
TE
AM
FL
Y

Team-Fly®

Designing Security
Architecture Solutions

Jay Ramachandran

John Wiley & Sons, Inc.

Wiley Computer Publishing

Designing Security
Architecture Solutions

Designing Security
Architecture Solutions

Jay Ramachandran

John Wiley & Sons, Inc.

Wiley Computer Publishing

Publisher: Robert Ipsen
Editor: Carol Long
Managing Editor: Micheline Frederick
Developmental Editor: Adaobi Obi
Text Design & Composition: D&G Limited, LLC

Designations used by companies to distinguish their products are often claimed as
trademarks. In all instances where John Wiley & Sons, Inc., is aware of a claim, the product
names appear in initial capital or ALL CAPITAL LETTERS. Readers, however, should contact
the appropriate companies for more complete information regarding trademarks and
registration.

This book is printed on acid-free paper.

Copyright © 2002 by Jay Ramachandran. All rights reserved.
Published by John Wiley & Sons, Inc.

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system or transmitted
in any form or by any means, electronic, mechanical, photocopying, recording, scanning
or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States
Copyright Act, without either the prior written permission of the Publisher, or authoriza-
tion through payment of the appropriate per-copy fee to the Copyright Clearance Center,
222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4744. Requests to
the Publisher for permission should be addressed to the Permissions Department, John
Wiley & Sons, Inc., 605 Third Avenue, New York, NY 10158-0012, (212) 850-6011, fax (212)
850-6008, E-Mail: PERMREQ @ WILEY.COM.

This publication is designed to provide accurate and authoritative information in regard to
the subject matter covered. It is sold with the understanding that the publisher is not
engaged in professional services. If professional advice or other expert assistance is
required, the services of a competent professional person should be sought.

Library of Congress Cataloging-in-Publication Data:

Ramachandran, Jay
Designing security architecture solutions / Jay Ramachandran.

p. cm.
“Wiley Computer Publishing.”
ISBN: 0-471-20602-4 (acid-free paper)
1. Computer security. I. Title.

QA76.9.A25 R35 2002
005.8—dc21 2001006821

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

For Ronak, Mallika, and Beena

D E D I C AT I O N

vii

P R E FA C E

Preface xvii

Acknowledgments xxvii

Part One Architecture and Security 1

Chapter 1 Architecture Reviews 3
Software Process 3
Reviews and the Software Development Cycle 4
Software Process and Architecture Models 5

Kruchten’s 4+1 View Model 6
The Reference Model for Open Distributed Processing 7
Rational’s Unified Process 9

Software Process and Security 10
Architecture Review of a System 11

The Architecture Document 12
The Introduction Section 13
Sections of the Architecture Document 15
The Architecture Review Report 19

Conclusions 19

Chapter 2 Security Assessments 21
What Is a Security Assessment? 21
The Organizational Viewpoint 22
The Five-Level Compliance Model 23
The System Viewpoint 24
Pre-Assessment Preparation 26

The Security Assessment Meeting 26
Security Assessment Balance Sheet Model 27
Describe the Application Security Process 29
Identify Assets 30
Identify Vulnerabilities and Threats 30
Identify Potential Risks 30
Examples of Threats and Countermeasures 32

Post-Assessment Activities 32

C O N T E N TS

Why Are Assessments So Hard? 32
Matching Cost Against Value 33
Why Assessments Are Like the Knapsack Problem 36
Why Assessments Are Not Like the Knapsack Problem 38
Enterprise Security and Low Amortized Cost Security Controls 39

Conclusion 40

Chapter 3 Security Architecture Basics 43
Security As an Architectural Goal 44

Corporate Security Policy and Architecture 45
Vendor Bashing for Fun and Profit 46

Security and Software Architecture 48
System Security Architecture Definitions 48
Security and Software Process 50
Security Design Forces against Other Goals 51

Security Principles 52
Additional Security-Related Properties 53
Other Abstract or Hard-to-Provide Properties 54

Inference 54
Aggregation 55
Least Privilege 56
Self-Promotion 56
Graceful Failure 56
Safety 57

Authentication 58
User IDs and Passwords 58
Tokens 59
Biometric Schemes 59
Authentication Infrastructures 60

Authorization 60
Models for Access Control 61

Mandatory Access Control 61
Discretionary Access Control 61
Role-Based Access Control 63
Access Control Rules 66
Understanding the Application’s Access Needs 69

Other Core Security Properties 71
Analyzing a Generic System 71
Conclusion 73

Chapter 4 Architecture Patterns in Security 75
Pattern Goals 75
Common Terminology 76
Architecture Principles and Patterns 77
The Security Pattern Catalog 78
Entity 78

Principal 78

C O N T E N TSviii

TE
AM
FL
Y

Team-Fly®

Context Holders 81
Session Objects and Cookies 81
Ticket/Token 82
Sentinel 83
Roles 83

Service Providers 84
Directory 84
Trusted Third Party 87
Validator 88

Channel Elements 89
Wrapper 89
Filter 91
Interceptor 93
Proxy 95

Platforms 96
Transport Tunnel 96
Distributor 97
Concentrator 98
Layer 98
Elevator 100
Sandbox 101
Magic 103

Conclusion 104

Part Two Low-Level Architecture 105

Chapter 5 Code Review 107
Why Code Review Is Important 107
Buffer Overflow Exploits 108

Switching Execution Contexts in UNIX 111
Building a Buffer Overflow Exploit 111
Components of a Stack Frame 112
Why Buffer Overflow Exploits Enjoy Most-Favored Status 113

Countermeasures Against Buffer Overflow Attacks 114
Avoidance 114
Prevention by Using Validators 114
Sentinel 115
Layer 115
Sandbox 116
Wrapper 116
Interceptors 118

Why Are So Many Patterns Applicable? 118
Stack Growth Redirection 119
Hardware Support 120

C O N T E N TS ix

C O N T E N TSx

Security and Perl 120
Syntax Validation 121
Sentinel 122
Sandbox 122

Bytecode Verification in Java 123
Good Coding Practices Lead to Secure Code 125
Conclusion 126

Chapter 6 Cryptography 129
The History of Cryptography 130
Cryptographic Toolkits 132
One-Way Functions 133
Encryption 133
Symmetric Encryption 134

Encryption Modes 135
Asymmetric Encryption 136
Number Generation 137
Cryptographic Hash Functions 138

Keyed Hash Functions 138
Authentication and Digital Certificates 139
Digital Signatures 139

Signed Messages 140
Digital Envelopes 140

Key Management 141
Cryptanalysis 142

Differential Cryptanalysis 142
Linear Cryptanalysis 142

Cryptography and Systems Architecture 143
Innovation and Acceptance 143
Cryptographic Flaws 144

Algorithmic Flaws 145
Protocol Misconstruction 145
Implementation Errors 145
Wired Equivalent Privacy 146

Performance 147
Comparing Cryptographic Protocols 148
Conclusion 149

Chapter 7 Trusted Code 151
Adding Trust Infrastructures to Systems 152
The Java Sandbox 153

Running Applets in a Browser 154
Local Infrastructure 155
Local Security Policy Definition 155
Local and Global Infrastructure 156

Security Extensions in Java 156
Systems Architecture 157

Microsoft Authenticode 157
Global Infrastructure 157
Local Infrastructure 158
Structure within the Local Machine 158
Authenticode and Safety 159

Internet Explorer Zones 159
Customizing Security within a Zone 159
Role-Based Access Control 160
Accepting Directives from Downloaded Content 160

Netscape Object Signing 162
Signed, Self-Decrypting, and Self-Extracting Packages 163
Implementing Trust within the Enterprise 163
Protecting Digital Intellectual Property 165
Thompson’s Trojan Horse Compiler 170

Some Notation for Compilers and Programs 171
Self-Reproducing Programs 171
Looking for Signatures 173
Even Further Reflections on Trusting Trust 175

An Exercise to the Reader 176
Perfect Trojan Horses 176

Conclusion 177

Chapter 8 Secure Communications 179
The OSI and TCP/IP Protocol Stacks 180
The Structure of Secure Communication 182
The Secure Sockets Layer Protocol 182

SSL Properties 183
The SSL Record Protocol 184
The SSL Handshake Protocol 184
SSL Issues 186

The IPSec Standard 187
IPSec Architecture Layers 188
IPSec Overview 189
Policy Management 190
IPSec Transport and Tunnel Modes 191
IPSec Implementation 192
Authentication Header Protocol 192
Encapsulating Security Payload 193
Internet Key Exchange 193
Some Examples of Secure IPSec Datagrams 194

IPSec Host Architecture 195
IPSec Issues 195

Conclusion 198

C O N T E N TS xi

Part Three Mid-Level Architecture 199

Chapter 9 Middleware Security 201
Middleware and Security 202

Service Access 202
Service Configuration 202
Event Management 203
Distributed Data Management 204
Concurrency and Synchronization 204
Reusable Services 205

The Assumption of Infallibility 206
The Common Object Request Broker Architecture 207
The OMG CORBA Security Standard 208

The CORBA Security Service Specification 208
Packages and Modules in the Specification 209

Vendor Implementations of CORBA Security 211
CORBA Security Levels 212
Secure Interoperability 212

The Secure Inter-ORB Protocol 213
Secure Communications through SSL 214
Why Is SSL Popular? 215

Application-Unaware Security 216
Application-Aware Security 218
Application Implications 220
Conclusion 221

Chapter 10 Web Security 223
Web Security Issues 225

Questions for the Review of Web Security 226
Web Application Architecture 227
Web Application Security Options 228
Securing Web Clients 230

Active Content 230
Scripting Languages 231
Browser Plug-Ins and Helper Applications 231
Browser Configuration 231

Connection Security 232
Web Server Placement 232

Securing Web Server Hosts 233
Securing the Web Server 235

Authentication Options 235
Web Application Configuration 236
Document Access Control 237
CGI Scripts 237
JavaScript 238

Web Server Architecture Extensions 238

C O N T E N TSxii

Enterprise Web Server Architectures 239
The Java 2 Enterprise Edition Standard 240

Server-Side Java 241
Java Servlets 241
Servlets and Declarative Access Control 242
Enterprise Java Beans 243

Conclusion 244

Chapter 11 Application and OS Security 247
Structure of an Operating System 249
Structure of an Application 251

Application Delivery 253
Application and Operating System Security 254

Hardware Security Issues 254
Process Security Issues 255
Software Bus Security Issues 256
Data Security Issues 256
Network Security Issues 256
Configuration Security Issues 257
Operations, Administration, and Maintenance Security Issues 258

Securing Network Services 258
UNIX Pluggable Authentication Modules 260
UNIX Access Control Lists 262

Solaris Access Control Lists 264
HP-UX Access Control Lists 267

Conclusion 268

Chapter 12 Database Security 269
Database Security Evolution 270

Multi-Level Security in Databases 270
Architectural Components and Security 273
Secure Connectivity to the Database 274
Role-Based Access Control 276

The Data Dictionary 277
Database Object Privileges 278
Issues Surrounding Role-Based Access Control 278

Database Views 279
Security Based on Object-Oriented Encapsulation 281
Procedural Extensions to SQL 282

Wrapper 283
Sentinel 284

Security through Restrictive Clauses 285
Virtual Private Database 286

Oracle Label Security 287
Read and Write Semantics 287

Conclusion 291

C O N T E N TS xiii

Part Four High-Level Architecture 293

Chapter 13 Security Components 295
Secure Single Sign-On 297

Scripting Solutions 298
Strong, Shared Authentication 298
Network Authentication 299
Secure SSO Issues 299

Public-Key Infrastructures 301
Certificate Authority 303
Registration Authority 303
Repository 304
Certificate Holders 304
Certificate Verifiers 304
PKI Usage and Administration 304
PKI Operational Issues 305

Firewalls 306
Firewall Configurations 307
Firewall Limitations 307

Intrusion Detection Systems 308
LDAP and X.500 Directories 311

Lightweight Directory Access Protocol 312
Architectural Issues 313

Kerberos 314
Kerberos Components in Windows 2000 315

Distributed Computing Environment 317
The Secure Shell, or SSH 318
The Distributed Sandbox 319
Conclusion 321

Chapter 14 Security and Other Architectural Goals 323
Metrics for Non-Functional Goals 324
Force Diagrams around Security 324

Normal Architectural Design 325
Good Architectural Design 327

High Availability 328
Security Issues 331

Robustness 332
Binary Patches 333
Security Issues 334

Reconstruction of Events 335
Security Issues 335

Ease of Use 336
Security Issues 337

C O N T E N TSxiv

Maintainability, Adaptability, and Evolution 338
Security Issues 339

Scalability 340
Security Issues 340

Interoperability 341
Security Issues 341

Performance 342
Security Issues 344

Portability 345
Security Issues 346

Conclusion 347

Chapter 15 Enterprise Security Architecture 349
Security as a Process 350

Applying Security Policy 351
Security Data 351

Databases of Record 352
Enterprise Security as a Data Management Problem 353

The Security Policy Repository 353
The User Repository 354
The Security Configuration Repository 354
The Application Asset Repository 355
The Threat Repository 356
The Vulnerability Repository 356

Tools for Data Management 357
Automation of Security Expertise 358
Directions for Security Data Management 359

David Isenberg and the “Stupid Network” 360
Extensible Markup Language 362

XML and Data Security 363
The XML Security Services Signaling Layer 363
XML and Security Standards 364

J2EE Servlet Security Specification 365
XML Signatures 365
XML Encryption 366
S2ML 366
SAML 367
XML Key Management Service 367
XML and Other Cryptographic Primitives 368

The Security Pattern Catalog Revisited 369
XML-Enabled Security Data 370
HGP: A Case Study in Data Management 371

Building a Single Framework for Managing Security 372
Conclusion 373

C O N T E N TS xv

Part Five Business Cases and Security 375

Chapter 16 Building Business Cases for Security 377
Building Business Cases for Security 378
Financial Losses to Computer Theft and Fraud 379

Case Study: AT&T’s 1990 Service Disruption 381
Structure of the Invita Case Study 382
Security at Invita Securities Corp. 384
The Pieces of the Business Case 385

Development Costs 385
Operational Costs 387

Time-Out 1: Financial Formulas 388
Interest Rate Functions 388
Net Present Value 388
Internal Rate of Return 389
Payback Period 389
Uniform Payment 389

Break-Even Analysis 389
Breaking Even is Not Good Enough 390

Time-Out 2: Assumptions in the Saved Losses Model 390
Assumptions in the Saved Losses Model 391
Steady State Losses 391
Losses from a Catastrophic Network Disruption 392

The Agenda for the Lockup 392
Steady-State Losses 395
Catastrophic Losses 395
The Readout 396
Insuring Against Attacks 397
Business Case Conclusion 398

A Critique of the Business Case 399
Insurance and Computer Security 400

Hacker Insurance 402
Insurance Pricing Methods 403

Conclusion 404

Chapter 17 Conclusion 407
Random Advice 408

Glossary 413

Bibliography 421

Index 435

C O N T E N TSxvi

xvii

P R E FA C E

There is an invisible elephant in this book: your application. And, it sits at the center of
every topic we touch in each chapter we present. This book is for systems architects
who are interested in building security into their applications. The book is designed to
be useful to architects in three ways: as an introduction to security architecture, as a
handbook on security issues for architecture review, and as a catalog of designs to look
for within a security product.

Audience

This book is meant to be a practical handbook on security architecture. It aims to pro-
vide software systems architects with a contextual framework for thinking about secu-
rity. This book is not for code writers directly, although we do talk about code when
appropriate. It is targeted toward the growing technical community of people who call
themselves systems architects. A systems architect is the technical leader on any large
project with overall responsibility for architecture, design, interface definition, and
implementation for the system. Architects play nontechnical roles, as well. They are
often involved in the planning and feasibility stages of the project, helping its owners
make a business case for the system. They must ensure that the project team follows
corporate security guidelines and the software development process all the way to
delivery. Architects have deep domain knowledge of the application, its function, and
its evolution but often are not as experienced in security architecture.

The primary audience for this book consists of project managers, systems architects,
and software engineers who need to secure their applications. It provides a conceptual
architectural framework that answers the questions, “What is systems security archi-
tecture? How should I choose from a bewildering array of security product offerings?
How should I then integrate my choices into my software? What common problems
occur during this process? How does security affect the other goals of my system archi-
tecture? How can I justify the expense of building security into my application?”

If you are currently working on a large project or you have access to the architecture
documentation of a software system you are familiar with, keep it handy and use its
architecture to give yourself a frame of reference for the discussion. A good application
can give additional depth to a particular recommendation or provide context for any
architectural issues on security or software design.

P R E FA C Exviii

We assume that you have some experience with implementing security solutions and get-
ting your hands dirty. Although we introduce and present many security concepts, we
would not recommend learning about computer security from this book, because in the
interests of covering as many aspects of architecture and security as we can, we will often
cheerfully commit the sin of simplification. We will always add references to more detail
when we do simplify matters and hope this situation will not confuse the novice reader.
We hope that by the end of the book, the systems architects among you will have gained
some insights into security while the security experts wryly note our mastery of the obvi-
ous. That would mean that we have succeeded in striking the right balance!

Software Architecture

Software architecture in the past 10 years has seen growing respectability. More and
more software professionals are calling themselves software architects in recognition
that enterprise systems are increasingly complex, expensive, and distributed. Applica-
tions have raised the bar for feature requirements such as availability, scalability,
robustness, and interoperability. At the same time, as a business driver, enterprise secu-
rity is front and center in the minds of many managers. There is a tremendously diverse
community of security professionals providing valuable but complicated services to
these enterprise architects. Architects have clear mandates to implement corporate
security policy, and many certainly feel a need for guidelines on how to do so. We wrote
this book to provide architects with a better understanding of security.

Software development converts requirements into systems, products, and services.
Software architecture has emerged as an important organizing principle, providing a
framework upon which we hang the mass of the application. Companies are recogniz-
ing the value of enterprise architecture guidelines, along with support for process defi-
nition, certification of architects, and training. Software architecture promises cost
savings by improving release cycle time, reducing software defects, enabling reuse of
architecture and design ideas, and improving technical communication.

There are many excellent books on security and on software architecture. There is also
a vast and mature collection of academic literature in both areas, many listed in our bib-
liography. This book targets readers in the intersection of the two fields.

When we use the term system or application in this book, we mean a collection of
hardware and software components on a platform to support a business function with
boundaries that demark the inside and outside of the system, along with definitions of
interfaces to other systems. Systems have business roles in the company. They belong
to business processes and have labels: customer Web application, benefits directory,
employee payroll database, customer order provisioning, billing, network management,
fulfillment, library document server, and so on.

Security can be approached from perspectives other than the viewpoint of securing a
system. A project might be developing a shrink-wrapped product, such as a computer

TE
AM
FL
Y

Team-Fly®

game or a PC application; or might be providing a distributed service, such as an e-mail
or naming server; or be working on an infrastructure component, such as a corporate
directory. Security goals change with each change in perspective. Our presentation of
security principles in this book is general enough to apply to these other viewpoints,
which also can benefit from secure design.

Project Objectives versus Security
Experience

Companies wish to include security policy into architecture guidelines but run into dif-
ficulties trying to chart a path on implementation decisions. Unless we realize that the
problem does not lie with our talented and competent development teams but instead
lies in their lack of background information about security, we will run into significant
resistance project after project—repeatedly going over the same security issues at the
architecture review. We must be able to present security issues in an architectural con-
text to guide the project.

As system architects, we would like to believe that all our decisions are driven by tech-
nical considerations and business goals. We would like to believe that every time our
project team meets to make a decision, we would be consistent—arriving at the same
decision no matter who took the day off. Human nature and personal experience
inform our decisions as well, however. On a system that is under construction within
the confines of budget and time, the strengths of the lead architects and developers can
strongly warp the direction and priority of functional and non-functional goals.

An object-oriented methodology guru might spend a fair amount of resources develop-
ing the data model and class diagrams. A programmer with a lot of experience building
concurrent code might introduce multi-threading everywhere, creating producers and
consumers that juggle mutexes, locks, and condition variables in the design. A database
designer with experience in one product might bring preconceived notions of how
things should be to the project that uses another database. A CORBA expert might engi-
neer interface definitions or services with all kinds of detail to anticipate evolution, just
because he knows how. A Web designer on the front-end team might go crazy with the
eye candy of the day on the user interface. None of these actions are inherently bad,
and much of it is very valuable and clearly useful. At the end, however, if the project
does not deliver what the customer wants with adequate performance and reliability,
we have failed.

What if no one on your team has much experience with security? In a conflict between
an area where we are somewhat lost and another where we can accomplish a signifi-
cant amount of productive work, we pick the task where we will make the most
progress. The problem arises with other facets of systems architecture as well, which
might fall by the wayside because of a lack of experience or a lack of priority. Project
teams declare that they cannot be highly available, cannot do thorough testing, or can-
not do performance modeling because they do not have the time or the money to do so.
This situation might often be the case, but if no one on the team has expertise building

P R E FA C E xix

reliable systems or regression testing suites or queuing theoretic models of service,
then human nature might drive behavior away from these tasks.

Security architecture often suffers from this syndrome. Fortunately, we have a solution
to our knowledge gap: Buy security and hire experts to secure our system. This point is
where vendors come in to help us integrate their solutions into our applications.

Vendor Security Products
The Internet boom has also driven the growth of security standards and technologies.
Software vendors provide feature-rich security solutions and components at a level of
complexity and maturity beyond almost all projects. Building our own components is
rarely an option, and security architecture work is primarily integration work. In
today’s environment, the emerging dominance of vendor products aiding software
development for enterprise security cannot be ignored.

We interact with vendors on many levels, and our understanding of their product offer-
ings depends on a combination of information from many sources: marketing, sales,
customer service support, vendor architects, and other applications with experience
with the product. We have to be careful when viewing the entire application from the
perspective of the security vendor. Looking at the application through a fisheye lens to
get a wide-angle view could give us a warped perspective, with all of the elements of the
system distorted around one central component: their security product. Here are three
architectural flaws in vendor products:

The product enjoys a central place in the architecture. The product places itself
at the center of the universe, which might not be where you, as the architect, would
place it.

The product hides assumptions. The product hides assumptions that are critical to
a successful deployment or does not articulate these assumptions as clear
architectural prerequisites and requirements to the project.

The context behind the product is unclear. Context describes the design philosophy
behind the purpose and placement of the product in some market niche. What is the
history of the company with respect to building this particular security product?
The vendor might be the originator of the technology, might have diversified into the
product space, acquired a smaller company with expertise in the security area, or
might have a strong background in a particular competing design philosophy.

Vendors have advantages over architects.

■■ They tend to have comparatively greater security expertise.

■■ They often do not tell architects about gaps in their own product’s design
voluntarily. You have to ask specific questions about product features.

■■ They rarely present their products in terms clearly comparable with those of their
competitors. Project teams have to expend effort in understanding the feature sets
well enough to do so themselves.

P R E FA C Exx

■■ They deflect valid criticism of holes in their design by assigning resolution
responsibility to the user, administrator, application process, or other side of an
interface, and so on.

■■ They rarely support the evolution path of an application over a two- to three-year
timeframe.

This book is meant to swing the advantage back in the architect’s court. We will describe
how projects can evaluate vendor products, discover limitations and boundaries within
solutions, and overcome them. Vendors are not antagonistic to the project’s objectives,
but miscommunication during vendor management might cause considerable friction as
the application evolves and we learn more about real-world deployment issues surround-
ing the product. Building a good relationship between application architect and lead ven-
dor engineers is critical and holds long-run benefits for the project and vendor alike. We
hope that better information will lead to better decisions on security architecture.

Our Goals in Writing This Book

On a first level, we will present an overview of the software process behind systems
architecture. We focus on the architecture review, a checkpoint within the software
development cycle that gives the project an opportunity to validate the solution archi-
tecture and verify that it meets requirements. We will describe how to assess a system
for security issues, how to organize the architecture to add security as a system feature,
and how to provide architectural context information that will help minimize the
impact of implementing one security choice over another. We emphasize including
security early in the design cycle instead of waiting until the application is in produc-
tion and adding security as an afterthought.

On a second level, this book will provide hands-on help in understanding common, repeat-
ing patterns of design in the vast array of security products available. This book will help
describe the vocabulary used surrounding security products as applied to systems architec-
ture. We borrow the term patterns from the Object Patterns design community but do not
intend to use the term beyond its common-sense meaning. Specifically, something is a secu-
rity pattern if we can give it a name, observe its design appearing repeatedly in many secu-
rity products, and see some benefit in defining and describing the pattern.

On a third level, we describe common security architecture issues and talk about secu-
rity issues for specific technologies. We use three layers of application granularity to
examine security.

■■ Low-level issues regarding code review, cryptographic primitives, and trusting
code.

■■ Mid-level issues regarding middleware or Web services, operating systems, hosts,
and databases.

■■ High-level issues regarding security components, conflicts between security and
other system goals, and enterprise security.

P R E FA C E xxi

On the fourth and final level, we discuss security from a financial standpoint. How can
we justify the expense of securing our application?

Reading This Book
We have organized the book into five parts, and aside from the chapters in Part I, any
chapter can be read on its own. We would recommend that readers with specific inter-
ests and skills try the following tracks, however:

Project and software process managers. Begin by reading Chapters 1, 2, 3, 4, and
15. These chapters present vocabulary and basic concerns surrounding security
architecture.

Security assessors. Begin by reading Chapters 1, 2, 3, 4, 13, and 14. Much of the
information needed to sit in a review and understand the presentation is described
there.

Developers. Read Chapters 1 through 4 in order and then Chapters 5 through 12 in
any order—looking for the particular platform or software component that you are
responsible for developing.

Systems architects. Read the book from start to finish, one complete part at a time.
The presentation order, from Process to Technology to Enterprise concerns,
parallels the requirements of systems architecture for a large application. All of
these topics are now considered part of the domain of software architects.

Business executives. Read Chapters 1, 2, 16, and 17 for a start and then continue as
your interests guide you with anything in between.

Outline of the Book

Each chapter is a mix of the abstract and the concrete. For more detail on any technical
matter, please see the list of bibliographic references at the end of the book. Each chap-
ter will also contain questions to ask at an architecture review on a specific subject.

Part I, Architecture and Security, introduces the business processes of architecture
review and security assessments. We describe the basics of security architecture and a
catalog of security patterns.

Chapter 1, “Architecture Reviews,” describes a key checkpoint in the software
development cycle where architects can ask and answer the question, “Does the
solution fit the problem?” We present a description of the review process along with
its benefits.

Chapter 2, “Security Assessments,” defines the process of security assessment by
using the Federal Information Technology Security Assessment Framework along
with other industry standards. We describe how assessments realize many of the
benefits of architecture reviews within the specific context of security.

P R E FA C Exxii

Chapter 3, “Security Architecture Basics,” defines the concept of assurance. We
describe the concepts of authentication, authorization, access control, auditing,
confidentiality, integrity, and nonrepudiation from an architectural viewpoint. We
discuss other security properties and models of access control.

Chapter 4, “Architecture Patterns in Security,” defines the terms architectural style
and pattern and describes how each of the basic security architecture requirements
in the previous chapter lead to common implementation patterns. We also present a
catalog of security patterns.

Part II, Low-Level Architecture, describes common issues surrounding developing
secure software at the code level. We introduce the basics of cryptography and discuss
its application in trusting code and in communications security protocols.

Chapter 5, “Code Review,” discusses the importance of code review from a security
viewpoint. We describe buffer overflow exploits, one of the most common sources
of security vulnerabilities. We discuss strategies for preventing exploits based on
this attack. We also discuss security in Perl and the Java byte code verifier.

Chapter 6, “Cryptography,” introduces cryptographic primitives and protocols and
the difficulty an architect faces in constructing and validating the same. We present
guidelines for using cryptography.

Chapter 7, “Trusted Code,” discusses one consequence of the growth of the Web: the
emergence of digitally delivered software. We describe the risks of downloading
active content over the Internet, some responses to mitigating this risk, and why
code is hard to trust.

Chapter 8, “Secure Communications,” introduces two methods for securing sessions—
the SSL protocol and IPSec—and discusses the infrastructure support needed to
implement such protocols. We discuss security layering and describe why is there
plenty of security work left to be done at the application level.

Part III, Mid-Level Architecture, introduces common issues faced by application
architects building security into their systems from a component and connector view-
point.

Chapter 9, “Middleware Security,” discusses the impact of platform independence, a
central goal of middleware products, on security. We describe the CORBA security
specification, its service modules, and the various levels of CORBA-compliant
security and administrative support. We also discuss other middleware security
products at a high level.

Chapter 10, “Web Security,” is a short introduction to Web security from an
architecture viewpoint, including information on security for standards such as
J2EE.

Chapter 11, “Application and OS Security,” reviews the components that go into the
design of an application, including OS security, network services, process
descriptions, interface definitions, process flow diagrams, workflow maps, and
administration tools. We discuss operating systems hardening and other
deployment and development issues with building secure production applications.
We also discuss UNIX ACLs.

P R E FA C E xxiii

Chapter 12, “Database Security,” introduces the state-of-the-art in database security
architecture. We discuss the evolution of databases from a security standpoint and
describe several models of securing persistent data. We also discuss the security
features within Oracle, a leading commercial database product.

Part IV, High-Level Architecture, introduces common issues faced by enterprise
architects charged with guiding software architecture discipline across many individual
applications, all sharing some “enterprise” characteristic, such as being components of
a high-level business process or domain.

Chapter 13, “Security Components,” discusses the building blocks available to
systems architects and some guidelines for their usage. The list includes single sign-
on servers, PKI, firewalls, network intrusion detection, directories, along with audit
and security management products. We discuss issues that architects should or
should not worry about and components they should or should not try to use. We
also discuss the impact of new technologies like mobile devices that cause unique
security integration issues for architects.

Chapter 14, “Security and Other Architectural Goals,” discusses the myths and
realities about conflicts between security and other architectural goals. We discuss
the impact of security on other goals such as performance, high availability,
robustness, scalability, interoperability, maintainability, portability, ease of use,
adaptability, and evolution. We conclude with guidelines for recognizing conflicts in
the architecture, setting priorities, and deciding which goal wins.

Chapter 15, “Enterprise Security Architecture,” discusses the question, “How do we
architect security and security management across applications?” We discuss the
assets stored in the enterprise and the notion of database-of-record status. We also
discuss common issues with enterprise infrastructure needs for security, such as
user management, corporate directories, and legacy systems. We present and
defend the thesis that enterprise security architecture is above all a data-
management problem and propose a resolution using XML-based standards.

Part V, Business Cases for Security, introduces common issues faced by architects
making a business case for security for their applications.

Chapter 16, “Building Business Cases for Security,” asks why it is hard to build
business cases for security. We present the Saved Losses Model for justifying
security business cases. We assign value to down time, loss of revenue, and
reputation and assess the costs of guarding against loss. We discuss the role of an
architect in incident prevention, industry information about costs, and the
reconstruction of events across complex, distributed environments in a manner
that holds water in a court of law. We ask whether security is insurable in the sense
that we can buy hacker insurance that works like life insurance or fire insurance
and discuss the properties that make something insurable.

Chapter 17, “Conclusion,” reviews security architecture lessons that we learned. We
present some advice and further resources for architects.

We conclude with a bibliography of resources for architects and a glossary of acronyms.

P R E FA C Exxiv

Online Information

Although we have reviewed the book and attempted to remove any technical errors,
some surely remain. Readers with comments, questions, or bug fixes can email me at
book@jay-ramachandran.com or visit my Web site at www.jay-ramachandran.com for
Web links referred to in the text, updated vendor product information, or other infor-
mation.

Conclusion

A note before we start: although it might seem that way sometimes, our intent is not to
present vendors and their security offerings as in constant conflict with your applica-
tion and its objectives and needs. Security vendors provide essential services, and no
discussion of security will be complete without recognition of their value and the role
that their products play.

Security is commonly presented as a conflict between the good and the bad, with our
application on one hand and the evil hacker on the other. This dichotomy is analogous
to describing the application as a medieval castle and describing its defense: “Put the
moat here,” “Make it yea deep,” “Use more than one portcullis,” “Here’s where you boil
the oil,” “Here’s how you recognize a ladder propped against the wall,” and so on. This
view presents security as an active conflict, and we often use the terms of war to
describe details. In this case, we view ourselves as generals in the battle and our oppo-
nents as Huns (my apologies if you are a Hun, I’m just trying to make a point here).

Our basic goal is to frame the debate about systems security around a different
dichotomy, one that recognizes that the castle also has a role in peacetime, as a market
place for the surrounding villages, as the seat of authority in the realm, as a cantonment
for troops, and as a place of residence for its inhabitants. Think of the system’s archi-
tect as the mayor of the town who has hired a knight to assemble a standing army for its
defense. The knight knows warfare, but the mayor has the money. Note that we said
that the architect is the mayor and not the king—that would be the customer.

P R E FA C E xxv

xxvii

A C K N O W L E D G M E N TS

Ithank John Wiley & Sons for the opportunity to write this book, especially my editor,
Carol Long. Carol read the proposal on a plane flight back from RSA 2001 and sent me
a response the day she received it. From the start, Carol shared my perspective that
security as seen by a software architect presents a unique and interesting viewpoint. I
thank her for her belief in the idea. I thank my assistant editor, Adaobi Obi, for her care-
ful reviews of the first draft and her many suggestions for improving the presentation. I
thank my managing editor, Micheline Frederick, for her many ideas for improving the
readability of the manuscript. I would also like to thank Radia Perlman for some valu-
able advice on the structure of this book at an early stage.

I thank the technical review team of Arun Iyer and Jai Chhugani for their excellent and
insightful remarks, their thorough and careful chapter-by-chapter review, and many sug-
gestions that have improved the text immeasurably. I also thank Steve Bellovin and Radia
Perlman for reading the final draft of the manuscript. I am solely responsible for any errors
and omissions that remain. Please visit my Web site www.jay-ramachandran.com for the
book for more information on security architecture, including Wiley’s official links for the
book, errata submissions, or permission requests.

I thank Tim Long, Don Aliberti, Alberto Avritzer, and Arun Iyer for their guidance in the
past and for the many ideas and opinions that they offered me on security, architecture,
and computer science. I am sure that the four of you will enjoy reading this book, because
so much of it is based on stuff I learned from you in the conversations we have had.

I am heavily indebted to and thank the many security gurus, assessors, and developers I
have had the pleasure of working with over the years on many systems, feasibility stud-
ies, applications, and consulting services. Their remarks and insight pepper this book:
Steve Bellovin, Pete Bleznyk, Frank Carey, Juan Castillo, Dick Court, Joe DiBiase, Dave
Gross, Daryl Hollar, Phil Hollembeak, Steve Meyer, Betsy Morgan, Shapour Neshatfar,
Dino Perone, Bob Reed, Greg Rogers, George Schwerdtman, Gopi Shankavaram, Joyce
Weekley, and Vivian Ye.

I thank Jane Bogdan, Dennis Holland, Brenda Liggs, and other members of the research
staff at the Middletown Library for their assistance. I would also like to thank the staff
of Woodbridge Public Library, my home away from home.

I am especially grateful to the brilliant and dedicated group of people at AT&T who call
themselves certified software architects. You made my life as Architecture Review Coordi-
nator so much easier. On my behalf and on behalf of all the projects you have helped, I

thank Janet Aromando, Mike Boaz, Jeff Bramley, Terry Cleary, Dave Cura, Bryon Donahue,
Irwin Dunietz, John Eddy, Neal Fildes, Cindy Flaspohler, Tim Frommeyer, Don Gerth,
Doug Ginn, Abhay Jain, Steve Meyer, Mike Newbury, Randy Ringeisen, Hans Ros, Ray
Sandfoss, George Schwerdtman, Manoucher Shahrava, Mohammed Shakir, David Simen,
Anoop Singhal, David Timidaiski, Tim Velten, and Dave Williamson.

Special thanks go to many friends and their families for countless hours over two decades
spent debating all things under the sun, some of which related to computing and engineer-
ing. I thank Pankaj Agarwal, Alok Baveja, Paolo Bucci, Jai and Veena Chhugani, Anil and
Punam Goel, Nilendu and Urmila Gupta, Nirmala Iyer, Aarati Kanekar, Atul and Manu
Khare, K. Ananth Krishnan, Asish and Anandi Law, Pushkal Pandey, Sushant and Susan
Patnaik, Mahendra Ramachandran, Ming Jye-Sheu, and Manoj and Neeta Tandon for their
friendship.

This book would not exist but for my family. I thank my family, Jayashree, Akhila and
Madhavan, Bhaskar and Vidyut, and especially Amma, Appa, Aai, and Daiyya for their
blessings. Without their confidence, support, and help in so many ways, I could not
have attempted let alone completed this task. Hats off to you all. To Ronak and Mallika,
for their patience and humor, and last but not least, to Beena, for all the support in the
world. You steered the ship through the storm while the first mate was down in the
bilge thinking this book up. This book is for you.

A C K N O W L E D G M E N TSxxviii

TE
AM
FL
Y

Team-Fly®

PA RT

Architecture and Security

ONE

C H A P T E R

3

Software architecture review is a key step in the software development cycle. In this
chapter, we will describe the process of conducting architecture reviews. We need
reviews to validate the architectural choices made by projects within our organization.
Each project makes its own choices in the context of solving a specific problem, but we
need a coordinated effort—a software process—across projects to make convergent
choices. Software process can prevent projects from taking divergent evolutionary
paths formed from conflicting or contradicting decisions.

Each project’s passage from requirements definition to product delivery can be consid-
ered an instance of the implementation of some software process. The organization
that owns the project and the system that it delivers might also be interested in evaluat-
ing the success of the software process itself. A successful process helps the project
meet the customer’s goals, within budget and on time.

Simply put, project stakeholders and external reviewers meet at an architecture review
to discuss a proposed solution to a problem. The outcome of the meeting will be an
answer to the question, “Does the solution fit the problem?”

Software Process

Software process codifies a set of practices that provides measurable and repeatable
methods for building quality into software. As corporations struggle with the complexi-
ties of developing software systems, acquiring resources, providing services, deploying
products, operating infrastructures, and managing evolution, the adoption of software
processes has been seen as a key step in bringing order to chaos. In turn, standards
bodies have grown conceptual frameworks around the software process definition itself.
We will simplify the vast quantity of literature in this field to three reference levels.

1
Architecture Reviews

Software meta-processes. Meta-processes measure the quality, capability, adequacy,
and conformity of particular instances of software processes used within an
organization. Examples include the Software Engineering Institute’s Capability

Maturity Model (CMM) and supporting standards like the Software Process

Improvement and Capability dEtermination (SPICE) model for defining
frameworks for the assessment of software processes. These frameworks guide
organizations through process deployment, assessment, measurement,
improvement, and certification. They can be applied to any particular choice of
software process.

Software meta-processes recognize critical success factors within any software
process definition and measure the project’s success in achieving these factors. This
function is required for the process itself to be considered successful. One critical
success factor for any software system is validation of the system architecture
document.

Software processes. These define methodologies for building complex software
systems. Rational’s Unified Process, built on the principle of use-case driven,
architecture-centric, iterative, and incremental design through a four-phase
evolution is an example of a software process.

Architecture Models. These model the system’s architecture as a collection of
components, joined by connectors, operating under constraints, and with a
rationale that justifies the mapping of requirements to functionality throughout the
architecture. Good architecture models presenting the system from multiple
viewpoints are vital to the success of any software process. Kruchten’s 4+1 View
Model from Rational [Kru95]; Soni, Nord, and Hofmeister’s alternative four view
model from research at Siemens [HSN99]; and the Open Systems Interconnectivity

(OSI) standard for a Reference Model for Open Distributed Processing, [ISO96],
[MM00], are all examples of architecture models.

Reviews and the Software Development Cycle

Software development flows iteratively or incrementally through a sequence of steps:
feasibility, requirements definition, architecture, analysis, design, development, testing,
delivery, and maintenance. Software experience has created a wide variety of tools,
processes, and methodologies to assist with each step. A formal software development
process manages complexity. A software process attempts to guide the order of activi-
ties, direct development tasks, specify artifacts, and monitor and measure activities by
using concrete metrics [JBR99].

There are many different software process movements, each with its own philosophical
underpinnings on the essential nature of developing systems software. We will describe
one approach to software process definition, the Unified Process, and its notion of mod-
eling architecture, design, and development, but we do not state a preference for this
process. The expertise of the lead architect and the experience of the project’s manage-
ment play a far greater role in the project’s success than any software process. We can-

A R C H I T E CT U R E A N D S E C U R I T Y4

not overemphasize the importance of talent and experience; lacking these, no amount of
software practice and process implementation will help a dysfunctional project.

Independent of the software process and architectural methodology embraced within
your organization, an architecture review, customized to that process and methodology, is
a valuable source of feedback, advice, redirection, and risk assessment information. Some
industry metrics state that as many as 80 percent of projects fail (when we define success
as the delivery of a system under budget, on time, and with full customer acceptance), and
methods for improving a system’s architecture can only help against those odds.

Reviews call on external objective technical resources to look at the project’s choices
and to critique them. Reviews interrupt the process flow after architecture and design
are complete and before the project has invested time and money in the implementa-
tion and coding phase. At this point, the system requirements are hopefully stable, all
stakeholders have signed off on the project schedule, and prototyping efforts and expe-
rience have produced data and use-case models that break down the deliverables into
well-defined artifacts. The greatest risk to the project at this stage is poor architecture,
often driven by a lack of adequate communication about the assumptions behind the
design. Issues that are designated as trivial or obvious by one part of the project might
have hidden and expensive consequences known only to another part of the project.
Reviews lay all of the technical details out in the open. They enable all stakeholders to
see the system from all vantage points. Issues raised in the review can result, if cor-
rectly resolved, in significant savings in cost and time to the project.

Software Process and Architecture Models

Notwithstanding the groundbreaking work of Alexander on pattern languages and of
Parnas on software architecture, the origin of the growth of software architecture as a
formal academic discipline is often cited as Perry and Wolf’s seminal paper [PW92],
where they described software systems in abstract terms of elements, forms, and ratio-
nale. Garlan and Shaw in [GS96] extended this viewpoint, classifying software systems
according to a catalog of architectural styles—each expressing the structure of the
underlying system in terms of components joined by connectors, operating under con-
straints. Gacek et. al. [GACB95] added the condition that the architecture should also
provide a rationale explaining why it satisfied the system’s goals. We refer the reader to
several excellent references in the bibliography, [GS96], [Kru95], [BCK98], and [JRvL98],
for example, for definition and extensive detail on several conceptual technical frame-
works for the description of system architecture as the composition of multiple system
views. CMU’s Software Engineering Institute home page, www.sei.cmu.edu/, is an excel-
lent starting point for resources on software architecture. Its online bibliography has
almost 1,000 references on the subject.

Architecture models attempt to describe a system and its architecture from multiple
viewpoints, each supporting specific functional and non-functional requirements—
thereby simplifying the apparent complexity of the system. Each view might require its
own notation and analysis. The implementation of the system requires resolution of the

Architecture Reviews 5

Logical View
Development

View

Process View Physical View

Use Case
Scenarios

Figure 1.1 Kruchten’s 4+1 View Model. (© 1995 IEEE)

pairwise view interactions and verification that the architecture supports all require-
ments. Sequence diagrams, traces, process histories capturing interactions within and
between views, or other timeline-based methods are necessary to show how compo-
nents work together.

We will briefly discuss two architecture definition models.

■■ Kruchten’s 4+1 View Model

■■ The OSI Standard Reference Model for Open Distributed Processing (RM-ODP)

We will also discuss one example of a software development process, Rational’s Unified
Process. The success of any architectural process depends on many factors. Again, we
stress that we do not wish to recommend any particular model for architecture descrip-
tion, but we will use this short overview to introduce vocabulary and set the stage for
the activity of conducting architecture reviews.

Kruchten’s 4+1 View Model
Philippe Kruchten’s 4+1 View Model, seen in Figure 1.1, from Rational Corporation
describes four main views of software architecture plus a fifth view that ties the other
four together.

The views are as follows:

■■ The logical view describes the objects or object models within the architecture
that support behavioral requirements.

■■ The process view describes the architecture as a logical network of
communicating processes. This view assigns each method of the object model to a
thread of execution and captures concurrency and synchronization aspects of the
design.

A R C H I T E CT U R E A N D S E C U R I T Y6

Use-Case

■■ The physical view maps software onto hardware and network elements and
reflects the distributed aspect of the architecture.

■■ The development view focuses on the static organization of the software in the
development environment and deals with issues of configuration management,
deployment, development assignments, responsibilities, and product construction.

■■ The fifth (and final) view, called the scenario view, is organized around all four of
these views. Its definition is driven by the system’s use cases.

In Kruchten’s original paper, the information flow in Figure 1.1 was only from top to
bottom and left to right between views. We have made the arrows bidirectional because
information can flow in both directions as the system evolves. The last use-case driven
aspect of this model has been a critical factor in its success in describing architectures,
leading to its widespread adoption.

Rational’s UML and the supporting cast of UML-based tools enable projects to define
and annotate elements within each of these views by using a standard notation. There is
some justification to the claim that UML is the de facto, standard notation language for
architecture definition—a claim driven partly by merit and partly by the usage and
growth of a shared knowledge base on how to specify elements using UML.

Once a system has been adequately described by using some well-defined notation for
each viewpoint, the 4+1 Model guides the system’s architects through the process of
resolving view interactions. The mappings between views and the relationships
between the elements described in each can be brought together to provide some con-
crete and measurable proof that the system meets its requirements. The separation into
viewpoints enables specific architectural styles to be discussed without the cognitive
dissonance of trying to have everything make sense all at once.

Conflicts are not automatically resolved by looking at the system from different views,
but the ability to recognize a conflict as a clash between two specific style choices for a
single component can lead to a resolution of technical problems through more produc-
tive discussions. For example, the choice of object design and definition for an element
could conflict with the performance requirements for the process that executes some key
method within the same element, forcing one or the other to make a compromise. Good
viewpoint definition illuminates the conflicts caused by the technical choices made,
which might be hidden as a result of a lack of understanding of the underlying interaction.

The Reference Model for Open
Distributed Processing

The Reference Model for Open Distributed Processing (RM-ODP), seen in Figure 1.2, is
an architectural model that also describes a system’s architecture from five viewpoints.
Our description is from [ISO96] and [MM00]. Malveau and Mowbray argue, in fact, that
RM-ODP’s more generic, domain-independent descriptions produce the 4+1 View
Model as a profile-based application instance of RM-ODP. We leave it to the reader to
draw analogies between the two models.

The RM-ODP viewpoints are as follows:

Architecture Reviews 7

System
Architecure

InformationViewpoint

E
nterprise

V
iew

point

Eng
in

ee
rin

g

Vie
wpo

in
t

Computational

Viewpoint

Technology

Viewpoint

Figure 1.2 Reference Model for Open Distributed Processing. (Software Architecture
Bootcamp by Malveau/Mowbray, © 2001. Reprinted by permission of Pearson Education,
Inc., Upper Saddle River, NJ.)

The enterprise viewpoint. This viewpoint presents the system from the perspective
of a business model, understandable by process owners and users within the
business environment. This essentially non-technical view could support the
business case for the implementation of the system and provide justification for
metrics such as cost, revenue generated, return on investment, or other business
values. The system’s role in supporting higher-level business processes such as
marketing, sales, fulfillment, provisioning, and maintenance should be clearly
stated. This viewpoint states, “This system makes business sense.”

The information viewpoint. This viewpoint defines information flows, representing
both logical data and the processes that operate on the data. This viewpoint is an
object model of the informational assets in the system and describes how they are
presented, manipulated, and otherwise modified.

The computational viewpoint. This viewpoint partitions the system into
component-based software elements, each of which is capable of supporting some
(possibly distributed) informational structure through an application

programming interface (API). Components and objects are not synonyms, and the
last two viewpoints stress this difference.

The engineering viewpoint. This viewpoint exposes the distributed nature of the
system, opening the physical resource map underlying the object and component
model views discussed previously. Details of operating systems, networks, process
location, and communication are all visible.

A R C H I T E CT U R E A N D S E C U R I T Y8

Telecommunications Management Network

The RM-ODP standard contrasts with other ISO standards such as TMN (ISO
M.3000) that specifically organize telecommunications networks into a hierarchy
of functional layers supporting Business, Service, Network Management, Element
Management, and Network Element layers. In TMN, each layer is assigned some
component of the following five properties: performance, fault, configuration,
account, and security. The TMN definition uses the domain knowledge of the
designers in developing telecommunications systems. Such domain knowledge is
required before a system’s true hierarchical structure can be made apparent. For
other domains, fitting an abstract hierarchical definition on top of an existing
system supporting some current business process can be a daunting and
sometimes counterproductive activity. As a result of its domain-independent
nature, RM-ODP does not order the viewpoints.

The technology viewpoint. This viewpoint maps the engineering details of
components and objects to specific technologies, products, versions, standards,
and tools.

All five viewpoints are considered peers in that they are not hierarchically organized.

RM-ODP provides an additional dimension for architecture analysis, namely support
for eight distribution transparencies. A transparency, overlaid on the architecture,
masks from our view some critical property of the underlying distributed system. The
property is guaranteed; that is, we can assume that it is correctly implemented, avail-
able, and dependable—thereby simplifying our task of validating the remaining visible
portions of the architecture. The guarantee that some distributed property holds true
can be used to prove that some other quality or requirement of the system, dependent
on the first property, will also hold true. This principle of separation of concerns
enables us to reason about the activities of the system and independently reason about
the properties of the underlying distributed infrastructure. This knowledge is important
because the former is often under our control at a fine-grained level, whereas the latter
might be part of a vendor product that is not visible.

The eight distributed transparencies are Access, Failure, Location, Migration, Reloca-
tion, Replication, Persistence, and Transaction.

Rational’s Unified Process
The genesis behind Rational’s Unified Software Development Process, as described in
[Jac00], lies in Ivar Jacobson’s experience with use-case methodology, object-oriented
design, and architectural frameworks in the design of the AXA telecommunications
switch—now a two decade-old success story for Ericsson. The Unified Process takes a
system from requirements definition to successful deployment through four phases:

Architecture Reviews 9

Inception, Elaboration, Construction, and Transition. Maintenance of the delivered sys-
tem is within a fifth Production phase. The Unified Software Development Process
emphasizes the following practices for guiding the requirements, architecture, analysis,
design, implementation, and testing of the system.

UP is use-case driven. UP places strong emphasis on describing all system
functionality through use cases. A use case interaction describes a single activity by
an actor, from process initiation to completion, along with the delivery and the
receipt of some well-defined end-result or value from the system. Each such
interaction, called a use case, is described by using formal notation. We can use
business criteria to prioritize the system’s use cases.

UP is architecture-centric. Use case prioritization guides us while making
architecture choices. As we decide how to implement each use case, we make
architectural decisions that can support or obstruct our ability to implement other
use cases. We use this design knowledge in a feedback loop, forcing architectural
evolution.

UP is iterative and incremental. The process builds the entire project through a
series of incremental releases, each solving some well-defined sub-element of the
project and enabling developers to discard bad choices, revisit ones that need work,
and reuse good design elements until the result of the iteration is a sound element
worthy of inclusion in the overall system architecture.

The life cycle of the project tracks multiple workflows and their evolution within the
phases of Inception, Elaboration, Construction, and Transition. At the end of the last
phase, the product delivered consists of not just a compiled and tested code base, but
also all the artifacts that go into the Unified Process, such as documentation, test case
methodologies, architecture prototypes, business cases, and other elements of the proj-
ect’s knowledge base.

There is a tremendous amount of literature on UML and the Unified Process. Jacob-
son’s The Road to the Unified Software Development Process [Jac00], the reference
that helped me the most in understanding the evolution of this process, is listed along
with other references in the bibliography.

Software Process and Security

Why have we spent a significant amount of time discussing the software process? After
all, this book is about security and architecture. We have done so because most soft-
ware process definitions lump security into the same class as other non-functional sys-
tem requirements, such as reliability, availability, portability, performance, and
testability. Security does not belong within a system in the same manner as these other
non-functional requirements, however, and cannot be treated in a uniform manner.

We believe that this situation is a fundamental cause of many of the difficulties associ-
ated with introducing security into a system’s architecture. Security differs from the
other system properties in the following ways:

A R C H I T E CT U R E A N D S E C U R I T Y10

TE
AM
FL
Y

Team-Fly®

■■ The customer for security as a system feature is your company’s corporate security
group, not the system’s business process owner. Although the costs of an
nonsecure system are borne by the actual customer, that customer is not the
correct source for guidelines on security requirements.

■■ Hacking has no use cases. Use case methodology is wonderful for describing what
the system should do when users act upon it. Securing a use case can also make
sense, guaranteeing that any user who wishes to modify the system is
authenticated and authorized to do so. All the interactions allowed by the system
that could be exploited by a malicious agent are not, however, and cannot be part
of some use case scenario and cannot be captured at requirements definition.
There are no abuse cases; there are too many variables. Including security
correctly in the architecture would require of our architects too much security
domain knowledge along with the corresponding and relevant expertise to respond
to intrusions or incidents. No operational profile includes malicious use.

■■ Customer acceptance of a system can never be predicated on the absence of bugs.
Edgar Dijkstra famously stated that “Testing can only prove the presence of bugs,
not their absence.” You cannot test for the unknown. It is impossible to guarantee
the absence of security bugs, because their existence is unknown at deployment.
As and when they are discovered, and resolutions are provided, the system reacts
accordingly.

The literature on software process as far as we can detect is silent on how to manage
security under these unique circumstances. The literature concerning security is very
rich but has few recommendations for practicing software architects to guide decisions
in the architecture phase of the system. Most focus on immediate production concerns
on deployed systems, such as correct configuration and deployment of security compo-
nents, the use of security audit tools, intrusion detection systems, firewalls, and the
like. We do not have a resolution to this issue, but in the succeeding chapters, we will
make this conflict the centerpiece of all our discussions. We also include a list of secu-
rity references in the bibliography that can help architects.

We will now return to our discussion of architecture reviews to further elaborate on
their merits and their role in software development.

Architecture Review of a System

Reviews examine the planned architecture and try to understand the problem, its pro-
posed solution, and management expectations for success. The project has the respon-
sibility of identifying stakeholders, choosing an architecture team, and preparing an
architecture document. The document will normally grow from a draft with high-level
architecture alternatives into a final form based on a single architecture on the basis of
evaluating the alternatives and assigning cost versus benefits to each choice.

The review is led and conducted by a team of external experts with expertise in the
domain of the application and the technologies used. The review brings together all

Architecture Reviews 11

identified stakeholders and the external experts for a one- or two-day locked-up ses-
sion. The conversation within this session is focused on a single goal—providing a
detailed rationale that the solution meets system requirements along a number of
dimensions: project management, requirements, performance, scalability, reliability,
high availability, disaster recovery, security, testability, hardware and software configu-
ration needs, administration, future evolution needs, and cost.

Architecture reviews give projects feedback on a number of issues, categorize prob-
lems, assign priorities to issues, suggest remedies, and present alternatives. All of the
feedback does not need to be critical or negative; an architecture review is an excellent
checkpoint in the cycle to highlight the application’s architectural accomplishments,
such as sound object-oriented design; good performance modeling; good choices of
technology; quality in documentation; project management; or clear financial modeling
of the costs and benefits provided by the application.

Architecture reviews are not about enforcement of guidelines handed down from some
overarching authority. They should not be conducted in a confrontational manner, nor
should they focus on problems outside real technical issues. Each technical issue
should be subjected to architecture problem resolution: description, examination, rem-
edy recommendation, and solution. The quality of technical discussion can be harmed
by sidebars into organizational politics, funding problems, unnecessary expansions and
contractions of scope during the review, and the absence of key stakeholders. Reviews
cannot be rubber-stamp procedures used more as a means to gain a checkmark on
some management milestone list. The review team and the project team must forge a
partnership with the common goals of validating technical architecture decisions, fos-
tering the cross-pollination of architecture experience across the organization, learning
from past real-world experiences, and forming a forum where feedback to upper man-
agement can be formulated to state risks and opportunities based solely on technical
and business merits.

The Architecture Document
Before we present our outline of the structure of an architecture document, we strongly
urge any systems software architect to read Strunk and White’s Elements of Style.
Another good reference is the Software Engineering Institute’s Technical Report CMU/
SEI-2000-SR-004 on Software Architecture Documentation in Practice by Bachman et
al. [BBC00]. This report provides some abstract advice on writing style that I wish was
available to the authors of the many architecture documents that I have had the plea-
sure of reading over the years.

The systems architect is responsible for preparing the documentation for the review.
The architecture document and the accompanying presentation slides are all the docu-
mentation that should be allowed at the review, thus forcing all relevant issues into one
single document and keeping the reviewers from being swamped with unnecessary
details. The documentation need not be overly formal but must have enough informa-
tion for the reviewers to gain a basic understanding of every facet of the application.
Architecture documents should be held to fewer than 100 pages to prevent unnecessary
bloat, but at the same time the team must ensure that the document is a true record of

A R C H I T E CT U R E A N D S E C U R I T Y12

the application architecture. Writing good architecture descriptions is not easy, but the
investment pays off over time in many ways: the team can clearly track system modifica-
tion; train new personnel about the problem domain of the application; or form a single
reference for tools, technology, methodologies, and benchmarks that can be updated as
the system evolves.

We will present the sections of a good architecture document as a series of answers to
pertinent questions. The document must describe the high-level system details outlined
in the sections that follow.

The Introduction Section
This section answers a series of questions about the project.

What Problem Are We Solving?

This section will set the agenda for the meeting. A summary of the topics under review
must be available to the review coordinator early in the project management schedule
so that the review team selected reflects and covers the subject matter expertise areas
of all aspects of the project under review.

This section will also describe, at a high level, the motivation for funding this project
along with an overview of its role within the organization and the business processes
that will be supported by its implementation and delivery. The project should present
background information on the system’s evolution, its current state in deployment, the
business forces behind the new requirements, and the software development
processes, tools, and standards in place for this release.

Who Are the Stakeholders?

In this section of the document, the project team will answer the question, “Who are we
solving this problem for?” By clearly defining the scope of the review and identifying
the stakeholders and their roles within the project, we set the stage for a detailed dis-
cussion of all the architectural goals. If the systems architecture is presented by using
one of the “multiple viewpoints” models, then the project must make sure that each
viewpoint has a representative stakeholder at the review. The absence of representa-
tives for a particular view could create an imbalance in the treatment of that view, with
a corresponding risk to the project.

How Are We Solving the Problem?

This section will describe how the project plans to convert requirements into features.
This point is a good place to catalog all current software processes and design method-
ologies used to achieve the system goals. Software engineering is a growing field with
many valuable tools and methodologies for process improvement, component-based

Architecture Reviews 13

engineering, requirements analysis, test automation, and software reliability engineer-
ing. The bibliography contains references to some of the dominant theories. The choice
of theory is often less important than the quality of effort made by the project to under-
stand and implement the software process requirements in a correct manner. We again
therefore will not recommend any particular process because the experience of the sys-
tem architect and the specific domain engineering required by the application are criti-
cal unknowns.

Can We Define All the Terms and
Technologies under Discussion?

The document should provide a glossary of terms that the review team can refer to as
the review proceeds and should keep the use of three letter acronyms (TLAs) to a min-
imum. This feature is more important than it might seem at first glance. If considerable
overlap exists in the definition of certain technical terms, we run the risk of “operator
overloading” when those terms are used in the presentation. This confusion can create
difficulties in understanding and possibly can cause the presentation to track back and
forth. Issues previously considered closed might be reopened in light of the review
team having an “aha!” experience about the use of a technical term.

What Do We Know from Experience about
This Particular Problem?

The results of any prototyping efforts, pilots, proofs of concept, or other fact-finding
missions conducted before the review should be summarized to provide some concrete
data from the prototyping experiments of the team. The review team should carefully
note the assumptions behind such prototyping work and revisit the assumptions to
check for violations in the actual architecture of the system.

What Are the Criteria for Success for the
Project as a Whole?

In this section, the team should present the criteria for success. This section could also
describe abstract architectural goals and any metrics used to measure success in meet-
ing each goal.

What Are the Project Management Details
for the Project?

This section is an appendix with details on the project’s schedule, budget, time frames,
resources, milestones, risks, costs, benefits, and competitive advantages. The team’s
project management is responsible for the details within this section.

A R C H I T E CT U R E A N D S E C U R I T Y14

Does the Project Have Formal
Requirements?

The review team should have access to a detailed list of feature requirements. Each
requirement should, if possible, be associated with some architectural component of
the system that identifies the logical implementation point of the requirement.
Requirements should be either prioritized as high/medium/low or be pairwise compara-
ble based on some scheme of relative weights. Without assigning values to features, it is
difficult to size the feature relative to the entire release and assess whether the project’s
resource budget appropriately accounts for the feature’s cost.

Where Are We Coming from?

If this version is not release 1.0, then the project team must specify a baseline require-
ments document that is being modified by the deliverables in the current release. Each
requirement must be specified as an addition to the baseline, a modification of an exist-
ing baseline feature, or a deletion from the baseline. Deletions are often not described
adequately in architecture documents, which tend to emphasize the new but run the
risk of ignoring backward compatibility with external interfaces. Some special support
might be required to support older interfaces along with a project timeline for eventual
discontinuation with the agreement of the partners using the interface. This situation
might represent a nasty risk at deployment.

Sections of the Architecture
Document

The architecture document must describe all aspects of the application architecture.

Architecture and Design Documentation

The following section describes the heart of the architecture document: the proposed
architecture and design of the system . The presentation will be very much driven by
the architecture model and methodology embraced by the development team. We
assume that the project will follow some viewpoint-based architectural model in the
discussion that follows.

Software Architecture

This part is the most critical section of the architecture document. This section pro-
vides detailed information on the components, connectors, and constraints of the archi-
tecture. The object model, process maps, and information flows within the application
must be described. The three levels of detail specified are only guides, and individual
applications might choose to specify structure by any means that is complete and that

Architecture Reviews 15

maps all requirements into feature definitions. This section of the architecture docu-
ment should specify, among other details, the following:

High-level design. This section should describe abstract business components,
domain engineering constraints, and architectural style. It should also describe the
architecture in terms of one of the specific “multiple viewpoints” models previously
described. The application should catalog design patterns used, user interface
models, multi-tiered architecture diagrams, and all interfaces to external systems.
This step is dominated by “boxology” and emphasizes abstraction and information
hiding. The review team must be convinced after just this step that the architecture
is viable and consistent, without detailed knowledge of the internals of the
components. Gross architectural errors should be caught at this level.

Mid-level design. This section should describe the middleware used along with
definitions of all the service and infrastructure components that support
communications within the application. The database schema definition, along with
the associated mapping to the application’s object model, might also be described at
this level. We consider the database as a mechanism for achieving persistence of the
object model and therefore assign it to this level. If the application is data intensive
or directly models its informational structures relative to relational theory, then the
schema is elevated to the previous design level.

Low-level design. This section should describe individual processes and entities in
the system, each tied to the set of use cases where it plays an interactive role.
Details of coding tools, languages, object models, interfaces, method definitions,
and data persistence might be relevant. The review team must ensure that each
process definition corresponds to a set of test cases that can verify correctness and
completeness. The layout of process communication, synchronization, protocols,
and storage can be specified.

Usability engineering. The design and definition of user interfaces should be
provided. Human factors engineering can extend to system-to-system interface
definitions or dependencies. Interfaces to external systems can be opened for
examination, and decisions concerning protocols, direction of data flow, service
commitments, and quality can also be explained.

Hardware Architecture

The project should present an overview of all hardware devices in the architecture with
emphasis on ownership and relative importance of each component. Each component
should have a resource associated with it—either a person or a vendor contact—to
answer questions about its configuration, computational power, networking, and fail-
ure modes. Network topology and architecture, along with any underlying infrastruc-
ture components, should be described in addition to any persons or contacts capable of
resolving issues on the properties of these hardware components.

A R C H I T E CT U R E A N D S E C U R I T Y16

Other Requirements

Our description of the technical core of the document, information about requirements,
and the architecture and design of the previous sections is not enough. The remaining
components of the document must cover a number of other issues; namely, some or all
of the following could be part of the document.

■■ External assumptions. List critical assumptions at a high level, including
dependencies on external systems and schedule risks with other projects.

■■ Software process and methodology. List the tools, technologies, methodologies,
and quality metrics used in development. If the project uses a particular process-
driven structure, such as component-based software engineering, include a pointer
to the use case methodology used in the presentation of requirements.

■■ Organizational information. Describe project management and organizational
structure and introduce personnel, roles, and other resources (such as external
consultants or outsourcing components) within the application.

■■ Regulatory affairs. Briefly, point to requirements for environmental health and
safety, legal issues, and so on. Describe intellectual property issues such as the use
of open source along with details of submission of licenses to any corporate legal
entity for review for intellectual property rights.

■■ Business alignment. Describe alignment with organizational, corporate, industry,
or academic directions.

■■ Non-functional requirements. Provide concrete, model-driven data on
requirements for reliability, performance, high availability, portability,
serviceability, internationalization, security, and so on.

■■ Functional testing. Describe any methodologies used for regression testing along
with descriptions of test suites or toolkits. Applications must demonstrate that
provisions have been made to adequately test features at the unit, integration, and
system level. The application does not need to have a detailed test plan at the time
of the architecture review. Such a test plan can only be made concrete after
developers map requirements to features, because the implementation chosen will
drive the development of useful test cases. The project must provide a high-level
strategy for the normal stages of testing, however: unit (developer), integration,
system, and acceptance testing.

■■ Performance testing. Define the application’s operational profile as a structured
list of events, invocations, interactions, and transactions within the system. The
operational profile represents the execution model of the application, and all use
case requirements are captured by some data or control flow within the system.

■■ Load and stress testing. The architecture document should contain expected
maximum load criteria in terms of data transfer rates, number of transactions per
second, memory utilization, the number of concurrent users, maximum acceptable
delay in response time, and so on. The application should set aside time during
system testing to test these assumptions in a production-like environment.

Architecture Reviews 17

■■ Life cycle management. Describe the environment for development, testing, and
deployment. Examples should be given of development instances, build methods
and tools, the transfer of code instances between environments, the delivery of
software to production, sanity checking, procedures for cutover or parallel
deployment, and so on. Methods and procedures for operations, administration,

and maintenance (OA&M) of the system after deployment should be described.
OA&M is the most commonly neglected detail in systems architecture and receives
almost no attention at the early design and prototyping stages.

Risks

The project should review each aspect of architecture and process for risks to success-
ful delivery.

■■ Are the requirements reasonably complete? Are there any outstanding system
engineering issues that might negate the assumptions behind requirements
definition?

■■ Are the resource budgets for each aspect of the architecture complete? Are
unreasonable demands being placed on hardware, software, or component ware in
terms of speed, throughput, and error handling?

■■ Is the definition of each external systems interface acceptable to the
corresponding external system? Is the external system also in the process of a
software delivery cycle, and if so, will their release create impedance mismatches
with the currently accepted interface?

■■ Are there personnel risks? Is the project adequately staffed? Has retention been a
problem? How will critical resources be replaced if they leave? Does the project
team have sufficient training with the tools and technologies that will be used?
Does the project have access to professional consulting to cover knowledge gaps?

■■ Are there vendor risks? How much of the technology base is bleeding edge? How
many instances have been tested and deployed within other projects within the
organization? Could key personnel from these other teams be made available for
knowledge transfer?

■■ Is there a budget risk? If the release has long cycle times, how will it respond to a
fixed percentage decrease in funding? Does the project have agreement on feature
priorities with the customer to gracefully degrade the delivery set of the release?
Do all parties understand that the percentage of funding cut and the percentage of
features dropped have no explicit relationship?

■■ Are there testing risks? Does the project have a process for responding to the
inevitable, critical bugs that will surface on deployment even after the most
extensive and exhaustive testing? Will the existence of such bugs cause
contractual obligations to be violated, service level agreements to be broken, or
loss of revenue or reputation? Does the system test environment have the
capability of regression testing the full feature set after emergency patches are
installed?

A R C H I T E CT U R E A N D S E C U R I T Y18

■■ Is the application required to recover from natural disasters? Is there a plan in
place that defines responses in the event of extreme and improbable failure?

■■ Does the solution have dependencies on network and physical infrastructure
components that can result in unacceptable risk? These could include
communications services, power, heating, ventilation, air-conditioning, and so on.

■■ Does the application conform to all legal, environment, health, and safety
regulations of the deployment arena?

Risk depends on many other application- and domain-specific circumstances. The proj-
ect should prepare a section on risk assessment within the document.

The Architecture Review Report
The Architecture Review Report is prepared by the review team to provide documented
feedback to the project team. It must contain the following components:

■■ A list of the metrics used by the review team to measure compliance with
architectural goals.

■■ A list of issues for each architectural goal in descending order of criticality. For
each identified issue, can the review team recommend options or alternatives? The
report should include, if possible, the project’s preference or responses to the issue
resolution strategy.

■■ A list of targets that the project clearly missed that require immediate action on
the part of all stakeholders in order to maintain the viability of the project,
documentation of the costs of such action, and the risks associated with other
options.

■■ A list of “pull the plug” criteria. These criteria should detail scenarios where the
team decides that the project would fail and accordingly cease operations. For
example, if the project is developing a hard drive with certain speed and size
characteristics, the ability of competitors to produce a similar product is critical.
Abandoning the project might be the best option if the team loses a critical first-to-
market advantage or if market conditions invalidate the assumptions stated in the
architecture document. Similar issues could exist with system deliveries as
described for product delivery.

■■ A list of action items for later review. Does the project require a retrospective to
share war stories after the deployment? Is there a need to baseline the architecture
for the next review cycle? Is there an opportunity to cross-pollinate the
architecture experience of this project to other projects within the organization?

Conclusions

The architecture document should be the one single repository for definitive informa-
tion on the software paradigm used, hardware and software configurations, interfaces

Architecture Reviews 19

with external systems, database-of-record statements, operational and performance
profiles, security architecture, and much more. The benefits of conducting reviews
early in the software cycle cannot be understated. We can avoid costly modifications to
mismatched implementations, reduce project risk, communicate unpalatable technical
knowledge to management in a structured and analytical mode, gain management sup-
port by identifying cost savings through reuse, reduce cycle time, and share architec-
ture experience across the organization.

We have focused solely on one critical need for an architecture document; namely, as a
platform for conducting a review. A good architecture document has many other appli-
cations. It can improve the decisions we make when allocating tasks to designers and
implementers, deciding team structure as coding progresses, negotiating compromises
within the team, recognizing black box components capable of replacement with other
existing components built either in-house or purchased off the shelf, training new proj-
ect team members, or tracking the historical evolution of the system from a library of
architecture documents—each representing a snapshot of a release.

The task of creating such a versatile document from scratch for a new system is daunt-
ing, but with practice, repetition, reuse, and experience the process can be both edu-
cating and rewarding. If we cannot clearly state what we plan to do, how do we know
when, or even if, we actually have done what we set out to do?

In the next chapter, we will describe the process of security assessment, which paral-
lels that of architecture review (but with a tight focus on security).

A R C H I T E CT U R E A N D S E C U R I T Y20

TE
AM
FL
Y

Team-Fly®

Asystems security assessment is the process of matching security policy against the archi-
tecture of a system in order to measure compliance. Security assessments on systems are
best conducted as early as possible in the design cycle, preferably in conjunction with
architecture reviews and only after the architecture document for the system is consid-
ered stable.

Assessing risk on a system already in production is not easy. The challenge lies in know-
ing how to implement the recommendations that come out of the assessment, evaluat-
ing the costs of creating security controls after the fact, or creating space within the
project schedule to insert a special security features release. These tasks can be very
expensive; therefore, forming a security architecture baseline during the design phase
of release 1.0 is a critical step in the evolution of any secure system.

In this chapter, we will define the process of security assessment by using the Federal
Information Technology Security Assessment Framework championed by the National

Institute for Standards and Technology (NIST), www.nist.gov. We will extend this
abstract framework with guidelines from other industry standards. We will end the
chapter with information about additional resources to help projects develop and
implement their own assessment processes.

What Is a Security Assessment?

The goal of a security assessment is to evaluate threats against and vulnerabilities
within the assets of the system and to certify all implemented security controls as ade-
quate, either completely secure or meeting acceptable levels of risk.

C H A P T E R

21

2
Security Assessments

Some terms within this definition require elaboration.

■■ Risk is defined as the possibility of harm or loss to any resource within an
information system. We can classify a wide variety of concepts, ranging from
concrete components to abstract properties, as resources. Our revenue,
reputation, software, hardware, data, or even personnel can all be viewed as
resources that are subject to risk.

■■ An asset is any entity of value within the system. Assets within the underlying
system can be defined at many levels of granularity; a secret password stored
encrypted in a file, a single physical host, or a worldwide telecommunications
network can all be considered assets. Assets are always owned by other entities.
The owner determines the value of the asset and the maximum expense he or she
is willing to incur in implementing controls to protect that value.

■■ Any asset whose value is less than the cost of securing that value is said to be
vulnerable at an acceptable level of risk. NIST defines acceptable risk as a concern
about a potential hazard that is acceptable to responsible management due to the
cost and magnitude of implementing controls.

■■ A threat is any malicious or accidental activity that has the potential to
compromise an asset within the system.

■■ A vulnerability is a flaw in the design of the system that can potentially expose
assets to risk.

The security assessment process is not synonymous with any active audit tool analysis
or even white hat hacking or the related activity of tiger teaming, where security
experts hired by the project actively launch attacks against the system. It is a separate
step in the software development cycle, aiming to improve quality. Many of the benefits
of architecture review are realized within the specific context of security.

The Organizational Viewpoint

Assessments are motivated by the recognition that information is among the most valu-
able assets of any organization. NIST’s guidelines to organizations define a way of estab-
lishing security policies by using a level-based compliance model. Organizations climb
the levels within the model, from accepting policy at level 1 to having a comprehensive
security infrastructure at level 5. This process has obvious parallels to software meta-
processes like the five-level Capability Maturity Model (CMM) and can be similarly used
to analyze systems for critical success factors (CSFs).

The framework charges upper levels of management with accepting responsibility for
putting together a program to adequately protect information assets, implementing
such a program, and providing funding to maintain security as systems evolve. The
NIST guidelines establish the following management goals:

A R C H I T E CT U R E A N D S E C U R I T Y22

■■ Assuring that systems and applications operate effectively and provide appropriate
confidentiality, integrity, and availability

■■ Protecting information in a manner that is commensurate with the level of risk and
magnitude of harm resulting from loss, misuse, unauthorized access, or
modification

The Five-Level Compliance Model

The NIST Security Assessment Framework described in [NIST00] consists of five levels
to guide government agencies in the assessment of their security programs. The frame-
work assists organizations with setting priorities for improvement efforts. Although
designed for government agencies, the process is equally applicable to mid- to large-size
commercial organizations. The framework provides a vehicle for consistent and effec-
tive measurement of the security status of a given asset. The security status is evaluated
by determining whether specific security controls are documented, implemented,
tested, and reviewed; if the system owning the asset is incorporated into a cyclical
review/improvement program; and whether unacceptable risks are identified and miti-
gated. Requirements for certification at each of the levels of the Federal IT Security
Assessment Framework levels are defined as follows:

Level 1, Documented Policy. The organization must establish a documented security
policy to cover all aspects of security management, operations, procedures,
technology, implementation, and maintenance. The policy must be reviewed and
approved by all affected parties. A security management structure must exist within
the organization, from the highest executive level down to the rank-and-file. The
policy must describe procedures for incident response and specify penalties for
non-compliance.

Level 2, Documented Procedures. Organizations must state their position with
respect to the policy, list the security controls they will use to implement policy, and
describe the procedures involved. Projects are required to document applicability
and assign responsibility to persons within the project for implementation. Projects
must provide security contacts and document their exceptions to the policy.

Level 3, Implemented Procedures and Controls. Organizations must ensure
implementation of their security procedures. Policies and procedures must be
socialized, and rules of use must be documented and formally adopted. Technology
to implement security must be documented along with methods and procedures for
use. Certification, which is the technical evaluation that systems meet security
requirements, must be formally defined. Procedures for security skills assessment
and training needs must be documented.

Level 4, Tested and Reviewed Procedures and Controls. The organization must
establish an effective program for evaluating the adequacy of security policy,
procedures, and controls. Test methodologies with clear definitions of risk levels,

Security Assessments 23

frequency, type, rigor, and sensitivity must be developed. Regression procedures for
testing security in the presence of system evolution must exist. Procedures for
incident response, audit trail analysis, management of maintaining up-to-date
vendor security patches, intrusion detection, and configuration standards for all
security equipment must be in place. Effective alarm notification methods along
with procedures for escalation and response management must be created with
involvement from senior management.

Level 5, Fully Integrated Procedures and Controls. Security must be fully
integrated into the enterprise. Security management and compliance measurement
must be proactive, cost-effective, adaptive, expert, and metric-driven.

Although these guidelines are targeted towards the entire enterprise, they are also valu-
able to an individual system. Within a system, compliance with a level can exist through
a combination of existing implemented security controls and external security
resources that enhance and protect the system architecture. The security assessment
process should document these dependencies explicitly to enable regression testing of
security as the system evolves.

The System Viewpoint

We will approach our description of the assessment process from a system architecture
viewpoint. Assessments are often conducted from other viewpoints in situations where
we wish to evaluate the risk of a service, a product, a process, or an infrastructure
model. The systems-specific focus has the benefit of putting virtual boxes around the
solution and around subsystems within the solution, enabling us to label components as
being inside or outside a boundary, as being trusted according to some definition, or as
having a position within a hierarchy of security levels. The assessment of a system also
enables us to focus on a specific implementation instance where hardware, software,
and vendor product choices are firm and therefore can be discussed in concrete terms.

Assessments will not help fundamentally dysfunctional projects. Expertise matters.
Hand-waving consultants cannot match hands-on security experts guided by domain
knowledge. The project designers should be committed to implementing security as a
system feature, and upper management should fund security as an explicit cost item in
the project funding. The assessment participants should cover all significant aspects of
the project, because the absence of key participants is a sure indicator of a failed
process. Vendor participation also should be carefully managed, because the goals of
the vendor and the goals of the project might not coincide. Finally, no amount of good
process will work in the face of organizational politics.

Judging whether a system complies with corporate guidelines for security policy is
often the primary and only driver for security assessments. This situation has the unfor-
tunate side effect of driving design to meet minimum requirements, rather than imple-
menting best-in-class security solutions. Projects that are given little or no corporate
support but are mandated to hit a target will often aim for the edge of the target instead
of the bull’s-eye. This situation leads, of course, to a higher chance of missing the target
altogether. Aiming for the bull’s-eye does not guarantee that you will hit it, but at least it

A R C H I T E CT U R E A N D S E C U R I T Y24

is more likely that you are on target. In any case, having all your projects clustered
around the bull’s-eye makes for a better environment for evaluating enterprise level
security. Projects that are presented with an internally consistent rationale, explaining
why investing in a quality security solution is cost effective, will benefit in the long term.

Another weaker alternative is to explicitly charge the project with the costs of fixing
vulnerabilities once they happen. An analogy from the highway construction industry
illustrates this situation. Interstate construction projects in America in the early 1960s
were awarded to the lowest bidder, and any defects in construction were uninsured.
The roadway bed was often built only two feet deep, and repairs were often assigned to
the same company that did the original construction. The need for repairs in some
cases occurred in as little as one year after completion of the roadway. This situation
contrasts with many European highway construction projects, in which the builder is
required to insure the roadway for 10 years. The bids were often much higher, but road-
ways were built on foundations six feet deep. As a result, it is common for many well-
constructed stretches to require no major repairs even after 40 years. Software does not
have the same shelf life, but the lesson that quality pays for itself can still be learned.

Projects often build prototypes to learn more about the design forces in the solution
architecture. Security is frequently hampered by the problem of the successful proto-
type, however. Successful prototypes implement many of the features of the mature
system well enough to quickly take over the design phase and form the core of the sys-
tem, pushing out features like good support for administration, error recovery, scalabil-
ity, and of course, security. Throwing away the actual code base of a successful
prototype and starting fresh, retaining only the lessons learned, is sometimes in the
long-term best interests of the project.

Project designers who wish to implement corporate security standards and policies
must first understand these policies in the context of their own applications. Project
designers need help understanding the threats to their system architecture and the busi-
ness benefits of assessing and minimizing security risk. We will describe an assessment
process known as the Security Assessment Balance Sheet as a methodology for foster-
ing such understanding.

Assessments are essentially structured like architecture reviews (which were the topic
of discussion in Chapter 1, “Architecture Reviews”).

Pre-assessment preparation. The architecture review process results in the
creation of a stable, acceptable architecture solution. The security assessment must
examine this architecture for risks. No undocumented modifications to the
architecture must be allowed between the review and the assessment.

The assessment meeting. This meeting is a one-day lockup session where the
project stakeholders, identified at the architecture review process, interact with
security experts and security process owners.

Post-assessment readout and assignment of responsibilities. The security
assessment readout lists the consensus recommendations reached by the
assessment team. This report provides upper management with technical and
objective reasons to support the costs of implementing security. It provides the
project with guidelines for assigning responsibility to team members for

Security Assessments 25

implementing controls. Finally, it supports reverse information flow to the security
process owners for sharing architectural experience across the organization.

Retrospective at deployment to evaluate implementation success. We are not
recommending that the first time any project examines its security solution be at
system deployment. This process should be continual through the entire software
cycle. The security retrospective is useful in baselining security for future releases,
however, or for mid-release production system assessments. The retrospective also
identifies assets that have fallen off the wagon (that is, assets once thought secure
that are exposed at unacceptable levels of risk, possibly due to changes in project
schedules, budgets, or feature requirements).

Pre-Assessment Preparation

The project designers must conduct a series of activities before the assessment in order
to ensure its success. The project designers must also make time on the schedule for
the assessment, make sure that the architecture document is stable, and ensure that all
key stakeholders are available. The project team needs to define the scope, clearly stat-
ing the boundaries of the assessment’s applicability. The benefits of conducting the
assessment as part of organizational process should be recognized by the project own-
ers to ensure that they will accept recommendations (whether they will act upon them
is another matter).

The project must identify stakeholders. These can include the business process owners,
customers, users, project management, systems engineers, developers, build coordina-
tors, testers, and trainers. Once the system is in production, the list of stakeholders will
include system administrators and other maintenance personnel.

The project needs help from security policy owners and security subject matter experts
to map generic corporate security policy guidelines into requirements that apply to the
particular needs and peculiarities of the application. Finally, the project should review
the security assessment checklist and be prepared to respond to findings from the
assessment.

There are a growing number of companies that specialize in managing the assessment
process, providing a coordinator, furnishing subject matter experts, and conducting the
assessment. We recommend purchasing this expertise if unavailable in-house.

The Security Assessment Meeting
The agenda for the assessment has these six steps:

1. Formally, present the architecture within the context of security.

2. Identify high-level assets.

3. Identify high-level vulnerabilities and attach criticality levels to each.

4. Develop the system security balance sheet.

A R C H I T E CT U R E A N D S E C U R I T Y26

Double Entry Bookkeeping

Balance sheets were the invention of Luca Pacioli, a 14th-century Italian monk.
Frater Luca Bartolomes Pacioli, born about 1445 in Tuscany, was truly a
Renaissance man, acquiring an amazing knowledge of diverse technical subjects
from religion to mathematics to warfare. Modern accounting historians credit
Pacioli, in his Summa de Arithmetica, Geometria, Proportioni et Proportionalita
(“Everything About Arithmetic, Geometry, and Proportion”), with the invention of
double entry bookkeeping. Pacioli himself credited Benedetto Cotrugli, and his
Delia Mercatura et del Mercante Perfetto (“Of Trading and the Perfect Trader”),
with the invention, which describes the three things that the successful merchant
needs: sufficient cash or credit, good bookkeepers, and an accounting system
that enables him to view his finances at a glance.

5. Dive deep into details in order to model risk.

6. Generate assessment findings along with recommendations for threat prevention,
detection, or correction.

It helps to keep the assessment to a small but complete team of essential stakeholders
and assign a moderator to facilitate the meeting, thereby staying away from unproduc-
tive activities.

We will now describe a framework for defining the goal of the assessment meeting
itself.

Security Assessment Balance Sheet
Model

The Balance Sheet Assessment model provides a framework for the assessment
process, and as its name implies, it is analogous to a corporate balance sheet in an
annual report. A corporate balance sheet provides a snapshot in time of a dynamic
entity with the goal of capturing all assets controlled by the company and documenting
the sources of funding for these assets. It enables the company to capture the result of
being in business for a period of time; say, a quarter, a year, or since the company was
founded. As time passes, the dynamic within the company changes as business quickly
and continually invalidates the balance sheet. In abstract terms, however, it enables us
to measure the progress of the company by examining a sequence of snapshots taken at
discrete intervals.

Double entry bookkeeping matches all assets to liabilities (actually, a misnomer for the
sources that funded the assets). Each value appears twice in the balance sheet, first as
something of tangible value held and secondly as a series of obligations (loans) and
rights (shares) used to raise resources to acquire the asset.

Security Assessments 27

For a general introduction to balance sheets and their role in accounting practice,
please refer to [WBB96]—or better yet, get a copy of your company’s annual report to
see how the financial organization captures the complex entity that is your employer
into a single page of balanced data.

We will build an analogy between using a corporate balance sheet to capture a snapshot
of a company and using a Security Assessment Balance Sheet to capture the state of
security of the assets of a system. The analogy is imperfect because security risk has an
additional dimension of uncertainty associated with the probability of compromise of
an asset. How likely is it that a known vulnerability will actually be exploited? We do
not know. Nevertheless, we can sometimes make an educated guess. We will return to
this issue after describing the process and also make the financial aspects of risk the
centerpiece of Chapter 16, “Building Business Cases for Security.”

Designing a secure system is based on a similar balancing act between value and cost.

■■ Each asset has a value that is put at risk without security.

■■ Each security control minimizes or removes the risk of loss of value for one or
more assets.

Security costs money. Projects have a fixed budget for implementing all security con-
trols, typically 2 percent to 5 percent of the total cost of the current system release.
Alternatively, we can buy insurance from companies that offer to secure computer
security risks. Their policies can easily hit a project with an annual premium of 10 per-
cent of the application costs, however (to say nothing of the value of such a policy in
the unfortunate circumstance of a rejected claim after an intrusion). Each alternative
security control has an associated time and materials cost required to implement the
control within the system. Of course, no system is perfectly secure—because perfect
security costs too much.

A system is secure to acceptable levels of risk if all the following statements hold true:

■■ The total value of all assets at risk without any security implementation equals the
total value of assets protected by all implemented controls plus the value of all
assets exposed at acceptable levels of risk.

■■ The budget associated with security is greater than the cost of all of the
implemented security controls.

■■ The budget remaining after implementing all necessary security controls is less
than the cost of implementing security for any individual asset that is still exposed
to risk.

■■ There is a consensus between all stakeholders on a definition of acceptable risk
(which we will elaborate on in a following section) that applies to all assets that
remain exposed to risk. The stakeholders involved must include the project owner,
project management, and security management. Ownership of this risk must be
explicitly defined and assigned to one or more stakeholders.

The process of evaluating a system during the assessment, under these constraints,
should not actually use dollar values for any of these measures. This situation could
easily cause the technical nature of the discussion to be sidetracked by the essentially

A R C H I T E CT U R E A N D S E C U R I T Y28

intangible nature of assessing the cost of a control, or the value of an asset, when we
have only partial information about a system that is not yet in production. Instead, we
recommend the following tactics:

■■ Assets. Use labels on either a three-level scale of High, Medium, or Low or on a
five-point scale of 1 to 5 to assign value to assets. Alternatively, describe the value
of the asset in terms of a relative weight in comparison with the value of the whole
system (“90 percent of our critical assets are in the database”).

■■ Security controls. Measure the time and materials values for the cost of
implementation of a security control by using person-weeks of schedule time. Use
labels to measure the quality of the control by using a similar three-level or five-
level value structure. Alternatively, describe the cost of the control as a percentage
of the total security budget (“Integration with the corporate PKI will cost us only 5
percent of the budget, whereas building our own infrastructure will cost 50 percent
of the budget”).

■■ Probability. Measure the probability of compromise of an asset again by using
labels; say, in a three-level High, Medium, and Low probability structure or in a
five-level structure. All risks with high probability of compromise must be secured.

The closing session of the assessment will be the only time that costs and values are dis-
cussed in economic terms. During this session, the assessment team will decide
whether the project, after implementing all recommendations, would have secured the
system to an acceptable level of risk.

The balance sheet process is designed to drive the team during the assessment towards
more goal-oriented behavior. We will now return to a more technical discussion of how
the assessment process works. The remaining chapters in the book will focus on spe-
cific architectural elements that are common to most systems and will prescribe secu-
rity solutions in each case in more technical detail. The assessment proceeds as
follows.

Describe the Application Security
Process

Describe how the application’s own security process integrates with generic corporate
security process.

■■ Does the application run security audit tools and scanners? Provide a schedule of
execution of audit tools. (“We run nightly security audits during system
maintenance mode.”)

■■ How are logs collected, filtered, and offloaded to secure locations, and otherwise
managed?

■■ How are logs analyzed to generate alarms? How are alarms collected, and how
does alarm notification and analysis work?

■■ Is security monitoring active? Does the system take automatic steps to change
configurations to a paranoid mode, or does this action require manual
intervention?

Security Assessments 29

■■ Who are the contacts for incident response? How easy is it to contact a systems
administrator or developer in the event of an intrusion? Will the answer have an
impact on the published high availability of the application?

Identify Assets
Assets include all of the entities and resources in the system. Entities are active agents
(also called subjects) that access and perform actions on system elements (called
objects) as part of the system’s normal operational profile. Subjects include users, cus-
tomers, administrators, processes, external systems, or hosts. Objects include code, files,
directories, devices, disks, and data. Not only must hardware, software, networking, and
data components of the system be cataloged, but the software development process that
surrounds the application, such as the development environment, the software configu-
ration, versioning and build management tools, technical documentation, backup plans,
disaster recovery plans, and other operational plans of record must also be cataloged.

Assets can include interfaces to external systems along with constraints (such as the
class of service or quality of service expected by the peer system on the other side of
the interface). Assets can include any form of data; for example, a customer list that
must be kept private for legal reasons or for competitive advantage.

Identify Vulnerabilities and Threats
Next, we must perform the following tasks:

■■ Systematically work through the architecture document, identifying assets at risk.

■■ Examine each asset for vulnerabilities against a schedule of known threats.

■■ Catalog the existing security controls and assign costs of maintenance of these
controls in the current release.

■■ Catalog new proposed security controls and assign costs of development of these
controls in the current release.

■■ Catalog controls that will be retired or removed from the architecture due to
architectural evolution. There is an associated cost with these controls, especially
if interfaces to external systems require retooling or if users require new training.

■■ Proceed to examine each control and its strength in thwarting attacks from an up-
to-date schedule of exploits and attacks. The analysis will result in a detailed list of
assets protected by the control’s implementation and the extent to which the
asset’s value is protected from harm.

Identify Potential Risks
Identifying applicable security vulnerabilities on an existing or future application is a
complex task. The flood of security vulnerability sources that are available today fur-
ther complicates this task. Moreover, the information overload is growing worse daily.

A R C H I T E CT U R E A N D S E C U R I T Y30

TE
AM
FL
Y

Team-Fly®

■■ Many organizations hire full-time personnel to monitor Bugtraq, the oldest
vulnerability database, which started as a mailing list in the early 1990s and has
evolved into a forum to discuss security exploits, how they work, where are they
applicable, and how to fix them.

■■ Many other public and proprietary vulnerability databases exist, sometimes
requiring specialized tools and techniques wherever the problem domain grows
too large.

■■ Security organizations such as SANS (www.sans.org) and Security Focus
(http://securityfocus.org) carry up-to-date bulletins of vulnerabilities required by
hardware platforms or software products.

■■ Vendor sites for major hardware platforms list security vulnerabilities and patches
on their homepages. Many vendors also provide tools for automating patch
downloads and installations, which can be risky. The patch process itself might
break your application, so it is best to test automated patches in a development
environment first.

■■ UNIX audit tools contain several hundred checks against common operating

system (OS) file and service configuration problems.

■■ Virus scanners contain databases of tens of thousands of viruses.

■■ Intrusion detection tools maintain signatures for thousands of exploits and detect
intrusions by matching these signatures to network traffic.

Keeping up with this flood of information is beyond most projects. From an application
standpoint, we need help. The application must match its inventory of assets against
the catalog of exploits, extract all applicable hardware and software exploits, prioritize
the vulnerabilities in terms of the application environment, and then map resolution
schemes to security policy and extract recommendations to be implemented. The gen-
eral theme is as follows (but the difficulty lies in the details).

■■ Identify existing security management schemes.

■■ Baseline the current level of security as a reference point as the architecture
evolves.

■■ Translate generic corporate security requirements into application-specific
security scenarios to identify gaps between security requirements and current
implementation.

■■ Freeze the architecture, then analyze it in a hands-off mode to assure that the
compendium of security recommendations does not introduce new vulnerabilities
through incremental implementation.

■■ Examine object models, database schemas, workflow maps, process flow
diagrams, and data flow for security scenarios. How do we authenticate and
authorize principals or validate the source or destination of a communication? The
basic security principles, discussed in the next chapter, are reviewed here.

■■ Identify boundaries around entities to provide clear inside versus outside divisions
within the architecture.

Security Assessments 31

■■ Document all security products, protocols, services, and analysis tools that are used.

■■ Model risk by asking, “Who poses risk to the system?” “Are employees
disgruntled?” “What practices create the potential for risk?” “Is logical inference a
relevant risk?” “What systems external to this system’s boundary are compromised
by its exposure to a hacker?”

■■ Can we roll back to a safe state in case of system compromise? Backups are
critical to secure systems design.

Examples of Threats and
Countermeasures

Every application has its own unique notion of acceptable risk. Any threat that is consid-
ered highly unlikely or that cannot be protected against but can be recovered from in a
timely fashion or that will not cause any degradation in service could be considered accept-
able. Unfortunately, the definition of acceptable risk changes with time, and we must
always re-examine and re-evaluate the holes in our architecture as the system evolves.

Some examples (and these are just examples from a single architecture) of vulnerabil-
ity identification and resolution that might appear in an assessment findings document
are as shown in Table 2.1.

Post-Assessment Activities

The assessment should result in a findings document with detailed recommendations
for improving the systems security. If the report is acceptable to the project team, the
assessment team should also provide metrics that enable a comparison to other pro-
jects within the organization or to other companies within the industry profile that
could help in ranking the project’s success in complying with security policy.
Specifically, the assessment findings should do the following:

■■ List measures of success

■■ Rate the system within the organization on security compliance

■■ Provide guidelines on how to assign responsibilities

■■ Document vulnerabilities left open after all recommendations are implemented

■■ Document the entire process and copy to project management

Why Are Assessments So Hard?

The hardest part about conducting an assessment is getting an answer to the question,
“Did I get my money’s worth out of the security solution?” We blame our inability to
answer the question on imperfect information. How much does an asset really cost?
How likely is a vulnerability to be exploited? How successful is a control in protecting

A R C H I T E CT U R E A N D S E C U R I T Y32

Chapter 2: Security Assessments 33

the asset? We will describe why, even with perfect knowledge of all these issues, we still
are faced with a difficult problem. Our lack of confidence in the soundness of a security
solution is due in part to imperfect information but also in part to making optimal
choices. This situation is an instance of the law: “All interesting problems are hard.”

We have focused on the balance sheet approach to conducting assessments to bring
this question to the forefront. There is a good reason why answering this question in the
general case is hard: this situation is equivalent to answering an intractable theoretical
question called the knapsack problem. The problem of optimizing the security of a sys-
tem, defined in terms of choosing the best set of security controls that provide the max-
imum value under given budget constraints, is difficult from a concrete viewpoint.
Picking the best security solution is hard because in the general case, it is an instance of
a provably hard problem.

The knapsack problem asks, given a knapsack of a certain size and a target value up to
which we must fill the knapsack and a set of objects each with a value and a size
attribute, how can we decide which objects to put into the knapsack to reach the target
size? Is it even possible to reach the target? The knapsack problem, as stated previ-
ously, is a decision problem and has an optimization analog that asks the question,
“What subset of objects will give us the best value?”

s(u)�Z+ v(u)�Z+ u�U B�Z+ K�Z+U' �U �s(u)�B �v(u)�K
u�U' u�U'

In the general case, our problem of deciding which assets to protect by using which
controls in order to maximize value protected is an optimization version of this deci-
sion problem (which is NP-complete). Well, actually, the situation is both simpler and
more complicated than saying that conducting security assessments is akin to solving a
hard problem. The larger point is that assessments are hard because of imperfect
knowledge and because we must choose a solution from a large set of alternatives.
Mathematician Ron Graham, widely considered as the father of Worst Case Analysis
Theory, proposed a simple alternative to solving hard problems such as Knapsack: Pick
a fast strategy that arrives at a suboptimal answer and then prove that the answer
we have is no worse than some fixed percentage of the optimal although infeasible-to-
compute answer. For example, a simple prioritization scheme imposed over the objects
may consistently yield an answer no less than half the value of the optimal solution. In
many cases, this may be good enough.

Matching Cost Against Value
From an abstract viewpoint, security assessments and the process of cost-benefit
analysis involve making a series of decisions. Each decision secures an asset with a cer-
tain value by implementing a security control with a certain cost. This basic cost-value
block is shown in Figure 2.1(a).

In reality, securing an asset might require implementing several controls (see Figure
2.1[b]). Alternatively, several assets can all be protected by a single control, as seen in
Figure 2.1(c). In addition, there might be several valid alternative security solutions for
securing any particular asset.

34

Ta
b

le
 2

.1
Ex

am
pl

es
 o

f V
ul

ne
ra

bi
lit

y
Id

en
tif

ic
at

io
n

an
d

Re
so

lu
tio

n

A
S

S
ET

C

O
N

TR
O

L
FI

N
D

I N
G

V
A

LU
E

P
R

O
B

A
B

I L
I T

Y
R

ES
O

LU
TI

O
N

C
O

ST

1
Ve

rs
io

n
of

 r
lo

gi
n

da
em

on
 o

n
H

L
Ap

pl
y

O
S

ve
nd

or
’s

 c
ur

re
nt

 s
ec

ur
ity

 p
at

ch
 to

 th
e

rlo
gi

n
L

le
ga

cy
 s

ys
te

m
 is

 v
ul

ne
ra

bl
e

da
em

on
.

to
 b

uf
fe

r
ov

er
flo

w
 a

tt
ac

k.

2
In

te
rn

et
-f

ac
in

g
W

eb
 s

er
ve

r
H

H
In

st
al

l c
or

po
ra

te
 in

tr
us

io
n

de
te

ct
io

n
se

ns
or

 o
n

W
eb

M

ou
ts

id
e

co
rp

or
at

e
fir

ew
al

l
se

rv
er

. I
ns

ta
ll

la
te

st
 s

ec
ur

ity
 p

at
ch

es
. R

un
 T

rip
w

ire
 o

n
m

ig
ht

 b
e

co
m

pr
om

is
ed

.
a

cl
ea

n
do

cu
m

en
t t

re
e,

 a
nd

 r
un

 n
ig

ht
ly

 s
an

ity
 c

he
ck

s
to

 s
ee

 w
he

th
er

 fi
le

s
ar

e
co

m
pr

om
is

ed
.

3
C

O
R

B
A

co
nn

ec
tio

n
fr

om

H
M

Im
pl

em
en

t p
oi

nt
-t

o-
po

in
t I

IO
P

ov
er

 S
SL

 c
on

ne
ct

io
n

H
ap

pl
ic

at
io

n
se

rv
er

 to
 le

ga
cy

be

tw
ee

n
th

e
tw

o
se

rv
er

s.
 P

ro
vi

si
on

 c
er

tif
ic

at
es

 fr
om

da

ta
ba

se
 s

er
ve

r
is

 o
ve

r
an

co

rp
or

at
e

PK
I.

Ad
d

pe
rf

or
m

an
ce

 te
st

 c
as

es
 to

 te
st

 p
la

n.

un
tr

us
te

d
W

AN
.

Ad
d

ce
rt

ifi
ca

te
 e

xp
iry

 n
ot

ifi
ca

tio
n

as
 a

n
ev

en
t.

C
om

pl
y

w
ith

 c
or

po
ra

te
 g

ui
de

lin
es

 o
n

ci
ph

er
 s

ui
te

s.

4
Ad

m
in

is
tr

at
or

’s
 T

el
ne

t s
es

si
on

H

H
Re

qu
ire

 a
ll

ad
m

in
is

tr
at

or
s

to
 in

st
al

l a
nd

 u
se

 s
ec

ur
e

L
to

 a
pp

lic
at

io
n

se
rv

er
 m

ig
ht

sh

el
l p

ro
gr

am
s

su
ch

 a
s

ss
h

an
d

di
sa

bl
e

st
an

da
rd

be

 c
om

pr
om

is
ed

.
Te

ln
et

 d
ae

m
on

.

5
D

at
ab

as
e

al
lo

w
s

ad
 h

oc

H
M

Ex
am

in
e

ap
pl

ic
at

io
n

fu
nc

tio
na

lit
y

to
 r

ep
la

ce
 a

d
ho

c
H

qu
er

y
ac

ce
ss

 t
ha

t c
an

 b
e

qu
er

y
ac

ce
ss

 w
ith

 a
cc

es
s

to
 c

an
ne

d,
 s

to
re

d
co

m
pr

om
is

ed
.

pr
oc

ed
ur

es
 w

ith
 c

on
tr

ol
le

d
ex

ec
ut

io
n

pr
iv

ile
ge

s.
 P

ar
se

th

e
us

er
 q

ue
ry

 s
tr

in
g

fo
r

m
al

ic
io

us
 c

ha
ra

ct
er

s.

c
o
n

ti
n

u
e
s

Ta
b

le
 2

.1
co

nt
in

ue
d

FI
N

D
I N

G
A

S
S

ET

C
O

N
TR

O
L

V
A

LU
E

P
R

O
B

A
B

I L
I T

Y
R

ES
O

LU
TI

O
N

C
O

ST

6
W

eb
 s

er
ve

r
us

es
 c

gi
-b

in

H
H

Ap
pl

y
co

m
m

an
d

lin
e

ar
gu

m
en

t v
al

id
at

io
n

ru
le

s
to

sc

rip
ts

 th
at

 m
ig

ht
 b

e
sc

rip
ts

 a
nd

 c
on

fig
ur

e
th

e
sc

rip
ts

 to
 r

un
 s

ec
ur

el
y

w
ith

co

m
pr

om
is

ed
.

lim
ite

d
pr

iv
ile

ge
s.

7
U

se
rs

 o
n

U
N

IX
 fi

le
 s

ys
te

m

M
H

Im
pl

em
en

t a
 fi

le
 p

er
m

is
si

on
s

po
lic

y.
 E

xt
en

d
po

lic
y

L
in

di
sc

rim
in

at
el

y
sh

ar
e

fil
es

.
us

in
g

U
N

IX
 a

cc
es

s
co

nt
ro

l l
is

ts
 to

 s
ec

ur
el

y
en

ab
le

 a
ll

va
lid

 u
se

r
fil

e
sh

ar
in

g
ac

co
rd

in
g

to
 a

cc
es

s
pe

rm
is

si
on

bi

ts
.

8
Pa

ss
w

or
ds

 m
ig

ht
 b

e
w

ea
k.

H
H

Ru
n

pa
ss

w
or

d
cr

ac
ke

rs
, a

ge
 p

as
sw

or
ds

, p
re

ve
nt

 u
se

rs

L
fr

om
 r

eu
si

ng
 p

as
t t

hr
ee

 o
ld

 p
as

sw
or

ds
, a

nd
 c

he
ck

pa

ss
w

or
ds

 fo
r

st
re

ng
th

 w
he

ne
ve

r
ch

an
ge

d.

9
U

se
rs

 d
ow

nl
oa

d
ap

pl
et

s
M

L
Re

qu
ire

 p
ar

tn
er

 to
 s

ig
n

up
 fo

r
so

ftw
ar

e
pu

bl
is

he
r

M
fr

om
 p

ar
tn

er
’s

 W
eb

 s
ite

.
st

at
us

 w
ith

 V
er

iS
ig

n
an

d
to

 o
nl

y
se

rv
e

si
gn

ed
 a

pp
le

ts
.

10
So

la
ris

 s
ys

te
m

 m
ig

ht
 b

e
H

L
Se

t n
o
e
x
e
c
_
u
s
e
r
_
s
t
a
c
k
=
1

an
d
n
o
e
x
e
c
_
u
s
e
r
_

L
su

sc
ep

tib
le

 t
o

bu
ffe

r
s
t
a
c
k
_
l
o
g
=
1

in
/
e
t
c
/
s
y
s
t
e
m

. T
he

 fi
rs

t p
re

ve
nt

s
ov

er
flo

w
 a

tt
ac

ks
.

st
ac

k
ex

ec
ut

io
n

in
 u

se
r

pr
og

ra
m

s;
 th

e
se

co
nd

 tu
rn

s
of

f l
og

gi
ng

 to
 r

ed
uc

e
no

is
e.

35

Asset
value

Security control cost

Cost

Value

c

v1

v3

v2

text

2

3

8

1
5

6

4

7

Application

(d)(c)

Asset
value

Security control cost

Cost

Value

v

c1 c 3c2

Asset
value

Security control cost

Cost

Value

v

c

(a) (b)

Figure 2.1(a—d) Cost versus value blocks in an application.

A cost-value block represents each control-asset combination. An application’s secu-

rity solution space consists of a collection of cost-value blocks, including alternative
solutions to securing the same asset (as shown in Figure 2.1[d]).

Why Assessments Are Like the
Knapsack Problem

Securing the application can be seen as selecting a subset of cost-value blocks from all
such possible basic components so as to maximize the value of the assets protected,
given the constraints of our budget. In actual applications, the blocks might not be per-
fect, disjoint rectangles. The controls might overlap in multiple blocks, as might the

A R C H I T E CT U R E A N D S E C U R I T Y36

2

Budget for security

Cost

Value

c1

3

6

c n

Total
application
asset value

v1

vm

2

3

8

1

5

6

4

7

Cost-value blocks

7

Figure 2.2 Choosing cost-value blocks requires compromises.

assets defined within the application. We will ignore this situation for simplicity and
revisit this topic and other complications at the end of our discussion.

This act of choosing an optimal subset is an instance of the knapsack problem. Con-
sider Figure 2.2, where we have collected the application’s cost-value blocks in a stack
to the left and mapped a potential security solution on the right. The solution secures
the assets of blocks 2, 7, and 3. Securing 6 results in a budget overrun.

This solution might not be optimal. In general, finding an optimal solution is as hard as
the knapsack problem. Consider, however, the case of a project team that sets clear pri-
orities for the assets to be protected.

In Figure 2.3, we have ordered the stack of cost-value blocks in decreasing order of
asset value. Ordering the assets greatly simplifies the decision process, and the problem
is easily (although perhaps not optimally) solved. We proceed to implement controls
from bottom to top, in increasing order of value, without regard to cost. When we
encounter an asset that cannot be protected with the budget remaining, we pass it over
and proceed to the next. The risk to the list of assets left unprotected at the end of this
process are either deemed as acceptable or the list can be reviewed by the project
stakeholders to find additional resources. In Figure 2.3, we implement security controls
to protect assets 1, 2, 3, 5, and 6.

This solution is not necessarily optimal. In fact, it is easy to create counterexamples
where this strategy is not optimal. Nevertheless, prioritizing work is a useful way of
managing complexity.

Security Assessments 37

A R C H I T E CT U R E A N D S E C U R I T Y38

2

3

8

1

5

6

4

7

1

Security cost

Cost

Value

Unprotected
application
asset value

2

3

8

5

6

4

7

Protected
application
asset value

Budget leftCost-value blocks

Figure 2.3 Prioritizing values makes decisions easier.

In security balance sheet terms,

■■ The total value of all assets at risk (1 through 8), without any security
implementation, equals the total value of assets protected by all implemented
controls (1, 2, 3, 5, and 6) plus the value of all assets exposed at acceptable levels
of risk (4, 7, and 8).

■■ The budget associated with security is greater than the cost of all the implemented
security controls.

■■ The budget remaining after implementing all necessary security controls is less
than the cost of implementing security for any individual asset that is still exposed
to risk. Securing 4, 7, and 8 each cost more than the money left.

■■ There is a consensus between all stakeholders on a definition of acceptable risk
that applies to all assets that remain exposed to risk. We hope that the application
does not mind 4, 7, and 8 being exposed.

Why Assessments Are Not Like the
Knapsack Problem

The lesson to be learned is not that assessments are intractable in specific instances,
because that would be simply untrue. The project often has a small set of core assets
that must be protected absolutely and a small set of options to choose from to protect
those assets. Solving this problem by brute force is an option, although we must con-
sider additional factors associated with our decision such as sunk costs or the proba-
bility of compromise. But even in a world where we divide our threats into ones we will

Security Assessments 39

protect against and ones that we will not, we essentially have decided that the former
threats have a probability of 1 while the latter have a probability of 0. Only time can tell
whether we were right.

Consider the picture from an enterprise level, with hundreds of projects and a limited
security budget. Even when allowing for the fact that we have large error bars on our
security goals, it might be impossible to make an optimal (or even a reasonable)
assignment of resources. Although an optimal choice might be feasible at the applica-
tion level through brute force, the intractable nature of decision-making has moved to
a higher level, manifested in the complexity of cost-benefit analysis across multiple
projects and across many organizations. Unlike the knapsack problem, the true cost-
benefit analysis of security implementation in an organization is distributed across all
the projects in the company. Each project is assigned a piece of the pie, its security
budget, and can only make local decisions. This situation does not guarantee optimal
allocation of resources at the corporate level as an aggregation of all these low-level
decisions. What appears feasible at the project level (“Decide an optimal allocation of
security resources in project XYZ”) in aggregate might be far from optimal when
viewed at the enterprise level. It might not even be feasible to compute an optimal
allocation.

Even in simple systems, the interactions between the various security components are
as critical a factor as the cost-value blocks themselves. The abstract problem does not
correspond to reality. As we mentioned earlier, there are always overlaps between cost-
value blocks because controls provide security support to multiple assets and assets
require multiple controls to comply with security policy.

Our purpose of going into this much detail is to describe an inherent complexity in the
assessment process. Matching threats to vulnerabilities is hard enough, but deciding
what to protect and how does not get enough attention at the review. Domain knowl-
edge can also be critical to resolving conflicts between options. We know more about
the application than can be captured in a simple cost-value block. We can use that
knowledge to prioritize our options.

Note that these differences do not make assessments uniformly easier or harder. They
represent classic architectural forces that pull and push us in different directions as we
try to pick the best path through the woods. The technical content of the chapters that
follow will describe patterns of security architecture, along with context information,
to strengthen our ability to decide.

Enterprise Security and Low
Amortized Cost Security Controls

In our section on security balance sheets, we recommended applying three levels of
cost labels to security controls: High, Medium, and Low. There is a fourth label, how-
ever, that is architecturally the most important: Low Amortized cost.

Security controls with low amortized cost are too expensive for any individual project
to embrace but are quite affordable if the costs are shared among many applications.
Amortization spreads costs over many projects. Enterprise security is all about the

deployment of security controls with low amortized costs. Examples abound of enter-
prise security products that promise reusability but actually are quite re-useless. In this
case, the benefits of sharing the deployment cost are not realized. Therefore, successful
enterprise security requires corporations to adopt several measures. For example,
organizations must perform the following tasks:

■■ Organizations must centralize corporate security policy and standards.

■■ Corporate security groups must educate projects on corporate-wide security
guidelines.

■■ Organizations must pick high value, low amortized cost security solutions and
invest in enterprise-wide implementations.

■■ Project teams might need to call in expert outside consultants to manage key
security processes.

Examples of enterprise security products include Public-Key Infrastructure (PKI),
security management through COTS policy servers, corporate-wide intrusion detection
infrastructures, the use of standardized virus scanning tools, enterprise security audit
tools, and corporate X.500 directories with Lightweight Directory Access Protocol

(LDAP) support. Each of these would be impossible for any individual project to deploy
in a good way, but sharing these resources makes sense. Suddenly, with the addition of
many high-value/low-cost blocks within the applications security architecture space, a
project’s available security options increase. Although this information is obvious, it
does bear stating in the context of our discussion of security assessments and balance
sheets. These benefits of amortization are over space, where many applications share
security components and services. Cost can also be amortized over time, where we can
justify the expense of a security component over several application releases if its fea-
tures match the evolutionary path of the application. We must convince the project’s
owner of the investment value that the choice represents over cheaper alternatives that
might need to be replaced as the application grows.

Conclusion

Security assessments applied to the systems architecture rather than after delivery to
production can be of value. We have less information about implementation, but secu-
rity assessments are still an important yet often neglected part of the software develop-
ment cycle. Assessments target the benefits to be gained from identifying and closing
potential security problems within the system under design. The project team can
match the costs of the proposed preventive or corrective measures against the esti-
mated value of the assets protected or against the business risk associated with leaving
these vulnerabilities open. The process of choosing alternatives for implementing cus-
tomer requirements and needs within the solution can be guided by the cost-benefit
analysis produced as an output of the security assessment.

The Security Assessment Balance Sheet is a useful model for creating a process for con-
ducting assessments. The analogy with corporate balance sheets and the notion that we
are capturing a snapshot of a system at an instance in time by using the framework is

A R C H I T E CT U R E A N D S E C U R I T Y40

TE
AM
FL
Y

Team-Fly®

valid only if we do not rigorously seek precise economic metrics to measure risks and
costs. It is more in line with developing Generally Accepted Security Principles

(GASP), much like the generally accepted accounting principles (GAAP) of the
accounting world. As with all analogies, this situation does not bear stretching too far.
If someone suggests a Security Assessment Income Statement or a Security Assessment
Cash Flow Statement, they are just being weird. In the next chapter, we will present
basic security architecture principles and the system properties that are supported by
secure design. The security assessment must validate all the security properties of the
application.

Security Assessments 41

C H A P T E R

43

The benefits of security are difficult to quantify. We often can estimate security develop-
ment costs within a small margin of error around a fixed dollar figure, but the benefits
of spending those dollars are more elusive. These are often described in qualitative
rather than quantitative terms. The cultural images regarding computer security do not
really help. The news media is full of vague references to hackers and the dire conse-
quences of succumbing to their inexorable and continual assaults on systems, without
explanation as to why such attacks might happen and without regard to the probability
or feasibility of such attacks. This situation causes confusion, for want of a better word,
amongst project managers and customers. We can reduce some of this confusion if we
understand computer risks better, but we must first understand the principles and goals
of security architecture and decide which ones apply to any system at hand. Similar sys-
tems often adopt similar security solutions. The grain of the underlying application
guides the patterns of implementation.

A pattern is a common and repeating idiom of solution design and architecture. A pat-
tern is defined as a solution to a problem in the context of an application. Security com-
ponents tend to focus on hardening the system against threat to the exclusion of other
goals. Patterns bring balance to the definition of security architecture because they
place equal emphasis on good architecture and strong security. Our choices of security
properties, authentication mechanisms, and access control models can either drive our
architecture towards some well-understood pattern of design or turn us towards some
ad hoc solution with considerable architectural tensions. Without a model for security
architecture, if we take the latter path we might discover flaws or risks in the solution’s
construction only at deployment. That might be too late.

In this chapter, we will define security architecture, outline the goals of security archi-
tecture, and describe the properties of well-behaved, secure systems. We will also dis-
cuss the architectural implications of our security principles. We will present a synopsis

3
Security Architecture Basics

of a complex topic: access control. We will end this chapter with some advice on secure
design. In the chapters that follow, we will introduce patterns and describe how they
can be used to achieve the principles of security. Before we can discuss security archi-
tecture patterns in Chapter 4, however, we must first describe the goals of security.

