsu-
lation type 1.

■ –e l3pid Allows you to include a dummy Ethernet header for each packet.
You would use this option when your dump file has any type of Layer 3
header, such as IP, but no Layer 2 information.

■ –i proto Allows you to include a dummy IP header for each packet.The
proto parameter allows you to specify the IP protocol in decimal format.
You would use this option when your dump file has complete Layer 4
information, but no Layer 3 IP information.This option will also include
the necessary Ethernet information. For example, –i 88 will set the set the
protocol to Enhanced Interior Gateway Routing Protocol (EIGRP).

■ –m max-packet Allows you to set the maximum packet length with the
max-packet parameter.The default is 64000.

■ –u srcport, destport Allows you to include a dummy UDP header for each
packet.The srcport and destport parameters allow you to specify the source and
destination UDP ports in decimal format.You would use this option when
your dump file does not contain any UDP Layer 4 or below information.
This option will also include the necessary IP and Ethernet information.

■ –T srcport, destport Allows you to include a dummy TCP header for each
packet.The srcport and destport parameters allow you to specify the source and
destination TCP ports in decimal format.You would use this option when
your dump file does not contain any TCP Layer 4 or below information.
This option will also include the necessary IP and Ethernet information.

■ –s srcport, destport, tag Allows you to include a dummy Stream Control
Transmission Protocol (SCTP) header for each packet.The srcport and dest-
port parameters allow you to specify the source and destination SCTP ports
in decimal format.The tag parameter allows you to specify a verification
tag.You would use this option when your dump file does not contain any
SCTP Layer 4 or below information.This option will also include the nec-
essary IP, Ethernet, and CRC32C checksum information.

www.syngress.com

514 Chapter 9 • Other Programs Packaged with Wireshark

377_eth_2e_ch09.qxd 11/14/06 10:13 AM Page 514

■ –S srcport, destport, ppi Allows you to include a dummy SCTP header for
each packet.The srcport and destport parameters allow you to specify the
source and destination SCTP ports in decimal format.The ppi parameter
allows you to specify a payload protocol identifier for a dummy SCTP
DATA chunk header.The verification tag will automatically be set to 0.You
would use this option when your dump file does not contain any SCTP
Layer 4 or below information.This option will also include the necessary
IP, Ethernet, and CRC32C checksum information.

■ –t timefmt Allows you to specify a time format for the text before the
packet.The timefmt parameter follows the format of strptime(3), such as
“%H:%M:%S.”, which converts a character string to a time value.

The following is an example of using text2pcap to read a hexadecimal dump,
hex_sample.txt, and output it to the libpcap_output file.

C:\Program Files\Wireshark>text2pcap hex_sample.txt libpcap_output

Input from: hex_sample.txt

Output to: libpcap_output

Wrote packet of 168 bytes at 0

Read 1 potential packets, wrote 1 packets

The next example uses text2pcap to read a file with multiple hexadecimal
packets, hex_sample2.txt, and output the format as Telnet/TCP packets to the
libpcap_output2 file.

C:\Program Files\Wireshark>text2pcap -T 1297,23 hex_sample2.txt
libpcap_output2

Input from: hex_sample2.txt

Output to: libpcap_output2

Generate dummy Ethernet header: Protocol: 0x800

Generate dummy IP header: Protocol: 6

Generate dummy TCP header: Source port: 1297. Dest port: 23

Wrote packet of 62 bytes at 0

Wrote packet of 62 bytes at 62

Wrote packet of 60 bytes at 124

Wrote packet of 69 bytes at 184

output removed

Read 76 potential packets, wrote 76 packets

The od command can also be piped into the text2pcap program. text2pcap will
then read the output of the od command as standard input.The next example uses

www.syngress.com

Other Programs Packaged with Wireshark • Chapter 9 515

377_eth_2e_ch09.qxd 11/14/06 10:13 AM Page 515

text2pcap to read a data stream as input, and output the format as HTTP/TCP
packets to the output.pcap file.The –Ax parameter to the od command prints the
offsets as hexadecimal.The –m1460 parameter to text2pcap specifies a maximum
packet size of 1460 bytes.The maximum Ethernet packet size is 1500 bytes, minus
the 20 bytes for the IP and TCP headers, leaves 1460 bytes for the data. By default,
the –T parameter will create TCP, IP, and Ethernet dummy headers.The following
shows the command and associated output.

[root@localhost root]# od -Ax -tx1 input | text2pcap -m1460 -T1234,80 -
output.pcap

Input from: Standard input

Output to: output.pcap

Generate dummy Ethernet header: Protocol: 0x800

Generate dummy IP header: Protocol: 6

Generate dummy TCP header: Source port: 1234. Dest port: 80

Wrote packet of 1460 bytes at 0

Wrote packet of 1460 bytes at 1460

Wrote packet of 1460 bytes at 2920

Wrote packet of 788 bytes at 4380

Read 4 potential packets, wrote 4 packets

capinfos
capinfos is a new command-line tool included with Wireshark that examines a
stored capture file and reports statistics related to the number of packets, packet sizes,
and timing information. Unlike other statistics reporting mechanisms in other
Wireshark tools, capinfos does not report on the contents of traffic, instead giving a
quick summary of the capture file contents.

The following command-line options are used to control capinfos’ output.

■ –h Prints the help options of capinfos, and then exits.

■ –t Displays the capture file type as one of the supported Wireshark capture
file formats, regardless of the filename extension.

■ –c Displays the number of packets in the capture file.

■ –d Displays the total length of all the packets in the file as a number of bytes.

■ –u Displays the capture file duration in seconds.

■ –a Displays the capture start time.

■ –e Displays the capture end time.

www.syngress.com

516 Chapter 9 • Other Programs Packaged with Wireshark

377_eth_2e_ch09.qxd 11/14/06 10:13 AM Page 516

■ –y Displays the average data rate in bytes per second.

■ –i Displays the average data rate in bits per second.