Security As an Architectural Goal

Software architects are often charged with the goal of making future-proof architecture
design decisions. A future-proof system has the flexibility to accommodate change of
any nature: technology, feature creep, data volume growth, or the introduction of new
interfaces. This goal adds some level of complexity to the system. One solution to man-
aging this complexity lies in defining the software architecture at multiple levels of
abstraction. We can then create interface definitions between subsystems that mini-
mize, or at the least manage, the impacts of changes within subcomponents on the sys-
tem architecture as a whole. This separation into architectural levels parallels a
separation in concerns and enables us to hide design decisions within one component
from other areas of the system. Each component is focused on one aspect of function-
ality that defines its purpose and is based on a subset of the overall solution’s assump-
tions. So far so good, but here comes the hard part.

Adding security to the architecture often has the negative impact of collapsing the lev-
els of abstraction in the architecture and elevating low-level design decisions to a
higher and often wrong level, to be re-evaluated and perhaps changed. Integrating ven-
dor products that do not acknowledge this phenomenon is very difficult.

Vendor products favor flexibility to capture a wider market share—and despite claims
of seamless interoperability often require careful and specific configuration at a low
level. We make architecture decisions that damage the future-proof quality of the sys-
tem due to time constraints or our inability to set priorities. The vendors identify the
cause of insecure design as a lack of sophistication on the part of the architect in under-
standing security principles; the project architect, on the other hand, lays the blame on
the vendor, citing its lack of domain knowledge required for understanding the system.

Security implemented as a system feature without clear security architecture guide-
lines will cause tension in design. We must follow corporate security policy, but the
requirements of that policy are often orthogonal to the functional goals of the system.
Meeting corporate security requirements, especially as an afterthought imposed upon
existing production systems, is not an activity for the weak of resolve. Poor architec-
ture has caused many of these partial myths to crop up.

■■ Security causes huge performance problems.

■■ Security increases system management complexity.

■■ Security features can complicate the implementation of other common enterprise
architecture features, such as high availability or disaster recovery.

■■ Security products are immature.

■■ Security for legacy systems is too costly.

A R C H I T E CT U R E A N D S E C U R I T Y44

Security Architecture Basics 45

We have heard all these charges, and many more, from systems architects. Often, there
is more than a small amount of truth to each charge in specific system instances. In
most cases, however, there is room for improvement. We can perform the following
actions:

■■ Adopt processes for improving system quality or security, such as architecture
reviews and security assessments. These processes can create significant
improvements in the correct, robust, scalable, and extensible implementation of
security within a system.

■■ Incorporate security artifacts early into the design cycle to increase awareness of
the constraints imposed by security.

■■ Articulate security options in concrete, measurable, and comparable terms,
describing costs, coverage, and compromises.

■■ Gather hard data on the performance costs by using prototyping or modeling
before making unwise investments in hardware and software.

■■ Minimize interoperability woes through clear interface definitions.

■■ Give vendors feedback on the impact their products have on other system goals.
Take performance as an example. Performance is a project-critical goal, but some
vendors, when told of their product’s rather dismal performance, reply, “What
performance issue?” They believe that security always carries a performance
penalty. This situation is generally true as a principle, but closer examination might
yield opportunities for optimization with little or no reduction in security (see
Chapter 14, “Security and Other Architectural Goals,” for other examples).

Any amount of planning will never help a dysfunctional development organization, and
no amount of software process around the system implementation will replace good
teamwork, design knowledge, experience, and quality management. Nevertheless, even
with all of these latter virtues, the lack of expertise in security among the members of
the project team often creates poor decisions within the architecture.

Corporate Security Policy and
Architecture

Some project teams view the ownership of the security of their system as external to
their organization. “If Bob is vice-president of security, well, then its Bob’s problem, not
mine.” This theory is, of course, flawed. Security is everyone’s business, and the project
team cannot navigate this path alone. We cannot overemphasize the value of an internal
organization devoted to defining policy around security issues, forming standard prac-
tice statements, evaluating tools for deployment, and performing the roles of assessor,
auditor, and defender in the event of an intrusion.

Information must flow in the other direction too, however, where policy is guided
through the explicit, active, and continual participation of all the domain specific
architects within the company. These people build the systems that make money for
the company. Securing these assets cannot be accomplished by writing down cookie-
cutter rules.

The risks of bad process and policy rival those of no guidance whatsoever. Develop-
ment organizations with very tight deadlines and small budgets are wary of any process
that could cost time or money. Project teams need assistance beyond the threat of pun-
ishment for not implementing security policy. Rather than operating out of some name-
less fear of all the hackers out there, project teams should integrate security into their
architectures because it makes good business sense.

At this point, we would like to make two statements. First, we cannot help you build a
concrete dollar figure cost-benefit analysis for your system (although in Chapter 16,
“Building Business Cases for Security,” we try), but we will try to explain our experi-
ences from evaluating vendor products, opening legacy systems, implementing magic
bullet technologies, and building systems from scratch. Much of secure design belongs
where all software design principles belong: right at the beginning alongside feature
coverage, performance, usability, scalability, and so on.

Second, the technical security community does a tremendous job of discovering,
explaining, demystifying, and fixing security holes. What they do not do as often is as
follows:

■■ Describe in terms familiar to the development community at large how to think as
they do.

■■ Describe how to recognize common patterns in the design of complex systems.

■■ Describe how to prevent security holes as a design principle.

■■ Describe how to view security solutions as black boxes with well-defined and
usable properties.

Let’s face it: most security gurus find the rest of us a bit thick.

Our primary emphasis is on becoming a better architect, not becoming a security
expert. To do so, we have to start asking some of the questions that security experts ask
when confronted with some new vendor product, security standard, protocol, or black
box with magic properties. The experts ask these questions from many years of experi-
ence with security solutions: from common problems emerge common patterns of
implementation. A vendor presents a seemingly perfect security solution, and no chink
appears to exist in the armor. Then, an experienced security guru starts asking hard
questions that do not seem to have good answers, and suddenly the solution appears
suspect.

We will address security design from the viewpoint of the practicing software architect,
a label we use for the technical leader on any software project with broad oversight
over systems architecture and design and who provides guidance on interface defini-
tion and design to all external components. We hope that our presentation will make for
better systems architecture through improving security.

Vendor Bashing for Fun and Profit
As a practical matter, the same issues with identification, access control, authorization,
auditing, logging, and so on crop up repeatedly. Software architects can learn some of
these patterns and ask the same questions. Access to context creates a level of under-

A R C H I T E CT U R E A N D S E C U R I T Y46

Security Architecture Basics 47

standing, and what seems initially like arcane and exotic knowledge often reveals itself
as common sense. This thinking is a core principle behind the success of the pattern
community. Discovering security architecture patterns is about developing such com-
mon sense.

Security vendors in today’s environment, because of their growing sophistication and
maturity, can design and develop products at a production quality level above the reach
of most applications. Buying off the shelf is more attractive than attempting an in-
house, homegrown solution. Vendor maturity also reduces costs as successful products
reach economies of scale and competition keeps margins in check. This situation leads
to the common problem of security architecture work being primarily integration work,
where existing legacy systems have commercial security solutions grafted onto (or, if
you prefer, finely crafted onto) existing insecure architectures. We will address the
issue of security as an afterthought in detail.

In the preface, we described some of the advantages that vendors had over projects,
including better knowledge of security, biased feature presentation with emphasis on
the good while hiding the bad, and deflection of valid product criticisms as external
flaws in the application. On the other side, vendors of security products often share
common flaws. We will introduce three in the following discussion and expand on their
resolution in the chapters to follow.

■■ Central placement in the architecture. The first and foremost flaw is the view that
the vendor security solution is somehow THE central component of your software
solution or system. Customers who have difficulty implementing the vendor’s so-
called enterprise security solutions have the same complaint: the vendor’s product
is technically well designed and works as advertised, but only under its own design
assumption of being the center of the universe. The reality is often dramatically
different. User communities are fragmented and under different organizations,
business processes are not uniform and cannot be applied across the board to
all participants, users have vastly differing operational profiles and skill and
experience sets, and “seamlessly integrated” software (well, to put it bluntly)
isn’t. This situation leads us to the second-largest problem with vendor security
solutions.

■■ Hidden assumptions. The assumptions implicit in the vendor solution are not
articulated clearly as architectural requirements of the project. These assumptions
are critical to understanding why the solution will or will not work. Hidden
assumptions that do not map to the solution architecture might introduce design
forces that tear apart the application. The tensions between these assumptions and
those of your own architectural design choices are what make integration hard.
This discussion, of course, leads us to the third problem that security architects
face.

■■ Unclear context. The context in which the security solution works might not be
clear. Context is larger than a list of assumptions. Context describes the design
philosophy behind the assumptions, explaining the tensions with development
realities. All security products have built-in assumptions of use. Few products have
a well-thought out philosophy that includes the purpose and placement of the
product in some market niche. The reason why some security products port so

poorly is because they do not have a clear contextual link to the underlying
hardware, operating system, or software technology. One size rarely fits all,
especially if context mismatch is great. For instance, porting security products
from UNIX to NT or vice versa is difficult because of fundamental differences in
OS support for security. Another common example of context mismatch is
impedance on application interfaces because of differences in the granularity of
the objects protected.

Architectural design is about placing system design choices, whether they are about
object design, database design, module creation, interface definition, or choices of
tools and technologies, within the context of a specific feature requirement.
Applications rarely have clear security requirements over and above the vague injunc-
tion to follow all corporate security policies. The architect is left groping in the dark
when confronted with the question, “Does this product support the context in which
security appears within my application?”

This problem often manifests itself in the principle of ping-pong responsibility. If there
is a problem, then the responsibility is never the vendor’s centrally placed product. It’s
a user problem, it’s a deployment issue, it’s an application problem, or it’s a problem
that is best addressed by methods and procedures, to be put in place by person or per-
sons unknown and implemented by means unknown, at some indeterminate time in the
future (most likely after the customer’s check clears at the bank).

The common response is to implement security solutions partially or not at all and to
abandon any security requirements that get in the way of the deployment trinity of
Time, Budget, and Features. The resolution to this conflict is to make security an archi-
tectural goal instead of a system property.

Security and Software Architecture

The discipline of Software Architecture has only recently started to integrate security
as a design principle into its methodologies, giving it the weight normally accorded to
the better-understood principles of performance, portability, scalability, reliability,
maintainability, profiling, and testability. In the past, unlike these established principles
of software development, security has been presented as an independent property of a
system rather than as a fundamental system feature to be specified, designed, and
developed.

System Security Architecture
Definitions

There are many definitions of software architecture, and all share a common emphasis.
They describe a system’s software architecture as a sum of cooperating and interacting
parts. Here are several definitions, each followed by our attempt to define security
architecture in a derivative manner.

A R C H I T E CT U R E A N D S E C U R I T Y48

Security Architecture Basics 49

GARLAN AND SHAW, 1994:

The architecture of a system can be captured as a collection of computational com-

ponents, together with a description of the interactions between these com-

ponents. Software architects must choose from a catalog of architectural styles,

each defining a system in terms of a pattern of structural organization.

Choosing an architectural style gives a system designer access to the style’s vocabulary
and specific constraints. Each style presents a framework within which common pat-
terns of system development appear. Garlan and Shaw call this feature design reuse.

Within this definition, an architect building a secure system must perform the following
actions:

■■ Decompose the system into subsystems, where each subsystem is an exemplar of a
specific architectural style.

■■ For each subsystem, choose a security component that matches its style and that
implements its required security properties.

■■ Add the security constraints imposed by implementing this security component to
the system’s constraint set.

■■ Examine the connectors between subsystems, and choose communication security
components that enforce the security properties required on each interface.

Thus, the choice of architectural style drives the selection of security components and
their integration with all other system components under additional security con-
straints. Complex systems often use multiple styles. This process must therefore occur
on several levels in order to resolve conflicts between security constraints driven by
conflicting styles. For example, using different vendor products on either side of an
interface can cause security on the interface to fail.

Our second software architecture definition is as follows:

GACEK, ABD-ALLAH, CLARK, AND BOEHM, 1995:

A software system architecture comprises of a collection of software and system

components, connections, and constraints; a collection of system stakeholders’

need statements; and a rationale which demonstrates that the components,

connections, and constraints define a system that, if implemented, would satisfy

the collection of system stakeholders’ need statements.

The security architecture of a software system, paraphrasing this text, consists of the
following:

■■ A collection of security software and security components along with their
position and relationships to the system’s components, connections, and
constraints.

■■ A collection of security requirements from system stakeholders.

■■ A rationale demonstrating that the integration of the security components with the
system’s own components, connections, and constraints would satisfy the
requirements of corporate security policy.

This definition adds the requirement that the application have an argument, a rationale,

to support the assertion that the system is compliant with security policy.

Our third definition is similar but in addition emphasizes visibility.

BASS, CLEMENTS, AND KAZMAN, 1998:

The software architecture of a computing system is the structure or structures

of the system, which comprise software components, the externally visible

properties of those components, and the relationships between them.

The authors define a component’s externally visible properties as those assumptions
that other components can make of a component, such as its provided services, perfor-
mance characteristics, shared resource usage, and so on.

In the context of security, externally visible properties would include proof of identity,
enforcement of access control by a user of the component, privacy, defense against
denial of service, and so on. The security architecture for the system must enforce the
visible security properties of components and the relationships between components.

Security and Software Process
As mentioned in the previous two chapters, adding security to a system requires
rethinking the software development process surrounding the system. We can create a
process for building a secure architecture by extending existing architecture models for
building software.

Consider, for example, ISO’s Reference Model for Open Distributed Processing, intro-
duced in Chapter 1, “Architecture Reviews.” RM-ODP defines a five-viewpoint refer-
ence model for a system. The model defines architecture features for information
systems from the following five perspectives: the business viewpoint, the informational
viewpoint, the computational viewpoint, the engineering viewpoint, and the technology
viewpoint.

Implementing security within this framework requires examining the problem of secu-
rity from each of the five viewpoints.

■■ Business. Business processes that own the assets within the system are ultimately
responsible for security. A compromise of the system could entail loss of revenue
and reputation.

■■ Information. Security orders information within the system according to some
notion of value. The greater the value, the greater the loss to the business if the
information is lost or stolen.

A R C H I T E CT U R E A N D S E C U R I T Y50

TE
AM
FL
Y

Team-Fly®

Security Architecture Basics 51

■■ Computation. Security comes with its own algorithms and design patterns; the
latter being of particular interest to a systems architect.

■■ Engineering. Security architecture is hardest to implement in a distributed
environment. Many security products and protocols assume the existence of some
centralized component, knowledge base, directory, or security service. These
assumptions must be subject to careful analysis before implementation into a
specific distributed environment.

■■ Technology. Security is presented and described in terms of its technologies and
specific standards. Vendor products that claim interoperability based on
compliance with today’s popular standard and the technological choices of today
might be the security maintenance headaches of tomorrow.

We can thus examine each system security property from multiple viewpoints to ask,
“Which entities are protected?” “Which entities are subordinate to others?” “How are
authenticating credentials distributed, validated, aged, replaced, or subject to expiry?”
“What computational resources do we require to correctly implement security at each
entity within the environment?” For example, the emergence of mobile technology has
created new issues for security. The physical constraints of handheld devices, in terms
of memory and CPU, the requirement of quick response times, and the need to secure
proprietary data on the devices when not linked to the network, all constitute chal-
lenges to the distributed systems architect.

Security Design Forces against Other
Goals

Once we pick a style or identify a subsystem within the system that can be secured by
using a particular approach, we are confronted with the possibility that our choices to
secure one subsystem cause violations in the constraints in other subsystems. We could
violate other architectural goals for other system features superficially unrelated to
security.

For example, using products that prevent buffer overflows used by stack-smashing
exploits could cause valid legacy code to fail. Implementing SSL to encrypt transport
between two systems might degrade performance requirements. Requiring entities to
possess X.509v3 certificates without a proper operational PKI to support their use
might cause violations of down time requirements. Implementing complex revocation
or expiry notification processes might disrupt the operations, administration, and man-
agement of the system.

Conversely, achieving other architectural goals could have an adverse effect on security
goals. Implementing a middleware communications bus by using multiple vendor prod-
ucts could violate security management goals. We might lose interoperability. For
example, consider a system that uses CORBA technology to support access to multiple
distributed objects. Subsystems can implement each object by using a different ORB
vendor. The vendors can all claim to be certified as meeting the OMG standards for
interoperability, but because the OMG Security Service Specification is not specific

about many implementation details (such as cryptographic protocols or unified secu-
rity management), each vendor can choose to support different cipher suites or imple-
ment standard algorithms by using proprietary libraries. For more information about
this topic, please see Chapter 9, “Middleware Security.”

It is possible that aiming for two goals at the same time causes us to miss both. Wrap-
ping a business object within a security wrapper could break interface agreements and
security management. If the wrapper adds authentication and access control mecha-
nisms in a vendor-specific manner, we might have enhanced the interface definitions—
but at a cost. Our solution for secure method invocation might create conflicts, causing
working interfaces to fail. Simultaneously, even if the authentication and access control
mechanism interoperate, we might need separate security management for each sub-
system on its own vendor-constrained path. The goal of integrated security administra-
tion will not be met under these circumstances.

We will return to this topic in Chapter 14, “Security and Other Architectural Goals,” to
expand upon these conflicts and their resolution.

Security Principles

The following seven security principles are generally accepted as the foundation of a
good security solution.

■■ Authentication. The process of establishing the validity of a claimed identity. The
originator of a request for access to a secured component, or initiator of a secured
session or transaction, must present credentials that prove his or her identity.

■■ Authorization. The process of determining whether a validated entity is allowed
access to a secured resource based on attributes, predicates, or context.
Attributes are name-value pairs. We use attributes to describe details about the
entity. Predicates are conditions based on the environment of the secured asset
that must hold true in order to access the resource. Context places the requested
transaction within a frame of reference associated with the system. This frame of
reference can be based on time, a history of actions, or on the position of a rule
within a rule-base.

■■ Integrity. The prevention of modification or destruction of an asset by an
unauthorized user or entity; often used synonymously with data integrity, which
asserts that data has not been exposed to malicious or accidental alteration or
destruction.

■■ Availability. The protection of assets from denial-of-service threats that might
impact system availability. Availability is also a critical system property from a
non-security standpoint, where the source of system down time is due to faults
rather than malicious attacks. Strategies based on software reliability theory for
designing fault prevention, detection, tolerance, forecasting, and recovery,
however, are often not very useful in protecting systems against active and
intentional attacks. Modeling availability under malicious conditions is distinct

A R C H I T E CT U R E A N D S E C U R I T Y52

Security Architecture Basics 53

from modeling availability under generic component failure, because standard
probabilistic models do not hold.

■■ Confidentiality. The property of non-disclosure of information to unauthorized
users, entities, or processes.

■■ Auditing. The property of logging all system activities at levels sufficient for
reconstruction of events. Auditing is often combined with alarming, which is the
process of linking triggers to events. A trigger is any process that, based on system
state, raises an exception to the administrative interface of the system. The action
associated with the trigger defines the system’s response to this exception. We say
that the system has raised an alarm.

■■ Nonrepudiation. The prevention of any participant in a communication or
transaction denying his or her role in the interaction once it is completed.

In addition to these seven key security principles, systems architects should provide
support for other principles that improve the ease-of-use, maintainability, serviceability,
and security administration of the system. These properties are generally at a higher
level of abstraction and overlap with other architectural goals.

Additional Security-Related Properties

The seven principles of the last section are the most commonly cited, but good archi-
tecture choices also encourage other properties.

■■ Secure Single Sign-On. This capability allows an authenticated user access to all
permitted assets and resources without reauthentication. The validity of the user’s
session can be limited by factors such as the time connected, the time of day, the
expiry of credentials, or any other system-wide property. Once the system has
terminated the user’s session, all components within the system must deny the
user access until he or she reauthenticates. Single sign-on is primarily a usability
feature, but systems that require this functionality must be capable of doing so
securely. We must guard against variations of password attacks in SSO
environments, such as the theft of session credentials, replay attacks,
masquerades, or denial-of-service attacks through lockouts.

■■ Merged audit logs and log analysis. This property requires all components to log
events for analysis. Auditing should enable log integration, analysis, alarming, and
system-wide incidence response. This situation is often a sticking point with
architects, because auditing can cause performance and integration issues.
Architects can optionally perform log analysis offline rather than in real time. This
procedure might not prevent intrusions but only detect them after the fact. At the
enterprise level, if we are able to standardize logging formats and consolidate audit
information, we can enable higher functions, such as possibly using sophisticated
analysis tools for knowledge extraction or case-based reasoning to understand
alarms and network traffic. Merged audit logs are also useful for other goals such
as performance testing and construction of operational profiles.

■■ Secure administration. The management of the security controls within the
system and the associated data must be secure. In addition, security administration
must not place unreasonable restrictions on system architecture or design. This
property is often in conflict with other architectural goals, such as portability
(because the administrative interface might not extend to a new platform) or
scalability (because although the system itself can handle growth, the
administrative component of the security solution cannot handle larger volumes of
users, hosts, alarms, and so on).

■■ Session protection. This property ensures that unauthorized users cannot take
over sessions or transactions of authenticated and authorized users.

■■ Uniform security granularity. This property ensures that the various components
and subsystems of the architecture share similar definitions and granularities of assets
and define access control rules in a similar manner. It is difficult to define security
policy in an architecture in which one subsystem defines row-level, labeled security
within its database and another subsystem recognizes only two levels of users; say,
admin with root privileges and customers without root privileges.

Most vendors have standard responses to questions about the implementation of the
first seven security principles. Our ability to differentiate between products is often at
the level of the second list of properties described in this section.

Other Abstract or Hard-to-Provide Properties

The literature concerning security has an enormous amount of information about other
properties of secure systems. Unfortunately, many are sometimes too abstract or difficult
to implement in commercial software systems. These definitions have value because
they support reasoning about system properties and formal proofs of correctness.

These properties require human intervention for analysis, and their implementation can
restrict the feature set of the application in critical ways. Many of these properties can-
not be asserted as true at the architecture phase of the application but must instead be
deferred until the production system is available for a complete analysis. This issue is
not so much about complexity as it is about ignorance. We lack the knowledge of imple-
mentation details. Unless we build the system, proving the existence or absence of one
of these properties is difficult.

Inference
Mandatory access control, discussed next, uses hierarchies of security levels. Inference
is defined as the ability to examine knowledge at one level of classification to acquire
knowledge at a higher level of classification. Inference is a subtle property to prove
because of the many ways in which systems can leak information. A user can view a
process list, dig through files in a temporary directory, scan ports on a machine to see
which ones do not respond, or launch carefully crafted attacks against a host to learn
about the host without its knowledge.

A R C H I T E CT U R E A N D S E C U R I T Y54

Security Architecture Basics 55

Statistical inference has been extensively studied in academic literature. In this form of
inference, an attacker who is permitted to query a large database of information to
extract a small set of permitted reports manipulates the query mechanism to infer priv-
ileged information whose access is forbidden by policy. The attacker generates a pat-
tern of queries such that the responses all consist of permitted information when
considered individually but can be combined in novel manners to leak secrets. Other
examples include network mapping tools such as nmap (www.insecure.org/nmap/)
which can be used for TCP fingerprinting, the process of sending specially crafted
packets to a host to infer its model and operating system from the response. Nmap
(“Network Mapper”) is a high-performance, open-source utility for network exploration
or security auditing. It is designed to scan large networks by using raw IP packets to
determine dozens of characteristics of the hosts available on the network, including
advertised services, operating systems, or firewall and packet filter properties. The
packets have bogus source and destination IP addresses, target specific ports, and
often have flags set incorrectly to generate error messages. An attacker could also
examine memory by using raw disk read tools to reveal information, because running
programs leave file fragments on disk or in memory that can be examined by other
processes. Rogue Web sites can spoof legitimate sites, steal browser cookies, run
ActiveX controls that leak information due to poor implementation, or surreptitiously
download files to a host.

Aggregation
Aggregation is defined as the ability to examine a collection of data classified at one
level and to learn about information at a higher level from the sum of these parts.
Aggregation is more than a special case of inference because the ability to test the sys-
tem for the absence of this property requires examining an exponentially larger number
of scenarios. The most common example of aggregation at work is attacks designed
against cryptographic protocols, such as linear and differential cryptanalysis, where the
collection of enough plaintext-to-ciphertext pairs can lead to knowledge of a secret key.
For example, the information leaked can be extracted through statistical analysis or
through plaintext attacks using multiple agents.

The best defense against aggregation is building partitions in the architecture that imple-
ment information hiding. By examining data, implementing a need-to-know scheme of dis-
seminating information, and by maintaining access thresholds, we can throttle the flow of
information into and out of our application. If a password-guessing attack requires the capa-
bility to run several thousand passwords against a login on a host, a simple strategy can pre-
vent it: lock out a user on three bad login attempts. If a database provides statistical
averages of information but desires to hide the information itself, then users could be
restricted to viewing small data sets within a smaller subtree of the data hierarchy by using
only canned queries, instead of providing ad hoc query access to the entire database. Cryp-
tography has formal theoretical models and solutions to prevent inference and aggregation;
for example, protocols for zero-knowledge proofs.

Designing against all forms of aggregation is impossible. Security through obscurity
works as well as any strategy to support this property, however.

Least Privilege
Least privilege requires that subjects be presented with the minimal amount of infor-
mation needed to do their jobs. Least privilege is related to inference and aggregation,
because violations of least privilege could lead to information leakage. Least privilege
controls information flow. Architectures that desire to implement this principle need to
protect against denial-of-service attacks, where the methods designed to restrict the
flow of control are used to choke off legitimate access as well.

Self-Promotion
Self-promotion refers to the capability of a subject to arbitrarily, without supervision,
assign itself additional privileges. Self-promotion differs from conventional self-granting
of privileges because the subject that illegally grants itself access to an object is not the
object’s owner. Self-promotion can also involve, in addition to theft of authorization, the
theft of ownership.

UNIX’s infamous SUID attacks are a classic example of self-promotion. Unix SUID and
SGID programs are a simplified (and patented) version of multi-level security models
from the MULTICS operating system. Programs normally run with the privileges of the
user who invokes them. A SUID program switches identity during execution to that of
the owner of the program, however, rather than to the invoker of the program. A SUID
program owned by root will run as root, for example.

Exploits on SUID programs can give the user a shell prompt on the machine. Audit tools
can scan file systems for the existence of SUID programs and raise alarms on unex-
pected ones, such as a root-owned SUID shell interpreter in a user directory. They form
the basis of rootkits, which we will discuss in our chapter on operating systems and
which are used to attack systems in order to gain superuser privileges. Users who have
limited privileges that need access to privileged resources such as print spoolers, pro-
tected memory, special kernel functions, or other protected resources can invoke SUID
programs to do so.

Self-promotion also happens through the abuse of complex access policy mechanisms,
where subjects grant privileges to other subjects and then allow recipients to pass on
these privileges. Transitive grants of access muddy the picture by extending privileges
without the owner’s knowledge. Revoking privileges in this scenario can be difficult or
can create paradoxes. We will revisit this issue in our discussion of access control.

Graceful Failure
Security exists in order to enable valid communication. This statement raises a point of
contention between architects and security experts on the response of a system to the
failure of a security component. The failure in this case can be accidental or can be due
to compromise by a hacker through a successful exploit.

A component that fails is said to fail closed if all communication that depended on the
component functioning correctly is now denied. A component is said to fail open if all
communication, including invalid communication that would otherwise have been

A R C H I T E CT U R E A N D S E C U R I T Y56

Security Architecture Basics 57

thwarted, is allowed. The obvious answer to architects is that system availability should
not be compromised by a security component that fails closed. The equally obvious
opinion of security experts is that a failed component should not expose the system to
a new vulnerability and should therefore fail closed.

If we lived in a world where security components never failed due to non-malicious rea-
sons, this situation would not be an issue. Note that failing open does not guarantee the
success of any attack that would have previously been blocked. The system knows
about the component failure and is most likely actively working on restoration while at
the same time putting in place alternative measures to block invalid communication.
The system might even have a means of identifying all invalid traffic at another choke
point in the system and controlling it. The component that fails closed does not allow
any communication, however.

This situation can have serious consequences. The system might have quality of ser-
vice guarantees in its service-level agreement with customers that could cause con-
siderable hardship, loss of revenue, or reputation. The problem arises when the
component is a choke point, where the only means of continued service is through
the component. The common architecture guideline used in this circumstance is as
follows:

■■ All security components fail closed.

■■ No security component is a single point of failure.

The former is almost universally true, exceptions being normally the result of buggy
software rather than intentional design. The latter is very hard to enforce and requires
that security components such as packet-filtering routers, firewalls, or VPN gateways,
secure DNS servers, and all security servers must always be built in highly available
configurations. All systems must have failover networking, dual power supplies, and
battery power to remain available all of the time. Systems that cannot ensure this func-
tion often give up instead and fail open.

Safety
Reasoning about security in an abstract fashion requires a definition of the system and
its behavior in terms of entities operating on objects, along with a definition of the
events and actions that transform the system in operation. The safety property asks,
“Given a system in a certain initial state, can we reach some other state in the future
where a particular subject has a specific privilege on a particular object?”

Reasoning about safety is valuable from an academic viewpoint because it requires rig-
orous definition of the system’s states and transitions and the flow of ownership and
privileges between entities. From a practical standpoint, however, we have never seen
it applied in the field. Complex, real-world applications cannot be captured accurately
through abstractions that are quickly invalidated by simple operational details of the
system. The safety problem is not even decidable in some security models, and in gen-
eral can be used only to demonstrate or present a sequence of steps that lead to a com-
promise of some asset.

Safety is valuable in a limited context, in conversations between a systems engineer
and a security architect; one is focused on writing requirements to capture required fea-
tures and the other is trying to determine whether satisfying those requirements could
lead to insecure design. In interactions with projects at reviews, we have often noticed
that the description of some implementation detail immediately raises security con-
cerns. These concerns are best described in turn as a violation of some safety property:
“Here is a sequence of actions that will lead to a compromise of a secured asset.”

Safety analysis is also useful in weeding out false positives from audit tool reports.
Ghosh and O’Connor in [GO98] analyze a popular open-source FTP server, wu-ftpd 2.4.
Their analysis identified three potential code segments susceptible to buffer overflow
attacks, but on further examination they decided that the FTP daemon was safe
because there was no execution path to the code segments that would preserve the
(carefully crafted) overflow-generating buffer up to that code segment. In each case,
the buffer was either split up into multiple buffers (breaking apart the exploit) or forced
to pass a “valid pathname” test that would detect an exploit.

Authentication

User authentication is the first step in many end-to-end use cases in an application.
Authentication is the process of establishing the validity of a claimed identity. There are
many authentication schemes, and here are a few.

User IDs and Passwords
User ID/password schemes are also called one-factor authentication schemes. They
authenticate a user based on something the user knows. The application assigns users
or other entities a unique identifier. This identifier alone is not sufficient for authentica-
tion but must be accompanied by some proof of identity. UNIX logins use a password
scheme based on the security of the Data Encryption Standard (DES) algorithm. The
user supplies a password that is then used, along with a two-byte “salt” subfield in the
user’s /etc/passwd entry, to encrypt a block of eight null bytes using the UNIX crypt()
function. If the resulting value matches the remaining password hash stored in the pass-
word field of the entry, the user is authenticated and granted access to the system based
on his or her user ID.

Passwords have had a very long and successful run, but the DES algorithm is showing
its age as password crackers become more successful in exposing weak passwords.
Applications can enhance the strength of user ID and password schemes by aging pass-
words, requiring minimum password strength, or enforcing lockouts based on too many
bad login attempts.

Alternatively, an application can use one-time password schemes. Some one-time pass-
word schemes are software based; others use hardware tokens. For example, Bellcore’s
S/KEY, described in [Hal94], is based on Leslie Lamport’s [Lam78] hash chaining one-
time password scheme. S/Key extends the UNIX password mechanism to protect
against passive password sniffing attacks. Although it improves the default UNIX pass-

A R C H I T E CT U R E A N D S E C U R I T Y58

Security Architecture Basics 59

word scheme, it is much weaker than other alternatives such as the secure shell ssh
[BS01]. S/Key does not protect against man-in-the-middle attacks, and because it does
not use encryption, it also does not prevent network sniffing attacks that attempt to
crack the root password on the hash chain from any one-time password seen from the
sequence of passwords. IETF RFC 1938 defines a standard for one-time password
schemes such as S/Key. This scheme is interesting from an architectural viewpoint
because it takes the constrained environment of UNIX password authentication and
enhances it in a clever way to support one-time passwords. There is an additional per-
formance cost on the client side.

The more common one-time password schemes involve tokens.

Tokens
Authentication schemes based on tokens are also called two-factor authentication
schemes. They authenticate a user based on something the user knows (a password)
and something the user owns (a token). The two most popular token-based schemes
are SecurID tokens and Smartcards.

■■ RSA Data Security Inc.’s SecurID token uses a proprietary algorithm running on
both the user’s token and a corporate token authentication server that uses the
same set of inputs (a secret card-specific seed, the time of day, and other inputs) to
generate a pass-code on the user’s token that can be verified by the server. The
display on the token changes once every minute (and, on some versions, requires
the user to enter a personal identification number [PIN]).

■■ Smartcards are credit-card-sized computers based on the ISO 78xx standards
series and other standards. Smartcards generally have cryptographic co-processors
to support strong cryptography that would otherwise be impossible on their rather
slow mid-80s processors (most often Motorola 6805 or Intel 8051). Smartcards
have three memory segments: public (accessible to anyone), private (accessible to
authenticated users), and secret (accessible only to the processor and
administrative personnel). Smartcards support one-way symmetric authentication,
mutual symmetric authentication, and static or dynamic asymmetric
authentication. Asymmetric authentication schemes are challenge-response
protocols based on RSA or on other asymmetric cryptography protocols.
Smartcards are susceptible to Power Differential Analysis (PDA), an exploit
invented by Paul Kocher. PDA uses the card’s power usage to extract the secret
keys stored on the card.

Biometric Schemes
Biometric schemes are also called three-factor authentication schemes and authenti-
cate users based on something they know (a password), something they have (a token),
and something they are (a retinal scan, thumbprint, or thermal scan). These schemes
are very strong but are expensive and therefore inapplicable in many scenarios.
Standards for using biometrics are still being worked on, and although they represent
the future of authentication, we are nowhere near that future today. We refer the reader

to Web resources on biometric authentication, such as www.networkcomputing.com/,
www.securityfocus.com/, and www.digitalpersona.com/, for more information.

Authentication Infrastructures
Applications can implement security infrastructures such as Kerberos, DCE, or PKI to
provide authentication services. We will describe application configuration issues for
authentication infrastructures in the context of specific application domains and ven-
dor products in Chapter 13, “Security Components.”

Authorization

Authorization is also sometimes referred to as access control. Over the past three
decades, a tremendous amount of academic and government research on access con-
trol has been completed alongside work on commercial implementations in products
ranging from operating systems and databases to military command and control sys-
tems and banking networks. Each model of access control management is based on
specific assumptions about the nature of the problem domain and the policy we desire
to enforce. For example, theoretical models emphasize our ability to prove properties
such as safety, whereas commercial implementations desire ease of administration and
configuration.

At the heart of an access control model is the ability to make access decisions. An
access decision must be made whenever a subject requests access to an object. Any
decision requires two components: data attributes describing the subject and the
object and a decision procedure that combines this information to arrive at an
“allow” or “deny” answer. Some access control models even allow negotiation, in
which the subject can provide additional information, change roles, or request a dif-
ferent access mode on the object. The model must enforce policy at all times. Con-
sider, for example, the process of electing the President of the United States, which
consists of data in the form of the votes cast and a decision process embodied by the
Electoral College. If the result is in dispute, both parties can question either the data
or the decision process. This results in the need for other important properties within
a good access control model: the ability to administer the model and the ability to
review aspects of the data.

In general, access controls are responsible for ensuring that all requests are handled
according to security policy. Security policy defines rules of engagement and modes of
operation permitted within the system. Normally, anything not explicitly permitted by
the policy is denied. The system security policy represents the system’s defined guide-
lines for management of security to attain the security principles mandated by the cor-
porate security policy.

At times, there is an overlap between the needs of the application in controlling access
according to the security policy and its needs in controlling access as part of the appli-
cation business logic. In the following discussion, we will focus only on a security policy-

A R C H I T E CT U R E A N D S E C U R I T Y60

TE
AM
FL
Y

Team-Fly®

Security Architecture Basics 61

driven access definition (although increasingly, applications presented with a complex,
robust framework for defining permissions are willing to exploit it to embed business
logic into the security framework). This choice has many risks; it is best not to muddle
business rules with security policy. We will return to this issue in later chapters when we
describe specific technologies.

Models for Access Control

Access control models provide high-level, domain-independent, and implementation-
independent reference models for the architecture and design of access mechanisms.
Models are built on certain assumptions that the underlying application must make con-
crete. In turn, models can guarantee security properties by using rigorous analysis
(under the generic assumption of error-free implementation and configuration).

Historically, access control models are classified in two broad categories: mandatory
and discretionary. We will describe each model in the next section and highlight their
characteristics and differences for access management, but we will reserve the major
part of our presentation for a description of the most popular model of access control:
role-based access control (RBAC).

Mandatory Access Control
Mandatory access control governs the access of objects by subjects by using a classifi-
cation hierarchy of labels. Every subject and object is assigned a label. All access is
based on comparisons of these labels and, in general, is statically enforced. We say that
access control is mandatory because the system centrally enforces all decisions to per-
mit a subject’s activities based on labels alone. Entities have no say in the matter.

Exceptions to static enforcement occur in models that support dynamic labeling at run
time or in systems that assign multiple labels to subjects or objects and use an arbitra-
tor to make an allow/deny decision. This situation can complicate management signifi-
cantly and make analysis of properties such as safety difficult. Other models extend the
label hierarchy horizontally at each label level by adding compartments, which repre-
sent categories of information at that level.

Mandatory access control centralizes the knowledge base used to make decisions,
although subjects and objects can negotiate access based on local information. Entities
are allowed to read objects with lower classifications and can write to objects only with
the same classification level.

Discretionary Access Control
Discretionary access models are all descendants of Lampson’s access matrix [Lam73],
which organizes the security of a system into a two-dimensional matrix of authoriza-
tions in which each subject-object pair corresponds to a set of allowed access modes.

Figure 3.1 Ownership and access permission grants.

The access modes in the matrix can be modified through commands. Allowed access
must satisfy consistency rules.

Discretionary access control governs the access of objects by subjects based on owner-
ship or delegation credentials provided by the subject. These models are implicitly
dynamic in that they allow users to grant and revoke privileges to other users or enti-
ties. Once access is granted, it can be transitively passed onto other entities either with
or without the knowledge of the owner or originator of the permissions. Discretionary
access control models enable subjects to transfer access rights for the objects they own
or inherit, or for which they have received “grantor” privileges.

Consider they are a simplified model restricted to having only two kinds of entities,
namely subjects and objects (setting aside roles for a moment). A subject can have sys-
tem-wide privileges tied to whom they own (identity-based rights) and object-owner-
ship privileges tied to the objects they own (ownership rights). In such a model, users
can grant rights in three manners: A subject that owns an object can permit another
subject to access it; a subject that owns an object can transfer ownership to another
subject; or a subject can transfer all or part of its identity-based rights to another sub-
ject thereby granting all its modes of access to the receiver. The relationships are
described in Figure 3.1.

Discretionary access control is flexible, but the propagation of rights through the sys-
tem can be complex to track and can create paradoxes. If A grants B the “grant” right
(effectively sharing ownership) to an object, and B in turn grants C “read” permission,
what happens when A revokes the “grant” privilege from B? Does C still have “read”
access to the object, or does the original revocation cascade through the system, gener-
ating additional revocations? Alternatively, does the security model reject A’s revoca-
tion request, requiring that B first revoke C’s rights? Reasoning about properties such as
safety is also complex in DAC models.

A R C H I T E CT U R E A N D S E C U R I T Y62

A
M

S
O

O

T

Security Architecture Basics 63

Role-Based Access Control
The adjectives mandatory and discretionary referring to a user’s ability to modify
access rights are no longer considered the most critical defining property of an access
model. Current presentations (for an excellent survey please see [And01]) express the
access model structurally as multi-level layers or multi-lateral smokestacks defined to
accomplish some objective goal.

■■ Military multi-level models such as Bell-LaPadula protect the confidentiality of
information.

■■ The multi-level Biba model protects data integrity.

■■ The multi-lateral Chinese Wall model of Brewer and Nash protects against conflicts
of interest.

■■ The multi-lateral BMA model described in [And01] protects patient privacy.

The dominant access control model in academic research and commercial products is
role-based access control (RBAC). RBAC has seen widespread acceptance because its
objectives are architectural. RBAC simplifies security administration, includes role inher-
itance semantics to enable rich policy definition, and permits easy review of subject-to-
role as well as role-to-permission assignments. RBAC is ideal for security architecture
because of its alignment with our other architectural goals of simplicity, reliability, adapt-
ability, and serviceability.

Although implicit role-based schemes have existed for more than 25 years in the form
of models that use grouping, the first formal model for role-based access control was
introduced in [FK92]. That same year, ANSI released the SQL92 standard for database
management systems, which introduced data manipulation statements for defining
roles, granting and revoking permissions, and managing role-based security policy. Fer-
raiolo and Kuhn in [FK92] insist that RBAC is a mandatory access control policy in con-
trast to Castano et al. in [CFMS94] who are just as insistent that RBAC is discretionary.
In reality, there is a wide spectrum of RBAC-like security models with no standard ref-
erence model to describe subject and object groupings, role definition semantics, oper-
ations to access and modify policy, or resolutions to the complex transaction-based
dynamics of role-based access. A recent innovative proposal from NIST (csrc.nist.gov/
rbac) seeks to present a standard RBAC model that unifies key concepts from many
implementations into a feature definition document supported by a reference imple-
mentation of the model and its management software. The advantages of such a refer-
ence model include common vocabulary, compliance tests, reuse of policy definition
across products, and easier pairwise comparison of vendor products. Please refer
to [SFK00] for a description of the standard or visit the NIST RBAC site for more infor-
mation.

In this book, after describing RBAC, we will present several commercial access control
models in terms of the vocabulary and concepts of this chapter. Some implementations
are very feature-rich, while others barely qualify to be called RBAC. Because of the
many advantages of a role-based security policy definition, we will make the reasonable
assumption that most applications will build their security solutions around this model.
Viewing vendor products in this light starkly contrasts the gap between policy and

product, a gap that must be filled by your application. Individual vendors have their
own take on what role-based access control is and, therefore, configuration is not easy.

RBAC Concepts and Terminology

Role-based access control attempts to simplify the number of access definitions
required between a large pool of subjects and a large pool of objects. This simplification
is critical for achieving security in conjunction with other architectural goals, such as
scalability, ease of administration, and performance. Adding users might not require
additional user groups, and adding objects might not require additional object-access
groups.

RBAC introduces roles to associate a use case of the system with a label that describes
all the functions that are permitted and forbidden during the execution of the use case.
Users execute transactions, which are higher abstractions corresponding to business
actions, on the system. Within a single transaction, a user may assume multiple roles,
either concurrently or serially, to access and modify objects. Separating users into
domains and determining policy at the domain level insulates us from the churn in the
underlying user population. Similarly, creating object groups adds simplicity to the clas-
sification of access modes to objects. Consider a database in which the basic object
accessed could be of very fine granularity—for example, a single row or field of a table.
Handling access labels at this fine level of granularity can add a huge performance cost,
because every query against the table is now interrupted to check row-level access per-
missions. To avoid this performance hit we can grant the role access to the entire table
instead of individual rows.

RBAC works as follows. Users are assigned to roles; objects are assigned to groups
based on the access modes required; roles are associated with permissions; and users
acquire access permissions on objects or object groups through roles by virtue of their
membership in a role with the associated permissions. Roles can be organized into hier-
archies with implicit inheritance of permissions or explicit denial of some subset of
access permissions owned by the parent role. RBAC solutions define the following:

■■ Object-access groups. Objects can be organized into groups based on some
attribute such as location (files in the same directory, rows in the same table) or by
access modes (all objects readable in a context, all URLs in a document tree that
are readable by a user, all valid SUID files executable by a user).

■■ Access permissions. Access permissions define the operations needed to
legitimately access elements of an object group (access modes are also sometimes
called operations). Any user that requests access to the object group must do so
from a role that has been assigned the correct access permissions.

■■ Roles. Roles are use-case driven definitions extracted from the application’s
operational profile describing patterns of interaction within the application. We
organize users into roles based on some functional attribute, such as affiliation (all
users in the Sales organization; all administrators of the application; all managers
requiring read-only, ad hoc query access to the database), by access modes (all
users permitted to execute commands, all Web sites trusted to serve safe applets,

A R C H I T E CT U R E A N D S E C U R I T Y64

Security Architecture Basics 65

Figure 3.2 Role-based access control.

and all users with write access to the directory), or by hierarchical labels

(manager, foreman, or shop worker). Static non-functional attributes of a user do
not define roles (such as location, years of service, or annual income). The user
must do something to belong to a role.

■■ Role assignment. We assign users or user groups to roles. Users can be assigned to
multiple roles and must have a default role for any specific access decision. Users
can dynamically change roles during a session. Transitions between roles may be
password protected, and the application might even maintain a history of past
roles for a user over the life of a session.

Figure 3.2 is a common pattern. In this diagram, we organize users into roles, organize
objects and the modes of operation upon them into groups, and assign permissions to
roles to enable specific access operations to any object within an object-access group.

In addition, the policy may place restrictions (either statically or dynamically) on how
many roles can be simultaneously assumed by a subject or explicitly forbid a subject to
be in two conflicting roles at the same time. In addition, the policy should specify
default role assignments for users and group and ownership assignments for objects,
respectively.

A critical innovation described in [SFK00] and pioneered by many models and imple-
mentations is the ability to define role hierarchies. Borrowing from the inheritance
models of the object-oriented world, we may define hierarchies of roles and define the
semantics of transfer of privileges between a parent role and its children to either
empower or restrict the subordinate role in some key fashion. Permissions can be
inherited, or users can be automatically added to a newly created instance of a role
within the hierarchy. The role inherits the permissions of its subordinate roles and the
users of its parent roles automatically.

Object3

Object6

Object8

Object4

Object2

Object5

Object7

Object1

Subject 1Subject 1Subject 1Role 2

ObjectObjectObject
Object

Group 1

ObjectObjectObject
Object

Group 2

Subject 5

Subject 8

Subject 2

Subject 3

Subject 7

Subject 9

Subject 6

Subject 4 Subject 1

Access modes

Permission

Permission

Subject 1Subject 1Subject 1Role 1

Assign based

on function

Assign based
on function

Access modes

In actual applications the theme varies, but we will organize any role-based access con-
trol feature described in the following chapters into this basic mold. The variations can:

■■ Collapse the structure to make it even simpler, or conversely, introduce new
context-based elements that make access definition more rich and complex.

■■ Make roles object-centric, in which a role defines a list of allowed access
operations on all objects assigned to that role.

■■ Make roles user-centric, in which a role defines a list of capabilities shared by all
the users assigned to that role.

■■ Apply an access definition transparency or mask to a role, which specifies
maximum permissions allowed on the object regardless of any modifications to the
access definitions on the role. Masks prevent accidental misconfiguration from
exposing an object.

■■ Store evaluations of access decisions in a cache or ticket that can be saved or
transported over the network.

■■ Allow subjects access to administrative roles that allow roles to be created,
transferred, granted, revoked, or otherwise manipulated dynamically at run time.
This can significantly complicate analysis but can present powerful tools for
implementing the principle of least privilege in your application.

■■ Add extensive support for administrative operations, role and object definition
review, guard against misconfiguration and paranoid modes for roles that redefine
policy dynamically.

Why is role-based access control so popular? The answer is simplicity. The complexity
of access control implementation is contained in the initial configuration of the appli-
cation. After this point, making access decisions is made easier because the dynamic
nature of the subject-object endpoints of the access decision is largely hidden.

What is bad about role-based access control? RBAC reduces identity theft to role theft.
Any one object or subject can compromise an entire group. Other features such as role
inheritance, automatic assumption of roles, and unrestricted grants of privileges
(GRANT ALL in a DBMS, for example) can cause violation of security policy. In addi-
tion, the fuzzy nature of overlaps between roles, assignment of users to multiple roles,
and the assignment of objects to multiple object-access groups makes misconfiguration
a real risk. Using default group and role assignments and rigorously avoiding overlaps
in role definition can alleviate this risk.

Access Control Rules
Recall our description of access decisions as composed of data along with decision
methods on that data. Regardless of the model used, access decisions come down to
matching a subject’s access requests to some collection of access control rules to make
a determination to allow or deny access. The collection of access control rules embod-
ies an instance of the security policy at work.

Access control models aim to fulfill two performance goals. The first seeks to represent
all the data required for access decisions as compactly as possible. The second seeks to

A R C H I T E CT U R E A N D S E C U R I T Y66

Security Architecture Basics 67

execute the decision algorithm as quickly as possible. Both of these goals may be in
conflict with others such as speed of access definition review or administration. Any
particular vendor solution will represent a unique set of compromises. For example, a
model may store access rules for a subject in a set-theoretic manner: User X is
ALLOWED access to {A,B,C,D,E} via one rule, but DENIED access to {C,D} via another.
We have to compute the set difference between these two rules to arrive at a decision
on a specific access request (“Can X read B?” “Yes”). We can view each access decision
as combining all available data to arrive at a list of access control rules and applying a
decision process to the set of rules.

In general, when multiple rules apply to an access decision on whether a given subject in
a given context can access an object, the policy must resolve the multiple directives into
an acceptable decision. The resolution strategy should have the following properties:

■■ Consistency. The outcome of an access decision should be the same whenever all
the parameters to the decision, and any external factors used in resolution, are
repeated.

■■ Completeness. Every form of allowed access should correspond to an expected
application of the security policy.

The resolution algorithm must, of course, correctly implement policy. The modes of
resolving multiple rules fall into one of three options.

■■ First fit. The access control rules are ordered in a linear fashion, and rules are
applied in order until one rule either explicitly allows or denies access. No further
examination is conducted. If all rules have been found inapplicable, access is
denied by a “fall-through exception” rule of least privilege.

■■ Worst fit. All applicable rules are extracted from the rule base and examined
against the parameters of the access decision. Access is allowed only if all rules
allow access. If no applicable rules are found, or if any rule denies access, then the
subject is refused access to the object.

■■ Best fit. All applicable rules are extracted from the rule base and passed to an
arbitrator. The arbitrator uses an algorithm based on all parameters and possibly
on information external to the parameters of the access decision and priorities
between applicable rules to make the best possible decision (which is, of course,
application specific). The arbitrator must be consistent.

Choosing the right strategy is dependent on application domain knowledge. We recom-
mend defining access control rules that satisfy the disjoint property: For any access
decision, at most one rule applies. Network appliances that filter packets use this strat-
egy. Often, although the access control rules within the appliance work on the first-fit
strategy, the architect can ensure that in the design of the policy no further rules will
apply. Thus, the configuration of rules on the appliance reflects a uniqueness property.

In the following description, we will ignore the dynamic nature of access decision mak-
ing, in which either the data or the access control rules can change as we apply our
access decision algorithm. In general, access control rules use the following parameters
to define an access control rule-base as a function mapping a 4-tuple to the set {ALLOW,
DENY}. The fields of the 4-tuple are as follows:

■■ Subject. The active entity, process, user, or system that requests access to a
resource. The subject is assumed to have passed some identity and authentication
test before requesting service.

■■ Object. The passive target of the access, possibly providing a service, accepting a
message, returning a value, or changing state. The object is assumed to have
passed some validation test before being made available for access.

■■ Privileged Operation. The type of access requested. For a data object, access
could include create, update, delete, insert, append, read, or write modes.

■■ Context. A predicate about the environment that must hold true. Context can catch
many environment attributes, such as the following:

■■ Ownership. Did the subject create the object?

■■ History. What sequence of events led to this access request?

■■ Time. Is the time of day relevant?

■■ Quality of service. Has the subject subscribed to some stated level of quality of
service that would prevent an otherwise allowed access due to a competing
request from higher levels? QoS for business reasons sometimes appears in
security solutions.

■■ Rights. Has the subject been granted or revoked certain rights by the system?

■■ Delegation. Does the subject possess credentials from a secondary subject on
whose behalf access is being requested? This situation might require a loop
back to the beginning to refer to a different rule with all other parameters
remaining the same.

■■ Inference. Will permitting access result in a breach in the security policies
guidelines for preventing logical inference of information by unauthorized
entities?

Thus, an access control rule-base defines a function as follows:

ACRB : �s,o,p,c� → {ALLOW,DENY}

This function gives us the ability to organize the rules according to different viewpoints.

■■ An access control list is a collection of all access-allowing rules that apply to a
single object. For example, an ACL for a file describes all the users who are
allowed access and their associated permissions to read, write, or execute the file.

■■ A capability list is a collection of all access-allowing rules that apply to a single
subject. For example, based on the security policy, a signed Java applet might be
granted access to a collection of system resources normally otherwise blocked by
the Java sandbox.

■■ An access mode list is a collection of all access-allowing rules that specify the
same mode of access. For example, a corporate directory could specify a
permissive security policy with respect to reads, but restrict writes to strongly
authenticated administrators only.

A R C H I T E CT U R E A N D S E C U R I T Y68

Security Architecture Basics 69

■■ A context list is a collection of all access-allowing rules that share the same
context. For example, an application could distinguish between access control
definitions during normal operations and those in situations in which the
application is responding to a disaster or to a work stoppage by a large pool of
users.

Applications sometimes abuse the ability to organize by context by exhibiting the inad-
visable habit of including business logic into security policy definitions. For example,
an application could specify access control rules that restrict, during peak usage, some
resource-intensive activities or require all funds transfers to be done before 3 p.m.
Monday through Friday because that is when the banks are open. This overlap of func-
tionality tends to muddy the distinction between corporate security policy and the
operational profile of the system.

Understanding the Application’s
Access Needs

To design a robust model of access control from an architecture perspective, we must
first ask ourselves questions about the application domain. RBAC has both flexibility
and architectural support for evolution.

Creation and Ownership

Questions on object creation and ownership include the following:

■■ Do subjects create objects? If so, do we maintain knowledge of an object’s creator
within the application?

■■ Do subjects own objects? If so, do we maintain knowledge of an object’s (possibly
multiple) owners? Is there a default owner for each object?

■■ Do objects have fine-grained structure? Does access to the object imply access to
all parts of the object?

■■ Are objects organized in a hierarchical fashion according to a labeling scheme that
honors some security principle? The principle could be:

■■ Secrecy. A subject must have a certain level of clearance to access the object
(the Bell-LaPadula model).

■■ Integrity. A subject must have a certain level of trustworthiness to access the
object (the Biba model).

■■ Non-repudiation. A subject’s access to an object at one level must be
undeniable by a higher standard of proof compared to access to an object at a
lower level (this situation does not correspond to a formal model, but non-
repudiation protocols consider this factor).

■■ Do objects have non-hierarchical labels that could also be used as context
information to make access decisions?

Roles and Access Modes

Questions on roles and access modes include the following:

■■ Does the application divide its user community into classes of users based on the
grouping of user activities into roles in the application’s operational profile?

■■ What access modes do subjects need? Can they create, delete, update, insert, read,
write, alter, append, or otherwise modify objects? Does the object need to be
protected during each mode of access? Do we audit all object access for forensics?

■■ Does the application assign distinguished status to one member of each role as the
member responsible for the integrity of the object? This could be necessary if
another user in the role corrupts an object by accident or malice.

■■ Do the access modes of objects within the application have dramatically different
structures? This situation occurs if the application has a corporate directory
function with wide read access but very restricted write access. If performance
requirements are different for different access modes, this might impact the choice
of security around each mode (for example, no security for reads to the directory,
but writers must be authenticated).

Application Structure

Questions about structure include the following:

■■ Does the application partition the object space according to some well-defined
method? Are objects within each partition invisible to objects in other partitions?
Are users aware of the existence of the partitions, or does the application give
them the virtual feeling of full access while invisibly implementing access control?

■■ Are any objects contained within a critical section? Will access control to
resources in a critical section cause undesirable properties in the system? A
critical section within an application is accessible by only using specific atomic
requests, which are carefully managed. Critical sections protect resources from
corruption or race conditions but can result in deadlock if incorrectly designed
and implemented.

■■ Can objects present polyinstantiated interfaces? Polyinstantiation is the ability to
create multiple virtual instances of an object based on the credentials of the
subject. Access to the actual data, to perform reads or writes, is carefully
monitored by coordinating reads and writes to the virtual objects. Users are
unaware that they are interacting with polyinstantiated objects.

■■ Does the application contain multiple access control decision points? Is access
control implemented at each of the points, and if so, does the chained sequence of
decisions comply with the intended security policy? Are all decisions made under a
single security policy, or do different information flow points reference different
masters for access control decisions?

A R C H I T E CT U R E A N D S E C U R I T Y70

TE
AM
FL
Y

Team-Fly®

Security Architecture Basics 71

Discretionary Rules

Questions about discretionary access control include the following:

■■ Can users grant privileges to other users? Can users assume the identity of other
users legitimately, through delegation?

■■ Can users revoke privileges previously granted to other users? Revocation can
cause paradoxes if users are allowed to transitively grant access to other users
after they have acquired access themselves. Is revocation implemented in a
manner that avoids or detects and corrects paradoxes?

■■ Can objects assume the identity of other objects?

■■ Is delegation allowed? Do we inform the original owner of the object when a
downstream delegate accesses it?

Obviously, resolving these issues is difficult. We believe, however, that understanding
the implications of the architect’s responses to these questions is critical to the design
of a correct, consistent, complete, and usable access control solution. The exercise of
examining these questions should be accomplished before choosing any vendor prod-
uct from several alternatives.

Other Core Security Properties

We will revisit the other core security properties, such as integrity, availability, confi-
dentiality, auditing, and non-repudiation, in the following chapters. Unlike access con-
trol, which has a long and rich history of theoretical models, these properties are best
discussed with reference to a problem at hand. It is easier to recommend strategies for
ensuring these properties within the context of specific application components and
technologies.

Analyzing a Generic System

A generic system or application solves some well-defined problem within a context.
The project must build the application around corporate standards and must conform
to security policy. Figure 3.3 shows some of the design tensions faced by an architect
from an engineering and technology viewpoint.

Our example application consists of a Web front end to an application server. The appli-
cation server can access legacy applications for data and wrapped business functions
and can query a corporate directory for user, group, organization, and system profiles.
Infrastructure components for providing services like mail, DNS, time, news, messag-
ing, or backup might also need security.

SONET/Frame/ATM/IP

Satellite dish Comm. Tower

Satellite

VPN Gateway

Partner Firewall Dialup gateway

WAP Gateway

User's Workstation

Laptop

Internet Intranet

DMZ

Partner
Application

Partner
Database

Corporate Directory

Infrastructure
ApplicationsApplication Server

Application
Database

Legacy
Application

Legacy
Database

Mail, DNS,
NID, VPN
support,

backup, etc.

Web Server

Networking layout

Firewalls and Gateways

Communication technologyApplication Architecture

Partner interaction

User platforms

Figure 3.3 Architectural tensions surrounding an application.

Around the application, shown in Figure 3.3, are constellations of components that the
architect must depend upon, over which he or she might have very little control or
choice.

■■ User platforms. Users can access data and services by using a variety of devices
including desktops, laptops, pagers, cellular phones, and handheld devices. Each
device can support a thin client such as a browser, or a custom-embedded client
that must be developed in-house or purchased. The user can communicate with the
application with a wide variety of protocols.

■■ Partner applications. The application might have a tight coupling to business
partners and require connectivity to a demilitarized zone for secure access to
partner data and services.

■■ Networks. A wide variety of logical networks, at varying levels of trust, can carry
application traffic.

■■ Firewalls and gateways. Connectivity to the application from each user platform
and over each network might require authentication and session validation at one
or more gateways. Intermediate firewalls and routers on communications paths
might need special configuration.

■■ Communications technology. The application can use several different
communications technologies, each supporting security by using a unique
paradigm.

Other architectural viewpoints also reveal similar collections of artifacts all jostling for
attention. Consider a process viewpoint that reorganizes engineering or technology
issues on a component basis. Figure 3.4 shows the same example application as it would
appear with connections to partners and backend systems, in a generic enterprise.

A R C H I T E CT U R E A N D S E C U R I T Y72

Security Architecture Basics 73

Web Browser
User ID / password
authentication
Static html and forms
for presentation

Web Browser
Token authentication
Dynamic html and
forms for presentation

Partner Application
backend database
supports B2B using
Web Methods

Web Browser
X.509 Certificate
authentication
Java Applet for
presentation

Servlet Engine
JSP, servlet includes
Application logic
embedded in servlets

Static Web Pages
Static files, cgi-bin
scripts.

Dynamic Web Content
ND Application server or Web
server API to Servet engine

Database connectivity management

Session
Management

Load balancing and
recovery

Error and disaster
recovery

management

Legacy Mainframe

CORBA
interface to
wrapped object
implemented
with Orbix

NetDynamics
access to legacy
oracle DB

Enterprise CORBA
distributed object
implemented with
Visibroker

PKI infrastructure
from acquisition.
Based on RSA Keon
Server

Infrastructure
Services:
DNS, Mail
WAP Gateway, VPN

PKI infrastructure
Enterprise vendor is
Verisign

Oracle Database

EJB containers for
application logic

Figure 3.4 An enterprise application with many components.

Thinking about security for the application in the above environment is very difficult,
and measuring compliance to policy is even harder. Examine the diagram to see paral-
lels or departures from your own application architecture.

The remainder of our presentation will explore specific concerns such as writing safe
code; trusting downloaded code; securing operating systems, Web servers, and data-
bases; and using middleware products securely. We will end by returning to enterprise
security as a rallying point for building consensus among systems architects across
the corporation.

Conclusion

The bibliography contains several references for more information about security prin-
ciples, properties, authentication mechanisms, and access control. We recommend
reading about the history of access control models to better understand the evolution
of authorization principles, and the background behind the adoption, by commercial
products of several common mechanisms.

In the next chapter, we now proceed to our next task: building a catalog of security
architecture patterns.

The purpose of security is to enable valid communication, preferably in as transparent a
manner as possible. At the same moment, all invalid communication—whether unau-
thorized, unauthenticated, unexpected, uninvited, or unwanted—should be blocked.
The only way of accomplishing these goals is through authentication of all principals
within the application and through inspection of all communication. There are many
technologies—each a collection of tools, protocols, and components—all available for
designing security solutions to accomplish these two goals. Despite this variety, when
we look at the system we can see patterns of implementation emerge at the architec-
ture level as a network of components interacting based on the logical relationships
imposed by the problem domain.

Pattern Goals

Our choice of the word patterns might cause some misconceptions because of the con-
siderable baggage that the term carries. We thought about alternative terms, such as
styles or profiles, but in the end stayed with patterns because, simply, the good out-
weighed the bad. Our collection of security patterns shares some of the same goals as
the pattern community at large. Specifically, something is a security pattern if:

■■ We can give it a name.

■■ We have observed its design repeated over and over in many security products.

■■ There is a benefit to defining some standard vocabulary dictated by common usage
rules to describe the pattern.

■■ There is a good security product that exemplifies the pattern.

C H A P T E R

75

4
Architecture Patterns in Security

Pattern Origins

Many of the security patterns that follow have been introduced and discussed in
the pattern literature before, albeit not in a security context. We believe all of
these concepts are, by their very nature, too well known for any one source to
claim original definition. Patterns are, by definition, codified common-sense
recognition of solutions to problems within contexts. We will, however, cite
references with each pattern when we are aware of a prior description.

■■ There is value in its definition. The pattern might capture expertise or make
complex portions of an architecture diagram more intelligible. The pattern might
make the evaluation of a product easier by highlighting departures from a standard
way of approaching a problem. It might also raise a core set of issues against these
departures.

We would like to note several important distinctions because of the differences
between our pattern descriptions and those of the object-oriented pattern community.

■■ The patterns we describe are not object-oriented in any manner.

■■ We will not use the presentation style commonly used for pattern description.
Issues of context, forces, variation, and so on will be described informally when
we reach our discussion of specific security scenarios in later chapters.

■■ These patterns do not generate architectural decisions, nor do they provide
guidance on how to structure other portions of the system architecture.

■■ They do not codify best practices. Using one of these patterns will not necessarily
make your product or system safer.

We have a lot of respect for the wonderful contributions of the pattern community and
strongly believe in the measurable and quantifiable merits of patterns, both for object
reuse and for architecture analysis purposes. We do not want to present the material in
the chapter as having virtues beyond that of enabling us to think about security archi-
tectures more easily, however.

We abstract and present these only so that architects can easily recognize them in
designs and then ask good questions about their implementation. We do not intend to
start a cottage industry in security pattern definition.

Common Terminology

There are some terms used by vendors and application developers alike that often reoc-
cur in security architecture descriptions. In the following sections, we will describe cer-
tain patterns of interaction and label them with a name. This procedure is not an
attempt to enforce some abstract nomenclature on an existing and diverse collection of

A R C H I T E CT U R E A N D S E C U R I T Y76

security artifacts. We will continue to describe any and all security features in the
words and terminology of their creators, but we will use the patterns described in this
chapter as the starting point for a taxonomy for describing security options available in
particular parts of the systems architecture: within code, within the OS, within the Web
server, within the database, or within middleware.

When there are subtle differences in the way the same concept is defined from two dif-
ferent and equally authoritative sources, we are often left with a confusing choice. Is
the distinction critical, revealing a fundamental gap in functionality? Or, as is more
often the case, are we looking at a distinction with no real difference? We will try to
avoid such confusion. We will define any security terms used in support of the pattern
within the pattern description itself. Again, the purpose is to guide the reader by pro-
viding a single point of reference for vocabulary.

We refer the reader to the previous chapter for the definition of security principles and
some common terms required for the following descriptions.

Architecture Principles and Patterns

Implementation of the seven security principles, discussed in Chapter 3, “Security
Architecture Basics,” within any system architecture occurs through a process of
decomposition and examination of the components of the system. The architect must
perform the following jobs.

Identify entities. These might be subjects, objects, hosts, users, applications,
processes, databases, code, or in general any entity that requests and requires
resources within the application.

Map entities to context attributes. The context attributes of an entity add to our
knowledge of the entity. These are values, possibly used in authentication or access
decisions involving the entity, that are external to the collection of identifying
credentials carried by the entity itself. Context attributes are made available by the
environment of the entity or by service providers. When an entity requests a resource,
its identity and context are necessary for making access decisions about the request.

Identify security service providers. Security service providers are most often third-
party products, located locally or remotely, that perform some security function. A
security service provider could perform cryptographic operations, perform lookups
on behalf of a client to trusted third-party components such as a directory or an
OCSP server, manage secure access to data stores, provide network time service, or
enable token authentication.

Identify communication channels between entities. This identification could be
through a description of common interactions where security is needed, such as on
the wire, between the user and the Web server, during object-to-object invocation,
from an application to the database, across firewalls, and so on. Depending on the
architectural viewpoint model used, such as the object view, the process view, the
network view, or the workflow view, each channel might require security from one
of two perspectives:

Architecture Patterns in Security 77

■■ Protection of one end point on the channel from the other end point. This
protection is accomplished by using a channel element to control
communication on the channel.

■■ Protection against external malicious agents. The communication channel
itself must be confidential and tamperproof, and connectivity must be
guaranteed.

Identify platform components. Platform components create structure in the
architecture. They divide the proposed architecture into horizontal or vertical
layers, create messaging or software bus components, identify clustering or
grouping, and enable us to identify inside and outside dimensions on boundary
layers. Platform components can be defined at any level: machine, network,
protocol, object, service, or process.

Identify a source for policy. This source is a single, abstract point of reference
within the architecture that serves as an authority and an arbitrator for any security
policy implementation issues. All entities load their local policies from this source.

At this point, due to the very general nature of the discussion, there is really not much
to debate about this process. Before we can meaningfully apply these concepts, we
must first describe patterns of use in their application.

The Security Pattern Catalog

Here is our catalog of security patterns, shown in Figure 4.1, organized into five cate-
gories—each corresponding to one of the steps listed in the previous section.

We will now proceed to describe each pattern, give examples of its use within a sys-
tem’s architecture, and discuss some issues with its use.

Entity

Entities are actors in our application use cases. Entities can be users, administrators, or
customers. Entities can also be inanimate objects, such as hosts or other systems that
can send messages to our application. Entities can be internal to the application (for
example, a system process) or can be external to the application (for example, a user at
a terminal).

Principal
A principal is any entity within the application that must be authenticated in some
manner. A principal is an active agent and has a profile of system use. An access request
by a principal initiates a security policy decision on authorized use. A principal can
engage in a transaction or communication that requires the presentation and validation
of an identifying credential. An identifying credential has attributes that describe the

A R C H I T E CT U R E A N D S E C U R I T Y78

 Pattern Catalog

S
er

v
ic

e
p

ro
vi

d
er

C
h

a
n

n
e

l
co

m
p

o
n

en
t

P
la

tf
o

rm
co

m
p

o
n

e
n

t
C

o
n

te
xt

h
o

ld
e

r
E

n
ti

ty

Principal

Session
object

Directory

Wrapper

Transport
Tunnel

RoleSentinel
Ticket/
Token

Cookie

Validator
Trusted

Third Party

Filter ProxyInterceptor

MagicSandboxElevatorLayerConcentratorDistributor

Figure 4.1 The security patterns catalog.

entity, along with authentication information. The principal’s identity is bound to the
authentication information somewhere in the architecture.

There are many methods of authenticating a principal, based on how many pieces or
factors of information are required.

■■ One factor, or “something you know” (for example, user IDs and passwords). A
UNIX login has a corresponding password hash entry in /etc/passwd used for
password validation. An X.509v3 certificate binds the owner’s distinguished name
to the public half of a key pair. The system authenticates the principal through a
challenge-response protocol requiring knowledge of the corresponding private key.

■■ Two factors, or “something you know and something you have” (for example,
tokens and smartcards that use challenge-response protocols)

■■ Three factors, or “something you know, something you have, and something you
are” (for example, systems that use biometric devices to test physical attributes)

Applications can use the principle of transitive trust, where A authenticates to system B
which then invokes C on A’s behalf. C only authenticates B and not A. Transitive trust is
an important simplifying element in security architectures that could result in system
compromise if a multi-hop trusted relationship is violated.

Several common issues must be raised at the architecture review about the method of
authentication of a principal within an application.

Architecture Patterns in Security 79

■■ How many parties are involved in the authentication of a principal? How do these
parties communicate?

■■ Does the system impose conditions on the validity of an authenticated session?

■■ How specific is the principal’s identity? The identity of the principal could be a
low-level element such as an IP or MAC address at the hardware level, or it could
be a very abstract business entity (“The CFO organization needs our confidential
analyst reports”) that would require detailed systems engineering for definition
within the system.

■■ Does the application use a mapping function to convert identities? A hostname can
be resolved into an IP address by using DNS, a virtual URL could be mapped to an
actual URL, or a distributed object can be converted into a handle by an object
naming service. Can the mapping function be compromised or spoofed?

■■ Can credentials be forged? What local information is needed at each authentication
point within the system to validate credentials?

■■ Can credentials be replayed? Could an eavesdropper listening to a valid
authentication handshake replay the message sequence to authenticate to a third
party as the original principal?

■■ Can the credentials be revoked? What does revocation mean within the
application? Revocation of an X.509v3 certificate could imply the addition of the
certificate’s serial number to a published Certificate Revocation List or the
addition of the serial number to the Online Certificate Status Protocol (OCSP)
server. In another case, within a database, a revocation request could be restricted
or even not honored if there are implicit grants of privileges made by the principal
that would result in logical inconsistencies in the privilege model. Alternatively, the
database could choose to cascade revocations, using additional logic to force
additional privileges that were once granted by this principal, to be revoked. Thus,
once a principal is revoked, additional revocations are generated that cascade
through the system.

■■ Can the credentials be delegated? A delegate is a principal who presents
credentials authorizing access to a resource as another principal. In a UNIX
environment, SUID programs allow a user to assume the identity of the program’s
owner in order to access resources such as a print queue or a file that would
normally be hidden from the user.

■■ Does the application use the principle of transitive trust? If so, do we log the
claimed identity of the subject?

■■ Can the principal assume the identity of another principal? This process is possibly
different from delegation, in which the principal is not a delegate for an upstream
entity but merely wishes to masquerade as another entity for the duration of a
transaction.

■■ Can credentials be lost? Can they be replaced in a timely fashion?

The first step in any security architecture is the identification and classification of all
participating principals.

A R C H I T E CT U R E A N D S E C U R I T Y80

TE
AM
FL
Y

Team-Fly®

Context Holders

Context holders contain context attributes that add to our knowledge of the principal
during a security access decision, within a session, on a resource request.

Session Objects and Cookies
Context attributes on sessions add to our knowledge of the principal or the session
under consideration during a security access decision. Context information can be
stored on the server, often called a session object, or on the client, often referred to as a
cookie.

Context attributes in session objects and cookies are lists of name-value pairs
attached to a principal or to an object that the principal wishes to access. Client-side
attributes are often established at the server (or in general, the destination entity) and
transported to the client (or in general, the source of the request). This process
enables the server to add integrity checks to the values, format the contents of the
cookie, maintain uniqueness across all the cookies issued, and maintain some level of
trust. If the context was manufactured only by the source, then other means of valida-
tion of the attributes, involving third parties, must be used before the session can be
established.

Context attributes can qualify properties of the session from a security perspective.
They can add to our ability to make an access decision by describing the source, the
destination, the role of the principal, the access requested, the privileges available at
the destination, and the time of the conversation. Session objects and cookies can also
store security state information.

The use of context attributes within secure sessions in the application raises several
issues at the architecture review.

■■ Does the session have an expiration time?

■■ Can it be re-established without reauthentication based on information within
session objects and cookies?

■■ Is the session shared? Can several servers support a client, and if so, is this
connectivity transparent?

■■ Can the context attributes be modified, deleted, enhanced, appended to, or forged
in any manner? Can sessions be stolen as a result?

■■ Are context attributes automatically invalidated on a session termination request,
either by the client or the server or when certain session conditions (“Time is up,”
“Too many messages,” “Too much data transferred,” or “Name value pair is
invalid”) occur?

■■ Do context attributes protect against session hijacks? A hijack gives control of a
valid and authenticated session to an untrusted party. The party might not have the

Architecture Patterns in Security 81

valid context attributes of either client or server, based on which end-point is being
impersonated.

■■ Are context attributes long-lived? Are they reused? Can they be added to logs? Can
they be delegated to other sessions in an inheritance model? Is it possible to audit
their use?

■■ Do attributes use cryptographic primitives, such as encryption or message
authentication codes? In this case, do we save the key material used for validating
attributes at any point, perhaps for key recovery or nonrepudiation?

Ticket/Token
A ticket or token is a mobile context holder given to a previously authenticated princi-
pal. The details of the transaction that authenticated the principal might not be avail-
able to a ticket or token server or a third party, but the fact that the principal
successfully passed authentication can be verified by examining the ticket or token.

Tickets support requests for service, where the identity of the principal may or may not be
integral to a response. Tickets and tokens appear in security tools in a number of ways.

■■ Web browsers send portions of cookies back to the servers that originally
generated the cookie in order to re-establish a disconnected session.

■■ Kerberos contains two services—an authentication server and a ticket-granting
server—to separate the concerns of authenticating principals and making access
decisions.

■■ Some applications use tokens to perform operations on critical sections. A process
that requests access from the critical section must first wait in a queue to acquire a
token from a token-granting service. This bakery line model appears in atomic
primitives such as semaphores, which can be useful for resolving synchronization
issues within operating systems. Tickets also appear in many security products
that implement resource locking.

Because tickets or tokens are issued in response to a request for service, their use
enables a separation of authentication and access decision concerns. A third party that
has access to specialized information that can be bundled into the ticket can generate
the ticket, thereby simplifying access decisions. Tickets also help applications build
transaction traces.

Tokens encapsulate privileges and as a result often carry timestamps to force expiry (to
manage the life of the privilege granted). The principal’s permission to perform an
action can be limited. Tokens sometimes are used in delegation of credentials, where
principal B, acting on behalf of principal A, upon server C, can present a token proving
that B has authority to do so. Access decisions, once made and approved, can be
recorded to tokens, and circulated to other components in the architecture. This
process can simplify decision making when complex arbitration, involving the history
of the principal’s actions, is required.

A R C H I T E CT U R E A N D S E C U R I T Y82

In a nonsecurity-related context, token ring networks share resources through manag-
ing possession of a token. The token is a prerequisite for action, and exchanges of
tokens are predicated on correct state transitions.

Sentinel
A sentinel is a data item within a transaction or communication that is invisible during
normal execution but can be used to detect malicious use that damages the sentinel or
some property of the sentinel.

A sentinel guards against improper use that would otherwise go undetected. The sen-
tinel does not perform error correction, error prevention, or error avoidance. It only
falls over when the system is abused. Other monitoring entities must detect the sen-
tinel’s failure and raise alarms appropriately.

Examples of sentinels include the following:

■■ StackGuard protects programs from buffer overflows by inserting an additional
word, called a canary, onto the user stack within the stack frame below the return
address location. A buffer overflow exploit in the stack frame will overrun the
canary. The canary can be checked upon exit to detect the exploit.

■■ Tripwire creates a database of cryptographic checksums of all the files in a file
system. Any modification to a file can be detected when its checksum is
recomputed and compared to the sentinel value in the Tripwire database.

■■ IP datagrams carry a checksum to ensure the integrity of the transmitted packet.
This checksum is not as strong as the cryptographic checksums used by Tripwire,
but it can guard against noise.

Sentinels protect the boundaries of the system space in a passive manner. They are
useful in situations where prevention or correction creates prohibitive performance
penalties.

Roles
Roles define use-case driven functional patterns of behavior within the application. The
role is often stored as part of the session object describing the current transaction within
which the principal is involved. The transmission of the role to a participating entity is
equivalent to transmitting an entire list of attributes describing the role, its permissions,
and the objects a user can access from the role. A user may dynamically switch roles
within a single user session and may be forced to authenticate to assume the new role.

Roles are abstract notions created primarily to simplify authorization. Roles organize
potentially thousands of users into user groups and assign permissions to the groups
rather than to individual users. Roles are normally stored in some central policy data-
base within the application, and authenticated users can choose one of the many roles
they can be assigned within a specific session.

Architecture Patterns in Security 83

A role can be attached to the identifying credentials presented by the principal. For
example,

■■ The role can be part of the attribute extensions available within an X509v3
certificate. In this case, the role is static, and the user cannot change roles easily.
The certificate must be reissued if the role field is modified.

■■ In UNIX, the role might be captured in the user’s group ID. A principal can access
files belonging to other users that share a group with the principal.

■■ In UNIX, a program switches execution roles between User mode and Kernel mode
as execution proceeds, whenever the user program requests access to system
resources through the well-defined interface of allowed system calls.

■■ Programs that use the SUID and SGID feature in UNIX to access privileged
resources change their user or group ID, effectively changing their role on the
system.

Users can be denied privileges by deleting them from roles. In general, it is advisable to
assign users to disjoint roles, in which membership in multiple roles does not create
conflicts in privilege definition. A user who has multiple roles can pick a default active
role for all decisions within a particular session. The default role assignment will deter-
mine authorizations. Please refer to the discussion in Chapter 3 on issues relating to
access control rules and mandatory, discretionary, and role-based models of access
control.

Service Providers

Security service providers perform some well-defined, possibly complex, and distin-
guished action on behalf of any entity involved in a secure communication. We will sep-
arate service providers into three classes: directories, trusted third parties, and
validators (the third being a catch-all category to cover the huge variety in security ser-
vices possible).

Directory
Directories are databases that are read often but written to infrequently. Directories
have seen a tremendous growth in recent years. The widespread acceptance has been
fueled in part by improvements in directory standards and the availability of good com-
mercial directories and directory-enabled products. Deployment has been helped by
the development of common schemas and access protocols for many standard prob-
lems, such as the definition of user communities, organizational hierarchies, user pro-
files, and application profiles.

The original X.500 directory definition had a complex access method supporting com-
binations of scoping and filtering predicates on a query accessing objects in the direc-
tory, called the X.500 Directory Access Protocol. The X.500 standard has been stable
since 1993, although compliant products have only been a recent phenomenon.

A R C H I T E CT U R E A N D S E C U R I T Y84

The development of a simplified TCP/IP-based directory access protocol is a critical
factor in the widespread acceptance of directories today. The de facto directory stan-
dard on the Internet today is the Lightweight Directory Access Protocol (LDAP), devel-
oped at the University of Michigan. For additional details, please refer to Chapter 13,
“Security Components.” In the mid 1980s, networking exploded with the introduction
of TCP/IP, which simplified the seven-layer ISO network stack definition into a four-
layer stack implementation. This feature enabled rapid product development on a func-
tional but immature protocol. On the downside many of the complexities of securing
TCP/IP stem from the lack of security architecture in its original simple design.

Directories are following the same evolution path. The original LDAP protocol shortens
message lengths, removes rarely used components of the DAP protocol, while still sup-
porting reasonable powerful access to a wide array of schemas. However, as more features
and functionality are added to LDAP to support enterprise directory-enabled networking,
its complexity is growing to match and exceed DAP.

Directories are an important security component because they allow enterprises to par-
tition and manage user communities. Corporations need directions on how to allow
access to several user groups:

Customers, in very large numbers. We have a limited amount of information on
each customer who in turn has limited access to resources.

Employees and contractors, in medium to large numbers. This community has
very extensive, complex access to many systems, in many roles. This user
community should consume the lion’s share of our security resources.

Partners, in small numbers. Partners have very specific access requirements,
possibly restricted to a DMZ, but support mission critical business needs. Other
architectural goals such as reliability, availability, and safety apply to partner
access.

Upper management, such as officers of the company. This is a very small
community that requires access to the critical and high value information in the
systems. Upper management may also have access to external documents such as
legal contracts or analyst reports. The theft or exposure of this information could
result in enormous costs and risks to the company, not to mention the creation of
legal liabilities. This community also requires access to analysis reports generated
by many systems within the company, whose access might be restricted to the
majority of users.

We, therefore, have to deal with diverse user communities, multiple hierarchies of infor-
mation, and legacy directories that compete with one another for database-of-record
status—in addition to directory data integration across the enterprise.

How should we resolve conflicts in directory deployment? Data architects implement
the following common architectural paradigm:

■■ Build outward facing directories supporting customers and partners.

■■ Build inward facing directories supporting employees.

Architecture Patterns in Security 85

■■ Build wrapper directories for supporting legacy user data directories.

■■ Place all these diverse data repositories under the umbrella of a federated
directory structure, controlled by one or more meta directories.

Directories are also key security components because they are repositories of security
policy. Directories are considered the database of record for user profile information
and also support additional user attributes, such as application specific roles, lists of
services permitted, relationship hierarchies to other employees through organizational
structure, and user group information. Commercial directory products come with
default schemas for defining labels for the fields in a user’s distinguished name. The dis-
tinguished name is a collection of name-value pairs for attributes such as the organiza-
tion, organizational unit, location, address, e-mail, phone, fax, and cellular phone
details. Directories also support a large collection of standard queries with very fast
access implemented through the extensive use of index tables. They support secure
administration and bulk uploads of data to enable rapid deployment and management.

The read-often property of directories is supported by the index table definitions,
which enable data to be binary-searched in many dimensions. On directory modifica-
tions, every insertion either has to be managed in a separate transaction list with look-
aside functionality, or all index tables have to be rebuilt. The community of writers to a
directory must be controlled and securely administered, which contrasts with the usage
model for relational databases (which balance the needs of readers and writers and do
not optimize for one usage over another).

Here are some issues surrounding directory use in security architectures:

■■ Does the directory store all principals that can access the system? How are
external system access, root access, backup system access, disaster recovery
access, or maintenance access managed?

■■ Does the directory store the corporate security policy definitions for this
application? How are roles defined and stored? How are users mapped to roles? Is
the mapping from roles to object access classes stored locally within the
application (which simplifies administration and the directory structure), or is
application-specific resource information uploaded to the directory?

■■ How is corporate security policy mapped to the directory schema? How is this
abstract definition simultaneously extracted and then applied to a particular
application’s policy needs?

■■ Are user profiles stored in the directory? Does the application require anti-profiles
(in other words, the definition of profiles of intrusion rather than normal use for
detecting illegal access)?

■■ Do all access decisions require a reference to the directory, or are decisions
cached? Is there a caching policy more complicated than Least Recently Used
(LRU)? How soon does a cache entry expire?

■■ How does the application manage security policy changes? How do we add users,
groups, roles, policy decisions, or directory entries?

A R C H I T E CT U R E A N D S E C U R I T Y86

In general, this situation requires enterprise-level planning and cannot be resolved at
the application level. Raising these issues at the architecture review can be helpful,
however. Once documented, the need for their resolution can be escalated to the
proper level of management. Directories are often sold to applications as the ultimate
low-amortized cost resource in an enterprise, but if not deployed correctly, they can be
of limited use.

Trusted Third Party
A trusted third party is a security authority or its agent that is trusted by all other enti-
ties engaged in secure transactions. All participants, in an initialization or preprocess-
ing phase, agree to trust the third party. This trust extends to any information received,
decisions brokered, references given, or validations provided by the trusted third party.

Zhou in [Zho01] defines three modes of operation for a trusted third party (TTP). An
inline TTP sits in the middle of all conversations and acts as a proxy to all the entities.
An online TTP is available for real time interaction, but entities can also communicate
directly with one another. An offline TTP is not available at all times. Message requests
can be dropped off to the offline TTP request queue, and the TTP will batch process all
requests during the next available cycle and send responses to the requestors.

There are many examples of trusted third parties in products and service descriptions.
Some trusted third parties provide message delivery, notary services, time service, or can
adjudicate disputes. Many cryptographic protocols refer to an entity, often called Sam, as a
trusted party brokering a transaction between the two most famous cryptographers in his-
tory, Alice and Bob. Sam can broker authentication, key management, or access requests.

PKIs introduce several trusted third parties. The Certificate Authority (CA) is the
trusted entity that signs documents. The CA certificate, if self-signed, needs to be provi-
sioned at all communication end-points; otherwise, we have to provision a chain of CA
certificates along a certification path ending in a trusted CA, along with the credentials
of all intermediary CAs. PKIs use Registration Authority (RA), which manages proof of
identity procedures for certificate requests. The Certificate Revocation List (CRL)
server stores and serves a list of revoked certificates. The CRL stored is digitally signed
by the CA and is updated frequently. The Online Certificate Status Protocol (OCSP)
service to verify that certificates used in transactions are not revoked in real time.

The ability to pinpoint an entity external to the communication, but trusted by all enti-
ties engaged in communication, can be critical in the successful definition of a secure
architecture. Such an entity can support authentication, authorization, context defini-
tion, and nonrepudiation. A trusted third party can support services like man-in-the-
middle auctioning (where the parties agree on price and then exchange goods and cash
through escrow accounts). Trusted third parties are also valuable in post intrusion sce-
narios, such as legally valid event reconstruction, re-establishment of service after a
failure, or incident response management.

Once an assumption of trust is made and the architecture is validated, we can return to
the assumption and ensure that it holds. No one should be able to spoof the trusted

Architecture Patterns in Security 87

third party or launch denial-of-service attacks against the services we depend upon the
TTP to provide.

Validator
Our third category of service provider is the validator. Validators take information,
match it against a validation process, and then report either success or failure. Unlike
trusted third parties, who are known to all entities in the application, validators are
point service providers possibly tied to unique hosts or flow points in the architecture.
In some cases, validators can attempt to clean up invalid information based on internal
knowledge. Validators perform one of three functions based on the structure of this
internal knowledge: syntax validation, threat validation, or vulnerability validation.

Syntax Validators

Syntax validators clean up argument lists to executables. They specifically target the
detection and removal of deliberate, malicious syntax. Examples include the cleaning
up of strings presented to cgi-bin scripts as arguments, strings presented to the UNIX
system() command within programs, shell scripts that contain dangerous characters
(such as “;”, “|”, or “>”), or strings presented as SQL statement definitions to be inserted
into placeholders within ad hoc query definitions. Syntax validators are baby language
parsers possessing a grammar defining the structure of all valid inputs, a list of key-
words, an alphabet of allowed symbols, and an anti-alphabet of disallowed symbols. The
syntax validator allows only correctly formatted conversations with any executable.

Security experts differ on how argument validators should respond to errors in the
input. A validator can parse the input, and if the input is discovered to be bad, it will
perform one of the following actions:

■■ Accept with no modification (not much of a validation, but it might be required in
some cases based on the input string)

■■ Try to make partial sense of the input by using only information within the input
string to clean it up

■■ Use external information, and possible replacement, to actually clean up the input
to a guaranteed meaningful form (but perhaps not exactly what the user desired)

■■ Reject the input based on strict rules that will brook no deviation

Threat Validators

Threat validators verify the absence of any one of a known list of threats within a mes-
sage or packet. Examples include virus scanning software, e-mail attachment scanners,
and components on firewalls that enable the screening of active content such as ActiveX
or Java applets. This capability to screen information depends on the accessibility of
content, along with the resources to perform application-level, database-intensive
searches. If the information is encrypted or if the performance cost is severe, applica-

A R C H I T E CT U R E A N D S E C U R I T Y88

tions might elect not to apply threat validators at critical choke points. Threat validators
also clean up information but in a simpler manner than syntax validators by either mak-
ing no modification to the input data stream or by removing logically consistent pieces
of information entirely. For example, an e-mail scanner might remove attachments that
end in .exe automatically and send an e-mail notification to the recipient.

Vulnerability Validators

Vulnerability validators verify the absence of any of a known list of vulnerabilities
within a host or a service offering. War dialers, host vulnerability scanners, and net-
work IP and port scanning products fall in this category. They serve the function of a
home security inspection expert visiting your house to verify the quality of the doors,
windows, latches, and alarm system. They do not support defense against active
attacks, like a watchdog or the alarm system itself could or as would be the case with
an intrusion detection system.

Although only one entity requests the service, a validator might notify either the source
or destination, or both entities, of invalid content in the communication. The internal
knowledge base within a validator might be enhanced. This situation might require, as
is the case with virus scanners, a robust service management process to keep all users
up to date on their virus definitions.

Sometimes the knowledge base is unique to each source-destination entity pair, which
adds an additional specialization step to the deployment of validators in the systems
architecture. For example, the audit checks for NT differ from those used on Solaris.
This additional data management is an architectural burden, complicated by the multi-
ple vendors that provide validators (each with its own management tools).

Channel Elements

Channel elements sit on the wire between the client and the server. Management of a chan-
nel element is associated with one endpoint of communication (normally, the server).
Channel elements inspect, augment, modify, or otherwise add value to the communication.
All channel elements carry a performance cost that must be weighed against the security
benefit provided.

Wrapper
The wrapper pattern was first introduced as the adaptor pattern in the Gang of Four
book on Design Patterns [GHJV95]. As a security component, the wrapper shown in
Figure 4.2 enhances an interface presented by a server by adding information or by aug-
menting the incoming message and the outgoing response. Thus, wrappers impact all
requests, even those not modified in any manner by the wrapper. The client must con-
form to the wrapper’s interface instead of the interface of the underlying object. The
use of a single security wrapper around a collection of diverse objects can potentially

Architecture Patterns in Security 89

Figure 4.2 Wrapper.

cause architecture mismatches. We recommend defining a wrapper to have a one-to-
one relationship with the resource being wrapped.

Wrappers are visible entities. They replace the interface of the object on the server with
a new interface with which clients must comply. If the wrapper adds additional argu-
ments to a call in order to check client information before allowing the call to proceed,
the client must conform to the new interface definition and must add the correct argu-
ments to all calls. The wrapper strips off the additional arguments after validation and
presents the object with a request conforming to the original interface. Although the
wrapper could theoretically modify the object’s response, this situation is rarely the
case. Wrappers do not protect the client from the server.

Wrappers can support some level of abstraction by hiding variations in the members of
a class of objects on a server. The wrapper can also perform a look-aside call to a ser-
vice provider to validate an argument. As the wrapper brokers all conversations with
the object, this situation might result in a performance penalty. To avoid this penalty, we
normally restrict the look-aside functionality to third-party providers that reside on the
server. The wrapper represents a bottleneck as well and must be designed to have rea-
sonable performance.

Multiple wrapped objects are sometimes a source of implementation and performance
problems. Multiple wrappers complicate the one-to-one relationship between wrapper
and object. In general, multiple interfaces wrapping a single object should be examined
for redefinition to see whether they can be replaced with a single wrapper. For an
overview of security wrappers, please see [GS96a].

A R C H I T E CT U R E A N D S E C U R I T Y90

text

Wrapper

ObjectClient

text

text

text

text

Server

Other wrapped objects

TE
AM
FL
Y

Team-Fly®

All messagesClient ServerLocal
Data
Store

Remote
Data Store

Permitted messages

Look-aside query

Filter

Figure 4.3 A filter.

Filter
Filters are the first of three man-in-the-middle security components of the channel ele-
ments section—the others being interceptors and proxies. Filters were also defined in
the Gang of Four book [GHJV95] under the label Bridge and in [POSA1] as a software
architecture pattern called Pipes and Filters.

Filters are channel elements that are invisible to the endpoints of the communication.
The filter, shown in Figure 4.3, sits on the wire between the client and the server and
moderates all messages from either endpoint and filters the set of all messages, passing
along some messages and blocking others. The filter uses a local store to assist with
decision-making. Look-aside queries to a third party are uncommon due to the perfor-
mance penalty incurred.

Filters can have the following characteristics:

■■ Auditing. The filter can record the list of actions taken to an audit log and send
blocked message notification to either the source or the destination, based on
some definition of direction. Information notifications normally go to both entities,
in contrast to warnings and alarms (which are sent only to the server). Configuring
an endpoint to handle these messages makes the filter visible in the architecture. If
this feature is undesirable, then notifications must be sent to a log file or a third
party.

■■ Multiple interfaces. Filters can support multiple interfaces and can broker several
point-to-point conversations simultaneously.

■■ Stateful inspection. Filters can maintain application, circuit, or network-level state
about a session and can use this information to make access decisions.

■■ Level granularity. Filters can operate on packet information at any level of the
protocol stack: physical, network, transport, or application.

Architecture Patterns in Security 91

■■ No modification. Filters do not change the content of the messages passed; rather,
they only permit or deny passage. This absence of message modification or
enhancement differentiates filters from interceptors or proxies.

■■ Directionality. Filters have knowledge of incoming versus outgoing traffic and can
recognize attempts to spoof traffic, such as the arrival of packets with interior
source IP addresses on external incoming interfaces.

■■ Local data store. It is uncommon for a filter to reference a remote server to make
an access decision. The rule base configuration on a filter is stable for the most
part and does not support dynamic configuration on the basis of content.

■■ Remote management. Rule base configuration is always from a remote intelligent
management point.

■■ Clean up role. Filters are often used in a clean-up role. A filter that does not
implement the principal of least privilege is called a permissive filter. It assumes
that upstream validation has happened on messages or that downstream validation
will catch bad data streams. This lack of knowledge does not lead to permissive or
insecure architecture if the principle of least privilege is maintained at another
point in the architecture, at the application level. A filter in front of a firewall will
block a significant volume of bad traffic that should not reach the firewall where
inspection at a higher level could possibly result in a performance hit.

■■ Safety. Filters are sometimes used as a means of guarding against
misconfiguration. A filter that strictly enforces the principal of least privilege is
called a restrictive filter. Such a filter interprets security policy in the most
Draconian manner: Any access decision that is not explicitly permitted will be
denied.

We would like to make a short point about nomenclature and discuss one of the reasons
why the pattern community comes under fire. Consider tcpwrapper, Wietse Venema’s
excellent security tool, which rides behind the inetd daemon on a UNIX box and refer-
ences a local database of ALLOW and DENY rules to transparently manage network
access to the host machine based on the source IP address of the incoming request.
Tcpwrapper is one of my favorite tools. It is open source, has been extensively
reviewed and improved, has excellent performance, and has few peers for simplicity of
function and usability (all this and it’s free). As with any powerful tool, it requires some
care when built and configured, but once correctly configured, it can be dropped into
almost any application resulting in an immediate improvement in security.

From the perspective of an attacker coming over the network, tcpwrapper indeed
wraps the entire host, guarding the network interface for the whole machine. Our per-
spective for the purpose of systems architecture is not from the outside looking in,
however, but from the inside looking out. From the perspective of a defender accepting
network connections, by our definition tcpwrapper is not a wrapper but a filter. It
wraps too much, using the entire host as a reference, and appears only at the network
level. For example, a single machine will not appear within an architecture viewpoint
that looks at object, process, or business perspectives. Although tcpwrapper does an
excellent job of securing network access to a single host, a security architect has addi-
tional concerns. What if hosts are clustered, objects are distributed over the network,

A R C H I T E CT U R E A N D S E C U R I T Y92

or access definitions vary in application-specific ways, from architecture point to archi-
tecture point or from host to host? You can add tcpwrapper to a boxology diagram that
describes the physical architecture, but how and where do you add this security com-
ponent to a use case? How do we describe interface mapping or enhancement in an
object diagram?

Renaming a tool does not solve any problems, but recognizing that filters are invisible
on valid communications from most viewpoints allows the architect to restrict the visi-
bility of any instances of tcpwrapper to the hardware, engineering, or networking view-
points of the architecture. We do not recommend renaming a popular and valuable tool.
In fact, the practice within the pattern community of sometimes redefining recogniz-
able, common usage terms invariably causes irritation among practicing architects and
developers. We apologize for adding to this nomenclature confusion and recommend
keeping our definitions in mind only as architectural artifacts for the discussions in this
chapter. Do not put too much thought into this distinction or hire a language lawyer to
examine this definition.

Interceptor
Interceptors also sit on the wire between the client and server but provide functionality
that is more general over filters. Interceptors can still be invisible to the communicating
client and server. In contrast to wrappers, which are visible and require clients to obey
the wrapped interface definition, interceptors are often paired to provide this function-
ality transparently.

Interceptors are seen in technologies that provide their own run-time environment and
embedded event loop. Middleware products and messaging software are good candi-
dates for interceptor-based security. The run time environment already brokers all com-
munication, and the event loop provides a structured sequence of blocks that performs
specific atomic actions. The event loop uses event-triggered transitions to jump from
one block to the next. Breaking open one of the atomic blocks is hard as the blocks are
best treated as black boxes. The transition points can be used to introduce interceptors
as new blocks within the event loop, however. This strategy makes it easy to chain or
pair interceptors.

Interceptors can modify the conversation between a client and a server. They can add,
delete, or in any manner augment a message or a packet. Command-line arguments can
be augmented with additional arguments specifying context or details of the local envi-
ronment of the process, which might be unavailable to the client or the server. Inter-
ceptors often reference third parties such as a status server and authentication server
or a directory. The capability to refer to remote storage for decision-making is a critical
component of the interceptor definition.

Interceptors differ from filters in two significant ways.

■■ They can be chained. A series of interceptors blocks the client from connecting to
the server.

■■ They can be paired. A client-side interceptor is matched to a server-side
interceptor.

Architecture Patterns in Security 93

Figure 4.4 Chained interceptors.

Client Server

Client
look-aside

handler

Server
look-aside

handler

Data
Store

Remote

Figure 4.5 Paired interceptors.

An interceptor chain, as shown in Figure 4.4, can provide complex access decision sup-
port where each element can operate at a different level of granularity of access and
reference different local or remote data stores. Access is only permitted if all intercep-
tors allow the message through.

An interceptor pair, shown in Figure 4.5, can add complex security support to an exist-
ing communication channel by modifying low-level run-time environments on the client
and the server so that the modification of messages, their receipt, and validation are all
transparent to the parties involved. The interceptors on either endpoint can reference
remote data or service providers to build a secure communication path.

Many software products use interceptor-based security solutions.

■■ CORBA vendors support the definition of interceptors that can be added at any
of four points on the client to server message path: client-side pre-marshalling,
client-side post-marshalling, server-side pre-marshalling, and server-side post
marshalling. Each point can have multiple interceptors chained together. In
addition, client-side and server-side interceptors can communicate without the
knowledge of either the client or the server.

■■ Web servers use a standard event loop to handle HTTP requests. The event loop
on the Apache Web server can be enhanced with authentication or authorization

A R C H I T E CT U R E A N D S E C U R I T Y94

modules to secure access to URLs, for example. The new security modules
intercept messages on the transitions on the event loop.

■■ Some software products for hardening the UNIX operating system from any
executing application on the host do so by intercepting all system calls to
privileged resources, permitting access only after an authorization check is passed.

Proxy
The proxy pattern was also introduced in [GHJV95]. Unlike filters or interceptors, prox-
ies are visible to all parties—and as a direct result, the parties themselves are invisible
to each other. All communication is directed to the proxy, shown in Figure 4.6, which
maintains separate open sessions to the client and the server. Proxies might need to
maintain state information to make access decisions. For an overview of security prox-
ies, please see [GS96a].

If the proxy is used in conjunction with a firewall, the proxy becomes the only commu-
nication pathway for the client to reach the server. Otherwise, the client and server
might be able to bypass the proxy. Therefore, proxies are deployed at choke points in
the network, behind or in front of firewalls. The failure or removal of a proxy can cause
a loss in connectivity because proxies cannot be bypassed. As a result security proxies
must be designed to be highly available to meet the standards of the overall application.

Maintaining a session when a proxy fails can be difficult, and most vendors just recom-
mend re-establishing a new session. Chokepoints cause performance problems. In
some cases, proxies are chained for protocol separation. In this circumstance, it is com-
mon for only one proxy to make an access decision. Proxies can also operate in parallel
for load balancing, in which case all proxies should support identical access rules.

Proxies are primarily useful for information hiding and can perform many security
functions. Examples include the following:

Architecture Patterns in Security 95

All messages
go to proxy

Client ServerLocal state
for all sessions

Remote
Data Store

All messages
go to proxy

Look-aside query

Proxy

Figure 4.6 A proxy.

■■ Protocol conversion or translation. WAP gateways that connect mini-browsers on
mobile devices to regular Web sites perform protocol conversion. Because the
mobile device is very resource constrained, it cannot support the same
cryptographic protocols that a regular PC or Web server can. This situation creates
the so-called wireless air gap problem, where the WAP gateway acts as a proxy
between two different physical networking architectures—a wireless protocol to
the mobile device (such as CDPD) and regular TCP/IP to the Web server. In
addition to protocol conversion, the gateway must also perform cryptographic
conversions. The gateway maintains two cryptographic key stores, decrypting
traffic from the mobile device and re-encrypting it before sending it to the Web
server. If your application supports mobile devices, be mindful of the security of
the gateway itself. One solution, rather than trusting a commercial gateway, is to
purchase your own gateway and deploy it on an internal, secure network.

■■ Network address translation (NAT). NAT on a router enables internal client
networks to be concealed from the open Internet. NAT hides IP addresses and also
enables the reuse of IP addresses because it lifts the requirement that all hosts be
assigned a unique IP.

■■ Web proxies. Proxies can hide internal Web servers from external Web clients or
vice versa.

■■ CORBA proxies. A CORBA proxy can hide the actual IOR of an internal distributed
object from an external CORBA client.

■■ Firewall proxies. These support all TCP/IP protocols across a firewall in a stateful
manner. Clients can use protocols such as Telnet or FTP after authentication to the
firewall.

Platforms

Our last collection of security patterns deals with more abstract architectural struc-
tures. These are often used to separate concerns and simplify the architecture, thereby
making security management more feasible.

Transport Tunnel
Transport tunnels provide authentication, confidentiality, and integrity of traffic between
two architecture endpoints with minimal application impact. Tunnels use cryptographic
handshakes, bulk encryption, and message authentication codes to accomplish each of
these goals.

Tunnels have some performance concerns due to the use of encryption for data trans-
fer. Each session might require an additional startup cost because information from
previous sessions may or may not be maintained. These performance concerns are off-
set by increased security in an application-independent manner.

Trust enabled by the creation of a secure tunnel can be illusory, because the identity of
the principals authenticated to engage in communication might not necessarily be tied

A R C H I T E CT U R E A N D S E C U R I T Y96

to the actual identities of entities at the source and destination at the application level.
Virtual private networking solutions often build tunnels by using IP addresses or MAC
addresses along with host-specific key information. This situation gives very little infor-
mation about the actual user on the host. VPN solutions for applications such as remote
access services always implement a user authentication check at the client endpoint.
Tunnels between systems cannot perform user authentication, and the security model
falls back on to using transitive trust.

Tunnels are not subject to eavesdropping and do not protect against denial-of-service
attacks. If a tunnel is improperly implemented, the architecture might be vulnerable to
replay attacks or session stealing.

The tunnel is oblivious to the protocol of the traffic within it and the encryption makes
content inspection impossible. So many security concerns can be addressed by using tun-
nels, however, that we will devote an entire chapter to the architecture of data transport
security and secure communication channels (Chapter 8, “Secure Communications”).

Distributor
The distributor pattern takes a communication stream and separates it into multiple
streams based on some locally stored criteria. Distributors do not use third-party
lookups to make decisions, and data transmission is not slowed down because the dis-
tributor used raw CPU power and pipelining to process messages rapidly—maintaining
throughput at bandwidth speeds.

■■ Distributors can be symmetric, where all outgoing streams are identical. Any
incoming message or packet can be routed to any outgoing channel. Symmetric
distributors are sometimes called demultiplexers.

■■ Distributors can be asymmetric, separating the traffic on the basis of some
property internal to each packet or message—for example, on the basis of
protocol, priority flag, QoS rules, or destination address. Asymmetric distributors
are sometimes called directors.

Distributors in the second mode, as directors, often appear in security architectures at
network choke points (such as firewalls). The ability to separate traffic based on destina-
tion, protocol, or QoS attributes are critical to managing traffic. Distributors are not very
intelligent devices, however, and cannot be relied upon to make sound security decisions.
Consider exploits that tunnel a restricted protocol through a firewall by embedding it in a
permitted protocol. A director that separates incoming traffic for load balancing purposes
might compound this problem if the architecture, in an attempt to optimize performance,
partitions the security policy by protocol: “This is what we check for HTTP, this is what
we check for SMTP, this is what we check for IIOP, and so on.” This configuration could
result in an inadvertent hole by routing such tunneled traffic away from a network device
that could detect and possibly block it. When distributors are used for load balancing pur-
poses, the recommended security architecture strategy is to use identical access control
mechanisms on all incoming streams. The Distributor pattern is shown in Figure 4.7.

A recent penetration of a large software manufacturer, along with the theft of source
code, was accomplished by tunneling through the corporate firewall over a legally

Architecture Patterns in Security 97

Distributor Concentrator

Figure 4.7 Distributors and concentrators.

established VPN connection. The conflicts between encrypting traffic to achieve confi-
dentiality and the need to view traffic to perform content-based access management
will continue to plague architects for a while. Distributors add to this problem by now
creating multiple paths from source to destination, each path being a possible source of
vulnerability waiting to be exploited.

Concentrator
The concentrator pattern reverses the effects of distributors and is commonly used to
multiplex several communication streams and create a choke point. This situation is
good for security but has obvious implications for other goals, such as high availability
and performance. In addition, exploits that cause the concentrator to fail can result in
denial of service.

Concentrators occur in software architectures at shared resources and critical sec-
tions. Multithreaded applications must use synchronization strategies such as mutexes,
conditional variables, semaphores, and locks to protect shared resources or perform
atomic operations. They must use thread-safe libraries to ensure that the library can
handle re-entrant threads. If access to the shared resource is privileged, then we must
perform security checks against resource requests. This procedure requires some care.
If a client locks a resource and then fails to pass an authorization test, it might success-
fully launch a denial-of-service attack by refusing to unlock the resource.

Deadlocks are also possible when locks and security checks are mixed. Two clients
who wish to access a resource might have to first authenticate to a security service
provider. If one client locks the service provider and the other locks the resource, nei-
ther can gain access. Security service providers must enforce the principle that they
must not lock on reads.

Concentrators have started appearing in security products such as hardware multiplex-
ers for VPN traffic, supplied by backbone ISPs to manage the heavy use of virtual pipes
by corporations. Performing security checks at a concentrator can cause performance
problems.

Layer
The layer pattern has been described in many places in computer science literature,
most notably in the definition of the ISO seven-layer network protocol stack. Other ref-
erences exist within the pattern community (see [POSA1]) and within the software

A R C H I T E CT U R E A N D S E C U R I T Y98

architecture community (see [BBC00]). Layers are common in security architectures,
as well. A system’s Trusted Computing Base (TCB), defined as a subset of resources
that are guaranteed to be safe and can be trusted to execute correctly, is an example of
a security layer.

The layer pattern, shown in Figure 4.8, is one of the most popular architecture artifacts
and has been used in many applications for a diverse collection of needs. We will focus
on security architecture by using layers. A layer separates two levels of a protocol or
interaction by creating two clearly defined interfaces: one defining interaction with the
lower service provider level, and the other defining interaction with the higher service
requestor level. This additional abstraction enables us to hide implementation changes
within one level from the other. It supports modifiability and portability by hiding
changes in hardware details from below and changes in functional requirements from
above. The internal structure of any intermediate layer in multilayer stack architecture
can be modified without affecting either the layer above or the layer below. Neither will
know about the modification.

Layers provide contracts. The contract between two layers enables the integration of
like features and functionality across several vertical smokestacks into a single,
abstract, horizontal layer that guarantees communication across the layer to the upper
protocol and that requires similar guarantees from the lower protocol. The separation
of concerns enables problems to be handled at an appropriate level of detail with the
confidence that each protocol level will work as desired.

Security architectures use layers to separate security functionality. Examples include
mechanisms for secure transport such as SSL, mechanisms for secure infrastructure
such as PKI, and security services such as virus scanning within e-mail applications.

Layered architectures are often strict; layered security architectures are even more so.
Strict layering forbids any interaction of a higher layer with anything other than the
immediate lower layer. Strict layering in an application, for example, enables us to
replace SSL links with hardware encryption units providing IPSec tunnels and still
expect secure data delivery to the application. Layers introduce performance costs,
sometimes through excessive packing and unpacking of intermediate messages or
through unnecessary decomposition and recomposition of high-level data artifacts.

Architecture Patterns in Security 99

textSession 1 Session 2

Application

Transport

Replace

Figure 4.8 Layer.

Layers also appear in virtual machine definitions, such as the Java Virtual Machine, but
we will defer discussion of the JVM in this security pattern because we will devote an
entire pattern called the Sandbox to discussing such functionality.

Layers also appear in API definitions, separating the implementation of library calls from
their usage. This feature enables a developer to swap in and out cryptographic primitives,
enabling different levels of encryption strength, integrity, and performance—all with no
effect on the application code.

If we review any commonly occurring security service, we will see a layered definition.
The layer definition depends on the level targeted. For example, VPN technology,
secure Web hosting, PKI, secure e-mail, secure software distribution, and security
auditing tools all exhibit layering. The focus for adding security ranges from the net-
work layer to the business process layer.

The most important property of a layer is modifiability. As long as a layer implements and
supports its interfaces, it can be modified at will. This feature provides us with the best
chance for adding security to an existing application without affecting application code.

It has often been said that TCP/IP’s popularity was due to its simplification of the seven-
layer ISO network protocol stack into only four layers: Application, Transport, Net-
work, and Data Link. This functionality enabled the rapid development of networking
solutions. Security architects would have liked to retain a well-defined and modifiable
session layer within the TCP/IP stack, however. Many efforts to secure network com-
munication are essentially efforts to add an additional session layer into the protocol.
For example, CORBA security solutions secure IIOP over TCP/IP, adding an application
level security layer by running IIOP over SSL over TCP/IP. Alternatively, hardware
encryption units that implement encrypted Ethernet LANs add communications secu-
rity at the other extreme.

Elevator
The elevator pattern is commonly seen in layered architectures, where strict layering is
desired, but some interaction across all layers is required. For example, in a common
nonsecurity related example, the design of exception handlers often uses the Elevator
pattern. The handlers trap an exception thrown at one level and carry it up through suc-
cessively higher levels. Each level inspects the exception and possibly augments it, then
sends it to a higher level if necessary. Finally, the exception reaches and is handled at
the correct level of the call stack.

Elevators occur in security architectures as well—for example, in the handling of secu-
rity exceptions. Intrusion detection systems often deploy a large number of sensors
across a WAN and collect alarms from each sensor as they occur. Alarms are aggre-
gated, and alarm counts are matched against threshold rules to create higher levels of
alarms. We can manage the number of messages and simultaneously improve the qual-
ity of the alarm information as information flows upward through the logical network
hierarchy: from network element, to element management, to network management, to
service management, and finally to business management. A hundred thousand e-mail
viruses could result in a statement from the company’s CEO to analysts on the business

A R C H I T E CT U R E A N D S E C U R I T Y100

TE
AM
FL
Y

Team-Fly®

impact of the virus outbreak on the company. Another example exists in vendor prod-
ucts that perform audit management for enterprise security. A single manager receives
analysis reports from thousands of clients that run security audits on hosts to generate
and escalate alarms or alerts.

Elevators are rarely built completely inside a single application. It would be prudent to
support the ability to detect troubles, however, and escalate them in sufficient but not
excessive detail to the next higher level. This feature is critical for security manage-
ment services.

Sandbox
The sandbox pattern is an instance of the layered pattern with an important additional
quality. The layered architecture does not enforce explicitly the separation of a higher-
layer protocol from lower levels other than the immediate level below.

The sandbox, shown in Figure 4.9, not only enforces complete compliance with this
rule but also extends enforcement as follows:

■■ Inspection of entities at the higher level. For example, the JVM runs a byte code
verifier on any downloaded applet before it can be executed. The JVM within the
browser can also verify the digital signature on any downloaded applet.

■■ Management of policy. The sandbox has a well-defined default security policy
with hooks for enhancements that can describe content-specific subpolicies.

■■ Management of underlying system resources. The sandbox can monitor the use of
allowed resources, and on the basis of thresholds, can block access. Methods to
protect against distributed denial-of-service attacks on Web sites attempt this
strategy by subjecting incoming requests to threshold criteria. A host can terminate
old, incomplete connection setups if too many new connections have been
requested, thus preventing a flood attack on a daemon before it escalates.

Architecture Patterns in Security 101

text
active content

or
process

Untrusted
content

Sandbox

Underlying systemUnderlying system

Figure 4.9 Sandbox.

A R C H I T E CT U R E A N D S E C U R I T Y102

■■ Management of connection requests. Some network drivers maintain separate
packet queues for half-open and ongoing open communication links, which
enables them to throttle denial-of-service attacks on one queue while still
accepting packets for open connections on the other to some extent (flooding and
packet loss is still a likelihood). Other solutions to block SYN floods modify the
TCP/IP handshake to minimize state information for half open connections to
prevent resource overload.

■■ Audit management. The sandbox can log activity at fine levels of granularity for
later analysis.

The sandbox creates a secure operating environment where entities are authenticated
when they request to join, and all interaction within the environment is controlled. All
authenticated entities within the sandbox can freely interact without any concern about
the security architecture principles. The principles are guaranteed to hold.

Many products describe their environments as a sandbox with varying degrees of success.

■■ The Java sandbox has a well thought-out but complex security architecture. Initial
implementations of the sandbox were found to have security holes, which have
been patched. We will defer our discussion of security policy management, the
security manager, the access controller, and applet validation to Chapter 7,
“Trusted Code.”

■■ VPNs make poor sandboxes, although they support secure communication.
Superficially, communication might seem secure, but if any host is compromised,
then all hosts on the VPN might be vulnerable to attack.

■■ CORBA security solutions aim at protecting all clients and distributed objects
interacting on a secure software bus. Messages carry authentication and
authorization information, and all IIOP traffic can be encrypted. All vendors allow
servers and daemons to be configured to accept insecure connections for
backward compatibility, however. Although application clients and servers can be
configured to accept secure connections only, not all daemons can be secured
using the currently available security solutions. The security holes in the
underlying hosts and the lack of integration with security infrastructures all make
for a messy and insecure environment. Please refer to Chapter 9, “Middleware
Security,” for more details.

■■ Many commercial products exist to protect a host from (possibly untrusted)
applications on the host. For example, Virtual Vault and Praesidium from Hewlett-
Packard and eTrust from Computer Associates provide OS hardening as a feature.
Janus, a product from the University of Berkeley described by Goldberg, Wagner,
Thomas, and Brewer in [GWTB96], is a sandbox for Solaris. Any untrusted
program can be run inside Janus, which controls access to all system calls made by
that program based on security policy modules. Modules, which are sets of access
control rules, can be specified in configuration files. There is no modification to
the program, but there is an associated performance cost with intercepting all
calls.

■■ Globally distributed applications. There are some products that allow distributed
applications to tap the resources of idle, networked workstations. Each

Architecture Patterns in Security 103

workstation runs a client as a low-priority process that uses system resources
only when available. Such a client must have minimal privileges, because
outside of CPU cycles the application has no access privileges on the host. The
solution is to create a distributed sandbox that controls the resource requests and
communications of all participating clients. Distributed sandboxes have been used
for a diverse collection of problems: discovering large primes, brute force
password cracking, protein structural analysis, massively parallel computing, and
distributed analysis of radio wave data for signs of extraterrestrial signals. Many
important problems can be solved if every networked host provided a secure
distributed sandbox that can tap the idle potential of the computer with no
detrimental affect on the user. This function requires OS support from all vendors.

Sandboxes do not always protect entities within the sandbox from each other or from
the sandbox itself. Entities must agree to obey the rules of the sandbox and not imple-
ment attacks in their own functionality that cannot violate the sandbox but that can
adversely affect other participants. There is an assumption of fair play among good cit-
izens. An uninvited guest or an intruder might have no qualms about damaging the con-
tents of the sandbox without being able to affect the underlying host. This situation
might still result in the violation of some security policy.

Magic
Our last pattern, magic, gives us a means to simplify an architecture diagram.
According to Arthur C. Clarke, “Any technology, sufficiently advanced, is indistinguish-
able from magic.” The Magic pattern is the simplest security artifact because it labels
elements that must be treated as a black box in the architecture. Architecture reasoning
is simplified by identifying components that are part of the solution but whose internal
details are not subject to review. A magic component is monolithic, deterministic, well-
defined, deep, and not subject to review. We define each of these terms as follows:

Monolithic. A magic component does not have a complex internal structure and is
restricted to a single process on a single machine. There are no architecture
concerns within the component. Performance concerns such as its speed of
execution are considered external.

Deterministic. It has a single path of execution and is often implemented as a library
function.

Well-defined. It implements a short, well-defined property that can be guaranteed
correct through a (possibly mathematical) proof.

Deep. The property provided by the component is based on knowledge uncommon in
an average development team.

Not subject to review. The actual algorithm implemented by the component is not
subject to review for correctness, improvement, or performance enhancement. Its
implementation—in other words, the matching of its specification to a code base—
is of course subject to review. Magic components represent optimum solutions in
some sense. This restriction applies to the project team of course; the original
creators of the component can modify and improve it.

Obviously, the average project team consists of many talented individuals with unim-
peachable credentials, but most successful projects do not depend on the existence of
a single extraordinary individual capable of critically acclaimed breakthroughs. Some
depend on heroic programming, but the results of heroic programming are never magic,
resulting more often in spaghetti code and poor architecture design rather than in pro-
ducing a truly landmark solution.

A magic component often represents a paradigm shift in a broader area or field of tech-
nology. Thomas Kuhn, in his 1962 treatise “The Structure of Scientific Revolution,”
defined a paradigm shift as a revolutionary event that divides a field into those who
adapt and thrive and those who are left behind. The discovery of public-key technology
is such an event in cryptography. Magic is the product of the uncommon intellects, and
we should not expect our architecture problems to be solved by similar insights from
our architects. You have to buy or lease magic.

Conclusion

We suggest that the reader revisit this chapter as and when necessary to understand our
motivations in picking these patterns for our catalog. This list is by no means compre-
hensive. We encourage the user to think of additional examples for each pattern cate-
gory. There is also considerable room for argument about the names of the patterns
themselves and the properties that I have ascribed to each.

In the following chapters, we will examine application security from the viewpoint of
components and connectors operating under constraints. This topic is, after all, the
basis for software architecture. We will use our catalog of security patterns to draw par-
allels across solutions in different domains. Our goals are to provide evidence that each
of these patterns is indeed the solution to some problem in some context with the
potential for reuse.

A R C H I T E CT U R E A N D S E C U R I T Y104

PA RT

Low-Level Architecture

TWO

Our focus in this chapter is code review. We will examine why code review is a critical
step in the software development cycle. Code review is often not conducted on the
entire code base but instead is restricted to critical segments of code that represent
serious performance bottlenecks or that have complex bugs. Code review for the pur-
pose of security is less common but no less important. Exploits against processes can
occur in infrequently executed code, for example, within code that performs partial
input validation and that fails to account for extreme or malicious inputs. Code that
passes testing with standard test suites might have vulnerabilities that exploit built-in
assumptions of normal behavior made by the test team. Understanding the code
through review mitigates some of this risk.

In this chapter, we will describe buffer overflow exploits, the most common of all Bug-
traq exploit notices, and classify the countermeasures by using some of the pattern ter-
minology of the last chapter. We will discuss the Perl interpreter and security. We will
also describe Java’s byte code validation scheme, a form of code review on the fly that
safeguards a system from many exploits (including those based on overflows).

We will end with some remarks on programming style. We believe that the true basis for
writing secure code is writing good code, period.

Why Code Review Is Important

Security expert Steve Bellovin blames buggy software for most of our security prob-
lems. He targets poor coding practices as the number one reason why, despite all our
advances in security, many systems continue to be hacked.

C H A P T E R

107

5
Code Review

We have made theoretical advances, from reference monitors through trusted comput-
ing bases to access control models. We have made practical advances from security
components like firewalls through security protocols like IPSec to infrastructure prod-
ucts like Kerberos or PKI. We must face the reality that all our security advances have
not helped us as much as they should, however, because buggy code is the downfall of
them all.

Code often fails because it does not anticipate all possible inputs. The Garbage In,

Garbage Out (GIGO) principle is firmly entrenched in coding practice, which has had
the unfortunate side effect of leaving behavior on bad input unspecified. The code fails,
but with what consequences? Miller et al., in [Mill00], provide some empirical evidence
on the input validation issue. They use a fuzz generator to throw randomly generated
values at system utilities on several flavors of Unix. Many utilities fail because they mis-
handle one of several input validation tests, causing the majority of crashed, hung, or
otherwise failed end results. The problems identified include pointer handling without
NULL tests, array bounds checks, the use of bad input functions, the use of char to rep-
resent symbolic and numeric data, division by zero checks, and end-of-file checks.
These activities can also lead to security bugs and therefore are targets for code review.

One outcome of the Miller survey is the discovery that open source is often best in class
for speed and security: quality drives security. This common viewpoint is also
expressed in [KP00], [COP97], and [VFTOSM99]. These authors note the curious para-
dox of why open source is of such high quality despite being developed with very little
software process by a diverse group of programmers distributed over time and space.
This situation is true, perhaps, because the popular open-source projects tend to be
more visible and better understood. Open source code is often written by expert pro-
grammers, reviewed and debugged by a wide and vocal group of testers, and ported to
many platforms—weeding out OS and hardware-specific design quirks. Ownership and
pride in craftsmanship are also cited as drivers of quality in open source. Although open
source might not be an option for your application, external code review can help
improve quality.

Buffer Overflow Exploits

Consider the layout of the process-addressable space in a running program. After a pro-
gram is compiled and linked, the loader maps the process’s linked module into memory
beginning at a lower address and ending at a higher address (this process might not be
true of all hardware architectures; we are simplifying here). The stack segment within
the process, on which function calls are handled, grows from higher addresses to lower
addresses. The stack segment consists of multiple stack frames. Each stack frame rep-
resents the state of a single function call and contains the parameters, the return
address after the call completes, a stack frame pointer for computing frame addresses
easily, and local variables such as character arrays declared within the function code.
Figure 5.1 shows the layout of a generic UNIX process loaded into memory.

LO W- L E V E L A R C H I T E CT U R E108

Program

Private data address space

Process Descriptor: Process ID,
Process State, and

Process Control Information

1000

5000

2000

1200

7000

Shared data address space

Kernel Stack

9000

6000

Process Control
Information

Program entry
point

Top of stack
S

ta
c

k
 g

ro
w

th
B

u
ffe

r g
ro

w
th

User Stack

 Branch

Memory
reference

Memory
reference

Figure 5.1 Process address space.

Buffer overflow exploits use two characteristics to gain access to a system.

■■ The first characteristic is the layout of the addressable space in a running process.
A buffer stored on the stack is allocated space below the return address on the
stack frame for a function call and grows toward this return address. Any data that
overruns the buffer can write over the return address.

■■ The second characteristic is the lack of bounds checking within implementations
of both the standard C and C++ libraries and within user code.

These two elements give rise to a class of attacks based on constructing special inputs
to programs running in privileged mode that overrun internal buffers in the program in
a manner that transfers control to the hacker. The hacker might explicitly provide mali-
cious code to be executed or transfer execution to other general-purpose programs,
such as a shell program or Perl interpreter.

The process address space has the following elements:

Code Review 109

Figure 5.2 Static data attack.

■■ A process control block that describes the process to the OS for context switching.

■■ A text segment that stores the executable code of the program, along with any
statically loaded libraries, link information to dynamically loadable modules or
libraries, program arguments, and environment variables.

■■ A static data segment where initialized global variables required at startup are
allocated and where uninitialized global variables set by the program before any
references are also allocated.

■■ A dynamic data segment where the program heap is maintained.

■■ One or more stacks for handling arguments and local variables during function
calls.

An instruction in the code segment can transfer control to another instruction by using
a branch statement or can refer to data stored in private or shared memory addresses.
A UNIX process can run in User mode to execute instructions within the program or
run in Kernel mode to make systems calls that require kernel functionality. In addition,
a process can be single or multi-threaded, and each individual thread of execution can
alternate between user and kernel mode operation, using its own user and kernel
stacks.

A buffer overrun occurs when a program allocates a block of memory of a certain size
and then attempts to copy a larger block of data into the space. Overruns can happen in
any of the following three segments in a process’s address space.

■■ Statically allocated data. Consider Figure 5.2. Here, a statically allocated array
password is adjacent to an int variable passvalid, which stores the outcome of a
password validity check. The password validity check will set passvalid to 1
(TRUE) if the user password is correct and will leave the field untouched
otherwise. The user input to the field password can be carefully chosen to
overwrite passvalid with a 1 even though the password validity check fails. If the
program does not check for overflows on reading input into the password field, a
hacker may be allowed access.

■■ Dynamically allocated data. The program heap allocates and de-allocates dynamic
memory through system calls (such as malloc() and free() in C). Overwriting
dynamic memory has fewer negative consequences because dynamic memory is
not used for execution, i.e. the instruction pointer of the program is never set from
the contents of dynamic memory. We also, in general, cannot guarantee an exact
relative location of two dynamically allocated segments. In this situation,
overrunning the first segment cannot precisely target the second. However,

LO W- L E V E L A R C H I T E CT U R E110

Password
Passvalid
FALSE

Garbage
Passvalid

TRUE

Attack Buffer

TE
AM
FL
Y

Team-Fly®

corruption of dynamic memory can still cause core dumps, which could lead to
denial-of-service attacks, for example within a daemon that does not have
automatic restarts.

■■ The program stack. Unlike the first two options, which are sometimes called data
or variable attacks, the stack contains data (and references to data) and return
addresses for setting instruction pointers after a call completes. A buffer overflow
in a local variable can overwrite the return address, which is used to set the
instruction pointer—thereby transferring control to a memory location of the
hacker’s choice.

Stack smashing buffer overflow exploits are the most common variety. We must first
describe how an executing program transfers control to another program before we
can describe how these exploits work.

Switching Execution Contexts in UNIX
UNIX provides programmers with system functions that can replace the execution con-
text of a program with a new context. Alternatively, a program can transfer control to
another arbitrary program by using the standard C library call to system().

The exec family of functions is built by wrapping the basic system call to execve() and
includes execl(), execlp(), execle(), execv(), and execvp(). The new execution context
is described by three values, a path to an executable file (found through a fully qualified
path or by searching the PATH variable), command-line arguments, and the process’s
inherited environment (including the process owner’s ID). For example, under Linux
[BC00], the execve() system call takes three arguments: a pathname of the file to be exe-
cuted (hence the “exec” prefix in the function name), a pointer to an array of command-
line argument strings (“v” for vector), and a pointer to an array of environment strings
(“e” for environment). Each of the arrays must be NULL terminated. This call is handled
by the sys_execve() service routine that receives three address reference parameters
that point to the respective execve() parameters.

Building a Buffer Overflow Exploit
Building a buffer overflow exploit requires a target, a payload, and a prefix to place the
payload within the stack frame.

The target is a privileged program or daemon that overflows on bad user input data,
normally character strings. Access to source code makes building the exploit easier, but
it is not necessary.

The payload is used to switch execution context to code of our choice (for example,
shell codes that use the execve() pattern of behavior to change execution context to a
shell program). Shell codes are sequences of assembly language instructions that give
the user shell access by calling execve(p, NULL, NULL), where p is a pointer to the
string “/bin/sh/”. Shell codes for all platforms and operating systems, including NT and
all flavors of the UNIX operating system, are available on the Internet. For example, see

Code Review 111

Free stack space

Function parameters

Return Address
(used to restore

the Instruction pointer)

Local variables

Stack frame for calling routine
main()

a[0]

Frame pointer

a[1]

a[2]

a[3]

O
ve

rw
rite

R
eturn

A
dd

re
ss

Top of Stack

Return address
The value of the current
instruction pointer is pushed
on the stack after the function
parameters have been pushed
on the stack.

Frame Pointer
Used to resolve local
references within the stack
using fixed offsets. We can't
use the stack pointer
because that moves as data is
pushed onto the stack

Parameters
The function parameters are
pushed on the stack.

The previous stack frame
The return pointer will set the
instruction pointer to its old
value

Figure 5.3 Stack frame components.

Smashing the Stack for Fun and Profit by Aleph One [Ale95] or “Exploiting Windows
NT buffer overruns” at www.atstake.com.

The prefix pads the payload (in our example, a shell code) to give us the final value for
the input string. Once we have a shell code (or any other executable payload) for a pro-
gram with a known buffer overflow problem, we must figure out the prefix to pad the
payload with to correctly overflow the buffer, overwriting the return address on the
stack. In many attacks, the return address points back into the buffer string containing
the shell code. Aleph One describes why prefix construction requires less precision
than you would expect, because most hardware architectures support a NOP instruc-
tion that does nothing. This NOP instruction can be repeated many times in the prefix
before the shell code. Transferring control anywhere within the NOP prefix will result
in the shell code executing, albeit after a short delay.

Components of a Stack Frame
Active countermeasures against buffer overflow exploits attempt to preserve the
integrity of the stack frame. Consider the image of a stack frame in Figure 5.3.

The stack frame for a function call is built on top of the stack frame of the calling program.
Function parameters are pushed onto the stack and are followed by a copy of the instruc-
tion pointer, stored in the return address, so that control can be returned to the correct

LO W- L E V E L A R C H I T E CT U R E112

location in the calling program. We also push the current stack frame pointer, which refer-
ences the stack frame pointer within the previous frame, onto the stack. The address of the
stack frame pointer is at a fixed location within the current stack frame. The stack frame
pointer is useful for resolving local references that would otherwise require some book-
keeping and arithmetic on the stack pointer. The stackpointer moves, as the stack can
grow and shrink during execution, whereas the frame pointer does not.

Once a return address is overwritten, exploits can compromise the system in many ways.

■■ The return address can be incremented to jump past critical security-related code
blocks in the calling routine, bypassing checks within the program.

■■ The return code can transfer control into the local (automatic) variable buffer
itself, where the hacker has placed instructions to exit the program in a privileged
mode.

■■ The return code can transfer control to a system call at a known address, already
in a library loaded into process memory, by using arguments from the user stack.
The control is transferred to the system() function call, which invokes another
general-purpose program that executes with the process executable owner’s
identity, not the hacker’s. Linus Torvalds describes an overflow exploit that runs
the “system()” call with argument “/bin/sh.” This exploit will work even if the stack
is designated as non-executable, because no instructions are loaded from the user
stack.

Why Buffer Overflow Exploits Enjoy
Most-Favored Status

Stack overflow exploits are popular because of many reasons.

■■ Self-promotion of privileges. Rather than modifying the flow of control through
the program (which might be difficult to exploit without source code), they can
replace the execution context of the process with another program or execute
instructions of their own choice.

■■ Location independence. Buffer overflows can be launched locally or over the
network.

■■ Privileged targets. Many operations on a system enable a user who has limited
privileges to invoke an SUID daemon or program owned by root. A user might
need to initiate a Telnet or FTP session, start a remote access connection, or run
an SUID root utility to access shared resources. In each case, the process must use
inputs provided by the untrusted user. System daemons and utilities are usually
written in C because of performance requirements and an existing robust code
base. If these processes use unsafe system calls, they might be susceptible.

■■ Testing and instrumentation. As is often the case with common utilities and
popular platforms, hackers can create an identical configuration for testing the
exploit. Shared libraries are stored in common locations, dynamically loaded
modules have common size and positions in the loaded module, and strings like
“/bin/sh” or registry entry values appear at guessable locations. The target program

Code Review 113

dutifully reports the exact nature of the overflow and the offending instruction that
caused a core dump on failure.

■■ Standing on the shoulders of others. The source for many buffer overflow exploits
is available on the Internet, and many of the harder parts (such as building a shell
code for a particular OS or program) can be readily copied. Design reuse helps the
hacker in this case.

Countermeasures Against Buffer
Overflow Attacks

There are many countermeasures against buffer overflows. We will present each in the
context of the patterns described in Chapter 4, “Architecture Patterns in Security.”

Avoidance
At a fundamental level, buffer overflows can be avoided by not using the tools that
make them feasible. This situation means writing in languages other than C or C++.
Languages such as Java have built in bounds checking on all arrays, especially on
strings, where the String object is an abstract data type rather than collection of con-
tiguous memory locations with a pointer to the first element. Switching languages
might be infeasible for a number of reasons, however.

■■ Poor performance. Languages that perform bounds checking slow down
execution.

■■ Existing embedded code base. The application environment might have a
considerable legacy C code base.

■■ The project has no choice. The application might include vendor software coded in
C, or the vendor software might require root-owned SUID privileges.

■■ Philosophical differences. It is possible to write bad code in any language, and
conversely, it is possible to write safe code in C. Brian Kernighan called C, “A fine
scalpel, fit for a surgeon, although, in the hands of the incompetent, it can create a
bloody mess.” This statement also applies to coding securely.

Prevention by Using Validators
Validation is the best option if source code is available. We can detect and remove all
potentially unsafe system calls, such as calls to gets(), strcpy, strcat(), printf(), and
others. Alternatively, we can mitigate some overflow exploits by using code validators
that perform static bounds checks on code before compilation. Rational Corp.’s Purify
tools can detect most common sources of memory leaks and can perform static bounds
checking on C and C++ code.

We can replace unsafe libraries entirely. Alexandre Snarskii has reimplemented the
FreeBSD standard C library to add bounds checking on all unsafe function calls. This

LO W- L E V E L A R C H I T E CT U R E114

function requires relinking the code, which might not be an option. Incidentally,
FreeBSD is the core for the new Mac X OS kernel, which also comes with open-source
versions of secure shell (using OpenSSH) and SSL support (using OpenSSL). This situa-
tion might mean that Apple’s new OS represents a leap in PC security and reliability (or
maybe not).

Sentinel
There are several compile-time solutions to stack overflow problems. StackGuard
implements a Sentinel-based overflow protection solution. StackGuard uses a compiler
extension that adds stack-bounds checks to the generated code. Function calls, in code
compiled with StackGuard, are modified to first insert a sentinel word called a canary

onto the stack before the return address. All exploits that use sequential writing of
bytes to write down the user stack until the return address is overrun must first cross
the canary value. The canary is chosen at random to prevent attacks that guess the
canary. Before the function returns, the canary is checked—and if modified, the pro-
gram terminates. StackGuard will not protect against attacks that can skip over the
canary word. Such exploits are believed to be very difficult to construct.

Layer
Layers are used to separate concerns. The user stack is essentially a collection of verti-
cally layered stack frames, each containing two kinds of elements.

■■ Local variables and parameters that will change during the stack frame’s life.

■■ The frame pointers and return addresses, which should not change.

Layers can be implemented at a fine level, separating data elements within the stack
frame. Separating the data elements within the stack frame based on this division cre-
ates a fine-level separation of concerns. Consider Figure 5.4, which shows this layered
solution to buffer overflows.

One solution is to reserve the stack for return addresses only and force all variables to
be dynamically allocated. This solution has performance problems and is infeasible in
cases where the source is unavailable.

Another solution to buffer overflows is to use multiple stacks. This solution creates a
data stack and an address stack, then separates the horizontal layers within each stack
frame and moves the elements to the appropriate stack. The address stack is not modi-
fiable by data overflows and cannot be set programmatically. The return address cannot
be modified by the program through overruns and is controlled by the kernel. This solu-
tion requires significant re-architecture of the OS and compilation tools (and is inap-
plicable in most circumstances).

Multiple stacks are possible within tools that execute as a single process on the host
and provide their own run-time environment. Perl’s run-time environment uses multiple
stacks. There are separate stacks for function call parameters, local variables, tempo-
rary variables created during execution, return addresses (which are pointers to the
next opcode), and scope-related current block execution information (execution jumps

Code Review 115

Local Variables

Local Variables

Local Variables

Local Variables

Local Variables

Local Variables

Local Variables

Local Variables

Local variable stack

Return Address

Return Address

Return Address

Return Address

SFP and return address pointer stack

OR

Heap

Return Address

Local Variables

Return Address

Local Variables

Return Address

Local Variables

Return Address

Local Variables

Current stack

Figure 5.4 Splitting the stack.

after a next, last, or redo statement in a block). Perl also performs memory expansion
by automatically resizing arrays. The underlying C libraries have been scrubbed of all
known unsafe calls that might cause buffer overflows. If an application uses embedded
Perl, however, where the interpreter is incorporated into a wrapper written in C code
that uses unsafe library calls, it might still have buffer overflows caused by long strings
returned by the Perl interpreter. The references contain links to more information
about embedded Perl.

Sandbox
Layers can be implemented at a coarse level of granularity by isolating the entire appli-
cation from the underlying machine. Recall the Sandbox pattern, a special case of the
Layer pattern, used for abstraction. The sandbox separates the program from its execu-
tion environment. Using this pattern, another solution to the buffer overflow exploit
works by dropping the entire program into a sandbox.

Goldberg, Wagner, Thomas, and Brewer, in [GWTB96], present a sandbox for Solaris
called Janus. When a program is run inside the sandbox, Janus controls access to all
system calls made by that program based on security policy modules. Modules, which
are sets of access control rules, can be specified in configuration files. There is no mod-
ification to the program, but there is an associated performance cost with intercepting
all calls (Figure 5.5). The sandbox restricts access privileges absolutely; therefore, it
might not be feasible to run certain daemons within Janus. Buffer overflows are con-
tained because the sandbox, under the correct policy module, can prevent an execution
context switch from succeeding.

Wrapper
If modification of the program is not an option, we can place the entire executable
within a wrapper. Rogers in [Rog98] suggests fixing a buffer overflow problem in some

LO W- L E V E L A R C H I T E CT U R E116

Operating system

Janus Sandbox

Program executable

Policy module

Figure 5.5 The sandbox.

versions of rlogin by placing the executable within a wrapper. The overflow occurs in
the TERM variable, used to set the user’s remote terminal description from the local ter-
minal description. The wrapper either truncates the input string to the correct length or
replaces a malformed input string with a correct default value. The wrapper then
invokes rlogin with safe arguments (Figure 5.6.[a]).

Libverify is a solution based on the wrapper pattern developed by Baratloo, Singh, and
Tsai [BST00] and is provided as a dynamically loaded library (Figure 5.6[b]). Libverify
does not require source code, unlike StackGuard, and can prevent overflows in com-
piled executables. The solution is somewhat unusual, however, because it rewrites and
relocates the instructions of the original program. The libverify library, at link time,
rewrites the entire program so that each function call is preceded with a wrapper_

entry call and succeeded by a wrapper_exit call within the library. In their implementa-
tion, each function is relocated to the heap because the Intel architecture does not
allow enough space within the text segment of the process. The entry function stores
the correct return address on a canary stack. The exit function verifies the return
address of the function against the stored canary value (Figure 5.6[b]). The canary
value is stored on a canary stack, also allocated on the heap. If the canary is modified,
the wrapper_exit procedure terminates the program.

Code Review 117

Program executable

Store canary
on entry

function call within program or
standard C library

Check canary
on exit

(b)

Function
call

Return

User invocation

Check
Arguments

Buggy executable

Check
return status

(a)

Call actual
executable

Return

Figure 5.6 Wrapper.

Interceptors
Interceptors can catch some overflows at run time by making the stack non-executable
or by redirecting function calls on the fly.

Many buffer overflow exploits embed the opcodes for the shell code vector directly on
the execution stack and then transfer control to the vector by redirecting the instruc-
tion pointer to the stack. On some platforms—for example, Solaris 2.6 and above—we
can prevent this situation by making the stack non-executable.

In Solaris, we can set the noexec_user_stack in /etc/system to 1. By default, this value is
set to 0 to be compliant with the Sparc Application Binary Interface (ABI) and Intel ABI.
Any program that attempts to execute code on the stack will receive a SIGSEGV signal
and will most likely core dump. A message will be logged by syslogd to the console and
to /var/adm/messages. Setting the noexec_user_stack_log variable to 0 turns this log-
ging behavior off.

Intel chips do not provide hardware support for making stack segments non-
executable. By default, it is not possible to designate the user stack non-executable on
Linux, but there is a kernel patch that is not part of the standard Linux kernel from
Solar Designer (www.openwall.com) that enables the administrator to make the user
stack non-executable. Linus Torvalds resists including non-executable stacks as a kernel
option on Linux because other overflow attacks do not depend on executing code on
the stack. Intel chips permit the transfer of control to system calls at addresses not on
the stack segment, using only arguments from the stack. Making the stack non-executable
does nothing to prevent such an overflow exploit from succeeding and adds a perfor-
mance penalty to the kernel.

Some applications require an executable stack. For example, the Linux kernel makes
legitimate use of an executable stack for handling trampolines. Although some UNIX sys-
tems make legitimate use of an executable stack, most programs do not need this feature.

Another alternative, developed again by Baratloo, Singh, and Tsai [BST00] from Bell Labs,
works in situations where we do not have access to source code. Their solution for Linux,
provided through a dynamically loaded library called libsafe, intercepts all unsafe func-
tion calls and reroutes them to a version that implements the original functionality but
does not allow any buffer overflow to overwrite the return address field or exit the stack
frame. This situation is possible at run time, where we can compare the target buffer that
might overflow to the stack frame pointer of the stack frame it is contained in and decide
the maximum size that the buffer can grow to without smashing the return address. Lib-
safe calls the standard C function if the boundary test is not violated (Figure 5.7). Inter-
cepting all calls to library functions known to be vulnerable prevents stack smashing.

Why Are So Many Patterns Applicable?

Why are there so many different ways of solving buffer overflow exploits? Simply put,
there are so many solutions to the buffer overflow problem because so many solutions

LO W- L E V E L A R C H I T E CT U R E118

text

Program executable

Standard C library

Safe C library
Checks frame boundary violation

System call

Figure 5.7 Interceptor.

work. Every point in program evolution, from static source to running executable, pre-
sents its own opportunity to add overflow checks.

Overflow attacks work at a fundamental level, exploiting the stored-program concept
that allows us to treat data and instructions alike. We mix instruction executions
(“Branch here,” “Load from there,” “Use this value to set the instruction pointer,” and so
on) with program data (“Store this array of characters.”). We allow location proximity
between data and instructions because we need speed within a processor. This proxim-
ity has led to an assumed safety property: if we compile and debug our programs cor-
rectly, the flow of control in the assembly code generated will follow the flow of control
of the source code. We assume that we will always load the instruction pointer from a
trusted location in the address space, and we assume that return addresses on the stack
will be written once on entry and read once on exit. Buffer overflow exploits violate
this desired safety property.

Stack Growth Redirection
Changing the direction that the stack grows in so that buffers grow away from the return
address on a stack frame and not toward it will prevent all currently known buffer over-
flow attacks. This action is infeasible, however, because the stack growth feature of the
process segment is built into too many operating systems, hardware platforms, and
tools.

Buffer overflows are still feasible even if the stack growth is reversed; they are just
harder to build. The exploits work by overflowing a buffer in the calling routine’s stack
frame, not the current stack frame, by using a stolen reference to a buffer within the
parent stack frame. If we can overflow this buffer, writing upward until the return
address on the current stack frame is reached, we can overwrite the return value. No
known exploits work this way, but the mechanism has been documented. Most solu-
tions for buffer flow attacks with no or small changes can prevent this variation.

Code Review 119

Hardware Support
Hardware support for ensuring the safety property of instruction pointers can help.

■■ We can trap overflows in hardware.

■■ We can flag return addresses and throw exceptions if they are modified before the
call returns.

■■ We can throw exceptions if the instruction pointer is loaded with an address that is
out of some allowed set.

■■ We can protect frame boundaries from being overwritten.

Indeed, although none of the patterns described previously use cryptographic tech-
niques to block overflows, we could envision schemes that do so in hardware.
Programs can have cryptographic keys that describe allowed context switches to block
attempts to run /bin/sh/. Hardware modifications are unlikely to happen in the near
future. Until we have hardware support, we must actively pursue the other alternatives
that we have described in the preceding sections.

Security and Perl

Larry Wall’s Perl programming language has been called the “duct tape of the Internet.”
It provides a powerful and flexible environment for prototyping, systems administra-
tion, maintenance, and data manipulation and is excellent for building one-time solu-
tions for complicated problems that would otherwise require too much effort when
using C. There are several million Perl programmers and many excellent references on
Perl usage (for example, [SC97], [WCO00], and [Sri98]).

The Perl interpreter consists of a translator and an opcode executor. The translator
converts a Perl script into a syntax tree of abstract opcodes. Each opcode corresponds
to a call to a carefully optimized C function. The current stable version of Perl, release
5.6.1, has more than 350 opcodes. The Perl opcode generator then scans through the
completed syntax tree, performing local optimizations to collapse subtrees or to pre-
compute values known at compile time. Each opcode stores the next opcode to be
potentially executed, imposing an execution sequence on the syntax tree. At run time,
the executor follows a path through the syntax tree, running opcodes as it goes. Each
opcode returns the next opcode to be run, which can be identical to the op_next links
within each node (except in cases where branch statements and indirect function calls
redirect traversal of the syntax tree).

Perl is a full-fledged programming language, and the user can implement any security
mechanism desired in code. There are several reasons for Perl’s undeserved reputation
as a security risk.

Perl and CGI. Perl powers many of the cgi-bin scripts used on Web servers. Poor
argument validation, along with root-owned SUID Perl scripts, allowed many
exploits based on carefully constructed URLs to succeed. Some exploits confused
the issue, blaming the Perl language because of Perl code that implemented security

LO W- L E V E L A R C H I T E CT U R E120

TE
AM
FL
Y

Team-Fly®

poorly. Examples included Perl code that depended on hidden variables (which are
visible in the source html), values in the HTTP header (which can be spoofed), or
code that contained nonPerl-related Web security problems.

Perl and system calls. SUID Perl scripts that do not validate command-line
arguments or check environment variables and yet invoke a shell are susceptible
(this statement applies to any program). Malicious users could insert input field

separator (IFS) characters, such as pipes or semicolons, into arguments or could
modify the PATH variable or change the current working directory in ways that give
them a root shell.

Bugs in old versions of Perl. Many of the exploits that worked on bugs in earlier
versions have been fixed in current stable releases.

Home-grown libraries. Perl provides support for almost all Internet protocols. Users
who rolled their own, with all the attendant risks, blamed Perl for security holes.

Poor coding practices. Almost anything goes in Perl (that includes almost anything
dangerous).

Execution of untrusted scripts. Once a host has been compromised, the presence
of a powerful interpreter such as Perl makes automated attacks easier. This
situation is not a fault of Perl’s but does highlight the risks of putting a powerful
tool on a production box, where it can be exploited. HP machines configured in
trusted computing mode forbid the use of compilers. This feature is useful for
protecting production machines, because you should not be building software on a
production box anyway. Unlike compiled code, which no longer needs the compiler,
the Perl interpreter must be present for Perl scripts to execute.

We will describe three patterns that Perl uses for supporting secure programming.

Syntax Validation
Perl has few rivals for manipulating text for complex pattern matching through regular
expressions. You can write a lexical analyzer for most simple applications in one line.
Command-line argument validation in Perl uses regular expressions whose syntax, for
example, supports the following items:

■■ Single character matches. /[aeiouAEIOU]/ matches the vowels.

■■ Predefined character matches. \d matches a single digit, \w matches a single legal
Perl name, \W matches any input that is not a legal Perl name, and so on.

■■ Sequencing. /tom/ matches tom exactly.

■■ Multipliers. /A+/ matches a string of one or more As. /A*/ matches a string of zero
or more As.

■■ Alternation. /(a|b|c)/ matches any one of a, b, or c.

Perl also has many other features for pattern matching, such as memory placeholders,
anchors, substitutions, and pattern redirection.

All of these features make it easy to check the syntax of inputs. We can create an alpha-
bet of characters, along with a syntax tree for all valid inputs defined by an application.

Code Review 121

Then, we can strip any input string of any invalid characters and subject the remainder
to valid syntax checks before we use the input string as a username, a file to be opened,
a command to be executed, or a URL to be visited.

Sentinel
Perl uses the sentinel pattern to mark any data value within the program as trusted, by
virtue of being created inside the program, or untrusted, by virtue of being input into
the program from the outside world. The tainted property is a sentinel. Marking data as
tainted prevents the interpreter from using the data in an unsafe manner by detecting
some actions that attempt to affect the external environment of the Perl script and mak-
ing them illegal at run time.

By default, any SUID or SGID Perl script is executed in taint mode. Alternatively, Perl
allows taint checking on any script by invoking the Perl script with the -T switch, which
marks all data input from outside the program as tainted. Perl marks variables that
derive their values from tainted variables as also tainted. Examples of possibly tainted
external values include data from a POST form to a cgi-bin script, command-line argu-
ments, environment variables not set internally but inherited from the script’s parent,
and file handles.

Maintaining these markers on the flow of data through the program has a performance
cost. This situation, however, enables the interpreter (which assumes that the code is
trusted but the data is not) to forbid execution of dangerous actions that use the tainted
data. When a Perl script running with the -T switch invokes any action that can impact the
external host, such as launching a child process, opening a file, or calling exec with a single
string argument, that action will be blocked. Although it is possible to test whether a vari-
able is tainted, we normally already know which variables contain data from external
sources. We must clean the data, untainting it before we can use it. The only way to
extract untainted data from a tainted string is through regular expression match variables,
using Perl’s pattern matching memory trick using parenthesis placeholders.

Wall, Christiansen, and Schwartz in [WCS96] note that “The tainting mechanism is
intended to prevent stupid mistakes, not to remove the need for thought.” The taint
mechanism will not prevent bad programming practices, such as marking tainted data
as untainted without cleaning the data first.

Sandbox
Malcolm Beattie’s Safe module, part of the standard Perl release, implements the
Sandbox pattern. The safe module creates a compartment with well-defined access priv-
ileges.

A compartment has the following elements:

■■ A name. Each compartment in a Perl program is an instance of a Safe object,
initialized with its own capability list. This feature enables a form of multi-level
security. We can create several instances of Safe variables and run functions with
different access privileges within each one. The Java sandbox, which we will

LO W- L E V E L A R C H I T E CT U R E122

discuss in Chapter 7, “Trusted Code,” supports the same functionality through the
creation of multiple policy managers that can be dynamically loaded on the basis
of the identity of the applet’s digital signatory or the host from which it was
downloaded.

■■ A namespace. The namespace of a safe is restricted. By default, any function
executing within the safe can share only a few variables with the externally
compiled code that invoked the function within the Safe object. These include the
underscore variables $_, @_, and file handles. The code that invokes the safe can
add variables to the namespace.

■■ An opcode mask. Each compartment has an associated operator mask. The mask
represents a capability list (please refer to Chapter 3, “Security Architecture
Basics”) initialized to a default minimal access configuration. The mask is an array
of length MAXO() bytes, one for each opcode in Perl (of which there are 351
opcodes listed in opcode.h, as of release 5.6.1). A byte is set to 0x00 if execution of
the corresponding opcode is allowed or 0x01 if disallowed.

Safes can evaluate functions that handled tainted data. The class Safe provides meth-
ods for handling namespaces and masks, sharing variables, trapping and permitting
opcodes, cleanly setting variables inside the safe, and evaluating strings as Perl code
inside the safe.

Recall our description of Perl’s run-time mechanism; in particular, the execution phase.
When we traverse the syntax tree created from an untrusted script executing within a Safe
compartment, we can check the value of the current opcode against the opcode mask very
quickly before execution. We can raise an exception if the opcode is not allowed, which
helps performance but makes capability list management harder. The Safe class provides
methods for opcode mask management, such as conversion of opcode names to mask set-
tings and masking or unmasking all opcodes. It is not obvious how to map corporate secu-
rity policy to an opcode mask, however. We recommend enforcing the principle of least
privilege by turning off all opcodes except the minimal set required.

From another viewpoint, the opcode masks correspond to security policies enforced by
a Safe object rather than capability lists assigned to code. The opcode mask in the Safe
class is bound to the Safe object instance, not to the actual code that is executed within
the safe. The two viewpoints are equivalent in most cases; because all functions that
can be evaluated within a safe are known at compile time, only the tainted user data to
the function changes. This situation contrasts with the Java sandbox, where arbitrary
applets can be downloaded and where security policy enforced by the JVM is chosen
based on higher-level abstractions, such as the applet’s digital signatory or the host
from which it was downloaded.

Bytecode Verification in Java

We described how Perl’s powerful pattern matching features make input validation eas-
ier. At the other extreme, from one-line syntax validation in Perl, is the infinite variety

Code Review 123

of formal verification exemplified by theorem provers like the Java bytecode verifier.
Theorem provers seek to establish formal and constructive proofs for abstract proper-
ties of specific programs. In general, this proof is known to be undecidable, but we can
establish constraints on generality to make the problem feasible.

The creators of the Java programming language have included security in its design
from the start. Comprehensive security has lead to the following situations, however:

■■ Complex specifications that are sometimes open to interpretation.

■■ Implementations of the Java virtual machine and Java libraries that have had bugs.

We will discuss some of the security mechanisms of the Java virtual machine in Chapter
7, but we will focus on byte code verification in this section.

Java is a complicated, full-fledged language including objects with single inheritance,
class hierarchies of objects, interfaces with multiple inheritance, strong typing, strict
rules for type conversion, visibility or extensibility properties for object fields and
methods (public, private, protected, abstract, final), and run-time constraints on the
operand stack and array bounds. Just running through the list should give you some
idea of the complexity of proving a claim about some property of a given Java class.
Java 1.2 adds cryptographic extensions and access control mechanisms for granting
code permission to execute actions based on rights and performs run-time permissions
checking (just in case you thought, after learning about byte code verification, that the
hard part was behind us).

Java was designed to be portable. Java programs are compiled into bytecodes that are
executed on a JVM. The JVM does not trust the compiler to correctly enforce Java lan-
guage rules because the bytecodes themselves can be produced using any means, inde-
pendent of the Java compiler. Other languages can be compiled into bytecodes, but the
JVM must ensure that the resulting bytecodes must be forced to follow Java’s language
rules. There are compilers for many languages, including C, C++, Scheme, python, Perl,
and Ada95, that produce bytecodes. Nevertheless, the primary language overwhelm-
ingly used to produce class files is Java.

The initial JVM specification and reference implementation provided by Sun have been
extensively studied. Java’s object type model and its attempt at proving properties
(“theorems”) about objects have led to considerable research on formal methods for
capturing the behavior of the bytecode verifier. In particular, researchers have noted
differences between the prose specification and the behavior of the reference imple-
mentation. Researchers have used formal methods from type theory to reason about
bytecode validity. They have analyzed the verifier’s capabilities as a theorem prover on
restricted subsets of the language that remove some complicated language feature in
order to apply powerful methods from type theory to understand how to improve and
optimize the behavior of bytecode verifiers.

The JVM relies on the bytecode verifier to perform static checks to prevent dynamic
access violations. Some checks can be implemented immediately while others must be
deferred until run time. For example, the bytecode verifier must perform the following
actions:

LO W- L E V E L A R C H I T E CT U R E124

Code Review 125

■■ Ensure that the class file conforms to the syntax mandated by the JVM
specification and has the correct preamble, length, and structure.

■■ Prevent illegal data conversions between primitive types.

■■ Prevent illegal casts of objects that do not have an inheritance relationship. This
action might have to be deferred until run time because we might not know which
superclass an object pointer refers to in a cast.

■■ Maintain array bounds by ensuring that indexes into arrays do not result in
overflows and underflows. These checks must also be deferred until run time
because we might not know the value of an index into an array.

■■ Confirm constraints that remove type errors, such as dereferencing an integer.

■■ Enforce language rules, such as single inheritance for objects or restrictions on
classes or methods defined as final.

■■ Ensure that the visibility properties of object fields and methods are maintained;
for example, by blocking access violations such as access of a private method from
outside its class.

■■ Prevent other dynamic errors, such as accessing a new object before its
constructor has been called.

Bytecode verification is a critical component in Java’s security architecture. By default,
the JVM trusts only the core Java API. All other class files, whether loaded from the
local host or over the network, must be verified. The other components, including the
class loader, the security manager, access controller, cryptographic extensions, and
security policies, all depend on the verifier’s ability to vet the code.

The Java security model suffers from one fundamental flaw: complexity. The consensus
in security architecture is that simplicity is the best route to security. Simplicity in
design leads to simplicity in implementation and makes reasoning about security possi-
ble. The goal of Sun in introducing Java as a write once, run anywhere solution to many
software problems is a complex one, however, and simplification that results in flawed
implementations would be to err in the other direction. We do keep in mind Einstein’s
admonition that “everything should be made as simple as possible, but not simpler,” but
the theoretical advances in bytecode verification promise room for improvement. We
recommend Scott Oaks’s Java Security, (2nd Edition) ([Oaks01]), as an excellent book
on Java’s security architecture.

Good Coding Practices Lead to Secure Code

The purpose of code review is to gain confidence in the quality of code. Although there
is no guarantee that well-written code is automatically safe, there is considerable anec-
dotal evidence that good programmers write secure code.

Don Knuth invented and has written extensively about literate programming

[Knuth92]. Knuth defines literate programming as, “a methodology that combines a pro-
gramming language with a documentation language, thereby making programs more

robust, more portable, more easily maintained, and arguably more fun to write than
programs that are written only in a high-level language.” The main idea is to treat a pro-
gram as a piece of literature addressed to human beings rather than to a computer. One
could argue that anything that improves readability also improves understanding (and
therefore improves security).

C++ and patterns guru James Coplien has written about the importance of writing under-
standable code. He champions the “humanistic coding patterns” of Richard Gabriel in
[Cop95], which include simple guidelines to writing understandable, manageable code
with the goal of reducing stress and increasing confidence for code maintainers who are
unfamiliar with the source. The guidelines are elementary but powerful, including simple
advice to define local variables on one page, assign variables once if possible, and make
loops apparent by wrapping them in functions.

Kernighan and Pike in The Practice of Programming ([KP99]) describe the three guiding
principles of program design: simplicity, clarity, and generality. They discuss a wide range
of topics on programming style, including variable naming conventions, coding style, com-
mon C and C++ coding errors, simple data structures, algorithms, testing, portability,
debugging, and performance. Although not a book on security, it is not hard to imagine that
common sense and better programming style leads to faster and easily maintainable code.
That makes for understandability, which leads to quicker bug detection and correction.

The study by Miller et al. [Mill00] reveals that open-source utilities are best in class for
security. Eric Raymond has described why he believes this statement to be true in his
essay The Cathedral and the Bazaar and also in Open Sources: Voices from the Open

Source Revolution ([Ray95], [VFTOSM99]).

Matt Bishop wrote an influential note about how to write SUID and SGID programs
([Bish87]), describing coding guidelines. He recommends minimizing exposure by per-
forming the following actions:

■■ Using the effective user ID rather than the owner’s ID as much as possible.

■■ Checking the environment and PATH inherited from the parent process.

■■ Cleaning up the environment before invoking child processes.

■■ Making sure that SUID programs are vetted for buffer overflow problems.

■■ Using a user ID other than root, with minimal privileges needed.

■■ Validating all user inputs before using them.

■■ His best guideline: Do not write SUID and SGID programs, if possible.

All this advice leads us to the belief that the ability to write secure code is not magical
but can be accomplished by competent programmers following common-sense rules of
programming style, with assistance and review by security experts when necessary.

Conclusion

Code review is architecture work, but at a very fundamental level. Its major virtue is
that it adds simplicity to the architecture. The more we understand and trust our code,

LO W- L E V E L A R C H I T E CT U R E126

Code Review 127

the less we need to implement complicated patterns to protect and guard components
in our architecture.

Any architect can tell you the consequences of building the prettiest of buildings over
the poorest of foundations. Good code leads to good foundations. All the topics that we
will target in the chapters to follow will depend on this foundation: operating systems,
Web servers, databases, middleware, secure communication, and cryptography.

Code review is not perfect but gives confidence to our pledge to build secure systems.
If we give equal service to the other elements of the security architecture as well, the
time comes when we shall redeem our pledge, not wholly or in full measure, but very
substantially.

C H A P T E R

129

Cryptography, the art of secret writing, enables two or more parties to communicate and
exchange information securely. Rulers throughout history have depended on classical

cryptography for secure communication over insecure channels. A classical crypto-
graphic cipher scrambles a message by using encryption rules along with a secret key.
The cipher substitutes each symbol or group of symbols in the original message with a
sequence of one or more cipher text symbols. The encryption rules are not secret, but
only a recipient who knows the secret key will be able to decrypt the message.

The success of many operations critically depends on our ability to create confidential
channels of communications. Financial institutions must conduct business negotiations
securely, safe from the eyes of prying competitors. Generals require military command
and control systems to relay orders down the chain of command without the fear of
enemy interception. Customers must be able to buy merchandise without the risk of
theft or fraud. Secrecy is essential for success.

In each of these scenarios, in addition to confidentiality we also need other security
principles such as authentication, integrity, and non-repudiation. We must be able to
establish with a reasonable degree of confidence that the party we are in communica-
tion with is indeed whom they claim they are. We must prevent message modification or
tampering in transit. In addition, we must protect ourselves from those who deny trans-
acting business with us if today’s friend becomes tomorrow’s foe. The success of the
Internet as a marketplace for services and information depends on the strength of our
cryptographic protocols and algorithms.

Our claims that we have accomplished some security principle are only as good as our
ability to prove that our assumptions hold true. For example, cryptography assumes

6
Cryptography

that certain keys are kept secret. Keeping the key secret is critical, because any adver-
sary who steals the key can now decrypt all traffic. Although this statement seems tau-
tological, the difficulty lies in the details. We must examine implementation and
procedural details to ensure that we do not attach secret information in the clear to
messages in transit, leave keys in memory, append keys to files, or allow backup proce-
dures to capture the keys. These details can break our assumptions.

Our purpose in this chapter is to support the references to cryptography in the chapters
ahead. We will not consider the legal and ethical dimensions of cryptography—the bat-
tlefield between privacy and civil rights advocates who desire unbreakable security for
the individual and law enforcement or national security advocates who warn against
the dangers of allowing terrorists or criminals access to strong cryptography. [Sch95],
[Sch00], [Den99], and [And01] are excellent resources for the social impacts of crypto-
graphic use.

The History of Cryptography

Cryptography has a fascinating history. The story of the evolution of ever-stronger
ciphers, forced by the interplay between code makers seeking to protect communica-
tions and code breakers attacking the schemes invented by the code makers, is told elo-
quently in [Kahn96] (and, in a shorter version, [Sin99]). Kahn and Singh describe a
succession of ciphers invented for hiding military secrets through the ages, from the
Caesar Cipher to Lucifer (Horst Feistel’s precursor to the Data Encryption Standard)
down to modern advances in both symmetric and asymmetric cryptography.

Encryption converts the original form of a message, also called the plaintext, into a
cryptographically scrambled form called the ciphertext. Decryption reverses this oper-
ation, converting ciphertext into plaintext. Each step requires a key and the corre-
sponding algorithm.

All cryptography was secret-key cryptography until 1969, when James Ellis invented
non-secret encryption. In 1973, Clifford Cocks invented what we now call the RSA algo-
rithm, and with Malcolm Williamson invented a Diffie-Hellman-like key exchange pro-
tocol [Sin99, And01]. Because their research was classified and kept secret by the
British Government for decades, however, the birth of the modern era of public-key
cryptography had to wait until 1976, when Whit Diffie and Martin Hellman invented
their key exchange protocol and proposed the existence of asymmetric encryption
schemes. In 1977, the first open public-key encryption algorithm was invented and
patented by Ron Rivest, Adi Shamir, and Len Adleman. Fortunately, their independent
discovery of asymmetric cryptographic algorithms occurred only a few years after the
classified work of Ellis, Cocks, and Williamson and rightly forms the origin of modern
cryptography.

The current state of the art has expanded the scope of cryptography far beyond secure
communication between two parties. Oded Goldreich defines modern cryptography as
the science of construction of secure systems that are robust against malicious attacks
to make these systems deviate from their prescribed behavior [Gol01]. This definition

LO W- L E V E L A R C H I T E CT U R E130

TE
AM
FL
Y

Team-Fly®

Secrecy and Progress

Perhaps asymmetric cryptography was an idea whose time had come given the
increasing levels of military importance, commercial interest, and computing
power ahead, and a public rediscovery was inevitable. The landscape of security
today would be very different without the invention of public-key cryptography,
however. History shows us another example of 2,000 years of conventional
wisdom overturned by a radical insight. The great mathematician Gauss greeted
the independent discovery of non-Euclidean geometry by Janos Bolyai in 1832
and Nicolai Lobachevsky in 1829 with the surprising revelation that he had
discovered the field 30 years earlier. It is believed that his claim, and his elegant
proofs of some of Bolyai’s results, caused Bolyai to abandon the field entirely.
Gauss had been reluctant to publish, fearing that the mathematical community
would be unable to accept such a revolutionary idea. Similarly, it is possible
(though highly improbable) that some government agency is sitting on a fast
algorithm for factorization or discrete logs right now.

can been seen as an architectural one, using the familiar notions of components, con-
straints, and connectors from Chapter 3, “Security Architecture Basics.”

Modern cryptography is concerned with systems composed of collections of entities
(called parties) with well-defined identities and properties. Entities interact over commu-
nication channels. Each cryptographic system has a purpose: a functional goal accom-
plished by exchanging messages between participants. Entities share relationships and
accomplish their functional goals through cryptographic protocols. The system must
accomplish this goal efficiently, according to some agreed-upon notion of efficiency.
Defining a secure cryptographic protocol is not an easy task. The communications chan-
nel between any two or more parties can be secure or insecure, synchronous or asyn-
chronous, or broadcast or point-to-point. Entities can be trusted or untrusted; and their
behavior can be honest, malicious, or both at various times in an interaction. Participants
might desire to hide or reveal specific information in a controlled manner. Any of the
security goals from Chapter 3 might also be desired.

Adversaries are limited by computational power alone, rather than artificial constraints
formed by our beliefs about their behavior. Adversaries must be unable to thwart us
from accomplishing the system’s functional goal. If this statement is true, we say that it
is computationally infeasible for the enemy to break the system.

Many deterministic cryptographic algorithms and protocols have randomized (and
even more secure) counterparts. Probability and randomness not only play a central
role in the definition of secure algorithms, pseudo-random generators, and one-way
functions, but also help us define the notions of efficiency and feasibility themselves.
We might not be able to guarantee absolutely that an algorithm is secure, that a number
is prime, or that a system cannot be defeated, but we can prove that it is exceedingly

Cryptography 131

unlikely to be otherwise in each case. For all practical purposes, we can state that these
properties hold true.

Modern cryptographers use tools that are defined in abstract terms to separate the
properties of the cryptographic primitives from our knowledge of their implementation.
We only require that our implementations be indistinguishable from the abstract defini-
tions in some formal way. Proofs of correctness, soundness, completeness, and so on
should not depend on our intuitions about implementation details, hardware, software,
computational limits, the environment of the system, the time needed for a reasonable
communication, the order of events, or any assumptions of strategy on the part of any
adversary.

Although the rarified world of cryptographic research is quite far from most of the
concerns of practical, applied cryptography (and which, in turn, is mostly outside the
domain of most software architects), the gaps are indeed narrowing. The Internet and
all the intensive multi-party interaction that it promises will increasingly require mod-
ern cryptographic protocols for accomplishing any number of real and practical sys-
tem goals. We refer the interested reader [Kob94] and [Sal96] for primers on the
mathematics behind cryptography; [Den82], [KPS95], [MOV96], and [Sch95] for excellent
references on applied cryptography; [Gol01] for the foundations of modern cryptogra-
phy; and [And01] for the security engineering principles behind robust cryptographic
protocols.

Cryptographic Toolkits

The National Institute of Standards and Technology (NIST) is a U.S. government body
controlling standards relating to cryptographic algorithms and protocols. NIST pub-
lishes the Federal Information Processing Standards (FIPS) and coordinates the work
of other standards (ANSI, for example) and volunteer committees (such as IETF work-
ing groups) to provide cryptographic algorithms approved for U.S. government use.
NIST reviews the standards every five years and launches efforts to build replacements
for algorithms that have defects or that are showing their age in the face of exploding
computational power. For example, the Advanced Encryption Standard (AES) algo-
rithm, selected to replace the venerable DES algorithm, was selected through an open
multi-year review and testing process in a competition among 15 round-one submis-
sions. Vincent Rijmen and Joan Daemen’s Rijndael cipher was selected over four other
finalists (csrc.nist.gov/encryption/aes/). We expect to see AES as an encryption option
in products everywhere.

NIST has collected some basic cryptographic building blocks into the NIST Cryptographic
Toolkit to provide government agencies, corporations, and others who choose to use it
with a comprehensive toolkit of standardized cryptographic algorithms, protocols, and
security applications. NIST reviews algorithms for the strength of security, benchmarks
the speed of execution in software and hardware, and tests implementations on multiple
platforms and in many languages. The rigorous validation tests can give us some confi-
dence in these ciphers over other (proprietary, vendor invented, possibly insecure, and
certainly not peer-reviewed) choices. Open standards are essential to cryptography.

LO W- L E V E L A R C H I T E CT U R E132

The NIST Cryptographic Toolkit contains primitives for the following:

■■ Encryption for confidentiality in several encryption modes

■■ Authentication

■■ Hash functions for integrity and authentication

■■ Digital signatures for integrity and authentication

■■ Key management

■■ Random number generation

■■ Prime number generation

NIST maintains a list of cryptographic standards and requirements for cryptographic
modules at www.nist.gov/fipspubs. RSA Labs at the RSA Data Security Inc.’s Web site,
www.rsa.com/rsalabs/index.html, is also an excellent starting point for information on
crypto standards and algorithms.

In the following sections, we will present an overview of cryptographic building blocks.

One-Way Functions

One-way functions are easy to compute but are hard to invert (in almost all cases). A
function f from domain X to range Y is called one-way if for all values of x, f(x) is easy
to compute, but for most values of y, it is computationally infeasible to compute f -1(y).
For example, multiplying two prime numbers p and q to get the product n is easy, but
factoring n is believed to be very hard.

Trapdoor one-way functions are one-way, but invertible if we have additional informa-
tion called the trapdoor key. A function f from domain X to range Y is called trapdoor
one-way if f is one-way and for all values of y, it is computationally feasible to compute
f -1(y) given an additional trapdoor key.

It is not known if any function is truly one-way, and a proof of existence would have
deep consequences for the foundations of computing. One-way and trapdoor one-way
functions are central to asymmetric cryptography and are used as a basic building
block in many cryptographic protocols. We will describe one-way hash functions, also
called cryptographic checksums, in a section ahead.

Encryption

Cryptography broadly divides encryption algorithms into two classes.

■■ Symmetric key encryption, which uses shared secrets between the two parties.

■■ Asymmetric key encryption, which uses separate but related keys for encryption
and decryption; one public, the other private.

Cryptography 133

Hybrid systems mix symmetric (or private key) and asymmetric (or public key) cryp-
tography to use the best features of both.

Auguste Kerckhoff first stated the fundamental principle that encryption schemes
should not depend upon the secrecy of the algorithm; rather, that security should
depend upon secrecy of the key alone. All encryption algorithms can be cracked by
brute force by trying all possible decryption keys. The size of the key space, the set of
all possible keys, should be too large for brute force attacks to be feasible.

Symmetric Encryption

Symmetric cryptography depends on both parties sharing a secret key. This key is used
for both encryption and decryption. Because the security of the scheme depends on
protecting this shared secret, we must establish a secure channel of communication to
transmit the shared secret itself. We can accomplish this task through many out-of-band
procedures, by making a phone call, by sending the secret by trusted courier, or by
using a private line of communication (such as a private leased line).

Claude Shannon, in his seminal article [Sha49], proved that that we can accomplish per-
fect secrecy in any encryption scheme by using randomly generated keys where there
are as many keys as possible plaintexts. Encryption with a one-time pad, a randomly
generated key that is the same length as the message and that is used once and thrown
away, is perfectly secure because all keys are equally likely implying that the ciphertext
leaks no information about the plaintext. One-time pads are impractical for most appli-
cations, however.

Practical symmetric encryption schemes differ from one-time pads in two ways.

■■ They use short, fixed-length keys (for example, DES keys are 56 bits long) for
messages of any length. In other words, the ciphertext will contain information
about the plaintext message that might be extractable.

■■ These keys are either chosen by people (the key might not really be random), are
generated by using physical processes like radioactive decay (in which case we
can make some assumption of randomness), or are generated by using pseudo-

random number (PRN) generators. PRN generators are deterministic programs
that use a small seed to generate a pseudo-random sequence that is
computationally indistinguishable from a true, random sequence. Implementations
might use weak PRN generators with nonrandom properties exploitable by a
cryptanalyst, however.

Symmetric encryption is generally very fast, uses short keys, and can be implemented
in hardware. We can therefore perform bulk encryption on a communications data
stream at almost line speeds or with only a small performance hit if we use the right
pipelining design and architecture. We must, however, be able to negotiate a cipher
algorithm with acceptable parameters for key and block size and exchange a secret key
over a trusted channel of communication. Key distribution to a large user base is the
single largest challenge in symmetric encryption. This task is often accomplished by

LO W- L E V E L A R C H I T E CT U R E134

using asymmetric key protocols or through key exchange protocols (such as Diffie-
Hellman, which we will discuss later).

The earliest encryption ciphers used simple alphabetical substitution or transposition
rules to map plaintext to ciphertext. These ciphers depended upon both parties shar-
ing a secret key for encryption and decryption. Later improvements enhanced the
encryption rules to strengthen the cipher. The two types of symmetric key ciphers are
as follows.

Block ciphers. Block ciphers break the input into contiguous and fixed-length blocks
of symbols and apply the same encryption rules to each plaintext block to produce
the corresponding ciphertext block.

Stream ciphers. Stream ciphers convert the input stream of plaintext symbols into a
stream of ciphertext symbols. The encryption rule used on any plaintext symbol or
group of contiguous symbols depends on the relative position of that portion of the
input from the beginning of the stream.

Encryption Modes
Encryption algorithms can be composed in many ways, mixing details of the plaintext
or ciphertext of preceding or succeeding blocks with the plaintext or ciphertext of the
current block undergoing encryption. Composition strengthens the cipher by removing
patterns in the ciphertext. Identical plaintext sequences can map to completely differ-
ent ciphertext blocks by using context information from blocks ahead or behind the
current block. Encryption modes often represent tradeoffs between speed, security, or
error recoverability.

Block Ciphers

Encryption modes for block ciphers include the following:

■■ Electronic codebook mode. We encrypt each succeeding block of plaintext with the
block cipher to get cipher text. Identical plaintext blocks map to identical
ciphertext blocks and might leak information if the message has structure resulting
in predictable plaintext blocks or through frequency analysis to find NULL
plaintext blocks.

■■ Cipher block chaining. The previous block of ciphertext is exclusive ORed with the
next block of plaintext before encryption. This action removes the patterns seen in
ECB. The first block requires an initialization vector to kick-start the process.

■■ Cipher feedback mode. Data is encrypted in smaller blocks than the block size, and
as in CBC, a plaintext error will affect all succeeding ciphertext blocks. Ciphertext
errors can be recovered from with only the loss of a few mini-blocks, however.
CFB links the ciphertext for each smaller block to the outcome of the preceding
mini-block’s ciphertext.

Other modes include output feedback mode, counter mode, and many more.

Cryptography 135

Stream Ciphers

Simple stream ciphers use the shared secret as an input to a key stream generator that
outputs a pseudo-random sequence of bits that is XOR-ed with the plaintext to produce
the ciphertext. Ron Rivest’s RC4, which appears in SSL and in the Wired Equivalent

Privacy (WEP) algorithm from the IEEE 802.11b standard, is one such stream cipher.
Two encryption modes, among others, for stream ciphers are as follows:

■■ Output feedback mode. Stream ciphers in OFB use the key to repeatedly encrypt
an initialization vector to produce successive blocks of the key stream.

■■ Counter mode. Stream ciphers in counter mode use a counter and the key to
generate each key stream block. We do not need all predecessors of a particular
block of bits from the key stream in order to generate the block.

We refer the interested reader to [Sch95] and [MOV96] for more details.

Asymmetric Encryption

Asymmetric encryption uses two keys for each participant. The key pair consists of a
public key, which can be viewed or copied by any person (whether trusted or
untrusted) and a private key (which must be known only to its owner). Asymmetric
encryption is mainly used for signatures, authentication, and key establishment.

Asymmetric algorithms do not require a trusted communications path. Authenticating
the sender of a message is easy because a recipient can use the sender’s public key to
verify that the sender has knowledge of the private key. The keys themselves can be of
variable length, allowing us to strengthen the protocol with no changes to the underly-
ing algorithm. Finally, once public keys are bound to identities securely, key manage-
ment can be centralized on an insecure host—say, a directory—because only public
keys need to be published. Private keys never travel over the network.

Although public-key cryptography protocols can accomplish things that seem down-
right magical, they do depend on the assumption that certain mathematical problems
are infeasible. Popular public-key cryptosystems depend upon the computational infea-
sibility of three classes of hard problems.

Integer factorization. RSA depends on the infeasibility of factoring composite
numbers.

Discrete logarithms. Diffie-Hellman (DH) key exchange, the Digital Signature
Algorithm (DSA), and El Gamal encryption all depend on the infeasibility of
computing discrete logs over finite fields.

Elliptic curve discrete logarithms. Elliptic Curve DH, Elliptic Curve DSA, and other
Elliptic Curve Cryptographic (ECC) variants all depend on the infeasibility of
computing discrete logs on elliptic curves over finite fields. The choice of the finite
field, either GF(2n) (called EC over an even field) or GF(p) for a prime p (called EC
over a prime field), results in differences in the implementation. ECC, under certain

LO W- L E V E L A R C H I T E CT U R E136

circumstances, can be faster than RSA, DSA, and Diffie-Hellman while at the same
time using shorter keys to provide comparable security. ECC crypto libraries are
popular for embedded or mobile devices.

Algorithms based on other assumptions of hardness, such as the knapsack problem or
the composition of polynomials over a finite field, have been defined—but for practical
purposes, after many were broken soon after they were published, the three choices
above are the best and only ones we have.

Asymmetric algorithms are mathematically elegant. The invention of fast algorithms for
factoring large numbers or computing discrete logs will break these public-key algo-
rithms, however. In contrast, symmetric ciphers do not depend on the belief that some
mathematical property is hard to compute in subexponential time but are harder to rea-
son about formally.

Public-key algorithms do come with some costs.

■■ Public-key operations are CPU-intensive. Public-key algorithms contain numerical
manipulations of very large numbers, and even with optimized implementations,
these operations are expensive.

■■ Public-key algorithms depend on some other mechanism to create a relationship
between an entity and its public key. We must do additional work to authenticate
this relationship and bind identifying credentials to cryptographic credentials
before we can use the public key as a proxy for an identity.

■■ Revocation of credentials is an issue. For example, some schemes for digital
signatures do not support non-repudiation well or use timestamps for freshness
but allow a window of attack between the moment the private key is compromised
and the time it is successfully revoked.

Number Generation

Cryptographic algorithms and protocols need to generate random numbers and prime
numbers. Pseudo-random sequences must be statistically indistinguishable from a true
random source, and public and private keys are derived from large (512, 1024, or 2048-
bit) prime numbers.

Random Number Generation. All pseudorandom number generators are periodic,
but solutions can ensure that any short sequence of pseudorandom bits is
indistinguishable from a true random sequence by any computationally feasible
procedure.

Prime Number Generation. Asymmetric algorithms depend on our ability to
generate large primes. Deterministic primality testing would take too long, but
random primality testing can show that a number is prime with very high
probability. Some prime number generators also avoid primes that might have
undesirable properties that would make factoring any composite number that
depended on the prime easier to accomplish.

Cryptography 137

Cryptographic Hash Functions

Hash functions map inputs of arbitrary size to outputs of fixed size. Because of the
pigeonhole principle, many inputs will collide and map to the same output string.
Cryptographic hash functions map large input files into short bit strings that we can use
to represent the input file. This situation is possible if the likelihood of collisions, where
two different inputs hash to the same output, is extremely small and if given one input
and its corresponding hash, it is computationally infeasible to find another input that
collides with the first. The output of a hash is only a few bytes long. For example, SHA1
produces 20 bytes of output on any given input, and MD5 produces 16 bytes. Hash func-
tions such as SHA1 and MD5 are also called cryptographic checksums or message
digests.

Hash functions used in conjunction with other primitives give us data integrity, origin
authentication, and digital signatures. Hash functions do not use keys in any manner,
yet can help us guard against malicious downloads or help us maintain the integrity of
the system environment if some malicious action has damaged the system.

Cryptographic hashes are useful for matching two data files quickly to detect tamper-
ing. Commercial data integrity tools can be used for a wide variety of purposes.

■■ Detect changes to Web server files by intruders.

■■ Verify that files are copied correctly from one location to another.

■■ Detect intrusions that modify system files, such as rootkit attacks.

■■ Detect modifications in firewall or router rule sets through misconfiguration or
malicious tampering.

■■ Detect any differences between backups and restored file systems.

■■ Verify that installation tapes for new software are not tampered with.

Keyed Hash Functions
We can create message authentication codes (MACs) by combining hashes with sym-
metric encryption. If Bob wishes to send Alice an authenticated message, he can:

■■ Concatenate the message and a shared secret key, then compute the hash.

■■ Send the message and the resulting hash value (called the MAC) to Alice.

When Alice receives a message with an attached MAC from Bob, she can:

■■ Concatenate the message and a shared secret key, then compute the hash.

■■ Verify that the received hash matches the computed hash.

Keyed hash functions convert any hash function into a MAC generator. A special kind of
keyed hash, called the HMAC, invented by Bellare, Canetti, and Krawcyk [BCK96] (and
described in RFC2104), can be used with MD5 (creating HMAC-MD5) or SHA1 (creating

LO W- L E V E L A R C H I T E CT U R E138

HMAC-SHA1) to produce a hash function that is cryptographically stronger than the
underlying hash function. For example, a collision attack demonstrated against MD5
failed against HMAC-MD5.

HMAC is a keyed hash within a keyed hash. It uses an inner and an outer pad value and
adds only a few more simple operations to compute the hash.

HMAC(K,M) = H((K�opad) • H((K�ipad) • M))

In this equation, opad is a 64-byte array of the value 0x36; ipad is a 64-byte array of
the value Ox5c; � is exclusive OR; and x • y is the concatenation of x and y. The IPSec
protocols, discussed in Chapter 8 (“Secure Communications”), use HMACs for mes-
sage authentication.

Authentication and Digital Certificates

Because the security of asymmetric schemes depends on each principal’s private key
remaining secret, no private key should travel over the network. Allowing everyone to gen-
erate their own public and private key pairs, attach their identities to their public keys, and
publish them in a public repository (such as an X.500 directory or a database), however,
creates a dilemma. How can we trust the binding between the identity and the public key?
Can a third party replace Alice’s name in the binding with his or her own? How can we
ensure that the person we are communicating with is actually who they claim to be?

PKIs solve the problem of trust by introducing a trusted third party called a Certificate

Authority (CA) that implements and enables trust. The CA creates certificates, which
are digital documents that cryptographically bind identifying credentials to a public key.

If Alice needs a certificate, she must prove her identity to yet another third party called
a Registration Authority (RA) to acquire short-lived credentials required for a certifi-
cate request. The CA verifies the authenticity of the credentials and then signs the com-
bination of Alice’s identity and her public key. If Bob trusts the CA, then Bob can
acquire the CA’s certificate (through a secure channel) to verify the signature on Alice’s
certificate. The CA’s certificate can be self-signed or can be part of a certification chain
that leads to a CA that Bob trusts.

We will discuss PKIs in more detail in Chapter 13, “Security Components.”

Digital Signatures

Diffie and Hellman also invented digital signatures. Digital signatures, like handwritten
signatures on a piece of paper, bind the identity of a principal to a message. The mes-
sage is signed by using the principal’s private key, and the signature can be verified by
using the principal’s public key. It is computationally infeasible for anyone without the
principal’s private key to generate the signature.

Cryptography 139

Signed Messages
Alice can send Bob a digitally signed message by using an asymmetric encryption algo-
rithm (such as RSA) and a cryptographic hash function (such as MD5). Alice creates the
signature as follows:

■■ She computes the hash of the message.

■■ She encrypts the hash with her private key.

■■ She transmits both the message and the encrypted hash to Bob.

Bob verifies Alice’s digital signature as follows:

■■ He computes the hash of the message received.

■■ He decrypts the encrypted hash received by using Alice’s public key.

■■ He compares the computed hash with the decrypted hash and verifies that they
match.

Note that we do not need to distribute keys in this exchange. Note also that the exchange
is not confidential.

Digital signatures are universally verifiable because the verification algorithm uses public
information. This situation is in contrast with MACs, where the encrypted one-way hash
can only be computed by anyone with the secret key. Because both parties possess this
secret key, a third party adjudicating a dispute would be unable to determine whether a
MAC code on a message originated from the sender was generated by the (possibly mali-
cious) recipient. Unlike MACs, digital signatures do provide non-repudiation because
only the sender knows the private key.

Digital Envelopes
Digital envelopes can ensure secrecy and integrity. Digital envelopes combine the
strengths of symmetric and asymmetric cryptography to ensure the integrity and confi-
dentiality of a message.

Alice creates a digital envelope containing a message for Bob as follows:

■■ She generates a random symmetric key.

■■ She encrypts the message with the symmetric key.

■■ She then encrypts the symmetric key with Bob’s public key.

■■ She finally sends the encrypted message and the encrypted symmetric key to Bob.

Bob can open Alice’s digital envelope as follows:

■■ He decrypts the symmetric key by using his private key.

■■ He decrypts the message with the symmetric key.

Only Bob can accomplish this task, ensuring confidentiality. Note that we do not need to
distribute keys in this exchange. Note also that we have not authenticated Alice to Bob.

LO W- L E V E L A R C H I T E CT U R E140

TE
AM
FL
Y

Team-Fly®

Key Management

Key management is an operational challenge. How do we generate, secure, distribute,
revoke, renew, or replace keys for all the parties in our architecture? Can we recover
from key loss? How many keys must we create? Where are these keys stored? Is control
distributed or centralized? What assumptions of security are we making about individ-
ual hosts and the central key repository?

The key management problem describes the processes and mechanisms required to
support the establishment of keys and the maintenance of ongoing relationships based
on secret keys. The cryptographic primitives and protocols used affect key life cycle
management, as do the number of participants and the rate of key renewal required for
a desired level of security.

Key management using symmetric key techniques sometimes uses a trusted third

party (TTP) to broker pairwise key agreement between all the parties. Key establish-
ment is the process by which a shared secret key becomes available to two or more
communicating parties. Key generation, agreement, transport, and validation are all
steps in the key establishment process. The parties must agree before hand on the
ground rules for accomplishing this task. In a preprocessing step, the trusted third party
agrees to a separate shared secret with each of the participants. When Alice wants to
communicate with Bob, she initiates a key establishment protocol with the TTP that
results in a shared secret session key that might have a freshness parameter attached to
prevent later replay. Kerberos (discussed in Chapter 13) uses this mediated authentica-
tion model.

Key management using public key techniques is greatly simplified not only because of a
smaller number of keys that need to be managed (that is, one public key per participant)
but also because all public key information is non-secret. Digital certificates introduce a
TTP in the CA to bind identity and key information in a tamperproof manner.

Whit Diffie and Martin Hellman invented the first key exchange protocol, along with
public-key encryption, that enables parties to exchange a shared secret on an
untrusted channel where all messages can be seen by an adversary. Diffie-Hellman

(DH) key exchange is based on the complexity of computing discrete logarithms in a
finite field.

DH key exchange solves the key distribution problem in symmetric encryption. Earlier
schemes for distributing shared secrets involved a risky, expensive, and labor-intensive
process of generating huge numbers of symmetric keys and transporting them to each
party through a secure channel (such as a courier service). DH enables two parties with
a trust relationship to establish a shared secret. DH also depends on binding identities
to public keys in some manner.

Hybrid systems use asymmetric techniques to establish secure channels for communi-
cating the shared secret, which is then used for symmetric operations for authentica-
tion or encryption. In key exchange protocols such as Diffie-Hellman, all messages are
open for inspection with no loss in secrecy.

Cryptography 141

Key management is critical. That secrets will be kept secret is a basic assumption at the
heart of any cryptographic algorithm or protocol. All bets are off if the secret key is vis-
ible in a message, attached to a file on an insecure disk, copied unencrypted to a backup
tape, stored on a floppy that could be lost, or sent to a user in the clear via e-mail.

Cryptanalysis

Adversaries can break a code if the choice of key is poor or if the algorithm for encryp-
tion is weak. Poor keys restrict the actual key space that an adversary must search to a
tiny fraction of the possible key space, allowing brute force attacks to succeed. Poor
algorithms can be broken through cryptanalysis, the science of code breaking through
ciphertext analysis. Attacks on the algorithm itself look for patterns of behavior in the
mapping of input bits to output bits, examining the effect of flipping bits or showing lin-
ear relationships between inputs and outputs, to drive a wedge between a perfect ran-
domization of the input and the actual output of the encryption algorithm.

Cryptanalysis comes in many forms, depending on the resources given to the cryptana-
lyst. An adversary might have no information beyond a large collection of ciphertext
acquired through network sniffing. The adversary might know the plaintext for the col-
lection of ciphertext messages and seek to decrypt new messages encrypted with the
same key. Alternatively, the adversary might be able to choose plaintext messages to
encrypt and examine the corresponding ciphertext or choose ciphertext messages to
decrypt and examine the corresponding plaintext.

Symmetric algorithms can be analyzed by using two techniques. Both techniques of
cryptanalysis are very hard. We say that a cipher is secure against cryptanalysis if it is
faster to use a brute force key search instead of one of these techniques.

Differential Cryptanalysis
In 1990, Eli Biham and Adi Shamir invented differential cryptanalysis and found a cho-
sen plaintext attack against DES that was more efficient than brute force search.
Differential cryptanalysis looks for characteristics, which are patterns of differences
between two chosen plaintext messages that result in specific differences in the corre-
sponding ciphertext messages, with a high or low probability of occurrence. The analy-
sis is specific to a particular algorithm, its key length, the number of rounds, and the
diffusion principles for the substitution boxes within each round. If we collect enough
plain and ciphertext pairs, we can use the characteristics of a specific symmetric key
algorithm to predict bits in the secret key by comparing the outputs of the algorithm to
the outputs expected by the characteristics.

Linear Cryptanalysis
In 1993, Mitsuru Matsui invented linear cryptanalysis, and along with Atsuhiro
Yamagishi, presented the technique to create a known plaintext attack to break the
FEAL cipher [MY93]. In 1994, Matsui presented a similar attack on DES. Linear crypt-

LO W- L E V E L A R C H I T E CT U R E142

analysis collects algebraic relationships between input, output, and key bits for each
round and combines them to form a linear approximation that shows a maximal bias in
probability from the value 1/2, allowing us to distinguish the cipher from a random per-
mutation. Linear cryptanalysts can amplify this bias, given a known plaintext collection
large enough, to break the cipher through predicting key bits.

There are other forms of cryptanalysis by using truncated differentials, interpolation of
polynomials, mod-n relationships, and other mathematical tools.

Cryptography and Systems Architecture

Every practicing software architect needs to know about standards for cryptography,
choosing algorithms for various purposes, and development requirements. Judging the
strength or correctness of a cryptographic protocol is very difficult, however. Protocols
that have been public for years have been broken; algorithms that were once thought
secure have been shown to have fatal flaws; and new techniques of parallelizing attacks
make brute force solutions feasible.

If the team has any questions about cryptography at the architecture review, you must
call in an expert or farm out the work before the review and present the results of pro-
tocol analysis. The most common issues are implementation and interoperability. Is the
implementation correct, and can we interoperate with another system through a secure
protocol? Questions that might come up in the review include the following:

■■ How do we compare the relative performance of algorithms?

■■ What primitives do vendors offer in their crypto libraries, what parameters are
configurable, what key and block sizes are supported, and how hard is it to change
primitives?

■■ Have we chosen an open-source implementation that has undergone code review?

■■ Can we isolate elements so that they can be replaced?

■■ What constitutes overkill? Does the architecture use layer upon layer of
encryption, thereby wasting bandwidth? Do we compress plaintext before
encryption whenever possible?

Should we, as architects, worry too much about cryptographic algorithms being bro-
ken? Probably not, if we confine ourselves to mainstream choices and focus our ener-
gies on implementation details rather than holes in the underlying mathematics. If the
mathematics breaks, we all will be part of a much larger problem and will defer fixes
(“Switch to a symmetric algorithm,” “Change protocols,” “Use bigger keys,” “Change
the algorithm primitives,” and so on) to the experts.

Innovation and Acceptance

Cryptography is unique compared to most other areas of research. Cryptographic
research for many decades was classified, and any advances made were known only to

Cryptography 143

government agencies such as the NSA, Britain’s GCHQ, or the equivalent Russian intel-
ligence agencies. In the past 30-some years, the veil of secrecy has largely been blown
away and the flood of articles, books, and software is so great that cryptographic
research in the public domain is almost certainly ahead of most classified research.
Sunlight is the best disinfectant; in other words, open work on theoretical cryptogra-
phy, with the give and take of peer review, new cryptanalysis, and the prestige associ-
ated with discovering flaws, drives a powerful engine of innovation. Algorithms are
subjected to serious cryptanalysis; protocols are analyzed formally and matched
against familiar design principles; there are huge advances in the mathematical founda-
tions of cryptography; and new and almost magical protocols are invented.

Very little of this work sees early adoption in commercial applications. Although inno-
vation and invention are encouraged, and although we have seen dramatic advances in
our knowledge of cipher building and breaking, consumers of cryptography are rarely
adventurous. Many of the most commonly used cryptographic algorithms and protocols
have been around for years (if not decades), and it is unlikely that an upstart will knock
an established algorithm out of use unless an actual flaw is discovered in the older solu-
tion or if computing power rises to the level where brute force attacks begin to succeed.

We would not accept 20-year-old medical advances, computers, cars, or cell phones.
What drives our affection for the old over the new in cryptography? In a word: depend-
ability. The older a cryptographic solution is, the more it is subject to public review and
cryptanalysis. Using primitives that have been around for a while gives us confidence in
the solution. A few years of careful scrutiny by diverse experts from many areas of com-
puter science can never hurt.

This gap between innovation and acceptance is based on a very real risk of using an
immature product or protocol in real-world applications before we have reviewed the
solution with due diligence. If security gurus and cryptographers have had sufficient
time to examine the mathematics behind the algorithm, to analyze the interactions or
properties of the protocol itself, to build reference implementations, or to make esti-
mates of lower bounds on the strength of the solution against cryptanalysis, we can
certify the solution as reliable with some degree of confidence. Otherwise, the solution
could fail in the field with unexpected consequences. At best, the flaw is discovered
and patched by the good guys; at worst, we learn of the problem after we have been
compromised.

Cryptographic Flaws

Any enterprise security policy should consider referencing a comprehensive crypto-
graphic toolkit that provides strong security properties, uses open standards, and pro-
vides published test results for assuring validity, performance, and strength. When it
comes to cryptography, rolling your own solution is a bad idea. This action only creates
security through obscurity, maintenance problems, and compatibility issues on system
interfaces.

LO W- L E V E L A R C H I T E CT U R E144

Many proposed cryptographic algorithms and protocols fail soon after publication. We
will describe some examples of flaws and end with a description of the Wired Equiva-
lent Privacy encryption algorithm used by the IEEE 802.11b wireless LAN standard as
an example of the risks of rushing to market without proper review.

Algorithmic Flaws
Early versions of many cryptographic algorithms do break in ways that are easily or
quickly fixed. Other problems are more difficult to fix, and once the cryptographic com-
munity declares a vote of no confidence, the problems might not be worth fixing. Poor
choices of random number generators, large portions of the key space consisting of
weak keys, successful attacks using differential or linear cryptanalysis, holes in the key
schedule generator, partial success in breaking versions with fewer rounds, attacks that
cause collisions, or fixes to attacks that break performance characteristics are all pos-
sible show stoppers.

From an architecture perspective, there is nothing an application can do except replace
a cryptographic algorithm that is deemed insecure.

Protocol Misconstruction
Protocols use well-defined and rigorously analyzed patterns of message construction
and communication to establish a security objective. Protocols that use primitives in a
generic way (a stream cipher, a block cipher, a hash, and so on) can replace flawed ele-
ments if any are found. Flaws in the actual logic of the protocol are not so easily fixed,
however. The literature on cryptography has many examples of attacks using replayed
messages, deconstructed and maliciously reconstructed messages, source or destina-
tion spoofing, timestamp attacks exploiting a window of opportunity, or man-in-the-
middle attacks.

The first rule of cryptographic protocol design for application architects is, “Don’t do
it.” It is better to get some expert help in protocol design and review or work from exist-
ing open protocols. Because protocols (especially ad hoc or proprietary protocols)
break more often than algorithms do, robust protocol design is critical. Abadi, Need-
ham, and Anderson present security principles for robust cryptographic design in
[AN96], [NA95a], [NA95b], and [And01]. They describe simple guidelines for architects
and engineers for setting security goals, articulating assumptions, and defining and
ensuring that events occur in the correct order. They also recommend extensions to
messages to capture freshness, source or destination addresses, or the identity of the
principals involved. We strongly recommend these articles to anyone who is interested
in rolling their own protocols.

Implementation Errors
Implementation errors are the most common of all. Because most vendor implementa-
tions are not open source, the first indications of errors are often failures caused by

Cryptography 145

deviations from the standard rather than holes in security. Code review of crypto-
graphic protocol implementation is again probably outside the domain of the majority
of projects, but open standards, open source, published bug fixes, applying security
patches, and ensuring that our assumptions about the environment of the protocol are
safe all help to ensure a level of confidence in the implementation.

Wired Equivalent Privacy
The IEEE 802.11b standard describes a high-speed communication protocol for wire-
less LANs. The standard also defines the Wired Equivalent Privacy (WEP) algorithm to
provide authenticated, encrypted, and tamperproof wireless communication between
wireless network hosts and a network access point.

The Network Access Point is a gateway between the wired and wireless worlds and
shares a secret session identifier with all hosts on the network. WEP feeds the shared
secret and an initialization vector to the RC4 stream cipher to produce a key stream,
which is XOR-ed with the plaintext payload of each datagram. Each packet also has an
integrity value to prevent tampering.

The 802.11b standard is very popular, widely available, and many commercial vendors
have thrown their hat into the ring to build cheap products that enable any enterprise to
create and manage small wireless LANs. WEP, however, is badly broken—and until a
replacement is proposed and implemented, the security community and the 802.11b
standards body is recommending the use of higher-level security protocols instead
of WEP.

The cast of characters responsible for discovering many WEP flaws is quite large
(www.isaac.cs.berkeley.edu/isaac/wep-faq.html is a good link to online resources), and
much of the research is circulating in the form of unpublished manuscripts. Intel’s Jesse
Walker, one of the first people to report WEP vulnerabilities, has an overview at
http://grouper.ieee.org/groups/802/11/Documents/DocumentHolder/0-362.zip.

Here are three results describing WEP flaws from the many discovered.

Implementation error. WEP uses CRC-32 instead of a stronger cryptographic hash
like SHA1 for the integrity check. Borisov, Goldberg, and Wagner [BGW01] showed
that encrypted messages could be altered at will while preserving a valid integrity
check value.

Protocol misconstruction. Borisov, Goldberg, and Wagner also showed that the
protocol is vulnerable to passive attacks based on statistical analysis, active known
plaintext attacks to add unauthorized traffic to a link, and active attacks to spoof
hosts to the network access point.

Algorithmic flaw. Fluhrer, Mantin, and Shamir published a paper [FMS01] describing
several weaknesses in the key-scheduling algorithm of RC4. They proposed attacks
against WEP vulnerabilities, exploiting those weaknesses. Stubblefield, Ioannidis,
and Rubin [SIR01] actually implemented one of the attacks to demonstrate that it is
practical to do so. Ron Rivest proposed a fix for the problem, along with a

LO W- L E V E L A R C H I T E CT U R E146

description of why other protocols using RC4 (such as SSL) are not affected
(www.rsa.com/rsalabs).

Other researchers also reported attacks allowing the decryption of all traffic, dictionary
attacks, and key generation attacks. Some proposals for fixing WEP have been made,
including the use of AES, longer initialization vectors, or other stronger stream ciphers
instead of RC4.

The flaws in the Wired Equivalent Privacy algorithm in IEEE 802.11 highlight the impor-
tance of open standards, peer review, and robust design principles.

Performance

Symmetric algorithms are much faster than asymmetric algorithms for comparable lev-
els of security based on known attacks. The level of security depends on the length of
the key, the block size, and the parameters of the algorithm. Symmetric algorithm
speeds of encryption and decryption are comparable, as are the speeds of generating or
verifying a MAC or an HMAC.

Head-to-head comparisons of symmetric algorithms for the AES challenge sponsored
by NIST matched simplicity of design, speed of execution for different combinations of
key and block size, implementation details such as memory versus CPU tradeoffs, per-
formance in hardware, software, or a combination of the two, and cryptographic
strength.

It is harder to define comparable levels of security for asymmetric algorithms. What
primitives are we using? What operations will we invoke? What algorithm have we cho-
sen? The speed of execution, of course, depends on all of these choices. Benchmarks of
cryptographic performance for various platforms, processors, programming languages,
and key sizes have been published (for example, [Con99] using the RSA BSAFE crypto-
graphic toolkit or [WD00] using an open source crypto C++ toolkit). The following
statements about a few of the many crypto algorithms available are gross generaliza-
tions, because we must consider implementation details, but some patterns emerge.

■■ Generating and verifying digital signatures. ECDSA signing is faster than DSA,
which is faster than RSA. DSA signing and verification have comparable speeds,
both helped by preprocessing. RSA signature verification is much faster than
ECDSA, which is faster than DSA. El Gamal signatures are about twice as fast
as El Gamal verifications.

■■ Asymmetric encryption and decryption. RSA encryption is much faster than
RSA decryption (for long keys, over an order or two of magnitude). El Gamal
encryption is twice as slow as El Gamal decryption, but with preprocessing, it
reaches comparable speeds.

To create a true benchmark, test your choice of crypto primitives in your environment.

One common performance problem is degraded performance through layered interac-
tions of multiple protocols. This situation is common in architectures that use layers for

Cryptography 147

separating concerns, where each layer offers a cryptographic security solution and all
the solutions are turned on simultaneously. For example, consider the IP data services
protocol of a major wireless data services vendor aimed at providing Internet access on
mobile devices. The protocol uses RC4 stream cipher encryption to encrypt a low-level
link-layer protocol called Cellular Digital Packet Data (CDPD). The Wireless Applica-
tion Protocol (WAP) on top of CDPD uses RC5 block cipher encryption at the applica-
tion and transport level. Finally, a proprietary Web browser for the PDA used the
Wireless Transport Layer Security (WTLS) protocol between the mobile browser and
the Web server to avoid insecurity at the wireless gateway, where the protocol transla-
tion from WAP to HTTP left data in the clear on the gateway. The actual bandwidth was
a fraction of CDPD’s advertised bandwidth of 19.2 Kbps, and the PDA’s underpowered
CPU was brought to its knees. The connection, although unusable, was quite secure.

Protocol layering is unavoidable in many circumstances; for example, while initializing
an SSL connection from a remote laptop that is connected to the corporate intranet
over a VPN. In other circumstances, it might be possible to turn off one layer of encryp-
tion if a higher layer is strong enough. This strategy could backfire if other applications
that depended on the lower layer for security did not implement the higher layer at all,
however.

Comparing Cryptographic Protocols

The research, development, and deployment of commercial security products have
created tremendous awareness of cryptography among the general public in the past
few years.

For the most part, cryptographic protocols are magic to the majority of architects and
developers. Architects comparing cryptographic protocols can examine the fundamen-
tal differences in number theoretic assumptions, the specific algorithms, key sizes, block
sizes, and hardware versus software solutions. Sometimes algorithmic or implementa-
tion details obscure the higher questions, however. How much time does it take to crack
one scheme versus another? What computational resources do we need? How much
space do we need? What intellectual resources must we marshal to use these products
correctly? What are the configuration options, and what cipher suites are available?
Here is an analogy to highlight the bottom line.

The March 13, 2001 issue of The New York Times carried an interesting article by Randy
Kennedy in the Metro Section about commuting from Washington, D.C. to New York
City. Three intrepid reporters embarked on the journey by using three modes of trans-
portation. All left at 6:15 a.m. from a common starting point in front of the White House.
All had the same destination, City Hall Park in New York City. One traveled by air, catch-
ing a flight from Dulles to La Guardia. One traveled by the new Acela Express, a high-
speed service from Amtrak between the two cities. The third took the slow and dusty
route up the New Jersey Turnpike in a 1973 Checker Cab.

Here, we have three modes of transport. We wish to compare them and could spend end-
less amounts of time, energy, and effort describing the structure of a Boeing airplane, the

LO W- L E V E L A R C H I T E CT U R E148

National Highway Infrastructure Act of 1951, or the difficulties and costs of building a
high-speed train that can operate at 150 mph on standard railway tracks. These details
obscure the only key result that any reader would like to see, however. Who got to New
York first? How much time did it take? How much did each journey cost?

Comparisons of cryptographic protocols offer similar parallels. It is certainly important
to get into the details of how each technology works, what bottlenecks exist in the
design, and what assumptions about the underlying transport mechanism are being
made. For every question we could think of, there is probably a system architecture
equivalent: the environment (“How was the weather?”), network congestion (“How
busy were the roads?”), team expertise (“How knowledgeable were the travelers about
the route?”), planning for the unexpected (“Why did fast food at McDonald’s take so
long, adding 20 minutes to the car trip?”), usability (“How comfortable were the pas-
sengers in transit?”), or compliance with corporate security policy (“Did anyone get a
ticket?”).

It is essential to document answers to these questions in the architecture description.

■■ What primitives are used, along with implementation details? Are there any known
vulnerabilities in these primitives?

■■ What standards are referenced?

■■ List the parameters for the algorithms and cryptographic primitives.

■■ How fast do these primitives run? Is encryption fast? Is decryption slow? Is
information often signed and rarely verified or signed once and verified often?

■■ What cryptanalytic schemes have the algorithms been subjected to?

■■ How well did they work in terms of resource usage, in terms of CPU cycles and
memory? Did they use a random source? How strong is the pseudo-random
number generated?

By the way, for the curious, here are the results of The New York Times comparison.
The plane ride took about three hours and $217 dollars, the train another 15 minutes but
only $150 dollars, and the car ride an hour more than that but even cheaper, costing
only $30.

We recommend against paralysis through analysis. At the end, any comparison of cryp-
tographic protocols reduces to a tradeoff that is probably as simple as the one
described earlier.

Conclusion

At the heart of any popular methodology or philosophy of software design is a kernel
based on a scientifically sound notion, some good idea that defines a building block.
Cryptographic protocols are at the heart of many security components, solutions, or
architectures. They form the basic building blocks of larger technologies and for the
most part should be considered examples of the magic pattern. The advantage of view-
ing these primitives as atomic, neither viewable nor modifiable by the project, is that

Cryptography 149

LO W- L E V E L A R C H I T E CT U R E150

the vendor must also share this viewpoint. They should not arbitrarily redefine crypto-
graphic concepts, design their own proprietary algorithms, and claim that they are
equivalent to other well-established ones or add proprietary extensions to standard
protocols in a manner that breaks interoperability.

Cryptography forms the foundation of the subjects that we will discuss under the
umbrella of security architecture. In the chapters ahead, we will use cryptography in
many ways. We recommend that the reader who is in need of more information follow
our links to the many excellent resources cited.

TE
AM
FL
Y

Team-Fly®

C H A P T E R

151

One consequence of the growth of the Web is the emergence of digitally delivered soft-
ware. The popularity of digitally delivered active content skyrocketed with the inven-
tion of technologies such as Java and browser extensions, which changed Web
browsers from display devices for static HTML to containers for a bewildering number
of forms of active content. Browsers now support audio and video, Java applets,
ActiveX controls, JavaScript, VBScript, and much more. Third-party vendors have cre-
ated many other plug-ins that are capable of displaying anything from dynamic images
of chemical molecules to 3-D wire frames for computer-aided design to virtual reality
worlds.

Access to active content opens access to the local resources on the client machine,
however. Files can be read, written, deleted, or otherwise modified. Network connec-
tions from other hosts can be accepted or new connections initiated. System resources
such as CPU, memory, and network bandwidth can be stolen, and devices can be dam-
aged through malicious system calls or modifications in configuration files.

Downloading software packages also has risks. The software could have been modified
at the source or in transit and could harbor viruses or Trojan horses that, once installed,
could harm the local machine. This risk can be compounded if the machine has net-
work access and can spread a computer contagion within the enterprise. If the mali-
cious software is part of a software development kit that will be used to build code that
will be widely deployed by legitimate means, we might indirectly release a software
time-bomb from a source that we assumed to be trustworthy.

7
Trusted Code

To counter this situation, the developers of many tools available on the Internet are
increasingly attaching MD5 cryptographic hashes to their software packages, especially
if the release is prebuilt for a particular platform and contains binaries that can be mod-
ified. Recipients of the package can verify the integrity of the package, assuming the
hash value has not also been replaced with the hash of the tampered file. This technique
ensures some level of trust that the software has not been tampered with.

Within any infrastructure for enabling trust, we will see many patterns. We will see lay-
ers that separate concerns, service providers that validate data, cryptographic
providers that provide encryption or digital signatures, sandboxes that contain activi-
ties, and interceptors that enforce security policy before allowing access to local
resources.

In this chapter, we will discuss options available for enabling trust of code within an
enterprise. We will describe some common patterns in implementing trust, using the
Java sandbox, applet signing, Authenticode, and secure software distribution as exam-
ples. We will invert the problem and talk about digital rights management, where the
code represents digital intellectual property and the recipient of the software is
untrusted. We will end with a description of Ken Thompson’s Trojan compiler and some
implications for trusting software.

Adding Trust Infrastructures to Systems

Infrastructures for trusting downloaded content may or may not use cryptography.
Solutions that do not use cryptography rely on the sandbox pattern along with exten-
sive static and dynamic checking to ensure that downloaded content does not violate
security policy. Solutions that use cryptography place their trust in the validity of
downloaded content based on the identity of the sender and the integrity of the pack-
age. We confirm this identity through strong authentication and confirm the integrity
of the package through cryptographic checksums to verify that the code has not been
tampered with at the source or in transit. Consider the generic infrastructure in
Figure 7.1.

Vendor solutions to the problem of enabling downloads of active content over the net-
work use some or all of the following elements. The solution:

■■ Requires some local infrastructure

■■ Requires some global infrastructure

■■ Defines local security policy

■■ Defines global security policy

■■ Creates structure on the resources within the local machine

■■ Creates global structure on the world outside the local machine

■■ Identifies a trusted third party

■■ Distributes credentials of the trusted third party to all participants

LO W- L E V E L A R C H I T E CT U R E152

Restricted
Partner

TrustedOpen
Internet

Perm
itted

interfacesPro
te

ct
ed

in
te

rf
a ce

Critical
operational
resources

System
Architect

System
owner

Users

Directory

Org Chart

CA
certificate

Client
certificate

Digital
Watermark

Corporate
Security

Public Key
Infrastructure

Figure 7.1 Trust infrastructures.

The Java Sandbox

The Java sandbox (shown in Figure 7.2) is an integral part of the JVM and is the product
of considerable thought about how to prevent malicious Java code from harming the
local machine or gaining access to private data. The original release of the sandbox
implementation did not support cryptographic techniques but has been extended to
include applet signing for additional trust management. Java’s security design has cre-
ated two consequences. The first is implementation complexity, resulting in an early
slew of security bugs (see, for example, [McF97]). The second is definitional. Your notion
of security might differ in a significant conceptual manner from those of the designers of
Java. It might be difficult or sometimes impossible to reconcile the two viewpoints.

Neither consequence is necessarily negative. The early security holes have all been
closed, although new ones no doubt exist. Complex problems require solutions with
complicated design details, which often implies lots of code to support a rich feature
set. The second problem has been partially addressed, if you are willing to make the
development investment, through the addition of access controller and security policy
extensions that enable fine-grained security configuration. The Java security model is
still evolving. We expect the architecture goals of flexibility, simplicity in configuration,
and performance to continue to improve.

The following is a simplified discussion of Java security. We refer the interested reader to
[Oaks98], [Oaks01], [McF97], and the resources at http://java.sun.com/security for the latest
developments, including resources on J2EE and security.

Trusted Code 153

Local host
File system, devices, OS, and resources

Core Java API

Bytecode verifier

Class loader

Security
manager

Access
controllerCrypto keys

Class file

Figure 7.2 Java Sandbox architecture.

Running Applets in a Browser
We will discuss Java security from the standpoint of running Java applets within Web
browsers. The Java Sandbox controls applet access to the resources of the underlying
machine. Security within the sandbox is provided by four interacting components. We
have already introduced the bytecode verifier in the last chapter. The other components
are the class loader, the security manager, and the access controller.

The class loader ensures that classes are loaded in the correct order and from the cor-
rect location. Multiple class loaders can exist within the sandbox, and applications can
create their own class loaders. The default internal class loader loads classes from the
core APIs and from the user’s CLASSPATH and cannot be preempted. Unlike applica-
tions, applets cannot start their own class loaders but must instead use the class loader
of the browser. The browser organizes the hosts that are the source of the applets by
domain name through the class loader, which partitions its name space by using
domains. The class loader assists with domain handling and domain-specific access
control by the other security components.

The other two security components of the JVM, the security manager and the access
controller, control all core API calls made by a downloaded Java applet. The distinction
is primarily a result of the evolution of Java, because existing security mechanisms for
securing applets have been extended to Java applications to enable domain definition
and domain-specific policy management.

This example shows the layer pattern at work. The security manager intercepts all
interactions between an applet and the Java API. As these interactions became more
complex, the designers saw a need for the separation of concerns within the original

LO W- L E V E L A R C H I T E CT U R E154

security manager, factoring out interactions between the new access controller compo-
nent and the class loader. The access controller enables the security manager to exter-
nalize policy, which is good for the ease of configuration and for implementing
enterprise security policy. We will simplify the following discussion by referring only to
the security manager as the single component ultimately responsible for controlling all
access to system resources requested by the applet.

Local Infrastructure
Web browsers have interfaces for configuring Java security policy. This policy is used
by the security components to control activities within the sandbox.

The Class Loader component in the Java security model enforces the namespace sepa-
ration between classes that are loaded from different sites. This feature enables the
security manager to apply the correct policy on a request based on context: Is it from a
class within the applet, or is it from a trusted part of the local application (for example,
if the browser itself was written in Java)? The class loader correctly enforces security
policy, looking at the source of the class and not at its name. This method is better than
other alternatives, such as requiring the downloaded class to present a digital signature
as a means of matching its name to its source. This procedure would require all down-
loaded classes to be signed, which might be infeasible.

The Security Manager is invoked on all requests to the core Java API. The CLASSPATH
variable points to the location of the core Java API and other local extensions. The core
API throws an exception back to the caller if the security manager denies the invoca-
tion. Otherwise, the Java API completes the request normally. The security manager
provides a library of methods to check the following access operations.

■■ File operations, such as reads, writes, and deletes.

■■ Network operations, such as opening a connection to, or accepting a connection
from, a remote host or changing the default socket implementation.

■■ Run-time operations, such as dynamically linking a library, spawning a subprocess,
or halting.

■■ Resource operations, such as opening windows or printing to a local printer.

If your application creates extensions to the JVM, it is important to make sure that the
extensions invoke the security manager on all requests.

Local Security Policy Definition
The default security policies enforced by the security manager are quite simple. If the
source is local, it is trusted; otherwise, it is untrusted. The design of the security man-
ager looks at the origin of the class that makes the request. The class loader ensures
that this origin is valid. The Security Manager trusts all classes loaded from the local
machine and does not trust any class loaded from a remote site. Untrusted code has no
access to the resources of the underlying machine and can only make network connec-
tions back to the remote host from which the code was originally downloaded.

Trusted Code 155

The resources on the local machine are all considered inaccessible by the default secu-
rity manager. An application can create its own policy to override the default policy to
create additional structure on the underlying resources. If your application develops its
own security manager, its access decisions can be enhanced to allow a wide variety of
privilege levels based on context.

Applet signing, which we will discuss in the next section, gives us a means of extending
the capabilities of downloaded content.

Local and Global Infrastructure
Applet signing (and Netscape’s more general object signing) is the process of attaching
a digital signature to a class file by using Sun’s javakey utility (or an equivalent tool). We
must set up some infrastructure to check signatures on active content. The security
manager has access to a key database, a persistent store of cryptographic key material
that contains the certificate of a third party trusted by both the source of the applet and
the host machine. The security manager also has access to the java.security package of
cryptographic primitives. The security manager uses the key database to verify the dig-
ital signature accompanying any signed class file.

The basic Java sandbox does not require a complex global infrastructure for its sup-
port, aside from access to a simple PKI in terms of a local database of trusted CAs and
the assurance that you have downloaded the implementation of the JVM from a trusted
source. The key database contains a list of all trusted CAs, along with key material and
credentials for specific users of the local machine.

Java places a simple global structure on the world outside the local machine; namely,
there is the remote machine that the code originated from and then there is the rest of
the world. It is possible to go much further by using security extensions to the basic
Java security policy, however.

Security Extensions in Java
Java’s security packages provide many ways of enhancing security. Java is very flexible
and provides extensive access to cryptographic primitives and PKI integration. Three
(previously optional) security extension packages are now part of the J2SDK.

■■ The Java Authentication and Authorization Service (JAAS). This package
enables administrators to integrate with standard authentication frameworks and
implement user, group, and role-based access control.

■■ The Java Cryptography Extension (JCE). This package provides cryptographic
primitives and key management, along with primitives for encryption and digital
signatures.

■■ The Java Secure Socket Extension (JSSE). This package provides primitives for
secure communication.

The design of the Java security package is quite complex, caused in part by a desire to
solve all problems from the ground up and in part by a desire to make the JVM and its

LO W- L E V E L A R C H I T E CT U R E156

classes a self-contained environment to assist with portability. The goal of embedding
Java on arbitrary appliances requires the design to contain no dependencies to the
external system. This kitchen sink approach has its detractors, however, who point out
that now security exploits might be portable, too.

Systems Architecture
An existing application that wishes to take advantage of Java might have to make some
complicated architectural decisions. The application might have an architectural view-
point or an existing security context that would be too expensive to build from scratch
in Java. Some applications might have extensive controls at the operating system level
to support authentication and access control or might use existing security infrastruc-
ture components such as Kerberos, DCE, or a mature but non-interoperable PKI.
Writing policy managers that interface with legacy security components is hard. We
would estimate that most applications use a very small portion of the complex Java
security specification and use transitive trust between the application server and the
backend database server within the architecture. This alternative also has its risks (as
described in Chapter 3, “Security Architecture Basics”).

Microsoft Authenticode

Microsoft introduced Authenticode in 1996 as a means of trusting code downloaded
over the Internet. Authenticode attaches digital signatures as proof of authenticity and
accountability to a wide variety of downloaded content: Java applets, ActiveX controls,
and other software packages. Authenticode does nothing beyond checking the validity
of the digital signature. Once an ActiveX control passes this test, it encounters no run-
time checks or access restrictions.

Internet Explorer provides explicit support for partitioning the world outside the client
machine into security zones. Zone-specific security policy is applied to any content
downloaded from each zone.

Global Infrastructure
Authenticode requires some global infrastructure and security policy to be in place.
Authenticode requires a PKI and an existing infrastructure of software publishing policy
definition and management. The PKI is rooted at a CA that authorizes software publishers
to sign code. The PKI registers publishers, authenticates their identity, establishes commit-
ment to a standard of software practice that ensures the absence of malicious code
through code review, and performs key life-cycle management. Software publishers can
apply for certification to various levels of code quality, and once they have their certifi-
cates, they can sign their own code. Any signed code has a digital signature based on the
publisher’s private key. The code is packaged with the publisher’s certificate containing
their public key. No further restrictions are placed on the software publishers except the
threat of revocation of the certificate if it is misused.

Trusted Code 157

Once we have identified a CA as a trusted third party for publisher certification, we
must distribute the credentials of the trusted third party to all participants. Many CA
certificates are already embedded into Internet Explorer, and if you choose one of
these CAs (for example, VeriSign), no further configuration is needed.

Microsoft provides tools to sign the code and create the Authenticode package. Once
signed, the code cannot be modified in any manner. Any modifications will require a
new signature.

Local Infrastructure
Recipients verify the authenticity of the CA certificate by looking up a local database of
trusted CAs or looking for a certification path from the publisher’s CA to any CA that
they trust, by using the services of a directory. Once the CA certificate is verified, the
certificate presented by the signer is checked. Finally, the public key in the software
publisher’s certificate is used to verify the digital signature on the downloaded content.

It is critical that the software publisher’s private key be stored securely. Obviously, this
task cannot be done in an insecure manner on the development system, but at some
point the code developed must meet up with the signing tool (which needs the private
key). The application must define a process that describes how and when the code is
signed. Normally, the code would only be signed after all test phases are complete.

This process has the architectural impact of adding a step to the software delivery
process. If we use Authenticode to ensure trust, we must make sure that all compo-
nents on the installation tape are correctly signed. Development environments tend to
be much less secure than production environments, and the application must trust that
the software has not been tampered with in development or in transit. In the absence of
any requirement by the CA that code review proving the absence of malicious content
must be completed, the users are left with no option but to trust the code.

Adding more testing requirements can be expensive for the project, and most develop-
ment organizations will rubber stamp the release tape with a signature once the system
test is complete. Malicious modifications between system test completion and signing
might not be caught. Code produced in such a manner could possibly damage the pro-
duction system, and the software publisher could lose its license from the CA for violating
policy. In addition, full system testing is rare when an application makes mid-release
patches to a production system for post-delivery production bug fixes. Patches can be
signed with little or no testing for Trojan horses.

Structure within the Local Machine
Internet Explorer can be configured to handle signed code in several ways.

■■ Discarding unsigned code

■■ Prompting the user for guidance when running unsigned code

■■ Running signed code from a trusted source automatically

LO W- L E V E L A R C H I T E CT U R E158

Authenticode and Safety
Microsoft has been criticized for poor security controls on downloaded content. The fact
that something is digitally signed provides no assurance against accidental disruptive
behavior or against a poor software development process that allows malicious code to
be signed. The failure is at the human interface, when someone clicks the “Sign content
now?” dialog without considering the consequences. We perform this action all the time
at our Web browsers as we download files, open attachments, visit Web sites with unrec-
ognized certificates, or type passwords into any dialog that pops up and asks for one.

There is also the real possibility that the signer’s interface is compromised and addi-
tional malicious content is signed transparently, without the user’s knowledge, along
with the certified safe code. There’s many a slip between the cup and the lip. Every
hand-off point in development represents an opportunity for the hacker. The additional
safeguards for downloaded applets provided by the Java sandbox are critical, because
resources should be protected at the host where they are located—not at a distance.

We will now proceed to describe zones and IE’s mechanisms for security policy config-
uration.

Internet Explorer Zones

Internet Explorer places global structure on the world outside the local machine. IE
enables a user to configure security on the browser through the Security and Content
tabs under the Internet Options settings window. Internet Explorer divides the world
outside the client machine into four categories called security zones. Security within
each zone can be configured to be one of four default levels: High, Medium, Medium-
Low, and Low. Security zones provide a coarse-grained grouping of external sites into
one of four categories.

■■ The Local Intranet Zone. All content from this source is assumed to be trusted.
The default security level is Medium-Low.

■■ The Trusted Sites Zone. Content from these public sites is considered trusted. The
default security level is Low.

■■ The Restricted Zone. Content from these public sites is considered untrusted and
will never be executed. The default security level is High.

■■ The Internet Zone. This catchall group requires the user to guide the browser
whenever content is downloaded. The default security level is Medium.

Customizing Security within a Zone
We can customize security on active content requesting permission to execute an
action within a Zone. We can choose to enable the content, allowing the action; we can
disable the content, forbidding the action; or we can prompt the user for guidance.
Some settings have additional options. Administrators can allow some pre-identified

Trusted Code 159

ActiveX controls or plug-ins to run in the browser. Alternatively, administrators can set
up finer-grained Java permissions for signed and unsigned content for several actions.
The control can access files, contact network addresses, execute commands, pop up
dialogs, get system properties, or access print services to local or network printers.

Role-Based Access Control
Internet Explorer secures Web access by using a form of role-based access control.

■■ The subjects are Web sites that wish to serve active content. The content performs
actions on the local host; hence, we can consider the Web sites as actors although
we initiated the download.

■■ The roles are the four trusted zones, along with an additional Local Machine zone.
This fifth zone, whose settings are in the Windows registry under HKEY_LOCAL_
MACHINE\Software\Microsoft\Windows\CurrentVersion\Internet Settings\SOIEAK,
cannot be configured through the user interface but can be managed by using the
IE Administration Kit.

■■ The objects are the resources of the local machine, which can be accessed in many
modes.

■■ The object-access groups are contained within the security levels of High, Medium,
Medium-Low, and Low. Each level is a bundle of actions and associated
permissions that apply to ActiveX controls, Java applets, scripting, file downloads,
or cookies.

■■ The role assignments are captured by the assignment of security levels to each zone.
Customization of the bundle of actions in each Zone enables us to tighten the defini-
tion of each access control rule mapping a specific security level to a specific zone.

The actual bundles within each level of security can be customized, as well. Table 7.1
shows all the configuration options available within IE. Two options have been shown
to be the source of dangerous exploits: controls marked safe for scripting and sites
that are allowed to download files.

In addition to the setting options in Table 7.1, IE enables administrators to set user
authentication defaults for logons in each zone.

Accepting Directives from
Downloaded Content

ActiveX controls that have been marked safe for scripting bypass Authenticode’s signa-
ture validation entirely. This feature highlights one difference between the Java sandbox
and Microsoft’s security policy manager. Java does not permit downloaded content to
access any part of the local file system by default and lifts the restriction only if the content
is digitally signed by a signatory that is allowed by policy to access the local file system.

LO W- L E V E L A R C H I T E CT U R E160

TE
AM
FL
Y

Team-Fly®

Trusted Code 161

Table 7.1 IE Security Zone Access Control Defaults

MED-
HIGH MEDIUM LOW LOW

ActiveX plug-ins

Download signed ActiveX controls D P P E

Download unsigned ActiveX controls D D D P

Initialize and Script ActiveX controls not
marked as safe D D D P

Run ActiveX controls and plug-ins D E E E

Script ActiveX controls marked safe for
scripting E E E E

Cookies

Allow cookies that are stored on your
computer D E E E

Allow per-session cookies. Not stored. D E E E

Downloads

File Download D E E E

Font download P E E E

Microsoft VM

Java permissions (or use custom settings) HS HS MS LS

Miscellaneous

Access Data sources across domains D D P E

Drag and drop or copy and paste files P E E E

Installation of desktop items D P P E

Launching programs and files in an IFRAME D P P E

Navigate sub-frames across different domains D E E E

Software channel permissions

Submit non-encrypted form data P P E E

User data persistence D E E E

Scripting

Active scripting E E E E

Allow paste operations via script D E E E

Scripting of java applets D E E E

Code: High: Restricted Zone, Medium: Internet Zone, Medium-Low: Local Intranet Zone, Low: Trusted Zone
D: Disable, P: Prompt, E: Enable, HS: High safety, MS: Medium Safety, LS: Low safety

IE allows HTML pages with embedded scripting directives downloaded from the Web to
access and execute ActiveX controls on the user’s hard drive. If these controls had been
adequately tested and were free of vulnerabilities, this situation would not be an issue.
But of course, some controls marked “safe for scripting” were anything but safe. Scam-
bray, McClure, and Kurtz in [SMK00] describe in detail how to exploit vulnerabilities in
IE, listing vulnerabilities discovered by George Guninski and Richard Smith to create
and then launch executable files on the local file system. They also describe another
safe-for-scripting control that could be used to silently turn off macro virus protection
within Microsoft Office. For these and many other detailed exploits, please refer to
[SMK00] or visit www.microsoft.com/technet for security issues related to Internet
Explorer.

Netscape Object Signing

Netscape introduced object signing as a response to Authenticode to verify digitally
signed content and to enhance the capabilities of downloaded applets. Netscape object
signing is very similar in structure, but the two schemes are largely not interoperable.
Some commercial vendors are reportedly working to bring the two standards closer, but
for now, your application should preferably pick one on its merits and stick with it. Object
signing also can apply to arbitrary content, such as multimedia files. Signed objects are
automatically updated by the browser, which conducts automated version checks.

Users can configure all their security options on Netscape’s Security Info panel, which is
accessible from the Communicator → Tools menus. Netscape stores a list of signers,
which are CAs that are trusted to digitally sign content. These CAs are permitted to issue
object-signing certificates to entities that wish to sign any content. The user is prompted
for guidance if a CA other than those on the signer’s list signs a downloaded file.

Downloaded content can reach out of the Java sandbox if signed by a trustworthy
source. Software publishers that sign Java and JavaScript files can have more fine-
grained levels of access control applied to their content upon execution. Applets
request access to resources, and the user is prompted to allow or deny the requested
access forever or allow the access for the duration of the user’s session. Netscape also
enhanced the Java API, introducing the Java Capabilities API to provide additional
granularity for access control decisions—allowing subjects to access objects when
privileges are granted. This functionality has been absorbed into the current Java API,
which has extensive support for authentication and access control and includes the
cryptographic extensions required to support object signing.

In the object-signing model,

■■ The sources are called principals and are synonymous with the identity in the
software publisher’s signing certificate.

■■ Objects are system resources, such as files.

■■ Privileges specify the mode of access. Applets carry capability lists, specifying all
allowed access operations, and can modify their active privileges during execution
by turning capabilities on and off.

LO W- L E V E L A R C H I T E CT U R E162

The infrastructure requirements of Authenticode are also required by Netscape’s object
signing solution: software publishing policy and management, PKI and all the attendant
services, and key distribution and life-cycle management.