■ –h Displays the average packet size in bytes.

capinfos can be run with only a filename as a command-line parameter, and will
display all the available statistics, as shown here:

C:\>capinfos all-ml.dump

File name: all-ml.dump

File type: libpcap (tcpdump, Ethereal, etc.)

Number of packets: 282905

File size: 41418290 bytes

Data size: 56143385 bytes

Capture duration: 7579.713771 seconds

Start time: Mon Sep 15 09:44:53 2003

End time: Mon Sep 15 11:51:13 2003

Data rate: 7407.06 bytes/s

Data rate: 59256.47 bits/s

Average packet size: 198.45 bytes

dumpcap
The dumpcap utility is used to capture traffic from a live interface and save to a
libpcap file.This utility includes a subset of the functions available in TShark, but
does not include the vast library of protocol decoders.This gives dumpcap a signifi-
cantly smaller footprint, which can be beneficial on low-memory systems capturing
traffic with multiple processes.

The following command-line options are used to control dumpcap’s data pro-
cessing and output.

■ –a test:value Instructs dumpcap to stop writing to a file when it meets the
specified test condition and value.This option mirrors the functionality of
–a in TShark.

■ –b number of ring buffer files [:duration] Used with the –a option, causes
dumpcap to continue capturing data to successive files.This option mirrors
the functionality of –b in TShark.

■ –B buffer size Available only on Windows systems, causes dumpcap to allo-
cate a buffer for storing packet data during a capture before writing to the
disk.This option mirrors the functionality of –B in TShark.

www.syngress.com

Other Programs Packaged with Wireshark • Chapter 9 517

377_eth_2e_ch09.qxd 11/14/06 10:13 AM Page 517

■ –c count Sets the default number of packets to read when capturing data.
This option mirrors the functionality of –c in TShark.

■ –D Instructs dumpcap to print a list of available interfaces on the system,
mirroring the functionality of –D in TShark.

■ –f capture filter expression Allows you to set the filter expression to use
when capturing data, mirroring the functionality of –f in TShark.

■ –h Prints the version of dumpcap and the help options, and then exits.

■ –i interface Specifies the interface you want to use to capture data, mir-
roring the functionality of –i in TShark.

■ –L Lists the data link types that are supported by an interface and then
exits, mirroring the functionality of –L in TShark.

■ –p Tells dumpcap to not put the interface in promiscuous mode, mirroring
the functionality of –p in TShark.

■ –s snaplen Allows you to set the default snapshot length to use when cap-
turing data, mirroring the functionality of –s in TShark.

■ –v Prints the dumpcap version information and exits.

■ –w file Writes the packets to the filename specified following the option,
mirroring the functionality of –w in TShark.

■ –y type Allows you to set the data link type to use while capturing
packets, mirroring the functionality of –y in TShark.

Run with no command-line arguments, dumpcap will select the first available
network interface and start capturing traffic, saving the contents to a libpcap file
with a randomly selected filename.

dumpcap can be useful to leverage the flexibility of capture autostop conditions
and ringbuffer output files, without the overhead associated with the Wireshark GUI
or the memory and CPU requirements of TShark. For example, dumpcap can collect
traffic for five minutes before stopping, saving the contents to the named libpcap file,
as shown here:

C:\>dumpcap -i 2 -a duration:300 -w eventcollection.cap

www.syngress.com

518 Chapter 9 • Other Programs Packaged with Wireshark

377_eth_2e_ch09.qxd 11/14/06 10:13 AM Page 518

Summary
As shown in this chapter, Wireshark is more than the GUI; it is a suite of programs
that provide command-line capturing, formatting, and manipulating capabilities.The
programs can be used together to provide even more processing capabilities, while
output from one program can be piped as input to another. Since these programs are
command line, they also provide powerful scripting capabilities.

TShark provides just about all the same processing capabilities as Wireshark,
minus the GUI. editcap, although used primarily for removing packets from a cap-
ture file, can also be used to translate capture files into various formats. mergecap
provides the capability to merge various capture files, even from different network
analyzers.This is a great resource when performing audits or incident response and
you need to combine captures from various sources such as sniffers, IDSs, and logs.
text2pcap allows you to translate hexadecimal data streams to sniffer readable packet
captures.You can even add dummy Layer 2–4 data when you only have an applica-
tion output stream. capinfos provides summary information about the contents of a
capture file, and dumpcap can be used as an attractive alternative to TShark for
automating traffic capture tasks.

www.syngress.com

Other Programs Packaged with Wireshark • Chapter 9 519

377_eth_2e_ch09.qxd 11/14/06 10:13 AM Page 519

www.syngress.com

520 Chapter 9 • Other Programs Packaged with Wireshark

Solutions Fast Track
TShark

� TShark can read packets from the network or from a packet capture file.

� TShark can decode and print the captured packets to screen or save them
to a file.

� One of the best advantages of using TShark is that it is highly scriptable.

� TShark can apply both capture and display filters to the packet captures.

� TShark can collect various types of statistics about the data being captured.

� Like editcap,TShark can be used to translate capture file formats.

editcap

� editcap can be used to remove packets from a capture file or translate the
format of capture files.

� The –t option in editcap is used to apply a time adjustment to the
timestamps of the packets.

� The snapshot length can be specified with the –s option to decrease the
size of each packet.

� editcap can specify an encapsulation type for the packets in the output file
with the –T option.

mergecap

� mergecap can merge several packet capture files into a single output file.

� mergecap can read capture files of various formats and output them to a
single format.

� By default, the packets from the input files are merged in chronological
order based on each packet’s timestamp; however, if the –a option is
specified, packets will be copied directly from each input file to the output
file regardless of timestamp.

� mergecap can merge capture files with different encapsulation types into
a single output file by using the –T option to force the output
encapsulation type.

377_eth_2e_ch09.qxd 11/14/06 10:13 AM Page 520

text2pcap

� text2pcap reads ASCII hexadecimal dump captures and writes the data to a
libpcap output file.