Signed, Self-Decrypting, and
Self-Extracting Packages

The last mechanism for trusting downloaded content is a catch-all clause to support dis-
tributed software delivery through any means, not just through Web browsers. The con-
tent can be any arbitrary collection of bits and can be used for any arbitrary purpose. We
need the ability to securely download software packages in many circumstances.

■■ We can purchase application software online and have it digitally delivered.

■■ We can download operating system patches that require high privileges to execute
correctly.

■■ We might need authoritative and trusted data files containing information such as
authoritative DNS mappings, stock quotes, legal contracts, configuration changes,
or firmware patches for Internet appliances.

Digitally delivered software can be dangerous. How should we ensure the integrity of a
download? Using digital downloads requires some level of trust. We must be sure of the
source and integrity of a file before we install a patch, update a DNS server, sign a legal
document, or install a new firmware release.

The same methods of using public-key technology apply here. Software must be digi-
tally signed but might also require encryption, because we do not want unauthorized
personnel to have access to valuable code. Secure software delivery solutions use
public and symmetric-key cryptography to digitally sign and encrypt packages in
transit.

The order of signing and encrypting is important. Anderson and Needham note in [AN95]
that a digital signature on an encrypted file proves nothing about the signer’s knowledge
of the contents of the file. If the signer is not the entity that encrypts the package, the
signer could be fooled into validating and certifying one input and digitally signing
another encrypted blob that might not match the input. As a result, non-repudiation is
lost. Data should always be signed first and then encrypted.

Implementing Trust within the Enterprise

Systems architects face considerable challenges in implementing models of trust in
applications. Before implementing any of the mechanisms of the previous sections, we
must ensure that we have satisfied the preconditions required by each solution. Ask
these abstract questions, with appropriate concrete qualifications, at the architecture
review.

Trusted Code 163

■■ Has the application created the required local infrastructure?

■■ Has the application created the required global infrastructure?

■■ Has the application defined local security policy?

■■ Has the application defined global security policy?

■■ Did the architect create structure within the resources of the local machine?

■■ Did the architect create the global structure required of the world outside the local
machine?

■■ Who are the required, trusted third parties?

■■ Has the application distributed credentials of all trusted third parties to all
participants?

These steps seem obvious, but many implementations fail because of the simple and
primary reason that the project executes one of these steps in an ad-hoc manner, with-
out proper attention to details. Projects protest that they have addressed all of these
issues but might not have thought the whole process through.

■■ “We have security because we sign our applets.” How do you verify and test an
applet’s safety?

■■ “We have security because we have a configuration policy for the Java security
manager.” Do you have a custom implementation of the security manager? If you
are using the default manager, have you configured policy correctly? How do you
distribute, configure, and verify this policy on all target machines?

■■ “We use VeriSign as our CA.” Can anyone with a valid VeriSign certificate spoof
your enterprise?

■■ “We sign all our software before we ship it.” Well, how hard is it to sign malicious
code through the same process? What level of code review does the software
signer institute? Has all the code that is certified as trustworthy been correctly
signed? Will legitimate code ever be discarded as unsafe? Do you verify the source,
destination, contents, integrity, and timestamp on a signed package?

■■ “We use strong cryptography.” How well do you protect the private key?

Ask these questions and many more at the security assessment to define acceptable
risk as clearly as possible. These are not simple issues, and often—upon close exami-
nation—the solution reveals dependencies on security by obscurity or on undocu-
mented or unverified assumptions.

Validating the assumptions is a general problem, because as the system state evolves,
conditions we believed true might no longer hold. Active monitoring or auditing should
include sanity scripts, which are examples of the service provider pattern. Sanity
scripts encode tests of the project’s assumptions and when launched in the develop-
ment and production environment test the assumptions for validity. Sanity scripts are
useful aids to compliance. Databases sometimes use table triggers for similar purposes.

We now turn our attention to the exact inversion of the implicit trust relationship
assumed in all the previous sections: the local host belongs to the good guys, and the
downloaded content could be from the bad guys.

LO W- L E V E L A R C H I T E CT U R E164

Protecting Digital Intellectual Property

All the notions of trust that we have discussed so far make an assumption about the
direction of validation: the host machine is trusted, and the downloaded content is not
trusted. The host must verify and validate the content before executing the code or
granting the code permission to access system resources.

What if these roles were reversed? What if the asset to be secured was the digital con-
tent? What if the source that served the content is trusted and the recipient who down-
loaded it is not trusted? Consider a JVM embedded in a Web browser executing a
downloaded applet. The security manager does nothing to protect the applet from the
host. In fact, because the Java bytecodes are interpreted, it is possible to build a JVM that
gives us full access to the execution environment of the applet. If the applet contains
licensed software and enforced the license based on some local lookup, our subverted
JVM can bypass this check to essentially steal the use of the applet. If the applet was a
game, we could instantly give ourselves the high score. In general, active content uses the
execution environment of the host. How can we guarantee good behavior from a host?

We will discuss this scenario under the general topic of digital rights, which encompass
issues such as the following:

■■ Protecting software against piracy by enforcing software licenses. Users must pay
for software.

■■ Protecting audio or video content from piracy by requiring a purchaser to use a
license key to unlock the content before playing it.

■■ Protecting critical data such as financial reports or competitive analysis so that
only trusted recipients can download, decrypt, and use the information.

■■ Controlling the use of digitally delivered information by preventing valid users who
have some access to the information (“I can print myself a copy”) from engaging in
other activities (“I want to forward this to a competitor because I am a spy”).

■■ Enforcing complex business rules.

The last system goal covers many new opportunities. Employees and managers might
need to send messages along approval chains, gathering multiple signatures without
centralized management. Managers might need to contract the services of external
companies to test and debug software while assuring that the software will not be
pirated. Businesses might prefer to keep critical data encrypted and decentralized and
implement a complex, need-to-know permission infrastructure to gain access to
encrypted data. Companies can avoid centralization of many interactions that actually
correspond to independent threads of communication between participants. Removing
a central bottleneck application that exists to securely manage the multiple indepen-
dent threads could lead to significant cost savings, improved processing speed, and a
reduction in message traffic.

Only recently have the issues surrounding the protection of digital intellectual property
exploded, with all the considerable media attention focused on software and music piracy.
The spectrum of discussion ranges from critical technical challenges to new business

Trusted Code 165

opportunities. The contest between the music industry and upstarts like Napster have
been extensively covered in the media, but the protection of music from piracy or other
associated violations desired by copyright owners is a small portion of the space of prob-
lems that need resolution.

The ability to securely deliver content and then continue to manage, monitor, and sup-
port its use at a remote location, with a minimal use of trusted third parties, can be crit-
ical to the success of many e-business models. Encryption is the most widely seen
method of protecting content today—but once the content is decrypted, it is open to
abuse. Indeed, the problem of delivering content to untrustworthy recipients requires
building the ability to reach out and retain control of content even after it is physically
not in our possession. This persistent command of usage requires two basic compo-
nents to be feasible.

■■ A trust infrastructure. We need some basis for creating trust between participants
and providing secure communication and credential management. PKIs are often
chosen as the trust-enabling component of commercial solutions for enabling the
protection of digital rights.

■■ Client-side digital rights policy manager. This client-side component can enforce
the security policy desired by the content owner. Creating a policy manager that
prevents abuse but at the same time allows valid use in a non-intrusive way is
critical.

Security expert Bruce Schneier in [Sch00] explains why all efforts to enforce digital
rights management of content on a general-purpose computer are doomed to failure.
Any rights management strategy of moderate complexity will defeat the average user’s
ability to subvert security controls. The persistence, inventiveness, and creativity of the
dedicated hacker, however, is another matter altogether. Many attempts to protect soft-
ware or music from piracy have failed. Proposals for preventing DVD piracy, satellite
broadcast theft, and software and music piracy have been broken and the exploits pub-
lished. The basic problem is that once a security mechanism is broken and the intellec-
tual property payload is extracted, a new and unprotected version of the payload can be
built without any security controls and then distributed. This process defeats the entire
premise of digital rights management.

At the heart of the matter, any scheme to protect digital information must also allow legal
use. However carefully the scheme is engineered, the legal avenues can be re-engineered
and subverted to gain access. The scheme can be modified to perform the following
functions:

■■ To prevent calls to security controls

■■ To halt re-encryption of decrypted information

■■ To block calls to physically attached hardware devices (sometimes called dongles)

■■ To block interaction with a “mother-ship” component over the network

■■ To spoof a third party in some manner if the contact to a third party is essential

LO W- L E V E L A R C H I T E CT U R E166

The topic of protecting digital data is particularly fascinating from a technical security
standpoint, but because our book has hewn to the viewpoint of the systems architect,
we cannot dig into the details of how to accomplish the goals of digital property pro-
tection. Suffice it to say, as systems architects we are consumers of digital rights man-
agement solutions and will implement and conform to the usage guidelines of the
vendor—because, after all, we have paid for the software. For the purposes of this book,
we are neither vendor nor hacker but are playing the role of the honest consumer. For
us, at least, digital rights management creates different systems goals.

From a systems perspective, we can assume the existence of a trust management infra-
structure (say, a PKI) that conforms to the requirements of the digital rights protection
software and are left with the issue of integrating a vendor’s policy manager into our
system. This situation normally involves the use of components such as the following:

■■ Cryptographic protocols. Delivered content is often encrypted and must be
decrypted before use. Content is also digitally signed to guarantee authenticity and
accountability.

■■ Trusted third parties. Certificates are key components in these protocols to
identify all participants: content vendor, client, certificate authority, status servers,
and (possibly untrustworthy) hosts. We need hooks to interact with corporate PKI
components.

■■ License servers. The possession of software does not imply the permission to use
it. Digital rights managers require clients to first download license keys that
describe the modes of use, the time of use allowed, and the permissions for the
sharing of content. The client must pay for these privileges and receive a token or
ticket that attests to such payment.

■■ Local decision arbitrators. Whenever the client uses the content—say, to execute a
program, print a report, approve a purchase, forward a quote, and so on—the local
policy manager must decide whether the request is permitted or not. In essence, this
situation is the JVM problem turned on its head, where now the digital content is
trusted and carries its own Security Manager embedded in its own trusted virtual
machine (and the underlying host is untrustworthy).

We can list, from an architect’s viewpoint, the desirable features of any digital rights
policy management solution.

■■ Non-intrusive rights management. The verification of access rights should be
transparent to the user after the first successful validation, and rights checks
should have minimal performance impacts. The solution must avoid unnecessary
third-party lookups.

■■ Robust rights verification methods. The method used by the vendor to verify
usage permission must be highly available and protected from network faults. The
user must not lose credentials on a system failover or should experience minimal
rights validation after the switch happens.

Trusted Code 167

■■ Single rights validation. The vendor must minimize and never duplicate security
checks. This situation corresponds in spirit with single sign-on as a desirable
authentication property.

■■ Delegation support. Users must be permitted to transfer their rights to
delegates. The vendor can establish rules of delegation but in no circumstance
should require that delegates separately purchase licenses for digital assets that
are already paid for.

■■ Sandbox support. Given that DRM conflicts with several of our existing
architectural goals, such as high availability, robustness, error recovery, and
delegation of authority, there must be a mechanism for a legitimate user to turn it
off. In this case, we do not require the vendor to relinquish his or her rights but
only to provide a sandbox for authenticated content users to access the
information without further checks.

■■ Unusual legal restrictions. The vendors of digital rights protection solutions often
claim that their solutions can be used to prove piracy in a court of law. Under no
circumstance should a legitimate user be characterized as a pirate.

■■ Flexible policy features. The solution should permit reasonable levels of access
configuration.

■■ No mission-impossible architecture guidelines. There are some forms of theft
of digital rights that are not preventable, purely because they occur at a level
where a systems component cannot distinguish between a valid user and a thief.
The solution should not add burdensome restrictions on legitimate users (such as
“Buy expensive hardware,” “Discard legacy software,” “Throw out current
hardware,” and so on).

For instance, regardless of what a music protection scheme does, audio output from
the speakers of a computer could be captured. No DRM solution can prevent this situa-
tion (barring the vendors coming to our homes and putting chips in our ears). A solu-
tion might protect a document from being printed more than once, but it cannot prevent
photocopying as a theft mechanism. A solution can protect an e-mail message from
being forwarded to unauthorized recipients, but it cannot protect against a user print-
ing the e-mail and faxing it to an unauthorized party. Chasing after these essentially
impossible-to-close holes can sometimes make the software so complex and unusable
that clients might forgo the solutions. They might choose to handle valuable content
insecurely rather than struggle with a secure but unwieldy solution.

Protecting digital content causes tension with other architectural goals. One critical dif-
ference between cryptography in this instance and cryptography for secure communi-
cation is in the persistence of data in encrypted form. Digital rights protection is an
application-level property and requires long-term key management of bulk encryption
keys or session keys. The application might not be equipped to do so. Another differ-
ence is in the conflict between firewalls and intrusion detection components that seek
to protect the intranet by inspecting content and digital rights protection solutions that
seek to protect the exterior content provider’s asset by encrypting and selectively per-
mitting access to content. You cannot run a virus scanner on an encrypted file or e-mail

LO W- L E V E L A R C H I T E CT U R E168

message, which limits the effectiveness of these security components (much like intru-
sion detection sensors failing on encrypted traffic). If vendor content infects the appli-
cation through a virus masked by encryption, is the vendor liable?

Digital rights management is based on an inversion of a common security assumption:
the valid and legal possessor of an asset is also its owner. The assumption leads to the
false belief that the possessor can modify the contents because the owner has full
access to the asset. This statement is not true if the owner and possessor are not the
same entity.

The use of smart cards for banking gives us an example of where this assumption fails.
The possessor of the card owns the assets inside the bank account encrypted on the
card, but the bank owns the account itself. The bank will allow only certain operations
on the account. For example, the bank might require that the state on the Smartcard
and the state on the bank servers are synchronized and that the card itself is tamper-
proof from abuse. The customer must be unable to make withdrawals larger than the
balance or register deposits that do not correspond to actual cash receipts.

Consider a solution implemented by several banks in Europe by using strong cryptog-
raphy and Smartcards. New Smartcards include cryptographic accelerators to enable
the use of computationally expensive algorithms, such as RSA. The Smartcard is an
actual computer with protected, private, and public memory areas, a small but ade-
quate CPU, and a simple and standard card reader interface. The user’s account is
stored on the card, and the card can be inserted into a kiosk that allows the user to
access an application that manages all transactions on the account. The strength of the
solution depends entirely on the user being unable to access a private key stored in the
Smartcard’s private storage, accessible only to the card itself and to the bank’s system
administrators. The card does not have a built-in battery, however, and must therefore
use an external power source. This situation led to an unusual inference attack.

Paul Kocher of Cryptography Research, Inc. invented an unusual series of attacks
against Smartcards. The attacks, called Differential Power Analysis, used the power
consumption patterns of the card as it executed the application to infer the individual
bits in the supposedly secure private key on the cards. The cost of implementing the
method was only a few hundred dollars, using commonly available electronic hard-
ware, and the method was successful against an alarmingly large number of card ven-
dors. This situation caused a scramble in the Smartcard industry to find fixes. The
attack was notable because of its orthogonal nature. Who would have ever thought that
this technique would be a way to leak information? Inference attacks come in many
guises. This example captures the risks of allowing the digital content to also carry the
responsibilities of managing security policy.

Finally, some have suggested security in open source. If we can read the source code
for the active content and can build the content ourselves, surely we can trust the code
as safe? Astonishingly, Ken Thompson (in his speech accepting the Turing Award for
the creation of UNIX) showed that this assumption is not true. In the next section, we
will describe Ken Thompson’s Trojan horse compiler and describe the implications of
his construction for trusted code today.

Trusted Code 169

Thompson’s Trojan Horse Compiler

In this section, we will describe the Trojan Horse compiler construction from Ken
Thompson’s classic 1983 ACM Turing Award speech “Reflections on Trusting Trust,”
which explains why you cannot trust code that you did not totally create yourself. The
basic principle of the paper is valid more than ever today, in the context provided by
our discussions so far. Thompson concluded that the ability to view source code is no
guarantee of trust. Inspection as a means of validation can only work if the tools used to
examine code are themselves trustworthy.

The first action taken by Rootkit attacks, an entire class of exploits aimed at obtaining
superuser privileges, is the replacement of common system commands and utilities
with Trojans that prevent detection. Commands such as su, login, telnet, ftp, ls, ps, find,
du, reboot, halt, shutdown, and so on are replaced by hacked binaries that report that
they have the same size and timestamp as the original executable. The most common
countermeasure to detect rootkit intrusions is the deployment of a cryptographic
checksum package like Tripwire, which can build a database of signatures for all sys-
tem files and can periodically compare the stored signatures with the cryptographic
checksum of the current file. Obviously, the baseline checksums must be computed
before the attack and stored securely for this validity check to hold. Even so, the only
recourse to cleaning a hacked system is to rebuild the system from scratch by using
only data from clean backups to restore state.

Solutions such as Tripwire need both the original executable and the executable file that
claims to be login or su to match its checksum against the stored and trusted value.

Thompson considered the case where we do not have access to the source file or pos-
sess cryptographic hashes of non-Trojan versions of the code. We are only able to
interact with the executable by running it on some input. In this case, our only clues lie
in the behavior of the Trojan program and the inputs on which it deviates from the cor-
rect code.

In this section, we present Thompson’s Trojan for two programs, login and cc. On UNIX
systems, login validates a username and password combination. The Trojanized login
accepts an additional invalid username with a blank password, enabling back door
access to the system. Thompson’s paper describing the details of the construction of a
Trojan horse compiler is available at www.acm.org/classics/sep95/. This paper is not all
academic; there is a well-known story of a hacked version of the UNIX login program
that was accidentally released from Ken Thompson’s development group and found its
way into several external UNIX environments. This Trojan version of login accepted a
default magic password to give anyone in the know full access to the system.

Our presentation is only at the abstract level and is meant to highlight the difference
in behavior between the Trojan horse compiler and a standard, correct C compiler.
Identifying such differences, called behavioral signatures, is a common strategy for
detecting intrusions or malicious data modification. Signatures enable us to distin-
guish the good from the bad. Behavioral signatures are common weapons in the

LO W- L E V E L A R C H I T E CT U R E170

TE
AM
FL
Y

Team-Fly®

hacker’s toolkit. For example, the network mapping tool nmap can divine the hard-
ware model or operating system of a target host based on responses to badly format-
ted TCP/IP packets.

A related purpose of this section is to describe the difficulty that programmers face in
converting “meta-code” to code. We use the phrase “meta-code” to describe code that is
about code, much like the specification of the Trojan compiler not as a program, but as
a specification in a higher-level language (in this case, English) for constructing such a
compiler. Many security specifications are not formal, creating differences in imple-
mentation that lead to signatures for attacks.

Some Notation for Compilers
and Programs

We will use some obvious notation to describe a program’s behavior. A program taking
inputfile as input and producing outputfile as output is represented as such:

We will represent an empty input file with the text NULL. Programs that do not read
their input at all will be considered as having the input file NULL. A program’s source
will have a .c extension, and its binary will have no extension. For example, the C com-
piler source will be called cc.c and the compiler itself will be called cc. The compiler’s
behavior can be represented as follows:

Note that a compiler is also a compilation fixed point, producing its own binary from
its source.

Self-Reproducing Programs
Thompson’s construction uses self-reproducing programs. A self-reproducing program
selfrep.c, when once compiled, performs the following actions:

Trusted Code 171

inputfile program outputfile

program.c cc program

cc.c cc cc

Assume that you wish to create a Trojan version of the UNIX login program, as follows:

Ken Thompson, through an elegant three-stage construction, produces a hacked C com-
piler that will replicate the behavior of a correct C compiler on all programs except two:
login.c, the UNIX login program; and cc.c, the UNIX C compiler itself.

A correct version of login is built as follows:

LO W- L E V E L A R C H I T E CT U R E172

The modified program accepts either a valid username and password or a secret user-
name with a NULL password. This process would not go undetected, because the
Trojan horse is immediately found by examining the source file hackedlogin.c. Thomp-
son gets around this situation by inserting a Trojan horse generator into the C compiler
source cc.c instead, then recompiling the compiler and replacing the correct C compiler
with a hacked compiler.

Now we can use the hacked compiler to miscompile the correct source to produce a
Trojan binary.

selfrep.c cc selfrep

NULL selfrep selfrep.c

login.c cc login

hackedlogin.c cc hackedlogin

hackedcc.c cc hackedcc

login.c hackedcc hackedlogin

Trusted Code 173

Now, examining login.c will not reveal the Trojan but examining hackedcc.c will imme-
diately give the game away. Thompson hides the modifications to the C compiler in a
two-stage process that he describes as program learning. The process produces
another compilation fixed point. At the end of the construction, the hacked compiler
produces its own hacked version binary from clean C compiler source code.

How does this situation happen? In his construction, Thompson creates a self-reproducing
version of the hacked compiler that can produce a copy of its own hacked source on
demand. This bootstrapping behavior is possible because the sample self-reproducing pro-
gram that he describes can be modified to include arbitrary code, including that of an
entire compiler.

On the input string cc.c, hackedcc discards the input and instead self-reproduces its
own hacked source. It then compiles the hacked source, presenting the resulting binary
as the output of compiling the original input cc.c.

Thompson concludes that if we cannot trust our development tools and we are unable
to examine binary code for tampering, as is often the case, then examination of the
source alone leaves us with no clue that our binaries are actually Trojan Horses.

Looking for Signatures
Can the two programs cc and hackedcc be distinguished from one another based on
behavior alone, without viewing source in any way? With the understanding that two
correct but different compilers can compile the same source to produce correct but
possibly different binaries, the two programs seem to have identical behavior.

The hackedcc compiler’s behavior is identical to that of the cc compiler on all C pro-
grams other than login.c and cc.c (in fact it invokes an internal copy of cc to ensure that
on all other programs, including its own source code, hackedcc mimics cc).

cc.c hackedcc hackedcc

NULL hackedcc hackedcc.c hackedcc hackedcccc.c hackedcc

hackedcc

LO W- L E V E L A R C H I T E CT U R E174

If the hackedcc compiler’s behavior was also identical to that of the cc compiler on all
other strings that are not syntactically correct C programs, we would have no means of
detecting it other than by examining the behavior of one of its outputs, the hackedlogin
program, and that, too, on the input of a special username-password combination.

program.c hackedcc program

program.c cc program

Non-NULL junk cc NULL

Non-NULL junk hackedcc NULL

NULL cc NULL

The construction seems complete and supports Thompson’s conclusion: examining the
source of a program is not enough to trust it.

hackedcc has an internal self-reproducing rule that conflicts with cc, however. This
property is essential to its construction, because hackedcc cannot use or make assump-
tions about the external environment on the host upon which it is executing. Such
dependencies would be detected if the program were moved to another host. Thomp-
son’s construction cleverly avoids this situation by wrapping up everything hackedcc
needs into its own executable.

This construction leads to the following signature. Because of its self-reproducing prop-
erty, hackedcc, which is a deterministic program, it has to be able to produce its own C
code from some input. We have used the NULL string, but any fixed non-C-program string
would do.

Trusted Code 175

The input string used to trigger the self-reproducing behavior could not be another C
program xyz.c, because we would then have another signature on which the two com-
pilers differ.

Without examining any source, we have found some input on which their behaviors
differ—and because cc is trusted, we can now state that hackedcc cannot be trusted.
The conflict arises because hackedcc, whatever its construction might be, is a deter-
ministic program and cannot have two different execution outcomes on the same input
NULL. It must either produce NULL or it must be self-reproducing so that it can pro-
duce a hacked binary from valid input.

Even Further Reflections on
Trusting Trust

We now reach our reason for going into this level of detail in describing Ken
Thompson’s very clever construction. In any attack where information is manufac-
tured, say, in a denial-of-service attack such as the land attack or in the construction of
a Trojan horse program or in the attachment of a virus to a file, the attacker leaves a sig-
nature. It is almost impossible not to do so, and our ability to analyze exploits and
detect such signatures is crucial to the design of counter-measures against these
attacks.

In situations where it is impossible to tell the difference between good data and bad data
because we cannot make a comparison, we have to rely on behavior. In a distributed
denial-of-service attack, good packets initiating connections and bad packets that are
part of a SYN/ACK flood cannot be distinguished at the server. The only countermeasures
we have lie in implementing thresholds on the traffic to the servers, limiting the number
of open connections, and maintaining separate queues for half-open and open connec-
tions. Once the flood is contained, we must trace back to the sources of the attacks and

NULL hackedcc hackedcc.c

xyz.c cc xyz

xyz.c hackedcc hackedcc.c

LO W- L E V E L A R C H I T E CT U R E176

clean the compromised machines. Behavior is the most difficult signature to detect, but
the good news is that however careful a construction, there is almost always a signature
to be detected.

Behavior is a familiar term to system architects. The behavior of the system is captured
in its operational profile. Measures such as logging, auditing, and alarming are essential
to monitoring the health and well being of a system. Building counter-measures against
attacks involves understanding what changes in behavior the attack will create on our
systems. Sometimes this result is quite obvious because the system crashes. Sometimes
this result can be quite subtle as an attacker launches a low-traffic port scan against our
machine or sends carefully crafted packets or messages with the intent of inferring crit-
ical information about the host, including make, model, services enabled, and assets
owned. It is the responsibility of the systems architect to always include “paranoid mode”
in the operational profile, where the system actively monitors its state in an effort to
detect malicious behavior.

An Exercise to the Reader

We would like to be very clear that there are no holes in Ken Thompson’s construction,
and all the claims that he makes are absolutely valid. The construction is even more rel-
evant these days where many of the software components of our system are given to us
shrink-wrapped without source code. In the previous chapter, we described the role of
code review in software architecture. Thompson warns us that all of our solutions
depend on the sanctity of our software components: the Web browser, the JVM imple-
mentation, the underlying operating system, the compilers that we use to build our
code, and the utilities that we use to manage our systems.

Perfect Trojan Horses
We conclude with a thought experiment. Revisit Thompson’s classic paper and try to
modify the Trojan compiler construction to hide even this minor behavioral signature.
Is it even possible?

Let’s define a Perfect Trojan Compiler, a completely artificial construct that we can rea-
son about to ask the following questions: “Is the problem fundamental to the construc-
tion? Why or why not?”

Definition. A compiler hackedcc is called a Perfect Trojan Horse if it has the
following properties:

■■ It miscompiles login.c to produce hackedlogin, an executable with a known
Trojan horse inside.

■■ It miscompiles cc.c to produce its own executable hackedcc, or a functionally
equivalent executable that is also a Perfect Trojan Horse, although possibly
different from hackedcc in some minor, syntactic way.

■■ It compiles all other valid C programs, correctly producing executables that

Trusted Code 177

have identical behavior to executables produced by a valid C compiler, cc.

■■ It behaves as cc does on all other inputs that are not valid C programs and
produces no output.

■■ Porting the hacked compiler to other similar hosts does not reveal that the
compiler is a Trojan horse.

Do Perfect Trojan Compilers exist? Can you build one? On the other hand, can you
prove they do not exist?

Note that Perfect Trojan Compilers are well behaved, which makes them easier to rea-
son about. Real Trojan horses are never well behaved and will happily fail on all sorts
of inputs, just as long as they can succeed on one execution path that leads to system
compromise.

Conclusion

Our applications grow more complex every day, with endless evolving topologies, het-
erogeneous hardware platforms, shrink-wrapped vendor solutions, black box run-time
environments, and third-party extensions, plug-ins, add-ons, and more. After going
through all the trouble of verifying that the system works, how do we protect it as it
evolves and as new releases of software and new downloads of information are pulled
into its architecture?

This problem is very hard. The common strategy to solve this problem is to pretend that
it does not exist. In this chapter, we have described some mechanisms for enabling
trust, distributing active content, using digital intellectual property, and relying on our
ability to read code to trust programs. The architectural pattern that we have repeat-
edly attempted to emphasize is that enabling trust involves the creation of structure
within and without an application, the creation of policy, and the definition of trusted
third parties.

C H A P T E R

179

Asecure connection between two hosts must perform authentication of each endpoint,
transport data reliably, protect against tampering or modification of data in transit,
guard against eavesdroppers, and operate with reasonable efficiency.

Most solutions for secure communications are based on the layer pattern. They take an
existing application and the communications layer it rides upon and insert a new secu-
rity layer between the higher-level processes or protocols and the underlying data link,
network, or transport mechanisms. These security mechanisms must therefore factor
in growth and evolution in the application above and changes in the protocols below as
networking hardware evolves.

Requiring communications security in a distributed, heterogeneous system can create
additional architectural goals or requirements that include the following components:

■■ Interoperability. Vendor products for secure communications must conform to
accepted standards for interoperability. For example, NIST provides an IPSec
interoperability test suite that vendors can use to guarantee minimum compliance
with the IETF RFCs for IPSec.

■■ Adaptability. Secure communication mechanisms must be adaptable to the
constraints of the entities involved, accommodating different cipher suites for
performance reasons caused by hardware or processing limitations or under legal
restrictions.

■■ Non-repudiation. We must disallow either participant to deny that the
conversation took place.

■■ Infrastructure. The mechanisms might depend on infrastructure elements such as
a PKI, a secure DNS, a cryptographic service provider, a LDAP directory, or a

8
Secure Communications

Network Time server. These services can represent hidden points of failure if the
dependency is inadequately articulated in the architecture. We might need
infrastructure support.

In this chapter, we will answer these questions. Why is secure communications critical?
What should architects know about transport and network security protocols? What is
really protected, and what is not? What assumptions about TTPs are implicit in any
architecture that uses TTPs?

We will start by comparing the TCP/IP stack to the ISO OSI protocol stack, along with a
description of the gaps where security can fit in. We will proceed to discuss two impor-
tant mechanisms for secure communications that are standards based, have good per-
formance and interoperability, and are modular in the sense that they can be added to
any architecture in a clean manner. These mechanisms are SSL and IPSec. We will con-
clude with some architectural issues on the use of these protocols.

The OSI and TCP/IP Protocol Stacks

The International Standards Organization introduced the seven-layer OSI network pro-
tocol stack as a model for network communications. Each layer of the stack logically
communicates with its peer on another host through interactions with lower-level pro-
tocol layers. The OSI stack never saw much general acceptance over pedagogical use
because it lacked reference implementations that ran on many platforms with good per-
formance and support for real network programming. Available implementations were
impractical to use when compared to TCP/IP.

TCP/IP, the protocol that defines the Internet, was introduced in 1983. TCP/IP is a sim-
ple four-layer protocol suite. Network programs are easy to write by using TCP/IP
because it has an open architecture. The availability of open-source implementations
on a wide variety of UNIX flavors led to its dominance as the premier networking pro-
tocol through the design, development, deployment, and acceptance of many net-
worked applications and services. TCP/IP is fast and simple, but it is not secure. All the
fields of a datagram, including source and destination address fields, port numbers,
sequence numbers, flags, or version can be forged. There are also no controls to pre-
vent eavesdropping or tampering.

If we compare the two protocols, we see that some layers within the TCP/IP stack must
wear multiple hats (Figure 8.1). Most importantly, the session layer of the OSI stack that
provides a logical view of the two communicating applications independent of higher
application details or lower transport layer issues must go either within the application
or in the transport layer of TCP/IP. Secure communications is essentially a property of
this session layer, which can refer to higher-level protocols for identity authentication
information and maintain a secure session state over multiple connections at lower lev-
els, transparent to the application layer.

Mechanisms for building reliable and secure communication exist at all layers of the
TCP/IP stack, and each has its merits and demerits.

LO W- L E V E L A R C H I T E CT U R E180

TE
AM
FL
Y

Team-Fly®

Application Layer

Presentation layer

Session layer

Application

Transport

Network

Data Link layer

Physical layer

Transport

Network

Data Link

ISO Protocol Stack TCP/IP

Figure 8.1 The ISO and TCP/IP stacks.

■■ If we integrate secure communication into the application layer, we have to do so
for each application on a host. The application has access to the full user context
and can enforce role-based access control. The application need not depend on the
underlying host or operating system for security services and can coexist with
other services that are not secured. The application can use high-level interfaces
with other security service providers and can directly manage events such as
alarms.

■■ If we add security at the transport layer, we gain application independence but are
now further from the application, possibly with less information. The security
mechanism might require the use of a specific transport-level protocol because it
depends on its services. SSL, for example, runs over TCP because its session-
oriented nature requires reliable communication. Alarm management can still be
handed to the application but is often sent to the system log or passed to a
dedicated alarm management process on the host because the application might
not be prepared to handle security events.

■■ If we add security at the network level, we lose even more contact with the
application. We might be unable to originate the connection from a particular
application, let alone a specific user within that application. The network-level
security mechanism must depend on a higher-layer interaction to capture this user
context and pass it down to the network layer. This context is called a security
association and must be established according to security policy guidelines that
might be unavailable at this low level.

■■ At the data link and the physical level, we can use hardware encryption units or
purchase dedicated private lines to protect a communications link. These are
completely divorced from the application and are generally statically configured.

Secure Communications 181

The session layer functionality in TCP/IP, depending on the application, is split between
the application layer and the transport layer. Securing communications at the session
level can either happen beneath the application layer or beneath the transport layer.

The Secure Sockets Layer protocol provides application and transport-layer security,
and IPSec provides network-layer security.

The Structure of Secure Communication

Creating a secure communications link between two parties requires each party to do
the following:

■■ Make a connection request. One party must initiate contact, and the other must
respond.

■■ Negotiate communication and cryptographic terms of engagement.

■■ Authenticate the peer entity.

■■ Manage and exchange session keys.

■■ Renegotiate keys on request.

■■ Establish data transfer properties such as encryption or compression.

■■ Manage errors by throwing exceptions, communicating alerts, or sending error
messages.

■■ Create audit logs.

■■ Close connections on successful completion or on fatal errors.

■■ Reestablish closed connections if both parties agree to do so, for performance
reasons.

We will now proceed to a detailed discussion of two mechanisms that achieve these steps.

The Secure Sockets Layer Protocol

The Secure Sockets Layer protocol, invented by Netscape and now available as an IETF
standard called Transport Layer Security (TLS), provides secure communication
between a client and a server. The following synopsis of the standard is from IETF RFC
2246. Since its standardization, several enhancements to the SSL protocol have been
proposed; please refer to www.ietf.org for details.

The SSL protocol has seen many applications, driven by its success in securing Web
communications and the availability of SSL toolkits that allow developers to add strong
security to any legacy application that uses sockets. Since its initial use for securing
Web browser to Web server access, a wide variety of application protocols have been
SSL-enabled, including mail, news, IIOP, Telnet, FTP, and more.

The SSL protocol depends on the existence of a PKI for all of its certificate services. All
entities in the architecture trust the PKI’s CA or possess a certification path starting at

LO W- L E V E L A R C H I T E CT U R E182

the subordinate CA that leads to a mutually trusted CA. Each entity (such as a user or
host) owns a cryptographic public-key and private-key pair. The public key is embed-
ded in a certificate that holds the entity’s distinguished name and can be transmitted
over the network. The private key is normally encrypted with a password and stored
locally on the user’s hard drive. Neither the private key nor the password used to
encrypt it is ever transmitted over the network. The protocol depends on the secrecy of
the private key.

SSL Properties
SSL provides private, reliable, and nonforgeable conversation between two communicat-
ing processes. The SSL protocol is an application-level protocol and sits on top of the
TCP/IP stack. Because SSL is independent of the application protocol it protects, any
higher-level protocol can be layered on top of the SSL protocol transparently. This sepa-
ration of concerns in the design has been critical to SSL’s success and popularity.
Internally, the SSL protocol has two layers. The lower SSL Record Protocol encapsulates
all higher-level protocols, including the SSL Handshake Protocol used for authentication.

SSL uses strong cryptography to ensure three properties.

Authentication. SSL uses public-key cryptographic algorithms such as RSA (invented
by cryptographers Ron Rivest, Adi Shamir, and Len Adleman) or DSS (the U.S.
government’s Digital Signature Standard) to authenticate each party to the other.
Encryption is used after the initial handshake to define a secret master key. The
master key is used to generate any additional key material needed by the next two
properties.

Confidentiality. SSL bulk encrypts the data transferred between the two entities by
using a symmetric key algorithm such as DES or RC4 (invented by cryptographer
Ron Rivest).

Integrity. SSL protects each datagram by adding integrity checks by using
cryptographic hash functions such as MD5 (again, invented by Ron Rivest) or SHA1
(issued by the U.S. government). SSL can also use keyed message authentication
codes called HMACs (designed by cryptographers Hugo Krawczyk, Ran Canetti, and
Mihir Bellare) that use other hash functions as subroutines (as described in Chapter
6, “Cryptography”).

Two parties can engage in multiple secure sessions simultaneously and within each ses-
sion maintain multiple connections. A session object represents each session and holds
a unique identifier for the session, along with the cipher suite used, the peer entity’s cer-
tificate, and a master secret that both entities have agreed upon.

Each session stores a flag that indicates whether new connections within the session
can be opened. This feature enables some degree of fault management, where a non-
critical alert message that terminates one connection and invalidates the session state
does not result in the termination of all ongoing connections. In the event of a critical
alarm or alert, all connections can be torn down. A new session must be established to
continue communication. This situation could occur, for example, in cases where the
application times out.

Secure Communications 183

Each connection also maintains its own state, where it holds context information such
as bulk encryption keys or initialization vectors needed by cryptographic primitives.
The SSL protocol defines a simple, finite state machine that represents the stage
reached in the protocol, and each peer maintains its copy of the state. Messages trigger
transitions between states. Session state is synchronized by maintaining separate cur-
rent and pending states. This feature is useful in situations where, for example, one
entity wishes to change the cipher suite for future messages. The entity must request its
peer to change cipher suites. After the peer acknowledges the request, the state
machine guarantees that both will use the correct cipher for all new messages.

The client and the server use the alert message protocol to send each other errors, such
as handshake failures, missing certificates, certificates from an unrecognized CA,
expired or revoked certificates, unexpected messages, bad message integrity checks, or
closure notifications signaling the session over.

An SSL session uses a cipher suite defined by using a string of the form SSL_
AuthenticationAlgorithm_WITH_BulkEncryptionAlgorithm_IntegrityCheckAlgorithm stored
within the SSL session state.

The SSL Record Protocol
The SSL Record Protocol runs on top of the TCP/IP stack because it relies on the under-
lying reliable Transmission Control Protocol (TCP). SSL is unlike IPSec, which we will
discuss in the next section, which operates beneath the transport layer. IPSec can
secure connectionless protocols, whereas SSL cannot.

SSL Record Protocol manages data transmission at each endpoint, including the fol-
lowing features:

■■ Message fragmentation and reassembly

■■ Integrity check computation and verification

■■ Optional compression and decompression

■■ Encryption and decryption

Higher-level protocols are oblivious to all these operations.

The SSL Handshake Protocol
The SSL Handshake Protocol, encapsulated by the SSL Record Protocol, enables a
server and a client to authenticate each other and to negotiate an encryption algorithm
and cryptographic keys before the application protocol transmits or receives any data.
The handshake is shown in Figure 8.2.

The client initiates the session (1) by sending a client hello message to the server along
with a list of acceptable cipher suites. The server responds by accepting a cipher suite.
Then, the authentication phase (2) of the handshake begins. SSL enables the client to
authenticate the server, the server to authenticate the client (3), or both. Figure 8.2
shows mutual authentication.

LO W- L E V E L A R C H I T E CT U R E184

Agree on symmetric keys

Client Server

Client Hello

Server Certificate

Encrypted Secret

Decrypted Secret

Client Certificate

Encrypted Secret

Decrypted Secret

Start transferring application data

Agree on cipher suite

1

2

3

4

Figure 8.2 The SSL handshake.

A certificate is public information. Any entity that presents a certificate is only making
a claim of identity. Even if the signature on the certificate is from a trusted CA, and the
certificate itself is valid, unexpired, and not revoked, we cannot trust that the peer is
who it claims to be without proof that it owns the corresponding private key. We can
establish this fact by sending an encrypted nonce (a unique number used only once by
the server) encrypted by using the public key within the certificate and checking the
decrypted response. If the peer can correctly decrypt the nonce, then we are assured
that they possess the private key.

SSL depends on the existence of a PKI. We trust the peer’s identity because we trust
that the certificate was issued in accordance with the CA’s published Certificate Prac-

tices Statement (CPS), which must require independent verification of the peer’s iden-
tity at certificate registration. The CPS determines the method for proof of identity,
which must be acceptable to both parties.

The application can add access control checks on top of the authentication provided by
the SSL handshake by extracting the user’s proven identity from within the distin-
guished name field of the certificate and matching this identity within a local user pro-
file database or a remote directory service to determine the peer’s privileges on the
host. SSL adds no support for access control outside of vendor APIs that allows exami-
nation of all the fields of the peer’s certificate. The X.509v3 standard allows extensions

Secure Communications 185

within the certificate to be used as additional context holders. This situation can be
risky because these extensions must be valid for the life of the certificate. Otherwise, a
new certificate must be issued whenever these attributes change.

After the client has successfully authenticated the server, the server can authenticate
the client. This situation is not common in Web environments from a browser to a Web
server, where login and password schemes are more popular and client certificate man-
agement can be a headache, but is often found in protocols where the endpoints are
true peers.

Before the handshake protocol, SSL starts with an empty cipher suite designated
SSL_NULL_WITH_NULL_NULL. After mutual authentication, the protocol generates a
shared master secret (4) to be used for generating key material for the cryptographic
primitives within the cipher suite. A cipher suite choice of RSA_WITH_3DES_EDE_
CBC_SHA implies that we will use the following items:

■■ RSA for the handshake protocol

■■ Triple DES (Encrypt-Decrypt-Encrypt Cipher Block Chaining) for symmetric
encryption

■■ SHA1 for Message Authentication Codes (MAC)

SSL enables the architect to decide which cryptographic algorithm is required for
encryption of the data. RSA encryption is commonly used for the initial public-key
handshake, but other ciphers (including several modes of Diffie-Hellman) or even
NULL signifying no authentication, can be used. Symmetric encryption algorithms are
used for bulk data encryption during the connection. These include DES, 3DES, RC4,
AES, or weaker 40-bit versions of DES or RC4 algorithms. Permitted hash algorithm
options include MD5 and SHA.

A developer building an SSL-enabled process must:

■■ Generate a public-private key pair

■■ Protect the private key with a password and then never send either the private key
or the password over the network

■■ Get a CA to sign the public key and issue a certificate

■■ Provision PKI components on both hosts, such as CA and entity certificates,
certification paths, CRL locations, and so on

■■ Write code

Coding responsibilities include choosing a cipher suite, modifying the application build
to include cryptographic libraries and SSL configuration information, adding SSL ini-
tialization code to the process initialization section, adding SSL cleanup on session exit,
and logging code for administrative functions.

SSL Issues
It is easy to add SSL to any link in most applications. Inexpensive or free open-source
SSL implementation toolkits have made SSL very popular. Almost any vendor of a

LO W- L E V E L A R C H I T E CT U R E186

server product that uses sockets for communicating with a client supports SSL as a
security option. Using SSL within the architecture raises some issues for discussion at
the architecture review, however. (We will repeat some of these issues in the specific
context of middleware in the next chapter because they bear repeating).

■■ SSL-enabling an application transfers a significant portion of security management
responsibility to the PKI supporting the application. How does the application
manage PKI issues?

■■ Is certificate policy well defined? How are keys managed? How is revocation
handled?

■■ How are servers informed about whether their certificates are about to expire?

■■ What if the PKI service itself changes? How will the application handle trust during
the changing of the guard?

■■ Which connections in the architecture need SSL-enabling? Do SSL connections
need proxies to penetrate firewalls?

■■ Is performance an issue? The initial public-key handshake can be expensive if used
too often. Can the application use hardware-based SSL accelerators that can
enable 20 times as many or more connections as software-based solutions?

■■ Are there issues of interoperability with other vendor SSL solutions?

■■ Do all applications share the same cipher suite? What does corporate security
policy mandate as a minimum level of security?

■■ Which entities get certificates? Is assignment at the level of an object, process, or
host? Do we distinguish between user processes and a daemon process on the host
and assign separate certificates? Do we lump multiple processes on a host together
to share a certificate?

■■ How do we handle the passwords that protect an entity’s private key? Do the users
type them in or use tokens? Are passwords embedded in binaries? Do we build the
passwords into the binaries during development (possibly exposing the private
key), or do we maintain separate certificate instances for separate system
instances—one for each of the development, integration, system test, and
production environments?

The IPSec Standard

We will now present the IPSec protocols and related standards, the security mechanism
behind the explosive growth of security products like VPNs, secure gateways to con-
nect intranets, and link-encrypted LANs. The original TCP/IP stack was simple, robust,
and extensible—all qualities that enabled network programming (especially on UNIX
platforms) to explode in ease and popularity. As many researchers have discovered,
however (for example, [Bel96]), the TCP/IP stack has many vulnerabilities. The drive to
architect, design, and implement end-to-end security for IP began in 1992 with the for-
mation of an IPSec working group to formally address this issue. The need for IP secu-
rity was also driven by the (then future) introduction of IPv6, which would solve many

Secure Communications 187

other issues with IPv4 (which was, for example, running out of addresses). The IPSec
RFC standards documents are good examples of how consensus on open security
architectures can be achieved.

IPSec secures the IP, the network component of the TCP/IP stack. Applications using
transport protocols such as TCP or UDP are oblivious to the existence of IPSec because
IPSec, unlike SSL, operates at the network level—securing all (desired) network com-
munication independent of the interacting applications on the two hosts.

IPSec provides connectionless security and relies on higher transport protocols for pro-
viding reliable communication if needed by the application. Unlike SSL, IPSec can
secure connectionless communications such as UDP, as well. IPSec ensures authenti-
cation, data integrity, antireplay protection, and confidentiality.

The IPSec specification describes Unicast-secure communication between two hosts.
Although the specification provides some hooks for multicast communications, there is
no consensus on how to secure multicast IP protocols. We will return to this issue after
our technical discussion to describe the relative immaturity of multicast protocols and
key management.

For this synopsis, we used Pete Loshin’s Big Book of IPSec RFCs, a collection of all the
IETF documents describing the standard in one text, along with other references in the
bibliography (primarily [DH99]) and some documents for vendor implementations.
IPSec has been extensively reviewed, and many early bugs have been cleaned up. The
core protocols of the standard, Authentication Header (AH) and Encapsulating Secu-

rity Payload (ESP), are quite robust and have seen considerable acceptance and visibil-
ity within VPN technology. Many vendor products implement stable and interoperable
VPN solutions by using these protocols. The key management protocol Internet Key

Exchange (IKE) is quite complex, however, and correspondingly hard to implement. The
original specification had some bugs that appear fixed now, but IKE has not gained the
acceptance like AH and ESP, especially in the VPN arena. Many vendors still use propri-
etary, noninteroperable, and noncompliant key management solutions while still claim-
ing compliance with the IKE standard.

IPSec Architecture Layers
IPSec connections can be between two hosts, a host and a secure gateway (such as an IPSec
router or a firewall) or between two IPSec gateways (on the route between two hosts).

IPSec uses three layers to separate concerns:

■■ Key management and authenticated key sharing protocols within the Internet

Security Association and Key Management Protocol (ISAKMP) framework. These
protocols enable hosts to construct Security Associations (SA) that can be used
by any protocol. The IKE protocol in the IPSec Domain of Interpretation (DOI)
negotiates security associations for the core IPSec protocols. IKE communications
for IPSec are over UDP.

■■ The core IPSec protocols for communicating data securely are AH and ESP. ESP
and AH both provide authentication; ESP encrypts the payload, as well. ESP and

LO W- L E V E L A R C H I T E CT U R E188

AH are additions to the suite of transport protocols that include ICMP, TCP,
and UDP.

■■ Cryptographic primitives used by these protocols. IPSec uses three classes of
primitives: authenticators, ciphers, and pseudo-random number generators. The
standard specifies default and required algorithms for each class, such as hash
functions MD5, SHA1 (and keyed hash functions based on these); encryption
functions DES, 3DES, RC5, and CAST-128; and Diffie-Hellman for key exchange.
Vendors extend support to many more (such as AES) through wrappers to
standard cryptographic toolkits such as RSA Data Security’s BSAFE toolkit.

IPSec Overview
The TCP/IP stack literally builds datagrams as if it were placing building blocks in a
column. Each of the transport, network, and physical network access layers adds its
own header to the application data to create the final physical link datagram. A phys-
ical frame is a sequence of bits that can be parsed left to right by using the headers as
tokens. Each token not only describes parameters needed to process the following
payload, but also optionally holds a next header field that enables the left-to-right
parsing to continue. Parsing ends when the payload is thrown up to the application
layer or repackaged for routing through lower layers. Processing a transport or net-
work datagram can be viewed as managing multiple simple finite state machines, one
for each transport or network protocol, where the machines throw the datagram to
one another like a hot potato as headers are stripped from the front of the physical
frame. Some hosts will find all they need to perform processing in the first two head-
ers; for example, a router that needs to forward the packet to the next hop. Other
hosts—for example, the destination host—will consume the entire packet until the
kernel of application data has reached its final destination within some application on
the host.

IPSec adds security to IP by using the same structure. IPSec introduces new proto-
cols and new headers. In an interesting wrinkle, however, IPSec enables the core pro-
tocols to nest secure datagrams and introduces a key management protocol
framework that allows the negotiation of terms by using the same simple building
blocks.

Packet-switched protocols like IP do not have a separate signaling network as in the
circuit-switched world. Each datagram must be a self-contained package of protected
and authenticated information. Datagram headers are precious real estate with well-
defined fields for specific purposes. Security requires reference to context information
of arbitrary size. What encryption algorithm should we use? What should we use for dig-
ital signatures? What are the parameters? Do we need some initial values? What are the
key values? How do we add the output of encryption or digital signatures to the new
and secure datagram we are building? How many packets have we exchanged so far?

IPSec manages these details by introducing data stores at each host that maintain con-
text for each open connection. Specifically, these are the Security Policy Database and
the Security Association Database.

Secure Communications 189

Some real estate on the new protocol headers is used for data that answers these ques-
tions. For example, we can store monotonically increasing sequence numbers that pre-
vent replays of packets or initialization vectors required to decrypt a packet.

Other fields hold fixed-length pointers to the data stores on each endpoint (for example,
Security Parameter Indexes). Some variable-length data such as the output of encryption,
compression, or a hash of the whole packet is included as part of the variable-length pay-
load following the header.

The core AH and ESP protocols are simpler than IKE because they can reference the
shared security association negotiated through IKE on their behalf. IKE must solve the
harder problem of negotiating the details of the security association in the first place,
and that too with an unknown, unauthenticated host with no prior knowledge of mutu-
ally acceptable cryptographic primitives, by using the fewest possible messages—all
along protecting the negotiations from tampering or eavesdropping by a third party. IKE
achieves this bootstrapping of security associations through a complex series of inter-
actions that result in a shared association at the IKE level that can be used to generate
security associations at the IPSec level. We will not go into the details of IKE, but
instead we’ll point the reader to the relevant RFCs in the references.

Policy Management
Before two hosts can communicate securely by using IPSec, they must share a security

association (SA). SAs are simplex; each host maintains a separate entry in the security

association database (SADB) for incoming and outgoing packets to another host.
Security associations are context holders, providing the negotiated cipher suite and
associated keys to the IPSec packet handler. The handler uses the directives within the
SA to process each unprotected IP datagram from the network layer, creating secure IP
datagrams for the data link layer. Security Associations can have finite lifetimes or
might never be deleted from the SA database.

Security policy determines when IPSec will be enabled for a connection between two
hosts. Every packet that leaves the host must be subjected to a policy check. The policy
might require the packet to be secured, discarded, or transmitted as is (also known as
IPSec bypass). The sender of the datagram can refer to the local security policy data-

base (SPD) by using selectors from the fields within the IP datagram waiting to be sent
or by using fields visible at the transport level. The selectors include the source, desti-
nation, source port, destination port, and protocol within the outgoing packet.

The receiver of an incoming packet does not have access to the transport layer selec-
tors and must choose the correct security policy based on visible information within
the incoming IPSec datagram. IPSec resolves this conflict by using a Security Parame-

ter Index (SPI) stored within the incoming packet, which references an SA entry in the
recipient’s SADB. The sender knows which SPI to use because the recipient has told
him or her. The recipient provides the SPI reference to the sender as part of the IPSec
SA negotiation. The mapping of SPI to an SADB entry must be unique for each choice of
SPI, protocol, and destination. SPIs can be reused only if the current security associa-
tion that uses them is cancelled.

LO W- L E V E L A R C H I T E CT U R E190

TE
AM
FL
Y

Team-Fly®

IP Header TCP Header Data

IP Header TCP Header Data

New IP Header

IPSec Header

IPSec Header

IP Header TCP Header Data

Original IP datagram

IPSec datagram in transport mode

IPSec datagram in tunnel mode

Figure 8.3 IPSec modes.

Encrypting and digitally signing all network packets by using public-key cryptography
such as RSA or DSS can be expensive, given high network bandwidth and throughput
needs. IPSec has been careful to avoid expensive public-key operations in the AH and
ESP layers, reserving their use for higher-level IKE security association negotiation.
Once a computationally expensive IKE SA is established between two hosts, many
other lower-level IPSec SAs can be derived from it. Once an SA expires or is cancelled,
it can be rekeyed quickly upon request. Any single connection can be associated with
multiple SAs, also known as an SA bundle.

IPSec Transport and Tunnel Modes
IPSec protocols can operate in one of two modes. IPSec in transport mode protects the
higher transport level datagram by inserting an IPSec header between the original IP
header and its payload. IPSec in tunnel mode protects the entire IP datagram by adding
an IPSec header to the original datagram to form the payload of a new IP datagram with
a new IP header (that possibly differs from the inner original header).

IPSec tunnel mode distinguishes between communication endpoints and cryptographic
endpoints. The original IP header points to the communication endpoint; the new IP
header for the IPSec tunnel mode datagram points to the cryptographic endpoint. This lat-
ter endpoint must receive, verify, and forward the original datagram to its final destination.

In Figure 8.3, we show an unprotected IP datagram and its IPSec incarnations in trans-
port and tunnel mode ([RFC2401]).

In addition, several IPSec connections can be nested within one other because the AH
and ESP protocols produce IP datagrams from IP datagrams. The output of one proto-
col application (say, ESP) in the context of one SA can be handed off to another IPSec

Secure Communications 191

protocol application (say, AH) in the context of a different SA. This technique would
enable a host to provide multiple layers of security that are removed by the corre-
sponding cryptographic endpoints along the route from source to destination host.

For example, a user can originate a connection from a laptop on the open Internet (say,
from his or her dial-up ISP) through the corporate IPSec gateway and through the gate-
way of a private-division LAN to a secure server on that LAN by using three nested tun-
nels. All the tunnels originate at the laptop, but they terminate at the corporate gateway,
the division gateway, and the secure server, respectively.

IPSec Implementation
IPSec implementation can be native, where a device manufacturer integrates the IPSec
protocols into the network layer of their native TCP/IP stack within the operating sys-
tem. This feature has the convenience of good performance, but applications lose some
flexibility in choosing between IPSec vendors based on features.

Alternatively, vendors can provide bump-in-the-stack implementations that separate
the protocol stack between the network and data link layer to add an IPSec processing
shim. This layer extracts the IP datagrams produced by the network layer, manufac-
tures IPSec datagrams based on selectors within the original transport package and
other fields, and passes a secure datagram to the underlying network interface. For
example, a Windows NT IPSec driver might bind to the TCP/IP protocol stack at its
upper edge and to one or more network adapters at its lower edge, and the user can
configure network settings to pass TCP/IP to the IPSec driver to the network interface
card. Some bump-in-the-stack implementations might create conflicts with other bump-
in-the-stack software, such as personal firewalls. Some implementations cannot bind
with all underlying network adapters; for example, some vendors fail to bind with wire-
less LAN adapters. Interoperability and performance are issues with bump-in-the-stack
implementations.

The third option is to use dedicated IPSec hardware devices. These bump-in-the-wire
implementations introduce an additional point of failure and are expensive if many con-
nections in the architecture require security. Hardware devices are a good alternative
for secure communication to legacy systems that cannot be modified.

Authentication Header Protocol
AH provides data integrity, source authentication, and some defense against replay
attacks. AH does not provide confidentiality, and the entire secured datagram is visible.
The AH protocol defines the structure of the AH header that contains the SPI, a
sequence number to prevent replays, and an authentication field. The standard requires
implementation of HMAC-SHA-96 and HMAC-MD5-96, both keyed hash algorithms
based on SHA and MD5 (respectively) with the hash output truncated to 96 bits.

The AH protocol authentication field stores the result of a cryptographic hash of the
entire IP datagram with mutable fields, including the authentication data field set to
zero. This integrity check value is truncated to 96 bits and then added to the header. A
recipient can quickly verify the authenticity of all the data in the original IP datagram.

LO W- L E V E L A R C H I T E CT U R E192

Encapsulating Security Payload
ESP provides confidentiality over and above the properties guaranteed by the AH pro-
tocol. The ESP header and the ESP trailer (hence the word encapsulating in the name)
in transport or tunnel mode contains the security parameter index, a sequence number
to prevent replays, an initialization vector for the decryption of the payload, and an
authentication data chunk that validates all of the IPSec datagram except for the exter-
nal IP header.

ESP uses two cryptographic primitives—an authenticator and a cipher—both of which
cannot simultaneously be set to NULL. ESP has created some of the architecture issues
associated with IPSec security, because unlike AH it hides data visible in the original
datagram. This action can break applications, protocols, or tools that were built with an
assumption that they could use this internal information.

Internet Key Exchange
The IKE protocol uses elements of the Oakley and SKEME protocols to negotiate an
authenticated, shared key exchange. IKE can be used to achieve this result for any
Internet protocol that has its own DOI. The IPSec DOI defines how IKE SAs and IPSec
SAs are negotiated.

Unlike the IPSec protocols that use IP address and ports as identities, IKE can authenti-
cate higher level entities by using fully qualified domain names, certificates, X.500 direc-
tory distinguished names, or usernames on named, fully qualified hosts. This function
links the identity of a connection with an application-level entity, improving auditing.

IKE is a protocol instance within a more general framework for negotiating security
services and cryptographic information called ISAKMP. ISAKMP defines a catalog of
payloads, each of which is described by additional payload attributes. ISAKMP negotia-
tions have two phases, the first in which an ISAKMP SA is established and the second in
which protocol and DOI specific SAs are established. The ISAKMP specification lists
defined payloads, attributes, phases, and exchanges.

Once entities have authenticated themselves to one another, the ISAKMP key manage-
ment framework is capable of building predicates describing complex security policies
using logical AND and OR operators to combine acceptable protocols, cryptographic
transforms, or key exchange modes into packages called offers. This feature is attrac-
tive only if vendors provide full support for arbitrarily complex association negotiation.
Once an offer is accepted, IKE can negotiate an authenticated key exchange that leads
to an IKE SA.

Once an IKE security association is in place, multiple IPSec associations can be derived
from the association. The architecture may or may not support perfect forward secrecy,
the property that guarantees that once new keys are negotiated, even complete knowl-
edge of all old key material will not reveal the contents of the current communication.
If all key material is derived in a dependent manner from a master secret within the IKE
SA, it might be possible to leak information about future communication from the
knowledge of keys from communication in the past.

Secure Communications 193

IP Header TCP Header Data

IP Header TCP Header Data

AH Header

ESP Header Pad + ESP Trailer
ESP

Authentication

Authenticated

Encrypted

IP Header
TCP

Header
DataESP Header

Pad + ESP
Trailer

ESP
Authentication

Authenticated

Encrypted

IP
Header

Authenticated

IP Header
TCP

Header
DataESP Header

Pad + ESP
Trailer

ESP
Authentication

Authenticated by ESP authentication data

Encrypted

IP
Header

AH
Header

Authenticated by AH authentication data

AH in transport mode

ESP in transport mode

ESP in tunnel mode

AH + ESP in tunnel mode

Figure 8.4 AH and ESP-protected datagrams.

IKE optionally provides security association negotiation with reduced numbers of mes-
sages and rounds of negotiation. Security is correspondingly weakened.

Some Examples of Secure IPSec
Datagrams

Figure 8.4 shows several IPSec-protected datagrams.

■■ The first datagram is protected by using AH in transport mode. No encryption
is used, and the entire datagram can be inspected but not modified. An
authentication field in the AH header contains an integrity verification value
computed from a cryptographic hash of a shared secret key and the entire IP
datagram after mutable values in the IP header are zeroed out. AH protects the
entire IP datagram, including the IP header.

■■ The second datagram is protected by using ESP in transport mode. The original
transport datagram is encrypted by using a shared secret key using the cipher
algorithm from the IPSec SA. The cipher might require an initialization vector

LO W- L E V E L A R C H I T E CT U R E194

stored in the clear in the ESP header and might require the payload to be padded.
The encrypted portion of the ESP datagram includes the original transport header
and data along with the pad and a pointer to the next header type. The ESP
authentication data trails the encrypted block and authenticates the ESP header
and encrypted block but does not authenticate the original IP header.

■■ The third datagram is protected by using ESP in tunnel mode. In this example,
the entire original IP datagram is encrypted after suitable padding, and the
authenticator scope includes the ESP header and the encrypted block that now
includes the original IP header. The new IP header is not authenticated.

■■ In our final example, we have an IP datagram protected with ESP in tunnel mode
and then AH in transport mode. The complete datagram has two authenticators
that have different but overlapping scopes.

IPSec Host Architecture

IPSec vendors give application architects three components corresponding to the three
layers of IPSec components.

IPSec management. The vendor product includes some central management
interface that can connect to IPSec configuration clients on each participating host
to manually populate keys or to configure IKE interactions that can automate
protocol negotiation and key sharing to build IKE and IPSec security associations.
The user interface normally provides or has hooks into user management
applications, alarm and event audit functions, and policy management. Third-party
service providers such as LDAP directories, PKI components, or Kerberos can be
used. The management interface populates the Security Policy Database (SPD)
with ordered policy entries for the IPSec kernel to use.

IPSec kernel. The vendor provides implementations of the AH and ESP protocols in
the form of a kernel driver operating in bump-in-the-stack mode (Figure 8.5) or
through a replacement for the entire TCP/IP stack. The IPSec kernel references the
SPD and the SADB on all outgoing and incoming packets. The kernel requests the
IPSec management client to negotiate new SAs when required.

Cryptographic libraries. The vendor provides authentication, encryption, and
random number generation functions in a library that can be replaced or enhanced
if required.

IPSec Issues
IPSec creates many issues that must be addressed before deployment within your appli-
cation. Some of these issues are inherent to the protocol, but others are accidental con-
sequences of vendor product interpretation of the standard. Applications should be
aware of the risk of being locked into using a single vendor product because of the com-
plexities of transitioning thousands of users to a possibly superior competitor’s offering.

Secure Communications 195

Figure 8.5 IPSec vendor’s host architecture.

Here are some of the issues surrounding the IPSec architecture:

Key management. Key management is the number-one problem with IPSec
deployments. Scalability and usability goals are essential.

Deployment issues. IPSec deployment is complex. Configuration and
troubleshooting can be quite challenging. Some vendors provide excellent
enterprise solutions for VPN deployment, but extending the solution to cover other
applications, client platforms, or access modes (such as Palm Pilots or wireless
phones) represent significant challenges due to both a relative fragility of the
implementation that prevents portability and the limitations of the hardware.

Policy definition. Many vendors provide proprietary policy definition and
management solutions that might conflict with application goals or corporate
security guidelines.

LO W- L E V E L A R C H I T E CT U R E196

Vendor IPSec Management Software
- User interface
- Policy management
- Key management
- Alarm management IPSec

Administrator

Cryptographic Libraries
Ciphers: DES-CBC, 3DES-CBC, AES-CBC, etc.
Authenticators: HMAC-MD5-96, HMAC-SHA1-96, etc.

IPSec kernel
- Packet creation and dispatch
- Packet receipt and verification

SADB
connection

SPD
connection

A
la

rm
s

an
d

E
ve

nt
s

Application

Data Link

Transport

Network

Bump in
 the Stack

Security
association
database

Security
policy
database

Vendor IPSec
management
database

Secure Communications 197

Routing. IPSec creates issues for routing. IPSec tunnels might require gateways to
store additional routing information. Some vendors provide virtual adapters that
enable a single host to own several IP addresses, one for each tunnel it initiates.
This situation might make return traffic from hosts that are multiple hops away
easier to route because each destination is addressing a unique virtual IP, possibly
improving the performance of the secure gateway. Another issue is traffic where
encryption is done at intermediate points, rather than only at the endpoints. This
situation forces routing through these intermediate points, increasing the chances
of failure of communication. Sometimes, as in the case of a corporate firewall, this
situation is desirable.

Multicast applications. These include audio or video over IP broadcasts, virtual
conferencing, multiplayer games, news or stock feeds, and automated upgrades.
Multicasts require a single host to communicate with a group of hosts securely. The
group is not static, and members can leave or join and can be connected to the
sender by using networks of differing bandwidth or topology.

There are several competing standards for reliable multicast definition and
associated properties for group key management. Group Key Management Protocol
and Secure Multicast IPSec are examples. Multicast requires us to enable role-based
access control by using object and user group, roles, and permissions at the IP
level. All solutions introduce new trust issues. Some recommend that all entities
trust a group key manager; others avoid centralization by using distributed,
hierarchical structures.

Known endpoints. IPSec requires that the host know the address of the secure
gateway. Are there multiple secure gateways that can lead to the destination? How
do we load-balance thousands of clients that wish to connect to a few security
gateways? Do we hard-wire assignments of clients to gateways? How do we change
assignments dynamically? Some solutions that manage this process do exist, but
there are no standards.

Network address translation. IPSec tunnels through gateways that perform
network address translation could create problems. The security gateway cannot
correctly map the inner IP headers with the correct IP addresses because they are
encrypted. The cryptographic endpoint will not be capable of forwarding packets to
the destination host because the payload has bad IP addresses within it.

Access control. Many of the issues of access control rule ordering that we described
in Chapter 3 apply to determining the correct security policy from the SPD. Multiple
policy rules might apply, and the order of application is important. The SA bundle
applicable might contain multiple termination endpoints, and the order of
application of SA rules depends on the ordering of the endpoints along the source-
to-destination path.

Tool incompatibility. IPSec breaks network management tools like traceroute. It
also creates issues for ICMP messages that cannot handle long messages or that
require information hidden within the header of the payload of the IPSec datagram
that caused an error.

Conclusion

Our discussion of secure communication adds some basis to secure architecture for the
connectors in our system. Our short description of the SSL protocol and IPSec should
give the reader some flavor of the issues involved. Some hidden dependencies still
exist, such as the need for secure DNS or good PKI support. We will relate many of the
issues discussed here with the other chapters on OS, Web, middleware, and database
security—because in any distributed application, secure communications is critical.

Secure communications uses many of our security patterns. Principals are identified
through IP address, ports, host names, or higher identities such as certificates or distin-
guished names. IPSec and SSL both use cookies and session objects to maintain state at
the endpoints. ESP applies the wrapper pattern to every packet it secures, and AH adds
a sentinel to prevent tampering. Applications often implement SSL by using the inter-

ceptor pattern. SSL and IPSec exist to create transport tunnels and use service

providers such as directories, secure DNS, or PKI services.

We can even see other examples such as the proxy pattern when diverse communica-
tions mediums meet to create secure communications channels. For example, Web-
enabled phones (supporting the Wireless Access Protocol) or PDA devices (that use
wireless IP data services like CDPD) promise secure connections to Internet services.
The physical limitations of the devices and the differing protocols create the mobile

wireless air gap problem, however. For example, in AT&T Wireless’s PocketNet ser-
vice, the ISP maintains a gateway service that provides one secure CDPD connection
from the Internet-ready phone to the gateway and a separate SSL session over the Inter-
net to the Web server. The proxy function of this gateway results in a potential security
hole, because the user information is in the clear on the gateway for a short period. This
situation is the so-called wireless air gap.

Layered security can only go so far, and there is plenty of security work left at the appli-
cation level. This topic will be the focus of our next few chapters.

LO W- L E V E L A R C H I T E CT U R E198

THREE
PA RT

Mid-Level Architecture

THREE

TE
AM
FL
Y

Team-Fly®

C H A P T E R

201

Middleware supports concurrent and networked application development by separating
the underlying variations in programming languages, hosts, operating systems, and net-
working protocols from the higher-level concerns of a distributed application. Middle-
ware is a collection of components that make it easier to program a distributed
application by hiding the low-level complexity that arises from inherent properties of
the system or from accidental factors [POSA2].

Middleware provides a paradigm for networked application programming that simpli-
fies coding, automates underlying network services, provides reliable communication,
and manages traffic. Middleware also helps enterprise architecture by providing com-
mon, reusable services that can be customized to the client, server, and application
needs. Examples of services include event handling, notification, security, trading, and
naming services.

In addition, middleware solutions must interact with other middleware solutions at
application or domain boundaries. Security management across multiple vendor solu-
tions is an issue, as is security architecture in the face of evolution (because, as the
application’s needs evolve, the security requirements change). Large, monolithic mid-
dleware solutions tend to be fragile in the face of evolutionary design forces.

In this chapter, we will discuss some inherent complexities with securing distributed
applications and some accidental complexities caused by poor vendor APIs, invalid
assumptions, visible low-level design, or clashes in middleware philosophies. Many of
these issues are common to all middleware offerings, including COM+, EJB, CORBA,
and MQSeries. We will pick one technology, CORBA, because of space limitations and
discuss the problems with securing distributed CORBA applications.

9
Middleware Security

We will discuss CORBA security in some detail by using the latest Security Specifica-
tion from CORBA’s standard bearers, the Object Management Group. We will describe
why the specification has seen limited acceptance at the user level and why vendor
compliance is nonexistent. We will describe why the specification is still valuable as an
architectural guideline. We will present the three levels of CORBA security: basic
secure communication using SSL and other secure protocols, CORBA level 1 security
that does not require application code to change, and CORBA Level 2 security that
opens programmatic access to the security API. We will also discuss advanced delega-
tion, authorization, and nonrepudiation services and touch upon the administrative
support for architects in the CORBA security specification.

Middleware and Security

Middleware presents some unique challenges to security architecture because the goals
of hiding underlying infrastructure conflict with the goals of examining details of the
infrastructure for authentication, authorization, or auditing. Schmidt, Stal, Rohnert, and
Buschmann [POSA2] present a pattern catalog and language for concurrent and net-
worked objects in which they describe the following goals.

Service Access
Distributed components cannot share memory. They cannot invoke communications
mechanisms that exploit a local address space, such as function calls or static class
variables. They must use low-level interprocess communication (IPC) mechanisms
(such as sockets or named pipes), networking protocols such as SMTP or HTTP, or
higher-level abstractions that enable remote object invocation (such as CORBA and
Enterprise Java Beans [EJB]). Clients must be able to invoke servers by logical names
rather than by IP addresses, choose servers based on certain desired properties (such
as proximity), initiate communications, and receive services. The server must be con-
tinuously available, or the client must be able to activate a service provider on demand.

Security Issues

Separating clients and servers to hide the details of access creates multiple points of
potential security failure that can result in compromise at either the client or the server or
in denial of service. There are many security mechanisms for securing low-level communi-
cations, and the architect must choose the most appropriate one based on the application
domain, available security services, performance, cost, and so on. Secure service access
raises new issues for system architects and middleware vendors alike to worry about.

Service Configuration
Components within a networked application must be initialized with the correct con-
figuration at startup and must be able to transfer system state safely to other instances

M I D - L E V E L A R C H I T E CT U R E202

in the event of failure or load management. Components might have multiple interfaces
corresponding to differing client service profiles and needs. These multiple personali-
ties of possible access to services and data must be kept apart, even through dynamic
evolution of services during the component’s life cycle. Some middleware vendors
enable the dynamic configuration of components by using loadable modules. Each
module can be configured to support a service role presented by the daemon within the
architecture.

Security Issues

Security management is a critical component of any security architecture. This feature
requires that configuration of security policy at server startup or during the server’s life
must be accomplished securely. The server must be able to trust dynamically loadable
service roles. (As an example, which we describe in more detail in Chapter 11, “Appli-
cation and OS Security,” there exists a rootkit exploit against the Linux kernel built as a
dynamically loadable module).

Secure configuration requirements raise questions. Where are configuration files stored?
Are they verified before use? Can the files be compromised so that when the service
is halted and restarted, bad security policy is enabled? Can the configuration interface
be exploited to disable security? Does the architecture support paranoid security
configurations, where a new and much more restrictive security policy can be quickly
deployed across the whole enterprise in reaction to a known but not yet active
exploit?

Event Management
Object-oriented or message-based middleware products support communication
through mechanisms such as remote procedure calls, synchronous method invocation,
asynchronous invocation, or message queues. A client can communicate with a server
by initiating contact and presenting a service request. The server must handle multiple
requests from many clients, demultiplexing the stream of events into separate streams
for callback-handling subsystems that can process each request. On completion, the
server must generate a service response to the client who, based on whether the com-
munication is synchronous or asynchronous, may or may not have blocked in the
interim. The client must receive and process the service completion event. Strategies
for event management sometimes use finite state machines to handle transitions
required by the asynchronous interrupts to maintain safety by controlling the server’s
behavior on unexpected events.

Security Issues

Event handling raises security questions, as well. Does the security solution handle
spurious events well? Does the architecture respond to message floods that might over-
flow message queues? Who decides the maximum priority of an event generated by a
client? If the client sets the priority, can this property be abused? Can a malicious client

Middleware Security 203

reset the priority of its events to deny legitimate clients services? Can the server detect
and disable clients that engage in such behavior?

Distributed Data Management
Middleware must provide object persistence and transparent access to underlying
legacy data. Components might be required to store intermediate results, to maintain
local caches of frequently requested data, to keep session state for error recovery, or to
manage performance-related storage. The middleware product itself might need to pro-
vide an internal persistent store for messages in the event that the recipient of a mes-
sage is currently inactive. The underlying heterogeneous environment makes data
persistence and data management particularly difficult.

Security Issues

The integrity of messages in transit and in data stores that the middleware product can
write to must be protected, which raises security questions as well. Can messages be
captured? Can they be read or modified? Are data values within messages protected at
the endpoints after receipt? Can attackers reuse session credentials? Can attackers
overwrite security logs by flooding the system with bogus messages that generate audit
log entries?

Concurrency and Synchronization
Communication in concurrent or networked programming is often many-to-few, espe-
cially in client/server programming. Servers might handle many clients. Each server
might need to dynamically activate other servers, spawn new processes, manage pools
of resources across multiple service handlers, and maintain integrity of critical sections
of code.

In addition to synchronized messaging, servers might need to synchronize access to
local shared resources. A multithreaded daemon might need to maintain thread-specific
storage. A daemon that maintains a process pool and spawns off server instances in
response to client requests might need to protect shared memory used by all the
process instances.

Programmers use several synchronization mechanisms, all based on the paradigm of
requesting a lock on a resource, waiting to acquire it, and then releasing the lock after
using the resource. Examples of synchronization primitives include mutexes, condition
variables, reader/writer locks, and semaphores. These mechanisms have an assumption
of good behavior, namely that all processes or threads will use the synchronization
mechanism to access a critical resource. Programming errors, complex invocation pat-
terns, or process failure could cause locks to be acquired but not released or for
processes to hang in deadlock—each waiting on another to relinquish a captured
resource.

M I D - L E V E L A R C H I T E CT U R E204

Security Issues

Programming using synchronization mechanisms does not present any direct security
issues. We believe that there are no known exploits that work against a multithreaded
process but that would fail against a single threaded one (unless there are coding errors
in the multithreaded library that cause other vulnerabilities, such as buffer overflow
attacks). It is possible that some exploit could create a denial-of-service attack through
the creation of deadlocks, starvation, or process termination that exploits concurrent
paradigms. This event is a remote possibility, however, and if the system can detect and
reactivate the daemon, this problem can be somewhat mitigated. Concurrent programs
are hard enough to debug as it is.

Reusable Services
Access to common, reusable, and dependable services has always been a large part of
the promise of middleware. Distributed applications with the shared goals of location
transparency, logical name to physical name mapping, object persistence, service nego-
tiation, directory lookup, or centralized security services can move these responsibili-
ties outside individual applications and into the realm of enterprise software
infrastructure. The cost amortization helps middleware as it did security in our discus-
sions in Chapter 2, “Security Assessments.” The OMG CORBA specification lists several
examples of services including naming, time, security, transaction, licensing, trader,
event, persistence, and many more.

Middleware technology has grown beyond the goals of enabling communication, and more
than 10 years of standards work in technologies like CORBA have produced an impressive
array of specifications for object modeling, object architecture, interface definition and
mapping, support services, and frameworks. There are many success stories where large-
scale enterprise architectures have been built around the middleware paradigm.

Security Issues

Middleware services add to the problem for implementing application security. If loca-
tion, platform, software, and technology independence and transparency is desired,
how do we ensure that the ongoing communications are secure? Can an attacker mod-
ify a name mapping to point a client to a bogus server? Can a server be cut off by dele-
tion from the location service? Can a directory be compromised to modify user profiles?
Can a time service be compromised to allow credentials to be replayed? How do we
maintain the basic security principles of authentication, integrity, or confidentiality?

Middleware products must also support legacy clients that cannot be modified to com-
ply with security or other products that interoperate in insecure mode but fail when
security is enabled. Backward compatibility requirements with older product versions
might also weaken security. Flexibility and choice are valuable but only if all configura-
tions can assure some basic compliance with security policy. Vendors provide configu-
ration options on services that enable the application to decide which connections to

Middleware Security 205

accept and which to reject when some client requests a connection to some server.
Allowing servers to accept insecure connections for backward compatibility might cre-
ate security holes.

Middleware vendors have responded by building security products that essentially
require applications to embed a high degree of trust into the security controls within
their products and the quality of their implementations. Examination of some imple-
mentations shows that this trust is often misplaced.

The Assumption of Infallibility

Middleware, more than in any other architecture component, is a source of security
flaws based on invalid assumptions rather than design flaws. Almost all vendor prod-
ucts for middleware come with some extensions or plug-ins to enable security. These
provide well-recognized security properties such as authentication, authorization, and
data confidentiality. They often share the same problem we call the assumption of

infallibility, however: The architecture is secure if it has not been compromised in any
manner. If any individual component fails, then reasoning about security becomes dis-
tinctly murky. Middleware security solutions respond poorly to Byzantine attacks,
where some elements of the architecture are not only faulty, but also possibly mali-
ciously working in collusion with other components.

For example:

■■ What if a single client abuses access? Can they promote their privileges in some
manner?

■■ What if the solution assumes transitive trust or delegation and an upstream client
is compromised? How far can an attacker reach in the workflow before some
system detects and corrects the damage?

■■ What if a critical service is compromised? If the naming service is hacked so that
an attacker can install a man-in-the-middle between the client and the server, can
either endpoint detect this action? Note that point-to-point encryption might not be
of any help if the attacker can maintain separate sessions with the client and
server by using credentials from the compromised service provider.

■■ What if the services location server (Trader service in CORBA) is compromised?
Can the security architecture respond by redirecting client requests to a legitimate
trader? Will services be denied or merely delayed?

■■ What if the underlying host is compromised in a manner through an exploit not at
all connected with the middleware security solution? Does the solution fail if any
one node in the distributed network fails in this manner?

■■ What if a client session, authenticated and in progress, is stolen by an attacker?
Must the attacker also simultaneously disable the actual client to deceive the
server? Can the server detect the theft of the communications channel?

■■ If the application has a multithreaded daemon, can attackers cause race conditions
or deadlock through messages from compromised clients? Can the server defend

M I D - L E V E L A R C H I T E CT U R E206

against this situation by detecting deadlock, terminating the blocked daemon, and
reactivating services?

■■ Can a single instance of a remote object compromise other instances on the same
server through attacks on shared resources? Can one instance of an object
overwrite data that belongs to another instance? Will a buffer overflow in one
persistent object store write over an adjacent byte sequence?

■■ Does the solution depend on other services such as mail, DNS, firewall protection,
or network isolation that could be compromised? Does the architecture have
choke points that are not enforced in reality?

■■ Can an attacker examine binaries for components in development environments to
extract magic strings that leak information about encryption keys in production?
Can a hacker with a backup tape compromise the system?

The common response to analyzing scenarios such as these is to throw one’s hands up
and say, “Well, the system is already compromised, so there is nothing to defend.” This
response would be valid if we were discussing OS or database security, where scenar-
ios that assume root access to describe exploits that lead to root access are rightly
labeled examples of circular reasoning. But distributed architectures have many hosts,
and it is perfectly valid to assume that any single host has been compromised at the
root level with the intent of using all the host’s resources to launch attacks at other ele-
ments of the distributed architecture. Leslie Lamport first introduced this problem to
distributed computing as the Byzantine Generals Problem, and there is considerable
research on protocols and methods for ensuring safety and inferring properties in such
an environment.

We call this the assumption of infallibility because the vendor assumes the best-case
scenario for providing security services. In reality, the world might not be so perfect.
Security does not affect some reasons for adopting distributed architectures, such as
scalability and cost, as much as it affects performance and reliability. Distributed appli-
cations have higher requirements to manage failure gracefully. Dependability is one of
the main reasons why we wish to adopt distributed architectures.

We now will move the focus of our presentation to security within a very popular mid-
dleware standard, CORBA.

The Common Object Request Broker
Architecture

CORBA applications are composed of objects representing entities in the application.
In a typical client/server application, there might be many instances of client objects of
a single type and fewer or only one instance of a server. A legacy application can pre-
sent access to its data through a CORBA interface defining methods for clients to
invoke over the network.

CORBA uses the OMG Interface Definition Language (IDL) to define an interface for
each object type. The interface defines a syntactic contract offered by the server to

Middleware Security 207

clients that invoke it. Any client that wants to invoke an operation on the server object
must use this IDL interface to specify the method invoked and must present all the
arguments required by the method. In CORBA, every object instance has its own unique
object reference called an Interoperable Object Reference (IOR). Each client must use
the target object’s IOR to invoke operations upon it. Arguments are marshaled by a
client-side implementation component that creates a request in the form of a message.
The message is sent to the server by using the IIOP protocol. When the invocation
reaches the target object, the same interface definition is used by a server-side CORBA
implementation component to unmarshal the arguments from the message so that the
server can perform the requested operation with them. Clients respond in the same
manner to the server.

The IDL interface definition is independent of the programming language chosen for
either client or server development. Vendors provide IDL compilers that map IDL defin-
itions to object definitions in most programming languages. IDL definitions separate
interface from implementation. This property is fundamental, because CORBA
achieves interoperability by strictly enforcing object access only through an IDL-
defined interface. The details of the client and server implementations are hidden from
each other. Clients can access services only through an advertised interface, invoking
only those operations that the object exposes through its IDL interface with only those
arguments that are included in the IDL definition.

Once the IDL is defined, a developer can compile it into client stubs and object skele-
tons and then use the stubs and skeletons to write the client and the target object. Stubs
and skeletons serve as proxies for clients and servers, respectively. The CORBA IDL
defines interfaces strictly to ensure that regardless of programming language, host
machine, network protocol, or Object Request Broker (ORB) vendor, the stub on the
client side can match perfectly with the skeleton on the server side.

The OMG CORBA Security Standard

The OMG defines a standard for CORBA compliance for vendors to ensure interoper-
ability, which at a minimum requires that their ORB must comply with the OMG IDL for
each specific mapping implemented within the core OMG ORB. Security has lagged
behind other CORBA services, in part due to the complexity of the OMG CORBA Secu-
rity Specification and because of a lack of detailed guidelines to ensure that the various
security implementations interoperate. The latest version of the CORBA Security Spec-
ification attempts to improve the latter deficiency, with partial success.

The CORBA Security Service
Specification

The CORBA security specification lists all the security principles of Chapter 3, “Secu-
rity Architecture Basics,” as goals: authentication, authorization, access control, confi-
dentiality, integrity, nonrepudiation, and secure administration. It also aims to improve
usability for all participants, including end users, administrators, and implementers.

M I D - L E V E L A R C H I T E CT U R E208

The specification does not come with a reference implementation but does attempt to
formally define vendor compliance with the standard.

The distinguishing characteristic of the security specification is its object-oriented
nature.

■■ All security interface definitions should be purely object-oriented.

■■ All interfaces should be simple, hiding complex security controls from the security
architecture model.

■■ The model should allow polymorphism to support multiple underlying security
mechanisms.

In an abstract sense, all principals that wish to communicate must authenticate them-
selves in some manner and then be subjected to the rules of access control on every
object invocation. The specification uses many of the security patterns that we intro-
duced in Chapter 4, “Architecture Patterns in Security,” including principals, context

holders, session objects, tokens, policy servers, interceptors, filters, and proxies. The
specification uses its own terminology, of course, which we will also adopt for our pre-
sentation. The specification also attempts to address security policy definition and
management across multiple security domains.

Packages and Modules in the
Specification

The CORBA Security Specification is a collection of feature package and module
descriptions. The main security functionality is captured in two packages for Level 1

security and Level 2 security. A separate nonrepudiation functionality package is
defined but optional and specified as a service for completeness. As is common, non-
repudiation is not a priority in many current vendor products unless enabled by chance.
It is the poor cousin of the security principles family.

Security Replacement Packages decouple the ORB implementation from the security
service implementation. ORBs are unaware of the details of the security service but are
security ready, enabling plug-and-play of different authentication and authorization
mechanisms. The security services are also unaware of the internal details of the core
ORB implementation and can be run over multiple security-ready ORBs. Security ser-
vices are often added to the architecture by using the interceptor or wrapper patterns.

Secure communications are specified by using the Secure Interoperability with

SECIOP package. This functionality is similar to IPSec, discussed in Chapter 8, in that
the underlying IIOP protocol is enhanced with security extensions that enable
send/receive requests to carry security associations.

Common Security Interoperability Feature packages attempt to address interoperabil-
ity between vendor security solutions. The standard defines three levels of compliance
and all three CSI levels (at a minimum) require mutual authentication, integrity, and
confidentiality for secure communication between each client and server. The CSI
packages relate the interoperability across a communications link with the extent of
trust ensured by the two underlying middleware products that created the link. This

Middleware Security 209

trust is critical if the recipient of a request wants to delegate the request to a third party.
On the low end of trust relationships, no delegation may be permitted. On the next
level, the recipient may impersonate the sender of the message to a third party. In this
case, the third party may be unable to authenticate the original sender of the request. At
the high end of trust relationships, all participating entities may be required to pass
strong authentication and authorization checks to gain entry to a secure sandbox sup-
ported by all ORB vendors in the architecture. Once inside the sandbox, all entities
must delegate requests strictly according to security policy. This enables the sender of
a request to add attributes or auditing to the request that the recipient must use if it
chooses to delegate the request to any third party also within the sandbox. In an
increasing ladder of interoperability, a vendor might support the following components:

■■ CSI Level 0, which consists of identity-based policies without delegation.
Compliance at CSI level 0 enables an entity to transmit only its identity to a target
on a request that cannot be delegated under the original identity for further object
accesses made by the target. The identity of the intermediate object (the target)
must be used if other objects are invoked.

■■ CSI Level 1 consists of identity-based policies with unrestricted delegation.
Compliance at CSI level 1 enables transitive delegation of only the request
originator’s identity without the use of attributes that could store credentials such
as audit information or roles. This level allows an intermediate object to
impersonate the originator of the request because no further restrictions are
placed on the delegation of a request.

■■ CSI Level 2, which is a complete implementation of the security specification. This
supports controlled delegation of requests, in which an intermediary might be
required to carry attributes from the originating principal to any objects that it
invokes. This allows the initiator of a request to have some control over delegation.
CSI Level 2 also supports composite delegation in which the intermediary might be
required to collect credentials and attributes from multiple upstream principals
and bundle all these attributes into any invocation of a downstream object method.

This functionality gives vendors an evolution path to full compliance with the specifica-
tion at CSI level 2. The intermediate levels offer a subset of features with correspond-
ingly weakened security properties.

Common Security Protocol Packages enable the security service to use other security
infrastructure components such as PKI, Kerberos, Sesame (by using CSI ECMA), DCE,
or SSL-enabled TCP/IP links. Directory services might provide user profile information,
access control list management, password management, additional options to secure
remote procedure calls (RPCs), and vendor-specific directory enhancements that allow
extensions to messages, providing additional context for security.

Because of the relative maturity of some security protocols, we expect continued ven-
dor support for the Common Security Protocol packages. CORBA security products
that support each of these options are already on the market, although we would hesi-
tate to state that they are all CSI level 0 compliant. In any application that uses a single
ORB and security vendor, integration with DCE, Kerberos, or a PKI is currently possible.

M I D - L E V E L A R C H I T E CT U R E210

TE
AM
FL
Y

Team-Fly®

Additional CSI level 0 and level 1 interoperability might exist between vendors. Only
pair-wise testing can tell.

Vendor Implementations of CORBA Security

Vendors are charged with the difficult task of implementing all of the security APIs in a
manner that is:

■■ Independent of the underlying security controls

■■ Flexible in supporting multiple security policies

■■ Interoperable with multiple ORBs and with other security components

The security service, in line with other OMG goals, must also be portable and fast.

The fact that all the vendors claim compliance not only with the standard, but also with
the common security interoperability levels means very little. You have to test to see
whether this claim holds because of subtle differences in vendor implementations, in
the choice of how structures are stored, how messages are formatted, how extensions
are parsed, or how errors are handled. Much of the details of how to accomplish these
goals are left unspecified.

Implementing security under these constraints is made all the more difficult due to the
distributed nature of the CORBA software bus. Where do the components of the trusted
core supporting all communications reside in a distributed environment? What impact
will security have on performance if this core is distributed across the enterprise?

Vendors are required to provide security services to applications by implementing all
the security facilities and interfaces required to secure an ORB. They must also provide
basic administrative support for all choices of policy, but the standard allows for levels
of interoperability requirements between security mechanisms.

The CORBA Security Specification is very complex and has relatively low usage in
applications because almost no compliant COTS products have been developed. Imple-
mentations that do exist force the architect to accept the vendor’s interpretation of the
open standard, use proprietary APIs, and create complex or brittle solutions that are
hard to integrate with other ORB because of security interoperability issues.

Vendors faced with the lofty goals within the standard pick a subset of features that
would be adequate to claim compliance with the specification, and the final product
has constraints of hardware, software, policy, cryptography, and so on. Some vendor
security solutions might have some success with interoperability between objects in a
heterogeneous environment by using other ORB vendors. Assumptions on policy and
security management, however, might make interoperability impossible when extend-
ing the CORBA security service across vendors and other enterprise middleware plat-
forms. These vendor differences make for a lack of interoperability between security
administration components across vendors and across security domains managed by
using different products in each domain. It is not possible to manage security policy

Middleware Security 211

across ORB vendors because of the impedance mismatch in the implementation of the
security administration APIs and in GUI-based management tools.

The security standard is also somewhat of a moving target. Many applications are con-
tent to go with minimal security solutions, such as running all IIOP traffic over SSL,
while waiting for mature specifications and products to emerge. Interfaces with other
standards are also an issue. For example, the J2EE specification requires CORBA inter-
operability, but the details of how this interconnectivity will happen are still being
defined. Security in this context, between a proprietary standard with a reference
implementation and an open standard with none, is certainly immature.

CORBA Security Levels

The Interface Definition Language (IDL) is the heart of CORBA, and the original
CORBA security specification was geared more toward protecting interfaces rather
than individual objects. CORBA security can be provided in the following three levels.

■■ Secure Interoperability with no reference to or knowledge of the IDL.

■■ Security with knowledge of but no reference to the IDL. In other words, the
security solution generally uses statically defined files derived from the IDL
definition that must be edited if the IDL changes. There is no code generation
phase for the security solution for generating security extensions when mapping
IDL definitions to object definitions. Applications are said to be security unaware.
Vendor implementations most often use the interceptor security pattern.

■■ Security with reference to the IDL. We can use code generation tools to also
generate security extensions to the object definitions generated from the IDL or to
add security-related arguments to standard methods. The objects themselves can
access the full security API for fine-grained access definition. Vendor
implementations most often use the wrapper security pattern in conjunction with
interceptors.

Secure Interoperability

Secure interoperability in CORBA can be achieved in homogenous environments when
the following conditions are met:

■■ The ORBs share a common interoperability protocol.

■■ The client object and target object share and implement identical security policies.

■■ All entities share the same security services and mechanisms.

General Inter-ORB Operability Protocol (GIOP) traffic is the high-level CORBA mes-
saging protocol between the object and the target. GIOP can run over the Secure Inter-

M I D - L E V E L A R C H I T E CT U R E212

 Data Link Layer

SECIOP

Server

SECIOP

Client Client

Security
Association
Context and

Message
Sequencing

Security
Association
Context and

Message
Sequencing

Target
Thread

Target
Thread

Target
Thread

Target
Thread

Target
Thread

ThreadThreadThreadThreadThreadThreadThreadThread

Figure 9.1 SECIOP sequence and context maintenance.

ORB Protocol (SECIOP) or over IIOP. The Security Specification enables objects and
target to communicate securely by either using SECIOP or by using IIOP over SSL.

The Secure Inter-ORB Protocol
SECIOP enables secure communications with support from the ORB and security infra-
structure. Applications can deploy generic security mechanisms underneath SECIOP.
The generic mechanisms supported include Kerberos, DCE, SPKM, and CSI ECMA
(please refer to the security specification at www.omg.org for details). The standard
describes security enhancements to the IOR description that enable the client to
extract security information from the target object reference and use it to initiate a
security association. This information could include the target’s identity, acceptable
security policy, required policy, and cryptographic information.

SECIOP implements the concentrator/distributor security pattern by allowing multi-
ple threads of execution within each of many client objects to interact with multiple
threads within a target object, all over a single underlying security link layer. SECIOP
handles the multiplexing and demultiplexing of GIOP traffic in a transparent manner.

Each pair of communicating entities can have its own security association. For each
object-target pair, SECIOP enforces proper message sequencing at the link layer and
maintains context information about the security association and the security mecha-
nisms employed between the two entities, as shown in Figure 9.1. It also maintains
association integrity by defining how the target should handle messages from the client,
depending on the current association state. The standard defines a finite state machine

(FSM) with states representing the association context between object and client. The
FSM’s transitions are triggered by incoming messages from the client, which provides

Middleware Security 213

Figure 9.2 IIOP over SSL.

vendors with some guidance on how security associations are to be handled in CORBA,
regardless of the underlying security mechanism.

Alternatively, objects and targets can communicate securely independent of SECIOP,
for example, by running IIOP over SSL. Essentially, the SSL model of security has noth-
ing to do with the encapsulated protocol (in this case, IIOP). We will discuss this option
in more detail in the following section.

Secure Communications through SSL
CORBA vendors have adopted SSL as a cost-effective and easily deployed alternative to
fully supporting the OMG’s complex and high-level standard for CORBA Security. Run-
ning IIOP over SSL provides basic communications security. The SSL protocol per-
forms none of the security association, sequencing, and context management available
under SECIOP. It implements the transport tunnel paradigm at the application level. To
perform this task, developers need several components, including PKI support, certifi-
cates, SSL libraries, configuration files, and some code modification.

SSL-Enabling IIOP Connections

SSL adds a layer of secure communication between the application layer protocol IIOP
and TCP/IP. SSL, which we discussed in Chapter 8, “Secure Communications,” and
show in Figure 9.2, provides basic security between two endpoints through authentica-
tion through a public key cryptographic algorithm such as RSA, confidentiality through
data encryption with a private key algorithm such as RC4, and data integrity through a
cryptographic hash function such as SHA1.

All vendors follow a similar pattern for SSL implementations. The developer must per-
form the following actions:

M I D - L E V E L A R C H I T E CT U R E214

IIOP

Server

IIOP

Client

Certificate
Manager- Certificate

- Certification path to CA

- Encrypted private key

- Password to decrypt private
key file

- SSL protocol version

- Cipher suite

Current
(points to

peer)

SSL SSL

TCP/IP TCP/IP

- Certificate

- Certification path to CA

- Encrypted private key

- Password to decrypt private
key file

- SSL protocol version

- Cipher suite

Current
(points to

peer)

Certificate
Manager

■■ Decide whether authentication will be server-side only or mutual.

■■ Modify the build environment to include SSL and cryptographic libraries.

■■ Create PKI elements and set configuration files to point to the list of certificate
authorities, certification path information, the client or server certificate,
permitted cipher suites, the private key file associated with the process’s
certificate, and an embedded password string to unlock the private key file.

■■ Provision these elements on each host.

■■ Add initialization code in the beginning of the CORBA server code to reference a
context holder called the SSL::CertificateManager object to access the server’s
certificate, certification path, and private key and a session object, called
SSL::Current object, to access the certification chain and certificate of the client
entity once the SSL session is established.

■■ Repeat these steps on the client if mutual authentication is desired.

At run time, the server initializes the ORB and then uses the ORB::resolve_initial_refer-
ences() to obtain the SSL::CertificateManager object for its own identity and the
SSL::Current object for the client’s identity. The Current object also holds SSL protocol
version and cipher suite information.

Why Is SSL Popular?
Why is SSL such a popular security solution? Vendors provide SSL because good imple-
mentations of the protocol exist, open source or otherwise, that enable any
client/server application using TCP/IP to communicate securely. It is easy to SSL-enable
applications. There are few code changes.

■■ Some configuration options to the run-time environment must be set describing
PKI components.

■■ Some initialization code that points to the correct certificate, private key file, and
certificate path must be added.

■■ Some cleanup code to close file connections or write to audit logs must be inserted
after the connection closes.

The popularity of SSL-enabling CORBA applications comes from the enormous success
of SSL-enabled Web traffic.

SSL can have performance problems. Poor cryptographic libraries, slow server proces-
sors, expensive bulk encryption, or excessive handshakes can cause SSL-enabled con-
nections to run at a fraction of nonsecure IIOP connection speeds. SSL-enabled
connections can be anywhere from 50 percent to 5 times as slow as nonsecure connec-
tions. Some implementations show good performance under SSL-enabled mode,
although this function is vendor and application dependent. Hardware accelerators, cre-
ated for Web servers that improve SSL connect speeds 20 fold or more, are also avail-
able. If CORBA applications can use them on the server side where the performance hit
is most noticeable, SSL will become even more attractive. SSL solutions often provide

Middleware Security 215

poor support for security management. Vendors provide no explicit guidance on secu-
rity policy and the use and management of certificates in a CORBA environment.

Raise these application issues (which we reiterate from our earlier discussion of SSL in
Chapter 8, but now in the context of middleware) at the architecture review:

■■ Can all daemons be secured? Do some daemons have to accept insecure
connections for interacting with legacy applications?

■■ Does the architecture create SSL links for local intra-host traffic? If the client and
server are colocated, this process is a waste of resources unless the host itself has
other local vulnerabilities that must be protected against.

■■ How does the application manage PKI issues? SSL-enabling an application
transfers a significant portion of security management responsibility to the PKI
supporting the application. Is certificate policy well defined? How are keys
managed? How is revocation handled? How are servers informed of whether their
certificates are about to expire? What if the PKI service itself changes? How does
the application plan on handling trust during the changing of the guard?

■■ Which connections in the architecture need SSL-enabling? Do SSL connections
need proxies to penetrate firewalls?

■■ Is performance an issue? Is the SSL-enabled architecture scalable to projected
client volumes? Are there issues of interoperability with other vendor IIOP-over-
SSL solutions? Do all applications share the same cipher suite? What does security
policy mandate?

■■ What entities get certificates? Is assignment at the level of an object, process, or
host? Do we distinguish between user processes and a daemon process on the host
and assign separate certificates? Do we lump multiple objects on a host together to
share a certificate?

■■ How do we handle the passwords that protect the object’s private key? Are these
embedded in binaries? Do we build the passwords into the binaries during
development (possibly exposing the private key), or do we maintain separate
certificate instances for separate system instances, one for each of the
development, integration, system test, and production environments?

With good security architecture, running IIOP over SSL provides a low-cost means for
applications to get point-to-point security by using a well-understood protocol, interop-
erability, and minimal application code modification.

Application-Unaware Security

CORBA Security Level 1 provides security services to applications that are security
unaware or that have limited requirements for access control and auditing. Level 1 secu-
rity mechanisms require configuration of the ORB and require no code modification.

M I D - L E V E L A R C H I T E CT U R E216

Figure 9.3 CORBA Security Level 1.

Level 1 security, shown in Figure 9.3, in almost all vendor products is implemented by
using CORBA interceptors. Interceptors are the standard method to add run-time ser-
vices to ORBs and allow the core ORB functionality to remain untouched. Several inter-
ceptors can be chained together at the client or at the server, and the application must
specify the order of interceptors on the chain. Each interceptor on the client is paired
with a corresponding interceptor on the server. Interceptors function as communica-
tions traps, capturing all requests and messages for service. Interceptors do add a per-
formance hit to the communication that must be weighed in the architecture.

CORBA Level 1 security is designed to provide security services that can be used by an
application without significantly changing the application. The CORBA ORBs require
no code changes and require only the run-time loading of security services. This ease of
implementation comes with some limitations, however.

■■ Users cannot choose privileges; rather, they are fixed at application startup.
Access control lists can be referenced but not modified unless the application is
stopped and restarted.

■■ The application normally authenticates the user outside the object model and
stores identity credentials at ORB initialization that are accessible to a
PrincipalAuthenticator inside a client-side interceptor. This situation could imply
that all entities within a single process will potentially share the same privilege
level for access control unless the application reauthenticates as another user.

■■ Level 1 does not allow objects to enforce their own security policies. In general, all
policy is fixed at compile time and all objects within a process are constrained to
the same authorization policy.

■■ The vendor implementation can apply security policy only when communicating
with remote objects, unless interprocess invocations on the local host are forced
through the interceptor to be secured.

Middleware Security 217

Policy Statement
- Targets
- Users
- Groups
- Modes
- ACLs

Authentication
Service

Authorization
Service

Directory Service

Security Service

Level 1 Interceptor

Server

Level 1 interceptor

Client

IIOP IIOPORB

Figure 9.4 CORBA Security Level 2.

PrincipalAuthenticator

AuditDecision AccessDecision

Current

AuditChannel

Vault

Principal

Security logging

Session
Object

Access Control
Rule

Context
Holder

Token

Context Holder

Accounting Access
Control

Credential

SecurityContext

Figure 9.5 Some security objects visible under Level 2.

Application-Aware Security

CORBA Security Level 2, shown in Figure 9.4, provides security services to applications
that are security aware and that can access a security service by using security API calls.

CORBA Level 2 security enhances the security services provided in Level 1 by making
some of the objects used to encapsulate features and functions of the security service
available to the application programmer. For example, Security Level 2 makes visible to
the programmer the same objects, some shown in Figure 9.5, that are visible and used
by vendors in their Level 1 interceptor implementations. The application developer can

M I D - L E V E L A R C H I T E CT U R E218

ServerClient

IIOP IIOPORB

Policy
Statement
- Targets
- Users
- Groups
- Modes
- ACLs

Authentication
Service

Authorization
Service

Security Service

PrincipalAuthenticator

AuditDecisionAccessDecision

Credentials

Current Audit Channel

SecurityContext

Vault

Directory Service

use these security objects for authentication, authorization, and delegation purposes
from within application objects.

The security objects enable application objects to query policy, negotiate cryptographic
algorithms, make access decisions, change privileges during execution, enforce their
own policy, and provide additional authorization options. They include the following
components:

PrincipalAuthenticator. This object is used to create credentials for a given
principal. If the application authenticates the user outside the object model
(perhaps by using a UNIX login ID, authentication to a DCE cell, or a certifi-
cate validation check), the application must transfer credentials to the
PrincipalAuthenticator, normally at ORB initialization. Alternatively, the appli-
cation can invoke PrincipalAuthenticator’s authenticate method to confirm the
user’s identity within the object model.

Credential. Once a user is authenticated, the PrincipalAuthenticator object can
generate credentials upon request. These credentials can be transported with
service requests or can be bundled with other credentials to create composite
delegation credentials. Credentials are tokens that confirm authentication and
provide some additional attributes.

Current. The Security namespace has its own Current object. The Current object
maintains the execution context at both the client and the server objects and is a
container for credentials.

SecurityContext. For each security association, there exist SecurityContext objects
at the client and server. The SecurityContext object maintains additional security
information such as credentials, session keys, policy in effect, cipher suites used
within the association, and the peer’s security name. Any entity can have multiple
SecurityContext objects, one for each association that is active within the object.

Vault. The Vault is an implementation security object that creates SecurityContext
objects on a secure invocation. The Vault uses all credentials, attributes, association
information, and arguments from a secure invocation. Vaults can be used for
simplifying object references in the implementation.

AccessDecision. An AccessDecision object is used to implement access control. The
access_allowed method on a target AccessDecision object causes the object to look
up security policy to check whether the policy explicitly allows the operation or if
the client has privileges through group or role membership. Please refer to the
access control section in Chapter 3 for details of role-based access management.

AuditDecision. The application can use this object to reference a security audit
policy to look up the response required on any security event. Some events will be
ignored, others will be logged as warnings, and still others will be logged as causing
alarms or alerts. The AuditDecision object wraps the accountability functionality of
the security services.

AuditChannel. Each AuditDecision object owns a local channel to record events.

Using Level 2 features, applications can use enhanced security on every object invoca-
tion or gain fine-grained access to security options, manage the delegation of credentials,

Middleware Security 219

M I D - L E V E L A R C H I T E CT U R E220

specify security policies dynamically, or request applicable policy at the program or
ORB level. Security Level 2 has many more features to enable complex security man-
agement across multiple security domains, where the clients operating in each domain
might not have a trust relationship between each other.

Application Implications

Although asynchronous messaging and synchronous messaging (using IDL-defined
object interfaces) are very different paradigms, we can still draw parallels across the
two domains when we discuss security. Many of the security mechanisms documented
in the object-oriented CORBA Security Specification also apply to other messaging mid-
dleware products, such as products that implement message queues. The requirements
for authentication, access control, auditing, confidentiality, and so on are met by using
the same underlying security protocols, and solutions encounter many of the same
security issues.

Other generic security implications include the following:

Centrality in the architecture. The complexity of the security solution, and the
care and feeding that it demands, might have the effect of pulling the security
service toward the center of the architecture. This situation might not be acceptable
if a future application feature request is denied because it clashes with the security
service.

Management of security policy. Managing, configuring, and validating security
policy across a heterogeneous, distributed application is very complex. Additional
complexities include managing user population changes, IDL evolution, event audit
trail merging and analysis, and middleware version management.

Scope creep within security. Once the enterprise has invested a considerable
amount in deploying a security service for objects, vendors and managers will
attempt to extend the solution to other resources by mapping files, appliances,
application object methods, databases, URLs, IP addresses and ports, and many
more. This assumption of scope limits might not be desirable to the original
application as it increases the burden on the security service.

IDL-centric security. The name space of objects that are protected is derived from
the application’s IDL. This assumption is reasonable, because clients may only
invoke operations on this interface. If only interface objects and operations can be
defined and protected, however, what about implementation objects? What about
possibly complex internal application structure that could potentially represent a
vulnerability? What if the application has non-CORBA interfaces that provide access
to internal objects? Will the alternate security mechanisms on these non-CORBA
interfaces compromise the security architecture?

Security through obscurity. Much of the internal details of the specification are left
to the vendor. Interface definition is about delegating responsibility to another
entity so that the details of service requests can be hidden. In complex architectures
with many systems, several ORBs, and conflicting security policy, the team can

TE
AM
FL
Y

Team-Fly®

Middleware Security 221

ensure only pair-wise compliance on each interface. All the interactions that are
hidden might represent considerable risks.

Conclusion

Middleware technology has evolved from the interoperability needs of systems built by
using components based on any of the rapidly growing number of platforms, software
technologies, standards, and products that are available. Middleware enables applica-
tions to communicate with one another in a manner independent of location, imple-
mentation details, hardware, software, or design methodology. This lofty goal is
achieved through some form of man-in-the-middle technology; for instance, by using
ORBs to manage communication in CORBA. We believe that many of the lessons
learned from studying security options in CORBA apply to other proprietary middle-
ware solutions.

A review of the CORBA security specification will reveal many patterns.

■■ Principal. The PrincipalAuthenticator object

■■ Session Object. The CertificateManager and Current objects

■■ Interceptor. Level 1 implementation by some vendors

■■ Wrapper. Level 2 implementation by some vendors

■■ Proxy. IIOP proxies for managing CORBA traffic through a firewall

■■ Validator. The AccessDecision object

■■ Transport Tunnel. Running IIOP over SSL

■■ Access Control Rule. Within the AccessDecision specification

■■ Directory. Directory enabled CORBA Security service from some vendors

■■ Trusted Third Party. Public-Key Infrastructure components

■■ Layer. GIOP over SECIOP over TCP/IP, or GIOP over IIOP over TCP/IP, and so on

■■ Sandbox. Common enterprise-wide secure CORBA software bus

This list is impressive. CORBA is not all middleware, however, and CORBA security
issues do not correspond one-to-one with all middleware security issues. CORBA is an
open standard with many success stories and with a complex but rich story on how to
secure applications.

In the next chapter, we will discuss another common aspect of security architecture:
Web security.

C H A P T E R

223

The World Wide Web has evolved from a system created by physicists in the late 1980s to
exchange research over the Internet into a global phenomenon enabling anyone who
has access to almost any form of computing device and network connectivity to receive
information and services on demand. The original aim of the Web was to provide fast,
anonymous access in the clear to arbitrary services over the Internet. The early Web
had no notion of security.

As our dependence upon Web services increases along with a corresponding increase in
the value that we attach to the information involved, we can no longer place our trust in
good conduct. The past decade of Web evolution has shown us all that security is a criti-
cal architectural goal for any Web application. As our applications grow more complex,
other secondary security goals that relate to security come sharply into focus. The goals
of ensuring user privacy, of preventing traffic analysis, of maintaining data quality in our
Web databases, and of preventing inference by using data mining and cross-referencing
strategies are as critical as the basic steps of authenticating users and controlling access
to Web-enabled functions.

Web browsers do much more today than text and image presentation. Browsers sup-
port and display multimedia formats such as audio and video; run active content such
as Java, ActiveX, and scripting languages; use style sheets to separate presentation
rules from content management; and support metadata features such as XML. Browsers
can also hand content to custom browser plug-ins to handle presentation. A huge num-
ber of browser plug-ins and helper applications enable users to manipulate proteins,
view virtual reality architectural displays, do computer-aided design, manage portfo-
lios, play games, and much more. Browsers are also universally available. Browsers run
on every user device imaginable including personal computers, PDAs, cell phones, and
an increasing number of Web-based appliances.

10
Web Security

Web servers have evolved, as well. Web servers are universal content providers, sup-
porting the delivery of all manners of multimedia content. Web servers can invoke pro-
grams, dynamically generate content, interact with third-party service providers, hand
requests off to other processes, or load custom server plug-ins. Popular Web server
extensions have repetitive designs, and therefore every commercial Web server sup-
ports generic definitions of loadable modules that use the request/response pattern to
extend server capabilities. These extensions appear as standard components in Web
application architectures. Servers can support dynamic content by using Active Server
Pages or Java Server Pages or can be extended with server-side plug-ins or dynamically
loaded modules. Many vendors ship hardware with a preinstalled Web application for
systems administration. Web servers are also the management user interface of choice
for many network appliances such as routers, switches, network link encryption units,
and many other software products.

We have seen tremendous technology growth on the communications link between
browser and server, as well. Communications networks have grown in capacity, quality,
and variety. The small communities of technology-savvy users on slow connections of
the early Internet have been replaced by a global community of several hundred million
users connected by faster dialup modems, cable modems, DSL lines, or LAN and T1
links to huge fiber-optic Internet backbones. Future increases in bandwidth promise
even more improved Web services and application features.

Web technology is a popular choice for the presentation layer of systems develop-
ment. A Web browser provides a single powerful, universally available, and extensible
interface to all of our applications. We know how to use an unfamiliar Web site imme-
diately; we know how basic Web interactions work; we are trained by sites to recog-
nize user interface elements such as frames, buttons, dynamic menus, tabs, tables,
image maps, or pop-ups; we have grown patient as we wait for content to download;
and we have grown impatient with poor security architectures that block legitimate
access.

Securing a communications medium as rich, varied, and complex as the Web is a very
hard problem indeed. There are many technologies involved, connecting very different
user communities with each other with no agreement on how security should work.
Each feature and extension in the client or the server raises new security issues.

The Internet is an excellent and up-to-date source of references in an ever-changing
Web security landscape. Our presentation in this chapter is an overview of Web security
from an architecture viewpoint only, and a detailed treatment of all security architec-
tural options is beyond our scope. Fortunately, there are many excellent resources to
help architects and Web administrators understand the risks of using Web technology
for application presentation.

In this chapter, we will present common security-related issues around three-tiered,
Web-based application architectures. There are many, many vendor solutions for creat-
ing Web applications that conform to the presentation, application, and data layer defi-
nition of the standard three-tier architecture model. A discussion of how security works
in each circumstance would clearly be impossible, and we refer the reader to the ven-
dor’s own documentation on how to configure and secure their product.

M I D - L E V E L A R C H I T E CT U R E224

All security solutions for Web applications share some common ground for solving our
security architecture principles, including authentication, authorization, confidential-
ity, integrity, and auditing. We will discuss client, server, and server-extension security.
For the last topic, we will describe security extensions to server-side java defined in the
Java 2 Enterprise Edition (J2EE) standard. J2EE Security has some interesting paral-
lels to the CORBA Security Specification of Chapter 9, “Middleware Security.”

Web Security Issues

Security for a Web application must be built with more structure than security for a
Web server alone. A Web-based application links a user on a client host through a Web
browser to a Web server and then (possibly through server extensions) to entities that
capture business logic or wrap persistent information stored in backend databases.
This chain is normally referred to as the three-tier architecture. Each of the compo-
nents of the chain could possibly consist of several different hardware platforms linked
by using different communications paradigms.

Vendors that present solutions for securing one component of a Web-based application
tend to make extreme assumptions about trusting other components of the Web appli-
cation as follows:

■■ At one extreme they might assume no trust whatsoever and accept full
responsibility for all authentication, authorization, and access control.

■■ At the other extreme, they might assume some high level of transitive trust
between components that might be inappropriate unless adequately articulated in
the application architecture and validated in the review.

For example, in the first case, a Web application might require a user to authenticate to
the Web server even after he or she has already authenticated to the client host on a
secure LAN by using some reasonable, strong scheme. The architect might have chosen
not to simplify the architecture (perhaps by allowing the user to single sign-on to the
Web server by presenting NTLM, Kerberos, or other session credentials) because he or
she does not trust the strength of the client host authentication. This situation could be
the case if the user is dialing in from a remote location from a laptop. The application
owner and users might agree to require reauthentication as a reasonable compromise.

At the other extreme, a solution extending the abilities of a Web server by using Java-
based extensions (such as Java servlets) can use global and local property files on the
Web server. These Web application property files define user identities and user pass-
words, group and role definitions, and access control rules linking roles to privileges.
Privileges could include access to servlet invocations, method invocations, or the data-
base. The architect might decide that the backend services must place their trust in the
security of the Web server host. The systems administrator for the host must correctly
define permissions for operating system users, groups, and files to prevent access to
this property file. The administrator must also prevent other security holes from pro-
viding access to these files. This confidence in the Web server’s security might be mis-
placed as the architecture evolves. Running unnecessary services (“Why not add

Web Security 225

anonymous FTP so the users can drop off files?”) or omitting security patches (“Did we
apply that security patch to our IIS server that stopped the buffer overflow bug that
allows arbitrary file downloads?”) can break the trust model. If anonymous FTP is mis-
configured or if the Web server is compromised, the property file could be overwritten.
Hackers could download the property file and run password crackers offline to gain
access to the backend server.

Trust boundaries have to be well defined in the three-tier chain of information flow.
Every time a user crosses a boundary, he or she must first authenticate to the server
across the boundary. Within the confines of a boundary, all architecture elements
should be protected in a uniform manner. Access granularity is equally important. It
would make little sense to finely separate user communities into roles at the Web server
only to allow all the roles equivalent access to the backend database.

Questions for the Review of Web
Security

The security issues for Web applications are normally constrained to the following
scenarios:

Protecting the client. How do we protect a client host with Internet access from
hackers that could exploit bugs in the browser or any browser plug-ins? What do we
expose to a legitimate server? Can servers infer anything about us that we wish to
keep private? Can servers extract information about other sites visited or extract e-
mail or address information previously presented to other sites? What are the risks
of running active content from other sources? What levels of access does the
browser permit to the underlying operating system?

Protecting the connection. How should we protect the communications channel
between browser and server? Can attackers intercept, delete, modify, or add
information to a valid communication? Can the session be hijacked? Even if the
connection is secure, can the endpoints of communication be exploited before
requests or responses are delivered?

Preventing denial of service. Can we prevent attackers from completely disrupting
communication between our application and all legitimate users? If unavoidable,
can this situation be mitigated in some manner?

Protecting the server. How do we protect the Web server from unauthorized access?
How do we restrict authorized access? Can confidential data be stolen from the
server? Does the server host other services that could compromise Web security?
What vulnerabilities can a vendor’s Web server extensions present to the world?
What are the risks of uploading content or processing requests for services from
clients? What levels of access does the server permit to the underlying operating
system?

Protecting the services hidden behind the Web server. What do application
servers in the middle tier reveal? Can Web server connections to enterprise
middleware architectures such as Java servlets, CORBA services, EJB, or
dynamically generated HTML be protected from abuse? How do we prevent Web

M I D - L E V E L A R C H I T E CT U R E226

Figure 10.1 Web application complexities.

application servers that wrap the underlying business logic and data from leaking
information? Can we prevent users from promoting their own privileges? How can
we protect our databases from unauthorized access? Can the application server to
database connection be hijacked? If we provide ad hoc connectivity to the database
interface, can a user provide arbitrary inputs that will be handed to the database as
SQL statements?

Security management. Have we defined the operations, administration, and
maintenance of our Web application adequately? How do we manage the user
community for our application? How do we perform environment management as
our hardware changes, when our browsers and servers get upgraded, when our
vendor software changes, or as critical security patches are applied?

Asking and answering these questions at the architecture review is critical. We will
discuss the architectural context for discussing these security issues in the following
sections.

Web Application Architecture

The basic design goal of a Web server is to provide anonymous clients from any loca-
tion fast access to information. This design goal is in conflict with many security princi-
ples. Web applications must authenticate users, prevent unauthorized access, and
enforce minimum privilege levels to users who are accessing protected data.

In Figure 10.1, we present Web application complexities compounded by the many fea-
tures that have evolved within Web browsers and Web servers from the early days of
simple text and image presentation.

Browsers can use the basic HTTP request and response protocol or can download
active content such as applets or ActiveX controls that can use arbitrary protocols to
the original host or to other servers. HTML pages can be enhanced with scripting lan-
guages, which are often a source of security vulnerabilities. Browsers can be enhanced
with plug-ins for audio, video, animation, or image manipulation. Browsers can also

Web Security 227

Web Server
- Static HTML server
- CGI script engine
- Server side script interpreter
- Dynamic HTML plug-ins
- Server xSAPI plug-ins
- Active Server Pages
- Java Server Pages
- Java Servlets
- Other vendor hooks.

Application logic
- EJB containers
- CORBA object wrappers
- Legacy processes
- Other application business
logic components

Web Client
- HTML Get() or Post()
- Java Runtime Env.
- ActiveX Runtime Env.
- Scripting language interpreters
- Browser Plug-ins
- Application plug-ins (ACROBAT,
MS Word, etc.)

Database

DataPresentationClient

External security
infrastructure

Client host
configuration

files

Database

Database
security

Database
security policy

Web host
security,
Kerberos,

SSL/SHTTP

Web server
security
policy

Incoming
Web server

content

Web browser
configuration

policy

Client host:
tokens, DCE

or logins/
passwords

User access
policy

Servlet
engine and

EJB Security

Servlet and
component

security policy

Wrapped entity
 access

control lists

Password
files and access

control files

Property files

I BM

Configuration

Policy

Technology

Architecture

Web
User

Figure 10.2 Web security structural options.

download files in different Multipurpose Internet Multimedia Extensions (MIME) for-
mats and display the results by using helper applications on the client host.

Web servers now do much more than return static HTML pages. Servers can perform
the following tasks:

■■ Serve dynamic content to the client by using Java, ActiveX, or other active agent
plug-ins.

■■ Embed scripting directives by using JavaScript, Jscript, or ECMAScript (among
others).

■■ Run CGI programs.

■■ Use proprietary vendor plug-ins.

■■ Use server-side includes that mix scripting language content with static HTML and
generate pages on the fly.

■■ Support complex extensions by using Server APIs and enterprise server-side
infrastructure components that implement business functions and wrap data.

Web Application Security Options

Security for a three-tier Web application can be quite complex. In Figure 10.2, we show
a typical Web application as a composition of four abstract layers that span the extent
from the user to the backend data store. Although the host platforms, connectivity

M I D - L E V E L A R C H I T E CT U R E228

options, technologies used, and architecture choices change along this path, we can
still see elements of each of these four layers at each point.

Policy. The directives of corporate security policy applicable to each of the
components along the path from user to data store.

Technology. The technology-specific security options available to secure each
component.

Architecture. The integrated solution that describes session management and the
details of how requests are accepted, authenticated, authorized, verified, and
processed as data flows from component to component.

Configuration. The component-specific security configuration information that must
be either statically loaded at component initialization or that can be dynamically
referenced and modified during execution. Security administrators manage the
configuration components.

Security architecture solutions often consist of a familiar pattern of a series of
chained interceptors that end in an entity wrapper. Session state in a Web
application has somewhat inverted semantics. Over the course of a single
transaction, the user session might consist of several connections tunneled within
one another from the browser to the database.

■■ The browser and the Web server communicate by using HTTP, which is a
sessionless protocol. Multiple user requests are treated as separate and
unconnected connections.

■■ The Web Server can use cookies to create a higher-level session state, where
multiple connections sharing a valid cookie (generated through authentication on
the first request) are considered part of a single session. Server-side extensions
such as servlets also maintain session objects that can save server-side state across
multiple cookie-authenticated sessions (for example, to implement a simple
shopping cart application that maintains a shopping list over a few days, or a file
download application that records progress in case of interrupted connections).
Alternatively, the Web server might require SSL, a protocol that explicitly
maintains session state across multiple connections.

■■ A backend enterprise entity within the application server (EJBs, for example) can
maintain even higher logical sessions because of data persistence available to the
entity through the database. An application session could span multiple SSL
sessions.

Each subordinate session captures a subset of the total communications so far, termi-
nated at some intermediate point of the chain. This inverted session model could result
in session stealing by a malicious entity. A hacker could use the expected communica-
tion interruption points as placeholders for hijacking the session. The hacker could
steal valid cookies, illegally extend the life of a session object in a servlet container
through some back door on the application server host, or place fake credentials in the
database that permit later access.

Web applications tend to use transitive trust of upstream systems extensively. Some
vendors define chained delegation credentials to mitigate this trust. These credentials

Web Security 229

Web Server

Web Client
- HTML Get() and Post() requests
- Java Runtime Environment
- ActiveX Runtime Environment
- Scriptng language interpreters

- Browser Plug-ins
- Application plug-ins

HTTP or HTTPS

Figure 10.3 Browser security.

are authenticated identity tokens explicitly generated for each communication and passed
from component to component along the chain. The credentials often use some crypto-
graphic protocol to ensure that they cannot be spoofed or tampered with. For example,
Privilege Access Certificates (PACs) implement the token pattern to carry delegated rights.

Web security solutions also contain critical dependencies on external infrastructure
components such as DNS, mail, PKI services, OCSP lookup servers, LDAP directories,
token authentication servers, databases, and the like. These third-party service providers
must be validated for availability, security, scalability, and performance as well.

Securing Web Clients

In Figure 10.3, we have extracted and blown up the Web client portion of the Web
application.

Active Content
Browsers support the execution of content within the context of a virtual machine. For
example, Java applets run within the JVM, ActiveX controls run inside the ActiveX
engine, and Macromedia Flash files are displayed by using the Flash plug-in. Please
refer to Chapter 7, “Trusted Code,” to read a discussion of the architectural issues sur-

M I D - L E V E L A R C H I T E CT U R E230

TE
AM
FL
Y

Team-Fly®

rounding the execution of active content and the associated security mechanisms
involved.

Scripting Languages
Client-side scripting languages such as Netscape’s JavaScript, Microsoft’s Jscript, and
the common standards-based composition ECMAScript all enable a programmer to add
scripting directives to HTML pages that will be executed by the browser.

JavaScript implementations have been plagued by a host of security bugs that have
resulted in serious invasions of the user’s privacy. The flaws discovered and patched so
far, rather than modifying the user’s machine, enable hackers to read files, intercept
e-mail, view browser preferences, and upload content to the Web server without
the user’s knowledge.

Turning off JavaScript is not always an option because of its popular use for data vali-
dation, creation of presentation effects, and Web site customization. Many Web applica-
tions depend heavily on tools such as JavaScript and break if client-side scripting is
turned off.

Browser Plug-Ins and Helper
Applications

Browsers can hand off responses to helper applications that in turn can present their
own security holes. A browser can launch Adobe Acrobat or Microsoft Word to auto-
matically display content defined as being of the correct MIME format (PDF or DOC, in
this case). A Word document could contain a Word macro virus that could infect the
client host. Other plug-ins run with full user application privileges and could contain
similar security issues if they use system resources indiscriminately to spawn
processes, access devices, write or read files on the hard drive, or secretly steal user
information and return it to a listener host.

Browser Configuration
We extensively discussed the browser configuration options for Internet Explorer in
Chapter 7 and touched on some of the options available under Netscape. We expand on
Netscape’s security configuration dialog in this section.

Netscape’s browser security settings are managed through the security console. This
console presents and manages all underlying security information including passwords,
Java controls, JavaScript controls, certificates, and options for mail or news. The secu-
rity console also presents the cryptographic modules recognized by the browser and
enables the user to edit the cipher suite used for SSL.

Netscape can display security information for the page currently being viewed, check
to determine whether it is encrypted, or verify the identity of the host it originated from
(in case a hacker is spoofing a familiar site).

Web Security 231

Netscape also maintains a certificate database for the user’s certificate, certificates for
other people, certificates from trusted Web sites, certificates from CAs of trusted Web
sites, and certificates from trusted content signers. Netscape can also reference a cor-
porate LDAP Directory for certificate uploads and downloads. Netscape enables users
to encrypt their private key by using a password before saving the private key file to the
hard drive.

Several vendors have Smartcard-based security solutions integrated with Web
browsers that store user certificates on a removable Smartcard. This solution has not
seen wide spread acceptance yet because of the complexity of managing a Smartcard
infrastructure and the additional cost of installing readers on workstations. This situa-
tion might change, however, as credit cards with Smartcard features become more
common, along with card readers integrated into keyboards or other hardware slots.
One vendor even offers a Smartcard reader that looks like a floppy disk and uses the
standard floppy drive.

Connection Security

Web servers can be configured to accept requests only from specific IP addresses, sub-
nets, or domains. While this option is not completely secure because of IP and DNS spoof-
ing, it can be effective when used in conjunction with other security components. Users
within corporate intranets are well-protected from the open Internet by firewalls, and
remote users can use VPN technology in conjunction with strong authentication to create
tunnels to a secure gateway to access the corporate intranet. The external firewall can be
configured to block incoming packets pretending to originate from the internal network.
In addition, the secure gateway can assign remote users to a restricted subnet behind a
router to the general corporate intranet. This router blocks incoming packets with spoofed
source IP addresses. Thus, a Web server can use subnet address-based access rules as a
coarse-grained access control mechanism to differentiate between internal users in physi-
cally secure locations from remote users who might be less trusted. The application can
restrict highly critical features, such as security administration, from remote users.

Trusting IP addresses will not work if the Web server is behind a firewall that hosts a
Web proxy. In this case, the only IP visible to the Web server will be the address of the
firewall. Network Address Translation also hides source IP addresses from the destina-
tion domain, preventing the use of IP addresses for authentication.

Web Server Placement
Web server placement, either inside or outside the corporate network relative to corpo-
rate firewalls, is critical to the security architecture. Web servers are often configured
by using a firewall with multiple interfaces to create a de-militarized zone (DMZ) out-
side the corporate intranet but protected from direct Internet access (Figure 10.4). All
incoming traffic to the Web server is constrained by the firewall to conform to HTTP or
HTTPS access to the Web server. The Web server can reach the corporate Internet and
application databases by using a few restricted protocols. But even if the Web server is

M I D - L E V E L A R C H I T E CT U R E232

User's
Workstation

Laptop

Partner
Application

Infrastructure
ApplicationsWeb Server

Application
Database

Legacy
Database

DNS, VPN
support,

backup, etc.

Application

Firewall

DMZ

Partner
Database

Figure 10.4 DMZ Web server configuration.

compromised, the firewall automatically prevents many attacks that use other proto-
cols from reaching the intranet.

Web applications require high availability. Commercial Web hosting companies offer
many critical services, including collocation, power management, physical security,
reliability, and geographic failover. They also offer installation of the application on a
Web farm consisting of many servers behind a locator. The locator directs traffic for
load-balancing purposes by using the distributor pattern.

Web servers have been the targets of distributed denial of services, which flood the lis-
tening server with forged ICMP, UDP, or TCP packets—creating thousands of partially
open connections to overflow TCP/IP buffers and queues. Strategies for defending
against a DDOS attack are difficult to implement. They require coordination with the
service providers of the slave hosts generating traffic, network backbone providers,
Internet data centers, customers, and law enforcement. We refer the reader to the
CERT Web site, www.cert.org, as a good source for current information about DDOS
attacks.

Securing Web Server Hosts

The most common sources of Web server vulnerabilities are as follows:

■■ Host server misconfiguration

■■ Tardy application of patches to known security holes

Web Security 233

Administrative errors can result in malicious users gaining access to the system, allow-
ing access to critical data. Hackers could modify configurations, add backdoors, install
root kits, steal customer information, or use the host as a launch pad for further
attacks.

In July and August 2001 the Internet was hit by the infamous Code Red II worm, an IIS
Web exploit in its third incarnation. The Code Red II worm was a memory-resident
worm that infected Windows NT and Windows 2000 servers running IIS versions 4.0 and
5.0. Like its predecessors, it exploited a buffer overflow in an IIS dynamically loaded
library idq.dll to gain access to the Web server host, but unlike the original Code Red
worm, it carried a completely new payload for infecting the host. Code Red II, accord-
ing to an August 2001 SANS advisory, installed multiple backdoors on infected hosts. In
the interval between infection and cleanup, any attacker could run arbitrary commands
on the host. As a result, the host was vulnerable to other attacks independent of Code
Red through these covert back doors. Although there have been no published reports of
independent attacks acting in concert to compromise a host, there is no technical rea-
son (and as hackers become more adept at coordination, no practical reason) why this
procedure would not succeed. As a side effect, the worm, which scanned random IP
addresses to find other hosts to infect, successfully created so much scanning traffic
that it also caused a distributed denial-of-service until administrators cleaned it up.

This single exploit contained a buffer overflow attack, exploited Web server insecuri-
ties, installed back doors, and launched a DDOS attack. And, according to all reports, it
could have been much worse.

Although many sources recommend using stripped-down versions of Web services on a
rarely attacked platform like Macintosh, this choice is not always feasible. Systems archi-
tects are constrained by the application’s need for performance, multithreading, familiar
administrative interfaces, multiprocessing power, programming tools, and services—not
to mention homogeneity with existing platforms. This situation forces us to use UNIX fla-
vors (such as Solaris, HPUX, and Linux) or Windows (NT, W2K, or XP) as host operat-
ing systems. In turn, vendors want maximum customer coverage for their products,
which are normally ported to run on Solaris, Linux, HP, NT, and W2K first. The same
vendor products are often not ported to custom Web service platforms because they
use unusual and non-portable extensions or do not support interfaces with such hard-
ware. We need to use general-purpose hardware and operating systems for our Web
servers, because we might not have a choice.

Using a powerful and complex multipurpose OS has its risks, where every additional
feature is a potential source of vulnerability. Secure host configuration is absolutely
necessary.

Measures to secure Web hosts include the following:

■■ Remove unnecessary development tools. If the application has no use for a C
compiler or Perl interpreter in production, the Web server should not host these
programs. Production machines as a rule should never need to build software.

■■ Minimize services. Running anonymous and trivial FTP, mail, news, IRC, gopher,
finger, instant messaging services, and so on adds to the complexity and options

M I D - L E V E L A R C H I T E CT U R E234

for attack on the Web server. Even if these services are necessary, attempt to host
them on a different machine to isolate any negative impact.

■■ Protect the services that the Web host depends upon, such as DNS and mail.

■■ Apply security patches promptly. Write a sanity script that checks the current
version of all applied patches on all software and tools whose output can be easily
matched against vendor recommendations.

■■ Run an integrity verification tool, such as Tripwire or Veracity.

■■ Run a security audit tool such as Internet Security Scanner. Scanners check
password strength, password aging rules, file and application permissions, user
and group ownership rules, cron jobs, service configuration, logging, network
configuration, user home directories, SUID programs, and many more features of
host configuration.

■■ If possible, write audit logs off to a protected host and use a write once, no delete
policy for all access from the Web server. If the logs must be local, keep them on a
separate file system and try to prevent log floods by using filtering rules. Clean up
and check logs regularly.

■■ Minimize local user access and restrict permitted non-root or administrative users
from the Web server, its document tree, scripts, or extensions.

It is also important to use file system permissions correctly to protect the Web server
from local and remote users who might have alternative access to the host. Some docu-
ments and scripts could be readable to all users accessing the Web server. Other parts
of the document tree might enforce authentication requirements. Administrators of the
document tree need more access than authors of new content, who also must be pro-
tected from one another. Some experts recommend running the Web server on a pro-
tected subtree of the system (for example, by using chroot on UNIX systems).

Please see vendor-specific configuration details for your server, along with general good
configuration advice from Web security sources such as Lincoln Stein’s excellent WWW
Security FAQ (www.w3.org/Security/Faq/), [GS97], or [RGR97]for more details.

Securing the Web Server

In Figure 10.5, we have extracted and blown up the Web server portion of the Web
application.

Authentication Options
Web servers support several authentication methods, including the following:

■■ Basic server authentication, where an “HTTP 401 User unauthenticated” error
causes the browser to pop up a standard username and password dialog, which the

Web Security 235

Web Server
- Static HTML server
- CGI script engine

- Server side script interpreter
- Dynamic HTML plugins
- Server plugins through xSAPI
- Active Server Pages

- Java Server Pages
- Java Servlets

- Other vendor specific hooks

Application
logic

Web
Client

Figure 10.5 Web server extensions.

user can fill and submit. The server authenticates the user and serves the page if
the password is valid.

■■ Form-based authentication, where the application presents a login page to the user
that allows more customization of the user’s login session.

■■ Client certificates used in conjunction with SSL to allow the server to strongly
authenticate the user.

■■ Third-party service providers, such as network authentication servers (such as
Kerberos or token authentication servers).

Other security properties such as single sign-on to multiple Web applications can be
achieved, either through cookie-based authentication servers, client-side certificate-
based solutions, or Web servers that accept NT LAN Manager (NTLM) credentials or
(with Windows 2000) Kerberos tickets.

Web Application Configuration
On UNIX platforms, access to privileged ports (for services on port numbers less than
or equal to 1024) is restricted to root. Web servers listen on the popular default port
number 80 and therefore must be started as root. To restrict access, the Web server root
process spawns off a child that immediately changes its user ID to a less-privileged
identity, such as nobody. The root Web server process hands off any incoming request
to the child. For example, the Apache Web server can be configured to maintain a

M I D - L E V E L A R C H I T E CT U R E236

server pool of processes (where the pool can vary in size within a predefined range) to
load-balance all incoming requests efficiently at lower privilege levels.

Each Web server vendor presents specific recommendations for secure configuration
of the Web server, including user and group definitions, file permissions, and directory
structures. Please refer to [GS97] for an excellent introduction to secure server admin-
istration and to your vendor documentation for specific configuration details.

Document Access Control
Web servers organize the files that are visible to users into a directory tree, where
access rights for all the files and directories can be specified at the root level or within
individual directories of the tree. In the latter case, each directory stores its own local
access properties. Users can be restricted from listing the directories contents, follow-
ing symbolic links, or using the process execution commands within documents that
contain server-side includes.

The security policy for directory access must be well defined, and the application
should use sanity scripts to verify that the document tree is correctly configured. Man-
aging the files can also be an issue if the application uses multiple hosts configured in a
Web server farm to serve content.

File-based security solutions have definition, management, scalability, and maintain-
ability problems that grow worse as the application evolves. This process must be auto-
mated to be manageable. We will return to this basic problem in Chapter 15, “Enterprise
Security Architecture.”

CGI Scripts
CGI scripts were the first method introduced to enhance Web server abilities by allow-
ing them to pass certain HTTP requests to server-side programs that implemented a
standard request/response method and return the output of the program as the HTTP
response.

CGI scripts have been notorious as sources of security holes, mostly because of the ad
hoc mode in which they are thrown together. Please refer to Chapter 5, “Code
Review,” for some of the issues related to writing secure programs and a short
description on securing Perl scripts, the programming language of choice for many
CGI programmers.

The security issues with CGI include the following:

■■ CGI scripts normally execute under a single user identity. If the server wishes to
enforce separate user and group access rules, there are CGI tools that make this
situation possible (CGI wrappers, for example).

■■ CGI bin scripts need not be invoked from within a browser. In fact, many Web
services—such as stock quotes, weather estimates, or time services—provided

Web Security 237

through CGI scripts have been co-opted by programmers who make calls from
within client code, completely independent of a Web browser, for enhancing other
existing programs that wish to query the same data sources available on the Web
site.

■■ CGI scripts that make system calls are particularly dangerous. Scripts that spawn
child processes, open files or pipes, or run commands by using the system() call
can compromise the system by allowing intentionally malformed user input to be
used as arguments to these system functions.

Compiled CGI scripts can still pose security risks if downloaded from the Internet. If
the script is a public download, its source is also out there for examination and possible
compromise.

JavaScript
Web servers should not assume that all users will conduct accesses from within the
confines of a known Web browser. A malicious user can generate any valid HTTP
stream to the Web server for processing, and assumptions of input validity because of
checks within the browser (say, through data validation checks implemented in
JavaScript) might be risky.

Using JavaScript to perform data validation improves user response because the user
gets immediate feedback about malformed data within a form before it is actually sent
to the server. The server should duplicate all data validation checks, however, and add
additional checks against maliciously formed user input. Also do not depend on secu-
rity implemented through the hidden variables in HTML forms. These variables are vis-
ible in the HTML source and can be easily modified before being sent to the Web
server.

Web Server Architecture Extensions

There are many vendor offerings and open-source products to extend the features of
Web servers. As each product introduces its own security solution along with security
issues for the review, please refer to your vendor documentation for more architecture
and security details. Many of these products use embedded directives inside HTML
pages that must be parsed, extracted, and executed. The Web server or vendor product
replaces the original directive within the HTML page with the directive’s output. Server-
side includes and server-side scripting options can have serious security consequences,
primarily through misconfiguration or through interpretation of user input as com-
mands without validation. At a high level, we now describe some options for embed-
ding directives within static HTML to create dynamic effects.

Server-side includes. Server-side includes are simple commands (for example, to
execute programs to insert the current time) embedded directly into the HTML

M I D - L E V E L A R C H I T E CT U R E238

definition of the document. The server will execute the command and use the
output to modify the HTML content before presenting it to the requestor.

PHP. PHP is a hypertext preprocessor that executes HTML embedded directives
written in a language that uses syntax elements from C, Java, and Perl. PHP has
many modules for generating content in various MIME formats and has extensive
database connectivity and networking support.

PHP is a powerful interpreter and can be configured as a cgi-bin binary or as a
dynamically loaded Apache module. PHP, like any interpreter, requires careful
configuration to prevent attacks through mangled command-line arguments or
direct invocation by using a guessed URL. One means of securing the interpreter is
by forcing redirection of all requests through the Web server. The PHP interpreter
can be abused if other services are configured insecurely on the host, however. We
refer the user to the secure configuration links on www.php.net, which also contain
other security resources.

Active Server Pages. Microsoft’s IIS Web server enables HTML programmers to
embed Visual Basic code into HTML pages. IIS has an integrated VB script engine
that accesses the underlying NT or Windows 2K host security mechanisms.
Programmers can add authentication constraints to the ASP page. When IIS
executes the code, the authentication constraint is checked before the page is
dynamically built or shipped to the browser. IIS supports basic, NTLM, or SSL
authentication and logs events to the host audit logs. Please check the resources
on www.microsoft.com/technet for more information on ASP security.

Java Server Pages. Java Server Pages (JSP), much like Active Server Pages, are
HTML pages with embedded scripting code. JSPs use the HTTP request and
response model of Java servlets, which we will discuss later. The JSP scripting
language has a simple XML-like syntax and can support embedded programming
language constructs. When a JSP page is first accessed, it is converted into a Java
servlet, compiled into a class file, and then loaded for execution. On subsequent
invocations, if the JSP page has not been modified, the loaded class file of the
servlet is directly invoked. The Servlet container manages the compiled JSP-
derived servlet and maintains session state. We explain servlet security in a
following section. Security mechanisms for servlets can be applied to Java Server
Pages, as well.

Enterprise Web Server Architectures

In Figure 10.6, we have extracted and blown up the Application Logic portion of the
Web application.

There are many proprietary vendor extensions for providing application server func-
tionality behind a Web server. All of them are similar in their implementation of security
in that they all support the authentication modes of the server, trust the Web server to
conduct authentication, and use some model of role-based access control, often to an

Web Security 239

Web Server

Application logic
- Servlet containers
- EJB containers
- CORBA object wrappers
- Processes using messaging
- Other business components

Database

Figure 10.6 Application business logic extensions.

object-relational model of the backend data. Although security discussions of the vari-
ous vendor options all sound the same, the details of security implementations for the
various options are often very different.

We will focus on the J2EE standard for building distributed enterprise Web applica-
tions. Almost all of this discussion applies to every vendor product we have seen, in
abstract terms.

The Java 2 Enterprise Edition Standard

The J2EE standard is a massive effort to define a flexible and robust platform for dis-
tributed enterprise computing by using Java technology at the core. J2EE’s ambitious
goals for building Web-based e-commerce services include reliable, secure, highly avail-
able, scalable access to information by using Web interfaces to enterprise component
services.

The J2EE standard builds upon the Java security model of virtual machines, security
policies, security managers, access controllers, and trust. J2EE uses standard exten-
sions for cryptography, authentication, authorization, and programmatic access to
security objects. Many of the security goals described within the CORBA Security Stan-
dard are shared by J2EE, along with strong similarities in implementation details.
Please refer to Chapter 7, “Trusted Code,” for an introduction to the core Java security
model and to Chapter 9, “Middleware Security,” for common security issues with enter-
prise middleware.

M I D - L E V E L A R C H I T E CT U R E240

TE
AM
FL
Y

Team-Fly®

A key component of J2EE security is the Java Authentication and Authorization Service
that is currently seeing some vendor support and availability. For a discussion of how
the JAAS specification fits into Java Security, please refer to Chapter 7 and the refer-
ences presented there.

Server-Side Java
J2EE supports server-side Java. Java Server Pages, Java Servlets, and Enterprise Java
Beans are all instances of server-side Java. Server-side Java, unlike Java applets, exe-
cutes on the Web server rather than within the Web browser on the user’s client host.
Server-side Java extends the Web server’s capabilities by allowing the execution of Java
bytecodes on a server-hosted JVM. In addition to the benefits of Java as a programming
language, there are the following advantages:

■■ The application can have tight control over the version, features, extended Java
libraries, and Java-based security schemas on the server host while at the same
time reducing the required feature complexity and associated client-side risk by
shipping dynamically generated HTML to the client instead of active content.

■■ The application can choose to logically split active roles between the client and the
server by using Java at both ends to centralize domain and business logic
computation on the server, while at the same time off-loading client-specific
presentation logic. This separation of concerns might accomplish load-balancing
and performance improvements.

■■ The application has improved portability on the server side (assuming that no
vendor- or platform-specific proprietary services are used along with only
standards-based J2EE implementation of features) and on the client side (by
avoiding the use of browser-specific HTML features that can now be implemented
on the server).

Java Servlets
Java servlets are server-side Java programs that enable developers to add custom
extensions to Web servers without the performance and portability penalties of CGI
programs. Web servers are used in the three-tier architecture model to implement
presentation-layer functions that wrap business logic and data. Servlets make connec-
tivity between the presentation and database tiers easier. Servlets share the request and
response architecture of Web servers, allowing easy handoffs of requests from Web
server to Java Servlet, and support Java Database Connectivity (JDBC) access to data-
bases or integration with Enterprise Java Beans (EJB) to provide more robust, distrib-
uted, persistent access to business logic and data modeling. The Web server initiates a
servlet through calls to the init() method, then hands off service calls and finally termi-
nates the servlet through a destroy() call. Servlets use data streams to handle the
request and response interface to the Web server.

Web Security 241

Servlets run within containers called servlet engines that manage all servlet life-cycle
functions. Servlets can be dynamically loaded and can serve multiple requests though
multithreading. Requests can be forwarded to other servlets to implement security
solutions based on the wrapper pattern. In this case, all incoming requests are forced
through a security wrapper, which can request user authentication or authorization
checks, perform argument validation, or verify context information (perhaps to check
browser type or time of day, to validate cookie fields, or to verify that SSL was used for
the request).

In addition, because servlets are Java class files, they run within the context of a secu-
rity policy enforced by the Security Manager of the servlet container’s JVM. Servlets can
be digitally signed (in a similar manner as applets are signed, as described in Chapter 7)
and therefore can be granted additional execution privileges.

Servlets can also request minimum levels of user authentication. The servlet container
defers authentication to the Web server and trusts that the Web server has successfully
validated the user identity presented. The type of authentication recognized can be
specified in the deployment descriptor file, an XML file of Web application configura-
tion definitions invoked at initialization by the servlet engine. The servlet engine refer-
ences these definitions for all application properties, including those relating to
security. The current standard recognizes four default authentication modes: basic
HTTP 1.1 username and password authentication, basic authentication augmented with
cryptographic ciphers to protect passwords in transit, form-based user authentication,
and SSL with client-side certificates. Vendors can add additional authentication
options, or applications can add server extensions for authentication that use third-
party security providers, such as token servers or Kerberos.

Servlets and Declarative Access
Control

The Java Servlet Standard (at draft version 2.3, as of date) specifies a simple model for
securing Java servlets. The highlight of this specification is its use of XML for security
declarations. We will expand on the importance of XML and enterprise security man-
agement in Chapter 15, “Enterprise Security Architecture.”

Java servlets run within servlet engines. A single host can run multiple instances of the
engine, and each engine is a container for multiple Web applications. Each Web appli-
cation is a collection of Web resources and servlets on the host.

The Java Servlet Standard defines an XML document type for creating declarative secu-
rity definitions. These definitions are stored in the deployment descriptor file. The def-
initions could be statically loaded at servlet initialization or can be programmatically
referenced through function calls that can request a user’s Principal object, return ses-
sion attributes, or verify that a user belongs to the correct group or role before granting
access.

Recall our pattern of presenting access control rules defined in Chapter 3. The deploy-
ment descriptor file uses several XML tags to create access control rules.

M I D - L E V E L A R C H I T E CT U R E242

Web Security 243

Application name. This name is the top-level container for all the definitions for a
single Web application. The range of this top-level container is bounded by using the
<web-app> tag. This tag defines the scope for all definitions for an application. The
application is named by using the <display-name> attribute tag within this scope.
An application can contain multiple servlets.

User groups. The <security-role> tag is used to define labels for user groups. The
<security-role> tag is referenced during authorization checks on a resource request
to compare the user’s actual authenticated role with the roles that are allowed
access to the resource requested.

Logical user group aliases. The <security-role-ref> tag allows a separation between
application-specific roles and more abstract security group labels. Role names
defined within the <security-role-ref> tag scope can be linked to existing roles by
using the <role-link> tag.

Object-access groups. The <web-resource-collection> tag collects several Web
resources by name along with URLs that lead to the resource and the HTTP
methods that users can invoke to access the resource.

Partially defined access control rules. The <auth-constraint> tag is used to define
an authorization constraint that links a collection of Web resources (where each is
accessed by using a permitted access operation) with a role name. The definition is
partial because we must also verify that the connectivity between browser and
server is acceptable.

Context constraints. The context of the request includes connectivity constraints,
defined by using the <user-data-constraint> tag (which could require the use of SSL
or other adequately secure communication modes). The Web server is queried for
this context information.

Access control rules. The <security-constraint> tag combines a <web-resource-
collection> with an <auth-constraint> under a <user-data-constraint> condition.
Users within the defined role can access the Web resource collection under
permitted connectivity constraints.

The Java Servlet standard is a starting point for more complex, declarative access defi-
nitions. Vendors can define additional tags to constrain other context attributes, such
as browser type, time of day, user history, or current system load. We could enhance
access control rules by declaring hierarchical roles, we could add delegation con-
straints, or we could add cryptographic requirements to the cipher suite used for SSL
on the link between the browser and the server. Using a declarative syntax in XML gives
us expressive power and portability. Implementation of the definitions in the deploy-
ment descriptor file becomes the real issue, because we must understand how a partic-
ular vendor supports and enforces access control rules.

Enterprise Java Beans
Enterprise Java Beans extends the basic Java Beans framework to support the enter-
prise development of distributed, service-supported, reusable components. The EJB

specification defines many services including transaction, object persistence, messag-
ing, security, logging, and notification.

We described how Web servers use cookies to maintain user state across multiple
HTTP requests, although HTTP is a sessionless protocol. EJB further extends the capa-
bility of Web servers to remember user sessions across multiple HTTP sessions by pro-
viding persistence through stateful session and entity beans.

EJB Security is quite complicated. Much like the CORBA Security Specification, the
entire spectrum of security services is available, if you choose to make the effort to
implement complex security policies. Applications can use statically defined property
files to store usernames, passwords, group definitions, role definitions, and access con-
trol rules—much like the servlet model described earlier. At the other extreme, applica-
tions can enforce a full run-time, determined, dynamic, object- and instance-based
security policy by using the JAAS APIs. Developers can specify fine-grained object
access controls programmatically.

Because the management of security policy and the methods for security operations
management are completely vendor dependent, we expect to see the same security
management issues that we detailed in our discussion of CORBA security all over again
within J2EE. Given that the static definition method has reasonable ease of use, sim-
plicity, and management, it might be a while before we see applications using the full
power of the specification. The complexity of the J2EE specification and of subcompo-
nents such as Enterprise Java Beans places a satisfactory description of security
beyond the scope of this book. It would simply require a book of its own. We recom-
mend [PC00] for a high-level description of J2EE along with the resources on
java.sun.com for more detail on J2EE security.

Conclusion

Web security is one area of system architecture with no clear architectural guidelines
for security to match the patterns that we see. Once we have a working application, it is
not possible to go into the user’s browser to rip out insecure features that might be
needed for accessing other sites or to go into the server and rip out features used by
other applications hosted by the same Web farm. Web Architectures are full of hidden
effects that are hard to guard against.

Keeping up with Web security is like drinking from a fire hose. Historically, every Web
architecture component we have seen has been found wanting. From JVM bugs to code
verifier implementations to IIS server bugs to Apache-loadable module bugs to
JavaScript errors to hostile applets to scripted ActiveX controls to browser plug-ins to
Word Macro viruses to HTML-enhanced mail to much more, the list is unending.

Guaranteed security in a Web application is almost impossible to accomplish because
of the complexity of the components involved. Web servers and browsers are extremely
large and feature-rich programs. They permit extensions by using vendor components,

M I D - L E V E L A R C H I T E CT U R E244

Web Security 245

each containing a unique baggage of complex architectural assumptions and implemen-
tation bugs. Then, the vendors pit usability against security and leave secure configura-
tion guidelines vague or unverifiable.

The Web is a complicated and insecure place in which to live. The best hope for secure
application development lies in simplicity and the enforcement of good architecture
and design. Prayer helps, too.

Application security describes methods for protecting an application’s resources on a
host (or collection of hosts) by controlling users, programs, or processes that wish to
access, view, or modify the state of these resources.

Operating systems have carried the concept of protection long before security arose as
a major concern. Protection within an operating system appears in the following areas:

■■ Memory management techniques that prevent processes from accessing each
other’s address spaces.

■■ I/O controllers that prevent programs from simultaneously attempting to write to a
peripheral device.

■■ Schedulers that ensure (through interrupts and preemption) that one process will
not hog all system resources.

■■ Synchronization primitives, such as mutexes and semaphores, that manage access
to a critical resource shared by two or more processes.

These protection mechanisms arose within operating systems to prevent accidental
tampering. Malicious tampering is another matter altogether, because hackers can cre-
ate conditions assumed impossible by the OS protection schemes.

Application security involves aspects of secure programming, security component
selection, operating system security, database security, and network security. Consider-
ations include the following:

■■ Selection of security components, which is normally considered the responsibility
of the architect. The application architect can choose products such as firewalls,

C H A P T E R

247

11
Application and OS Security

security scanners, hardware cryptography coprocessors, and secure single sign-on
services to secure the application.

■■ Issues of secure configuration, which are normally considered the responsibility of
systems administrators. The systems administrator must set file permissions, turn
off insecure network services, manage passwords, or follow vendor directives for
the secure configuration of the components selected.

■■ Issues of secure programming, which are normally considered the responsibility of
the developer. The developer checks arguments to programs for malicious inputs,
verifies the absence of buffer overflows, links code with cryptographic libraries, or
writes SUID programs with care.

All security vendors have products that promise to enhance the security of a production
system by modifying host hardware, operating system, or network configurations or by
adding special tools that control activities in these areas. Most vendors lack domain
knowledge of the application. From the perspective of a vendor (evident in the direc-
tives they give to system administrators), an application is largely just a collection of
programs linked to a database, with files and directories, startup and shutdown proce-
dures, network links, and management tools. Without domain knowledge, applications
are just black boxes that use operating system resources according to some specified
operational profile.

For vendors and system administrators, this viewpoint is valid. System architects, how-
ever, must be concerned about much more than running security components on
secure platforms. Application architects must take into account the new processes, ser-
vices, software products, network interfaces, middleware products, and data feeds that
the application itself adds to the host. These are not generic components and can con-
tain their own software defects. The details of how these architectural artifacts work
are in the domain of the architect.

Hardware and OS vendors provide many excellent resources for securing systems on
their Web sites and have detailed guidelines on the security issues surrounding operat-
ing system configuration. Most are silent or rather brief on application development
issues, however—especially the details of security architecture when vendor products
are involved. The speed at which products change, and the fluidity of the so-called stan-
dards they are based upon, do not help either. The common theme is to recommend
that application architects purchase professional services if more useful knowledge is
required.

The Internet has excellent resources on security (we have listed a few favorites in the
bibliography), with many sites presenting specific and detailed guidelines for securing
the underlying host and OS of an application. There are many good books on security,
as well. A good place to start is the seminal work by Garfinkel and Spafford [GS96a],
Practical Unix and Internet Security, the best jump-start resource on all things relat-
ing to UNIX security. Other essential references for more information include [ZCC00],
[NN00], and [CB96].

In this chapter, we will describe the basic nature of operating systems as resource man-
agers and describe some patterns of protection of these resources that can be accom-
plished. We also present the structure of a generic application in terms of its

M I D - L E V E L A R C H I T E CT U R E248

architectural description from multiple perspectives. We will proceed to outline some of
the lines of attack against a host and recommend some defenses against each. We will
end our presentation with the description of three UNIX OS security features: methods
using filters and interceptors to secure network services, the Pluggable Authentication
Module (which implements the layer pattern), and UNIX ACLs (which implement dis-
cretionary access control).

Structure of an Operating System

Operating systems are among possibly the most complicated software components
ever composed. Operating systems manage virtual memory, disk caches, and disk
access; schedule, execute, and switch processes; handle inter-process communication;
catch and handle interrupts and exceptions; accept system calls from programs; and
manage I/O devices, the file system, network links, and much more.

Operating systems are built in layers [Sta01] that rise from low-level electronic circuits,
registers, and buses in the underlying hardware to high-level OS features such as multi-
threading, distributed process management, or symmetric multiprocessing. At the core,
operating systems are resource managers for applications, programs, or users to exploit.

Protecting an operating system consists of applying our security principles of Chapter
3, “Security Architecture Basics,” to any entity that wishes access to the host resources.
The principles are, once again:

■■ Authenticate before allowing access.

■■ Control activities once access is granted, keeping permissions to minimum
privilege levels.

■■ Control information flow initiated by the user on the system.

■■ Protect each application, user, or program from all others on the same host.

Operating systems protect users from one another by dividing resources along dimen-
sions; for example, partitioning memory to control the address space, partitioning time
to control processor execution, and partitioning device availability to permit or deny
access operations through the device’s driver.

Consider Figure 11.1, which shows the high-level architecture of UNIX. Traditionally,
hardening any operating system referred to the protection of the kernel, hardware, and
memory from programs that were already executing on the host. In recent times, the
term has expanded to include the notion of strengthening network interfaces and limit-
ing the activities and services permitted upon them. Many hardware platform vendors
provide a hardened version of their standard hosts that includes a sandbox layer of
access control definitions that separate resources from access requests. Vendors also
recommend products that enhance system security in generic ways. For example:

■■ IBM’s venerable Resource Access Control Facility (RACF), providing security for
more than a decade and a half for MVS platforms, stores access control rules in a
security database. RACF is now a component of IBM’s SecureWay Security Server.

Application and OS Security 249

Memory

Disk

Disk Device
Drivers

shell

Kernel

CPU Memory
Peripheral
Devices

shell program

Unix Operating System

System calls to kernel functions

Libraries

User AdministratorUser

Networking

Figure 11.1 UNIX operating system layers.

SecureWay has added a firewall product, a Web server security component, OS
support for Kerberos V5 and DCE, directory access via LDAP, and integration with
PKI components. Each resource access from an application must use a security
interface to reference an operating system component called the System

Authorization Facility (SAF). SAF calls RACF’s security manager if an access
decision is needed before permitting the request to proceed.

■■ Hewlett-Packard provides a secure e-commerce platform called Virtual Vault that
uses the hardened Virtual Vault Operating System (VVOS), a trusted version of
HP-UX. Applications can also access Web, LDAP Directory, or PKI services
securely by using vendor products such as Sun’s iPlanet Server Suite (formerly
Netscape Enterprise Web, Directory, and Certificate Servers).

■■ Sun Microsystems provides tools and software to enable Solaris Operating
Environment Security, a secure configuration using minimal services, with
guidelines for securing all OS components. Sun also provides a hardened version
of its operating system called Trusted Solaris that eliminates the need for a root ID
and adds access checks to all requests for system or data resources. Applications
also can add many vendor products for UNIX security, including firewalls,
Kerberos, DCE, and open-source software such as tripwire or tcpwrapper. Sun’s
own Kerberos V5 service is called Sun Enterprise Authentication Mechanism

(SEAM). Applications can also access Web, LDAP Directory, or PKI services
securely by using Sun’s iPlanet products.

M I D - L E V E L A R C H I T E CT U R E250

TE
AM
FL
Y

Team-Fly®

Before we bring up an application in production, we should guarantee that our hard-
ware and OS platform fulfills all the generic security requirements from corporate secu-
rity. Vendor programs that provide jumpstarts to ensure security compliance are a
common method of establishing this baseline of security.

Operating system hardening solutions implement the sandbox pattern. Hardened ver-
sions of UNIX implement some of the patterns of mainframe security, such as access
control through RACF. A hardened UNIX box might perform any or all of the following
actions:

■■ Limit the powers of the root user by adding additional administrative roles and
requiring all administrative activities to be conducted by a user in the related
admin role. Gaining root access gives a user no special access permissions
available by default on standard UNIX platforms.

■■ Partition the file system into strict compartments and block access between these
areas by using access control rules beyond the basic file permission modes. Some
products even enforce append-only access to disks designated for logging events.

■■ Authenticate the user at session initiation and carry the original authenticated user
ID along with all activities that the user conducts. In other words, even if the user
changes identity by using su or runs a SUID program (which normally would run
with the identity of the program owner), the OS still can access the original ID by
following the chain of assumed identities all the way back to the original
authenticated user. Users might need to explicitly disconnect, reconnect, and
reauthenticate to change roles.

■■ Provide support for roles, assign users to roles, and add access control rules that
partition the standard collection of UNIX system calls, library functions, and shell
commands into object groups and then restrict access to the calls and commands
in each group only to specific roles.

■■ Provide restricted versions of shells by default and use the chroot command to
restrict file system visibility.

■■ Place numeric limits on permitted resource requests. The OS can possibly limit
how many processes a program can spawn, how many open file descriptors it can
hold, how many socket connections it can start, or how many CPUs it can use in a
multiprocessor host.

As might be expected, OS hardening can slow down performance because of the extra
layers of control between the kernel’s critical OS functions and user programs.

Structure of an Application

An application is a software system hosted on a hardware platform that performs a
business service. Applications often follow the three-tier architecture, defining presen-
tation, business logic, and data layers to separate concerns across the system.

Applications have the following components:

Application and OS Security 251

Hardware architecture. The hardware architecture of an application describes all of
the machines, their versions and models, and their physical descriptions in terms of
memory, disk sizes, volume details, network interface cards, peripherals, consoles,
and so on.

Process architecture. The process architecture of an application describes all of the
programs, executables, shell scripts, services, and daemons that are actively
handling services or performing business tasks. We also include details such as
control flow or work flow by using process maps and finite state diagrams.

Software communications architecture. The communications architecture
describes the software bus used by processes to send messages back and forth. The
bus could be implemented by using reads and writes to files or to the database,
through IPC mechanisms, message queues, or other middleware such as CORBA.
The application must document the pattern of message flows, the expected volumes
of data on each communications link, and the properties of the communications
link (whether secure, insecure, encrypted, local, inter-host, untrusted network, and
so on).

Data architecture. The data architecture of an application captures the object model
representing the persistent state of the system and the schema representing that
state within an object or relational database. It also shares process information,
such as stored procedures or functions, with the process architecture.

Network architecture. The network architecture of an application describes all of
its networking interfaces, the subnets that each host is homed upon, the type of
traffic carried, and the software that controls, secures, and protects each network
interface.

Configuration architecture. The configuration architecture describes the layout of
files and directories, the contents of system configuration files, definitions of
environment variables, file and directory permissions, and other information
required for defining a correct image of the application.

Operations, administration, and maintenance architecture. The OA&M
procedures describe the care and feeding methods and procedures, along with
system administration activities specific to the application. This description
includes methods for starting or stopping the application, performing backup or
recovery actions, user management, host administration, system and error log
handling, and enabling traces for debugging in production.

The application architecture includes many other details of life-cycle management,
including performance parameters, acceptable load levels, acceptable rates of data
loss, and interface specifications to other applications for data feeds in either direction.

Some subcomponents of the application might occur multiple times for reliability or for
performance.

■■ Each process could be multithreaded.

■■ Each daemon could spawn multiple child processes to achieve a better user
response time.

■■ Each host could have multiple processors.

M I D - L E V E L A R C H I T E CT U R E252

■■ Each node of the application could be clustered over multiple hosts.

■■ The application might appear in multiple instances for load balancing, geographic
proximity, hot service transfers on failovers, or disaster recovery (if for some
reason the primary instance is obliterated).

Application Delivery
Applications are delivered in releases from development to production through a
release tape. Some applications flash-cut to the new release; others prefer to run two
parallel instances of the system, one old and one new, rather than performing a flash-
cut to the new release. Traffic and data are slowly migrated over after acceptance test-
ing succeeds. The release tape contains software and installation directives.

It is important to provide mechanisms to securely deliver the tape, use separate pro-
duction user accounts with unique passwords, and write scripts to verify the integrity
of the files in the new release node by using cryptographic hashes. The tape itself rep-
resents intellectual property of the company and must be protected accordingly. Instal-
lation directives can do any or all of the following things:

■■ Halt the current executing instance at a safe point

■■ Save system execution state information

■■ Export the database to files

■■ Clean up the current instance

■■ Move the old software configuration to a dormant node

■■ Configure back-out scripts to restore the old release in case of critical failure

■■ Install the new files and directories

■■ Run sanity scripts to verify correctness

■■ Create a clean database instance

■■ Run scripts to bulk import the old persistent data into the current schema

■■ Transfer users from the old instance to the new instance

■■ Clean up the environment

■■ Launch the testing phase for customer release acceptance after a successful cut to
the field

Development environments are insecure; therefore, all development and testing-
specific security information should be discarded and reset in production. This proce-
dure includes passwords burned into binaries, certificates, and encrypted private key
files (and their passwords). Trust links that allow access from and to interfaces to
other systems in development should be removed on production hosts. Leaving com-
pilers and other non-essential tools on production environments is bad because each
tool to build or interpret code carries a potential for abuse if the system is compro-
mised. The installation procedures are critical in worst-case scenarios where the level
of system compromise requires a complete OS and application reinstall from backup

Application and OS Security 253

Data

Memory

Video

Keyboard

Network Card

Network Card

Disk Driver

Mouse

Printer

Peripheral
Device
Drivers

Network
Device
Drivers

Disk
Device
Drivers

Program one

Program two

Operating system

CPU

Figure 11.2 Operating system components.

tapes. The application should address installation methods when the normal sequence
of installation instructions cannot be followed (for example, if the system is halted in
an unsafe state).

Application and Operating System Security

In Figure 11.2, we present a high-level picture of the components of an operating sys-
tem. Securing a host involves many activities, and given our constraints, we will focus
on a few examples of security issues around the system operational profile. Who is
allowed access, what is the normal profile of activities for each user, and when do indi-
viduals access the system?

Each of the architectural perspectives described in the last section carries its own secu-
rity issues and remedies. Here are some highlights.

Hardware Security Issues
Securing the hardware of an application primarily falls on physical security measures.
Some operating systems enable the administrator to prevent system startups from

M I D - L E V E L A R C H I T E CT U R E254

floppy disks or in single user mode from the console by setting a Programmable Read-

Only Memory (PROM) password that must be entered before the OS can boot from any
media. Applications should set PROM passwords to prevent hosts from being shut
down and brought up in single user mode from the console.

Some vendors provide network access to the console terminal by hooking a special
hardware appliance with a network port and a cable to the RS232 port on a host. For
example, HP provides a secure Web console, which is an appliance that hosts a secure
Web server and that runs a terminal emulator linked to the console cable port on the
host to provide access to the box over the network. An administrator accessing the
appliance over the network appears (as far as the host is concerned) to be standing
physically at the box.

Process Security Issues
Securing the process architecture of an application is a complex problem. We have to
review the application design data and extract process descriptions, process flow dia-
grams, workflow maps, data flow diagrams, and administration interfaces. For each of
these elements, we must define the boundaries of interaction within the application,
identify assets at the process level, identify interfaces to other systems, and document
security audit mechanisms.

We must review the details of control flow or workflow by analyzing process maps and
finite state diagrams. Applications that use process flow maps (for example, through
workflow managers) must prevent tampering with the configurations that describe the
flow. These attacks could modify the map to prevent validation of data, block checks
made by security services, or break handoffs between callback processes and event
managers.

Questions to ask at the review include the following: Do all process-to-process bound-
aries occur locally on a single host? Does process-to-process communication occur
over the network? Are there requirements for authentication and access control
between processes? Is the external process a trusted system or an untrusted customer?
Is data arriving over the boundary or is it leaving the application? If the data represents
arguments to a program, we must validate the user inputs to prevent buffer overflows
or unchecked invocations of shell interpreters. We must verify that each presenter of
credentials for authentication manages those credentials in a secure manner.

Additional questions about credential use include the following: Do users input creden-
tials, or does the system manage this task? Are system credentials stored unencrypted
in memory or on the drive? Do they expire, or can they be forged? If processes use
embedded passwords within binaries, how are these passwords set or modified? What
if the recipient of the request enforces password aging? What if the handshake protocol
for authentication changes?

Workflow products normally provide metrics to monitor the progress of orders at each
node, and the application should generate alarms for unusual process patterns (for

Application and OS Security 255

example, excessive queue buildup on a node, dropped orders, malformed orders, or
redirection of orders through new pathways). Applications should take special care in
managing transition events or callbacks generated by untrusted application compo-
nents, such as customers or partners, which could be spoofed or tampered with to
attack the application.

Software Bus Security Issues
We discussed strategies for securing the communications bus used by processes for
sending messages back and forth in Chapter 9, “Middleware Security.” For each product
used, many mechanisms could exist for enabling security.

■■ Setting file permissions or creating disk partitions to secure message passing
through reads and writes to files.

■■ IPC mechanisms could use IPSec over the network or could use secure socket
connections.

■■ Message queue managers could restrict clients by IP address or hostname and
require strong authentication.

■■ Messaging software could also provide an encrypted bus for secure message
transport and use message caches for saving traffic to hosts that might be knocked
off the network (either through failure or through a denial-of-service attack).

■■ The application could use middleware security service providers. For a detailed
discussion of security for other middleware products such as CORBA or
Enterprise Java, please refer to Chapters 9 and 10, respectively.

Data Security Issues
Operating systems provide file security through a security manager component of the
file system. UNIX file commands (ls, chown, chgrp, and chmod, for example) enable the
manipulation of the permissions bits that describe user, group, and other permissions
along with ownership and additional access control lists. Files can optionally be
encrypted, although this feature represents a risk if the encryption key is lost. Users can
change ownership and permissions on files and can set special permissions on files to
enable SUID or SGID behavior.

We will defer a detailed discussion of the issues surrounding secure database manage-
ment to Chapter 12, “Database Security.”

Network Security Issues
Securing the network architecture of an application involves securing all of its net-
working interfaces. We can use a local firewall such as tcpwrapper to control and pro-

M I D - L E V E L A R C H I T E CT U R E256

tect each network interface. These tools can be configured with access control rules
describing the type of traffic allowed based on source and destination IP addresses or
hostnames, port numbers, protocols, and time of day access rules. Interfaces can be
configured to block IP forwarding to protect secure subnets on multi-homed hosts
from untrusted network traffic. Hosts should also disable all unwanted services on an
internal network. We will discuss network services security in more detail in a follow-
ing section.

We can also filter packets arriving on the host or require incoming connections to
enforce certain security properties. On Solaris, for example, we can control the security
settings for network interface configuration at several levels.

The transport layer. The administrator can extend the range of privileged ports
beyond the default of 1024 to protect other services from being started by non-root
users on the host.

The network layer. The administrator could require IPSec connectivity from certain
applications and hosts to prevent IP spoofing against the host.

The data link layer. The administrator could turn off unsolicited ARP cache updates
to prevent bad hardware address data in the local cache.

Configuration Security Issues
Secure application configuration covers a mixed bag of issues.

■■ Applications should set the permissions on system configuration files to prevent
tampering and must not store application passwords along with definitions of
environment variables. Applications should use sanity scripts, which explicitly test
for errors and report misconfiguration within information required for defining
a correct image of the application. These scripts provide inexperienced
administrators with an easy and automated method of verifying system safety.

■■ User passwords are commonly checked against the standard /etc/passwd file, a
shadow password file, or a naming service (such as NIS or NIS+ on Solaris). An
administrator can turn on password aging, run password strength checks, prevent
old password reuse, enable account locking on some number of bad attempts, or
prevent trust-based services such as rlogin.

■■ Administrators should create special group identities to match system logins with
their own GID (for example root, daemon, bin, sys, and adm).

■■ Applications can use the UNIX operating system’s Pluggable Authentication
Module framework to manage common authentication services for multiple
applications (presented in a later section).

■■ Applications can prohibit executable stacks to block one class of buffer overflow
exploits that require them to succeed. We refer the reader to Chapter 5, “Code
Review,” for more information about the issue of executable versus non-
executable stacks.

Application and OS Security 257

Operations, Administration, and
Maintenance Security Issues

Security administration is an important part of systems administration, and it is the
responsibility of the application architect to set security guidelines for operations,
administration, and maintenance of the application in production.

Applications should define OA&M procedures for security to do the following:

■■ Protect backup tapes with sensitive information.

■■ Automatically run a security scanner that regularly verifies the state of the system.
This scan includes password checks, cryptographic checksums on files to prevent
tampering, file permissions, group checks, cron job checks, unauthorized SUID
program detection, superuser activity, and much more.

■■ Automate security log reviews, alarm notification, and credential expiry.

■■ Create audit logs to capture user logins and logouts, execution of privileged
commands, system calls, file operations, or network traffic. View and analyze the
logs.

■■ If possible, use restricted shell (/usr/lib/rsh on Solaris) to restrict a user to his or
her home directory. A user in a restricted shell cannot change directories, modify
the PATH variable, redirect output by using UNIX redirectors, and cannot access
any files outside the home directory by using complete path names. Restricted
shells have limitations but are a useful piece of the security puzzle.

■■ Set path variables correctly. Verify that the user’s current working directory is not
in the PATH (in case the user switches to a public directory and runs a Trojan
horse). Audit packages can test for this error and for other PATH configuration
errors.

■■ Restrict SUID programs owned by root. The application should not use SUID
programs if possible due to the risk presented by coding errors.

Administrators must also configure access to security service providers used by the
application. These could include secure naming services, secure network file systems,
PKIs, directories, Kerberos servers, DCE domain servers, tools using Java

Cryptographic Extensions (JCE), or applications that use the Generic Security

Services API (GSS-API) for access to services (such as DCE or Kerberos).

Securing Network Services

Hosts that provide network services must accept service requests, authenticate the
user who is making the request, verify that they have permission to access the informa-
tion requested, and then must transfer the information over the network to the client
host. We will focus on TCP/IP services for UNIX, but the directives for securing net-
work services apply to a broader domain (please refer to [GS96a], [ZCC00], [NN00], and
[CB96] for more information).

M I D - L E V E L A R C H I T E CT U R E258

Server processes called daemons use specific protocols to communicate on specific net-
work ports with clients to provide UNIX network services. Daemons must be owned by
root to handle traffic on privileged ports (numbered lower than 1024). Higher port num-
bers are available for non-privileged user processes. Some operating systems (Solaris,
for example) allow the redefinition of the range of privileged and non-privileged port
numbers to protect additional services or to restrict the range of port numbers available
to user processes.

Servers can be automatically started or can be awakened by the UNIX inetd daemon
that listens on multiple ports and launches the appropriate server when a request
arrives. The inetd daemon represents a chokepoint for network service access, and
tools such as tcpwrapper exploit this single point of entry to add authorization checks
on incoming service requests.

Vulnerabilities in server programs that run as root can allow access to the host and
therefore require more care in configuration. The future might bring to light flaws in
either the server or the protocol that it uses, and unless promptly patched, the host is
vulnerable to attack. Applications should run the absolute minimum set of services
required for operations.

Many services are available in secure mode, where the connection itself is encrypted
and protected against tampering and stronger modes of user authentication are
allowed. For example, solutions that use secure shell (ssh) exist for FTP, Telnet, and
rlogin services. Examples of popular services include the following.

FTP. FTP enables hosts to exchange files. FTP uses port 21 for sending commands
and port 20 (sometimes) for sending data. The server requires a login and a
password (unless anonymous FTP is enabled), but as the password is sent in the
clear, we recommend using a version of FTP that uses encryption. Applications
should disable anonymous access.

Telnet. The Telnet service on port 23 using TCP enables a client to log on to a host over
the network, providing a virtual terminal to the host. The telenetd authenticates the
user login with a password, sent in the clear over the network. Telnet sessions can
also be hijacked, where an ongoing session is taken over by an attacker who then
issues commands to the server over the connection. Replace telnet with ssh.

SMTP. The Simple Mail Transfer Protocol on port 25 using TCP enables hosts to
exchange e-mail. On UNIX systems, the sendmail program implements both the
client and the server and has been the source of many security problems over the
years. Although many of the early security bugs have been fixed, new ones keep
appearing. For example, a recent patch in the current versions of sendmail 8.11.6
fixes a command-line processing error not present in versions earlier than 8.10
(www.securityfocus.org). We refer the reader to [GS96a] or to www.sendmail.org
for more information.

DNS. Hosts use DNS to map IP addresses to hostnames and vice-versa. Applications
depend on a name server, a host running the named daemon, to resolve queries.
Attacks on the name server can load modified maps or even the named daemon
configuration to create denial-of-service attacks or to aid other exploits that require
a spoofed host-name to IP mapping. DNSSEC (defined in RFC 2535) adds security

Application and OS Security 259

mechanisms to digitally sign DNS records by using certificates and keys. DNSSEC
can be combined with transport security mechanisms such as OpenSSL or IPSec to
further protect requests. Support for some features for DNS security is available in
the Internet Software Consortium’s Bind package (release version 9 and up).

Finger. The finger program queries the host for information on currently active users
or on specific user information available in /etc/passwd. It is best known as an
infection vector in the 1998 Morris Internet worm attack. Finger should be turned
off because it reveals sensitive information.

HTTP. HTTP runs on port 80. Its secure version, HTTPS, which runs HTTP over SSL,
is normally run on port 443. For more details on securing Web access to your host,
please refer to Chapter 10.

NNTP. The Network News Transfer Protocol runs on port 119 and enables hosts to
exchange news articles. There is very rarely a need to run this service on a
production site, and NNTP should be turned off unless the application is the
corporate news server.

NTP. The Network Time Protocol runs on port 123 using UDP and is used to query a
reference timeserver for the correct time. Some security solutions depend on time
synchronization between clients and servers, and although they can tolerate a small
drift, these solutions will normally block requests from clients with large time
differences. Resetting system time could enable attackers to replay information that
has expired or can prevent the execution of entries in the crontab file (such as
execution of nightly security audits) by the cron daemon. Applications that have a
critical dependency on accurate time can use dedicated hardware time servers
connected via a Global Positioning Service (GPS) receiver link through radio or
satellite or modem that can provide accurate time (typically within a millisecond on
a LAN and up to a few tens of milliseconds on WANs) relative to Coordinated

Universal Time (UTC). Enterprise requirements for time service should use highly
available and reliable NTP configurations with multiple redundant servers and
multiple network paths to a host. Some products also use cryptography to prevent
the malicious modification of NTP datagrams.

Other non-official but common services include the Lightweight Directory Access

Protocol (LDAP) on port 389, the Secure LDAP protocol (SLDAP) that uses TLS/SSL on
port 636, the Kerberos V5 Administration daemon kerberos-adm on port 749, the
Kerberos key server kerberos on 750, the Kerberos V5 KDC propagation server
krb5_prop on port 754, the World Wide Web HTTP to LDAP gateway on port 1760, and
the Sun NFS server daemon nfsd on port 2049 (all port numbers for Solaris). Each of
these services uses both TCP and UDP protocols. Secure configuration for each of
these services is beyond the scope of our presentation, and we refer the reader to the
appropriate vendor documentation for each server.

UNIX Pluggable Authentication Modules

Sun Microsystems introduced UNIX’s Pluggable Authentication Module to make login
services independent of the authentication method. PAM uses the layer pattern to sep-

M I D - L E V E L A R C H I T E CT U R E260

TE
AM
FL
Y

Team-Fly®

arate network service applications (that is, applications that permit user sessions over
the network) from the authentication and session management functions used by the
application. Most flavors of UNIX support PAM modules; for example, consult the man
pages for PAM on HP-UX or Solaris or see Samar and Lai’s paper on PAM [SL96] and
other references on www.sun.com.

Applications such as FTP, Telnet, login, and rlogin that provide users with access to a
host have a client component and a server component. The server must perform the fol-
lowing session management activities:

User authentication. The user must provide a valid password to initiate a session.
The application might desire stronger authentication mechanisms, perhaps using
Kerberos or tokens.

Account management. Users with valid passwords must still pass context checks on
their accounts. Has the account expired due to inactivity? Has the user made too
many bad login attempts? Is the user allowed access to the account at this time of
day? Is the user at the correct access terminal (perhaps to restrict usage from a
physically protected subnet rather than the wider corporate network)?

Session management. Users initiate and terminate sessions. On initiation, some
system data such as last login time must be updated. There are no significant
security actions on session closure except logging the event and deleting session
state information.

Password management. Users might wish to change their passwords.

PAM enables applications to provide multiple authentication mechanisms to users on a
host. PAM also enables administrators to add new authentication modules without
modifying any of the high-level applications. PAM can also be configured to send alert,
critical, error, information, or warning messages to syslog on UNIX. PAM-enabled appli-
cations are compiled with the PAM library libpam.

PAM includes a collection of modules (dynamically loaded at run time) for these
activities:

■■ The user authentication module, which authenticates users and sets credentials.

■■ The account management module, which checks for password aging, account
expiration, and time of day access conditions.

■■ The session management module, which logs the time when users initiate and
terminate sessions.

■■ The password management module, which enables users to change their
passwords.

Services that require multiple PAM modules can stack them in sequence and share a sin-
gle password for each user across all of the modules. Administrators must set up a con-
figuration file that describes the modules required by PAM. Each application to module
link can be qualified with a control flag that describes actions on authentication failure.
Here are some examples:

Application and OS Security 261

■■ Within a module designated as required, the system must validate the user
password but will delay returning failure until all other required modules have
been tested.

■■ Within a module designated as optional, if the module rejects the password, the
system might still grant access if another module designated as required
successfully authenticates the user.

■■ If a module is requisite, then the module must return success for authentication to
continue but on failure will return immediately. The module might not provide the
actual error reported to the user, which might originate from an earlier failing
required module.

■■ A sufficient module that successfully authenticates the use will immediately
return success to the user without testing other modules (even ones that are
labeled as required).

The libraries and configuration file must be owned by root to prevent compromises.
The use_first_pass and try_first_pass directives enable users to reuse the same pass-
word across multiple modules. For example, if the FTP program requires two authenti-
cation modules to authenticate the user, then the PAM module stores the entered
password and reuses it on the second module. For example, assume that the configura-
tion file requires the pam_unix module with no additional entries and requires the
pam_dial module with the use_first_pass entry. In this situation, after the user success-
fully authenticates to the pam_unix module, the pam_dial module uses the same pass-
word. This process gives the user single sign-on over two authentication checks. In
general, PAM configuration should be done with care to prevent lockouts or weaker
than desired authentication.

UNIX Access Control Lists

UNIX access control lists provide a rich and more selective discretionary control over
access to files to users by extending the basic permission modes. All users on a produc-
tion application must access data through the application. It has become increasingly rare
for users to access OS files directly, and we normally see such access only in a develop-
ment environment. The following description of Unix ACLS is probably more relevant to
a product development team rather than an application development concern and is pre-
sented here only as another example of role-based access control. Application architects
who do not use low-level ACLs can safely skip this section; however, developers and sys-
tems security administrators may find the information of some value.

Basic file access in UNIX is controlled by setting permission bits to allow read, write, or
execute (search permission in the case of directories) access to the file’s owner, group,
or other users. Unlike root file access, which is allowed on all files, non-privileged user
or process file access is controlled by the operating system using these permission bits.
ACLs are available on most flavors of UNIX. Initial ACL implementations were signifi-
cantly different and incompatible, but vendors are now driving toward compliance with
the POSIX 1003.6 standard. UNIX ACLs do not mix well with networked file systems

M I D - L E V E L A R C H I T E CT U R E262

(NFS), however, due to differences in vendor implementations and how the solutions
treat local versus network-mounted file systems.

We assume familiarity with the UNIX commands chmod to set file permissions and
chown to transfer file ownership in the following discussion. Chmod sets or modifies
base permission bits using arguments in absolute or symbolic mode. For example,
either of the following commands gives read and write permissions to the owner and
group of file but denies any access to other users or groups.

>chmod 660 file

>chmod ug=rw,o-r file

The command chown is used to transfer ownership. Some systems enable users to
transfer ownership of their own files; others restrict this privilege to root.

We introduced an abstract model of role-based access control in Chapter 3. We will
describe ACLs in the terms of that model.

■■ Subjects. All the users with access to the system, typically the entries in
/etc/passwd

■■ Objects. Files and directories on the system

■■ Object-Access groups. Each file is in its own group of one, carrying its entire ACL.
A file at creation can inherit initial ACL settings from its parent directory, however.
In this sense, the directory hierarchy is an object-access group hierarchy.

■■ Roles. On one level, roles are captured through group definitions which are
typically the entries in /etc/group. At the file system level, we do not see the
application-specific use cases that could drive the definition of ACLs for individual
files. Unix ACLs do not directly support roles, so the application must assume the
responsibility for role and policy management (possibly supported by new
application-specific commands).

■■ ACL management commands. Each vendor version defines commands to create,
modify, delete, replace, and view ACL entries.

In general, because of differences in the vendor implementation of the POSIX ACL stan-
dard, application architects should take care in using ACLs on file systems mounted
over the network. The base permissions should be the most restrictive, and the access
control entries should be permissive. Otherwise, if a restrictive access control entry
(“Do not let sys group users read this file”) is removed on a network access, the
increased scope of access might compromise the file (sys users can now read the file).

ACLs are also designed for regular files and directories and not devices, because the
utilities that operate on those files might delete ACL entries. ACLs also have their own
syntax and special characters. If these characters appear in usernames or group names,
the ACL cannot be parsed. Vendors have different algorithms for making an access
decision from the set of applicable access entries. We recommend carefully reviewing
the access decision process for your application host OS.

ACLs are excellent for enabling access in small, collaborative groups but can be more
difficult to use for defining a large-scale access control solution. The restrictions on the
number of entries (for example, some OS vendors such as HP-UX, JFS, and Solaris limit

Application and OS Security 263

the number of additional entries to 13), the limit on the number of open file descriptors,
and the need for writing management utilities make scalability an issue. UNIX ACLs are
a valuable addition to specifying secure file access, but they also serve architects with
another purpose: prototyping. If you have root access on a box and want to work out
the details of a discretionary access control model for an application, you can use the
user, user-group, object-access group, object, and role features from the descriptions of
access control from Chapter 3 to build a small proof of concept of the model. The exer-
cise will give you some guidance on how to approach the problem in a more compli-
cated domain as you extend the UNIX model to your own application domain.

We will now proceed to describe several ACL mechanisms in more detail.

Solaris Access Control Lists
Solaris extends basic UNIX file protection provided by permission bits through access
control lists. Entries are of the form entity:mode, where entity is a username, group
name, or numeric ID and mode is a three-character permission set from (r,w,x,-).

The basic file permissions are carried over as the first three entries of the file’s ACL: the
owner’s permissions “u[ser]::mode,” the group permissions “g[roup]::mode,” and other
permissions for users other than the owner and members of the file group,
“o[ther]:mode.” The mask entry, in the form “m[ask]:mode,” indicates the maximum
permissions allowed for non-owner users regardless of any following ACL entries. Set-
ting the mask is a safeguard against misconfiguration. Additional access control entries
follow the mask, describing permissions for a specific user (u[ser]:uid:mode) or per-
missions for a specific group (g[roup]:gid:mode).

In compliance with the POSIX ACL standard, Solaris also allows the inheritance of
ACLs by using preset default values. The default ACL entries on a directory are used to
set initial ACL values on any file created within the directory. In addition, a subdirec-
tory will inherit the ACL defaults of its parent on creation.

The default directory permissions are carried over as the first three entries of the direc-
tory’s ACL.

■■ The default owner permissions d[efault]:u[ser]::mode

■■ The default group permissions d[efault]:g[roup]::mode

■■ The default permissions for users other than the owner and members of the file
group, d[efault]:o[ther]:mode

The default mask entry, in the form d[efault]:mask:mode, indicates the maximum per-
missions allowed for non-owner users regardless of any following ACL entries. Again,
setting the mask is a safeguard against misconfiguration. Additional access control
entries follow the mask, describing default permissions for a specific user (d[efault]:
u[ser]:uid:mode) or default permissions for a specific group (d[efault]:g[roup]:gid:
mode).

Solaris provides two commands for managing ACLs: setfacl (to assign, modify, delete,
or create ACLs) and getfacl (to display the current settings). Getfacl can also be used to

M I D - L E V E L A R C H I T E CT U R E264

copy ACLs from one file to another by using piped redirection. The ls -l command lists
the file’s attributes. A plus sign (+) next to the mode field of a file indicates that it has a
non-trivial ACL (in other words, the ACL describes access to the file by users or groups
other than the owner or group of the file).

When a file is created, its basic permissions are used to set the initial values to the
entries in its ACL. A file with permissions bits 644 (read and write for bob, read for
testers group members, and read for others), has this ACL.

(solaris7) :touch file

(solaris7) :ls -l file

-rw-r--r-- 1 bob testers 0 Jun 15 18:41 file

(solaris7) :getfacl file

file: file

owner: bob

group: testers

user::rw-

group::r-- #effective:r--

mask:r--

other:r--

The following command adds read access for user john and read and execute access for
all members of group sys. Because the mask represents an upper limit on permissions,
however, sys group members cannot execute the file.

(solaris7) :setfacl -m "u:john:r--,g:sys:r-x" file

(solaris7) :getfacl file

file: file

owner: bob

group: testers

user::rw-

user:john:r-- #effective:r--

group::r-- #effective:r--

group:sys:r-x #effective:r--

mask:r--

other:r--

Calling setfacl with the -r option recomputes the mask setting when new entries are
added. This action forces effective permissions to match the desired permissions.

(solaris7) :setfacl -r -m "g:sys:r-x" file

(solaris7) :getfacl file

file: file

owner: bob

group: testers

user::rw-

user:john:r-- #effective:r--

group::r-- #effective:r--

group:sys:r-x #effective:r-x

mask:r-x

other:r--

The -d option deletes permissions and does not affect the mask.

Application and OS Security 265

(solaris7) :setfacl -d "g:sys" file

(solaris7) :getfacl file

file: file

owner: bob

group: testers

user::rw-

user:john:r-- #effective:r--

group::r-- #effective:r--

mask:r-x

other:r--

ACLs can be transferred from one file to another by using pipes and the -f option to set-
facl, with - representing standard input.

(solaris7) :touch file2

(solaris7) :getfacl file2

file: file2

owner: bob

group: testers

user::rw-

group::r-- #effective:r--

mask:r--

other:r--

(solaris7) :getfacl file | setfacl -f - file2

(solaris7) :getfacl file2

file: file2

owner: bob

group: testers

user::rw-

user:john:r-- #effective:r--

group::r-- #effective:r--

mask:r-x

other:r--

The -s option sets the ACL to the list on the command line.

(solaris7) :setfacl -s "u::---,g::---,o:---" file

(solaris7) :getfacl file

file: file

owner: bob

group: testers

user::---

group::--- #effective:---

mask:---

other:---

The chmod command may or may not clear ACL entries and must be used carefully.
Please refer to the specific vendor documentation for details. In this example, user john
has no effective read access to file2 but might be granted access by mistake if the mask
is set carelessly.

(solaris7) :getfacl file2

file: file2

M I D - L E V E L A R C H I T E CT U R E266

owner: bob

group: testers

user::rw-

user:john:r-- #effective:r--

group::r-- #effective:r--

mask:r-x

other:r--

(solaris7) :chmod 000 file2

(solaris7) :getfacl file2

file: file2

owner: bob

group: testers

user::---

user:john:r-- #effective:---

group::--- #effective:---

mask:---

other:---

Some vendors clobber the ACL and clear all the entries when chmod is used.

HP-UX Access Control Lists
HP-UX ACL entries are also derived from a file’s base permissions. Access control lists
are composed of a series of access control entries (ACEs). ACEs map users and groups
to access modes. They can permit access by specifying modes r, w, or x or restrict
access by specifying a dash (-) in the access mode string. ACEs can be represented in
three forms: short form, the default in which each entry is of the form (uid.gid, mode),
for example, (bob.%, rwx); long form, which breaks the ACL into multi-line format, with
each ACE in the form “mode uid.gid.”, for example, “rwx bob.%”; and operator form,
which is similar to the symbolic assignment mode to chmod (for example, “bob.% =
rwx.”).

ACL entries must be unique for any pair of user and group values and are evaluated
from the most specific to the least specific in a first-fit manner (refer to Chapter 3,
which discusses access control rules). For example, if a user or a process belongs to
multiple groups, multiple entries might match an access request to the file. In this case,
we combine the permissions of all entries using an OR operation: If any entry allows
access, the access is permitted. ACLs can be manipulated by commands or library func-
tions, and pattern matching using wildcards is permitted. The lsacl command lists the
ACL associated with a file, and the chacl command can set, delete, or modify the ACL.
The chmod command can have unfortunate side effects because it disables all access
control entries. If chmod is used to set the SUID, SGID, and sticky bits, a chmod com-
mand can clobber the ACL on the file in a non-POSIX compliant manner.

HP-UX also supports JFS ACL, also known as VERITAS File System ACLs if you have a
VxFS file system with specific disk layout versions. JFS ACLs are closer to POSIX com-
pliance than HFS ACLs. They are very similar to the Solaris ACL mechanisms with some
minor differences. JFS ACLs, unlike HP-UX ACLs, also support ACL inheritance
by assigning default permissions to directories that will apply to any files or directories

Application and OS Security 267

M I D - L E V E L A R C H I T E CT U R E268

created within them. Please refer to the Hewlett-Packard documentation site
(docs.hp.com) for more information.

Conclusion

There is a tremendous amount of information on operating system and network secu-
rity on the Web and through many excellent references. Applying all of this detail to a
specific application instance is the hard part and can be overwhelming to an application
team. If this situation is indeed the case, we recommend outsourcing the activity of
security architecture to an organization with adequate security expertise because of the
risks of compromise through incorrect configuration.

At the heart of the matter is the simple fact that powerful, general-purpose operating
systems can never be adequately secured if they are connected to untrusted networks
and provide even moderately interesting services. The software is just too complicated,
the interactions are just too varied, and the bugs are just too common. The mechanisms
described in this chapter can go a long way toward reducing the size of the target
exposed to attackers, however.

In this chapter, we will describe the evolution and architectural options provided within
one of the most complex components of any application: the database. Databases are
the heart of enterprise applications and store the most critical part of the application:
its data. We will describe the evolution of security features within databases and relate
the options available to architects in terms of security patterns.

We will discuss network security solutions to connect to a database, role-based access
control mechanisms within databases, security mechanisms based on database views,
methods of object encapsulation within a database, event notification and alarming
through database triggers, and finally multi-level security using row-level labeling
within database tables.

Applications will pick and choose from this broad sweep of options, driven by the granu-
larity of security required by policy. It is unlikely that any single application will use all of
these mechanisms at once. Each imposes a performance penalty, and while each provides
unique features, there does exist an overlap in protective scope as we move from one
option to the next—protecting data at finer levels. Omitting any one of these options from
an architecture can have detrimental impacts if the security properties that it enforces are
not supported through other means, however. All of the row-level security in the world
will not help an application that performs poor user authentication.

The database and the network are not the only architectural elements in play. It is both
important and necessary to direct some architectural thought to the configuration of
the database and its installation on the underlying OS and hardware. We have covered
some aspects of protecting applications on an operating system in the last chapter.
These solutions apply to databases, as well.

C H A P T E R

269

12
Database Security

Because of the complexity of the topic and our desire to tie descriptions and informa-
tion to concrete and usable options, we will use Oracle’s suite of database products as a
reference point for features and for functionality. All other database vendors provide
similar functionality but on different architectural assumptions. Rather than clutter our
presentation with descriptions of vendor differences, and in the interests of brevity, we
will restrict our presentation to one vendor, Oracle, with the recognition that the archi-
tecture principles in the following section can be extended or compared to other ven-
dor products. In cases where we reference explicit syntax or implementation details,
please keep in mind that they apply to a particular vendor’s viewpoint and the proper-
ties of an evolving product offering.

Database Security Evolution

Relational Database Management Systems are very complex. They perform many of the
features of an operating system, such as process management, multi-threading, disk
management, user administration, and file management. They also perform all of the
functions required of a relational database engine and the modules surrounding it, such
as the management of database instances, users, profiles, system and application
schemas, stored procedures, and metadata.

Database security has had an unusual evolution, one in which industry events have
prompted a fork (and now perhaps a merge) in the architectural direction taken by ven-
dors. The fork in architectural evolution occurred sometime in the mid-to-late 1990s,
when vendors provided more security features at the outer edge (at the operating sys-
tem level of their products), moving away from more invasive security strategies within
the core database engine and its modules. The merge is occurring right now, with some
re-emphasis on multi-level security strategies once thought applicable only to military
applications for commercial applications.

Multi-Level Security in Databases
Early database security was guided by the attempts to merge the theoretical frame-
works for access control with relational database theory. Relational theory is the win-
ning theoretical framework for data persistence over competing theories based on
network or hierarchical models. The writing on the wall at the beginning of the 1990s
about the future direction of database security was clear. The reference specification
for database security was the Department of Defense’s Trusted DBMS Interpretation of
the A1 classification for computing systems. Multi-level relational extensions and asso-
ciated security policy management tools would be used to build trusted computing
database systems. Multi-level protection based on labels was expected to be the stan-
dard within applications.

Two fundamental principles of relational database theory are entity integrity and ref-

erential integrity. Entity integrity states that no primary key in a relation can be NULL.
Referential integrity states that an n-tuple in one relation that refers to another relation

M I D - L E V E L A R C H I T E CT U R E270

TE
AM
FL
Y

Team-Fly®

can only refer to existing n-tuples in that relation. Referential integrity constrains all
foreign keys in one relation to correspond to primary keys in another.

The proposed theoretical direction towards multi-level security had many valuable
elements.

1. Extension of the relational principles of entity integrity and referential integrity to
support database security. These principles must continue to hold on the subset of
the relation remaining visible after enforcement of security policy.

2. Security kernels within the database engine. Kernels are small, efficient, and
provably correct monitors that manage all references to objects.

3. Multi-level, relational, view-based extensions that could run over any single-level,
commercial database engine.

4. Classification labels that could be attached to any granularity of object: table, row,
column, or element. This function also supports classification of data through
granularity and hierarchy in the definition of labels. In addition, labels could be
assigned to metadata such as views, stored procedures, queries, or other objects.

5. Security models that defined secure states and the transitions allowed for subjects
to move between states.

6. Extension of the trusted computing base within the database engine all the way to
the user’s client process within some solutions that proposed the creation of
layered, trusted computing bases.

The major database vendors have made tremendous improvements in their products,
but no commercial database supports anything close to this set of features.

Database vendors have aggressively adopted and promoted network security features to
protect remote or distributed access to the database over an untrusted network. Vendors
do have (and have had) products that provide multi-level labeled security to support mod-
els of trusted database implementations that were the emerging standard from a decade
ago. They just do not emphasize them as much as they do the network security options to
commercial projects, labeling multi-level security as “military grade.” This remark is not
specific to Oracle and applies equally well to the other leading database vendors. All sup-
port a variety of security options. They do, however, emphasize some options over others.

We do not express a preference or a value judgment on the relative merits of managing
security at the edge of the database interface or managing security as part of your rela-
tional schema and its dynamics. What works for the application is based on domain
knowledge and architectural constraints. As security becomes more complex and hack-
ers become more proficient, however, it might be prudent to keep open all available
security options at architecture review.

In our opinion, four major forces in the industry have driven the shift in emphasis from the
structure of data within the database to the edge of the database and the network outside.

The rise of the Web. The Web created a huge demand for a certain model of
database design. The repetitive nature of the security solutions implemented at
client site after client site might have driven vendors to reprioritize new

Database Security 271

requirements to include features supporting three-tier Web-to-application-server-to-
database architectures.

The rise of object-oriented databases. The theory and practice of object modeling
caught fire in the development community, and the demand for increased support
for object persistence within traditional relational databases might have changed
priorities within the database vendor community. Security was a major design force
behind the introduction of objects into databases. Object modeling was used to
define access control mappings from well-defined subjects to objects that were
spread over multiple elements of the database schema. Polyinstantiation, which is
the ability to transparently create multiple instances of a single, persistent object
for each class of subject that needed to see it, was an important security
mechanism. Considerable research exists exploring support for managing reads and
writes between virtual objects and the actual stored data. The polyinstantiation
security principle is borrowed from object technology’s polymorphism. Priorities
shifted away from a security viewpoint, however, where objects were thought of as
a good idea for internally managing access control toward a programming language
viewpoint in support of object technology. Object persistence overtook security as a
design goal.

The rise of enterprise network security solutions. The availability of strong
enterprise security products to support Kerberos, DCE, SSL, and cryptographic
toolkits along with some agreement on security standards made it easier for
database vendors to move security from the internal database engine to the
perimeter. This function has enabled them to focus on their own core competency
of building the fastest possible database engine supporting the widest array of user
features, secure in the knowledge that considerable expertise has gone into the
mechanisms that they depend upon for implementing security at the perimeter.

The rise in performance demands. The last reason for the de-emphasis is
unavoidable and somewhat unfortunate. Database vendors must manage the
tension between the twin architectural goals of security and performance. The ugly
truth is that databases, more than any other component in systems architecture, are
asked to perform more transaction processing today to serve user communities
unimaginably larger than those commonly found a decade ago. Security within the
engine degrades performance in a significant manner. Database customers are very
conscious of performance benchmark rankings. As hardware catches up to our
needs for fine-grained security, this situation might improve.

What is best for your application? As we have repeated previously, do what works.
Because system architects have domain knowledge of the application and the vendor
does not, the lesson for us is simple. In any large component within a system, all of the
options discussed at architecture review for implementing security might not receive
the same presentation emphasis. It is important to separate the vendor’s desire for a
certain product design direction from your own application’s design forces.

In recent times, vendor support for multi-level security has been improving. The
promise of true and full-featured, multi-level security might be making a comeback. For
example, Oracle provides (and has provided for some time now) a multi-level security
product called Oracle Fine Grained Access Control (FGAC), which evolved from the

M I D - L E V E L A R C H I T E CT U R E272

Database

Network security
mechanisms:

Kerberos, tokens,
SSL, DCE
or logins/

passwords

Database
security policy on
users, roles, and
objects. Security

through views

Package based
data access

control through
wrappers

and sentinels

Row level data
security

Generic data
object

Generic data
object

Generic data
object

External Security
Infrastructure Policy

Policy enforced by
stored procedures

and triggers

Object Ownership
Grant/Revoke Policy

Multi-level Label-based
Security Policy

Database
User

Figure 12.1 Database security components.

earlier Trusted Oracle product line, and that supports row-level security by labeling
rows by level, compartment, and ownership. We will briefly discuss this feature at the
end of this chapter. Other vendor products provide similar features.

Architectural Components and Security

Databases rival operating systems in terms of the degrees of freedom available to an
architect in designing security solutions (see Figure 12.1). We will use Oracle as a ter-
minology reference for most of the discussion to follow, but all database vendors pro-
vide similar functionality with varying levels of success.

Databases support security at two places: outside the database and inside the database.
Databases support network security features, such as integration with enterprise security
infrastructures, single-sign on, support for secure protocols such as SSL, and other cryp-
tographic primitives and protocols. These technologies are used by the database to
authenticate all users requesting connections. These features have little to do with rela-
tional database theory and exist to create a trusted link between the user’s client host and
the database server. Once a user is authenticated and has an encrypted connection to the
database, he or she is considered to be inside the database and any queries made must be
secured by using internal database mechanisms. These mechanisms include the following:

Session management. At the session level, when users log in to databases, the
database sets environment variables for the duration of the session, stores state
information to handle successive transactions within the session, and handles
session termination.

Object ownership. The database schema can define ownership of database objects
as tables, indexes, views, procedures, packages, and so on. Users can GRANT or

Database Security 273

REVOKE privileges to other users on the objects that they own, thus allowing
discretionary access control.

Object encapsulation. This goal is achieved through packages and stored
procedures. The creation and ownership of security policy structures can be kept
separate from the database schema. Packages define collections of stored
procedures, which support well-defined transactions used to restrict the user’s
ability to change the state of the database to a known and safe set of actions. The
user can execute but not modify the stored procedures. By default, the user is
blocked from directly accessing the data referenced by the packages, because
stored procedures execute by using the privileges of the owner of the procedure,
not the user. The owner must have the required privileges to access the data. With
release 8.0 and onward, Oracle also allows the administrator to configure security
on a stored procedure so that it runs with the privileges of the INVOKER rather
than the DEFINER.

Triggers. Triggers are transparent procedural definitions attached to tables. The
trigger is fired when a triggering event occurs, such as a modification to the table.
The database engine can enforce policy on specific DML types at specific points,
and before or after the statement is executed. In addition, triggers can be specified
to execute once for an entire database table or once for every row of a table.

Predicate application. The database engine can modify the user’s query on the fly by
adding predicates to the query to restrict its scope. Oracle uses this method to
provide Virtual Private Databases.

Multi-level labeled security. At the finest level of granularity, the user data can have
additional structured attributes that can be used to enforce mandatory access
control policies over and above the system access and object access mechanisms
described earlier. The database engine can reference row-level labels against a
label-based access policy before allowing a SELECT, UPDATE, INSERT, or DELETE
statement.

Other vendor-specific features. These can extend the security model in important
but proprietary ways.

All of these options create a complex environment for defining security. An architect
must navigate carefully while selecting options for enforcing security policy. Some
options have performance costs; some are tied closely to the target data; some repre-
sent disconnects between two separate policy-based decisions; and some have unusual
design and implementation issues. We will discuss these issues in depth in the sections
that follow.

Secure Connectivity to the Database

All major database vendors support common infrastructures for strong authentication
provided by leading security vendors. These infrastructures enable the integration of
mainstream enterprise network security solutions such Kerberos, DCE, SSL, and other
security standards into enterprise applications. These infrastructures all provide hooks

M I D - L E V E L A R C H I T E CT U R E274

into services for enabling data privacy, integrity, strong authentication, and sometimes
single sign-on. Database vendors have also borrowed other security components more
commonly associated with operating systems, such as security audit tools. For exam-
ple, Internet Security Systems even provides a database scanner product that models
its popular OS audit product RealSecure, extending operating system audit features
into the realm of relational databases. These tools can test the strength of a database
password, test password aging, or institute lockouts on multiple bad password
attempts.

We will describe Oracle Advanced Security mechanisms. The material in this section is
from several database security papers and from books listed in the references, along
with information from the Oracle Technical Network site http://otn.oracle.com. Oracle
Advanced Security focuses on integrating Oracle with several security products and
technologies.

Cryptographic primitives. Data transferred during client-server communication can
be bulk encrypted by using DES, in 40- and 56-bit key lengths, or by using RSA Data
Security’s RC4 algorithm in 40-, 56-, and 128-bit key lengths. In addition to
encryption, Oracle provides data integrity through MD5-based cryptographic
hashes. Other cipher suites are also available under the SSL option. Please refer to
Chapter 6, “Cryptography,” for definitions and details of cryptographic primitives.

Token authentication services. Users can authenticate by using Smartcards and the
Remote Authentication Dial-In User Service (RADIUS). The authentication
mechanism is a challenge response protocol between the client and the database
server. The Smartcard is protected with the user’s PIN, which does not go over the
network. Alternatively, users can authenticate by using strong, one-time passwords
using SecurID tokens and RSA Data Security’s ACE token servers.

Kerberos. Oracle supports MIT Kerberos Release 5 and CyberSafe’s commercial
Kerberos product, TrustBroker. Please refer to Chapter 13, “Security Components,”
for a brief description of Kerberos.

Secure Sockets Layer (SSL). SSL has become very common since the emergence of
standard libraries for adding transport layer security and open-source toolkits such
as OpenSSL. Oracle enables both client-side and server-side authenticated SSL.
Currently, this item is Oracle’s only PKI-enabled product for this vendor, but other
solutions requiring certificates will no doubt follow.

Distributed Computing Environment (DCE). DCE Integration requires Oracle8i
and Oracle’s proprietary networking protocol, Net8. Oracle applications can use
DCE tools and services to talk securely across heterogeneous environments. The
Open Software Foundation’s Distributed Computing Environment is a middleware
services product that provides integrated network services such as remote
procedure calls, directory services, centralized authentication services, distributed
file systems, and distributed time service. OSF has merged with another standards
group, X/OPEN, to form the Open Group, which currently supports the evolution
of DCE.

DCE security is similar to Kerberos and indeed uses Kerberos V5-based
authentication as a configuration option. DCE Security provides authentication,

Database Security 275

authorization, and data integrity. Applications use DCE’s Cell Directory Services for
naming and location services. The extent of the linkage between DCE’s offerings
and Oracle applications is left to the architect. The application can use the full
range of services, including authenticated RPC, single sign-on, naming, location,
and security services or can use a minimal subset of services (for example, only
implementing authentication by using the DCE generic security services API).

Once a principal authenticates to the DCE cell that contains the database, the
principal can access the database. Principals authenticated in this manner can also
transfer an external role, defined through membership of a DCE group, into an
internal Oracle database role. This feature enables the role-based authorization
mechanisms within the database to be transparently enforced on the principal.

Directory Services. As is becoming increasingly common with vendor products,
Oracle supports integration with X.500 directories that use LDAP to provide
enterprise user management. We will discuss enterprise security management using
directories in Chapter 13.

Oracle provides its own LDAP-compliant directory, Oracle Internet Directory, but also
interacts with Microsoft Active Directory. Incidentally, X.500 directories and Kerberos
are both key components of the Windows 2000 security architecture. Directories define
user and resource hierarchies, domain-based user management, and distributed ser-
vices such as naming, location, and security. Directories will increasingly play a critical
role in addressing security challenges.

Role-Based Access Control

Databases implement RBAC through database roles. A privilege is the right to execute a
particular operation upon an object or execute a particular action within the system. A
user may have privileges to connect to the database to initiate a session, create a data-
base object such as a table or index, execute a particular DML query against an object
owned by another user, or execute a stored procedure or function.

Privileges can be granted to users directly or through roles. Roles are collections of
access privileges associated with a common function. Databases provide role-based
access control by assigning users to roles and then using GRANT and REVOKE state-
ments to permit or block a user or a role to access objects in the data dictionary.

Oracle supports privileges at the system and the object level. The ability to grant privi-
leges is itself a privilege and is available only to administrators or users who have been
explicitly granted the right through a GRANT ANY PRIVILEGE statement. A user auto-
matically has object privileges on all the objects in his or her own schema and can grant
access privileges on these objects to users belonging to other schemas. Thus, the user
can allow controlled manipulation of the schema by granting access to stored proce-
dures but not to the underlying database tables. In addition, DML privileges can be
restricted on columns. For example, the INSERT and UPDATE privileges on a table can

M I D - L E V E L A R C H I T E CT U R E276

be further restricted to exclude certain columns. These columns receive NULL values
when a user without access privileges modifies the table.

Users may also have privileges to execute Data Definition Language (DDL) operations
that enable users to alter table properties, create triggers, create indexes, or create
references where the table is used as the parent key to any foreign keys that the user
creates in his or her own tables. This dependency restricts our ability to modify the
parent key column in the original table to maintain references to foreign keys in other
tables.

Oracle roles allow applications to implement RBAC, which enables simplified security
administration by separating the direct mapping from users to privileges through inter-
mediate roles. Users are assigned to roles based on their job function, and roles are
assigned database privileges based on the access operations needed to fulfill that func-
tion. Roles can be dynamically enabled or disabled to limit user privileges in a con-
trolled manner. Roles can be password-protected. A user must know the password to
enable (that is, assume) the role.

A role can be granted system or object privileges. Once created, a role can be granted to
other roles (under some consistency constraints). If role R1 is explicitly granted to role
R2, any user who explicitly enables R2 implicitly and automatically gains all the privi-
leges owned by R1. Users with the GRANT privilege can assign or remove roles using
the GRANT and REVOKE statements. As an Oracle specific detail, roles do not belong
to a particular schema.

Oracle does not support true role hierarchies in terms of the partial order and inheri-
tance properties of the hierarchical RBAC model described in [SFK00]. The ability to
grant roles to roles, however, is quite powerful in creating set-theoretic models within
the application to create hierarchical properties.

Oracle defines the security domain for a user or role as the collection of all the privi-
leges enabled through direct grants, schema membership, or explicit and implicit role
grants. Dependencies between two or more privileges granted implicitly through roles
can cause unexpected results if we can combine them. Security domains may enable
self-promotion if we permit privileges to be arbitrarily combined to create new access
rights. Oracle forbids the execution of some DDL statements if received through a role;
for example, a user with the CREATE VIEW privilege cannot create a view on a table on
which he or she has the SELECT privilege, if that privilege is not directly granted but is
acquired through a role grant. This restriction prevents unexpected side effects that
could violate security policy. In the following sections, we will present more details on
RBAC and view-based security.

The Data Dictionary
The data dictionary stores information about the structure of objects within the data-
base. The metadata (data about data) describing how the actual data is structured is
also stored in database tables. The data dictionary defines views into the metadata, and

Database Security 277

GRANT <privilege> ON <database object> TO <principal>

WITH GRANT
OPTION

REVOKE <privilege> ON <database object> FROM <principal>

CASCADE
CONSTRAINT

Figure 12.2 GRANT and REVOKE statements.

the tables and views can be queried. In Oracle, the data dictionary is owned by the
Oracle user SYS, cannot be updated by a user, and is automatically maintained by the
database engine. The views in the dictionary organize objects into three categories: cur-
rent user-owned objects, current user-accessible objects, and all objects.

Database Object Privileges
Structured Query Language (SQL) provides the GRANT and REVOKE data definition
constructs to extend or withhold privileges from entities that wish to access database
objects. Privileges can be applied to individual objects (object privileges) or to an entire
class of objects (system privileges). The SQL92 standard defines the syntax for privi-
lege manipulation. All vendors support variations on this theme.

The GRANT and REVOKE statement syntax are shown in Figure 12.2.

Complex collections of privileges can be bundled by using database roles. Privileges
can be granted to roles, and then the roles can be assigned to principals. This process
simplifies security management.

Issues Surrounding Role-Based
Access Control

Role-based access control in databases using this mechanism creates security policy
issues with respect to delegation of rights. The grant statement’s WITH GRANT
OPTION clause enables a recipient of privileges to transfer the privileges to other users.
The revoke statement’s CASCADE CONSTRAINT clause can trigger additional revoca-
tions to fire when the rights of a user are reduced. If that user has in turn granted those
rights to other users, those secondary rights might be revoked. Other implementations
might not enforce cascading revocations. Some vendors might choose to block a revo-
cation request from a granter if the recipient of rights has already transferred the rights
to a third entity by requiring that the recipient first revoke these transferred rights
before losing the right themselves.

Research on privilege graphs, which describe permissions graphically by using entities
as nodes and grants as edges, has revealed that this territory is murky. The difficulty lies
in reasoning about security, rather than picking a particular implementation as correct.

M I D - L E V E L A R C H I T E CT U R E278

It is hard to reason about the knowledge of entity A after A has just revoked entity B’s
SELECT right on a table if B could have received the same right from a third party C
without A’s knowledge. Reasoning about rights after a revoke operation is complicated
because we do not know whether what A intended to accomplish and what A actually
accomplished were the same.

Some applications avoid this issue by using database roles. All privileges are statically
granted to roles, and users dynamically enable or disable roles that they are assigned to
as execution proceeds. Rights are never revoked. The problem with this solution is that
it breaks the discretionary access policy that the owner of an object is the only one who
is allowed to grant privileges by requiring owners to give rights to roles explicitly and
assuming a trust model of permissions instead. Recipients, rather than owners, enable
permissions.

Specific vendor implementations will define the behavior of the clauses WITH GRANT
OPTION and CASCADING CONSTRAINTS. When applications use these clauses, they
will be well defined, but the bad news is that different vendors might choose different
implementations. This situation raises a real architectural issue, namely the portability
of a solution in case the database migrates to another vendor product or if a large appli-
cation has multiple subsystems with different database choices and needs to uniformly
apply security policy.

Database Views

Views are a commonly used mechanism to implement security within databases. A sim-
ple view can be built on top of the join of a collection of base tables, renaming or
removing columns, selecting a subset of the rows, or aggregating rows by average, min-
imum, or maximum. Views are examples of the Façade pattern in the Gang of Four
book [GHJV95]. The Façade pattern’s definition, by default and as is, does not qualify it
as a security pattern. A Façade must be used in association with data object privilege
mechanisms, such as the GRANT and REVOKE mechanisms of the previous section,
before it can be said to enforce security. A user must be granted access to the view but
must have no access to the underlying base tables.

The syntax of a view statement is shown in Figure 12.3.

The view can slice the joined based table relation into horizontal slices by only exposing
some rows, or into vertical slices by only selecting some columns (or, it can do both).

The predicate expression can be quite complex, and if ad-hoc query access to this view
is granted, we cannot anticipate all of the operations that the user might wish to exe-
cute on the view. Views present a number of issues when used for security.

1. Views are used extensively to support data restriction for business logic purposes,
rather than security. The application’s database designer needs to carefully
separate view definitions based on whether they were created for enforcing
security policy or business rules. Updates to security policy have to be reflected in

Database Security 279

CREATE

OR REPLACE

VIEW <view name> AS SELECT statement

,)column_id(

SELECT FROM table_id WHERE <predicate
expression>

table_id),(,)column_id(

Figure 12.3 CREATE VIEW statement with SELECT expanded.

view redefinition or the creation of additional views, independent of the
application’s feature set.

2. Some database vendors provide read only access through SELECT statements to
views because of the complexity of managing UPDATE, INSERT, and DELETE
queries. Modification of the view could add too many NULL values to the base tables
in undesirable ways. Note that the view cannot see certain columns, which must
nevertheless be populated in the base tables as a result of any updates to the view.

3. Even if the database supports writing to views, the ability to modify more than one
base table might be restricted. Writes to views can especially create administrative
overhead in cases where multiple triggers are used to support modifications to the
base tables. Modification of some columns, such as the join keys, might be
forbidden. Thus, data that the user can see and believes that he or she has write
access to might not be modifiable. Oracle version 8.0 provides updateable views
using Instead-of triggers, defined on the view, that execute in place of the data

manipulation language (DML) statement that fired them. Instead-of triggers
implement a sane version of the update.

4. View-based security might require one view for each of the many access modes:
SELECT from one view, UPDATE to another, and DELETE from a third. This
situation creates security management complexity and a maintenance headache.

5. Views can create computational overheads. Views based on joining many tables
might have severe performance costs if several of the selective predicates in the
WHERE clause of a query cause a join to a single base table but are independent of
the other clauses. This situation is called a star join, and unless carefully
optimized, it can be expensive.

6. Access to the underlying base tables must be restricted so that the user cannot
bypass the view to directly access data hidden from the view.

7. Views can potentially overlap if defined over the same base tables. Users denied
access to data through one view can potentially gain access through another.

M I D - L E V E L A R C H I T E CT U R E280

TE
AM
FL
Y

Team-Fly®

Figure 12.4 Wrapper and sentinel.

8. Views cannot express some security policy requirements that involve evaluation of
conditions that are unavailable to the database, such as information about the user
that might be part of their environment.

9. Views cannot implement complex security policy requirements that involve tens of
thousands of scenarios.

Security Based on Object-Oriented
Encapsulation

Access within the database can also be protected by using encapsulation methods bor-
rowed from the object world (shown in Figure 12.4). The data in a collection of base
tables can be associated with a package that contains methods (or, in database terms,
stored procedures) that define all allowed operations on the base tables. This modeling
is not true object modeling because other properties such as inheritance might not be
supported. The user can be constrained to using only well-defined operations to modify
the database state, however.

Database triggers provide another means of moving the access control mechanism
closer to the data being protected. If the application cannot guarantee that all user
access will only be through a security package, then a user might be able to access base
tables through another mechanism, such as through an interface that supports ad-hoc
queries. This situation is not true of triggers, which cannot be bypassed by the user. If a
trigger is defined on a table, unless the user has explicit permission to disable the trig-
ger, it will execute when a DML statement touches the table.

Database Security 281

Security package
with stored procedures

SELECTIN
SERT

UPDATE DELE
TE

View or
base table

Alternative access
through ad hoc

queries, etc.

Database triggers

INSERT

UPDATE

D
E

LE
TE

View or
base table

All other table
access fires the

trigger

No local information, no
arguments. Triggers can

execute once per statement or
once per row.

Package defined cursors,
local variables or state

information in each stored
procedure

SELECT

In the following section, we will describe the procedural extensions defined by data-
base vendors to implement wrapper and sentinel, the two security patterns illustrated
in Figure 12.4.

Procedural Extensions to SQL

Oracle PL/SQL is a language that adds procedural constructs to Oracle’s implementa-
tion of the ANSI Structured Query Language (SQL92) standard. These constructs
include variable declarations, selection (IF-THEN-ELSE) statements, conditional or
numeric loops, and GOTO statements. Procedural languages extend the declarative
syntax of SQL in useful ways, enabling developers to wrap complex data manipulation
directives within procedures that are stored on the database, and are optimized and
compiled for performance. Procedural extensions to databases simplify client/server
interactions, reduce network traffic, wrap functionality with exception handling meth-
ods, and enable server-side business logic to maintain state information.

Oracle PL/SQL programs are composed of blocks. Procedural constructs can be used to
bundle business logic into anonymous blocks of code or into named procedures, func-
tions, packages, or triggers. Blocks can be dynamically constructed and executed only
once or can be stored in the database in compiled form. Blocks can be explicitly
invoked, as in the case of stored procedures, functions, or packages, or implicitly
invoked, as in the case of database triggers that execute when a triggering event occurs.

Procedure calls are standalone PL/SQL statements, whereas function calls appear as
part of an expression (because functions return values). Stored procedures, functions,
and triggers contain embedded data manipulation language (DML) statements in SQL.
Oracle supports cursors, which enable procedural iteration through a relation, one row
at a time.

The data definition language (DDL) constructs of the last section, GRANT and
REVOKE, cannot be directly used by procedural constructs but are referenced at com-
pilation on all database objects touched within the program. The user must have per-
mission to manipulate any object that the procedure references; otherwise, the
procedure will fail. Stored procedures, functions, and triggers are database objects as
well, and users can be permitted or restricted from invoking them by using GRANT and
REVOKE statements on the EXECUTE privilege to the stored program.

Unlike object-oriented databases, which provide true object persistence, relational
databases do not support objects transparently. Current releases of commercial rela-
tional databases include some object-oriented data definition and support, however.
Oracle Objects and Packages (a feature imported from ADA) support the bundling of
procedures and the separation of interface specification. Packages do not support
inheritance or object element labels, such as public, private, or protected. Nevertheless,
procedural and object-oriented constructs can be used to simulate some forms of
object-oriented behavior, such as interface definition, encapsulation, object typing,
constructors, element and method binding, and object privileges.

M I D - L E V E L A R C H I T E CT U R E282

CREATE

OR REPLACE

PROCEDURE <procedure name> AS <procedure body>

argument

IN OUT

OUT

IN

type()

Figure 12.5 Procedure definition.

In the next section, we will focus on the two database security patterns built by using
procedural constructs: wrapper, implemented with stored procedures, and sentinel,
implemented with triggers.

Wrapper
One source of database security problems are interfaces that permit ad-hoc queries.
Client programs generate SQL statements on the fly and submit them to the database
engine, which enables what security expert Matt Bishop calls Time of Check to Time of

Use (TOCTTOU) attacks. In this type of attack, an attacker intercepts the query after it
is created but before it is submitted and modifies it to extract additional information
from the database or to modify data within the database.

This vulnerability is often avoidable if the set of queries expected by the system in its
normal database operational profile is quite small and where the only variation is in the
arguments used in the queries. Stored procedures can implement the wrapper pattern
to restrict the actions of users to well-recognized transactions. Recall the definition of
the wrapper security pattern, which replaces the actual target interface (in this case,
the database SQL interpreter) with a protected interface (in this case, a predefined
stored procedure). We can capture the variation in the queries by setting the arguments
to the stored procedure. The database engine must restrict the query interface to only
invocations of the stored procedures. This example shows the syntax validator pattern
at work, in conjunction with wrappers.

Figure 12.5 shows the syntax of a PL/SQL create procedure statement.

By default, a stored procedure is like a UNIX SUID program. It executes with the privi-
leges of its owner (or definer), not with the privileges of the user who invoked it. Stored
procedures, functions, and triggers can reference other database objects, such as tables
or other procedures, within the subprogram’s body. The subprogram owner must either
own any database objects referenced by the procedure or have explicit access granted
to the objects by their actual owners. In addition, a user must be granted the EXECUTE
privilege on a stored procedure by the owner of the procedure before the user can
invoke it. This behavior is configurable in some products so that the invoker of the pro-
cedure can execute the code under their own privileges. This is useful for maintainabil-
ity of a common code base across a collection of separate database instances, where all

Database Security 283

users share the procedures but not data, and wish to execute the procedure within their
own instance of the database. Creating multiple copies of the procedure definitions
introduces a significant management and code synchronization problem.

We introduced user roles in our discussion of the GRANT and REVOKE statements.
Because stored procedures, functions, and triggers are precompiled and stored, users
cannot use dynamic role-based privileges to access protected objects. Procedures
require explicit access given by using GRANT statements rather than access inherited
through a role. This function is necessary because object references within procedures
are bound at compilation time, not at run time. GRANT and REVOKE statements are
DDL statements. Once they are invoked, the new privileges are recorded in the data dic-
tionary and are used for all user sessions from that point onward. In contrast, roles can
be dynamically enabled or disabled, and the effects of a SET ROLE command are active
only for a single session. Using privileges inherited through roles adds a run-time per-
formance cost to compiled and optimized stored programs. The database engine must
re-evaluate all privileges to data objects on every invocation to verify that the user has
permission to execute the procedure and access any data objects it references. To avoid
this performance penalty, Oracle disables roles within stored procedures. Other ven-
dors might allow run-time evaluation of user privileges for more flexibility.

Sentinel
Database triggers, like procedures, are declarative, executable blocks of code. Unlike
procedures, however, triggers do not have a local variable store or arguments. Triggers
are executed implicitly. A trigger on a table can be launched when an INSERT,
DELETE, or UPDATE statement executes on the table. The trigger can execute once
either before or after the statement or can be executed on every row that is affected.
The user, unless explicitly permitted to DISABLE the trigger, cannot prevent its execu-
tion. Triggers are useful for maintaining integrity constraints and logging the user iden-
tity and activities on the table to a security log, and can automatically signal other
events to happen within the database by invoking stored procedures or touching other
tables with defined triggers.

Figure 12.6 shows the syntax of a PL/SQL create trigger statement.

Triggers implement the sentinel security pattern. Recall that the sentinel pattern
describes an entity within the system whose existence is transparent to the user and
that maintains system integrity in some manner. The system monitors the health of the
sentinel. When the sentinel detects an intrusion or failure in the system, it falls over.
The system detects this event and takes corrective action. Database triggers capture
both the state recording and system response features of sentinels. Sentinels only
respond to changes in system state.

A read operation will normally have no affect on a sentinel. Triggers are not fired on
SELECT statements because the system state is unchanged. Firing triggers on SELECT
statements, the most common form of data manipulation used, would be prohibitively
expensive. It is good design not to incur this unnecessary performance penalty, because
other mechanisms can be used to secure read access.

M I D - L E V E L A R C H I T E CT U R E284

CREATE

OR REPLACE

TRIGGER <trigger name>

<trigger body>ON <table reference>

 FOR EACH ROW

WHEN <trigger condition>

BEFORE

AFTER

<triggering event>

Figure 12.6 Trigger definition.

Triggers do add a performance hit, and as multiple triggers can be defined on a table,
the order in which triggers are activated must be specified. Security triggers must be
kept separate from business logic triggers and preferably must precede them. Security
triggers should be very efficient, especially if invoked on a per-row level.

The trigger views in the data dictionary describe the database triggers that are accessi-
ble to the users. Each view’s columns describe the properties of a trigger: the schema
that owns the trigger, the trigger name, the type, the triggering event, the name of the
table on which the trigger is defined, the owner of the table, the trigger status
(ENABLED or DISABLED), a text description, and the PL/SQL block that defines the
body of the trigger.

We will now describe two other security mechanisms that Oracle supports within its
Trusted Oracle product line. These mechanisms enable access control closer to the
data than the solutions we have seen so far. The following sections are a summary of
information on Oracle’s security offerings from the Oracle Technical Network and from
conversations with Oracle DBAs. Please refer to the bibliography for references with
more detailed information.

Security through Restrictive Clauses

Multi-level security models for databases enforce mandatory access control by defining
a hierarchy of labels and assigning ranges of labels to users and rows within all base
tables. Users are assigned a session label within their label range when they first con-
nect to the database. The user must first pass all discretionary controls, such as having
the correct privileges to objects, views, and stored procedures. At this point, before the
user can access any data, an additional label security policy is applied. This policy per-
mits a user to read data that is at their session label and below and to write data at their
session level. For example, Oracle’s early MLS product Trusted Oracle implemented

Database Security 285

this policy by appending a ROWLABEL column to each database table, including the
data dictionary, and then using this column to manage all accesses.

Virtual Private Database
One extension introduced to Trusted Oracle (Oracle FGAC’s precursor) was the
Virtual Private Database (VPD). VPDs look at data content within the tables
accessed by a query to make decisions about user access to any data. VPDs enable the
definition of an application context, a formal access policy definition. The context
defines a collection of predicate generating functions called policy functions that will
be used to generate the extensions to the query’s WHERE clause. Each policy func-
tion is assigned to a table or a view. Any query that references that table or view will
be modified by the appropriate policy function based on the user’s application con-
text. An application context trigger fires upon logon to place the user within an appro-
priate context.

When a user within an application context attempts to query the database, the database
engine dynamically modifies the query to add predicates to the WHERE clause. The
user has no ability to prevent this access control, because it is performed close to the
data in a transparent manner. The additional predicates enforce the access policy by
further restricting the response to the original query, stripping out rows and columns or
performing aggregations, to remove information deemed inaccessible to the user. VPDs
can be seen as implementing the interceptor pattern, because all queries are inter-
cepted and modified before execution.

VPDs also support multiple policies on a single object, and policy functions can define
the generated predicates based on the type of DML statement being attempted:
SELECT, UPDATE, INSERT, or DELETE. As can be expected, however, policy func-
tions can have an adverse effect on performance. Our ability to optimize queries might
be hurt by complex predicates.

The name VPD might create some confusion because it is similar to VPN, which stands
for Virtual Private Network. VPNs are designed to run in distributed environments over
untrusted network links. VPNs are instances of secure pipes with no knowledge of the
content within the encrypted packets being transported. They are virtual because they
define logical network links, not physical ones. They are private because a VPN can
share the same physical transport media with other streams while guaranteeing data
confidentiality and integrity through encryption and cryptographic hashes.

Unlike VPNs, VPDs are constructs created within a single logical instance of the data-
base server on trusted hardware and with control of all operations. We do not have a
strong definition of what virtual really is, but we would hesitate to call this separation
virtual. It is not analogous with its use in the name VPN because it does not imply and
require the capability to run an Oracle database securely within another vendor’s data
server. That would be impossible. In addition, the data is not really private because two
applications can share tables (a strength of the VPD solution). The privacy feature in
VPDs refers to selective hiding in a manner that is transparent to the user; the privacy
feature of VPNs refers to data privacy from the untrusted network.

M I D - L E V E L A R C H I T E CT U R E286

VPDs are a powerful tool to providing additional control over data access. They sim-
plify application development and remove the need for view-based security. These are
valuable architectural goals.

Oracle Label Security

Oracle has another enhanced mandatory access control security solution called Oracle
Label Security (OLS). The OLS feature is implemented by using VPDs to support a com-
plex row-level model of access control. Oracle’s current version of label security differs
from conventional mandatory access control in some details. Labels have structure,
with each label containing three fields. These components are the label’s level, com-
partment, and group.

Level. Levels are organized in hierarchies and typically have the semantics of military
sensitivity of information levels, such as Public, Proprietary, Restricted, Secret, Top
Secret, and so on.