� text2pcap can inserts dummy Ethernet, IP, and UDP or TCP headers.

� The command od –t x1 will generate output text2pcap can understand.

� An offset of 0 indicates the beginning of a new packet.

� text2pcap options give you a lot of control over the dummy headers,
timestamps, and encapsulation type for each packet.

Capinfos

� capinfos provides summary statistics about a specified packet capture file.

� capinfos calculates and reports the average packet size data rate in the
capture file.

� You can selectively enable one or more reporting features using command-
line parameters.

dumpcap

� dumpcap reads from a live network interface and saves the contents to one
or more libpcap files.

� dumpcap has several of the capture features in TShark, but requires less
memory per dumpcap instance.

� dumpcap will select the first available interface and store packets in a
randomly selected filename when no arguments are specified.

www.syngress.com

Other Programs Packaged with Wireshark • Chapter 9 521

377_eth_2e_ch09.qxd 11/14/06 10:13 AM Page 521

Q: What is the difference between using TShark and editcap to translate the format
of capture files?

A: Nothing—they both perform the same function. However, editcap would be a
more efficient method of converting files because TShark contains a lot of code
for protocol dissection, whereas editcap is a smaller program with only a few
functions.You can also use the Wireshark GUI to do the same thing by choosing
Save As from the File menu.

Q: Can mergecap combine gzipped files?

A: Yes, mergecap can automatically uncompress, read, and merge gzip files.

Q: What types of things can I do to make scripting with TShark faster?

A: One way to make scripting faster with TShark is to use the –l option to flush the
standard output after each packet is printed instead of waiting until it fills up.This
way, each packet is sent as soon as it is read and dissected.You can also use the –n
option to disable network object name resolution to make the process faster.

Q: Can I use filters to specify what packets to remove with editcap?

A: No, editcap does not have the capability to use filters.You must know the packet
numbers you want to include or exclude from the output capture file.You can
use TShark to read a capture file, apply filters, and output the results to a new
capture file.

www.syngress.com

522 Chapter 9 • Other Programs Packaged with Wireshark

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

377_eth_2e_ch09.qxd 11/14/06 10:13 AM Page 522

523

Index
A
About Wireshark dialog box, Help

menu, 210
access points (APs)

capturing traffic while connected
to, 370

and wireless sniffing, 268–269
account sharing, EAP

authentication, 341–343
acknowledgements (ACKs)

checking for application network
availability, 81

described, 17
and HTTP, 39
TCP and, 372–373

active attacks described
ad-hoc mode, wireless cards,

272–273
Address Resolution Protocol

(ARP), 63
addresses

Ethernet, 10
logical, 16
MAC (Media Access Control).

See MAC addresses
physical, 14, 16
spoofing, 11
tcpdump fields, 250–252

administration, using Wireshark for
system, 80–81

Advanced Encryption System
(AES) cipher, 314

Aireplay tool, 357
AiroPeek NX software, 282

AirPcap program, settings,
281–285

analysis, network. See network
analysis

Analyze menu, options, 178–189
Analyzer sniffer described, 10
analyzing wireless traffic, 286–324
Application layer, OSI model,

20–21
Apply as Filter submenu, 183–184
Apply Color Filters dialog box,

161–164
APs. See access points
architecture, using Wireshark in

your network, 71–76, 96
ARP redirects, 29, 33
ARP request handling, 80
ARP spoofing, 88–89
arpspoof utility, 86, 89
ASCII characters in Data View

window, 140–141
ASN1 directory, 416
Atheros chipset, 34, 369
attacks

See also specific attack
active response to, 398–401, 403

authentication
EAP, account sharing, 341–343
identifying EAP failures,

310–312
LEAP (Lightweight Extensible

Authentication Protocol),
307–310

SSH-provided, 43

377_Eth2e_Index.qxd 11/14/06 1:03 PM Page 523

524 Index

in WEP networks, 331–332
availability, checking for

application network, 81

B
back doors

controlled by sniffers, 7
SubSeven backdoor trojans,

377–378
Backtrack (Linux), 36
banners and SMTP, 41
“Basic Packet-Sniffer Construction

from the Ground Up”
(Renfro), 21

Basic Service Set Identifier
(BSSID), 293, 295–296, 298

beacon frame type, 300
bitfields, Wireshark development,

444–446
bitwise operators, and tcpdump

program, 232
boolean fields, display filters,

243–244
broadcast domains, 26
broadcast protocol, 10
Broadcom chipset, 35
BSSID (Basic Service Set

Identifier), 293, 295–296, 298
buffers

in network analyzers, 4
ring, 174–176

byte sequences, display filters,
249–250

Bzip2 compression utility, 105

C
C++, and Wireshark development,

407–408
cable taps, 25, 30, 74–75
capinfos command-line tool,

516–517, 521
capture command-line options,

215–216
capture drivers, 4
capture files, saving, 147–148
capture filters, 53, 60–61, 222–237,

254
Capture Interfaces dialog box,

167–168
Capture menu, described, options,

166–178
Capture Options dialog box,

170–177
capturing

data only, 302–304
unencrypted data traffic only,

304–305
wireless traffic (Linux), 279–281
wireless traffic (Windows),

285–286
cards, wireless modes, 272–273
carrier sense, 22
Carrier Sense Multiple

Access/Collision Detection
Avoidance. See CSMA/CD

CCMP encryption, identifying,
314–316

cd00r sniffer, 7
cfilters file, 254

377_Eth2e_Index.qxd 11/14/06 1:03 PM Page 524

Index 525

channel hopping, 269–270
channels

identifying station’s, 327–329
wireless frequencies and,

268–269
wireless sniffing

recommendations, 271–272
Check Promiscuous Mode

(CPM), 34
chips and sniffing wireless

networks, 34–35
chipsets

Atheros, and Linux, 369
identifying your, 273

Cisco, span (Switched Port
Analyzer), 28

Code Red worm, 384–393
code, Wireshark development, 407,

423
collision detections, 22
collision domains, 26
collisions and wireless sniffing, 270
color filters, applying, 161–164
column functions, 437
columns, adding for analysis,