Compartment. The compartments within a level correspond to categories of
information. Categories are peer containers and are not organized into hierarchies
within levels or across levels. They enable data restriction based on context or
business logic. Users with access to a certain level can only access their own
categories within that level. Compartments support the “need to know” policy
features described in Chapter 3. Users are assigned Read and Write compartments.
When the user accesses a row on a read or write, the user’s compartment definition
is compared to the row’s compartment definitions. A data element can belong to
multiple compartments.

Group. The third component of the label defines ownership. Ownership definitions
can be hierarchical. This third component is unusual in that it allows the definition
of additional discretionary access control mechanisms over and above those
already passed at the SYSTEM and OBJECT levels.

Labels can be composed of a standalone level component, a level and associated com-
partment, or all three components. Groups represent an additional degree of freedom in
security policy definition. We recommend that they should be used with care, because
incorrect configuration could contradict prior policy decisions.

Read and Write Semantics
When a user accesses a row, one of three outcomes will occur:

1. The user has privileges that bypass row label security (denoted by the number 1 in
Figure 12.7).

2. The user must pass the write mediation algorithm to modify data in the row
(denoted by the number 2 in Figure 12.7).

3. The user must pass the read mediation algorithm to read data (denoted by the
number 3 in Figure 12.7).

Database Security 287

M I D - L E V E L A R C H I T E CT U R E288

User Joe

FULL
Privilege?

UPDATE
LABEL?

READ
Privilege?

DELETE
CONTROL?

READ
CONTROL?

INSERT
CONTROL?

WRITE
CONTROL?

UPDATE
CONTROL?

NO
CONTROL?

ACCESS
TYPE

ACCESS
TYPE

NO

NO

READ

NO WRITE

NO

INSERT
STATEMENT

DELETE
STATEMENT

UPDATE
STATEMENT

NO

PROFILE
ACCESS
privilege?

User Jane

Access
Row Level Data

STOP

YES

YES

YES

NO

ENFORCE
READ

ACCESS
ALGORITHM

ENFORCE
WRITE

ACCESS
ALGORITHM

1

2

2

1

2

NO

YESYES

1

2YES

NO

3YES

1

3

1

1

4

2YESNO1

YES

See next figure.

Figure 12.7 Label modification in row-label access. (See Figure 12.8 for legend.)

Database Security 289

Each of the three components of a label carries its own semantics for read and write
access:

Level. The level of a data label places it within the level hierarchy. Oracle assigns a
range of levels, from a MAXIMUM to a MINIMUM, to each user. When the user
connects to the database, a DEFAULT level is assigned to the user between these
extremes. Each row in tables using row level security is assigned a row level. Users
may not access rows with levels greater than their MAXIMUM level, and may not
write to rows with labels lower than their MINIMUM level, the latter to prevent
users from lowering the level of a row and allowing unauthorized access. This is
known as write-down control or the *-property.

Compartments. The compartment component of a label is a set of category names.
Users are assigned read compartments defining the data categories that they have
read access to, and are assigned write compartments defining data categories that
they can modify.

Groups. Users can be given read or write access to groups and requests are resolved
as follows. On a read request, the user’s read access groups must match or be a
subset of the read groups of the label. On a write request, the user’s write access
groups must match or be a subset of the write groups of the label.

Configuring CONTROLS enables security policy. If a READ CONTROL is applied to a
user, only authorized rows are accessible on SELECT, UPDATE, or DELETE queries.
Similarly, if WRITE control is applied to a user, all attempts to INSERT, DELETE, or
UPDATE data will only be applied to authorized roles. Additional controls provide
more policy definition options.

Because OLS presents an additional performance cost on every access, the designers
provided a mechanism to bypass the row-level label checks by using User Privilege
Authorizations. For example, a user with the READ privilege can access all data that
would otherwise be protected by label security, regardless of the value of the row
label. Access would be enforced, however, on non-SELECT statements. Similarly, the
FULL privilege bypasses all row label security. In this case, no mediation checks are
performed.

Users might be allowed to modify the labels associated with the data that they are
allowed to access. All modifications must be done in a consistent manner, observing
level constraints.

Figure 12.7 describes the control flow of row-level security enforcement by using a
flowchart. The shaded decision boxes represent user privileges. If user Joe has the pro-

file access privilege, he can change his identity during the access decision to that of
another user. This example shows delegation at work within label security. If the user
has read, write, or full privileges, he or she can directly access the data. This situation
is shown in Figure 12.7, using the entry point 1 to access data and stop the process flow.
If the user does not have certain privileges, then access controls are only enforced if
policy requires them to be enforced. The non-shaded decision boxes represent checks
to see whether the policy requires that an access decision be invoked. A user can freely

execute INSERT, DELETE, or UPDATE statements on the row if the controls for guard-
ing these actions are disabled.

However, if the security policy requires the read and write access mediation checks by
enabling the appropriate controls, we must extract the row label and the user’s label
and compare the two labels to make an access decision. This scenario is captured in
Figure 12.7 by the two floating flowcharts that originate with the start elements
(labeled 3 and 2, respectively).

Finally, a user can seek to change the security level of a label. This procedure is dis-
played in Figure 12.8. The label is a distinguished column in the row because it is used
for access decisions. Modifications to the label can only be made if the user has privi-
leges that allow him or her to modify the label or if the label update control is not
enforced.

We have simplified the OLS security scheme here to make the case that multi-level data-
base security is not only a viable security mechanism in commercial applications but

M I D - L E V E L A R C H I T E CT U R E290

WRITE
DOWN

Privilege?

WRITEUP
Privilege?

LEVEL
CHANGE

DIRECTIONDOWN UP

BLOCK
ACCESS

MODIFY
LABEL

YES

NO
NO

4

WRITE
ACROSS
Privilege?

LABEL
UPDATE

CONTROL?

Level

Component
updated?

YES

Compartment
or Group

NO

YES

Privilege test

Action

Row Level Data

Control or
decision

n

n

LEGEND

Continuation point end

Continuation point start

NO

YES

Figure 12.8 Label modification in row-label access.

TE
AM
FL
Y

Team-Fly®

Database Security 291

also to emphasize the core differences with controlling user access at the row level and
controlling user access at a much coarser structural level.

One good architectural feature is the provision of privileges that enable row-level label
security features to be bypassed. OLS checks can add an unacceptable performance
penalty for certain database operations. If these operations are performed only by a
subset of the users whose database access is controlled by using other mechanisms, it
makes sense to lift this security check and allow faster access. This function does not
necessarily weaken security, but it can actually help with another architecture goal:
performance.

Row-level security is implemented within OLS as a special instance of a complex row-
level security scheme with application context definition along with a pre-built collec-
tion of policy functions, through enhancements to the database engine. Both the
context and the policy functions can be further modified to customize behavior. Users
can define label functions that compute the label values on INSERT and UPDATE state-
ments or add additional SQL predicates to policy functions. The management of secu-
rity policy is through a GUI-based tool called the Oracle Policy Manager. Labels can be
viewed as an active version of the sentinel pattern, where the database engine checks
the label before granting access. The label itself is not modified unless explicitly tar-
geted by the user through a label-modifying update statement.

OLS has additional features that make for interesting security discussions, but in the
interests of generality and brevity, we will refer the interested reader to the resources
on Oracle Technical Network on the Oracle FGAC and OLS products.

Conclusion

Databases are the most complicated single entity in enterprise architecture. They man-
age mission-critical data within and must meet stringent performance requirements.
Security policy creates additional constraints that the database must comply with to
pass review.

In this chapter, we have described several architectural options for implementing secu-
rity. We chose to do so from the viewpoint of a single vendor, Oracle. We believe that
this choice is not a bad one, because the arguments made are general enough to be
applicable to other database vendors and because of the benefits of using one vendor’s
syntax and features.

Databases present very interesting security problems, and in many of the applications
that we have reviewed, we have not received either the attention or the importance that
is due to them. We hope that the patterns of security described here will add to the
architect’s weaponry at the architecture review.

PA RT

High-Level Architecture

FOUR

As we seek to accomplish security goals and establish security principles such as user
authentication, authorization, confidentiality, integrity, and nonrepudiation using ven-
dors components, tools, and protocols, we must consider these realities:

■■ Our distributed applications have increasingly complicated structures and
topologies.

■■ Budget, legacy, personnel, and schedule constraints force us to mix vendor
products and expect the sum to be securable.

■■ We add security as an afterthought to our architecture and somehow expect that
the presence of some vendor component alone will ensure that we will be secure.

In this chapter, we will present common security infrastructure components and tech-
nologies that have cropped up in our presentations of security architecture in chapters
past. The names, properties, and characteristics of these technologies are familiar to
every software architect, but we need more than product brochures to understand how
to integrate these components into our architecture. Our primary concern is identifying
architectural issues with each product that systems architects should or should not
worry about and identifying showstoppers where we would be best off if we did not try
to use the product. Using any security product that does not have an evolution path that
seems consistent with your system’s evolution could represent a significant risk.

Although we have mentioned these components frequently in prior chapters, we have
collected these components together here—following all of our technical architectural
presentations because they all share architectural properties. These components are
always vendor products. Our lack of expertise and their feature complexity prevents us
from building homegrown versions of these products.

C H A P T E R

295

13
Security Components

Recall our criticism of vendor products for enterprise security of Chapter 3, “Security
Architecture Basics.” We argued that security solution vendors in today’s environment
have mature products at a quality level higher than the reach of most applications.
Security architecture work is therefore reduced to integration work. Where do we host
these components? How do we interact with them? What services do they provide?

Vendor presentations of these components always award them a central place in the
architecture. Vendors make money selling these enterprise components to us, and their
best interests might not correspond with ours. Vendor products favor flexibility to cap-
ture a wider market share. They claim seamless interoperability but have preferences
of hardware platforms, operating systems, and compilers. In many cases, even after we
conform to these requirements, we still have to worry about specific low-level configu-
ration issues.

In the introduction and in Chapter 3, we described some of the advantages that vendors
had over projects, including better knowledge of security, biased feature presentation
with emphasis on the good while hiding the bad, and deflection of valid product criti-
cisms as external flaws in the application. We listed three architectural flaws in vendor
products.

Central placement in the architecture. The product places itself at the center of
the universe.

Hidden assumptions. The product hides assumptions that are critical to a successful
deployment or does not articulate these assumptions, as clear architectural
prerequisites and requirements, to the project.

Unclear context. Context describes the design philosophy behind the purpose and
placement of the product in some market niche. What is the history of the company
with respect to building this particular security product? The vendor might be the
originator of the technology, have diversified into the product space, acquired a
smaller company with expertise in the security area, or have a strong background in
a particular competing design philosophy.

We all have had experiences where the vendor was a critical collaborator in a project’s
success. Vendor organizations are not monolithic. We interact with many individuals on
several interface levels of our relationships with any vendor. We see the vendor in a
series of roles from sales and marketing to customer service and technical support,
along with higher-level interactions between upper management on both sides as unre-
solved issues escalate or critical project milestones are accomplished.

Communication is a critical success factor. Problem resolution is so much easier if we
can consistently cut through the layers of vendor management between application
architects and vendor engineers. Vendors are not antagonistic to the project’s goals;
they are simply motivated by their own business priorities and cannot present their
products in a negative light. Although I have sometimes received misinformation during
a marketing presentation, I have never seen the architect of a vendor product misrepre-
sent technical issues. I have, however, known a few who did not volunteer information
on issues that were relevant to my project that I was unaware to even ask about, but in
every case they were happy to clarify matters once we asked the right questions

H I G H - L E V E L A R C H I T E CT U R E296

(although when we asked the question on the timeline from feasibility to deployment
made a big difference).

In the following sections, we will present short overviews of the architectural issues
that accompany each of the following technologies: single sign-on, PKIs, directory ser-
vices, Kerberos, Distributed Computing Environment, intrusion detection, and fire-
walls, along with some other popular security components.

Secure Single Sign-On

Organizations often require users with access to multiple systems to explicitly authen-
ticate to each, remember separate passwords and password management rules, and
manually manage password aging. This process can be a considerable burden and lead
to insecure practices in the name of convenience.

Multiple sign-on environments are also difficult to manage. Administrators of the sys-
tems are often unaware of the higher-level roles of usage across applications. When a
new user joins the organization and must be given access to all of the systems that go
with his or her new job function, we often resort to a manual process. The administra-
tors of all of these systems must be contacted; we must remember the security mecha-
nisms for each system; and we must manage to ensure that the user is correctly
provisioned on all the correct applications with the correct privileges.

Vendors of secure single sign-on (SSSO) products promise to bring order to chaos. SSO
solutions manage the complex mix of authentication rules for each client-to-server-to-
application combination. They promise the following features:

Improved security. Applications can support multiple authentication modules;
daemons can be modified transparently to support encryption and cryptographic
hashes to provide confidentiality and integrity; and application servers can require
strong authentication for the initial sign-on independent of the authentication
mechanisms supported by backend servers. Users no longer reuse the same
password or slight variations thereof on all systems or leave sticky notes on their
monitors with passwords to mission-critical systems.

Improved usability. Users are spared the burden of remembering multiple login ID
and password combinations or being locked out if they mistype the password too
many times. Administrators have a single management interface to the single sign-
on server that can transfer configuration changes to the subordinate applications
and systems.

Improved auditing. Single sign-on servers maintain a single, merged audit log of all
user accesses to the applications within the scope of protection. This function saves
us the difficulty of collecting and merging disparate session logs from all the
systems.

SSSO servers replace multiple user logins with one single, strong authentication. The
strong authentication could be one-factor (a standard user ID and password), two-factor

Security Components 297

(token authentication or challenge/response mechanisms using Smartcards), or three-
factor (biometric verification of fingerprints, thermal scans, retinal scans, or voice recog-
nition) authentication.

The SSSO service manages all subsequent authentications transparently unless an
exception on a backend server requires user intervention or if a user session exceeds a
timeout period. If a session times out, the user might be asked to reauthenticate or the
SSSO service might be trusted to provide new credentials (if the backend application
permits). In the latter case, we can replace the application session timeout with an
SSSO server timeout interval, which is shared across all backend applications. This pro-
cedure would prevent the user from seeing too many session timeouts, actually coming
from multiple backend servers, in a single login session.

Some SSSO servers also support their own access control lists and custom management
tools. Access control lists enable us to organize the user population into groups, simpli-
fying user management. SSSO solutions range from thin clients, which are normally Web
based, to very thick clients that take over the user’s client workstation—replacing its
interface with a custom launch pad to all permitted applications. The user authenticates
to the launch pad, which then manages any interactions with the SSSO server and back-
end applications. SSSO solutions belong to three broad categories that do have overlaps.

Scripting Solutions
Scripting servers maintain templates of the entire authentication conversation required
for each application and automate the process of interacting with the application by play-
ing the role of the user. The scripting server maintains a database of user IDs and pass-
words for each target application. Scripting solutions require little to no modification of
backend servers and are therefore quite popular with legacy applications. The user’s pass-
word might still be in the clear, however. All scripting solutions execute some variation of
the following steps: authenticate, request a ticket, receive a ticket, request an access script
using the ticket, receive the correct script, and play the script to legacy system.

Strong, Shared Authentication
Strong, shared authentication normally does not require the client to interact with a
third party for accessing backend services. Instead, the user owns a token or a certifi-
cate that unlocks a thin client on the user host that enables transparent access to all
applications that share the common strong authentication scheme. The user could
insert and unlock a Smartcard in a local Smartcard reader, enabling applications to
issue challenge/response authentication conversations directly to the Smartcard. SSH
(discussed in a later section) also provides a measure of secure single sign-on.

Another example is PKI. PKI promises SSSO through certificate-based client authenti-
cation. The authentication is shared because the scope of single sign-on consists of all
applications that share a CA. Recall our description of mutual SSL authentication from
Chapter 8, “Secure Communications.” Although the standard Web-based client authen-
tication from a Web server seems User ID and password based, it still qualifies as strong
authentication because the password does not travel across the network but is

H I G H - L E V E L A R C H I T E CT U R E298

only used to decrypt the local private key file. The private key also does not travel over
the network but is used to decrypt an encrypted nonce challenge from the server. Cer-
tificate-based schemes are not completely free of third-party dependencies, but these
dependencies are commonly on the server side in the form of accesses not to authenti-
cation services but to directories. The application might have a local CRL or might
query an OCSP server. The client, however, does not have a third-party network depen-
dency after initial configuration of user, server, and CA certificates and certification
paths (unless the client wishes to verify that the server’s certificate is not revoked).

Network Authentication
Network authentication servers such as Kerberos, DCE, RSA Security Ace Servers, and
many homegrown or commercial SSSO solutions all require the user to first authenti-
cate over the network to an Authentication Server (AS). The AS will provide creden-
tials for accessing backend systems through tickets. Network authentication servers
use strong credentials and can encrypt links to backend servers.

Web-based authentication servers often use browser cookies as authentication tokens.
The client connects to the application Web server, which hands off the URL request to a
Web-based AS. The AS authenticates the user and redirects them back to the applica-
tion server. The AS also stores a record of the event which it sends to the application’s
backend server to build a separate session object. The application server now accepts
the client connection and places a cookie on the user’s workstation to attest to the fact
that he or she has access rights on the server until the session object (and therefore the
cookie) expires. Many Web applications can share a single AS to achieve single sign-on.

Secure SSO Issues
SSSO has not seen the widespread acceptance that one would expect if we believed
vendor promises. This situation is largely because of deployment and evolution prob-
lems with SSSO solutions in production. There are many assumptions of usage that the
vendor makes that simply do not hold true in actual enterprise environments.

The first critical question for an application architect contemplating SSSO within the
enterprise is, “Should I buy a vendor solution or build my own?” Each choice has unique
integration costs. Homegrown solutions might lack quality, might not port to new plat-
forms, or might require custom development on servers and clients. Commercial solu-
tions might not be a good fit for the problem domain.

Here are some common problems with SSSO solutions along with issues to be raised at
the review:

Centralized administration. Initially, user administration might be more complex
than the current ID/password schemes because the burden to coordinate passwords
is transferred from the user to the administrator of the SSSO solution. This step
requires planning, user training, and back-out strategies to prevent lockouts from
errors. Audit logs must be maintained, and access failures must be reported. If the
backend server does not know that it has been the target of a determined but

Security Components 299

unsuccessful access attempt, it might not erect defenses in time to prevent other
security holes from being exploited (perhaps to defend against a DDOS attack).

Client configuration. Setting up each client workstation takes some effort. Some
vendors use Web browsers or provide portable SSO client stubs that are easily
modified as the solution evolves. Others involve more effort to update and manage.
The administrator must add all of the user’s applications to the client and ensure
that the user is forced to authenticate to the client stub before invoking any
application. The SSO solution could support both SSO and non-SSO access from the
client, where the latter would require authentication—but this process is both a
maintenance headache and a source of misconfiguration errors that could lock the
user out or that could enable unauthenticated access.

Server configuration. SSO vendors may have different backend authentication plug-
ins ranging from no change whatsoever to the backend to adding new authentication
daemons. Encryption between client and SSO server may not extend all the way to
the backend application. Legacy systems that only accept passwords in the clear
over the network are vulnerable to password sniffing attacks. If both the client and
the server supported encryption, we could mitigate this risk.

Password management. Each vendor has a unique set of responses to queries about
passwords. Are passwords passed in the clear between the client and the legacy
system? Are scripts stored with embedded passwords, or are passwords inserted
into scripting templates before presentation to the client? How does the SSO server
store passwords safely? How are passwords aged? How do scripts respond to
changes in the authentication dialog between client and legacy host? How are
duress passwords handled?

Coverage growth. Have we considered the stability, extensibility, administration,
architectural complexity, and licensing costs of the SSSO solution? As more
systems come online and wish to share the SSO service, how do we manage
growth?

Single point of failure. Is our SSSO solution highly available? Is the SSSO server a
very large, single point of failure? What about emergency access in a crisis?

Interoperability. Does the SSSO solution conform to standard authentication
protocols? The SSSO server might have links to third-party service providers: ACE
token authentication servers, corporate HR databases, corporate LDAP directories,
or Kerberos V5 authentication servers (in secondary SSSO roles). Homegrown
solutions run into complications as we add technologies: PKI, Windows NTLM,
Kerberos tickets, DCE cells, or PAM modules.

Transitive trust. Once access is granted to a backend server, transitive trust
relationships originating from the server to other hosts might cause unexpected
consequences. When administration is centralized, we might lose the fine details
of how to correctly configure security on a host and overstep the stated goal of
transparent access to this server by unwittingly permitting access to other services.

Mixing of credentials. The user might abuse access provided through one
authentication path by requesting tickets to other hosts. Assuming that an

H I G H - L E V E L A R C H I T E CT U R E300

TE
AM
FL
Y

Team-Fly®

authenticated user will not have malicious intentions toward other applications
might be an error.

Firewalls. Does the domain of SSO coverage span multiple networks? Should this
functionality be permitted?

An SSO product is unlike other security products in one regard. It is not easily replaced.
SSO solutions are customer-facing and have intangible investments associated with
them such as mind-share among users who view the sign-on process as part of their
applications, and costs associated with training and administration. Because users
directly interact with SSO components (unlike, say, a firewall or IDS) replacing the
component can only be done with their approval. SSO solutions that turn into legacy
systems themselves present unique headaches. Turning off the solution might be unac-
ceptable to its customers, and maintaining it might be unacceptable to IT business own-
ers. The product may be working correctly in that it provides access to an important set
of applications, but it may be inflexible, prohibiting the addition of new applications or
not permitting client software or hardware to change. The vendor for the product:

■■ Might no longer exist (this situation bears explicit notice because of the man-in-
the-middle role of SSSO servers)

■■ Might have been acquired by another company that no longer supports the original
commitment for evolution

■■ Might not support new and essential applications that you wish to add to the SSO
coverage

■■ Might refuse to port the solution to new operating systems

■■ Might fail to interoperate with essential security services, such as corporate LDAP
directories, that are now the database of record for user profiles

Large enterprises might have multiple SSO solutions through reorganizations, mergers, or
legacy environments. This situation can easily become as large a headache as the original
SSSO-less environment. Which server owns which application? Should the solutions be
consolidated (good luck convincing the user population of the solution that goes away
how much better things will be now)? How do we retire an SSO solution which, as you
discover after you turn it off, can turn out to be the only way to reach some critical sys-
tem? Fortunately, several emerging SSO technologies, from Web-based solutions to pro-
prietary portal products, promise to be good choices for adaptability and evolution.

Public-Key Infrastructures

PKI is arguably the most well known of any of the security components that we will dis-
cuss in the chapter. Although vendors claim that PKI enables an impressive list of secu-
rity properties, experience with actual deployments tells us that there is much more to
a successful PKI than buying a vendor product, turning it on, and walking away.

There are many open standards around PKI, including the PKCS standards from RSA
Labs, the IETF PKIX standard, the X.500 Directory Standard (ITUT), the X.509v3 (ITUT)

Security Components 301

Certificate Standard, and the Online Certificate Status Protocol (OCSP). PKI enables
many secure applications and protocols, including SSL, S/MIME, SET, and IPSec.

Integrating our applications with PKI technology requires some discipline on our part.

■■ We must have some agreement on the cryptographic primitives used among all
participants implementing higher-level application protocols that layer on top of
PKI (which in turn is layered on top of the mathematics of public key
cryptography).

■■ We must describe what we plan to do with certificates in our applications. Will we
authenticate users? Will we publish software? Will we protect communications?
Will we implement other higher-level protocols?

■■ We must develop certificate practice statements that apply to our business domain
that clearly state acceptable corporate use of certificates.

■■ We must have a corporate-wide security policy that governs certificate use.

■■ We have to select standards-compliant products for long-term interoperability over
noncompliant, feature-rich solutions. The replacement cost of PKI must be
considered.

■■ We must understand the legal implications of depending on the PKI. How will
these affect our business?

Before we can discuss the architectural issues surrounding PKI, we must first under-
stand what we are attempting to accomplish by buying and installing one. Security is
difficult in our Internet-enabled world because it carries the burden of transforming
high-level and familiar assertions of the business world into electronic properties that
we can depend on for online transactions. PKI advocates tell us that the PKIs will help
us define and achieve security assurance, gain confidence in our dealing with cus-
tomers, protect us from liability, serve as insurance against tampering, form the basis
for forging business agreements, and enable us to present credentials to parties who
have no fore-knowledge of our existence. This order is tall, indeed.

Security in heterogeneous, diverse environments appears to present an unmanageable
problem. According to [FFW98], however, the basic trick to managing the unmanage-
able is to exploit trust. PKIs enable trust and therefore promise a path to securing our
applications within our constraints.

The unit of digital identity in a PKI is the certificate. A certificate is a digital document
that binds identifying credentials to the public half of a cryptographic key pair. The dig-
ital signature of a trusted third party, known as a CA, ensures the authenticity and
integrity of the digital certificate.

The X.509v3 standard defines the format and encoding rules for digital certificates. The
certificate contains the following components:

Entity-identifying credentials. Along with the user’s public key, the certificate
holds a common name, which is an attribute value list that uniquely identifies the

H I G H - L E V E L A R C H I T E CT U R E302

user in the organization. The attributes include the Organization, Organization Unit,
Location, Phone, City, State, e-mail fields, and so on, along with their values.

Certificate properties. These properties include the certificate validity period (from
date of issue to date of expiry), serial number, and the signing CA.

A PKI deployment consists of one or more of the following entities.

Certificate Authority
The CA issues certificates. All participating entities, either certificate holders or veri-
fiers, trust the CA. Any entity that requests the CA to issue a certificate must provide
some proof of identity. Once issued, the entity must abide by the CA’s Certification
Practices Statement, which codifies the procedures used by the CA. The content of the
CPS is critical because the CPS will affect the level of trust that other users will place in
an entity’s certificate.

Certificate authorities also issue a list of revoked certificates, called a Certificate Revo-

cation List (CRL). The application must decide how the CRL will be made available.
Potentially, clients could periodically pull the list, servers could periodically push the
list to all subscribed clients, or the client could invoke a synchronous Online Certificate
Status Protocol request to verify a certificate’s status.

Parties that do not agree on a certificate authority can still resolve differences by look-
ing up certification paths (which are hierarchically ordered lists of CA certificates,
where each child is digitally signed by a parent CA) until they find a common, trusted
third party. Another alternative to establishing trust is cross certification, where two
CAs mutually vouch for one another.

Registration Authority
A Registration Authority (RA) is an interface that handles the process of applying for a
certificate. Some implementations of PKI couple the RA and CA functions to increase
security, but for most deployments it make more sense to separate the interface to a
Proof of Identity Manager that authenticates requests for certificates, from the CA,
which can now be replaced if necessary. The RA must authenticate the user’s identity,
either by querying a human resources database, physically visiting the person, seeing a
badge, or by using biometric techniques. Once the user is authenticated, the RA pro-
duces standard credentials that can be presented to a CA along with the actual certifi-
cate request form.

Separating the RA from the CA is also good in applications where we have loose cou-
pling and more of a B2B flavor of interaction. A large enterprise might have several PKI
instances. This situation is common when legacy PKI applications cannot be turned off,
users install small application-specific certificate servers, administrative challenges are
too great, or if many new client applications crop up in the enterprise, requiring an addi-
tional layer of insulation between the registration and certificate creation process. Sev-
eral RAs can share a CA, and several CAs can front a single RA (in case the application

Security Components 303

wishes to keep registration and authentication credentials on separate boxes for politi-
cal or technical reasons).

Repository
PKIs need to store persistent data on the entities that have been issued certificates thus
far. The CA stores certificates and Certificate Revocation Lists in a directory. Clients
can access the directory, most often by using LDAP, to query the certificate database for
a peer entity’s certificate or to verify that a presented certificate that has passed the sig-
nature and expiry checks has not been revoked.

The X.500 standard for directory services enables clients to access directories by using
the Directory Access Protocol, which is quite cumbersome to implement. The Univer-
sity of Michigan developed LDAP as a “front end” used to implement directory services
to X.500 directories. We discuss directories in some depth in a following section.

An LDAP Server can be implemented over a full X.500 directory, but this function is not
essential. The backend data store can be a commercial database, a flat file, or even be
generated dynamically on demand.

Certificate Holders
Certificate holders are entities that need certificates to accomplish work. Examples
include the following:

■■ Users on Web browsers using client certificates for authentication and single
sign-on

■■ Web servers implementing SSL

■■ Developers signing applets and ActiveX controls

■■ PKI-enabled applications such SSH or other flavors of secure Telnet, FTP, rlogin,
mail, or news

■■ Middleware products; for example, CORBA clients and servers using IIOP over SSL

Certificate Verifiers
A certificate verifier is a participant in a PKI-enabled transaction that does not require a
certificate but requires PKI services in order to verify a digital signature on a document,
decrypt a document, or authenticate an access.

Certificate verifiers can store certificate details locally but in general will look up cer-
tificate details from a repository.

PKI Usage and Administration
From a client’s perspective, much of the detail of PKI-enabled applications happens
under the hood, transparent to the user, except perhaps for a performance penalty. The
burden on the user is reduced to registering and requesting a certificate, proving iden-

H I G H - L E V E L A R C H I T E CT U R E304

tity, retrieving the certificate, verifying its authenticity, and storing the corresponding
private key safely (possibly encrypted on the local drive, on removable media, or on a
token of some kind).

From the perspective of the business process owner of a PKI and its systems adminis-
trator, we have much more work to do. The administrator must issue certificates, han-
dle revocation, consolidate certificates for the organization, manage the certificate life
cycle including expiry, reissue lockouts due to forgotten passwords, or replacement in
the event of compromise. The administrator might also be required to conduct key
recovery, nonrepudiation, and other risk mitigating activities—further increasing the
effort required.

One of the most important tasks for a business process owner for PKI lies in enforcing
the Certificate Practices Statement. Noncompliant participants might have their cre-
dentials revoked because their poor behavior could result in a much wider system
compromise.

PKI Operational Issues
A PKI can, if successfully deployed, add to the reliability, availability, and scalability of
your application. It is necessary to align the application’s non-functional requirements
to those of the PKI itself. For example, if even one of your applications is mission criti-
cal, you might need to create plans to conduct backup, recovery, and disaster manage-
ment for the new PKI component.

Another issue in large organizations is fragmentation across organizational boundaries
for geographic or political reasons. This situation can result in multiple sources for cer-
tificates in the enterprise. Application architects need guidance in determining which
one of many PKI solutions will be left standing in the next year or so. Multiple CAs nor-
mally crop up because of evolutionary reasons. Old projects that are early adopters are
loath to turn off their perfectly functional PKI solution, but at the enterprise level, the
number of issues surrounding certificate distribution, roaming or remote user usage,
status checks, and embedded nonstandard feature use all contribute to the problem of
embedded legacy security.

Some of the hardest problems surrounding PKI architecture relate to organizational
issues.

■■ What if a laptop holding sensitive information is stolen? Do we require key
recovery if a user loses his or her private key? Do we replicate all encrypted
information with a copy encrypted with a shared corporate key? What if that
corporate key is compromised? How do we ensure consistency and correctness?

■■ Can we transition from one PKI to another? The transition plans for changes in
certificate authority must figure out who owns and continues to operate the old
PKI components and supports legacy clients with unexpired certificates.

■■ What legal liabilities do PKIs introduce? How do we assert contractual rights in a
digital world enabled through PKI? Nonrepudiation is a hard problem in the real
world.

Security Components 305

Firewalls

A firewall is a network device placed between two networks that enforces a set of
access control rules called the firewall’s access control policy on all traffic between the
two networks. Firewalls placed around the perimeter of a corporate intranet defend the
corporate network’s physical connections to an untrusted network; for example, a part-
ner network or the Internet. We refer the interested reader to two excellent books on
firewalls, [CB96] and [ZCC00], along with Marcus Ranum and Matt Curtin’s Internet

Firewall FAQ from the comp.security.firewalls newsgroup on the Web.

Large corporations often have multiple networks to support geographically separated
sites, to separate mission-critical services from general corporate networks, or as rem-
nants of a corporate merger or acquisition. In these scenarios, we might have to route
our application traffic across multiple firewalls, traversing several trusted and untrusted
networks from the user to the application. Network topology determines firewall place-
ment. Firewalls enable corporations to implement security policy at a coarse level by
separating poorly configured or insecure hosts from the Internet and direct harm.

A single firewall can link several networks together if it supports multiple interfaces. The
interface to each network enforces an incoming and outgoing access control policy on all
traffic to and from the network. Some firewalls even permit dynamic rule configuration and,
in the event of an attack, will modify the security policy automatically. In Chapter 10, “Web
Security,” we introduced the DMZ configuration by using a firewall with three interfaces.

Firewalls are very good at the following actions:

■■ Guarding choke points on the network.

■■ Collecting security logs on all traffic into and out of the corporate network for
later analysis.

■■ Presenting the external face of the corporation through public Web sites and
services on a DMZ, providing product information, or serving as a mail gateway to
conceal internal sensitive e-mail information.

■■ Hosting a secure gateway. SSH (described in a later section) or VPN technologies
(implemented by using IPSec, described in Chapter 8, “Secure Communications”)
enable remote users to access the corporate network securely from any untrusted
network by building an encrypted tunnel to the secure gateway on the perimeter of
the company after successfully authenticating the user at the gateway.

■■ Supporting a wireless gateway for secure communications with mobile devices
and hiding it from attackers who want to exploit the gateway’s wireless protocol
translation air gap.

■■ Hosting proxy services to hide the actual clients on the private network from
potential harm.

Firewall rule sets follow the basic pattern of access control implementation, introduced
in Chapter 3. Rules are ordered in some fashion and applied to traffic in a top-down
manner. The firewall can use a first-fit, best-fit, or worst-fit strategy to decide what to
do on a particular packet.

H I G H - L E V E L A R C H I T E CT U R E306

■■ Allow the packet through.

■■ Drop the packet with no response to the sender.

■■ Drop the packet but send an ICMP host unreachable message back to the client.

■■ Allow the packet through after setting up special conditions for monitoring the
conversation that it is part of, with the intent of changing behavior dynamically on
any suspicious activity.

Solutions that combine firewalls with IDS sensors can achieve additional levels of secu-
rity. The firewall enforces policy while the IDS measures attacks aimed at the firewall
(if the sensor is in front of the firewall) or measures our success in thwarting attacks
according to policy (if placed behind the firewall).

Firewall Configurations
Firewalls are very versatile and can appear as any of the four channel patterns intro-
duced in Chapter 4, “Architecture Patterns in Security.”

■■ Packet filters make decisions to allow or deny traffic based on the contents of the
packet header; for example, the source or destination IP address, the port numbers
used, or the protocol. Some packet filters maintain a notion of connection state or
can assemble fragmented packets.

■■ Personal firewalls, or host-based software firewalls, protect a single host from any
attacks on its network interface. PC firewalls such as Tiny Personal Firewall, Zone
Alarm, Norton Personal Firewall, or tcpwrapper (which we argued, in Chapter 4,
could also be considered a filter from a different perspective because of
granularity of access protection) all wrap a single host.

■■ Secure gateways intercept all conversations between a client network adaptor and
the gateway, building an encrypted tunnel to protect data traveling over the open
Internet. Once the data reaches the internal network, it travels in the clear.

■■ Application proxies can perform elaborate logging and access control on the
firewall because they can reassemble fragmented packets and pass them up the
application stack to a proxy version of the service. The proxy version prevents
external communications from directly accessing the internal service. We can
perform high-level inspections of the contents of the communication because we
have knowledge of the application on either endpoint. Application proxies can
support complex security policy, but they are slower than packet filters.

Firewall Limitations
Firewalls have some limitations. A firewall cannot perform the following actions:

■■ Protect applications from traffic that does not go across it. If your network routes
traffic around a firewall, perhaps through a dial-up modem or a dual homed host
linked to an insecure network, all hosts on the network are vulnerable to attack.

■■ Protect you if the firewall is misconfigured.

Security Components 307

■■ Play the role of a general-purpose host and remain secure. A firewall cannot
support arbitrary and possibly unsafe services and still enforce security policy.

■■ Protect against attackers already inside the network.

■■ Protect against traffic that is not visible; for example, encrypted data riding on a
permitted protocol or a covert tunnel using a permitted protocol as a wrapper for a
forbidden protocol.

■■ Inspect general data content for all dangerous payloads. There are too many
attacks, and each attack can be modified to defeat the signature match used by the
firewall.

Firewalls can range from expensive specialized security components with complex
configurations to free personal firewalls and cheap network appliances that perform
Network Address Translation (NAT), DHCP, filtering, and connection management.

We do not recommend putting business logic on security components such as firewalls.
This procedure is a bad idea because firewalls are normally not under your control, and
they might require out-of-band management procedures, might have implementation
errors, and might have a very specific network infrastructure purpose that is at odds
with your application. Firewalls represent single points of failure in the architecture,
and because all of our applications share a dependency on one firewall, we must engi-
neer the availability, scalability, and performance of the firewall to adequately address
the application’s needs of today and of the future.

Intrusion Detection Systems

Network intrusion detection systems identify threats launched against an organization
and respond to these threats by notifying an intrusion analyst, logging the attack to a
database, or possibly reconfiguring the network automatically to prevent the attack
from succeeding. The risk of a network intrusion cannot be evaluated in a vacuum; we
must place the attack in the context of the host under attack, its operating system, net-
work defenses, and vulnerabilities—along with the potential cost if the attack suc-
ceeds. We refer the reader to Northcutt and Novak’s excellent introduction to intrusion
detection and analysis, [NN00] for more information.

Network detection tools analyze network traffic for patterns of behavior that appear
suspicious. Because traffic volumes can overwhelm the pattern-matching abilities of
our analytic tools, we might have to filter our traffic to extract packets that conform to
some prerequisite form or property. We could choose to examine traffic by protocol,
TCP flags, payload sizes, source or destination address, or port number. Attackers can
modify traffic in many interesting ways. They could fragment packets excessively,
spoof source IP address and port information, use ICMP messages to surreptitiously
scan the network or redirect traffic, use several hosts simultaneously to launch a DDOS
attack, or build a covert tunnel inside a permitted protocol or service. An intrusion
detection system can examine traffic at many levels of granularity, from low-level mod-

H I G H - L E V E L A R C H I T E CT U R E308

ifications of physical layer information to high-level application analysis of reassem-
bled packets from fragments using knowledge of the syntax of the data (for example,
recognizing a command to delete all files on a UNIX host). Systems can come with a
predefined filter and signature set installed or can provide full programming support for
custom signature definition.

IDS configuration requires us to be very knowledgeable about networking protocols
used to get a good idea of what normal traffic looks like. Intrusion analysts must be able
to separate false positives (which are nonattacks reported by the IDS) from actual
attacks. Tools such as tcpdump can filter and capture IP packets for analysis and help
us create signatures for attacks. A packet might depart from the standard IP network-
ing protocol definitions in some particular way. It could be:

■■ Deliberately malformed in order to fingerprint a target OS (perhaps by sending an
unsolicited FIN packet to an open port or by setting and sending bogus TCP flag
values in bad packets to look at the response from the host).

■■ Designed to perform network reconnaissance on available services.

■■ Designed to deny service; for example, through a land attack (an IP datagram with
the same source and destination IP address; if a sensor encounters such a packet,
it can issue an alarm because this action definitely signifies anomalous activity).

■■ Part of an attempt to hijack an established connection.

Broadly speaking, intrusion detection solutions are composed of several components.

Sensors. Sensors detect attacks by matching network traffic against a database of
known intrusion signatures. Intrusion detection sensors attempt to operate at
network bandwidth rates and send alarms to managers. Sensors sometimes store
compiled rules and signature definitions for quicker pattern matching against traffic
as it flies by. Some sensors listen in promiscuous mode, picking up all packets on
the network; others work in tandem with a partner system or a router to target
traffic aimed at that particular host or device.

Managers. Managers merge event and alarm notifications from many sensors
deployed across the network and manage sensor configuration and intrusion
response.

Databases. Managers often store event data in (possibly proprietary) databases for
later analysis by using sophisticated tools.

Consoles. Analysts can access event data from the console to generate statistical
reports, order events by criticality, drill down into low-level detail of packet
contents, or execute commands to respond to an intrusion.

Reporting and analysis. Although network intrusion detection is often described
as real time, this situation is rarely the case. In addition to crisis management
functions, in the event of an intrusion we also need tools for offline reporting and
analysis. These activities are critical for understanding the behavior of the network.

Security Components 309

Network intrusion detection (NID) and analysis is still largely an art form. An applica-
tion must consider many factors before deploying an NID system.

Project expertise in intrusion detection. Most applications lack the expertise to
deploy and monitor IDS on a day-to-day basis (installing one and forgetting its
existence is another matter). In this situation, it is probably best not to depend on
intrusion detection systems at all. Note that we are not saying that intrusion
detection systems are bad, but if your primary role is that of a systems architect and
you lack the relevant expertise, you should not depend on one to keep you secure.
Intrusion detection systems belong in the network infrastructure category and can
create too many false positives to be stable for integrating into your architecture.
Find out what corporate firewalls and IDS policy recommend, and then hire an
expert to install and configure a commercial network ID solution. Also, budget the
resources to maintain the system and train an analyst in production for the day-to-
day incident analysis and response.

Sensor placement. Sensors cannot generate alarms on traffic they will not see.
Sensors are often placed at network chokepoints or at the junction of two separate
corporate networks with different patterns of usage (for example, research and
development versus an integrated testing network). Sensors can be placed inside
or outside the corporate firewall on the connection to the open Internet. As we
mentioned, this firewall can actually be a combination of two firewalls—one on
each side of the corporate router—or this firewall could have multiple interfaces to
partner networks, a DMZ, or the secure corporate network. One rule of thumb for
sensor placement in complicated scenarios is interface-sensor pairing, where each
network places a sensor on the inside of its interface to the firewall and installs
filters and signatures that validate the firewall’s policy for incoming traffic to their
particular network. The managers and IDS databases normally will reside on the
secure corporate network for safety.

Sensor performance. Sensors might be unable to process all the packets received
without dropping a large percentage.

Standalone or host-based sensors. Sensors can be special hardware devices,
supporting multiple network interfaces, strong security, and easy remote
management of signatures and filters. Alternatively, sensors can be host-based
software products that inspect traffic on all network interfaces on the host before
passing these on to the relevant application. A standalone sensor might represent a
single point of failure and could possibly be knocked off the network through a
denial-of-service attack without our knowledge. In the latter case, in exchange for a
performance penalty, we are ensured that we have seen all traffic to our host and
can protect the sensor itself from being brought down by using automatic process
restarts. We might have fewer interoperability and portability issues with bump-in-
the-wire sensors because they are relatively isolated from our application.

Networking protocols and host architectures. Heterogeneous host and network
environments create overlapping areas of signature coverage. Some hosts are
vulnerable to some form of attack, some network protocols have very different data
formats, or sensors might not keep up with the evolution of the underlying
communications layer.

H I G H - L E V E L A R C H I T E CT U R E310

TE
AM
FL
Y

Team-Fly®

Lookup attacks. Rather than directly attacking a host, a hacker might target naming
services used by the host for matching an IP address to a host name, an object
reference to an object name, or a hardware address to an IP address. Broken name
mappings can cause denial of service.

Tuning levels of false positives and negatives. The system administrator and
intrusion analyst must improve the signal to noise ratio on the console. Otherwise,
system administrators will abandon intrusion analysis after the initial glow of
installing and examining potential network intrusion events as it becomes
increasingly difficult to wade through this information. Generating excessive alarms
on nonevents while missing actual attacks is a common problem in many intrusion
detection deployments.

Skill level of the attacker. Attackers can foil intrusion detection systems in a
number of ways. The attacker can learn the limitations of the intrusion detection
sensor if the sensor and its alarm response to an attack are also visible. An attacker
can choose intrusions that will not be detected by the sensor or can knock the
sensor off the network to prevent it from pushing alarms correctly to the user.
Attackers can mix multiple attacks to create complexity, thereby confusing the
analyst. A patient attacker, by using data volumes under alarm thresholds, can
slowly conduct a reconnaissance of the network.

Incident analysis and response strategy. Once we decide what our policy at the
perimeter of the corporation is, and we install our IDS in the field, we must also
follow up on incident analysis and response. This process requires considerable
commitment from the architect of the application.

Unless you are designing a security system, an IDS might be beyond the application’s
capability to maintain and manage. Network intrusion detection is best left to experts.
We suggest that the application focus its architectural energies on all the other security
mechanisms in this chapter and in previous chapters. Applications should conform to
corporate guidelines for operating an intrusion detection solution, set aside resources
to purchase and run a commercial IDS, make room on the host’s performance budget
for a host-based solution, hire and train analysts, and outsource filter creation and
updates.

LDAP and X.500 Directories

Directories store information that is read often by a large group of users but modified
infrequently by a much smaller group of administrators. The X.500 standard defines a
comprehensive and powerful framework for enterprise directories. This framework
includes the following components:

An information model. The basic entity in the directory is an entry. Entries are
organized into hierarchies based on the directory schema. Each entry has a required
objectClass type field and a collection of attribute-value(s) pairs. Each objectClass
definition in X.500 lists the mandatory and optional attributes for an entry of that
class. X.500 also supports inheritance. An objectClass inherits the mandatory and

Security Components 311

optional attributes of its parent class in addition to its own attribute definitions.
Each entry has a relative distinguished name (RDN) that identifies it within the
space of all entries. The collection of all data entries is called the Directory

Information Base (DIB).

An object-naming model. The RDN of an entry identifies its position in the Directory
Information Tree (DIT). We can find the entry by following a path formed from the
name-value assertions in the RDN, from the root of the DIT to the entry.

A functional model. The functional model describes the operations that Directory

User Agents (DUAs) can perform upon Directory Service Agents (DSAs), which
collectively store the DIB. The functional model has powerful scoping and filtering
rules that allow the user to launch complex queries against the server. If the server
cannot find an entry, it can pass the query on to another DSA or return an error to
the user.

A security model. Directories can use strong authentication services such as
Kerberos or SSL, along with entry level ACLs, to control access to a particular
element of the DIB.

An access model. The Directory Access Protocol specifies the messaging formats,
order of messages, return values, and exception handling needed to query the DIB.
The DAP protocol supports a number of read, write, or access operations on the
directory. It also supports a search option that can be quite slow.

A distributed architecture model. X.500 defines a distributed architecture for
reliability, scalability, availability, and location independence. Although the standard
creates a single global namespace across the enterprise, each instance of a
directory service agent can manage all local updates and modifications quickly.
Directories share information through replication, which also provides load
balancing and high availability. The schema and attributed definitions are flexible,
allowing application extensions to the data definition in a structured manner.

X.500 directories support a range of operations including read, list, search, modify, add,
delete, bind, unbind, and abandon session. DAP uses the ASN.1 BER notation for mes-
sage encodings. Although DAP is very powerful, applications may encounter difficulties
in creating, securing, and extending responses using DAP. The ASN.1 syntax uses exten-
sive data typing and formatting rules that blow up message sizes. In addition, on a DUA
query the DSA may sometimes respond with a redirection to another DSA, rather than
providing the required response, which might add to the complexity of the client.

Lightweight Directory Access Protocol
LDAP, specified in [RFC2251] by University of Michigan researchers Wahl, Howes, and
Kille, implements a subset of the functional and operational models of DAP. LDAP sim-
plifies encodings, reduces message size, removes operations that can be simulated by
using sequences of simpler operations (such as list and read), and assumes greater
responsibility in tracking down referrals to resource requests by users, responding with
an error if unsuccessful in resolving the query.

H I G H - L E V E L A R C H I T E CT U R E312

LDAP runs directly over the TCP/IP stack, opening up directory access to a huge popu-
lation of clients and servers. LDAP not only simplifies the encoding schemes but mes-
sages use less space on average compared to ASN.1 messages, which can be quite
complex and heavy. LDAP also drops some service controls to speed up application ser-
vice. LDAP implements query scoping (which defines the part of the DIT that will be
searched) and filtering (which limits the entities searched in the query scope) differ-
ently from DAP.

Many directory vendors, including Oracle Internet Directory, Microsoft Active Direc-
tory, iPlanet Directory Server, and Novell eDirectory, support LDAP.

Architectural Issues
Directories define user and resource hierarchies, assist domain-based user manage-
ment, and provide distributed services such as naming, location, and security.
Directories play a critical role in addressing security challenges in any enterprise.

Deploying an enterprise directory has become such a specialized skill that companies
often outsource the task to directory service providers, or call on heavy doses of con-
sulting to accomplish the task. The structure of data in the organization drives the
architecture.

■■ What kind of data will we put in the directory? Is the directory for e-commerce,
network and systems administration, or user management? How do we define
schema and attributes to store user information, resource descriptions, customer
data, supplier catalogs, or systems administration information?

■■ Must we support multiple network domains? How do we partition our data across
domains? Does each domain extend the global schema in some way?

■■ Will single-tier directory services suffice or must we create a multi-tier solution
with a meta-directory at the root?

■■ What goes into the global catalog of all the subordinate directories? Is their
relationship peer-to-peer or hierarchical?

■■ Is data replicated from masters to slaves, or do we continually synchronize peer
directories?

■■ Are we using our vendor product directory to provide virtual access to information
in relational databases? Virtual access is very hard to accomplish because we are
mixing two philosophies of data organization. Directory data is read often and
written rarely, and fast access is supported through extensive preprocessed
indexing. Relational databases support a balanced mix of reads and writes and
optimize SQL queries in a completely different manner. Can we ensure that
response time for complex queries is adequate?

■■ How do we handle referrals? Can we handle queries from partner directories
(possibly not under our control), and if so, how can we authenticate and authorize
referred queries?

Security Components 313

■■ Does our data have additional structure? How does the vendor support XML? How
does the vendor support other middleware or database products?

■■ Is integration easy? Does the vendor depart from open standards, and if so, how
does this affect application interoperability, integration, and evolution?

■■ Are any security services built into the directory and meta-directory products?

As directory vendors run away from the commoditization of directory services, they
build feature-rich but noncompliant products. Architects can face interoperability
issues, lack of bug fixes, poor performance, or unwanted increases in licensing costs.
Unlike many of the other security components we present in this chapter, however,
directories do hold a central role in enterprise security architecture. For further elabo-
ration on the importance of data management for security, we refer the reader to
Chapter 15, “Enterprise Security Architecture.”

Kerberos

The Kerberos Authentication Protocol, invented in the late 1980s at MIT, enables clients
and servers to mutually authenticate and establish network connections. Kerberos
secures resources in a distributed environment by allowing an authenticated client with
a service ticket on one computer to access the resources on a server on another host
without the expense of a third-party lookup.

The Kerberos protocol is an established open IETF standard. Over the years, it has been
subjected to considerable peer review of the published open source, and all defects in
the original protocol have been closed. Kerberos has risen from a well-respected
authentication standard to a leading security infrastructure component in recent years,
after Microsoft announced that Windows 2000 and Microsoft Active Directory would
support the protocol for authentication purposes within Windows Primary Domain

Controllers (PDC).

Kerberos comes in two flavors: a simpler version 4 that runs exclusively over TCP/IP and
a more complex version 5 that is more flexible and extensible. In addition to functional
enhancements, Kerberos V5 uses ASN.1 with the Basic Encoding Rules (BER) allowing
optional, variable length, or placeholder fields. Microsoft has adopted Kerberos V5 as
the primary network authentication scheme for Windows 2000 domains (with support
for NT LAN Manager for backward compatibility with NT3.x–4.0 subdomains).

Kerberos uses symmetric key cryptography to protect communications and authenti-
cate users. Kerberos encrypts packets for confidentiality, ensures message integrity,
and prevents unauthorized access by network sniffing adversaries. Kerberos vendors
support common cryptographic algorithms such as DES and 3DES, and are adding sup-
port for the new NIST standard for encryption, the Advanced Encryption Standard

(AES).

Kerberos introduces a trusted third party, the Key Distribution Center (KDC), to the
architecture that mediates authentication by using a protocol based on the extended

H I G H - L E V E L A R C H I T E CT U R E314

Needham-Schroeder protocol, assuming a notion of universal time. The KDC authenti-
cates connection requests between client and server and grants the client privileges to
resources on the server. Each client or principal has a secret password (a master key)
known to the KDC. The KDC stores all the passwords of participating principals in an
encrypted database.

The KDC knows every principal’s secret key. If the KDC is compromised, we have lost
security entirely. Applications should require high performance and availability from
the KDC to prevent response delays or creation of a single point of failure.

Although the Kerberos standard speaks of two services, the KDC in all implementations
of Kerberos is a single process that provides both.

Authentication Service. The authentication service issues session keys and ticket-

granting tickets (TGT) for services requests to the KDC.

Ticket-Granting Service. The ticket-granting service issues tickets that allow access
to other services in its own domain or that allow referrals to be made to ticket-
granting services in other trusted domains.

When client Alice logs onto her workstation, the workstation sends an authentication
request to the KDC. The KDC responds with the following items:

■■ A session key valid for the current login session

■■ A TGT, which contains the session key, the user name, an expiration time, all
encrypted with the KDC master key

Alice must present the TGT to the KDC every time she requests to communicate with
server Bob. The TGT allows the KDC some measure of statelessness because it con-
tains all the information needed for the KDC to help Alice set up a Kerberos transaction.
Each Kerberos transaction consists of four messages, two between Alice and the KDC
(a ticket granting service request and a ticket granting service reply), and two between
Alice and Bob (an application request and an application reply). We refer the interested
reader to [KPS95] for an excellent presentation of Mediated Authentication and the
Kerberos V4 and V5 protocols for more details.

In addition to the open source Kerberos release from MIT (http://web.mit.edu/
Kerberos/), several vendors offer commercial Kerberos authentication products and
services, including CyberSafe (TrustBroker at www.cybersafe.com) and Microsoft
(W2K security at www.microsoft.com /WINDOWS2000/techinfo/).

Kerberos Components in
Windows 2000

Windows 2000 implements the KDC as a domain service, using Active Directory as its
account database along with additional information about security principals from the
Global Catalog.

Security Components 315

Windows 2000 has a multimaster architecture, where many domain controllers with
identical replicated databases share load balancing and fault tolerant network adminis-
tration services. Each domain controller has its own KDC and Active Directory service,
and the domain controller’s Local Security Authority (LSA) starts both services auto-
matically. Any domain controller can accept authentication requests and ticket-granting
requests addressed to the domain’s KDC.

Microsoft’s adoption of Kerberos within Windows 2000 is not without controversy.
Although supporters of Kerberos are complimentary of Microsoft’s decision to include
a reputable authentication protocol based on an open standard into their products, they
are critical of Microsoft’s decision to add licensing restrictions to their authorization
extensions of the Kerberos V5 protocol. Windows 2000 uses an optional authorization
data field to store a Privilege Access Certificate (PAC), a token that enables the server
to make access decisions based on the user’s Windows user group. Although the exten-
sion itself is permitted by the protocol, Microsoft’s licensing restrict prevents third par-
ties from building complete domain controllers that implement this authorization field.
Therefore, providing networks services in a Windows environment would require a
Microsoft domain controller.

One motivation for this restriction could be the lesson learned from Samba. Samba is an
example of the open source movement’s ability to replace commercial vendor products
with free alternatives, seamlessly. The Samba software suite is a collection of programs
that implements the Server Message Block (commonly abbreviated as SMB) protocol
for UNIX systems. The SMB protocol is sometimes also referred to as the Common

Internet File System (CIFS), LanManager, or NetBIOS protocol. At the heart of Samba
is the smbd daemon, which provides file and print services to SMB clients, such as Win-
dows 95/98, Windows NT, Windows for Workgroups or LAN Manager. Rather than run-
ning a Windows file or print server, network administrators can provide the same
service from a cheap Linux box using Samba.

Microsoft insists that they are motivated by a concern for interoperability. Because of
the central role Kerberos plays in the Windows 2000 architecture, Microsoft is con-
cerned that deployments of their flagship product for managing enterprise networks of
millions of objects describing the company’s users, groups, servers, printers, sites, cus-
tomers, and partners, will fail because of incompatible domain management. Along
with the Active Directory, and the policy database, Kerberos lies at the heart of Win-
dows 2000’s goals of providing domain definition, resource description, efficient
authentication, trust management, and reliable network administration. Allowing full
implementations of competing domain controller products (especially free open source
examples) may create interoperability woes that fragment the network across domains.

The difficulty lies not in Kerberos interoperability, but in providing users of Kerberos
realms under a non-Windows KDC access to services on a Windows 2000 domain. Users
could authenticate to the Windows domain but, as their tickets would not contain the
required PAC value in the authorization field, they may have no privileges. Microsoft
has suggested workarounds to this problem that create a trust relationship between the
two realms allowing one to manufacture PACs for the other for inclusion in tickets. For
an interesting discussion of this issue, please see Andrew Conry-Murray’s article
[Con01] along with the resources on Microsoft’s TechNet links.

H I G H - L E V E L A R C H I T E CT U R E316

Distributed Computing Environment

The Distributed Computing Environment (DCE) is a common set of middleware ser-
vices for distributed applications usable by multivendor, commercial applications, cre-
ated with the goal of becoming a standard platform for distributed applications. DCE is
showing its age and has been supplanted by other enterprise security components in
recent years. DCE is well defined, powerful, robust, and well reviewed, however, and
might be appropriate in certain architectures. Many vendor products support integra-
tion with DCE domains.

The Open Software Foundation created DCE to address the needs of application archi-
tects who desired to distribute monolithic applications to achieve higher availability
and reliability, enable incremental growth using server farms, and reuse network ser-
vices across applications. OSF has merged with another standards group, X/OPEN, to
form the Open Group, which currently supports the evolution of DCE.

DCE is a layered transport-independent networking protocol, and can run over UDP,
TCP, or the OSI transport layer. DCE organizes the resources of the organization into
cells. Each DCE cell is a collection of machines administered within one domain. DCE
cells are entirely independent of underlying routing layers. DCE cells are organized into
a contiguous namespace, making it easy for clients in one cell to locate and access ser-
vices provided in another cell.

Clients can access services across cells if the correct trust relationships are in place. Each
host in a cell, normally identified by a hostname in the cell directory, must run the DCE
client services. Each cell must be able to operate autonomously, containing a DCE server
providing all DCE services, including a Security server, a Cell Directory Server (CDS),
and a Distributed Time Server (DTS). The Distributed File Server (DFS) is optional.

DCE, unlike CORBA, does not support a rich collection of middleware services, focus-
ing instead on extending some of the operating system services available on a single
host to create analogous network services. DCE views a distributed application as run-
ning on top of a Network Operating System (NOS). The NOS supplies the same under-
lying services that monolithic applications derive from a single host. Like an operating
system, DCE requires a user to authenticate to the cell when they log in and obtain their
credentials. DCE can be viewed as a middleware services product that provides inte-
grated network services such as the following:

Remote Procedure Calls. Communication between DCE entities is through RPCs.

Directory Services. Applications can look up data over the network. DCE includes
several options for naming and location directory services. The CDS is used within
a local area, while either DNS or X.500 is used as a global directory service. The
DCE directory service provides a consistent way to identify and locate information,
services, and resources in the distributed environment.

Security Services. DCE provides authentication, authorization, data integrity, and
privacy. DCE security is similar to Kerberos, and indeed uses Kerberos V5-based
authentication as a configuration option. Interoperability between security services

Security Components 317

is critical if the application uses DCE cell services from different vendors products.
Vendors must be compliant with the published DCE APIs.

Distributed File Systems. DCE Distributed File Service (DFS) is a collection of file
systems hosted by independent DFS file servers. DFS clients and server systems
may be heterogeneous computers running different operating systems. DFS
manages file system objects, i.e., directories and files, and provides access to them
to DFS clients, which are users on computers located anywhere in the distributed
environment. Under DFS, remote files appear and behave very much like local files
for both users and application developers because file names are unique across
cells. DFS is integrated with the DCE directory service and depends upon it for
naming support. The file namespace of the cell directory service stores entries for
the file system objects such as directories and files.

Distributed Time Service. DCE defines a Distributed Time Service (DTS) for clock
synchronization. While not directly interoperable with the widely used NTP, DTS
can nevertheless be integrated with NTP in useful ways.

The application can use the full range of DCE services, including authenticated RPC, sin-
gle sign-on, naming, location, and security, or can use a minimal subset of services, for
example, only implementing authentication using the DCE generic security services API.

All the DCE services make use of the security service. DCE’s underlying security
mechanism is the Kerberos network authentication service from Project Athena at the
Massachusetts Institute of Technology (MIT), augmented with a Registry Service, imple-
mentation enhancements for Kerberos, authorization using a Privilege Service (and its
associated access control list facility), and authenticated RPC. The DCE namespace has
a subdirectory for all security objects that hold user and group access privileges. DCE
uses the optional authorization data field for storing privilege ticket-granting tickets

(PTGT) to extend the basic Kerberos authorization framework. DCE also uses its own
encryption and message integrity mechanisms implemented at the RPC level instead of
depending upon Kerberos’s cryptographic mechanisms. DCE uses only the key material
from Kerberos in these mechanisms.

Authentication across cell boundaries is permitted only if the two cells have a trust rela-
tionship established between them. This trust relationship allows a user in one cell to
access a remote server in another cell transparently. For a small number of cells, setting
up a trust relationship between each pair of cells is not difficult, but for a larger number
of cells this can be a burden. Some proposals exist for creating structure across the
cells, organizing the cells into hierarchical trees or forests, much like the description of
Active Directory domains in our description in an earlier section. Some DCE vendors
support this functionality.

The Secure Shell, or SSH

SSH, the secure shell, is a client/server protocol for encrypting and transmitting data
over an untrusted network. SSH provides secure communications for any standard
TCP/IP application and protocol. SSH supports a number of authentication options

H I G H - L E V E L A R C H I T E CT U R E318

including passwords, host IDs, public key handshakes, Kerberos, and PAM, and can use
strong authentication, such as SecurID tokens or smart cards. SSH also transparently
secures communication between existing clients and servers using port forwarding.

There are two versions of the SSH protocol. Version 1, developed in 1995 by Tatu Ylö-
nen at Helsinki University of Technology in Finland, and version 2, developed in 1998 by
Ylönen and other members of the IETF Secure Shell working group. The two versions
are not compatible, and open source and commercial products for both protocols exist.

Although SSH is available for a wide variety of platforms, it is predominantly used
on Unix. SSH closes many security holes for Unix systems administrators by replacing
the Berkeley remote r-commands: rsh, rcp, rlogin, rexec, and so on, with secure
alternatives. There are many websites on the SSH protocol and products including
www.ssh.com, www.openSSH.com, and www.f-secure.com. We also refer the reader to
Barrett and Silverman’s excellent and comprehensive book, SSH: The Definitive Guide

[BS01].

Administrators can use slogin instead of rlogin to connect to remote hosts, ssh instead
of rsh to run shell commands on remote hosts, scp instead of rcp to copy files, sftp
instead of FTP for secure file transfers, and so on. Users launch a client process ssh-
agent once during each login session. The agent holds the unlocked private key and
brokers all further ssh handshakes transparently. SSH can perform TCP port forward-
ing to encrypt data passing through any TCP/IP connection, conduct reverse IP lookups
to protect against DNS spoofing, provide access control on the server based on Unix
user names or groups, and vendors provide some support for key management and
OA&M (although not enough).

SSH solves a specific security need in a transparent manner. SSH can use strong public
key cryptography to authenticate clients and servers, but the products have the same
deployment, interoperability, and management issues as PKI. SSH has many features
and configuration options that make it a powerful and flexible security component,
easy added to any security architecture. Operational complexity and performance are
the major architectural issues.

The Distributed Sandbox

Security is a disabling technology in that it puts up barriers, asks for identification,
checks passports, and slows down conversations through encryption, and in general
requires you to not trust any new conversation initiated with your system. These secu-
rity walls serve an important purpose in securing your application against the very real
dangers that exist over the open network that might harm or disable your network.

Not all security components play the role of guard dog, however, preventing access by
unknown users. In recent times, several interesting distributed applications have been
proposed to harness the idle computational power of the vast network of personal com-
puters, possibly numbering in the hundreds of millions, that are on the Internet today.
Many informally organized networks to solve problems that are amenable to distrib-
uted, parallel computing using these resources exist in the world today.

Security Components 319

We mentioned globally distributed applications in Chapter 4 in passing, while dis-
cussing the sandbox pattern. As desktop workstations continue to follow Moore’s law,
solutions to harness the collective power of networked computers has become an
attractive area of research. The fear of being hacked prevents many folks from partici-
pating, however.

We call a software solution that allows a distributed application to tap the resources of
many idle networked workstations a distributed sandbox. Each workstation runs a
client as a low priority process that uses system resources only when available. Such a
client must have minimal privileges because, outside of CPU cycles and limited mem-
ory use, the distributed application should have no access privileges on the host. The
distributed sandbox should not need to know any details of the underlying host, its
operating system, its file system, devices, users, or networking. Indeed, our ability to
guarantee the secrecy, privacy, and priority of the user on the client host is critical
to gaining widespread acceptance. No one wants to run a Trojan horse. Our solution to
create a distributed sandbox must guarantee safety of the client host, by controlling all
resource requests and communications with sandbox controllers, and rapidly returning
control to the user if requested.

Many important problems can be solved if every networked host provided a secure dis-
tributed sandbox that can tap the idle potential of the computer, with no detrimental
affect on the user. Any solution, by which a computer can provide a small part of its
CPU, memory, and connectivity toward a common computational infrastructure, must
satisfy some security properties.

■■ The sandbox will be implemented for all platforms. The construction of a true,
distributed sandbox would require the participation and support of all OS vendors.

■■ The sandbox will have the lowest system priority and will cease to consume any
resources if the user initiates any computational task.

■■ The sandbox will have no access to and will be unable to harm the underlying
system on which it runs.

■■ The sandbox will communicate with other instances of the sandbox in very
flexible ways sharing information, receiving requests, processing requests, and
communicating results to some central point of control.

■■ The sandbox construction will be sufficiently abstract to allow new distributed
applications that can use the enormous power of such a vast computational base.

■■ Above all, the sandbox will be secure.

Distributed applications have been used to solve a diverse collection of problems. Here
are a few examples:

■■ Factoring composite numbers with large prime factors. The ECMNET Project runs
distributed integer factorization algorithms using elliptic curves and has found
factors over 50 digits long for certain target composites such as large Fermat
numbers.

■■ Brute force password cracking. The EFF DES cracker project and Distributed.Net,
a worldwide coalition of computer enthusiasts, have cracked DES challenges

H I G H - L E V E L A R C H I T E CT U R E320

TE
AM
FL
Y

Team-Fly®

(www.eff.org/descracker/) by using a network of nearly 100,000 PCs on the
Internet, to win RSA Data Security’s DES Challenge III in a record-breaking 22
hours and 15 minutes.

■■ DNA structural analysis. The distributed analysis of vast amounts of DNA data,
searching for biologically interesting sequences, has tremendous research
potential.

■■ Massively parallel simulations. Distributed simulators where many users run a
climate model on their computers using a Monte Carlo simulation to predict and
simulate global climate conditions.

■■ Analysis of radio wave data for signs of extraterrestrial signals. Millions of people
have joined SETI, probably the most famous distributed computing project, to
process radio signals from space collected in the search for life on other planets.

As computationally intense problems become increasingly relevant to our lives, build-
ing distributed sandboxes will become a cost-effective and invaluable option for their
resolution.

Conclusion

The information technology infrastructure in any company of reasonable size is a com-
plex collection of hardware and software platforms. Cheaper computing power and
higher networking bandwidth have driven computing environments to become more
distributed and heterogeneous. Applications have many users, hosts, system interfaces,
and networks, all linked through complex interconnections.

Application architects designing security solutions for these systems must use common
off-the-shelf components to absorb and contain some of this complexity. There are
many popular security components that we do not have the space to present in detail,
for example security tools such as the following (and many others):

■■ tcpwrapper (ftp.porcupine.org/pub/security/)

■■ tripwire (www.tripwiresecurity.com/)

■■ cops (www.cert.org)

■■ nmap (www.insecure.org/nmap)

The CERT website maintains a list of popular tools at www.cert.org/tech_tips/
security_tools.html. In this chapter, we have covered a fraction of the ground, leaving
many technologies, products, standards, and their corresponding architectural issues
unaddressed.

Some new technologies can make your life as a security architect miserable. Our fast
laptops and desktop machines have spoiled us, and raised our expectations for quality
of service, interface functionality, or bandwidth. Wireless and mobile computing with
PDA-type devices, for example, can add significant challenges to security. They extend
the perimeter of visibility of the application to clients with limited computational mus-
cle, memory, or protocol support. They introduce new protocols with poorly designed

Security Components 321

and incompatible security and add multiple hops to insecure gateways, perhaps owned
by untrusted ISPs. Some vendors—Certicom, for example—have created lightweight
yet powerful cryptographic modules for these devices, but for the most part we must
wait until they mature before we can expect any real usability from so constrained an
interface.

In the following chapter, we will discuss the conflicts faced by a security architect
from the vantage point of the goal targeted, rather than the component used to achieve
security. This discussion sets the stage for our concluding chapters on the other chal-
lenges faced by the application architect, namely security management and security
business cases.

H I G H - L E V E L A R C H I T E CT U R E322

C H A P T E R

323

In this chapter, we will emphasize non-functional goals that describe quality in the sys-
tem independent of the actions that the system performs. In previous chapters, we dis-
cussed our architectural choices among security components and patterns for
accomplishing functional goals, which are goals that describe the behavior of the sys-
tem or application under normal operational circumstances. Functional goals tell us
what the system should do. Software architecture has other non-functional concerns
besides security. Applications have requirements for performance, availability, reliabil-
ity, and quality that are arguably more important than security in the mind of the system
architect because they directly affect the business goals of the application.

There are many perceived architectural conflicts between security and these other
architectural goals. Some of these conflicts are clear myths that bear debunking; others
reveal underlying flaws at some more fundamental level that manifest as tensions in the
application. Still more represent clear and unambiguous dissension while recommend-
ing an architectural path. We must separate these other architectural goals into those
that are complementary to the needs of secure design; those that are independent of
secure design; and those that are at times at odds with the goals of secure application
design.

In this chapter, we will introduce a simple notion, the force diagram, to represent the
tensions between different architectural goals and security. We will then proceed to
classify our non-functional goals into three categories to discuss the affects of security
architecture on each.

■■ Complementary goals, which support security

■■ Orthogonal goals, which through careful design can be made independent of
security

■■ Conflicting goals, which are inherently opposed to security

14
Security and Other
Architectural Goals

Metrics for Non-Functional Goals

Applications differ in their definitions of non-functional goals and in the quantitative
measurement of achieving these goals. This situation constrains us to generalize some-
what as we present each goal. It is helpful to sit down with the customer and review
concrete feature requests and requirements to attach numbers to the goals. The archi-
tecture document should answer questions at the architecture review.

■■ How many minutes of annual down time a year are permissible?

■■ How will software defects be classified, measured, and reported?

■■ Does the application require testing to certify to a maximum number of critical
modification requests per release?

■■ Do we have firm estimates of average, peak, and busy time data rates?

■■ Does the business require several applications to share a highly available
configuration to save hardware costs? Can your application coexist with other
applications on a host?

■■ Do we have some idea of where future growth will take us?

■■ How many of our conflicts in supporting non-functional goals are actually caused
by vendor product defects?

These and many other issues will further illuminate the actual versus perceived differ-
ences between security and our other application goals.

Force Diagrams around Security

Force diagrams are a simple means of expressing a snapshot of the current state of an
application. Force diagrams pick one particular architectural goal (in our case, secu-
rity) and map the tensions between this goal and other non-functional goals. Our main
goal, security, pulls the system architecture in one direction. Other goals support,
oppose, or are indifferent to the design forces of security.

It is important to note that force diagrams are always with reference to a single archi-
tectural goal and say nothing about the relative conflicts between other goals. For
example, we will show that performance and portability are both in conflict with secu-
rity, but that does not mean they support one another. On the contrary, they are often
internally at odds. A portable solution that uses a hardware abstraction layer to insulate
the application from the underlying platform might be slower than one that exploits
hardware details. Conversely, a fast solution that exploits chip instruction set details on
one platform might not be portable to another hardware platform. Force diagrams only
classify other goals into three buckets with respect to a reference goal.

It is also important to note that the relationship shown by force arrows between the ref-
erence goal and another architectural goal might represent a causal link or might only
represent a correlation. In the former case, achieving one goal causes improvement or

H I G H - L E V E L A R C H I T E CT U R E324

High availability
Robustness
Reconstruction of events

Ease of use
Adaptability
Evolution

Performance
Scalability
Interoperability
Maintainability
Portability

Security Opposed goals

O
rt

h
og

on
a

l g
oa

ls

System
Architecture

Figure 14.1 Normal tensions in an application.

deterioration in attainment of the other goal; in the latter case, one goal does not cause
the other goal to succeed or fail but only shares fortunes with it. Rather, some other fac-
tor plays a part in representing the true cause of the design force. This factor could be
the experience level of the architect, some constraining property of the application
domain, limits on the money spent on accomplishing each goal, or the ease with which
we exploit common resources to accomplish both goals.

Normal Architectural Design
In Figure 14.1, we show a typical system—a composite of the many actual applications
that we have seen in development or in production—that exhibits normal architectural
tensions. The application is normal in the sense that it pays some attention to conflicts
with security but not in an optimal manner.

Note that the reference goal of security appears on the arrow to the left, denoting its
special status.

Complementary Goals

The goals of high availability, robustness, and auditing support our reference system
goal of security.

High availability—and its other incarnation, disaster recovery—requires the architect
to create systems with minimal down times. We must incur considerable costs to
ensure high availability. Applications must purchase redundant servers, disks, and net-
working; deploy complex failover management solutions; and design detailed proce-
dures for transferring control and data processing from a failed primary server to a
secondary server. Failover mechanisms that restore a service or a host attacked by a

Security and Other Architectural Goals 325

hacker clearly support security goals, assuming that the secondary server can be pro-
tected against a similar attack. High availability often supports security through intan-
gibles such as careful design and application layout, better testing, and hardening of the
production application against common failures that could be prerequisites to an
attack.

Robustness, the property of reliable software systems, is achieved through data collec-
tion, modeling, analysis, and extensive testing. Code that is tested is less likely to have
exploitable buffer overflow problems, memory leaks through pointer handling, array
bounds check errors, bad input functions, or division by zero errors that cause core
dumps. Throwing bad inputs at code, capturing use-case exceptions, or using well-
designed regression test suites and tools all help improve code quality. Testing also
catches many problems that might manifest as security holes in the field, that once dis-
covered can be closed in development before deployment. Robust software is rarely in
release 1.0. Higher release numbers often mean that the development team has had
some time to address goals (such as security) that were secondary concerns in early
releases.

Auditing is a basic security principle, and secure applications record all important sys-
tem events and user actions. Security audit trails support the reconstruction of events.

Orthogonal Goals

Ease of use, adaptability, and evolution are largely independent of the quality of secu-
rity within the application.

Ease of use is a human factors goal. An application that has ergonomic design has an
intuitive user interface and clear navigational controls. The usability goal of SSO to
multiple applications in the domain can affect security. The application might need to
build a special interface to an SSSO server.

Applications must consider service growth. The ability to add features, change func-
tionality, or add muscle to the underlying platform as business needs change is critical
to any application.

In any case, poor security architecture can create conflicts and tensions by unnaturally
restricting the user’s options. Inferior security components can hinder application
growth, and applications might be forced into choosing between business feature sup-
port and security. Well-designed applications can catch and address many of these
issues successfully at the architecture review.

Conflicting Goals

The goals of performance, interoperability, scalability, maintainability, and portability
are often in considerable and direct conflict with security architecture proposals.

Performance. Security solutions add layers of authentication and access control to
every operation. Applications that use security service providers, trusted third

H I G H - L E V E L A R C H I T E CT U R E326

parties, or directories in the architecture see additional network delays because of
local and network accesses introduced for security purposes.

Interoperability. Interoperability between clients and servers in heterogeneous
environments that otherwise can communicate in insecure mode might fail when
security is added. Many protocols that are certified as interoperable have teething
problems when security is thrown into the mix. An example described in previous
chapters was CORBA interoperability using SSL.

Scalability. The application might estimate growth rates in data feeds, database table
sizes, and user population correctly but might forget to consider security. Each
additional authentication check that needs to look up a user database for an
identity, or each authorization check that references a complex management
information base of object and method invocations before granting access, adds a
burden to our operational resource budget. Can we ensure that bulk encryption on
our communication links is fast enough as data rates increase? Are our database
tables that store security events large enough? Can our security solution scale to
support much larger user populations? We might be surprised when we run out of
resources in the field in spite of our performance models predicting no problems.

Maintainability. Our ability to service the application might be constrained by
unusual security controls that restrict access or might require extensive manual
updates and synchronization of information.

Portability. Our ability to change any element of hardware, software, or networking
within our application might be limited by the availability of an equivalent,
interoperable security component to replace the one being retired.

Good Architectural Design
In Figure 14.2, we show a typical system—a composite of the many actual applications
in development or in production that have conducted and passed architecture review
and security assessment—that exhibits good architectural tensions. The application is
good in the sense that it pays considerable attention to conflicts with security, makes a
conscious effort to resolve conflicts, and addresses gaps in achieved results through
clear definition of methods and procedures and through user and administrator training.

Complementary Goals

The goals of high availability, robustness, and auditing continue to support security as a
system goal.

Orthogonal Goals

The goals of interoperability, scalability, and maintainability have been added to ease of
use, adaptability, and evolution as goals that are largely independent of security within
the application.

Security and Other Architectural Goals 327

High availability
Robustness
Reconstruction of events

Ease of use
Adaptability
Evolution
Scalability
Interoperability
Maintainability

Performance
Portability

Security Opposed goals

O
rt

h
og

on
a

l g
oa

ls

System
Architecture

Figure 14.2 Good tensions in an application.

Conflicting Goals

The goals of performance and portability remain in conflict with security architecture goals.
We reach the surprising conclusion that some goals are, despite all of the vendor promises
in the world, fundamentally opposed to secure design. The best course for an application
architect lies in acknowledging this fact and acting to mitigate it, rather than ignoring the
conflicts or compromising quality by sacrificing security to other architectural goals.

Recognition of the conflicts at an early stage affords applications and their owners the
opportunity of doing things differently—perhaps buying more hardware, changing data-
base definitions, reorganizing user groups, reworking the network architecture, or switch-
ing vendor products. Conflicts left unresolved at least have the virtue of documentation,
along with the possibility that at some future time the evolution of the application and the
products it depends upon will result in resolution of the conflict.

In the following sections, we will expand upon each of these goals and its relationship
to security to explain why we cannot achieve perfection.

High Availability

High availability is the architectural goal of application resiliency against failures of sys-
tem components. Resilient systems that guarantee service availability normally
describe maximum down time as a percentage of the average system up time and the
average total time between each failure and recovery. The degree of availability of a sys-
tem is described by the following formula:

Availability = Mean Time Between Failure
Mean Time Between Failure + Mean Time To Recover

H I G H - L E V E L A R C H I T E CT U R E328

The Mean Time Between Failure (MTBF) is a composite of the individual MTBF values
of the individual components. The Mean Time to Recover (MTTR) depends upon the
particular details of the high-availability solution put in place by the application archi-
tect. The highest level of system availability that is practical for commercial applica-
tions today is the famous five nines level. A system that has 99.999 percent availability
will have only five minutes and 15 seconds of down time a year. Marcus and Stern’s
Blueprints for High Availability [MS00] is a good reference for the configuration of
highly-available systems.

Enterprise applications are complex, distributed collections of hardware, software, net-
working, and data. Applications also have varying definitions for the term down time,
and the proposed options for HA architecture show varying levels of responsiveness,
transparency, automation, and data consistency. Highly available systems must achieve
resilience in the face of many kinds of failure.

Hardware failures. The physical components of the application server might fail. A
disk crash might cause data loss; a processor failure could halt all computation by
causing a fatal OS exception; a fan failure could cause overheating; or a short
circuit or loose cabling within the cabinet could cause intermittent and arbitrary
system failure.

Software failures. The underlying OS could crash and require a reboot (or worse, a
rebuild). The software components on the system, such as middleware products,
database processes, or application code, could fail.

Network failures. Connectivity to the network could fail locally through a network

interface card (NIC) or cable or on an external router, hub, or bridge. If the failure
occurs on a chokepoint in the architecture, we might lose all service.

Infrastructure failures. The application servers could go down because of power
loss, overheating from an air conditioning failure, water damage, failed ISPs, or lack
of administrative personnel at a critical failure point.

Solutions for high availability use many technologies and techniques to mitigate the risk
of failure. In Figure 14.3, we show an example of a highly available application and
describe its features.

Layered architecture. In our example, we run a trusted or hardened version of the
operating system and install a failover management system along with our
application.

Robust error recovery on the primary. The application, running on a primary
server, has software and hardware monitors that continually report to error
recovery processes on the health of the application. Daemons that die are restarted,
process tables are pruned of zombies, error logs are automatically moved off the
server if they grow too large, traffic on failed NICs is routed to redundant NICs, and
the file system size (for example, swap or temp space) is closely monitored and
cleaned up. In the case of drastic events, perhaps disk failures or complete
disconnects from all networks, the application can automatically page an
administrator or shut down to prevent contention with the secondary, which
presumably has taken over.

Security and Other Architectural Goals 329

Hub

Network
Interfaces

Trusted OS

High Availability
Software

Application

SCSI I/O

SCSI I/O

Fibre
Channel

Network
Interfaces

Trusted OS

High Availability
Software

Application

SCSI I/O

Fibre
Channel

Fibre
Channel

SCSI I/O

Private Heartbeat Cable

Hub

Dual homed
Dual ported

Multiplexers
Fibre

Channel

RAID controllers

Mirror

Root Disk

Mirror

Root Disk

FDDI Ring

RAID

Data
Disks

RAID

Data
Disks

Figure 14.3 High-availability configuration.

Primary and secondary servers. High-availability configurations use server pairs or
clusters of several servers to design failover configurations. In our example, the
application runs on a primary server and is connected to a designated secondary
server by a private heartbeat cable. The heartbeat itself has to be protected from
disconnects through redundancy, and the primary must always have the processing
resources to maintain a steady heartbeat. The heartbeat can run over the network,
but it is safer if the two servers (if collocated) are connected by using a private line.
When the secondary detects no heartbeat, it can query the primary to confirm
failure. The failover management software will migrate ownership of the
application data, current state, any shared hardware caches, IP addresses, or
hardware addresses.

Data management. Disk arrays can contain their own hardware management level,
complete with hardware RAID controllers, hardware cache, and custom
management tools and devices. Storage vendors provide software RAID and logical
volume management products on top of this already reliable data layer for
additional resiliency. In our example, we have separate, private mirrored disks on
each server for storing the operating system and static application components,
which include binaries and configuration files. We have redundant, multiplexed,
Fibrechannel connections to shared mirrored RAID arrays for application data,
which can be reached through multiple paths by both primary and secondary
servers. The shared disks can belong to only one server at a time, and we must
prevent data corruption in split-brain conditions (where both servers believe that
they are active). We could also use logical volume management, which could
provide software RAID. Software RAID moves disk management off the disk array
and onto our servers. This action might add a performance hit, but the additional

H I G H - L E V E L A R C H I T E CT U R E330

TE
AM
FL
Y

Team-Fly®

benefits of transparent file system growth, hot spare disks, and high-level
monitoring and alarming are worth it.

Network redundancy. If the network is under the stress of heavy traffic, it might
incorrectly be diagnosed as having failed. There is no magic bullet to solve this
problem. We can build redundant network paths, measure latency, remove
performance bottlenecks under our control, or maintain highly available network
servers for DHCP, DNS, NIS, or NTP services. Each server in our example is dual
homed with redundant ports to the corporate intranet over an FDDI ring. Each host
has multiple NICs with two ports each that connect to the public and to the
heartbeat network. We could also consider additional administrative network
interfaces to troubleshoot a failed server in the event of network failure. (Please
refer to [MS00] for examples.)

Multi-server licensing. The primary and secondary servers have separate software
licenses for all the vendor components on our application.

Applications that are considered mission critical might also require disaster recovery.
Disaster recovery servers are not collocated with the HA configuration but are sepa-
rated geographically and configured to be completely independent of any services at
the primary site.

Security Issues
Solutions for high availability complement security. There is a correlation between all
the care and consideration given to recovery from failure and fault tolerance, and
efforts by application architects to test applications for security vulnerabilities, such as
buffer overflow problems, poorly configured network services, weak authentication
schemes, or insecurely configured vendor products.

The solutions for security and high availability often appear in layered architectures to
separate concerns. At the hardware level, our HA configuration manages faults in com-
ponents such as hardware RAID and NICs. We layer a trusted or hardened version of
the operating system in a security layer over this level. The failure management soft-
ware runs as a fault-tolerant layer on top of the operating system. Finally, the applica-
tion implementing all other security authentication and authorization checks appears in
a layer above the FMS solution. This lasagna-like complementary structure is a com-
mon feature of HA configurations.

Security does add additional caveats to HA configuration.

■■ If we support SSL on our Web servers, then we should ensure that certificate
expiry on the primary Web server should not occur at the same time as expiry on
the secondary server.

■■ All security information (including the application users, profiles, ACL lists, and
configuration) must be replicated on all elements of the cluster.

■■ Security components, such a firewall or tcpwrapper, on a failed network interface
must be migrated along with the correct configuration to a new interface.

Security and Other Architectural Goals 331

■■ Placing the application software upon a private disk on the primary can cause the
application state to be local to the primary. Upon a failure, the user might be
required to authenticate to the secondary server.

■■ The disaster recovery site should have the same security policy as the primary site.

High-availability configurations cannot help security in all circumstances. For example,
our primary server might fail because of a distributed denial-of-service attack.
Migrating the application, along with IP address and hostname, to the secondary server
can restore service for a few seconds before the secondary fails for the same reason.

Robustness

Robust applications ensure dependable service in the face of software or hardware fail-
ures. Robustness is related to the twin attributes of dependable service: availability and
reliability. We have presented the property of high availability in the last section; we
now present the property of reliability, which enables us to meaningfully quantify the
MTBF and MTTR values that we used in computing the availability of an application.
We recommend Michael Lyu’s Handbook of Software Reliability Engineering [Lyu96],
the most comprehensive introduction to the field available. Although some of the tools
are somewhat dated and the theoretical analysis of toy applications might not extend to
your application’s needs, this text remains an essential reference for any practicing
architect.

Reliability is the property of preventing, detecting, or correcting faults in a graceful
manner without degradation of system performance. The requirements for quality
assurance are stated in concrete, measurable terms: What is the probability that the sys-
tem will operate without failures for a specified period of time, under specific circum-
stances and environmental factors? The ability to quantify software failure is critical.
The MTBF and MTTR of each component in a system consisting of multiple subsystems
and components needs to be considered in order to estimate the reliability of the archi-
tecture as a whole.

Software reliability engineering (SRE), originally considered an art learned only
through experience, has grown into a mature discipline. SRE provides the following
elements:

■■ A framework for research and development on reliability, including mathematical
foundations, terminology, tools, and techniques.

■■ A definition of the operational profile of an application describing the application’s
behavior, resource allocation, and expected usage in the field. The operational
profile and the actual software defect information of a running application enable
us to collect data for modeling behavior. Fault data is valuable only under the
stationary assumption that past behavior will be a predictor of future events.

■■ Many mathematical models of software reliability using statistical and probabilistic
principles, each built upon a formal set of assumptions of application behavior,

H I G H - L E V E L A R C H I T E CT U R E332

fault incidence, and operational profile properties for the estimation, prediction,
and analysis of software faults.

■■ Techniques for evaluating the success in prediction and prevention of faults of a
particular model, including feedback mechanisms to improve the model’s
parameters to more closely approximate application behavior.

■■ Best practices, software monitoring and measurement, defect categorization, trend
analysis, and metrics to help understand and implement the results of failure
analysis.

■■ Guidance for choosing corrective measures.

SRE is concerned with analyzing the incidence of failures in software systems through
defects in coding or human errors that result in interruptions of expected service. We
can estimate future failures by using several failure measures captured in SRE models.
For example, SRE defines the cumulative failure function (CFF) as the sum of all fail-
ures since startup to any point in time. We can derive other failure measures, such as
the failure rate function (FRF), from the CFF. The FRF measures the probability that a
failure will occur in a small interval of time after time t, given that no failures have
occurred until the time t.

The four pillars of SRE are as follows:

Fault prevention. Avoid the creation of faults in the design phase of the architecture.

Fault removal. Detect and verify the existence of faults and remove them.

Fault tolerance. Provide service in the presence of faults through redundant design.

Fault and failure forecasting. Under the stationary assumption, estimate the
probability of occurrence and consequence of failures in the future.

The core of SRE is based on methodologies for testing software. Although theoretical
models for predicting failure are very important, software testing remains the last best
chance for delivering quality and robustness in an application. SRE expert John Musa
estimates that testing consumes 50 percent of all resources associated with high-volume
consumer product development (for example, within desktop operating systems, print
software, or games) and mission-critical enterprise software development (for example,
within military command and control systems or the Space Shuttle program).

A reliable system that provides continuity of service is not necessarily highly available.
We need the HA configurations described in the last section to make a reliable system
satisfy some benchmark, such as the five nines availability goal. Making an unreliable
system highly available would be a mistake, however, because availability of service
means little if the application fails on both primary and secondary servers due to soft-
ware faults. High availability stands upon the foundations built by using SRE.

Binary Patches
SRE assumes that defects discovered through software testing can be fixed. Without
extensive testing, however, we cannot be sure that the patched code is free of both the

Security and Other Architectural Goals 333

original and any newly introduced bugs. Security patches tend to target replacements
of individual files in a product or application. Architects rarely run a full regression test
against the system after an OS vendor or product vendor issues a software patch. In
general, we trust that the patch has been tested before being released for use by the
general public.

One mode of introducing security fixes is through binary patches. Binary patches refer
to hacks of hexadecimal code to fix a problem in executables that we do not have
source code for inspection. This item is different from a vendor patch. The vendor has
access to the source, modifies the source, tests the correctness of the fix, and then
builds a patch that will modify an installed buggy instance correctly. One reason why
vendor patches are so large is that they eschew cut-and-paste strategies for the whole-
sale replacement of files. This situation is the only circumstance in which the modifica-
tion of binaries should be allowed, and even in this circumstance, hard evidence that
the patch works should exist in a development instance of the system.

Some developers directly hack binary code in production to fix security holes. Exam-
ples include using “find-replace” programs that can search for statically allocated
strings that leak information and replace them with other presumably safer strings.
Without knowledge of how a specific compiler sets aside static buffers in an executable
file, this action could be dangerous. Searching for strings can result in false positives.

■■ The patch might modify the wrong strings, introducing impossible-to-debug errors.

■■ Even if we only target valid strings, the replacement string should not be longer
than the original string to prevent overflowing onto other bytes.

■■ Cut and paste will probably work if the new string is shorter, but did we remember
to correctly terminate the new string?

■■ Verification through testing is very hard. Where do we allow the patching of
binaries to happen? Cutting a binary open and directly pasting bytes into it might
cause file integrity problems, versioning problems, and testing problems.

■■ How do you test the correctness of a modified binary? Testing the original was
hard enough. Who certifies that the patches will work as advertised?

Enterprise software development should use well-defined configuration management
tools to handle all aspects of code versioning, change management, and automated build
and testing procedures. Patching binaries breaks the model of configuration manage-
ment, introducing an exception process within the accepted mode of managing a release.
We strongly recommend not performing this action from an architectural standpoint.

Security Issues
Security as a system goal is aligned with the goal of system reliability. The prevention of
malicious attacks against system resources and services makes the system more
dependable. Making the system more reliable, however, might not always result in
higher security, outside of the benefits accrued from increased testing.

Although advocates of SRE lump malicious failure with accidental failure, this blurring
of boundaries is largely inadvisable. The models of fault analysis are not helpful in esti-

H I G H - L E V E L A R C H I T E CT U R E334

mating the occurrence of malicious attacks, because security exploits violate the sta-

tionary assumption. History is no predictor of future failure when it comes to system
compromise. We cannot accurately measure metrics such as the rate of occurrence of
failures, the cumulative failure function, or the mean time between failures in circum-
stances where hackers actively exploit vulnerabilities.

SRE mathematical models assume that failures caused by software defects occur
according to some standard probabilistic model; for example, modeling the failure
occurrence process by using homogeneous Poisson processes (HPP, discussed in our
section on Performance ahead). Hackers can deliberately create scenarios considered
impossible by the model, however. The HPP model predicts that the probability that
two complex (and seemingly, by assumption), independent defects will both result in
failure within the same small time interval is vanishingly small. If we consider malice a
possibility, the probability might be exceedingly high.

The assessment methods discussed in Chapter 2, “Security Assessments,” are the best
mechanisms for thwarting threats to system integrity.

Reconstruction of Events

We use the term reconstruction of events to represent any activity within an application
that records historical or transactional events for later audit or replay. Systems that
implement this architectural goal support the concept of system memory. The system
can remember its past from application startup or from some safe system state up to
the point of failure or error.

The goal of event reconstruction through comprehensive auditing appears in many
forms in applications.

■■ Databases implement two-phase commits to ensure that multistep transactions are
completed from start to finish or are rolled back to a safe state.

■■ Some applications log operations to transaction logs as deltas to the system state
that are later transferred to a central location for consolidation with the master
database (some older automated teller machines work in this manner).

■■ Journaling File Systems (JFS) borrow data-logging techniques from database
theory to record any file operations in three steps: record the proposed change,
make the actual change, and if the change is successful, delete the record of the
first step. This process permits rapid file system restoration in case of a system
failure, avoiding expensive file system checks on all file and directory handles.

A crucial requirement of reconstruction is system auditing. The system must record
events either within the system log files, database, or a separate log server.

Security Issues
Auditing is a core security principle. It helps the system administrator review the events
on a host. What processes were running? What command caused the failure? Which

Security and Other Architectural Goals 335

users were on the system? Which client did they connect from? What credentials did
they present? How can we restart the system in a safe state?

Event reconstruction has an important role in the prosecution of perpetrators of secu-
rity violations. Our ability to prove our case, linking the attacker to the attack, depends
on the quality of our logs; our ability to prove that the logs themselves are complete,
adequate, and trustworthy; and that the attack happened as we contend. Normally, this
situation is not a technical issue but a social or legal issue. That the events occurred as
charged is not in dispute as much as whether we can link these events to a particular
individual. This action requires that all the entities on the connection path from the
attacker to the application maintain some historical data through connection logs, dial-
up access databases, system files, successfully validated passwords, and network paths.

Auditing also helps in the area of Security Data Analysis. This area is a new application
with the potential for rapid growth as data standards improve. Once we have security
standards across applications for event management and logging, we can extract,
merge, and analyze event information. Once we overcome the challenges associated
with synchronizing events across application boundaries and separate system clocks
we will see the benefits of merging security audit data for analysis. This functionality
can lead to powerful new knowledge about the state of security in the enterprise. We
could analyze log data by using data mining, case-based reasoning, multi-dimensional
visualization, pattern matching, and statistical tools and techniques. These tools could
compute metrics or extract new knowledge, providing valuable feedback to architects
about the root causes of intrusions, top 10 lists of vulnerabilities, predictions of poten-
tial intrusion, patch application compliance, or best security practices.

We must take event reconstruction seriously or run the risk of succumbing to an exploit
with no ability to analyze failure. We might lack the ability to recover from the attack or
adequately prove in a court of law that some particular individual is guilty. If our system
is used as an intermediary to launch attacks on other hosts, we run the risk of legal lia-
bility unless we are able to prove that the attacks did not originate from our host
(although we might still be liable to some extent, even if we are able to prove this fact).

Ease of Use

Ease of use is a human factors goal. Usability engineering has grown from a relatively
uncommon practice into a mature and essential part of systems engineering.
Applications that take the user’s capabilities and constraints into consideration in the
design of products, services, interfaces, or controls see the benefits in intangibles such
as increased customer satisfaction, customer retention, and increased frequency of use
—possibly accompanied by tangible results such as increases in revenue and productiv-
ity and reductions in costs through avoided rework. Ease of use also enables applica-
tions to transfer more complex tasks to the user, such as self-ordering,
self-provisioning, or account management, that would otherwise require telephone sup-
port and customer service representation.

Usability engineering formalizes the notion that products and services should be user-
friendly. Making the user’s experience simpler and more enjoyable is an important goal

H I G H - L E V E L A R C H I T E CT U R E336

for system architecture. Usability engineering stresses the importance of the following
features:

Simplification. Does the application just make features available, or does it make all
activities easier and simpler to execute? How much of the information on any
displayed screen is actually needed to accomplish the tasks on that screen?

Training. How much effort does it take to bring a novice user up to speed in the
effective and productive use of the application? How much of this time is due to
inherent complexity of the application, and how much is due to confusing design, a
poor choice of mnemonics, excessive use of jargon, or poor information hiding?

Dependency. False dependencies are stated prerequisites of information or experience
that are actually not needed for a majority of activities within the application. How
many false dependencies does the application place upon the user?

Navigation. Is it easy to find what the user wants from the start screen of the
application? Does the application have a memory of the user’s actions? Can a user
retrace history or replay events multiple times instead of manually repeating all of
the steps from the original point?

Accessibility. Will people with disabilities use the application? Do we provide
alternative access options that support all of our potential users?

Ergonomics. We must take into account the look, feel, heft, and touch of the user
interface. Is the screen too noisy and confusing? Is the keypad on a handheld device
too small for most people? Is the screen too bright, the controls too high, the joystick
too unresponsive, or the keystroke shortcuts too hard to type with one hand?

Repetitive use. How much stress does the user experience from repetitive use of the
application’s controls?

Performance. Is the response time of the application excessively slow?

Good usability engineering practices create reusable designs and architectures and cre-
ate a shared and common vocabulary for entities across many applications within a sin-
gle business domain.

Security Issues
For the most part, ease of use and security do not conflict with one another. The two
main points of contention are ease of security management and SSSO.

Security Management

Administering security in a heterogeneous environment with a large user and applica-
tion population can be very difficult. Vendors provide management tools for particular
products, but these tools rarely interoperate with one another or with standard moni-
toring and alarming frameworks without some investment in development and integra-
tion. Many tools provide GUIs or command line text-based tools along with thick
manuals on options and usage. There are no standards or guidelines on how security

Security and Other Architectural Goals 337

management should be accomplished across security components. For example, con-
sider the case of highly available configurations that must maintain synchronized user,
password, and access control lists across all secondary or clustered servers to ensure
that the failover authenticates and authorizes the user population correctly. If we do not
automate this process and create integrity and sanity scripts to verify state synchro-
nization, we run the considerable risk of starting a secondary server after a failure with
an incorrect security configuration.

Manual management of security administration is awkward and error prone. Ease of
use is critical in security management because of the risk of errors. If our process for
adding, deleting, or modifying users is complicated, manual, and repetitive, it is almost
guaranteed to result in misconfiguration. Our methods and procedures must be intu-
itive, automated, and scriptable, and we must be able to collect and review errors and
alarms from security work. Handoffs are also a problem, where the responsibility for
one task is split across several administrators who must complete subtasks and call
back when the work is complete.

Applications can use commercial trouble-management tools that can aid efforts to
administer security. These tools provide a formal process of trouble ticketing, referral,
and ticket closure along with support for tracking and auditing work.

Secure Single Sign-On

It is important to recognize that SSO is a usability feature that sometimes masquerades
as a security feature. Please refer to Chapter 13 for a detailed description of SSO, the
architectural options for accomplishing SSSO, and some of the pitfalls around imple-
menting SSO with commercial solutions.

A well-designed, secure SSO solution will greatly enhance security. We add one note to
our description of SSSO to warn architects of the additional burdens that a poor SSO
solution can place on the application. SSSO is not worth pursuing in certain situations,
where the administrative headache of maintaining special clients on user workstations
and managing scripts for a rapidly changing population of users and servers is too great
or in situations where incompatibility with new application hardware and software
causes multiple incompatible sign-on solutions to coexist. It is not SSO if you still have
to remember 10 passwords, three of which are to disjoint SSO services.

A good commercial SSSO solution will have the virtues of stability, extensibility, secure
administration, architectural simplicity, and scalability. SSO solutions have to be
amenable to adding systems that wish to share the SSO service. A poorly designed SSO
solution might actually make the application less safe by encouraging a false sense of
safety while hiding implementation flaws.

Maintainability, Adaptability, and Evolution

We present these three non-functional goals together because all three are independent
of conflicts with security for many of the same reasons. Maintainability relates to the

H I G H - L E V E L A R C H I T E CT U R E338

care and feeding of a delivered application in its current incarnation, whereas adapt-
ability and evolution relate to the application’s projected evolutionary path as business
needs evolve.

Because of the vast number of evolutionary forces that an application could experi-
ence, we cannot present a detailed description of methodologies for creating easy-to-
maintain, flexible, and modifiable applications. We refer the reader to [BCK98] for a
description of some of the patterns of software architecture that make these properties
feasible within your application.

Security Issues
Applications should develop automated, well-documented, and tested methods and
procedures for security administration and as far as possible minimize the amount of
manual effort required to conduct basic administrative activities. Please refer to
Chapter 11, “Application and OS Security,” for a discussion of some of the operations,
administration, and maintenance procedures for security.

Security adaptability concerns arise as users place new feature demands on the system.
Interfaces add more objects and methods, screens add links to additional procedures
and data, new partner applications request access, and new access control require-
ments are created as the application grows. All of these issues can be addressed
through planning and flexibility in the architecture. Some applications even use code
generation techniques to define a template of the application and use a configuration
file to describe the structures in the current release. This template and configuration is
used to generate shell scripts, C, C++, or Java code; Perl programs; database stored pro-
cedures for creates, updates, inserts, and deletes; or dynamic Web content. Code gener-
ation reduces the risks of errors and can result in tremendous productivity gains if
embraced from release 1.0. Code generation reduces the probability of incorrect secu-
rity configuration while making analysis easier, because we only need to review the
template and configuration files for correctness as the application changes.

Evolutionary forces can create security problems. Corporate mergers and acquisitions
can create unusual evolutionary forces upon an application that can seriously stress its
security architecture. The application might be thrown, along with other dissimilar pro-
duction applications from another company’s IT infrastructure, into a group where all
perform the same business process on the surface but contain huge architectural con-
flicts underneath the hood. Systems must adapt to the addition of large numbers of new
users or dramatic changes in the volume or structure of the underlying data. New
authentication mechanisms and access control rules might be needed to support the
complex task of integrating security policy across the combined enterprise. There are
no magic bullets to solve this problem.

Security assurance, in the event of a corporate merger or acquisition, of all the informa-
tion assets of the new corporate entity is a very difficult proposition. Architecture plan-
ning and management are critical. Architects faced with the challenge of integrating
two or more diverse information technology infrastructures from the assets of the com-
panies involved must recognize constraints through documenting the existing architec-
tural assumptions, system obligations, and notions of security administration.

Security and Other Architectural Goals 339

It helps if the legacy applications are supple in their design, each bending to meet the
requirements of the combined solution. We must accept any implicit constraints and
prevent the proposed security architecture from oppressing the system’s functional
architecture. Sometimes we must make hard choices and turn one application off,
migrating its users and data to another application. At other times, we must maintain an
uneasy peace between coexisting applications and develop a message-passing architec-
ture to link the features of each.

Scalability

Scalability refers to data growth as opposed to feature growth, our concern in the last
section. Scalable applications are architected to handle increases in the number of
requests received, the amount of data processed, or expansion of the user population.
Architects must factor in growth for all application components, which includes head-
room for growth in the database, file system, number of processors on any server, addi-
tional disk storage media, network interface slots, power requirements, networking, or
bandwidth.

Security Issues
Good architectural design will normally not produce conflicts between security and
scalability. Many of the architectural patterns that support scalability, such as separa-
tion of concerns, client/server architecture, communicating multithreaded process
design, scalable Web farms, or scalable hardware clusters do not inherently oppose
security.

Scalability can adversely affect security management if we do not have a plan to man-
age the growth in the user population or in the object groups that must be protected
from unauthorized user access. Conversely, poor implementations of security (for
example, a slow database query for an ACL lookup or a call to verify a certificate’s sta-
tus) that might be adequate for today’s performance standard might seriously impact
response times as the application grows.

Scalability is addressed by adding headroom for predicted growth. We must similarly
add headroom for growth of our security components: Firewalls must be able to handle
additional rules as the client and server population grows more complex; routers must
be able to support growth in traffic without creating additional latency when applying
access control lists; directory lookups for user profile information should be reason-
ably fast; and user authentication intervals should not seriously degrade as the popula-
tion grows.

Vendor products often exhibit unnecessary ceilings because they do not estimate the
future needs of the application. Some of these ceilings can be easily increased, but others
could represent genuine limits for the application. For example, Windows NT 3.x–4.0
domains could originally support only around 40,000 users in a domain because of the
40MB limit Microsoft imposed upon the Security Accounts Manager (SAM) database.

H I G H - L E V E L A R C H I T E CT U R E340

TE
AM
FL
Y

Team-Fly®

This population is large, but with multiple user accounts in a large enterprise with cus-
tomers, contractors, and partners thrown into the mix, we can easily hit this limit. This
situation resulted in ugly configurations with multiple domains that partitioned the under-
lying user population for scalability reasons. Microsoft has increased the Active Directory
database sizes in Windows 2000 domains to 17 terabytes, supporting millions of objects
[CBP99]. Scalability makes security administration cleaner.

Interoperability

Interoperability has been the central theme of several of our technical chapters:
Chapter 8, “Secure Communication,” Chapter 9, “Middleware Security,” and Chapter 11,
“Application and OS Security.” Please refer to our discussion of two areas of security
related interoperability issues in these chapters.

Interoperability requires vendors to perform the following actions:

■■ Comply with open standards.

■■ Fully document all APIs used.

■■ Use standards for internationalization such as Unicode for encoding data.

■■ Choose data types for elements on interfaces in a standard manner and publish
IDL and type definitions.

■■ Provide evidence through certification and test suite results that they are
interoperable with a standard reference implementation.

■■ Add message headers for specifying encodings, Big- versus Little-Endian data
orders, alignments for packed data, and version numbers.

■■ Restrain from adding custom bells and whistles unless done unobtrusively or in a
manner that enables us to disable the extensions.

Security Issues
The basic theme is that vendor products for communication that interoperate must con-
tinue to do so when the communication is secured.

■■ Security administration across applications. Many tools provide custom GUIs or
command line security management utilities. Largely, because there are no
standards around how security management should be accomplished, these tools
rarely interoperate with one another. Automation through scripts results in some
gaps because of differences in granularity and options available.

■■ Secure communications over an interface. We extensively described the impact
of interoperability issues in the CORBA security arena, along with administration
and security management problems, in Chapter 9. Interoperability issues could
include incompatible cipher suites, subtle errors in implementations of

Security and Other Architectural Goals 341

cryptographic libraries, no shared or common trusted certificate authority, data
format issues, encoding issues on security headers, or differences in the exact
version of security solution used (even in a single vendor environment, possibly
due to backward compatibility issues).

Performance

As applications become more complex, interconnected, and interdependent, intuition
alone cannot predict their performance. Performance modeling through analytical tech-
niques, toy applications, and simulations is an essential step in the design and develop-
ment of applications. Building test beds in controlled environments for load and stress
testing application features before deployment is a common component of enterprise
software development.

Performance models enable us to analyze, simulate, validate, and certify application
behavior. These models depend upon theoretical foundations rooted in many mathe-
matical fields, including probability, statistics, queuing, graph, and complexity theory.

Performance models represent unpredictable system events, such as service request
arrivals, service processing time, or system load by using random variables, which are
functions that assign numerical values to the outcomes of random or unpredictable
events. Random variables can be discrete or continuous. Many types of discrete, ran-
dom variables occur in performance models, including Bernoulli, binomial, geometric,
or Poisson random variables. Similarly, many types of continuous random variables
also occur in performance models, including Uniform, exponential, hyper-exponential,
or normal random variables.

The collection of all possible probabilities that the random variable will take a particu-
lar value (estimated over a large number of independent trials) is the variable’s proba-
bility distribution. Other properties, such as the standard deviation, expected value, or
cumulative distribution function, can be derived from the probability distribution func-
tion. A performance model might be composed of many random variables, each of a dif-
ferent kind and each representing the different events within the system.

A function of time whose values are random variables is called a stochastic process.
Application properties, such as the number of incoming service requests, are modeled
by using stochastic processes. The arrival process describes the number of arrivals at
some system during some time interval (normally starting at time 0). If the inter-arrival
times between adjacent service requests can be represented by statistically indepen-
dent exponential random variables, all with rate parameter λ, the arrival process is a
Poisson process. If the rate parameter λ of the process does not vary with time, the
Poisson process is said to be homogenous. Queuing models that assume that new
arrivals have no memory of the previous arrival history of events describe the arrival
process as a homogeneous Poisson process (HPP).

Poisson processes are unique because of three properties:

H I G H - L E V E L A R C H I T E CT U R E342

■■ The number of arrivals during an interval does not depend upon its starting time
but only upon the interval length.

■■ The numbers of arrivals occurring in nonoverlapping intervals are statistically
independent.

■■ The probability that exactly one request arrives in a very small time interval t is λt.
The expected value of arrivals per unit time, called the arrival rate, is the rate
parameter λ of the exponential random variable used for representing inter-arrival
times.

Poisson processes are powerful because they approximate the behavior of actual service
arrivals. One stream of events represented by using a Poisson process can be split apart
into multiple Poisson processes, or many Poisson processes can be combined into one.

Queuing theory uses mathematical models of waiting lines of service requests to repre-
sent applications in which users contend for resources. If the model captures the appli-
cation correctly, we can use standard formulas to predict throughput, system and
resource utilization, and average response time.

Analytic techniques produce formulas that we can use to compute system properties.
For example, Little’s formula is a simple but powerful analytic tool often used by appli-
cation architects. Little’s formula states that the average number of requests being
processed within the system is equal to the product of the arrival rate of requests with
the average system response time in processing a request. Little’s law is applied wher-
ever we have knowledge of two of these entities and require information about the third.

Queuing models provide good estimates of the steady-state behavior of the system.
Queuing theory has limitations, however, when application loads violate the assump-
tions of the model, and we must then resort to simulation and prototyping to predict
behavior. Some queuing models for production applications are so complex that we
have to resort to approximation techniques to simplify the problem.

Application analysis through simulation carries its own risks. Generating discrete
events as inputs to our application simulator requires a good random number source
that closely matches the actual probability distribution of events in the field. Otherwise,
our results might be of questionable value. In recent news reports from the field of high-
energy physics, several researchers retracted published simulation results after peer
review found holes not in their analysis or physics but in the basic pseudo-random num-
ber generators used in the supercomputer simulations. Generating good random events
at a sufficiently high rate is a research area in itself.

Simulation tools such as LoadRunner are a valuable part of the architect’s toolbox.
Architects use load and stress test automation tools to quickly describe the details of
simple user sessions and then sit back and watch as the software generates thousands
of identical events to simulate heavy loads. Simulators are invaluable for validating the
assumptions of peak usage, worst case system response times, graceful degradation of
service, or the size of the user population.

The actual construction of a good application simulator is an art form. Investing enough
effort to build a model of the system without developing the entire application takes

Security and Other Architectural Goals 343

planning and ingenuity. The first step is drawing clear boundaries around the system to
decide which components represent external sources and sinks for events that will be
captured using minimal coding and which components will actually simulate produc-
tion processing in some detail. Vendor products complicate simulators, because we
cannot code an entire Oracle database, IIS Web server, or LDAP directory component
for our simulator. We must either use the actual products (which might involve pur-
chase and licensing, not to mention some coding) or must build toy request/response
processes that conform to some simple profile of use. Any decision to simplify our sim-
ulator represents a departure from reality. That departure could be within some critical
component, invalidating the whole simulation run.

Security Issues
Security and performance modeling share a few technical needs. For example, the field
of cryptography also requires good pseudo-random number generators to produce
strong values for public or private keys, or within stream ciphers, to generate good
unbounded bit sequences from secret keys. For the most part, however, security and
performance are opposed to each other. One middleware vendor, when asked about the
poor performance of their security service, replied, “What performance problem?” The
vendor’s implication that we must sacrifice speed for assurance is widespread and has
some truth to it.

We should not compare two dissimilar configurations, one insecure and one secure, and
make performance comparisons unless we are certain that there is room for improve-
ment in the latter case. Insisting that security checks be transparent to the user, having
no affect on latency, response time, throughput, bandwidth, or processing power is
unreasonable.

Security checks also have the habit of appearing at multiple locations on the path
between the user and the object being accessed. Security interceptors might have to
look up third-party service providers; protocol stacks might need to call cryptographic
libraries; syntax validators might need to check arguments; or events might need to be
recorded to audit logs. This task is simply impossible to accomplish in an invisible
manner.

The first message from this essential conflict is the recognition that we must budget for
security in the application’s operational profile. We must add suitable delays to proto-
types to realistically capture the true hardware and software resources needed to pro-
vide quality security service.

Although we believe performance and security to be in conflict, we do not absolve the
vendor of any responsibility in writing fast code. Often, performance problems can be
fixed by the following measures:

■■ Profiling the security product to find performance bottlenecks and replacing them
with optimized code

■■ Providing access to optimization parameters

H I G H - L E V E L A R C H I T E CT U R E344

■■ Minimizing indirection, excessive object inheritance, or data transfers on calls
within the security code

■■ Writing custom solutions for different platforms, each exploiting hardware details
such as instruction sets, pipelines, or system cache

■■ Replacing software library calls with calls to hardware accelerator cards

■■ Ensuring that we do not have busy waits, deadlocks, or starvation on remote
security calls

■■ Optimizing process synchronization during authentication or authorization checks

■■ Security response caching

■■ Fast implementations of cryptographic primitives or protocol stacks

Vendors cannot be miracle workers, but we must require and expect due diligence
when it comes to squeezing the best possible effort out of the product.

Portability

We define application portability as the architectural goal of system flexibility. Flexible
systems respond well to evolutionary forces that change the fundamental details of
hardware, software, or networking of the application—independent of or in conjunc-
tion with feature changes. Evolution could force an application to change its database
vendor from Sybase to Oracle, its Web server from IIS to Apache, its hardware from
Hewlett-Packard to Sun, its disk cabling from SCSI to Fibrechannel, or its networking
from 100BaseT to gigabit Ethernet (or in each case, change vice versa). Application
portability requires that the same functionality that existed before should be replicated
on the new platform.

Note that this definition differs in a slight way from the normal definition of software
portability, which takes a product that works on one hardware platform and ports it to
another. In the vendor’s eyes, the product is central. It is advertised to work on some
approved set of hardware, interact with some approved set of databases, or work in
conjunction with some approved software. Our definition moves the focus from the
vendor product to our application.

Commercial software vendors and Open Source software efforts have disagreements
over the meaning of portability, as well.

Commercial software hides the source code, and the responsibility of porting the code
falls to the software vendor’s development group. Commercial software vendors,
despite many protestations otherwise, prefer certain tools and platforms. They have
distinct likes and dislikes when it comes to hardware platforms, compilers, partner
cryptographic libraries, and operating system versions. They might support combina-
tions outside this comfort zone, but the versions tend to lag in delivery times, or in fea-
ture sets, run slower and invariably have more defects than the core platform products
because of the relative experience gap.

Security and Other Architectural Goals 345

Solutions such as Java, ambitiously advertised as “Write Once, Run Anywhere,” transfer
portability issues to the underlying JVM and core Java libraries. If the vendor for the
JVM, libraries, and accessories is not up to par, then critical function calls might be
absent or broken, the JVM might have bugs, or its performance might be inferior in
some way. Some commentators have called this phenomenon “Write once, debug every-
where.” The issue is not one of being compliant to some certification standard; it might
just be that the target hardware is incapable of running a fully functional environment
(for example, if we port the JVM to a handheld device such as a Palm Pilot or to an
operating system that does not support multi-threading in processes, instead perhaps
mapping them to a single user thread in the kernel).