321–324
Combs, Gerald, 53
command-line options

capinfos command-line tool,
516–517

dumpcap program, 517–518
editcap program, 506–507
text2pcap program, 513–515
TShark data capture and output,

478–482
commands. See specific command

CommView for WiFi tool, 35
comparison operators in IP display

filters, 63
compression utilities, 105, 410
config.nmake file, 409
configure script portion, Wireshark

installation, 126–128
connection-oriented protocols, 17
connections

killing TCP, 87
wireless, failures, 329–337

connectivity, checking for
network, 80

Contents dialog box, Help menu,
206–207

conversations, Wireshark
development, 447–448

converting
CORBA IDL file to C source

code, 125
strings to uppercase, 265

copyleft, 54
CORBA IDL file, converting to C

source code, 125
CORE-SDI, 93
CPM (Check Promiscuous

Mode), 34
CPU (central processing unit),

Wireshark optimization, 84
cracking passwords, 88
cryptography, 410
CSMA/CD (Carrier Sense

Multiple Access/Collision
Detection Avoidance)

Ethernet’s use of, 22–23
MAC methods, 15

377_Eth2e_Index.qxd 11/14/06 1:03 PM Page 525

526 Index

cygwin environment, 412–414

D
DarwinPorts, installing Wireshark

on MacOSX using, 120–122
data

passing between dissectors, 449
sniffed, 8
wireless. See wireless traffic

Data link layer, OSI model, 14–15
Data View window, 140–141, 214
datagrams, IP, 23–24
Debian directory, 417
debugging

dissectors, 454–455
filters, 125

Decode As dialog box, 185–188
decodes in network analyzers, 4
decrypting wireless traffic,

324–327
Denial of Service (DoS) attacks,

87, 344–347
Department of Defense (DoD)

and TCP/IP, 20
detecting

networks, 92–94
NICs (network interface cards),

91–92
promiscuous mode, 172
sniffers, 31–34, 48

detection techniques, 91–94
determining wireless card types,

273
developing

dissectors, 422–438, 471

Wireshark. See Wireshark
development

dfilters file, 254
dftest program, 125
dialog boxes. See specific dialog box
Diameter directory, 417
Digital Signature Algorithm

(DSA), 43
discovery (network scanning), 372
display filters, 60–61, 222,

237–254, 257
dissecting worms, 382–397, 403
dissectors (protocol decodes)

described, 56, 406
developing, 422–438, 442, 471
running, 438–441

DNS (domain name service)
described, 36–37

DNS lookups, 93
DNS reverse lookups, 32
dnsspoof utility, 86–87
.doc directory, 417–418
DocBook, 418
domains, collision, 26
DoS (Denial of Service) attacks,

87, 344–347
downloading Wireshark, 126,

134–135
drivers, packet capture, 4, 104–113
DSA (Digital Signature Algorithm,

43
dsniff sniffing toolkit, 9, 85–87
dumpcap program, 83, 517–518,

521

377_Eth2e_Index.qxd 11/14/06 1:03 PM Page 526

Index 527

E
e-mail

batching mailing list, in daily
digest, 65–66

protecting, 44
protocols, 20

EAP (Extensible Authentication
Protocol)

authentication account sharing,
341–343

exchanges, analyzing, 307–312
eavesdropping, 2, 6
Edit Capture Filter List dialog box,

177–178
Edit Display Filter List dialog box,

180–183
Edit menu, options, 153–155
editcap program, 68–69, 502–509,

520, 522
editing color filters, 162–164
Enabled Protocols dialog box,

184–185
encryption

Digital Signature Algorithm
(DSA), 43

identifying wireless mechanisms,
312–317

for IEEE 802.11 wireless
networks, 305

opportunistic, 50
and sniffer protection, 42, 90–91

endianness, 431
enumeration (network scanning),

372
Ethernet

protocol described, 10–11

protocols used by, 22–25
securing, 83

Ethernet Protocol Analyzer
(EPAN), 418–419

EtherPeek network analyzer, 9
Ettercap sniffer, 9, 87
Expert Info, Expert Info

Composite menu options,
189

expert TAP, 452–454
expressions in display filters,

238–241
Extended Service Set (ESS), 297
Extensible Authentication Protocol

(EAP), 307–312, 341–343

F
Fedora Core platform, 102
File menu, options, 144–145
files, formats for saving, 147–148
filesnarf utility, 87
Filter Bar feature, 142–144
filters

command-line options, 215–216
debugging, 125
display, using for analysis,

292–324
IP display, 61–63
Wireshark’s capture and display,

60–61
writing capture, 222–237
writing display, 237–254

Find Packet dialog box, 155–156
Find Packet function, 83
Fink, installing Wireshark on

MacOSX using, 122–123

377_Eth2e_Index.qxd 11/14/06 1:03 PM Page 527

528 Index

floating point numbers, display
filters, 244–246

flooding, switch, 29
Follow TCP Stream, Follow SSL

Stream windows, 187–189
frames

analyzing, 286–288
and Data link layer, OSI model,

14
wireless types, 301–302

Free Software Foundation (FSF),
54

FTP and Application layer, OSI
model, 20

full-duplex communication, 19
functions

global, 425–426
names, Wireshark development,

457
provided by Wireshark, 473
static, 426–427

fuzzing, protocol, 357–358

G
gateway services, and Presentation

layer, OSI model, 20
Gateway Services for NetWare

(GSNW), 20
General Language for Instrument

Behavior (GLIB), 409
General Public License (GPL) for

Wireshark, 406
GIMP Toolkit, 406
Glib library, 123, 410
global functions, 425–426
glossary, protocol and field names