Open Source, however, has the powerful advantage that the basic details of how the
code works are open for inspection and modification by experts on any target platform.
Expertise in the compilation and debugging tools, specific details within hardware
instruction sets, and special features of interface development, networking, or perfor-
mance tricks can all play a part in a successful port of an Open Source product. Open
Source code tends to use a combination of two factors that aid portability.

■■ Hardware abstraction layers (HAL) in the code that contain all the dependencies
on the underlying platform

■■ Sound design decisions behind critical features that have logical parallels on other
platforms and are arrived at through some consensus on a design philosophy

Consult [VFTOSM99] for an interesting discussion of what portability means for Open
Source, especially the flame fest between Andrew Tanenbaum and Linus Torvalds on
portability in OS design and whether Linux is portable.

Our purpose is not to present a preference for one definition of portability over another
but to emphasize that you must use the appropriate definition after you pick the appli-
cation component that you wish to modify.

Security Issues
We believe portability and security are in fundamental conflict, because portability is
achieved through abstraction from the underlying hardware, and security is reduced
when we lose the ability to reference low-level platform details.

■■ Security solutions implemented above the HAL are still vulnerable to holes in the
HAL implementation and the underlying operating system beneath the HAL.
Consider a buggy implementation of the JVM running on a hardware platform.
Although we achieve portability through Java, we might run the risk of
compromise through failure of the JVM itself or through a poorly secured host,
whose configuration we have no knowledge of.

■■ Security solutions implemented beneath the hardware abstraction layer are closer
to the metal and secure the application better but now are not portable. Consider
an application that uses a vendor’s IPSec library to secure communications
between two hosts. If this particular vendor’s IPSec solution does not support a

H I G H - L E V E L A R C H I T E CT U R E346

new host platform, we will be unable to establish a connection to any host of that
platform type.

Portability issues create a new conflict in the architecture: functional goals now com-
pete with security for resources and priority. Consider the following points:

■■ Your new database vendor product cannot parse the security solution
implemented with stored procedures and functions on your old database. The
basic schema and functionality port correctly, but security must be reimplemented.

■■ Your new hardware platform no longer supports the full-featured, fine-grained
access control over resources that you expect. This feature is available if you
purchase an expensive third-party solution but carries a performance cost.

■■ Your new messaging software is not interoperable with clients in secure mode but
works fine in insecure mode.

■■ Your new networking is much faster than the old network but does not support
any of your bump-in-the-wire hardware encryption boxes.

When features that the customers want go head to head with security, security will lose
every time. We must architect for this eventuality with care, but planning and abstrac-
tion cannot conceal the essential conflict between securing a resource well and expect-
ing the solution to run everywhere.

Conclusion

The greatest challenge for an application architect lies in identifying conflicts between
goals. Recognizing the problem is half the battle. Once the tension in the design is
accepted, we can examine alternatives, plot feature changes, present technical argu-
ments for funding increases, or invest more time in prototyping or analysis. We would
not recommend paralysis through analysis, but the current popular alternative of ignor-
ing the problem and wishing it would go away does not work, either. At some later date
we will pay, either through a serious security violation, unexpected additional hardware
costs, service failures, or software patches that worsen the problem instead of solving
it by introducing new holes as fast as we can plug them.

The name of the game in this chapter is conflict management. Even if we successfully
recognize conflicts in the architecture, we are confronted with the question, “Who
wins?” Deciding on priorities is not easy. It is unreasonable to expect a tidy resolution
of all of these tensions. We have three limited resources to accomplish each of these
goals: time, money, and people—and the properties of each goal might be unattainable
under the realities of schedule deadlines, budget, or personnel.

Applications faced with this conflict abandon security. Applications that choose to
request exceptions from security policy enforcement, rather than going back to the
drawing board, do their customers a disservice. Architecture reviews can make us bet-
ter aware of the available options and provide us with the technical arguments to
request increases in any of the three constraints. Applications that take the exception

Security and Other Architectural Goals 347

H I G H - L E V E L A R C H I T E CT U R E348

path should consider whether they could convince their business customer to make an
exception of other non-functional requirements. Would the customer be satisfied if
your application processed half of the required service requests? What if it had twice
the required response time? What if the application refused to support more than half
of the user population or broke down whenever and for however long it felt like? If the
answer to these questions is “No,” why treat security differently?

Each of the architectural goals listed in this chapter has as rich and complex a history
as does security. Each rests upon an immense base of research and technology, built
and maintained by subject matter experts from academic, commercial research, and
development organizations. No single project could adequately address each goal with
resources from within the project team. Solving performance problems, building highly
available configurations, and designing high-quality human computer interfaces or
comprehensive regression test suites require external expertise and consulting.

Representing the conflicts between security, which we have devoted an entire book to,
and other goals—each with as much background—within a few pages requires some
oversimplification of the relationships, differences, and agreements that an actual
application will face. Many applications never face these conflicts head-on, sometimes
even deferring the deployment of two conflicting features in separate releases as if the
temporal gap will resolve fundamental architectural tensions.

This chapter, more than any other, stresses the role of the architect as a generalist.
Architects cannot have knowledge in all the domains we have listed but must have
enough experience to understand both the vocabulary and the impact of the recom-
mendations of experts upon the particular world of the application. Architecture
reviews are an excellent forum for placing the right mix of people in a room to add spe-
cific expertise to general context, enabling the application architect to navigate all
available options in an informed manner.

C H A P T E R

349

Enterprise security deals with the issues of security architecture and management across
the entire corporation. Corporate security groups are normally constrained to the activ-
ities of policy definition and strict enforcement across all organizations within the com-
pany. Security process owners know policy but might not have the domain expertise to
map generic policy statements to specific application requirements. Application archi-
tects are intimately familiar with the information assets, business rationale, software
process, and architecture surrounding their systems but may have little experience
with security. What should an architect do, under business and technical constraints, to
be compliant with security policy? This challenge is very difficult—one that calls for
individuals with unique, multi-disciplinary skills. Enterprise security architects must
understand corporate security policy, think across organizational boundaries, find pat-
terns in business processes, uncover common ground for sharing security infrastruc-
ture components, recommend security solutions, understand business impacts of
unsecured assets that are at risk, and provide guidance for policy evolution.

A corporation defines security policy to provide guidance and direction to all of its
employees on the importance of protecting the company’s assets. These assets include
intellectual property, employee information, customer data, business applications, net-
works, locations, physical plants, and equipment. Good security policy defines security
requirements and advocates solutions and safeguards to accomplish those require-
ments in each specific instance within the company. Security policy adoption cannot be
by fiat; it must be part of corporate culture to protect the company and its interests
against cybercrime.

15
Enterprise Security Architecture

Enterprise security architecture can provide substantial benefits to the business.

■■ Software process improvements such as standards for assessments and audits,
reduced development time and cost, shared security test suites, or simplified build
environments (where applications can share environments for integration testing
of features or performance).

■■ Business process improvements through security component sharing to lower the
total cost of ownership. Applications that share common security architectures are
quicker and easier to deploy. Organizations do not reinvent the wheel, and systems
are simpler to manage.

■■ Non-functional improvements such as improved security of customer transactions,
reliability, and robustness. Corporations reduce the risk of damaging attacks that
can cause loss of revenue or reputation.

■■ Usability improvements such as SSSO across a wide set of applications.

■■ Better accountability through shared authentication and authorization mechanisms.

Enterprise security architectures consolidate and unify processes for user manage-
ment, policy management, application authentication, and access control through stan-
dardized APIs to access these services.

Vendor solutions that promise enterprise security accomplish some of these goals. Cur-
rently, a small group of vendors provides products for securing a portion of the enter-
prise at a significant cost in software licenses, development, integration, and testing.
These products claim standards compliance and seamless integration with existing
legacy applications. They provide security management services by using the compo-
nents of Chapter 13, “Security Components,” such as PKIs, DCE, Kerberos, or other
tools, in a subordinate role to some large and expensive central component. Even if we
successfully deploy these Enterprise Security Products in our networks, there is no
guarantee that we will accomplish the coverage that we desire with the flexibility and
evolutionary path that our business goals demand and succeed in matching promise to
proven results.

Security policy must be concise and clear enough to be understood and implemented,
yet comprehensive enough to address an enormous number of questions from individ-
ual system architects on application-specific issues. How can we, as application design-
ers, prevent intrusions? If attacked, how do we detect the intrusion? Once detected,
how can we correct damage? What can we do to prevent similar attacks in the future?

We will not discuss issues of physical security but instead focus on security policy defi-
nition for application architecture. Although physical security is very important, we
consider it outside the scope of our presentation.

Security as a Process

Bruce Schneier [Sch00] calls security a process. This process must provide education
and training, accept feedback, actively participate in application development, measure

H I G H - L E V E L A R C H I T E CT U R E350

TE
AM
FL
Y

Team-Fly®

compliance, reward successes, and critically examine failures in policy implementa-
tion. The key to accomplishing these process goals is good communication and strong
relationships between system architects and corporate security.

Applying Security Policy
An architect faced with well-defined security policy guidelines must ask, “How does
this apply to my system?” Policy guidelines normally fall into one of the following cate-
gories (called the MoSCoW principle based on the auxiliary verbs Must, Should, Could,
and Will not in the definition):

■■ Directives with which the application must comply. These cannot be avoided
because of the critical risks to exposure and supersede business goals.

■■ Directives that the application should comply with as a priority in line with
business goals but that can be shelved if the risks are measured and judged as
acceptable. These still address serious security issues.

■■ Directives that the application could comply with if resources are available that do
not conflict with business goals. These directives can be shelved without risk
measurement, because it is understood that the risks are acceptable.

■■ Directives with which the application will not comply. The application judges
these directives inapplicable or below thresholds for feature acceptance, even if
funding was available.

One would think that, given a well-defined security policy and a well-architected appli-
cation, categorizing the directives of the policy would be straightforward.
Unfortunately, in most cases this statement is not true. From many application reviews,
it seems that the application architect always pegs a directive at one level below where
the security policy owner sees it.

Security Data

Our discussion of enterprise security will focus on data. The measures we apply to pro-
tect data are commensurate with its value and importance. As the saying goes, some
data is information, some information is knowledge, some knowledge is wisdom, and
some wisdom is truth. (A footnote: In a curious progression, we have evolved from data
processors to information technologists to knowledge workers. What are we next?
Wisdom seekers? Soothsayers?)

We are concerned about security data—not just data that describes the things that we
wish to protect. Security data answers any questions that we have while securing an
application: about security policy (“Why?” questions), assets (“What?” questions),
hackers (“Who?” questions), threats (“How?” questions), and vulnerabilities (“Where?”
questions).

Applications share many resources, such as the following:

Enterprise Security Architecture 351

■■ Users, including employees, contractors, systems administrators, owners, partners,
and customers

■■ Data in corporate databases, corporate records, customer information, and partner
databases

■■ Hardware including host platforms, connectivity, and networking

■■ Common infrastructure services for domain names, Web hosting, security, mail,
storage area networks, and directories

Applications share non-functional requirements for service provision such as reliability,
robustness, availability, and performance. Applications also share other resources such
as the physical plant and equipment, confinement within geographic boundaries, com-
mon legal issues, and intellectual property.

Databases of Record
We secure the assets of the corporation because we attach value to data. This situation
creates the concept of a Database-of-Record (DBOR) for any information in the enter-
prise. A DBOR is defined as the single, authoritative, and trustworthy source for infor-
mation about a particular topic. Payroll might own the DBOR for salaries, human
resources might own the DBOR for employee data, operations might own the DBOR for
work assignments, a vendor might own a DBOR for cryptographic fingerprints of
installed software files, and the CFO might own the financial DBOR.

The DBOR concept is crucial for security, because in the event of an intrusion, our pri-
mary response mechanism is to roll back the application state to a point where we trust
that it is uncompromised. The quality of data available in backups, in system files, in
transaction logs, in partner databases, in billing events generated, and so on critically
affects the application’s capability to react to, respond, and rectify a problem. If DBOR
data is tampered with or modified, there is no unique source to correct the information.
We must rely on combinations of all of the information sources, multiple backup data
sources, and reconstruction through transaction activity logs (which we hope are clean).

A DBOR can quickly reconstruct other secondary data stores when compromised by
replacing all the information within the data store by using some predefined emergency
data download and transform. Identifying a DBOR can be hard. Within actual applica-
tions, one may or may not even exist as an explicit entity. If no single data source can be
certified as authoritative, complete, and correct, we can perhaps combine consistent
data from several sources. This task is complex. We must attempt to replay the events
on the host from the last-known safe state that we can roll back to, to the most recent
state before the machine was compromised. This task is hard, but at least theoretically
it is possible. Without authoritative data, it is impossible.

The task of resolving differences, combining information, and updating the applica-
tion’s state often boils down to the question of assignment of ownership. Given a ques-
tion of data validity, who knows the correct answer?

The impact for security architecture is simple. Ask yourself, is your application a DBOR
for some corporate information? If so, DBOR status for the data in your application

H I G H - L E V E L A R C H I T E CT U R E352

raises the stakes for the hacker because he or she can now cause collateral damage.
The risk assessment must identify all applications that depend on this data and measure
the impact of a compromise on either side of each interface on the application.

Enterprise Security as a Data Management
Problem

Enterprise infrastructures contain security data. This data can be explicitly stored in
some infrastructure component (for example, an X.500 directory associated with a PKI
implementation) or can be spread across the enterprise in many individual host data-
bases, router and firewall configuration tables, user desktop configurations, or security
components.

Corporations often manage this data through manual procedures and methods of oper-
ation that are poorly documented or hard to automate. The details of security manage-
ment (how do routers get configured, who controls the directory access files on a Web
application, who can insert rules on the corporate firewall, who can delete users from
the corporate directory, or who can revoke a certificate and publish a new certificate
revocation list) are spread across the enterprise.

The problem of building secure enterprise infrastructures reduces to controlling the
interactions between several virtual databases-of-record for security information. We
use the term virtual to highlight the fact that principal repositories of security knowl-
edge might not exist. To manage security, we must be able to define the content and
meaning of these repositories. We must be able to query them and handle the responses.

The following sections describe repositories that should exist or should be made avail-
able to applications in any enterprise. In actuality, the data is available, although it is
often strewn through Web sites, application databases, configuration files, subject mat-
ter experts, vendors, security advisories, knowledge bases, or other IT assets.

The Security Policy Repository
This repository stores all security policy requirements and recommendations.
Architects use this data store for directives and guidelines that are specific to their
application. Architects that query this repository can ask, “How critical is a particular
requirement? How does it apply to my application? What procedure should I follow for
exception handling when the requirement is not met? What technologies should I con-
sider to fulfill my security needs? What infrastructure dependencies do these technolo-
gies add to my architecture?”

The Security Policy database is used for more than the extraction of applicable rules.
The Security Policy definition is also the source for the following:

■■ Education and training within the enterprise

■■ Publication of security requirements and recommendations on the Web or in paper
form

Enterprise Security Architecture 353

■■ Generation of forms and questionnaires for security audits and assessments

■■ Certification documents attesting that the corporation is compliant with industry
standards, or is best in class for security

The policy database is also the target for modifications requested by applications as
security needs to evolve.

Every corporation has many recipients of Security Policy directives, each with a different
perspective on security. The Security Policy Rules database must be multi-dimensional so
that process owners can customize policy to business domains; architects can extract
common security principles for reuse or service definition; and vendors can target tech-
nology domains for providing services.

The User Repository
Every application has users. The User Repository stores user, user group, and role
information. Every entity in the organization that has an associated identity and can
access the application should be included, such as partners, interfaces with other sys-
tems, business objects that access the application’s data, or administrative personnel.
Anything with a name and access privileges must be stored.

The User Repository also stores operational profiles for users that describe functional
roles; that is, they describe what a user can do within a certain context. Profiles
describe the boundaries of normal activity.

User repositories are critical components of many security infrastructure components
because they represent a single place to track and audit the corporate user population.
Registration authorities look up users before cutting certificates, SSO servers maintain
user to application mappings, desktops use directory lookups to authenticate access to
the domain, and remote dial-in servers match user IDs to token serial numbers before
generating queries to token authentication servers. User data can be replicated across
the enterprise to ensure that information is highly available for user authentication and
queries.

Security is easier in environments where user management is unified, possibly through
an enterprise-wide corporate directory. X.500 directories supporting LDAP are cur-
rently a popular choice for centralizing user identity, profile, and role data. Centralized
user management always introduces issues of trust because the application must now
relinquish control to an external service provider, the security directory.

The Security Configuration Repository
The Security Configuration Repository is the vendor’s view of Corporate Security
Policy. This repository stores configuration and platform information for any vendor
asset. A considerable proportion of security vulnerabilities arise from misconfiguration
of vendor products. Examples include incorrect or misconfigured rule bases in fire-
walls, insecure entries in /etc/passwd files, default administrative passwords, incorrect
ordering of rules, or broken master-to-slave configuration mappings that open vulnera-
bilities within replicated services.

H I G H - L E V E L A R C H I T E CT U R E354

Vendor-specific policy directives are difficult to manage.

■■ Applications that switch from one vendor to another must migrate components to
new platforms with different features, yet maintain the same security configuration.

■■ Solutions using multiple vendors might have interoperability issues.

■■ Vendors might not be compliant with corporate guidelines for product categories
and industry standards.

Vendors normally provide a custom interface to their product that allows the definition
of users, objects, and access control rules. It can be as simple as editing a default con-
figuration file in an editor or as complex as using a custom GUI that accesses multiple
directories or other subordinate hosts. GUIs cause problems for security management.
Each vendor has his or her own rule definition syntax and file format. Rules have to be
entered strictly through the GUI, and the ordering of rules cannot be changed easily.
Using the tool requires training, and each new vendor product adds to the administra-
tor’s confusion with juggling multiple incompatible tools on the screen. Manual admin-
istration, switching from screen to screen, holds a tremendous potential for error.

Enterprise security architecture requires automation, which requires scripted configu-
ration to all security components that permit bulk uploads of configuration information
from text files, or swaps of paranoid configurations for standard ones in the event of an
intrusion. Configuration files should be in plain text with well-defined syntax that can
be parsed and loaded into an object model of the product. It should be possible to add
comments to the configuration to make the human-readable rules more understand-
able, and it should be possible to transform a single, generic policy into specific config-
urations for an entire family of appliances in a reasonably mechanical form. Similarly,
there has to be a mechanism to extract the vendor product configuration and examine
it for completeness and consistency with other instances of the appliance and for cor-
rectness with respect to security policy.

Bulk configuration enables us to deploy standard images of security components across
the enterprise and enables us to validate the policy enforced by the component by verifi-
cation of the configuration through some automated test script. This procedure is critical
for incidence response in the event of an emergency such as a work stoppage, a physical
intrusion, a network intrusion, or an e-mail virus so that we can apply enterprise-wide
rules to hosts, firewalls, routers, applications, and databases. We might want to selec-
tively apply rules to contain damage to certain parts of the network or to take systems
offline to guarantee that mission-critical resources are not compromised.

The Application Asset Repository
Application assets are identified at the security assessment for the application. The
application should adequately secure all or most of its assets or approve a risk assess-
ment for the assets still unprotected. The assessment must identify the assets with data-
base-of-record status. The Application Asset Repository stores all the things that have
value and that need to be protected. Each asset at risk within an application is linked to
a security control that ensures that the asset is protected adequately in a manner com-
pliant with policy.

Enterprise Security Architecture 355

The details of machine models, operating systems, platforms, processes, and technol-
ogy all play a part in defining the application’s assets. We must match these properties
against vulnerability databases to discover potential holes in our products or against
threat databases to identify potential modes of attack. We must ask whether the appli-
cation can support graceful degradation of performance and services in the face of an
intrusion or estimate the outcome of catastrophic failure.

Application assets, unlike vendor products, are always part of the architecture. They
are essential building blocks, with custom design using the knowledge domain of the
application.

Identifying and securing assets can lead to difficult questions. How should we architect
security for legacy systems? What strategies can we use to secure systems that are too
valuable to turn off and too old to touch? Many of our architecture assumptions might
be invalid, or the cost for adding security might be prohibitive. If you do not know how
something works, it can be risky to modify it in any manner. Applications normally
wrap legacy systems and over time migrate data and features to newer platforms when
possible.

The Threat Repository
Threat repositories store information about all known attacks. Architects can refer to
this repository for a list of all attacks that are applicable to the application. Threats can
be chosen based on hardware models, database versions, software, or other parameters.

Virus scanners and intrusion detection systems are examples of software components
that carry threat databases. Virus scanners carry the definitions of tens of thousands of
viruses along with information about how to detect, clean, or disable each. Virus scan-
ners have to regularly update this database to add newly discovered viruses or delete
ones that have been deprecated because they are no longer effective.

Intrusion detection systems watch network traffic and detect patterns of commands or
data that could signify an intrusion or system compromise. IDS sensor boxes support a
much smaller database of signatures, normally in the hundreds. The huge volumes of
network data, along with the complexities of correctly deploying sensors in the corpo-
rate intranet, make complicated configurations impractical. Unlike virus scanners that
never have false positives (unless the virus definitions are buggy), IDS can generate
alarms from valid traffic if set to be too sensitive.

Vendors and security experts must manage these threat databases, because clearly this
information is too specialized for any application. Applications, however, must still be
able to track threat database versions (to ensure that installations are up-to-date), must
be able to query the database (to extract statistical and summary reports of events), or
push updates of threat definitions automatically to client or server hosts.

The Vulnerability Repository
Vulnerabilities complement threats. The vulnerability repository stores a catalog of
weaknesses in hardware and software products. The Bugtraq database of security vul-

H I G H - L E V E L A R C H I T E CT U R E356

nerabilities and similar proprietary vendor databases are examples of vulnerability
databases. A large community of security experts maintains these databases along with
the associated information for handling vulnerabilities: advisories, analysis, recom-
mended patches, and mitigation strategies. Software vendors also maintain lists of
security advisories and required patches for their own products. All of this information
is loosely tied together through e-mail lists, Web sites, cross-references, downloadable
sanity scripts, and patches.

Matching threats to vulnerabilities for each application is a hard problem. Application
architects must be able to reference this complex collection of information to keep up
with all security alerts and patches that apply to their system. Corporate security must
help with this task, because many applications are overwhelmed by the effort of keep-
ing up with all the security patches thrown their way.

Host and database scanners represent another source of vulnerability information.
Scanners (discussed in Chapter 11, “Application and OS Security”) can check password
strength, user and group definitions, file and directory permissions, network configura-
tions, services, SUID programs, and so on. These scanners create reports of all known
weaknesses in the system. The application’s system administrators, using security pol-
icy and vendor patches, must address each of these identified vulnerabilities—closing
them one by one until the system is judged compliant.

The interconnection and dependencies between threats and vulnerabilities is one rea-
son why it is hard to keep up with this flood of information. Every threat that succeeds
opens new vulnerabilities; every security hole that is sealed blocks threats that depend
upon it. An interesting idea for describing these dependencies in a goal-oriented man-
ner is the notion of attack trees [Sch00]. Attack trees characterize preconditions to a
successful attack. The root of an attack tree represents some compromised system
state. Its nodes consist of either AND or OR gates. The predicates attached to the tree’s
leaves represent smaller intrusions. These events, when combined according to the
rules of the tree, describe all the scenarios that can result in an attacker reaching the
root of the tree. Attack trees depend on the existence of detailed threat and vulnerabil-
ity repositories, which might not always be the case. Attack trees mix all the possible
combinations of security concerns including personnel, physical security, and network
and system security. Attack trees are almost the converse of fault trees. Fault trees start
at a root component in a system, assume that the component fails, and then trace the
domino effect of the failure through the system. Fault trees are a common technique of
operations risk assessment in environments such as nuclear stations or complex com-
mand and control systems [Hai98].

Tools for Data Management

Why have we taken so much time to delineate security data into classes? We do not sub-
scribe to a utopian ideal where machines will take security policy in English, scan an
application’s architecture, apply filters to each of the knowledge bases to extract only
applicable rules, automatically map requirements to solutions, download software, and

Enterprise Security Architecture 357

Impossible Goals for Security Management

Before we consider tools for security data management, we wish to firmly dispel
any misconceptions about what is possible and what is impossible.

■■ It is impossible to automate security from end to end.
■■ It is impossible to expect all vendor products to interoperate.
■■ It is impossible to remove human intervention in any of the data

management tasks at this moment. (This task is possible in simplistic
scenarios like automated virus definition file updates, but not in the
general case).

■■ It is impossible to implement any notion of enterprise security architecture
without a trust infrastructure.

then install, configure, test, and deploy a security solution. This situation is never going
to happen. Well, we are left with the question, “What can we accomplish?”

Automation of Security Expertise
The primary goal for security data management lies in the automation of security manage-
ment functions. What we can accomplish through data management is efficiencies in exe-
cution. Security data management is about the presentation and transformation of data
that we already possess into target formats that we know are correct. We know the map-
ping is correct not by magic, but through common sense, experience, testing, and analysis.

Although security architecture requires expertise, many of the tasks can be amenable
to automation. We can generate sanity scripts, validate the syntax of configuration files,
confirm that several network elements have identical configurations, identify the status
of software patches on a host, extract a database of MD5 signatures for all standard
executables and directories in the startup configuration, or verify that all our users are
running the correct version of their virus software. We write shell and Perl scripts all
the time to automate these and many other tasks, and within each we touch a small part
of the world of security data relevant to the application. We acquire this data and parse
it, process it, and spit out rules or configuration information for our needs.

Our goals are as follows:

■■ Adopt a data definition standard that enables us to leave existing security objects
untouched but that enables us to wrap these objects to create interoperable
interfaces for data extraction or insertion.

■■ Capture security expertise in application-specific domains by using
transformations and rules.

H I G H - L E V E L A R C H I T E CT U R E358

■■ Use our data definition standard to extract information from one data repository
and transform it into information that can be inserted into another data repository.
This transformation can be complex and depends on our ability to capture security
expertise.

■■ Automate as many aspects of configuration validation, automated testing,
installation, and monitoring as is possible.

We can partition the world of security management tasks into buckets that range from
tasks that can be completely automated (update a virus definition file) to those that
must be manually accomplished (analyze a cryptographic protocol for weaknesses). We
want to take grunge work out of the picture.

Viewing enterprise security management as a data management issue can also have
positive consequences for performance, analysis, and reporting because these proper-
ties are well understood in the database community.

Directions for Security Data
Management

In the following sections, we will describe an exciting new area of security data
management, still in its infancy but with tremendous potential. We will discuss the
use of XML and its related standards to define grammars for security information
exchange, code generation, identity validation, privilege assertion, and security ser-
vice requests.

Before we introduce this technology, we will describe some of its goals. The basic
goals include policy management, distribution, and enforcement; authentication and
authorization; and application administration, configuration, and user management.
The standards start with the management of credentials and access control assertions
using XML schemas and request/response protocols (similar to HTTP) that allow these
activities:

■■ Clients can present tokens that establish authenticated identities independent of
the means of authentication (for example, passwords, tokens, Smartcards, or
certificates).

■■ Clients with minimal abilities can request complex key management services from
cryptographic service providers to execute security protocols.

■■ Clients can assert access privileges in a tamperproof manner.

■■ Applications can pass digitally signed messages that assert security properties over
arbitrary protocols by using any middleware product and platform.

■■ Applications can encrypt messages for delivery to an entity at any location, where
the message carries within it all the information needed by a recipient with the
correct privileges to extract the information (possibly using cryptographic service
providers).

Enterprise Security Architecture 359

Many solutions for definition of data formats for trust management have been proposed
over the years, each with sound technical architectures for the goals outlined earlier
and all using reliable, standards-based solutions. Unfortunately, these solutions have
either used proprietary technologies or interface definitions, have not been of produc-
tion quality, or are not ported to certain platforms. These problems have prevented
widespread adoption.

In contrast, the current efforts from the World Wide Web Consortium (W3C) and the
Internet Engineering Task Force (IETF) are more attractive because of an emphasis on
open standards, protocol independence, and the use of an immense base of existing
work supporting XML. Although e-commerce and business-to-business communica-
tions are presented as the primary reasons for their creation, it is easy to see that these
standards have wider applicability.

The proposed standards do not attack the problem from the common single vendor
solution viewpoint, solving all issues of encryption, signatures, key management, or
assertion definition at one blow. The proposals selectively choose smaller arenas to
define data formats. The design shows attention to detail and leaves unspecified many
divisive issues, such as the definition of underlying protocols, methods for secure com-
munications, or preferences for messaging. Although many of the current definitions
show interdependency on other Working Group standards (and are in fact vaporware
until someone starts putting compliant products out), the direction is clear: Security
management is about data management.

Before we leap into our synopsis of the acronym fest that is XML and Security Ser-
vices, we will describe one of the architectural forces driving our goal of representing
security-related data for all of the repositories that we have defined; namely, the net-
working philosophy of the Internet.

David Isenberg and the “Stupid Network”

David Isenberg’s influential critique of big telecommunications companies, “Rise of the
Stupid Network” [Isen97], contrasted the networking philosophy of the Public

Switched Telephone Network (PSTN) to that of the Internet. He expanded on the theme
in another article: “The Dawn of the Stupid Network” [Isen98].

Isenberg described the Internet as a Stupid Network, expanding on George Gilder’s
observation, “In a world of dumb terminals and telephones, networks had to be smart.
But in a world of smart terminals, networks have to be dumb.” IP, the basic routing pro-
tocol that defines the Internet, uses simple, local decision making to route packets
through self-organized and cooperating networks from one intelligent endpoint to
another. The Internet has none of the intelligence of the circuit-switching PSTN, which
was built and conceived when computing was expensive, endpoints were dumb, and
voice transmission—performed reliably and without delay—was the primary goal. The
Internet flipped this model inside out, and as computing became cheap, terminals
became immensely powerful—and users clamored for data services. The Internet gives
users the ability to write arbitrary, complex applications completely independent of the

H I G H - L E V E L A R C H I T E CT U R E360

TE
AM
FL
Y

Team-Fly®

underlying transmission medium. In turn, the transmission medium is oblivious to the
semantic content of the packets that it routes. It is all just bits to the Internet.

Our dependence on the Internet has raised our non-functional requirements for reliability,
security, quality of service, maximal throughput, and minimal delay. The non-functional
requirement that is the focus of our book, security, was not initially guaranteed in the old
PSTN network either, but the architecture evolved to support a separate Common Sig-

naling Services Network (CSSN) that carried network traffic management information
(which made securing telephone calls easier). In contrast, the Internet does not manage
signaling traffic out-of-band; control of traffic is intimately mixed into each packet, each
router, each protocol, and each application.

Security on the Internet is a huge problem because it is in basic conflict with the trust
implicit in the design philosophy behind IP. The fields within an IP datagram defining
the protocol, flags, source, or destination address can be modified. DNS mappings can
be spoofed. Router tables can be altered. Packets can be lost, viewed in transit, modi-
fied, and sent on. The list is endless. In addition, hundreds of agents can collude to
attack a single host in a distributed denial-of-service attack. It is impossible to distin-
guish good traffic from bad traffic in some attacks.

Can we change the Internet so that it becomes more intelligent? Isenberg is clear; we
can only move forward. There is no putting the genie back into the bottle. We have to
make advances in data management and definition, in datagram protection, in intelli-
gent filtering, and application protection to ensure security.

■■ Our application traffic must move from IPv4 to IPv6. We must increasingly use
IPSec or like protocols for communications.

■■ Our services, from DNS to LDAP directories to mail, have to be more reliable,
available, and tamperproof.

■■ We must exploit cheap computing power and cryptographic coprocessors to make
strong cryptography universally available. Every solution to improve security on
the Internet uses cryptography.

■■ Our routers must become less trusting. They must filter packets that are
recognizable as forged, dynamically add rules to throttle bad packets, detect the
signatures of compromised hosts participating in attacks, and much more. New
router based innovations such as “pushback” promise good heuristic defenses
against DDOS attacks.

■■ We must make our endpoints even more intelligent. Our applications must be more
aware of security and policy enforcement and must implement authentication
and access control. The communications protocols used must be even more
independent of the IP protocols underneath. We must create standards for security
layers between our applications and the underlying Internet protocols.

■■ Our data formats have to be flexible, self-describing, and supporting of
confidentiality and integrity. We must be able to carry security information with
our data that can be verified by a recipient with the possible help of a service
provider.

Enterprise Security Architecture 361

We have covered all of these issues in the previous chapters except the last. The last
issue of flexible, self-describing data has seen explosive growth in the past few years
with the rise of XML.

Extensible Markup Language

XML is a vast effort to create a data exchange and management framework for the
Internet. XML is an open standard supported by a consortium of open-source organiza-
tions and corporations that require a data definition infrastructure with rich, expressive
powers. XML enables people and applications to share information without interoper-
ability issues caused by competing standards. XML documents are self-describing.
Developers use the familiar tagged syntax of HTML along with request/response proto-
cols to share self-describing information that can be parsed and understood dynami-
cally without prior knowledge of formats or the use of custom tools. XML promises
data transformation through standards that enable data in one format to be rendered in
other formats without loss of information.

At its core, XML is a toolkit for creating markup languages. XHTML, for example, is an
XML standard for creating well-formed HTML documents, MathML is a markup language
for mathematical formulas, and ebXML is a markup language to enable e-business. In
addition, developers can use the Simple API for XML (SAX) or the Document Object

Model (DOM) to access XML data programmatically.

We generate, transform, and communicate data in many ways. To do so, we must
accomplish all or part of these goals:

Decide what the data looks like. Document definition for XML is through
Document Type Definitions (DTD) and XML schemas. These enable applications to
define new elements, define new attributes, create syntax rules, and define complex
data types. XML allows references to other document definitions through includes
and namespaces.

Create the data and format it. Users can create well-formed XML documents by
using XML editors and authoring environments.

Validate the data format. XML editors can test whether documents are well formed.
XML validators can apply semantic rules beyond well-formed syntax guidelines to
enforce context-specific compliance.

Create associations with other content. XML documents can link external
resources by using the XLink standard, a formal extension of simple HTML
hyperlinks, or include other XML fragments using XInclude.

Query data in documents. Applications can reference parts of XML documents
through XPointer and XPath or query the document by using XML Query

Language (XQL).

Manipulate documents. Applications can transform XML documents to other
formats for consumption by other applications by using Extensible Stylesheet

H I G H - L E V E L A R C H I T E CT U R E362

Language (XSL) or Extensible Style Language for Transformations (XSLT) or
specify document presentation styles by using Cascading Style Sheets (CSS).

Other standards that support XML can accomplish even more.

XML and Data Security
XML answers the question, “How do we communicate with diverse and complex com-
ponents without creating a Tower of Babel of point-to-point information exchange for-
mats?” XML enables applications that do not have foreknowledge of each other to
communicate by using messages with complex data formats. The self-describing nature
of XML enables the recipient to parse and understand the data after possibly trans-
forming it in various ways. Applications that understand XML may be able to intelli-
gently secure information and manage trust in their enterprise security architectures.

The standards are also independent of the platforms used, the messaging paradigm, or
transport layer used in the actual communication. Information that conforms to any
XML security standard is just a blob of bits that can be added to headers, placed inside
messages, referenced by Uniform Resource Identifiers (URI), or stored in a directory
for lookup. In some models, no negotiation is allowed. In this circumstance, trust must
exist and must be established by using some other protocol or mechanism.

It is important to note what XML security standards do not do. They do not introduce
new cryptographic algorithms or protocols, and they do not define new models of secu-
rity or new forms of role-based access control or authentication. They do not mandate
the use of certain protocols or messaging systems or means of secure communication.
They all hew to Open Source principles.

The new XML standards propose methods for the following functions:

■■ Encrypting XML documents

■■ Creating and embedding digital signatures of all or part of an XML document

■■ Managing the cryptographic keys associated with encryption and digital signatures
using service providers

■■ Adding assertions of authenticated identity to XML data

■■ Adding assertions of authorized access to XML data to execute privileged
operations on a server

■■ Creating assertions of other security properties within the context of an XML
document

The XML Security Services Signaling Layer

We can use these methods, schemas, and protocols to define a link language between
the needs of policy definition, publication, education, and enforcement on one hand
and the consistent and correct implementation on a target application on the other

Enterprise Security Architecture 363

XML Key Management Standard

PKIXML EncryptionXML Digital Signature

Canonical
XML

Definition
and

Structure
ProgrammingTransformationLinking Searching

DTD
XML Schema

XLink
XBase

XInclude

XPath
XPointer

XQL

XSLT
XSL

SAX
DOM

XML 1.0

Figure 15.1 XML Security and related standards.

hand. The ability to create assertions can help us declare security intent. We can then
rely on transformations from the data to create agents of execution of that intent. This
situation is analogous to a declarative, pure SQL statement that describes some rela-
tional subset of data from a DBMS and the execution of the query by the database
engine to produce the actual data so represented.

This function enables us to create a security services layer analogous to the separate
CSSN of the circuit-switched PSTN world. The architecture of XML-based security
assertions forms the basis for the implementation of an XML Security Services Signal-

ing (XS3) layer across all our applications.

XML and Security Standards

Figure 15.1 shows a schematic of the dependencies between XML digital signatures,
XML Encryption, and XKMS with respect to the platform of XML 1.0 and associated
standards. We must emphasize that, as of 2001, none of these standards have pro-
gressed out of the Working Group stage of development, but standards bodies and
industry partners alike are aggressively developing applications and products to these
standards.

We present short descriptions of S2ML, SAML, XML-DSig, XML-Enc, XKMS, and J2EE
security specifications using XML.

H I G H - L E V E L A R C H I T E CT U R E364

J2EE Servlet Security Specification
In Chapter 10, “Web Security,” we introduced Java Servlets and the Java Servlet
Security Specification. The JSSS enables Web applications to create role-based access
control definitions by using an XML syntax for defining applications, resources, roles,
role references, context holders, Web collections, and actual rules mapping roles to col-
lections of Web resources.

For more information, please refer to the security links on http://java.sun.com.

XML Signatures
The XML Digital Signatures Standard (XML-DSig) is a draft specification proposed by
the W3C and the IETF for signing arbitrary objects for e-commerce applications. XML-
DSig can sign any content, whether XML or otherwise, as long as it is addressable by
using a Uniform Resource Identifier (URI). It is backed by many prominent players in
the security services industry and will see many applications.

For more information, please refer to www.w3.org/Signature/.

An important dependency within XML-DSig is the specification of Canonical XML 1.0.
XML documents can contain white space or can use tags from included namespaces.
Without a well-defined way of handling these elements, we cannot reduce an arbitrary
XML document to a canonical form that can be used as the target of the message digest
and encryption process that produces the digital signature. Changing a single bit in the
canonical form will break the signature. Two communicating identities that cannot
agree on canonical XML formatting cannot verify digital signatures unless each main-
tains a transform that produces the canonicalization desired by the other entity. Multi-
ple semantically equivalent versions of the same document must all reduce to the same
exact canonical form. Otherwise, signature verification will become rapidly unmanage-
able. Considerable effort is underway to solve this technical challenge.

The XML-DSig standard does not specify cryptographic primitives required for generat-
ing signatures, platforms, transport protocols, or messaging formats. It also does not
specify the legal consequences of the use of digital signatures for e-commerce; the stan-
dard considers legal aspects of signatures out of scope.

XML-DSig signatures can be applied to an entire document or to portions specified
through XPath or XPointer references. The actual signature can be detached from the
document, stored in a network directory, and referenced when verification is required.
Signatures can be layered to permit applications such as co-signing, notarization, coun-
tersigning, or hierarchical approvals by supervisors. Signatures on a document can
include related presentation material such as style sheets. Similarly, we can exclude
portions of the document from coverage by the signature in a manner that leaves the
signature valid and verifiable despite changes to the elements outside the signed block.

An application verifying the signature can filter out elements from the document that
are not covered by the signature or remove enveloping signature blocks. Applications
can apply transforms on the transmitted and stored XML document to restore it to the

Enterprise Security Architecture 365

canonical form that was signed by the sender. The process of creating an XML-DSig sig-
nature involves several steps:

■■ The data must be transformed before the digest can be computed.

■■ Once the digest is computed (for example, using the current default message-
hashing algorithm, SHA-1), the application creates a Reference element that
contains the digest value, the transforms applied, an ID, a URI reference, and type
of the manifest (which is the list of objects we wish to sign).

■■ The application now generates a SignedInfo element that includes the Reference
element, the method of canonicalization, signature algorithm, ID, and other
processing directives.

■■ The application encrypts the digest by using a public-key algorithm such as DSA or
RSA and places the resulting signature value in a Signature element along with
SignedInfo, signing key information within a KeyInfo element, ID, and other
optional property fields.

■■ The KeyInfo field (which is used by the XKMS specification, described next) holds
the KeyName, KeyValue, and RetrievalMethod for obtaining certificates or
certificate paths and chains and additional cryptographic directives specific to the
public-key technology used. Additional properties are specified by using Object
elements.

XML Encryption
The XML Encryption Standard is also a draft specification proposed by the W3C and the
IETF for encrypting arbitrary objects for e-commerce applications. XML-Encrypt can
encrypt any content, whether XML or otherwise, as long as it is addressable by using a
URI. It is also backed by many prominent players in the security services industry, but
is in a more nascent state than the XML-DSig specification. The canonicalization issues
with digital signatures do not affect encryption as much because the block of encrypted
data can be transmitted by using a standard base 64 encoding for raw objects. Once
decrypted, the application can apply transforms to modify the content in any manner.
For more information, please refer to www.w3.org/Encryption/2001/.

S2ML
The Security Services Markup Language (S2ML) is an XML dialect championed by
many companies (including Netegrity Inc., Sun Microsystems, and VeriSign) for
enabling e-commerce security services. S2ML defines XML tokens for describing
authentication, authorization, and user profile information. The token can be used as a
delegation credential by a recipient to request further access or service provision on the
originator’s behalf.

S2ML defines two XML Schemas called Name Assertion and Entitlement. An S2ML
Name Assertion proclaims that an entity with a stated identity (using the <ID> tag) has

H I G H - L E V E L A R C H I T E CT U R E366

successfully authenticated at a certain time (<Date>) to a stated authentication service
(<Issuer>). The assertion has a validity period (<Validity>) and is digitally signed. An
S2ML Entitlement is an assertion of privileges and proclaims that a stated identity
(<ID>) can use specific modes to access an object (<AzData>). Entitlements are also
digitally signed.

S2ML supports two request and response services for authentication and access con-
trol. Any method of authentication (login/password, certificates, Kerberos, DCE, and so
on) or access control (JAAS, access control lists, and so on) can be supported. A client
can pass credentials to an S2ML-enabled server by using an AuthRequest element. The
server responds with an AuthResponse element containing a Name Assertion (and pos-
sibly one or more entitlements). A client can pass the Name Assertion in an AzRequest
to a server. The AzResponse returned can contain additional Entitlements.

For more information, please refer to www.s2ml.org.

SAML
SAML is another XML dialect for of security information exchange from Netegrity
(which also co-wrote S2ML). SAML, like Security Services Markup Language (S2ML),
supports authentication and authorization and shares the architecture and security
design principles of S2ML. There are some differences in the target scenarios, but for
the most part, the two standards overlap.

Both target B2B and B2C interactions and are Open Source initiatives for the interoper-
able exchange of authentication and authorization information. The basic SAML
objects are Authentication and Attribute. An assertion that a name entity has success-
fully authenticated can also contain a description of the authentication event. Autho-
rization attributes can capture user, group, role, and context information. Both SAML
and S2ML assume an existing trust model and do not perform any trust negotiations.

SAML is a component of Netegrity’s access control service product, SiteMinder, a cen-
tral policy service that along with proprietary Web Server plug-ins replaces the default
Web security services of multiple Web applications. Integration with an actual product
might be a distinction between the two standards.

For more information, please refer to www.netegrity.com.

XML Key Management Service
PKIs, discussed in Chapter 13, have had reasonable but limited success in enterprise
infrastructure deployments and are, by their very nature, complex. A group of compa-
nies including VeriSign, Microsoft, and webMethods have proposed the XML Key

Management Service (XKMS) as a means of hiding some of the complexities of PKI
from thin Web-based clients with limited capabilities. These capabilities include parsing
XML, generating service requests, and handling responses. A PKI enables trust. XKMS
enables the actual processing of primitives for enabling this trust to happen on servers

Enterprise Security Architecture 367

that implement the XKMS request/response protocol to validate key information used
for XML digital signatures or XML encryption.

PKIs manage digital certificates for Web access, content signing, secure e-mail, IPSec,
and so on. They perform certificate registration, issuance, distribution, and manage-
ment. Actions for trust management that would be easy within a conventional PKI such
as certificate parsing, validation, certificate status lookup, or challenge-response proto-
cols such as SSL might not be available to thin clients. XKMS enables a client who
receives an XML document that references a public key (in the case of an XML digital
signature, using the <ds:KeyInfo> tag) to look up the key and to associate context
attributes and other information with the owner of the key. An XKMS server can test for
the possession of the corresponding private key by verifying successful key registration
by the owner. Thus, the XKMS server can validate the owner. Although the XKMS spec-
ification is independent of the particular public-key cryptographic infrastructure
behind the scenes (for example, supporting SPKI or PGP), it is likely that the majority
of applications that use this standard will front an X.509v3 certificate infrastructure.

The XKMS standard contains two service specifications.

■■ The XML Key Information Service Specification, which enables clients to query
an XKMS server for key information and attributes bound to the key.

■■ The XML Key Registration Service Specification, which enables possessors of
key pairs to declare the public key and associated attributes to the XKMS server.
Later, an owner can revoke a certificate—or, if the server maintains the private
key, request key recovery.

For more information, please refer to www.verisign.com.

XML and Other Cryptographic
Primitives

The current XML security standards do not address other security properties, such as
non-repudiation, or describe uniform methods for defining delegation or asserting
safety.

The protocols in these standards are based on the paradigm of Web interaction match-
ing one request to one response. More complex challenge-response protocols or meth-
ods to bundle multiple request/response pairs into transactions, and multiple
transactions into sessions, are not defined.

XML assertions can express dependencies on other assertions with the help of third-
party service providers. Once we have created these XML blobs of information, we can
decide where we bind the information in our communications. We can bind the ele-
ments within new application messages, store them in directories, insert references in
headers, or add the data to a variable-length field of an existing object message. In each
case, we must develop the means to extract the blob, call procedures to validate the
information, and then parse and extract the values within.

H I G H - L E V E L A R C H I T E CT U R E368

The Security Pattern Catalog Revisited

We have not yet linked these two elements.

■■ Our coverage of XML Security standards.

■■ The problem of managing the data repositories for security information, which we
presented earlier.

This problem is difficult—one that we will address after we have expanded on the
theme of describing security information with XML.

Recall our security pattern catalog of Chapter 4, “Architecture Patterns in Security,”
where we introduced the basic recurring elements of most security architecture solu-
tions. We have already seen XML notations for expressing some of these elements.
Principals can be identified through distinguished names, certificates, or through URIs
to directory entries for user information. Hosts can be specified through IP address or
domain name. Distributed business objects can be named by using object references or
through fixed application-specific naming strings. All of these values can appear in the
<Name> field of an assertion. Name assertions capture authenticated names. Other
fields of a name assertion capture context information such as the issuer, date and time
issued, or the validity period.

We can similarly define new markup elements to capture context holders, session

objects, and cookies. The encrypted and digitally signed blobs of XML assertions cap-
ture mobile tokens that can specify credentials, delegation chains, shared access, or
proof of authentication or privilege.

The Entitlement and Authorization XML schemas define access control rules that are
generic enough to capture most applications, and the gap can filled through application-
specific XML schema definitions. Applications can present cipher suite specifications and
publish allowed modes of access to databases, directories, or other network repositories.

We can be endlessly inventive in our efforts to pass these XML assertions back and
forth; inside messages, inside headers of existing protocols, piggybacked over underly-
ing protocols, or communicated through a separate message stream.

We can specify the content and use of XML descriptions for our other patterns, for
example, by specifying formats for the rule bases within wrappers, filters, interceptors,
or proxies. We can describe the access control policy enforced by a sandbox or specify
the access modes published by a layer. We can describe the context for construction of
a secure tunnel in terms of the properties of the communications and cryptographic
endpoints, the protocols secured, acceptable cipher suites, or other technologies.

The core of the problem of enterprise security management when viewed as a data man-
agement issue is the conflict between the disparate elements that we wish to protect and
the sources of information on how to protect them. This information might be incom-
plete, inconsistent, presented in incompatible formats, may or may not be trustworthy,
might have to be accessed across untrusted WANs, and could describe anything from the
highest levels of business process definition to the lowest levels of data link security.

Enterprise Security Architecture 369

XML, along with encryption and digital signatures, enables us to create a separate vir-
tual security management network. XML transformations enable us to encode security
knowledge and business rules into processes that can take policy recommendations
and produce application configurations. It is not accomplished through magic (in the
pattern sense described in Chapter 4) but through careful analysis and design—but
once accomplished, the transform can be repeated again and again, reusing the knowl-
edge to add efficiency to security administration.

XML-Enabled Security Data

Having introduced these standards and projected a vision for the future with new secu-
rity pattern definitions in XML, what can we accomplish with these tools? The goal is
not to accomplish new things but to accomplish reuse of all our current tools for man-
aging security data out there by using XML data definition. We do not propose that XML
can work miracles, but do think we can become more efficient through XML usage.

Consider the following scenarios where applications and entities exchange XML data:

■■ The corporation publishes a new release of the Corporate Security Policy
Document in DocBook format, an XML Schema for book definition. The document
is mapped into a user-friendly Web site by one transform, is converted into a cross-
indexed PDF file by another transform, and is converted into an application-
specific set of guidelines by a third transform. A fourth transform takes the old and
new policy specifications and publishes a helpful “What’s New” security
newsletter.

■■ An application using Solaris exports its configuration to an XML file and sends it to
Sun Microsystems, Inc. Sun responds with an XML fingerprint database of all the
system files and executables for that configuration. The application applies a
transform to this script that generates a sanity script that automatically computes
MD5 signatures for all the system files and executables and compares them to the
authoritative fingerprint database. Finally, the script presents the results as a
vulnerability report.

■■ A network security manager wishes to examine router and firewall rules for source
address spoofing prevention. He sends a query to all network appliances over a
secure channel. Each appliance verifies the signature on the query and responds
with an encrypted XML configuration file of the rule definitions on each interface.
The security manager queries a topology database for network topology
information and uses a tool that applies the interface definitions of each device to
the network map. The application validates the rule definitions to verify that all
appliances correctly drop packets with recognizably forged addresses.

■■ An application that is upgrading to a new OS sends its configuration to a patch
database that returns a list of required security patches as an XML file. A transform
converts the file into a shell script that automates the download and installation of
the patches.

H I G H - L E V E L A R C H I T E CT U R E370

TE
AM
FL
Y

Team-Fly®

■■ A Web server defines its desired access control policy as required by corporate
security, using XML assertions. A transform uses the specification along with a
document tree and an LDAP-enabled directory to correctly define all the htaccess

files within all subdirectories.

■■ An application automatically downloads a new virus database and uses it to scan
all the files on the file system. Wait, we can do that one right now.

Are these scenarios far-fetched? Are the required transformations too application-,
host-, OS-, or vendor-specific? Is there a missing link where human intervention is
required to verify that the output of the transforms is meaningful? Must we review
every communication to assure that we do not misconfigure an application or network
element?

The answer to all of these questions is unfortunately a resounding “Maybe.” The scope
and size of the problem should not stop us from attacking it, however. Consider the
efforts behind another formidable task of data management, the Human Genome Proj-

ect (HGP). The HGP is about data management, and its goals and challenges dwarf the
ones before us. Read on, and trust me that this topic connects.

HGP: A Case Study in Data Management

Creating security information databases and coordinating their management seems like
a daunting task. The fact that we have so much data in so many different formats and so
little to go by in terms of patterns makes progress seem impossible.

As an example of the scale and complexity of data management, consider the HGP
(www.ornl.gov/hgmis/), a federally sponsored plan with academic and industrial sup-
port to map the entire human genome. The HGP goals are to identify all of the approxi-
mate 30,000 genes in human DNA, determine the sequences of the three billion
chemical base pairs that make up human DNA, store this information in databases,
improve tools for data analysis, transfer related technologies to the private sector, and
address the ethical, legal, and social issues that might arise from the project.

An initial milestone of the mapping goal, a working draft of the entire human genome
sequence, has been accomplished ahead of schedule and was published in February
2001. In the process, we have seen tremendous advances in genetics, bioinfomatics, and
medicine. Why did this project succeed? Here are some reasons why it worked:

Idealism. Watson and Crick’s discovery of the molecule of life, DNA, is the seminal
event in biology in the last century. The HGP claims to extend that discovery into
the knowledge of who we are as biological mechanisms and how our genes work.

Economic benefit. The benefits of a better understanding of the human genome
range over all aspects of medicine: gene therapy, better diagnostic techniques, drug
discovery, and development. Someone will make money from all of this knowledge.

Government support. The HGP is sponsored by the Department of Energy and has
support for funding at a very high level.

Enterprise Security Architecture 371

Corporate support. Many companies, from multi-billion dollar pharmaceutical firms
to tiny, nimble bioinfomatics startups, see the HGP as a business opportunity.

Scientific prestige. Don Knuth famously stated, “Biology has five hundred years of
interesting problems.” Many academic and industrial research scientists are basing
their careers on solving these problems.

The past decade has seen an explosive growth in an innovative, interdisciplinary
approach between information and biology: bioinfomatics. Biologists who started out
on this problem a quarter of a century ago looked like ants setting out to prove Fermat’s
Last Theorem. Consider the volume of data, the fuzziness of defining pattern matches,
the difficulty in comparing strings with arbitrary breaks, stops, and starts—all with a
very complex and hard to visualize goal: mapping an entire human genome.

There has been tremendous progress because of these reasons, however.

Open sources. The HGP community, for the most part, shares all of the information
discovered and analyzed, collectively accomplishing what would be impossible by
any one organization alone. Bioinfomatics researchers focus on the problems of
pattern matching (and when it comes to pattern matching, biologists might already
be the world’s best Perl programmers).

Data management. The huge volume of data associated with the HGP, along with its
explosive daily growth and highly interconnected nature, has lead to the definition,
creation, and maintenance of a handful of huge text databases that store all that is
known so far. Standard ways of adding to this data pool, querying it, formatting
responses, and manipulation have been built around common languages and formats.
Interoperability, through standards and data definition, has always been a goal.

Better tools. Kary B. Mullis invented the polymerase chain reaction (PCR)
procedure as a means of rapidly producing many copies of a DNA molecule without
cloning it. PCR alternates between two phases, one to break apart a two-stranded
DNA molecule and the other to add nucleotides complementary to the ones in the
two templates until each strand forms a normal, double-strand DNA molecule.
There is an exponential growth in the number of molecules as the number of
iterations increases. There is a striking correlation with the strategy used in the
design of block ciphers in cryptography. A block cipher algorithm consists of a
number of rounds, each round consisting of two phases. One phase mixes the
partially encrypted cipher block built at this stage by using diffusion techniques,
and the other phase combines the result with material from the key schedule
generated from the original encryption key. As the number of rounds increases,
there is an exponential growth in the strength of the block cipher.

Building a Single Framework for
Managing Security

There are good reasons why we can succeed in building a single framework for manag-
ing security.

H I G H - L E V E L A R C H I T E CT U R E372

We have the best programmers. We have excellent tools for managing data. Unlike
the biologists, we have a clear opponent—namely, the hacker attempting to break
into our systems.

We have a finite number of target platforms. Unlike the 30,000 genes that
biologists have to track, we have a small number of hardware platforms, a small
number of operating systems, and a small number of patterns to model.

We have better tools. Public-key cryptography is the greatest advance in security
that the field has seen. We have also seen advances in secret key technology
through the development of improved, high-performance, portable, and multi-use
block encryption algorithms with proven strength against all known forms of
cryptanalysis, using bigger block sizes, and longer keys. We have other tools, such
as legal recourse along with the well-defined security strategies, tools, and
techniques discussed in chapters past.

We understand the power of open-source development for solving enterprise

level problems. We have a very active standards community creating new models
of secure interaction. Many use cryptography as a fundamental element in the
implementation of higher protocols and services.

Vendors will recognize the economic benefits of interoperability, simplified administra-
tion, and reusability afforded by an XML-based standard for security administration and
data exchange. Many vendors are already champions of standards-based interoperabil-
ity and will support collaboration for efforts to which they have already devoted con-
siderable resources.

Could we accomplish the task of creating well-defined, general XML schemas for all the
data repositories we have described? Can we get buy-in from our vendors to provide
text-based interfaces to interact with their software for security management? Can we
download and upload configuration information in XML format? Can we communicate
policy by using XML? Can we create open-source tools that enable us to transform dec-
larations of policy into programs for executing that policy?

And once we have a basic, dumb communications bus that spans the entire Internet car-
rying security information, can we build upon it?

Conclusion

In this chapter, we have focused on enterprise security architecture as a data manage-
ment problem and have chalked out some of the advances we can expect to make this
task easier. Data management cannot be automated by any means, however. Human
intervention, analysis, cross checking, and validation is still the only method we know
for mapping policy on paper to code executing in the field. Implementing these security
practices and properties across the corporation is a minimal requirement.

Enterprise Security Architecture 373

H I G H - L E V E L A R C H I T E CT U R E374

■■ Good corporate security policy requires a balance between process definition,
technical expertise, technology evaluation, and security assessment.

■■ Security programs should address security infrastructure efforts and strongly back
and fund security solutions whose costs can be amortized over many applications.

■■ Corporate security must have teeth; production applications that have
vulnerabilities should either address these issues or risk being turned off—possibly
affecting business goals and customer satisfaction.

■■ Assessors should clearly articulate the risk to the corporation to upper
management if the project’s process owner is unresponsive.

■■ Applications must know whom to contact in the event of an intrusion and must
have clear guidelines on immediate preventive action to contain damage. This
aspect of a security program requires 24 by 7 responsiveness and high levels of
technical ability. Companies lacking the ability to do so can outsource this work to
any of the many security services companies that have risen to respond to this
demand.

As each of the diverse application components discussed in chapters past gains some
degree of enterprise security maturity, we will see a convergence of security manage-
ment methods.

The separate security management interfaces, the diverse definitions of the details of
role-based access control, variations on security context information, and information
ownership will and must come to some common agreement so that the time will come
when we can use the phrase “seamlessly integrate” without wincing. When that hap-
pens, we can expect to manage our hosts, networks, users, middleware servers, Web
sites, databases, and partners in a uniform manner. Until then, well, we can dream,
can’t we?

PA RT

Business Cases
and Security

FIVE

C H A P T E R

377

Asecurity business case must match accurate estimates of development and operational
costs against good estimates of the costs of intrusion over the life of the project. Why is it
hard to build business cases for security? The former costs are well understood because we
have experience writing and deploying software, but the latter costs are problematic. When
a system is partially or completely disabled through an attack, what does its down time cost
us? What do we lose when attacked or compromised? How do we measure the loss of rev-
enue and reputation? How do we budget for legal expenses for prosecuting attackers or
defending against irate customers? Can we insure ourselves against liability? How much
will incident response cost us, over and above the expense to repair our application?

The literature on computer security extensively covers the technical aspects of com-
puter risk, but studies on the financial impacts of information security are rare. To build
solid business cases for any particular business sector, we need hard evidence measur-
ing losses from computer intrusions and fraud and the costs of defending against such
computer crime. This knowledge is essential for a quantitative analysis of computer
risk before we can choose countermeasures such as building security architectures,
buying software and services, or paying insurance premiums.

Our objectives for this chapter are as follows:

■■ We will present data on the financial aspects of computer crime to the computer
industry, with some emphasis on telecommunication companies.

■■ We will describe the AT&T network disruption of January 1990 as an example of
catastrophic loss. This disruption was not through computer crime, but through
defective software in a single switch that propagated like a virus through the
network. At the time, there was even speculation that the disruption was due to
hackers, but this fact was later proven incorrect. A malicious attack on any
company’s network could have the same catastrophic impact.

16
Building Business Cases
for Security

■■ We will present a toy business case for a security solution for a fictitious company,
Invita Securities Corp. The business case will present a cost-benefit analysis for a
proposed Security Operations Center. Our business case will use simple financial
concepts of interest rate formulas, net present value, payback period, and internal
rate of return.

■■ We will present a critique of the assumptions of the business case to highlight the
difficulties of quantifying computer risk.

■■ We will ask what have we learned from this experience to help build actual
business cases.

■■ Finally, we will examine buying insurance as an alternative to securing assets. We
will ask the following questions: “Are systems insurable against security
violations?” “Can we buy hacker insurance that works like life insurance or fire
insurance?” “What properties make something insurable?”

Building Business Cases for Security

Systems architects are key participants in building security business cases because the
probability that an exploit succeeds depends on the underlying architecture. Architects
are also experts on the system’s operational profile and the interfaces to other systems
that could be compromised. Many risk assessment methodologies such as fault tree
analysis or attack tree analysis depend on the architect’s domain expertise.

Architects cannot disclaim this role merely because they lack knowledge of the finan-
cial impacts of intrusions. Without their participation, we run the risk of introducing
technical flaws into the business case.

On the contrary, participation in business analysis is an opportunity for system archi-
tects to give a business purpose to the architectural guidelines presented in the previ-
ous chapters by asking these questions:

■■ What are the financial aspects of security systems development?

■■ What attacks are feasible? What is our response if an attack succeeds?

■■ What losses do we face, and what are the costs of defending against them?

■■ What data is relevant to support a business case for a security solution?

■■ How can we get buy-in from upper management?

■■ Why is computer security a good investment?

■■ How can we avoid security solutions that represent poor cost-to-benefit choices?

Considerable concrete data exists on the costs of computer crime to companies
through computer viruses, intrusions from external entities, violations by internal enti-
ties such as employees, and the expense of each action taken by companies to prevent
such occurrences. Applying this data to a specific environment is a challenge, however.

B U S I N E S S C A S E S A N D S E C U R I T Y378

Our current culture prevents us from learning from the misfortunes of others. Busi-
nesses and the security industry rarely reveal detailed financial information concerning
costs or losses. This information is hidden because we fear negative publicity and pos-
sibly losing customers. Imagine Bugtraq with financial information. We could assign
vendor products that have security problems a security cost of ownership that reflects
the savings (or lack thereof) from integrating the product into our architecture solu-
tions. We could quote this cost when we negotiate pricing with vendors.

Losses to computer crime can be classified as follows:

Measurable losses. These include damage to assets, replacement costs, down time
costs, disrupted customer services, stolen services, intellectual property loss such
as software piracy, and productivity losses from disruptive computer intrusions
such as e-mail viruses.

Intangible losses. Security violations also have indirect consequences. They can
cause a loss of morale, market share, and reputation and fuel negative advertising by
competitors. We will list several indirect costs but will not attempt to estimate them.

In the next section, we will describe some financial data on computer risk.

Financial Losses to Computer Theft and Fraud

Hacking imposes the threat of theft, fraud, extortion, defamation, harassment, exploita-
tion, denial of service, destruction, or eavesdropping. We will not go into a detailed
analysis of computer fraud, but the data is interesting in setting a context for the impor-
tance of investing in security solutions as a means of containing costs.

Companies depend on telecommunications networks to share information with geo-
graphically dispersed domestic and international sites. The Internet has become a vital
part of the economic infrastructure of the United States, and the information that it car-
ries must be protected. There is growing evidence of the use of electronic intrusion
techniques by industrial spies, often from outside U.S. borders.

We can estimate the costs associated with network intrusions and natural disasters by
analyzing previous incidents reported by companies and federal sources. These inci-
dents illustrate the costs associated with network service disruption and give a feel for
the intangibles associated with information security, showing that financial losses can
happen in many ways.

The following factoids describe some of the financial impacts of computer security:

■■ The Code Red worm caused an estimated $2.6 billion in cleanup costs on Internet-
linked computers after outbreaks in July and August 2001.

■■ The Federal Bureau of Investigation’s National Computer Crimes Squad estimates
that fewer than 15 percent of all computer crimes are even detected, and only 10
percent of those are reported.

Building Business Cases for Security 379

■■ The Computer Security Institute (www.gocsi.com), in conjunction with the FBI,
conducts an annual survey of several hundred companies that have consistently
revealed heavy financial losses due to computer crime. Of the more than 500
companies surveyed, one-third were able to quantify the loss, which totaled $377
million over 186 respondents. In contrast, 249 respondents reported only $266
million in losses in 2000, which in turn was a big jump from the $120 million dollar
average for the three years before that.

■■ The CSI survey also reported that theft of proprietary information ($151 million)
and financial fraud ($93 million) were the most serious categories.

■■ Other heavy-hitters from the CSI survey include virus attacks ($45 million), insider
abuse of Internet access ($35 million), and attacks by intruders from the outside
the company ($19 million).

■■ In 1996, Peter McLaughlin of Deloitte & Touche’s Fraud and Forensic Accounting
Practice noted that companies that invest as little as 2 percent to 5 percent of their
budget on information security could eliminate fraud before it occurs. Several
current consultant reports recommend spending at least 5 percent of the total IT
budget on security.

■■ According to the FBI, 80 percent of victims are unaware that their computers have
been violated. In a broad trend over the years, attacks from outside the company
are on the rise compared to attacks by insiders.

■■ Recent cases of cyber crime have involved interception of e-mail, vandalism of
Web sites, e-mail viruses, stolen credit cards, customer records, and privacy
violations. One of the major problems with hacker attacks is that break-ins are
often not characterized as a crime, although cyber fraud losses cost organizations
millions of dollars a year. Companies fear a loss of reputation and often do not
report violations. This situation is improving somewhat, however.

■■ Data from the 1993 Federal Uniform Crime Reports showed that for every 100,000
citizens, 306 were crooks working in the fields of fraud, forgery, vandalism,
embezzlement, and receiving stolen goods. Extrapolating to today, of the 300
million people using the World Wide Web by the end of 2002, one million will be
crooks. Given culture surrounding cyber crime, this figure is probably an
underestimate.

■■ A series of Distributed Denial of Service (DDOS) attacks in February 2000
knocked out Yahoo!, CNN, eBay, buy.com, Amazon, and ETRADE. Each attack
lasted from two to four hours, during which each Web site was completely
unavailable. Losses were estimated at $100 million.

■■ The annual Information Week/Ernst & Young Information Security Survey
consistently finds that information security at many organizations is still woefully
lacking. Measurable financial losses related to information security, and averaging
a million dollars, are found in almost every organization.

■■ The American Society for Industrial Security reports that computer crime accounts
for estimated losses of more than $10 billion per year, factoring in losses in
corporate intellectual property such as trade secrets, research, software, price

B U S I N E S S C A S E S A N D S E C U R I T Y380

TE
AM
FL
Y

Team-Fly®

lists, and customer information—much of the attacks coming from other U.S.
companies.

■■ Many sources, including the National Center for Computer Crime Data, Ernst &
Young, and the Yankee Group, estimate the market for security-related hardware,
software, and services to be $8 to $10 billion in 2002.

We now proceed to describe a major network service disruption at AT&T to illustrate
some of the costs associated with network failure. The disruption of January 1990 was
due to a software failure. Although hacking did not cause this failure, the method by
which the failure started at one switching element and propagated across the network
along the eastern seaboard was much like a virus attack. Network intrusions of a cata-
strophic nature could result in a similar pattern of failure.

Case Study: AT&T’s 1990 Service
Disruption

On Monday, January 15, 1990, AT&T experienced a 91/2-hour shutdown of its public
switched network, an incident that then Chairman and CEO Bob Allen called “the most
far-reaching service problem we’ve ever experienced.” Faulty software caused the
problem, but the symptoms initially lead to fears of a computer virus. Only 58 million
calls got through out of 148 million attempts.

The following report is extracted from AT&T’s news releases to the media.

“CERTAINLY THE MOST FAR-REACHING SERVICE PROBLEM WE’VE EVER

EXPERIENCED.”

On Tuesday, January 16, 1990, AT&T restored its public switched network to nor-
malcy after a suspected signaling system problem cut call completion rates across
the country to slightly more than 50 percent yesterday. AT&T Chairman Bob Allen
and Network Services Division Senior Vice President Ken Garrett held a press
conference from the Network Operations Center in Bedminster, N.J., to explain
the situation.

A post mortem indicated that a software problem developed in a processor
connected to a 4ESS switch in New York City, which was part of a new Signaling
System 7 network carrying call completion data separate from the call itself. The
problem spread rapidly through the network, affecting the regular long-distance
network, 800 services, and the Software Defined Network (SDN). However,
private lines and special government networks were not affected.

After eliminating a number of suspected causes, software overrides applied after eight
hours finally restored normal network capabilities. Researchers at AT&T Bell Laborato-
ries and in the Network Engineering organization studied the data accumulated and
reported, contrary to initial reports, that no computer virus was involved. AT&T
reported that software loaded in signaling processors located at each of its 4ESS digital
switching systems throughout the country was buggy. The bug, triggered in a New York

Building Business Cases for Security 381

City switching system, caused a signaling processor to fault, loading the signaling net-
work with control messages. These messages were of such character that they trig-
gered the fault in the other processors, setting off a cascade of alarms that quickly
brought the network to its knees. Note that the ability to detect and report a problem
added to the disruptive effect, because no one had tested the signaling system’s opera-
tional profile under such a large volume of alarm messages.

The event launched an intense round of advertising wars between AT&T and its com-
petitors and drew scrutiny from the FCC. AT&T (reported by The Wall Street Journal)
called this incident its “Maalox moment of 1990.” AT&T offered special calling dis-
counts following the service disruption in order to ensure customer loyalty, incurring a
considerable loss in revenue. The total cost of the disaster was estimated at anywhere
between $100 to $200 million.

Structure of the Invita Case Study

We will use standard techniques from cost-benefit analysis to justify the expense of run-
ning the Security Operations Center at Invita Securities Corp. Some models for cost-ben-
efit analysis in the context of information security do exist—for example, [EOO95]—but
exhibit gaps between theory and practice. In our toy example, we will attempt to reach an
outcome where we show actual financial payoffs from saved losses through security.

This business case is based on material on the financial aspects of computer security,
obtained through searches on the Web and in libraries. The bibliography contains refer-
ences to supporting material to justify the assumptions of the Saved Losses Model of
the business case worksheet. We have also interviewed people within the security com-
munity with backgrounds in this area. We will use some financial concepts, summarized
with formulas in the section ahead, to compute the cash flow, net present value, pay-

back period, uniform payment, and internal rate of return for our project. We used an
Excel spreadsheet to automate the calculation of all financial formulae used. We rec-
ommend that the reader who is interested in modifying our assumptions do the same by
using our tables as a template.

The cash flow from the project matches the future saved losses to crime against the ini-
tial development and continuing operations cost of the new work center. The case study
values this cash flow in today’s dollars and computes a rate of return for the project.

A conventional business case for a project compares the investment cost of a project,
funded by some means, against the potential revenues generated by the goods and services
of the completed project. The weighted average cost of capital within Invita is the rate of
return that must be earned to justify an investment. WACC can be viewed as an interest
rate charged internally for investment expenses. The project creates a cash flow that, over
an interval called the payback period, is large enough to justify the original expense. We
can construct a consolidated cash flow by combining expenses and revenue for each year
and can compute the internal rate of return represented by the consolidated cash flow.

The costs of the SOC project are conventional investment expenditures. There is a devel-
opment cost for building the system and operations, administration, and maintenance

B U S I N E S S C A S E S A N D S E C U R I T Y382

costs for running the SOC work center. Security does not earn revenue, however; instead,
it prevents the loss of revenue from accidental or deliberate and malicious acts. We must
measure these saved losses by using an operational model that is specific to Invita and
Invita’s industry profile by using the so-called stationary assumption that our past history
is a guide to future trends in losses. This assumption is inexact and depends on unreliable
estimates of the probability of risks. We will model these risks, as suggested in Chapter 2,
“Security Assessments,” by using three levels of cost and probability shown in Figure 16.1.

Of the nine combinations, we will pick only two: high cost/low probability and low cost/
high probability. We do not try to categorize the other combinations of cost and proba-
bility because if we can justify the project by estimating saved losses from these two
categories alone, then any savings in the remaining cases are just icing on the cake.

High cost/low probability. We call these catastrophic losses because they seriously
jeopardize the corporation, create high negative visibility in the media, cause
widespread customer dissatisfaction, and require responses by corporate officers to
shareholders and analysts on the possible business impacts. Distributed DOS
attacks, loss of private customer data, loss of assets through large-scale theft or
fraud, or otherwise extreme loss of services all qualify as catastrophic losses.

Low cost/high probability. We call these steady state losses because they occur
frequently with very high probability but do not disrupt services for all employees
or customers. Virus attacks that disrupt productivity, isolated DOS attacks that
degrade performance, scribbling on noncritical Web sites, or intrusions that do not
involve tampering but require corrective action qualify as steady state losses.

Consider the remaining combinations.

Building Business Cases for Security 383

Caveat

The Saved Losses Model matches the development and maintenance costs of the
new application and its operations center against expected savings from improved
security. We cannot capture the intangible savings that are often important. We
must warn against extending the case study analogy too far. The business case is
not a blueprint for building your own, because our purpose is exposition (not
recommendation). We are attempting to quantify the value of computer security,
which is obviously a very difficult task where the actual benefit of building secure
systems is reflected indirectly through intangibles, such as improved quality of
service. We therefore must make assumptions about the operational profile of the
application, and the company that owns it, to boldly give dollar values to quantities
that are inexact in reality. This procedure enables us to reach the final conclusion
of the toy study: “The Security Operations Center has a net present value of $1
million dollars and an internal rate of return of 22% compared to Invita’s 10%
weighted average cost of capital. We conclude that the project will pay for itself in
the fourth year of its five-year life cycle.” This statement would be impressive
except for the fudge factor within our assumptions.

High/High
Military installation

High profile company
Security service

High/Medium
Not estimated or included

High cost
Low probability

Included in
Business Case

Medium/High
Not estimated or included

Medium cost
Medium probability

Excluded from Business
Case, but is critical in reality

Medium/Low
Not estimated or included

Low cost
High probability

Included in
Business Case

Low/Medium
Not estimated or included

Low/Low
Not worth the effort

H
ig

h
L

o
w

High Medium low

M
e

d
iu

m

Probability

C
o

s
t

Figure 16.1 Matrix of possible exploits.

Medium cost/medium probability. The heart of the problem, and the most
interesting one, is the class of medium cost/medium probability attacks. This class
includes, for example, attacks by insiders over extended periods on small portions
of the corporate assets, stealing enough to make crime profitable but not enough to
make the company advertise the theft when discovered. We do not include these in
our analysis because it is hard to estimate these values. In a real cost-benefit
analysis, we recommend using internal historical data of actual intrusions in this
category to justify security expenses in this important category.

The remaining six categories. A low cost/low probability attack is not worth
worrying about. At the other end, unless you run a military site or are part of a high-
profile security organization, high cost/high probability attacks probably do not
apply. Four of the remaining buckets fall in a gray area: medium/high, high/medium,
medium/low, and low/medium. Classifying an attack in any of these is a subjective
matter. We will ignore these, but they might contain important samples for your
company.

Security at Invita Securities Corp.

We present a case study of an imaginary company, Invita Securities Corp. Invita pro-
vides Web-based financial services to business customers for online trading. Invita has

B U S I N E S S C A S E S A N D S E C U R I T Y384

around 3,000 employees, 200 business customers, and 50,000 private investors. In the
year 2001, Invita had profits of $84 million on revenues of $1.2 billion, managing $6 bil-
lion in assets.

Invita customers pay monthly subscriptions with a service level agreement (SLA) that pro-
vides guarantees against disruption of services through refunds of a percentage of monthly
fees. Invita has multiple locations with private TCP/IP networking at each site, along with
customer premise equipment for telecommunications services. Invita uses a large ISP for
remote access and interconnection of corporate networks at each site to the Internet and
to each other. The company has also engaged a large telecommunications service provider
for local and business telephony, wireless services, and satellite conferencing.

Martha, Invita’s CIO, has charged George, who is vice-president of Security and Privacy,
to examine the current state of corporate security infrastructure and propose a remedy
for protecting the mission-critical, Web-based business application that brings in most
of the company’s profits in subscription and trading fees each year.

George analyzes the current state of security at Invita and arrives at the conclusion that
the security on the perimeter of the network, the current authentication schemes, and
access control mechanisms all need improvement. George proposes a new Security

Operations Center (SOC), an application hosted in a corporate work center for moni-
toring the security of Invita Securities network and customer applications. Technicians
at the new work center will manage access to the mission-critical, Web-based financial
services application. This application consists of a complex collection of distributed
Web servers, directories, legacy hosts, and connections to partners—none of which is
compliant with security policy.

In addition to protecting this key application, the SOC application will monitor the
internal network and its perimeters, collect and analyze security logs, and administer
security. The benefits of an SOC, in addition to creating savings in all of these areas, will
include improved QoS, better accountability, and improved security management.

Martha wants a business case for the project.

The Pieces of the Business Case

Invita’s Network Systems Engineering department has evaluated the SOC project and
has estimated development costs. Invita’s operations and IT management has evaluated
the requirements and has information on operational costs. Martha and George call in
John, an Invita systems architect, and Abigail, a financial consultant, to validate the
information, build a business case, and provide supporting evidence for the commit-
ment agreement. The team agrees that once the architecture is reviewed, they can com-
mit to the project and allocate funding for the 2002 business cycle.

Development Costs
George decides to aim for a 15-month development cycle from January 1, 2002, to April 1,
2003. He adds incentives to complete development one quarter ahead of schedule.

Building Business Cases for Security 385

All figures (000) 2002 2003

Year and Quarter Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

General

Hardware Capital Budget 350 0 0 0 0 0 0 0

Hardware Contracts 0 0 0 0 50 0 0 0

Project Management 48 144 48 48 24 0 0 0

Systems Engineering 72 72 0 0 0 0 0 0

Documentation 0 48 12 12 0 0 0 0

Administative support 0 120 48 24 24 12 12 12

Partner/vendor tech support 0 72 72 24 24 24 24 24

Development licenses 105 0 0 0 16 0 0 0

Project

Architecture definition 12 0 0 0 0 0 0 0

Product Selection: Hardware 12 0 0 0 0 0 0 0

Product Selection: Software 54 0 0 0 0 0 0 0

Lab Environment 46 0 0 0 0 0 0 0

Design/Develop/Unit Test 107 732 180 0 0 0 0 0

Integration Testing 0 72 144 0 0 0 0 0

System Testing 0 0 48 144 72 0 0 0

Performance testing 0 0 0 36 0 0 0 0

Load testing 0 0 0 36 36 0 0 0

Regression test suite 0 0 0 18 18 0 0 0

Configuration management 72 24 12 12 12 12 12 12

Training costs 46 0 0 0 0 0 0 0

TOTAL $924 $1,284 $564 $354 $276 $48 $48 $48

Total by year $3,126 $420

Figure 16.2 Development costs.

George sits down with Thomas, Invita’s vice-president of software development, and
James, a systems engineer, to discuss the development costs of the project. After
reviewing the high-level requirements and speaking to vendors, they decide on imple-
menting the project in two phases—the first to lay down a basic framework with man-
agement interfaces to all Invita systems involved and the second to integrate all of the
vendor components involved. The project schedule is sketched out to the last five quar-
ters, with time included for extensive system and customer acceptance testing. Thomas
and James have a lot of experience with Invita’s systems and operations, and they are
confident that their cost estimates are accurate to within 5 percent of the final costs.
George also describes that there will be financial incentives for deploying the system
ahead of schedule.

The development costs are divided into two broad components: general costs and
application development costs. The costs include estimates for development and pro-
duction interaction after delivery into the year 2001. The capital budget of $350,000 cov-
ers the purchase of development, configuration management, and system test servers
and developer workstations. Some details have been omitted for conciseness. Although
it is expected that the SOC will have major releases every three to four years, no esti-
mates of development cost can be made because no feature specifications exist.

After several weeks of intensive analysis with vendors and systems engineers, the team
decides that the application will need $3.5 million in funding (see Figure 16.2).

B U S I N E S S C A S E S A N D S E C U R I T Y386

Operational Costs
George visits Dolley, Invita’s COO. Dolley has heard about SOC from Martha already
and loves the idea, but she is concerned about the operational needs for a new security
center. Although the application will be hosted on-site, Invita has no expertise in secu-
rity management. They agree to hire a security services company to oversee the techni-
cal outputs of the application and coordinate incident response activities with
managers. The company charges $1,000 a week to be on call, with additional charges
based on professional consulting rates. Martha agrees with Dolley that expenses in the
event of an intrusion should not be assigned to day-to-day operations costs. With this
reassurance, Dolley agrees to assign four of Invita’s union technicians for the 24 × 7
operation of SOC. She asks George to contact Elizabeth, head of work center operation,
for cost information. George discovers that the four technicians cost $1,000 a week
each and would need remote access service, laptops, beepers, and printers. They also
need yearly training and have union-mandated contract increases every three years.
The next increase is slated for 2005. Departmental fixed costs are separately accounted
and budgeted for and removed from the analysis. Elizabeth adds a 40 percent per tech-
nician overhead for floor space, utilities, environmental regulations, and human
resources administrative support. She also assigns two resources from the common
administration pool for production support and systems administration and adds a frac-
tional cost per year to release these resources to work on the SOC (Figure 16.3).

Dolley reviews the final totals and expresses her confidence that the numbers have an
error margin of 25 percent but are close enough to actual operational costs for her to
sign off on the business plan.

Building Business Cases for Security 387

All figures (000)

Year 2002 2003 2004 2005 2006 2007

Personnel

Operations Support Mgmt 0 140 140 140 140 140

Communications Technicians 0 291 291 311 311 311

Production support 0 21 21 22 22 22

Systems administration 0 21 21 22 22 22

Training 0 20 20 20 20 20

Operations Documention 0 0 16 0 0 0

Security services 0 52 52 52 52 52

Facility/Capital Budget

 Hardware Capital Budget 0 400 0 0 0 0

Remote Access 0 10 0 0 10 0

Environmental/ Utilities 0 0 0 0 0 0

Floor space 0 0 0 0 0 0

Administrative support 0 0 0 0 0 0

Total $0 $955 $561 $567 $577 $567

Figure 16.3 Operational costs.

Time-Out 1: Financial Formulas

We use the following financial functions from Microsoft Excel in an interactive work-
sheet. The following definitions can be reviewed from any financial analysis text (for
example, [WBB96]).

Interest Rate Functions
We use the following list of five interest rate functions. Here are their definitions. The
formula for these functions varies depending on whether the rate argument is greater
than, less than, or equal to zero.

■■ The FV() function returns the future value of an investment.

■■ The NPER() function returns the number of periods for an investment.

■■ The PMT() function returns the periodic payment for an annuity.

■■ The PV() function returns the present value of an investment.

■■ The RATE() function returns the interest rate per period of an investment.

All of these functions share a relationship through a general formula for interest rate
functions. The formula links a present value and a series of payments under a discount
rate of interest to an equivalent future value. The following formulas apply to all of the
five functions defined previously. The formula is as follows:

r is the discount rate, n is the number of periods, t is 0 when the payment is due at the
end of the period, and t is 1 when the payment is due at the beginning of the period. The
rate r is greater or less than 0.

Net Present Value
NPV() returns the net present value of an investment based on a series of periodic cash
flows and a discount rate. The formula is as follows:

rate is the discount rate, n is the number of regular time intervals, and valuesi is the
cash flow in time period i, which ranges from 1 to n.

NPV � a
n

1
a valuesi

11 � rate 2ib

PV(1 � r)n � PMT � (1 � r � t)�(1 � r)n � 1
r � � FV � 0

B U S I N E S S C A S E S A N D S E C U R I T Y388

Internal Rate of Return
IRR() returns the internal rate of return for a series of cash flows, with NPV set to 0.
The formula is as follows:

rate is the discount rate, n is the number of regular time intervals, and valuesi is the
cash flow in time period i (which ranges from 1 to n).

Payback Period
The payback period is the number of years until the initial investments plus returns yield
a positive net present value and is calculated as the first year when the discounted cash
flow from the initial investment has a positive NPV. In our worksheet, we calculated
NPV of all prefixes of our final cash flow values for years 1 through 5 and report the pay-
back period as the first period where the NPV changes sign from negative to positive.

Uniform Payment
The uniform payment converts a series of unequal payments over n periods into an
equivalent uniform series of payments under a discount rate.

Now, we return to our show.

Break-Even Analysis

George turns over all the information collected so far to Abigail and John. Abigail has
some reservations about the development and operational numbers but agrees to hold off
until the business case is complete for review. The costs represent a negative cash flow as
the company invests in a new system. She creates a worksheet to estimate the constant
cash flow required from saved losses from reduced security intrusions to justify the proj-
ect. To do so, she first estimates the net present value of all costs at the beginning of 2002,
which is when Martha must approve and release funding, at Invita’s 10 percent rate for the
cost of capital. She then computes the future value of the project after a year, because
there will be no savings in 2002. Finally, she estimates the uniform payment necessary
over each of the next five years to offset this negative cash flow (the quantity marked x in
the saved losses row in Figure 16.4). This estimate implies that the project’s internal rate
of return is exactly the 10 percent investment rate. She explains to George why uniform
payment is independent of the actual saved losses, because it just tells us how much we
must save to justify going forward with SOC. George finds this information useful. Now,
he must find $1.6 million in savings each year over the next five years from the security
architecture. If he can, he has his business case.

NPV � a
n

1
a valuesi

11 � rate 2ib

Building Business Cases for Security 389

All figures (000)

Year 2002 2003 2004 2005 2006 2007

Activity

Development ($3,126) ($420) $0 $0 $0 $0

Operations $0 ($955) ($561) ($567) ($577) ($567)

Cost Cash Flow ($3,126) ($1,375) ($561) ($567) ($577) ($567)

Saved losses $0 x x x x x

Quantity

Weighted Average Cost of Capital

Net Present Value of All Costs

Required Internal Rate of Return

Number of periods where savings is zero

Future Value after 1 year of 2002 NPV of Costs

Number of periods

Uniform Payment

1

($6,011.79)

5

$1,585.90

Amount

10.0%

($5,465.27)

10.0%

Figure 16.4 Uniform payment.

Breaking Even is Not Good Enough
George now needs an estimate of actual savings and is stumped. He has no idea where
to begin assessing the losses that the system targets. The feature requirements provide
technical detail, describing firewalls deployed, auditing software installed, e-mail virus
scanning services, strong authentication, and centralized access control management
but say nothing about the current losses from operations without these security fea-
tures. He therefore calls for help.

George schedules a lockup meeting for the team. He also invites a small group of
Invita’s technical leaders, business process owners for the systems involved, a security
guru from the managed services firm hired to assist SOC, and representatives from
each organization that could potentially save money. Abigail pulls together any data she
can find on the financial aspects of computer risk.

The team meets in a week.

Time-Out 2: Assumptions in the
Saved Losses Model

Before we jump into the details of what we can save by building this system, we must
first outline some of the assumptions behind the model. Consider the following sources
of losses and the capability of the SOC system to prevent them.

Candidates for saved losses. DOS attacks, system penetration by outsiders, access
through network spoofing, telecommunications fraud, theft of proprietary business

B U S I N E S S C A S E S A N D S E C U R I T Y390

TE
AM
FL
Y

Team-Fly®

information such as analyst reports, theft of patents, inventions, or other
intellectual property, e-mail virus attacks, some losses from network sniffing of
traffic, intrusion-related financial fraud, intrusion-related payouts of cash
guaranteed by SLAs, legal expenditures, and the cost of incident response are all
included as candidates for saved losses.

Candidates for unprotected losses. Theft of physical property, abuse of access by
authorized personnel, nonintrusion-related financial fraud, loss of reputation,
morale loss among employees, advertising expenditures for damage control, and
losses from network sniffing of unencrypted traffic are all included in this category.

Assumptions in the Saved Losses
Model

We will assume that Invita’s operational track record in adhering to corporate security
policy and closing security holes is not stellar. This situation would mean that they are
like most middle-sized companies. Invita’s high availability solutions are efficient in
restoring the network and services, but they depend on certain assumptions about the
behavior of the systems themselves. If a malicious agent causes a widespread failure on
the systems themselves, service restoration might not be possible.

Estimating the cost of insecurity is difficult. We will make some assumptions based on
industry and internal data to create a final numeric result. If the reader is interested in
doing so, however, it is straightforward to reproduce the values and formulas in the
worksheets within the sections ahead in the form of a Microsoft Excel worksheet.
Because the worksheet is completely interactive, any assumption that you feel like
challenging can be modified, and you can see the impact on the Net Present Value,
Internal Rate of Return, and Payback Period for the new values immediately. In addi-
tion, you can add or remove sources of losses and change development, operations, or
schedule details.

We have not described the feature set within SOC, because for the purpose of the busi-
ness case, this detail would be too much. We will just say that SOC implements strong
authentication, does user and role management, does virus scans, manages policy for
existing perimeter hosts such as firewalls and secure gateways, deploys a number of
security monitors and sensors, collects and logs event, does log analysis, and forwards
security alerts to technicians who can respond to the alarm or call in the cavalry.

Steady State Losses
The model estimates these sources of losses and attaches dollar figures, as well.

Each year SOC will save losses in these categories:

■■ Theft of intellectual property and proprietary information, including market
analysis data and customer data. Total losses: $800,000.

■■ Financial fraud using stolen customer credentials and payouts from violation of
service level agreements due to security violations. Total losses: $500,000.

Building Business Cases for Security 391

■■ System penetration by hackers from the Internet. Total losses: $200,000.

■■ Denial-of-service attacks. Total losses: $250,000.

■■ Productivity losses through e-mail viruses. Total losses: $250,000.

■■ Unauthorized insider access. Total losses: $30,000.

■■ Telecommunications fraud. Total losses: $50,000.

SOC will not save losses in the following categories:

■■ Sabotage of networks through physical acts. Total losses: $50,000.

■■ Theft of equipment such as laptops, PDAs, or cell phones. Total losses: $100,000.

■■ Insider abuse of network access. Total losses: $250,000.

■■ Some of the losses to unreliable service caused by theft or disruption of network
services. Total losses: $50,000.

Losses from a Catastrophic Network
Disruption

Another major benefit from the SOC project is the timely response and resolution of a
catastrophic security intrusion before it can cause widespread disruption. The first
question is, of course, “How likely is a catastrophic disruption that would have been
preventable by SOC?”

To gain a picture of the costs associated with such widespread catastrophic failure, please
review the AT&T network disruption we presented earlier. Software failures played a
major role in the disruption, but a hacker could conceivably do the same to Invita.

We have conservatively estimated that a catastrophic incident will occur once in
SOC’s five-year operational life with 0.5 percent probability. Please refer to the refer-
ences in the bibliography on telecommunications fraud to see why that might even be
an underestimate.

Although we assumed that Invita would pay penalties if a customer SLA were violated,
it must be admitted that if the cost is too great that Invita might default on service guar-
antees due to the extraordinary nature of any catastrophic event. If Invita refuses to
refund customers, we might incur other costs such as loss of market share and reduced
customer confidence with even more expensive long-term consequences.

We now return to our story already in progress.

The Agenda for the Lockup

The team must categorize the losses that SOC will potentially save for Invita and for
each of the two classes of losses, namely steady state and catastrophic, assign dollar
values to losses.

B U S I N E S S C A S E S A N D S E C U R I T Y392

The team agrees that most network intrusions will result in actual losses in revenues
and payment of refunds because of service guarantees and could also require discounts
to promote loyalty in dissatisfied customers. In addition, an intrusion might result in
any or all of the following: network disruption, advertising costs, legal counsel, produc-
tivity losses, morale loss, replacement of equipment, theft of customer records, loss of
market share, and financial liability. John describes all of the features of the SOC proj-
ect and how the architecture will improve security practice at Invita.

Elizabeth from Legal Services immediately removes the cost of legal counsel from the
list. She contends that it is inappropriate for an engineering team to justify savings in
that area. Nobody argues with her.

Louisa from Advertising states that intrusion response requires advertising to combat
the negative advertising of competitors, along with other public relations activities for
damage control. She reviews examples of negative advertising launched by rivals against
other companies in the sector that have suffered intrusions. The team agrees that
charges for countering negative advertising at a cost of $5 million should be included.
Louisa estimates that other damage control will cost $2 million in the event of a cata-
strophe. The team decides that this savings is intangible and excludes it from the model.

The team then considers steady state losses from e-mail viruses, Web site defacement,
passive network scans, minor access violations, and loss of data from disrupted com-
munications. The team is certain that productivity losses are an obvious savings, except
for the external security guru, Andrew, who believes that the correlation between e-
mail viruses and productivity losses is weak. In fact, he asserts, the correlation might be
negative because although some people legitimately find their work environment dis-
rupted, others find that not being able to send mail implies not being able to receive
mail, either. Andrew says that the resulting phone and face-to-face interaction, along
with time away from the network, might actually boost productivity. John remarks that
the costs of the Love Bug and the Melissa virus ran into the billions. Andrew, in turn,
notes that while everyone reports losses, no one reports time saved or productivity
gains from doing creative work away from the computer. No one knows what to make
of this situation, so after an uncomfortable pause, they ignore this recommendation.

Rachel from telecommunications services adds a new feature request. The current cus-
tomer premise equipment enables sales employees with a password to use an 800 num-
ber to access the PBX and then dial out. One of the security components included in the
architecture has an interface that will protect the local phone equipment at no addi-
tional cost. The team agrees to amend the feature requirements, include Rachel’s esti-
mate of a $25,000 loss on average to a $100,000 loss at most from a single violation, to
the saved losses.

The team quickly decides to remove loss of reputation, morale, and other intangibles
from the measurable saved losses list. Martin, from operations, has surprising numbers
from several industry surveys, including Ernst & Young, the Department of Defense,
and the Computer Services Institute. Considering Invita’s share of the overall financial
services industry, the average cost from computer fraud, financial fraud, eavesdrop-
ping, and laptop theft could be as high as $5 million a year. George is elated to hear this
fact until he realizes that although this situation is good for his business case, the com-
pany was probably losing money as they spoke.

Building Business Cases for Security 393

The team discusses the loss of intellectual property, concentrating primarily on the
financial analysis reports that Invita provides as part of its subscription service and the
sophisticated Web-based financial analysis and modeling tools that its customers use.
The security guru noted that company did nothing to protect the reports once they were
in the hands of a subscriber but could protect them on the document server or in tran-
sit. The application could also restrict access by password-protecting the electronic
documents themselves. This feature was not part of the original SOC feature set, and
the team agrees that digital rights management is out of scope for the project. There are
some savings from protecting the Web and document servers themselves, however, and
from managing subscriptions securely.

Then, Hannah from customer services and William from the CFO organization describe
Invita’s guarantee program. Invita’s customers fall into two categories: individuals and
businesses. Each category has its own subscription rate and service level agreement. In
addition, Invita promises high availability and good response time for its trading ser-
vices. Violations of either promise could result in refunds corresponding to free trades
or a month’s subscription fee, depending on the customer’s service request. Hannah and
William have data on the success of the guarantee program over the past few years,
including some surprises. Not all customers who experience service disruptions asked
to invoke the guarantees. Not all those who did invoke the guarantee remembered
doing so. For customers who remember invoking guarantees, higher satisfaction scores
did not seem related to higher credit awards. In fact, the satisfaction rating was higher
for small awards (less than $30) as compared to large awards (awards of more than
$250) for problem resolutions. Hannah explained that part of the decrease in satisfac-
tion might be because of the possibility that after a certain point, as credit size
increases, so does the magnitude or severity of the problem encountered and the initial
relative dissatisfaction of the customer. When the team wished to compare the new
security features to the causes of service disruption to see how much would be saved,
however, the data was just not there.

Fortunately, Anna, from Invita operations could correlate the times of the disruptions
with a service outage database. The team discovers that 2 percent of all the service dis-
ruptions can be conservatively attributed to security-related issues.

Finally, the team visits catastrophic costs. Andrew presents the story of a business rival
whose customer database was stolen and released on the Internet, causing 20 percent
of all customers to leave and triggering losses exceeding $100 million. The team agrees
that if SOC prevents a single catastrophic event over its five-year lifespan, then it would
have justified its cost many times over. The probability of such an event is unknown,
however. The team decides that a catastrophic event could cost Invita at least a year’s
profit, $80 million, but the probability of such an event is very small (less than one-half
of 1 percent). The team agrees that both numbers are somewhat arbitrary. The figure
0.5 percent was chosen because only one of the 40 largest companies on Martin’s list of
financial services corporations experienced a catastrophic loss in the past five years.
Andrew cautioned the team that fewer than 15 percent of computer crimes are detected
and perhaps as few as 10 percent of those are reported. He also added that the causality
between implementing SOC and preventing a catastrophe was weak, saying, “We could

B U S I N E S S C A S E S A N D S E C U R I T Y394

build all of this good stuff and still get hacked.” The team tries to resolve the issue of
security coverage. George disagrees, saying, “It is clear that SOC’s architecture is sound
and valuable, and at the very least SOC makes Invita a less attractive target.”

The team decides to use all of the data collected so far to arrive at some conclusions.

Steady-State Losses
The team reviews and revises the estimates, removing some elements. Abigail adds up all
of the estimates for high-probability losses to get $1.9 million a year. (Note: This amount
is less than what we assumed during the last time-out.) Almost $1.3 million of that total
is from theft of intellectual property, financial fraud, and service guarantee payouts.

Catastrophic Losses
Abigail then computes Invita’s expected losses over the next five years as follows:

(Cost of catastrophe) � (Probability of catastrophe in five years)

This equation gives us $80 million multiplied by 0.005, which comes out to $400,000.
The team does not expect such a small number (and that, too, for a five-year period).
Abigail then expresses the present value of $400,000 at the beginning of 2003 as a series
of five uniform payments, at Invita’s investment rate of 10 percent, to arrive at $100,000
a year in savings. She explains to the team why she assigned the total dollar cost arbi-
trarily to the year 2003 to be on the safe side. The payment represents the estimated
cost each year spread out over five years. The cost is discounted at the rate of 10 per-
cent to represent the decreased cost to Invita over time (Figure 16.5).

George is aghast. He was expecting much more in savings. The team increases the prob-
ability of a catastrophe to 10 percent in five years. The savings jumps from $106,000 to
$2,110,000 (Figure 16.6).

Building Business Cases for Security 395

Event Cost

Steady state costs $1,900,000

Catastrophic Disruption Cost $80,000,000

Probability 0.50%

Probable cost (% probability) $400,000

WACC 10.00%

Number of years (2003-2007) 5

Estimated annual cost $106,000

Yearly savings from SOC $2,006,000

Figure 16.5 First estimate of yearly savings from SOC.

Event Cost

Steady state costs $1,900,000

Catastrophic Disruption Cost $80,000,000

Probability 10.00%

Probable cost (% probability) $8,000,000

WACC 10.00%

Number of years (2003-2007) 5

Estimated annual cost $2,110,000

Yearly savings from SOC $4,010,000

Figure 16.6 Second estimate of yearly savings from SOC.

Event Cost

Steady state costs $1,900,000

Catastrophic Disruption Cost $80,000,000

Probability 1.00%

Probable cost (% probability) $800,000

WACC 10.00%

Number of years (2003-2007) 5

Estimated annual cost $211,000

Yearly savings from SOC $2,111,000

Figure 16.7 Third estimate of yearly savings from SOC.

The team lowers the probability to 1 percent. The savings from catastrophic losses falls
to $211,000 (Figure 16.7).

Abigail raises an issue with assuming a 10 percent probability of catastrophic losses.
That would imply that 20 of the 40 companies experienced a catastrophic loss over the
five-year period from Martin’s data. This situation is clearly not the case.

The team decides to call in Martha for the business case readout. They stick with the low
probability of a catastrophe figure of 0.5 percent to produce the following cost-benefit
analysis (Figure 16.8). The team estimates that the project has an internal rate of return of
26 percent, and the project has a five-year payback period (four years after deployment).

The Readout
Martha is more than a little surprised. She listens to the team explain that many poten-
tial savings were blocked out because of inexact numbers or unknown probabilities.

B U S I N E S S C A S E S A N D S E C U R I T Y396

All figures (000)

Year 2002 2003 2004 2005 2006 2007

Activity

Development ($3,126) ($420) $0 $0 $0 $0

Operations $0 ($955) ($561) ($567) ($577) ($567)

Saved losses $0 $2,006 $2,006 $2,006 $2,006 $2,006

Total Cash Flow ($3,126) $631 $1,445 $1,439 $1,429 $1,439

Quantity

Weighted Average Cost of Capital

Net Present Value

Internal Rate of Return

Net present value after 1 year

Net present value after 2 years

Net present value after 3 years

Net present value after 4 years

Net present value after 5 years

Net present value after 6 years

Payback Period (years)

Amount

($2,841.82)

($2,320.33)

($1,234.68)

10.0%

$1,447.75

26%

$635.47

$1,447.75

5

($251.82)

Figure 16.8 First Consolidated Cost-Benefit Analysis.

Martha tries some changes. The first modification that she requests is the removal of
the savings from catastrophic losses, reasoning that if a number is that sensitive to
changes in a single probability value, it should be discarded as unreliable.

Andrew objects to this vociferously. His company gets the majority of their sales of
security monitoring services to corporations based on the fear of the worst-case sce-
nario. He argues that the sensitivity to probability should be disregarded, that the loss
from a catastrophe cannot be ignored, and that SOC is a no-brainer. Anna notes that
Andrew has a financial stake in seeing SOC implemented, because his company will
respond to intrusions. This statement leaves Andrew speechless, and Abigail takes over.

Abigail reports that the modification results in the IRR falling to 22 percent, although
the payback period stays the same (Figure 16.9).

Martha asks the team to consider an alternative.

Insuring Against Attacks
Martha introduces Sarah and Zachary, who have been listening silently so far. Sarah is
from Invita’s corporate insurance division, and Zachary is a representative from a large
insurance company that sells insurance policies for computer security. Zachary’s com-
pany will insure Invita’s assets at a 10 percent premium.

The team examines this alternative. Zachary will charge $8,000,000 a year for securing
Invita against catastrophic losses. Andrew dismisses the premium. “It is like the
extended service warranties that electronic stores offer when you buy stuff,” he said.
“They charge you 20 percent of the purchase price for a year’s coverage. Unless one in

Building Business Cases for Security 397

All figures (000)

Year 2002 2003 2004 2005 2006 2007

Activity

Development ($3,126) ($420) $0 $0 $0 $0

Operations $0 ($955) ($561) ($567) ($577) ($567)

Saved losses $0 $1,900 $1,900 $1,900 $1,900 $1,900

Total Cash Flow ($3,126) $525 $1,339 $1,333 $1,323 $1,333

Quantity

Weighted Average Cost of Capital

Net Present Value

Internal Rate of Return

Net present value after 1 year

Net present value after 2 years

Net present value after 3 years

Net present value after 4 years

Net present value after 5 years

Net present value after 6 years

Payback Period (years)

Amount

($2,841.82)

($2,407.93)

($1,401.92)

10.0%

$1,082.46

22%

$330.01

$1,082.46

5

($491.47)

Figure 16.9 Second Consolidated Cost-Benefit Analysis.

five of the devices is failing, it’s stealing!” Zachary strongly objects to this characteriza-
tion. When the team asks whether Zachary will charge $200,000 each year, to prevent
the steady state losses that Invita incurs, he is more evasive. “Since the losses are guar-
anteed, they can’t be insured for one tenth the value,” he explains. “We’d be paying you
$1.8 million every year.”

The team ends the meeting with no resolution to the business case.

Business Case Conclusion
Martha calls William from the CFO organization to ask whether a project with a 22 per-
cent rate of return is normally given the green signal. William is reluctant to commit to
an answer but says that a five-year payback period would be unacceptable for most
financial services, which must be profitable in quarters (not years). He also recom-
mends against the $8,000,000 premium because of the unusual nature of insuring
against computer risk. It would be unfortunate to have a claim rejected because of
some minor clause in the agreement.

Martha calls in George and tells him the bad news. Invita will not build SOC but will
instead assign some resources to the individual systems to improve security. She pri-
vately wishes that George had found more savings but decides not to re-examine the
business case, fearing that the team will tell her what they think she wants to hear
rather than the truth.

Eighteen months later, Invita is hacked and loses 25 percent of its customer base.
Martha and George resign. What did you expect, a happy ending?

B U S I N E S S C A S E S A N D S E C U R I T Y398

A Critique of the Business Case

Some of our readers might have found our method of presentation unusual. Our apologies
if this situation confused more than clarified the issues involved. Analyzing security risk is
mainly about reconciling incompatible opinions on the relative value, importance, and
cost of alternatives, however, to arrive at estimates of the impact and consequences of
decision-making. We thought it easier to assign these viewpoints to separate voices rather
than spend twice the space writing conditional or conflicting statements. If you had con-
cerns about the analysis and the outcome, they are probably well founded. Here is why.

Our business case has two central flaws. Both flaws are common in risk assessment
analysis, and neither of them is easily fixed. Yacov Haimes’ text on risk assessment
[Haimes98] extensively discusses the effect of these two factors on risk modeling,
assessment, and management.

Money can measure everything. All system properties are reduced to being
commensurate with one measure: money. Many risk analysis experts reject this
method of cost-benefit analysis because money is inadequate as the sole measure of
criteria for project excellence. The interconnected nature of systems leads to the
loss of other properties—not all of which can be measured accurately and
adequately or can even be characterized by a dollar figure.

Catastrophic risk is undervalued. The mathematical expected value of risk
multiplies the consequence of each event (its cost) with its probability of
occurrence (its likelihood) and sums or integrates all of these products over the
entire universe of events. Using the expected value of risk as an aid for decision-
making blurs the relative weight of two events of vastly differing costs by
multiplying these costs with the vastly differing probabilities of occurrence of these
events. Event A with probability 0.1 and cost $1,000 contributes the same amount of
$100 to the expected value of risk as event B with probability 0.0001 and cost
$1,000,000. In the real world, where we are remembered by our worst failures, no
manager would characterize the two losses as being equivalent if they actually
occurred. We cannot discard elements of the analysis that are very sensitive to
perturbation because these elements might be the most important.

Risk theory provides other models for assessing extreme risk that categorize all events
into ranges of probability and measure conditional risk in each category. These models
simultaneously target multiple objectives to prevent the smoothing effect of the
expected value of risk measurement in our business case. We can choose to emphasize
the effects of some ranges of probability that would otherwise be subsumed by the
noise from other categories. These models also assume that the analyst has objective
and high-quality evidence to support the probability of occurrence assigned to each
event, however, which is rarely the case. Our estimates for the likelihood of most events
are fuzzy. In such a case, categorizing fuzziness is not an improvement.

In addition to the real dangers of under-representing catastrophic risk, our business
case also shows some other simplifications that could affect our analysis because we
have ignored other risk factors.

Building Business Cases for Security 399

■■ We have tacitly assumed that our security operations center will indeed prevent
security exploits. While this assumption might indeed be true for many known
exploits, we will fail on some novel attacks. Even if the architecture is sound, it
cannot be complete. The probability that the solution will fail against new and
unknown exploits has not been made explicit.

■■ We have omitted the most significant saved losses component; namely, savings
gained by defending against medium-sized losses with a medium probability of
occurrence. Companies do not wish to advertise exposures from this category in
many cases or have insurance against what they perceive as an evil cost of being in
operations. We lack detailed facts on the monetary impact of risk in this category,
but there are signs that this situation is improving.

■■ We have ignored project management risks, including cost overruns, schedule
delays, personnel changes, project scope creep, or budget revisions.

■■ We have probably underestimated the level of maintenance, testing, and training
required to operate the security center. These costs tend break business cases
because they reduce projected savings year over year.

■■ We have ignored failure of the security operations center itself. If the center is
engineered to be highly available, this situation might indeed be acceptable.
Nevertheless, it is unlikely that there will be no impact to business operations if a
large and central security service falls over either through malicious tampering or
through human error or accidental failure of hardware, software, or processes.

■■ We have ignored how decision-making works in real life. Decision trees, first
introduced by Howard Raiffa [Rai68], use graphical and analytic methods to
describe the consequences of our choices when assessing risk. We have posited a
simple management outcome from the business case: accept or deny the project.
In an actual situation, we must do more—including analysis and decomposition of
the project into stages corresponding to the architectural options and alternatives
available, only one of which corresponds to SOC.

■■ Our analysis might be fragile. Our systems might be sensitive to fluctuations in
assumptions. Some decisions are irreversible while others are not. Any risk model
must present rollback opportunities if decisions can be revoked.

■■ The model might be unstable because of new requirements or other evolutionary
design forces. Its ability to perform as advertised in the event that we cut
technicians, increase data volumes, add new components, or merge with other
security services is unknown.

Insurance and Computer Security

Risk management, modeling, and assessment use many techniques to capture the quan-
titative risk associated with any venture, the conditional expected value of losses if the
venture goes awry, and the ranking and filtering rules required to classify the collection
of extreme events that threaten the system.

B U S I N E S S C A S E S A N D S E C U R I T Y400

TE
AM
FL
Y

Team-Fly®

One mode of protecting against risk has been the theme of this book—the use of secu-
rity architecture, design, and engineering principles. Another alternative to protecting a
venture from risk is through insurance. When we buy insurance, we trade a large and
potentially disastrous outcome that is unlikely with a small but guaranteed loss: the
premium for insurance. Statistically, the premium loss outweighs the expected value of
losses to fires, personal injury, or death. We consider these outcomes unacceptable,
however, and therefore prefer a small loss to a potentially devastating consequence.

The principles of insurance define risk as uncertainty concerning loss. Risk makes
insurance both desirable and possible. Without uncertainty, no insurer will cover a guar-
anteed loss at economically reasonable rates. Risk depends on the probability distribu-
tion of loss, not on the expected value alone. The more predictable the loss, the less the
degree of risk. As the variance in the loss distribution rises, so does the degree of risk.

Insurance protects against peril, the cause of risk. Peril from an accident, for example,
could depend on many factors: the age of the driver, the prior driving record, the driving
conditions, and the competence of other drivers. Each condition (whether physical, moral,
or morale) that can cause the probability of loss to increase or decrease is called a hazard.
Physical hazard is an objective property; for example, the condition of the vehicle’s tires.
Moral hazards capture our subjective estimation of the character of the insured, which
could increase the chance of loss. Insurance fraud results from moral hazards. In addition,
morale hazards (as opposed to moral hazards) are caused by the existence of the insur-
ance policy itself, because the insured is now indifferent to protecting the asset. Insurance
combines the risk of many individual policies together to build a profitable and more pre-
dictable model of losses, where the premiums charged clearly exceed the likely losses.

Peter L. Bernstein, in his bestseller Against the Gods on the history of risk [Ber98],
describes the work of economists such as Kenneth J. Arrow on the forces behind insur-
able risk. He describes how the lack of complete or correct information about the cir-
cumstances around us causes us to overestimate the accuracy and the value of what we
do know. In his description of Arrow’s complete market, a model where all risk is insur-
able, he describes the basic quality that makes insurance practical. Insurance works
when the Law of Large Numbers applies. The law of large numbers requires that the
risks insured should be large in number and independent in nature.

Credit card companies already forgive fraud on Internet charges, because although we
lack infrastructure for secure transactions beyond SSL to a secure Web server, the
sheer volume of business is too valuable to ignore. Companies swallow the losses to
keep the customers happy and reissue cards whenever Internet vendors report the theft
of a credit card database.

An unfortunate consequence of this line of thinking is the response by governments and
corporations to identity theft. Although at a personal level this situation can be devas-
tating, with victims reeling from the effects for years, very little is done at the infra-
structure level (because hey, the Law of Large Numbers has not caught up). There are
relatively few incidents, and despite the moral and legal dimensions, corporations and
legislators alike have decided that paying for a huge and expensive security infrastruc-
ture to prevent this situation is not yet worth the trouble. Some improvements have

Building Business Cases for Security 401

B U S I N E S S C A S E S A N D S E C U R I T Y402

been made. New laws with stiff penalties on identity theft are on the books, and, for
example, the United States Post Office no longer allows anyone to redirect another per-
son’s mail by just dropping off a “Moving to a New Address” card. (This method was the
most common route for attackers to gain access to the victim’s profile and personal
data.) Identity theft is terrible on the individual scale, but attacks are not yet at levels
where the costs to our economy justify widespread policy changes.

Hacker Insurance
Purchasing insurance against hackers is complicated because, in our current imperfect
environment, the law of large numbers is not applicable. Insurers will offer hacker
insurance in two scenarios.

The domain of insurance applicability is extremely restricted. The insurance
company adds so many qualifiers to the description of what constitutes a security
violation covered by insurance that the project might be unable to file a claim. The
value of the policy might be affordable, but it is so exclusive as to be useless
outside a tight boundary.

The premium is extraordinarily high. The insurance company sets premium levels
so high that policies are guaranteed to be profitable even when the types of insured
events is quite large.

Firstly, we lack a rational means of estimating the odds of losses or the actual loss itself.
There are no actuarial tables for hacking that correspond to the insurer’s statistical
tables of mortality, automobile accidents, fire damage, or luggage loss.

Secondly, it might be impossible to take an example of an attack at one company and
extrapolate the consequences of a similar attack at another. Even when the insurer has
statistical information on the costs of an attack, simple differences in infrastructure,
business models, industries, or services can make extrapolation invalid. Our business
case of the previous sections illustrates the difficulty of this task. Before we can ask for
a quantitative expected value of insurable risk, we must classify and categorize the vast
number of security exploits each as a potential hazard. Although the collection of
exploits is very large, creating a taxonomy based on system properties can bound the
risks. The insurer has the harder problem of policy definition for each of the combina-
tions in our taxonomy. What does it cost to insure a particular hardware platform, with
several major configuration details, running one of dozens of versions of operating sys-
tems, running some subset of thousands of vendor products, and supporting millions of
customers?

Thirdly, even if we succeed in breaking down our many exploits into individual cate-
gories, it is hard to describe the impact of a particular exploit on our system. Other met-
rics (such as cumulative down time, rate of revenue loss in dollars an hour, counts of
dropped connection requests, or customer attrition numbers following the attack) are
all unrelated to the actual nature of the exploit from the perspective of the insurance
company. Some exploits might have limited success; others can be devastating—
accounting for the vast majority of all the attacks that succeed. If the insurance com-

Building Business Cases for Security 403

pany classifies the successful exploits as outside your coverage after the attack, you are
out of luck.

Fourthly, there is also the risk of moral hazard. Insurance encourages risk-taking, which
is essential for economic progress. Insurance can also result in fraud, however. Auto
insurance companies in many states complain that the primary cause of rising auto
insurance rates is fraud. Medical insurers similarly blame a portion of the rise in health
care costs on excessive, fraudulent claims filed by organized gangs that collude with
medical service providers to swindle the company out of enormous amounts of money.
Companies that buy computer hacker insurance policies must not be able to exploit
that insurance policy to defraud the insurer. This task is extremely difficult. Security
forensics is hard enough in genuine cases of intrusion, let alone cases where the
insured is an accomplice of the hacker and to the intrusion act.

Finally, insurance works when the individual claims filed are probabilistically indepen-
dent events. The likelihood of my house burning down at the same instant that your
house burns down is small if we live in different cities but much larger if we are neigh-
bors. The Internet and all of the networks we build that connect to it break down the
boundaries between systems. The networks we depend on for services also link us
together across geographic boundaries to make us neighbors when attacked. One e-mail
virus spawns 50, each of which spawn 50 more—affecting all the mail users in a corpo-
ration, all their friends on mailing lists, all their corporate partners, and all customers.

We depend on critical services. If a hacker launches a distributed DOS attack at something
universally needed such as a DNS, can all the affected systems file claims or only the own-
ers of the DNS server? If Yahoo! goes down, who can file a claim? Is it only the company,
Yahoo! Incorporated? Can Yahoo! users file claims? Can Yahoo! advertisers file claims for
all the lost eyeballs while the site was down? Insurance companies have a poor way of
dealing with dependencies, ranging from denying all claims or paying all claims and
declaring bankruptcy (as was witnessed in Florida in the aftermath of Hurricane Andrew).