(TShark), 261–262

GNU Image Manipulation
Program (GIMP) Tool Kit
(GTK) library, 59

GNU Project, 54
Go menu, options, 166–167
Go To Packet dialog box, 167
Graph Control dialog box,

202–205
graph windows, 202–205
Graphical User Interface (GUI),

Wireshark, 406
graphs

RTT, throughput, 195–196
time-sequence, 197–200

GSNW (Gateway Services for
NetWare), 20

.gtk directory, 419
GTK+ library, 59, 123–124, 131,

408, 409, 410, 441, 457
GUI (graphical user interface),

Wireshark’s, 59–60-, 455–460
.gz files, 105
gzip compression utility, 105
gzip files, 55, 522

H
half-duplex communication, 19, 22
handshaking,TCP, 25
hardware

addresses, 15
Ethernet, 25–28
in network analyzers, 4
required for sniffing wireless

networks, 34–35
Harris, Guy, 53

377_Eth2e_Index.qxd 11/14/06 1:03 PM Page 528

Index 529

headers, IEEE 802.11 analysis,
288–292

Help directory, 419
Help menu, options, 205–210
hf array, 428
HoneyNet Project, 45, 372
honeypots, using, 33
hosts

and Data link layer, OSI model,
14

monitoring your, 33
HTTP headers, 253
HTTP protocol, 39–40
hubs

and Ethernet, 25–26
monitoring ports, 32–33
Wireshark placement using,

72–73

I
ICMP (Internet Control Message

Protocol), 24, 87, 317
ICMP router advertisements, 29
icons, custom, 420
identifying

EAP exchange type, 307–310
IPSec/VPN, 316–317
station MAC addresses, 293–296
station’s channel, 327–329
wireless encryption mechanisms,

312–317
IDL directory, 419
idl2wrs program, 125
IDSes (intrusion detection system),

50, 398
IEEE 802.11

DoS attacks, 344–347
header analysis, 288–292
protocol fuzzing, 357–358
spoofing attacks, 348–357

ifconfig command (UNIX), 31,
32, 91

ifconfig tool, 276–278
Ifstatus program, 34
image directory, 419
INSTALL text file, 124, 126
installing

libpcap packet capture driver,
105–110

WinPcap packet capture driver,
110–111

Wireshark from source, 123–128
Wireshark on Linux, 113–115
Wireshark on Windows,

111–113
integer fields, display filters,

241–243
Internet Control Message Protocol

(ICMP), 24, 87
Internet Message Access Protocol

(IMAP) port assignment, 19
Internet Packet Exchange (IPX),

16
Internet Relay Chat (IRC), 44, 82
intrusion detection systems

(IDSs),Wireshark as network,
82–83

IP display filters, 61–63
IP (Internet Protocol), 23–24
ip link command, 31
IP Security (IPSec), 43
IPSec/VPN, identifying, 316–317

377_Eth2e_Index.qxd 11/14/06 1:03 PM Page 529

530 Index

IPv6 (Internet Protocol version 6),
223

IPX (Internet Packet Exchange)
and Network layer, OSI
model, 16

IPX/Sequenced Packet Exchange
(SPX), 16

IRC (Internet Relay Chat), 44, 82
iwconfig tool, 276–278, 279

J
jabber, jitter, 4

K
key loggers described, 7
Kismet tool, 35, 369

L
laptops, running Wireshark on, 72
latency and securing network from

sniffers, 93
laws

legal sniffing, 50
wiretapping, 44

layers of OSI model, 12–22
LEAP (Lightweight Extensible

Authentication Protocol),
307–310

libpcap packet capture driver, 103,
105–110, 131, 410

libraries for Wireshark
development, 406–408,
410–411, 441

license, software
GNU GPL, 54

General Public License (GPL) for
Wireshark, 406

Lightweight Extensible
Authentication Protocol
(LEAP), 307–310

Linux
bootable distributions of, 36
capturing wireless traffic,

279–281
installing Wireshark on, 111–113,

130
monitor mode support, wireless

sniffing, 273–274
Netfilter firewall, 398

Linux Wireless Extensions,
274–276

live capture,Automatic scrolling,
161

LLC sublayer, OSI model, 15
logical addresses, 16, 18
logical operations, tcpdump

program, 225–226
logical operators, setting in display

filters, 256–257
loopback interface, 169
lost packets and wireless sniffing,

270

M
MAC (Media Access Control)

addresses
identifying station, 293–296
MAC flooding, 89
on NICs, 14–15
spoofing, 30
switches and, 26

377_Eth2e_Index.qxd 11/14/06 1:03 PM Page 530

Index 531

viewing your NIC’s, 11
MAC flooding, 89
MAC Sublayer, OSI model, 14–15
MacOSX, installing Wireshark on,

115–123, 130
MacSniffer described, 10
MADWIFI (Multiband Atheros

Driver for WiF), 276–278
magic numbers, 185
mailing lists

batch e-mail in daily digest,
65–66

Wireshark developers, 406, 415
mailsnarf utility, 87
Main Window (Wireshark),

135–141
man-in-the-middle (MITM)

attacks, 88
Manual Pages submenu, Help

menu, 207–209
manuf file, 125
master mode, wireless cards,

272–273
Media Access Control addresses.

See MAC addresses
memory, Wireshark optimization,

85
menus

See also specific menu
pop-up Wireshark, 211–214

mergecap program, 69–70,
509–512, 520, 522

meshed networks, Wireshark
placement using, 75–76

Microsoft Desktop Engine
(MSDE), 382

Microsoft SQL Server 2000, 382
MITM (man-in-the-middle)

attacks, 88
monitor mode

support (Linux) and wireless
sniffing, 273–278

support (Windows) and wireless
sniffing, 281–285

and wireless cards, 272–273
monitoring hub ports, 32–33
msgsnarf utility, 87
Multiband Atheros Driver for

WiFi (MADWIFI), 276–278
multiple access and CSMA/CD,

22

N
name resolution

and Transport layer, OSI model,
19

Wireshark, 146–147
Negative Acknowledgement

(NAK) response, 336
negative offsets, 256
NETBIOS Extended User

Interface (NetBEUI), 16
NetBus backdoor trojan, 378–380
Netfilter firewall, 398
NetMon, 94
NetStumbler, 369
Netstumbler tool, 35
network analysis, 2–5, 47
network analyzers

See also specific sniffer
Wireshark. See Wireshark

Network General Sniffer, 9

377_Eth2e_Index.qxd 11/14/06 1:03 PM Page 531

532 Index

Network layer, OSI model, 16
network name resolution,

Wireshark, 146–147
network scanning, 372–376, 402,

404
Networked Messaging Application

Protocol (Nmap), 7
networks

connectivity, checking, 80
detecting, 92–94
Preferred Networks List (PNL),

337–338
securing from sniffers, 90–91
troubleshooting with Wireshark,

76–79
using Wireshark in your

architecture, 71–76
virtual private. See VPNs
wireless. See wireless networks

NICs (network interface cards)
MAC addresses on, 14–15
and promiscuous mode, 10
viewing your, 11

Nmap (Networked Messaging
Application Protocol), 7

NSIS install package, 420
NTP protocol, 37–38
Null scans, 375–376
NULL SSID DoS attacks, 347

O
one-time passwords (OTPs), 44
open-source tools, Wireshark as,

98
OpenSSH, 90
OpenVPN protocol, 43

operating systems, and Wireshark,
102

operators
comparison, in IP display filters,

63
precedence of, 265

opportunistic encryption, 50
optimizing Wireshark, 84–85, 97
Orinoco chipset, 35
Ornaghi,Alberto, 87
OS driver bugs, and securing

network from sniffers, 93
OSI (Open Systems

Interconnection) model
described, 12–22

P
packaging directory, 420
packet analysis, 2
packet capture

drivers, 104–113, 129–130
using colorized for wireless,

317–321
Packet Details window, using,

286–292
packet fragmentation, 450
packet reassembly, 82
packet retransmissions, 448
packets

ARP, 80
creating for Wireshark to sniff,

98–99
described, 10
finding, marking, 153–155
printing, 149–153
removing from files, 68–69, 502

377_Eth2e_Index.qxd 11/14/06 1:03 PM Page 532

Index 533

TCP described, 24
time display information, 161

Packetyzer sniffer, 10
passive attacks, sniffing and, 6
passwords

cracking, 88
OTP, OPIE, 44

pcap program, 222
PGP (Pretty Good Protection), 91
Physical layer, OSI model, 13–14
PIM (Protocol Independent

Multicast), 257
platforms

Fedora Core, 102
installing Wireshark on

MacOSX, 115–123
Linux, installing Wireshark on,

113–115
Windows, installing Wireshark

on, 111–113
Wireshark requirements,

103–104
plug-ins, Wireshark, 421, 468
port keyword (tcpdump), 225
port mirroring, 27–28, 30
port spanning, 27–28, 72–73
portability, Wireshark source code,

407
ports, commonly used Internet, 18
precedence of operators, 265
Preferences dialog box, 157–158
Preferred Networks List (PNL),

337–338
Prepare a Filter submenu, 183–184
Presentation layer, OSI model,

19–20

Pretty Good Protection (PGP), 91
Print dialog box (Wireshark),

149–153
printing Wireshark output,

149–153
Prism2 chipset, 35
Professional Hacker’s Linux Assault

Kit (Phlack), 36
programs

See also specific program
supporting Wireshark, 66–71

PromiScan, 33
Promisc.c program, 34
PromiscDetect, 31
Promiscuous Capture Library

(libpcap), 54
promiscuous mode

capturing packets in, 171–172
detecting on Windows systems,

31, 33–34
putting interface in, 21
sniffing and, 10

protecting against sniffers, 42–44,
49–50

protocol analysis, 2
protocol decoding, 56
protocol fuzzing, 357–358
Protocol Hierarchy dialog box,

Statistics menu, 192–194
Protocol Independent Multicast

(PIM), 257
Protocol Tree window, 137–140,

212–213, 219
protocols

377_Eth2e_Index.qxd 11/14/06 1:03 PM Page 533

534 Index

See also specific protocol
broadcast, 10
connection-oriented,

connectionless, 17
decoding with tcpdump, 223
dissected, 48
enabling, disabling in Wireshark,

184–185
keywords in tcpdump, 226–228
used by Ethernet, 22–25
vulnerable to sniffers, 7
Wireshark-supported, 56–58

proto_tree_add_xxx function, 433,
435

Pthon Windows package, 412
PuTTY, 90

R
radius directory, 421
RADIUS (Remote Authentication

Dial-In User Service), 316
Ramirez, Gilbert, 53
randpkt program, 125
RAT (Remote Admin Trojan), 7
README.developer, 422, 428
real-time analysis feature in

network analyzers, 4
Red Hat Package Manager

(RPM), 105–108, 420
redirection

ARP, ICMP redirects, 29, 32–33
malicious uses of sniffing, 7

remote access trojans, 376–382,
403

Remote Admin Trojan (RAT), 7

Remote Authentication Dial-In
User Service (RADIUS), 316

Remote Copy Protocol (RCP), 90
Remote Shell (RSH), 90
removing packets from files, 68–69
Renfro, Chad, 21
requirements, system (Wireshark),

103–104
reset (RST) flag, 81
resolvers, 36–37
ring buffer captures, 174–176
rootkits described, 7
routing table, 89
RPM (Red Hat Package

Manager), 105–108, 420
RSA (Rivest, Shamir, & Adleman)

encryption, 43
RST packets, 398
RST.b backdoor trojan, 380–381

S
S/MIME (Secure Multipurpose

Internet Mail Extensions), 44,
91

Sappire worm, 382
Save As dialog box, 147–148
scanning, network

false positives, 404
TCP Connect scan, 372–374
TCP SYN scan, 374–375
XMAS, Null scans, 375–376