Insurance Pricing Methods
By law, insurance companies are required to price premiums in a manner that is rea-
sonable, adequate, and non-discriminatory. Many states carry laws prohibiting approval
of a policy that charges unreasonable premiums in relation to the benefits provided.

Insurance is also regulated. Not everyone can offer it, and those that do must go through a
certification process. In the past, telecommunications companies have worked around this
issue by providing different classes of service with guaranteed levels of protection. For
example, a small business with a Public Branch Exchange (PBX) switch on its premises
might pay extra for a plan that absolves them of liability in case of toll fraud. The telecom-
munications provider might even add stipulations of make and model of the switch and con-
figuration options, and recommend additional hardware as part of the service. If it looks
like insurance and it smells like insurance, however, it’s probably insurance.

Toll fraud, which stands around $4 billion in annual losses, is hard to quantify. There are
many forms of theft of service from long-distance call theft, trunk group theft, cellular

phone cloning, 800 number fraud, one-month set-up-and-tear-down businesses, and
calling card fraud.

Insurance companies socialize risk. They charge higher premiums to young drivers, but
not high enough to justify the payouts, instead transferring some of the burden to older
drivers. They also spread the costs of fraud across all customers. Pricing models can
target individuals where the premium quoted is based on specific details of the one sys-
tem under evaluation. Pricing can be on based on class rating, where the system is cat-
egorized into a class and then a standard pricing model for the class is invoked. An
organization that buys comprehensive coverage might be offered bulk discounts, or the
premiums across several systems could be averaged in some manner. Pricing is heavily
affected by experience and retrospective analysis, normally in annual cycles. The pay-
outs for the past year and fixed profit targets for the next year determine the schedule
for insurance rates.

Health insurance companies sometimes insert clauses in policies to deny coverage of
certain pre-existing conditions, although this might cause considerable hardship to a
newly insured individual. The reasoning is that the probability of a claim being filed has
now hit one. This certainty therefore guarantees losses. Hacker insurance companies
may invert this logic on its head. They may refuse to insure post-emergent conditions,
where new bugs are discovered after the policy is written that result in unexpected
intrusions and deny claims for the corresponding losses. Again, until the bug is patched,
your application is vulnerable, and in the event that you did not apply the patch
although it is not certain that you will be compromised, the insurance company may
decide that the intrusion falls outside your policy as an undocumented risk.

Feedback for accurate pricing is another aspect where computer security insurance
falls short. There is really no correlation between payouts from one year to another. Old
bugs are fixed, new ones appear, and the exact losses from an attack vary from event to
event. Consider what the discovery of the elixir of life would do to life insurance premi-
ums, or the invention of the crash proof car to automobile insurance, or an outbreak of
an extremely contagious virus requiring intensive care to medical premiums. The inabil-
ity to map past events to future earnings and payouts results in wild guesses. For this
reason, when asked what a reasonable premium would be, we always say 10 percent of
the application cost. There is no justification for this number, but it seems to make peo-
ple happier.

Conclusion

In this chapter, we discussed the role of the practicing software architect in justifying
the need for security and the dangers that go with insouciance. After the initial glow of
release 1.0, where all the stakeholders are in agreement that they need the system and
support its deployment, the architect and project manager are left with the difficult
technical challenge of managing the project’s evolution as new feature requests and
architectural challenges appear. Security, which is often paid lip service but rarely
dealt with adequately at release 1.0, becomes a larger concern after the inevitable secu-

B U S I N E S S C A S E S A N D S E C U R I T Y404

rity incidents occur on the application in the field or on hosts with which it shared
interfaces.

Nothing works like a good old-fashioned hack attack to wake up upper management to
the risks of e-business. There is a thriving industry of white-hat hackers who for a fee
will attack and expose vulnerabilities in production systems under the assumptions
that their services represent a complete set of attack scenarios and that the risks to the
application can be fixed. The architect is placed in the position of adding security to a
production system while at the same time justifying all of the expenses associated with
the laundry list of countermeasures proposed by the intrusion team.

In this chapter, our goal was to walk a mile in the shoes of an architect who has been
charged with building a business case for computer security. This subject, which would
clearly need a book of its own, sits at the confluence of many streams that bring
together the academic theories of risk assessment and modeling, the practical knowl-
edge of systems architecture, the tools and techniques of the diverse computer security
community, the requirements of software process for building large enterprise systems,
and the practical, mundane, but vital activity of writing code to actually do stuff on a
machine.

We now conclude the book with some advice on security architecture in the next chap-
ter, along with pointers to further resources for architects.

Building Business Cases for Security 405

Computers will always be insecure. There are limits to what we can accomplish through
technology. However well we partition the problem, strengthen defenses, force traffic
through network choke points, create layer upon layer of security, or keep our designs
secret, we are still vulnerable. We must face the fact that we live in a world where prod-
ucts have defects, users are sometimes naïve, administrators make mistakes, software
has bugs, and our antagonists are sophisticated.

We have tried to be optimistic in our presentation, sticking largely to the facts and to
the available options and staying away from other factors affecting software develop-
ment. Organizations are political beasts. Vendors sometimes wield unusual influence
within a company. Funding comes and goes with the ebb and flow of internecine battles
at management levels above us. Choices are made without reference to technical mer-
its. Time pressures change priorities. Human beings make mistakes.

We have mentioned other perspectives of security that emphasize that security is a con-
tinual process, and the bibliography provides references to many excellent books that
share this viewpoint. This dominant perspective of this process rightly portrays infor-
mation security as a struggle between defenders and attackers. It should be, because
information security is indeed a conflict between you (your business, assets, cus-
tomers, and way of life) and hackers who have no moral or ethical qualms about
destroying what you value. They might not like you, might compete with you, or might
be indifferent to you. They might claim to be only curious. You are left to manage risk in
the event of an intrusion.

The language of war and crime is popular in discourses on computer security. Laws that
apply to munitions protect cryptographic algorithms. We defend ourselves against
attack. We detect intrusions, conduct intrusion forensics, analyze intrusion evidence,

C H A P T E R

407

17
Conclusion

respond to attacks, perform data rescue, and initiate system recovery. We are ever vigi-
lant. We institute countermeasures against attack and compromise. We might even
counterattack. We fight viruses, rid ourselves of worms, detect Trojan horses, and are
the targets of logic bombs. I once heard a security services firm refer to their team of
consultants as Information Security Forces.

In this book, we have tried to ask and answer the question, “How does security look
from another perspective?” We have described the goals of security at a high level as
seen by the members of another busy tribe, system architects. Systems architects cannot
by definition be security experts because their domain of expertise is the system at hand.
They know about another domain, perhaps the command and control systems on a
nuclear submarine, transport service provisioning on a telecommunications network,
power management at a large energy plant, launch sequence software for the space shut-
tle, consolidated billing for a financial services company, testing for a suite of personal
productivity tools, critical path analysis for project management software, voice print
storage for a speech synthesis engine, graphical rendering for the next dinosaur movie,
or satellite communications for television broadcasts. Security experts are producers of
information security. Systems architects are consumers of information security.

Is this alternative perspective more important than the attacker-defender dichotomy?
Not in general. In specific instances when we are charged with securing our system,
however, this perspective is the only one that matters. We see the world through our
own eyes. What choice do we have?

We believe that software architecture is a valuable organizing principle for the con-
struction of large systems. We conclude the book with some elements of security archi-
tecture style, a series of general abstract principles collected from many sources. In this
chapter, we have collected a long list of observations, recommendations, ideas, and
some commandments on building security into systems.

Random Advice

Good security architecture is sound. Soundness is an intangible quality that matches
the logic of the application’s security with the inner logic of the application itself. The
system does something to justify its existence and probably does it very well. The secu-
rity architecture should run along the grain of the system to prevent breaking it in sub-
tle and hard-to-diagnose ways.

At a high level, protect the perimeter first. List interfaces and the direction of data flow
in and out of the system. Do not suffocate communication while you are figuring out
how to secure it. Keep the design supple enough to bend in the face of change. Check
the combined architecture for leaks at every stage of evolution.

Give full architectural attention to the design of incidental security details, especially
setting aside time at the security assessment to discuss physical security or social engi-
neering opportunities that might be ignored otherwise. These are not architectural in
nature, and we therefore have not spent much time in this book discussing these issues.
There is a wealth of material in the references about these issues, however. Balance the

B U S I N E S S C A S E S A N D S E C U R I T Y408

weight of the security applied with the weight of the payload being transmitted. Do not
spend one dollar to protect one cent of data.

Consult ancestors. Every project has a history, and someone in the company—no doubt
promoted to another level—knows this history. It is important to understand legacy sys-
tems to prevent process from degenerating into ritual.

Eliminate unnecessary security artifacts. Avoid over-ornamentation in the security
architecture. Vendor products often have ornaments for flexibility in a wider range of
applications. Ornaments inhibit growth and have hidden security costs. They hide
unnecessary code, link unwanted libraries, add unused files and directories, and can
cause undetected vulnerabilities. If a piece of code does not execute a function in the
field, it is a hole waiting to be exploited.

Good security components have a modular design. They have a central core orbited by
satellite modules, and at installation enable you to load only the modules required for
implementing security policy. For an example of good modular design in other arenas,
examine the code base of the Linux kernel, which enables dynamic loading and unload-
ing of kernel modules, or the Apache Web server, which enables integration with sev-
eral hundred modules that support a wide range of server enhancements. Each product
defines an event loop or exception/response architecture for providing checkpoints for
module insertion. (Modularity in design is, however, a double-edged sword. Hackers
have written Linux rootkit exploits that are loadable kernel modules. These compro-
mise the kernel’s response to system calls.)

Good security components do one thing well, do it fast, and stay out of the way. They can
be dropped in or lifted out of the architecture with minimal impact. Good security soft-
ware components are as easy to uninstall as they are to install. Security through obscu-
rity in a vendor product is not a good idea, but it helps to keep the details of your system
security solution concealed. Do not put them up on the Web site for the application.

End-to-end security is best. It is also usually impossible. Enable transitive trust with
care. You are in effect handing over the security of your system to a partner with
unknown practices and vulnerabilities each time you perform this action. Transitive
trust is a simplifier, but choose carefully from the range of trust relationships (from
none to complete) between any two systems communicating over a chain of intermedi-
aries. Realize that the systems you trust might tomorrow extend that trust to others in
ways you disagree with.

Avoid capricious redefinition of familiar architectural concepts, especially if you are a
vendor. Vocabulary is important; shared vocabulary more so. Words should mean
things, and hopefully the same things to all participants.

When you use encryption, compression, or abbreviated codes in messages, the capabil-
ity of an IDS or firewall to reason intelligently about the contents is lost. This situation
is not bad. This statement should reinforce the notion that depending solely on IDS or
firewall instances for systems security architecture is a flaw.

Do not implement your own cryptographic protocols or primitives. Start with a single
cryptographic family of primitives and use it everywhere until someone complains for
performance or security reasons. Consider the risk of implementation errors, and buy a

Conclusion 409

toolkit instead. Define methods and procedures for replacing a cryptographic library in
case flaws are discovered. List the assumptions of the protocols that you plan to use,
and ensure that each holds true. Are your secrets concealed? Encoding is not the same
as encryption.

Eavesdroppers listen to communications at other places than the midpoint. The end-
points are very popular, too. Minimize the number of different flavors of communica-
tion in your application. Do not clutter the security handshake between communicating
processes.

If the application architecture has more than two layers, pick a layer and restrict secu-
rity functionality to that layer if possible. You will have less to change when the appli-
cation changes. Periodically edit access control lists and update resource lists with the
same attention you would give to editing a user list.

Do not clutter the background process space of the application architecture. Link per-
formance levels with some objective metric. Link the labels “fast,” “adequate,” and
“slow” to actual processing rates in your application so as to use these terms consis-
tently. If you wish to avoid performance penalties associated with security measures,
you might have no choice but to use insecure solutions. Consider performance gains
from using lighter security. It might be worth it.

Bring the interfaces into the heart of the security design. Your system interfaces are
how the world views your application. If you alter an interface specification to add
security extensions, spend some time documenting your reasons. The system on the
other side will need to know why. Wrap all insecure legacy code. Re-examine objects
with multiple wrappers. Look for opportunities for reuse.

Think in other dimensions when you are enumerating the interfaces with your system.
Did you remember the automated tape backup system? How about hardware access to
data when swapping disks? Do the security procedures at a secondary disaster recovery
site protect it as well as the primary? Do you have any extra administrative interfaces,
undocumented debug modes, universally known administrative passwords, or a special
back-door admin tool? Ask the vendor about undocumented keystrokes for its tools.

Automate security administration, and try to make changes consistently. Make sure to
synchronize the security state in a distributed application and propagate state securely.

Do not let security audit logs yoyo in size. Offload logs regularly, and clean up logs
incrementally. Never wipe the last weeks’ worth of logs, even if backed up. You never
know when you might need them. Avoid ambiguity in your log files. Add enough detail
to each entry to specifically link the entry to some transaction without referring to too
much context from the surrounding text. Logs can be (and are) hacked. Avoid breaking
logs at strange places. Look for logical places that enable you to break the log file into
meaningful sets of transactions. Avoid distributing security logs over too many
machines. Interleaving multiple logs for analysis is much harder. Look into tools for
analysis of merged logs.

Your wallet is a good place to keep passwords. Your screen is not. It is unlikely that you
will be hacked and mugged by the same person on the same day, but it is exceedingly

B U S I N E S S C A S E S A N D S E C U R I T Y410

TE
AM
FL
Y

Team-Fly®

likely that someone will visit you when you are out of your office. If your passwords are
all variants of a theme, cracking one will reveal the rest.

Always authenticate on opening a session and budget for performance hits when ses-
sions start or end. Within a session, maintain and verify the validity of the session for all
transactions. Invalidate a session whenever credentials expire.

If you plan to use patterns, spend some time with someone who has actually imple-
mented the ones in which you are interested. Do not stretch a design pattern until it
breaks. Consider the assumptions under which the pattern was originally developed.
Call the design pattern by its proper name if you can.

When testing, change one parameter at a time. Budget for training. Budget some more.
Join the team at testing and deployment. Spend some time in the field to see the appli-
cation running. Hire a tiger team to attack the system. Do not use inertia as a reason to
promote insecurity. Remember that evolution is about the survival of the fittest, and
when you see the need for special measures, recognize the fact and act on it. Improvise
(or else die).

Implement security policy and guidelines uniformly and consistently or not at all. If
examined close enough, all analogies fail. Beware of special effects. Do not ask for an
exception unless you really need one.

Volunteer as a reviewer to help another team. You never know when you might need
the favor returned. It is challenging and enjoyable work, and you might learn some-
thing new.

Finally, abandon any rules and guidelines of security architecture that clearly fail to
serve the actual needs of your system’s security. If your knowledge of the problem, its
constraints, and its unique architectural needs contradict any guideline, assume that
you have found a specific instance where the general rule fails to apply to you. As with
all decisions in life, common sense comes first.

Conclusion 411

413

ABI Application Binary Interface

ACE Access Control Entry

ACL Access Control List

ACM Association of Computing Machinery

AES Advanced Encryption Standard

AIX IBM Unix flavor

ANSI American National Standards Institute

API Application Programming Interface

ARP Address Resolution Protocol

ASN1 Abstract Syntax Notation 1

ASP Active Server Pages

BER Basic Encoding Rules

CBC Cipher Block Chaining

CDPD Cellular Digital Packet Data

CDS Cell Directory Service

CFB Cipher Feedback Block

CFF Cumulative Failure Function

CGI Common Gateway Interface

CIFS Common Internet File System

Glossary of Acronyms

CMM Capability Maturity Model

COM+ Common Object Model Plus

CORBA Common Object Request Broker Architecture

COTS Common (or Commercial) Off the Shelf

CPS Certificate Practices Statement

CPU Central Processing Unit

CRC Cyclic Redundancy Check

CRL Certificate Revocation List

CSF Critical Success Factors

CSI CORBA Security Interoperability

CSI Computer Security Institute

DAP Directory Access Protocol

DBA Database Administrator

DBMS Database Management System

DBOR Database-of-Record

DCE Distributed Computing Environment

DDL Data Definition Language

DDOS Distributed Denial of Service

DES Data Encryption Standard

DFS Distributed File Service

DHCP Dynamic Host Configuration Protocol

DIB Directory Information Base

DIT Directory Information Tree

DML Data Manipulation Language

DMZ Demilitarized Zone

DNS Domain Name Service

DNSSEC Domain Name Service Security

DOI Domain of Interpretation

DOM Document Object Model

DRM Digital Rights Management

DSA Digital Signature Algorithm

DSA Directory Service Agent

DSL Digital Subscriber Line

DSS Digital Signature Standard

DTD Document Type Definition

G LO S S A RY414

DTS Distributed Time Server

DUA Directory User Agents

ebXML XML Standard for E-Business

ECB Electronic Code Book

ECC Elliptic Curve Cryptography

ECDH Elliptic Curve Diffie-Hellman

ECDSA Elliptic Curve Digital Signature Algorithm

EFF Electronic Frontier Foundation

EJB Enterprise Java Beans

ESP Encapsulating Security Payload

FDDI Fiber Distributed Data Interface

FIPS Federal Information Processing Standards

FMS Fault Management System

FRF Failure Rate Function

FSM Finite State Machine

FTP File Transfer Protocol

GAAP Generally Accepted Accounting Principles

GID Group ID

GIGO Garbage In Garbage Out

GIOP General Inter-ORB Operability Protocol

GPS Global Positioning System

GSS-API Generic Security Services API

GUI Graphical User Interface

HFS HPUX File System

HGP Human Genome Project

HMAC Keyed Hash Message Authentication Code

HPP Homogeneous Poisson Processes

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol over SSL

ICMP Internet Control Message Protocol

IDL Interface Definition Language

IDS Intrusion Detection System

IETF Internet Engineering Task Force

IFS Input Field Separator

G LO S S A RY 415

IIOP Internet Inter-ORB Operability Protocol

IIS Microsoft Internet Information Server

IKE Internet Key Exchange

IOR Interoperable Object Reference

IP Internet Protocol

IPC Inter-process Communication

IPSec Internet Protocol Security Standard

IRC Internet Relay Chat

IRR Internal Rate of Return

ISO International Organization for Standardization

ISP Internet Service Provider

ITUT International Telecommunications Union

JAAS Java Authentication and Authorization Service

JCE Java Cryptography Extension

JDBC Java Database Connectivity

JFS Journaling File System

JSP Java Server Pages

JSSE Java Secure Socket Extension

JVM Java Virtual Machine

KDC Kerberos Key Distribution Center

LAN Local Area Network

LDAP Lightweight Directory Access Protocol

LSA Local Services Authority

MAC Message Authentication Codes

MIME Multipurpose Internet Mail Extensions

MTBF Mean Time Between Failures

MTTR Mean Time to Recover

NAT Network Address Translation

NFS Network File Systems

NIC Network Interface Card

NID Network Intrusion Detection

NIS Network Information Service

NIS+ Network Information Service Plus

NIST National Institute of Standards and Technology

NNTP Network News Transfer Protocol

G LO S S A RY416

NOP No Operation machine instruction

NOS Network Operating System

NPER Number of Periods

NPV Net Present Value

NSA National Security Agency

NTLM NT LAN Manager

NTP Network Time Protocol

OCSP Online Certificate Status Protocol

OFB Output feedback mode

OMG Object Management Group

ORB Object Request Broker

OSF Open Software Foundation

OSI Open Systems Interconnection

PAC Privilege Access Certificate

PAM Pluggable Authentication Modules

PBX Public Branch Exchange

PDA Personal Digital Assistant

PDC Primary Domain Controller

PGP Pretty Good Privacy

PHP Hypertext Preprocessor

PKCS Public Key Cryptographic Standard

PKI Public Key Infrastructure

PKIX Public Key Infrastructure (X.509)

PRN Pseudo-Random Number

PROM Programmable Read Only Memory

PTGT Privilege Ticket Granting Ticket

PTSN Public Telephone Switched Network

QOS Quality of Service

RACF Resource Access Control Facility

RADIUS Remote Authentication Dial-In User Service

RAID Redundant Array of Inexpensive Disks

RBAC Role-Based Access Control

RDN Relative Distinguished Name

RFC Request for Comments

RM-ODP Reference Model for Open Distributed Processing

G LO S S A RY 417

RPC Remote Procedure Call

RSA Rivest Shamir Adleman

S/MIME Secure MIME

SADB Security Associations Database

SAF System Authorization Facility

SAM System Accounts Manager

SAML Security Assertions Markup Language

SANS System Administration, Networking, and Security Institute

SAX Simple API for XML

SCSI Small Computer Systems Interface

SDN Software Defined Network

SEAM Solaris Enterprise Authentication Mechanism

SECIOP Secure Inter-ORB Protocol

SEI Software Engineering Institute

SET Secure Electronic Transactions

SETI Search for Extraterrestrial Intelligence

SHA-1 Secure Hash Algorithm

SLA Service Level Agreement

SMB Server Message Block

SMTP Simple Mail Transfer Protocol

SOC Security Operations Center

SPD Security Policy Database

SPI Security Parameter Index

SQL Structured Query Language

SRE Software Reliability Engineering

SSH Secure Shell

SSL Secure Sockets Layer

SSO Single Sign-on

SSSO Secure Single Sign-on

TCP Transmission Control Protocol

TGT Ticket Granting Ticket

TLA Three-Letter Acronym

TLS Transport Layer Security

TMN Telecommunications Management Network

TOCTTOU Time of Check to Time of Use attacks

G LO S S A RY418

TTP Trusted Third Party

UDP Uniform Datagram Protocol

UML Unified Modeling Language

URI Uniform Resource Identifier

URL Uniform Resource Locator

UTC Coordinated Universal Time

VPD Virtual Private Database

VPN Virtual Private Network

VVOS Virtual Vault Operating System

WACC Weighted Average Cost of Capital

WAN Wide Area Network

WAP Wireless Application Protocol

WEP Wired Equivalent Privacy

WTLS Wireless TLS

WWW World Wide Web

XHTML XML standard for HTML

XKMS XML Key Management Service

XML Extensible Markup Language

XML-DSig XML Standard for Digital Signatures

XML-Enc XML Standard for Encryption

XOR Exclusive OR

XQL XML Query Language

XSL Extensible Stylesheet Language

XSLT Extensible Style Language for Transformations

G LO S S A RY 419

TE
AM
FL
Y

Team-Fly®

[Ale95] AlephOne. Smashing the Stack for Fun and Profit, Phrack Online,
Volume 7, Issue 49, File 14 of 16, www.fc.net/phrack, November
1996.

[Alex96] Alexander, S. “The long arm of the law.” Computerworld, v30 n19,
pp. 99—100, May 6, 1996.

[AN94] Abadi, M. and Needham, R. Prudent Engineering Practice for

Cryptographic Protocols, Proceedings of the 1994 Computer Society
Symposium on Research in Security and Privacy, pp. 122—136, 1994.

[AN95] Anderson, R. J. and Needham, R. M. Robustness Principles for Public

Key Protocols, Crypto 95, pp. 236—247, 1995.

[AN96a] Abadi, M. and Needham, R. Prudent Engineering Practice for

Cryptographic Protocols, IEEE Transactions on Software Engineering,
v22 n1, pp. 6—15, January 1996.

[AN96b] Anderson, R. J. and Needham, R. M. “Programming Satan’s Computer.”
Computer Science Today—Recent Trends and Developments, Springer
LNCS v1000, pp. 426—441, 1995.

[And01] Anderson, R. J. Security Engineering: A Guide to Building

Dependable Distributed Systems, John Wiley & Sons, ISBN
0471389226, January 2001.

[Ant96a] Anthes, G. H. “Firms seek legal weapons against info thieves.”
Computerworld, v30 n22, pp. 72(1), May 27, 1996.

[Ant96b] Anthes, G. H. “Hack attack: cyber-thieves siphon millions from U.S.
firms.” Computerworld, v30 n16, pp. 81, April 15, 1996.

Bibliography

421

[Arn93] Arnold, N. D. Unix Security: A Practical Tutorial, McGraw-Hill, ISBN
0070025606, February 1993.

[BBB00] Bachman, F., Bass, L., Buhman, C., Comella-Dorda, S., Long, F., Robert,
J., Seacord, R., and Wallnau, K. Volume II: Technical Concepts of

Component-Based Software Engineering, Software Engineering
Institute Technical Report, CMU/SEI—2000-TR-008, May 2000.

[BBC00] Bachman, F., Bass, L., Carriere, J., Clements, P., Garlan, D., Ivers, J.,
Nord, R., and Little, R. Software Architecture Documentation in

Practice: Documenting Architectural Layers, Software Engineering
Institute Special Report, CMU/SEI—2000-SR-004, March 2000.

[BC00] Bovet, D. P. and Cesati, M. Understanding the LINUX Kernel: From

I/O Ports to Process Management, O’Reilly & Associates, ISBN
0596000022 , November 2000.

[BCK96] Bellare, M., Canetti, R., and Krawczyk, H. Keying Hash Functions for

Message Authentication, Advances in Cryptology, Crypto ’96
Proceedings, LNCS Vol. 1109, Springer-Verlag, 1996.

[BCK98] Bass, L., Clements, P., and Kazman, R. Software Architecture in

Practice (The SEI Series), Addison-Wesley Publishing Co., ISBN
0201199300, January 1998.

[BCR97] BCR Editors, “Worried about security? Yes. Taken action? No.”
Business Communications Review, v27 n1, p. 60, January 1997.

[Bel96] Bellovin, S. Problem Areas for the IP Security Protocols, Proceedings
of the Sixth USENIX Unix Security Symposium, July 1996.

[Ber98] Bernstein, P. L. Against the Gods: The Remarkable Story of Risk, John
Wiley & Sons, ISBN 0471295639, August 1998.

[Berg97] Berg, A. “Survey reveals users’ firewall concerns.” National Computer
Security Association study, LAN Times, v14 n10, p. 33(2), May 12, 1997.

[Bish87] Bishop, M. “How to Write a SUID Program.” ;login (USENIX newslet-
ter), January 1987.

[BPP69] Beard, R. E., Pentikainen, T., and Pesonen, E. Risk theory, Methuen’s
Monographs on Applied Probability and Statistics, Willmer Brothers
Ltd., ASIN: 0416128505, 1969.

[BS01] Barrett, J. and Silverman, R. SSH, The Secure Shell: The Definitive

Guide, O’Reilly & Associates, ISBN 0596000111, February 15, 2001.

[BST00] Baratloo, A., Singh, N., and Tsai, T. Transparent Run-Time Defense

Against Stack Smashing Attacks, Proceedings of the 9th USENIX
Security Conference, 2000.

[CB94] Cheswick, W. R. and Bellovin, S. M. Firewalls and Internet Security:

Repelling the Wily Hacker (The Addison-Wesley Professional

Computing Series), Addison-Wesley Publishing Co., ISBN 0201633574,
January 1994.

B I B L I O G R A P H Y422

[CBP99] Cone, E. K., Boggs, J., and Perez, S. Planning for Windows 2000, New
Riders, ISBN 0735700456, 1999.

[CFMS94] Castano, S., Fugini, M., Martella, G., and Samarati, P. Database

Security, Addison-Wesley Publishing Co., ISBN 0201593750, 1994.

[Com95] Comer, D. E. Internetworking with TCP/IP Vol. I: Principles,

Protocols, and Architecture, Prentice Hall, ISBN 0132169878, March
1995.

[Con01] Conry-Murray, A. “Kerberos, Computer Security’s Hellhound,” Network

Magazine, 16(7), pp. 40—45, July 2001.

[Cop95] Coplien, J. O. “The Column without a Name: Software Development
as a Science,” Art and Engineering, C++ Report, pp. 14—19,
July/August 1995.

[Cop97] Coplien, J. O. Idioms and Patterns as Architectural Literature, IEEE
Software, pp. 36—42, January 1997.

[CPM98] Cowan, C., Pu, C., Maier, D., Hinton, H., Walpole, J., Bakke, P., Beattie,
S., Grier, A., Wagle, P., and Zhang, Q. StackGuard: Automatic Adaptive

Detection and Prevention of Buffer-Overflow Attacks, Proceedings of
the 7th USENIX Security Conference, 1998.

[Cur96] Curry, D. A. Unix Systems Programming for SVR4, O’Reilly and
Associates, ISBN 156592—163—1, July 1996.

[Dee96] Deering, A. “Protecting against cyberfraud,” Risk Management, v43 n2,
pp.12, December 1996.

[Den82] Denning, D. E. R. Cryptography and Data Security, Addison-Wesley
Publishing Co., ISBN 0201101505, June 1982.

[Den98] Denning, D. E. Information Warfare and Security, Addison-Wesley
Publishing Co., ISBN 0201433036, December 1998.

[Denn90] Denning, P. J. (ed.), Computers under Attack: Intruders, Worms, and

Viruses, ACM Press, ISBN 0201530678, 1990.

[DH99] Doraswamy, N. and Harkins, D. IPSec: The New Security Standard for

the Internet, Intranets, and Virtual Private Networks, Prentice Hall
PTR, ISBN 0130118982, August 1999.

[DKW00] Dikel, D. M., Kane, D., and Wilson, J. R. Software Architecture:

Organizational Principles and Patterns, Prentice Hall PTR, ISBN
0130290327, December 2000.

[DL96] Dam, K. W. and Lin, H. S. (Eds.). Cryptography’s Role in Securing the

Information Society, National Academy Press, ISBN 0309054753,
October 1996.

[EDM98] Emam, K. E., Drouin, J., and Melo, W. (Eds.). SPICE: The Theory and

Practice of Software Process Improvement, IEEE Computer Society
Press, ISBN 0818677988, January 1998.

B I B L I O G R A P H Y 423

[EOO95] Ekenberg, L., Oberoi, S., and Orci, I. “A cost model for managing
information security hazards.” Computers & Security, v14 n8, pp.
707—717, 1995.

[FFW98] Feghhi, J., Feghhi, J., and Williams, P. Digital Certificates: Applied

Internet Security, Addison-Wesley Publishing Co., ISBN 0201309807,
October 1998.

[FK92] Ferraiolo, D. and Kuhn, R. “ Role-Based Access Control.” 15th National
Computer Security Conference, pp. 554—563, 1992.

[FMS01] Fluhrer, S., Mantin, I., and Shamir, A. Weaknesses in the Key

Scheduling Algorithm of RC4, to be presented at the Eighth Annual
Workshop on Selected Areas in Cryptography (August 2001).

[FMS97] FM3000 class notes, Mini MBA in Finance, AT&T School of Business
and Wharton, May-June 1997.

[Fry00] Frykholm, N. Countermeasures against Buffer Overflow Attacks, RSA
Labs Technical Note, www.rsa.com/rsalabs/technotes/buffer/buffer
_overflow.html, November 2000.

[GACB95] Gacek, C., Abd-Allah, A., Clark, B., and Boehm, B. On the Definition of

Software System Architecture (Center for Software Engineering,

USC), ICSE 17 Software Architecture Workshop, April 1995.

[Gan97] Gantz, J. “A city of felons at T1 speeds.” Computerworld, v31 n7,
pp. 33, February 17, 1997.

[GAO95] Garlan, D., Allen, R., and Ockerbloom, J. Architectural Mismatch,
Proceedings of the 17th International Conference on Software
Engineering, April 1995.

[GHJV95] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design Patterns,
Addison-Wesley Publishing Co., ISBN 0201633612, January 1995.

[GO98] Ghosh, A. K. and O’Connor, T. Analyzing Programs for Vulnerabilities

to Buffer Overrun Attacks, www.rstcorp.com, proceedings of the
National Information Systems Security Conference, October 6—9, 1998.

[Gol01] Goldreich, O. Foundations of Cryptography: Basic Tools, Cambridge
University Press, ISBN 0521791723, August 2001.

[GR01] Garfinkel, S. and Russell, D. Database Nation: The Death of Privacy

in the 21st Century, O’Reilly & Associates, ISBN 0596001053,
January 2001.

[GS96] Shaw, M. and Garlan, D. Software Architecture: Perspectives on an

Emerging Discipline, Prentice Hall, ISBN 0131829572, April 1996.

[GS96a] Garfinkel, S. and Spafford, E. Practical Unix and Internet Security,
O’Reilly & Associates, ISBN 1565921488, April 1996.

[GS97] Garfinkel, S. and Spafford, E. Web Security & Commerce (O’Reilly

Nutshell), O’Reilly & Associates, ISBN 1565922697, June 1997.

B I B L I O G R A P H Y424

[GWTB96] Goldberg, I., Wagner, D., Thomas, R., and Brewer, E. A. A Secure

Environment for Untrusted Helper Applications, 6th USENIX
Security Conference, pp. 1—13, 1996.

[Hai98] Haimes, Y. Y. Risk Modeling, Assessment, and Management (Wiley

Series in Systems Engineering), Wiley-InterScience, ISBN
0471240052, August 1998.

[Hal00] Hall, M. Core Java Servlets and JavaServer Pages, Sun Microsystems
Press, Prentice Hall PTR, ISBN 013089340, May 2000.

[Hal94] Haller, N. The S/KEY One-Time Password System, Proceedings of the
First Symposium on Network and Distributed System Security, 1994.

[HBH95] Hutt, A. E., Bosworth, S., and Hoyt, D. B. (Eds.). Computer Security

Handbook, 3rd Edition. Published by John Wiley & Sons, ISBN
0471118540, August 1995.

[HNS99] Hofmeister, C., Nord, R., and Soni, D. Applied Software Architecture,

The Addison-Wesley Object Technology Series), Addison-Wesley
Publishing Co., ISBN 0201325713, October 1999.

[How95] Howes, T. A. The Lightweight Directory Access Protocol: X.500 Lite,
University of Michigan, CITI Technical Report 95—8, July 1995.

[HP01] Hewlett-Packard Technical Documentation, http://docs.hp.com.

[Hun92] Hunt, T. F. (Ed.). Research Directions in Database Security, Springer-
Verlag, ISBN 0387977368, May 1992.

[IBM00a] IBM International Technical Support, OS/390 Security Server

Documentation, IBM Corporation, www.ibm.com, August 2000.

[IBM00b] Best, S. Journaling File System Overview, IBM Open Source
Developer Works, Linux Technology Center, www—106.ibm.com/
developerworks/, January 2000.

[Ico97] Icove, D. J. Collaring the cybercrook: An investigator’s view, IEEE
Spectrum, v34 n6, pp. 31—36, June 1997.

[Isen97] Isenberg, D. “Rise of the Stupid Network.” Computer Telephony,
pp. 16—26, August 1997.

[Isen98] Isenberg, D. “The Dawn of the Stupid Network.” ACM Networker 2.1,
pp. 24—31, February/March 1998.

[ISO96] International Standards Organization, Reference Model for Open

Distributed Processing, IS 10746—1, ITUT Recommendation X.901,
1996.

[IWEY01] Information Week/Ernst & Young, Security Survey 2001, www.ey.com.

[IWEY96] Information Week/Ernst & Young Security Survey IV, www.ey.com.

[Jac00] Jacobson, I. and Bylund, S. The Road to the Unified Software

Development Process (Sigs Reference Library), Cambridge Univ Pr
(Trd), ISBN 0521787742, August 2000.

B I B L I O G R A P H Y 425

[JBR99] Jacobson, I., Booch, G., and Rumbaugh, J. The Unified Software

Development Process (The Addison-Wesley Object Technology Series),
Addison-Wesley Publishing Co., ISBN 0201571692, January 1999.

[Jon94] Jones, E. B. Finance for the non-financial manager, Pitman, ISBN
0273360507, 1994.

[JRvL98] Jazayeri, M., Ran, A., Van Der Linden, F., and Van Der Linden, P.
Software Architecture for Product Families: Principles and Practice,
Addison-Wesley Publishing Co., ISBN 0201699672, January 2000.

[Kahn96] Kahn, D. The Codebreakers; The Comprehensive History of Secret

Communication from Ancient Times to the Internet, Revised edition,
Scriber, New York, ISBN 0684831309, December 1996.

[Knu92] Knuth, D. E. Literate Programming (Center for the Study of

Language and Information - Lecture Notes, No 27), CSLI
Publications, ISBN 0521073806, May 1992.

[Kob94] Koblitz, N. I. A Course in Number Theory and Cryptography, 2nd
Edition, Graduate Texts in Mathematics, No 114, Springer-Verlag, ISBN
0387942939, September 1994.

[KP99] Kernighan, B. W. and Pike, R. The Practice of Programming (Addison-

Wesley Professional Computing Series), Addison-Wesley Publishing
Co., ISBN 020161586X, February 1999.

[KPS95] Kaufman, C., Perlman, R., and Speciner, M. Network Security: Private

Communication in a Public World, Prentice Hall PTR, ISBN
0130614661, March 1995.

[Kru95] Kruchten, P. Architectural Blueprints— The “4+1” View Model of

Software Architecture, IEEE Software 12(6), pp. 42—50, November
1995.

[Lam73] Lampson, B. A Note on the Confinement Problem, CACM, v16 n10,
pp. 613—615, October 1973.

[Lam81] Lamport, L. Password Authentication with Insecure

Communication, Communications of the ACM, 24(11), pp. 770—771,
November 1981.

[Lav83] Lavenberg, S. S. Computer Performance Modeling Handbook,
Academic Press, 1983.

[Liv97] Livingstone, J. L. (Ed.). The Portable MBA in Finance and

Accounting, 2nd Edition, John Wiley & Sons, ISBN 047118425X,
August 1997.

[Los99] Loshin, P. Big Book of IPSec RFCs, Morgan Kaufman, ISBN
0124558399, November 1999.

[Lyu96] Lyu, M. Handbook of Software Reliability Engineering, McGraw-Hill,
ISBN 0070394008, 1996.

B I B L I O G R A P H Y426

[Mat99] Mathews, T. Crypto 301: Public Key Infrastructures, RSA Data
Security Conference, 1999.

[MC76] Mehr, R. I. and Cammack, E. Principles of Insurance, Sixth Edition,
Richard Irwin Inc., ASIN: 0256018332, 1976.

[McCa96] McCarthy, J. L. “Cyberswindle!” Chief Executive, n113, pp. 38—41, May
1996.

[McF97] McGraw, G. and Felten, E. Java Security: Hostile Applets, Holes &

Antidotes, John Wiley & Sons, ISBN 047117842X, 1997.

[McL00] McLaughlin, B. Java and XML, O’Reilly and Associates, ISBN
0596000162, June 2000.

[MFS90] Miller, B. P., Fredrikson, L., and So, B. An Empirical Study of the

Reliability of Unix Utilities, CACM 33 (12), pp. 32—44, December
1990.

[MHAC01] Mishra, P., Hallam-Baker, P., and Ahmed, Z. et. al. Security Services

Markup Language, Draft Version 0.8a, www.netegrity.com, January
2001.

[Mic01] Microsoft Technical Documentation, What’s New in Security for

Windows XP Professional and Windows XP Home Edition, Microsoft
Corporation, www.microsoft.com/technet, July 2001.

[Mill00] Miller, B. P., Koski, D., Lee, C. P., Maganty, V., Murthy, R., Natarajan, A.,
and Steidl, J. Fuzz Revisited: A Re-examination of the Reliability of

Unix Utilities and Services, CSD Technical Report, University of
Wisconsin, www.cs.wisc.edu/~bart/ fuzz/fuzz.html, 1995.

[MM00] Malveau, R. C. and Mowbray, T. Software Architect Bootcamp,
Prentice Hall PTR, ISBN 0130274070, October 2000.

[MOV96] Menezes, A. J., Van Oorschot, P. C., and Vanstone, S. A. (Ed.). Handbook

of Applied Cryptography (CRC Press Series on Discrete Mathematics

and Its Applications), CRC Press, ISBN 0849385237, October 1996.

[MOV96] Menezes, A. J., Van Oorschot, P. C., and Vanstone, S. Handbook of

Applied Cryptography, CRC Press Series on Discrete Mathematics
and Its Applications, ISBN 0849385237, October 1, 1996.

[MS00] Marcus, E. and Stern, H. Blueprints for High Availability: Designing

Resilient Distributed Systems, John Wiley & Sons, ISBN 0471356018,
January 2000.

[MS01] Sun Microsystems Technical Documentation, www.microsoft.com
.technet/.

[Nas99] Nash, A. Public Key Infrastructures, RSA Data Security Conference,
1999.

[Nee01] Needham, P. Oracle Label Security—Controlling Access to Data,
Oracle White Paper, http://otn.oracle.com, January 2001.

B I B L I O G R A P H Y 427

[Net00] Netegrity White Paper, S2ML: The XML Standard for Describing and

Sharing Security Services on the Internet, Netegrity Corporation,
www.netegrity.com, November 2000.

[Net01] Netegrity White Paper, Security Assertions Markup Language

(SAML), Netegrity Corporation, www.netegrity.com, May 2001.

[News90] News releases on the AT&T Network Service Disruption of January
15, 1990.

[News91] News releases on the AT&T Network Service Disruption of September
21, 1991.

[NIST00] NIST CIO Council report, www.nist.gov, Federal Information

Technology Security Assessment Framework, National Institute of
Standards and Technology, Computer Security Division, Systems and
Network Security Group, November 2000.

[NN00] Northcutt, S. and Novak, J. Network Intrusion Detection: An

Analyst’s Handbook, 2nd Edition, New Riders Publishing, ISBN
0735710082, September 2000.

[Noo00] Noordergraaf, A. Solaris Operating Environment Minimization for

Security, Sun Microsystems Enterprise Engineering, www.sun.com
/blueprints, November 2000.

[Nor01] Norberg, S. Securing Windows NT/2000 Servers, O’Reilly and
Associates, ISBN 1565927680, January 2001.

[NW00] Noordergraaf, A. and Watson, K. Solaris Operating Environment

Security, Sun Microsystems Enterprise Engineering,
www.sun.com/blueprints, April 2001.

[Oaks01] Oaks, S. Java Security, 2nd Edition, O’Reilly & Associates, ISBN
0596001576, June 2001.

[Oaks98] Oaks, S. Java Security, O’Reilly & Associates, ISBN 1565924037, 1998.

[OMG01a] Object Management Group, CORBA Security Specification, version

1.7, www.omg.org, March 2001.

[OMG01b] Object Management Group, Resource Access Decision Facility

Specification, version 1.0, www.omg.org, April 2001.

[Orb01] OrbixSSL C++ Programmer’s and Administrator’s Guide,
www.iona.com/docs/, Iona Technologies, 2001.

[OTN01] Oracle Technical Network Resources, Oracle Label Security,
http://technet.oracle.com/deploy/security/ols/listing.htm, 2001.

[OTN99] Oracle Technical Network Resources, The Virtual Private Database

in Oracle8i, Oracle Technical White Paper, http://otn.oracle.com,
November 1999.

[PC00] Perrone, P. J. and Chaganti, V. S. R. R. Building Java Enterprise

Systems with J2EE, SAMS Publishing, 2000.

B I B L I O G R A P H Y428

[PCCW93] Paulk, M. C., Curtis, B., Chrissis, M. B., and Weber, C. V. Capability

Maturity Model, Version 1.1, IEEE Software, Vol. 10, No. 4, pp.18—27,
July 1993.

[Per00] Perens, B. Are buffer-overflow security exploits really Intel and OS

makers fault?, message posting, www.technocrat.net, July 2000.

[Perl99] Perlman, R. Interconnections: Bridges, Routers, Switches, and

Internetworking Protocols, Second Edition, Addison Wesley
Professional Computing Series, Addison-Wesley Publishing Co., ISBN
0201634481, October 1999.

[PLOP3] Martin, R. C., Riehle, D., and Buschmann, F. (Eds.). Pattern Languages

of Program Design 3, Addison-Wesley Publishers, ISBN 0201310112,
October 1997.

[POSA1] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., and Stal, M.
Pattern Oriented Software Architecture—A System of Patterns, John
Wiley & Sons, 1996.

[POSA2] Schmidt, D., Stal, M., Rohnert, H., and Buschmann, F. Pattern-Oriented

Software Architecture, Volume 2, Patterns for Concurrent and

Networked Objects, John Wiley & Sons, ISBN 0471606952, September
2000.

[PW92] Perry, D. E. and Wolf, A. L. Foundations for the Study of Software

Architecture, Software Engineering Notes, SIGSOFT, 17(4),
pp. 40—52, 1992.

[Rai68] Raiffa, H. Decision Analysis: Introductory Letters on Choices under

Uncertainty, Addison-Wesley Publishers, Menlo Park, CA, 1968.

[Ray01] Ray, E. T. Learning XML, O’Reilly & Associates, ISBN 0596000464,
February 2001.

[Ray95] Raymond, E. S. The Cathedral and the Bazaar, www.tuxedo.org/
~esr/writings/cathedral-bazaar/, Revision 1.51, 2000.

[RFC1309] Reynolds, J. and Heker, S. RFC 1309: Technical Overview of

Directory Services Using the X.500 Protocol, March 1992.

[RFC1320] Rivest, R. RFC 1320 The MD4 Message-Digest Algorithm,
www.ietf.org/rfc/rfc1320.txt, April 1992.

[RFC1321] Rivest, R. RFC 1321 The MD5 Message-Digest Algorithm,
www.ietf.org/rfc/rfc1321.txt, April 1992.

[RFC1828] Metzger, P. and Simpson, W. RFC 1828 IP Authentication using

Keyed MD5, www.ietf.org/rfc/rfc1828.txt, August 1995.

[RFC1829] Karn, P., Metzger, P., and Simpson, W. RFC 1829 The ESP DES-CBC

Transform, www.ietf.org/rfc/rfc1829.txt, August 1995.

[RFC2040] Baldwin, R. and Rivest, R. RFC 2040 The RC5, RC5-CBC, RC5-CBC-

Pad, and RC5-CTS Algorithms, www.ietf.org/rfc/rfc2040.txt, October
1996.

B I B L I O G R A P H Y 429

[RFC2085] Oehler, M. and Glenn, R. RFC 2085 HMAC-MD5 IP Authentication

with Replay Prevention, www.ietf.org/rfc/rfc2085.txt, February 1997.

[RFC2104] Krawczyk, H., Bellare, M., and Canetti, R. RFC 2104 HMAC: Keyed-

Hashing for Message Authentication, www.ietf.org/rfc/ rfc2104.txt,
February 1997.

[RFC2144] Adams, C. RFC 2144 The CAST—128 Encryption Algorithm,
www.ietf.org/rfc/rfc2144.txt, May 1997.

[RFC2251] Wahl, M., Howes, T., and Kille, S. RFC 2251 Lightweight Directory

Access Protocol (v3), www.ietf.org/rfc/rfc2251.txt, December 1997.

[RFC2401] Kent, S. and Atkinson, R. RFC 2401 Security Architecture for the

Internet Protocol, www.ietf.org/rfc/rfc2401.txt, November 1998.

[RFC2402] Kent, S. and Atkinson, R. RFC 2402 IP Authentication Header,
www.ietf.org/rfc/rfc2402.txt, November 1998.

[RFC2403] Madson, C. and Glenn, R. RFC 2403 The Use of HMAC-MD5—96

within ESP and AH, www.ietf.org/rfc/rfc2403.txt, November 1998.

[RFC2404] Madson, C. and Glenn, R. RFC 2404 The Use of HMAC-SHA—1—96

within ESP and AH, www.ietf.org/rfc/rfc2404.txt, November 1998.

[RFC2405] Madson, C. and Doraswamy, N. RFC 2405 The ESP DES-CBC Cipher

Algorithm With Explicit IV, www.ietf.org/rfc/rfc2405.txt, November
1998.

[RFC2406] Kent, S. and Atkinson, R. RFC 2406 IP Encapsulating Security

Payload (ESP), www.ietf.org/rfc/rfc2406.txt, November 1998.

[RFC2407] Piper, D. RFC 2407 The Internet IP Security Domain of Interpretation

for ISAKMP, www.ietf.org/rfc/rfc2407.txt, November 1998.

[RFC2408] Maughan, D., Schertler, M., Schneider, M., and Turner, J. RFC 2408

Internet Security Association and Key Management Protocol

(ISAKMP), www.ietf.org/rfc/rfc2408.txt, November 1998.

[RFC2409] Harkins, D. and Carrel, D. RFC 2409 The Internet Key Exchange

(IKE), www.ietf.org/rfc/rfc2409.txt, November 1998.

[RFC2411] Thayer, R., Doraswamy, N., and Glenn, R. RFC 2411 IP Security

Document Roadmap, www.ietf.org/rfc/rfc2411.txt, November 1998.

[RFC2412] Orman, H. RFC 2412 The OAKLEY Key Determination Protocol,
www.ietf.org/rfc/rfc2412.txt, November 1998.

[RFC2451] Pereira, R. and Adams, R. RFC 2451 The ESP CBC-Mode Cipher

Algorithms, www.ietf.org/rfc/rfc2451.txt, November 1998.

[RFC2807] Reagle, J. RFC 2807 XML Signature Requirements, www.ietf.org
/rfc/rfc2807.txt, July 2000.

[RGR97] Rubin, A., Geer, D., and Ranum, M. Web Security Sourcebook, John
Wiley & Sons, ISBN 047118148X, 1997.

B I B L I O G R A P H Y430

TE
AM
FL
Y

Team-Fly®

[Rog98] Rogers, L. R. rlogin(1): The Untold Story, Software Engineering
Institute Technical Report, CMU/SEI—98-TR-017, November 1998.

[Rub01] Rubin, A. V. White-Hat Security Arsenal: Tackling the Threats,
Addison-Wesley Publishers, ISBN 0201711141, June 2001.

[Sal96] Salomaa, A. Public-Key Cryptography, 2nd Edition, Texts in
Theoretical Computer Science, Springer-Verlag ISBN 3540613560,
December 1996.

[SC97] Schwartz, R. and Christiansen, T. Learning Perl, O’Reilly & Associates,
ISBN 1565922840, July 1997.

[Sch00] Schneier, B. Secrets and Lies: Digital Security in a Networked World,
John Wiley & Sons, ISBN 0471253111, August 2000.

[Sch95] Schneier, B. Applied Cryptography: Protocols, Algorithms, and

Source Code in C, 2nd Edition, John Wiley & Sons, ISBN 0471117099,
October 1995.

[Sch95] Schneier, B. Applied Cryptography: Protocols, Algorithms, and Source

Code in C, 2nd Edition, John Wiley & Sons, ISBN 0471117099, 1995.

[SFK00] Sandhu, R., Ferraiolo, D., and Kuhn, R. “The NIST Model for Role-Based
Access Control: Towards a Unified Standard,” in Proceedings of the 5th
ACM Workshop on Role-Based Access Control, pp. 47—63, July 2000.

[SG98] Silberschatz, A. and Galvin, P. Operating System Concepts, 5th
Edition, John Wiley & Sons, ISBN 0471364142, January 1998.

[Sha48] Shannon, C.E. “A Mathematical Theory of Communication,” in Bell
Systems Technical Journal, v 27, pp. 379—423, 623—656, July and
October, 1948.

[Sha49] Shannon, C.E. “Communication Theory of Secrecy Systems,” in Bell
Systems Technical Journal, v 28, pp. 656—715, 1949.

[Sibl97] Sibley, K. “The big theft scare: how safe is your site,” Computing

Canada, v23 n6, pp. 14, March 17, 1997.

[Sin99] Singh, S. The Code Book: The Evolution of Secrecy from Mary, Queen

of Scots to Quantum Cryptography, Doubleday, ISBN 0385495315,
September 1999.

[Sin99] Singh, S. The Code Book, Doubleday, Random House Inc., ISBN
0385495315, 1999.

[SIR01] Stubblefield, A., Ioannidis, J., and Rubin, A. D. Using the Fluhrer,

Mantin, and Shamir Attack to Break WEP, AT&T Labs Technical
Report TD—4ZCPZZ , August 6, 2001.

[SL96] Samar, V. and Lai, C. Making Login Services Independent of

Authentication Technologies, 3rd ACM Conference on Computer and
Communications Security, March 1996.

B I B L I O G R A P H Y 431

[SMK00] Scambray, J., McClure, S., and Kurtz, G. Hacking Exposed, 2nd
Edition, McGraw-Hill Professional Publishing, ISBN 0072127481,
October 2000.

[Sol96] Van Solms, B. Information Security—The Next Decade, Chapman &
Hall, ISBN 0412640201, December 1996.

[Sri98] Srinivasan, S. Advanced Perl Programming, O’Reilly & Associates,
ISBN 1565922204, August 1997.

[SSL96] SSL 3.0 Specification, www.home.jp.netscape.com/eng/ssl3.

[Sta00] Stallings, W. Operating Systems: Internals and Design Principles,
Prentice Hall, ISBN 0130319996, December 2000.

[Sun00] Sun Microsystems, Java Servlet 2.3 Specification, Proposed Final

Draft, http://java.sun.com, October 2000.

[Sun01] Sun Microsystems Technical Documentation, http://docs.sun.com.

[Thom84] Thompson, K. Reflections on Trusting Trust, CACM, 27(8),
pp.761—763, August 1984.

[TNSR94a] Telecom and Network Security Reviews, February 1994.

[TNSR94b] Telecom and Network Security Reviews, December 1994.

[TNSR95a] Telecom and Network Security Reviews, March 1995.

[TNSR95b] Telecom and Network Security Reviews, April 1995.

[TNSR96a] Telecom and Network Security Reviews, March 1996.

[TNSR96b] Telecom and Network Security Reviews, June 1996.

[TNSR97] Telecom and Network Security Reviews, April 1997.

[Ubo95] Ubois, J. Auditing for security’s sake. Midrange Systems, v8 n14, p27,
July 28, 1995.

[Uls95] Ulsch, M. Cracking the security market. Marketing Computers, v15n1,
p20(2). January 1995.

[VFTOSM99] Dibona, C. (Ed.), Stone, M. (Ed.), and Ockman, S. (Ed.). Open Sources:

Voices from the Open Source Revolution (O’Reilly Open Source),
O’Reilly & Associates, ISBN 1565925823, January 1999.

[Vio96] Violino, B. “The security facade.” Informationweek, n602, pp. 36—48,
October 21, 1996.

[Visi01] Visibroker SSL Pack 3.3 Programmer’s Guide, Inprise Corporation,
2001.

[VMW01] Hallam-Baker, P. XML Key Management Specification (XKMS),
Versign, Microsoft, and webMethods Draft Version 1.1,
www.verisign.com, January 2001.

[WBB96] Weston, J. F., Besley, S., and Brigham, E. F. Essentials of Managerial

Finance, 11th Edition, Dryden Press, ISBN 0030101999, January 1996.

B I B L I O G R A P H Y432

[WCO00] Wall, L., Christiansen, T., and Orwant, J. Programming Perl, 3rd
Edition, O’Reilly & Associates, ISBN 0596000278, July 2000.

[WCS96] Wall, L., Christiansen, T., and Schwartz, R. Programming Perl, 2nd
Edition, O’Reilly & Associates, ISBN 1565921496, September 1996.

[Wil97] Williams, K. Safeguarding companies from computer/software fraud,
Management Accounting, v78 n8, p.18, February 1997.

[WN00] Watson, K. and Noordergraaf, A. Solaris Operating Environment

Network Settings for Security, Sun Microsystems Enterprise
Engineering, www.sun.com/blueprints, December 2000.

[WV95] Wilder, C. and Violino, B. “Online theft.” InformationWeek, n542, p30,
August 28, 1995.

[You96] Young, J. “Spies like us.” Forbes, ASAP Supplement, pp. 70—92, June
3, 1996.

[Zal96] Zalud, B. “Industrial security: Access, theft; but spying grows.”
Security, v33 n10, pp. 30—31, October 1996.

[Zal97] Zalud, B. “More spending, bigger budgets mark security-sensitive busi-
ness.” Security, v34 n1, pp. 9—18, January 1997.

[ZCC00] Zwicky, E. D., Cooper, S., and Chapman, D. B. Building Internet

Firewalls, 2nd Edition, O’Reilly & Associates, ISBN 1565928717,
January 2000.

B I B L I O G R A P H Y 433

Index

435

3DES, 186

A
abstraction

security goals and, 44
wrappers and, 90

abuse cases, 11
acceptable risk, 22, 28
access control, 43, 52, 61—71

access control lists (ACLs) in, 68, 262—268
access modes in, 64, 68
ANSI standards for, 63
application’s needs vs., 69—71
authorization and, 60—61
Bell LaPadula, 63
Biba model of, 63
BMA model of, 63
capability lists in, 68
Chinese Wall model of, 63
completeness of rules in, 67
consistency of rules in, 67
context list in, 69
CORBA and, 219
database security and, 272—273, 276—279
delegation in, 68
discretionary, 61—62, 71
first fit, worst fit, best fit rules in, 67
functional attributes and, 64
hierarchical labels in, 65
in IPSec, 197
inference in, 54—55, 68
inheritance in, 65—66
Internet Explorer zones, 159—162
Lampson’s access matrix in, 61

mandatory, 61
military level, 63
modes in, 70
multilateral, 63
multilevel, 63
object access groups in, 64
ownership in, 68–69
permissions in, 64
polyinstantiation and, 70
rights in, 62
role assignment in, 65—66
role-based (RBAC), 61, 63—66, 160
roles in, 64, 66—70
sandbox and, 101
self-promotion and, 56
SQL92 standard for, 63
Web security and, 225, 237, 242—243
XML and, 369

access control entries (ACEs), 267
access control lists (ACLs), 68, 262—268
access modes, 64, 68, 70
AccessDecision, CORBA, 219
account management, Pluggable Authentication Module

(PAM), 261
ACK flood, 175
Active Server Pages, 224, 239
ActiveX controls, 55, 88, 151, 157—160, 223, 227—228, 230
adaptability and security, 179, 338—340
adaptors, 89
address space, buffer overflow, 108—114
administration of security, 54
Adobe Acrobat, Web security, 231
Advanced Encryption Standard (AES), 132, 147, 186, 314
aggregation, 55

air gap problem, 96
alarm systems, 29, 89, 100—101
algorithmic flaws, cryptography, 145
allocation of data, buffer overflow, 110—111
Amazon, 380
American Society for Industrial Security, 380—381
amortized cost security controls, 39—40
anonymous FTP, Web security, 226, 234
ANSI standards for access control, 63
Apache, interceptors, 94—95
applet signing, 152, 156
applets, 68, 88, 101, 151–152, 154—156, 230

access control lists (ACLs) in, 262—268
application and operating system security, 247—268, 410
application delivery and, 253—254
buffer overflow and, 257
bus security issues, 256
configuration and, 248, 252, 257
cryptography and, 253
data architecture and, 252
data security issues, 256
development environments and, 253
Domain Name Server (DNS) and, 259—260
Finger and, 260
FTP and, 259
hardening in, 249, 251
hardware and, 252, 254—255
HTTP and, 260
layers of security and, 260—262
Lightweight Directory Access Protocol (LDAP) and, 260
memory security and, 255
network architecture and, 252, 256—260
Network News Transfer Protocol (NNTP) and, 260
Network Time Protocol (NTP) and, 260
networked file systems (NFS) and, 262—263
operations administration and maintenance (OA&M)

in, 252, 258
passwords and, 257
Pluggable Authentication Module (PAM) and, 260—262
processes and, 252, 255—256
programming and, 248
Resource Access Control Facility (RACF) and, 249—251
restricted shells and, 258
root users and, 251, 258
sandbox and, 249, 251
Secure LDAP (SLDAP), 260
servers and, 259
Simple Mail Transfer Protocol (SMTP) and, 259
software communications architecture and, 252
structure of applications and, 251—254
structure of OS and, 249—251
Sun Enterprise Authentication Mechanism (SEAM)

in, 250
System Authorization Facility (SAF) in, 250
TCP/IP and, 258—260
Telnet and, 259
UNIX and, 256, 258—262
vendors and, 248
Virtual Vault Operating Systems (VVOS) and, 250

application asset repository, enterprise security
architecture, 355—356

Application Binary Interface (ABI), 118
application programming interface (API), 8, 100
application security processes, 29—30
application-aware security, CORBA, 218—220
application-unaware security in CORBA, 216—217
architectural models, software, 4—10
architecture reviews, 3—20, 45

architecture document in, 12—19
definition of terms for, 14
four/4+1 View model for, 4, 6—7
hardware, 16
problem identification in, 13
problem solving methods in, 13—14
project management and, 14
Reference Model for Open Distributed Processing

(RM ODP), 6—9
report on, 19
requirements and, 15, 17—18
results of testing, prototypes, etc. in, 14
risk assessment in, 18—19
software development cycle and, 4—5
software process in, 3—4, 15—16
stakeholder identification in, 13
standards and, 3—4
success criteria for, 14
system, 11—19
Unified Process in, 9—10
Universal Modeling Language (UML) and, 7, 10

argument lists, syntax validators, 88
arrival process, 342
artifacts, 409
assets, 22, 28—30

application asset repository for, 355—356
assumption of infallibility, middleware, 206—207
asymmetric key cryptography, 131, 133—134, 136—137, 147
AT&T service disruption (1990), 377, 381—382
atomic blocks, 93
attachment scanners, 88–89
attack trees, 357
AuditChannel, CORBA, 219
AuditDecision, CORBA, 219
auditing, audit tools, 29, 31, 40, 53, 410

CORBA and, 219
filters and, 91
layered security and, 100
merged logs for, 53
nmap network mapper, 55
safety and, 58
sandbox and, 102
Web security and, 235

authentication, 43, 51–52, 58—60, 139, 298—299, 411
cookies and, 82
CORBA and, 219
database security and, 275
Java Authentication and Authorization Service

(JAAS), 156
Kerberos, 314

I N D E X436

Pluggable Authentication Module (PAM) and, 261
principal, 79—80
roles and, 83—84
secure single sign on (SSO), 53
Secure Sockets Layer (SSL) and, 183
session protection and, 54
tokens in, 82—83
Web security and, 225, 232, 235—236

Authentication Header (AH), in IPSec, 188—189, 191—192
authentication server (AS), 299
Authenticode, Microsoft, 157—159
authorization, 52, 60—61

Java Authentication and Authorization Service
(JAAS), 156

roles and, 83—84
Web security and, 225

automation of security expertise, 358—359, 410
availability, 52—53

high availability systems and security, 328—332
AXA telecommunications, 9

B
backups, 32, 71
Balance sheet model, security assessment, 27—29
baseline, 31
Basic Encoding Rules (BER), 312, 314
Bell-LaPadula access control, 63
best fit rules, access control, 67
Biba model of access control, 63
biometric schemes, 59—60, 79
black box architectures, 103
block ciphers, 135
BMA model of access control, 63
boundaries, 31
bounds checking, buffer overflow, 108—114
break even analysis, cost of security, 389—390
Bridge, 91
browsers and Web security, 223–224, 227—232
brute force solutions, 38
buffer overflow, 51, 58, 83, 108—114, 126

address space and, 108
allocation of data and, 110—111
app/in application and operating system security, 257
avoidance of, 114
benefits of, 113—114
bounds checking and, 108
building an exploit for, 111—112
countermeasures for, 114—18
hardware support for, 120
interceptors vs., 118
layers of security and, 115—116
patterns applicable to, 118—120
payload in, 111—112
Perl interpreters and, 120—123
prefix in, 112
sandbox vs., 116
sentinels vs., 115
stack frame components and, 112—113

stack growth redirection and, 119
switching execution context in UNIX for, 111
target for, 111, 113
validators vs., 114—115
Web security and, 233–234
wrappers vs., 116—117

bugs, 11
code review and vs., 107—108
perl/in Perl, 121

Bugtraq, 31, 356
bump-in-the-stack implementation of IPSec, 192, 195
bus security issues, app/in application and operating

system security, 256
business cases for security (See also cost of security), 46,

377—405
business issues, 17
business processes, 50
buy.com, 380
bytecode validation, java/in Java, 123—125
Byzantine Generals Problem, middleware, 207

C
Caesar ciphers, 130
canaries, 83, 115, 117
capability lists in access control, 68
Capability Maturity Model (CMM), 4, 22
catastrophic loss, 383, 393, 395—396, 399
cell directory server (CDS), Distributed Computing

Environment (DCE), 317
Cellular Digital Packet Data (CDPD), 96, 148
Certificate Authorities (CA), 87, 139, 158, 298–299

comm/in communications security, 182—183
cryptography, 141
Netscape object signing and, 162
public key infrastructure (PKI), 303
Secure Sockets Layer (SSL) and, 185
trusted code and, 164

Certificate Practices Statement (CPS), Secure Sockets
Layer (SSL), 185

Certificate Revocation List (CRL), 87, 303
certificates, 51, 79, 87, 139, 301—302

public key infrastructure (PKI), 303
revocation of, 80
roles and, 84
Secure Sockets Layer (SSL) and,185—186
Web security and, 231—232

chained delegation credentials in Web security, 229—230
chained interceptors, 93–94
chaining, cipher block, 135
challenge response, 79
channel elements, 89—96
checksums, 83

cryptography, 138
Trojan horse compiler and, 170—176

child processes, 126
Chinese Wall model of access control, 63
chokepoints, 95, 98
chroot, 235, 251

I N D E X 437

cipher feedback mode, 135
ciphertext, 55, 130
clean up, filters, 92
client protection

secure single sign on (SSSO) and, 300
Web security and, 226, 230—232

closed failure, 56—57
CNN, 380
Code Red II Worm, 234
Code Red worm, 379
code review, 107—127

buffer overflow and, 108—114
bugs vs., 107—108
coding practices and security, 125—126
garbage in garbage out (GIGO) principle and, 108
humanistic coding patterns and, 126
Java and, 123—125
literate programming and, 125—126
open source code and, 108
Perl and, 120—123
principles of good coding and, 126

coding practices and security, 125—126
COM+, 201
common gateway interface (CGI)

Perl and, 120—121
Web security and, 228, 237—238

Common Internet File System (CIFS), 316
Common Security Interoperability Feature packages for

CORBA, 209—210
Common Security Protocol Packages in CORBA, 210
Common Signaling Service Network (CSSN), 361
communication channel identification, 77
communications security, 179—198, 410

adaptability and, 179
app/in application and operating system security, 252
certificate authority (CA) in, 182—183
CORBA and, 214—215
cryptographic service providers and, 179
DNS and, 179
infrastructure for, 179
Internet Protocol (IP) in (See also IPSec), 187
interoperability and, 179
IPSec standard for, 187—195
Lightweight Directory Access Protocol (LDAP)

and, 179
Network Time servers and, 180
non repudiation and, 179
Open Systems Interconnection (OSI) model and,

180—181
public key infrastructure (PKI) and, 179, 182—183
Secure Sockets Layer (SSL) and, 181—187, 214—215
structure for, 182
TCP/IP and, 180—181, 187—188
Transmission Control Protocol (TCP) and, 188
Transport Layer Security (TLS) in, 182
trusted third party (TTP) and, 180
User Datagram Protocol (UDP) and, 188
Web security and, 224

communications technology, 72

complementary goals of security, 323, 325—327
components of security, 295—322
compression, 409
computation security, 51
computational infeasibility in cryptography, 131
computational viewpoint, 8
Computer Security Institute (CSI), 380
concentrators, 98, 213
concurrency, middleware, 204—205
conditional variables, concentrators, 98
confidentiality, 53

Secure Sockets Layer (SSL) in, 183
configuration

app/in application and operating system security, 252
enterprise security architecture and, 354—355

conflicting goals of security, 323, 326, 328
connection protection, for Web security, 226, 232—233
connectivity and database security, 274—276
constraints, system, 49
context, 47—48, 52, 296
context attributes, 77, 81—82
context holders, 81—84

CORBA and, 209
XML and, 369

context list access control, 69
contracts, in layered security, 99
controls

amortized cost, 39—40
security assessment and, 29

cookies, 55, 81—82, 229, 369
cops, 321
CORBA, 51, 207—208, 327, 341

application implications of, 220—221
application-aware security in, 218—220
application-unaware security in, 216—217
Common Security Interoperability Feature packages

for, 209—210
Common Security Protocol Packages in, 210
communications security and, 214—215
concentrators in, 213
context holders in, 209
cryptography and, 214
distributors in, 213
filters in, 209
finite state machine (FSM) in, 213
General Inter-ORB Operability Protocol (GIOP),

212—213
interceptors and, 94, 209, 212, 217—219
Interface Definition Language (IDL) in, 207—208, 212
interoperability and, 212—216
Interoperable Object Reference (IOR) in, 208
Java 2 Enterprise Edition (J2EE) standard and, 225,

240—244
layered security and, 100
levels of security in, 209—212, 216—220
middleware and, 201—202, 205
Object Request Broker (ORB) in, 208
policy servers in, 209
principals and, 209

I N D E X438

proxies and, 96, 209
public key infrastructure (PKI) and, 210, 214—215
remote procedure calls (RPC) and, 210
sandbox and, 102
Secure Inter-ORB Protocol (SECIOP) in, 209, 212—213
Secure Sockets Layer (SSL) and, 210, 214—215
security objects in, 219
Security Replacement Packages in, 209
security standard for, 208—211
session objects in, 209
TCP/IP and, 210
tokens in, 209
vendor implementations of, 211—212
Web security and, 244
wrappers and, 209, 212

corporate security policy, 45—46
cost of ownership, security, 379
cost of security, 11, 28—29, 33—40, 378

amortized cost security controls in, 39—40
break even analysis for, 389—390
catastrophic losses and, 393, 395—396, 399
development costs, 385—386
insurance coverage against attacks and, 397—398,

400—404
interest rate functions and, 388
internal rate of return (IRR) in, 389
lockup and, 393—398
net present value (NPV) in, 388
operational, 387
payback period in, 389
Saved Losses Model of security in, 390—392
security assessment and, 33—40
steady state losses and, 392—393, 395
uniform payment in, 389

COTS policy servers, 40
counter mode cryptography, 136
countermeasures, 32
coverage, secure single sign on (SSSO), 300
crackers, 58
credentials

CORBA and, 219
public key infrastructure (PKI), 302—303
secure single sign on (SSSO) and, 300—301

critical success factors (CSFs) and security
assessment, 22

cron jobs, 235
cryptanalysis, 142—143
cryptographic service providers in communications

security, 179
cryptography, 52, 55, 77, 82, 129—150, 152, 361, 407, 409

3DES, 186, 189
Advanced Encryption Standard (AES) and, 132, 147,

186, 189, 314
app/in application and operating system security,

248, 253
asymmetric key, 131, 133—134, 136—137, 147
authentication and, 139
block ciphers in, 135
BSAFE toolkit, 189

Caesar ciphers in, 130
CAST128, 189
Certificate Authorities (CA) and (See Certificate

Authority)
checksums, 138
ciphertext in, 130
comparison of protocols for, 148—149
computational infeasibility in, 131
CORBA and, 214
cryptanalysis in, 142—143
Data Encryption Standard (DES) and, 130, 132, 134,

142, 183, 189
database security and, 272, 275
Diffie-Hellmann, 130, 136–137, 141, 186, 189
digital certificates and, 139
digital envelopes and, 140
Digital Signature Algorithm (DSA), 136, 137
Digital Signature Standard (DSS), 183, 191
digital signatures and, 139—140, 147, 183
El Gamal, 136
elliptic curve discrete logarithms (ECC), 136—137
encryption process in, 133—134
enterprise security architecture and, 368
entities in, 131
FEAL cipher, 142
Federal Information Processing Standards (FIPS)

and, 132
flaws in, 144—147
hash functions for, 133, 138—139, 183, 186, 189
history of, 130—132
HMAC, 139, 147, 183, 192
implementation errors in, 145—146
innovation and acceptance of, 143—144
integer factorization in, 136
intellectual property protection, 165—169
ips/in IPSec, 189, 192, 195
ips/in IPSec, 191
Java Cryptography Extension (JCE), 156, 258
key management in, 130, 141—142
knapsack problem and, 137
MD5, 138–139, 152, 183, 189, 192, 358
message authentication codes (MACs) in, 138—139,

140, 147, 186
modes for encryption in, 135—136
NIST toolkit for, 132—133
number generation for, 137
one-way functions and, 133
open standards and, 132
pads, one time, 134
performance and, 147—148
plaintext in, 130
prime number generator for, 137
protocols vs., 147—148
proxies and, 96
pseudorandom number (PRN) generators and,

134, 137
public key infrastructure (PKI) and (See public key

infrastructure)
public key, 130–131, 136–137

I N D E X 439

randomness in, 131—132, 134
RC4, 183, 186, 214
RC5, 189
registration authority (RA) and, 139
research in, 132
RSA algorithm in, 130, 136–137, 169, 183, 186, 191, 214
secret key vs. non secret key, 130
Secure Shell (SSH) and, 318—319
Secure Sockets Layer (SSL) and, 183
SHA1, 138–139, 183, 189, 192, 214, 366
signed messages and, 140
stream ciphers in, 135–136
symmetric key, 133—136
system architecture and, 143
transport tunnels and, 96—97
trusted third party (TTP) and, 141
Wired Equivalent Privacy (WEP) and, 136, 146—147
XML, 366

current object, CORBA, 219

D
data architecture in application and operating system

security, 252
data attributes, authorization, 60
data definition language (DDL), database security,

282—283
data dictionary, database security, 277—278
Data Encryption Standard (DES), 58, 130, 132, 134,

142, 183
data manipulation language (DML), database security,

280, 282—283
database security, 269—291

access control and, 272—273, 276—279
app/in application and operating system security, 256
architectural components and, 273—274
authentication in, 275
connectivity and, 274—276
cryptography and, 275
data definition language (DDL) and, 282—283
data dictionary and, 277—278
data manipulation language (DML) and, 280, 282—283
directory services and, 276
distributed computing Environment (DCE) in, 272,

274, 275—276
encapsulation and, 274, 281—282
enterprise network solutions, 272
enterprise security architecture and, 353—357
entity integrity in, 270
evolution of, 270—273
Facade pattern and, 279—281
Fine Grained Access Control (FGAC) and, 272—273
GRANT and REVOKE privileges in, 273—274,

276—279, 284
Human Genome Project (HGP) case study in, 371—373
instead of triggers in, 280
interceptors and, 286
Kerberos and, 272, 274, 275
labeled security in, Oracle (OLC), 274, 287—291

multilevel, 270—273
object oriented, 272
object ownership and, 273—274
object privileges in, 278
performance issues and, 272
predicate applications and, 274
referential integrity in, 270—273
Remote Authentication Dial In User Services

(RADIUS) in, 275
restrictive clauses for, 285—287
role-based access control (RBAC) and, 276—279
secure sockets layer (SSL) and, 272, 274, 275
sentinels in, 284—285
session management and, 273
SQL and, 278, 282—283
Time of check to Time of Use (TOCTTOU) attacks

and, 283
tokens in, 275
triggers and, 274, 280
Trusted DBMS, 270
UNIX and, 283
vendors and, 271, 274
views and, 279—281
Virtual Private Databases (VPD) in, 274, 286—287
Web security and, 271—272
wrappers and, 283—284

databases of record (DBOR), enterprise security
architecture, 352—353

datagrams, ips/in IPSec, 189, 194—195
DDOS attack, 234, 308, 361, 380
deadlocks, 98, 204, 205
decision procedures, authorization, 60
deep magic components, 103
defining system security architecture, 48—50
definition of terms, 14
delegation

access control and, 68
credentials, 80
intellectual property protection and, 168

Deloitte & Touche, 380
demilitarized zone (DMZ), 232—233, 306
demultiplexers, 97
denial-of-service, 53, 56, 98, 175, 205, 226, 233, 234, 361
design cycle security, 45
deterministic magic components, 103
development costs in security, 385—386
development cycle, software, 4—5
development environments, security, 253
development view, 7
differential cryptanalysis, 142
Differential Power Analysis, 169
Diffie-Hellmann cryptography, 130, 136, 141, 186
digital certificates, 139
digital envelopes, 140
digital intellectual property protection, 165—169
digital rights management (DRM), 165—169
Digital Signature Algorithm (DSA), 136
Digital Signature Standard (DSS), 183
digital signatures, 139—140, 173—175, 183

I N D E X440

TE
AM
FL
Y

Team-Fly®

XML Digital Signatures Standard (XML DSig) in,
365—366

cryptography, 147
Dijkstra, Edgar, 11
directionality of filters, 92
directories, 84—87, 97, 311—314

LDAP and, 311—314
X.500, 311—314

Directory Access Protocol (DAP), 84–85, 312
Directory Information Base (DIB), 312
Directory Information Tree (DIT), 312
Directory Service Agents (DSA), 312
directory services, 276, 317
Directory User Agents (DUA), 312
discretionary access control, 61—62, 71
Distributed Computing Environment (DCE), 60, 157, 213,

317—318
app/in application and operating system security,

250, 258
CORBA and, 210
database security and, 272, 274, 275—276
enterprise security architecture and, 350

distributed data management, middleware, 204
distributed denial-of-service (See DDOS attack)
Distributed File Server (DFS), 317
Distributed File System (DFS), 318
distributed sandbox, 319—321
Distributed Time Server (DTS), 317–318
distributors, 97—98

CORBA and, 213
Web security and, 233

DNSSEC, 259
Document Object Model (DOM), 362
Document Type Definition (DTD), 362
documentation of architecture, 12—19, 32
documented policy (Level 1 security), 23
documented procedures (Level 2 security), 23
Domain Name Server (DNS), 57, 71, 80, 361

app/in application and operating system security,
259—260

comm/in communications security, 179
Domain of Interpretation (DOI) in IPSec, 188
downloaded files, 151, 160—162
DSS, 191

E
eavesdropping, 80, 97, 410
eBay, 380
ECMA, 213
ECMAScript, Web security, 228, 231
El Gamal cryptography, 136
electronic codebook mode cryptography, 135
elevators, 100—101
elliptic curve discrete logarithms (ECC) cryptography,

136—137
email, 71, 88–89, 100, 380
Encapsulating Security Payload (ESP) in ips/in IPSec,

188—189, 191—192, 193—195

encapsulation, database security, 274, 281—282
encryption (See cryptography)
endpoints, 361
engineering security, 8, 51
Enterprise JavaBeans (EJB), 201, 241, 243—244
enterprise security architecture, 8, 47, 272, 349—374

application asset repository for, 355—356
attack trees in, 357
automation of security expertise in, 358—359
configuration repository for, 354—355
data management and, 353—357
data management tools for, 357—360
database security in, 272
databases of record (DBOR) in, 352—353
directions for security data management in, 359—360
distributed computing environment (DCE) and, 350
Human Genome Project (HGP) case study in, 371—373
Kerberos and, 350
policies for, application of, 351
process, security as, 350—351
public key infrastructure (PKI) and, 350
repository for policy in, 353—354
secure single sign on and, 350
security data in, 351—353
“stupid network” and, 360—362
threat repository for, 356
user repository in, 354
virtual database of record in, 353
vulnerability repository for, 356—357
X.500 and, 354
XML and, 362—368
XML enabled security data and, 370—371

entities,78—80, 131
entity identification, patterns, 77
entity integrity in database security, 270
envelopes, digital, 140
Ericsson, 9
Ernst & Young, 380, 381
Ethernet, layered security, 100
ETRADE, 380
eTrust, 102
event management, middleware, 203—204
evolution of security, 338—340
executable files

perl/in Perl, 121
syntax validators, 88

external assumptions, 17
Extensible Markup Language (See XML)
Extensible Stylesheet Language (XSL), 362—363

F
Facade pattern, database security, 279—281
fail open/closed, 56—57
false positive/false negative, intrusion detection, 311
FEAL cipher, 142
Federal Bureau of Investigation (FBI), 379
Federal Information Processing Standards (FIPS)

cryptography, 132

I N D E X 441

Federal Uniform Crime Reports, 380
feedback mode, cipher, 135
filters, 55, 91—93, 361

CORBA and, 209
XML and, 369

financial cost of computer crimes, 377
Fine Grained Access Control (FGAC), database security,

272—273
Finger in application and operating system security, 260
fingerprinting, TCP, 55
fingerprints, 59
finite state machine (FSM) in CORBA, 213
firewalls, 55, 57, 72, 77, 88, 108, 306—308, 409

app/in application and operating system security, 247,
256—257

filters and, 92
proxies and, 96
secure single sign on (SSSO) and, 301
Web security and, 232—233

first fit rules, access control, 67
five level compliance model of security, 23—24
Flash files, Web security, 230
flood attacks, 101–102, 175, 204
force diagrams, 324—328
forgery of credentials, 80
four/4+1 View, 4, 6—7
fraud, losses, 379—382
FreeBSD, 114—115
FTP, 58, 259, 261, 319
fully integrated procedures and controls (Level 5

security), 24
functional attributes and access control, 64
functional testing, 17

G
garbage in garbage out (GIGO) principle, 108
gateways, 72

firewalls and, 307
proxies and, 96

General Inter-ORB Operability Protocol (GIOP) CORBA,
212—213

Generally Accepted Accounting Principles (GAAP), 41
Generally Accepted Security Principles (GASP), 41
Generic Security Services API (GSS API), 258
generic system analysis, 71—73
Global Positioning Service (GPS), security, 260
globally distributed applications, sandbox, 102—103
goals of security, 43, 44—48, 323—348

adaptability and, 338—340
complementary, 323, 325—327
conflicting, 323, 326—328
evolution of security and, 338—340
force diagrams and, 324—328
good architectural design and, 327—328
high availability systems and, 328—332
interoperability, 341—342
maintainability and, 338—340
nonfunctional, 324

normal architectural design and, 325—327
orthogonal, 323, 326—328
patterns and, 75—76
performance issues and, 342—345
portability and, 345—347
robustness of systems and, 332—335
scalability and, 340—341
versus other design goals, 51—52

graceful failure, 56—57
GRANT and REVOKE privileges, database security,

273—274, 276—279, 284
granularity of filters, 91
granularity of security, 54
groups, access control, 64
guidelines, 12

H
hacking, 11
handshake, 80, 102
Handshake Protocol, SSL, 184—186
hardening, operating system security, 249, 251
hardware, 16, 410

app/in application and operating system security, 252,
254—255

buffer overflow vs., 120
hardware abstraction layer (HAL), 346
hash chaining passwords, 58
hash functions, 79, 133, 138—139, 183, 186
helper applications and Web security, 231
hidden assumptions, 296
hierarchical labels in access control, 65
high availability systems and security, 328—332
high level architectures, 16, 293
hijacks, 81—82
history, access control, 68
HMAC, 139, 147, 183, 192
homogeneous Poisson process (HPP), 342
hostnames, 80
hosts security, Web, 233—235
HP-UX, access control lists (ACLs), 267—268
HTML, 227—228, 231, 238, 362
HTTP

app/in application and operating system security, 260
interceptors and, 94
middleware and, 202
perl/in Perl, 121
Web security and, 227—229, 238, 244

Human Genome Project (HGP) case study, 371—373
humanistic coding patterns, 126

I
I/O controllers, app/in application and operating system

security, 247
ICMP, 233, 308
IDS sensors, firewalls, 307
IETC RFC 1938, 59
IIOP, 102

I N D E X442

implemented procedures and controls (Level 3
security), 23

incident response, 30
inetd daemon, 92
infallibility, assumption, 206—207
inference, 54—55, 68
information security, 50
information viewpoint, 8
Information Week, 380
infrastructure for omm/in communications security, 179
inheritance in access control, 65—66
input field separators (IFS), 121
instead-of triggers, database security, 280
insurance coverage against attacks, 397—398, 400—404
intangible losses, 379
integer factorization in cryptography, 136
integrity, 52

access control and, 69
Secure Sockets Layer (SSL) and, 183

intellectual property protection, 165—169, 380—381
interceptors, 91, 93—95

buffer overflow versus, 118
CORBA and, 209, 212, 217—219
database security and, 286
Web security and, 229
XML and, 369

interest rate functions, cost of security, 388
Interface Definition Language (IDL), CORBA,

207—208, 212
interface security, 45, 91, 408, 410
internal rate of return (IRR) in cost of security, 389
Internet Engineering Task Force (EITF), 360
Internet Explorer zones, 159—162
Internet Key Exchange (IKE), ips/in IPSec, 188, 190–191,

193—194
Internet Protocol (IP) (See also IPSec), 187
Internet Security Association and Key Management

Protocol (ISAKMP), 188, 193
Internet Security Scanner (ISS), 235
Internet Zone, Internet Explorer, 159
interoperability, 45, 327, 341—342

comm/in communications security, 179
CORBA and, 212—216
secure single sign on (SSSO) and, 300

Interoperable Object Reference (IOR), CORBA, 208
interprocess communication (IPC), middleware, 202
intrusion detection, 31, 40, 89, 308—311, 378, 407
Invita Case Study, 382—384
IP datagrams, 83
iPlanet Server Suite, 250
IPSec, 108, 187—195, 361

access control and, 197
architecture layers in, 188—189
Authentication Header (AH) in, 188—189, 191—192, 194
bump in the stack implementation of, 192, 195
compatibility issues and, 197
cryptography and, 189, 191–192, 195
datagrams in, 189, 194—195
deployment issues in, 196

Domain of Interpretation (DOI) in, 188
Encapsulating Security Payload (ESP) in, 188—195
endpoints for, 197
host architecture for, 195
implementation of, 192
Internet Key Exchange (IKE) in, 188, 190–191, 193—194
Internet Security Association and Key Management

Protocol (ISAKMP) in, 188, 193
issues of, 195—197
kernel in, 195
key management in, 196
multicast applications and, 197
network address translation (NAT) and, 197
Oakley protocols in, 193
policy management in, 190—191, 196
public key infrastructure (PKI), 302
routing and, 197
Security Associations (SA) in, 188, 190
Security Association Database (SADB) in, 190, 195
Security Policy Database (SPD) in, 190, 195
Security Parameter index (SPI) in, 190
SKEME protocols in, 193
TCP/IP and, 187—189, 192, 195
tokens in, 189
Transmission Control Protocol (TCP) and, 188
transport mode in, 191—192
tunnel mode in, 191—192
User Datagram Protocol (UDP) and, 188
virtual private networks (VPN) and, 188

IPv6, 187
Isenberg, David, “stupid network,” 360—362
ISO.3000, 9

J
J2EE servlet security specification, 365
Janus, 102, 116
Java, 68, 88, 101–102, 151–152

applet signing and, 156
applets and, 154—155
bytecode validation in, 123—125
code review and, 123—125
complexity of, vs. security, 125
global infrastructure and, 156
Java 2 Enterprise Edition (J2EE) standard for, 240—244
Java Authentication and Authorization Service

(JAAS), 156
Java Cryptography Extension (JCE), 156
Java Secure Socket Extension (JSSE), 156
Java Virtual Machine (JVM) in (See Java Virtual

Machine)
layered security and, 154—155
local infrastructure and, 155
local security policy definition and, 155—156
object oriented nature of, 124
portability of, 124
public key infrastructure (PKI), 156–157
sandbox and, 123, 152—157, 160, 162
security extensions in, 156—157

I N D E X 443

Security Manager in, 155
servlets, 241—243
system architecture and, 157
Web security and, 223, 225, 230
wrappers and, 242

Java 2 Enterprise Edition (J2EE) standard, 225,
240—244, 365

Java Authentication and Authorization Service
(JAAS), 156

Java Capabilities API, 162
Java Cryptography Extension (JCE), 156, 258
Java Database Connectivity (JDBC), 241
Java Secure Socket Extension (JSSE), 156
Java Server Pages, 224, 239
Java Virtual Machine (JVM), 100, 123–124, 154, 230,

242, 346
JavaScript, 151, 228, 231, 238
Jscript, 228, 231

K
Kerberos, 60, 82, 108, 157, 195, 213, 314—316

app/in application and operating system security, 250,
258, 260

CORBA and, 210
database security and, 272, 274, 275
enterprise security architecture and, 350
Web security and, 225, 236

kernels, 409
Key Distribution Center (KDC), Kerberos, 314
key management, 130

cryptography, 141—142
ips/in IPSec, 196
XML Key Management Services (XKMS), 367—368

knapsack problem, 33, 36—39, 137

L
labeled security, Oracle (OLC) in database security, 274,

287—291
Lampson’s access matrix, 61
land attacks, intrusion detection, 309
Law of Large Numbers, insuring against attack, 401
layered security, 98—100

buffer overflow versus 115—116
Java and, 154—155
sandbox and, 154—155
UNIX, 260—262
XML and, 369

learning, program, 173
least privilege, 56
Least Recently Used (LRU), 86
legacy applications, 51, 71—73
levels of security, 23—24

CORBA and, 209—212, 218—220
libraries, perl/in Perl, 121
libsafe, 118
Libverify, 117
life cycle management, 18

Lightweight Directory Access Protocol (LDAP), 40, 85,
301, 311—314, 361

app/in application and operating system security,
250, 260

comm/in communications security, 179
ips/in IPSec, 195
public key infrastructure (PKI), 304

linear cryptanalysis, 142—143
links, 410
literate programming, 125—126
load testing, 17
local data store, filters, 92
Local Intranet Zone, Internet Explorer, 159
Local Security Authority (LSA), Kerberos, 316
lockouts, 53
locks, 98, 204
lockup, 393—398
logical views, 6
login, 79, 261
logs, 29

analysis of, 53
merged logs for auditing, 53

look aside calls, wrappers, 90
lookup attacks, 77, 311
losses, 378—383, 392—393, 395—396, 399
low-level architectures, 16, 105

M
magic, 103—104
maintainability and security, 327, 338—340
mandatory access control, 61
mapping, 80

directories and, 86
entities to context attribute, 77

marshaling, interceptors, 94
masks, perl/in Perl, 123
masquerades, 53, 80
MathML, 362
MD5, 138–139, 152, 183, 192, 358
measurable losses, 379
memory

app/in application and operating system security,
247, 255

buffer overflow and, 108—114
message authentication codes (MACs), 138—140,

147, 186
messaging software, 71

interceptors and, 93
meta processes, software, 4
Microsoft Authenticode, 157—159
mid-level architecture, 16, 199
middleware security (See also CORBA), 52, 201—221

assumption of infallibility in, 206—207
Byzantine Generals Problem and, 207
concurrency and, 204—205
CORBA and, 201—202, 205, 207—208
distributed data management and, 204
event management and, 203—204

I N D E X444

HTTP and, 202
interceptors and, 93
interprocess communication (IPC), 202
issues of security in, 206—207
locks and, 204
reusable services and, 205—206
service access and, 202
service configuration and, 202—203
Simple Mail Transfer Protocol (SMTP) and, 202
synchronization and, 204—205
vendors and, 205—206

military level access control, 63
modeling, 45

four/4+1 View, 4, 6—7
Reference Model for Open Distributed Processing

(RM ODP), 6—9, 50
security assessment and, 32
software, 4—10
Unified Process in, 9—10
Universal Modeling Language (UML) and, 7, 10

modes, in access control, 70
modular design, 409
monitoring of security, 29
monolithic magic components, 103
MQSeries, 201
multicast applications and ips/in IPSec, 197
MULTICS, 56
multilateral access control, 63
multilevel access control, 63
Multipurpose Internet Multimedia Extension (MIME),

Web security, 228, 231
multithreading, concentrators, 98
mutex, concentrators, 98
myths of security architectures, 44

N
named daemon, 259
namespace, perl/in Perl, 123
National Center for Computer Crime Data, 381
National Institute for Standards and Technology (NIST),

21, 132
need-to-know schemes, 55
net present value (NPV), cost of security, 388
Netscape object signing, 162—163
network address translation (NAT) and

firewalls and, 308
ips/in IPSec, 197
proxies and, 96

network architecture, 16
app/in application and operating system security, 252,

256——260
AT&T service disruption (1990) and, 381—382

network intrusion detection (NID), 310
network mapping, 55
Network News Transfer Protocol (NNTP), 260
network operating systems (NOS), Distributed

Computing Environment (DCE), 317
network protocols, intrusion detection, 310

Network Time Protocol (NTP), 180, 260
networked file systems (NFS), 262—263
networks, 72
news, 71
nmap, 55, 321
nonfunctional goals of security, 324
nonrepudiation, 53

access control and, 69
in communications security, 179

Norton Personal Firewall, 307
NT LAN Manager (NTLM), 225, 236, 314
number generation for cryptography, 137

O
Oakley protocols in IPSec, 193
object access groups, 64
object ownership, database security, 273—274
object privileges in database security, 278
Object Request Broker (ORB), CORBA, 208
object signing, Netscape, 162—163
object-oriented databases, 272
offers, 193

MG (See also CORBA), 51, 208
one way functions, 133
Online Certificate Status Protocol (OCSP), 77, 80, 87, 302
opcode executor, Perl, 120
opcode masks, perl/in Perl, 123
open failure, 56—57
open source code, 108, 345—347
Open Systems Interconnection (OSI) model, 4, 180—181
open systems

cryptography, 132
Web security and, 234

operating systems (See application and operating system
security)

operational cost of security, 387
operational profiles, 53
operations, administration, and maintenance (OA&M),

18, 252, 258
Oracle (See database security)
ORB, 51
organization information, 17
organizational issues, corporate security policy, 22—23,

45—46
orthogonal goals of security, 323, 326—328
output feedback mode, cryptography, 136
overflow (See buffer overflow)
ownership, access control, 68–69

P
packet filters, 57, 307
pads, one-time, cryptography, 134
paired interceptors, 93–94
partner applications, 72
password guessing, 55
passwords, 58—59, 79, 298, 410—411

app/in application and operating system security, 257

I N D E X 445

Pluggable Authentication Module (PAM) and, 261
secure single sign on (SSSO) and, 300

patches, 31
PATH, 126, 258
pattern languages, 5
patterns, 43, 75—104, 369—370, 411

catalog of, 78–79
communication channel identification in, 77
entities in, 78—80
entity identification in, 77
goals of, 75—76
mapping entities to context attributes in, 77
origins of, 76
platform component identification, 78
policy source identification, 78
security service provider identification in, 77
terminology of, 76—77

payback period in cost of security, 389
perfect forward secrecy, 193
performance testing, 17, 53
performance versus security, 326—327, 342—345
perimeter security, 408
Perl (See also SGID; SUID), 122

buffer overflow versus, 109, 115—116, 120—123
bugs and, 121
code review and, 120—123
coding practices in, 121
Common gateways Interface (CGI) and, 120—121
executables and, 121
HTTP and, 121
input field separators (IFS) and, 121
libraries in, 121
namespaces in, 123
opcode executor for, 120
opcode masks in, 123
Safe module for, 122
sandbox and, 122—123
sentinels and, 122
syntax validation in, 121—122
system calls and, 121
taint mode, 122
translator for, 120
trusted versus untrusted sources for, 122

permissions in access control, 64
permissive filters, 92
personal identification number (PIN), 59
PHP and Web security, 239
physical view, 7
Pipes and Filters, 91
piracy, 165—169
PKCS standard, 301
PKIX standard, 301
plaintext, 55, 130
platform support for security products, 48, 72, 78, 96—104
Pluggable Authentication Module (PAM), 260—262
policies for security, 45—46, 78, 86, 411
policy servers in CORBA, 209
polyinstantiation, access control, 70
portability and security, 327, 345—347

porting security products, 48
post-assessment of security measures, 25—26, 32
Power Differential Analysis (PDA), 59
Praesidium, 102
preassessment of security status, 25—32
predicate applications and database security, 274
Primary Domain Controller (PDC), Kerberos, 314
prime number generator, cryptography, 137
PrincipalAuthenticator, CORBA, 219
principals, 78—80

CORBA and, 209
object signing, 162

principles of security, 52—53
prioritizing security, 37—38
Privilege Access Certificate (PAC), 230, 316
privilege ticket granting tickets (PTGT), 318
privileges, object signing, 162
probability, security assessment, 29
problem identification, 13
problem-solving methods, 13—14
process views, 6
process, security as, enterprise security architecture,

350—351
processes, in application and operating system security,

255—256
processes, in software, 4
processors and app/in application and operating system

security, 252
program learning, 173
program stack, buffer overflow, 111
Programmable Read Only Memory (PROM), 255
project management, 14
properties, 43, 53—54

Secure Sockets Layer (SSL) and, 183—184
protocol conversion, proxies, 96
protocol misconstruction, cryptography, 145
protocols, cryptography , 147—148
prototyping, 14, 45

security assessment and, 25
proxies, 91, 95—96

CORBA and, 209
firewalls and, 307
XML and, 369

pseudorandom number (PRN) generator, cryptography,
134, 137

public key infrastructure (PKI), 40, 51, 60, 87, 108, 139,
156–157, 186, 250, 298—299, 301—305

app/in application and operating system security, 258
certificate authority (CA) and, 303
certificate holders and, 304
certificate verifiers and, 304
comm/in communications security, 179
CORBA and, 210, 214—215
cryptography, 130–131, 136
enterprise security architecture and, 350
ips/in IPSec, 195
layered security and, 100
operational issues for, 305
registration authority (RA) and, 303—304

I N D E X446

repository for, 304
standards for, 301—302
usage and administration of, 304—305
trusted code and, 163

Q
quality of service, access control, 68
quantifying computer risk, 378
queries, 55
queuing models, 342

R
randomness in cryptography, 131—132, 134
Rational (See Unified Process)
RC4, 183, 186, 214
read tools, 55
Record Protocol, SSL, 184
Reference Model for Open Distributed Processing

(RM ODP), 4, 6—9, 50
reference monitors, 108
referential integrity in database security, 270—273
Registration Authority (RA), 87, 139, 303—304
regulatory issues, 17
relative distinguished name (RDN), 312
Remote Authentication Dial In User Services

(RADIUS), 275
remote management, filters, 92
remote procedure calls (RPC)

CORBA and, 210
Distributed Computing Environment (DCE) and, 317

renaming tools, filters, 93
replay attacks, 53, 80
reports on architecture review, 19
repository

enterprise security architecture and, 353—354
public key infrastructure (PKI), 304

requirements of design, 15, 17—18
Resource Access Control Facility (RACF), 249—251
restricted shells, app/in application and operating system

security, 258
Restricted Zone, Internet Explorer, 159
restrictive clauses for database security, 285—287
restrictive filters, 92
retinal scans, 59
reusable services, middleware, 205—206
review (See architecture reviews)
revocation of credentials, 80
rights, access control, 62, 68
rights management, intellectual property protection, 167
risk assessment (See also security assessments), 18—19, 21
risk, defined, 22, 30—32
rlogin, 261
robustness of systems and security, 332—335
role assignment in access control, 65—66
role-based access control (RBAC), 61, 63—66

database security and, 276—279
Internet Explorer, 160

roles in access control, 64, 70, 83—84

rollbacks, 32
root users, 126

app/in application and operating system security,
251, 258

Web security and, 235–236
rootkit, 56, 203, 409
routers, 361
routing and ips/in IPSec, 197
RSA, 130, 136, 169, 183, 186, 191, 214
RSA Data Security, 59
rules, access control, 66—69

S
S/KEY, 58–59
S/MIME, public key infrastructure (PKI), 302
Safe Module, perl/in Perl, 122
safety, 57—58

filters and, 92
Samba, Kerberos, 316
SAML, 367
sandbox, 68, 101—103, 152, 160, 162, 319—321

app/in application and operating system security,
249, 251

applets and, 154—155
buffer overflow vs., 116
distributed, 319—321
intellectual property protection and, 168
java/in Java, 123
layered security and, 100
perl/in Perl, 122—123
trusted code and, 152—157
XML and, 369

sanity scripts
trusted code and, 164
Web security and, 235

SANS, 31
Saved Losses Model of security, 382—384, 390—392
scalability and security, 327, 340—341
scanners, 29, 31, 88–89

app/in application and operating system security, 248
Web security and, 235

scenario view, 7
schedulers, app/in application and operating system

security, 247
scripting languages, 223

Web security and, 228, 231
scripting solutions, 298
secrecy, access control, 69
secret key versus non secret key, cryptography, 130
Secure Inter-ORB Protocol (SECIOP), 209, 212—213
Secure LDAP (SLDAP), app/in application and operating

system security, 260
Secure Shell (SSH), 115, 318—319

firewalls and, 306
secure single sign on (SSSO), 53, 297—301, 338, 350
Secure Sockets Layer (SSL), 51, 298, 327

authentication and, 183
buffer overflow versus, 115

I N D E X 447

Certificate authority (CA) and, 185
Certificate Practices Statement (CPS) in, 185
comm/in communications security, 181, 182—187
confidentiality in, 183
CORBA and, 210, 214—215
cryptographic algorithms in, 183
database security and, 272, 274–275
Handshake Protocol in, 184—186
integrity in, 183
issues in, 186—187
Java Secure Socket Extension (JSSE), 156
layered security and, 100
Message authentication codes (MACs) in, 186
properties in, 183—184
public key infrastructure (PKI), 302
Record Protocol in, 184
state of sessions in, 184
Transmission Control Protocol (TCP) and, 184
Web security and, 229
X.509 certificates in,185—186

SecureWay Security Server, 249
SecurID, 59
Security Accounts Manager (SAM), 340—341
security artifacts incorporation, 45
security assessment, 21—41, 45, 408—409

acceptable risk defined in, 28
asset defined in, 22, 28—30
attack trees in, 357
balance sheet model for, 27—29
Capability Maturity Model (CMM) and, 22
controls in, 29
cost of security in, 28—29, 33—40
countermeasures in, 32
critical success factors (CSFs) and, 22
describing application security process in, 29—30
difficulty of, 32—40
five-level compliance model for, 23—24
knapsack problem and, 33, 36—39
meeting for, 25—27
modeling in, 32
NIST guidelines for, 22
organizational viewpoint of, 22—23
post assessment results in, 25—26, 32
preassessment for, 25—32
prioritizing security in, 37—38
probability in, 29
prototyping and, 25
review of, 26
risk defined in, 22, 30—32
solution space for, 36
stakeholder identification in, 26
structure of, 25—26
system viewpoint of, 24—26
threats in, 21–22, 30, 32, 356
trusted processes and, 24
vulnerabilities in, 21–22, 30–31, 33—36, 356—357

Security Association Database (SADB), ips/in IPSec,
190, 195

Security Associations (SA), ips/in IPSec, 188, 190

Security Focus, 31
Security Manager, Java, 155
Security Operations Center (SOC), 385
Security Parameter index (SPI) in IPSec, 190
Security Policy Database (SPD), 195, 408—409
Security Replacement Packages in CORBA, 209
security service provider identification, 77
Security Service Specification (OMG), 51—52
Security Services Markup Language (S2ML), 366—367
security solution space, 36
SecurityContext, CORBA, 219
self-decrypting packages, trusted code and, 163
self-extracting packages in trusted code, 163
self-promotion, 56
self-reproducing programs, 171—173
semaphores, concentrators, 98
sensors, intrusion detection, 309–310
sentinels, 83

buffer overflow versus, 115
database security and, 284—285
perl/in Perl, 122

Server Message Block (SMB), Kerberos, 316
server side extensions and Web security, 229
server side includes (SSIs), 238—239
servers

app/in application and operating system security, 259
secure single sign on (SSSO) and, 300
Web security and, 224, 226, 228, 232—238

service level agreements (SLA), 385
service providers, 84—89
services

Distributed Computing Environment (DCE) and,
317—318

Web security and, 226—227
servlets Web security, 225, 229, 241—243
Sesame, 210
session management, 54, 411

database security and, 273
Pluggable Authentication Module (PAM) and, 261

session objects, 81—82
CORBA and, 209
XML and, 369

SET, public key infrastructure (PKI), 302
SGID (See also Perl), 56, 84, 122, 126, 256
SHA1, 138–139, 183, 192, 214, 366
shared sessions, 81
shell programs

buffer overflow and, 109
Secure Shell (SSH), 318—319

sign on (See secure single sign on)
signatures, 173—175
signed messages, 140
signed packages and trusted code, 163
Simple API for XML (SAX), 362
Simple Mail Transfer Protocol (SMTP) and

app/in application and operating system security, 259
middleware and, 202

simplex, 190
SKEME protocols in ips/in IPSec, 193

I N D E X448

smartcards, 59, 79
intellectual property protection and, 169
Web security and, 232

software communications architecture, app/in
application and operating system security, 252

Software Engineering Institute, 4–5
Software Process Improvement and Capability

Determination (SPICE), 4
software reliability engineering (SRE), 332—333
software, software processes, 17, 48—52

architectural models for, 4—10
architecture reviews and, 3—4
Capability Maturity Model (CMM) and, 4
computational viewpoint in, 8
development cycle of, 4—5
development view in, 7
documentation of, 15—16
engineering viewpoint in, 8
enterprise viewpoint in, 8
four/4+1 View and, 4, 6—7
high level design, 16
information viewpoint in, 8
logical views in, 6
low level design, 16
meta processes in, 4
mid level design, 16
Open Systems Interconnectivity (OSI) and, 4
physical view in, 7
process views in, 6
processes in, 4
Reference Model for Open Distributed Processing

(RM ODP) and, 4, 7—9, 50
scenario view in, 7
security and, 10—11
Software Process Improvement and Capability

Determination (SPICE) for, 4
technology viewpoint in, 9
Unified Process in, 9—10
Universal Modeling Language (UML) and, 7, 10
usability engineering, 16

Solaris, 102, 264—267
solution space, security, 36
SPKM, 213
spoofing, 55, 87—88
SQL, database security, 278, 282—283
SQL92 standard for access control, 63
stack frame, buffer overflow versus, 112—113, 119
stack smashing, 51
StackGuard, 83, 115
stakeholder identification, 12–13, 26
standards, architecture reviews, 3—4
starvation, 205
state information, 95
stateful inspection, 91
static data attack, 110
stationary assumption, 383
steady state losses, 383, 392—393, 395
stochastic processes, 342
stored procedures, database security, 281

stream ciphers, 135–136
stress testing, 17
“stupid network”, 360—362
subsystem security, 49, 51—52, 54
success criteria, 14
SUID (See also Perl), 64, 80, 84, 114, 120–122, 126, 267

app/in application and operating system security, 248,
251, 256

database security and, 283
Web security and, 235

SUID attacks, 56
superuser privileges, 56
symmetric key cryptography, 133—136
SYN flooding, 102, 175
synchronization

app/in application and operating system security, 247
middleware and, 204—205

syntax validation, 88
perl/in Perl, 121—122

system architectural review, 11—19
cryptography, 143
documentation of architecture in, 12—19
Java, 157

system calls, perl/in Perl, 121
system review, security assessment, 24—26
system security architecture, 48—50

T
taint mode, perl/in Perl, 122
TCP fingerprinting, 55
TCP/IP, 319

app/in application and operating system security,
258—260

comm/in communications security, 180—181, 187—188
CORBA and, 210
directories in, 85
ips/in IPSec, 192, 195
layered security and, 100
LDAP and, 313
proxies and, 96
Web security and, 233

tcpwrapper, 92—93, 250, 256—257, 321
technology and security, 51
technology viewpoint, 9
telecommunications management network (TMN), 9
Telnet, 259, 261
tested and reviewed procedures and controls (Level 4

security), 23—24
testing, 11, 14, 17, 53, 113, 411
theft of session credentials, 53
theft, losses to, 379—382
thermal scans, 59
threat validators, 88—89
threats, 21–22, 30, 32

enterprise security architecture and, threat
repository, 356

three letter acronyms (TLAs), 14
thumbprints, 59

I N D E X 449

ticket granting tickets (TGT), Kerberos, 315
tickets, 82—83
tiger teams, 411
time, 71

access control and, 68
Time of check to Time of Use (TOCTTOU) attacks, 283
timestamps, 82
Tiny Personal Firewall, 307
token ring networks, 83
tokens, 59, 82—83

CORBA and, 209
database security and, 275
ips/in IPSec, 189
Web security and, 230
XML and, 369

topologies, 16
toy business case, 378
transitive trust, 79–80, 225, 409

secure single sign on (SSSO) and, 300
translator, Perl, 120
Transmission Control Protocol (TCP), 319

comm/in communications security, 188
intrusion detection and, 308
ips/in IPSec, 188
Secure Sockets Layer (SSL) and, 184
Web security and, 233

Transport Layer Security (TLS), 182
transport mode, ips/in IPSec, 191—192
transport tunnel, 96—97

CORBA and, 214
triggers

audit, 53
database security and, 274, 280

Tripwire, 83, 235, 250, 321
Trojan compiler, 152
Trojan horse compiler, 169—176
Trojan horses, 151, 175—177
trust, transitive, 79, 80, 225, 300, 409
trusted bases, 108
trusted code, 151—177

ActiveX controls and, 157—160
adding trust infrastructures to systems and, 152—153
applets and, 154—155
Certificate Authorities (CA) and, 158, 164
downloaded content and, 160—162
global infrastructure and, 156—158
implementing trust within the enterprise and, 163—164
intellectual property protection, 165—169
Internet Explorer zones, 159—162
local infrastructure and, 155, 158
local security policy definition and, 155—156
Microsoft Authenticode in, 157—159
Netscape object signing and, 162—163
public key infrastructure (PKI), 156–157, 163
sandbox and, 152—157, 160, 162
sanity scripts and, 164
self-decrypting packages in, 163
self-extracting packages in, 163
self-reproducing programs and, 171—173

signed packages and, 163
Trojan horse compiler and, 170—176

Trusted Computing Base (TCB), 99
Trusted DBMS, database security, 270
trusted processes, 24
Trusted Sites Zone, Internet Explorer, 159
Trusted Solaris, 250
trusted source, perl/in Perl, 122
trusted third party (TTP), 84, 87—88

comm/in communications security, 180
cryptography, 141
intellectual property protection and, 167

tunnel mode, ips/in IPSec, 191—192
tunnel, transport, 96—97
tunnels, XML, 369
two-factor authentication schemes (See also tokens), 59

U
Unified Process, 4, 9—10
uniform payment in cost of security, 389
Uniform Resource Identifiers (URIs), 363, 365
uniformity of security, 54
Universal Modeling Language (UML), 7, 10
UNIX, 31, 56, 249

access control lists (ACLs) in, 262—264
app/in application and operating system security, 256,

258—262
buffer overflow versus, 111
database security and, 283
interceptors and, 95
layers of security and, 260—262
passwords and, 58—59
Pluggable Authentication Module (PAM) and, 260—262
roles in, 84
Trojan horse compiler and, 170—176

usability engineering, 16
use cases, hacking, 11
User Datagram Protocol (UDP)

comm/in communications security, 188
ips/in IPSec, 188
Web security and, 233

user IDs, 58—59, 79, 84, 126, 298
user profiles, directories, 86

V
validation

intellectual property protection and, 168
java/in Java, bytecode, 123—125
perl/in Perl, syntax, 121—122

validators, 84, 88—90
buffer overflow versus, 114—115

vandalism of Web sites, 380
vault, CORBA, 219
VBScript, 151
vendors and security, 31, 44—48, 274, 296, 407

app/in application and operating system security, 248
CORBA and, 211—212
database security and, 271
middleware and, 205—206

I N D E X450

TE
AM
FL
Y

Team-Fly®

Veracity, 235
verification

bytecode validation in Java, 123—125
intellectual property protection and, 167

VeriSign, 164, 366—368
Veritas, 267
views, database security, 279—281
views, modeling, 6—7
virtual machines, layered security, 100
Virtual Private Databases (VPD), 274, 286—287
Virtual Private Network (VPN)

concentrators and, 98
firewalls and, 306
ips/in IPSec, 188
layered security and, 100
sandbox and, 102
transport tunnels and, 97
Web security and, 232

Virtual Vault, 102
virus scanners, 31, 40, 88
viruses, 151, 175, 231, 234, 378, 380
VPN gateways, 57
vulnerabilities, 21–22, 30

enterprise security architecture and, repository for,
356—357

security assessment and, 31, 33—36
vulnerability databases, 31
vulnerability validators, 89

W
watchdogs, 89
Web browsers, 82
Web front end to application server, analysis, 71—73
Web hosts security, 100, 233—235
web proxies, 96
Web security, 223—245, 409

access control and, 225, 237, 242—243
active content and, 230—231
Active Server Pages, 239
ActiveX and, 227—228, 230
anonymous FTP and, 226, 234
applets and, 230
authentication in, 225, 232, 236
authorization in, 225
browsers and, 223–224, 227—228, 230—232
buffer overflow and, 233–234
certificates in, 231—232
chained delegation credentials in, 229—230
client protection in, 226, 230—232
common gateway interface (CGI) and, 237—238
communications security and, 224
connection protection, 226, 232—233
cookies and, 229
CORBA and, 244
database security and, 271—272
DDOS attacks and, 233, 234
demilitarized zone (DMZ) for, 232—233
denial-of-service attacks, 226, 233–234

distributors and, 233
dynamic content and, 228
Enterprise Java Beans (EJB) and, 241, 243—244
Enterprise Web server architectures for, 239—240
firewalls and, 232—233
helper applications and, 231
HTML and, 227—228, 238
HTTP and, 227—229, 238, 244
interceptors and, 229
issues of, 225—227
Java 2 Enterprise Edition (J2EE) standard for, 225,

240—244
Java and, 225
Java Database Connectivity (JDBC) and, 241
Java Server Pages, 239
JavaScript and, 238
Kerberos and, 225
management of, 227
Multipurpose Internet Multimedia Extension (MIME)

and, 228, 231
NT LAN Manager (NTLM) and, 236
NTLM and, 225
operating systems (OS) and, 234
options for, 228—230
PHP and, 239
policy, technology, architecture, and configuration

for, 229
privilege access certificates (PACs), 230
review of, questions to ask, 226—227
root users and, 236
scripting languages and, 231
Secure Sockets Layer (SSL) and, 229
server protection and, 226, 233—238
server side extensions and, 229
Server Side Includes (SSIs) and, 238—239
server side Java and, 241
servers and, 224, 228, 232—233
services protection in, 226—227
servlets and, 225, 229, 241—243
TCP/IP and, 233
tokens in, 230
transitive trust in, 225
vandalism and, 380
virtual private networks (VPNs) and, 232
viruses and, 231, 234
Web application architecture and, 227—228
Web application configuration and, 236—237
Web hosts and, 233—235
wrappers and, 229, 242

Web servers, interceptors, 94
weighted average cost of capital (WACC), 382
well-defined magic components, 103
Wired Equivalent Privacy (WEP), 136, 146—147
Wireless Application Protocol (WAP), 148
Wireless Transport Layer Security (WTLS), 148
World Wide Web Consortium (W3C), 360
worms, 234, 379
worst fit rules, access control, 67

I N D E X 451

wrappers, 52, 89—90, 92—93, 410
buffer overflow versus, 116—117
CORBA and, 209, 212
database security and, 283—284
Web security and, 229, 242
XML and, 369

wu-ftpd 2.4, 58

X
X.500 directories, 40, 84, 301, 311—314

enterprise security architecture and, 354
public key infrastructure (PKI), 304

X.500 Directory Access Protocol (DAP), 84–85
X.509 certificate, 51, 79, 301—302

revocation of, 80
roles and, 84
Secure Sockets Layer (SSL) and,185—186

XHTML, 362
XLinks, 362
XML, 223, 362—368

cryptography and, 368
Document Object Model (DOM), 362
Document Type Definition (DTD), 362
enterprise security architecture and, 359
Extensible Stylesheet Language (XSL), 362—363
J2EE servlet security specification in, 365
patterns of security and, 369—370
SAML and, 367
security data and, XML-enabled, 370—371

Security Services Markup Language (S2ML) and,
366—367

security standards and, 364—368
Simple API for XML (SAX), 362
Uniform Resource Identifiers (URIs) and, 365
XLinks, 362
XML Digital Signatures Standard (XML DSig) in,

365—366
XML Encryption Standard, 366
XML Key Management Services (XKMS), 367—368
XML Query Language (XQL), 362
XML Security Services Signaling Layer (XS3), 363—364
XPath, 362

XML Digital Signatures Standard (XML DSig), 365—366
XML Key Management Services (XKMS), 367—368
XML Query Language (XQL), 362
XML Security Services Signaling Layer (XS3), 363—364
XPath, 362
XSL, 362—363

Y
Yahoo!, 380
Yankee Group, 381

Z
zero-knowledge proofs, 55
Zone Alarm, 307
zones, Internet Explorer, 159—162

I N D E X452

	sample.pdf
	sterling.com
	Welcome to Sterling Software