Secure Multipurpose Internet Mail
Extensions (S/MIME), 44, 91

Secure Sockets Layer
(SSL)/Transport Layer
Security (TLS), 43

377_Eth2e_Index.qxd 11/14/06 1:03 PM Page 534

Index 535

securing
Ethernet, 83
your network from sniffers,

90–91
security administration using

Wireshark for, 81–83
Sentinel program, 33–34
sequence identification,TCP, 25
Session layer, OSI model, 19
Set Time Reference menu,

156–157
SharkLauncher tool, 120
Sharpe, Richard, 53
Show Packet in New Window,

Summary window, 164–165
signal strength in Wireshark

captures, 370
SMTP protocol, 41–42
SNA (Systems Network

Architecture), 20
sniff.c, 21
sniffers

See also network analyzers
detecting, 48
protecting against, 42–44
securing your network from,

90–91
writing your own, 21

sniffing
described, 2–4, 6, 47
malicious uses of, 6–7
traffic inside VPN, 50
wireless generally, 268–271
wireless networks, 34–36
Wireshark advanced techniques,

85–89

Snoop sniffer, 9
Snort, 9, 220, 398
Snort Intrusion Detection System

(IDS), 398
software

See also specific program
required for sniffing wireless

networks, 35–36
Song, Dug, 89
source code

installing Wireshark from,
123–128, 130–131

for Wireshark development, 407,
423

Wireshark distribution, 415–416
span (Switched Port Analyzer), 28
spanning, port, 27
Specific Extended Service Set

(SSIDs), 297–300, 306–307,
338–339

spoofing
ARP, 88–89
described, 11
IEEE 802.11 attacks, 348–357
IP datagrams, 24
MAC address, 30

SQL Slammer worm, 382–384
SSH protocol, 43, 90
SSIDs (Specific Extended Service

Set)
examining in packet captures,

338–339
filtering for, 297–300
identifying hidden, 306–307

SSL (Secure Sockets Layer)

377_Eth2e_Index.qxd 11/14/06 1:03 PM Page 535

536 Index

securing network from sniffers,
91

/Transport Layer Security (TLS)
described, 43

Stallman, Richard, 54
static functions, 426–427
stations, identifying channel,

327–329
Statistics menu, options, 189–205
statistics,TShark, 485–499
Stevens, Richard, 10
strings

converting to uppercase, 265
tcpdump, field, 245–249

SubSeven backdoor trojans,
37–378

Subversion (SVN) versioning
system, 64, 407

Summary dialog box, Statistics
menu, 192

Summary window, 136–137,
211–212

Supported Protocols dialog box,
206–207

SVN (Subversion) versioning
system, 64, 407

switch flooding, 29
switches

and ARP spoofing, 88–89
defeating, 29–30, 42
and Ethernet, 26–27
and securing network from

sniffers, 91, 99
SYN scans, 374–375
syntax, Wireshark development,

431

system administration using
Wireshark for, 80–81

system requirements for
Wireshark, 103–104

Systems Network Architecture
(SNA), 20

T
T0rnKit rootkit, 7
TAP interface, Wireshark

development, 460–467
taps, cable, 25, 30
tarballs, installation from, 108–109
tcdump program

format capture filters, 53, 220,
222

syntax, keywords, fields, 223–234
TCP (Transport Control

Protocol), 24–25, 404
connections, killing, 87
and HTTP, 39
and Transport layer, OSI model,

17
TCP Connect scans, 372–374
TCP/IP and Application layer,

OSI model, 20
TCP/IP Illustrated, Vol. 1-3, 10
TCP ports for HTTP, 258–259
TCP Stream Analysis submenu,

194–205
tcpdump program, manual for

capture filter language, 266
TCPDump protocol analyzer, 104,

105
Tcpdump sniffer, 9

377_Eth2e_Index.qxd 11/14/06 1:03 PM Page 536

Index 537

tcpkill utility, 87
tcptrace, 198
test access points (Taps) and

Ethernet, 25
test directory, 421
testing

capture filters, 234
and troubleshooting network

problems, 78–79
text2pcap program, 71, 512–516,

521
throughput graphs, 200–202
time fields in Wireshark, 252
time reference flag, setting,

156–157
time-sequence graphs, 197–200
TKIP encryption, identifying,

314–316
tools directory, 421
tools for Wireshark development,

408–412
traffic

analysis, 2
capturing wireless (Linux),

279–281
capturing wireless (Windows),

285–286
Transmission Control Protocol

(TCP), 372
Transport layer, OSI model, 17–19
trojans

remote access Trojans, 376–382
rootkits and, 7
and viruses and worms, 381–382

troubleshooting

networks with Wireshark, 76–79,
125

show Wireshark capture, 219
system and security, 96
Wireshark installation, 131–132

TShark (command-line
Wireshark), 66–68, 220,
235–236, 261–262, 340–341,
409, 476–502, 520, 522

U
U value, Wireshark

development, 457
UDP packets, 25, 404
underscore (_), Wireshark

development, 431
Unicode strings, Wireshark

development, 446–447
UNIX

text processing tools, 340
Wireshark development, 413

upgrading to newer Wireshark
version, 131

user preferences, setting, 153–155

V
Valleri, Marco, 87
value strings, Wireshark

development, 451–452
versions, Wireshark

upgrading, 131
verifying, 98

Vidstrom,Arne, 31
View menu options, 159–160
viruses, 381–382, 404
VPNs (virtual private networks)

protecting against sniffers, 42

377_Eth2e_Index.qxd 11/14/06 1:03 PM Page 537

538 Index

sniffing traffic inside, 50

W
W32 Slammer worm, 382
webspy utility, 87
WEP

bit, 304
-encrypted traffic, analyzing,

324–326
encryption, identifying, 313–314

wiki page, Wireshark, 414
Win32 Wireshark development,

411
Windows

detecting promiscuous mode on,
31–32

installing Wireshark on, 111–113,
130

launching Wireshark on, 135
wireless traffic capture, 282
and Wireshark development,

413–414
Windows 2000, 2003 Server,

sniffer described, 9
Windows XP Preferred Networks

List (PNL), 337–338
Windows Zero Configuration

(WZC) interface, 327
WinDump sniffer, 9
winpcap, 169
WinPcap packet capture driver,

103, 110–111, 131, 409, 410
wireless cards

Atheros chipset, and Linux, 369
Linux, 276–278

wireless networks

probing, 337–341
sniffing, 34–36
Wireshark range, 270

wireless sniffing
capturing traffic (Linux),

279–281
capturing traffic (Windows),

285–286
challenges of, 268–27
monitor mode support (Linux),

273–278
monitor mode support

(Windows), 281–285
recommendations for, 271–272
wireless card modes, 272–273

wireless traffic
adding informative columns,

321–324
analyzing EAP exchanges,

307–312
analyzing using display filters,

292–296
analyzing with Packet Details

window, 286–292
capturing data only, 302–304
capturing Linux, 279–281
capturing unencrypted data only,

304–305
capturing Windows, 285–286
decrypting, 324–327
identifying encryption

mechanisms, 312–317
malformed traffic analysis,

357–365
packet displays, using colorized,

317–321
real-world captures, 327–365

377_Eth2e_Index.qxd 11/14/06 1:03 PM Page 538

Index 539

representing frame types,
301–302

for SSIDs, 297–300
Wireshark

advanced sniffing techniques,
85–89

analysis capabilities, 369
command-line options, 215–216
configure script portion, enabling

features with, 126–128
developing. See Wireshark

development
dialog boxes. See specific dialog box
display windows, 3
features, capabilities, 52–66,

95–96
getting started with, 134–135,

217
GUI (graphical user interface),

455–460
installation generally, 102
installing from source, 123–128
installing on MacOSX, 115–123
Main window components,

135–141
menus. See specific menu
obtaining, platform and system

requirements, 103–104
optimizing, 84–85
packet capture drivers, 104–113
placement with hubs, cable taps,

meshed networks, 73–76
plug-ins, 421, 468
resources for, 65
sniffer described, 8, 35
supporting programs, 66–71

SVN (Subversion) versioning
system, 64

using for network
troubleshooting, 76–79

using for security administration,
81–83

using for system administration,
80–81

using in your network
architecture, 71–76

using without installing, 99
writing capture filters, 222–237
writing display filters, 237–262

Wireshark development
advanced topics, 441–468
developer resources, 414–422
dissectors, creating and running,

422–441
introduction to, prerequisites for,

406–414, 469–470
Wireshark Online submenu, Help

menu, 209–210
wiretap directory, 422
wiretapping laws, 44
worms

Code Red, 384–393
dissecting, 382–397, 403
Ramen, 384–397
SQL Slammer, 382–384
and viruses and trojans, 381–382

writing
capture filters, 222–237
display filters, 237–254
sniffers, 21

Written Word,The, 103

377_Eth2e_Index.qxd 11/14/06 1:03 PM Page 539

540 Index

X
XMAS scans, 375–376
XML compatible protocol

dissection, 500–502
XML dissector, 418

Y
Yellow dog Updater, Modified

(YUM), 113–115
YUM (Yellow dog Updater,

Modified), 113–115

Z
Zip files, GNU Zip (gzip), 55
zipped archives, 103, 105

377_Eth2e_Index.qxd 11/14/06 1:03 PM Page 540

	Wireshark & Ethereal Network Protocol Analyzer Toolkit
	Contents
	Chapter 1 Introducing Network Analysis
	Introduction
	What Is Network Analysis and Sniffing?
	Who Uses Network Analysis?
	How Does It Work?
	Detecting Sniffers
	Sniffing Wireless
	Protocol Dissection
	Protecting Against Sniffers
	Network Analysis and Policy

	Chapter 2 Introducing Wireshark: Network Protocol Analyzer
	Introduction
	What is Wireshark?
	Supporting Programs
	Using Wireshark in Your Network Architecture
	Using Wireshark for Network Troubleshooting
	Using Wireshark for System Administration
	Using Wireshark for Security Administration
	Securing Ethereal
	Optimizing Wireshark
	Advanced Sniffing Techniques
	Securing Your Network from Sniffers
	Employing Detection Techniques

	Chapter 3 Getting and Installing Wireshark
	Introduction
	Getting Wireshark
	Packet Capture Drivers
	Installing Wireshark on Windows
	Installing Wireshark on Linux
	Installing Wireshark on Mac OS X
	Installing Wireshark from Source

	Chapter 4 Using Wireshark
	Introduction
	Getting Started with Wireshark
	Exploring the Main Window
	Other Window Components
	Exploring the Menus
	Using Command-line Options

	Chapter 5 Filters
	Introduction
	Writing Capture Filters
	Writing Display Filters

	Chapter 6 Wireless Sniffing with Wireshark
	Introduction
	Challenges of Sniffing Wireless
	Recommendations for Sniffing Wireless
	Understanding Wireless Card Modes
	Getting Support for Monitor Mode - Linux
	Capturing Wireless Traffic - Linux
	Getting Support for Monitor Mode - Windows
	Capturing Wireless Traffic - Windows
	Analyzing Wireless Traffic
	Real-world Wireless Traffic Captures

	Chapter 7 Real World Packet Captures
	Introduction
	Scanning
	Remote Access Trojans
	Dissecting Worms
	Active Response

	Chapter 8 Developing Wireshark
	Introduction
	Prerequisites for Developing Wireshark
	Other Developer Resources
	Developing a Dissector
	Running a Dissector
	Advanced Topics

	Chapter 9 Other Programs Packaged with Wireshark
	Introduction
	TShark
	editcap
	mergecap
	text2pcap
	capinfos
	dumpcap

	Index

